Science.gov

Sample records for biological part assembly

  1. BioPartsBuilder: a synthetic biology tool for combinatorial assembly of biological parts

    PubMed Central

    Yang, Kun; Stracquadanio, Giovanni; Luo, Jingchuan; Boeke, Jef D.; Bader, Joel S.

    2016-01-01

    Summary: Combinatorial assembly of DNA elements is an efficient method for building large-scale synthetic pathways from standardized, reusable components. These methods are particularly useful because they enable assembly of multiple DNA fragments in one reaction, at the cost of requiring that each fragment satisfies design constraints. We developed BioPartsBuilder as a biologist-friendly web tool to design biological parts that are compatible with DNA combinatorial assembly methods, such as Golden Gate and related methods. It retrieves biological sequences, enforces compliance with assembly design standards and provides a fabrication plan for each fragment. Availability and implementation: BioPartsBuilder is accessible at http://public.biopartsbuilder.org and an Amazon Web Services image is available from the AWS Market Place (AMI ID: ami-508acf38). Source code is released under the MIT license, and available for download at https://github.com/baderzone/biopartsbuilder. Contact: joel.bader@jhu.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:26568632

  2. The case for decoupling assembly and submission standards to maintain a more flexible registry of biological parts.

    PubMed

    Alnahhas, Razan N; Slater, Ben; Huang, Yunle; Mortensen, Catherine; Monk, Jordan W; Okasheh, Yousef; Howard, Marco D; Gottel, Neil R; Hammerling, Michael J; Barrick, Jeffrey E

    2014-01-01

    The Registry of Standard Biological Parts only accepts genetic parts compatible with the RFC 10 BioBrick format. This combined assembly and submission standard requires that four unique restriction enzyme sites must not occur in the DNA sequence encoding a part. We present evidence that this requirement places a nontrivial burden on iGEM teams developing large and novel parts. We further argue that the emergence of inexpensive DNA synthesis and versatile assembly methods reduces the utility of coupling submission and assembly standards and propose a submission standard that is compatible with current quality control strategies while nearly eliminating sequence constraints on submitted parts. PMID:25525459

  3. Unique nucleotide sequence (UNS)-guided assembly of repetitive DNA parts for synthetic biology applications

    PubMed Central

    Torella, Joseph P.; Lienert, Florian; Boehm, Christian R.; Chen, Jan-Hung; Way, Jeffrey C.; Silver, Pamela A.

    2016-01-01

    Recombination-based DNA construction methods, such as Gibson assembly, have made it possible to easily and simultaneously assemble multiple DNA parts and hold promise for the development and optimization of metabolic pathways and functional genetic circuits. Over time, however, these pathways and circuits have become more complex, and the increasing need for standardization and insulation of genetic parts has resulted in sequence redundancies — for example repeated terminator and insulator sequences — that complicate recombination-based assembly. We and others have recently developed DNA assembly methods that we refer to collectively as unique nucleotide sequence (UNS)-guided assembly, in which individual DNA parts are flanked with UNSs to facilitate the ordered, recombination-based assembly of repetitive sequences. Here we present a detailed protocol for UNS-guided assembly that enables researchers to convert multiple DNA parts into sequenced, correctly-assembled constructs, or into high-quality combinatorial libraries in only 2–3 days. If the DNA parts must be generated from scratch, an additional 2–5 days are necessary. This protocol requires no specialized equipment and can easily be implemented by a student with experience in basic cloning techniques. PMID:25101822

  4. Unique nucleotide sequence-guided assembly of repetitive DNA parts for synthetic biology applications

    SciTech Connect

    Torella, JP; Lienert, F; Boehm, CR; Chen, JH; Way, JC; Silver, PA

    2014-08-07

    Recombination-based DNA construction methods, such as Gibson assembly, have made it possible to easily and simultaneously assemble multiple DNA parts, and they hold promise for the development and optimization of metabolic pathways and functional genetic circuits. Over time, however, these pathways and circuits have become more complex, and the increasing need for standardization and insulation of genetic parts has resulted in sequence redundancies-for example, repeated terminator and insulator sequences-that complicate recombination-based assembly. We and others have recently developed DNA assembly methods, which we refer to collectively as unique nucleotide sequence (UNS)-guided assembly, in which individual DNA parts are flanked with UNSs to facilitate the ordered, recombination-based assembly of repetitive sequences. Here we present a detailed protocol for UNS-guided assembly that enables researchers to convert multiple DNA parts into sequenced, correctly assembled constructs, or into high-quality combinatorial libraries in only 2-3 d. If the DNA parts must be generated from scratch, an additional 2-5 d are necessary. This protocol requires no specialized equipment and can easily be implemented by a student with experience in basic cloning techniques.

  5. CIDAR MoClo: Improved MoClo Assembly Standard and New E. coli Part Library Enable Rapid Combinatorial Design for Synthetic and Traditional Biology.

    PubMed

    Iverson, Sonya V; Haddock, Traci L; Beal, Jacob; Densmore, Douglas M

    2016-01-15

    Multipart and modular DNA part libraries and assembly standards have become common tools in synthetic biology since the publication of the Gibson and Golden Gate assembly methods, yet no multipart modular library exists for use in bacterial systems. Building upon the existing MoClo assembly framework, we have developed a publicly available collection of modular DNA parts and enhanced MoClo protocols to enable rapid one-pot, multipart assembly, combinatorial design, and expression tuning in Escherichia coli. The Cross-disciplinary Integration of Design Automation Research lab (CIDAR) MoClo Library is openly available and contains promoters, ribosomal binding sites, coding sequence, terminators, vectors, and a set of fluorescent control plasmids. Optimized protocols reduce reaction time and cost by >80% from that of previously published protocols. PMID:26479688

  6. Method of forming and assembly of parts

    DOEpatents

    Ripley, Edward B.

    2010-12-28

    A method of assembling two or more parts together that may be metal, ceramic, metal and ceramic parts, or parts that have different CTE. Individual parts are formed and sintered from particles that leave a network of interconnecting porosity in each sintered part. The separate parts are assembled together and then a fill material is infiltrated into the assembled, sintered parts using a method such as capillary action, gravity, and/or pressure. The assembly is then cured to yield a bonded and fully or near-fully dense part that has the desired physical and mechanical properties for the part's intended purpose. Structural strength may be added to the parts by the inclusion of fibrous materials.

  7. Magnetic self-assembly of small parts

    NASA Astrophysics Data System (ADS)

    Shetye, Sheetal B.

    Modern society's propensity for miniaturized end-user products is compelling electronic manufacturers to assemble and package different micro-scale, multi-technology components in more efficient and cost-effective manners. As the size of the components gets smaller, issues such as part sticking and alignment precision create challenges that slow the throughput of conventional robotic pick-n-place systems. As an alternative, various self-assembly approaches have been proposed to manipulate micro to millimeter scale components in a parallel fashion without human or robotic intervention. In this dissertation, magnetic self-assembly (MSA) is demonstrated as a highly efficient, completely parallel process for assembly of millimeter scale components. MSA is achieved by integrating permanent micromagnets onto component bonding surfaces using wafer-level microfabrication processes. Embedded bonded powder methods are used for fabrication of the magnets. The magnets are then magnetized using pulse magnetization methods, and the wafers are then singulated to form individual components. When the components are randomly mixed together, self-assembly occurs when the intermagnetic forces overcome the mixing forces. Analytical and finite element methods (FEM) are used to study the force interactions between the micromagnets. The multifunctional aspects of MSA are presented through demonstration of part-to-part and part-to-substrate assembly of 1 mm x 1mm x 0.5 mm silicon components. Part-to-part assembly is demonstrated by batch assembly of free-floating parts in a liquid environment with the assembly yield of different magnetic patterns varying from 88% to 90% in 20 s. Part-to-substrate assembly is demonstrated by assembling an ordered array onto a fixed substrate in a dry environment with the assembly yield varying from 86% to 99%. In both cases, diverse magnetic shapes/patterns are used to control the alignment and angular orientation of the components. A mathematical model is

  8. Directed Assembly of Biological Polymers

    NASA Astrophysics Data System (ADS)

    Miller, Aline

    2009-03-01

    The self-assembly of polypeptides into beta-sheet rich nanofibrils has attracted considerable attention in recent years to both understand amyloidgenesis and for their potential biomaterials applications. This self-assembly process is generic to all proteins where fibrillation is typically induced under harsh conditions of low pH and/or high temperature, which are of course not suitable for biomaterials applications. Here we will outline the method developed in our laboratory to create thermo-reversible fibrillar hydrogels from aqueous solutions of a series of proteins by adding a reductant. Proteins studied include beta-lactoglobulin, ovalbimum, lysozyme and bovine serum albimum; all contain an increasing number of disulfide bridges that are disrupted by the reductant. Such disruption destabilises the native state of the protein and this allows us to form transparent, self-supporting hydrogels under physiological conditions. The potential to control and manipulate the gel properties, including mechanical strength and structure (fibre diameter and mesh size of hydrogel) has been explored by varying the protein (consequently the number of disulfide bridges), protein concentration, reductant concentration and ionic strength of the matrix. Our results will be presented here and similarities and differences highlighted. Furthermore we will present both our 2- and 3-dimensional cell culture experiments that show the gel matrix promotes both fibroblast and chondrocyte cell spreading, attachment and proliferation; indicating our hydrogels gels are biocompatible and they can provide a viable support for different cell types.

  9. Indentured Parts List Maintenance and Part Assembly Capture Tool - IMPACT

    NASA Technical Reports Server (NTRS)

    Jain, Bobby; Morris, Jill; Sharpe, Kelly

    2004-01-01

    Johnson Space Center's (JSC's) indentured parts list (IPL) maintenance and parts assembly capture tool (IMPACT) is an easy-to-use graphical interface for viewing and maintaining the complex assembly hierarchies of large databases. IMPACT, already in use at JSC to support the International Space Station (ISS), queries, updates, modifies, and views data in IPL and associated resource data, functions that it can also perform, with modification, for any large commercial database. By enabling its users to efficiently view and manipulate IPL hierarchical data, IMPACT performs a function unlike that of any other tool. Through IMPACT, users will achieve results quickly, efficiently, and cost effectively.

  10. The biological microprocessor, or how to build a computer with biological parts

    PubMed Central

    Moe-Behrens, Gerd HG

    2013-01-01

    Systemics, a revolutionary paradigm shift in scientific thinking, with applications in systems biology, and synthetic biology, have led to the idea of using silicon computers and their engineering principles as a blueprint for the engineering of a similar machine made from biological parts. Here we describe these building blocks and how they can be assembled to a general purpose computer system, a biological microprocessor. Such a system consists of biological parts building an input / output device, an arithmetic logic unit, a control unit, memory, and wires (busses) to interconnect these components. A biocomputer can be used to monitor and control a biological system. PMID:24688733

  11. The biological microprocessor, or how to build a computer with biological parts.

    PubMed

    Moe-Behrens, Gerd Hg

    2013-01-01

    Systemics, a revolutionary paradigm shift in scientific thinking, with applications in systems biology, and synthetic biology, have led to the idea of using silicon computers and their engineering principles as a blueprint for the engineering of a similar machine made from biological parts. Here we describe these building blocks and how they can be assembled to a general purpose computer system, a biological microprocessor. Such a system consists of biological parts building an input / output device, an arithmetic logic unit, a control unit, memory, and wires (busses) to interconnect these components. A biocomputer can be used to monitor and control a biological system. PMID:24688733

  12. Engineering colloidal assembly via biological adhesion

    NASA Astrophysics Data System (ADS)

    Hiddessen, Amy Lynn

    Due to highly specialized recognition properties, biological receptor-ligand interactions offer valuable tools for engineering the assembly of novel colloidal materials. A unique sub-class of these macromolecules, called selectins, was exploited to develop binary suspensions where particles are programmed to associate reversibly or irreversibly via specific biomolecular cross-linking. Flow cytometry and videomicroscopy were used to examine factors controlling suspension assembly and structure, including biomolecular affinity and density, and individual and total particle volume fractions. By functionalizing small (RA = 0.47 mum) and larger (RB = 2.75 mum) particles with high surface densities of complementary E-selectin/sialyl Lewis X (sLeX) carbohydrate chemistry, a series of structures, from colloidal micelles (large particle coated with smaller particles) and clusters, to rings and elongated chains, was synthesized by decreasing the number ratio, NA/NB, of small (A) to large (B) particles (2 ≤ NA/NB ≤ 200) at low total volume fraction (10-4 ≤ φT ≤ 10-3 ). Using significantly lower surface densities, the low affinity binding between E-selectin and sLeX was exploited to create particles that interact reversibly, and average particle interaction lifetimes were tuned from minutes down to single selectin-carbohydrate bond lifetimes (≈1 s) by reducing sLeX density, a significant step toward assembling ordered microstructures. Particle binding lifetimes were analyzed with a receptor-ligand binding model, yielding estimates for molecular parameters, including on rate, 10-2 s-1 < kon < 10-1 s-1, and unstressed off rate, 0.25 s-1 ≤ kor ≤ 1.0 s-1, that characterize the docking dynamics of particles. Finally, at significantly higher volume fraction (φ T ≥ 10-1) and low number ratio, the rheology of space-filling networks crosslinked by high affinity streptavidin-biotin chemistry was probed to acquire knowledge on bulk properties of biocolloidal suspensions

  13. BASIC: A New Biopart Assembly Standard for Idempotent Cloning Provides Accurate, Single-Tier DNA Assembly for Synthetic Biology.

    PubMed

    Storch, Marko; Casini, Arturo; Mackrow, Ben; Fleming, Toni; Trewhitt, Harry; Ellis, Tom; Baldwin, Geoff S

    2015-07-17

    The ability to quickly and reliably assemble DNA constructs is one of the key enabling technologies for synthetic biology. Here we define a new Biopart Assembly Standard for Idempotent Cloning (BASIC), which exploits the principle of orthogonal linker based DNA assembly to define a new physical standard for DNA parts. Further, we demonstrate a new robust method for assembly, based on type IIs restriction enzyme cleavage and ligation of oligonucleotides with single stranded overhangs that determine the assembly order. It allows for efficient, parallel assembly with great accuracy: 4 part assemblies achieved 93% accuracy with single antibiotic selection and 99.7% accuracy with double antibiotic selection, while 7 part assemblies achieved 90% accuracy with double antibiotic selection. The linkers themselves may also be used as composable parts for RBS tuning or the creation of fusion proteins. The standard has one forbidden restriction site and provides for an idempotent, single tier organization, allowing all parts and composite constructs to be maintained in the same format. This makes the BASIC standard conceptually simple at both the design and experimental levels. PMID:25746445

  14. Liquid crystal assemblies in biologically inspired systems

    PubMed Central

    Safinya, Cyrus R.; Deek, Joanna; Beck, Roy; Jones, Jayna B.; Leal, Cecilia; Ewert, Kai K.; Li, Youli

    2013-01-01

    In this paper, which is part of a collection in honor of Noel Clark's remarkable career on liquid crystal and soft matter research, we present examples of biologically inspired systems, which form liquid crystal (LC) phases with their LC nature impacting biological function in cells or being important in biomedical applications. One area focuses on understanding network and bundle formation of cytoskeletal polyampholytes (filamentous-actin, microtubules, and neurofilaments). Here, we describe studies on neurofilaments (NFs), the intermediate filaments of neurons, which form open network nematic liquid crystal hydrogels in axons. Synchrotron small-angle-x-ray scattering studies of NF-protein dilution experiments and NF hydrogels subjected to osmotic stress show that neurofilament networks are stabilized by competing long-range repulsion and attractions mediated by the neurofilament's polyampholytic sidearms. The attractions are present both at very large interfilament spacings, in the weak sidearm-interpenetrating regime, and at smaller interfilament spacings, in the strong sidearm-interpenetrating regime. A second series of experiments will describe the structure and properties of cationic liposomes (CLs) complexed with nucleic acids (NAs). CL-NA complexes form liquid crystalline phases, which interact in a structure-dependent manner with cellular membranes enabling the design of complexes for efficient delivery of nucleic acid (DNA, RNA) in therapeutic applications. PMID:24558293

  15. Method of forming and assembly of metal and ceramic parts

    DOEpatents

    Ripley, Edward B

    2014-04-22

    A method of forming and assembling at least two parts together that may be metal, ceramic, or a combination of metal and ceramic parts. Such parts may have different CTE. Individual parts that are formed and sintered from particles leave a network of interconnecting porosity in each sintered part. The separate parts are assembled together and then a fill material is infiltrated into the assembled parts using a method such as capillary action, gravity, and/or pressure. The assembly is then cured to yield a bonded and fully or near-fully dense part that has the desired physical and mechanical properties for the part's intended purpose. Structural strength may be added to the parts by the inclusion of fibrous materials.

  16. Synthetic Self-Assembled Materials in Biological Environments.

    PubMed

    Versluis, Frank; van Esch, Jan H; Eelkema, Rienk

    2016-06-01

    Synthetic self-assembly has long been recognized as an excellent approach for the formation of ordered structures on the nanoscale. Although the development of synthetic self-assembling materials has often been inspired by principles observed in nature (e.g., the assembly of lipids, DNA, proteins), until recently the self-assembly of synthetic molecules has mainly been investigated ex vivo. The past few years however, have witnessed the emergence of a research field in which synthetic, self-assembling systems are used that are capable of operating as bioactive materials in biological environments. Here, this up-and-coming field, which has the potential of becoming a key area in chemical biology and medicine, is reviewed. Two main categories of applications of self-assembly in biological environments are identified and discussed, namely therapeutic and imaging agents. Within these categories key concepts, such as triggers and molecular constraints for in vitro/in vivo self-assembly and the mode of interaction between the assemblies and the biological materials will be discussed. PMID:27042774

  17. PaperClip: rapid multi-part DNA assembly from existing libraries

    PubMed Central

    Trubitsyna, Maryia; Michlewski, Gracjan; Cai, Yizhi; Elfick, Alistair; French, Christopher E.

    2014-01-01

    Assembly of DNA ‘parts’ to create larger constructs is an essential enabling technique for bioengineering and synthetic biology. Here we describe a simple method, PaperClip, which allows flexible assembly of multiple DNA parts from currently existing libraries cloned in any vector. No restriction enzymes, mutagenesis of internal restriction sites, or reamplification to add end homology are required. Order of assembly is directed by double stranded oligonucleotides—‘Clips’. Clips are formed by ligation of pairs of oligonucleotides corresponding to the ends of each part. PaperClip assembly can be performed by polymerase chain reaction or by cell extract-mediated recombination. Once multi-use Clips have been prepared, assembly of at least six DNA parts in any order can be accomplished with high efficiency within several hours. PMID:25200084

  18. Method of forming and assembly of metal parts and ceramic parts

    DOEpatents

    Ripley, Edward B.

    2011-11-22

    A method of forming and assembling at least two parts together that may be metal, ceramic, or a combination of metal and ceramic parts. Such parts may have different CTE. Individual parts that are formed and sintered from particles leave a network of interconnecting porosity in each sintered part. The separate parts are assembled together and then a fill material is infiltrated into the assembled parts using a method such as capillary action, gravity, and/or pressure. The assembly is then cured to yield a bonded and fully or near-fully dense part that has the desired physical and mechanical properties for the part's intended purpose. Structural strength may be added to the parts by the inclusion of fibrous materials.

  19. Readout electrode assembly for measuring biological impedance

    NASA Technical Reports Server (NTRS)

    Montgomery, L. D.; Moody, D. L., Jr. (Inventor)

    1976-01-01

    The invention comprises of a pair of readout ring electrodes which are used in conjunction with apparatus for measuring the electrical impedance between different points in the body of a living animal to determine the amount of blood flow therebetween. The readout electrodes have independently adjustable diameters to permit attachment around different parts of the body between which it is desired to measure electric impedance. The axial spacing between the electrodes is adjusted by a pair of rods which have a first pair of ends fixedly attached to one electrode and a second pair of ends slidably attached to the other electrode. Indicia are provided on the outer surface of the ring electrodes and on the surface of the rods to permit measurement of the circumference and spacing between the ring electrodes.

  20. Targeted Development of Registries of Biological Parts

    PubMed Central

    Peccoud, Jean; Blauvelt, Megan F.; Cai, Yizhi; Cooper, Kristal L.; Crasta, Oswald; DeLalla, Emily C.; Evans, Clive; Folkerts, Otto; Lyons, Blair M.; Mane, Shrinivasrao P.; Shelton, Rebecca; Sweede, Matthew A.; Waldon, Sally A.

    2008-01-01

    Background The design and construction of novel biological systems by combining basic building blocks represents a dominant paradigm in synthetic biology. Creating and maintaining a database of these building blocks is a way to streamline the fabrication of complex constructs. The Registry of Standard Biological Parts (Registry) is the most advanced implementation of this idea. Methods/Principal Findings By analyzing inclusion relationships between the sequences of the Registry entries, we build a network that can be related to the Registry abstraction hierarchy. The distribution of entry reuse and complexity was extracted from this network. The collection of clones associated with the database entries was also analyzed. The plasmid inserts were amplified and sequenced. The sequences of 162 inserts could be confirmed experimentally but unexpected discrepancies have also been identified. Conclusions/Significance Organizational guidelines are proposed to help design and manage this new type of scientific resources. In particular, it appears necessary to compare the cost of ensuring the integrity of database entries and associated biological samples with their value to the users. The initial strategy that permits including any combination of parts irrespective of its potential value leads to an exponential and economically unsustainable growth that may be detrimental to the quality and long-term value of the resource to its users. PMID:18628824

  1. One-pot DNA construction for synthetic biology: the Modular Overlap-Directed Assembly with Linkers (MODAL) strategy.

    PubMed

    Casini, Arturo; MacDonald, James T; De Jonghe, Joachim; Christodoulou, Georgia; Freemont, Paul S; Baldwin, Geoff S; Ellis, Tom

    2014-01-01

    Overlap-directed DNA assembly methods allow multiple DNA parts to be assembled together in one reaction. These methods, which rely on sequence homology between the ends of DNA parts, have become widely adopted in synthetic biology, despite being incompatible with a key principle of engineering: modularity. To answer this, we present MODAL: a Modular Overlap-Directed Assembly with Linkers strategy that brings modularity to overlap-directed methods, allowing assembly of an initial set of DNA parts into a variety of arrangements in one-pot reactions. MODAL is accompanied by a custom software tool that designs overlap linkers to guide assembly, allowing parts to be assembled in any specified order and orientation. The in silico design of synthetic orthogonal overlapping junctions allows for much greater efficiency in DNA assembly for a variety of different methods compared with using non-designed sequence. In tests with three different assembly technologies, the MODAL strategy gives assembly of both yeast and bacterial plasmids, composed of up to five DNA parts in the kilobase range with efficiencies of between 75 and 100%. It also seamlessly allows mutagenesis to be performed on any specified DNA parts during the process, allowing the one-step creation of construct libraries valuable for synthetic biology applications. PMID:24153110

  2. Precise Truss Assembly using Commodity Parts and Low Precision Welding

    NASA Technical Reports Server (NTRS)

    Komendera, Erik; Reishus, Dustin; Dorsey, John T.; Doggett, William R.; Correll, Nikolaus

    2013-01-01

    We describe an Intelligent Precision Jigging Robot (IPJR), which allows high precision assembly of commodity parts with low-precision bonding. We present preliminary experiments in 2D that are motivated by the problem of assembling a space telescope optical bench on orbit using inexpensive, stock hardware and low-precision welding. An IPJR is a robot that acts as the precise "jigging", holding parts of a local assembly site in place while an external low precision assembly agent cuts and welds members. The prototype presented in this paper allows an assembly agent (in this case, a human using only low precision tools), to assemble a 2D truss made of wooden dowels to a precision on the order of millimeters over a span on the order of meters. We report the challenges of designing the IPJR hardware and software, analyze the error in assembly, document the test results over several experiments including a large-scale ring structure, and describe future work to implement the IPJR in 3D and with micron precision.

  3. Precise Truss Assembly Using Commodity Parts and Low Precision Welding

    NASA Technical Reports Server (NTRS)

    Komendera, Erik; Reishus, Dustin; Dorsey, John T.; Doggett, W. R.; Correll, Nikolaus

    2014-01-01

    Hardware and software design and system integration for an intelligent precision jigging robot (IPJR), which allows high precision assembly using commodity parts and low-precision bonding, is described. Preliminary 2D experiments that are motivated by the problem of assembling space telescope optical benches and very large manipulators on orbit using inexpensive, stock hardware and low-precision welding are also described. An IPJR is a robot that acts as the precise "jigging", holding parts of a local structure assembly site in place, while an external low precision assembly agent cuts and welds members. The prototype presented in this paper allows an assembly agent (for this prototype, a human using only low precision tools), to assemble a 2D truss made of wooden dowels to a precision on the order of millimeters over a span on the order of meters. The analysis of the assembly error and the results of building a square structure and a ring structure are discussed. Options for future work, to extend the IPJR paradigm to building in 3D structures at micron precision are also summarized.

  4. Diversity in virus assembly: biology makes things complicated

    NASA Astrophysics Data System (ADS)

    Zlotnick, Adam

    2008-03-01

    Icosahedral viruses have an elegance of geometry that implies a general path of assembly. However, structure alone provides insufficient information. Cowpea Chlorotic Mottle Virus (CCMV), an important system for studying virus assembly, consists of 90 coat protein (CP) homodimers condensed around an RNA genome. The crystal structure (Speir et al, 1995) reveals that assembly causes burial of hydrophobic surface and formation of β hexamers, the intertwining of N-termini of the CPs surrounding a quasi-sixfold. This structural view leads to reasonable and erroneous predictions: (i) CCMV capsids are extremely stable, and (ii) β hexamer formation is critical to assembly. Experimentally, we have found that capsids are based on a network of extremely weak (4-5 kT) pairwise interactions and that pentamer formation is the critical step in assembly kinetics. Because of the fragility of CP-Cp interaction, we can redirect assembly to generate and dissociate tubular nanostructures. The dynamic behavior of CCMV reflects the requirements and peculiarities of an evolved biological system; it does not necessarily reflect the behavior predicted from a more static picture of the virus.

  5. Mining Environmental Plasmids for Synthetic Biology Parts and Devices.

    PubMed

    Martínez-García, Esteban; Benedetti, Ilaria; Hueso, Angeles; De Lorenzo, Víctor

    2015-02-01

    The scientific and technical ambition of contemporary synthetic biology is the engineering of biological objects with a degree of predictability comparable to those made through electric and industrial manufacturing. To this end, biological parts with given specifications are sequence-edited, standardized, and combined into devices, which are assembled into complete systems. This goal, however, faces the customary context dependency of biological ingredients and their amenability to mutation. Biological orthogonality (i.e., the ability to run a function in a fashion minimally influenced by the host) is thus a desirable trait in any deeply engineered construct. Promiscuous conjugative plasmids found in environmental bacteria have evolved precisely to autonomously deploy their encoded activities in a variety of hosts, and thus they become excellent sources of basic building blocks for genetic and metabolic circuits. In this article we review a number of such reusable functions that originated in environmental plasmids and keep their properties and functional parameters in a variety of hosts. The properties encoded in the corresponding sequences include inter alia origins of replication, DNA transfer machineries, toxin-antitoxin systems, antibiotic selection markers, site-specific recombinases, effector-dependent transcriptional regulators (with their cognate promoters), and metabolic genes and operons. Several of these sequences have been standardized as BioBricks and/or as components of the SEVA (Standard European Vector Architecture) collection. Such formatting facilitates their physical composability, which is aimed at designing and deploying complex genetic constructs with new-to-nature properties. PMID:26104565

  6. A precision press-fit instrument for assembling small parts

    NASA Astrophysics Data System (ADS)

    Lou, Zhifeng; Wang, Xiaodong; You, Bo; Xu, Yang

    2015-02-01

    In the paper, a precision press-fit instrument for assembling small interference fitting parts is introduced, which includes pressing module and parts alignment module. The pressing module was used to clamp and position parts, and parts alignment module was used for the two parts' alignment. Through analyzing press-fit control method, component alignment and adjustment strategy, and machine vision device calibration method, the instrument meets the pressing requirements of precision small components. Finite element method is used to predict the reasonable range of press-fit force, and pressing result of the instrument is tested by experiments.

  7. An Easy-to-Assemble Three-Part Galvanic Cell

    ERIC Educational Resources Information Center

    Eggen, Per-Odd; Skaugrud, Brit

    2015-01-01

    The galvanic cell presented in this article is made of only three parts, is easy to assemble, and can light a red light emitting diode (LED). The three cell components consist of a piece of paper with copper sulfate, a piece of paper with sodium sulfate, and a piece of magnesium ribbon. Within less than 1 h, students have time to discuss the…

  8. Assembly of hair bundles, an amazing problem for cell biology.

    PubMed

    Barr-Gillespie, Peter-G

    2015-08-01

    The hair bundle--the sensory organelle of inner-ear hair cells of vertebrates--exemplifies the ability of a cell to assemble complex, elegant structures. Proper construction of the bundle is required for proper mechanotransduction in response to external forces and to transmit information about sound and movement. Bundles contain tightly controlled numbers of actin-filled stereocilia, which are arranged in defined rows of precise heights. Indeed, many deafness mutations that disable hair-cell cytoskeletal proteins also disrupt bundles. Bundle assembly is a tractable problem in molecular and cellular systems biology; the sequence of structural changes in stereocilia is known, and a modest number of proteins may be involved. PMID:26229154

  9. Assembly of hair bundles, an amazing problem for cell biology

    PubMed Central

    Barr-Gillespie, Peter-G.

    2015-01-01

    The hair bundle—the sensory organelle of inner-ear hair cells of vertebrates—exemplifies the ability of a cell to assemble complex, elegant structures. Proper construction of the bundle is required for proper mechanotransduction in response to external forces and to transmit information about sound and movement. Bundles contain tightly controlled numbers of actin-filled stereocilia, which are arranged in defined rows of precise heights. Indeed, many deafness mutations that disable hair-cell cytoskeletal proteins also disrupt bundles. Bundle assembly is a tractable problem in molecular and cellular systems biology; the sequence of structural changes in stereocilia is known, and a modest number of proteins may be involved. PMID:26229154

  10. Autonomous parts assembly: comparison of ART and neocognitron

    NASA Astrophysics Data System (ADS)

    Rosandich, Ryan G.; Ozbayoglu, Murat A.; Roddiger, Eric W.; Dagli, Cihan H.

    1993-09-01

    In this paper, we present the performance analysis of three different neural network paradigms, ART-1, ARTMAP inspired ART-1 and Neocognitron, for part recognition in an autonomous assembly system. This intelligent manufacturing system integrates machine vision, neural networks and robotics in order to identify, locate and assemble randomly places components on printed circuit boards requiring precision assembly. The system uses an IBM 7547 robot controlled by an IBM PS/2 computer, a CCD camera and an image capture card. The electronic components are identified and located by using artificial neural networks. The system's component location and identification accuracy are tested on all test components. The results show that the neocognitron-based system performed better than the other two systems.

  11. Directed self-assembly, genomic assembly complexity and the formation of biological structure, or, what are the genes for nacre?

