Science.gov

Sample records for biological pathways

  1. INTERSECTINg Pathways in Cell Biology

    PubMed Central

    O'Bryan, John P.

    2010-01-01

    The endocytic pathway is involved in activation and inhibition of cellular signaling. Thus, defining the regulatory mechanisms that link endocytosis and cellular signaling is of interest. An emerging link between these processes is a family of proteins called intersectins (ITSNs). These multi-domain proteins serve as scaffolds in the assembly of endocytic vesicles, and also regulate components of various signaling pathways, including kinases, GTPases, and ubiquitin ligases. This review will summarize research on the role of ITSNs in regulating both endocytic and signal transduction pathways, discuss the link of ITSNs with human disease, and highlight future directions in the study of ITSNs. PMID:21156937

  2. Molecular neurodegeneration: basic biology and disease pathways.

    PubMed

    Vassar, Robert; Zheng, Hui

    2014-01-01

    The field of neurodegeneration research has been advancing rapidly over the past few years, and has provided intriguing new insights into the normal physiological functions and pathogenic roles of a wide range of molecules associated with several devastating neurodegenerative disorders, including Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, frontotemporal dementia, Huntington's disease, and Down syndrome. Recent developments have also facilitated initial efforts to translate preclinical discoveries toward novel therapeutic approaches and clinical trials in humans. These recent developments are reviewed in the current Review Series on "Molecular Neurodegeneration: Basic Biology and Disease Pathways" in a number of state-of-the-art manuscripts that cover themes presented at the Third International Conference on Molecular Neurodegeneration: "Basic biology and disease pathways" held in Cannes, France, September, 2013. PMID:25248568

  3. e-Science and biological pathway semantics

    PubMed Central

    Luciano, Joanne S; Stevens, Robert D

    2007-01-01

    Background The development of e-Science presents a major set of opportunities and challenges for the future progress of biological and life scientific research. Major new tools are required and corresponding demands are placed on the high-throughput data generated and used in these processes. Nowhere is the demand greater than in the semantic integration of these data. Semantic Web tools and technologies afford the chance to achieve this semantic integration. Since pathway knowledge is central to much of the scientific research today it is a good test-bed for semantic integration. Within the context of biological pathways, the BioPAX initiative, part of a broader movement towards the standardization and integration of life science databases, forms a necessary prerequisite for its successful application of e-Science in health care and life science research. This paper examines whether BioPAX, an effort to overcome the barrier of disparate and heterogeneous pathway data sources, addresses the needs of e-Science. Results We demonstrate how BioPAX pathway data can be used to ask and answer some useful biological questions. We find that BioPAX comes close to meeting a broad range of e-Science needs, but certain semantic weaknesses mean that these goals are missed. We make a series of recommendations for re-modeling some aspects of BioPAX to better meet these needs. Conclusion Once these semantic weaknesses are addressed, it will be possible to integrate pathway information in a manner that would be useful in e-Science. PMID:17493286

  4. Using biological pathway data with paxtools.

    PubMed

    Demir, Emek; Babur, Ozgün; Rodchenkov, Igor; Aksoy, Bülent Arman; Fukuda, Ken I; Gross, Benjamin; Sümer, Onur Selçuk; Bader, Gary D; Sander, Chris

    2013-01-01

    A rapidly growing corpus of formal, computable pathway information can be used to answer important biological questions including finding non-trivial connections between cellular processes, identifying significantly altered portions of the cellular network in a disease state and building predictive models that can be used for precision medicine. Due to its complexity and fragmented nature, however, working with pathway data is still difficult. We present Paxtools, a Java library that contains algorithms, software components and converters for biological pathways represented in the standard BioPAX language. Paxtools allows scientists to focus on their scientific problem by removing technical barriers to access and analyse pathway information. Paxtools can run on any platform that has a Java Runtime Environment and was tested on most modern operating systems. Paxtools is open source and is available under the Lesser GNU public license (LGPL), which allows users to freely use the code in their software systems with a requirement for attribution. Source code for the current release (4.2.0) can be found in Software S1. A detailed manual for obtaining and using Paxtools can be found in Protocol S1. The latest sources and release bundles can be obtained from biopax.org/paxtools. PMID:24068901

  5. Molecular profiles to biology and pathways: a systems biology approach.

    PubMed

    Van Laere, Steven; Dirix, Luc; Vermeulen, Peter

    2016-01-01

    Interpreting molecular profiles in a biological context requires specialized analysis strategies. Initially, lists of relevant genes were screened to identify enriched concepts associated with pathways or specific molecular processes. However, the shortcoming of interpreting gene lists by using predefined sets of genes has resulted in the development of novel methods that heavily rely on network-based concepts. These algorithms have the advantage that they allow a more holistic view of the signaling properties of the condition under study as well as that they are suitable for integrating different data types like gene expression, gene mutation, and even histological parameters. PMID:27311441

  6. Modeling biological pathway dynamics with timed automata.

    PubMed

    Schivo, Stefano; Scholma, Jetse; Wanders, Brend; Urquidi Camacho, Ricardo A; van der Vet, Paul E; Karperien, Marcel; Langerak, Rom; van de Pol, Jaco; Post, Janine N

    2014-05-01

    Living cells are constantly subjected to a plethora of environmental stimuli that require integration into an appropriate cellular response. This integration takes place through signal transduction events that form tightly interconnected networks. The understanding of these networks requires capturing their dynamics through computational support and models. ANIMO (analysis of Networks with Interactive Modeling) is a tool that enables the construction and exploration of executable models of biological networks, helping to derive hypotheses and to plan wet-lab experiments. The tool is based on the formalism of Timed Automata, which can be analyzed via the UPPAAL model checker. Thanks to Timed Automata, we can provide a formal semantics for the domain-specific language used to represent signaling networks. This enforces precision and uniformity in the definition of signaling pathways, contributing to the integration of isolated signaling events into complex network models. We propose an approach to discretization of reaction kinetics that allows us to efficiently use UPPAAL as the computational engine to explore the dynamic behavior of the network of interest. A user-friendly interface hides the use of Timed Automata from the user, while keeping the expressive power intact. Abstraction to single-parameter kinetics speeds up construction of models that remain faithful enough to provide meaningful insight. The resulting dynamic behavior of the network components is displayed graphically, allowing for an intuitive and interactive modeling experience. PMID:24808226

  7. Ontology-based aggregation of biological pathway datasets.

    PubMed

    Jiang, Keyuan; Nash, Christopher

    2005-01-01

    The massive accumulation of biological data in the past decades has generated a significant amount of biological knowledge which is represented in one way as biological pathways. The existence of over 150 pathway databases reflects the diversity of the biological data and heterogeneity of data models, storage formats and access methods. To address an intriguing biological question, it is not uncommon for a biologist to query more one pathway database to acquire a more complete picture of current understanding of biology. To facility life scientists in searching biological pathway data, we designed a biological pathway aggregator which aggregates various pathway datasets via the BioPAX ontology, a community-developed ontology based upon the concept of Semantic Web for integrating and exchanging biological pathway data. Our aggregator is composed of modules that retrieve the data from various sources, transform the raw data to BioPAX format, persist the converted data in the persistent data store, and enable queries by other applications. PMID:17282076

  8. Discerning mechanistically rewired biological pathways by cumulative interaction heterogeneity statistics

    PubMed Central

    Cotton, Travis B.; Nguyen, Hien H.; Said, Joseph I.; Ouyang, Zhengyu; Zhang, Jinfa; Song, Mingzhou

    2015-01-01

    Changes in response of a biological pathway could be a consequence of either pathway rewiring, changed input, or a combination of both. Most pathway analysis methods are not designed for mechanistic rewiring such as regulatory element variations. This limits our understanding of biological pathway evolution. Here we present a Q-method to discern whether changed pathway response is caused by mechanistic rewiring of pathways due to evolution. The main innovation is a cumulative pathway interaction heterogeneity statistic accounting for rewiring-specific effects on the rate of change of each molecular variable across conditions. The Q-method remarkably outperformed differential-correlation based approaches on data from diverse biological processes. Strikingly, it also worked well in differentiating rewired chaotic systems, whose dynamics are notoriously difficult to predict. Applying the Q-method on transcriptome data of four yeasts, we show that pathway interaction heterogeneity for known metabolic and signaling pathways is indeed a predictor of interspecies genetic rewiring due to unbalanced TATA box-containing genes among the yeasts. The demonstrated effectiveness of the Q-method paves the way to understanding network evolution at the resolution of functional biological pathways. PMID:25921728

  9. Discerning mechanistically rewired biological pathways by cumulative interaction heterogeneity statistics.

    PubMed

    Cotton, Travis B; Nguyen, Hien H; Said, Joseph I; Ouyang, Zhengyu; Zhang, Jinfa; Song, Mingzhou

    2015-01-01

    Changes in response of a biological pathway could be a consequence of either pathway rewiring, changed input, or a combination of both. Most pathway analysis methods are not designed for mechanistic rewiring such as regulatory element variations. This limits our understanding of biological pathway evolution. Here we present a Q-method to discern whether changed pathway response is caused by mechanistic rewiring of pathways due to evolution. The main innovation is a cumulative pathway interaction heterogeneity statistic accounting for rewiring-specific effects on the rate of change of each molecular variable across conditions. The Q-method remarkably outperformed differential-correlation based approaches on data from diverse biological processes. Strikingly, it also worked well in differentiating rewired chaotic systems, whose dynamics are notoriously difficult to predict. Applying the Q-method on transcriptome data of four yeasts, we show that pathway interaction heterogeneity for known metabolic and signaling pathways is indeed a predictor of interspecies genetic rewiring due to unbalanced TATA box-containing genes among the yeasts. The demonstrated effectiveness of the Q-method paves the way to understanding network evolution at the resolution of functional biological pathways. PMID:25921728

  10. Modelling the Structure and Dynamics of Biological Pathways

    PubMed Central

    O’Hara, Laura; Livigni, Alessandra; Chen, Sz-Hau; Raza, Sobia; Digard, Paul; Smith, Lee B.; Freeman, Tom C.

    2016-01-01

    There is a need for formalised diagrams that both summarise current biological pathway knowledge and support modelling approaches that explain and predict their behaviour. Here, we present a new, freely available modelling framework that includes a biologist-friendly pathway modelling language (mEPN), a simple but sophisticated method to support model parameterisation using available biological information; a stochastic flow algorithm that simulates the dynamics of pathway activity; and a 3-D visualisation engine that aids understanding of the complexities of a system’s dynamics. We present example pathway models that illustrate of the power of approach to depict a diverse range of systems. PMID:27509052

  11. Modelling the Structure and Dynamics of Biological Pathways.

    PubMed

    O'Hara, Laura; Livigni, Alessandra; Theo, Thanos; Boyer, Benjamin; Angus, Tim; Wright, Derek; Chen, Sz-Hau; Raza, Sobia; Barnett, Mark W; Digard, Paul; Smith, Lee B; Freeman, Tom C

    2016-08-01

    There is a need for formalised diagrams that both summarise current biological pathway knowledge and support modelling approaches that explain and predict their behaviour. Here, we present a new, freely available modelling framework that includes a biologist-friendly pathway modelling language (mEPN), a simple but sophisticated method to support model parameterisation using available biological information; a stochastic flow algorithm that simulates the dynamics of pathway activity; and a 3-D visualisation engine that aids understanding of the complexities of a system's dynamics. We present example pathway models that illustrate of the power of approach to depict a diverse range of systems. PMID:27509052

  12. Using the Gene Ontology to Enrich Biological Pathways

    SciTech Connect

    Sanfilippo, Antonio P.; Baddeley, Robert L.; Beagley, Nathaniel; McDermott, Jason E.; Riensche, Roderick M.; Taylor, Ronald C.; Gopalan, Banu

    2009-12-10

    Most current approaches to automatic pathway generation are based on a reverse engineering approach in which pathway plausibility is solely derived from microarray gene expression data. These approaches tend to lack in generality and offer no independent validation as they are too reliant on the pathway observables that guide pathway generation. By contrast, alternative approaches that use prior biological knowledge to validate pathways inferred from gene expression data may err in the opposite direction as the prior knowledge is usually not sufficiently tuned to the pathology of focus. In this paper, we present a novel pathway generation approach that combines insights from the reverse engineering and knowledge-based approaches to increase the biological plausibility of automatically generated regulatory networks and describe an application of this approach to transcriptional data from a mouse model of neuroprotection during stroke.

  13. Constructing biological pathway models with hybrid functional Petri nets.

    PubMed

    Doi, Atsushi; Fujita, Sachie; Matsuno, Hiroshi; Nagasaki, Masao; Miyano, Satoru

    2004-01-01

    In many research projects on modeling and analyzing biological pathways, the Petri net has been recognized as a promising method for representing biological pathways. From the pioneering works by Reddy et al., 1993, and Hofestädt, 1994, that model metabolic pathways by traditional Petri net, several enhanced Petri nets such as colored Petri net, stochastic Petri net, and hybrid Petri net have been used for modeling biological phenomena. Recently, Matsuno et al., 2003b, introduced the hybrid functional Petri net (HFPN) in order to give a more intuitive and natural modeling method for biological pathways than these existing Petri nets. Although the paper demonstrates the effectiveness of HFPN with two examples of gene regulation mechanism for circadian rhythms and apoptosis signaling pathway, there has been no detailed explanation about the method of HFPN construction for these examples. The purpose of this paper is to describe method to construct biological pathways with the HFPN step-by-step. The method is demonstrated by the well-known glycolytic pathway controlled by the lac operon gene regulatory mechanism. PMID:15724280

  14. Biological Conversion of Sugars to Hydrocarbons Technology Pathway

    SciTech Connect

    Davis, R.; Biddy, M.; Tan, E.; Tao, L.; Jones, S.

    2013-03-01

    This technology pathway case investigates the biological conversion of biomass-derived sugars to hydrocarbon biofuels, utilizing data from recent literature references and information consistent with recent pilot-scale demonstrations at NREL. Technical barriers and key research needs have been identified that should be pursued for the pathway to become competitive with petroleum-derived gasoline-, diesel-, and jet-range hydrocarbon blendstocks.

  15. Using ILP to Identify Pathway Activation Patterns in Systems Biology

    PubMed Central

    Neaves, Samuel R; Millard, Louise A C; Tsoka, Sophia

    2016-01-01

    We show a logical aggregation method that, combined with propositionalization methods, can construct novel structured biological features from gene expression data. We do this to gain understanding of pathway mechanisms, for instance, those associated with a particular disease. We illustrate this method on the task of distinguishing between two types of lung cancer; Squamous Cell Carcinoma (SCC) and Adenocarcinoma (AC). We identify pathway activation patterns in pathways previously implicated in the development of cancers. Our method identified a model with comparable predictive performance to the winning algorithm of a recent challenge, while providing biologically relevant explanations that may be useful to a biologist. PMID:27478883

  16. A systems biology approach reveals common metastatic pathways in osteosarcoma

    PubMed Central

    2012-01-01

    Background Osteosarcoma (OS) is the most common malignant bone tumor in children and adolescents. The survival rate of patients with metastatic disease remains very dismal. Nevertheless, metastasis is a complex process and a single-level analysis is not likely to identify its key biological determinants. In this study, we used a systems biology approach to identify common metastatic pathways that are jointly supported by both mRNA and protein expression data in two distinct human metastatic OS models. Results mRNA expression microarray and N-linked glycoproteomic analyses were performed on two commonly used isogenic pairs of human metastatic OS cell lines, namely HOS/143B and SaOS-2/LM7. Pathway analysis of the differentially regulated genes and glycoproteins separately revealed pathways associated to metastasis including cell cycle regulation, immune response, and epithelial-to-mesenchymal-transition. However, no common significant pathway was found at both genomic and proteomic levels between the two metastatic models, suggesting a very different biological nature of the cell lines. To address this issue, we used a topological significance analysis based on a “shortest-path” algorithm to identify topological nodes, which uncovered additional biological information with respect to the genomic and glycoproteomic profiles but remained hidden from the direct analyses. Pathway analysis of the significant topological nodes revealed a striking concordance between the models and identified significant common pathways, including “Cytoskeleton remodeling/TGF/WNT”, “Cytoskeleton remodeling/Cytoskeleton remodeling”, and “Cell adhesion/Chemokines and adhesion”. Of these, the “Cytoskeleton remodeling/TGF/WNT” was the top ranked common pathway from the topological analysis of the genomic and proteomic profiles in the two metastatic models. The up-regulation of proteins in the “Cytoskeleton remodeling/TGF/WNT” pathway in the SaOS-2/LM7 and HOS/143B models

  17. Available pathways database (APD): an essential resource for combinatorial biology.

    PubMed

    Pirrung, M C; Silva, C M; Jaeger, J

    2000-10-01

    A relational database, the Available Pathways Database (APD), has been constructed of microbial natural products, their producing strains, and their biosynthetic pathways. The database allows the ready selection of donor strains for combinatorial biology experiments. It provides the same type of resource for combinatorial biology as the Available Chemicals Directory (ACD) does for combinatorial chemical library generation. Its cataloging ability can also provide insight into novel aspects of biosynthetic routes. In particular, no 10-unit Type I polyketides were found in the compilation of this edition of the APD (Version I). PMID:11076562

  18. Reactome: a database of reactions, pathways and biological processes.

    PubMed

    Croft, David; O'Kelly, Gavin; Wu, Guanming; Haw, Robin; Gillespie, Marc; Matthews, Lisa; Caudy, Michael; Garapati, Phani; Gopinath, Gopal; Jassal, Bijay; Jupe, Steven; Kalatskaya, Irina; Mahajan, Shahana; May, Bruce; Ndegwa, Nelson; Schmidt, Esther; Shamovsky, Veronica; Yung, Christina; Birney, Ewan; Hermjakob, Henning; D'Eustachio, Peter; Stein, Lincoln

    2011-01-01

    Reactome (http://www.reactome.org) is a collaboration among groups at the Ontario Institute for Cancer Research, Cold Spring Harbor Laboratory, New York University School of Medicine and The European Bioinformatics Institute, to develop an open source curated bioinformatics database of human pathways and reactions. Recently, we developed a new web site with improved tools for pathway browsing and data analysis. The Pathway Browser is an Systems Biology Graphical Notation (SBGN)-based visualization system that supports zooming, scrolling and event highlighting. It exploits PSIQUIC web services to overlay our curated pathways with molecular interaction data from the Reactome Functional Interaction Network and external interaction databases such as IntAct, BioGRID, ChEMBL, iRefIndex, MINT and STRING. Our Pathway and Expression Analysis tools enable ID mapping, pathway assignment and overrepresentation analysis of user-supplied data sets. To support pathway annotation and analysis in other species, we continue to make orthology-based inferences of pathways in non-human species, applying Ensembl Compara to identify orthologs of curated human proteins in each of 20 other species. The resulting inferred pathway sets can be browsed and analyzed with our Species Comparison tool. Collaborations are also underway to create manually curated data sets on the Reactome framework for chicken, Drosophila and rice. PMID:21067998

  19. Systems biology of the autophagy-lysosomal pathway

    PubMed Central

    Jegga, Anil G; Schneider, Lonnie; Ouyang, Xiaosen

    2011-01-01

    The mechanisms of the control and activity of the autophagy-lysosomal protein degradation machinery are emerging as an important theme for neurodevelopment and neurodegeneration. However, the underlying regulatory and functional networks of known genes controlling autophagy and lysosomal function and their role in disease are relatively unexplored. We performed a systems biology-based integrative computational analysis to study the interactions between molecular components and to develop models for regulation and function of genes involved in autophagy and lysosomal function. Specifically, we analyzed transcriptional and microRNA-based post-transcriptional regulation of these genes and performed functional enrichment analyses to understand their involvement in nervous system-related diseases and phenotypes. Transcriptional regulatory network analysis showed that binding sites for transcription factors, SREBP1, USF, AP-1 and NFE2, are common among autophagy and lysosomal genes. MicroRNA enrichment analysis revealed miR-130, 98, 124, 204 and 142 as the putative post-transcriptional regulators of the autophagy-lysosomal pathway genes. Pathway enrichment analyses revealed that the mTOR and insulin signaling pathways are important in the regulation of genes involved in autophagy. In addition, we found that glycosaminoglycan and glycosphingolipid pathways also make a major contribution to lysosomal gene regulation. The analysis confirmed the known contribution of the autophagy-lysosomal genes to Alzheimer and Parkinson diseases and also revealed potential involvement in tuberous sclerosis, neuronal ceroidlipofuscinoses, sepsis and lung, liver and prostatic neoplasms. To further probe the impact of autophagy-lysosomal gene deficits on neurologically-linked phenotypes, we also mined the mouse knockout phenotype data for the autophagy-lysosomal genes and found them to be highly predictive of nervous system dysfunction. Overall this study demonstrates the utility of systems

  20. Biological Conversion of Sugars to Hydrocarbons Technology Pathway

    SciTech Connect

    Davis, Ryan; Biddy, Mary J.; Tan, Eric; Tao, Ling; Jones, Susanne B.

    2013-03-31

    In support of the Bioenergy Technologies Office, the National Renewable Energy Laboratory (NREL) and the Pacific Northwest National Laboratory (PNNL) are undertaking studies of biomass conversion technologies to identify barriers and target research toward reducing conversion costs. Process designs and preliminary economic estimates for each of these pathway cases were developed using rigorous modeling tools (Aspen Plus and Chemcad). These analyses incorporated the best information available at the time of development, including data from recent pilot and bench-scale demonstrations, collaborative industrial and academic partners, and published literature and patents. This technology pathway case investigates the biological conversion of biomass derived sugars to hydrocarbon biofuels, utilizing data from recent literature references and information consistent with recent pilot scale demonstrations at NREL. Technical barriers and key research needs have been identified that should be pursued for the pathway to become competitive with petroleum-derived gasoline, diesel and jet range hydrocarbon blendstocks.

  1. Genetic analysis of biological pathway data through genomic randomization

    PubMed Central

    Yaspan, Brian L.; Bush, William S.; Torstenson, Eric S.; Ma, Deqiong; Pericak-Vance, Margaret A.; Ritchie, Marylyn D.; Sutcliffe, James S.; Haines, Jonathan L.

    2011-01-01

    Genome Wide Association Studies (GWAS) are a standard approach for large-scale common variation characterization and for identification of single loci predisposing to disease. However, due to issues of moderate sample sizes and particularly multiple testing correction, many variants of smaller effect size are not detected within a single allele analysis framework. Thus, small main effects and potential epistatic effects are not consistently observed in GWAS using standard analytical approaches that consider only single SNP alleles. Here we propose unique methodology that aggregates variants of interest (for example, genes in a biological pathway) using GWAS results. Multiple testing and type I error concerns are minimized using empirical genomic randomization to estimate significance. Randomization corrects for common pathway-based analysis biases such as SNP coverage and density, linkage disequilibrium, gene size and pathway size. PARIS (Pathway Analysis by Randomization Incorporating Structure) applies this randomization and in doing so directly accounts for linkage disequilibrium effects. PARIS is independent of association analysis method and is thus applicable to GWAS datasets of all study designs. Using the KEGG database as an example, we apply PARIS to the publicly available Autism Genetic Resource Exchange (AGRE) GWA dataset, revealing pathways with a significant enrichment of positive association results. PMID:21279722

  2. PathwayExplorer: web service for visualizing high-throughput expression data on biological pathways.

    PubMed

    Mlecnik, Bernhard; Scheideler, Marcel; Hackl, Hubert; Hartler, Jürgen; Sanchez-Cabo, Fatima; Trajanoski, Zlatko

    2005-07-01

    While generation of high-throughput expression data is becoming routine, the fast, easy, and systematic presentation and analysis of these data in a biological context is still an obstacle. To address this need, we have developed PathwayExplorer, which maps expression profiles of genes or proteins simultaneously onto major, currently available regulatory, metabolic and cellular pathways from KEGG, BioCarta and GenMAPP. PathwayExplorer is a platform-independent web server application with an optional standalone Java application using a SOAP (simple object access protocol) interface. Mapped pathways are ranked for the easy selection of the pathway of interest, displaying all available genes of this pathway with their expression profiles in a selectable and intuitive color code. Pathway maps produced can be downloaded as PNG, JPG or as high-resolution vector graphics SVG. The web service is freely available at https://pathwayexplorer.genome.tugraz.at; the standalone client can be downloaded at http://genome.tugraz.at. PMID:15980551

  3. Pathway Tools version 13.0: integrated software for pathway/genome informatics and systems biology

    PubMed Central

    Paley, Suzanne M.; Krummenacker, Markus; Latendresse, Mario; Dale, Joseph M.; Lee, Thomas J.; Kaipa, Pallavi; Gilham, Fred; Spaulding, Aaron; Popescu, Liviu; Altman, Tomer; Paulsen, Ian; Keseler, Ingrid M.; Caspi, Ron

    2010-01-01

    Pathway Tools is a production-quality software environment for creating a type of model-organism database called a Pathway/Genome Database (PGDB). A PGDB such as EcoCyc integrates the evolving understanding of the genes, proteins, metabolic network and regulatory network of an organism. This article provides an overview of Pathway Tools capabilities. The software performs multiple computational inferences including prediction of metabolic pathways, prediction of metabolic pathway hole fillers and prediction of operons. It enables interactive editing of PGDBs by DB curators. It supports web publishing of PGDBs, and provides a large number of query and visualization tools. The software also supports comparative analyses of PGDBs, and provides several systems biology analyses of PGDBs including reachability analysis of metabolic networks, and interactive tracing of metabolites through a metabolic network. More than 800 PGDBs have been created using Pathway Tools by scientists around the world, many of which are curated DBs for important model organisms. Those PGDBs can be exchanged using a peer-to-peer DB sharing system called the PGDB Registry. PMID:19955237

  4. Pandora, a PAthway and Network DiscOveRy Approach based on common biological evidence

    PubMed Central

    Zhang, Kelvin Xi; Ouellette, B. F. Francis

    2010-01-01

    Motivation: Many biological phenomena involve extensive interactions between many of the biological pathways present in cells. However, extraction of all the inherent biological pathways remains a major challenge in systems biology. With the advent of high-throughput functional genomic techniques, it is now possible to infer biological pathways and pathway organization in a systematic way by integrating disparate biological information. Results: Here, we propose a novel integrated approach that uses network topology to predict biological pathways. We integrated four types of biological evidence (protein–protein interaction, genetic interaction, domain–domain interaction and semantic similarity of Gene Ontology terms) to generate a functionally associated network. This network was then used to develop a new pathway finding algorithm to predict biological pathways in yeast. Our approach discovered 195 biological pathways and 31 functionally redundant pathway pairs in yeast. By comparing our identified pathways to three public pathway databases (KEGG, BioCyc and Reactome), we observed that our approach achieves a maximum positive predictive value of 12.8% and improves on other predictive approaches. This study allows us to reconstruct biological pathways and delineates cellular machinery in a systematic view. Availability: The method has been implemented in Perl and is available for downloading from http://www.oicr.on.ca/research/ouellette/pandora. It is distributed under the terms of GPL (http://opensource.org/licenses/gpl-2.0.php) Contact: francis@oicr.on.ca Supplementary information: Supplementary data are available at Bioinformatics online. PMID:20031970

  5. Algebraic Systems Biology: A Case Study for the Wnt Pathway.

    PubMed

    Gross, Elizabeth; Harrington, Heather A; Rosen, Zvi; Sturmfels, Bernd

    2016-01-01

    Steady-state analysis of dynamical systems for biological networks gives rise to algebraic varieties in high-dimensional spaces whose study is of interest in their own right. We demonstrate this for the shuttle model of the Wnt signaling pathway. Here, the variety is described by a polynomial system in 19 unknowns and 36 parameters. It has degree 9 over the parameter space. This case study explores multistationarity, model comparison, dynamics within regions of the state space, identifiability, and parameter estimation, from a geometric point of view. We employ current methods from computational algebraic geometry, polyhedral geometry, and combinatorics. PMID:26645985

  6. Context-based resolution of semantic conflicts in biological pathways

    PubMed Central

    2015-01-01

    Background Interactions between biological entities such as genes, proteins and metabolites, so called pathways, are key features to understand molecular mechanisms of life. As pathway information is being accumulated rapidly through various knowledge resources, there are growing interests in maintaining the integrity of the heterogeneous databases. Methods Here, we defined conflict as a status where two contradictory pieces of evidence (i.e. 'A increases B' and 'A decreases B') coexist in a same pathway. This conflict damages unity so that inference of simulation on the integrated pathway network might be unreliable. We defined rule and rule group. A rule consists of interaction of two entities, meta-relation (increase or decrease), and contexts terms about tissue specificity or environmental conditions. The rules, which have the same interaction, are grouped into a rule group. If the rules don't have a unanimous meta-relation, the rule group and the rules are judged as being conflicting. Results This analysis revealed that almost 20% of known interactions suffer from conflicting information and conflicting information occurred much more frequently in the literature than the public database. With consideration for dual functions depending on context, we thought it might resolve conflict to consider context. We grouped rules, which have the same context terms as well as interaction. It's revealed that up to 86% of the conflicts could be resolved by considering context. Subsequent analysis also showed that those contradictory records generally compete each other closely, but some information might be suspicious when their evidence levels are seriously imbalanced. Conclusions By identifying and resolving the conflicts, we expect that pathway databases can be cleaned and used for better secondary analyses such as gene/protein annotation, network dynamics and qualitative/quantitative simulation. PMID:26045143

  7. Mnk kinase pathway: Cellular functions and biological outcomes.

    PubMed

    Joshi, Sonali; Platanias, Leonidas C

    2014-08-26

    The mitogen-activated protein kinase (MAPK) interacting protein kinases 1 and 2 (Mnk1 and Mnk2) play important roles in controlling signals involved in mRNA translation. In addition to the MAPKs (p38 or Erk), multiple studies suggest that the Mnk kinases can be regulated by other known kinases such as Pak2 and/or other unidentified kinases by phosphorylation of residues distinct from the sites phosphorylated by the MAPKs. Several studies have established multiple Mnk protein targets, including PSF, heterogenous nuclear ribonucleoprotein A1, Sprouty 2 and have lead to the identification of distinct biological functions and substrate specificity for the Mnk kinases. In this review we discuss the pathways regulating the Mnk kinases, their known substrates as well as the functional consequences of engagement of pathways controlled by Mnk kinases. These kinases play an important role in mRNA translation via their regulation of eukaryotic initiation factor 4E (eIF4E) and their functions have important implications in tumor biology as well as the regulation of drug resistance to anti-oncogenic therapies. Other studies have identified a role for the Mnk kinases in cap-independent mRNA translation, suggesting that the Mnk kinases can exert important functional effects independently of the phosphorylation of eIF4E. The role of Mnk kinases in inflammation and inflammation-induced malignancies is also discussed. PMID:25225600

  8. Inference of Evolutionary Forces Acting on Human Biological Pathways

    PubMed Central

    Daub, Josephine T.; Dupanloup, Isabelle; Robinson-Rechavi, Marc; Excoffier, Laurent

    2015-01-01

    Because natural selection is likely to act on multiple genes underlying a given phenotypic trait, we study here the potential effect of ongoing and past selection on the genetic diversity of human biological pathways. We first show that genes included in gene sets are generally under stronger selective constraints than other genes and that their evolutionary response is correlated. We then introduce a new procedure to detect selection at the pathway level based on a decomposition of the classical McDonald–Kreitman test extended to multiple genes. This new test, called 2DNS, detects outlier gene sets and takes into account past demographic effects and evolutionary constraints specific to gene sets. Selective forces acting on gene sets can be easily identified by a mere visual inspection of the position of the gene sets relative to their two-dimensional null distribution. We thus find several outlier gene sets that show signals of positive, balancing, or purifying selection but also others showing an ancient relaxation of selective constraints. The principle of the 2DNS test can also be applied to other genomic contrasts. For instance, the comparison of patterns of polymorphisms private to African and non-African populations reveals that most pathways show a higher proportion of nonsynonymous mutations in non-Africans than in Africans, potentially due to different demographic histories and selective pressures. PMID:25971280

  9. Comparison on extreme pathways reveals nature of different biological processes

    PubMed Central

    2014-01-01

    Background Constraint-based reconstruction and analysis (COBRA) is used for modeling genome-scale metabolic networks (MNs). In a COBRA model, extreme pathways (ExPas) are the edges of its conical solution space, which is formed by all viable steady-state flux distributions. ExPa analysis has been successfully applied to MNs to reveal their phenotypic capabilities and properties. Recently, the COBRA framework has been extended to transcriptional regulatory networks (TRNs) and transcriptional and translational networks (TTNs), so efforts are needed to determine whether ExPa analysis is also effective on these two types of networks. Results In this paper, the ExPas resulting from the COBRA models of E.coli's MN, TRN and TTN were horizontally compared from 5 aspects: (1) Total number and the ratio of their amount to reaction amount; (2) Length distribution; (3) Reaction participation; (4) Correlated reaction sets (CoSets); (5) interconnectivity degree. Significant discrepancies in above properties were observed during the comparison, which reveals the biological natures of different biological processes. Besides, by demonstrating the application of ExPa analysis on E.coli, we provide a practical guidance of an improved approach to compute ExPas on COBRA models of TRNs. Conclusions ExPas of E.coli's MN, TRN and TTN have different properties, which are strongly connected with various biological natures of biochemical networks, such as topological structure, specificity and redundancy. Our study shows that ExPas are biologically meaningful on the newborn models and suggests the effectiveness of ExPa analysis on them. PMID:24565046

  10. Conduction pathways in microtubules, biological quantum computation, and consciousness.

    PubMed

    Hameroff, Stuart; Nip, Alex; Porter, Mitchell; Tuszynski, Jack

    2002-01-01

    Technological computation is entering the quantum realm, focusing attention on biomolecular information processing systems such as proteins, as presaged by the work of Michael Conrad. Protein conformational dynamics and pharmacological evidence suggest that protein conformational states-fundamental information units ('bits') in biological systems-are governed by quantum events, and are thus perhaps akin to quantum bits ('qubits') as utilized in quantum computation. 'Real time' dynamic activities within cells are regulated by the cell cytoskeleton, particularly microtubules (MTs) which are cylindrical lattice polymers of the protein tubulin. Recent evidence shows signaling, communication and conductivity in MTs, and theoretical models have predicted both classical and quantum information processing in MTs. In this paper we show conduction pathways for electron mobility and possible quantum tunneling and superconductivity among aromatic amino acids in tubulins. The pathways within tubulin match helical patterns in the microtubule lattice structure, which lend themselves to topological quantum effects resistant to decoherence. The Penrose-Hameroff 'Orch OR' model of consciousness is reviewed as an example of the possible utility of quantum computation in MTs. PMID:11755497

  11. Alternative ground states enable pathway switching in biological electron transfer

    PubMed Central

    Abriata, Luciano A.; Álvarez-Paggi, Damián; Ledesma, Gabriela N.; Blackburn, Ninian J.; Vila, Alejandro J.; Murgida, Daniel H.

    2012-01-01

    Electron transfer is the simplest chemical reaction and constitutes the basis of a large variety of biological processes, such as photosynthesis and cellular respiration. Nature has evolved specific proteins and cofactors for these functions. The mechanisms optimizing biological electron transfer have been matter of intense debate, such as the role of the protein milieu between donor and acceptor sites. Here we propose a mechanism regulating long-range electron transfer in proteins. Specifically, we report a spectroscopic, electrochemical, and theoretical study on WT and single-mutant CuA redox centers from Thermus thermophilus, which shows that thermal fluctuations may populate two alternative ground-state electronic wave functions optimized for electron entry and exit, respectively, through two different and nearly perpendicular pathways. These findings suggest a unique role for alternative or “invisible” electronic ground states in directional electron transfer. Moreover, it is shown that this energy gap and, therefore, the equilibrium between ground states can be fine-tuned by minor perturbations, suggesting alternative ways through which protein–protein interactions and membrane potential may optimize and regulate electron–proton energy transduction. PMID:23054836

  12. Epigenetic pathways through which experiences become linked with biology.

    PubMed

    McGowan, Patrick O; Roth, Tania L

    2015-05-01

    This article highlights the defining principles, progress, and future directions in epigenetics research in relation to this Special Issue. Exciting studies in the fields of neuroscience, psychology, and psychiatry have provided new insights into the epigenetic factors (e.g., DNA methylation) that are responsive to environmental input and serve as biological pathways in behavioral development. Here we highlight the experimental evidence, mainly from animal models, that factors such as psychosocial stress and environmental adversity can become encoded within epigenetic factors with functional consequences for brain plasticity and behavior. We also highlight evidence that epigenetic marking of genes in one generation can have consequences for future generations (i.e., inherited), and work with humans linking epigenetics, cognitive dysfunction, and psychiatric disorder. Though epigenetics has offered more of a beginning than an answer to the centuries-old nature-nurture debate, continued research is certain to yield substantial information regarding biological determinants of central nervous system changes and behavior with relevance for the study of developmental psychopathology. PMID:25997776

  13. Epigenetic pathways through which experiences become linked with biology

    PubMed Central

    McGowan, Patrick O.; Roth, Tania L.