    PubMed

    Cartwright, Julyan H E

    2016-03-13

    Biology uses dynamical mechanisms of self-organization and self-assembly of materials, but it also choreographs and directs these processes. The difference between abiotic self-assembly and a biological process is rather like the difference between setting up and running an experiment to make a material remotely compared with doing it in one's own laboratory: with a remote experiment-say on the International Space Station-everything must be set up beforehand to let the experiment run 'hands off', but in the laboratory one can intervene at any point in a 'hands-on' approach. It is clear that the latter process, of directed self-assembly, can allow much more complicated experiments and produce far more complex structures than self-assembly alone. This control over self-assembly in biology is exercised at certain key waypoints along a trajectory and the process may be quantified in terms of the genomic assembly complexity of a biomaterial. PMID:26857670

  12. Eugene – A Domain Specific Language for Specifying and Constraining Synthetic Biological Parts, Devices, and Systems

    PubMed Central

    Bilitchenko, Lesia; Liu, Adam; Cheung, Sherine; Weeding, Emma; Xia, Bing; Leguia, Mariana; Anderson, J. Christopher; Densmore, Douglas

    2011-01-01

    Background Synthetic biological systems are currently created by an ad-hoc, iterative process of specification, design, and assembly. These systems would greatly benefit from a more formalized and rigorous specification of the desired system components as well as constraints on their composition. Therefore, the creation of robust and efficient design flows and tools is imperative. We present a human readable language (Eugene) that allows for the specification of synthetic biological designs based on biological parts, as well as provides a very expressive constraint system to drive the automatic creation of composite Parts (Devices) from a collection of individual Parts. Results We illustrate Eugene's capabilities in three different areas: Device specification, design space exploration, and assembly and simulation integration. These results highlight Eugene's ability to create combinatorial design spaces and prune these spaces for simulation or physical assembly. Eugene creates functional designs quickly and cost-effectively. Conclusions Eugene is intended for forward engineering of DNA-based devices, and through its data types and execution semantics, reflects the desired abstraction hierarchy in synthetic biology. Eugene provides a powerful constraint system which can be used to drive the creation of new devices at runtime. It accomplishes all of this while being part of a larger tool chain which includes support for design, simulation, and physical device assembly. PMID:21559524

  13. Standards for plant synthetic biology: a common syntax for exchange of DNA parts.

    PubMed

    Patron, Nicola J; Orzaez, Diego; Marillonnet, Sylvestre; Warzecha, Heribert; Matthewman, Colette; Youles, Mark; Raitskin, Oleg; Leveau, Aymeric; Farré, Gemma; Rogers, Christian; Smith, Alison; Hibberd, Julian; Webb, Alex A R; Locke, James; Schornack, Sebastian; Ajioka, Jim; Baulcombe, David C; Zipfel, Cyril; Kamoun, Sophien; Jones, Jonathan D G; Kuhn, Hannah; Robatzek, Silke; Van Esse, H Peter; Sanders, Dale; Oldroyd, Giles; Martin, Cathie; Field, Rob; O'Connor, Sarah; Fox, Samantha; Wulff, Brande; Miller, Ben; Breakspear, Andy; Radhakrishnan, Guru; Delaux, Pierre-Marc; Loqué, Dominique; Granell, Antonio; Tissier, Alain; Shih, Patrick; Brutnell, Thomas P; Quick, W Paul; Rischer, Heiko; Fraser, Paul D; Aharoni, Asaph; Raines, Christine; South, Paul F; Ané, Jean-Michel; Hamberger, Björn R; Langdale, Jane; Stougaard, Jens; Bouwmeester, Harro; Udvardi, Michael; Murray, James A H; Ntoukakis, Vardis; Schäfer, Patrick; Denby, Katherine; Edwards, Keith J; Osbourn, Anne; Haseloff, Jim

    2015-10-01

    Inventors in the field of mechanical and electronic engineering can access multitudes of components and, thanks to standardization, parts from different manufacturers can be used in combination with each other. The introduction of BioBrick standards for the assembly of characterized DNA sequences was a landmark in microbial engineering, shaping the field of synthetic biology. Here, we describe a standard for Type IIS restriction endonuclease-mediated assembly, defining a common syntax of 12 fusion sites to enable the facile assembly of eukaryotic transcriptional units. This standard has been developed and agreed by representatives and leaders of the international plant science and synthetic biology communities, including inventors, developers and adopters of Type IIS cloning methods. Our vision is of an extensive catalogue of standardized, characterized DNA parts that will accelerate plant bioengineering. PMID:26171760

  14. Prions and Protein Assemblies that Convey Biological Information in Health and Disease.

    PubMed

    Sanders, David W; Kaufman, Sarah K; Holmes, Brandon B; Diamond, Marc I

    2016-02-01

    Prions derived from the prion protein (PrP) were first characterized as infectious agents that transmit pathology between individuals. However, the majority of cases of neurodegeneration caused by PrP prions occur sporadically. Proteins that self-assemble as cross-beta sheet amyloids are a defining pathological feature of infectious prion disorders and all major age-associated neurodegenerative diseases. In fact, multiple non-infectious proteins exhibit properties of template-driven self-assembly that are strikingly similar to PrP. Evidence suggests that like PrP, many proteins form aggregates that propagate between cells and convert cognate monomer into ordered assemblies. We now recognize that numerous proteins assemble into macromolecular complexes as part of normal physiology, some of which are self-amplifying. This review highlights similarities among infectious and non-infectious neurodegenerative diseases associated with prions, emphasizing the normal and pathogenic roles of higher-order protein assemblies. We propose that studies of the structural and cellular biology of pathological versus physiological aggregates will be mutually informative. PMID:26844828

  15. FLOAT OPERATED RADIAL GATE HOIST ASSEMBLY LIST OF PARTS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    FLOAT OPERATED RADIAL GATE HOIST ASSEMBLY - LIST OF PARTS - BASE-CRANK. WASTEWAY NO. 1. WELLTON-MOHAWK CANAL - STA. 99+23.50. United States Department of the Interior, Bureau of Reclamation; Gila Project, Arizona, Wellton-Mohawk Division. Drawing No. 50-D-2511, dated May 3, 1949, Denver Colorado. Sheet 1 of 2 - Wellton-Mohawk Irrigation System, Wasteway No. 1, Wellton-Mohawk Canal, North side of Wellton-Mohawk Canal, bounded by Gila River to North & the Union Pacific Railroad & Gila Mountains to south, Wellton, Yuma County, AZ

  16. Micro-grippers for assembly of LIGA parts

    SciTech Connect

    Feddema, J.; Polosky, M.; Christenson, T.; Spletzer, B.; Simon, R.

    1997-12-31

    This paper describes ongoing testing of two microgrippers for assembly of LIGA (Lithographie Galvanoformung Abformung) parts. The goal is to place 100 micron outside diameter (OD) LIGA gears with a 50 micron inner diameter hole onto pins ranging from 35 to 49 microns. The first micro gripper is a vacuum gripper made of a 100 micron OD stainless steel tube. The second micro gripper is a set of tweezers fabricated using the LIGA process. Nickel, Permalloy, and copper materials are tested. The tweezers are actuated by a collet mechanism which is closed by a DC linear motor.

  17. Molecular self-assembly for biological investigations and nanoscale lithography

    NASA Astrophysics Data System (ADS)

    Cheunkar, Sarawut

    Small, diffusible molecules when recognized by their binding partners, such as proteins and antibodies, trigger enzymatic activity, cell communication, and immune response. Progress in analytical methods enabling detection, characterization, and visualization of biological dynamics at the molecular level will advance our exploration of complex biological systems. In this dissertation, analytical platforms were fabricated to capture membrane-associated receptors, which are essential proteins in cell signaling pathways. The neurotransmitter serotonin and its biological precursor were immobilized on gold substrates coated with self-assembled monolayers (SAMs) of oligo(ethylene glycol)alkanethiols and their reactive derivatives. The SAM-coated substrates present the biologically selective affinity of immobilized molecules to target native membrane-associated receptors. These substrates were also tested for biospecificity using antibodies. In addition, small-molecule-functionalized platforms, expressing neurotransmitter pharmacophores, were employed to examine kinetic interactions between G-protein-coupled receptors and their associated neurotransmitters. The binding interactions were monitored using a quartz crystal microbalance equipped with liquid-flow injection. The interaction kinetics of G-protein-coupled serotonin 1A receptor and 5-hydroxytyptophan-functionalized surfaces were studied in a real-time, label-free environment. Key binding parameters, such as equilibrium dissociation constants, binding rate constants, and dissociative half-life, were extracted. These parameters are critical for understanding and comparing biomolecular interactions in modern biomedical research. By integrating self-assembly, surface functionalization, and nanofabrication, small-molecule microarrays were created for high-throughput screening. A hybrid soft-lithography, called microcontact insertion printing, was used to pattern small molecules at the dilute scales necessary for highly

  18. Part identification in robotic assembly using vision system

    NASA Astrophysics Data System (ADS)

    Balabantaray, Bunil Kumar; Biswal, Bibhuti Bhusan

    2013-12-01

    Machine vision system acts an important role in making robotic assembly system autonomous. Identification of the correct part is an important task which needs to be carefully done by a vision system to feed the robot with correct information for further processing. This process consists of many sub-processes wherein, the image capturing, digitizing and enhancing, etc. do account for reconstructive the part for subsequent operations. Interest point detection of the grabbed image, therefore, plays an important role in the entire image processing activity. Thus it needs to choose the correct tool for the process with respect to the given environment. In this paper analysis of three major corner detection algorithms is performed on the basis of their accuracy, speed and robustness to noise. The work is performed on the Matlab R2012a. An attempt has been made to find the best algorithm for the problem.

  19. Critical appraisal: dental amalgam update--part II: biological effects.

    PubMed

    Wahl, Michael J; Swift, Edward J

    2013-12-01

    Dental amalgam restorations have been controversial for over 150 years. In Part I of this Critical Appraisal, the clinical efficacy of dental amalgam was updated. Here in Part II, the biological effects of dental amalgam are addressed. PMID:24320063

  20. Electrophoretic separator for purifying biologicals, part 1

    NASA Technical Reports Server (NTRS)

    Mccreight, L. R.

    1978-01-01

    A program to develop an engineering model of an electrophoretic separator for purifying biologicals is summarized. An extensive mathematical modeling study and numerous ground based tests were included. Focus was placed on developing an actual electrophoretic separator of the continuous flow type, configured and suitable for flight testing as a space processing applications rocket payload.

  1. A biologically active surface enzyme assembly that attenuates thrombus formation

    PubMed Central

    Qu, Zheng; Muthukrishnan, Sharmila; Urlam, Murali K.; Haller, Carolyn A.; Jordan, Sumanas W.; Kumar, Vivek A.; Marzec, Ulla M.; Elkasabi, Yaseen; Lahann, Joerg; Hanson, Stephen R.

    2013-01-01

    Activation of hemostatic pathways by blood-contacting materials remains a major hurdle in the development of clinically durable artificial organs and implantable devices. We postulate that surface-induced thrombosis may be attenuated by the reconstitution onto blood contacting surfaces of bioactive enzymes that regulate the production of thrombin, a central mediator of both clotting and platelet activation cascades. Thrombomodulin (TM), a transmembrane protein expressed by endothelial cells, is an established negative regulator of thrombin generation in the circulatory system. Traditional techniques to covalently immobilize enzymes on solid supports may modify residues contained within or near the catalytic site, thus reducing the bioactivity of surface enzyme assemblies. In this report, we present a molecular engineering and bioorthogonal chemistry approach to site-specifically immobilize a biologically active recombinant human TM fragment onto the luminal surface of small diameter prosthetic vascular grafts. Bioactivity and biostability of TM modified grafts is confirmed in vitro and the capacity of modified grafts to reduce platelet activation is demonstrated using a non-human primate model. These studies indicate that molecularly engineered interfaces that display TM actively limit surface-induced thrombus formation. PMID:23532366

  2. Plant and Animal Gravitational Biology. Part 1

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Session TA2 includes short reports covering: (1) The Interaction of Microgravity and Ethylene on Soybean Growth and Metabolism; (2) Structure and G-Sensitivity of Root Statocytes under Different Mass Acceleration; (3) Extracellular Production of Taxanes on Cell Surfaces in Simulated Microgravity and Hypergravity; (4) Current Problems of Space Cell Phytobiology; (5) Biological Consequences of Microgravity-Induced Alterations in Water Metabolism of Plant Cells; (6) Localization of Calcium Ions in Chlorella Cells Under Clinorotation; (7) Changes of Fatty Acids Content of Plant Cell Plasma Membranes under Altered Gravity; (8) Simulation of Gravity by Non-Symmetrical Vibrations and Ultrasound; and (9) Response to Simulated weightlessness of In Vitro Cultures of Differentiated Epithelial Follicular Cells from Thyroid.

  3. Electromagnetic fields-Part 1; Biological effects

    SciTech Connect

    Nair, I.; Morgan, M.G. )

    1990-08-01

    It is known that low-frequency electric and magnetic fields can produce a variety of effects in biological systems. Pulsed magnetic fields, for instance, are used to mend broken bones, and other beneficial medical applications are being developed. But in more chronic and less controlled environments, can exposure to such fields also pose health risks No one knows. Today that possibility, however, requires serious consideration. Though present knowledge is fragmentary, and a coherent theory to explain the observations seems far off, the continuous presence of power-frequency fields in the modern environment makes potential health effects a matter of serious scientific and public health policy concern. That concern has focused on cancer - especially leukemia and brain tumors - and developmental abnormalities, and, to a lesser extent on endocrine and nervous system disorders, including chronic depression. The authors focus on 60-hertz fields, where the mechanism of interaction probably involves the cell membrane, is nonlinear, and may act by causing some cooperative phenomena among the components of the cell membrane.

  4. The precision measurement and assembly for miniature parts based on double machine vision systems

    NASA Astrophysics Data System (ADS)

    Wang, X. D.; Zhang, L. F.; Xin, M. Z.; Qu, Y. Q.; Luo, Y.; Ma, T. M.; Chen, L.

    2015-02-01

    In the process of miniature parts' assembly, the structural features on the bottom or side of the parts often need to be aligned and positioned. The general assembly equipment integrated with one vertical downward machine vision system cannot satisfy the requirement. A precision automatic assembly equipment was developed with double machine vision systems integrated. In the system, a horizontal vision system is employed to measure the position of the feature structure at the parts' side view, which cannot be seen with the vertical one. The position measured by horizontal camera is converted to the vertical vision system with the calibration information. By careful calibration, the parts' alignment and positioning in the assembly process can be guaranteed. The developed assembly equipment has the characteristics of easy implementation, modularization and high cost performance. The handling of the miniature parts and assembly procedure were briefly introduced. The calibration procedure was given and the assembly error was analyzed for compensation.

  5. A unified convention for biological assemblies with helical symmetry

    SciTech Connect

    Tsai, Chung-Jung; Nussinov, Ruth

    2011-08-01

    A new representation of helical structure by four parameters, [n{sub 1}, n{sub 2}, twist, rise], is able to generate an entire helical construct from asymmetric units, including cases of helical assembly with a seam. Assemblies with helical symmetry can be conveniently formulated in many distinct ways. Here, a new convention is presented which unifies the two most commonly used helical systems for generating helical assemblies from asymmetric units determined by X-ray fibre diffraction and EM imaging. A helical assembly is viewed as being composed of identical repetitive units in a one- or two-dimensional lattice, named 1-D and 2-D helical systems, respectively. The unification suggests that a new helical description with only four parameters [n{sub 1}, n{sub 2}, twist, rise], which is called the augmented 1-D helical system, can generate the complete set of helical arrangements, including coverage of helical discontinuities (seams). A unified four-parameter characterization implies similar parameters for similar assemblies, can eliminate errors in reproducing structures of helical assemblies and facilitates the generation of polymorphic ensembles from helical atomic models or EM density maps. Further, guidelines are provided for such a unique description that reflects the structural signature of an assembly, as well as rules for manipulating the helical symmetry presentation.

  6. Scar-less multi-part DNA assembly design automation

    DOEpatents

    Hillson, Nathan J.

    2016-06-07

    The present invention provides a method of a method of designing an implementation of a DNA assembly. In an exemplary embodiment, the method includes (1) receiving a list of DNA sequence fragments to be assembled together and an order in which to assemble the DNA sequence fragments, (2) designing DNA oligonucleotides (oligos) for each of the DNA sequence fragments, and (3) creating a plan for adding flanking homology sequences to each of the DNA oligos. In an exemplary embodiment, the method includes (1) receiving a list of DNA sequence fragments to be assembled together and an order in which to assemble the DNA sequence fragments, (2) designing DNA oligonucleotides (oligos) for each of the DNA sequence fragments, and (3) creating a plan for adding optimized overhang sequences to each of the DNA oligos.

  7. Agents, assemblers, and ANTS: scheduling assembly with market and biological software mechanisms

    NASA Astrophysics Data System (ADS)

    Toth-Fejel, Tihamer T.

    2000-06-01

    Nanoscale assemblers will need robust, scalable, flexible, and well-understood mechanisms such as software agents to control them. This paper discusses assemblers and agents, and proposes a taxonomy of their possible interaction. Molecular assembly is seen as a special case of general assembly, subject to many of the same issues, such as the advantages of convergent assembly, and the problem of scheduling. This paper discusses the contract net architecture of ANTS, an agent-based scheduling application under development. It also describes an algorithm for least commitment scheduling, which uses probabilistic committed capacity profiles of resources over time, along with realistic costs, to provide an abstract search space over which the agents can wander to quickly find optimal solutions.

  8. 16 CFR Figure 10 to Part 1203 - Center of Gravity for Drop Assembly

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 16 Commercial Practices 2 2011-01-01 2011-01-01 false Center of Gravity for Drop Assembly 10 Figure 10 to Part 1203 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION CONSUMER PRODUCT SAFETY ACT REGULATIONS SAFETY STANDARD FOR BICYCLE HELMETS Pt. 1203, Fig. 10 Figure 10 to Part 1203—Center of Gravity for Drop Assembly...

  9. 16 CFR Figure 10 to Part 1203 - Center of Gravity for Drop Assembly

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 16 Commercial Practices 2 2012-01-01 2012-01-01 false Center of Gravity for Drop Assembly 10 Figure 10 to Part 1203 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION CONSUMER PRODUCT SAFETY ACT REGULATIONS SAFETY STANDARD FOR BICYCLE HELMETS Pt. 1203, Fig. 10 Figure 10 to Part 1203—Center of Gravity for Drop Assembly...

  10. 16 CFR Figure 10 to Part 1203 - Center of Gravity for Drop Assembly

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 16 Commercial Practices 2 2014-01-01 2014-01-01 false Center of Gravity for Drop Assembly 10 Figure 10 to Part 1203 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION CONSUMER PRODUCT SAFETY ACT REGULATIONS SAFETY STANDARD FOR BICYCLE HELMETS Pt. 1203, Fig. 10 Figure 10 to Part 1203—Center of Gravity for Drop Assembly...

  11. 16 CFR Figure 10 to Part 1203 - Center of Gravity for Drop Assembly

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 16 Commercial Practices 2 2013-01-01 2013-01-01 false Center of Gravity for Drop Assembly 10 Figure 10 to Part 1203 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION CONSUMER PRODUCT SAFETY ACT REGULATIONS SAFETY STANDARD FOR BICYCLE HELMETS Pt. 1203, Fig. 10 Figure 10 to Part 1203—Center of Gravity for Drop Assembly...

  12. 16 CFR Figure 10 to Part 1203 - Center of Gravity for Drop Assembly

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Center of Gravity for Drop Assembly 10 Figure 10 to Part 1203 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION CONSUMER PRODUCT SAFETY ACT REGULATIONS SAFETY STANDARD FOR BICYCLE HELMETS Pt. 1203, Fig. 10 Figure 10 to Part 1203—Center of Gravity for Drop Assembly...

  13. Solid-state NMR: An emerging technique in structural biology of self-assemblies.

    PubMed

    Habenstein, Birgit; Loquet, Antoine

    2016-03-01

    Protein self-assemblies are ubiquitous biological systems involved in many cellular processes, ranging from bacterial and viral infection to the propagation of neurodegenerative disorders. Studying the atomic three-dimensional structures of protein self-assemblies is a particularly demanding task, as these systems are usually insoluble, non-crystalline and of large size. Solid-state NMR (ssNMR) is an emerging method that can provide atomic-level structural data on intact macromolecular assemblies. We here present recent progress in magic-angle spinning ssNMR to study protein assemblies and give an overview on its combination with complementary techniques such as cryo-EM, mass-per-length measurements, SAXS and X-ray diffraction. Applications of ssNMR on its own and in hybrid approaches have revealed precious atomic details and first high-resolution structures of complex biological assemblies, including amyloid fibrils, bacterial filaments, phages or virus capsids. PMID:26234527

  14. Measurements of Gene Expression at Steady State Improve the Predictability of Part Assembly.

    PubMed

    Zhang, Haoqian M; Chen, Shuobing; Shi, Handuo; Ji, Weiyue; Zong, Yeqing; Ouyang, Qi; Lou, Chunbo

    2016-03-18

    Mathematical modeling of genetic circuits generally assumes that gene expression is at steady state when measurements are performed. However, conventional methods of measurement do not necessarily guarantee that this assumption is satisfied. In this study, we reveal a bi-plateau mode of gene expression at the single-cell level in bacterial batch cultures. The first plateau is dynamically active, where gene expression is at steady state; the second plateau, however, is dynamically inactive. We further demonstrate that the predictability of assembled genetic circuits in the first plateau (steady state) is much higher than that in the second plateau where conventional measurements are often performed. By taking the nature of steady state into consideration, our method of measurement promises to directly capture the intrinsic property of biological parts/circuits regardless of circuit-host or circuit-environment interactions. PMID:26652307

  15. Interest in biology. Part I: A multidimensional construct

    NASA Astrophysics Data System (ADS)

    Gardner, Paul L.; Tamir, Pinchas

    Interest in a school subject (e.g., biology) is conceptualized in terms of three components: topics, activities, and motives, each of which has several dimensions. In this study, seven instruments were developed and administered to grade-10 biology students in Israel. Factor analysis provided support for the conceptualization which underlies the development of the instruments. Topic dimensions included biochemical processes, nonhuman organisms, human biology, personal hygiene, and practical applications; the activity dimensions were experiential learning, reception learning, writing/summarizing and group discussion; motives included environmental issues, moral issues, examination success, personal independence, problem solving, and four career dimensions (research, high-status professions, lower-status careers, woodsy-birdsy careers). In an analysis described in Part II of this paper, the students were classified into four groups on the basis of their grade-11 subject enrollment intentions: H (high-level biology), L (low-level biology), P (physical science), and N (no science). Zero-order and multiple correlations were found between interest and other variables and membership/nonmembership of the four groups. Students in Group H were characterized by higher achievement in year-10 biology, higher levels of enjoyment of biology, career orientations towards research or high-status biology-based professions, greater interest in various biology topics, especially reproduction/cell division/genetics, and a greater tendency to regard the Bagrut (grade-12) examination as interesting. Students in Group N displayed lower levels of interest in various topics (especially the microscope, plants, and reproduction), were less motivated to solve problems, had poorer grades in biology (and chemistry), were less likely to perceive biology as useful, were less likely to regard the Bagrut examination as fair, and were less likely to be interested in social modes of learning. There

  16. Controlled Assembly of Viral Surface Proteins into Biological Nanoparticles

    NASA Astrophysics Data System (ADS)

    Nakatani-Webster, Eri

    In recent years, therapeutic use of engineered particles on the 1-1,000 nm scale has gained popularity; these nanoparticles have been developed for use in drug delivery, gene therapy, vaccine preparation, and diagnostics. Often, viral proteins are utilized in the design of such species, and outlined here are completed studies on the in vitro assembly of nanoparticles derived from two very different viral systems. The incorporation of the human immunodeficiency virus (HIV) envelope glycoprotein precursor gp160 into phospholipid bilayer nanodiscs is discussed as a potential platform for vaccine design; efforts were successful, however yield currently limits the practical application of this approach. The utility of bacteriophage lambda procapsids and virus-like particles in therapeutic nanoparticle design is also outlined, as are efforts toward the structural and thermodynamic characterization of a urea-triggered capsid maturation event. It is demonstrated that lambda virus-like particles can be assembled from purified capsid and scaffolding proteins, and that these particles undergo urea-triggered maturation and in vitro decoration protein addition similar to that seen in lambda procapsids. The studies on lambda provided materials for the further development of nanoparticles potentially useful in a clinical setting, as well as shedding light on critical viral assembly and maturation events as they may take place in vivo.

  17. Conformational assembly and biological properties of collagen mimetic peptides and their thermally responsive polymer conjugates

    NASA Astrophysics Data System (ADS)

    Krishna, Ohm Divyam

    2011-12-01

    Collagens are one of the most abundant proteins found in body tissues and organs, endowing structural integrity, mechanical strength, and multiple biological functions. Destabilized collagen inside human body leads to various degenerative diseases (ex. osteoarthritis) and ageing. This has continued to motivate the design of synthetic peptides and bio-synthetic polypeptides to closely mimic the native collagens in terms of triple helix structure and stability, potential for higher order assembly, and biological properties. However, the widespread application of de novo collagens has been limited in part by the need for hydroxylated proline in the formation of stable triple helical structures. To address this continued need, a hydroxyproline-free, thermally stable collagen-mimetic peptide (CLP-Cys) was rationally designed via the incorporation of electrostatically stabilized amino acid triplets. CLP-Cys was synthesized via solid phase peptide synthesis. The formation and stability of the triple helical structure were indicated via circular dichroism (CD) experiments and confirmed via differential scanning calorimetry (DSC) results. CLP-Cys also self-assembled into nano-rods and micro-fibrils, as evidenced via a combination of dynamic light scattering and transmission electron microscopy. Given the high thermal stability and its propensity for higher-order assembly, CLP-Cys was further functionalized at both the ends with a thermally responsive polymer, poly(diethylene glycol methyl ether methacrylate), (PDEGMEMA) to synthesize a biohybrid triblock copolymer. The CD results indicated that the triple helical form is retained, the thermal unfolding is sustained and helix to coil transition is reversible in the triblock hybrid context. The LCST of PDEGMEMA homopolymer (26 °C) is increased (to 35 °C) upon conjugation to the hydrophilic collagen peptide domain. Further, a combination of static light scattering, Cryo-SEM, TEM and confocal microscopy elucidated that the

  18. Automated selection of synthetic biology parts for genetic regulatory networks.

    PubMed

    Yaman, Fusun; Bhatia, Swapnil; Adler, Aaron; Densmore, Douglas; Beal, Jacob

    2012-08-17

    Raising the level of abstraction for synthetic biology design requires solving several challenging problems, including mapping abstract designs to DNA sequences. In this paper we present the first formalism and algorithms to address this problem. The key steps of this transformation are feature matching, signal matching, and part matching. Feature matching ensures that the mapping satisfies the regulatory relationships in the abstract design. Signal matching ensures that the expression levels of functional units are compatible. Finally, part matching finds a DNA part sequence that can implement the design. Our software tool MatchMaker implements these three steps. PMID:23651287

  19. Chemically directed assembly of nanoparticles for material and biological applications

    NASA Astrophysics Data System (ADS)

    Park, Myoung-Hwan

    The unique electronic, magnetic, and optical properties of nanoparticles (NPs) make them useful building blocks for nanodevices and biofabrication. Site-selective immobilization/deposition of NPs on surfaces at desired positions is an important fabrication step in realizing the potential of nanomaterials in these applications. In this thesis, my research has focused on developing new strategies for mono- and multilayered-NP deposition on surfaces, increasing the stability of NP-assembles upon various surfaces for practical use of NP-based devices. Chemically directed dithiocarbamate binding of amine groups to NPs in the presence of CS2 was used for enhancing the robustness of NP assembles. Such patterning methodologies have allowed me to use site-directed NP immobilization in applications as diverse as microcontact printing, nanomolding in capillaries, nanoimprint lithography, and photolithography. Also, I have developed a simple and reliable one-step technique to form robust dendrimer-NP nanocomposites using dithiocarbamate-based chemistry. These composites are able to encapsulate and release various therapeutics, providing controllable sustained release and to separate small molecules and biomacromolecules.

  20. Weak Polyelectrolyte-Clay Assemblies: Physical Mechanisms of Biological Response

    NASA Astrophysics Data System (ADS)

    Sukhishvili, Svetlana; Pavlukhina, Svetlana; Zhuk, Iryna

    2014-03-01

    We report on a highly efficient, non-leachable antibacterial coating, consisting of an ultrathin nanocomposite hydrogel capable of hosting, protecting and delivering antibiofilm agents in response to bacterial infection. Constructed using layer-by-layer (LbL) deposition of clay nanoplatelets and a weak polyelectrolyte and loaded with an antimicrobial agent (AmA), the coatings was highly resistant to colonization by Staphylococcus aureus. The high antibiofilm activity of the coating results from a combination of highly localized, bacteria-triggered AmA release and hydrogel swelling, as well as retention of AmA by clay nanoplatelets. We discuss the dependence of rheological and swelling properties of weak polyelectrolyte-clay assemblies on film thickness, clay platelet orientation and environmental pH.

  1. Directed self-assembly defectivity assessment. Part II

    NASA Astrophysics Data System (ADS)

    Bencher, Chris; Yi, He; Zhou, Jessica; Cai, Manping; Smith, Jeffrey; Miao, Liyan; Montal, Ofir; Blitshtein, Shiran; Lavi, Alon; Dotan, Kfir; Dai, Huixiong; Cheng, Joy Y.; Sanders, Daniel P.; Tjio, Melia; Holmes, Steven

    2012-03-01

    The main concern for the commercialization of directed self-assembly (DSA) for semiconductor manufacturing continues to be the uncertainty in capability and control of defect density. Our research investigates the defect densities of various DSA process applications in the context of a 300mm wafer fab cleanroom environment; this paper expands substantially on the previously published DSA defectivity study by reporting a defect density process window relative to chemical epitaxial pre-pattern registration lines; as well as investigated DSA based contact hole shrinking and report critical dimension statistics for the phase separated polymers before and after etch, along with positional accuracy measurements and missing via defect density.

  2. Building DNA nanostructures for molecular computation, templated assembly, and biological applications.

    PubMed

    Rangnekar, Abhijit; LaBean, Thomas H

    2014-06-17

    CONSPECTUS: DNA is a critical biomolecule well-known for its roles in biology and genetics. Moreover, its double-helical structure and the Watson-Crick pairing of its bases make DNA structurally predictable. This predictability enables design and synthesis of artificial DNA nanostructures by suitable programming of the base sequences of DNA strands. Since the advent of the field of DNA nanotechnology in 1982, a variety of DNA nanostructures have been designed and used for numerous applications. In this Account, we discuss the progress made by our lab which has contributed toward the overall advancement of the field. Tile-based DNA nanostructures are an integral part of structural DNA nanotechnology. These structures are formed using several short, chemically synthesized DNA strands by programming their base sequences so that they self-assemble into desired constructs. Design and assembly of several DNA tiles will be discussed in this Account. Tiles include, for example, TX tiles with three parallel, coplanar duplexes, 4 × 4 cross-tiles with four arms, and weave-tiles with weave-like architecture. Another category of tiles we will present involve multiple parallel duplexes that assemble to form closed tubular structures. All of these tile types have been used to form micrometer-scale one- and two-dimensional arrays and lattices. Origami-based structures constitute another category where a long single-stranded DNA scaffold is folded into desired shapes by association with multiple short staple strands. This Account will describe the efforts by our lab in devising new strategies to improve the maximum size of origami structures. The various DNA nanostructures detailed here have been used in a wide variety of different applications. This Account will discuss the use of DNA tiles for logical computation, encoding information as molecular barcodes, and functionalization for patterning of other nanoscale organic and inorganic materials. Consequently, we have used DNA

  3. DNA assembly of nanoparticle superstructures for controlled biological delivery and elimination

    NASA Astrophysics Data System (ADS)

    Chou, Leo Y. T.; Zagorovsky, Kyryl; Chan, Warren C. W.

    2014-02-01

    The assembly of nanomaterials using DNA can produce complex nanostructures, but the biological applications of these structures remain unexplored. Here, we describe the use of DNA to control the biological delivery and elimination of inorganic nanoparticles by organizing them into colloidal superstructures. The individual nanoparticles serve as building blocks, whose size, surface chemistry and assembly architecture dictate the overall superstructure design. These superstructures interact with cells and tissues as a function of their design, but subsequently degrade into building blocks that can escape biological sequestration. We demonstrate that this strategy reduces nanoparticle retention by macrophages and improves their in vivo tumour accumulation and whole-body elimination. Superstructures can be further functionalized to carry and protect imaging or therapeutic agents against enzymatic degradation. These results suggest a different strategy to engineer nanostructure interactions with biological systems and highlight new directions in the design of biodegradable and multifunctional nanomedicine.

  4. YeastFab: the design and construction of standard biological parts for metabolic engineering in Saccharomyces cerevisiae

    PubMed Central

    Guo, Yakun; Dong, Junkai; Zhou, Tong; Auxillos, Jamie; Li, Tianyi; Zhang, Weimin; Wang, Lihui; Shen, Yue; Luo, Yisha; Zheng, Yijing; Lin, Jiwei; Chen, Guo-Qiang; Wu, Qingyu; Cai, Yizhi; Dai, Junbiao

    2015-01-01

    It is a routine task in metabolic engineering to introduce multicomponent pathways into a heterologous host for production of metabolites. However, this process sometimes may take weeks to months due to the lack of standardized genetic tools. Here, we present a method for the design and construction of biological parts based on the native genes and regulatory elements in Saccharomyces cerevisiae. We have developed highly efficient protocols (termed YeastFab Assembly) to synthesize these genetic elements as standardized biological parts, which can be used to assemble transcriptional units in a single-tube reaction. In addition, standardized characterization assays are developed using reporter constructs to calibrate the function of promoters. Furthermore, the assembled transcription units can be either assayed individually or applied to construct multi-gene metabolic pathways, which targets a genomic locus or a receiving plasmid effectively, through a simple in vitro reaction. Finally, using β-carotene biosynthesis pathway as an example, we demonstrate that our method allows us not only to construct and test a metabolic pathway in several days, but also to optimize the production through combinatorial assembly of a pathway using hundreds of regulatory biological parts. PMID:25956650

  5. A biological approach to assembling tissue modules through endothelial capillary network formation.

    PubMed

    Riesberg, Jeremiah J; Shen, Wei

    2015-09-01

    To create functional tissues having complex structures, bottom-up approaches to assembling small tissue modules into larger constructs have been emerging. Most of these approaches are based on chemical reactions or physical interactions at the interface between tissue modules. Here we report a biological assembly approach to integrate small tissue modules through endothelial capillary network formation. When adjacent tissue modules contain appropriate extracellular matrix materials and cell types that support robust endothelial capillary network formation, capillary tubules form and grow across the interface, resulting in assembly of the modules into a single, larger construct. It was shown that capillary networks formed in modules of dense fibrin gels seeded with human umbilical vein endothelial cells (HUVECs) and mesenchymal stem cells (MSCs); adjacent modules were firmly assembled into an integrated construct having a strain to failure of 117 ± 26%, a tensile strength of 2208 ± 83 Pa and a Young's modulus of 2548 ± 574 Pa. Under the same culture conditions, capillary networks were absent in modules of dense fibrin gels seeded with either HUVECs or MSCs alone; adjacent modules disconnected even when handled gently. This biological assembly approach eliminates the need for chemical reactions or physical interactions and their associated limitations. In addition, the integrated constructs are prevascularized, and therefore this bottom-up assembly approach may also help address the issue of vascularization, another key challenge in tissue engineering. PMID:25694020

  6. Understanding the self-assembly of nanoscale biological systems through computational modeling

    NASA Astrophysics Data System (ADS)

    Sullivan, Daniel R.

    There has recently been much interest in exploiting or guiding the self-assembling of biological systems for fabricating functional nanoscale devices or components that requiring precise placement and alignment of components. Biological materials such as proteins, DNA, and some plant virus components are especially suited to this task due to their well- understood chemistry, interactions with inorganic components, and size-commensurability with templates designed for practical bionanotechnological applications. Due to experimental limitations on precisely tracking and controlling the assembly processes of these nanoscale systems, a fundamental understanding of the physical mechanisms governing nanobiological organization onto surfaces and templates has not yet been developed. This thesis aims to use classical molecular dynamics to simulate the organization behaviour of two unique nanobiological systems (viruses and collagen assembled on surfaces) and provide insight into the key processes and conditions driving organization.

  7. The Didactics of Biology. A Selected Bibliography for 1979. Part I [and] Part II.

    ERIC Educational Resources Information Center

    Altmann, Antonin, Ed.; Lipertova, Pavla, Ed.

    Selected articles on various aspects of biology teaching published in 1979 have been annotated in this two-part bibliography. Entries from 18 journals representing 11 different countries are presented according to a topic area classification scheme listed in the table of contents. Countries represented include: Australia; Bulgaria; Czechoslovakia;…

  8. The Didactics of Biology. Selected Bibliography for 1980. Part I [and] Part II.

    ERIC Educational Resources Information Center

    Altmann, Antonin, Ed.; Lipertova, Pavla, Ed.

    Selected articles on various aspects of biology teaching published in 1979 have been annotated in this two-part bibliography. Entries from 19 journals representing 11 different countres are presented according to a topic area classification scheme listed in the table of contents. Countries represented include: Australia; Bulgaria; Czechoslovakia;…

  9. Didactics of Biology. Selective Bibliography, 1981. Part I [and] Part II. Information Bulletin.

    ERIC Educational Resources Information Center

    Altmann, Antonin, Ed.; Lipertova, Pavla, Ed.

    Selected articles on various aspects of biology teaching published in 1980 have been annotated in this two-part bibliography. Entries from 19 journals representing 11 different countries are presented according to a topic area classification scheme listed in the table of contents. Countries represented include: Australia; Bulgaria; Czechoslovakia;…

  10. GoldenBraid 2.0: A Comprehensive DNA Assembly Framework for Plant Synthetic Biology1[C][W][OA

    PubMed Central

    Sarrion-Perdigones, Alejandro; Vazquez-Vilar, Marta; Palací, Jorge; Castelijns, Bas; Forment, Javier; Ziarsolo, Peio; Blanca, José; Granell, Antonio; Orzaez, Diego

    2013-01-01

    Plant synthetic biology aims to apply engineering principles to plant genetic design. One strategic requirement of plant synthetic biology is the adoption of common standardized technologies that facilitate the construction of increasingly complex multigene structures at the DNA level while enabling the exchange of genetic building blocks among plant bioengineers. Here, we describe GoldenBraid 2.0 (GB2.0), a comprehensive technological framework that aims to foster the exchange of standard DNA parts for plant synthetic biology. GB2.0 relies on the use of type IIS restriction enzymes for DNA assembly and proposes a modular cloning schema with positional notation that resembles the grammar of natural languages. Apart from providing an optimized cloning strategy that generates fully exchangeable genetic elements for multigene engineering, the GB2.0 toolkit offers an ever-growing open collection of DNA parts, including a group of functionally tested, premade genetic modules to build frequently used modules like constitutive and inducible expression cassettes, endogenous gene silencing and protein-protein interaction tools, etc. Use of the GB2.0 framework is facilitated by a number of Web resources that include a publicly available database, tutorials, and a software package that provides in silico simulations and laboratory protocols for GB2.0 part domestication and multigene engineering. In short, GB2.0 provides a framework to exchange both information and physical DNA elements among bioengineers to help implement plant synthetic biology projects. PMID:23669743

  11. Evolving together: the biology of symbiosis, part 1

    PubMed Central

    2000-01-01

    Symbioses, prolonged associations between organisms often widely separated phylogenetically, are more common in biology than we once thought and have been neglected as a phenomenon worthy of study on its own merits. Extending along a dynamic continuum from antagonistic to cooperative and often involving elements of both antagonism and mutualism, symbioses involve pathogens, commensals, and mutualists interacting in myriad ways over the evolutionary history of the involved “partners.” In this first of 2 parts, some remarkable examples of symbiosis will be explored, from the coral-algal symbiosis and nitrogen fixation to the great diversity of dietary specializations enabled by the gastrointestinal microbiota of animals. PMID:16389385

  12. The year's new drugs & biologics 2014 - Part II: trends & challenges.

    PubMed

    Graul, A I; Serebrov, M; Cruces, E; Tracy, M; Dulsat, C

    2015-02-01

    2014 was a year of continued high activity in the pharma and biotech industry, as evidenced in part I of this annual two-part review article published last month in this journal (1). As of December 23, 2014, a total of 55 new chemical and biological entities had reached their first markets worldwide, together with another 29 important new line extensions. Another 19 products were approved for the first time during the year but not yet launched by December 23. Furthermore, during the now-traditional year-end sprint, several regulatory agencies issued last-minute approvals for other compounds that missed the deadline for inclusion in that article, bringing the total of new approvals for the year to a somewhat higher number. In addition to the successful development, registration and launch of new drugs and biologics, there are various other trends and tendencies that serve as indicators of the overall health and status of the industry. These include the pursuit of novel programs designed by regulators to stimulate the development of drugs for diseases that are currently under-treated; the regular and pragmatic culling by companies of their R&D pipelines; and the decision to unify pipelines, portfolios and sales forces through mergers and acquisitions. PMID:25756068

  13. Biological colloid engineering: Self-assembly of dipolar ferromagnetic chains in a functionalized biogenic ferrofluid

    NASA Astrophysics Data System (ADS)

    Ruder, Warren C.; Hsu, Chia-Pei D.; Edelman, Brent D.; Schwartz, Russell; LeDuc, Philip R.

    2012-08-01

    We have studied the dynamic behavior of nanoparticles in ferrofluids consisting of single-domain, biogenic magnetite (Fe3O4) isolated from Magnetospirillum magnetotacticum (MS-1). Although dipolar chains form in magnetic colloids in zero applied field, when dried upon substrates, the solvent front disorders nanoparticle aggregation. Using avidin-biotin functionalization of the particles and substrate, we generated self-assembled, linear chain motifs that resist solvent front disruption in zero-field. The engineered self-assembly process we describe here provides an approach for the creation of ordered magnetic structures that could impact fields ranging from micro-electro-mechanical systems development to magnetic imaging of biological structures.

  14. Biological passivation of porous silicon by a self-assembled nanometric biofilm of proteins

    NASA Astrophysics Data System (ADS)

    de Stefano, Luca; Rea, Ilaria; de Tommasi, Eduardo; Giardina, Paola; Armenante, Annunziata; Longobardi, Sara; Giocondo, Michele; Rendina, Ivo

    2009-10-01

    Self-assembled monolayers are surfaces consisting of a single layer of molecules on a substrate: widespread examples of chemical and biological nature are alkylsiloxane, fatty acids, and alkanethiolate which can be deposited by different techniques on a large variety of substrates ranging from metals to oxides. We have found that a self-assembled biofilm of proteins can passivate porous silicon (PSi) based optical structures without affecting the transducing properties. Moreover, the protein coated PSi layer can also be used as a functionalized surface for proteomic applications.

  15. Assembling new technologies at the interface of materials science and biology

    NASA Astrophysics Data System (ADS)

    Stendahl, John C.

    Molecular self-assembly can be used to construct advanced materials by taking cues from nature and harnessing noncovalent interactions. This bottom-up approach affords molecular level precision that can cultivate pathways to improved materials function. The graduate research presented in this thesis integrates molecular self-assembly with traditional concepts in chemistry and materials science, with the ultimate goal of developing innovative solutions in technology and medicine. In the field of polymer engineering, self-assembly was used to create supramolecular nanoribbons that, when incorporated into polystyrene, modify its microstructure and significantly enhance its toughness and ductility. In medicine, self-assembly was used to create ordered, chemically functional materials to improve interactions with cells and other constituents of the biological environment. One system that was investigated is based on a triblock molecule in which cholesterol is connected to a lysine dendron by a flexible oligo-(L-lactic acid) spacer. These molecules self-assemble into polar surface coatings on fibrous poly(L-lactic acid) scaffolds that improve the scaffold's wettability and increase its retention of cells during seeding. Another self-assembling system that was investigated for biomedical applications is a family of molecules referred to as peptide amphiphiles (PA's). PA's consist of hydrophobic alkyl tails connected to short, hydrophilic peptides that incorporate biological signaling epitopes. These molecules spontaneously assemble into networks of well-defined nanofibers in aqueous environments, with the signaling epitopes presented in high density on the nanofiber exteriors. Nanofiber assembly is triggered by charge screening on the peptides and is able to produce self-supporting gels in concentrations of less than 1.0 wt.-%. The assembly process and mechanical properties of PA gels was investigated in detail with vibrational spectroscopy and oscillatory rheology. PA

  16. DNASynth: A Computer Program for Assembly of Artificial Gene Parts in Decreasing Temperature

    PubMed Central

    Nowak, Robert M.; Wojtowicz-Krawiec, Anna; Plucienniczak, Andrzej

    2015-01-01

    Artificial gene synthesis requires consideration of nucleotide sequence development as well as long DNA molecule assembly protocols. The nucleotide sequence of the molecule must meet many conditions including particular preferences of the host organism for certain codons, avoidance of specific regulatory subsequences, and a lack of secondary structures that inhibit expression. The chemical synthesis of DNA molecule has limitations in terms of strand length; thus, the creation of artificial genes requires the assembly of long DNA molecules from shorter fragments. In the approach presented, the algorithm and the computer program address both tasks: developing the optimal nucleotide sequence to encode a given peptide for a given host organism and determining the long DNA assembly protocol. These tasks are closely connected; a change in codon usage may lead to changes in the optimal assembly protocol, and the lack of a simple assembly protocol may be addressed by changing the nucleotide sequence. The computer program presented in this study was tested with real data from an experiment in a wet biological laboratory to synthesize a peptide. The benefit of the presented algorithm and its application is the shorter time, compared to polymerase cycling assembly, needed to produce a ready synthetic gene. PMID:25629047

  17. Oral Mucosal Lesions: Oral Cavity Biology-Part I.

    PubMed

    Sehgal, Virendra N; Syed, Nazim Hussain; Aggarwal, Ashok; Sehgal, Shruti

    2015-01-01

    It is important to evaluate the background of oral cavity biology to define morphologic abrasions in oral mucosa following a host of local and/ or systemic disorders. The oral cavity is not only the beginning of the digestive system, but it also plays a significant role in communication; the voice (although the voice is produced in the throat), tongue, lips, and jaw are its essential components to produce the range of sounds. The vestibule and the oral cavity are its major parts, and are usually moist. The lips and the teeth are in approximation, marking its start up. The anatomy of the oral cavity in brief has been reviewed in right prospective for disease related changed morphology, thus facilitating interpretation. PMID:26861428

  18. Supramolecular disassembly of facially amphiphilic dendrimer assemblies in response to physical, chemical, and biological stimuli.

    PubMed

    Raghupathi, Krishna R; Guo, Jing; Munkhbat, Oyuntuya; Rangadurai, Poornima; Thayumanavan, S

    2014-07-15

    CONSPECTUS: Supramolecular assemblies formed from spontaneous self-assembly of amphiphilic macromolecules are explored as biomimetic architectures and for applications in areas such as sensing, drug delivery, and diagnostics. Macromolecular assemblies are usually preferred, compared with their simpler small molecule counterparts, due to their low critical aggregate concentrations (CAC) and high thermodynamic stability. This Account focuses on the structural and functional aspects of assemblies formed from dendrimers, specifically facially amphiphilic dendrons that form micelle or inverse micelle type supramolecular assemblies depending on the nature of the solvent medium. The micelle type assemblies formed from facially amphiphilic dendrons sequester hydrophobic guest molecules in their interiors. The stability of these assemblies is dependent on the relative compatibility of the hydrophilic and hydrophobic functionalities with water, often referred to as hydrophilic-lipophilic balance (HLB). Disruption of the HLB, using an external stimulus, could lead to disassembly of the aggregates, which can then be utilized to cause an actuation event, such as guest molecule release. Studying these possibilities has led to (i) a robust and general strategy for stimulus-induced disassembly and molecular release and (ii) the introduction of a new approach to protein-responsive supramolecular disassembly. The latter strategy provides a particularly novel avenue for impacting biomedical applications. Most of the stimuli-sensitive supramolecular assemblies have been designed to be responsive to factors such pH, temperature, and redox conditions. The reason for this interest stems from the fact that certain disease microenvironments have aberrations in these factors. However, these variations are the secondary imbalances in biology. Imbalances in protein activity are the primary reasons for most, if not all, human pathology. There have been no robust strategies in stimulus

  19. 16 CFR Figure 1 to Part 1633 - Test Assembly, Shown in Furniture Calorimeter (Configuration A)

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 16 Commercial Practices 2 2013-01-01 2013-01-01 false Test Assembly, Shown in Furniture Calorimeter (Configuration A) 1 Figure 1 to Part 1633 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FLAMMABLE FABRICS ACT REGULATIONS STANDARD FOR THE FLAMMABILITY (OPEN FLAME) OF MATTRESS SETS Pt. 1633,...

  20. 16 CFR Figure 1 to Part 1633 - Test Assembly, Shown in Furniture Calorimeter (Configuration A)

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 16 Commercial Practices 2 2012-01-01 2012-01-01 false Test Assembly, Shown in Furniture Calorimeter (Configuration A) 1 Figure 1 to Part 1633 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FLAMMABLE FABRICS ACT REGULATIONS STANDARD FOR THE FLAMMABILITY (OPEN FLAME) OF MATTRESS SETS Pt.1633,...

  1. 16 CFR Figure 1 to Part 1633 - Test Assembly, Shown in Furniture Calorimeter (Configuration A)

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 16 Commercial Practices 2 2011-01-01 2011-01-01 false Test Assembly, Shown in Furniture Calorimeter (Configuration A) 1 Figure 1 to Part 1633 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FLAMMABLE FABRICS ACT REGULATIONS STANDARD FOR THE FLAMMABILITY (OPEN FLAME) OF MATTRESS SETS Pt.1633,...

  2. 16 CFR Figure 1 to Part 1633 - Test Assembly, Shown in Furniture Calorimeter (Configuration A)

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 16 Commercial Practices 2 2014-01-01 2014-01-01 false Test Assembly, Shown in Furniture Calorimeter (Configuration A) 1 Figure 1 to Part 1633 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FLAMMABLE FABRICS ACT REGULATIONS STANDARD FOR THE FLAMMABILITY (OPEN FLAME) OF MATTRESS SETS Pt. 1633,...

  3. 16 CFR Figure 1 to Part 1633 - Test Assembly, Shown in Furniture Calorimeter (Configuration A)

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Test Assembly, Shown in Furniture Calorimeter (Configuration A) 1 Figure 1 to Part 1633 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FLAMMABLE FABRICS ACT REGULATIONS STANDARD FOR THE FLAMMABILITY (OPEN FLAME) OF MATTRESS SETS Pt.1633,...

  4. Frameworks for programming biological function through RNA parts and devices

    PubMed Central

    Win, Maung Nyan; Liang, Joe C.; Smolke, Christina D.

    2009-01-01

    One of the long-term goals of synthetic biology is to reliably engineer biological systems that perform human-defined functions. Currently, researchers face several scientific and technical challenges in designing and building biological systems, one of which is associated with our limited ability to access, transmit, and control molecular information through the design of functional biomolecules exhibiting novel properties. The fields of RNA biology and nucleic acid engineering, along with the tremendous interdisciplinary growth of synthetic biology, are fueling advances in the emerging field of RNA programming in living systems. Researchers are designing functional RNA molecules that exhibit increasingly complex functions and integrating these molecules into cellular circuits to program higher-level biological functions. The continued integration and growth of RNA design and synthetic biology presents exciting potential to transform how we interact with and program biology. PMID:19318211

  5. Parts plus pipes: synthetic biology approaches to metabolic engineering

    PubMed Central

    Boyle, Patrick M.; Silver, Pamela A.

    2011-01-01

    Synthetic biologists combine modular biological “parts” to create higher-order devices. Metabolic engineers construct biological “pipes” by optimizing the microbial conversion of basic substrates to desired compounds. Many scientists work at the intersection of these two philosophies, employing synthetic devices to enhance metabolic engineering efforts. These integrated approaches promise to do more than simply improve product yields; they can expand the array of products that are tractable to produce biologically. In this review, we explore the application of synthetic biology techniques to next-generation metabolic engineering challenges, as well as the emerging engineering principles for biological design. PMID:22037345

  6. Biological colloid engineering: Self-assembly of dipolar ferromagnetic chains in a functionalized biogenic ferrofluid.

    PubMed

    Ruder, Warren C; Hsu, Chia-Pei D; Edelman, Brent D; Schwartz, Russell; Leduc, Philip R

    2012-08-01

    We have studied the dynamic behavior of nanoparticles in ferrofluids consisting of single-domain, biogenic magnetite (Fe(3)O(4)) isolated from Magnetospirillum magnetotacticum (MS-1). Although dipolar chains form in magnetic colloids in zero applied field, when dried upon substrates, the solvent front disorders nanoparticle aggregation. Using avidin-biotin functionalization of the particles and substrate, we generated self-assembled, linear chain motifs that resist solvent front disruption in zero-field. The engineered self-assembly process we describe here provides an approach for the creation of ordered magnetic structures that could impact fields ranging from micro-electro-mechanical systems development to magnetic imaging of biological structures. PMID:22952408

  7. The Dynamics of Microtubule/Motor-Protein Assemblies in Biology and Physics

    NASA Astrophysics Data System (ADS)

    Shelley, Michael J.

    2016-01-01

    Many important processes in the cell are mediated by stiff microtubule polymers and the active motor proteins moving on them. This includes the transport of subcellular structures (nuclei, chromosomes, organelles) and the self-assembly and positioning of the mitotic spindle. Little is understood of these processes, but they present fascinating problems in fluid-structure interactions. Microtubules and motor proteins are also the building blocks of new biosynthetic active suspensions driven by motor-protein activity. These reduced systems can be probed—and modeled—more easily than can the fully biological ones and demonstrate their own aspects of self-assembly and complex dynamics. I review recent work modeling such systems as fluid-structure interaction problems and as multiscale complex fluids.

  8. The space exposure biology assembly (SEBA)-results of the phase a study

    NASA Astrophysics Data System (ADS)

    Schulte, W.; Hofmann, P.; König, H.

    In the past ESA has successfully flown several experiment facilities for research in space biology, such as the `Exobiology Radiation Assembly' on the EURECA free-flyer and the exposure facility `BIOPAN' on Russian retrievable FOTON satellites. A flight opportunity in the mid-term future well suited to experiments in the field of exobiology and radiation research will be the `Space Exposure Biology Assembly' (SEBA). This new multi-user facility will be installed as an external payload on one of the EXPRESS Pallets that are attached to the truss structure of the International Space Station. In its baseline configuration SEBA consists of two multi-user experiment units: ■ EXPOSE, a sun exposed experiment unit, designed for photobiology and photoprocessing experiments; this unit will be mounted on a sun pointing device ■ MATROSHKA, an experiment unit for the simulation of extravehicular activities of man by using a phantom of a human body equipped with sensors for radiation dosimetric measurements. In addition, SEBA will provide resources to accommodate further self-standing biological or dosimetry add-on experiments. All SEBA elements will be installed on a single EXPRESS Pallet Adapter with an exchange interval of one to three years.

  9. Electrostatically self-assembled biodegradable microparticles from pseudoproteins and polysaccharide: fabrication, characterization, and biological properties.

    PubMed

    Potuck, Alicia N; Weed, Beth L; Leifer, Cynthia A; Chu, C C

    2015-02-01

    Electrostatically self-assembling hybrid microparticles derived from novel cationic unsaturated arginine-based poly(ester amide) polymers (UArg-PEA) and anionic hyaluronic acid (HA) were fabricated into sub-micron-sized particles in aqueous medium with subsequent UV crosslinking treatment to stabilize the structure. These hybrid microparticles were characterized for size, charge, viscosity, chemical structure, morphology, and biological properties. Depending on the feed ratio of cationic UArg-PEA to anionic HA, the crosslinked microparticles formed spherical structures of 0.772-22.08 μm in diameter, whereas the uncrosslinked microparticles formed a core with an outer petal-like structure of 2.49-15 μm in diameter. It was discovered that the morphological structure of the self-assembled microparticles had a profound influence on their biological properties. At a 1:1 feed ratio of UArg-PEA to HA, the uncrosslinked microparticles showed no cytotoxicity toward NIH 3T3 fibroblasts at concentrations up to 20 μg/mL, and the crosslinked particles exhibited no cytotoxicity at concentrations up to 10 μg/mL. The UArg-PEA/HA hybrid microparticles exhibited a significantly lower macrophage-induced proinflammatory response (via TNF-α) than that from a pure hyaluronic acid control while retaining the beneficial anti-inflammatory IL-10 production by HA. The UArg-PEA/HA microparticles also stimulated size-dependent induction of arginase activity. Therefore, self-assembling these two types of biomaterials in a favorable nontoxic aqueous environment, having complementary biological properties like those of the currently reported UArg-PEA/HA hybrid microparticles, may provide a new class of biomaterials to improve the overall tissue microenvironment for promoting wound healing. PMID:25531946

  10. 16 CFR Figure 6 to Part 1633 - Burner Assembly Showing Arms and Pivots (Shoulder Screws), in Relation to, Portable Frame...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 16 Commercial Practices 2 2013-01-01 2013-01-01 false Burner Assembly Showing Arms and Pivots (Shoulder Screws), in Relation to, Portable Frame Allowing Burner Height Adjustment 6 Figure 6 to Part 1633... FLAMMABILITY (OPEN FLAME) OF MATTRESS SETS Pt. 1633, Fig. 6 Figure 6 to Part 1633—Burner Assembly Showing...

  11. 16 CFR Figure 6 to Part 1633 - Burner Assembly Showing Arms and Pivots (Shoulder Screws), in Relation to, Portable Frame...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 16 Commercial Practices 2 2014-01-01 2014-01-01 false Burner Assembly Showing Arms and Pivots (Shoulder Screws), in Relation to, Portable Frame Allowing Burner Height Adjustment 6 Figure 6 to Part 1633... FLAMMABILITY (OPEN FLAME) OF MATTRESS SETS Pt. 1633, Fig. 6 Figure 6 to Part 1633—Burner Assembly Showing...

  12. In vivo evolution of metabolic pathways: Assembling old parts to build novel and functional structures

    PubMed Central

    Luque, Alejandro; Sebai, Sarra C; Sauveplane, Vincent; Ramaen, Odile; Pandjaitan, Rudy

    2014-01-01

    In our recent article “In vivo evolution of metabolic pathways by homeologous recombination in mitotic cells” we proposed a useful alternative to directed evolution methods that permits the generation of yeast cell libraries containing recombinant metabolic pathways from counterpart genes. The methodology was applied to generate single mosaic genes and intragenic mosaic pathways. We used flavonoid metabolism genes as a working model to assembly and express evolved pathways in DNA repair deficient cells. The present commentary revises the principles of gene and pathway mosaicism and explores the scope and perspectives of our results as an additional tool for synthetic biology. PMID:25482082

  13. Luminescent/paramagnetic xanthane probes in the study of labeled biological assemblies

    NASA Astrophysics Data System (ADS)

    Burghardt, Thomas P.; Toft, Daniel J.; Ajtai, Katalin

    1993-05-01

    The techniques for specifying the angular distribution of luminescent and paramagnetic probes on biological assemblies have been combined in the investigation of probe orientation and order of labeled myosin cross-bridges muscle fibers. This combination has been accomplished on two levels involving: (1) a mathematical formalism that permits the combination of data from individual luminescent and paramagnetic probes, and (2) the introduction of a family of specific extrinsic probes that are capable of producing an interpretable luminescent and paramagnetic signal when attached to a muscle fiber. The mathematical formalism has been applied to several probes of the myosin cross-bridge in muscle fibers to establish that the cross-bridge rotates during muscle contraction to produce muscle shortening (Burghardt & Ajtai, 1992 Biochemistry 31, 200; Ajtai et al., 1992 Biochemistry 31, 207). The luminescent/paramagnetic probes have also been employed in the investigation of order and orientation of cross-bridge in muscle fibers (Ajtai & Burghardt, 1992 Biochemistry 31, 4265). The properties of these dual nature probes invites further development of experimental techniques exploiting the high orientation sensitivity of paramagnetic probes with the ability of the probe to absorb and emit light. Flash-photolysis electron paramagnetic resonance is one such technique that may prove useful in the investigation of probe order in biological assemblies.

  14. Strontium: Part II. Chemistry, Biological Aspects and Applications.

    ERIC Educational Resources Information Center

    Britton, G. C.; Johnson, C. H.

    1987-01-01

    Reviews basic information on the Chemistry of strontium and its compounds. Explains biological aspects of strontium and its pharmaceutical applications. Highlights industrial application of strontium and its components. (ML)

  15. Invasion Ecology and School Biology--Part II.

    ERIC Educational Resources Information Center

    Wells, R. V.

    1981-01-01

    Suggests that invasion biology can supply subject matter for teaching evolution, genetics, ecological relationships, and conservation. Describes flowering and non-flowering plant invaders, vertebrates and invertebrates, and two ecological invasions on the southern coast of England. (JN)

  16. Politics & Prejudice: Dissection in Biology Education. Part I.

    ERIC Educational Resources Information Center

    Gilmore, David R.

    1991-01-01

    The ideological basis from which dissection activities spring is discussed. Speciesism, the widely held belief that the human species is entitled to certain rights and privileges, is examined as the cause for dissection activities occurring in biology classrooms. (KR)

  17. Biological stimuli and biomolecules in the assembly and manipulation of nanoscale polymeric particles

    PubMed Central

    Randolph, Lyndsay M.; Chien, Miao-Ping; Gianneschi, Nathan C.

    2013-01-01

    Living systems are replete with complex, stimuli-responsive nanoscale materials and molecular self-assemblies. There is an ever increasing and intense interest within the chemical sciences to understand, mimic and interface with these biological systems utilizing synthetic and/or semi-synthetic tools. Our aim in this review is to give perspective on this emerging field of research by highlighting examples of polymeric nanoparticles and micelles that are prepared utilizing biopolymers together with synthetic polymers for the purpose of developing nanomaterials capable of interacting and responding to biologically relevant stimuli. It is expected that with the merging of evolved biological molecules with synthetic materials, will come the ability to prepare complex, functional devices. A variety of applications will become accessible including self-healing materials, self-replicating systems, biodiagnostic tools, drug targeting materials and autonomous, adaptive sensors. Most importantly, the success of this type of strategy will impact how biomolecules are stabilized and incorporated into synthetic devices and at the same time, will influence how synthetic materials are utilized within biomedical applications. PMID:24353895

  18. River Pollution: Part II. Biological Methods for Assessing Water Quality.

    ERIC Educational Resources Information Center

    Openshaw, Peter

    1984-01-01

    Discusses methods used in the biological assessment of river quality and such indicators of clean and polluted waters as the Trent Biotic Index, Chandler Score System, and species diversity indexes. Includes a summary of a river classification scheme based on quality criteria related to water use. (JN)

  19. Engineering biological structures of prescribed shape using self-assembling multicellular systems

    PubMed Central

    Jakab, Karoly; Neagu, Adrian; Mironov, Vladimir; Markwald, Roger R.; Forgacs, Gabor

    2004-01-01

    Self-assembly is a fundamental process that drives structural organization in both inanimate and living systems. It is in the course of self-assembly of cells and tissues in early development that the organism and its parts eventually acquire their final shape. Even though developmental patterning through self-assembly is under strict genetic control it is clear that ultimately it is physical mechanisms that bring about the complex structures. Here we show, both experimentally and by using computer simulations, how tissue liquidity can be used to build tissue constructs of prescribed geometry in vitro. Spherical aggregates containing many thousands of cells, which form because of tissue liquidity, were implanted contiguously into biocompatible hydrogels in circular geometry. Depending on the properties of the gel, upon incubation, the aggregates either fused into a toroidal 3D structure or their constituent cells dispersed into the surrounding matrix. The model simulations, which reproduced the experimentally observed shapes, indicate that the control parameter of structure evolution is the aggregate–gel interfacial tension. The model-based analysis also revealed that the observed toroidal structure represents a metastable state of the cellular system, whose lifetime depends on the magnitude of cell–cell and cell–matrix interactions. Thus, these constructs can be made long-lived. We suggest that spherical aggregates composed of organ-specific cells may be used as “bio-ink” in the evolving technology of organ printing. PMID:14981244

  20. Engineering biological structures of prescribed shape using self-assembling multicellular systems.

    PubMed

    Jakab, Karoly; Neagu, Adrian; Mironov, Vladimir; Markwald, Roger R; Forgacs, Gabor

    2004-03-01

    Self-assembly is a fundamental process that drives structural organization in both inanimate and living systems. It is in the course of self-assembly of cells and tissues in early development that the organism and its parts eventually acquire their final shape. Even though developmental patterning through self-assembly is under strict genetic control it is clear that ultimately it is physical mechanisms that bring about the complex structures. Here we show, both experimentally and by using computer simulations, how tissue liquidity can be used to build tissue constructs of prescribed geometry in vitro. Spherical aggregates containing many thousands of cells, which form because of tissue liquidity, were implanted contiguously into biocompatible hydrogels in circular geometry. Depending on the properties of the gel, upon incubation, the aggregates either fused into a toroidal 3D structure or their constituent cells dispersed into the surrounding matrix. The model simulations, which reproduced the experimentally observed shapes, indicate that the control parameter of structure evolution is the aggregate-gel interfacial tension. The model-based analysis also revealed that the observed toroidal structure represents a metastable state of the cellular system, whose lifetime depends on the magnitude of cell-cell and cell-matrix interactions. Thus, these constructs can be made long-lived. We suggest that spherical aggregates composed of organ-specific cells may be used as "bio-ink" in the evolving technology of organ printing. PMID:14981244

  1. 15 CFR Supplement No. 1 to Part 742 - Nonproliferation of Chemical and Biological Weapons

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Biological Weapons No. Supplement No. 1 to Part 742 Commerce and Foreign Trade Regulations Relating to...—Nonproliferation of Chemical and Biological Weapons Note: Exports and reexports of items in performance of... ECCNs 2B350 and 2B351; (ii) Equipment and materials (for producing biological agents) described in...

  2. Incorporating Biological Mass Spectrometry into Undergraduate Teaching Labs, Part 1: Identifying Proteins Based on Molecular Mass

    ERIC Educational Resources Information Center

    Arnquist, Isaac J.; Beussman, Douglas J.

    2007-01-01

    Biological mass spectrometry is an important analytical technique in drug discovery, proteomics, and research at the biology-chemistry interface. Currently, few hands-on opportunities exist for undergraduate students to learn about this technique. With the 2002 Nobel Prize being awarded, in part, for the development of biological mass…

  3. Design, implementation and practice of JBEI-ICE: an open source biological part registry platform and tools

    PubMed Central

    Ham, Timothy S.; Dmytriv, Zinovii; Plahar, Hector; Chen, Joanna; Hillson, Nathan J.; Keasling, Jay D.