    2015-01-01

    This article highlights the defining principles, progress, and future directions in epigenetics research in relation to this special issue. Exciting studies in the fields of neuroscience, psychology, and psychiatry have provided new insights into the epigenetic factors (e.g. DNA methylation) that are responsive to environmental input and serve as biological pathways in behavioral development. Here we highlight the experimental evidence, mainly from animal models, that factors such as psychosocial stress and environmental adversity can become encoded within epigenetic factors with functional consequences for brain plasticity and behavior. We also highlight evidence that epigenetic marking of genes in one generation can have consequences for future generations (i.e. inherited), and work with humans linking epigenetics, cognitive dysfunction, and psychiatric disorder. Though epigenetics has offered more of a beginning than an answer to the centuries-old nature-nurture debate, continued research is certain to yield substantial information regarding biological determinants of CNS changes and behavior with relevance for the study of developmental psychopathology. PMID:25997776

  14. Systems analysis of gene ontology and biological pathways involved in post-myocardial infarction responses

    PubMed Central

    2015-01-01

    Background Pathway analysis has been widely used to gain insight into essential mechanisms of the response to myocardial infarction (MI). Currently, there exist multiple pathway databases that organize molecular datasets and manually curate pathway maps for biological interpretation at varying forms of organization. However, inconsistencies among different databases in pathway descriptions, frequently due to conflicting results in the literature, can generate incorrect interpretations. Furthermore, although pathway analysis software provides detailed images of interactions among molecules, it does not exhibit how pathways interact with one another or with other biological processes under specific conditions. Methods We propose a novel method to standardize descriptions of enriched pathways for a set of genes/proteins using Gene Ontology terms. We used this method to examine the relationships among pathways and biological processes for a set of condition-specific genes/proteins, represented as a functional biological pathway-process network. We applied this algorithm to a set of 613 MI-specific proteins we previously identified. Results A total of 96 pathways from Biocarta, KEGG, and Reactome, and 448 Gene Ontology Biological Processes were enriched with these 613 proteins. The pathways were represented as Boolean functions of biological processes, delivering an interactive scheme to organize enriched information with an emphasis on involvement of biological processes in pathways. We extracted a network focusing on MI to demonstrate that tyrosine phosphorylation of Signal Transducer and Activator of Transcription (STAT) protein, positive regulation of collagen metabolic process, coagulation, and positive/negative regulation of blood coagulation have immediate impacts on the MI response. Conclusions Our method organized biological processes and pathways in an unbiased approach to provide an intuitive way to identify biological properties of pathways under specific

  15. HPD: an online integrated human pathway database enabling systems biology studies

    PubMed Central

    2009-01-01

    Background Pathway-oriented experimental and computational studies have led to a significant accumulation of biological knowledge concerning three major types of biological pathway events: molecular signaling events, gene regulation events, and metabolic reaction events. A pathway consists of a series of molecular pathway events that link molecular entities such as proteins, genes, and metabolites. There are approximately 300 biological pathway resources as of April 2009 according to the Pathguide database; however, these pathway databases generally have poor coverage or poor quality, and are difficult to integrate, due to syntactic-level and semantic-level data incompatibilities. Results We developed the Human Pathway Database (HPD) by integrating heterogeneous human pathway data that are either curated at the NCI Pathway Interaction Database (PID), Reactome, BioCarta, KEGG or indexed from the Protein Lounge Web sites. Integration of pathway data at syntactic, semantic, and schematic levels was based on a unified pathway data model and data warehousing-based integration techniques. HPD provides a comprehensive online view that connects human proteins, genes, RNA transcripts, enzymes, signaling events, metabolic reaction events, and gene regulatory events. At the time of this writing HPD includes 999 human pathways and more than 59,341 human molecular entities. The HPD software provides both a user-friendly Web interface for online use and a robust relational database backend for advanced pathway querying. This pathway tool enables users to 1) search for human pathways from different resources by simply entering genes/proteins involved in pathways or words appearing in pathway names, 2) analyze pathway-protein association, 3) study pathway-pathway similarity, and 4) build integrated pathway networks. We demonstrated the usage and characteristics of the new HPD through three breast cancer case studies. Conclusion HPD http://bio.informatics.iupui.edu/HPD is a new

  16. Exploring Biological Electron Transfer Pathway Dynamics with the Pathways Plugin for VMD

    PubMed Central

    Balabin, Ilya A.; Hu, Xiangqian; Beratan, David N.

    2012-01-01

    We describe the new Pathways plugin for the molecular visualization program VMD. The plugin identifies and visualizes tunneling pathways and pathway families in biomolecules and calculates relative electronic couplings. The plugin includes unique features to estimate the importance of individual atoms for mediating the coupling, to analyze the coupling sensitivity to thermal motion, and to visualize pathway fluctuations. The Pathways plugin is open source software distributed under the terms of the GNU public license. PMID:22298319

  17. PathwayMatrix: visualizing binary relationships between proteins in biological pathways

    PubMed Central

    2015-01-01

    Background Molecular activation pathways are inherently complex, and understanding relations across many biochemical reactions and reaction types is difficult. Visualizing and analyzing a pathway is a challenge due to the network size and the diversity of relations between proteins and molecules. Results In this paper, we introduce PathwayMatrix, a visualization tool that presents the binary relations between proteins in the pathway via the use of an interactive adjacency matrix. We provide filtering, lensing, clustering, and brushing and linking capabilities in order to present relevant details about proteins within a pathway. Conclusions We evaluated PathwayMatrix by conducting a series of in-depth interviews with domain experts who provided positive feedback, leading us to believe that our visualization technique could be helpful for the larger community of researchers utilizing pathway visualizations. PathwayMatrix is freely available at https://github.com/CreativeCodingLab/PathwayMatrix. PMID:26361499

  18. AN INTEGRATED NETWORK APPROACH TO IDENTIFYING BIOLOGICAL PATHWAYS AND ENVIRONMENTAL EXPOSURE INTERACTIONS IN COMPLEX DISEASES

    PubMed Central

    DARABOS, CHRISTIAN; QIU, JINGYA; MOORE, JASON H.

    2015-01-01

    Complex diseases are the result of intricate interactions between genetic, epigenetic and environmental factors. In previous studies, we used epidemiological and genetic data linking environmental exposure or genetic variants to phenotypic disease to construct Human Phenotype Networks and separately analyze the effects of both environment and genetic factors on disease interactions. To better capture the intricacies of the interactions between environmental exposure and the biological pathways in complex disorders, we integrate both aspects into a single “tripartite” network. Despite extensive research, the mechanisms by which chemical agents disrupt biological pathways are still poorly understood. In this study, we use our integrated network model to identify specific biological pathway candidates possibly disrupted by environmental agents. We conjecture that a higher number of co-occurrences between an environmental substance and biological pathway pair can be associated with a higher likelihood that the substance is involved in disrupting that pathway. We validate our model by demonstrating its ability to detect known arsenic and signal transduction pathway interactions and speculate on candidate cell-cell junction organization pathways disrupted by cadmium. The validation was supported by distinct publications of cell biology and genetic studies that associated environmental exposure to pathway disruption. The integrated network approach is a novel method for detecting the biological effects of environmental exposures. A better understanding of the molecular processes associated with specific environmental exposures will help in developing targeted molecular therapies for patients who have been exposed to the toxicity of environmental chemicals. PMID:26776169

  19. Systems approaches for synthetic biology: a pathway toward mammalian design

    PubMed Central

    Rekhi, Rahul; Qutub, Amina A.

    2013-01-01

    We review methods of understanding cellular interactions through computation in order to guide the synthetic design of mammalian cells for translational applications, such as regenerative medicine and cancer therapies. In doing so, we argue that the challenges of engineering mammalian cells provide a prime opportunity to leverage advances in computational systems biology. We support this claim systematically, by addressing each of the principal challenges to existing synthetic bioengineering approaches—stochasticity, complexity, and scale—with specific methods and paradigms in systems biology. Moreover, we characterize a key set of diverse computational techniques, including agent-based modeling, Bayesian network analysis, graph theory, and Gillespie simulations, with specific utility toward synthetic biology. Lastly, we examine the mammalian applications of synthetic biology for medicine and health, and how computational systems biology can aid in the continued development of these applications. PMID:24130532

  20. Systems approaches for synthetic biology: a pathway toward mammalian design.

    PubMed

    Rekhi, Rahul; Qutub, Amina A

    2013-01-01

    We review methods of understanding cellular interactions through computation in order to guide the synthetic design of mammalian cells for translational applications, such as regenerative medicine and cancer therapies. In doing so, we argue that the challenges of engineering mammalian cells provide a prime opportunity to leverage advances in computational systems biology. We support this claim systematically, by addressing each of the principal challenges to existing synthetic bioengineering approaches-stochasticity, complexity, and scale-with specific methods and paradigms in systems biology. Moreover, we characterize a key set of diverse computational techniques, including agent-based modeling, Bayesian network analysis, graph theory, and Gillespie simulations, with specific utility toward synthetic biology. Lastly, we examine the mammalian applications of synthetic biology for medicine and health, and how computational systems biology can aid in the continued development of these applications. PMID:24130532

  1. Enhancing Automatic Biological Pathway Generation with GO-based Gene Similarity

    SciTech Connect

    Sanfilippo, Antonio P.; Baddeley, Robert L.; Beagley, Nathaniel; Riensche, Roderick M.; Gopalan, Banu

    2009-08-03

    One of the greatest challenges in today’s analysis of microarray gene expression data is to identify pathways across regulated genes that underlie structural and functional changes of living cells in specific pathologies. Most current approaches to pathway generation are based on a reverse engineering approach in which pathway plausibility is solely induced from observed pathway data. These approaches tend to lack in generality as they are too dependent on the pathway observables from which they are induced. By contrast, alternative approaches that rely on prior biological knowledge may err in the opposite direction as the prior knowledge is usually not sufficiently tuned to the pathology of focus. In this paper, we present a novel pathway generation approach which combines insights from the reverse engineering and knowledge-based approaches to increase the biological plausibility and specificity of induced regulatory networks.

  2. PathNER: a tool for systematic identification of biological pathway mentions in the literature

    PubMed Central

    2013-01-01

    Background Biological pathways are central to many biomedical studies and are frequently discussed in the literature. Several curated databases have been established to collate the knowledge of molecular processes constituting pathways. Yet, there has been little focus on enabling systematic detection of pathway mentions in the literature. Results We developed a tool, named PathNER (Pathway Named Entity Recognition), for the systematic identification of pathway mentions in the literature. PathNER is based on soft dictionary matching and rules, with the dictionary generated from public pathway databases. The rules utilise general pathway-specific keywords, syntactic information and gene/protein mentions. Detection results from both components are merged. On a gold-standard corpus, PathNER achieved an F1-score of 84%. To illustrate its potential, we applied PathNER on a collection of articles related to Alzheimer's disease to identify associated pathways, highlighting cases that can complement an existing manually curated knowledgebase. Conclusions In contrast to existing text-mining efforts that target the automatic reconstruction of pathway details from molecular interactions mentioned in the literature, PathNER focuses on identifying specific named pathway mentions. These mentions can be used to support large-scale curation and pathway-related systems biology applications, as demonstrated in the example of Alzheimer's disease. PathNER is implemented in Java and made freely available online at http://sourceforge.net/projects/pathner/. PMID:24555844

  3. [A novel biological pathway expansion method based on the knowledge of protein-protein interactions].

    PubMed

    Zhao, Xiaolei; Zuo, Xiaoyu; Qin, Jiheng; Liang, Yan; Zhang, Naizun; Luan, Yizhao; Rao, Shaoqi

    2014-04-01

    Biological pathways have been widely used in gene function studies; however, the current knowledge for biological pathways is per se incomplete and has to be further expanded. Bioinformatics prediction provides us a cheap but effective way for pathway expansion. Here, we proposed a novel method for biological pathway prediction, by intergrating prior knowledge of protein?protein interactions and Gene Ontology (GO) database. First, the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways to which the interacting neighbors of a targe gene (at the level of protein?protein interaction) belong were chosen as the candidate pathways. Then, the pathways to which the target gene belong were determined by testing whether the genes in the candidate pathways were enriched in the GO terms to which the target gene were annotated. The protein?protein interaction data obtained from the Human Protein Reference Database (HPRD) and Biological General Repository for Interaction Datasets (BioGRID) were respectively used to predict the pathway attribution(s) of the target gene. The results demanstrated that both the average accuracy (the ratio of the correctly predicted pathways to the totally pathways to which all the target genes were annotated) and the relative accuracy (of the genes with at least one annotated pathway being successful predicted, the percentage of the genes with all the annotated pathways being correctly predicted) for pathway predictions were increased with the number of the interacting neighbours. When the number of interacting neighbours reached 22, the average accuracy was 96.2% (HPRD) and 96.3% (BioGRID), respectively, and the relative accuracy was 93.3% (HPRD) and 84.1% (BioGRID), respectively. Further validation analysis of 89 genes whose pathway knowledge was updated in a new database release indicated that 50 genes were correctly predicted for at least one updated pathway, and 43 genes were accurately predicted for all the updated pathways, giving an

  4. Biology and significance of the JAK/STAT signalling pathways

    PubMed Central

    Kiu, Hiu; Nicholson, Sandra E

    2013-01-01

    Since its discovery two decades ago, the activation of the JAK/STAT pathway by numerous cytokines and growth factors has resulted in it becoming one of the most well studied intracellular signalling networks. The field has progressed from the identification of the individual components, to high-resolution crystal structures of both JAK and STAT, and an understanding of the complexities of the molecular activation and deactivation cycle which results in a diverse, yet highly specific and regulated pattern of transcriptional responses. While there is still more to learn, we now appreciate how disruption and de-regulation of this pathway can result in clinical disease and look forward to adoption of the next generation of JAK inhibitors in routine clinical treatment. PMID:22339650

  5. Reactome pathway analysis to enrich biological discovery in proteomics data sets.

    PubMed

    Haw, Robin; Hermjakob, Henning; D'Eustachio, Peter; Stein, Lincoln

    2011-09-01

    Reactome (http://www.reactome.org) is an open-source, expert-authored, peer-reviewed, manually curated database of reactions, pathways and biological processes. We provide an intuitive web-based user interface to pathway knowledge and a suite of data analysis tools. The Pathway Browser is a Systems Biology Graphical Notation-like visualization system that supports manual navigation of pathways by zooming, scrolling and event highlighting, and that exploits PSI Common Query Interface web services to overlay pathways with molecular interaction data from the Reactome Functional Interaction Network and interaction databases such as IntAct, ChEMBL and BioGRID. Pathway and expression analysis tools employ web services to provide ID mapping, pathway assignment and over-representation analysis of user-supplied data sets. By applying Ensembl Compara to curated human proteins and reactions, Reactome generates pathway inferences for 20 other species. The Species Comparison tool provides a summary of results for each of these species as a table showing numbers of orthologous proteins found by pathway from which users can navigate to inferred details for specific proteins and reactions. Reactome's diverse pathway knowledge and suite of data analysis tools provide a platform for data mining, modeling and analysis of large-scale proteomics data sets. This Tutorial is part of the International Proteomics Tutorial Programme (IPTP 8). PMID:21751369

  6. Gene Expression Profiling of Biological Pathway Alterations by Radiation Exposure

    PubMed Central

    Lee, Kuei-Fang; Weng, Julia Tzu-Ya; Hsu, Paul Wei-Che; Chi, Yu-Hsiang; Chen, Ching-Kai; Liu, Ingrid Y.; Chen, Yi-Cheng; Wu, Lawrence Shih-Hsin

    2014-01-01

    Though damage caused by radiation has been the focus of rigorous research, the mechanisms through which radiation exerts harmful effects on cells are complex and not well-understood. In particular, the influence of low dose radiation exposure on the regulation of genes and pathways remains unclear. In an attempt to investigate the molecular alterations induced by varying doses of radiation, a genome-wide expression analysis was conducted. Peripheral blood mononuclear cells were collected from five participants and each sample was subjected to 0.5 Gy, 1 Gy, 2.5 Gy, and 5 Gy of cobalt 60 radiation, followed by array-based expression profiling. Gene set enrichment analysis indicated that the immune system and cancer development pathways appeared to be the major affected targets by radiation exposure. Therefore, 1 Gy radioactive exposure seemed to be a critical threshold dosage. In fact, after 1 Gy radiation exposure, expression levels of several genes including FADD, TNFRSF10B, TNFRSF8, TNFRSF10A, TNFSF10, TNFSF8, CASP1, and CASP4 that are associated with carcinogenesis and metabolic disorders showed significant alterations. Our results suggest that exposure to low-dose radiation may elicit changes in metabolic and immune pathways, potentially increasing the risk of immune dysfunctions and metabolic disorders. PMID:25276823

  7. Pathway analysis of genome-wide association study and transcriptome data highlights new biological pathways in colorectal cancer.

    PubMed

    Quan, Baoku; Qi, Xingsi; Yu, Zhihui; Jiang, Yongshuai; Liao, Mingzhi; Wang, Guangyu; Feng, Rennan; Zhang, Liangcai; Chen, Zugen; Jiang, Qinghua; Liu, Guiyou

    2015-04-01

    Colorectal cancer (CRC) is a common malignancy that meets the definition of a complex disease. Genome-wide association study (GWAS) has identified several loci of weak predictive value in CRC, however, these do not fully explain the occurrence risk. Recently, gene set analysis has allowed enhanced interpretation of GWAS data in CRC, identifying a number of metabolic pathways as important for disease pathogenesis. Whether there are other important pathways involved in CRC, however, remains unclear. We present a systems analysis of KEGG pathways in CRC using (1) a human CRC GWAS dataset and (2) a human whole transcriptome CRC case-control expression dataset. Analysis of the GWAS dataset revealed significantly enriched KEGG pathways related to metabolism, immune system and diseases, cellular processes, environmental information processing, genetic information processing, and neurodegenerative diseases. Altered gene expression was confirmed in these pathways using the transcriptome dataset. Taken together, these findings not only confirm previous work in this area, but also highlight new biological pathways whose deregulation is critical for CRC. These results contribute to our understanding of disease-causing mechanisms and will prove useful for future genetic and functional studies in CRC. PMID:25362561

  8. The mEPN scheme: an intuitive and flexible graphical system for rendering biological pathways

    PubMed Central

    2010-01-01

    Background There is general agreement amongst biologists about the need for good pathway diagrams and a need to formalize the way biological pathways are depicted. However, implementing and agreeing how best to do this is currently the subject of some debate. Results The modified Edinburgh Pathway Notation (mEPN) scheme is founded on a notation system originally devised a number of years ago and through use has now been refined extensively. This process has been primarily driven by the author's attempts to produce process diagrams for a diverse range of biological pathways, particularly with respect to immune signaling in mammals. Here we provide a specification of the mEPN notation, its symbols, rules for its use and a comparison to the proposed Systems Biology Graphical Notation (SBGN) scheme. Conclusions We hope this work will contribute to the on-going community effort to develop a standard for depicting pathways and will provide a coherent guide to those planning to construct pathway diagrams of their biological systems of interest. PMID:20478018

  9. Insights into gliomagenesis: systems biology unravels key pathways

    PubMed Central

    2009-01-01

    Technological advances have enabled a better characterization of all the genetic alterations in tumors. A picture that emerges is that tumor cells are much more genetically heterogeneous than originally expected. Thus, a critical issue in cancer genomics is the identification of the genetic alterations that drive the genesis of a tumor. Recently, a systems biology approach has been used to characterize such alterations and find associations between them and the process of gliomagenesis. Here, we discuss some implications of this strategy for the development of new therapeutic and diagnostic protocols for cancer. PMID:19863775

  10. Alternatives to the 'water oxidation pathway' of biological ozone formation.

    PubMed

    Onyango, Arnold N

    2016-01-01

    Recent studies have shown that ozone (O3) is endogenously generated in living tissues, where it makes both positive and negative physiological contributions. A pathway for the formation of both O3 and hydrogen peroxide (H2O2) was previously proposed, beginning with the antibody or amino acid-catalyzed oxidation of water by singlet oxygen ((1)O2) to form hydrogen trioxide (H2O3) as a key intermediate. A key pillar of this hypothesis is that some of the H2O2 molecules incorporate water-derived oxygen atoms. However, H2O3 decomposes extremely readily in water to form (1)O2 and water, rather than O3 and H2O2. This article highlights key literature indicating that the oxidation of organic molecules such as the amino acids methionine, tryptophan, histidine, and cysteine by (1)O2 is involved in ozone formation. Based on this, an alternative hypothesis for ozone formation is developed involving a further reaction of singlet oxygen with various oxidized organic intermediates. H2O2 having water-derived oxygen atoms is subsequently formed during ozone decomposition in water by known reactions. PMID:26855676

  11. Genetic variation in multiple biologic pathways, flavonoid intake and breast cancer

    PubMed Central

    Khankari, Nikhil K.; Bradshaw, Patrick T.; McCullough, Lauren E.; Teitelbaum, Susan L.; Steck, Susan E.; Fink, Brian N.; Xu, Xinran; Ahn, Jiyoung; Ambrosone, Christine B.; Crew, Katherine D.; Terry, Mary Beth; Neugut, Alfred I.; Chen, Jia; Santella, Regina M.; Gammon, Marilie D.

    2014-01-01

    Purpose We previously reported an inverse association between flavonoid intake and breast cancer incidence, which has been confirmed by others; but no studies have considered simultaneously potential interactions of flavonoids with multiple genetic polymorphisms involved in biologically-relevant pathways (oxidative stress, carcinogen metabolism, DNA repair, and one-carbon metabolism). Methods To estimate interaction effects between flavonoids and 13 polymorphisms in these four pathways on breast cancer risk, we used population-based data (N = 875 cases and 903 controls) and several statistical approaches, including conventional logistic regression and semi-Bayesian hierarchical modeling (incorporating prior information on the possible biological functions of genes), which also provides biologic pathway-specific effect estimates. Results Compared to the standard multivariate model, the results from the hierarchical model indicate that gene-by-flavonoid interaction estimates are attenuated, but more precise. In the hierarchical model, the average effect of the deleterious versus beneficial gene, controlling for average flavonoid intake in the DNA repair pathway, and adjusted for the three other biologically-relevant pathways (oxidative stress, carcinogen metabolism, and one-carbon metabolism), resulted in a 27% increase risk for breast cancer [Odds Ratio (OR) = 1.27; 95% Confidence Interval (CI) = 0.70, 2.29]. However, the CI was wide. Conclusions Based on results from the semi-Bayesian model, breast cancer risk may be influenced jointly by flavonoid intake and genes involved in DNA repair, but our findings require confirmation. PMID:24281852

  12. A guide for building biological pathways along with two case studies: hair and breast development.

    PubMed

    Trindade, Daniel; Orsine, Lissur A; Barbosa-Silva, Adriano; Donnard, Elisa R; Ortega, J Miguel

    2015-03-01

    Genomic information is being underlined in the format of biological pathways. Building these biological pathways is an ongoing demand and benefits from methods for extracting information from biomedical literature with the aid of text-mining tools. Here we hopefully guide you in the attempt of building a customized pathway or chart representation of a system. Our manual is based on a group of software designed to look at biointeractions in a set of abstracts retrieved from PubMed. However, they aim to support the work of someone with biological background, who does not need to be an expert on the subject and will play the role of manual curator while designing the representation of the system, the pathway. We therefore illustrate with two challenging case studies: hair and breast development. They were chosen for focusing on recent acquisitions of human evolution. We produced sub-pathways for each study, representing different phases of development. Differently from most charts present in current databases, we present detailed descriptions, which will additionally guide PESCADOR users along the process. The implementation as a web interface makes PESCADOR a unique tool for guiding the user along the biointeractions, which will constitute a novel pathway. PMID:25449898

  13. Deciphering the biological effects of acupuncture treatment modulating multiple metabolism pathways

    PubMed Central

    Zhang, Aihua; Yan, Guangli; Sun, Hui; Cheng, Weiping; Meng, Xiangcai; Liu, Li; Xie, Ning; Wang, Xijun

    2016-01-01

    Acupuncture is an alternative therapy that is widely used to treat various diseases. However, detailed biological interpretation of the acupuncture stimulations is limited. We here used metabolomics and proteomics technology, thereby identifying the serum small molecular metabolites into the effect and mechanism pathways of standardized acupuncture treatments at ‘Zusanli’ acupoint which was the most often used acupoint in previous reports. Comprehensive overview of serum metabolic profiles during acupuncture stimulation was investigated. Thirty-four differential metabolites were identified in serum metabolome and associated with ten metabolism pathways. Importantly, we have found that high impact glycerophospholipid metabolism, fatty acid metabolism, ether lipid metabolism were acutely perturbed by acupuncture stimulation. As such, these alterations may be useful to clarify the biological mechanism of acupuncture stimulation. A series of differentially expressed proteins were identified and such effects of acupuncture stimulation were found to play a role in transport, enzymatic activity, signaling pathway or receptor interaction. Pathway analysis further revealed that most of these proteins were found to play a pivotal role in the regulation of multiple metabolism pathways. It demonstrated that the metabolomics coupled with proteomics as a powerful approach for potential applications in understanding the biological effects of acupuncture stimulation. PMID:26879284

  14. Studying Biology to Understand Risk: Dosimetry Models and Quantitative Adverse Outcome Pathways

    EPA Science Inventory

    Confidence in the quantitative prediction of risk is increased when the prediction is based to as great an extent as possible on the relevant biological factors that constitute the pathway from exposure to adverse outcome. With the first examples now over 40 years old, physiologi...

  15. Estimating Toxicity-Related Biological Pathway Altering Doses for High-Throughput Chemical Risk Assessment

    EPA Science Inventory

    We describe a framework for estimating the human dose at which a chemical significantly alters a biological pathway in vivo, making use of in vitro assay data and an in vitro derived pharmacokinetic model, coupled with estimates of population variability and uncertainty. The q...

  16. PathCards: multi-source consolidation of human biological pathways.

    PubMed

    Belinky, Frida; Nativ, Noam; Stelzer, Gil; Zimmerman, Shahar; Iny Stein, Tsippi; Safran, Marilyn; Lancet, Doron

    2015-01-01

    The study of biological pathways is key to a large number of systems analyses. However, many relevant tools consider a limited number of pathway sources, missing out on many genes and gene-to-gene connections. Simply pooling several pathways sources would result in redundancy and the lack of systematic pathway interrelations. To address this, we exercised a combination of hierarchical clustering and nearest neighbor graph representation, with judiciously selected cutoff values, thereby consolidating 3215 human pathways from 12 sources into a set of 1073 SuperPaths. Our unification algorithm finds a balance between reducing redundancy and optimizing the level of pathway-related informativeness for individual genes. We show a substantial enhancement of the SuperPaths' capacity to infer gene-to-gene relationships when compared with individual pathway sources, separately or taken together. Further, we demonstrate that the chosen 12 sources entail nearly exhaustive gene coverage. The computed SuperPaths are presented in a new online database, PathCards, showing each SuperPath, its constituent network of pathways, and its contained genes. This provides researchers with a rich, searchable systems analysis resource. Database URL: http://pathcards.genecards.org/ PMID:25725062

  17. The multiscale backbone of the human phenotype network based on biological pathways

    PubMed Central

    2014-01-01

    Background Networks are commonly used to represent and analyze large and complex systems of interacting elements. In systems biology, human disease networks show interactions between disorders sharing common genetic background. We built pathway-based human phenotype network (PHPN) of over 800 physical attributes, diseases, and behavioral traits; based on about 2,300 genes and 1,200 biological pathways. Using GWAS phenotype-to-genes associations, and pathway data from Reactome, we connect human traits based on the common patterns of human biological pathways, detecting more pleiotropic effects, and expanding previous studies from a gene-centric approach to that of shared cell-processes. Results The resulting network has a heavily right-skewed degree distribution, placing it in the scale-free region of the network topologies spectrum. We extract the multi-scale information backbone of the PHPN based on the local densities of the network and discarding weak connection. Using a standard community detection algorithm, we construct phenotype modules of similar traits without applying expert biological knowledge. These modules can be assimilated to the disease classes. However, we are able to classify phenotypes according to shared biology, and not arbitrary disease classes. We present examples of expected clinical connections identified by PHPN as proof of principle. Conclusions We unveil a previously uncharacterized connection between phenotype modules and discuss potential mechanistic connections that are obvious only in retrospect. The PHPN shows tremendous potential to become a useful tool both in the unveiling of the diseases’ common biology, and in the elaboration of diagnosis and treatments. PMID:24460644

  18. enRoute: dynamic path extraction from biological pathway maps for exploring heterogeneous experimental datasets

    PubMed Central

    2013-01-01

    Jointly analyzing biological pathway maps and experimental data is critical for understanding how biological processes work in different conditions and why different samples exhibit certain characteristics. This joint analysis, however, poses a significant challenge for visualization. Current techniques are either well suited to visualize large amounts of pathway node attributes, or to represent the topology of the pathway well, but do not accomplish both at the same time. To address this we introduce enRoute, a technique that enables analysts to specify a path of interest in a pathway, extract this path into a separate, linked view, and show detailed experimental data associated with the nodes of this extracted path right next to it. This juxtaposition of the extracted path and the experimental data allows analysts to simultaneously investigate large amounts of potentially heterogeneous data, thereby solving the problem of joint analysis of topology and node attributes. As this approach does not modify the layout of pathway maps, it is compatible with arbitrary graph layouts, including those of hand-crafted, image-based pathway maps. We demonstrate the technique in context of pathways from the KEGG and the Wikipathways databases. We apply experimental data from two public databases, the Cancer Cell Line Encyclopedia (CCLE) and The Cancer Genome Atlas (TCGA) that both contain a wide variety of genomic datasets for a large number of samples. In addition, we make use of a smaller dataset of hepatocellular carcinoma and common xenograft models. To verify the utility of enRoute, domain experts conducted two case studies where they explore data from the CCLE and the hepatocellular carcinoma datasets in the context of relevant pathways. PMID:24564375

  19. Ventral aspect of the visual form pathway is not critical for the perception of biological motion.

    PubMed

    Gilaie-Dotan, Sharon; Saygin, Ayse Pinar; Lorenzi, Lauren J; Rees, Geraint; Behrmann, Marlene

    2015-01-27

    Identifying the movements of those around us is fundamental for many daily activities, such as recognizing actions, detecting predators, and interacting with others socially. A key question concerns the neurobiological substrates underlying biological motion perception. Although the ventral "form" visual cortex is standardly activated by biologically moving stimuli, whether these activations are functionally critical for biological motion perception or are epiphenomenal remains unknown. To address this question, we examined whether focal damage to regions of the ventral visual cortex, resulting in significant deficits in form perception, adversely affects biological motion perception. Six patients with damage to the ventral cortex were tested with sensitive point-light display paradigms. All patients were able to recognize unmasked point-light displays and their perceptual thresholds were not significantly different from those of three different control groups, one of which comprised brain-damaged patients with spared ventral cortex (n > 50). Importantly, these six patients performed significantly better than patients with damage to regions critical for biological motion perception. To assess the necessary contribution of different regions in the ventral pathway to biological motion perception, we complement the behavioral findings with a fine-grained comparison between the lesion location and extent, and the cortical regions standardly implicated in biological motion processing. This analysis revealed that the ventral aspects of the form pathway (e.g., fusiform regions, ventral extrastriate body area) are not critical for biological motion perception. We hypothesize that the role of these ventral regions is to provide enhanced multiview/posture representations of the moving person rather than to represent biological motion perception per se. PMID:25583504

  20. Using the Semantic Web for Rapid Integration of WikiPathways with Other Biological Online Data Resources.

    PubMed

    Waagmeester, Andra; Kutmon, Martina; Riutta, Anders; Miller, Ryan; Willighagen, Egon L; Evelo, Chris T; Pico, Alexander R

    2016-06-01

    The diversity of online resources storing biological data in different formats provides a challenge for bioinformaticians to integrate and analyse their biological data. The semantic web provides a standard to facilitate knowledge integration using statements built as triples describing a relation between two objects. WikiPathways, an online collaborative pathway resource, is now available in the semantic web through a SPARQL endpoint at http://sparql.wikipathways.org. Having biological pathways in the semantic web allows rapid integration with data from other resources that contain information about elements present in pathways using SPARQL queries. In order to convert WikiPathways content into meaningful triples we developed two new vocabularies that capture the graphical representation and the pathway logic, respectively. Each gene, protein, and metabolite in a given pathway is defined with a standard set of identifiers to support linking to several other biological resources in the semantic web. WikiPathways triples were loaded into the Open PHACTS discovery platform and are available through its Web API (https://dev.openphacts.org/docs) to be used in various tools for drug development. We combined various semantic web resources with the newly converted WikiPathways content using a variety of SPARQL query types and third-party resources, such as the Open PHACTS API. The ability to use pathway information to form new links across diverse biological data highlights the utility of integrating WikiPathways in the semantic web. PMID:27336457

  1. Using the Semantic Web for Rapid Integration of WikiPathways with Other Biological Online Data Resources

    PubMed Central

    Waagmeester, Andra; Pico, Alexander R.

    2016-01-01

    The diversity of online resources storing biological data in different formats provides a challenge for bioinformaticians to integrate and analyse their biological data. The semantic web provides a standard to facilitate knowledge integration using statements built as triples describing a relation between two objects. WikiPathways, an online collaborative pathway resource, is now available in the semantic web through a SPARQL endpoint at http://sparql.wikipathways.org. Having biological pathways in the semantic web allows rapid integration with data from other resources that contain information about elements present in pathways using SPARQL queries. In order to convert WikiPathways content into meaningful triples we developed two new vocabularies that capture the graphical representation and the pathway logic, respectively. Each gene, protein, and metabolite in a given pathway is defined with a standard set of identifiers to support linking to several other biological resources in the semantic web. WikiPathways triples were loaded into the Open PHACTS discovery platform and are available through its Web API (https://dev.openphacts.org/docs) to be used in various tools for drug development. We combined various semantic web resources with the newly converted WikiPathways content using a variety of SPARQL query types and third-party resources, such as the Open PHACTS API. The ability to use pathway information to form new links across diverse biological data highlights the utility of integrating WikiPathways in the semantic web. PMID:27336457

  2. The oxalate-carbonate pathway: at the interface between biology and geology

    NASA Astrophysics Data System (ADS)

    Junier, P.; Cailleau, G.; Martin, G.; Guggiari, M.; Bravo, D.; Clerc, M.; Aragno, M.; Job, D.; Verrecchia, E.

    2012-04-01

    The formation of calcite in otherwise carbonate-free acidic soils through the biological degradation of oxalate is a mechanism termed oxalate-carbonate pathway. This pathway lies at the interface between biological and geological systems and constitutes an important, although underestimated, soil mineral carbon sink. In this case, atmospheric CO2 is fixed by the photosynthetic activity of oxalogenic plants, which is partly destined to the production of oxalate used for the chelation of metals, and particularly, calcium. Fungi are also able to produce oxalate to cope with elevated concentrations of metals. In spite of its abundance as a substrate, oxalate is a very stable organic anion that can be metabolized only by a group of bacteria that use it as carbon and energy sources. These bacteria close the biological cycle by degrading calcium oxalate, releasing Ca2+ and inducing a change in local soil pH. If parameters are favourable, the geological part of the pathway begins, because this change in pH will indirectly lead to the precipitation of secondary calcium carbonate (calcite) in unexpected geological conditions. Due to the initial acidic soil conditions, and the absence of geological carbonate in the basement, it is unexpected to find C in the form of calcite. The activity of the oxalate-carbonate pathway has now been demonstrated in several places around the world, suggesting that its importance can be even greater than expected. In addition, new roles for each of the biological players of the pathway have been revealed recently forcing us to reconsider a global biogeochemical model for oxalate cycling.