    2012-01-01

    The Joint BioEnergy Institute Inventory of Composable Elements (JBEI-ICEs) is an open source registry platform for managing information about biological parts. It is capable of recording information about ‘legacy’ parts, such as plasmids, microbial host strains and Arabidopsis seeds, as well as DNA parts in various assembly standards. ICE is built on the idea of a web of registries and thus provides strong support for distributed interconnected use. The information deposited in an ICE installation instance is accessible both via a web browser and through the web application programming interfaces, which allows automated access to parts via third-party programs. JBEI-ICE includes several useful web browser-based graphical applications for sequence annotation, manipulation and analysis that are also open source. As with open source software, users are encouraged to install, use and customize JBEI-ICE and its components for their particular purposes. As a web application programming interface, ICE provides well-developed parts storage functionality for other synthetic biology software projects. A public instance is available at public-registry.jbei.org, where users can try out features, upload parts or simply use it for their projects. The ICE software suite is available via Google Code, a hosting site for community-driven open source projects. PMID:22718978

  4. Harnessing biological motors to engineer systems for nanoscale transport and assembly

    NASA Astrophysics Data System (ADS)

    Goel, Anita; Vogel, Viola

    2008-08-01

    Living systems use biological nanomotors to build life's essential molecules-such as DNA and proteins-as well as to transport cargo inside cells with both spatial and temporal precision. Each motor is highly specialized and carries out a distinct function within the cell. Some have even evolved sophisticated mechanisms to ensure quality control during nanomanufacturing processes, whether to correct errors in biosynthesis or to detect and permit the repair of damaged transport highways. In general, these nanomotors consume chemical energy in order to undergo a series of shape changes that let them interact sequentially with other molecules. Here we review some of the many tasks that biomotors perform and analyse their underlying design principles from an engineering perspective. We also discuss experiments and strategies to integrate biomotors into synthetic environments for applications such as sensing, transport and assembly.

  5. Multicomponent, Mannich-type assembly process for generating novel, biologically-active 2-arylpiperidines and derivatives

    PubMed Central

    Hardy, Simon; Martin, Stephen F.

    2014-01-01

    A multicomponent, Mannich-type assembly process commencing with commercially available bromobenzaldehydes was sequenced with [3+2] dipolar cycloaddition reactions involving nitrones and azomethine ylides to generate collections of fused, bicyclic scaffolds based on the 2-arylpiperidine subunit. Use of the 4-pentenoyl group, which served both as an activator in the Mannich-type reaction and a readily-cleaved amine protecting group, allowed sub-libraries to be prepared through piperidine N-functionalization and cross-coupling of the aryl bromide. A number of these derivatives displayed biological activities that had not previously been associated with this substructure. Methods were also developed that allowed rapid conversion of these scaffolds to novel, polycyclic dihydroquinazolin-2-ones, 2-imino-1,3-benzothiazinanes, dihydroisoquinolin-3-ones and bridged tetrahydroquinolines. PMID:25267860

  6. Exploring DNA assembler, a synthetic biology tool for characterizing and engineering natural product gene clusters

    PubMed Central

    Shao, Zengyi; Zhao, Huimin

    2015-01-01

    The majority of existing antibacterial and anticancer drugs are natural products or their derivatives. However, the characterization and engineering of these compounds are often hampered by limited ability to manipulate the corresponding biosynthetic pathways. Recently, we developed a genomics-driven, synthetic biology-based method, DNA assembler, for discovery, characterization, and engineering of natural product biosynthetic pathways (Shao et al., 2011). By taking advantage of the highly efficient yeast in vivo homologous recombination mechanism, this method synthesizes the entire expression vector containing the target biosynthetic pathway and the genetic elements needed for DNA maintenance and replication in individual hosts in a single-step manner. In this chapter, we describe the general guidelines for construct design. By using two distinct biosynthetic pathways, we demonstrate that DNA assembler can perform multiple tasks, including heterologous expression, introduction of single or multiple point mutations, scar-less gene deletion, generation of product derivatives and creation of artificial gene clusters. As such, this method offers unprecedented flexibility and versatility in pathway manipulations. PMID:23084940

  7. Protein folding and misfolding: a paradigm of self-assembly and regulation in complex biological systems.

    PubMed

    Vendruscolo, Michele; Zurdo, Jesús; MacPhee, Cait E; Dobson, Christopher M

    2003-06-15

    Understanding biological complexity is one of the grand scientific challenges for the future. A living organism is a highly evolved system made up of a large number of interwoven molecular networks. These networks primarily involve proteins, the macromolecules that enable and control virtually every chemical process that takes place in the cell. Proteins are also key elements in the essential characteristic of living systems, their ability to function and replicate themselves through controlled molecular interactions. Recent progress in understanding the most fundamental aspect of polypeptide self-organization, the process by which proteins fold to attain their active conformations, provides a global platform to gain knowledge about the function of biological systems and the regulatory mechanisms that underpin their ability to adapt to changing conditions. In order to exploit such progress effectively, we are developing a variety of approaches, including procedures that use experimental data to restrain the properties of complex systems in computer simulations, to describe their behaviour under a wide variety of conditions. We believe that such approaches can lead to significant advances in understanding biological complexity, in general, and protein folding and misfolding in particular. These advances would contribute to: a more effective exploitation of the information from genome sequences; more rational therapeutic approaches to diseases, particularly those associated with ageing; the responsible control of our own evolution; and the development of new technologies based on mimicking the principles of biological self-assembly, for instance in nanotechnology. More fundamentally, we believe that this research will result in a more coherent understanding of the origin, evolution and functional properties of living systems. PMID:12816607

  8. [Research under reduced gravity. Part I: bases of gravitational biology].

    PubMed

    Volkmann, D; Sievers, A

    1992-02-01

    The orientation of organisms in space and their morphogenesis in relation to the gravitational field of the Earth are the main topics of research in the field of gravitational biology. For more than 100 years clinostats provided the only possibility to simulate physiological weightlessness. In contrast to animals, plants are characterized by intracellular gravireceptors. Nevertheless, there are some indications, e.g., the minimal energy of approx. 10(-18) J triggering a gravity-dependent response, for similar mechanisms of gravity perception. Stretch-activated ion channels might be the common structural basis. PMID:11536493

  9. Evolving together: the biology of symbiosis, part 2.

    PubMed

    Dimijian, G G

    2000-10-01

    Symbiotic trade-offs dominate the world of biology and medicine in colonist-host relationships and between separate, mutually dependent organisms of different species. Infectious and parasitic diseases can be better understood by exploring the dynamic continuum between pathogenicity and mutualism, between antagonism and cooperation-the sliding scale along which microorganisms can move in a moment's notice with a single nucleotide substitution. Organisms practicing piracy or pastoralism may be close genetic relatives. Mergers occur not only between cells but also between genomes; viruses co-opt host genes and in turn insert themselves into host genomes. Separate organisms, from ants to fungi to plants, establish symbiotic ties with each other that bind over deep time, generating much of the diversity we see in nature. PMID:16389348

  10. Rapid and enzyme-free nucleic acid detection based on exponential hairpin assembly in complex biological fluids.

    PubMed

    Ma, Cuiping; Zhang, Menghua; Chen, Shan; Liang, Chao; Shi, Chao

    2016-05-10

    Herein, we have developed a rapid and enzyme-free nucleic acid amplification detection method that combined the exponential self-assembly of four DNA hairpins and the FRET pair Cy3 and Cy5. This strategy was very ingenious and rapid, and could detect nucleic acids at concentrations as low as 10 pM in 15 min in biological fluids. PMID:27138054

  11. Application of the Modular Automated Reconfigurable Assembly System (MARAS) concept to adaptable vision gauging and parts feeding

    NASA Technical Reports Server (NTRS)

    By, Andre Bernard; Caron, Ken; Rothenberg, Michael; Sales, Vic

    1994-01-01

    This paper presents the first phase results of a collaborative effort between university researchers and a flexible assembly systems integrator to implement a comprehensive modular approach to flexible assembly automation. This approach, named MARAS (Modular Automated Reconfigurable Assembly System), has been structured to support multiple levels of modularity in terms of both physical components and system control functions. The initial focus of the MARAS development has been on parts gauging and feeding operations for cylinder lock assembly. This phase is nearing completion and has resulted in the development of a highly configurable system for vision gauging functions on a wide range of small components (2 mm to 100 mm in size). The reconfigurable concepts implemented in this adaptive Vision Gauging Module (VGM) are now being extended to applicable aspects of the singulating, selecting, and orienting functions required for the flexible feeding of similar mechanical components and assemblies.

  12. Amyloids assemble as part of recognizable structures during oogenesis in Xenopus

    PubMed Central

    Hayes, Michael H.

    2016-01-01

    ABSTRACT A hallmark of Alzheimer's, Huntington's and similar diseases is the assembly of proteins into amyloids rather than folding into their native state. There is an increasing appreciation that amyloids, under specific conditions, may be non-pathogenic. Here we show that amyloids form as a normal part of Xenopus oocyte development. Amyloids are detectable in the cytosol and the nucleus using an amyloid binding dye and antibodies that recognize amyloid structure. In the cytosol, yolk platelets are amyloid reactive, as are a number of yet to be characterized particles. In the nucleus, we find particles associated with transcription by RNA polymerase I, II and III and RNA processing contain amyloids. Nuclear amyloids remain intact for hours following isolation; however, RNase treatment rapidly disrupts nuclear amyloids. PMID:27215327

  13. 10 CFR Appendix C to Part 110 - Illustrative List of Gaseous Diffusion Enrichment Plant Assemblies and Components Under NRC...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 2 2011-01-01 2011-01-01 false Illustrative List of Gaseous Diffusion Enrichment Plant Assemblies and Components Under NRC Export Licensing Authority C Appendix C to Part 110 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) EXPORT AND IMPORT OF NUCLEAR EQUIPMENT AND MATERIAL Pt. 110, App. C Appendix C to Part 110—Illustrative List...

  14. Self-Assembling Multidomain Peptides Tailor Biological Responses through Biphasic Release

    PubMed Central

    Kumar, Vivek A.; Taylor, Nichole L.; Shi, Siyu; Wickremasinghe, Navindee C.; D’Souza, Rena N.; Hartgerink, Jeffrey D.

    2015-01-01

    Delivery of small molecules and drugs to tissues is a mainstay of several tissue engineering strategies. Next generation treatments focused on localized drug delivery offer a more effective means in dealing with refractory healing when compared to systemic approaches. Here we describe a novel multidomain peptide hydrogel that capitalizes on synthetic peptide chemistry, supramolecular self-assembly and cytokine delivery to tailor biological responses. This material is biomimetic, shows shear stress recovery and offers a nanofibrous matrix that sequesters cytokines. The biphasic pattern of cytokine release results in the spatio-temporal activation of THP-1 monocytes and macrophages. Furthermore, macrophage-material interactions are promoted without generation of a proinflammatory environment. Subcutaneous implantation of injectable scaffolds showed a marked increase in macrophage infiltration and polarization dictated by cytokine loading as early as 3 days, with complete scaffold resorption by day 14. Macrophage interaction and response to the peptide composite facilitated the (i) recruitment of monocytes/macrophages, (ii) sustained residence of immune cells until degradation, and (iii) promotion of a pro-resolution M2 environment. Our results suggest the potential use of this injectable cytokine loaded hydrogel scaffold in a variety of tissue engineering applications. PMID:25818414

  15. 1994 Baseline biological studies for the Device Assembly Facility at the Nevada Test Site

    SciTech Connect

    Townsend, Y.E.; Woodward, B.D.; Hunter, R.B.; Greger, P.D.; Saethre, M.B.

    1995-02-01

    This report describes environmental work performed at the Device Assembly Facility (DAF) in 1994 by the Basic Environmental Monitoring and Compliance Program (BECAMP). The DAF is located near the Mojave-Great Basin desert transition zone 27 km north of Mercury. The area immediately around the DAF building complex is a gentle slope cut by 1 to 3 m deep arroyos, and occupied by transitional vegetation. In 1994, construction activities were largely limited to work inside the perimeter fence. The DAF was still in a preoperational mode in 1994, and no nuclear materials were present. The DAF facilities were being occupied so there was water in the sewage settling pond, and the roads and lights were in use. Sampling activities in 1994 represent the first year in the proposed monitoring scheme. The proposed biological monitoring plan gives detailed experimental protocols. Plant, lizard, tortoise, small mammal, and bird surveys were performed in 1994. The authors briefly outline procedures employed in 1994. Studies performed on each taxon are reviewed separately then summarized in a concluding section.

  16. Self-assembling multidomain peptides tailor biological responses through biphasic release.

    PubMed

    Kumar, Vivek A; Taylor, Nichole L; Shi, Siyu; Wickremasinghe, Navindee C; D'Souza, Rena N; Hartgerink, Jeffrey D

    2015-06-01

    Delivery of small molecules and drugs to tissues is a mainstay of several tissue engineering strategies. Next generation treatments focused on localized drug delivery offer a more effective means in dealing with refractory healing when compared to systemic approaches. Here we describe a novel multidomain peptide hydrogel that capitalizes on synthetic peptide chemistry, supramolecular self-assembly and cytokine delivery to tailor biological responses. This material is biomimetic, shows shear stress recovery and offers a nanofibrous matrix that sequesters cytokines. The biphasic pattern of cytokine release results in the spatio-temporal activation of THP-1 monocytes and macrophages. Furthermore, macrophage-material interactions are promoted without generation of a proinflammatory environment. Subcutaneous implantation of injectable scaffolds showed a marked increase in macrophage infiltration and polarization dictated by cytokine loading as early as 3 days, with complete scaffold resorption by day 14. Macrophage interaction and response to the peptide composite facilitated the (i) recruitment of monocytes/macrophages, (ii) sustained residence of immune cells until degradation, and (iii) promotion of a pro-resolution M2 environment. Our results suggest the potential use of this injectable cytokine loaded hydrogel scaffold in a variety of tissue engineering applications. PMID:25818414

  17. Probing self assembly in biological mixed colloids by SANS, deuteration and molecular manipulation

    SciTech Connect

    Hjelm, R.P.; Thiyagarajan, P.; Hoffman, A.; Alkan-Onyuksel, H.

    1994-12-31

    Small-angle neutron scattering was used to obtain information on the form and molecular arrangement of particles in mixed colloids of bile salts with phosphatidylcholine, and bile salts with monoolein. Both types of systems showed the same general characteristics. The particle form was highly dependent on total lipid concentration. At the highest concentrations the particles were globular mixed micelles with an overall size of 50{Angstrom}. As the concentration was reduced the mixed micelles elongated, becoming rodlike with diameter about 50{Angstrom}. The rods had a radial core-shell structure in which the phosphatidylcholine or monoolein fatty tails were arranged radially to form the core with the headgroups pointing outward to form the shell. The bile salts were at the interface between the shell and core with the hydrophilic parts facing outward as part of the shell. The lengths of the rods increased and became more polydispersed with dilution. At sufficiently low concentrations the mixed micelles transformed into single bilayer vesicles. These results give insight on the physiological function of bile and on the rules governing the self assembly of bile particles in the hepatic duct and the small intestine.

  18. Characterization of Delayed-Particle Emission Signatures for Pyroprocessing. Part 1: ABTR Fuel Assembly.

    SciTech Connect

    Durkee, Jr., Joe W.

    2015-06-19

    A three-part study is conducted using the MCNP6 Monte Carlo radiation-transport code to calculate delayed-neutron (DN) and delayed-gamma (DG) emission signatures for nondestructive assay (NDA) metal-fuel pyroprocessing. In Part 1, MCNP6 is used to produce irradiation-induced used nuclear fuel (UNF) isotopic inventories for an Argonne National Laboratory (ANL) Advanced Burner Test Reactor (ABTR) preconceptual design fuel assembly (FA) model. The initial fuel inventory consists of uranium mixed with light-water-reactor transuranic (TRU) waste and 10 wt% zirconium (U-LWR-SFTRU-10%Zr). To facilitate understanding, parametric evaluation is done using models for 3% and 5% initial 235U a% enrichments, burnups of 5, 10, 15, 20, 30, …, 120 GWd/MTIHM, and 3-, 5-, 10-, 20-, and 30- year cooling times. Detailed delayed-particle radioisotope source terms for the irradiate FA are created using BAMF-DRT and SOURCES3A. Using simulation tallies, DG activity ratios (DGARs) are developed for 134Cs/137Cs 134Cs/154Eu, and 154Eu/137Cs markers as a function of (1) burnup and (2) actinide mass, including elemental uranium, neptunium, plutonium, americium, and curium. Spectral-integrated DN emission is also tallied. The study reveals a rich assortment of DGAR behavior as a function of DGAR type, enrichment, burnup, and cooling time. Similarly, DN emission plots show variation as a function of burnup and of actinide mass. Sensitivity of DGAR and DN signatures to initial 235U enrichment, burnup, and cooling time is evident. Comparisons of the ABTR radiation signatures and radiation signatures previously reported for a generic Westinghouse oxide-fuel assembly indicate that there are pronounced differences in the ABTR and Westinghouse oxide-fuel DN and DG signatures. These differences are largely attributable to the initial TRU inventory in the ABTR fuel. The actinide and nonactinide inventories for the

  19. TiO2 thin films self-assembled with a partly fluorinated surfactant template.

    PubMed

    Henderson, Mark J; Zimny, Kevin; Blin, Jean-Luc; Delorme, Nicolas; Bardeau, Jean-François; Gibaud, Alain

    2010-01-19

    New TiO(2) films have been self-assembled on solid substrate by dip-coating using TiCl(4) as the titanium source and the partly fluorinated surfactant F(CF(2))(8)C(2)H(4)(OC(2)H(4))(9)OH as the liquid crystal template. By control over the dip-withdrawal speed, film thicknesses from a minimum of 43 nm were produced with rms roughnesses of 0.5-0.7 nm. The films were characterized by X-ray reflectivity, grazing incidence small-angle X-ray scattering, atomic force microscopy, contact angle measurements, and Raman spectroscopy. Their GI-SAXS patterns are characteristic of a 2-D hexagonal structure in which tubular rods of the fluorinated surfactant are packed hexagonally and aligned parallel to the substrate. Reflectivity and contact angle measurements of the as-prepared film indicate that a low-density hydrophilic TiO(2) surface presents to the air. PMID:19754061

  20. 16 CFR Figure 6 to Part 1633 - Burner Assembly Showing Arms and Pivots (Shoulder Screws), in Relation to, Portable Frame...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Burner Assembly Showing Arms and Pivots (Shoulder Screws), in Relation to, Portable Frame Allowing Burner Height Adjustment 6 Figure 6 to Part 1633... and Pivots (Shoulder Screws), in Relation to, Portable Frame Allowing Burner Height...

  1. 10 CFR Appendix C to Part 110 - Illustrative List of Gaseous Diffusion Enrichment Plant Assemblies and Components Under NRC...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 2 2013-01-01 2013-01-01 false Illustrative List of Gaseous Diffusion Enrichment Plant... Appendix C to Part 110—Illustrative List of Gaseous Diffusion Enrichment Plant Assemblies and Components... for gaseous diffusion enrichment plants are the systems of plant needed to feed UF6 to the...

  2. 10 CFR Appendix C to Part 110 - Illustrative List of Gaseous Diffusion Enrichment Plant Assemblies and Components Under NRC...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 2 2014-01-01 2014-01-01 false Illustrative List of Gaseous Diffusion Enrichment Plant... Appendix C to Part 110—Illustrative List of Gaseous Diffusion Enrichment Plant Assemblies and Components... for gaseous diffusion enrichment plants are the systems of plant needed to feed UF6 to the...

  3. Monte Carlo modeling and analyses of YALINA booster subcritical assembly, Part III : low enriched uranium conversion analyses.

    SciTech Connect

    Talamo, A.; Gohar, Y.

    2011-05-12

    This study investigates the performance of the YALINA Booster subcritical assembly, located in Belarus, during operation with high (90%), medium (36%), and low (21%) enriched uranium fuels in the assembly's fast zone. The YALINA Booster is a zero-power, subcritical assembly driven by a conventional neutron generator. It was constructed for the purpose of investigating the static and dynamic neutronics properties of accelerator driven subcritical systems, and to serve as a fast neutron source for investigating the properties of nuclear reactions, in particular transmutation reactions involving minor-actinides. The first part of this study analyzes the assembly's performance with several fuel types. The MCNPX and MONK Monte Carlo codes were used to determine effective and source neutron multiplication factors, effective delayed neutron fraction, prompt neutron lifetime, neutron flux profiles and spectra, and neutron reaction rates produced from the use of three neutron sources: californium, deuterium-deuterium, and deuterium-tritium. In the latter two cases, the external neutron source operates in pulsed mode. The results discussed in the first part of this report show that the use of low enriched fuel in the fast zone of the assembly diminishes neutron multiplication. Therefore, the discussion in the second part of the report focuses on finding alternative fuel loading configurations that enhance neutron multiplication while using low enriched uranium fuel. It was found that arranging the interface absorber between the fast and the thermal zones in a circular rather than a square array is an effective method of operating the YALINA Booster subcritical assembly without downgrading neutron multiplication relative to the original value obtained with the use of the high enriched uranium fuels in the fast zone.

  4. [Pattern formation in microcosm: the role of self-assembly in complex biological envelopes development].

    PubMed

    Gabaraeva, N I; Hemsley, A R

    2010-01-01

    The data on the development of pollen/spore walls (of sporoderm) were reconsidered in the light of our hypothesis regarding a considerable role of self-assembling processes in the formation of this complex pattern. The premises that (1) glycocalyx (cell surface coating) is a self-assembling colloidal solution, and that (2) exine, formed on a glycocalyx framework, appears as a result of the self-assembly of the biopolymer (sporopollenin microemulsion), were independently suggested by the authors of this paper (Gabarayeva, 1990, 1993; Hemsley et al., 1992). Afterwards a joint hypothesis has been worked out which interpreted the processes of sporoderm development through regularities of colloidal chemistry. It was shown that all of the successive developmental stages, seen in transmission electron microscope (TEM) in the course of pollen wall development, correspond to successive micelle mesophases of a colloidal solution of surface-active substances which self-assemble when their concentration increases. Such an interpretation implies that all of the microstructures, observed in mature pollen walls (granules; rods-columellae; hexagonally packed layers of rods; bilayers, separated with a gap) are somewhat like "stiff history" of their appearance as a micellar sequence, immortalized by chemically resistant sporopollenin. Since self-assembling processes have nonlinear, spasmodic character, and microstructures of pollen wall, mentioned above, are arranged, as a rule, in successive layers, it has been suggested that these layers of heterogeneous microstructures occur as a result of the abrupt phase transitions typical for self-assembling micellar systems. PMID:20865932

  5. Biological materials: (Part A): Temperature-responsive polymers and drug delivery, and, (Part B): Polymer modification of fish scale and their nano-mechanical properties

    NASA Astrophysics Data System (ADS)

    Xiang, Xu

    This research has three parts. Two parts deal with novel nanoparticle assemblies for drug delivery, and are described in Part A, while the third part looks at properties of fish scales, an abundant and little-used waste resource, that can be modified to have value in medical and other areas. Part A describes fundamental research into the affects of block sequence of amphiphilic block copolymers prepared from on a new and versatile class of monomers, oligo(ethylene glycol) methyl ether acrylate (OEGA) and the more hydrophobic di(ethylene glycol) methyl ether methacrylate (DEGMA). Polymers from these monomers are biologically safe and give polymers with thermoresponsive properties that can be manipulated over a broader temperature range than the more researched N-isopropylacrylamide polymers. Using RAFT polymerization and different Chain Transfer Agents (CTAs) amphiphilic block copolymers were prepared to study the effect of block sequence (hydrophilic OEGA and more hydrophobic DEGMA) on their thermo-responsive properties. Pairing hydrophilic chain ends to a hydrophobic DEGMA block and hydrophobic chain ends to hydrophilic blocks ("mis-matched polarity") significantly affected thermoresponsive properties for linear and star diblock copolymers, but little affected symmetric triblock copolymers. Specifically matching polarity in diblock copolymers yielded nanoparticles with higher cloud points (CP), narrow temperature ranges for coil collapse above CP, and smaller hydrodynamic diameter than mis-matched polarity. Using this knowledge two linear OEGA/DEGMA diblock copolymers were prepared with thiol end groups and assembled into hybrid nanoparticles with a gold nanoparticle core (GNP-polymer hybrids). This design was made using the hypothesis that a hybrid polymer drug carrier with a high CP (50-60 °C) and a diblock structure could be designed with low levels of drug release below 37 °C (body temperature) allowing the drug carrier to reach a target (tumor) site with

  6. Information theory in systems biology. Part II: protein-protein interaction and signaling networks.

    PubMed

    Mousavian, Zaynab; Díaz, José; Masoudi-Nejad, Ali

    2016-03-01

    By the development of information theory in 1948 by Claude Shannon to address the problems in the field of data storage and data communication over (noisy) communication channel, it has been successfully applied in many other research areas such as bioinformatics and systems biology. In this manuscript, we attempt to review some of the existing literatures in systems biology, which are using the information theory measures in their calculations. As we have reviewed most of the existing information-theoretic methods in gene regulatory and metabolic networks in the first part of the review, so in the second part of our study, the application of information theory in other types of biological networks including protein-protein interaction and signaling networks will be surveyed. PMID:26691180

  7. GenoLIB: a database of biological parts derived from a library of common plasmid features

    PubMed Central

    Adames, Neil R.; Wilson, Mandy L.; Fang, Gang; Lux, Matthew W.; Glick, Benjamin S.; Peccoud, Jean

    2015-01-01

    Synthetic biologists rely on databases of biological parts to design genetic devices and systems. The sequences and descriptions of genetic parts are often derived from features of previously described plasmids using ad hoc, error-prone and time-consuming curation processes because existing databases of plasmids and features are loosely organized. These databases often lack consistency in the way they identify and describe sequences. Furthermore, legacy bioinformatics file formats like GenBank do not provide enough information about the purpose of features. We have analyzed the annotations of a library of ∼2000 widely used plasmids to build a non-redundant database of plasmid features. We looked at the variability of plasmid features, their usage statistics and their distributions by feature type. We segmented the plasmid features by expression hosts. We derived a library of biological parts from the database of plasmid features. The library was formatted using the Synthetic Biology Open Language, an emerging standard developed to better organize libraries of genetic parts to facilitate synthetic biology workflows. As proof, the library was converted into GenoCAD grammar files to allow users to import and customize the library based on the needs of their research projects. PMID:25925571

  8. Physical Activity: A Tool for Improving Health (Part 1--Biological Health Benefits)

    ERIC Educational Resources Information Center

    Gallaway, Patrick J.; Hongu, Nobuko

    2015-01-01

    Extension educators have been promoting and incorporating physical activities into their community-based programs and improving the health of individuals, particularly those with limited resources. This article is the first of a three-part series describing the benefits of physical activity for human health: 1) biological health benefits of…

  9. GenoLIB: a database of biological parts derived from a library of common plasmid features.

    PubMed

    Adames, Neil R; Wilson, Mandy L; Fang, Gang; Lux, Matthew W; Glick, Benjamin S; Peccoud, Jean

    2015-05-26

    Synthetic biologists rely on databases of biological parts to design genetic devices and systems. The sequences and descriptions of genetic parts are often derived from features of previously described plasmids using ad hoc, error-prone and time-consuming curation processes because existing databases of plasmids and features are loosely organized. These databases often lack consistency in the way they identify and describe sequences. Furthermore, legacy bioinformatics file formats like GenBank do not provide enough information about the purpose of features. We have analyzed the annotations of a library of ∼2000 widely used plasmids to build a non-redundant database of plasmid features. We looked at the variability of plasmid features, their usage statistics and their distributions by feature type. We segmented the plasmid features by expression hosts. We derived a library of biological parts from the database of plasmid features. The library was formatted using the Synthetic Biology Open Language, an emerging standard developed to better organize libraries of genetic parts to facilitate synthetic biology workflows. As proof, the library was converted into GenoCAD grammar files to allow users to import and customize the library based on the needs of their research projects. PMID:25925571

  10. Didactics of Biology. Selected Bibliography for 1982. Parts I and II. Information Bulletin.

    ERIC Educational Resources Information Center

    Altmann, Antonin, Ed.; Lipertova, Paula, Ed.

    Selected articles on various aspects of biology teaching published in 1982 have been annotated in this two-part bibliography. Entries from 25 journals representing 12 countries are presented according to a topic area classification scheme listed in the table of contents. Countries represented include: Australia; Bulgaria; Czechoslovakia; Federal…

  11. Information theory in systems biology. Part I: Gene regulatory and metabolic networks.

    PubMed

    Mousavian, Zaynab; Kavousi, Kaveh; Masoudi-Nejad, Ali

    2016-03-01

    "A Mathematical Theory of Communication", was published in 1948 by Claude Shannon to establish a framework that is now known as information theory. In recent decades, information theory has gained much attention in the area of systems biology. The aim of this paper is to provide a systematic review of those contributions that have applied information theory in inferring or understanding of biological systems. Based on the type of system components and the interactions between them, we classify the biological systems into 4 main classes: gene regulatory, metabolic, protein-protein interaction and signaling networks. In the first part of this review, we attempt to introduce most of the existing studies on two types of biological networks, including gene regulatory and metabolic networks, which are founded on the concepts of information theory. PMID:26701126

  12. Pre-Assembly of Near-Infrared Fluorescent Multivalent Molecular Probes for Biological Imaging.

    PubMed

    Peck, Evan M; Battles, Paul M; Rice, Douglas R; Roland, Felicia M; Norquest, Kathryn A; Smith, Bradley D

    2016-05-18

    A programmable pre-assembly method is described and shown to produce near-infrared fluorescent molecular probes with tunable multivalent binding properties. The modular assembly process threads one or two copies of a tetralactam macrocycle onto a fluorescent PEGylated squaraine scaffold containing a complementary number of docking stations. Appended to the macrocycle periphery are multiple copies of a ligand that is known to target a biomarker. The structure and high purity of each threaded complex was determined by independent spectrometric methods and also by gel electrophoresis. Especially helpful were diagnostic red-shift and energy transfer features in the absorption and fluorescence spectra. The threaded complexes were found to be effective multivalent molecular probes for fluorescence microscopy and in vivo fluorescence imaging of living subjects. Two multivalent probes were prepared and tested for targeting of bone in mice. A pre-assembled probe with 12 bone-targeting iminodiacetate ligands produced more bone accumulation than an analogous pre-assembled probe with six iminodiacetate ligands. Notably, there was no loss in probe fluorescence at the bone target site after 24 h in the living animal, indicating that the pre-assembled fluorescent probe maintained very high mechanical and chemical stability on the skeletal surface. The study shows how this versatile pre-assembly method can be used in a parallel combinatorial manner to produce libraries of near-infrared fluorescent multivalent molecular probes for different types of imaging and diagnostic applications, with incremental structural changes in the number of targeting groups, linker lengths, linker flexibility, and degree of PEGylation. PMID:27088305

  13. Molecular Self-Assembly of Short Aromatic Peptides: From Biology to Nanotechnology and Material Science

    NASA Astrophysics Data System (ADS)

    Gazit, Ehud

    2013-03-01

    The formation of ordered amyloid fibrils is the hallmark of several diseases of unrelated origin. In spite of grave clinical consequence, the mechanism of amyloid formation is not fully understood. We have suggested, based on experimental and bioinformatic analysis, that aromatic interactions may provide energetic contribution as well as order and directionality in the molecular-recognition and self-association processes that lead to the formation of these assemblies. This is in line with the well-known central role of aromatic-stacking interactions in self-assembly processes. Our works on the mechanism of aromatic peptide self-assembly, lead to the discovery that the diphenylalanine recognition motif self-assembles into peptide nanotubes with a remarkable persistence length. Other aromatic homodipeptides could self-assemble in nano-spheres, nano-plates, nano-fibrils and hydrogels with nano-scale order. We demonstrated that the peptide nanostructures have unique chemical, physical and mechanical properties including ultra-rigidity as aramides, semi-conductive, piezoelectric and non-linear optic properties. We also demonstrated the ability to use these peptide nanostructures as casting mold for the fabrication of metallic nano-wires and coaxial nano-cables. The application of the nanostructures was demonstrated in various fields including electrochemical biosensors, tissue engineering, and molecular imaging. Finally, we had developed ways for depositing of the peptide nanostructures and their organization. We had use inkjet technology as well as vapour deposition methods to coat surface and from the peptide ``nano-forests''. We recently demonstrated that even a single phenylalanine amino-acid can form well-ordered fibrilar assemblies.

  14. 16 CFR Figure 6 to Part 1633 - Burner Assembly Showing Arms and Pivots (Shoulder Screws) in Relation to Portable Frame Allowing...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 16 Commercial Practices 2 2011-01-01 2011-01-01 false Burner Assembly Showing Arms and Pivots (Shoulder Screws) in Relation to Portable Frame Allowing Burner Height Adjustment 6 Figure 6 to Part 1633... FLAMMABILITY (OPEN FLAME) OF MATTRESS SETS Pt.1633, Fig. 6 Figure 6 to Part 1633—Burner Assembly Showing...

  15. 16 CFR Figure 6 to Part 1633 - Burner Assembly Showing Arms and Pivots (Shoulder Screws) in Relation to, Portable Frame Allowing...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 16 Commercial Practices 2 2012-01-01 2012-01-01 false Burner Assembly Showing Arms and Pivots (Shoulder Screws) in Relation to, Portable Frame Allowing Burner Height Adjustment 6 Figure 6 to Part 1633... FLAMMABILITY (OPEN FLAME) OF MATTRESS SETS Pt.1633, Fig. 6 Figure 6 to Part 1633—Burner Assembly Showing...

  16. Cartwheel assembly

    PubMed Central

    Hirono, Masafumi

    2014-01-01

    The cartwheel is a subcentriolar structure consisting of a central hub and nine radially arranged spokes, located at the proximal end of the centriole. It appears at the initial stage of the centriole assembly process as the first ninefold symmetrical structure. The cartwheel was first described more than 50 years ago, but it is only recently that its pivotal role in establishing the ninefold symmetry of the centriole was demonstrated. Significant progress has since been made in understanding its fine structure and assembly mechanism. Most importantly, the central part of the cartwheel, from which the ninefold symmetry originates, is shown to form by self-association of nine dimers of the protein SAS-6. This finding, together with emerging data on other components of the cartwheel, has opened new avenues in centrosome biology. PMID:25047612

  17. Stable and fluid multilayer phospholipid-silica thin films: mimicking active multi-lamellar biological assemblies.

    PubMed

    Gupta, Gautam; Iyer, Srinivas; Leasure, Kara; Virdone, Nicole; Dattelbaum, Andrew M; Atanassov, Plamen B; López, Gabriel P

    2013-06-25

    Phospholipid-based nanomaterials are of interest in several applications including drug delivery, sensing, energy harvesting, and as model systems in basic research. However, a general challenge in creating functional hybrid biomaterials from phospholipid assemblies is their fragility, instability in air, insolubility in water, and the difficulty of integrating them into useful composites that retain or enhance the properties of interest, therefore limiting there use in integrated devices. We document the synthesis and characterization of highly ordered and stable phospholipid-silica thin films that resemble multilamellar architectures present in nature such as the myelin sheath. We have used a near room temperature chemical vapor deposition method to synthesize these robust functional materials. Highly ordered lipid films are exposed to vapors of silica precursor resulting in the formation of nanostructured hybrid assemblies. This process is simple, scalable, and offers advantages such as exclusion of ethanol and no (or minimal) need for exposure to mineral acids, which are generally required in conventional sol-gel synthesis strategies. The structure of the phospholipid-silica assemblies can be tuned to either lamellar or hexagonal organization depending on the synthesis conditions. The phospholipid-silica films exhibit long-term structural stability in air as well as when placed in aqueous solutions and maintain their fluidity under aqueous or humid conditions. This platform provides a model for robust implementation of phospholipid multilayers and a means toward future applications of functional phospholipid supramolecular assemblies in device integration. PMID:23706112

  18. Comparison of self-assembled and micelle encapsulated QD chemosensor constructs for biological sensing.

    PubMed

    Lemon, Christopher M; Nocera, Daniel G

    2015-01-01

    Whereas a variety of covalent conjugation strategies have been utilized to prepare quantum dot (QD)-based nanosensors, supramolecular approaches of self-assembly have been underexplored. A major advantage of self-assembly is the ability to circumvent laborious synthetic efforts attendant to covalent conjugation of a chemosensor to functionalized QDs. Here, we combine a CdSe/ZnS core-shell QD with gold(III) corroles using both self-assembly and micelle encapsulation to form QD nanosensors. Appreciable spectral overlap between QD emission and corrole absorption results in efficient Förster resonance energy transfer (FRET), which may be initiated by one- or two-photon excitation. The triplet state of the gold(III) corroles is quenched by molecular oxygen, enabling these constructs to function as optical O2 sensors, which is useful for the metabolic profiling of tumours. The photophysical properties, including QD and corrole lifetimes, FRET efficiency, and O2 sensitivity, have been determined for each construct. The relative merits of each conjugation strategy are assessed with regard to their implementation as sensors. PMID:26399200

  19. NEW DEVELOPMENTS IN LOW TEMPERATURE PHYSICS : Part of the Activity Report to the IUPAP General Assembly

    NASA Astrophysics Data System (ADS)

    Hallock, Bob; Paalanen, Mikko

    2009-03-01

    Below you find part of the Activity Report to the IUPAP General Assembly, October 2008, by the present and previous Chairmen of C5. It provides an overview of the most important and recent developments in low temperature physics, much in line with the program of LT25. For the field of experimental low temperature physics, the ability to conduct research has been damaged by the dramatic increase in the price of liquid helium. In the United States for example, the price of liquid helium has approximately doubled over the past two years. This has led to a reduction in activity in many laboratories as the funding agencies have not quickly increased support in proportion. The increase in price of liquid helium has accelerated interest in the development and use of alternative cooling systems. In particular, pulse tube coolers are now available that will allow cryostats with modest cooling needs to operate dilution refrigerators without the need for repeated refills of liquid helium from external supply sources. Solid helium research has seen a dramatic resurgence. Torsional oscillator experiments have been interpreted to show that solid helium may undergo a transition to a state in which some of the atoms in the container do not follow the motion of the container, e.g. may be 'supersolid'. The observation is robust, but the interpretation is controversial. The shear modulus of solid helium undergoes a similar signature with respect to temperature. Experiments that should be expected to cause helium to flow give conflicting results. Theory predicts that a perfect solid cannot show supersolid behavior, but novel superfluid-like behavior should be seen in various defects that can exist in the solid, and vorticity may play a significant role. And, recently there have been reports of unusual mass decoupling in films of pure 4He on graphite surfaces as well as 3He-4He mixture films on solid hydrogen surfaces. These may be other examples of unusual superfluid-like behavior

  20. The 1993 baseline biological studies and proposed monitoring plan for the Device Assembly Facility at the Nevada Test Site

    SciTech Connect

    Woodward, B.D.; Hunter, R.B.; Greger, P.D.; Saethre, M.B.

    1995-02-01

    This report contains baseline data and recommendations for future monitoring of plants and animals near the new Device Assembly Facility (DAF) on the Nevada Test Site (NTS). The facility is a large structure designed for safely assembling nuclear weapons. Baseline data was collected in 1993, prior to the scheduled beginning of DAF operations in early 1995. Studies were not performed prior to construction and part of the task of monitoring operational effects will be to distinguish those effects from the extensive disturbance effects resulting from construction. Baseline information on species abundances and distributions was collected on ephemeral and perennial plants, mammals, reptiles, and birds in the desert ecosystems within three kilometers (km) of the DAF. Particular attention was paid to effects of selected disturbances, such as the paved road, sewage pond, and the flood-control dike, associated with the facility. Radiological monitoring of areas surrounding the DAF is not included in this report.

  1. 40 CFR Appendix E to Part 63 - Monitoring Procedure for Nonthoroughly Mixed Open Biological Treatment Systems at Kraft Pulp...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Mixed Open Biological Treatment Systems at Kraft Pulp Mills Under Unsafe Sampling Conditions E Appendix..., App. E Appendix E to Part 63—Monitoring Procedure for Nonthoroughly Mixed Open Biological Treatment... pollutants (HAP) concentrations from an open biological treatment unit. It is assumed that inlet and...

  2. 9 CFR 381.78 - Condemnation of carcasses and parts: separation of poultry suspected of containing biological...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...: separation of poultry suspected of containing biological residues. 381.78 Section 381.78 Animals and Animal... carcasses and parts: separation of poultry suspected of containing biological residues. (a) At the time of... to be not adulterated. (b) When a lot of poultry suspected of containing biological residues...

  3. 9 CFR 381.78 - Condemnation of carcasses and parts: separation of poultry suspected of containing biological...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...: separation of poultry suspected of containing biological residues. 381.78 Section 381.78 Animals and Animal... carcasses and parts: separation of poultry suspected of containing biological residues. (a) At the time of... to be not adulterated. (b) When a lot of poultry suspected of containing biological residues...

  4. 9 CFR 381.78 - Condemnation of carcasses and parts: separation of poultry suspected of containing biological...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...: separation of poultry suspected of containing biological residues. 381.78 Section 381.78 Animals and Animal... carcasses and parts: separation of poultry suspected of containing biological residues. (a) At the time of... to be not adulterated. (b) When a lot of poultry suspected of containing biological residues...

  5. 9 CFR 381.78 - Condemnation of carcasses and parts: separation of poultry suspected of containing biological...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...: separation of poultry suspected of containing biological residues. 381.78 Section 381.78 Animals and Animal... carcasses and parts: separation of poultry suspected of containing biological residues. (a) At the time of... to be not adulterated. (b) When a lot of poultry suspected of containing biological residues...

  6. 40 CFR Appendix E to Part 63 - Monitoring Procedure for Nonthoroughly Mixed Open Biological Treatment Systems at Kraft Pulp...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Mixed Open Biological Treatment Systems at Kraft Pulp Mills Under Unsafe Sampling Conditions E Appendix..., App. E Appendix E to Part 63—Monitoring Procedure for Nonthoroughly Mixed Open Biological Treatment... pollutants (HAP) concentrations from an open biological treatment unit. It is assumed that inlet and...

  7. 40 CFR Appendix E to Part 63 - Monitoring Procedure for Nonthoroughly Mixed Open Biological Treatment Systems at Kraft Pulp...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Mixed Open Biological Treatment Systems at Kraft Pulp Mills Under Unsafe Sampling Conditions E Appendix..., App. E Appendix E to Part 63—Monitoring Procedure for Nonthoroughly Mixed Open Biological Treatment... pollutants (HAP) concentrations from an open biological treatment unit. It is assumed that inlet and...

  8. 40 CFR Appendix E to Part 63 - Monitoring Procedure for Nonthoroughly Mixed Open Biological Treatment Systems at Kraft Pulp...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Mixed Open Biological Treatment Systems at Kraft Pulp Mills Under Unsafe Sampling Conditions E Appendix..., App. E Appendix E to Part 63—Monitoring Procedure for Nonthoroughly Mixed Open Biological Treatment... pollutants (HAP) concentrations from an open biological treatment unit. It is assumed that inlet and...

  9. 9 CFR 381.78 - Condemnation of carcasses and parts: separation of poultry suspected of containing biological...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...: separation of poultry suspected of containing biological residues. 381.78 Section 381.78 Animals and Animal... carcasses and parts: separation of poultry suspected of containing biological residues. (a) At the time of... to be not adulterated. (b) When a lot of poultry suspected of containing biological residues...

  10. 40 CFR Appendix E to Part 63 - Monitoring Procedure for Nonthoroughly Mixed Open Biological Treatment Systems at Kraft Pulp...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Mixed Open Biological Treatment Systems at Kraft Pulp Mills Under Unsafe Sampling Conditions E Appendix E to Part 63 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS..., App. E Appendix E to Part 63—Monitoring Procedure for Nonthoroughly Mixed Open Biological...

  11. Wholes that cause their parts: organic self-reproduction and the reality of biological teleology.

    PubMed

    Teufel, Thomas

    2011-06-01

    A well-rehearsed move among teleological realists in the philosophy of biology is to base the idea of genuinely teleological forms of organic self-reproduction on a type of causality derived from Kant. Teleological realists have long argued for the causal possibility of this form of causality--in which a whole is considered the cause of its parts--as well as formulated a set of teleological criteria of adequacy for it. What is missing, to date, is an account of the mereological principles that govern the envisioned whole-to-part causality. When the latter principles are taken into account, we find that there is no version of whole-to-part causality that is mereologically, causally and teleologically possible all at once, as teleological realism requires. PMID:21486664

  12. Bioreactive self-assembled monolayers on hydrogen-passivated Si(111) as a new class of atomically flat substrates for biological scanning probe microscopy.

    PubMed

    Wagner, P; Nock, S; Spudich, J A; Volkmuth, W D; Chu, S; Cicero, R L; Wade, C P; Linford, M R; Chidsey, C E

    1997-07-01

    This is the first report of bioreactive self-assembled monolayers, covalently bound to atomically flat silicon surfaces and capable of binding biomolecules for investigation by scanning probe microscopy and other surface-related assays and sensing devices. These monolayers are stable under a wide range of conditions and allow tailor-made functionalization for many purposes. We describe the substrate preparation and present an STM and SFM characterization, partly performed with multiwalled carbon nanotubes as tapping-mode supertips. Furthermore, we present two strategies of introducing in situ reactive headgroup functionalities. One method entails a free radical chlorosulfonation process with subsequent sulfonamide formation. A second method employs singlet carbenemediated hydrogen-carbon insertion of a heterobifunctional, amino-reactive trifluoromethyl-diazirinyl crosslinker. We believe that this new substrate is advantageous to others, because it (i) is atomically flat over large areas and can be prepared in a few hours with standard equipment, (ii) is stable under most conditions, (iii) can be modified to adjust a certain degree of reactivity and hydrophobicity, which allows physical adsorption or covalent crosslinking of the biological specimen, (iv) builds the bridge between semiconductor microfabrication and organic/biological molecular systems, and (v) is accessible to nanopatterning and applications requiring conductive substrates. PMID:9245759

  13. Monte Carlo modeling and analyses of YALINA- booster subcritical assembly Part II : pulsed neutron source.

    SciTech Connect

    Talamo, A.; Gohar, M. Y. A.; Rabiti, C.; Nuclear Engineering Division

    2008-10-22

    One of the most reliable experimental methods for measuring the kinetic parameters of a subcritical assembly is the Sjoestrand method applied to the reaction rate generated from a pulsed neutron source. This study developed a new analytical methodology for characterizing the kinetic parameters of a subcritical assembly using the Sjoestrand method, which allows comparing the analytical and experimental time dependent reaction rates and the reactivity measurements. In this methodology, the reaction rate, detector response, is calculated due to a single neutron pulse using MCNP/MCNPX computer code or any other neutron transport code that explicitly simulates the fission delayed neutrons. The calculation simulates a single neutron pulse over a long time period until the delayed neutron contribution to the reaction is vanished. The obtained reaction rate is superimposed to itself, with respect to the time, to simulate the repeated pulse operation until the asymptotic level of the reaction rate, set by the delayed neutrons, is achieved. The superimposition of the pulse to itself was calculated by a simple C computer program. A parallel version of the C program is used due to the large amount of data being processed, e.g. by the Message Passing Interface (MPI). The new calculation methodology has shown an excellent agreement with the experimental results available from the YALINA-Booster facility of Belarus. The facility has been driven by a Deuterium-Deuterium or Deuterium-Tritium pulsed neutron source and the (n,p) reaction rate has been experimentally measured by a {sup 3}He detector. The MCNP calculation has utilized the weight window and delayed neutron biasing variance reduction techniques since the detector volume is small compared to the assembly volume. Finally, this methodology was used to calculate the IAEA benchmark of the YALINA-Booster experiment.

  14. Electrostatic self-assembly between biological polymers & macroions: Interactions of F-actin & DNA with lysozyme

    NASA Astrophysics Data System (ADS)

    Sanders, Lori K.; Matthews, Brian W.; Wong, Gerard C. L.

    2005-03-01

    The pathological self-assembly of polyelectrolytes such as DNA and F-actin with cationic antimicrobial proteins such as lysozyme may have significant clinical consequences in Cystic Fibrosis (CF) lung infections. Wild-type lysozyme is a compact, cationic, globular protein which carries a net charge of +9e at neutral pH. Our Small Angle X-ray Scattering (SAXS) experiments on F-actin-lysozyme complexes indicate that the wild-type lysozyme close packs into 1-D columns between hexagonally organized F-actin filaments. We will present SAXS results of the interactions of F-actin and DNA with genetically engineered lysozyme mutants that carry a reduced charge of +5e. We have also used fluorescence microscopy to investigate the morphologies and sizes of such bundles induced with divalent cations, wild-type lysozyme, and mutant lysozymes.

  15. Biological activities and phytochemical profiles of extracts from different parts of bamboo (Phyllostachys pubescens).

    PubMed

    Tanaka, Akinobu; Zhu, Qinchang; Tan, Hui; Horiba, Hiroki; Ohnuki, Koichiro; Mori, Yasuhiro; Yamauchi, Ryoko; Ishikawa, Hiroya; Iwamoto, Akira; Kawahara, Hiroharu; Shimizu, Kuniyoshi

    2014-01-01

    Besides being a useful building material, bamboo also is a potential source of bioactive substances. Although some studies have been performed to examine its use in terms of the biological activity, only certain parts of bamboo, especially the leaves or shoots, have been studied. Comprehensive and comparative studies among different parts of bamboo would contribute to a better understanding and application of this knowledge. In this study, the biological activities of ethanol and water extracts from the leaves, branches, outer culm, inner culm, knots, rhizomes and roots of Phyllostachys pubescens, the major species of bamboo in Japan, were comparatively evaluated. The phytochemical profiles of these extracts were tentatively determined by liquid chromatography-mass spectrometry (LC-MS) analysis. The results showed that extracts from different parts of bamboo had different chemical compositions and different antioxidative, antibacterial and antiallergic activities, as well as on on melanin biosynthesis. Outer culm and inner culm were found to be the most important sources of active compounds. 8-C-Glucosylapigenin, luteolin derivatives and chlorogenic acid were the most probable compounds responsible for the anti-allergy activity of these bamboo extracts. Our study suggests the potential use of bamboo as a functional ingredient in cosmetics or other health-related products. PMID:24945578

  16. Methods for disassembling, replacing and assembling parts of a steam cooling system for a gas turbine

    DOEpatents

    Wilson, Ian D.; Wesorick, Ronald R.

    2002-01-01

    The steam cooling circuit for a gas turbine includes a bore tube assembly supplying steam to circumferentially spaced radial tubes coupled to supply elbows for transitioning the radial steam flow in an axial direction along steam supply tubes adjacent the rim of the rotor. The supply tubes supply steam to circumferentially spaced manifold segments located on the aft side of the 1-2 spacer for supplying steam to the buckets of the first and second stages. Spent return steam from these buckets flows to a plurality of circumferentially spaced return manifold segments disposed on the forward face of the 1-2 spacer. Crossover tubes couple the steam supply from the steam supply manifold segments through the 1-2 spacer to the buckets of the first stage. Crossover tubes through the 1-2 spacer also return steam from the buckets of the second stage to the return manifold segments. Axially extending return tubes convey spent cooling steam from the return manifold segments to radial tubes via return elbows. The bore tube assembly, radial tubes, elbows, manifold segments and crossover tubes are removable from the turbine rotor and replaceable.

  17. MEMBRANE ATTACK BY COMPLEMENT: THE ASSEMBLY AND BIOLOGY OF TERMINAL COMPLEMENT COMPLEXES

    PubMed Central

    Tegla, Cosmin A.; Cudrici, Cornelia; Patel, Snehal; Trippe, Richard; Rus, Violeta; Niculescu, Florin; Rus, Horea

    2013-01-01

    Complement system activation plays an important role in both innate and acquired immunity. Activation of complement and the subsequent formation of C5b-9 channels (the membrane attack complex) on cell membranes lead to cell death. However, when the number of channels assembled on the surface of nucleated cells is limited, sublytic C5b-9 can induce cell cycle progression by activating signal transduction pathways and transcription factors and inhibiting apoptosis. This induction by C5b-9 is dependent upon the activation of the phosphatidylinositol 3-kinase/Akt/FOXO1 and ERK1 pathways in a Gi protein-dependent manner. C5b-9 induces sequential activation of CDK4 and CDK2, enabling the G1/S-phase transition and cellular proliferation. In addition, it induces RGC-32, a novel gene that plays a role in cell cycle activation by interacting with Akt and the cyclin B1-CDC2 complex. C5b-9 also inhibits apoptosis by inducing the phosphorylation of Bad and blocking the activation of FLIP, caspase-8, and Bid cleavage. Thus, sublytic C5b-9 plays an important role in cell activation, proliferation, and differentiation, thereby contributing to the maintenance of cell and tissue homeostasis. PMID:21850539

  18. [Nutrition and biological value of food parts of a trade bivalve mollusk Anadara broughtoni].

    PubMed

    Tabakaeva, O V; Tabakaev, A V

    2015-01-01

    Currently, the human diet includes different new products of seafishing, including non-fish--bivalves and gastropods, holothurias, echinoderms, jellyfishes that demands careful studying of their chemical composition. The purpose of the study was to determine the nutritional and biological value of all soft parts of the burrowing bivalve MOLLUSK Anadara broughtoni from the Far East region. It was established thatfood parts of a bivalve were significantly flooded (water content--73.5-84.2%), with the minimum water content in the adductor and maximum in the mantle. Dry solids are presented by organic (89-93%) and mineral (7-11%) components. Organic components consist of protein (14.6-20.7%), lipids (1.8-2.3%), carbohydrates (2.1-2.6%). The analysis of amino-acid composition of proteins of food parts of the mollusk of Anadara broughtonishowed the presence of all essential amino acids with slight differences in their content depending on the localization of the protein. All edible parts have tryptophan as the limiting amino acid. Muscle proteins have maximum level of lysine, methionine, cysteine, phenylalanine and tyrosine; mantle proteins--leucine, isoleucine and threonine; adductor proteins--valine, phenylalanine, tyrosine, methionine and cysteine. Predominant nonessential amino acids forproteins of all food pieces are glycine, aspartic acid, glutamic acid, arginine. The coefficient of amino-acid score differences of adductor protein (31.7%) is less than the same of cloak by 3.7%. The indicator "biological value" is maximal for adductor (68.3%), but the differenceformuscle is only 0.83%. Mantle proteins are characterized by minimum biological value (64.6%). The coefficient of utility of amino acid composition of protein is maximalfor muscle (57.83%), and values for a cloak and an adductor differ slightly (55.81 and 55.96%). Taurine content in food parts of a mollusk Anadara broughtoni is rather high compared to with other bivalve mollusks of the Far East region

  19. A U. S. Perspective on Fast Reactor Fuel Fabrication Technology and Experience Part I: Metal Fuels and Assembly Design

    SciTech Connect

    Douglas E. Burkes; Randall S. Fielding; Douglas L. Porter; Douglas C. Crawford; Mitchell K. Meyer

    2009-06-01

    This paper is Part I of a review focusing on the United States experience with metallic fast reactor fuel fabrication and assembly design for the Experimental Breeder Reactor-II and the Fast Flux Test Facility, and it also refers to the impact of development in other nations. Experience with metal fuel fabrication in the United States is extensive, including over 60 years of research conducted by the government, national laboratories, industry, and academia. This experience has culminated into a foundation of research and resulted in significant improvements to the technologies employed to fabricate metallic fast reactor fuel. This part of the review documents the current state of fuel fabrication technologies for metallic fuels, some of the challenges faced by previous researchers, and how these were overcome. Knowledge gained from reviewing previous investigations will aid both researchers and policy makers in forming future decisions relating to nuclear fuel fabrication technologies.

  20. A US perspective on fast reactor fuel fabrication technology and experience part I: metal fuels and assembly design

    NASA Astrophysics Data System (ADS)

    Burkes, Douglas E.; Fielding, Randall S.; Porter, Douglas L.; Crawford, Douglas C.; Meyer, Mitchell K.

    2009-06-01

    This paper is part I of a review focusing on the United States experience with metallic fast reactor fuel fabrication and assembly design for the Experimental Breeder Reactor-II (EBR-II) and the Fast Flux Test Facility (FFTF). Experience with metal fuel fabrication in the United States is extensive, including over 60 years of research conducted by the government, national laboratories, industry, and academia. This experience has culminated in a considerable amount of research that resulted in significant improvements to the technologies employed to fabricate metallic fast reactor fuel. This part of the review documents the current state of fuel fabrication technologies for metallic fuels, some of the challenges faced by previous researchers, and how these were overcome. Knowledge gained from reviewing previous investigations will aid both researchers and policy makers in forming future decisions relating to nuclear fuel fabrication technologies.

  1. Systematic, spatial imaging of large multimolecular assemblies and the emerging principles of supramolecular order in biological systems

    PubMed Central

    Schubert, Walter

    2013-01-01

    Understanding biological systems at the level of their relational (emergent) molecular properties in functional protein networks relies on imaging methods, able to spatially resolve a tissue or a cell as a giant, non-random, topologically defined collection of interacting supermolecules executing myriads of subcellular mechanisms. Here, the development and findings of parameter-unlimited functional super-resolution microscopy are described—a technology based on the fluorescence imaging cycler (IC) principle capable of co-mapping thousands of distinct biomolecular assemblies at high spatial resolution and differentiation (<40 nm distances). It is shown that the subcellular and transcellular features of such supermolecules can be described at the compositional and constitutional levels; that the spatial connection, relational stoichiometry, and topology of supermolecules generate hitherto unrecognized functional self-segmentation of biological tissues; that hierarchical features, common to thousands of simultaneously imaged supermolecules, can be identified; and how the resulting supramolecular order relates to spatial coding of cellular functionalities in biological systems. A large body of observations with IC molecular systems microscopy collected over 20 years have disclosed principles governed by a law of supramolecular segregation of cellular functionalities. This pervades phenomena, such as exceptional orderliness, functional selectivity, combinatorial and spatial periodicity, and hierarchical organization of large molecular systems, across all species investigated so far. This insight is based on the high degree of specificity, selectivity, and sensitivity of molecular recognition processes for fluorescence imaging beyond the spectral resolution limit, using probe libraries controlled by ICs. © 2013 The Authors. Journal of Molecular Recognition published by John Wiley & Sons, Ltd. PMID:24375580

  2. Single Cell and Metagenomic Assemblies: Biology Drives Technical Choices and Goals (Metagenomics Informatics Challenges Workshop: 10K Genomes at a Time)

    SciTech Connect

    Stepanauskas, Ramunas

    2011-10-13

    DOE JGI's Tanja Woyke, chair of the Single Cells and Metagenomes session, delivers an introduction, followed by Bigelow Laboratory's Ramunas Stepanauskas on "Single Cell and Metagenomic Assemblies: Biology Drives Technical Choices and Goals" at the Metagenomics Informatics Challenges Workshop held at the DOE JGI on October 12-13, 2011.

  3. Single Cell and Metagenomic Assemblies: Biology Drives Technical Choices and Goals (Metagenomics Informatics Challenges Workshop: 10K Genomes at a Time)

    ScienceCinema

    Stepanauskas, Ramunas [Bigelow Laboratory

    2013-01-22

    DOE JGI's Tanja Woyke, chair of the Single Cells and Metagenomes session, delivers an introduction, followed by Bigelow Laboratory's Ramunas Stepanauskas on "Single Cell and Metagenomic Assemblies: Biology Drives Technical Choices and Goals" at the Metagenomics Informatics Challenges Workshop held at the DOE JGI on October 12-13, 2011.

  4. Waterborne firm coating for temporary protection of parts, providing controlled lubrication during assembly

    SciTech Connect

    Hayner, R.E.

    1987-03-03

    This patent describes a protective, emulsified oil in water, dispersible, lubricant coating composition having a pH in the range of about 7.0 to 10, and capable of application and flow on a threaded solid substrate consisting essentially of: A. about 65 to 99% by weight of a composition comprising: (1) about 0.5 to 30 parts by weight of organic wax components having a melting point above 50/sup 0/C, the wax container ester groups; (2) about 0.5 to 6 parts of a surfactant comprising 2 to 8% of carboxylic acid and about 1 to 5% of an amine, the acid and the amine forming a salt providing at least a portion of a surfactant; (3) about 10 to 30 parts of a coupling agent comprising a C/sub 5/-C/sub 30/ liquid hydrocarbon coupling component and a C/sub 2/-C/sub 20/ alcohol in the ratio of between 1:1 and 10:1 by weight respectively, selected from the group consisting of: mineral spirits, kerosene, ethylene glycol ether, butyl cellosolve, diethylene glycol monoethyl ether, ethylene glycol monopropyl ether, propyl cellosolve, ethyl cellosolve, diethylene glycol monoethyl ether, ethylene glycol monoacetate, diethylene glycol monoproprionate, diethylene glycol monoacetate, propylene glycol monoacetate, ethanol, isopropanol and isobutanol; and (4) about 30 to 97 parts of water the sum of all parts being equal to 100; and (B) about 3.5 to 9% total pigment comprising about 0.4 to 4% by weight carbon black.

  5. Facile synthesis of AIE-active amphiphilic polymers: Self-assembly and biological imaging applications.

    PubMed

    Long, Zi; Liu, Meiying; Wang, Ke; Deng, Fengjie; Xu, Dazhuang; Liu, Liangji; Wan, Yiqun; Zhang, Xiaoyong; Wei, Yen

    2016-09-01

    In this work, we reported a rather facile method for fabrication of ultrabright, well dispersible and biocompatible fluorescent organic nanoparticles (FONs) with aggregation-induced emission (AIE) properties through combination of esterification and ring-opening reaction. The hydroxyl groups of Pluronic F127 was first reacted with the chloride of trimellitic anhydride chloride (TMAC), and its anhydride groups were further reacted with the amino groups of amino-terminated AIE dye (PhNH2) through ring-opening reaction. The optical properties, biocompatibility as well as cell uptake behavior of these obtained AIE-active nanoparticles (F127-TMAC-PhNH2 FONs) were examined by a series of characterization techniques and assays. We demonstrated that uniform organic nanoparticles with high water dispersibility, strong luminescence and desirable biocompatibility can be facilely obtained, which are promising for biological imaging applications. More importantly, a number of carboxyl groups were introduced into these AIE-active nanoparticles, which can be further utilized for further conjugation reaction and carrying anticancer drugs such as cisplatin. Therefore, the strategy of described in this work should be a simple and useful route for fabrication of multifunctional AIE-active luminescent nanotheranostic systems. PMID:27207057

  6. Bottom-Up Engineering of Biological Systems through Standard Bricks: A Modularity Study on Basic Parts and Devices

    PubMed Central

    Pasotti, Lorenzo; Politi, Nicolò; Zucca, Susanna; Cusella De Angelis, Maria Gabriella; Magni, Paolo

    2012-01-01

    Background Modularity is a crucial issue in the engineering world, as it enables engineers to achieve predictable outcomes when different components are interconnected. Synthetic Biology aims to apply key concepts of engineering to design and construct new biological systems that exhibit a predictable behaviour. Even if physical and measurement standards have been recently proposed to facilitate the assembly and characterization of biological components, real modularity is still a major research issue. The success of the bottom-up approach strictly depends on the clear definition of the limits in which biological functions can be predictable. Results The modularity of transcription-based biological components has been investigated in several conditions. First, the activity of a set of promoters was quantified in Escherichia coli via different measurement systems (i.e., different plasmids, reporter genes, ribosome binding sites) relative to an in vivo reference promoter. Second, promoter activity variation was measured when two independent gene expression cassettes were assembled in the same system. Third, the interchangeability of input modules (a set of constitutive promoters and two regulated promoters) connected to a fixed output device (a logic inverter) expressing GFP was evaluated. The three input modules provide tunable transcriptional signals that drive the output device. If modularity persists, identical transcriptional signals trigger identical GFP outputs. To verify this, all the input devices were individually characterized and then the input-output characteristic of the logic inverter was derived in the different configurations. Conclusions Promoters activities (referred to a standard promoter) can vary when they are measured via different reporter devices (up to 22%), when they are used within a two-expression-cassette system (up to 35%) and when they drive another device in a functionally interconnected circuit (up to 44%). This paper provides a

  7. Supramolecular assembly of biological molecules purified from bovine nerve cells: from microtubule bundles and necklaces to neurofilament networks

    NASA Astrophysics Data System (ADS)

    Needleman, Daniel J.; Jones, Jayna B.; Raviv, Uri; Ojeda-Lopez, Miguel A.; Miller, H. P.; Li, Y.; Wilson, L.; Safinya, C. R.

    2005-11-01

    With the completion of the human genome project, the biosciences community is beginning the daunting task of understanding the structures and functions of a large number of interacting biological macromolecules. Examples include the interacting molecules involved in the process of DNA condensation during the cell cycle, and in the formation of bundles and networks of filamentous actin proteins in cell attachment, motility and cytokinesis. In this proceedings paper we present examples of supramolecular assembly based on proteins derived from the vertebrate nerve cell cytoskeleton. The axonal cytoskeleton in vertebrate neurons provides a rich example of bundles and networks of neurofilaments, microtubules (MTs) and filamentous actin, where the nature of the interactions, structures, and structure-function correlations remains poorly understood. We describe synchrotron x-ray diffraction, electron microscopy, and optical imaging data, in reconstituted protein systems purified from bovine central nervous system, which reveal unexpected structures not predicted by current electrostatic theories of polyelectrolyte bundling, including three-dimensional MT bundles and two-dimensional MT necklaces.