  3. Sensitivity of ovarian cancer cells to acetaminophen reveals biological pathways that affect patient survival

    PubMed Central

    BUSH, STEPHEN H.; TOLLIN, SHARON; MARCHION, DOUGLAS C.; XIONG, YIN; ABBASI, FOROUGH; RAMIREZ, INGRID J.; ZGHEIB, NADIM BOU; BOAC, BERNADETTE; JUDSON, PATRICIA L.; CHON, HYE SOOK; WENHAM, ROBERT M.; APTE, SACHIN M.; CUBITT, CHRISTOPHER L.; BERGLUND, ANDERS E.; HAVRILESKY, LAURA J.; LANCASTER, JOHNATHAN M.

    2016-01-01

    Experimental and epidemiological data support the potential activity of acetaminophen against ovarian cancer (OVCA). In this study, we sought to confirm the activity of acetaminophen in OVCA cell lines and to investigate the molecular basis of response. A total of 16 OVCA cell lines underwent pretreatment (baseline) genome-wide expression measurements and were then treated with and analyzed for acetaminophen sensitivity. Pearson's correlation analysis was performed to identify genes that were associated with OVCA acetaminophen response. The identified genes were subjected to pathway analysis, and the expression of each represented pathway was summarized using principal component analysis. OVCA acetaminophen response pathways were analyzed in 4 external clinico-genomic datasets from 820 women for associations with overall survival from OVCA. Acetaminophen exhibited antiproliferative activity against all tested OVCA cell lines, with half maximal inhibitory concentration values ranging from 63.2 to 403 µM. Pearson's correlation followed by biological pathway analysis identified 13 pathways to be associated with acetaminophen sensitivity (P<0.01). Associations were observed between patient survival from OVCA and expression of the following pathways: Development/angiotensin signaling via β-arrestin (P=0.04), protein folding and maturation/angiotensin system maturation (P=0.02), signal transduction/c-Jun N-terminal kinase (JNK) pathway (P=0.03) and androstenedione and testosterone biosynthesis and metabolism (P=0.02). We confirmed that acetaminophen was active against OVCA cells in vitro. Furthermore, we identified 4 molecular signaling pathways associated with acetaminophen response that may also affect overall survival in women with OVCA, including the JNK pathway, which has been previously implicated in the mechanism of action of acetaminophen and is predictive of decreased survival in women with OVCA. PMID:26998291

  4. Escher: A Web Application for Building, Sharing, and Embedding Data-Rich Visualizations of Biological Pathways

    PubMed Central

    King, Zachary A.; Dräger, Andreas; Ebrahim, Ali; Sonnenschein, Nikolaus; Lewis, Nathan E.; Palsson, Bernhard O.

    2015-01-01

    Escher is a web application for visualizing data on biological pathways. Three key features make Escher a uniquely effective tool for pathway visualization. First, users can rapidly design new pathway maps. Escher provides pathway suggestions based on user data and genome-scale models, so users can draw pathways in a semi-automated way. Second, users can visualize data related to genes or proteins on the associated reactions and pathways, using rules that define which enzymes catalyze each reaction. Thus, users can identify trends in common genomic data types (e.g. RNA-Seq, proteomics, ChIP)—in conjunction with metabolite- and reaction-oriented data types (e.g. metabolomics, fluxomics). Third, Escher harnesses the strengths of web technologies (SVG, D3, developer tools) so that visualizations can be rapidly adapted, extended, shared, and embedded. This paper provides examples of each of these features and explains how the development approach used for Escher can be used to guide the development of future visualization tools. PMID:26313928

  5. [Current understanding of signaling transduction pathway and biological functions of Karrikins].

    PubMed

    Luo, Xiaofeng; Qi, Ying; Meng, Yongjie; Shuai, Haiwei; Chen, Feng; Yang, Wenyu; Shu, Kai

    2016-01-01

    Karrikins are a class of signaling molecules discovered in wildfire smoke, which can significantly promote seed germination in some species (such as Arabidopsis and Avena fatua). The structures of Karrikins were first elucidated in 2004. At present, six different types of Karrikins have been documented, and their biological activities vary significantly. So far, studies for Karrikins have become a hot spot in the plant molecular biology field. Recent advances demonstrate that Karrikins regulate plant photomorphogenesis and leaf differentiation effectively, in addition to the effect on seed germination. Furthermore, Karrikins share highly similar molecular structures and signaling transduction pathways with strigolactone. In this review, we summarize the history of discovery, signaling transduction pathways, physiological functions and ecological significance of Karrikins, and further discuss the future research directions. PMID:26787523

  6. Systems biology by the rules: hybrid intelligent systems for pathway modeling and discovery

    PubMed Central

    Bosl, William J

    2007-01-01

    Background Expert knowledge in journal articles is an important source of data for reconstructing biological pathways and creating new hypotheses. An important need for medical research is to integrate this data with high throughput sources to build useful models that span several scales. Researchers traditionally use mental models of pathways to integrate information and development new hypotheses. Unfortunately, the amount of information is often overwhelming and these are inadequate for predicting the dynamic response of complex pathways. Hierarchical computational models that allow exploration of semi-quantitative dynamics are useful systems biology tools for theoreticians, experimentalists and clinicians and may provide a means for cross-communication. Results A novel approach for biological pathway modeling based on hybrid intelligent systems or soft computing technologies is presented here. Intelligent hybrid systems, which refers to several related computing methods such as fuzzy logic, neural nets, genetic algorithms, and statistical analysis, has become ubiquitous in engineering applications for complex control system modeling and design. Biological pathways may be considered to be complex control systems, which medicine tries to manipulate to achieve desired results. Thus, hybrid intelligent systems may provide a useful tool for modeling biological system dynamics and computational exploration of new drug targets. A new modeling approach based on these methods is presented in the context of hedgehog regulation of the cell cycle in granule cells. Code and input files can be found at the Bionet website: www.chip.ord/~wbosl/Software/Bionet. Conclusion This paper presents the algorithmic methods needed for modeling complicated biochemical dynamics using rule-based models to represent expert knowledge in the context of cell cycle regulation and tumor growth. A notable feature of this modeling approach is that it allows biologists to build complex models from

  7. Mapping the patent landscape of synthetic biology for fine chemical production pathways.

    PubMed

    Carbonell, Pablo; Gök, Abdullah; Shapira, Philip; Faulon, Jean-Loup

    2016-09-01

    A goal of synthetic biology bio-foundries is to innovate through an iterative design/build/test/learn pipeline. In assessing the value of new chemical production routes, the intellectual property (IP) novelty of the pathway is important. Exploratory studies can be carried using knowledge of the patent/IP landscape for synthetic biology and metabolic engineering. In this paper, we perform an assessment of pathways as potential targets for chemical production across the full catalogue of reachable chemicals in the extended metabolic space of chassis organisms, as computed by the retrosynthesis-based algorithm RetroPath. Our database for reactions processed by sequences in heterologous pathways was screened against the PatSeq database, a comprehensive collection of more than 150M sequences present in patent grants and applications. We also examine related patent families using Derwent Innovations. This large-scale computational study provides useful insights into the IP landscape of synthetic biology for fine and specialty chemicals production. PMID:27489206

  8. The biological pathway and effect of PCBs on common terns in Lake Michigan.

    PubMed

    Ward, Michael P; Jablonski, Cindi; Semel, Brad; Soucek, David

    2010-11-01

    Poly-chlorinated biphenyls (PCBs) have been recognized as a significant contaminant in the Great Lakes ecosystem. Although PCBs are implicated in the reduced survival and reproductive success of several piscivorous bird species, the biological pathway in which PCBs bioaccumulate remains largely unknown. This study investigates the two most likely biological pathways, suggested via research on Great Lakes sport fish, by which PCBs would be acquired by common terns (Sterna hirundo), a piscivorous species of conservation concern. The first proposed pathway is through atmospheric deposition of PCBs which are subsequently acquired by filter-feeding fish (e.g., alewives, Alosa pseudoharengus). An alternative pathway is via the biodeposits of zebra mussels which are consumed by shallow water fish (e.g., round gobies, Neogobius melanostromus). Because common terns breed in near-shore sites where concentrations of zebra mussels are found, as well as forage in more pelagic environments it is possible that either or both pathways may be contributing to their PCB exposure. Field experiments and stable isotope analyses suggest the most likely pathway by which terns are exposed to PCBs is via alewives, similar to how apex predators such as lake trout acquire PCBs. Biodeposits from zebra mussels do not appear to be a significant factor in PCB accumulation in terns. We quantified extremely poor parental attentiveness during incubation. Although we cannot determine whether poor parental attentiveness alone or in combination with PCB contamination led to low hatching success, accumulation of PCBs appears to have significant impacts on the overall reproductive success of common terns. PMID:20725777

  9. The Biological Role of PI3K Pathway in Lung Cancer

    PubMed Central

    Sarris, Evangelos G.; Saif, Muhammad W.; Syrigos, Kostas N.

    2012-01-01

    Lung cancer is the primary cause of cancer-related mortality worldwide and although improvements in treatment have been achieved over the last few years, long-term survival rates for lung cancer patients remain poor. Therefore, there is an imperative need for molecularly targeted agents that will achieve long-term disease control. Numerous downstream molecular pathways, such as EGF/RAS/RAF/MEK/ERK and PI3K/AKT/mTOR are identified as having a key role in the pathogenesis of various forms of human cancer, including lung cancer. PI3K/AKT/mTOR signal pathway is an important intracellular signal transduction pathway with a significant role in cell proliferation, growth, survival, vesicle trafficking, glucose transport, and cytoskeletal organization. Aberrations in many primary and secondary messenger molecules of this pathway, including mutations and amplifications, are accounted for tumor cell proliferation, inhibition of apoptosis, angiogenesis, metastasis and resistance to chemotherapy-radiotherapy. In this review article, we investigate thoroughly the biological role of PI3K pathway in lung cancer and its contribution in the development of future therapeutic strategies. PMID:24281308

  10. Biological function of the dTDP-rhamnose synthesis pathway in Streptococcus mutans.

    PubMed Central

    Tsukioka, Y; Yamashita, Y; Oho, T; Nakano, Y; Koga, T

    1997-01-01

    We have cloned a new gene locus that comprises three genes concerned with the biosynthesis of the serotype c-specific polysaccharide antigen in Streptococcus mutans. The genes encode proteins exhibiting significant homology to the rfbA, rfbB, and rfbD gene products that are involved in the anabolism of dTDP-L-rhamnose from D-glucose-1-phosphate. This anabolism pathway pertains to biosynthesis of the O antigen of lipopolysaccharide in gram-negative bacteria. The cell extract of Escherichia coli expressing each of the cloned genes of S. mutans exhibited enzymatic activity corresponding to the homologous counterpart of the rfb gene products. Rhamnose was not detected in the cell wall preparation purified from the mutant in which each of the three cloned genes was insertionally inactivated. Rabbit antiserum against S. mutans serotype c-specific antigen did not react with the autoclaved extracts from these mutants. These results indicate that the gene products identified in the present study are involved in the dTDP-L-rhamnose synthesis pathway and that the pathway relates to the biosynthesis of the serotype-specific polysaccharide antigen of S. mutans. Southern hybridization analysis revealed that genes homologous to the cloned genes involved in the dTDP-L-rhamnose synthesis pathway were widely distributed in a variety of streptococci. This is the first report of the biological function of the dTDP-rhamnose pathway in streptococci. PMID:9023194

  11. Gene-based GWAS and -biological pathway analysis of the resilience of executive functioning

    PubMed Central

    Mukherjee, Shubhabrata; Kim, Sungeun; Ramanan, Vijay K.; Gibbons, Laura E.; Nho, Kwangsik; Glymour, M. Maria; Ertekin-Taner, Nilüfer; Montine, Thomas J.; Saykin, Andrew J.; Crane, Paul K.

    2013-01-01

    Resilience in executive functioning (EF) is characterized by high EF measured by neuropsychological test performance despite structural brain damage from neurodegenerative conditions. We previously reported single nucleotide polymorphism (SNP) genome-wide association study (GWAS) results for EF resilience. Here, we report gene- and pathway-based analyses of the same resilience phenotype, using an optimal SNP-set (Sequence) Kernel Association Test (SKAT) for gene-based analyses (conservative threshold for genome-wide significance = 0.05/18,123=2.8×10−6) and the gene-set enrichment package GSA-SNP for biological pathway analyses (False discovery rate (FDR) < 0.05). Gene-based analyses found a genome-wide significant association between RNASE13 and EF resilience (p=1.33×10−7). Genetic pathways involved with dendritic/neuron spine, presynaptic membrane, postsynaptic density etc. were enriched with association to EF resilience. Although replication of these results is necessary, our findings indicate the potential value of gene- and pathway-based analyses in research on determinants of cognitive resilience. PMID:24072271

  12. Pathway Reconstruction of Airway Remodeling in Chronic Lung Diseases: A Systems Biology Approach

    PubMed Central

    Najafi, Ali; Masoudi-Nejad, Ali; Ghanei, Mostafa; Nourani, Mohamad-Reza; Moeini, Ali

    2014-01-01

    Airway remodeling is a pathophysiologic process at the clinical, cellular, and molecular level relating to chronic obstructive airway diseases such as chronic obstructive pulmonary disease (COPD), asthma and mustard lung. These diseases are associated with the dysregulation of multiple molecular pathways in the airway cells. Little progress has so far been made in discovering the molecular causes of complex disease in a holistic systems manner. Therefore, pathway and network reconstruction is an essential part of a systems biology approach to solve this challenging problem. In this paper, multiple data sources were used to construct the molecular process of airway remodeling pathway in mustard lung as a model of airway disease. We first compiled a master list of genes that change with airway remodeling in the mustard lung disease and then reconstructed the pathway by generating and merging the protein-protein interaction and the gene regulatory networks. Experimental observations and literature mining were used to identify and validate the master list. The outcome of this paper can provide valuable information about closely related chronic obstructive airway diseases which are of great importance for biologists and their future research. Reconstructing the airway remodeling interactome provides a starting point and reference for the future experimental study of mustard lung, and further analysis and development of these maps will be critical to understanding airway diseases in patients. PMID:24978043

  13. Characterization of the myometrial transcriptome and biological pathways of spontaneous human labor at term

    PubMed Central

    Mittal, Pooja; Romero, Roberto; Tarca, Adi L.; Gonzalez, Juan; Draghici, Sorin; Xu, Yi; Dong, Zhong; Nhan-Chang, Chia-Ling; Chaiworapongsa, Tinnakorn; Lye, Stephen; Kusanovic, Juan Pedro; Lipovich, Leonard; Mazaki-Tovi, Shali; Hassan, Sonia S.; Mesiano, Sam; Kim, Chong Jai

    2011-01-01

    Aims To characterize the transcriptome of human myometrium during spontaneous labor at term. Methods Myometrium was obtained from women with (n=19) and without labor (n=20). Illumina® HumanHT-12 microarrays were utilized. Moderated t-tests and False Discovery Rate adjustment of p-values were applied. qRT-PCR was performed for a select set of differentially expressed genes in a separate set of samples. ELISA and Western Blot were utilized to confirm differential protein production in a third sample set. Results 1) 471 genes were differentially expressed; 2) Gene Ontology analysis indicated enrichment of 103 biological processes and 18 molecular functions including: a) inflammatory response; b) cytokine activity; and c) chemokine activity; 3) systems biology pathway analysis using Signaling Pathway Impact Analysis indicated 6 significant pathways: a) cytokine-cytokine receptor interaction; b) Jak-Stat signaling; and c) complement and coagulation cascades; d) NOD-like receptor signaling pathway; e) Systemic Lupus Erythematosus; and f) Chemokine signaling pathway; 3) qRT-PCR confirmed over-expression of prostaglandin-endoperoxide synthase-2 (PTGS2/COX2), heparin binding EGF-like growth factor (HBEGF), chemokine C-C motif ligand 2 (CCL2/MCP1), leukocyte immunoglobulin-like receptor, subfamily A member 5 (LILRA5/LIR9), IL-8, IL-6, chemokine C-X-C motif ligand 6 (CXCL6/GCP2), nuclear factor of kappa light chain gene enhancer in B-cells inhibitor zeta (NFKBIZ), suppressor of cytokine signaling 3 (SOCS3) and decreased expression of FK506 binding-protein 5 (FKBP5) and aldehyde dehydrogenase (ALDH2) in labor; 4) IL-6, CXCL6, CCL2 and SOCS3 protein expression was significantly higher in the term labor group compared to the term not in labor group. Conclusions Myometrium of women in spontaneous labor at term is characterized by a stereotypic gene expression pattern consistent with over-expression of the inflammatory response and leukocyte chemotaxis. Differential gene

  14. Sphingosine 1-phosphate signaling pathway in inner ear biology. New therapeutic strategies for hearing loss?

    PubMed Central

    Romero-Guevara, Ricardo; Cencetti, Francesca; Donati, Chiara; Bruni, Paola

    2015-01-01

    Hearing loss is one of the most prevalent conditions around the world, in particular among people over 60 years old. Thus, an increase of this affection is predicted as result of the aging process in our population. In this context, it is important to further explore the function of molecular targets involved in the biology of inner ear sensory cells to better individuate new candidates for therapeutic application. One of the main causes of deafness resides into the premature death of hair cells and auditory neurons. In this regard, neurotrophins and growth factors such as insulin like growth factor are known to be beneficial by favoring the survival of these cells. An elevated number of published data in the last 20 years have individuated sphingolipids not only as structural components of biological membranes but also as critical regulators of key biological processes, including cell survival. Ceramide, formed by catabolism of sphingomyelin (SM) and other complex sphingolipids, is a strong inducer of apoptotic pathway, whereas sphingosine 1-phosphate (S1P), generated by cleavage of ceramide to sphingosine and phosphorylation catalyzed by two distinct sphingosine kinase (SK) enzymes, stimulates cell survival. Interestingly S1P, by acting as intracellular mediator or as ligand of a family of five distinct S1P receptors (S1P1–S1P5), is a very powerful bioactive sphingolipid, capable of triggering also other diverse cellular responses such as cell migration, proliferation and differentiation, and is critically involved in the development and homeostasis of several organs and tissues. Although new interesting data have become available, the information on S1P pathway and other sphingolipids in the biology of the inner ear is limited. Nonetheless, there are several lines of evidence implicating these signaling molecules during neurogenesis in other cell populations. In this review, we discuss the role of S1P during inner ear development, also as guidance for future

  15. A retrosynthetic biology approach to metabolic pathway design for therapeutic production

    PubMed Central

    2011-01-01

    Background Synthetic biology is used to develop cell factories for production of chemicals by constructively importing heterologous pathways into industrial microorganisms. In this work we present a retrosynthetic approach to the production of therapeutics with the goal of developing an in situ drug delivery device in host cells. Retrosynthesis, a concept originally proposed for synthetic chemistry, iteratively applies reversed chemical transformations (reversed enzyme-catalyzed reactions in the metabolic space) starting from a target product to reach precursors that are endogenous to the chassis. So far, a wider adoption of retrosynthesis into the manufacturing pipeline has been hindered by the complexity of enumerating all feasible biosynthetic pathways for a given compound. Results In our method, we efficiently address the complexity problem by coding substrates, products and reactions into molecular signatures. Metabolic maps are represented using hypergraphs and the complexity is controlled by varying the specificity of the molecular signature. Furthermore, our method enables candidate pathways to be ranked to determine which ones are best to engineer. The proposed ranking function can integrate data from different sources such as host compatibility for inserted genes, the estimation of steady-state fluxes from the genome-wide reconstruction of the organism's metabolism, or the estimation of metabolite toxicity from experimental assays. We use several machine-learning tools in order to estimate enzyme activity and reaction efficiency at each step of the identified pathways. Examples of production in bacteria and yeast for two antibiotics and for one antitumor agent, as well as for several essential metabolites are outlined. Conclusions We present here a unified framework that integrates diverse techniques involved in the design of heterologous biosynthetic pathways through a retrosynthetic approach in the reaction signature space. Our engineering methodology

  16. Supernatant from Bifidobacterium Differentially Modulates Transduction Signaling Pathways for Biological Functions of Human Dendritic Cells

    PubMed Central

    Hoarau, Cyrille; Martin, Laurence; Faugaret, Delphine; Baron, Christophe; Dauba, Audrey; Aubert-Jacquin, Cécile; Velge-Roussel, Florence; Lebranchu, Yvon

    2008-01-01

    Background Probiotic bacteria have been shown to modulate immune responses and could have therapeutic effects in allergic and inflammatory disorders. However, the signaling pathways engaged by probiotics are poorly understood. We have previously reported that a fermentation product from Bifidobacterium breve C50 (BbC50sn) could induce maturation, high IL-10 production and prolonged survival of DCs via a TLR2 pathway. We therefore studied the roles of mitogen-activated protein kinases (MAPK), glycogen synthase kinase-3 (GSK3) and phosphatidylinositol 3-kinase (PI3K) pathways on biological functions of human monocyte-derived DCs treated with BbC50sn. Methodology/Principal Findings DCs were differentiated from human monocytes with IL-4 and GM-CSF for 5 days and cultured with BbC50sn, lipopolysaccharide (LPS) or Zymosan, with or without specific inhibitors of p38MAPK (SB203580), ERK (PD98059), PI3K (LY294002) and GSK3 (SB216763). We found that 1) the PI3K pathway was positively involved in the prolonged DC survival induced by BbC50sn, LPS and Zymosan in contrast to p38MAPK and GSK3 which negatively regulated DC survival; 2) p38MAPK and PI3K were positively involved in DC maturation, in contrast to ERK and GSK3 which negatively regulated DC maturation; 3) ERK and PI3K were positively involved in DC-IL-10 production, in contrast to GSK3 that was positively involved in DC-IL-12 production whereas p38MAPK was positively involved in both; 4) BbC50sn induced a PI3K/Akt phosphorylation similar to Zymosan and a p38MAPK phosphorylation similar to LPS. Conclusion/Significance We report for the first time that a fermentation product of a bifidobacteria can differentially activate MAPK, GSK3 and PI3K in order to modulate DC biological functions. These results give new insights on the fine-tuned balance between the maintenance of normal mucosal homeostasis to commensal and probiotic bacteria and the specific inflammatory immune responses to pathogen bacteria. PMID:18648505

  17. Identifying biological pathways that underlie primordial short stature using network analysis

    PubMed Central

    Hanson, Dan; Stevens, Adam; Murray, Philip G; Black, Graeme C M; Clayton, Peter E

    2014-01-01

    Mutations in CUL7, OBSL1 and CCDC8, leading to disordered ubiquitination, cause one of the commonest primordial growth disorders, 3-M syndrome. This condition is associated with i) abnormal p53 function, ii) GH and/or IGF1 resistance, which may relate to failure to recycle signalling molecules, and iii) cellular IGF2 deficiency. However the exact molecular mechanisms that may link these abnormalities generating growth restriction remain undefined. In this study, we have used immunoprecipitation/mass spectrometry and transcriptomic studies to generate a 3-M ‘interactome’, to define key cellular pathways and biological functions associated with growth failure seen in 3-M. We identified 189 proteins which interacted with CUL7, OBSL1 and CCDC8, from which a network including 176 of these proteins was generated. To strengthen the association to 3-M syndrome, these proteins were compared with an inferred network generated from the genes that were differentially expressed in 3-M fibroblasts compared with controls. This resulted in a final 3-M network of 131 proteins, with the most significant biological pathway within the network being mRNA splicing/processing. We have shown using an exogenous insulin receptor (INSR) minigene system that alternative splicing of exon 11 is significantly changed in HEK293 cells with altered expression of CUL7, OBSL1 and CCDC8 and in 3-M fibroblasts. The net result is a reduction in the expression of the mitogenic INSR isoform in 3-M syndrome. From these preliminary data, we hypothesise that disordered ubiquitination could result in aberrant mRNA splicing in 3-M; however, further investigation is required to determine whether this contributes to growth failure. PMID:24711643

  18. Hundreds of variants clustered in genomic loci and biological pathways affect human height

    PubMed Central

    Lango Allen, Hana; Estrada, Karol; Lettre, Guillaume; Berndt, Sonja I.; Weedon, Michael N.; Rivadeneira, Fernando; Willer, Cristen J.; Jackson, Anne U.; Vedantam, Sailaja; Raychaudhuri, Soumya; Ferreira, Teresa; Wood, Andrew R.; Weyant, Robert J.; Segrè, Ayellet V.; Speliotes, Elizabeth K.; Wheeler, Eleanor; Soranzo, Nicole; Park, Ju-Hyun; Yang, Jian; Gudbjartsson, Daniel; Heard-Costa, Nancy L.; Randall, Joshua C.; Qi, Lu; Smith, Albert Vernon; Mägi, Reedik; Pastinen, Tomi; Liang, Liming; Heid, Iris M.; Luan, Jian'an; Thorleifsson, Gudmar; Winkler, Thomas W.; Goddard, Michael E.; Lo, Ken Sin; Palmer, Cameron; Workalemahu, Tsegaselassie; Aulchenko, Yurii S.; Johansson, Åsa; Zillikens, M.Carola; Feitosa, Mary F.; Esko, Tõnu; Johnson, Toby; Ketkar, Shamika; Kraft, Peter; Mangino, Massimo; Prokopenko, Inga; Absher, Devin; Albrecht, Eva; Ernst, Florian; Glazer, Nicole L.; Hayward, Caroline; Hottenga, Jouke-Jan; Jacobs, Kevin B.; Knowles, Joshua W.; Kutalik, Zoltán; Monda, Keri L.; Polasek, Ozren; Preuss, Michael; Rayner, Nigel W.; Robertson, Neil R.; Steinthorsdottir, Valgerdur; Tyrer, Jonathan P.; Voight, Benjamin F.; Wiklund, Fredrik; Xu, Jianfeng; Zhao, Jing Hua; Nyholt, Dale R.; Pellikka, Niina; Perola, Markus; Perry, John R.B.; Surakka, Ida; Tammesoo, Mari-Liis; Altmaier, Elizabeth L.; Amin, Najaf; Aspelund, Thor; Bhangale, Tushar; Boucher, Gabrielle; Chasman, Daniel I.; Chen, Constance; Coin, Lachlan; Cooper, Matthew N.; Dixon, Anna L.; Gibson, Quince; Grundberg, Elin; Hao, Ke; Junttila, M. Juhani; Kaplan, Lee M.; Kettunen, Johannes; König, Inke R.; Kwan, Tony; Lawrence, Robert W.; Levinson, Douglas F.; Lorentzon, Mattias; McKnight, Barbara; Morris, Andrew P.; Müller, Martina; Ngwa, Julius Suh; Purcell, Shaun; Rafelt, Suzanne; Salem, Rany M.; Salvi, Erika; Sanna, Serena; Shi, Jianxin; Sovio, Ulla; Thompson, John R.; Turchin, Michael C.; Vandenput, Liesbeth; Verlaan, Dominique J.; Vitart, Veronique; White, Charles C.; Ziegler, Andreas; Almgren, Peter; Balmforth, Anthony J.; Campbell, Harry; Citterio, Lorena; De Grandi, Alessandro; Dominiczak, Anna; Duan, Jubao; Elliott, Paul; Elosua, Roberto; Eriksson, Johan G.; Freimer, Nelson B.; Geus, Eco J.C.; Glorioso, Nicola; Haiqing, Shen; Hartikainen, Anna-Liisa; Havulinna, Aki S.; Hicks, Andrew A.; Hui, Jennie; Igl, Wilmar; Illig, Thomas; Jula, Antti; Kajantie, Eero; Kilpeläinen, Tuomas O.; Koiranen, Markku; Kolcic, Ivana; Koskinen, Seppo; Kovacs, Peter; Laitinen, Jaana; Liu, Jianjun; Lokki, Marja-Liisa; Marusic, Ana; Maschio, Andrea; Meitinger, Thomas; Mulas, Antonella; Paré, Guillaume; Parker, Alex N.; Peden, John F.; Petersmann, Astrid; Pichler, Irene; Pietiläinen, Kirsi H.; Pouta, Anneli; Ridderstråle, Martin; Rotter, Jerome I.; Sambrook, Jennifer G.; Sanders, Alan R.; Schmidt, Carsten Oliver; Sinisalo, Juha; Smit, Jan H.; Stringham, Heather M.; Walters, G.Bragi; Widen, Elisabeth; Wild, Sarah H.; Willemsen, Gonneke; Zagato, Laura; Zgaga, Lina; Zitting, Paavo; Alavere, Helene; Farrall, Martin; McArdle, Wendy L.; Nelis, Mari; Peters, Marjolein J.; Ripatti, Samuli; van Meurs, Joyce B.J.; Aben, Katja K.; Ardlie, Kristin G; Beckmann, Jacques S.; Beilby, John P.; Bergman, Richard N.; Bergmann, Sven; Collins, Francis S.; Cusi, Daniele; den Heijer, Martin; Eiriksdottir, Gudny; Gejman, Pablo V.; Hall, Alistair S.; Hamsten, Anders; Huikuri, Heikki V.; Iribarren, Carlos; Kähönen, Mika; Kaprio, Jaakko; Kathiresan, Sekar; Kiemeney, Lambertus; Kocher, Thomas; Launer, Lenore J.; Lehtimäki, Terho; Melander, Olle; Mosley, Tom H.; Musk, Arthur W.; Nieminen, Markku S.; O'Donnell, Christopher J.; Ohlsson, Claes; Oostra, Ben; Palmer, Lyle J.; Raitakari, Olli; Ridker, Paul M.; Rioux, John D.; Rissanen, Aila; Rivolta, Carlo; Schunkert, Heribert; Shuldiner, Alan R.; Siscovick, David S.; Stumvoll, Michael; Tönjes, Anke; Tuomilehto, Jaakko; van Ommen, Gert-Jan; Viikari, Jorma; Heath, Andrew C.; Martin, Nicholas G.; Montgomery, Grant W.; Province, Michael A.; Kayser, Manfred; Arnold, Alice M.; Atwood, Larry D.; Boerwinkle, Eric; Chanock, Stephen J.; Deloukas, Panos; Gieger, Christian; Grönberg, Henrik; Hall, Per; Hattersley, Andrew T.; Hengstenberg, Christian; Hoffman, Wolfgang; Lathrop, G.Mark; Salomaa, Veikko; Schreiber, Stefan; Uda, Manuela; Waterworth, Dawn; Wright, Alan F.; Assimes, Themistocles L.; Barroso, Inês; Hofman, Albert; Mohlke, Karen L.; Boomsma, Dorret I.; Caulfield, Mark J.; Cupples, L.Adrienne; Erdmann, Jeanette; Fox, Caroline S.; Gudnason, Vilmundur; Gyllensten, Ulf; Harris, Tamara B.; Hayes, Richard B.; Jarvelin, Marjo-Riitta; Mooser, Vincent; Munroe, Patricia B.; Ouwehand, Willem H.; Penninx, Brenda W.; Pramstaller, Peter P.; Quertermous, Thomas; Rudan, Igor; Samani, Nilesh J.; Spector, Timothy D.; Völzke, Henry; Watkins, Hugh; Wilson, James F.; Groop, Leif C.; Haritunians, Talin; Hu, Frank B.; Kaplan, Robert C.; Metspalu, Andres; North, Kari E.; Schlessinger, David; Wareham, Nicholas J.; Hunter, David J.; O'Connell, Jeffrey R.; Strachan, David P.; Wichmann, H.-Erich; Borecki, Ingrid B.; van Duijn, Cornelia M.; Schadt, Eric E.; Thorsteinsdottir, Unnur; Peltonen, Leena; Uitterlinden, André; Visscher, Peter M.; Chatterjee, Nilanjan; Loos, Ruth J.F.; Boehnke, Michael; McCarthy, Mark I.; Ingelsson, Erik; Lindgren, Cecilia M.; Abecasis, Gonçalo R.; Stefansson, Kari; Frayling, Timothy M.; Hirschhorn, Joel N

    2010-01-01

    Most common human traits and diseases have a polygenic pattern of inheritance: DNA sequence variants at many genetic loci influence phenotype. Genome-wide association (GWA) studies have identified >600 variants associated with human traits1, but these typically explain small fractions of phenotypic variation, raising questions about the utility of further studies. Here, using 183,727 individuals, we show that hundreds of genetic variants, in at least 180 loci, influence adult height, a highly heritable and classic polygenic trait2,3. The large number of loci reveals patterns with important implications for genetic studies of common human diseases and traits. First, the 180 loci are not random, but instead are enriched for genes that are connected in biological pathways (P=0.016), and that underlie skeletal growth defects (P<0.001). Second, the likely causal gene is often located near the most strongly associated variant: in 13 of 21 loci containing a known skeletal growth gene, that gene was closest to the associated variant. Third, at least 19 loci have multiple independently associated variants, suggesting that allelic heterogeneity is a frequent feature of polygenic traits, that comprehensive explorations of already-discovered loci should discover additional variants, and that an appreciable fraction of associated loci may have been identified. Fourth, associated variants are enriched for likely functional effects on genes, being over-represented amongst variants that alter amino acid structure of proteins and expression levels of nearby genes. Our data explain ∼10% of the phenotypic variation in height, and we estimate that unidentified common variants of similar effect sizes would increase this figure to ∼16% of phenotypic variation (∼20% of heritable variation). Although additional approaches are needed to fully dissect the genetic architecture of polygenic human traits, our findings indicate that GWA studies can identify large numbers of loci that