  8. Monte Carlo modeling and analyses of YALINA-booster subcritical assembly part 1: analytical models and main neutronics parameters.

    SciTech Connect

    Talamo, A.; Gohar, M. Y. A.; Nuclear Engineering Division

    2008-09-11

    This study was carried out to model and analyze the YALINA-Booster facility, of the Joint Institute for Power and Nuclear Research of Belarus, with the long term objective of advancing the utilization of accelerator driven systems for the incineration of nuclear waste. The YALINA-Booster facility is a subcritical assembly, driven by an external neutron source, which has been constructed to study the neutron physics and to develop and refine methodologies to control the operation of accelerator driven systems. The external neutron source consists of Californium-252 spontaneous fission neutrons, 2.45 MeV neutrons from Deuterium-Deuterium reactions, or 14.1 MeV neutrons from Deuterium-Tritium reactions. In the latter two cases a deuteron beam is used to generate the neutrons. This study is a part of the collaborative activity between Argonne National Laboratory (ANL) of USA and the Joint Institute for Power and Nuclear Research of Belarus. In addition, the International Atomic Energy Agency (IAEA) has a coordinated research project benchmarking and comparing the results of different numerical codes with the experimental data available from the YALINA-Booster facility and ANL has a leading role coordinating the IAEA activity. The YALINA-Booster facility has been modeled according to the benchmark specifications defined for the IAEA activity without any geometrical homogenization using the Monte Carlo codes MONK and MCNP/MCNPX/MCB. The MONK model perfectly matches the MCNP one. The computational analyses have been extended through the MCB code, which is an extension of the MCNP code with burnup capability because of its additional feature for analyzing source driven multiplying assemblies. The main neutronics parameters of the YALINA-Booster facility were calculated using these computer codes with different nuclear data libraries based on ENDF/B-VI-0, -6, JEF-2.2, and JEF-3.1.

  9. Mode 3 Project-Based O-Level: Part II Biology

    ERIC Educational Resources Information Center

    Greatorex, D.; Lock, R.

    1978-01-01

    Presents a British biology course for the O-level which aims to promote the understanding of broad biological principles through an environmental approach. Results of proper assessment and overall examination performance are also revealed. (HM)

  10. Biological and biophysical principles in extracorporal bone tissue engineering. Part I.

    PubMed

    Meyer, U; Joos, U; Wiesmann, H P

    2004-06-01

    Advances in the field of bone tissue engineering have encouraged physicians to introduce these techniques into clinical practice. Bone tissue engineering is the construction, repair or replacement of damaged or missing bone in humans or animals. Engineering of bone can take place within the animal body or extracorporal in a bioreactor for later grafting into the body. Appropriate cell types and non-living substrata are minimal requirements for an extracorporal tissue engineering approach. This review discusses the biological and biophysical background of in vitro bone tissue engineering. Biochemical and biophysical stimuli of cell growth and differentiation are regarded as potent tools to improve bone formation in vitro. The paper focuses on basic principles in extracorporal engineering of bone-like tissues, intended to be implanted in animal experiments and clinical studies. Particular attention is given in this part to the contributions of cell and material science to the development of bone-like tissues. Several approaches are at the level of clinical applicability and it can be expected that widespread use of engineered bone constructs will change the surgeon's work in the near future. PMID:15145032

  11. Modelling of a biologically inspired robotic fish driven by compliant parts.

    PubMed

    El Daou, Hadi; Salumäe, Taavi; Chambers, Lily D; Megill, William M; Kruusmaa, Maarja

    2014-03-01

    Inspired by biological swimmers such as fish, a robot composed of a rigid head, a compliant body and a rigid caudal fin was built. It has the geometrical properties of a subcarangiform swimmer of the same size. The head houses a servo-motor which actuates the compliant body and the caudal fin. It achieves this by applying a concentrated moment on a point near the compliant body base. In this paper, the dynamics of the compliant body driving the robotic fish is modelled and experimentally validated. Lighthill's elongated body theory is used to define the hydrodynamic forces on the compliant part and Rayleigh proportional damping is used to model damping. Based on the assumed modes method, an energetic approach is used to write the equations of motion of the compliant body and to compute the relationship between the applied moment and the resulting lateral deflections. Experiments on the compliant body were carried out to validate the model predictions. The results showed that a good match was achieved between the measured and predicted deformations. A discussion of the swimming motions between the real fish and the robot is presented. PMID:24451164

  12. Qualification Testing of Solid Rocket Booster Diagonal Strut Restraint Cable Assembly Part Number 10176-0031-102/103

    NASA Technical Reports Server (NTRS)

    Malone, T. W.

    2006-01-01

    This Technical Memorandum presents qualification test results for solid rocket booster diagonal strut restraint cable part number 101276-00313-102/103. During flight this assembly is exposed to a range of temperatures. MIL-W-83420 shows the breaking strength of the cable as 798 kg (1,760 lb) at room temperature but does not define cable strength at the maximum temperature to which the cable is exposed during the first 2 min of flight; 669 C (1,236 F). The cable, which can be built from different corrosion resistant steel alloys, may also vary in its chemical, physical, and mechanical properties at temperature. Negative margins of safety were produced by analysis of the cable at temperature using standard knockdown factors. However, MSFC-HDBK-5 allows the use of a less conservative safety factor of 1.4 and knockdown factors verified by testing. Test results allowed a calculated knockdown factor of 0.1892 to be determined for the restraint cables, which provides a minimum breaking strength of 151 kg (333 lb) at 677 C (1,250 F) when combined with the minimum breaking strength of 0.317-cm (0.125- or 1/8-in) diameter, type 1 composition rope.

  13. BioBrick assembly standards and techniques and associated software tools.

    PubMed

    Røkke, Gunvor; Korvald, Eirin; Pahr, Jarle; Oyås, Ove; Lale, Rahmi

    2014-01-01

    The BioBrick idea was developed to introduce the engineering principles of abstraction and standardization into synthetic biology. BioBricks are DNA sequences that serve a defined biological function and can be readily assembled with any other BioBrick parts to create new BioBricks with novel properties. In order to achieve this, several assembly standards can be used. Which assembly standards a BioBrick is compatible with, depends on the prefix and suffix sequences surrounding the part. In this chapter, five of the most common assembly standards will be described, as well as some of the most used assembly techniques, cloning procedures, and a presentation of the available software tools that can be used for deciding on the best method for assembling of different BioBricks, and searching for BioBrick parts in the Registry of Standard Biological Parts database. PMID:24395353

  14. 40 CFR Appendix C to Part 63 - Determination of the Fraction Biodegraded (Fbio) in a Biological Treatment Unit

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 14 2010-07-01 2010-07-01 false Determination of the Fraction Biodegraded (Fbio) in a Biological Treatment Unit C Appendix C to Part 63 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES...

  15. 40 CFR Appendix C to Part 63 - Determination of the Fraction Biodegraded (Fbio) in a Biological Treatment Unit

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 15 2014-07-01 2014-07-01 false Determination of the Fraction Biodegraded (Fbio) in a Biological Treatment Unit C Appendix C to Part 63 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES...

  16. Elastic-Plastic Nonlinear Response of a Space Shuttle External Tank Stringer. Part 1; Stringer-Feet Imperfections and Assembly

    NASA Technical Reports Server (NTRS)

    Knight, Norman F., Jr.; Song, Kyongchan; Elliott, Kenny B.; Raju, Ivatury S.; Warren, Jerry E.

    2012-01-01

    Elastic-plastic, large-deflection nonlinear stress analyses are performed for the external hat-shaped stringers (or stiffeners) on the intertank portion of the Space Shuttle s external tank. These stringers are subjected to assembly strains when the stringers are initially installed on an intertank panel. Four different stringer-feet configurations including the baseline flat-feet, the heels-up, the diving-board, and the toes-up configurations are considered. The assembly procedure is analytically simulated for each of these stringer configurations. The location, size, and amplitude of the strain field associated with the stringer assembly are sensitive to the assumed geometry and assembly procedure. The von Mises stress distributions from these simulations indicate that localized plasticity will develop around the first eight fasteners for each stringer-feet configuration examined. However, only the toes-up configuration resulted in high assembly hoop strains.

  17. Biological materials: Part A. tuning LCST of raft copolymers and gold/copolymer hybrid nanoparticles and Part B. Biobased nanomaterials

    NASA Astrophysics Data System (ADS)

    Chen, Ning

    The research described in this dissertation is comprised of two major parts. The first part studied the effects of asymmetric amphiphilic end groups on the thermo-response of diblock copolymers of (oligo/di(ethylene glycol) methyl ether (meth)acrylates, OEGA/DEGMA) and the hybrid nanoparticles of these copolymers with a gold nanoparticle core. Placing the more hydrophilic end group on the more hydrophilic block significantly increased the cloud point compared to a similar copolymer composition with the end group placement reversed. For a given composition, the cloud point was shifted by as much as 28 °C depending on the placement of end groups. This is a much stronger effect than either changing the hydrophilic/hydrophobic block ratio or replacing the hydrophilic acrylate monomer with the equivalent methacrylate monomer. The temperature range of the coil-globule transition was also altered. Binding these diblock copolymers to a gold core decreased the cloud point by 5-15 °C and narrowed the temperature range of the coil-globule transition. The effects were more pronounced when the gold core was bound to the less hydrophilic block. Given the limited numbers of monomers that are approved safe for in vivo use, employing amphiphilic end group placement is a useful tool to tune a thermo-response without otherwise changing the copolymer composition. The second part of the dissertation investigated the production of value-added nanomaterials from two biorefinery "wastes": lignin and peptidoglycan. Different solvents and spinning methods (melt-, wet-, and electro-spinning) were tested to make lignin/cellulose blended and carbonized fibers. Only electro-spinning yielded fibers having a small enough diameter for efficient carbonization (≤ 5-10 μm), but it was concluded that cellulose was not a suitable binder. Cellulose lignin fibers before carbonization showed up to 90% decrease in moisture uptake compared to pure cellulose. Peptidoglycan (a bacterial cell wall

  18. Cold Spring Harbor symposia on quantitative biology. Volume XLVII, Part 2. Structures of DNA

    SciTech Connect

    Not Available

    1983-01-01

    This is Volume 2 of the proceedings of the 1982 Cold Springs Harbor Symposium on Quantitative Biology. The volume contains papers on DNA methylation, DNA replication, gene recombination, organization of genes along DNA, molecular structure and enzymology of DNA.

  19. [Topical issues of biological safety under current conditions. Part 3. Scientific provision for the national regulation of the biological safety framework in its broad interpretation].

    PubMed

    Onishchenko, G G; Smolensky, V Yu; Ezhlova, E B; Demina, Yu V; Toporkov, V P; Toporkov, A V; Lyapin, M N; Kutyrev, V V

    2014-01-01

    Consequent of investigation concerned with biological safety (BS) framework development in its broad interpretation, reflected in the Russian Federation State Acts, identified have been conceptual entity parameters of the up-to-date broad interpretation of BS, which have formed a part of the developed by the authors system for surveillance (prophylaxis, localization, indication, identification, and diagnostics) and control (prophylaxis, localization, and response/elimination) over the emergency situations of biological (sanitary-epidemiological) character. The System functionality is activated through supplying the content with information data which are concerned with monitoring and control of specific internal and external threats in the sphere of BS provision fixed in the Supplement 2 of the International Health Regulations (IHR, 2005), and with the previously characterized nomenclature of hazardous biological factors. The system is designed as a network-based research-and-practice tool for evaluation of the situation in the sphere of BS provision, as well as assessment of efficacy of management decision making as regards BS control and proper State policy implementation. Most of the system elements either directly or indirectly relate to the scope of activities conducted by Federal Service for Surveillance in the Sphere of Consumers Rights Protection and Human Welfare, being substantial argument for allocating coordination functions in the sphere of BS provision to this government agency and consistent with its function as the State Coordinator on IHR (2005). The data collected serve as materials to Draft Federal Law "Concerning biological safety provision of the population". PMID:25971137

  20. Thematic mapper flight model preshipment review data package. Volume 4: Appendix. Part D: Focal plane assembly data

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The data obtained for the Band 1 thematic mapper flight full band assembly (P/N 50797) are summarized. The data were collected from half band, post amplifier, and full band acceptance test data records.

  1. Nanoscale device architectures derived from biological assemblies: The case of tobacco mosaic virus and (apo)ferritin

    NASA Astrophysics Data System (ADS)

    Calò, Annalisa; Eiben, Sabine; Okuda, Mitsuhiro; Bittner, Alexander M.

    2016-03-01

    Virus particles and proteins are excellent examples of naturally occurring structures with well-defined nanoscale architectures, for example, cages and tubes. These structures can be employed in a bottom-up assembly strategy to fabricate repetitive patterns of hybrid organic-inorganic materials. In this paper, we review methods of assembly that make use of protein and virus scaffolds to fabricate patterned nanostructures with very high spatial control. We chose (apo)ferritin and tobacco mosaic virus (TMV) as model examples that have already been applied successfully in nanobiotechnology. Their interior space and their exterior surfaces can be mineralized with inorganic layers or nanoparticles. Furthermore, their native assembly abilities can be exploited to generate periodic architectures for integration in electrical and magnetic devices. We introduce the state of the art and describe recent advances in biomineralization techniques, patterning and device production with (apo)ferritin and TMV.

  2. Large-scale study of the interactions between proteins involved in type IV pilus biology in Neisseria meningitidis: characterization of a subcomplex involved in pilus assembly.

    PubMed

    Georgiadou, Michaella; Castagnini, Marta; Karimova, Gouzel; Ladant, Daniel; Pelicic, Vladimir

    2012-06-01

    The functionally versatile type IV pili (Tfp) are one of the most widespread virulence factors in bacteria. However, despite generating much research interest for decades, the molecular mechanisms underpinning the various aspects of Tfp biology remain poorly understood, mainly because of the complexity of the system. In the human pathogen Neisseria meningitidis for example, 23 proteins are dedicated to Tfp biology, 15 of which are essential for pilus biogenesis. One of the important gaps in our knowledge concerns the topology of this multiprotein machinery. Here we have used a bacterial two-hybrid system to identify and quantify the interactions between 11 Pil proteins from N. meningitidis. We identified 20 different binary interactions, many of which are novel. This represents the most complex interaction network between Pil proteins reported to date and indicates, among other things, that PilE, PilM, PilN and PilO, which are involved in pilus assembly, indeed interact. We focused our efforts on this subset of proteins and used a battery of assays to determine the membrane topology of PilN and PilO, map the interaction domains between PilE, PilM, PilN and PilO, and show that a widely conserved N-terminal motif in PilN is essential for both PilM-PilN interactions and pilus assembly. Finally, we show that PilP (another protein involved in pilus assembly) forms a complex with PilM, PilN and PilO. Taken together, these findings have numerous implications for understanding Tfp biology and provide a useful blueprint for future studies. PMID:22486968

  3. The Multinational Arabidopsis Steering Subcommittee for Proteomics Assembles the Largest Proteome Database Resource for Plant Systems Biology

    SciTech Connect

    Weckwerth, Wolfram; Baginsky, Sacha; Van Wijk, Klass; Heazlewood, Joshua; Millar, Harvey

    2009-12-01

    In the past 10 years, we have witnessed remarkable advances in the field of plant molecular biology. The rapid development of proteomic technologies and the speed with which these techniques have been applied to the field have altered our perception of how we can analyze proteins in complex systems. At nearly the same time, the availability of the complete genome for the model plant Arabidopsis thaliana was released; this effort provides an unsurpassed resource for the identification of proteins when researchers use MS to analyze plant samples. Recognizing the growth in this area, the Multinational Arabidopsis Steering Committee (MASC) established a subcommittee for A. thaliana proteomics in 2006 with the objective of consolidating databases, technique standards, and experimentally validated candidate genes and functions. Since the establishment of the Multinational Arabidopsis Steering Subcommittee for Proteomics (MASCP), many new approaches and resources have become available. Recently, the subcommittee established a webpage to consolidate this information (www.masc-proteomics.org). It includes links to plant proteomic databases, general information about proteomic techniques, meeting information, a summary of proteomic standards, and other relevant resources. Altogether, this website provides a useful resource for the Arabidopsis proteomics community. In the future, the website will host discussions and investigate the cross-linking of databases. The subcommittee members have extensive experience in arabidopsis proteomics and collectively have produced some of the most extensive proteomics data sets for this model plant (Table S1 in the Supporting Information has a list of resources). The largest collection of proteomics data from a single study in A. thaliana was assembled into an accessible database (AtProteome; http://fgcz-atproteome.unizh.ch/index.php) and was recently published by the Baginsky lab.1 The database provides links to major Arabidopsis online

  4. Space biology class as part of science education programs for high schools in Japan.

    PubMed

    Kamada, Motoshi; Takaoki, Muneo

    2004-11-01

    Declining incentives and scholastic abilities in science class has been concerned in Japan. The Ministry of Education, Culture, Sports, Science and Technology encourages schools to cooperate with research institutions to raise student's interest in natural sciences. The Science Partnership Program (SPP) and the Super Science High-School (SSH) are among such efforts. Our short SPP course consists of an introductory lecture on space biology in general and a brief laboratory practice on plant gravitropism. Space biology class is popular to students, despite of the absence of flight experiments. We suppose that students are delighted when they find that their own knowledge is not a mere theory, but has very practical applications. Space biology is suitable in science class, since it synthesizes mathematics, physics, chemistry and many other subjects that students might think uninteresting. PMID:15858363

  5. Herpes simplex virus infection: part I--Biology, clinical presentation and latency.

    PubMed

    Yarom, N; Buchner, A; Dayan, D

    2005-01-01

    Oro-facial manifestations of herpes simplex virus (HSV) infections are very common, and include primary herpetic gingivo-stomatitis, recurrent herpes labialis and recurrent intra-oral herpes. Recent research in molecular biology has advanced our knowledge of the HSV pathogenesis and behavior. Understanding the exact mechanism of HSV latency and reactivation enables improvement of drug therapy and prevention strategies of HSV infections. The aim of this review is to update the recent development in the biological and clinical research related to HSV infection, focusing on oral and perioral lesions. PMID:15786655

  6. BIOLOGICAL SIGNIFICANCE OF SOME METALS AS AIR POLLUTANTS. PART II. MERCURY

    EPA Science Inventory

    The study was undertaken in order to elucidate the association between low atmospheric mercury levels and changes in some biological parameters likely to react to such exposures. The study covered four populations believed to be exposed to four different levels of atmospheric mer...

  7. Biology-Chemistry-Physics, Teachers' Guide, a Three-Year Sequence, Parts I and II.

    ERIC Educational Resources Information Center

    Scott, Arthur; And Others

    This is one of two teacher's guides for a three-year integrated biology, chemistry, and physics course being prepared by the Portland Project Committee. This committee reviewed and selected material developed by the national course improvement groups--Physical Science Study Committee, Chemical Bond Approach, Chemical Education Materials Study,…

  8. Incorporating Biological Mass Spectrometry into Undergraduate Teaching Labs, Part 2: Peptide Identification via Molecular Mass Determination

    ERIC Educational Resources Information Center

    Arnquist, Isaac J.; Beussman, Douglas J.

    2009-01-01

    Mass spectrometry has become a routine analytical tool in the undergraduate curriculum in the form of GC-MS. While relatively few undergraduate programs have incorporated biological mass spectrometry into their programs, the importance of these techniques, as demonstrated by their recognition with the 2002 Nobel Prize, will hopefully lead to…

  9. From microbiology to cell biology: when an intracellular bacterium becomes part of its host cell.

    PubMed

    McCutcheon, John P

    2016-08-01

    Mitochondria and chloroplasts are now called organelles, but they used to be bacteria. As they transitioned from endosymbionts to organelles, they became more and more integrated into the biochemistry and cell biology of their hosts. Work over the last 15 years has shown that other symbioses show striking similarities to mitochondria and chloroplasts. In particular, many sap-feeding insects house intracellular bacteria that have genomes that overlap mitochondria and chloroplasts in terms of size and coding capacity. The massive levels of gene loss in some of these bacteria suggest that they, too, are becoming highly integrated with their host cells. Understanding these bacteria will require inspiration from eukaryotic cell biology, because a traditional microbiological framework is insufficient for understanding how they work. PMID:27267617

  10. [Contemporary place of the electroconvulsive therapy Part 1. The historical context arnd the biological basis].

    PubMed

    Zyss, Tomasz; Datka, Wojciech; Rachel, Wojciech; Hese, Robert T; Gorczyca, Piotr; Zięba, Andrzej; Szwajca, Krzysztof; Piekoszewskl, Wojciech

    2014-01-01

    Electroconvulsive therapy (ECT) is a former physical therapy method in psychiatry which is applicable up till today in relation to its high effectiveness and the safety. Centuries of applying nonconvulsive methods of the electric stimulation preceded introducing this method into the clinical practice. ECT is arousing a lot of controversies; populous myths are connected with its applying--that demands explanations. Numerous biological mechanisms explaining the clinical efficacy of ECT action are well-known. PMID:25951704

  11. Bibliographical database of radiation biological dosimetry and risk assessment: Part 1, through June 1988

    SciTech Connect

    Straume, T.; Ricker, Y.; Thut, M.

    1988-08-29

    This database was constructed to support research in radiation biological dosimetry and risk assessment. Relevant publications were identified through detailed searches of national and international electronic databases and through our personal knowledge of the subject. Publications were numbered and key worded, and referenced in an electronic data-retrieval system that permits quick access through computerized searches on publication number, authors, key words, title, year, and journal name. Photocopies of all publications contained in the database are maintained in a file that is numerically arranged by citation number. This report of the database is provided as a useful reference and overview. It should be emphasized that the database will grow as new citations are added to it. With that in mind, we arranged this report in order of ascending citation number so that follow-up reports will simply extend this document. The database cite 1212 publications. Publications are from 119 different scientific journals, 27 of these journals are cited at least 5 times. It also contains reference to 42 books and published symposia, and 129 reports. Information relevant to radiation biological dosimetry and risk assessment is widely distributed among the scientific literature, although a few journals clearly dominate. The four journals publishing the largest number of relevant papers are Health Physics, Mutation Research, Radiation Research, and International Journal of Radiation Biology. Publications in Health Physics make up almost 10% of the current database.

  12. Geometric adaption of biodegradable magnesium alloy scaffolds to stabilise biological myocardial grafts. Part I.

    PubMed

    Bauer, M; Schilling, T; Weidling, M; Hartung, D; Biskup, Ch; Wriggers, P; Wacker, F; Bach, Fr-W; Haverich, A; Hassel, T

    2014-03-01

    Synthetic patch materials currently in use have major limitations, such as high susceptibility to infections and lack of contractility. Biological grafts are a novel approach to overcome these limitations, but do not always offer sufficient mechanical durability in early stages after implantation. Therefore, a stabilising structure based on resorbable magnesium alloys could support the biological graft until its physiologic remodelling. To prevent early breakage in vivo due to stress of non-determined forming, these scaffolds should be preformed according to the geometry of the targeted myocardial region. Thus, the left ventricular geometry of 28 patients was assessed via standard cardiac magnetic resonance imaging (MRI). The resulting data served as a basis for a finite element simulation (FEM). Calculated stresses and strains of flat and preformed scaffolds were evaluated. Afterwards, the structures were manufactured by abrasive waterjet cutting and preformed according to the MRI data. Finally, the mechanical durability of the preformed and flat structures was compared in an in vitro test rig. The FEM predicted higher durability of the preformed scaffolds, which was proven in the in vitro test. In conclusion, preformed scaffolds provide extended durability and will facilitate more widespread use of regenerative biological grafts for surgical left ventricular reconstruction. PMID:24264726

  13. Thematic mapper flight model preshipment review data package. Volume 4: Appendix. Part B: Scan mirror assembly data

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Data from the thematic mapper scan mirror assembly (SMA) acceptance test are presented. Documentation includes: (1) a list of the acceptance test discrepancies; (2) flight 1 SMA test data book; (3) flight 1 SMA environmental report; (4) the configuration verification index; (5) the flight 1 SMA test failure reports; (6) the flight 1 data tapes log; and (7) the requests for deviation/waivers.

  14. Endobiogeny: A Global Approach to Systems Biology (Part 2 of 2)

    PubMed Central

    Lapraz, Jean-Claude; Pauly, Patrice

    2013-01-01

    Endobiogeny and the biology of functions are based on four scientific concepts that are known and generally accepted: (1) human physiology is complex and multifactorial and exhibits the properties of a system; (2) the endocrine system manages metabolism, which is the basis of the continuity of life; (3) the metabolic activity managed by the endocrine system results in the output of biomarkers that reflect the functional achievement of specific aspects of metabolism; and (4) when biomarkers are related to each other in ratios, it contextualizes one type of function relative to another to which is it linked anatomically, sequentially, chronologically, biochemically, etc. PMID:24416662

  15. Endobiogeny: A Global Approach to Systems Biology (Part 1 of 2)

    PubMed Central

    Lapraz, Jean-Claude

    2013-01-01

    Endobiogeny is a global systems approach to human biology that may offer an advancement in clinical medicine based in scientific principles of rigor and experimentation and the humanistic principles of individualization of care and alleviation of suffering with minimization of harm. Endobiogeny is neither a movement away from modern science nor an uncritical embracing of pre-rational methods of inquiry but a synthesis of quantitative and qualitative relationships reflected in a systems-approach to life and based on new mathematical paradigms of pattern recognition. PMID:24381827

  16. Endobiogeny: a global approach to systems biology (part 1 of 2).

    PubMed

    Lapraz, Jean-Claude; Hedayat, Kamyar M

    2013-01-01

    Endobiogeny is a global systems approach to human biology that may offer an advancement in clinical medicine based in scientific principles of rigor and experimentation and the humanistic principles of individualization of care and alleviation of suffering with minimization of harm. Endobiogeny is neither a movement away from modern science nor an uncritical embracing of pre-rational methods of inquiry but a synthesis of quantitative and qualitative relationships reflected in a systems-approach to life and based on new mathematical paradigms of pattern recognition. PMID:24381827

  17. New glycosylated conjugate copolymer N-acetyl-β-D-glucosaminyl-pluronic: Synthesis, self-assembly and biological assays.

    PubMed

    Frizon, Tiago Elias Allievi; Micheletto, Yasmine Miguel Serafini; Westrup, José Luiz; Wakabayashi, Priscila Sayoko Silva; Serafim, Francieli Rocha; Damiani, Adriani Paganini; Longaretti, Luiza Martins; de Andrade, Vanessa Moraes; Giacomelli, Fernando Carlos; Fort, Sébastien; Dal Bó, Alexandre Gonçalves

    2015-09-01

    This work describes the synthesis of a new glycosylated conjugate copolymer, GlcNAc-PEO75-PPO30-PEO75-GlcNAc (GlcNAc-PluronicF68-GlcNAc), using click chemistry from Pluronic(®) F68 and propargyl-2-N-acetamido-2-deoxy-β-D-glucopyranoside. Micelles were prepared by the self-assembly of GlcNAc-PluronicF68-GlcNAc in phosphate-buffered solution. The critical micelle concentration was determined by fluorescence spectroscopy, and the value was found to be equal to 5.8mgmL(-1). The Gibbs free energy (ΔG) of micellization is negative, indicating that the organization of amphiphiles is governed by the hydrophobic effects in an entropy-driven process. The scattering characterization of GlcNAc-PluronicF68-GlcNAc micelles showed a hydrodynamic radius of 8.7nm and negative zeta potential (-21.0±0.9mV). The TEM image evidences the spherical shape of the objects self-assemble into highly regular micelles having a mean diameter of 10nm. The SAXS profile confirmed the spherical shape of the assemblies comprising a swollen PPO core (Rcore=2.25nm) stabilized by PEO chains following Gaussian statistics. The results of the comet assay showed that the GlcNAc-PluronicF68-GlcNAc micelles were not genotoxic, and the cell viability test was higher than 97% for all concentrations, demonstrating that GlcNAc-PluronicF68-GlcNAc is not toxic. PMID:26123853

  18. The organization of biological sequences into constrained and unconstrained parts determines fundamental properties of genotype-phenotype maps.

    PubMed

    Greenbury, S F; Ahnert, S E

    2015-12-01

    Biological information is stored in DNA, RNA and protein sequences, which can be understood as genotypes that are translated into phenotypes. The properties of genotype-phenotype (GP) maps have been studied in great detail for RNA secondary structure. These include a highly biased distribution of genotypes per phenotype, negative correlation of genotypic robustness and evolvability, positive correlation of phenotypic robustness and evolvability, shape-space covering, and a roughly logarithmic scaling of phenotypic robustness with phenotypic frequency. More recently similar properties have been discovered in other GP maps, suggesting that they may be fundamental to biological GP maps, in general, rather than specific to the RNA secondary structure map. Here we propose that the above properties arise from the fundamental organization of biological information into 'constrained' and 'unconstrained' sequences, in the broadest possible sense. As 'constrained' we describe sequences that affect the phenotype more immediately, and are therefore more sensitive to mutations, such as, e.g. protein-coding DNA or the stems in RNA secondary structure. 'Unconstrained' sequences, on the other hand, can mutate more freely without affecting the phenotype, such as, e.g. intronic or intergenic DNA or the loops in RNA secondary structure. To test our hypothesis we consider a highly simplified GP map that has genotypes with 'coding' and 'non-coding' parts. We term this the Fibonacci GP map, as it is equivalent to the Fibonacci code in information theory. Despite its simplicity the Fibonacci GP map exhibits all the above properties of much more complex and biologically realistic GP maps. These properties are therefore likely to be fundamental to many biological GP maps. PMID:26609063

  19. The organization of biological sequences into constrained and unconstrained parts determines fundamental properties of genotype–phenotype maps

    PubMed Central

    Greenbury, S. F.; Ahnert, S. E.

    2015-01-01

    Biological information is stored in DNA, RNA and protein sequences, which can be understood as genotypes that are translated into phenotypes. The properties of genotype–phenotype (GP) maps have been studied in great detail for RNA secondary structure. These include a highly biased distribution of genotypes per phenotype, negative correlation of genotypic robustness and evolvability, positive correlation of phenotypic robustness and evolvability, shape-space covering, and a roughly logarithmic scaling of phenotypic robustness with phenotypic frequency. More recently similar properties have been discovered in other GP maps, suggesting that they may be fundamental to biological GP maps, in general, rather than specific to the RNA secondary structure map. Here we propose that the above properties arise from the fundamental organization of biological information into ‘constrained' and ‘unconstrained' sequences, in the broadest possible sense. As ‘constrained' we describe sequences that affect the phenotype more immediately, and are therefore more sensitive to mutations, such as, e.g. protein-coding DNA or the stems in RNA secondary structure. ‘Unconstrained' sequences, on the other hand, can mutate more freely without affecting the phenotype, such as, e.g. intronic or intergenic DNA or the loops in RNA secondary structure. To test our hypothesis we consider a highly simplified GP map that has genotypes with ‘coding' and ‘non-coding' parts. We term this the Fibonacci GP map, as it is equivalent to the Fibonacci code in information theory. Despite its simplicity the Fibonacci GP map exhibits all the above properties of much more complex and biologically realistic GP maps. These properties are therefore likely to be fundamental to many biological GP maps. PMID:26609063

  20. A steady-state model for aerobic biological treatment: Part 1

    SciTech Connect

    McHarg, W.H. )

    1993-12-01

    In the aerobic biological treatment of wastewater, microorganisms use oxygen to decompose organic contaminants. Carbon dioxide, water and biosolids -- or sludge -- are the primary products. After a predetermined time in the reactor or aeration basin, the sludge is either removed from the process or sent to a clarifier, where it settles. Some of this sludge is recycled back to the aeration basin to initiate further oxidation, and some is removed from the process. In many aerobic processes, the average retention time of the sludge in the aeration basin -- called the sludge age -- is the main design parameter. However, other parameters, such as the rate of oxygen transfer rates and the capacity of the clarifier can affect the quality of the effluent. A simple mathematical model can be used to calculate these parameters.

  1. Impact of Two Ant Species on Egg Parasitoids Released as Part of a Biological Control Program

    PubMed Central

    Kergunteuil, Alan; Basso, César; Pintureau, Bernard

    2013-01-01

    Biological control using Trichogramma pretiosum Riley (Hymenoptera: Trichogrammatidae), an egg parasitoid wasp, was tested in Uruguay to reduce populations of lepidopteran pests on soybeans. It was observed that the commercial parasitoid dispensers, which were made of cardboard, were vulnerable to small predators that succeeded in entering and emptying the containers of all the eggs parasitized by T. pretiosum. Observations in a soybean crop showed that the only small, common predators present were two ant species. The species responsible for the above mentioned predation was determined from the results of a laboratory experiment in which the behavior of the two common ants was tested. A modification of the dispensers to prevent introduction of this ant has been proposed and successfully tested in the laboratory and in the field. PMID:24738954

  2. Study of cardiovascular disease biomarkers among tobacco consumers, part 2: biomarkers of biological effect

    PubMed Central

    Nordskog, Brian K.; Brown, Buddy G.; Marano, Kristin M.; Campell, Leanne R.; Jones, Bobbette A.; Borgerding, Michael F.