  19. Genetic associations at 53 loci highlight cell types and biological pathways relevant for kidney function.

    PubMed

    Pattaro, Cristian; Teumer, Alexander; Gorski, Mathias; Chu, Audrey Y; Li, Man; Mijatovic, Vladan; Garnaas, Maija; Tin, Adrienne; Sorice, Rossella; Li, Yong; Taliun, Daniel; Olden, Matthias; Foster, Meredith; Yang, Qiong; Chen, Ming-Huei; Pers, Tune H; Johnson, Andrew D; Ko, Yi-An; Fuchsberger, Christian; Tayo, Bamidele; Nalls, Michael; Feitosa, Mary F; Isaacs, Aaron; Dehghan, Abbas; d'Adamo, Pio; Adeyemo, Adebowale; Dieffenbach, Aida Karina; Zonderman, Alan B; Nolte, Ilja M; van der Most, Peter J; Wright, Alan F; Shuldiner, Alan R; Morrison, Alanna C; Hofman, Albert; Smith, Albert V; Dreisbach, Albert W; Franke, Andre; Uitterlinden, Andre G; Metspalu, Andres; Tonjes, Anke; Lupo, Antonio; Robino, Antonietta; Johansson, Åsa; Demirkan, Ayse; Kollerits, Barbara; Freedman, Barry I; Ponte, Belen; Oostra, Ben A; Paulweber, Bernhard; Krämer, Bernhard K; Mitchell, Braxton D; Buckley, Brendan M; Peralta, Carmen A; Hayward, Caroline; Helmer, Catherine; Rotimi, Charles N; Shaffer, Christian M; Müller, Christian; Sala, Cinzia; van Duijn, Cornelia M; Saint-Pierre, Aude; Ackermann, Daniel; Shriner, Daniel; Ruggiero, Daniela; Toniolo, Daniela; Lu, Yingchang; Cusi, Daniele; Czamara, Darina; Ellinghaus, David; Siscovick, David S; Ruderfer, Douglas; Gieger, Christian; Grallert, Harald; Rochtchina, Elena; Atkinson, Elizabeth J; Holliday, Elizabeth G; Boerwinkle, Eric; Salvi, Erika; Bottinger, Erwin P; Murgia, Federico; Rivadeneira, Fernando; Ernst, Florian; Kronenberg, Florian; Hu, Frank B; Navis, Gerjan J; Curhan, Gary C; Ehret, George B; Homuth, Georg; Coassin, Stefan; Thun, Gian-Andri; Pistis, Giorgio; Gambaro, Giovanni; Malerba, Giovanni; Montgomery, Grant W; Eiriksdottir, Gudny; Jacobs, Gunnar; Li, Guo; Wichmann, H-Erich; Campbell, Harry; Schmidt, Helena; Wallaschofski, Henri; Völzke, Henry; Brenner, Hermann; Kroemer, Heyo K; Kramer, Holly; Lin, Honghuang; Leach, I Mateo; Ford, Ian; Guessous, Idris; Rudan, Igor; Prokopenko, Inga; Borecki, Ingrid; Heid, Iris M; Kolcic, Ivana; Persico, Ivana; Jukema, J Wouter; Wilson, James F; Felix, Janine F; Divers, Jasmin; Lambert, Jean-Charles; Stafford, Jeanette M; Gaspoz, Jean-Michel; Smith, Jennifer A; Faul, Jessica D; Wang, Jie Jin; Ding, Jingzhong; Hirschhorn, Joel N; Attia, John; Whitfield, John B; Chalmers, John; Viikari, Jorma; Coresh, Josef; Denny, Joshua C; Karjalainen, Juha; Fernandes, Jyotika K; Endlich, Karlhans; Butterbach, Katja; Keene, Keith L; Lohman, Kurt; Portas, Laura; Launer, Lenore J; Lyytikäinen, Leo-Pekka; Yengo, Loic; Franke, Lude; Ferrucci, Luigi; Rose, Lynda M; Kedenko, Lyudmyla; Rao, Madhumathi; Struchalin, Maksim; Kleber, Marcus E; Cavalieri, Margherita; Haun, Margot; Cornelis, Marilyn C; Ciullo, Marina; Pirastu, Mario; de Andrade, Mariza; McEvoy, Mark A; Woodward, Mark; Adam, Martin; Cocca, Massimiliano; Nauck, Matthias; Imboden, Medea; Waldenberger, Melanie; Pruijm, Menno; Metzger, Marie; Stumvoll, Michael; Evans, Michele K; Sale, Michele M; Kähönen, Mika; Boban, Mladen; Bochud, Murielle; Rheinberger, Myriam; Verweij, Niek; Bouatia-Naji, Nabila; Martin, Nicholas G; Hastie, Nick; Probst-Hensch, Nicole; Soranzo, Nicole; Devuyst, Olivier; Raitakari, Olli; Gottesman, Omri; Franco, Oscar H; Polasek, Ozren; Gasparini, Paolo; Munroe, Patricia B; Ridker, Paul M; Mitchell, Paul; Muntner, Paul; Meisinger, Christa; Smit, Johannes H; Kovacs, Peter; Wild, Philipp S; Froguel, Philippe; Rettig, Rainer; Mägi, Reedik; Biffar, Reiner; Schmidt, Reinhold; Middelberg, Rita P S; Carroll, Robert J; Penninx, Brenda W; Scott, Rodney J; Katz, Ronit; Sedaghat, Sanaz; Wild, Sarah H; Kardia, Sharon L R; Ulivi, Sheila; Hwang, Shih-Jen; Enroth, Stefan; Kloiber, Stefan; Trompet, Stella; Stengel, Benedicte; Hancock, Stephen J; Turner, Stephen T; Rosas, Sylvia E; Stracke, Sylvia; Harris, Tamara B; Zeller, Tanja; Zemunik, Tatijana; Lehtimäki, Terho; Illig, Thomas; Aspelund, Thor; Nikopensius, Tiit; Esko, Tonu; Tanaka, Toshiko; Gyllensten, Ulf; Völker, Uwe; Emilsson, Valur; Vitart, Veronique; Aalto, Ville; Gudnason, Vilmundur; Chouraki, Vincent; Chen, Wei-Min; Igl, Wilmar; März, Winfried; Koenig, Wolfgang; Lieb, Wolfgang; Loos, Ruth J F; Liu, Yongmei; Snieder, Harold; Pramstaller, Peter P; Parsa, Afshin; O'Connell, Jeffrey R; Susztak, Katalin; Hamet, Pavel; Tremblay, Johanne; de Boer, Ian H; Böger, Carsten A; Goessling, Wolfram; Chasman, Daniel I; Köttgen, Anna; Kao, W H Linda; Fox, Caroline S

    2016-01-01

    Reduced glomerular filtration rate defines chronic kidney disease and is associated with cardiovascular and all-cause mortality. We conducted a meta-analysis of genome-wide association studies for estimated glomerular filtration rate (eGFR), combining data across 133,413 individuals with replication in up to 42,166 individuals. We identify 24 new and confirm 29 previously identified loci. Of these 53 loci, 19 associate with eGFR among individuals with diabetes. Using bioinformatics, we show that identified genes at eGFR loci are enriched for expression in kidney tissues and in pathways relevant for kidney development and transmembrane transporter activity, kidney structure, and regulation of glucose metabolism. Chromatin state mapping and DNase I hypersensitivity analyses across adult tissues demonstrate preferential mapping of associated variants to regulatory regions in kidney but not extra-renal tissues. These findings suggest that genetic determinants of eGFR are mediated largely through direct effects within the kidney and highlight important cell types and biological pathways. PMID:26831199

  20. The two-pathway model for the catch-slip transition in biological adhesion.

    PubMed

    Pereverzev, Yuriy V; Prezhdo, Oleg V; Forero, Manu; Sokurenko, Evgeni V; Thomas, Wendy E

    2005-09-01

    Some recently studied biological noncovalent bonds have shown increased lifetime when stretched by mechanical force. In each case these counterintuitive "catch-bonds" have transitioned into ordinary "slip-bonds" that become increasingly shorter lived as the tensile force on the bond is further increased. We describe analytically how these results are supported by a physical model whereby the ligand escapes the receptor binding site via two alternative routes, a catch-pathway that is opposed by the applied force and a slip-pathway that is promoted by force. The model predicts under what conditions and at what critical force the catch-to-slip transition would be observed, as well as the degree to which the bond lifetime is enhanced at the critical force. The model is applied to four experimentally studied systems taken from the literature, involving the binding of P- and L-selectins to sialyl Lewis(X) oligosaccharide-containing ligands. Good quantitative fit to the experimental data is obtained, both for experiments with a constant force and for experiments where the force increases linearly with time. PMID:15951391

  1. Molecular Signaling Pathways Behind the Biological Effects of Salvia Species Diterpenes in Neuropharmacology and Cardiology.

    PubMed

    Akaberi, M; Iranshahi, M; Mehri, S

    2016-06-01

    The genus Salvia, from the Lamiaceae family, has diverse biological properties that are primarily attributable to their diterpene contents. There is no comprehensive review on the molecular signaling pathways of these active components. In this review, we investigated the molecular targets of bioactive Salvia diterpenes responsible for the treatment of nervous and cardiovascular diseases. The effects on different pathways, including apoptosis signaling, oxidative stress phenomena, the accumulation of amyloid beta plaques, and tau phosphorylation, have all been considered to be mechanisms of the anti-Alzheimer properties of Salvia diterpenes. Additionally, effects on the benzodiazepine and kappa opioid receptors and neuroprotective effects are noted as neuropharmacological properties of Salvia diterpenes, including tanshinone IIA, salvinorin A, cryptotanshinone, and miltirone. Tanshinone IIA, as the primary diterpene of Salvia miltiorrhiza, has beneficial activities in heart diseases because of its ability to scavenge free radicals and its effects on transcription factors, such as nuclear transcription factor-kappa B (NF-κB) and the mitogen-activated protein kinases (MAPKs). Additionally, tanshinone IIA has also been proposed to have cardioprotective properties including antiarrhythmic activities and effects on myocardial infarction. With respect to the potential therapeutic effects of Salvia diterpenes, comprehensive clinical trials are warranted to evaluate these valuable molecules as lead compounds. Copyright © 2016 John Wiley & Sons, Ltd. PMID:26988179

  2. The Two-Pathway Model for the Catch-Slip Transition in Biological Adhesion

    PubMed Central

    Pereverzev, Yuriy V.; Prezhdo, Oleg V.; Forero, Manu; Sokurenko, Evgeni V.; Thomas, Wendy E.

    2005-01-01

    Some recently studied biological noncovalent bonds have shown increased lifetime when stretched by mechanical force. In each case these counterintuitive “catch-bonds” have transitioned into ordinary “slip-bonds” that become increasingly shorter lived as the tensile force on the bond is further increased. We describe analytically how these results are supported by a physical model whereby the ligand escapes the receptor binding site via two alternative routes, a catch-pathway that is opposed by the applied force and a slip-pathway that is promoted by force. The model predicts under what conditions and at what critical force the catch-to-slip transition would be observed, as well as the degree to which the bond lifetime is enhanced at the critical force. The model is applied to four experimentally studied systems taken from the literature, involving the binding of P- and L-selectins to sialyl LewisX oligosaccharide-containing ligands. Good quantitative fit to the experimental data is obtained, both for experiments with a constant force and for experiments where the force increases linearly with time. PMID:15951391

  3. Microbial regulation of terrestrial nitrous oxide formation: understanding the biological pathways for prediction of emission rates.

    PubMed

    Hu, Hang-Wei; Chen, Deli; He, Ji-Zheng

    2015-09-01

    The continuous increase of the greenhouse gas nitrous oxide (N2O) in the atmosphere due to increasing anthropogenic nitrogen input in agriculture has become a global concern. In recent years, identification of the microbial assemblages responsible for soil N2O production has substantially advanced with the development of molecular technologies and the discoveries of novel functional guilds and new types of metabolism. However, few practical tools are available to effectively reduce in situ soil N2O flux. Combating the negative impacts of increasing N2O fluxes poses considerable challenges and will be ineffective without successfully incorporating microbially regulated N2O processes into ecosystem modeling and mitigation strategies. Here, we synthesize the latest knowledge of (i) the key microbial pathways regulating N2O production and consumption processes in terrestrial ecosystems and the critical environmental factors influencing their occurrence, and (ii) the relative contributions of major biological pathways to soil N2O emissions by analyzing available natural isotopic signatures of N2O and by using stable isotope enrichment and inhibition techniques. We argue that it is urgently necessary to incorporate microbial traits into biogeochemical ecosystem modeling in order to increase the estimation reliability of N2O emissions. We further propose a molecular methodology oriented framework from gene to ecosystem scales for more robust prediction and mitigation of future N2O emissions. PMID:25934121

  4. Genetic associations at 53 loci highlight cell types and biological pathways relevant for kidney function

    PubMed Central

    Pattaro, Cristian; Teumer, Alexander; Gorski, Mathias; Chu, Audrey Y.; Li, Man; Mijatovic, Vladan; Garnaas, Maija; Tin, Adrienne; Sorice, Rossella; Li, Yong; Taliun, Daniel; Olden, Matthias; Foster, Meredith; Yang, Qiong; Chen, Ming-Huei; Pers, Tune H.; Johnson, Andrew D.; Ko, Yi-An; Fuchsberger, Christian; Tayo, Bamidele; Nalls, Michael; Feitosa, Mary F.; Isaacs, Aaron; Dehghan, Abbas; d'Adamo, Pio; Adeyemo, Adebowale; Dieffenbach, Aida Karina; Zonderman, Alan B.; Nolte, Ilja M.; van der Most, Peter J.; Wright, Alan F.; Shuldiner, Alan R.; Morrison, Alanna C.; Hofman, Albert; Smith, Albert V.; Dreisbach, Albert W.; Franke, Andre; Uitterlinden, Andre G.; Metspalu, Andres; Tonjes, Anke; Lupo, Antonio; Robino, Antonietta; Johansson, Åsa; Demirkan, Ayse; Kollerits, Barbara; Freedman, Barry I.; Ponte, Belen; Oostra, Ben A.; Paulweber, Bernhard; Krämer, Bernhard K.; Mitchell, Braxton D.; Buckley, Brendan M.; Peralta, Carmen A.; Hayward, Caroline; Helmer, Catherine; Rotimi, Charles N.; Shaffer, Christian M.; Müller, Christian; Sala, Cinzia; van Duijn, Cornelia M.; Saint-Pierre, Aude; Ackermann, Daniel; Shriner, Daniel; Ruggiero, Daniela; Toniolo, Daniela; Lu, Yingchang; Cusi, Daniele; Czamara, Darina; Ellinghaus, David; Siscovick, David S.; Ruderfer, Douglas; Gieger, Christian; Grallert, Harald; Rochtchina, Elena; Atkinson, Elizabeth J.; Holliday, Elizabeth G.; Boerwinkle, Eric; Salvi, Erika; Bottinger, Erwin P.; Murgia, Federico; Rivadeneira, Fernando; Ernst, Florian; Kronenberg, Florian; Hu, Frank B.; Navis, Gerjan J.; Curhan, Gary C.; Ehret, George B.; Homuth, Georg; Coassin, Stefan; Thun, Gian-Andri; Pistis, Giorgio; Gambaro, Giovanni; Malerba, Giovanni; Montgomery, Grant W.; Eiriksdottir, Gudny; Jacobs, Gunnar; Li, Guo; Wichmann, H-Erich; Campbell, Harry; Schmidt, Helena; Wallaschofski, Henri; Völzke, Henry; Brenner, Hermann; Kroemer, Heyo K.; Kramer, Holly; Lin, Honghuang; Leach, I. Mateo; Ford, Ian; Guessous, Idris; Rudan, Igor; Prokopenko, Inga; Borecki, Ingrid; Heid, Iris M.; Kolcic, Ivana; Persico, Ivana; Jukema, J. Wouter; Wilson, James F.; Felix, Janine F.; Divers, Jasmin; Lambert, Jean-Charles; Stafford, Jeanette M.; Gaspoz, Jean-Michel; Smith, Jennifer A.; Faul, Jessica D.; Wang, Jie Jin; Ding, Jingzhong; Hirschhorn, Joel N.; Attia, John; Whitfield, John B.; Chalmers, John; Viikari, Jorma; Coresh, Josef; Denny, Joshua C.; Karjalainen, Juha; Fernandes, Jyotika K.; Endlich, Karlhans; Butterbach, Katja; Keene, Keith L.; Lohman, Kurt; Portas, Laura; Launer, Lenore J.; Lyytikäinen, Leo-Pekka; Yengo, Loic; Franke, Lude; Ferrucci, Luigi; Rose, Lynda M.; Kedenko, Lyudmyla; Rao, Madhumathi; Struchalin, Maksim; Kleber, Marcus E.; Cavalieri, Margherita; Haun, Margot; Cornelis, Marilyn C.; Ciullo, Marina; Pirastu, Mario; de Andrade, Mariza; McEvoy, Mark A.; Woodward, Mark; Adam, Martin; Cocca, Massimiliano; Nauck, Matthias; Imboden, Medea; Waldenberger, Melanie; Pruijm, Menno; Metzger, Marie; Stumvoll, Michael; Evans, Michele K.; Sale, Michele M.; Kähönen, Mika; Boban, Mladen; Bochud, Murielle; Rheinberger, Myriam; Verweij, Niek; Bouatia-Naji, Nabila; Martin, Nicholas G.; Hastie, Nick; Probst-Hensch, Nicole; Soranzo, Nicole; Devuyst, Olivier; Raitakari, Olli; Gottesman, Omri; Franco, Oscar H.; Polasek, Ozren; Gasparini, Paolo; Munroe, Patricia B.; Ridker, Paul M.; Mitchell, Paul; Muntner, Paul; Meisinger, Christa; Smit, Johannes H.; Abecasis, Goncalo R.; Adair, Linda S.; Alexander, Myriam; Altshuler, David; Amin, Najaf; Arking, Dan E.; Arora, Pankaj; Aulchenko, Yurii; Bakker, Stephan J. L.; Bandinelli, Stefania; Barroso, Ines; Beckmann, Jacques S.; Beilby, John P.; Bergman, Richard N.; Bergmann, Sven; Bis, Joshua C.; Boehnke, Michael; Bonnycastle, Lori L.; Bornstein, Stefan R.; Bots, Michiel L.; Bragg-Gresham, Jennifer L.; Brand, Stefan-Martin; Brand, Eva; Braund, Peter S.; Brown, Morris J.; Burton, Paul R.; Casas, Juan P.; Caulfield, Mark J.; Chakravarti, Aravinda; Chambers, John C.; Chandak, Giriraj R.; Chang, Yen-Pei C.; Charchar, Fadi J.; Chaturvedi, Nish; Shin Cho, Yoon; Clarke, Robert; Collins, Francis S.; Collins, Rory; Connell, John M.; Cooper, Jackie A.; Cooper, Matthew N.; Cooper, Richard S.; Corsi, Anna Maria; Dörr, Marcus; Dahgam, Santosh; Danesh, John; Smith, George Davey; Day, Ian N. M.; Deloukas, Panos; Denniff, Matthew; Dominiczak, Anna F.; Dong, Yanbin; Doumatey, Ayo; Elliott, Paul; Elosua, Roberto; Erdmann, Jeanette; Eyheramendy, Susana; Farrall, Martin; Fava, Cristiano; Forrester, Terrence; Fowkes, F. Gerald R.; Fox, Ervin R.; Frayling, Timothy M.; Galan, Pilar

    2016-01-01

    Reduced glomerular filtration rate defines chronic kidney disease and is associated with cardiovascular and all-cause mortality. We conducted a meta-analysis of genome-wide association studies for estimated glomerular filtration rate (eGFR), combining data across 133,413 individuals with replication in up to 42,166 individuals. We identify 24 new and confirm 29 previously identified loci. Of these 53 loci, 19 associate with eGFR among individuals with diabetes. Using bioinformatics, we show that identified genes at eGFR loci are enriched for expression in kidney tissues and in pathways relevant for kidney development and transmembrane transporter activity, kidney structure, and regulation of glucose metabolism. Chromatin state mapping and DNase I hypersensitivity analyses across adult tissues demonstrate preferential mapping of associated variants to regulatory regions in kidney but not extra-renal tissues. These findings suggest that genetic determinants of eGFR are mediated largely through direct effects within the kidney and highlight important cell types and biological pathways. PMID:26831199

  5. Identification of ten loci associated with height highlights new biological pathways in human growth

    PubMed Central

    Lettre, Guillaume; Jackson, Anne U; Gieger, Christian; Schumacher, Fredrick R; Berndt, Sonja I; Sanna, Serena; Eyheramendy, Susana; Voight, Benjamin F; Butler, Johannah L; Guiducci, Candace; Illig, Thomas; Hackett, Rachel; Heid, Iris M; Jacobs, Kevin B; Lyssenko, Valeriya; Uda, Manuela; Boehnke, Michael; Chanock, Stephen J; Groop, Leif C; Hu, Frank B; Isomaa, Bo; Kraft, Peter; Peltonen, Leena; Salomaa, Veikko; Schlessinger, David; Hunter, David J; Hayes, Richard B; Abecasis, Gonçalo R; Wichmann, H-Erich; Mohlke, Karen L; Hirschhorn, Joel N

    2009-01-01

    Height is a classic polygenic trait, reflecting the combined influence of multiple as-yet-undiscovered genetic factors. We carried out a meta-analysis of genome-wide association study data of height from 15,821 individuals at 2.2 million SNPs, and followed up the strongest findings in >10,000 subjects. Ten newly identified and two previously reported loci were strongly associated with variation in height (P values from 4 × 10-7 to 8 × 10-22). Together, these 12 loci account for ~2% of the population variation in height. Individuals with ≤8 height-increasing alleles and ≥16 height-increasing alleles differ in height by ~3.5 cm. The newly identified loci, along with several additional loci with strongly suggestive associations, encompass both strong biological candidates and unexpected genes, and highlight several pathways (let-7 targets, chromatin remodeling proteins and Hedgehog signaling) as important regulators of human stature. These results expand the picture of the biological regulation of human height and of the genetic architecture of this classical complex trait. PMID:18391950

  6. Systems biology and brain activity in neuronal pathways by smart device and advanced signal processing

    PubMed Central

    Castellani, Gastone; Intrator, Nathan; Remondini, Daniel

    2014-01-01

    Contemporary biomedicine is producing large amount of data, especially within the fields of “omic” sciences. Nevertheless, other fields, such as neuroscience, are producing similar amount of data by using non-invasive techniques such as imaging, functional magnetic resonance and electroencephalography. Nowadays a big challenge and a new research horizon for Systems Biology is to develop methods to integrate and model this data in an unifying framework capable to disentangle this amazing complexity. In this paper we show how methods from genomic data analysis can be applied to brain data. In particular the concept of pathways, networks and multiplex are discussed. These methods can lead to a clear distinction of various regimes of brain activity. Moreover, this method could be the basis for a Systems Biology analysis of brain data and for the integration of these data in a multivariate and multidimensional framework. The feasibility of this integration is strongly dependent from the feature extraction method used. In our case we used an “alphabet” derived from a multi-resolution analysis that is capable to capture the most relevant information from these complex signals. PMID:25206359

  7. Calcium effect on the metabolic pathway of phosphorus accumulating organisms in enhanced biological phosphorus removal systems.

    PubMed

    Zhang, Hai-Ling; Sheng, Guo-Ping; Fang, Wei; Wang, Yong-Peng; Fang, Cai-Yun; Shao, Li-Min; Yu, Han-Qing

    2015-11-01

    Phosphorus accumulating organisms (PAOs) have been found to act as glycogen-accumulating organisms (GAOs) under certain conditions, thus, the deterioration in the performance of enhanced biological phosphorus removal systems is not always attributed to the proliferation of GAOs. In this work, the effects of calcium on the metabolic pathway of PAOs were explored. It was found that when the influent Ca(2+) concentration was elevated, the tendency and extent of extracellular calcium phosphate precipitation increased, and the intracellular inert Ca-bound polyphosphate was synthesized, while the microbial population remained almost unchanged. The changes in the ratios of phosphorus released/acetate uptaken, the glycogen degraded/acetate uptaken and the poly-β-hydroxyalkanoates synthesized/acetate uptaken during the anaerobic period confirm that, as the influent Ca(2+) concentration was increased, the polyphosphate-accumulating metabolism was partially shifted to the glycogen-accumulating metabolism. At an influent Ca(2+) around 50 mg/L, in addition to the extracellular calcium phosphate precipitation, the intracellular inert Ca-bound polyphosphate synthesis might also be involved in the metabolic change of PAOs. The results of the present work would be beneficial to better understand the biochemical metabolism of PAOs in enhanced biological phosphorus removal systems. PMID:26233656

  8. Chemical Dissolution Pathways of MoS2 Nanosheets in Biological and Environmental Media.

    PubMed

    Wang, Zhongying; von dem Bussche, Annette; Qiu, Yang; Valentin, Thomas M; Gion, Kyle; Kane, Agnes B; Hurt, Robert H

    2016-07-01

    Material stability and dissolution in aqueous media are key issues to address in the development of a new nanomaterial intended for technological application. Dissolution phenomena affect biological and environmental persistence; fate, transport, and biokinetics; device and product stability; and toxicity pathways and mechanisms. This article shows that MoS2 nanosheets are thermodynamically and kinetically unstable to O2-oxidation under ambient conditions in a variety of aqueous media. The oxidation is accompanied by nanosheet degradation and release of soluble molybdenum and sulfur species, and generates protons that can colloidally destabilize the remaining sheets. The oxidation kinetics are pH-dependent, and a kinetic law is developed for use in biokinetic and environmental fate modeling. MoS2 nanosheets fabricated by chemical exfoliation with n-butyl-lithium are a mixture of 1T (primary) and 2H (secondary) phases and oxidize rapidly with a typical half-life of 1-30 days. Ultrasonically exfoliated sheets are in pure 2H phase, and oxidize much more slowly. Cytotoxicity experiments on MoS2 nanosheets and molybdate ion controls reveal the relative roles of the nanosheet and soluble fractions in the biological response. These results indicate that MoS2 nanosheets will not show long-term persistence in living systems and oxic natural waters, with important implications for biomedical applications and environmental risk. PMID:27267956

  9. Identification of Common Biological Pathways and Drug Targets Across Multiple Respiratory Viruses Based on Human Host Gene Expression Analysis

    PubMed Central

    Smith, Steven B.; Dampier, William; Tozeren, Aydin; Brown, James R.; Magid-Slav, Michal

    2012-01-01

    Background Pandemic and seasonal respiratory viruses are a major global health concern. Given the genetic diversity of respiratory viruses and the emergence of drug resistant strains, the targeted disruption of human host-virus interactions is a potential therapeutic strategy for treating multi-viral infections. The availability of large-scale genomic datasets focused on host-pathogen interactions can be used to discover novel drug targets as well as potential opportunities for drug repositioning. Methods/Results In this study, we performed a large-scale analysis of microarray datasets involving host response to infections by influenza A virus, respiratory syncytial virus, rhinovirus, SARS-coronavirus, metapneumonia virus, coxsackievirus and cytomegalovirus. Common genes and pathways were found through a rigorous, iterative analysis pipeline where relevant host mRNA expression datasets were identified, analyzed for quality and gene differential expression, then mapped to pathways for enrichment analysis. Possible repurposed drugs targets were found through database and literature searches. A total of 67 common biological pathways were identified among the seven different respiratory viruses analyzed, representing fifteen laboratories, nine different cell types, and seven different array platforms. A large overlap in the general immune response was observed among the top twenty of these 67 pathways, adding validation to our analysis strategy. Of the top five pathways, we found 53 differentially expressed genes affected by at least five of the seven viruses. We suggest five new therapeutic indications for existing small molecules or biological agents targeting proteins encoded by the genes F3, IL1B, TNF, CASP1 and MMP9. Pathway enrichment analysis also identified a potential novel host response, the Parkin-Ubiquitin Proteasomal System (Parkin-UPS) pathway, which is known to be involved in the progression of neurodegenerative Parkinson's disease. Conclusions Our study

  10. Systems biology, adverse outcome pathways, and ecotoxicology in the 21st century

    EPA Science Inventory

    While many definitions of systems biology exist, the majority of these contain most (if not all) of the following elements: global measurements of biological molecules to the extent technically feasible, dynamic measurements of key biological molecules to establish quantitative r...

  11. Carbon Nanotube Degradation in Macrophages: Live Nanoscale Monitoring and Understanding of Biological Pathway.

    PubMed

    Elgrabli, Dan; Dachraoui, Walid; Ménard-Moyon, Cécilia; Liu, Xiao Jie; Bégin, Dominique; Bégin-Colin, Sylvie; Bianco, Alberto; Gazeau, Florence; Alloyeau, Damien

    2015-10-27

    Despite numerous applications, the cellular-clearance mechanism of multiwalled carbon nanotubes (MWCNTs) has not been clearly established yet. Previous in vitro studies showed the ability of oxidative enzymes to induce nanotube degradation. Interestingly, these enzymes have the common capacity to produce reactive oxygen species (ROS). Here, we combined material and life science approaches for revealing an intracellular way taken by macrophages to degrade carbon nanotubes. We report the in situ monitoring of ROS-mediated MWCNT degradation by liquid-cell transmission electron microscopy. Two degradation mechanisms induced by hydroxyl radicals were extracted from these unseen dynamic nanoscale investigations: a non-site-specific thinning process of the walls and a site-specific transversal drilling process on pre-existing defects of nanotubes. Remarkably, similar ROS-induced structural injuries were observed on MWCNTs after aging into macrophages from 1 to 7 days. Beside unraveling oxidative transformations of MWCNT structure, we elucidated an important, albeit not exclusive, biological pathway for MWCNT degradation in macrophages, involving NOX2 complex activation, superoxide production, and hydroxyl radical attack, which highlights the critical role of oxidative stress in cellular processing of MWCNTs. PMID:26331631

  12. Endocannabinoid system as a regulator of tumor cell malignancy – biological pathways and clinical significance

    PubMed Central

    Pyszniak, Maria; Tabarkiewicz, Jacek; Łuszczki, Jarogniew J

    2016-01-01

    The endocannabinoid system (ECS) comprises cannabinoid receptors (CBs), endogenous cannabinoids, and enzymes responsible for their synthesis, transport, and degradation of (endo)cannabinoids. To date, two CBs, CB1 and CB2, have been characterized; however, orphan G-protein-coupled receptor GPR55 has been suggested to be the third putative CB. Several different types of cancer present abnormal expression of CBs, as well as other components of ECS, and this has been shown to correlate with the clinical outcome. Although most effects of (endo)cannabinoids are mediated through stimulation of classical CBs, they also interact with several molecules, either prosurvival or proapoptotic molecules. It should be noted that the mode of action of exogenous cannabinoids differs significantly from that of endocannabinoid and results from the studies on their activity both in vivo and in vitro could not be easily compared. This review highlights the main signaling pathways involved in the antitumor activity of cannabinoids and the influence of their activation on cancer cell biology. We also discuss changes in the expression pattern of the ECS in various cancer types that have an impact on disease progression and patient survival. A growing amount of experimental data imply possible exploitation of cannabinoids in cancer therapy. PMID:27486335

  13. MECHANISTIC PATHWAYS AND BIOLOGICAL ROLES FOR RECEPTOR-INDEPENDENT ACTIVATORS OF G-PROTEIN SIGNALING

    PubMed Central

    Blumer, Joe B.; Smrcka, Alan V.; Lanier, S.M.

    2007-01-01

    Signal processing via heterotrimeric G-proteins in response to cell surface receptors is a central and much investigated aspect of how cells integrate cellular stimuli to produce coordinated biological responses. The system is a target of numerous therapeutic agents, plays an important role in adaptive processes of organs, and aberrant processing of signals through these transducing systems is a component of various disease states. In addition to GPCR-mediated activation of G-protein signaling, nature has evolved creative ways to manipulate and utilize the Gαβγ heterotrimer or Gα and Gαβγ subunits independent of the cell surface receptor stimuli. In such situations, the G-protein subunits (Gα and Gαβγ) may actually be complexed with alternative binding partners independent of the typical heterotrimeric Gαβγ. Such regulatory accessory proteins include the family of RGS proteins that accelerate the GTPase activity of Gα and various entities that influence nucleotide binding properties and/or subunit interaction. The latter group of proteins includes receptor independent activators of G-protein signaling or AGS proteins that play surprising roles in signal processing. This review provides an overview of our current knowledge regarding AGS proteins. AGS proteins are indicative of a growing number of accessory proteins that influence signal propagation, facilitate cross talk between various types of signaling pathways and provide a platform for diverse functions of both the heterotrimeric Gαβγ and the individual Gα and Gαβγ subunits. PMID:17240454

  14. Confirming a biological pathway in the metabolic syndrome--insight from the NHANES 1999-2002.

    PubMed

    Lin, Lian-Yu; Kuo, Hsu-Ko; Li, Hung-Yuan; Hwang, Juey-Jen; Lin, Jou-Wei

    2008-12-01

    The objective of this study was to examine the role of obesity in the development of the metabolic syndrome (MS). A total of 3,596 whites aged 19 years and above, who participated in the National Health and Nutrition Examination Survey (NHANES) 1999-2002, were included for analysis. Anthropometric measurements, biochemical profiles, and high-sensitivity C-reactive protein (CRP) were measured. A structural equation model (SEM) was constructed to elucidate a pathway in which obesity initiated the cascade leading to full MS. The results of SEM demonstrated that obesity was positively associated with elevated CRP level (B = 0.05, P < 0.001). This higher inflammatory state directed to insulin resistance (B = 0.32, P < 0.001), which in turn was positively associated with dyslipidemia (B = 0.06, P < 0.001). Obesity could also directly and positively affect blood pressure (B = 0.51, P < 0.001), without the mediation of insulin resistance and/or inflammation. The results of the cross-sectional analysis in the white subjects have shown that obesity has a strong influence on hypertension that obtains little additional influence from inflammation or insulin resistance. The metabolic profile in the NHANES group has been confirmatory with the statement that there is a sequential effect from obesity to inflammation, insulin resistance, and dyslipidemia. This approach has allowed to inferring important biological insights about the nature of the relationships among the components of MS. PMID:18846046

  15. Significant Deregulated Pathways in Diabetes Type II Complications Identified through Expression Based Network Biology

    NASA Astrophysics Data System (ADS)

    Ukil, Sanchaita; Sinha, Meenakshee; Varshney, Lavneesh; Agrawal, Shipra

    Type 2 Diabetes is a complex multifactorial disease, which alters several signaling cascades giving rise to serious complications. It is one of the major risk factors for cardiovascular diseases. The present research work describes an integrated functional network biology approach to identify pathways that get transcriptionally altered and lead to complex complications thereby amplifying the phenotypic effect of the impaired disease state. We have identified two sub-network modules, which could be activated under abnormal circumstances in diabetes. Present work describes key proteins such as P85A and SRC serving as important nodes to mediate alternate signaling routes during diseased condition. P85A has been shown to be an important link between stress responsive MAPK and CVD markers involved in fibrosis. MAPK8 has been shown to interact with P85A and further activate CTGF through VEGF signaling. We have traced a novel and unique route correlating inflammation and fibrosis by considering P85A as a key mediator of signals. The next sub-network module shows SRC as a junction for various signaling processes, which results in interaction between NF-kB and beta catenin to cause cell death. The powerful interaction between these important genes in response to transcriptionally altered lipid metabolism and impaired inflammatory response via SRC causes apoptosis of cells. The crosstalk between inflammation, lipid homeostasis and stress, and their serious effects downstream have been explained in the present analyses.

  16. Molecular and biological pathways of skeletal muscle dysfunction in chronic obstructive pulmonary disease.

    PubMed

    Barreiro, Esther; Gea, Joaquim

    2016-08-01

    Chronic obstructive pulmonary disease (COPD) will be a major leading cause of death worldwide in the near future. Weakness and atrophy of the quadriceps are associated with a significantly poorer prognosis and increased mortality in COPD. Despite that skeletal muscle dysfunction may affect both respiratory and limb muscle groups in COPD, the latter are frequently more severely affected. Therefore, muscle dysfunction in COPD is a common systemic manifestation that should be evaluated on routine basis in clinical settings. In the present review, several aspects of COPD muscle dysfunction are being reviewed, with special emphasis on the underlying biological mechanisms. Figures on the prevalence of COPD muscle dysfunction and the most relevant etiologic contributors are also provided. Despite that ongoing research will shed light into the contribution of additional mechanisms to COPD muscle dysfunction, current knowledge points toward the involvement of a wide spectrum of cellular and molecular events that are differentially expressed in respiratory and limb muscles. Such mechanisms are thoroughly described in the article. The contribution of epigenetic events on COPD muscle dysfunction is also reviewed. We conclude that in view of the latest discoveries, from now, on new avenues of research should be designed to specifically target cellular mechanisms and pathways that impair muscle mass and function in COPD using pharmacological strategies and/or exercise training modalities. PMID:27056059

  17. Endocannabinoid system as a regulator of tumor cell malignancy - biological pathways and clinical significance.

    PubMed

    Pyszniak, Maria; Tabarkiewicz, Jacek; Łuszczki, Jarogniew J

    2016-01-01

    The endocannabinoid system (ECS) comprises cannabinoid receptors (CBs), endogenous cannabinoids, and enzymes responsible for their synthesis, transport, and degradation of (endo)cannabinoids. To date, two CBs, CB1 and CB2, have been characterized; however, orphan G-protein-coupled receptor GPR55 has been suggested to be the third putative CB. Several different types of cancer present abnormal expression of CBs, as well as other components of ECS, and this has been shown to correlate with the clinical outcome. Although most effects of (endo)cannabinoids are mediated through stimulation of classical CBs, they also interact with several molecules, either prosurvival or proapoptotic molecules. It should be noted that the mode of action of exogenous cannabinoids differs significantly from that of endocannabinoid and results from the studies on their activity both in vivo and in vitro could not be easily compared. This review highlights the main signaling pathways involved in the antitumor activity of cannabinoids and the influence of their activation on cancer cell biology. We also discuss changes in the expression pattern of the ECS in various cancer types that have an impact on disease progression and patient survival. A growing amount of experimental data imply possible exploitation of cannabinoids in cancer therapy. PMID:27486335

  18. Exposure pathways and biological receptors: baseline data for the canyon uranium mine, Coconino County, Arizona

    USGS Publications Warehouse

    Hinck, Jo E.; Linder, Greg L.; Darrah, Abigail J.; Drost, Charles A.; Duniway, Michael C.; Johnson, Matthew J.; Méndez-Harclerode, Francisca M.; Nowak, Erika M.; Valdez, Ernest W.; Van Riper, Charles, III; Wolff, S.W.

    2014-01-01

    Recent restrictions on uranium mining within the Grand Canyon watershed have drawn attention to scientific data gaps in evaluating the possible effects of ore extraction to human populations as well as wildlife communities in the area. Tissue contaminant concentrations, one of the most basic data requirements to determine exposure, are not available for biota from any historical or active uranium mines in the region. The Canyon Uranium Mine is under development, providing a unique opportunity to characterize concentrations of uranium and other trace elements, as well as radiation levels in biota, found in the vicinity of the mine before ore extraction begins. Our study objectives were to identify contaminants of potential concern and critical contaminant exposure pathways for ecological receptors; conduct biological surveys to understand the local food web and refine the list of target species (ecological receptors) for contaminant analysis; and collect target species for contaminant analysis prior to the initiation of active mining. Contaminants of potential concern were identified as arsenic, cadmium, chromium, copper, lead, mercury, nickel, selenium, thallium, uranium, and zinc for chemical toxicity and uranium and associated radionuclides for radiation. The conceptual exposure model identified ingestion, inhalation, absorption, and dietary transfer (bioaccumulation or bioconcentration) as critical contaminant exposure pathways. The biological survey of plants, invertebrates, amphibians, reptiles, birds, and small mammals is the first to document and provide ecological information on .200 species in and around the mine site; this study also provides critical baseline information about the local food web. Most of the species documented at the mine are common to ponderosa pine Pinus ponderosa and pinyon–juniper Pinus–Juniperus spp. forests in northern Arizona and are not considered to have special conservation status by state or federal agencies; exceptions

  19. A new synthetic biology approach allows transfer of an entire metabolic pathway from a medicinal plant to a biomass crop.

    PubMed

    Fuentes, Paulina; Zhou, Fei; Erban, Alexander; Karcher, Daniel; Kopka, Joachim; Bock, Ralph

    2016-01-01

    Artemisinin-based therapies are the only effective treatment for malaria, the most devastating disease in human history. To meet the growing demand for artemisinin and make it accessible to the poorest, an inexpensive and rapidly scalable production platform is urgently needed. Here we have developed a new synthetic biology approach, combinatorial supertransformation of transplastomic recipient lines (COSTREL), and applied it to introduce the complete pathway for artemisinic acid, the precursor of artemisinin, into the high-biomass crop tobacco. We first introduced the core pathway of artemisinic acid biosynthesis into the chloroplast genome. The transplastomic plants were then combinatorially supertransformed with cassettes for all additional enzymes known to affect flux through the artemisinin pathway. By screening large populations of COSTREL lines, we isolated plants that produce more than 120 milligram artemisinic acid per kilogram biomass. Our work provides an efficient strategy for engineering complex biochemical pathways into plants and optimizing the metabolic output. PMID:27296645

  20. Biological pathways modulated by antipsychotics in the blood plasma of schizophrenia patients and their association to a clinical response

    PubMed Central

    Martins-de-Souza, Daniel; Solari, Fiorella A; Guest, Paul C; Zahedi, René P; Steiner, Johann

    2015-01-01

    Proteomics is a valuable tool to unravel molecular mechanisms involved in human disorders. Considering the mediocre effectiveness of antipsychotics, which are the main class of drug used to treat schizophrenia, we analyzed a cohort of 58 schizophrenia patients who had blood collected before and after 6 weeks of antipsychotic treatment using a shotgun mass spectrometry proteomic profiling approach. Our aim was to unravel molecular pathways involved with an effective drug response. The results showed that all patients had essentially the same biochemical pathways triggered Independent of the antipsychotic response outcome. However, we observed that these pathways were regulated in different directions in blood samples from those who responded well to antipsychotics, compared with those who had a poorer outcome. These data are novel, timely and may help to guide new research efforts in the design of new treatments or medications for schizophrenia based on biologically relevant pathways. PMID:27336048

  1. Combining chemoinformatics with bioinformatics: in silico prediction of bacterial flavor-forming pathways by a chemical systems biology approach "reverse pathway engineering".

    PubMed

    Liu, Mengjin; Bienfait, Bruno; Sacher, Oliver; Gasteiger, Johann; Siezen, Roland J; Nauta, Arjen; Geurts, Jan M W

    2014-01-01

    The incompleteness of genome-scale metabolic models is a major bottleneck for systems biology approaches, which are based on large numbers of metabolites as identified and quantified by metabolomics. Many of the revealed secondary metabolites and/or their derivatives, such as flavor compounds, are non-essential in metabolism, and many of their synthesis pathways are unknown. In this study, we describe a novel approach, Reverse Pathway Engineering (RPE), which combines chemoinformatics and bioinformatics analyses, to predict the "missing links" between compounds of interest and their possible metabolic precursors by providing plausible chemical and/or enzymatic reactions. We demonstrate the added-value of the approach by using flavor-forming pathways in lactic acid bacteria (LAB) as an example. Established metabolic routes leading to the formation of flavor compounds from leucine were successfully replicated. Novel reactions involved in flavor formation, i.e. the conversion of alpha-hydroxy-isocaproate to 3-methylbutanoic acid and the synthesis of dimethyl sulfide, as well as the involved enzymes were successfully predicted. These new insights into the flavor-formation mechanisms in LAB can have a significant impact on improving the control of aroma formation in fermented food products. Since the input reaction databases and compounds are highly flexible, the RPE approach can be easily extended to a broad spectrum of applications, amongst others health/disease biomarker discovery as well as synthetic biology. PMID:24416282

  2. Combining Chemoinformatics with Bioinformatics: In Silico Prediction of Bacterial Flavor-Forming Pathways by a Chemical Systems Biology Approach “Reverse Pathway Engineering”

    PubMed Central

    Liu, Mengjin; Bienfait, Bruno; Sacher, Oliver; Gasteiger, Johann; Siezen, Roland J.; Nauta, Arjen; Geurts, Jan M. W.

    2014-01-01

    The incompleteness of genome-scale metabolic models is a major bottleneck for systems biology approaches, which are based on large numbers of metabolites as identified and quantified by metabolomics. Many of the revealed secondary metabolites and/or their derivatives, such as flavor compounds, are non-essential in metabolism, and many of their synthesis pathways are unknown. In this study, we describe a novel approach, Reverse Pathway Engineering (RPE), which combines chemoinformatics and bioinformatics analyses, to predict the “missing links” between compounds of interest and their possible metabolic precursors by providing plausible chemical and/or enzymatic reactions. We demonstrate the added-value of the approach by using flavor-forming pathways in lactic acid bacteria (LAB) as an example. Established metabolic routes leading to the formation of flavor compounds from leucine were successfully replicated. Novel reactions involved in flavor formation, i.e. the conversion of alpha-hydroxy-isocaproate to 3-methylbutanoic acid and the synthesis of dimethyl sulfide, as well as the involved enzymes were successfully predicted. These new insights into the flavor-formation mechanisms in LAB can have a significant impact on improving the control of aroma formation in fermented food products. Since the input reaction databases and compounds are highly flexible, the RPE approach can be easily extended to a broad spectrum of applications, amongst others health/disease biomarker discovery as well as synthetic biology. PMID:24416282

  3. TGF-β receptor levels regulate the specificity of signaling pathway activation and biological effects of TGF-β

    PubMed Central

    Rojas, Andres; Padidam, Malla; Cress, Dean; Grady, William M.

    2009-01-01

    TGF-β is a pluripotent cytokine that mediates its effects through a receptor composed of TGF-β receptor type II (TGFBR2) and type I (TGFBR1). The TGF-β receptor can regulate Smad and nonSmad signaling pathways, which then ultimately dictate TGF-β's biological effects. We postulated that control of the level of TGFBR2 is a mechanism for regulating the specificity of TGF-β signaling pathway activation and TGF-β's biological effects. We used a precisely regulatable TGFBR2 expression system to assess the effects of TGFBR2 expression levels on signaling and TGF-β mediated apoptosis. We found Smad signaling and MAPK-ERK signaling activation levels correlate directly with TGFBR2 expression levels. Furthermore, p21 levels and TGF-β induced apoptosis appear to depend on relatively high TGFBR2 expression and on the activation of the MAPK-ERK and SMAD pathways. Thus, control of TGFBR2 expression and the differential activation of TGF-β signaling pathways appears to be a mechanism for regulating the specificity of the biological effects of TGF-β. PMID:19339207

  4. Pediatric-type nodal follicular lymphoma: a biologically distinct lymphoma with frequent MAPK pathway mutations.

    PubMed

    Louissaint, Abner; Schafernak, Kristian T; Geyer, Julia T; Kovach, Alexandra E; Ghandi, Mahmoud; Gratzinger, Dita; Roth, Christine G; Paxton, Christian N; Kim, Sunhee; Namgyal, Chungdak; Morin, Ryan; Morgan, Elizabeth A; Neuberg, Donna S; South, Sarah T; Harris, Marian H; Hasserjian, Robert P; Hochberg, Ephraim P; Garraway, Levi A; Harris, Nancy Lee; Weinstock, David M

    2016-08-25

    Pediatric-type nodal follicular lymphoma (PTNFL) is a variant of follicular lymphoma (FL) characterized by limited-stage presentation and invariably benign behavior despite often high-grade histological appearance. It is important to distinguish PTNFL from typical FL in order to avoid unnecessary treatment; however, this distinction relies solely on clinical and pathological criteria, which may be variably applied. To define the genetic landscape of PTNFL, we performed copy number analysis and exome and/or targeted sequencing of 26 PTNFLs (16 pediatric and 10 adult). The most commonly mutated gene in PTNFL was MAP2K1, encoding MEK1, with a mutation frequency of 43%. All MAP2K1 mutations were activating missense mutations localized to exons 2 and 3, which encode negative regulatory and catalytic domains, respectively. Missense mutations in MAPK1 (2/22) and RRAS (1/22) were identified in cases that lacked MAP2K1 mutations. The second most commonly mutated gene in PTNFL was TNFRSF14, with a mutation frequency of 29%, similar to that seen in limited-stage typical FL (P = .35). PTNFL was otherwise genomically bland and specifically lacked recurrent mutations in epigenetic modifiers (eg, CREBBP, KMT2D). Copy number aberrations affected a mean of only 0.5% of PTNFL genomes, compared with 10% of limited-stage typical FL genomes (P < .02). Importantly, the mutational profiles of PTNFLs in children and adults were highly similar. Together, these findings define PTNFL as a biologically and clinically distinct indolent lymphoma of children and adults characterized by a high prevalence of MAPK pathway mutations and a near absence of mutations in epigenetic modifiers. PMID:27325104

  5. Pediatric-type nodal follicular lymphoma: a biologically distinct lymphoma with frequent MAPK pathway mutations

    PubMed Central

    Schafernak, Kristian T.; Geyer, Julia T.; Kovach, Alexandra E.; Ghandi, Mahmoud; Gratzinger, Dita; Roth, Christine G.; Paxton, Christian N.; Kim, Sunhee; Namgyal, Chungdak; Morin, Ryan; Morgan, Elizabeth A.; Neuberg, Donna S.; South, Sarah T.; Harris, Marian H.; Hasserjian, Robert P.; Hochberg, Ephraim P.; Garraway, Levi A.; Harris, Nancy Lee; Weinstock, David M.

    2016-01-01

    Pediatric-type nodal follicular lymphoma (PTNFL) is a variant of follicular lymphoma (FL) characterized by limited-stage presentation and invariably benign behavior despite often high-grade histological appearance. It is important to distinguish PTNFL from typical FL in order to avoid unnecessary treatment; however, this distinction relies solely on clinical and pathological criteria, which may be variably applied. To define the genetic landscape of PTNFL, we performed copy number analysis and exome and/or targeted sequencing of 26 PTNFLs (16 pediatric and 10 adult). The most commonly mutated gene in PTNFL was MAP2K1, encoding MEK1, with a mutation frequency of 43%. All MAP2K1 mutations were activating missense mutations localized to exons 2 and 3, which encode negative regulatory and catalytic domains, respectively. Missense mutations in MAPK1 (2/22) and RRAS (1/22) were identified in cases that lacked MAP2K1 mutations. The second most commonly mutated gene in PTNFL was TNFRSF14, with a mutation frequency of 29%, similar to that seen in limited-stage typical FL (P = .35). PTNFL was otherwise genomically bland and specifically lacked recurrent mutations in epigenetic modifiers (eg, CREBBP, KMT2D). Copy number aberrations affected a mean of only 0.5% of PTNFL genomes, compared with 10% of limited-stage typical FL genomes (P < .02). Importantly, the mutational profiles of PTNFLs in children and adults were highly similar. Together, these findings define PTNFL as a biologically and clinically distinct indolent lymphoma of children and adults characterized by a high prevalence of MAPK pathway mutations and a near absence of mutations in epigenetic modifiers. PMID:27325104

  6. siRNA Screening to Identify Ubiquitin and Ubiquitin-like System Regulators of Biological Pathways in Cultured Mammalian Cells

    PubMed Central

    Bett, John S.; Ibrahim, Adel F. M.; Garg, Amit K.; Rocha, Sonia; Hay, Ronald T.

    2014-01-01

    Post-translational modification of proteins with ubiquitin and ubiquitin-like molecules (UBLs) is emerging as a dynamic cellular signaling network that regulates diverse biological pathways including the hypoxia response, proteostasis, the DNA damage response and transcription.  To better understand how UBLs regulate pathways relevant to human disease, we have compiled a human siRNA “ubiquitome” library consisting of 1,186 siRNA duplex pools targeting all known and predicted components of UBL system pathways. This library can be screened against a range of cell lines expressing reporters of diverse biological pathways to determine which UBL components act as positive or negative regulators of the pathway in question.  Here, we describe a protocol utilizing this library to identify ubiquitome-regulators of the HIF1A-mediated cellular response to hypoxia using a transcription-based luciferase reporter.  An initial assay development stage is performed to establish suitable screening parameters of the cell line before performing the screen in three stages: primary, secondary and tertiary/deconvolution screening.  The use of targeted over whole genome siRNA libraries is becoming increasingly popular as it offers the advantage of reporting only on members of the pathway with which the investigators are most interested.  Despite inherent limitations of siRNA screening, in particular false-positives caused by siRNA off-target effects, the identification of genuine novel regulators of the pathways in question outweigh these shortcomings, which can be overcome by performing a series of carefully undertaken control experiments. PMID:24893647

  7. Microbial production of natural and non-natural flavonoids: Pathway engineering, directed evolution and systems/synthetic biology.

    PubMed

    Pandey, Ramesh Prasad; Parajuli, Prakash; Koffas, Mattheos A G; Sohng, Jae Kyung

    2016-01-01

    In this review, we address recent advances made in pathway engineering, directed evolution, and systems/synthetic biology approaches employed in the production and modification of flavonoids from microbial cells. The review is divided into two major parts. In the first, various metabolic engineering and system/synthetic biology approaches used for production of flavonoids and derivatives are discussed broadly. All the manipulations/engineering accomplished on the microorganisms since 2000 are described in detail along with the biosynthetic pathway enzymes, their sources, structures of the compounds, and yield of each product. In the second part of the review, post-modifications of flavonoids by four major reactions, namely glycosylations, methylations, hydroxylations and prenylations using recombinant strains are described. PMID:26946281

  8. Modulation of WNT/β-catenin pathway in melanoma by biologically active components derived from plants.

    PubMed

    Gajos-Michniewicz, Anna; Czyz, Malgorzata

    2016-03-01

    Metastatic melanoma is an aggressive cancer, often resistant to treatment. Therefore, it is essential to determine the molecular mechanisms leading to melanoma or underlying resistance to therapy, and the response to targeted inhibition of the RAS/BRAF/MEK/ERK pathway was a good lesson in this respect. Aberrant WNT/β-catenin pathway is observed in melanoma, and the modulators of this signaling cascade have been under investigation in the context of therapy as well as chemoprevention. Several natural compounds were recognized as being capable of targeting elements of the WNT/β-catenin pathway in various cancers, however, only a few of them can modulate this pathway in melanoma. This review examines recent research on the role of the WNT/β-catenin pathway in tumor development and maintenance, as well as summarizes the current knowledge concerning the modulation of this pathway in melanoma by active compounds of natural origin. PMID:26851176

  9. A Systems Biology Strategy Reveals Biological Pathways and Plasma Biomarker Candidates for Potentially Toxic Statin-Induced Changes in Muscle

    PubMed Central

    Laaksonen, Reijo; Katajamaa, Mikko; Päivä, Hannu; Sysi-Aho, Marko; Saarinen, Lilli; Junni, Päivi; Lütjohann, Dieter; Smet, Joél; Van Coster, Rudy; Seppänen-Laakso, Tuulikki; Lehtimäki, Terho; Soini, Juhani; Orešič, Matej

    2006-01-01

    Background Aggressive lipid lowering with high doses of statins increases the risk of statin-induced myopathy. However, the cellular mechanisms leading to muscle damage are not known and sensitive biomarkers are needed to identify patients at risk of developing statin-induced serious side effects. Methodology We performed bioinformatics analysis of whole genome expression profiling of muscle specimens and UPLC/MS based lipidomics analyses of plasma samples obtained in an earlier randomized trial from patients either on high dose simvastatin (80 mg), atorvastatin (40 mg), or placebo. Principal Findings High dose simvastatin treatment resulted in 111 differentially expressed genes (1.5-fold change and p-value<0.05), while expression of only one and five genes was altered in the placebo and atorvastatin groups, respectively. The Gene Set Enrichment Analysis identified several affected pathways (23 gene lists with False Discovery Rate q-value<0.1) in muscle following high dose simvastatin, including eicosanoid synthesis and Phospholipase C pathways. Using lipidomic analysis we identified previously uncharacterized drug-specific changes in the plasma lipid profile despite similar statin-induced changes in plasma LDL-cholesterol. We also found that the plasma lipidomic changes following simvastatin treatment correlate with the muscle expression of the arachidonate 5-lipoxygenase-activating protein. Conclusions High dose simvastatin affects multiple metabolic and signaling pathways in skeletal muscle, including the pro-inflammatory pathways. Thus, our results demonstrate that clinically used high statin dosages may lead to unexpected metabolic effects in non-hepatic tissues. The lipidomic profiles may serve as highly sensitive biomarkers of statin-induced metabolic alterations in muscle and may thus allow us to identify patients who should be treated with a lower dose to prevent a possible toxicity. PMID:17183729

  10. 75 FR 61497 - Approval Pathway for Biosimilar and Interchangeable Biological Products; Public Hearing; Request...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-05

    ... revised definition of a ``biological product''; priorities for guidance development; scientific and... including a modification to the structure of the biological product) that results in a new indication, route... Biological Products; Public Hearing; Request for Comments AGENCY: Food and Drug Administration, HHS....

  11. A novel approach for discovering condition-specific correlations of gene expressions within biological pathways by using cloud computing technology.

    PubMed

    Chang, Tzu-Hao; Wu, Shih-Lin; Wang, Wei-Jen; Horng, Jorng-Tzong; Chang, Cheng-Wei

    2014-01-01

    Microarrays are widely used to assess gene expressions. Most microarray studies focus primarily on identifying differential gene expressions between conditions (e.g., cancer versus normal cells), for discovering the major factors that cause diseases. Because previous studies have not identified the correlations of differential gene expression between conditions, crucial but abnormal regulations that cause diseases might have been disregarded. This paper proposes an approach for discovering the condition-specific correlations of gene expressions within biological pathways. Because analyzing gene expression correlations is time consuming, an Apache Hadoop cloud computing platform was implemented. Three microarray data sets of breast cancer were collected from the Gene Expression Omnibus, and pathway information from the Kyoto Encyclopedia of Genes and Genomes was applied for discovering meaningful biological correlations. The results showed that adopting the Hadoop platform considerably decreased the computation time. Several correlations of differential gene expressions were discovered between the relapse and nonrelapse breast cancer samples, and most of them were involved in cancer regulation and cancer-related pathways. The results showed that breast cancer recurrence might be highly associated with the abnormal regulations of these gene pairs, rather than with their individual expression levels. The proposed method was computationally efficient and reliable, and stable results were obtained when different data sets were used. The proposed method is effective in identifying meaningful biological regulation patterns between conditions. PMID:24579087

  12. A Novel Approach for Discovering Condition-Specific Correlations of Gene Expressions within Biological Pathways by Using Cloud Computing Technology

    PubMed Central

    Chang, Tzu-Hao; Wu, Shih-Lin; Wang, Wei-Jen; Horng, Jorng-Tzong; Chang, Cheng-Wei

    2014-01-01

    Microarrays are widely used to assess gene expressions. Most microarray studies focus primarily on identifying differential gene expressions between conditions (e.g., cancer versus normal cells), for discovering the major factors that cause diseases. Because previous studies have not identified the correlations of differential gene expression between conditions, crucial but abnormal regulations that cause diseases might have been disregarded. This paper proposes an approach for discovering the condition-specific correlations of gene expressions within biological pathways. Because analyzing gene expression correlations is time consuming, an Apache Hadoop cloud computing platform was implemented. Three microarray data sets of breast cancer were collected from the Gene Expression Omnibus, and pathway information from the Kyoto Encyclopedia of Genes and Genomes was applied for discovering meaningful biological correlations. The results showed that adopting the Hadoop platform considerably decreased the computation time. Several correlations of differential gene expressions were discovered between the relapse and nonrelapse breast cancer samples, and most of them were involved in cancer regulation and cancer-related pathways. The results showed that breast cancer recurrence might be highly associated with the abnormal regulations of these gene pairs, rather than with their individual expression levels. The proposed method was computationally efficient and reliable, and stable results were obtained when different data sets were used. The proposed method is effective in identifying meaningful biological regulation patterns between conditions. PMID:24579087

  13. Characterizing and optimizing human anticancer drug targets based on topological properties in the context of biological pathways.

    PubMed

    Zhang, Jian; Wang, Yan; Shang, Desi; Yu, Fulong; Liu, Wei; Zhang, Yan; Feng, Chenchen; Wang, Qiuyu; Xu, Yanjun; Liu, Yuejuan; Bai, Xuefeng; Li, Xuecang; Li, Chunquan

    2015-04-01

    One of the challenging problems in drug discovery is to identify the novel targets for drugs. Most of the traditional methods for drug targets optimization focused on identifying the particular families of "druggable targets", but ignored their topological properties based on the biological pathways. In this study, we characterized the topological properties of human anticancer drug targets (ADTs) in the context of biological pathways. We found that the ADTs tended to present the following seven topological properties: influence the number of the pathways related to cancer, be localized at the start or end of the pathways, interact with cancer related genes, exhibit higher connectivity, vulnerability, betweenness, and closeness than other genes. We first ranked ADTs based on their topological property values respectively, then fused them into one global-rank using the joint cumulative distribution of an N-dimensional order statistic to optimize human ADTs. We applied the optimization method to 13 anticancer drugs, respectively. Results demonstrated that over 70% of known ADTs were ranked in the top 20%. Furthermore, the performance for mercaptopurine was significant: 6 known targets (ADSL, GMPR2, GMPR, HPRT1, AMPD3, AMPD2) were ranked in the top 15 and other four out of the top 15 (MAT2A, CDKN1A, AREG, JUN) have the potentialities to become new targets for cancer therapy. PMID:25724580

  14. Process Simulation of Complex Biological Pathways in Physical Reactive Space and Reformulated for Massively Parallel Computing Platforms.

    PubMed

    Ganesan, Narayan; Li, Jie; Sharma, Vishakha; Jiang, Hanyu; Compagnoni, Adriana

    2016-01-01

    Biological systems encompass complexity that far surpasses many artificial systems. Modeling and simulation of large and complex biochemical pathways is a computationally intensive challenge. Traditional tools, such as ordinary differential equations, partial differential equations, stochastic master equations, and Gillespie type methods, are all limited either by their modeling fidelity or computational efficiency or both. In this work, we present a scalable computational framework based on modeling biochemical reactions in explicit 3D space, that is suitable for studying the behavior of large and complex biological pathways. The framework is designed to exploit parallelism and scalability offered by commodity massively parallel processors such as the graphics processing units (GPUs) and other parallel computing platforms. The reaction modeling in 3D space is aimed at enhancing the realism of the model compared to traditional modeling tools and framework. We introduce the Parallel Select algorithm that is key to breaking the sequential bottleneck limiting the performance of most other tools designed to study biochemical interactions. The algorithm is designed to be computationally tractable, handle hundreds of interacting chemical species and millions of independent agents by considering all-particle interactions within the system. We also present an implementation of the framework on the popular graphics processing units and apply it to the simulation study of JAK-STAT Signal Transduction Pathway. The computational framework will offer a deeper insight into various biological processes within the cell and help us observe key events as they unfold in space and time. This will advance the current state-of-the-art in simulation study of large scale biological systems and also enable the realistic simulation study of macro-biological cultures, where inter-cellular interactions are prevalent. PMID:27045833

  15. Role of cellular communication in the pathways of radiation-induced biological damage

    NASA Astrophysics Data System (ADS)

    Ballarini, Francesca; Facoetti, Angelica; Mariotti, Luca; Nano, Rosanna; Ottolenghi, Andrea

    During the last decade, a large number of experimental studies on the so-called "non-targeted effects", in particular bystander effects, outlined that cellular communication plays a signifi- cant role in the pathways leading to radiation-induced biological damage. This might imply a paradigm shift in (low-dose) radiobiology, according to which one has to consider the response of groups of cells behaving like a population rather than single cells behaving as individuals. Furthermore, bystander effects, which are observed both for lethal endpoints (e.g. clonogenic inactivation and apoptosis) and for non-lethal ones (e.g. mutations and neoplastic transformation), tend to show non-linear dose responses characterized by a sharp increase followed by a plateau. This might have significant consequences in terms of low-dose risk, which is generally calculated on the basis of the "Linear No Threshold" hypothesis. Although it is known that two types of cellular communication (i.e. via gap junctions and/or molecular messengers diffusing in the extra-cellular environment, such as cytokines) play a major role, it is of utmost importance to better understand the underlying mechanisms, and how such mechanisms can be modulated by ionizing radiation. Though the "final" goal is to elucidate the in vivo scenario, in the meanwhile also in vitro studies can provide useful insights. In the present paper we will discuss key issues on the mechanisms underlying non-targeted effects and, more generally, cell communication, with focus on candidate molecular signals. Theoretical models and simulation codes can be of help in elucidating such mechanisms. In this framework, we will present a model and Monte Carlo code, under development at the University of Pavia, simulating the release, diffusion and internalization of candidate signals (typically cytokines) travelling in the extra-cellular environment, both by unirradiated (i.e., control) cells and by irradiated cells. The focus will be on the

  16. Frontiers of Plant Cell Biology: Signals and Pathways, System-Based Approaches 22nd Symposium in Plant Biology (University of California-Riverside)

    SciTech Connect

    Minorsky, Peter V.

    2003-06-01

    The symposium ''Frontiers of Plant Cell Biology: Signals and Pathways, Systems-Based Approaches'' was held January 15-18, 2003 at the Riverside Convention Center in Riverside, California. The host organization for the symposium was the Center for Plant Cell Biology (CEPCEB) at the University of California, Riverside (UCR). The meeting, focusing on systems-based approaches to plant cell biology research, was the first of this kind in the field of plant biology. The speakers and nearly 100 posters placed emphasis on recent developments in plant cellular biology and molecular genetics, particularly those employing emerging genomic tools, thereby sharing the most current knowledge in the field and stimulating future advances. In attendance were many well-established scientists and young investigators who approach plant cell biology from different but complementary conceptual and technical perspectives. Indeed, many disciplines are converging in the field of cell biology, producing synergies that will enable plant scientists to determine the function of gene products in the context of living cells in whole organisms. New, cross-disciplinary collaborations, as well as the involvement of computer scientists and chemists in plant biology research, are likely additional outcomes of the symposium. The program included 39 invited session speakers and workshop/panel speakers. Sessions were convened on the following themes: Cell-Cell Communication; Protein Trafficking; Cell Surface, Extracellular Matrix and Cell Wall; Signal Transduction; Signal Transduction and Proteosome; and Systems-Based Approaches to Plant Cell Biology. Workshops on Chemical Genetics and Visual Microscopy were also presented. Abstracts from each of the speaker presentations, as well as the posters presented at the meeting were published in a program booklet given to the 239 faculty members, researchers, postdoctoral scientists and graduate students in attendance. The booklet thus serves as a reference for

  17. Nitric oxide and nitrous oxide turnover in natural and engineered microbial communities: biological pathways, chemical reactions, and novel technologies

    PubMed Central

    Schreiber, Frank; Wunderlin, Pascal; Udert, Kai M.; Wells, George F.

    2012-01-01

    Nitrous oxide (N2O) is an environmentally important atmospheric trace gas because it is an effective greenhouse gas and it leads to ozone depletion through photo-chemical nitric oxide (NO) production in the stratosphere. Mitigating its steady increase in atmospheric concentration requires an understanding of the mechanisms that lead to its formation in natural and engineered microbial communities. N2O is formed biologically from the oxidation of hydroxylamine (NH2OH) or the reduction of nitrite (NO−2) to NO and further to N2O. Our review of the biological pathways for N2O production shows that apparently all organisms and pathways known to be involved in the catabolic branch of microbial N-cycle have the potential to catalyze the reduction of NO−2 to NO and the further reduction of NO to N2O, while N2O formation from NH2OH is only performed by ammonia oxidizing bacteria (AOB). In addition to biological pathways, we review important chemical reactions that can lead to NO and N2O formation due to the reactivity of NO−2, NH2OH, and nitroxyl (HNO). Moreover, biological N2O formation is highly dynamic in response to N-imbalance imposed on a system. Thus, understanding NO formation and capturing the dynamics of NO and N2O build-up are key to understand mechanisms of N2O release. Here, we discuss novel technologies that allow experiments on NO and N2O formation at high temporal resolution, namely NO and N2O microelectrodes and the dynamic analysis of the isotopic signature of N2O with quantum cascade laser absorption spectroscopy (QCLAS). In addition, we introduce other techniques that use the isotopic composition of N2O to distinguish production pathways and findings that were made with emerging molecular techniques in complex environments. Finally, we discuss how a combination of the presented tools might help to address important open questions on pathways and controls of nitrogen flow through complex microbial communities that eventually lead to N2O build

  18. A systems biology approach using metabolomic data reveals genes and pathways interacting to modulate divergent growth in cattle

    PubMed Central

    2013-01-01

    Background Systems biology enables the identification of gene networks that modulate complex traits. Comprehensive metabolomic analyses provide innovative phenotypes that are intermediate between the initiator of genetic variability, the genome, and raw phenotypes that are influenced by a large number of environmental effects. The present study combines two concepts, systems biology and metabolic analyses, in an approach without prior functional hypothesis in order to dissect genes and molecular pathways that modulate differential growth at the onset of puberty in male cattle. Furthermore, this integrative strategy was applied to specifically explore distinctive gene interactions of non-SMC condensin I complex, subunit G (NCAPG) and myostatin (GDF8), known modulators of pre- and postnatal growth that are only partially understood for their molecular pathways affecting differential body weight. Results Our study successfully established gene networks and interacting partners affecting growth at the onset of puberty in cattle. We demonstrated the biological relevance of the created networks by comparison to randomly created networks. Our data showed that GnRH (Gonadotropin-releasing hormone) signaling is associated with divergent growth at the onset of puberty and revealed two highly connected hubs, BTC and DGKH, within the network. Both genes are known to directly interact with the GnRH signaling pathway. Furthermore, a gene interaction network for NCAPG containing 14 densely connected genes revealed novel information concerning the functional role of NCAPG in divergent growth. Conclusions Merging both concepts, systems biology and metabolomic analyses, successfully yielded new insights into gene networks and interacting partners affecting growth at the onset of puberty in cattle. Genetic modulation in GnRH signaling was identified as key modifier of differential cattle growth at the onset of puberty. In addition, the benefit of our innovative concept without prior

  19. TGF-β stimulation in human and murine cells reveals commonly affected biological processes and pathways at transcription level

    PubMed Central

    2014-01-01

    Background The TGF-β signaling pathway is a fundamental pathway in the living cell, which plays a key role in many central cellular processes. The complex and sometimes contradicting mechanisms by which TGF-β yields phenotypic effects are not yet completely understood. In this study we investigated and compared the transcriptional response profile of TGF-β1 stimulation in different cell types. For this purpose, extensive experiments are performed and time-course microarray data are generated in human and mouse parenchymal liver cells, human mesenchymal stromal cells and mouse hematopoietic progenitor cells at different time points. We applied a panel of bioinformatics methods on our data to uncover common patterns in the dynamic gene expression response in respective cells. Results Our analysis revealed a quite variable and multifaceted transcriptional response profile of TGF-β1 stimulation, which goes far beyond the well-characterized classical TGF-β1 signaling pathway. Nonetheless, we could identify several commonly affected processes and signaling pathways across cell types and species. In addition our analysis suggested an important role of the transcription factor EGR1, which appeared to have a conserved influence across cell-types and species. Validation via an independent dataset on A549 lung adenocarcinoma cells largely confirmed our findings. Network analysis suggested explanations, how TGF-β1 stimulation could lead to the observed effects. Conclusions The analysis of dynamical transcriptional response to TGF-β treatment experiments in different human and murine cell systems revealed commonly affected biological processes and pathways, which could be linked to TGF-β1 via network analysis. This helps to gain insights about TGF-β pathway activities in these cell systems and its conserved interactions between the species and tissue types. PMID:24886091

  20. A new synthetic biology approach allows transfer of an entire metabolic pathway from a medicinal plant to a biomass crop

    PubMed Central

    Fuentes, Paulina; Zhou, Fei; Erban, Alexander; Karcher, Daniel; Kopka, Joachim; Bock, Ralph

    2016-01-01

    Artemisinin-based therapies are the only effective treatment for malaria, the most devastating disease in human history. To meet the growing demand for artemisinin and make it accessible to the poorest, an inexpensive and rapidly scalable production platform is urgently needed. Here we have developed a new synthetic biology approach, combinatorial supertransformation of transplastomic recipient lines (COSTREL), and applied it to introduce the complete pathway for artemisinic acid, the precursor of artemisinin, into the high-biomass crop tobacco. We first introduced the core pathway of artemisinic acid biosynthesis into the chloroplast genome. The transplastomic plants were then combinatorially supertransformed with cassettes for all additional enzymes known to affect flux through the artemisinin pathway. By screening large populations of COSTREL lines, we isolated plants that produce more than 120 milligram artemisinic acid per kilogram biomass. Our work provides an efficient strategy for engineering complex biochemical pathways into plants and optimizing the metabolic output. DOI: http://dx.doi.org/10.7554/eLife.13664.001 PMID:27296645

  1. Interactions between Biological and Abiotic Pathways in the Reduction of Chlorinated Solvents

    EPA Science Inventory

    While biologically mediated reductive dechlorination continues to be a significant focus of chlorinated solvent remediation, there has been an increased interest in abiotic reductive processes for the remediation of chlorinated solvents. In situ chemical reduction (ISCR) uses zer...

  2. MicroRNA expression profiling reveals miRNA families regulating specific biological pathways in mouse frontal cortex and hippocampus.