    2015-01-01

    Abstract An age-stratified, cross-sectional study was conducted in the US among healthy adult male cigarette smokers, moist snuff consumers, and non-tobacco consumers to evaluate cardiovascular biomarkers of biological effect (BoBE). Physiological assessments included flow-mediated dilation, ankle-brachial index, carotid intima-media thickness and expired carbon monoxide. Approximately one-half of the measured serum BoBE showed statistically significant differences; IL-12(p70), sICAM-1 and IL-8 were the BoBE that best differentiated among the three groups. A significant difference in ABI was observed between the cigarette smokers and non-tobacco consumer groups. Significant group and age effect differences in select biomarkers were identified. PMID:25787701

  3. Study of cardiovascular disease biomarkers among tobacco consumers, part 2: biomarkers of biological effect.

    PubMed

    Nordskog, Brian K; Brown, Buddy G; Marano, Kristin M; Campell, Leanne R; Jones, Bobbette A; Borgerding, Michael F

    2015-02-01

    An age-stratified, cross-sectional study was conducted in the US among healthy adult male cigarette smokers, moist snuff consumers, and non-tobacco consumers to evaluate cardiovascular biomarkers of biological effect (BoBE). Physiological assessments included flow-mediated dilation, ankle-brachial index, carotid intima-media thickness and expired carbon monoxide. Approximately one-half of the measured serum BoBE showed statistically significant differences; IL-12(p70), sICAM-1 and IL-8 were the BoBE that best differentiated among the three groups. A significant difference in ABI was observed between the cigarette smokers and non-tobacco consumer groups. Significant group and age effect differences in select biomarkers were identified. PMID:25787701

  4. Biological methods for archiving and maintaining mutant laboratory mice. Part I: conserving mutant strains.

    PubMed

    Fray, Martin D

    2009-01-01

    The mouse is now firmly established as the model organism of choice for scientists studying mammalian biology and human disease. Consequently, a plethora of novel, genetically altered (GA) mouse lines have been created. In addition, the output from the large scale mutagenesis programmes currently under way around the world will increase the collection of GA mouse strains still further. Because of the implications for animal welfare and the constraints on resources, it would be unreasonable to expect anything other than those strains essential for ongoing research programmes to be maintained as breeding colonies. Unfortunately, unless the redundant strains are preserved using robust procedures, which guarantee their recovery, they will be lost to future generations of researchers.This chapter describes some of the preservation methods currently used in laboratories around the world to archive novel mouse strains. PMID:19504080

  5. Biological autoxidation. II. Cholesterol esters as inert barrier antioxidants. Self-assembly of porous membrane sacs. An hypothesis.

    PubMed

    Kon, S H

    1978-01-01

    The antioxidation defenses recognized thus far appear too weak. Needed are inert barriers to encapsulate foci of activated oxygen (FAOs) and contain their spreading. These capsules must: 1. self-assemble nonenzymatically and spontaneously in face of adversity; 2. resist oxidation and dissolution in water; and 3. be moderately fluid and elastic enough to withstand flexing by tissues. Evidence shows activated oxygen: a. is produced by common cholesterolester (CE)-raising agents; b. boosts accumulation of CEs; and c. splits low-density lipoproteins (LDL), thus releasing CE-rich coalescence-prone lipid micelles. I am proposing that CEs, combined with polar lipids, are uniquely suited to form inert-lipid antioxidation barriers (ILABs). Porous ILAB capsules self-assemble from lipid micelles released by oxidatively degraded LDL. The capsules are thermodynamically unstable but elastic, durable and capable of self-repair through oxidation of ambient LDL. All capsules tend to contract into spheres. Enclosed needle-like "foreign bodies", such as asbestos, puncture the contracting capsules. Hence the odd bulbous architecture of asbestos bodies. ILABs protect from--and their failure initiates and promotes--carcinogenesis and atherosclerosis. ILABs may be mediators of membrane biogenesis. The loss of arterial flexibility in atherosclerosis protects ILAB capsules from breakage. PMID:748727

  6. Programmable Self-Assembly of DNA-Protein Hybrid Hydrogel for Enzyme Encapsulation with Enhanced Biological Stability.

    PubMed

    Wan, Lan; Chen, Qiaoshu; Liu, Jianbo; Yang, Xiaohai; Huang, Jin; Li, Li; Guo, Xi; Zhang, Jue; Wang, Kemin

    2016-04-11

    A DNA-protein hybrid hydrogel was constructed based on a programmable assembly approach, which served as a biomimetic physiologic matrix for efficient enzyme encapsulation. A dsDNA building block tailored with precise biotin residues was fabricated based on supersandwich hybridization, and then the addition of streptavidin triggered the formation of the DNA-protein hybrid hydrogel. The biocompatible hydrogel, which formed a flower-like porous structure that was 6.7 ± 2.1 μm in size, served as a reservoir system for enzyme encapsulation. Alcohol oxidase (AOx), which served as a representative enzyme, was encapsulated in the hybrid hydrogel using a synchronous assembly approach. The enzyme-encapsulated hydrogel was utilized to extend the duration time for ethanol removal in serum plasma and the enzyme retained 78% activity after incubation with human serum for 24 h. The DNA-protein hybrid hydrogel can mediate the intact immobilization on a streptavidin-modified and positively charged substrate, which is very beneficial to solid-phase biosensing applications. The hydrogel-encapsulated enzyme exhibited improved stability in the presence of various denaturants. For example, the encapsulated enzyme retained 60% activity after incubation at 55 °C for 30 min. The encapsulated enzyme also retains its total activity after five freeze-thaw cycles and even suspended in solution containing organic solvents. PMID:27008186

  7. Observations on the biology of Afrotropical Hesperiidae (Lepidoptera). Part 6. Hesperiinae incertae sedis: palm feeders.

    PubMed

    Cock, Matthew J W; Congdon, T Colin E; Collins, Steve C

    2014-01-01

    Partial life histories for 12 Hesperiinae incertae sedis that feed on palms (Arecaceae) are described and illustrated. The genera dealt with are: Perrotia (part), Ploetzia, Zophopetes, Gretna (part), Pteroteinon, Leona, and Caenides (part) (all from Evans' Ploetzia genera group). Although Gamia spp. have been reported to feed on palms, these records are considered to be in error, as caterpillars of this genus feed on Dracaena spp. (Asparagaceae). The life histories of the species documented are fairly uniform, in that caterpillars of most species have rounded brown heads, wider basally, with or without limited black markings, smooth bodies and make simple shelters by rolling leaves. Variation in caterpillar markings and male genitalia of Zophopetes dysmephila (Trimen) and caterpillar and adult markings of Gretna carmen Evans merit further study. In G. carmen, G. waga (Plötz) and G. balenge (Holland), the caterpillars' head and body are covered with hair-like setae, and develop an extensive covering of white waxy powder, which in G. balenge also covers the long setae. Furthermore, the pupa of G. balenge is unusual in having a pair of large, elaborate processes frontally on the head; when disturbed, the pupa vibrates violently and rattles noisily against the sides of the shelter. Ploetzia amygdalis (Mabille) and Pteroteinon laufella (Hewitson) have gregarious caterpillars, whereas the remaining species are solitary. After eclosion, the first instar caterpillars of Gretna spp. moult to the second instar without feeding. The implications of a palm-feeding life-style are discussed, and economic damage and plant quarantine risks to coconut, oil palm and ornamental palms pointed out. The known life histories suggest that all Afrotropical palm-feeding Hesperiidae will belong in the same tribe when the incertae sedis section is further elucidated, although the affinities of Gretna deserve further consideration.  PMID:25081274

  8. Water Complexes Take Part in Biological Effect Created by Weak Combined Magnetic Field

    NASA Astrophysics Data System (ADS)

    Sheykina, Nadiia

    2016-07-01

    It was revealed experimentally that at small level of magnetic field's noise (less than 4µT/Hz0.5) the dependence of gravitropc reaction of cress roots on frequency had a fine structure/ The peak that corresponded to the cyclotron frequency of Ca2+ ions for the static component of combined magnetic field that was equal to 40µT became split up into three peaks ( f1 = 31/3Hz, f2 = 32.5Hz i f3 = 34 Hz./ . The frequency f1 corresponded to the Ca2+ ion (theoretical value 31.6 Hz), the frequency f2 corresponded to the hydronium ion H3O+ (theoretical value 32.9 Hz), the frequency f3 corresponded to OH- ion (theoretical value 35 Hz). Taking into account the influence of combined magnetic field on hydronium ions and Del Giudice' hypothesis one may throw away doubts about the possibility of ion cyclotron resonance. The hydronium ions are unusual because they have a long free path length. It was revealed that pH of the distillated water changed under the treatment in combined magnetic field tuned to cyclotron frequency of hydronium ion. Such changes in pH had to lead to the biological effects on the molecular ,cell and organism levels.

  9. Fixed-wing MAV attitude stability in atmospheric turbulence-Part 2: Investigating biologically-inspired sensors

    NASA Astrophysics Data System (ADS)

    Mohamed, A.; Watkins, S.; Clothier, R.; Abdulrahim, M.; Massey, K.; Sabatini, R.

    2014-11-01

    Challenges associated with flight control of agile fixed-wing Micro Air Vehicles (MAVs) operating in complex environments is significantly different to any larger scale vehicle. The micro-scale of MAVs can make them particularly sensitive to atmospheric disturbances thus limiting their operation. As described in Part 1, current conventional reactive attitude sensing systems lack the necessary response times for attitude control in high turbulence environments. This paper reviews in greater detail novel and emerging biologically inspired sensors, which can sense the disturbances before a perturbation is induced. A number of biological mechanoreceptors used by flying animals are explored for their utility in MAVs. Man-made attempts of replicating mechanoreceptors have thus been reviewed. Bio-inspired flow and pressure-based sensors were found to be the most promising for complementing or replacing current inertial-based reactive attitude sensors. Achieving practical implementations that meet the size, weight and power constraints of MAVs remains a significant challenge. Biological systems were found to rely on multiple sensors, potentially implying a number of research opportunities in the exploration of heterogeneous bio-inspired sensing solutions.

  10. Design, synthesis, and biological evaluation of combretastatin nitrogen-containing derivatives as inhibitors of tubulin assembly and vascular disrupting agents.

    PubMed

    Monk, Keith A; Siles, Rogelio; Hadimani, Mallinath B; Mugabe, Benon E; Ackley, J Freeland; Studerus, Scott W; Edvardsen, Klaus; Trawick, Mary Lynn; Garner, Charles M; Rhodes, Monte R; Pettit, George R; Pinney, Kevin G

    2006-05-01

    A series of analogs with nitro or serinamide substituents at the C-2'-, C-5'-, or C-6'-position of the combretastatin A-4 (CA4) B-ring was synthesized and evaluated for cytotoxic effects against heart endothelioma cells, blood flow reduction to tumors in SCID mice, and as inhibitors of tubulin polymerization. The synthesis of these analogs typically featured a Wittig reaction between a suitably functionalized arylaldehyde and an arylphosphonium salt followed by separation of the resultant E- and Z-isomers. Several of these nitrogen-modified CA4 derivatives (both amino and nitro) demonstrate significant inhibition of tubulin assembly as well as cytotoxicity and in vivo blood flow reduction. 2'-Aminostilbenoid 7 and 2'-amino-3'-hydroxystilbenoid 29 proved to be the most active in this series. Both compounds, 7 and 29, have the potential for further pro-drug modification and development as vascular disrupting agents for treatment of solid tumor cancers and certain ophthalmological diseases. PMID:16442292

  11. Thermodynamically consistent force fields for the assembly of inorganic, organic, and biological nanostructures: the INTERFACE force field.

    PubMed

    Heinz, Hendrik; Lin, Tzu-Jen; Mishra, Ratan Kishore; Emami, Fateme S

    2013-02-12

    The complexity of the molecular recognition and assembly of biotic-abiotic interfaces on a scale of 1 to 1000 nm can be understood more effectively using simulation tools along with laboratory instrumentation. We discuss the current capabilities and limitations of atomistic force fields and explain a strategy to obtain dependable parameters for inorganic compounds that has been developed and tested over the past decade. Parameter developments include several silicates, aluminates, metals, oxides, sulfates, and apatites that are summarized in what we call the INTERFACE force field. The INTERFACE force field operates as an extension of common harmonic force fields (PCFF, COMPASS, CHARMM, AMBER, GROMACS, and OPLS-AA) by employing the same functional form and combination rules to enable simulations of inorganic-organic and inorganic-biomolecular interfaces. The parametrization builds on an in-depth understanding of physical-chemical properties on the atomic scale to assign each parameter, especially atomic charges and van der Waals constants, as well as on the validation of macroscale physical-chemical properties for each compound in comparison to measurements. The approach eliminates large discrepancies between computed and measured bulk and surface properties of up to 2 orders of magnitude using other parametrization protocols and increases the transferability of the parameters by introducing thermodynamic consistency. As a result, a wide range of properties can be computed in quantitative agreement with experiment, including densities, surface energies, solid-water interface tensions, anisotropies of interfacial energies of different crystal facets, adsorption energies of biomolecules, and thermal and mechanical properties. Applications include insight into the assembly of inorganic-organic multiphase materials, the recognition of inorganic facets by biomolecules, growth and shape preferences of nanocrystals and nanoparticles, as well as thermal transitions and

  12. Development and evaluation of a pliable biological valved conduit. Part II: Functional and hemodynamic evaluation.

    PubMed

    Sung, H W; Witzel, T H; Hata, C; Tu, R; Shen, S H; Lin, D; Noishiki, Y; Tomizawa, Y; Quijano, R C

    1993-04-01

    Many congenital cardiac malformations may require a valved conduit for the reconstruction of the right ventricular outflow tract. In spite of many endeavors made in the last 25 years, the clinical results of right ventricular outflow tract reconstruction with currently available valved conduits are still not satisfactory. Specific problems encountered clinically include suboptimal hemodynamic performance, conduit kinking or compression, and fibrous peeling from the luminal surface. To address these deficiencies, we undertook the development of a biological valved conduit: a bovine external jugular vein graft with a retained native valve cross-linked with a diglycidyl ether (DE). This study, using a canine model, was to evaluate the functional and hemodynamic performance of this newly developed valved conduit. Three 14 mm conduits, implanted as bypass grafts, right ventricle to pulmonary artery, were evaluated. The evaluation was conducted with a noninvasive color Doppler flow mapping system at pre-implantation, immediately post implantation, one- and three-months post implantation, and prior to retrieval (five-months post implantation). The two-dimensional tomographic inspection of the leaflet motion at various periods post implantation showed that the valvular leaflets in the DE treated conduit was quite pliable. No cardiac failure or valvular dysfunction was observed in any of the studied cases. The color Doppler flow mapping study demonstrated that the valve in the DE treated conduit was competent, with no conduit kinking or compression observed in any of the three cases. The spectral Doppler velocity study evidenced that the transvalvular pressure gradients of the DE treated conduit were minimal as compared to those of the currently available conduits. In conclusion, from the functional and hemodynamic performance points of view, this newly developed valved conduit is superior to those currently available. PMID:8325697

  13. MITOCHONDRIAL DISEASES PART I: MOUSE MODELS OF OXPHOS DEFICIENCIES CAUSED BY DEFECTS ON RESPIRATORY COMPLEX SUBUNITS OR ASSEMBLY FACTORS

    PubMed Central

    Torraco, Alessandra; Peralta, Susana; Iommarini, Luisa; Diaz, Francisca

    2015-01-01

    Mitochondrial disorders are the most common inborn errors of metabolism affecting the oxidative phosphorylation system (OXPHOS). Because the poor knowledge of the pathogenic mechanisms, a cure for these disorders is still unavailable and all the treatments currently in use are supportive more than curative. Therefore, in the past decade a great variety of mouse models have been developed to assess the in vivo function of several mitochondrial proteins involved in human diseases. Due to the genetic and physiological similarity to humans, mice represent reliable models to study the pathogenic mechanisms of mitochondrial disorders and are precious to test new therapeutic approaches. Here we summarize the features of several mouse models of mitochondrial diseases directly related to defects in subunits of the OXPHOS complexes or in assembly factors. We discuss how these models recapitulate many human conditions and how they have contributed to the understanding of mitochondrial function in health and disease. PMID:25660179

  14. The Subcritical Assembly in Dubna (SAD)—Part II: Research program for ADS-demo experiment

    NASA Astrophysics Data System (ADS)

    Gudowski, Waclaw; Shvetsov, Valery; Polanski, Aleksander; Broeders, Cornelis

    2006-06-01

    Subcritical Assembly in Dubna (SAD), a project funded by the International Science and Technology Centre, driven in collaboration with many European partners, may become the first Accelerator Driven Subcritical experiment coupling an existing proton accelerator of 660 MeV with a compact MQX-fuelled subcritical core. The main objective of the SAD experiment is to study physics of Accelerator Driven System ranging from a very deep subcriticality up to keff of 0.98. All experiences with subcriticality monitoring from previous subcritical experiments like MUSE, Yalina and IBR-30 booster mode will be verified in order to select the most reliable subcriticality monitoring technique. Particular attention will be given to validation of the core power-beam current relation. Moreover, some studies have been done to assess possibility of power upgrade for SAD.

  15. Developments in the Tools and Methodologies of Synthetic Biology

    PubMed Central

    Kelwick, Richard; MacDonald, James T.; Webb, Alexander J.; Freemont, Paul

    2014-01-01

    Synthetic biology is principally concerned with the rational design and engineering of biologically based parts, devices, or systems. However, biological systems are generally complex and unpredictable, and are therefore, intrinsically difficult to engineer. In order to address these fundamental challenges, synthetic biology is aiming to unify a “body of knowledge” from several foundational scientific fields, within the context of a set of engineering principles. This shift in perspective is enabling synthetic biologists to address complexity, such that robust biological systems can be designed, assembled, and tested as part of a biological design cycle. The design cycle takes a forward-design approach in which a biological system is specified, modeled, analyzed, assembled, and its functionality tested. At each stage of the design cycle, an expanding repertoire of tools is being developed. In this review, we highlight several of these tools in terms of their applications and benefits to the synthetic biology community. PMID:25505788

  16. Gaseous VOCs rapidly modify particulate matter and its biological effects - Part 1: Simple VOCs and model PM

    NASA Astrophysics Data System (ADS)

    Ebersviller, S.; Lichtveld, K.; Sexton, K. G.; Zavala, J.; Lin, Y.-H.; Jaspers, I.; Jeffries, H. E.

    2012-12-01

    This is the first of a three-part study designed to demonstrate dynamic entanglements among gaseous organic compounds (VOC), particulate matter (PM), and their subsequent potential biological effects. We study these entanglements in increasingly complex VOC and PM mixtures in urban-like conditions in a large outdoor chamber. To the traditional chemical and physical characterizations of gas and PM, we added new measurements of biological effects, using cultured human lung cells as model indicators. These biological effects are assessed here as increases in cellular damage or expressed irritation (i.e., cellular toxic effects) from cells exposed to chamber air relative to cells exposed to clean air. The exposure systems permit virtually gas-only- or PM-only-exposures from the same air stream containing both gases and PM in equilibria, i.e., there are no extractive operations prior to cell exposure. Our simple experiments in this part of the study were designed to eliminate many competing atmospheric processes to reduce ambiguity in our results. Simple volatile and semi-volatile organic gases that have inherent cellular toxic properties were tested individually for biological effect in the dark (at constant humidity). Airborne mixtures were then created with each compound to which we added PM that has no inherent cellular toxic properties for another cellular exposure. Acrolein and p-tolualdehyde were used as model VOCs and mineral oil aerosol (MOA) was selected as a surrogate for organic-containing PM. MOA is appropriately complex in composition to represent ambient PM, and exhibits no inherent cellular toxic effects and thus did not contribute any biological detrimental effects on its own. Chemical measurements, combined with the responses of our biological exposures, clearly demonstrate that gas-phase pollutants can modify the composition of PM (and its resulting detrimental effects on lung cells). We observed that, even if the gas-phase pollutants are not

  17. Gaseous VOCs rapidly modify particulate matter and its biological effects - Part 1: Simple VOCs and model PM

    NASA Astrophysics Data System (ADS)

    Ebersviller, S.; Lichtveld, K.; Sexton, K. G.; Zavala, J.; Lin, Y.-H.; Jaspers, I.; Jeffries, H. E.

    2012-02-01

    This is the first of a three-part study designed to demonstrate dynamic entanglements among gaseous organic compounds (VOC), particulate matter (PM), and their subsequent potential biological effects. We study these entanglements in increasingly complex VOC and PM mixtures in urban-like conditions in a large outdoor chamber. To the traditional chemical and physical characterizations of gas and PM, we added new measurements of gas-only- and PM-only-biological effects, using cultured human lung cells as model indicators. These biological effects are assessed here as increases in cellular damage or expressed irritation (i.e., cellular toxic effects) from cells exposed to chamber air relative to cells exposed to clean air. The exposure systems permit gas-only- or PM-only-exposures from the same air stream containing both gases and PM in equilibria, i.e., there are no extractive operations prior to cell exposure. Our simple experiments in this part of the study were designed to eliminate many competing atmospheric processes to reduce ambiguity in our results. Simple volatile and semi-volatile organic gases that have inherent cellular toxic properties were tested individually for biological effect in the dark (at constant humidity). Airborne mixtures were then created with each compound and PM that has no inherent cellular toxic properties for another cellular exposure. Acrolein and p-tolualdehyde were used as model VOCs and mineral oil aerosol (MOA) was selected as a surrogate for organic-containing PM. MOA is appropriately complex in composition to represent ambient PM, and it exhibits no inherent cellular toxic effects and thus did not contribute any biological detrimental effects on its own. Chemical measurements, combined with the responses of our biological exposures, clearly demonstrate that gas-phase pollutants can modify the composition of PM (and its resulting detrimental effects on lung cells) - even if the gas-phase pollutants are not considered likely to

  18. Synthesis, characterization, molecular docking and biological studies of self assembled transition metal dithiocarbamates of substituted pyrrole-2-carboxaldehyde.

    PubMed

    Nami, Shahab A A; Ullah, Irfan; Alam, Mahboob; Lee, Dong-Ung; Sarikavakli, Nursabah

    2016-07-01

    A series of self assembled 3d transition metal dithiocarbamate, M(pdtc) [where M=Mn(II), Fe(II), Co(II), Ni(II) and Cu(II)] have been synthesized and spectroscopically characterized. The bidentate dithiocarbamate ligand Na2pdtc (Disodium-1,4-phenyldiaminobis (pyrrole-1-sulfino)dithioate) was prepared by insertion reaction of carbondisulfide with Schiff base, N,N'-bis-(1H-pyrrol-2-ylmethylene)-benzene-1,4-diamine (L1) in basic medium. The simple substitution reaction between the metal halide and Na2pdtc yielded the title complexes in moderate yields. However, the in situ procedure gives high yield with the formation of single product as evident by TLC. Elemental analysis, IR, (1)H and (13)C NMR spectra, UV-vis., magnetic susceptibility and conductance measurements were done to characterize the complexes, M(pdtc). All the evidences suggest that the complexes have tetrahedral geometry excepting Cu(II) which is found to be square planar. A symmetrical bidentate coordination of the dithiocarbamato moiety has been observed in all the complexes. The conductivity data show that the complexes are non-electrolyte in nature. The anti-oxidant activity of the ligand, Na2pdtc and its transition metal complexes, M(pdtc) have been carried out using DPPH and Cu(pdtc) was found to be most effective. The anti-microbial activity of the Na2pdtc and M(pdtc) complexes have been carried out and on this basis the molecular docking study of the most effective complex, Cu(pdtc) has also been reported. PMID:27197060

  19. Implementation and evaluation of a training program as part of the Cooperative Biological Engagement Program in Azerbaijan

    PubMed Central

    Johnson, April; Akhundova, Gulshan; Aliyeva, Saida; Strelow, Lisa

    2015-01-01

    A training program for animal and human health professionals has been implemented in Azerbaijan through a joint agreement between the United States Defense Threat Reduction Agency and the Government of Azerbaijan. The training program is administered as part of the Cooperative Biological Engagement Program, and targets key employees in Azerbaijan's disease surveillance system including physicians, veterinarians, epidemiologists, and laboratory personnel. Training is aimed at improving detection, diagnosis, and response to especially dangerous pathogens (EDPs), although the techniques and methodologies can be applied to other pathogens and diseases of concern. Biosafety and biosecurity training is provided to all trainees within the program. Prior to 2014, a variety of international agencies and organizations provided training, which resulted in gaps related to lack of coordination of training materials and content. In 2014 a new training program was implemented in order to address those gaps. This paper provides an overview of the Cooperative Biological Engagement Program training program in Azerbaijan, a description of how the program fits into existing national training infrastructure, and an evaluation of the new program's effectiveness to date. Long-term sustainability of the program is also discussed. PMID:26501051

  20. Test design description for the Fusion Materials Open Test Assembly (Fusion MOTA-2A): Volume 1A, Part 1

    SciTech Connect

    Bauer, R.E.

    1988-11-01

    This document encompasses the test requirements, hardware design, fabrication, and safety analysis for the Fusion Materials Open Test Assembly experiment for irradiation in FFTF Cycle 11 (Fusion MOTA-2A). Fusion MOTA is equally shared by the US Fusion Material (DOE), Japanese Fusion Materials (MONBUSHO), and BEATRIX-II (IEA) programs. In the interest of providing optimum use of the irradiation space in the Fusion MOTA-2A and LMR MOTA-1G, eight of the Fusion MOTA canisters will be placed in MOTA-1G and an equal number of LMR canisters placed in Fusion MOTA-2A (Powell/Doran 1988). This eliminates the need to process Fusion MOTA-2A through the IEM cell prior to insertion for FFTF Cycle 11A. The LMR MOTA design and safety analysis (Greenslade 1984) is the basis for much of this design and safety analysis report. This design description and safety analysis for the Fusion MOTA-2A is presented per the outline given in Chapter IV of the FTR User`s Guide (Taylor 1978). 35 refs., 17 figs., 9 tabs.

  1. Blueprints for green biotech: development and application of standards for plant synthetic biology.

    PubMed

    Patron, Nicola J

    2016-06-15

    Synthetic biology aims to apply engineering principles to the design and modification of biological systems and to the construction of biological parts and devices. The ability to programme cells by providing new instructions written in DNA is a foundational technology of the field. Large-scale de novo DNA synthesis has accelerated synthetic biology by offering custom-made molecules at ever decreasing costs. However, for large fragments and for experiments in which libraries of DNA sequences are assembled in different combinations, assembly in the laboratory is still desirable. Biological assembly standards allow DNA parts, even those from multiple laboratories and experiments, to be assembled together using the same reagents and protocols. The adoption of such standards for plant synthetic biology has been cohesive for the plant science community, facilitating the application of genome editing technologies to plant systems and streamlining progress in large-scale, multi-laboratory bioengineering projects. PMID:27284031

  2. Sample preparation of biological macromolecular assemblies for the determination of high-resolution structures by cryo-electron microscopy.

    PubMed

    Stark, Holger; Chari, Ashwin

    2016-02-01

    Single particle cryo-EM has recently developed into a powerful tool to determine the 3D structure of macromolecular complexes at near-atomic resolution, which allows structural biologists to build atomic models of proteins. All technical aspects of cryo-EM technology have been considerably improved over the last two decades, including electron microscopic hardware, image processing software and the ever growing speed of computers. This leads to a more widespread use of the technique, and it can be anticipated that further automation of electron microscopes and image processing tools will soon fully shift the focus away from the technological aspects, onto biological questions that can be answered. In single particle cryo-EM, no crystals of a macromolecule are required. In contrast to X-ray crystallography, this significantly facilitates structure determination by cryo-EM. Nevertheless, a relatively high level of biochemical control is still essential to obtain high-resolution structures by cryo-EM, and it can be anticipated that the success of the cryo-EM technology goes hand in hand with further developments of sample purification and preparation techniques. This will allow routine high-resolution structure determination of the many macromolecular complexes of the cell that until now represent evasive targets for X-ray crystallographers. Here we discuss the various biochemical tools that are currently available and the existing sample purification and preparation techniques for cryo-EM grid preparation that are needed to obtain high-resolution images for structure determination. PMID:26671943

  3. Molecular dynamics simulations and neutron reflectivity as an effective approach to characterize biological membranes and related macromolecular assemblies.

    PubMed

    Darré, L; Iglesias-Fernandez, J; Kohlmeyer, A; Wacklin, H; Domene, C

    2015-10-13

    In combination with other spectroscopy, microscopy, and scattering techniques, neutron reflectivity is a powerful tool to characterize biological systems. Specular reflection of neutrons provides structural information at the nanometer and subnanometer length scales, probing the composition and organization of layered materials. Currently, analysis of neutron reflectivity data involves several simplifying assumptions about the structure of the sample under study, affecting the extraction and interpretation of information from the experimental data. Computer simulations can be used as a source of structural and dynamic data with atomic resolution. We present a novel tool to compare the structural properties determined by neutron reflectivity experiments with those obtained from molecular simulations. This tool allows benchmarking the ability of molecular dynamics simulations to reproduce experimental data, but it also promotes unbiased interpretation of experimentally determined quantities. Two application examples are presented to illustrate the capabilities of the new tool. The first example is the generation of reflectivity profiles for a 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) lipid bilayer from molecular dynamics simulations using data from both atomistic and coarse-grained models, and comparison with experimentally measured data. The second example is the calculation of lipid volume changes with temperature and composition from all atoms simulations of single and mixed 1,2-di-palmitoyl-sn-glycero-3-phosphocholine (DOPC) and 1,2-dihexadecanoyl-sn-glycero-3-phosphocholine (DPPC) bilayers. PMID:26574275

  4. Y-12 development organization technical progress report. Part 4, Assembly technology/compatibility and surveillance period ending September 30, 1993

    SciTech Connect

    Northcutt, W.G. Jr.

    1993-12-27

    The Super Collider is a high-energy scientific instrument composed of a 53-mile-long ring of proton accelerators designed to collide protons and evaluate the emanating particles. The Oak Ridge Y-12 Plant is under contract to perform work for the Superconducting Super Collider Laboratory (SSCL) and has been asked to develop manufacturing processes for components of the gammas, electrons, muons (GEM) detector. Three welded subassemblies are involved in the fabrication of these conductors. The superconducting cable is enclosed in a stainless steel conduit, which is then enclosed in an aluminum sheath. The ends of the conductor are terminated with a connector assembly joined to the superconductor, the conduit, and the sheath. Initially, the conduit weld was to be a single-pass, autogenous gas-tungsten arc weld. The authors made a great effort to get full penetration without root reinforcement on the inside of the tube. When the authors were unable to meet all of the weld requirements with an autogenous weld, they shifted development efforts to making the weld using an automatic gas-tungsten arc tube welding head with an integral wire feeder. Because reinforcement at the root continued to be a problem, the authors decided to make the weld in two passes. To achieve the desired weld reinforcement on the outside of the tube, the authors developed a welding procedure in which an autogenous pass is used to join the tube ends with the necessary minimum pushthrough on the inside of the tube and filler metal is supplied during the second pass. This two-pass weld required a weld joint with a flat butt for the root pass and a V-groove for the filler metal pass. A 272-ft conduit was made using this two-pass welding procedure for a test at the University of Wisconsin.

  5. Nitric Oxide and Redox Regulation in the Liver: Part I General Considerations and Redox biology in Hepatitis

    PubMed Central

    Diesen, Diana L.; Kuo, Paul C.

    2010-01-01

    Reactive oxygen species (ROS) and reactive nitrogen species (RNS) are created in normal hepatocytes and are critical for normal physiological processes including oxidative respiration, growth, regeneration, apoptosis, and microsomal defense. When the levels of oxidation products exceed the capacity of normal antioxidant systems, oxidative stress occurs. This type of stress, in the form of ROS and RNS, can be damaging to all liver cells, including hepatocytes, Kupffer cells, stellate cells, and endothelial cells, through induction of inflammation, ischemia, fibrosis, necrosis, apoptosis, or through malignant transformation by damaging lipids, proteins, and/or DNA. In part I of this review, we will discuss basic redox biology in the liver, including a review of ROS, RNS, and antioxidants, with a focus on nitric oxide as a common source of RNS. We will then review the evidence for oxidative stress as a mechanism of liver injury in hepatitis (alcoholic, viral, non-alcoholic). In part II of this review, we will review oxidative stress in common pathophysiological conditions including ischemia/reperfusion injury, fibrosis, hepatocellular carcinoma, iron overload, Wilson's disease, sepsis and acetaminophen overdose. Finally, biomarkers, proteomic, and antioxidant therapies will be discussed as areas for future therapeutic interventions. PMID:20444470

  6. Nitric Oxide and Redox Regulation in the Liver: Part II Redox biology in Pathologic Hepatocytes and Implications for intervention

    PubMed Central

    Diesen, Diana L.; Kuo, Paul C.