    PubMed

    Juhila, Juuso; Sipilä, Tessa; Icay, Katherine; Nicorici, Daniel; Ellonen, Pekka; Kallio, Aleksi; Korpelainen, Eija; Greco, Dario; Hovatta, Iiris

    2011-01-01

    MicroRNAs (miRNAs) are small regulatory molecules that cause post-transcriptional gene silencing. Although some miRNAs are known to have region-specific expression patterns in the adult brain, the functional consequences of the region-specificity to the gene regulatory networks of the brain nuclei are not clear. Therefore, we studied miRNA expression patterns by miRNA-Seq and microarrays in two brain regions, frontal cortex (FCx) and hippocampus (HP), which have separate biological functions. We identified 354 miRNAs from FCx and 408 from HP using miRNA-Seq, and 245 from FCx and 238 from HP with microarrays. Several miRNA families and clusters were differentially expressed between FCx and HP, including the miR-8 family, miR-182|miR-96|miR-183 cluster, and miR-212|miR-312 cluster overexpressed in FCx and miR-34 family overexpressed in HP. To visualize the clusters, we developed support for viewing genomic alignments of miRNA-Seq reads in the Chipster genome browser. We carried out pathway analysis of the predicted target genes of differentially expressed miRNA families and clusters to assess their putative biological functions. Interestingly, several miRNAs from the same family/cluster were predicted to regulate specific biological pathways. We have developed a miRNA-Seq approach with a bioinformatic analysis workflow that is suitable for studying miRNA expression patterns from specific brain nuclei. FCx and HP were shown to have distinct miRNA expression patterns which were reflected in the predicted gene regulatory pathways. This methodology can be applied for the identification of brain region-specific and phenotype-specific miRNA-mRNA-regulatory networks from the adult and developing rodent brain. PMID:21731767

  3. MicroRNA Expression Profiling Reveals MiRNA Families Regulating Specific Biological Pathways in Mouse Frontal Cortex and Hippocampus

    PubMed Central

    Juhila, Juuso; Sipilä, Tessa; Icay, Katherine; Nicorici, Daniel; Ellonen, Pekka; Kallio, Aleksi; Korpelainen, Eija; Greco, Dario; Hovatta, Iiris

    2011-01-01

    MicroRNAs (miRNAs) are small regulatory molecules that cause post-transcriptional gene silencing. Although some miRNAs are known to have region-specific expression patterns in the adult brain, the functional consequences of the region-specificity to the gene regulatory networks of the brain nuclei are not clear. Therefore, we studied miRNA expression patterns by miRNA-Seq and microarrays in two brain regions, frontal cortex (FCx) and hippocampus (HP), which have separate biological functions. We identified 354 miRNAs from FCx and 408 from HP using miRNA-Seq, and 245 from FCx and 238 from HP with microarrays. Several miRNA families and clusters were differentially expressed between FCx and HP, including the miR-8 family, miR-182|miR-96|miR-183 cluster, and miR-212|miR-312 cluster overexpressed in FCx and miR-34 family overexpressed in HP. To visualize the clusters, we developed support for viewing genomic alignments of miRNA-Seq reads in the Chipster genome browser. We carried out pathway analysis of the predicted target genes of differentially expressed miRNA families and clusters to assess their putative biological functions. Interestingly, several miRNAs from the same family/cluster were predicted to regulate specific biological pathways. We have developed a miRNA-Seq approach with a bioinformatic analysis workflow that is suitable for studying miRNA expression patterns from specific brain nuclei. FCx and HP were shown to have distinct miRNA expression patterns which were reflected in the predicted gene regulatory pathways. This methodology can be applied for the identification of brain region-specific and phenotype-specific miRNA-mRNA-regulatory networks from the adult and developing rodent brain. PMID:21731767

  4. Antitumor effect and biological pathways of a recombinant adeno-associated virus as a human renal cell carcinoma suppressor.

    PubMed

    Chen, Jie; Ruan, Xiyun; Wang, Shaomei; Zhang, Bin; Liu, Bo; Sun, Zeqiang; Liu, Qingyong

    2014-11-01

    The aims of this work are to study the antitumor effect of the adeno-associated virus on the xenografted tumors of chick embryo chorioallantoic membrane and predict potential genes and biological pathways which are associated with renal cell carcinoma. The adeno-associated virus NT4-TAT-6 × His-VHLbeta was constructed and identified. Then, chick embryos with xenografted tumor were divided into three groups and respectively inoculated with rAAV/NT4-TAT-6 × His-VHLbeta (group A), empty virus (group B), and phosphate-buffered saline (group C, the control subject). Antitumor effect in each group was investigated by means of immunofluorescence observation. Genes interacted with von Hippel-Lindau were screened by Search Tool for the Retrieval of Interacting Genes/Proteins database, while pathway analysis were performed based on Kyoto Encyclopedia of Genes and Genomes. The growth of xenografted tumors inoculated with recombinant adeno-associated virus was slower than the control subjects. The tumor volumes of group A showed significant difference compared with group B and group C (P < 0.05). Growth of xenografted tumors which administered with the recombinant adeno-associated virus was inhibited. Among the protein-protein interaction network, TCEB2, HIF1A, TCEB1, CUL2, RBX1, and PHF17 were hub genes which might be involved in the development of renal cell carcinoma. The most significant signaling pathway was renal cell carcinoma. In this paper, we constructed and identified the recombinant adeno-associated virus NT4-TAT-6 × His-VHLbeta and studied the antitumor effect of the adeno-associated virus on xenografted tumors of chicken embryo chorioallantoic membrane. In addition, genes in the protein-protein interaction network which are associated with renal cell carcinoma were revealed and the biological pathway of renal cell carcinoma was identified. Our results provide a gene-therapeutic agent for the treatment of human renal cell carcinoma. PMID:25091575

  5. Redundancy control in pathway databases (ReCiPa): an application for improving gene-set enrichment analysis in Omics studies and "Big data" biology.

    PubMed

    Vivar, Juan C; Pemu, Priscilla; McPherson, Ruth; Ghosh, Sujoy

    2013-08-01

    Abstract Unparalleled technological advances have fueled an explosive growth in the scope and scale of biological data and have propelled life sciences into the realm of "Big Data" that cannot be managed or analyzed by conventional approaches. Big Data in the life sciences are driven primarily via a diverse collection of 'omics'-based technologies, including genomics, proteomics, metabolomics, transcriptomics, metagenomics, and lipidomics. Gene-set enrichment analysis is a powerful approach for interrogating large 'omics' datasets, leading to the identification of biological mechanisms associated with observed outcomes. While several factors influence the results from such analysis, the impact from the contents of pathway databases is often under-appreciated. Pathway databases often contain variously named pathways that overlap with one another to varying degrees. Ignoring such redundancies during pathway analysis can lead to the designation of several pathways as being significant due to high content-similarity, rather than truly independent biological mechanisms. Statistically, such dependencies also result in correlated p values and overdispersion, leading to biased results. We investigated the level of redundancies in multiple pathway databases and observed large discrepancies in the nature and extent of pathway overlap. This prompted us to develop the application, ReCiPa (Redundancy Control in Pathway Databases), to control redundancies in pathway databases based on user-defined thresholds. Analysis of genomic and genetic datasets, using ReCiPa-generated overlap-controlled versions of KEGG and Reactome pathways, led to a reduction in redundancy among the top-scoring gene-sets and allowed for the inclusion of additional gene-sets representing possibly novel biological mechanisms. Using obesity as an example, bioinformatic analysis further demonstrated that gene-sets identified from overlap-controlled pathway databases show stronger evidence of prior association

  6. Signaling pathways for stress responses and adaptation in Aspergillus species: stress biology in the post-genomic era.

    PubMed

    Hagiwara, Daisuke; Sakamoto, Kazutoshi; Abe, Keietsu; Gomi, Katsuya

    2016-09-01

    Aspergillus species are among the most important filamentous fungi in terms of industrial use and because of their pathogenic or toxin-producing features. The genomes of several Aspergillus species have become publicly available in this decade, and genomic analyses have contributed to an integrated understanding of fungal biology. Stress responses and adaptation mechanisms have been intensively investigated using the accessible genome infrastructure. Mitogen-activated protein kinase (MAPK) cascades have been highlighted as being fundamentally important in fungal adaptation to a wide range of stress conditions. Reverse genetics analyses have uncovered the roles of MAPK pathways in osmotic stress, cell wall stress, development, secondary metabolite production, and conidia stress resistance. This review summarizes the current knowledge on the stress biology of Aspergillus species, illuminating what we have learned from the genomic data in this "post-genomic era." PMID:27007956

  7. Downregulation of RSK2 influences the biological activities of human osteosarcoma cells through inactivating AKT/mTOR signaling pathways.

    PubMed

    Qiu, Quanhe; Jiang, Jing; Lin, Liangbo; Cheng, Si; Xin, Daqi; Jiang, Wei; Shen, Jieliang; Hu, Zhenming

    2016-06-01

    RSK2 (90 kDa ribosomal S6 kinase) is a downstream effector of the Ras/ERK (extracellular signal-regulated kinase) signaling pathway that has major functions in cell biological activities, including regulating nuclear signaling, cell cycle progression, cell proliferation, cell growth, protein synthesis, cell migration and cell survival, and is expressed in most types of human malignant tumors, including lung cancer, prostate and breast tumors, skin cancer and osteosarcomas (OS). RSK2 was found to be essential for osteosarcoma formation. To investigate whether RSK2 is expressed at high levels in human osteosarcome tissues and whether its expression is correlated with the aggressive biological behavior of osteosarcoma cell line (OCLs), we assessed the association between RSK2 expression and OS cell progression, as well as the effects of RSK2 inhibition on the biological activities of osteosarcoma cells. We performed immunohistochemistry to analyze the expression of RSK2 in specimens from 30 humans with osteosarcoma, and 15 normal tissues. RSK2 gene expression levels in 30 specimens with osteosarcoma were significantly higher than those of normal tissues. We performed RNA interference on three OCLs to evaluate cell apoptosis, cell growth, cell proliferation, cell motility, chemosensitivity and oncogenicity. After transfection with RSK2 shRNA, increased cell apoptosis, cell growth inhibition, cell cycle progression, weaker cell proliferation, cell migration and weaker tumor formation were observed in all OCLs. These results suggested that RSK2 expression may mediate the biological activities of OS cells and RSK2 may be an effective therapeutic target for the treatment of osteosarcomas. The AKT/mTOR, MAPK/ERK/c-Fos and Bcl2/Bax pathways were analysed to clarify the mechanisms involved. PMID:27082640

  8. Complete and integrated pyrene degradation pathway in Mycobacterium vanbaalenii PYR-1 based on systems biology.

    PubMed

    Kim, Seong-Jae; Kweon, Ohgew; Jones, Richard C; Freeman, James P; Edmondson, Ricky D; Cerniglia, Carl E

    2007-01-01

    Mycobacterium vanbaalenii PYR-1 was the first bacterium isolated by virtue of its ability to metabolize the high-molecular-weight polycyclic aromatic hydrocarbon (PAH) pyrene. We used metabolic, genomic, and proteomic approaches in this investigation to construct a complete and integrated pyrene degradation pathway for M. vanbaalenii PYR-1. Genome sequence analyses identified genes involved in the pyrene degradation pathway that we have proposed for this bacterium. To identify proteins involved in the degradation, we conducted a proteome analysis of cells exposed to pyrene using one-dimensional gel electrophoresis in combination with liquid chromatography-tandem mass spectrometry. Database searching performed with the M. vanbaalenii PYR-1 genome resulted in identification of 1,028 proteins with a protein false discovery rate of <1%. Based on both genomic and proteomic data, we identified 27 enzymes necessary for constructing a complete pathway for pyrene degradation. Our analyses indicate that this bacterium degrades pyrene to central intermediates through o-phthalate and the beta-ketoadipate pathway. Proteomic analysis also revealed that 18 enzymes in the pathway were upregulated more than twofold, as indicated by peptide counting when the organism was grown with pyrene; three copies of the terminal subunits of ring-hydroxylating oxygenase (NidAB2, MvanDraft_0817/0818, and PhtAaAb), dihydrodiol dehydrogenase (MvanDraft_0815), and ring cleavage dioxygenase (MvanDraft_3242) were detected only in pyrene-grown cells. The results presented here provide a comprehensive picture of pyrene metabolism in M. vanbaalenii PYR-1 and a useful framework for understanding cellular processes involved in PAH degradation. PMID:17085566

  9. Multiple Transcriptome Data Analysis Reveals Biologically Relevant Atopic Dermatitis Signature Genes and Pathways

    PubMed Central

    Ghosh, Debajyoti; Ding, Lili; Sivaprasad, Umasundari; Geh, Esmond; Biagini Myers, Jocelyn; Bernstein, Jonathan A.; Khurana Hershey, Gurjit K; Mersha, Tesfaye B.

    2015-01-01

    Several studies have identified genes that are differentially expressed in atopic dermatitis (AD) compared to normal skin. However, there is also considerable variation in the list of differentially expressed genes (DEGs) reported by different groups and the exact cause of AD is still not fully understood. Using a rank-based approach, we analyzed gene expression data from five different microarray studies, comprising a total of 127 samples and more than 250,000 transcripts. A total of 89 AD gene expression signatures ‘89ADGES’, including FLG gene, were identified to show dysregulation consistently across these studies. Using a Support Vector Machine, we showed that the ‘89ADGES’ discriminates AD from normal skin with 98% predictive accuracy. Functional annotation of these genes implicated their roles in immune responses (e.g., betadefensin, microseminoprotein), keratinocyte differentiation/epidermal development (e.g., FLG, CORIN, AQP, LOR, KRT16), inflammation (e.g., IL37, IL27RA, CCL18) and lipid metabolism (e.g., AKR1B10, FAD7, FAR2). Subsequently, we validated a subset of signature genes using quantitative PCR in a mouse model. Using a bioinformatic approach, we identified keratinocyte pathway over-represented (P = <0.0006) among the 89 signature genes. Keratinocytes are known to play a major role in barrier function due to their location in the epidermis. Our result suggests that besides immune- mediated pathway, skin barrier pathways such as the keratinocyte differentiation pathway play a key role in AD pathogenesis. A better understanding of the role of keratinocytes in AD will be important for developing novel “barrier therapy” for this disease. PMID:26717000

  10. Understanding specificity in metabolic pathways-Structural biology of human nucleotide metabolism

    SciTech Connect

    Welin, Martin; Nordlund, Paer

    2010-05-21

    Interactions are the foundation of life at the molecular level. In the plethora of activities in the cell, the evolution of enzyme specificity requires the balancing of appropriate substrate affinity with a negative selection, in order to minimize interactions with other potential substrates in the cell. To understand the structural basis for enzyme specificity, the comparison of structural and biochemical data between enzymes within pathways using similar substrates and effectors is valuable. Nucleotide metabolism is one of the largest metabolic pathways in the human cell and is of outstanding therapeutic importance since it activates and catabolises nucleoside based anti-proliferative drugs and serves as a direct target for anti-proliferative drugs. In recent years the structural coverage of the enzymes involved in human nucleotide metabolism has been dramatically improved and is approaching completion. An important factor has been the contribution from the Structural Genomics Consortium (SGC) at Karolinska Institutet, which recently has solved 33 novel structures of enzymes and enzyme domains in human nucleotide metabolism pathways and homologs thereof. In this review we will discuss some of the principles for substrate specificity of enzymes in human nucleotide metabolism illustrated by a selected set of enzyme families where a detailed understanding of the structural determinants for specificity is now emerging.

  11. Differential role played by the MEK/ERK/EGR-1 pathway in orthopoxviruses vaccinia and cowpox biology

    PubMed Central

    Silva, Patrícia N. G.; Soares, Jamária A. P.; Brasil, Bruno S. A. F.; Nogueira, Sarah V.; Andrade, Anderson A.; de Magalhães, José C.; Bonjardim, Marisa B.; Ferreira, Paulo C. P.; Kroon, Erna G.; Bruna-Romero, Oscar; Bonjardim, Cláudio A.

    2006-01-01

    Appropriation of signalling pathways facilitates poxvirus replication. Poxviruses, as do most viruses, try to modify the host cell environment to achieve favourable replication conditions. In the present study, we show that the early growth response 1 gene (egr-1) is one of the host cell factors intensely modulated by the orthopoxviruses VV (vaccinia virus) and CPV (cowpox virus). These viruses stimulated the generation of both egr-1 mRNA and its gene product, throughout their entire replication cycles, via the requirement of MEK [mitogen-activated protein kinase/ERK (extracellular-signal-regulated kinase) kinase]/ERK pathway. We showed that, upon VV infection, EGR-1 translocates into the nucleus where it binds to the EBS (egr-1-binding site) positioned at the 5′ region of EGR-1-regulated genes. In spite of both viruses belonging to the same genus, several lines of evidence, however, revealed a remarkable contrast between them as far as the roles played by the MEK/ERK/EGR-1 pathway in their biological cycles are concerned. Hence (i) the knocking-down of egr-1 by siRNA (small interfering RNA) proved that this transcription factor is of critical relevance for VV biology, since a decrease of about one log cycle in virus yield was verified, along with a small virus plaque phenotype, whereas the gene silencing did not have a detrimental effect on either CPV multiplication or viral plaque size; (ii) while both pharmacological and genetic inhibition of MEK/ERK resulted in a significant decrease in VV yield, both approaches had no impact on CPV multiplication; and (iii) CPV DNA replication was unaffected by pharmacological inhibition of MEK/ERK, but phosphorylation of MEK/ERK was dependent on CPV DNA replication, contrasting with a significant VV DNA inhibition and VV DNA replication-independence to maintain ERK1/2 phosphorylation, observed under the same conditions. PMID:16686604

  12. Occurrence, pathways and implications of biological production of reactive oxygen species in natural waters

    NASA Astrophysics Data System (ADS)

    Zhang, T.; Hansel, C. M.; Voelker, B. M.; Lamborg, C. H.

    2014-12-01

    Reactive oxygen species (ROS), such as superoxide (O2-) and hydrogen peroxide (H2O2) play a critical role in the redox cycling of both toxic (e.g., Hg) and nutrient (e.g., Fe) metals. Despite the discovery of extracellular ROS production in various microbial cultures, including fungi, algae and bacteria, photo-dependent processes are generally considered as the predominant source of ROS in natural waters. Here we show that biological production of ROS is ubiquitous and occurs at a significant rate in freshwater and brackish water environments. Water samples were collected from three freshwater and one brackish water ponds in Cape Cod, Massachusetts, USA, periodically from 2012 to 2014. Production of O2- and H2O2 were measured in dark incubations of natural water using a chemiluminescent and a colorimetric probe, respectively. Rates of biological ROS production were obtained by comparing unfiltered with 0.2-μm filtered samples. The role of biological activity in ROS production was confirmed by the cessation of ROS production upon addition of formaldehyde. In surface water, production rates of O2- ranged from undetectable to 96.0 ± 30.0 nmol L-1 h-1, and production rates of H2O2 varied between 9.9 ± 1.3 nmol L-1 h-1 and 145.6 ± 11.2 nmol L-1 h-1. The maximum production rates of both ROS were observed in mid-summer 2013, which coincides with peak biological activity. ROS production in the water from aphotic zone was greater than in the water from photic zone. Thus, non-light dependent biological processes are likely the major contributors to ROS production in this system. Moreover, O2- production appeared to be enhanced by NADH and inhibited by proteinase-K, suggesting the possible involvement of NADH oxidoreductases in this process. The potential role of different microbial communities in ROS production, and the implications of biological ROS production for mercury speciation will also be discussed.

  13. Biochemical Pathways: An Atlas of Biochemistry and Molecular Biology (edited by Gerhard Michal)

    NASA Astrophysics Data System (ADS)

    Voige, Reviewed By William H.

    2000-02-01

    For decades, a wall chart detailing living organisms' metabolic pathways has been a fixture in many classrooms and laboratories where biochemistry is taught. One of the most popular of those charts first appeared 30 years ago. Now its editor, Gerhard Michal, has produced a book that summarizes metabolism (broadly defined) in graphical and textual formats. The book retains the elegance of the chart. Names of molecules are printed in a crisp, easy-to-read font, and structural formulas are shown with exemplary clarity. Color coding serves multiple purposes: to differentiate enzymes, substrates, cofactors, and effector molecules; to indicate in which group or groups of organisms a reaction has been observed; and to distinguish enzymatic reactions from regulatory effects. The primary advantage of presenting this information in book format is immediately apparent. A typical metabolic chart covers about 2 m2; the book has a total surface area nearly 10 times greater. The extra space is used to add explanatory text to the figures and to include many topics not covered by the traditional definition of metabolism. Examples include replication, transcription, translation, reaction mechanisms for proteolytic enzymes, and the role of chaperones in protein folding. Illustrating these topics is not as straightforward as delineating a metabolic pathway, but the author has done an admirable job of designing figures that clarify these and other aspects of biochemistry and complement the accompanying text. A potential deficiency of book format is the inability to clearly show links between different realms of metabolism: carbohydrate and amino acid pathways, for example. The book overcomes this problem in two ways. A diagrammatic overview of metabolism (with references to applicable sections of the book) is printed inside its front cover, and key compounds (pyruvate, for example) have a distinctive green background to provide a visual link between pathways. (The author compares this

  14. Graphics processing units as tools to predict mechanisms of biological signaling pathway regulation

    NASA Astrophysics Data System (ADS)

    McCarter, Patrick; Elston, Timothy; Nagiek, Michal; Dohlman, Henrik

    2013-04-01

    Biochemical and genomic studies have revealed protein components of S. cerevisiae (yeast) signal transduction networks. These networks allow the transmission of extracellular signals to the cell nucleus through coordinated biochemical interactions, resulting in direct responses to specific external stimuli. The coordination and regulation mechanisms of proteins in these networks have not been fully characterized. Thus, in this work we develop systems of ordinary differential equations to characterize processes that regulate signaling pathways. We employ graphics processing units (GPUs) in high performance computing environments to search in parallel through substantially more comprehensive parameter sets than allowed by personal computers. As a result, we are able to parameterize larger models with experimental data, leading to an increase in our model prediction capabilities. Thus far these models have helped to identify specific mechanisms such as positive and negative feedback loops that control network protein activity. We ultimately believe that the use of GPUs in biochemical signal transduction pathway modeling will help to discern how regulation mechanisms allow cells to respond to multiple external stimuli.

  15. Water at Biological Phase Boundaries: Its Role in Interfacial Activation of Enzymes and Metabolic Pathways.

    PubMed

    Damodaran, Srinivasan

    2015-01-01

    Many life-sustaining activities in living cells occur at the membrane-water interface. The pertinent questions that we need to ask are, what are the evolutionary reasons in biology for choosing the membrane-water interface as the site for performing and/or controlling crucial biological reactions, and what is the key physical principle that is very singular to the membrane-water interface that biology exploits for regulating metabolic processes in cells? In this chapter, a hypothesis is developed, which espouses that cells control activities of membrane-bound enzymes through manipulation of the thermodynamic activity of water in the lipid-water interfacial region. The hypothesis is based on the fact that the surface pressure of a lipid monolayer is a direct measure of the thermodynamic activity of water at the lipid-water interface. Accordingly, the surface pressure-dependent activation or inactivation of interfacial enzymes is directly related to changes in the thermodynamic activity of interfacial water. Extension of this argument suggests that cells may manipulate conformations (and activities) of membrane-bound enzymes by manipulating the (re)activity of interfacial water at various locations in the membrane by localized compression or expansion of the interface. In this respect, cells may use the membrane-bound hormone receptors, lipid phase transition, and local variations in membrane lipid composition as effectors of local compression and/or expansion of membrane, and thereby local water activity. Several experimental data in the literature will be reexamined in the light of this hypothesis. PMID:26438268

  16. Nuclear Receptor Signaling Atlas: Opening Access to the Biology of Nuclear Receptor Signaling Pathways.

    PubMed

    Becnel, Lauren B; Darlington, Yolanda F; Ochsner, Scott A; Easton-Marks, Jeremy R; Watkins, Christopher M; McOwiti, Apollo; Kankanamge, Wasula H; Wise, Michael W; DeHart, Michael; Margolis, Ronald N; McKenna, Neil J

    2015-01-01

    Signaling pathways involving nuclear receptors (NRs), their ligands and coregulators, regulate tissue-specific transcriptomes in diverse processes, including development, metabolism, reproduction, the immune response and neuronal function, as well as in their associated pathologies. The Nuclear Receptor Signaling Atlas (NURSA) is a Consortium focused around a Hub website (www.nursa.org) that annotates and integrates diverse 'omics datasets originating from the published literature and NURSA-funded Data Source Projects (NDSPs). These datasets are then exposed to the scientific community on an Open Access basis through user-friendly data browsing and search interfaces. Here, we describe the redesign of the Hub, version 3.0, to deploy "Web 2.0" technologies and add richer, more diverse content. The Molecule Pages, which aggregate information relevant to NR signaling pathways from myriad external databases, have been enhanced to include resources for basic scientists, such as post-translational modification sites and targeting miRNAs, and for clinicians, such as clinical trials. A portal to NURSA's Open Access, PubMed-indexed journal Nuclear Receptor Signaling has been added to facilitate manuscript submissions. Datasets and information on reagents generated by NDSPs are available, as is information concerning periodic new NDSP funding solicitations. Finally, the new website integrates the Transcriptomine analysis tool, which allows for mining of millions of richly annotated public transcriptomic data points in the field, providing an environment for dataset re-use and citation, bench data validation and hypothesis generation. We anticipate that this new release of the NURSA database will have tangible, long term benefits for both basic and clinical research in this field. PMID:26325041

  17. Nuclear Receptor Signaling Atlas: Opening Access to the Biology of Nuclear Receptor Signaling Pathways

    PubMed Central

    Becnel, Lauren B.; Darlington, Yolanda F.; Ochsner, Scott A.; Easton-Marks, Jeremy R.; Watkins, Christopher M.; McOwiti, Apollo; Kankanamge, Wasula H.; Wise, Michael W.; DeHart, Michael; Margolis, Ronald N.; McKenna, Neil J.

    2015-01-01

    Signaling pathways involving nuclear receptors (NRs), their ligands and coregulators, regulate tissue-specific transcriptomes in diverse processes, including development, metabolism, reproduction, the immune response and neuronal function, as well as in their associated pathologies. The Nuclear Receptor Signaling Atlas (NURSA) is a Consortium focused around a Hub website (www.nursa.org) that annotates and integrates diverse ‘omics datasets originating from the published literature and NURSA-funded Data Source Projects (NDSPs). These datasets are then exposed to the scientific community on an Open Access basis through user-friendly data browsing and search interfaces. Here, we describe the redesign of the Hub, version 3.0, to deploy “Web 2.0” technologies and add richer, more diverse content. The Molecule Pages, which aggregate information relevant to NR signaling pathways from myriad external databases, have been enhanced to include resources for basic scientists, such as post-translational modification sites and targeting miRNAs, and for clinicians, such as clinical trials. A portal to NURSA’s Open Access, PubMed-indexed journal Nuclear Receptor Signaling has been added to facilitate manuscript submissions. Datasets and information on reagents generated by NDSPs are available, as is information concerning periodic new NDSP funding solicitations. Finally, the new website integrates the Transcriptomine analysis tool, which allows for mining of millions of richly annotated public transcriptomic data points in the field, providing an environment for dataset re-use and citation, bench data validation and hypothesis generation. We anticipate that this new release of the NURSA database will have tangible, long term benefits for both basic and clinical research in this field. PMID:26325041

  18. The NF-kB pathway: LET dependence of the biological response to heavy ion beams

    NASA Astrophysics Data System (ADS)

    Hellweg, Christine; Baumstark-Khan, Christa; Arenz, Andrea; Reitz, Guenther; Schmitz, Claudia; Spitta, Luis F.; Ruscher, Roland; Lau, Patrick; Meier, Matthias M.; Testard, Isabelle

    Radiation is an acknowledged primary concern for manned spaceflight and is a potentially limiting factor for long term orbital and interplanetary missions. A solar flare can threaten the astronauts' life, and long-term exposure to galactic cosmic rays may shorten the healthy life-span after return to Earth due to cancer induction. Understanding of the cellular and molecular processes underlying these phenomena may allow better risk estimation and development of appropriate countermeasures. A central factor in the cellular stress response is the transcription factor nuclear factor κB (NF-κB). As an antiapoptotic factor, if activated in human cells by ion beam exposure, it could influence the cancer risk of astronauts exposed to cosmic radiation and improve cellular survival after exposure to high radiation doses. In previous studies using a screening assay for the detection of NF-κB-dependent gene induction (HEK-pNF-κB-d2EGFP/Neo cells), the activation of this transcription factor by heavy ions was shown (Radiat. Res. 164: 527-530, 2005). In this work, the dependency of NF-κB activation on LET was examined. Accelerated argon ions (36 Ar, 95 MeV/u, LET 232 keV/` ım) activate the NF-κB pathway already at low particle densities (1-2 particle hits per nucleus), which result in as less as 5-50 induced double strand breaks per cell. Accelerated carbon ions (13 C, 75 MeV/u, LET 30 keV/µm) induce NF-κB-dependent gene expression at higher particle densities (50-500 particle hits per nucleus), but to a lower extent than the argon ions. Intermediate NF-κB activation is initiated by exposure of human cells with carbon ions with an LET of 70 keV/µm. Sparsely ionizing radiation such as X-rays activates the NF-κB pathway at high doses (> 4 Gy), neutrons at doses > 3 Gy. These results suggest a LET dependency of NF-κB activation: high LET radiation activates NF-κB - dependent on initial nuclear DNA damage followed by cytoplasmic signalling events - more efficiently

  19. Evaluation of NF-kappaB Pathway Inhibition for Space Radiation Biology Research

    NASA Astrophysics Data System (ADS)

    Koch, Kristina; Hellweg, Christine; Baumstark-Khan, Christa; Schmitz, Claudia; Lau, Patrick; Testard, Isabelle; Reitz, Guenther

    Radiation is a potentially limiting factor for long term orbital and interplanetary missions. To improve risk estimation and to allow development of appropriate countermeasures, the study of the cellular radiation response is necessary. The anti-apoptotic factor nuclear factor κB (NF-κB) was identified as important modulating factor in the cellular response to heavy ions (Radiat. Res. 164: 527-530, 2005). This transcription factor could improve cellular survival after exposure to high radiation doses and influence the cancer risk of astronauts exposed to low doses of cosmic radiation. Therefore, the inhibition of selected NF-κB pathway compo-nents might help to identify possible pharmacological targets. It is supposed that the ATM kinase mediates the signal from damaged DNA in the nucleus to kinases in the cytoplasm. For liberation of NF-κB and its nuclear translocation, the inhibitor of NF-κB (IκB) has to be degraded in the proteasom. In this work, the efficacy and cytotoxicity of ATM, NF-κB and the proteasome inhibitors were analyzed using recombinant HEK-pNF-κB-d2EGFP/Neo cells. In the recommended concentration range, only the NF-κB inhibitor caffeic acid phenethyl ester (CAPE) displayed considerable cytotoxicity, while the others were not toxic. The inhibition of ATM by KU-55933 suppresses the X-ray and heavy ion (13 C, 35 MeV/u, LET 70 keV/m) induced activation of NF-κB dependent gene expression, indicating the central position of ATM in radiation induced NF-κB activation. CAPE and capsaicin partially inhibited NF-κB acti-vation by the cytokine tumor necrosis factor α. The proteasome inhibitor MG-132 completely abolished the activation and was therefore used for short-term incubation experiments with X-rays. MG-132 suppressed the X-ray induced NF-κB activation in HEK-pNF-κB-d2EGFP/Neo cells entirely. The results lead to the conclusion that ATM and the proteasomal degradation of IκB are essential prerequisites for radiation induced NF

  20. Important Metabolic Pathways and Biological Processes Expressed by Chicken Cecal Microbiota

    PubMed Central

    Polansky, Ondrej; Sekelova, Zuzana; Faldynova, Marcela; Sebkova, Alena; Sisak, Frantisek

    2015-01-01

    The gut microbiota plays important roles in its host. However, how each microbiota member contributes to the behavior of the whole population is not known. In this study, we therefore determined protein expression in the cecal microbiota in chickens of selected ages and in 7-day-old chickens inoculated with different cecal extracts on the day of hatching. Campylobacter, Helicobacter, Mucispirillum, and Megamonas overgrew in the ceca of 7-day-old chickens inoculated with cecal extracts from donor hens. Firmicutes were characterized by ABC and phosphotransferase system (PTS) transporters, extensive acyl coenzyme A (acyl-CoA) metabolism, and expression of l-fucose isomerase. Anaerostipes, Anaerotruncus, Pseudoflavonifractor, Dorea, Blautia, and Subdoligranulum expressed spore proteins. Firmicutes (Faecalibacterium, Butyrivibrio, Megasphaera, Subdoligranulum, Oscillibacter, Anaerostipes, and Anaerotruncus) expressed enzymes required for butyrate production. Megamonas, Phascolarctobacterium, and Blautia (exceptions from the phylum Firmicutes) and all Bacteroidetes expressed enzymes for propionate production pathways. Representatives of Bacteroidetes also expressed xylose isomerase, enzymes required for polysaccharide degradation, and ExbBD, TonB, and outer membrane receptors likely to be involved in oligosaccharide transport. Based on our data, Anaerostipes, Anaerotruncus, and Subdoligranulum might be optimal probiotic strains, since these represent spore-forming butyrate producers. However, certain care should be taken during microbiota transplantation because the microbiota may behave differently in the intestinal tract of a recipient depending on how well the existing communities are established. PMID:26712550

  1. Bridging from Cells to Cognition in Autism Pathophysiology: Biological Pathways to Defective Brain Function and Plasticity

    SciTech Connect

    Anderson, Matthew; Hooker, Brian S.; Herbert, Martha

    2008-01-01

    We review evidence to support the model that autism may begin when a maternal environmental, infectious, or autoantibody insult causes inflammation which increases reactive oxygen species (ROS) production in the fetus, leading to fetal DNA damage (nuclear and mitochondrial), and that these inflammatory and oxidative stressors persist beyond early development (with potential further exacerbations), producing ongoing functional consequences. In organs with a high metabolic demand such as the central nervous system, the continued use of mitochondria with DNA damage may generate additional ROS which will activate the innate immune system leading to more ROS production. Such a mechanism would self-sustain and possibly progressively worsen. The mitochondrial dysfunction and altered redox signal transduction pathways found in autism would conspire to activate both astroglia and microglia. These activated cells can then initiate a broad-spectrum proinflammatory gene response. Neurons may have acquired receptors for these inflammatory signals to inhibit neuronal signaling as a protection from excitotoxic damage during various pathologic insults (e.g., infection). In autism, over-zealous neuroinflammatory responses could not only influence neural developmental processes, but may more significantly impair neural signaling involved in cognition in an ongoing fashion. This model makes specific predictions in patients and experimental animal models and suggests a number of targets sites of intervention. Our model of potentially reversible pathophysiological mechanisms in autism motivates our hope that effective therapies may soon appear on the horizon.

  2. Important Metabolic Pathways and Biological Processes Expressed by Chicken Cecal Microbiota.

    PubMed

    Polansky, Ondrej; Sekelova, Zuzana; Faldynova, Marcela; Sebkova, Alena; Sisak, Frantisek; Rychlik, Ivan

    2016-03-01

    The gut microbiota plays important roles in its host. However, how each microbiota member contributes to the behavior of the whole population is not known. In this study, we therefore determined protein expression in the cecal microbiota in chickens of selected ages and in 7-day-old chickens inoculated with different cecal extracts on the day of hatching. Campylobacter, Helicobacter, Mucispirillum, and Megamonas overgrew in the ceca of 7-day-old chickens inoculated with cecal extracts from donor hens. Firmicutes were characterized by ABC and phosphotransferase system (PTS) transporters, extensive acyl coenzyme A (acyl-CoA) metabolism, and expression of l-fucose isomerase. Anaerostipes, Anaerotruncus, Pseudoflavonifractor, Dorea, Blautia, and Subdoligranulum expressed spore proteins. Firmicutes (Faecalibacterium, Butyrivibrio, Megasphaera, Subdoligranulum, Oscillibacter, Anaerostipes, and Anaerotruncus) expressed enzymes required for butyrate production. Megamonas, Phascolarctobacterium, and Blautia (exceptions from the phylum Firmicutes) and all Bacteroidetes expressed enzymes for propionate production pathways. Representatives of Bacteroidetes also expressed xylose isomerase, enzymes required for polysaccharide degradation, and ExbBD, TonB, and outer membrane receptors likely to be involved in oligosaccharide transport. Based on our data, Anaerostipes, Anaerotruncus, and Subdoligranulum might be optimal probiotic strains, since these represent spore-forming butyrate producers. However, certain care should be taken during microbiota transplantation because the microbiota may behave differently in the intestinal tract of a recipient depending on how well the existing communities are established. PMID:26712550

  3. From genes to behavior: placing cognitive models in the context of biological pathways

    PubMed Central

    Saez, Ignacio; Set, Eric; Hsu, Ming

    2014-01-01

    Connecting neural mechanisms of behavior to their underlying molecular and genetic substrates has important scientific and clinical implications. However, despite rapid growth in our knowledge of the functions and computational properties of neural circuitry underlying behavior in a number of important domains, there has been much less progress in extending this understanding to their molecular and genetic substrates, even in an age marked by exploding availability of genomic data. Here we describe recent advances in analytical strategies that aim to overcome two important challenges associated with studying the complex relationship between genes and behavior: (i) reducing distal behavioral phenotypes to a set of molecular, physiological, and neural processes that render them closer to the actions of genetic forces, and (ii) striking a balance between the competing demands of discovery and interpretability when dealing with genomic data containing up to millions of markers. Our proposed approach involves linking, on one hand, models of neural computations and circuits hypothesized to underlie behavior, and on the other hand, the set of the genes carrying out biochemical processes related to the functioning of these neural systems. In particular, we focus on the specific example of value-based decision-making, and discuss how such a combination allows researchers to leverage existing biological knowledge at both neural and genetic levels to advance our understanding of the neurogenetic mechanisms underlying behavior. PMID:25414628

  4. Multiple regulation pathways and pivotal biological functions of STAT3 in cancer

    PubMed Central

    Yuan, Jie; Zhang, Fei; Niu, Ruifang

    2015-01-01

    STAT3 is both a transcription activator and an oncogene that is tightly regulated under normal physiological conditions. However, abundant evidence indicates that STAT3 is persistently activated in several cancers, with a crucial position in tumor onset and progression. In addition to its traditional role in cancer cell proliferation, invasion, and migration, STAT3 also promotes cancer through altering gene expression via epigenetic modification, inducing epithelial–mesenchymal transition (EMT) phenotypes in cancer cells, regulating the tumor microenvironment, and promoting cancer stem cells (CSCs) self-renewal and differentiation. STAT3 is regulated not only by the canonical cytokines and growth factors, but also by the G-protein-coupled receptors, cadherin engagement, Toll-like receptors (TLRs), and microRNA (miRNA). Despite the presence of diverse regulators and pivotal biological functions in cancer, no effective therapeutic inventions are available for inhibiting STAT3 and acquiring potent antitumor effects in the clinic. An improved understanding of the complex roles of STAT3 in cancer is required to achieve optimal therapeutic effects. PMID:26631279

  5. Why are well-educated Muscovites more likely to survive? Understanding the biological pathways.

    PubMed

    Todd, Megan A; Shkolnikov, Vladimir M; Goldman, Noreen

    2016-05-01

    There are large socioeconomic disparities in adult mortality in Russia, although the biological mechanisms are not well understood. With data from the study of Stress, Aging, and Health in Russia (SAHR), we use Gompertz hazard models to assess the relationship between educational attainment and mortality among older adults in Moscow and to evaluate biomarkers associated with inflammation, neuroendocrine function, heart rate variability, and clinical cardiovascular and metabolic risk as potential mediators of that relationship. We do this by assessing the extent to which the addition of biomarker variables into hazard models of mortality attenuates the association between educational attainment and mortality. We find that an additional year of education is associated with about 5% lower risk of age-specific all-cause and cardiovascular mortality. Inflammation biomarkers are best able to account for this relationship, explaining 25% of the education-all-cause mortality association, and 35% of the education-cardiovascular mortality association. Clinical markers perform next best, accounting for 13% and 23% of the relationship between education and all-cause and cardiovascular mortality, respectively. Although heart rate biomarkers are strongly associated with subsequent mortality, they explain very little of the education-mortality link. Neuroendocrine biomarkers fail to account for any portion of the link. These findings suggest that inflammation may be important for understanding mortality disparities by socioeconomic status. PMID:27085072

  6. Multiple regulation pathways and pivotal biological functions of STAT3 in cancer.

    PubMed

    Yuan, Jie; Zhang, Fei; Niu, Ruifang

    2015-01-01

    STAT3 is both a transcription activator and an oncogene that is tightly regulated under normal physiological conditions. However, abundant evidence indicates that STAT3 is persistently activated in several cancers, with a crucial position in tumor onset and progression. In addition to its traditional role in cancer cell proliferation, invasion, and migration, STAT3 also promotes cancer through altering gene expression via epigenetic modification, inducing epithelial-mesenchymal transition (EMT) phenotypes in cancer cells, regulating the tumor microenvironment, and promoting cancer stem cells (CSCs) self-renewal and differentiation. STAT3 is regulated not only by the canonical cytokines and growth factors, but also by the G-protein-coupled receptors, cadherin engagement, Toll-like receptors (TLRs), and microRNA (miRNA). Despite the presence of diverse regulators and pivotal biological functions in cancer, no effective therapeutic inventions are available for inhibiting STAT3 and acquiring potent antitumor effects in the clinic. An improved understanding of the complex roles of STAT3 in cancer is required to achieve optimal therapeutic effects. PMID:26631279

  7. NeAT: a toolbox for the analysis of biological networks, clusters, classes and pathways

    PubMed Central

    Brohée, Sylvain; Faust, Karoline; Lima-Mendez, Gipsi; Sand, Olivier; Janky, Rekin's; Vanderstocken, Gilles; Deville, Yves; van Helden, Jacques

    2008-01-01

    The network analysis tools (NeAT) (http://rsat.ulb.ac.be/neat/) provide a user-friendly web access to a collection of modular tools for the analysis of networks (graphs) and clusters (e.g. microarray clusters, functional classes, etc.). A first set of tools supports basic operations on graphs (comparison between two graphs, neighborhood of a set of input nodes, path finding and graph randomization). Another set of programs makes the connection between networks and clusters (graph-based clustering, cliques discovery and mapping of clusters onto a network). The toolbox also includes programs for detecting significant intersections between clusters/classes (e.g. clusters of co-expression versus functional classes of genes). NeAT are designed to cope with large datasets and provide a flexible toolbox for analyzing biological networks stored in various databases (protein interactions, regulation and metabolism) or obtained from high-throughput experiments (two-hybrid, mass-spectrometry and microarrays). The web interface interconnects the programs in predefined analysis flows, enabling to address a series of questions about networks of interest. Each tool can also be used separately by entering custom data for a specific analysis. NeAT can also be used as web services (SOAP/WSDL interface), in order to design programmatic workflows and integrate them with other available resources. PMID:18524799

  8. NeAT: a toolbox for the analysis of biological networks, clusters, classes and pathways.

    PubMed

    Brohée, Sylvain; Faust, Karoline; Lima-Mendez, Gipsi; Sand, Olivier; Janky, Rekin's; Vanderstocken, Gilles; Deville, Yves; van Helden, Jacques

    2008-07-01

    The network analysis tools (NeAT) (http://rsat.ulb.ac.be/neat/) provide a user-friendly web access to a collection of modular tools for the analysis of networks (graphs) and clusters (e.g. microarray clusters, functional classes, etc.). A first set of tools supports basic operations on graphs (comparison between two graphs, neighborhood of a set of input nodes, path finding and graph randomization). Another set of programs makes the connection between networks and clusters (graph-based clustering, cliques discovery and mapping of clusters onto a network). The toolbox also includes programs for detecting significant intersections between clusters/classes (e.g. clusters of co-expression versus functional classes of genes). NeAT are designed to cope with large datasets and provide a flexible toolbox for analyzing biological networks stored in various databases (protein interactions, regulation and metabolism) or obtained from high-throughput experiments (two-hybrid, mass-spectrometry and microarrays). The web interface interconnects the programs in predefined analysis flows, enabling to address a series of questions about networks of interest. Each tool can also be used separately by entering custom data for a specific analysis. NeAT can also be used as web services (SOAP/WSDL interface), in order to design programmatic workflows and integrate them with other available resources. PMID:18524799

  9. STAT3 signaling pathway is involved in decitabine induced biological phenotype regulation of acute myeloid leukemia cells

    PubMed Central

    Zhu, Zhichao; Lu, Xuzhang; Jiang, Lijia; Sun, Xiao; Zhou, Haijun; Jia, Zhuxia; Zhang, Xiuwen; Ma, Lingdi

    2015-01-01

    Objective: This study aimed to investigate the role of signal transduction and transcriptional activator STAT3 and relevant signaling pathway in the DAC regulated biological phenotype of AML cells. Methods: The effect of DAC at different concentrations on the proliferation of HL-60 cells was determined. After DAC treatment for 48 h, the killing capability of NK cells against HL-60 cells and the protein expressions of STAT3, JAK1, JAK2, SOCS-1 and SOCS-3 were evaluated. Results: DAC markedly inhibited the proliferation of HL-60 cells. After the treatment of 48 hr with 0.2, 0.5 and 1.0 mol/L DAC, the HL-60 viability was reduced by 25±13%, 39±8% and 50±7% (P<0.01), respectively, and the early apoptosis rate was increased to 24.77±7.5%, 27.1±4.48% and 30.53±3.93%, respectively (control: 3.11±0.12%, P<0.01). DAC up-regulated the expression of MICA/B, ULBP-1 and ULBP-3 in HL-60 cells, and increased the killing activity of NK cells to HL-60 cells. DAC significantly induced the apoptosis of HL-60 cells and up-regulated the expression of NKG2D ligands in a dose dependent manner. Western blot assay showed the protein expression of STAT3, JAK, JAK2, phosphorylated STAT3, phosphorylated JAK1 and phosphorylated JAK2 decreased, while that of SOCS-1 and SOCS-3 increased in HL-60 cells after DAC treatment. Conclusion: In HL-60 cells, DAC can markedly inhibit their proliferation and up-regulate the expression of NKG2D ligands, and DAC also increase the cytotoxicity of NK cells to HL-60 cells, which may be related to the STAT3 related signaling pathway. PMID:26692933

  10. Biologically active substances-enriched diet regulates gonadotrope cell activation pathway in liver of adult and old rats.

    PubMed

    Oszkiel, Hanna; Wilczak, Jacek; Jank, Michał

    2014-09-01

    According to the Hippocrates' theorem "Let food be your medicine and medicine be your food", dietary interventions may induce changes in the metabolic and inflammatory state by modulating the expression of important genes involved in the chronic disorders. The aim of the present study was to evaluate the influence of long-term (14 months) use of biologically active substances-enriched diet (BASE-diet) on transcriptomic profile of rats' liver. The experiment was conducted on 36 Sprague-Dawley rats divided into two experimental groups (fed with control or BASE-diet, both n = 18). Control diet was a semi-synthetic diet formulated according to the nutritional requirements for laboratory animals. The BASE-diet was enriched with a mixture of polyphenolic compounds, β-carotene, probiotics, and n-3 and n-6 polyunsaturated fatty acids. In total, n = 3,017 differentially expressed (DE) genes were identified, including n = 218 DE genes between control and BASE groups after 3 months of feeding and n = 1,262 after 14 months. BASE-diet influenced the expression of genes involved particularly in the gonadotrope cell activation pathway and guanylate cyclase pathway, as well as in mast cell activation, gap junction regulation, melanogenesis and apoptosis. Especially genes involved in regulation of GnRH were strongly affected by BASE-diet. This effect was stronger with the age of animals and the length of diet use. It may suggest a link between the diet, reproductive system function and aging. PMID:25156242

  11. Association of SNPs in EGR3 and ARC with Schizophrenia Supports a Biological Pathway for Schizophrenia Risk.

    PubMed

    Huentelman, Matthew J; Muppana, Leela; Corneveaux, Jason J; Dinu, Valentin; Pruzin, Jeremy J; Reiman, Rebecca; Borish, Cassie N; De Both, Matt; Ahmed, Amber; Todorov, Alexandre; Cloninger, C Robert; Zhang, Rui; Ma, Jie; Gallitano, Amelia L

    2015-01-01

    We have previously hypothesized a biological pathway of activity-dependent synaptic plasticity proteins that addresses the dual genetic and environmental contributions to schizophrenia. Accordingly, variations in the immediate early gene EGR3, and its target ARC, should influence schizophrenia susceptibility. We used a pooled Next-Generation Sequencing approach to identify variants across these genes in U.S. populations of European (EU) and African (AA) descent. Three EGR3 and one ARC SNP were selected and genotyped for validation, and three SNPs were tested for association in a replication cohort. In the EU group of 386 schizophrenia cases and 150 controls EGR3 SNP rs1877670 and ARC SNP rs35900184 showed significant associations (p = 0.0078 and p = 0.0275, respectively). In the AA group of 185 cases and 50 controls, only the ARC SNP revealed significant association (p = 0.0448). The ARC SNP did not show association in the Han Chinese (CH) population. However, combining the EU, AA, and CH groups revealed a highly significant association of ARC SNP rs35900184 (p = 2.353 x 10(-7); OR [95% CI] = 1.54 [1.310-1.820]). These findings support previously reported associations between EGR3 and schizophrenia. Moreover, this is the first report associating an ARC SNP with schizophrenia and supports recent large-scale GWAS findings implicating the ARC complex in schizophrenia risk. These results support the need for further investigation of the proposed pathway of environmentally responsive, synaptic plasticity-related, schizophrenia genes. PMID:26474411

  12. Association of SNPs in EGR3 and ARC with Schizophrenia Supports a Biological Pathway for Schizophrenia Risk

    PubMed Central

    Huentelman, Matthew J.; Muppana, Leela; Dinu, Valentin; Pruzin, Jeremy J.; Reiman, Rebecca; Borish, Cassie N.; De Both, Matt; Ahmed, Amber; Todorov, Alexandre; Cloninger, C. Robert; Zhang, Rui; Ma, Jie; Gallitano, Amelia L.

    2015-01-01

    We have previously hypothesized a biological pathway of activity-dependent synaptic plasticity proteins that addresses the dual genetic and environmental contributions to schizophrenia. Accordingly, variations in the immediate early gene EGR3, and its target ARC, should influence schizophrenia susceptibility. We used a pooled Next-Generation Sequencing approach to identify variants across these genes in U.S. populations of European (EU) and African (AA) descent. Three EGR3 and one ARC SNP were selected and genotyped for validation, and three SNPs were tested for association in a replication cohort. In the EU group of 386 schizophrenia cases and 150 controls EGR3 SNP rs1877670 and ARC SNP rs35900184 showed significant associations (p = 0.0078 and p = 0.0275, respectively). In the AA group of 185 cases and 50 controls, only the ARC SNP revealed significant association (p = 0.0448). The ARC SNP did not show association in the Han Chinese (CH) population. However, combining the EU, AA, and CH groups revealed a highly significant association of ARC SNP rs35900184 (p = 2.353 x 10−7; OR [95% CI] = 1.54 [1.310–1.820]). These findings support previously reported associations between EGR3 and schizophrenia. Moreover, this is the first report associating an ARC SNP with schizophrenia and supports recent large-scale GWAS findings implicating the ARC complex in schizophrenia risk. These results support the need for further investigation of the proposed pathway of environmentally responsive, synaptic plasticity-related, schizophrenia genes. PMID:26474411

  13. A Western Blot-based Investigation of the Yeast Secretory Pathway Designed for an Intermediate-Level Undergraduate Cell Biology Laboratory

    ERIC Educational Resources Information Center

    Hood-DeGrenier, Jennifer K.

    2008-01-01

    The movement of newly synthesized proteins through the endomembrane system of eukaryotic cells, often referred to generally as the secretory pathway, is a topic covered in most intermediate-level undergraduate cell biology courses. An article previously published in this journal described a laboratory exercise in which yeast mutants defective in…

  14. Lung Cancer Cell Line Screen Links Fanconi Anemia/BRCA Pathway Defects to Increased Relative Biological Effectiveness of Proton Radiation

    SciTech Connect

    Liu, Qi; Ghosh, Priyanjali; Magpayo, Nicole; Testa, Mauro; Tang, Shikui; Gheorghiu, Liliana; Biggs, Peter; Paganetti, Harald; Efstathiou, Jason A.; Lu, Hsiao-Ming; Held, Kathryn D.; Willers, Henning

    2015-04-01

    Purpose: Growing knowledge of genomic heterogeneity in cancer, especially when it results in altered DNA damage responses, requires re-examination of the generic relative biological effectiveness (RBE) of 1.1 of protons. Methods and Materials: For determination of cellular radiosensitivity, we irradiated 17 lung cancer cell lines at the mid-spread-out Bragg peak of a clinical proton beam (linear energy transfer, 2.5 keV/μm). For comparison, 250-kVp X rays and {sup 137}Cs γ-rays were used. To estimate the RBE of protons relative to {sup 60}Co (Co60eq), we assigned an RBE(Co60Eq) of 1.1 to X rays to correct the physical dose measured. Standard DNA repair foci assays were used to monitor damage responses. FANCD2 was depleted using RNA interference. Results: Five lung cancer cell lines (29.4%) exhibited reduced clonogenic survival after proton irradiation compared with X-irradiation with the same physical doses. This was confirmed in a 3-dimensional sphere assay. Corresponding proton RBE(Co60Eq) estimates were statistically significantly different from 1.1 (P≤.05): 1.31 to 1.77 (for a survival fraction of 0.5). In 3 of these lines, increased RBE was correlated with alterations in the Fanconi anemia (FA)/BRCA pathway of DNA repair. In Calu-6 cells, the data pointed toward an FA pathway defect, leading to a previously unreported persistence of proton-induced RAD51 foci. The FA/BRCA-defective cells displayed a 25% increase in the size of subnuclear 53BP1 foci 18 hours after proton irradiation. Conclusions: Our cell line screen has revealed variations in proton RBE that are partly due to FA/BRCA pathway defects, suggesting that the use of a generic RBE for cancers should be revisited. We propose that functional biomarkers, such as size of residual 53BP1 foci, may be used to identify cancers with increased sensitivity to proton radiation.

  15. Synthesis and biological evaluation of a novel class of isatin analogs as dual inhibitors of tubulin polymerization and Akt pathway

    PubMed Central

    Krishnegowda, Gowdahalli; Gowda, A. S. Prakasha; Tagaram, Hephzibah Rani S.; Staveley-O’ Carroll, Kevin F; Irby, Rosalyn B.; Sharma, Arun K.; Amin, Shantu

    2011-01-01

    A novel series of 5,7-dibromoisatin analogs were synthesized and evaluated for their cytotoxicities against four human cancer cell lines including colon HT29, breast MCF-7, lung A549 and melanoma UACC903. Analogs 6, 11 and 13 displayed good in vitro anticancer activity on the HT29 human colon cancer cell line in the 1 µM range. Analogs 5, 9 and 12, containing a selenocyanate group in the alkyl chain were the most promising compounds on the breast cancer MCF-7 cell line. Biological assays relating to apoptosis were performed to understand the mechanism of action of these analogs. Compounds 5 and 6 were found to inhibit tubulin polymerization to the same extent as the anticancer drug vinblastine sulfate, but compounds 11 and 13 inhibited significantly better than vinblastine. Further western blot analysis suggested that compound 6 at 2 µM reduced both levels and phosphorylation state of Akt. Compounds 11 and 13 at 1 µM caused reduced Akt protein levels and strongly suppressed the phosphorylation of Akt. Therefore, 11 and 13 were demonstrated as efficient dual inhibitors of both tubulin polymerization and the Akt pathway and good candidates for further study. More importantly, the strategy of microtubule and Akt dual inhibitors might be a promising direction for developing novel drugs for cancer. PMID:21920762

  16. Development of computationally predicted Adverse Outcome Pathway (AOP) networks through data mining and integration of publicly available in vivo, in vitro, phenotype, and biological pathway data

    EPA Science Inventory

    The Adverse Outcome Pathway (AOP) framework is increasingly being adopted as a tool for organizing and summarizing the mechanistic information connecting molecular perturbations by environmental stressors with adverse outcomes relevant for ecological and human health outcomes. Ho...

  17. Generation of computationally predicted Adverse Outcome Pathway networks through integration of publicly available in vivo, in vitro, phenotype, and biological pathway data.

    EPA Science Inventory

    The Adverse Outcome Pathway (AOP) framework is becoming a widely used tool for organizing and summarizing the mechanistic information connecting molecular perturbations by environmental stressors with adverse ecological and human health outcomes. However, the conventional process...

  18. Hidden Treasures in “Ancient” Microarrays: Gene-Expression Portrays Biology and Potential Resistance Pathways of Major Lung Cancer Subtypes and Normal Tissue

    PubMed Central

    Kerkentzes, Konstantinos; Lagani, Vincenzo; Tsamardinos, Ioannis; Vyberg, Mogens; Røe, Oluf Dimitri

    2014-01-01

    Objective: Novel statistical methods and increasingly more accurate gene annotations can transform “old” biological data into a renewed source of knowledge with potential clinical relevance. Here, we provide an in silico proof-of-concept by extracting novel information from a high-quality mRNA expression dataset, originally published in 2001, using state-of-the-art bioinformatics approaches. Methods: The dataset consists of histologically defined cases of lung adenocarcinoma (AD), squamous (SQ) cell carcinoma, small-cell lung cancer, carcinoid, metastasis (breast and colon AD), and normal lung specimens (203 samples in total). A battery of statistical tests was used for identifying differential gene expressions, diagnostic and prognostic genes, enriched gene ontologies, and signaling pathways. Results: Our results showed that gene expressions faithfully recapitulate immunohistochemical subtype markers, as chromogranin A in carcinoids, cytokeratin 5, p63 in SQ, and TTF1 in non-squamous types. Moreover, biological information with putative clinical relevance was revealed as potentially novel diagnostic genes for each subtype with specificity 93–100% (AUC = 0.93–1.00). Cancer subtypes were characterized by (a) differential expression of treatment target genes as TYMS, HER2, and HER3 and (b) overrepresentation of treatment-related pathways like cell cycle, DNA repair, and ERBB pathways. The vascular smooth muscle contraction, leukocyte trans-endothelial migration, and actin cytoskeleton pathways were overexpressed in normal tissue. Conclusion: Reanalysis of this public dataset displayed the known biological features of lung cancer subtypes and revealed novel pathways of potentially clinical importance. The findings also support our hypothesis that even old omics data of high quality can be a source of significant biological information when appropriate bioinformatics methods are used. PMID:25325012

  19. The effect of following learning style pathways on learning and satisfaction in online biology laboratories for non-science-major undergraduates

    NASA Astrophysics Data System (ADS)

    Ritschel-Trifilo, Patricia M.

    Learning is a biological process involving horizontal and vertical synapse formations in the brain resulting in established neuronal pathways. Each learner has a unique biological makeup resulting in individual approaches to acquire, understand, and perceive information, which constitutes their learning styles. Learners have a dominant and several subdominant learning styles they use to explore new material. This study investigates the effect of following learning style pathways on learning and satisfaction in an online biology laboratory for non-science-major undergraduates. Participants in the control group, without knowledge of learning styles, randomly chose from eight instructional strategies, to create a pathway to explore the subject of fermentation and enzymes. Each participant in the experimental group was tested to determine dominant and subdominant learning styles, and was then instructed to follow a specific pathway that conformed to his or her learning styles through the instructional materials to explore the topics. Results of the study show a statistically significant improvement in learning when instructional strategies are matched to dominant and subdominant learning styles compared to instructional strategies unmatched to learning styles. Learners following the learning style pathway exactly as suggested by Canfield Learning Styles Inventory, with the dominant instruction first, accomplished extremely significantly higher posttest scores over those who only partially followed the suggested learning path. Learners expressed a higher level of satisfaction with the instruction and greater ease of learning when the instructional strategies matched learning styles. Research results suggest that, if the instructional strategies incorporated into an online laboratory presenting unfamiliar material to learners do not match the learner's style, the learner is forced to use a brain pathway with little neuronal connectivity resulting in poor learning and

  20. A Novel Biological Role of α-Mangostin in Modulating Inflammatory Response Through the Activation of SIRT-1 Signaling Pathway.

    PubMed

    Franceschelli, Sara; Pesce, Mirko; Ferrone, Alessio; Patruno, Antonia; Pasqualone, Livia; Carlucci, Giuseppe; Ferrone, Vincenzo; Carlucci, Maura; de Lutiis, Maria Anna; Grilli, Alfredo; Felaco, Mario; Speranza, Lorenza

    2016-11-01

    Several studies have shown that xanthones obtained from Garcinia Mangostana (GM) have remarkable biological activities. α-mangostin (α-MG) is the main constituent of the fruit hull of the GM. Several findings have suggested that SIRT-1, a nuclear histone deacetylase, could influence cellular function by the inhibition of NF-kB signaling. ROS can inhibit SIRT-1 activity by initiating oxidative modifications on its cysteine residues, and suppression of SIRT-1 enhances the NF-κB signaling resulting in inflammatory responses. The goals of the present study were to evaluate the quantity of α-MG in the methanolic extract of GM (Vithagroup Spa) and to investigate the activity of this xanthone in U937 cell line and in human monocytes from responsive to inflammatory insult analyzing the possible changes on the activation of SIRT-1 protein via NF-Kb. Cells were treated with the methanolic extract of GM and/or LPS. The chromatographic separation of α-MG was performed by an HPLC analysis. EX 527, a specific SIRT-1 inhibitor, was used to determine if SIRT-1/NfkB signaling pathway might be involved in α-MG action on cells. Our results show that α-MG inhibits p65 acetylation and down-regulates the pro-inflammatory gene products as COX-2, iNOS via SIRT-1 activation. Cells treated with EX 527 showed an up-regulation of NFkB acetylation and an over expression of inducible enzymes and their product of catalysis (NO and PGE2). These results suggest that α-MG may be useful for the development of alternative pharmacological strategies aimed at reducing the inflammatory process. J. Cell. Physiol. 231: 2439-2451, 2016. © 2016 Wiley Periodicals, Inc. PMID:26895796

  1. Recurrent rearrangements in synaptic and neurodevelopmental genes and shared biologic pathways in schizophrenia, autism, and mental retardation

    PubMed Central

    Guilmatre, Audrey; Dubourg, Christèle; Mosca, Anne-Laure; Legallic, Solenn; Goldenberg, Alice; Drouin-Garraud, Valérie; Layet, Valérie; Rosier, Antoine; Briault, Sylvain; Bonnet-Brilhault, Frédérique; Laumonnier, Frédéric; Odent, Sylvie; Le Vacon, Gael; Joly-Helas, Géraldine; David, Véronique; Bendavid, Claude; Pinoit, Jean-Michel; Henry, Céline; Impallomeni, Caterina; Germano, Eva; Tortorella, Gaetano; Di Rosa, Gabriella; Barthelemy, Catherine; Andres, Christian; Faivre, Laurence; Frébourg, Thierry; Saugier Veber, Pascale; Campion, Dominique

    2009-01-01

    Context Comparative genomic hybridization (array-CGH) studies have suggested that rare copy number variations (CNVs) at numerous loci are involved in the etiology of mental retardation (MR), autism spectrum disorders (ASD) and schizophrenia. Objective The goal of the present paper was (i) to provide an estimate of the collective frequency of a set of recurrent/overlapping CNVs in three different groups of patients as compared with healthy controls and (ii) to assess whether each CNV is present in more than one clinical category. Design, setting and population We have investigated 28 candidate loci previously identified by array-CGH studies for gene dosage alteration in 247 subjects with MR, 260 with ASD, 236 with schizophrenia or schizoaffective disorder and 236 healthy controls. Main outcome measures Collective and individual frequency of the analyzed CNVs in patients as compared with controls. Results Recurrent or overlapping CNVs were found in patients at 40% of the selected loci. We show that the collective frequency of CNVs at these loci is significantly increased in autistic patients, patients with schizophrenia and patients with MR as compared with controls (p= 0.005, p< 0.001 and p= 0.001 respectively, Fisher exact test). Individual significance (p= 0.02) was reached for association between autism and a 350 kb deletion located in 22q11 and spanning the PRODH gene. Conclusions These results support the hypothesis that weakly to moderately recurrent CNVs, either transmitted or occurring de novo, are causing or contributory factors for these diseases. Second, we show that most of these CNVs, which contain genes involved in neurotransmission or synapse formation and maintenance, are present in the 3 pathological conditions, supporting the existence of shared biological pathways between these neurodevelopmental disorders. PMID:19736351

  2. Evaluating legacy contaminants and emerging chemicals in marine environments using adverse outcome pathways and biological effects-directed analysis.

    PubMed

    Hutchinson, Thomas H; Lyons, Brett P; Thain, John E; Law, Robin J

    2013-09-30

    important scientific, economic and health challenges. In order to meet these challenges and pursue cost-effective scientific approaches that can provide evidence necessary to support policy needs (e.g. the European Marine Strategy Framework Directive), it is widely recognised that there is a need to (i) provide marine exposure assessments for priority contaminants using a range of validated models, passive samplers and biomarkers; (ii) integrate chemical monitoring data with biological effects data across spatial and temporal scales (including quality controls); and (iii) strengthen the evidence base to understand the relationship between exposure to complex chemical mixtures, biological and ecological impacts through integrated approaches and molecular data (e.g. genomics, proteomics and metabolomics). Additionally, we support the widely held view that (iv) that rather than increasing the analytical chemistry monitoring of large number of emerging contaminants, it will be important to target analytical chemistry towards key groups of chemicals of concern using effects-directed analysis. It is also important to evaluate to what extent existing biomarkers and bioassays can address various classes of emerging chemicals using the adverse outcome pathway (AOP) approach now being developed by the Organization for Economic Cooperation and Development (OECD) with respect to human toxicology and ecotoxicology. PMID:23820191

  3. Integrative analyses of miRNA and proteomics identify potential biological pathways associated with onset of pulmonary fibrosis in the bleomycin rat model

    SciTech Connect

    Fukunaga, Satoki; Kakehashi, Anna; Sumida, Kayo; Kushida, Masahiko; Asano, Hiroyuki; Gi, Min; Wanibuchi, Hideki

    2015-08-01

    To determine miRNAs and their predicted target proteins regulatory networks which are potentially involved in onset of pulmonary fibrosis in the bleomycin rat model, we conducted integrative miRNA microarray and iTRAQ-coupled LC-MS/MS proteomic analyses, and evaluated the significance of altered biological functions and pathways. We observed that alterations of miRNAs and proteins are associated with the early phase of bleomycin-induced pulmonary fibrosis, and identified potential target pairs by using ingenuity pathway analysis. Using the data set of these alterations, it was demonstrated that those miRNAs, in association with their predicted target proteins, are potentially involved in canonical pathways reflective of initial epithelial injury and fibrogenic processes, and biofunctions related to induction of cellular development, movement, growth, and proliferation. Prediction of activated functions suggested that lung cells acquire proliferative, migratory, and invasive capabilities, and resistance to cell death especially in the very early phase of bleomycin-induced pulmonary fibrosis. The present study will provide new insights for understanding the molecular pathogenesis of idiopathic pulmonary fibrosis. - Highlights: • We analyzed bleomycin-induced pulmonary fibrosis in the rat. • Integrative analyses of miRNA microarray and proteomics were conducted. • We determined the alterations of miRNAs and their potential target proteins. • The alterations may control biological functions and pathways in pulmonary fibrosis. • Our result may provide new insights of pulmonary fibrosis.

  4. RNA-Sequencing Analysis of TCDD-Induced Responses in Zebrafish Liver Reveals High Relatedness to In Vivo Mammalian Models and Conserved Biological Pathways

    PubMed Central

    Li, Zhi-Hua; Xu, Hongyan; Zheng, Weiling; Lam, Siew Hong; Gong, Zhiyuan

    2013-01-01

    TCDD is one of the most persistent environmental toxicants in biological systems and its effect through aryl hydrocarbon receptor (AhR) has been well characterized. However, the information on TCDD-induced toxicity in other molecular pathways is rather limited. To fully understand molecular toxicity of TCDD in an in vivo animal model, adult zebrafish were exposed to TCDD at 10 nM for 96 h and the livers were sampled for RNA-sequencing based transcriptomic profiling. A total of 1,058 differently expressed genes were identified based on fold-change>2 and TPM (transcripts per million) >10. Among the top 20 up-regulated genes, 10 novel responsive genes were identified and verified by RT-qPCR analysis on independent samples. Transcriptomic analysis indicated several deregulated pathways associated with cell cycle, endocrine disruptors, signal transduction and immune systems. Comparative analyses of TCDD-induced transcriptomic changes between fish and mammalian models revealed that proteomic pathway is consistently up-regulated while calcium signaling pathway and several immune-related pathways are generally down-regulated. Finally, our study also suggested that zebrafish model showed greater similarity to in vivo mammalian models than in vitro models. Our study indicated that the zebrafish is a valuable in vivo model in toxicogenomic analyses for understanding molecular toxicity of environmental toxicants relevant to human health. The expression profiles associated with TCDD could be useful for monitoring environmental dioxin and dioxin-like contamination. PMID:24204792

  5. Design, Synthesis, and Biological Evaluation of a Series of Anthracene-9,10-dione Dioxime β-Catenin Pathway Inhibitors.

    PubMed

    Soldi, Raffaella; Horrigan, Stephen K; Cholody, Marek W; Padia, Janak; Sorna, Venkataswamy; Bearss, Jared; Gilcrease, Glynn; Bhalla, Kapil; Verma, Anupam; Vankayalapati, Hariprasad; Sharma, Sunil

    2015-08-13

    The Wnt/β-catenin signaling pathway plays a vital role in cell growth, the regulation, cell development, and the differentiation of normal stem cells. Constitutive activation of the Wnt/β-catenin signaling pathway is found in many human cancers, and thus, it is an attractive target for anticancer therapy. Specific inhibitors of this pathway have been keenly researched and developed. Cell based screening of compounds library, hit-to-lead optimization, computational and structure-based design strategies resulted in the design and synthesis of a series of anthracene-9,10-dione dioxime series of compounds demonstrated potent inhibition of β-catenin in vitro (IC50 < 10 nM, 14) and the growth of several cancer cell lines. This article discusses the potential of inhibiting the Wnt/β-catenin signaling pathway as a therapeutic approach for cancer along with an overview of the development of specific inhibitors. PMID:26182238

  6. Reconstruction and visualization of carbohydrate, N-glycosylation pathways in Pichia pastoris CBS7435 using computational and system biology approaches.

    PubMed

    Srivastava, Akriti; Somvanshi, Pallavi; Mishra, Bhartendu Nath

    2013-06-01

    Pichia pastoris is an efficient expression system for production of recombinant proteins. To understand its physiology for building novel applications it is important to understand and reconstruct its metabolic network. The metabolic reconstruction approach connects genotype with phenotype. Here, we have attempted to reconstruct carbohydrate metabolism pathways responsible for high biomass density and N-glycosylation pathways involved in the post translational modification of proteins of P. pastoris CBS7435. Both these metabolic pathways play a crucial role in heterologous protein production. We report novel, missing and unannotated enzymes involved in the target metabolic pathways. A strong possibility of cellulose and xylose metabolic processes in P. pastoris CBS7435 suggests its use in the area of biofuels. The reconstructed metabolic networks can be used for increased yields and improved product quality, for designing appropriate growth medium, for production of recombinant therapeutics and for making biofuels. PMID:24432138

  7. Systems Biology Model of Interactions Between Tissue Growth Factors and DNA Damage Pathways: Low Dose Response and Cross-Talk in TGFbeta and ATM Signaling

    SciTech Connect

    O'Neill, Peter; Anderson, Jennifer

    2014-10-02

    The etiology of radiation carcinogenesis has been described in terms of aberrant changes that span several levels of biological organization. Growth factors regulate many important cellular and tissue functions including apoptosis, differentiation and proliferation. A variety of genetic and epigenetic changes of growth factors have been shown to contribute to cancer initiation and progression. It is known that cellular and tissue damage to ionizing radiation is in part initiated by the production of reactive oxygen species, which can activate cytokine signaling, and the DNA damage response pathways, most notably the ATM signaling pathway. Recently the transforming growth factor β (TGFβ) pathway has been shown to regulate or directly interact with the ATM pathway in the response to radiation. The relevance of this interaction with the ATM pathway is not known although p53 becomes phosphorylated and DNA damage responses are involved. However, growth factor interactions with DNA damage responses have not been elucidated particularly at low doses and further characterization of their relationship to cancer processes is warranted. Our goal will be to use a systems biology approach to mathematically and experimentally describe the low dose responses and cross-talk between the ATM and TGFβ pathways initiated by low and high LET radiation. We will characterize ATM and TGFβ signaling in epithelial and fibroblast cells using 2D models and ultimately extending to 3D organotypic cell culture models to begin to elucidate possible differences that may occur for different cell types and/or inter-cellular communication. We will investigate the roles of the Smad and Activating transcription factor 2 (ATF2) proteins as the potential major contributors to cross- talk between the TGFβ and ATM pathways, and links to cell cycle control and/or the DNA damage response, and potential differences in their responses at low and high doses. We have developed various experimental

  8. Temporal retinal transcriptome and systems biology analysis identifies key pathways and hub genes in Staphylococcus aureus endophthalmitis.