    2009-01-01

    Reactive oxygen species (ROS) and reactive nitrogen species (RNS) are created in normal hepatocytes and are critical for normal physiological processes including oxidative respiration, growth, regeneration, apoptosis, and microsomal defense. When the levels of oxidation products exceed the capacity of normal antioxidant systems, oxidative stress occurs. This type of stress, in the form of ROS and RNS, can be damaging to all liver cells, including hepatocytes, Kupffer cells, stellate cells, and endothelial cells, through induction of inflammation, ischemia, fibrosis, necrosis, apoptosis, or through malignant transformation by damaging lipids, proteins, and/or DNA. In part I of this review, we will discuss basic redox biology in the liver, including a review of ROS, RNS, and antioxidants, with a focus on nitric oxide as a common source of RNS. We will then review the evidence for oxidative stress as a mechanism of liver injury in hepatitis (alcoholic, viral, non-alcoholic). In part II of this review, we will review oxidative stress in common pathophysiological conditions including ischemia/reperfusion injury, fibrosis, hepatocellular carcinoma, iron overload, Wilson’s disease, sepsis and acetaminophen overdose. Finally, biomarkers, proteomic, and antioxidant therapies will be discussed as areas for future therapeutic interventions. PMID:20400112

  7. Gaseous VOCs rapidly modify particulate matter and its biological effects - Part 2: Complex urban VOCs and model PM

    NASA Astrophysics Data System (ADS)

    Ebersviller, S.; Lichtveld, K.; Sexton, K. G.; Zavala, J.; Lin, Y.-H.; Jaspers, I.; Jeffries, H. E.

    2012-12-01

    This is the second study in a three-part study designed to demonstrate dynamic entanglements among gaseous organic compounds (VOCs), particulate matter (PM), and their subsequent potential biological effects. We study these entanglements in increasingly complex VOC and PM mixtures in urban-like conditions in a large outdoor chamber, both in the dark and in sunlight. To the traditional chemical and physical characterizations of gas and PM, we added new measurements of gas-only- and PM-only-biological effects, using cultured human lung cells as model living receptors. These biological effects are assessed here as increases in cellular damage or expressed irritation (i.e., cellular toxic effects) from cells exposed to chamber air relative to cells exposed to clean air. Our exposure systems permit side-by-side, gas-only- and PM-only-exposures from the same air stream containing both gases and PM in equilibria, i.e., there are no extractive operations prior to cell exposure for either gases or PM. In Part 1 (Ebersviller et al., 2012a), we demonstrated the existence of PM "effect modification" (NAS, 2004) for the case of a single gas-phase toxicant and an inherently non-toxic PM (mineral oil aerosol, MOA). That is, in the presence of the single gas-phase toxicant in the dark, the initially non-toxic PM became toxic to lung cells in the PM-only-biological exposure system. In this Part 2 study, we used sunlit-reactive systems to create a large variety of gas-phase toxicants from a complex mixture of oxides of nitrogen and 54 VOCs representative of those measured in US city air. In these mostly day-long experiments, we have designated the period in the dark just after injection (but before sunrise) as the "Fresh" condition and the period in the dark after sunset as the "Aged" condition. These two conditions were used to expose cells and to collect chemical characterization samples. We used the same inherently non-toxic PM from the Part 1 study as the target PM for "effect

  8. Gaseous VOCs rapidly modify particulate matter and its biological effects - Part 2: Complex urban VOCs and model PM

    NASA Astrophysics Data System (ADS)

    Ebersviller, S.; Lichtveld, K.; Sexton, K. G.; Zavala, J.; Lin, Y.-H.; Jaspers, I.; Jeffries, H. E.

    2012-03-01

    This is the second study in a three-part study designed to demonstrate dynamic entanglements among gaseous organic compounds (VOCs), particulate matter (PM), and their subsequent potential biological effects. We study these entanglements in increasingly complex VOC and PM mixtures in urban-like conditions in a large outdoor chamber, both in the dark and in sunlight. To the traditional chemical and physical characterizations of gas and PM, we added new measurements of gas-only- and PM-only-biological effects, using cultured human lung cells as model living receptors. These biological effects are assessed here as increases in cellular damage or expressed irritation (i.e., cellular toxic effects) from cells exposed to chamber air relative to cells exposed to clean air. Our exposure systems permit side-by-side, gas-only- and PM-only-exposures from the same air stream containing both gases and PM in equilibria, i.e., there are no extractive operations prior to cell exposure for either gases or PM. In Part 1 (Ebersviller et al., 2012a), we demonstrated the existence of PM "effect modification" (NAS, 2004) for the case of a single gas-phase toxicant and an inherently non-toxic PM (mineral oil aerosol, MOA). That is, in the presence of the single gas-phase toxicant in the dark, the initially non-toxic PM became toxic to lung cells in the PM-only-biological exposure system. In this Part 2 study, we used sunlit-reactive systems to create a large variety of gas-phase toxicants from a complex mixture of oxides of nitrogen and 54 VOCs representative of those measured in US city air. In these mostly day-long experiments, we have designated the period in the dark just after injection (but before sunrise) as the "Fresh" condition and the period in the dark after sunset as the "Aged" condition. These two conditions were used to expose cells and to collect chemical characterization samples. We used the same inherently non-toxic PM from the Part 1 study as the target PM for "effect

  9. Probabilistic Analysis of Pattern Formation in Monotonic Self-Assembly.

    PubMed

    Moore, Tyler G; Garzon, Max H; Deaton, Russell J

    2015-01-01

    Inspired by biological systems, self-assembly aims to construct complex structures. It functions through piece-wise, local interactions among component parts and has the potential to produce novel materials and devices at the nanoscale. Algorithmic self-assembly models the product of self-assembly as the output of some computational process, and attempts to control the process of assembly algorithmically. Though providing fundamental insights, these computational models have yet to fully account for the randomness that is inherent in experimental realizations, which tend to be based on trial and error methods. In order to develop a method of analysis that addresses experimental parameters, such as error and yield, this work focuses on the capability of assembly systems to produce a pre-determined set of target patterns, either accurately or perhaps only approximately. Self-assembly systems that assemble patterns that are similar to the targets in a significant percentage are "strong" assemblers. In addition, assemblers should predominantly produce target patterns, with a small percentage of errors or junk. These definitions approximate notions of yield and purity in chemistry and manufacturing. By combining these definitions, a criterion for efficient assembly is developed that can be used to compare the ability of different assembly systems to produce a given target set. Efficiency is a composite measure of the accuracy and purity of an assembler. Typical examples in algorithmic assembly are assessed in the context of these metrics. In addition to validating the method, they also provide some insight that might be used to guide experimentation. Finally, some general results are established that, for efficient assembly, imply that every target pattern is guaranteed to be assembled with a minimum common positive probability, regardless of its size, and that a trichotomy exists to characterize the global behavior of typical efficient, monotonic self-assembly systems

  10. Probabilistic Analysis of Pattern Formation in Monotonic Self-Assembly

    PubMed Central

    Moore, Tyler G.; Garzon, Max H.; Deaton, Russell J.

    2015-01-01

    Inspired by biological systems, self-assembly aims to construct complex structures. It functions through piece-wise, local interactions among component parts and has the potential to produce novel materials and devices at the nanoscale. Algorithmic self-assembly models the product of self-assembly as the output of some computational process, and attempts to control the process of assembly algorithmically. Though providing fundamental insights, these computational models have yet to fully account for the randomness that is inherent in experimental realizations, which tend to be based on trial and error methods. In order to develop a method of analysis that addresses experimental parameters, such as error and yield, this work focuses on the capability of assembly systems to produce a pre-determined set of target patterns, either accurately or perhaps only approximately. Self-assembly systems that assemble patterns that are similar to the targets in a significant percentage are “strong” assemblers. In addition, assemblers should predominantly produce target patterns, with a small percentage of errors or junk. These definitions approximate notions of yield and purity in chemistry and manufacturing. By combining these definitions, a criterion for efficient assembly is developed that can be used to compare the ability of different assembly systems to produce a given target set. Efficiency is a composite measure of the accuracy and purity of an assembler. Typical examples in algorithmic assembly are assessed in the context of these metrics. In addition to validating the method, they also provide some insight that might be used to guide experimentation. Finally, some general results are established that, for efficient assembly, imply that every target pattern is guaranteed to be assembled with a minimum common positive probability, regardless of its size, and that a trichotomy exists to characterize the global behavior of typical efficient, monotonic self-assembly

  11. Peptide-directed self-assembly of functionalized polymeric nanoparticles part I: design and self-assembly of peptide-copolymer conjugates into nanoparticle fibers and 3D scaffolds.

    PubMed

    Ding, Xiaochu; Janjanam, Jagadeesh; Tiwari, Ashutosh; Thompson, Martin; Heiden, Patricia A

    2014-06-01

    A robust self-assembly of nanoparticles into fibers and 3D scaffolds is designed and fabricated by functionalizing a RAFT-polymerized amphiphilic triblock copolymer with designer ionic complementary peptides so that the assembled core-shell polymeric nanoparticles are directed by peptide assembly into continuous "nanoparticle fibers," ultimately leading to 3D fiber scaffolds. The assembled nanostructure is confirmed by FESEM and optical microscopy. The assembly is not hindered when a protein (insulin) is incorporated within the nanoparticles as an active ingredient. MTS cytotoxicity tests on SW-620 cell lines show that the peptides, copolymers, and peptide-copolymer conjugates are biocompatible. The methodology of self-assembled nanoparticle fibers and 3D scaffolds is intended to combine the advantages of a flexible hydrogel scaffold with the versatility of controlled release nanoparticles to offer unprecedented ability to incorporate desired drug(s) within a self-assembled scaffold system with individual control over the release of each drug. PMID:24610743

  12. The Arabidopsis Protein CONSERVED ONLY IN THE GREEN LINEAGE160 Promotes the Assembly of the Membranous Part of the Chloroplast ATP Synthase[W

    PubMed Central

    Rühle, Thilo; Razeghi, Jafar Angouri; Vamvaka, Evgenia; Viola, Stefania; Gandini, Chiara; Kleine, Tatjana; Schünemann, Danja; Barbato, Roberto; Jahns, Peter; Leister, Dario

    2014-01-01

    The chloroplast F1Fo-ATP synthase/ATPase (cpATPase) couples ATP synthesis to the light-driven electrochemical proton gradient. The cpATPase is a multiprotein complex and consists of a membrane-spanning protein channel (comprising subunit types a, b, b′, and c) and a peripheral domain (subunits α, β, γ, δ, and ε). We report the characterization of the Arabidopsis (Arabidopsis thaliana) CONSERVED ONLY IN THE GREEN LINEAGE160 (AtCGL160) protein (AtCGL160), conserved in green algae and plants. AtCGL160 is an integral thylakoid protein, and its carboxyl-terminal portion is distantly related to prokaryotic ATP SYNTHASE PROTEIN1 (Atp1/UncI) proteins that are thought to function in ATP synthase assembly. Plants without AtCGL160 display an increase in xanthophyll cycle activity and energy-dependent nonphotochemical quenching. These photosynthetic perturbations can be attributed to a severe reduction in cpATPase levels that result in increased acidification of the thylakoid lumen. AtCGL160 is not an integral cpATPase component but is specifically required for the efficient incorporation of the c-subunit into the cpATPase. AtCGL160, as well as a chimeric protein containing the amino-terminal part of AtCGL160 and Synechocystis sp. PCC6803 Atp1, physically interact with the c-subunit. We conclude that AtCGL160 and Atp1 facilitate the assembly of the membranous part of the cpATPase in their hosts, but loss of their functions provokes a unique compensatory response in each organism. PMID:24664203

  13. Introduction of customized inserts for streamlined assembly and optimization of BioBrick synthetic genetic circuits

    PubMed Central

    2010-01-01

    Background BioBrick standard biological parts are designed to make biological systems easier to engineer (e.g. assemble, manipulate, and modify). There are over 5,000 parts available in the Registry of Standard Biological Parts that can be easily assembled into genetic circuits using a standard assembly technique. The standardization of the assembly technique has allowed for wide distribution to a large number of users -- the parts are reusable and interchangeable during the assembly process. The standard assembly process, however, has some limitations. In particular it does not allow for modification of already assembled biological circuits, addition of protein tags to pre-existing BioBrick parts, or addition of non-BioBrick parts to assemblies. Results In this paper we describe a simple technique for rapid generation of synthetic biological circuits using introduction of customized inserts. We demonstrate its use in Escherichia coli (E. coli) to express green fluorescent protein (GFP) at pre-calculated relative levels and to add an N-terminal tag to GFP. The technique uses a new BioBrick part (called a BioScaffold) that can be inserted into cloning vectors and excised from them to leave a gap into which other DNA elements can be placed. The removal of the BioScaffold is performed by a Type IIB restriction enzyme (REase) that recognizes the BioScaffold but cuts into the surrounding sequences; therefore, the placement and removal of the BioScaffold allows the creation of seamless connections between arbitrary DNA sequences in cloning vectors. The BioScaffold contains a built-in red fluorescent protein (RFP) reporter; successful insertion of the BioScaffold is, thus, accompanied by gain of red fluorescence and its removal is manifested by disappearance of the red fluorescence. Conclusions The ability to perform targeted modifications of existing BioBrick circuits with BioScaffolds (1) simplifies and speeds up the iterative design-build-test process through direct

  14. Biologically controlled synthesis and assembly of magnetite nanoparticles† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c4fd00240g Click here for additional data file.

    PubMed Central

    Bennet, Mathieu; Bertinetti, Luca; Neely, Robert K.; Schertel, Andreas; Körnig, André; Flors, Cristina; Müller, Frank D.; Schüler, Dirk; Klumpp, Stefan

    2015-01-01

    Magnetite nanoparticles have size- and shape-dependent magnetic properties. In addition, assemblies of magnetite nanoparticles forming one-dimensional nanostructures have magnetic properties distinct from zero-dimensional or non-organized materials due to strong uniaxial shape anisotropy. However, assemblies of free-standing magnetic nanoparticles tend to collapse and form closed-ring structures rather than chains in order to minimize their energy. Magnetotactic bacteria, ubiquitous microorganisms, have the capability to mineralize magnetite nanoparticles, the so-called magnetosomes, and to direct their assembly in stable chains via biological macromolecules. In this contribution, the synthesis and assembly of biological magnetite to obtain functional magnetic dipoles in magnetotactic bacteria are presented, with a focus on the assembly. We present tomographic reconstructions based on cryo-FIB sectioning and SEM imaging of a magnetotactic bacterium to exemplify that the magnetosome chain is indeed a paradigm of a 1D magnetic nanostructure, based on the assembly of several individual particles. We show that the biological forces are a major player in the formation of the magnetosome chain. Finally, we demonstrate by super resolution fluorescence microscopy that MamK, a protein of the actin family necessary to form the chain backbone in the bacteria, forms a bundle of filaments that are not only found in the vicinity of the magnetosome chain but are widespread within the cytoplasm, illustrating the dynamic localization of the protein within the cells. These very simple microorganisms have thus much to teach us with regards to controlling the design of functional 1D magnetic nanoassembly. PMID:25932467

  15. The dynamics of nacre self-assembly

    PubMed Central

    Cartwright, Julyan H.E; Checa, Antonio G

    2006-01-01

    We show how nacre and pearl construction in bivalve and gastropod molluscs can be understood in terms of successive processes of controlled self-assembly from the molecular- to the macro-scale. This dynamics involves the physics of the formation of both solid and liquid crystals and of membranes and fluids to produce a nanostructured hierarchically constructed biological composite of polysaccharides, proteins and mineral, whose mechanical properties far surpass those of its component parts. PMID:17251136

  16. Community assembly of biological soil crusts of different successional stages in a temperate sand ecosystem, as assessed by direct determination and enrichment techniques.

    PubMed

    Langhans, Tanja Margrit; Storm, Christian; Schwabe, Angelika

    2009-08-01

    In temperate regions, biological soil crusts (BSCs: complex communities of cyanobacteria, eukaryotic algae, bryophytes, and lichens) are not well investigated regarding community structure and diversity. Furthermore, studies on succession are rare. For that reason, the community assembly of crusts representing two successional stages (initial, 5 years old; and stable, >20 years old) were analyzed in an inland sand ecosystem in Germany in a plot-based approach (2 x 18 plots, each 20 x 20 cm). Two different methods were used to record the cyanobacteria and eukaryotic algae in these communities comprehensively: determination directly out of the soil and enrichment culture techniques. Additionally, lichens, bryophytes, and phanerogams were determined. We examine four hypotheses: (1) A combination of direct determination and enrichment culture technique is necessary to detect cyanobacteria and eukaryotic algae comprehensively. In total, 45 species of cyanobacteria and eukaryotic algae were detected in the study area with both techniques, including 26 eukaryotic algae and 19 cyanobacteria species. With both determination techniques, 22 identical taxa were detected (11 eukaryotic algae and 11 cyanobacteria). Thirteen taxa were only found by direct determination, and ten taxa were only found in enrichment cultures. Hence, the hypothesis is supported. Additionally, five lichen species (three genera), five bryophyte species (five genera), and 24 vascular plant species occurred. (2) There is a clear difference between the floristic structure of initial and stable crusts. The different successional stages are clearly separated by detrended correspondence analysis, showing a distinct structure of the community assembly in each stage. In the initial crusts, Klebsormidium flaccidum, Klebsormidium cf. klebsii, and Stichococcus bacillaris were important indicator species, whereas the stable crusts are especially characterized by Tortella inclinata. (3) The biodiversity of BSC taxa

  17. STAR: a simple TAL effector assembly reaction using isothermal assembly.

    PubMed

    Gogolok, Sabine; Garcia-Diaz, Claudia; Pollard, Steven M

    2016-01-01

    Transcription activator-like effectors (TALEs) contain modular programmable DNA binding domains. Fusing TALEs with effector domains creates synthetic transcription factors (TALE-TFs) or nucleases (TALENs), enabling precise gene manipulations. The construction of TALEs remains challenging due to their repetitive sequences. Here we report a simple TALE assembly reaction (STAR) that enables individual laboratories to generate multiple TALEs in a facile manner. STAR uses an isothermal assembly ('Gibson assembly') that is labour- and cost-effective, accessible, rapid and scalable. A small 68-part fragment library is employed, and the specific TALE repeat sequence is generated within ~8 hours. Sequence-verified TALENs or TALE-TF plasmids targeting 17 bp target sequences can be produced within three days, without the need for stepwise intermediate plasmid production. We demonstrate the utility of STAR through production of functional TALE-TFs capable of activating human SOX2 expression. STAR addresses some of the shortcomings of existing Golden Gate or solid-phase assembly protocols and enables routine production of TALE-TFs that will complement emerging CRISPR/Cas9-based reagents across diverse applications in mammalian stem cell and synthetic biology. PMID:27615025

  18. Automated assembly in space

    NASA Technical Reports Server (NTRS)

    Srivastava, Sandanand; Dwivedi, Suren N.; Soon, Toh Teck; Bandi, Reddy; Banerjee, Soumen; Hughes, Cecilia

    1989-01-01

    The installation of robots and their use of assembly in space will create an exciting and promising future for the U.S. Space Program. The concept of assembly in space is very complicated and error prone and it is not possible unless the various parts and modules are suitably designed for automation. Certain guidelines are developed for part designing and for an easy precision assembly. Major design problems associated with automated assembly are considered and solutions to resolve these problems are evaluated in the guidelines format. Methods for gripping and methods for part feeding are developed with regard to the absence of gravity in space. The guidelines for part orientation, adjustments, compliances and various assembly construction are discussed. Design modifications of various fasteners and fastening methods are also investigated.

  19. Individuals at the center of biology: Rudolf Leuckart's Polymorphismus der Individuen and the ongoing narrative of parts and wholes. With an annotated translation.

    PubMed

    Nyhart, Lynn K; Lidgard, Scott

    2011-01-01

    Rudolf Leuckart's 1851 pamphlet Ueber den Polymorphismus der Individuen (On the polymorphism of individuals) stood at the heart of naturalists' discussions on biological individuals, parts and wholes in mid-nineteenth-century Britain and Europe. Our analysis, which accompanies the first translation of this pamphlet into English, situates Leuckart's contribution to these discussions in two ways. First, we present it as part of a complex conceptual knot involving not only individuality and the understanding of compound organisms, but also the alternation of generations, the division of labor in nature, and the possibility of finding general laws of the organic world. Leuckart's pamphlet is important as a novel attempt to give order to the strands of this knot. It also solved a set of key biological problems in a way that avoided some of the drawbacks of an earlier teleological tradition. Second, we situate the pamphlet within a longer trajectory of inquiry into part-whole relations in biology from the mid-eighteenth century to the present. We argue that biological individuality, along with the problem-complexes with which it engaged, was as central a problem to naturalists before 1859 as evolution, and that Leuckart's contributions to it left a long legacy that persisted well into the twentieth century. As biologists' interests in part-whole relations are once again on the upswing, the longue durée of this problem merits renewed consideration. PMID:21308403

  20. Double fiber probe with a single fiber Bragg grating based on the capillary-driven self-assembly fabrication method for dimensional measurement of micro parts.

    PubMed

    Cui, Jiwen; Feng, Kunpeng; Hu, Yang; Li, Junying; Dang, Hong; Tan, Jiubin

    2015-12-28

    Focusing on the ultra-precision dimensional measurement of parts with micro-scale dimensions and high aspect ratios, a two-dimensional double fiber probe with a single fiber Bragg grating (DS-FBG probe) is investigated in detail in this paper. The theoretical analysis of the sensing principle is verified by spectrum simulations of the DS-FBG probe with a modified transfer matrix method using the strain distribution within the DS-FBG probe. The fabrication process and physical principle of the capillary-driven self-assembly of double fibers in the UV adhesive with a low viscosity are demonstrated. Experimental results indicate that resolutions of 30 nm in radial direction and 15 nm in axial direction can be achieved, and the short-term displacement drifts within 90 seconds are 28.0 nm in radial direction and 7.9 nm in axial direction, and the long-term displacement drifts within 1 hour are 61.3 nm in radial direction and 17.3 nm in axial direction. The repeatability of the probing system can reach 60 nm and the measurement result of a standard nozzle is 300.49 μm with a standard deviation of 20 nm. PMID:26831960

  1. BIOLOGICAL MONITORING OF TOXIC TRACE METALS. VOLUME 2. TOXIC TRACE METALS IN PLANTS AND ANIMALS OF THE WORLD. PART III

    EPA Science Inventory

    The needs and priorities in using biological accumulator organisms for monitoring toxic trace metals in plants and animals are analyzed. The toxic trace metals selected for study are antimony, arsenic, beryllium, boron, cadmium, chromium, cobalt, copper, lead, mercury, nickel, se...

  2. BIOLOGICAL MONITORING OF TOXIC TRACE METALS. VOLUME 2. TOXIC TRACE METALS IN PLANTS AND ANIMALS OF THE WORLD. PART II

    EPA Science Inventory

    The needs and priorities in using biological accumulator organisms for monitoring toxic trace metals in plants and animals are analyzed. The toxic trace metals selected for study are antimony, arsenic, beryllium, boron, cadmium, chromium, cobalt, copper, lead, mercury, nickel, se...

  3. BIOLOGICAL MONITORING OF TOXIC TRACE METALS. VOLUME 2. TOXIC TRACE METALS IN PLANTS AND ANIMALS OF THE WORLD. PART I

    EPA Science Inventory

    The needs and priorities in using biological accumulator organisms for monitoring toxic trace metals in plants and animals are analyzed. The toxic trace metals selected for study are antimony, arsenic, beryllium, boron, cadmium, chromium, cobalt, copper, lead, mercury, nickel, se...

  4. What Part of NO Don't You Understand? Some Answers to the Cardinal Questions in Nitric Oxide Biology*

    PubMed Central

    Hill, Bradford G.; Dranka, Brian P.; Bailey, Shannon M.; Lancaster, Jack R.; Darley-Usmar, Victor M.

    2010-01-01

    Nitric oxide (NO) regulates biological processes through signaling mechanisms that exploit its unique biochemical properties as a free radical. For the last several decades, the key aspects of the chemical properties of NO relevant to biological systems have been defined, but it has been a challenge to assign these to specific cellular processes. Nevertheless, it is now clear that the high affinity of NO for transition metal centers, particularly iron, and the rapid reaction of NO with oxygen-derived free radicals can explain many of its biological and pathological properties. Emerging studies also highlight a growing importance of the secondary metabolites of NO-dependent reactions in the post-translational modification of key metabolic and signaling proteins. In this minireview, we emphasize the current understanding of the biochemistry of NO and place it in a biological context. PMID:20410298

  5. JAK/STAT signalling--an executable model assembled from molecule-centred modules demonstrating a module-oriented database concept for systems and synthetic biology.

    PubMed

    Blätke, Mary Ann; Dittrich, Anna; Rohr, Christian; Heiner, Monika; Schaper, Fred; Marwan, Wolfgang

    2013-06-01

    Mathematical models of molecular networks regulating biological processes in cells or organisms are most frequently designed as sets of ordinary differential equations. Various modularisation methods have been applied to reduce the complexity of models, to analyse their structural properties, to separate biological processes, or to reuse model parts. Taking the JAK/STAT signalling pathway with the extensive combinatorial cross-talk of its components as a case study, we make a natural approach to modularisation by creating one module for each biomolecule. Each module consists of a Petri net and associated metadata and is organised in a database publically accessible through a web interface (). The Petri net describes the reaction mechanism of a given biomolecule and its functional interactions with other components including relevant conformational states. The database is designed to support the curation, documentation, version control, and update of individual modules, and to assist the user in automatically composing complex models from modules. Biomolecule centred modules, associated metadata, and database support together allow the automatic creation of models by considering differential gene expression in given cell types or under certain physiological conditions or states of disease. Modularity also facilitates exploring the consequences of alternative molecular mechanisms by comparative simulation of automatically created models even for users without mathematical skills. Models may be selectively executed as an ODE system, stochastic, or qualitative models or hybrid and exported in the SBML format. The fully automated generation of models of redesigned networks by metadata-guided modification of modules representing biomolecules with mutated function or specificity is proposed. PMID:23443149

  6. Structural biological composites: An overview

    NASA Astrophysics Data System (ADS)

    Meyers, Marc A.; Lin, Albert Y. M.; Seki, Yasuaki; Chen, Po-Yu; Kad, Bimal K.; Bodde, Sara

    2006-07-01

    Biological materials are complex composites that are hierarchically structured and multifunctional. Their mechanical properties are often outstanding, considering the weak constituents from which they are assembled. They are for the most part composed of brittle (often, mineral) and ductile (organic) components. These complex structures, which have risen from millions of years of evolution, are inspiring materials scientists in the design of novel materials. This paper discusses the overall design principles in biological structural composites and illustrates them for five examples; sea spicules, the abalone shell, the conch shell, the toucan and hornbill beaks, and the sheep crab exoskeleton.

  7. Part A. Neutron activation analysis of selenium and vanadium in biological matrices. Part B. Isomeric transition activation in aqueous solutions of alkyl bromides

    SciTech Connect

    Ebrahim, A.

    1988-01-01

    Several procedures were evaluated for determination of selenium in biological fluids and vanadium in biological tissues by neutron activation analysis (NAA) employing {sup 77m}Se and {sup 52}V isotopes, respectively. Procedures for determination of total selenium, trimethylselenonium (TMSe) ion and selenite (SeO{sub 3}{sup 2{minus}}) ion in urine and serum and for total selenoamino acids in urine were developed by utilizing anion exchange chromatography and molecular NAA. A pre-column derivatization of selenoamino acids with o-phthalaldehyde was necessary for their determination. Also an analytical approach was developed for determination of trace vanadium in liver samples from normal and diabetic rats as well as human and cow. Reactions of bromine-80 activated by radiative neutron capture and bromine-82 activated by isomeric transition were investigated in aqueous solutions of bromomethane and 1-bromobutane. Bromine-80 organic yields decreased with decreasing solute concentrations. The tendency for aggregation of the solute molecules diminished as the solute concentration approached zero where the probable state of the solute approached a monomolecular dispersion. Unlike reactions of {sup 80}Br born by {sup 79}Br(n,{gamma}){sup 80}Br reaction, the total organic product yields resulting from the {sup 82m}Br(I.T.){sup 82}Br process showed no solute concentration dependence.

  8. Comparative Phytochemical Analysis of Essential Oils from Different Biological Parts of Artemisia herba alba and Their Cytotoxic Effect on Cancer Cells

    PubMed Central

    Tilaoui, Mounir; Ait Mouse, Hassan; Jaafari, Abdeslam; Zyad, Abdelmajid

    2015-01-01

    Purpose Carrying out the chemical composition and antiproliferative effects against cancer cells from different biological parts of Artemisia herba alba. Methods Essential oils were studied by gas chromatography coupled to mass spectrometry (GC–MS) and their antitumoral activity was tested against P815 mastocytoma and BSR kidney carcinoma cell lines; also, in order to evaluate the effect on normal human cells, oils were tested against peripheral blood mononuclear cells PBMCs. Results Essential oils from leaves and aerial parts (mixture of capitulum and leaves) were mainly composed by oxygenated sesquiterpenes 39.89% and 46.15% respectively; capitulum oil contained essentially monoterpenes (22.86%) and monocyclic monoterpenes (21.48%); esters constituted the major fraction (62.8%) of stem oil. Essential oils of different biological parts studied demonstrated a differential antiproliferative activity against P815 and BSR cancer cells; P815 cells are the most sensitive to the cytotoxic effect. Leaves and capitulum essential oils are more active than aerial parts. Interestingly, no cytotoxic effect of these essential oils was observed on peripheral blood mononuclear cells. Conclusion Our results showed that the chemical composition variability of essential oils depends on the nature of botanical parts of Artemisia herba alba. Furthermore, we have demonstrated that the differential cytotoxic effect depends not only on the essential oils concentration, but also on the target cells and the botanical parts of essential oils used. PMID:26196123

  9. DeviceEditor visual biological CAD canvas

    PubMed Central

    2012-01-01

    Background Biological Computer Aided Design (bioCAD) assists the de novo design and selection of existing genetic components to achieve a desired biological activity, as part of an integrated design-build-test cycle. To meet the emerging needs of Synthetic Biology, bioCAD tools must address the increasing prevalence of combinatorial library design, design rule specification, and scar-less multi-part DNA assembly. Results We report the development and deployment of web-based bioCAD software, DeviceEditor, which provides a graphical design environment that mimics the intuitive visual whiteboard design process practiced in biological laboratories. The key innovations of DeviceEditor include visual combinatorial library design, direct integration with scar-less multi-part DNA assembly design automation, and a graphical user interface for the creation and modification of design specification rules. We demonstrate how biological designs are rendered on the DeviceEditor canvas, and we present effective visualizations of genetic component ordering and combinatorial variations within complex designs. Conclusions DeviceEditor liberates researchers from DNA base-pair manipulation, and enables users to create successful prototypes using standardized, functional, and visual abstractions. Open and documented software interfaces support further integration of DeviceEditor with other bioCAD tools and software platforms. DeviceEditor saves researcher time and institutional resources through correct-by-construction design, the automation of tedious tasks, design reuse, and the minimization of DNA assembly costs. PMID:22373390

  10. Interfacial and mechanical properties of self-assembling systems

    NASA Astrophysics Data System (ADS)

    Carvajal, Daniel

    Self-assembly is a fascinating phenomena where interactions between small subunits allow them to aggregate and form complex structures that can span many length scales. These self-assembled structures are especially important in biology where they are necessary for life as we know it. This dissertation is a study of three very different self-assembling systems, all of which have important connections to biology and biological systems. Drop shape analysis was used to study the interfacial assembly of amphiphilic block copolymers at the oil/water interface. When biologically functionalyzed copolymers are used, this system can serve as a model for receptor-ligand interactions that are used by cells to perform many activities, such as interact with their surroundings. The physical properties of a self-assembling membrane system were quantified using membrane inflation and swelling experiments. These types of membranes may have important applications in medicine such as drug eluting (growth factor eluting) scaffolds to aid in wound healing. The factors affecting the properties of bis(leucine) oxalamide gels were also explored. We believe that this particular system will serve as an appropriate model for biological gels that are made up of fiber-like and/or rod-like structures. During the course of the research presented in this dissertation, many new techniques were developed specifically to allow/aid the study of these distinct self-assembling systems. For example, numerical methods were used to predict drop stability for drop shape analysis experiments and the methods used to create reproducibly create self-assembling membranes were developed specifically for this purpose. The development of these new techniques is an integral part of the thesis and should aid future students who work on these projects. A number ongoing projects and interesting research directions for each one of the projects is also presented.