    PubMed

    Rajamani, Deepa; Singh, Pawan Kumar; Rottmann, Bruce G; Singh, Natasha; Bhasin, Manoj K; Kumar, Ashok

    2016-01-01

    Bacterial endophthalmitis remains a devastating inflammatory condition associated with permanent vision loss. Hence, assessing the host response in this disease may provide new targets for intervention. Using a mouse model of Staphylococcus aureus (SA) endophthalmitis and performing retinal transcriptome analysis, we discovered progressive changes in the expression of 1,234 genes. Gene ontology (GO) and pathway analyses revealed the major pathways impacted in endophthalmitis includes: metabolism, inflammatory/immune, antimicrobial, cell trafficking, and lipid biosynthesis. Among the immune/inflammation pathways, JAK/Stat and IL-17A signaling were the most significantly affected. Interactive network-based analyses identified 13 focus hub genes (IL-6, IL-1β, CXCL2, STAT3, NUPR1, Jun, CSF1, CYR61, CEBPB, IGF-1, EGFR1, SPP1, and TGM2) within these important pathways. The expression of hub genes confirmed by qRT-PCR, ELISA (IL-6, IL-1β, and CXCL2), and Western blot or immunostaining (CEBP, STAT3, NUPR1, and IGF1) showed strong correlation with transcriptome data. Since TLR2 plays an important role in SA endophthalmitis, counter regulation analysis of TLR2 ligand pretreated retina or the use of retinas from TLR2 knockout mice showed the down-regulation of inflammatory regulatory genes. Collectively, our study provides, for the first time, a comprehensive analysis of the transcriptomic response and identifies key pathways regulating retinal innate responses in staphylococcal endophthalmitis. PMID:26865111

  9. Temporal retinal transcriptome and systems biology analysis identifies key pathways and hub genes in Staphylococcus aureus endophthalmitis

    PubMed Central

    Rajamani, Deepa; Singh, Pawan Kumar; Rottmann, Bruce G.; Singh, Natasha; Bhasin, Manoj K.; Kumar, Ashok

    2016-01-01

    Bacterial endophthalmitis remains a devastating inflammatory condition associated with permanent vision loss. Hence, assessing the host response in this disease may provide new targets for intervention. Using a mouse model of Staphylococcus aureus (SA) endophthalmitis and performing retinal transcriptome analysis, we discovered progressive changes in the expression of 1,234 genes. Gene ontology (GO) and pathway analyses revealed the major pathways impacted in endophthalmitis includes: metabolism, inflammatory/immune, antimicrobial, cell trafficking, and lipid biosynthesis. Among the immune/inflammation pathways, JAK/Stat and IL-17A signaling were the most significantly affected. Interactive network-based analyses identified 13 focus hub genes (IL-6, IL-1β, CXCL2, STAT3, NUPR1, Jun, CSF1, CYR61, CEBPB, IGF-1, EGFR1, SPP1, and TGM2) within these important pathways. The expression of hub genes confirmed by qRT-PCR, ELISA (IL-6, IL-1β, and CXCL2), and Western blot or immunostaining (CEBP, STAT3, NUPR1, and IGF1) showed strong correlation with transcriptome data. Since TLR2 plays an important role in SA endophthalmitis, counter regulation analysis of TLR2 ligand pretreated retina or the use of retinas from TLR2 knockout mice showed the down-regulation of inflammatory regulatory genes. Collectively, our study provides, for the first time, a comprehensive analysis of the transcriptomic response and identifies key pathways regulating retinal innate responses in staphylococcal endophthalmitis. PMID:26865111

  10. Signal transduction pathways mediated by PECAM-1: new roles for an old molecule in platelet and vascular cell biology.

    PubMed

    Newman, Peter J; Newman, Debra K

    2003-06-01

    Recent studies of platelet endothelial cell adhesion molecule-1 (PECAM-1 [CD31])-deficient mice have revealed that this molecule plays an important role in controlling the activation and survival of cells on which it is expressed. In this review, we focus on the complex cytoplasmic domain of PECAM-1 and describe what is presently known about its structure, posttranslational modifications, and binding partners. In addition, we summarize findings that implicate PECAM-1 as an inhibitor of cellular activation via protein tyrosine kinase-dependent signaling pathways, an activator of integrins, and a suppressor of cell death via pathways that depend on damage to the mitochondria. The challenge of future research will be to bridge our understanding of the functional and biochemical properties of PECAM-1 by establishing mechanistic links between signals transduced by the PECAM-1 cytoplasmic domain and discrete cellular responses. PMID:12689916

  11. Global detection of molecular changes reveals concurrent alteration of several biological pathways in nonsmall cell lung cancer cells

    PubMed Central

    Ju, Z.; Kapoor, M.; Newton, K; Cheon, K.; Ramaswamy, A.; Lotan, R.; Strong, L. C.; Koo, J. S.

    2006-01-01

    To identify the molecular changes that occur in non-small cell lung carcinoma (NSCLC), we compared the gene expression profile of the NCI-H292 (H292) NSCLC cell line with that of normal human tracheobronchial epithelial (NHTBE) cells. The NHTBE cells were grown in a three-dimensional organotypic culture system that permits maintenance of the normal pseudostratified mucociliary phenotype characteristic of bronchial epithelium in vivo. Microarray analysis using the Affymetrix oligonucleotide chip U95Av2 revealed that 1,683 genes showed a > 1.5-fold change in expression in the H292 cell line relative to the NHTBE cells. Specifically, 418 genes were downregulated and 1,265 were upregulated in the H292 cells. The expression data for selected genes were validated in several different NSCLC cell lines using quantitative real-time PCR and Western analysis. Further analysis of the differentially expressed genes indicated that WNT responses, apoptosis, cell cycle regulation and cell proliferation were significantly altered in the H292 cells. Functional analysis using fluorescence-activated cell sorting confirmed concurrent changes in the activity of these pathways in the H292 line. These findings show that (1) NSCLC cells display deregulation of the WNT, apoptosis, proliferation and cell cycle pathways, as has been found in many other types of cancer cells, and (2) that organotypically cultured NHTBE cells can be used as a reference to identify genes and pathways that are differentially expressed in tumor cells derived from bronchogenic epithelium. PMID:16049682

  12. Comprehensive analysis of schizophrenia-associated loci highlights ion channel pathways and biologically plausible candidate causal genes.

    PubMed

    Pers, Tune H; Timshel, Pascal; Ripke, Stephan; Lent, Samantha; Sullivan, Patrick F; O'Donovan, Michael C; Franke, Lude; Hirschhorn, Joel N

    2016-03-15

    Over 100 associated genetic loci have been robustly associated with schizophrenia. Gene prioritization and pathway analysis have focused on a priori hypotheses and thus may have been unduly influenced by prior assumptions and missed important causal genes and pathways. Using a data-driven approach, we show that genes in associated loci: (1) are highly expressed in cortical brain areas; (2) are enriched for ion channel pathways (false discovery rates <0.05); and (3) contain 62 genes that are functionally related to each other and hence represent promising candidates for experimental follow up. We validate the relevance of the prioritized genes by showing that they are enriched for rare disruptive variants and de novo variants from schizophrenia sequencing studies (odds ratio 1.67, P = 0.039), and are enriched for genes encoding members of mouse and human postsynaptic density proteomes (odds ratio 4.56, P = 5.00 × 10(-4); odds ratio 2.60, P = 0.049).The authors wish it to be known that, in their opinion, the first 2 authors should be regarded as joint First Author. PMID:26755824

  13. The MUC1 oncomucin regulates pancreatic cancer cell biological properties and chemoresistance. Implication of p42–44 MAPK, Akt, Bcl-2 and MMP13 pathways

    SciTech Connect

    Tréhoux, Solange; Duchêne, Bélinda; Jonckheere, Nicolas; Van Seuningen, Isabelle

    2015-01-16

    Highlights: • Loss of MUC1 decreases proliferation and tumor growth via β-catenin and p42–44 MAPK. • Inhibition of MUC1 decreases cell migration and invasion through MMP13. • Loss of MUC1 decreases survival and increases apoptosis via Akt and Bcl-2 pathways. • Loss of MUC1 sensitizes cells to gemcitabine and 5-Fluorouracil chemotherapeutic drugs. - Abstract: MUC1 is an oncogenic mucin overexpressed in several epithelial cancers, including pancreatic ductal adenocarcinoma, and is considered as a potent target for cancer therapy. To this aim, we undertook to study MUC1 biological effects on pancreatic cancer cells and identify pathways mediating these effects. Our in vitro experiments indicate that inhibiting MUC1 expression decreases cell proliferation, cell migration and invasion, cell survival and increases cell apoptosis. Moreover, lack of MUC1 in these cells profoundly altered their sensitivity to gemcitabine and 5-Fluorouracil chemotherapeutic drugs. In vivo MUC1-KD cell xenografts in SCID mice grew slower. Altogether, we show that MUC1 oncogenic mucin alters proliferation, migration, and invasion properties of pancreatic cancer cells and that these effects are mediated by p42–44 MAPK, Akt, Bcl-2 and MMP13 pathways.

  14. Benzo[ghi]perylene activates the AHR pathway to exert biological effects on the NL-20 human bronchial cell line.

    PubMed

    Zaragoza-Ojeda, Montserrat; Eguía-Aguilar, Pilar; Perezpeña-Díazconti, Mario; Arenas-Huertero, Francisco

    2016-08-10

    Polycyclic aromatic hydrocarbons (PAH) are produced by incomplete combustion of organic material. In the Mexico City atmosphere, the most abundant PAH is benzo[ghi]perylene (BghiP), a gasoline combustion marker. At present, there are no reports of the effects of BghiP on human bronchial cells, so the aim of the study was to evaluate the effects in vitro of BghiP on the NL-20 cell line. Results showed that BghiP induced the formation of small vesicles throughout the cytoplasm, with absence of nuclear fragmentation. At 48h exposition, damage in cell membrane increased significantly at 1.24μg/mL of BghiP (p<0.05). Immunocytochemistry revealed that BghiP provokes nuclear translocation of AhR receptor, which indicates that this compound can induce transcription of genes via receptor binding (AhR pathway activation). BghiP induced a two-fold increase (p<0.05) in the expression of AhR and CYP4B1 (a lung-specific pathway effector). In the presence of the receptor antagonist CH-223191, the loss of viability, the nuclear translocation and the overexpression of genes decreased, though this did not prevent the formation of vesicles. BghiP induced oxidative stress and in presence of the receptor antagonist this increased significantly. In conclusion, BghiP can activate the overexpression of AhR and CYP4B1, and the effects are abated by the AhR receptor antagonist. This is the first report to prove that BghiP utilizes the AhR pathway to exert its toxic effects on the NL-20 human bronchial cell line . PMID:27234499

  15. Transcriptional profiling and biological pathway analysis of human equivalence PCB exposure in vitro: Indicator of Disease and disorder development in humans

    PubMed Central

    Ghosh, Somiranjan; Mitra, Partha S.; Loffredo, Christopher A.; Trnovec, Tomas; Murinova, Lubica; Sovcikova, Eva; Ghimbovschi, Svetlana; Zang, Shizhu; Hoffman, Eric P.; Dutta, Sisir K.

    2015-01-01

    Background and Aims Our earlier gene-expression studies with a Slovak PCBs-exposed population have revealed possible disease and disorder development in accordance with epidemiological studies. The present investigation aimed to develop an in vitro model system that can provide an indication of disrupted biological pathways associated with developing future diseases, well in advance of the clinical manifestations that may take years to appear in the actual human exposure scenario. Methods We used human PBMC (Primary Blood Mononuclear Cells) and exposed them to a mixture of human equivalence levels of PCBs (PCB-118,138,153,170,180) as found in the PCBs-exposed Slovak population. The microarray studies of global gene expression were conducted on the Affymetrix platform using Human Genome U133 Plus 2.0 Array along with Ingenuity Pathway Analysis (IPA) to associate the affected genes with their mechanistic pathways. High-throughput qRT-PCR Taqman Low Density Array (TLDA) was done to further validate the selected 6 differentially expressed genes of our interest, viz., ARNT, CYP2D6, LEPR, LRP12, RRAD, TP53, with a small population validation sample (n=71). Results Overall, we revealed a discreet gene expression profile in the experimental model that resembled the diseases and disorders observed in PCBs-exposed population studies. The disease pathways included Endocrine System disorders, Genetic disorders, Metabolic diseases, Developmental disorders, and Cancers, strongly consistent with the evidence from epidemiological studies. Interpretation These gene finger prints could lead to the identification of populations and subgroups at high risk for disease, and can pose as early disease biomarkers well ahead of time, before the actual disease becomes visible. PMID:25725301

  16. A genome-wide association study and biological pathway analysis of epilepsy prognosis in a prospective cohort of newly treated epilepsy.

    PubMed

    Speed, Doug; Hoggart, Clive; Petrovski, Slave; Tachmazidou, Ioanna; Coffey, Alison; Jorgensen, Andrea; Eleftherohorinou, Hariklia; De Iorio, Maria; Todaro, Marian; De, Tisham; Smith, David; Smith, Philip E; Jackson, Margaret; Cooper, Paul; Kellett, Mark; Howell, Stephen; Newton, Mark; Yerra, Raju; Tan, Meng; French, Chris; Reuber, Markus; Sills, Graeme E; Chadwick, David; Pirmohamed, Munir; Bentley, David; Scheffer, Ingrid; Berkovic, Samuel; Balding, David; Palotie, Aarno; Marson, Anthony; O'Brien, Terence J; Johnson, Michael R

    2014-01-01

    We present the analysis of a prospective multicentre study to investigate genetic effects on the prognosis of newly treated epilepsy. Patients with a new clinical diagnosis of epilepsy requiring medication were recruited and followed up prospectively. The clinical outcome was defined as freedom from seizures for a minimum of 12 months in accordance with the consensus statement from the International League Against Epilepsy (ILAE). Genetic effects on remission of seizures after starting treatment were analysed with and without adjustment for significant clinical prognostic factors, and the results from each cohort were combined using a fixed-effects meta-analysis. After quality control (QC), we analysed 889 newly treated epilepsy patients using 472 450 genotyped and 6.9 × 10(6) imputed single-nucleotide polymorphisms. Suggestive evidence for association (defined as Pmeta < 5.0 × 10(-7)) with remission of seizures after starting treatment was observed at three loci: 6p12.2 (rs492146, Pmeta = 2.1 × 10(-7), OR[G] = 0.57), 9p23 (rs72700966, Pmeta = 3.1 × 10(-7), OR[C] = 2.70) and 15q13.2 (rs143536437, Pmeta = 3.2 × 10(-7), OR[C] = 1.92). Genes of biological interest at these loci include PTPRD and ARHGAP11B (encoding functions implicated in neuronal development) and GSTA4 (a phase II biotransformation enzyme). Pathway analysis using two independent methods implicated a number of pathways in the prognosis of epilepsy, including KEGG categories 'calcium signaling pathway' and 'phosphatidylinositol signaling pathway'. Through a series of power curves, we conclude that it is unlikely any single common variant explains >4.4% of the variation in the outcome of newly treated epilepsy. PMID:23962720

  17. Psychological and biological responses to race-based social stress as pathways to disparities in educational outcomes.

    PubMed

    Levy, Dorainne J; Heissel, Jennifer A; Richeson, Jennifer A; Adam, Emma K

    2016-09-01

    We present the race-based disparities in stress and sleep in context model (RDSSC), which argues that racial/ethnic disparities in educational achievement and attainment are partially explained by the effects of race-based stressors, such as stereotype threat and perceived discrimination, on psychological and biological responses to stress, which, in turn, impact cognitive functioning and academic performance. Whereas the roles of psychological coping responses, such as devaluation and disidentification, have been theorized in previous work, the present model integrates the roles of biological stress responses, such as changes in stress hormones and sleep hours and quality, to this rich literature. We situate our model of the impact of race-based stress in the broader contexts of other stressors [e.g., stressors associated with socioeconomic status (SES)], developmental histories of stress, and individual and group differences in access to resources, opportunity and employment structures. Considering both psychological and biological responses to race-based stressors, in social contexts, will yield a more comprehensive understanding of the emergence of academic disparities between Whites and racial/ethnic minorities. (PsycINFO Database Record PMID:27571526

  18. Resistance exercise biology: manipulation of resistance exercise programme variables determines the responses of cellular and molecular signalling pathways.

    PubMed

    Spiering, Barry A; Kraemer, William J; Anderson, Jeffrey M; Armstrong, Lawrence E; Nindl, Bradley C; Volek, Jeff S; Maresh, Carl M

    2008-01-01

    Recent advances in molecular biology have elucidated some of the mechanisms that regulate skeletal muscle growth. Logically, muscle physiologists have applied these innovations to the study of resistance exercise (RE), as RE represents the most potent natural stimulus for growth in adult skeletal muscle. However, as this molecular-based line of research progresses to investigations in humans, scientists must appreciate the fundamental principles of RE to effectively design such experiments. Therefore, we present herein an updated paradigm of RE biology that integrates fundamental RE principles with the current knowledge of muscle cellular and molecular signalling. RE invokes a sequential cascade consisting of: (i) muscle activation; (ii) signalling events arising from mechanical deformation of muscle fibres, hormones, and immune/inflammatory responses; (iii) protein synthesis due to increased transcription and translation; and (iv) muscle fibre hypertrophy. In this paradigm, RE is considered an 'upstream' signal that determines specific downstream events. Therefore, manipulation of the acute RE programme variables (i.e. exercise choice, load, volume, rest period lengths, and exercise order) alters the unique 'fingerprint' of the RE stimulus and subsequently modifies the downstream cellular and molecular responses. PMID:18557656

  19. Large-scale association analyses identify new loci influencing glycemic traits and provide insight into the underlying biological pathways.

    PubMed

    Scott, Robert A; Lagou, Vasiliki; Welch, Ryan P; Wheeler, Eleanor; Montasser, May E; Luan, Jian'an; Mägi, Reedik; Strawbridge, Rona J; Rehnberg, Emil; Gustafsson, Stefan; Kanoni, Stavroula; Rasmussen-Torvik, Laura J; Yengo, Loïc; Lecoeur, Cecile; Shungin, Dmitry; Sanna, Serena; Sidore, Carlo; Johnson, Paul C D; Jukema, J Wouter; Johnson, Toby; Mahajan, Anubha; Verweij, Niek; Thorleifsson, Gudmar; Hottenga, Jouke-Jan; Shah, Sonia; Smith, Albert V; Sennblad, Bengt; Gieger, Christian; Salo, Perttu; Perola, Markus; Timpson, Nicholas J; Evans, David M; Pourcain, Beate St; Wu, Ying; Andrews, Jeanette S; Hui, Jennie; Bielak, Lawrence F; Zhao, Wei; Horikoshi, Momoko; Navarro, Pau; Isaacs, Aaron; O'Connell, Jeffrey R; Stirrups, Kathleen; Vitart, Veronique; Hayward, Caroline; Esko, Tõnu; Mihailov, Evelin; Fraser, Ross M; Fall, Tove; Voight, Benjamin F; Raychaudhuri, Soumya; Chen, Han; Lindgren, Cecilia M; Morris, Andrew P; Rayner, Nigel W; Robertson, Neil; Rybin, Denis; Liu, Ching-Ti; Beckmann, Jacques S; Willems, Sara M; Chines, Peter S; Jackson, Anne U; Kang, Hyun Min; Stringham, Heather M; Song, Kijoung; Tanaka, Toshiko; Peden, John F; Goel, Anuj; Hicks, Andrew A; An, Ping; Müller-Nurasyid, Martina; Franco-Cereceda, Anders; Folkersen, Lasse; Marullo, Letizia; Jansen, Hanneke; Oldehinkel, Albertine J; Bruinenberg, Marcel; Pankow, James S; North, Kari E; Forouhi, Nita G; Loos, Ruth J F; Edkins, Sarah; Varga, Tibor V; Hallmans, Göran; Oksa, Heikki; Antonella, Mulas; Nagaraja, Ramaiah; Trompet, Stella; Ford, Ian; Bakker, Stephan J L; Kong, Augustine; Kumari, Meena; Gigante, Bruna; Herder, Christian; Munroe, Patricia B; Caulfield, Mark; Antti, Jula; Mangino, Massimo; Small, Kerrin; Miljkovic, Iva; Liu, Yongmei; Atalay, Mustafa; Kiess, Wieland; James, Alan L; Rivadeneira, Fernando; Uitterlinden, Andre G; Palmer, Colin N A; Doney, Alex S F; Willemsen, Gonneke; Smit, Johannes H; Campbell, Susan; Polasek, Ozren; Bonnycastle, Lori L; Hercberg, Serge; Dimitriou, Maria; Bolton, Jennifer L; Fowkes, Gerard R; Kovacs, Peter; Lindström, Jaana; Zemunik, Tatijana; Bandinelli, Stefania; Wild, Sarah H; Basart, Hanneke V; Rathmann, Wolfgang; Grallert, Harald; Maerz, Winfried; Kleber, Marcus E; Boehm, Bernhard O; Peters, Annette; Pramstaller, Peter P; Province, Michael A; Borecki, Ingrid B; Hastie, Nicholas D; Rudan, Igor; Campbell, Harry; Watkins, Hugh; Farrall, Martin; Stumvoll, Michael; Ferrucci, Luigi; Waterworth, Dawn M; Bergman, Richard N; Collins, Francis S; Tuomilehto, Jaakko; Watanabe, Richard M; de Geus, Eco J C; Penninx, Brenda W; Hofman, Albert; Oostra, Ben A; Psaty, Bruce M; Vollenweider, Peter; Wilson, James F; Wright, Alan F; Hovingh, G Kees; Metspalu, Andres; Uusitupa, Matti; Magnusson, Patrik K E; Kyvik, Kirsten O; Kaprio, Jaakko; Price, Jackie F; Dedoussis, George V; Deloukas, Panos; Meneton, Pierre; Lind, Lars; Boehnke, Michael; Shuldiner, Alan R; van Duijn, Cornelia M; Morris, Andrew D; Toenjes, Anke; Peyser, Patricia A; Beilby, John P; Körner, Antje; Kuusisto, Johanna; Laakso, Markku; Bornstein, Stefan R; Schwarz, Peter E H; Lakka, Timo A; Rauramaa, Rainer; Adair, Linda S; Smith, George Davey; Spector, Tim D; Illig, Thomas; de Faire, Ulf; Hamsten, Anders; Gudnason, Vilmundur; Kivimaki, Mika; Hingorani, Aroon; Keinanen-Kiukaanniemi, Sirkka M; Saaristo, Timo E; Boomsma, Dorret I; Stefansson, Kari; van der Harst, Pim; Dupuis, Josée; Pedersen, Nancy L; Sattar, Naveed; Harris, Tamara B; Cucca, Francesco; Ripatti, Samuli; Salomaa, Veikko; Mohlke, Karen L; Balkau, Beverley; Froguel, Philippe; Pouta, Anneli; Jarvelin, Marjo-Riitta; Wareham, Nicholas J; Bouatia-Naji, Nabila; McCarthy, Mark I; Franks, Paul W; Meigs, James B; Teslovich, Tanya M; Florez, Jose C; Langenberg, Claudia; Ingelsson, Erik; Prokopenko, Inga; Barroso, Inês

    2012-09-01

    Through genome-wide association meta-analyses of up to 133,010 individuals of European ancestry without diabetes, including individuals newly genotyped using the Metabochip, we have increased the number of confirmed loci influencing glycemic traits to 53, of which 33 also increase type 2 diabetes risk (q < 0.05). Loci influencing fasting insulin concentration showed association with lipid levels and fat distribution, suggesting impact on insulin resistance. Gene-based analyses identified further biologically plausible loci, suggesting that additional loci beyond those reaching genome-wide significance are likely to represent real associations. This conclusion is supported by an excess of directionally consistent and nominally significant signals between discovery and follow-up studies. Functional analysis of these newly discovered loci will further improve our understanding of glycemic control. PMID:22885924

  20. The perlecan heparan sulfate proteoglycan mediates cellular uptake of HIV-1 Tat through a pathway responsible for biological activity

    SciTech Connect

    Argyris, Elias G.; Kulkosky, Joseph; Meyer, Marie E.; Xu Yan; Mukhtar, Muhammad; Pomerantz, Roger J. . E-mail: roger.j.pomerantz@jefferson.edu; Williams, Kevin Jon . E-mail: K_Williams@mail.jci.tju.edu

    2004-12-20

    Cell surface heparan sulfate proteoglycans (HSPGs) mediate internalization of HIV-1 Tat. Herein, we report that human WiDr cells, which express perlecan but no other HSPGs, can internalize {sup 125}I-labeled Tat with minimal lysosomal degradation. Pre-treatment of cells with heparitinase almost completely abolished {sup 125}I-Tat surface binding, while the use of an HIV-1 long terminal repeat (LTR) promoter-reporter construct demonstrated that transactivation was potently blocked by pretreatment of cells with heparitinase, indicating an essential role for perlecan in the biologic effects of Tat. We conclude that the perlecan mediates Tat uptake and is required for HIV-1 LTR-directed transactivation in this human cell type.

  1. Large-scale association analyses identify new loci influencing glycemic traits and provide insight into the underlying biological pathways

    PubMed Central

    Scott, Robert A; Lagou, Vasiliki; Welch, Ryan P; Wheeler, Eleanor; Montasser, May E; Luan, Jian’an; Mägi, Reedik; Strawbridge, Rona J; Rehnberg, Emil; Gustafsson, Stefan; Kanoni, Stavroula; Rasmussen-Torvik, Laura J; Yengo, Loïc; Lecoeur, Cecile; Shungin, Dmitry; Sanna, Serena; Sidore, Carlo; Johnson, Paul C D; Jukema, J Wouter; Johnson, Toby; Mahajan, Anubha; Verweij, Niek; Thorleifsson, Gudmar; Hottenga, Jouke-Jan; Shah, Sonia; Smith, Albert V; Sennblad, Bengt; Gieger, Christian; Salo, Perttu; Perola, Markus; Timpson, Nicholas J; Evans, David M; Pourcain, Beate St; Wu, Ying; Andrews, Jeanette S; Hui, Jennie; Bielak, Lawrence F; Zhao, Wei; Horikoshi, Momoko; Navarro, Pau; Isaacs, Aaron; O’Connell, Jeffrey R; Stirrups, Kathleen; Vitart, Veronique; Hayward, Caroline; Esko, Tönu; Mihailov, Evelin; Fraser, Ross M; Fall, Tove; Voight, Benjamin F; Raychaudhuri, Soumya; Chen, Han; Lindgren, Cecilia M; Morris, Andrew P; Rayner, Nigel W; Robertson, Neil; Rybin, Denis; Liu, Ching-Ti; Beckmann, Jacques S; Willems, Sara M; Chines, Peter S; Jackson, Anne U; Kang, Hyun Min; Stringham, Heather M; Song, Kijoung; Tanaka, Toshiko; Peden, John F; Goel, Anuj; Hicks, Andrew A; An, Ping; Müller-Nurasyid, Martina; Franco-Cereceda, Anders; Folkersen, Lasse; Marullo, Letizia; Jansen, Hanneke; Oldehinkel, Albertine J; Bruinenberg, Marcel; Pankow, James S; North, Kari E; Forouhi, Nita G; Loos, Ruth J F; Edkins, Sarah; Varga, Tibor V; Hallmans, Göran; Oksa, Heikki; Antonella, Mulas; Nagaraja, Ramaiah; Trompet, Stella; Ford, Ian; Bakker, Stephan J L; Kong, Augustine; Kumari, Meena; Gigante, Bruna; Herder, Christian; Munroe, Patricia B; Caulfield, Mark; Antti, Jula; Mangino, Massimo; Small, Kerrin; Miljkovic, Iva; Liu, Yongmei; Atalay, Mustafa; Kiess, Wieland; James, Alan L; Rivadeneira, Fernando; Uitterlinden, Andre G; Palmer, Colin N A; Doney, Alex S F; Willemsen, Gonneke; Smit, Johannes H; Campbell, Susan; Polasek, Ozren; Bonnycastle, Lori L; Hercberg, Serge; Dimitriou, Maria; Bolton, Jennifer L; Fowkes, Gerard R; Kovacs, Peter; Lindström, Jaana; Zemunik, Tatijana; Bandinelli, Stefania; Wild, Sarah H; Basart, Hanneke V; Rathmann, Wolfgang; Grallert, Harald; Maerz, Winfried; Kleber, Marcus E; Boehm, Bernhard O; Peters, Annette; Pramstaller, Peter P; Province, Michael A; Borecki, Ingrid B; Hastie, Nicholas D; Rudan, Igor; Campbell, Harry; Watkins, Hugh; Farrall, Martin; Stumvoll, Michael; Ferrucci, Luigi; Waterworth, Dawn M; Bergman, Richard N; Collins, Francis S; Tuomilehto, Jaakko; Watanabe, Richard M; de Geus, Eco J C; Penninx, Brenda W; Hofman, Albert; Oostra, Ben A; Psaty, Bruce M; Vollenweider, Peter; Wilson, James F; Wright, Alan F; Hovingh, G Kees; Metspalu, Andres; Uusitupa, Matti; Magnusson, Patrik K E; Kyvik, Kirsten O; Kaprio, Jaakko; Price, Jackie F; Dedoussis, George V; Deloukas, Panos; Meneton, Pierre; Lind, Lars; Boehnke, Michael; Shuldiner, Alan R; van Duijn, Cornelia M; Morris, Andrew D; Toenjes, Anke; Peyser, Patricia A; Beilby, John P; Körner, Antje; Kuusisto, Johanna; Laakso, Markku; Bornstein, Stefan R; Schwarz, Peter E H; Lakka, Timo A; Rauramaa, Rainer; Adair, Linda S; Smith, George Davey; Spector, Tim D; Illig, Thomas; de Faire, Ulf; Hamsten, Anders; Gudnason, Vilmundur; Kivimaki, Mika; Hingorani, Aroon; Keinanen-Kiukaanniemi, Sirkka M; Saaristo, Timo E; Boomsma, Dorret I; Stefansson, Kari; van der Harst, Pim; Dupuis, Josée; Pedersen, Nancy L; Sattar, Naveed; Harris, Tamara B; Cucca, Francesco; Ripatti, Samuli; Salomaa, Veikko; Mohlke, Karen L; Balkau, Beverley; Froguel, Philippe; Pouta, Anneli; Jarvelin, Marjo-Riitta; Wareham, Nicholas J; Bouatia-Naji, Nabila; McCarthy, Mark I; Franks, Paul W; Meigs, James B; Teslovich, Tanya M; Florez, Jose C; Langenberg, Claudia; Ingelsson, Erik; Prokopenko, Inga; Barroso, Inês

    2012-01-01

    Through genome-wide association meta-analyses of up to 133,010 individuals of European ancestry without diabetes, including individuals newly genotyped using the Metabochip, we have raised the number of confirmed loci influencing glycemic traits to 53, of which 33 also increase type 2 diabetes risk (q < 0.05). Loci influencing fasting insulin showed association with lipid levels and fat distribution, suggesting impact on insulin resistance. Gene-based analyses identified further biologically plausible loci, suggesting that additional loci beyond those reaching genome-wide significance are likely to represent real associations. This conclusion is supported by an excess of directionally consistent and nominally significant signals between discovery and follow-up studies. Functional follow-up of these newly discovered loci will further improve our understanding of glycemic control. PMID:22885924

  2. Biological effects of novel “combi-targeting” molecule and its effect on DNA repair pathway in hormone-refractory prostate cancer

    PubMed Central

    Fang, Youqiang; Wu, Jieying; Li, Tengcheng; Luo, Yun; Qiu, Qiyu; Quan, Xinxin; Gao, Li; Liu, Wei

    2015-01-01

    Objective: This study aimed to investigate the biological effects of “combi-targeting” JDF12 and its effect on the DNA repair pathway in hormone-refractory prostate cancer (HRPC). Methods: HRPC cell lines (PC3 cells and VCap cells) were treated with JDF12 at different concentrations, and SRB method was employed to detect the proliferation of HRPC cells; Annexin V-FITC kit was used to detect the apoptosis of PC3 cells; Alkaline comet assay was performed to detect DNA damage; Western blot assay was done to detect the expressions of autophosphorylated EGFR, XRCC1 and ERCC1 (later two are proteins in DNA repair pathway); the anti-tumor effect was evaluated in nude mice inoculated with PC3 cells. Results: JDF12 could inhibit the proliferation of PC3 cells and VCap cells in a concentration dependent manner (IC50: 14.04 ± 1.22 for PC3 and 15.57 ± 1.13 for VCap) and significantly increase the apoptotic cells as compared to those treated with mitozolomide or iressa alone. In PC3 cells, JDF12 induced DNA damage and also inhibited the expressions of phosphorylated EGFR, XRCC1 and ERCC1 in a concentration dependent manner. Moreover, JDF12 markedly inhibited tumor growth in nude mice. Conclusion: The novel “combi-targeting” JDF12 may exert more potent anti-proliferative effect as compared to mitozolomide or iressa alone, and the inhibitory effect on the EGFR signaling pathway and down-regulated XRCC1 and ERCC1 expressions may be ascribed to the JDF12 induced DNA damage. PMID:26396914

  3. Metabolic Reconstruction of Setaria italica: A Systems Biology Approach for Integrating Tissue-Specific Omics and Pathway Analysis of Bioenergy Grasses

    PubMed Central

    de Oliveira Dal'Molin, Cristiana G.; Orellana, Camila; Gebbie, Leigh; Steen, Jennifer; Hodson, Mark P.; Chrysanthopoulos, Panagiotis; Plan, Manuel R.; McQualter, Richard; Palfreyman, Robin W.; Nielsen, Lars K.

    2016-01-01

    The urgent need for major gains in industrial crops productivity and in biofuel production from bioenergy grasses have reinforced attention on understanding C4 photosynthesis. Systems biology studies of C4 model plants may reveal important features of C4 metabolism. Here we chose foxtail millet (Setaria italica), as a C4 model plant and developed protocols to perform systems biology studies. As part of the systems approach, we have developed and used a genome-scale metabolic reconstruction in combination with the use of multi-omics technologies to gain more insights into the metabolism of S. italica. mRNA, protein, and metabolite abundances, were measured in mature and immature stem/leaf phytomers, and the multi-omics data were integrated into the metabolic reconstruction framework to capture key metabolic features in different developmental stages of the plant. RNA-Seq reads were mapped to the S. italica resulting for 83% coverage of the protein coding genes of S. italica. Besides revealing similarities and differences in central metabolism of mature and immature tissues, transcriptome analysis indicates significant gene expression of two malic enzyme isoforms (NADP- ME and NAD-ME). Although much greater expression levels of NADP-ME genes are observed and confirmed by the correspondent protein abundances in the samples, the expression of multiple genes combined to the significant abundance of metabolites that participates in C4 metabolism of NAD-ME and NADP-ME subtypes suggest that S. italica may use mixed decarboxylation modes of C4 photosynthetic pathways under different plant developmental stages. The overall analysis also indicates different levels of regulation in mature and immature tissues in carbon fixation, glycolysis, TCA cycle, amino acids, fatty acids, lignin, and cellulose syntheses. Altogether, the multi-omics analysis reveals different biological entities and their interrelation and regulation over plant development. With this study, we demonstrated

  4. Metabolic Reconstruction of Setaria italica: A Systems Biology Approach for Integrating Tissue-Specific Omics and Pathway Analysis of Bioenergy Grasses.

    PubMed

    de Oliveira Dal'Molin, Cristiana G; Orellana, Camila; Gebbie, Leigh; Steen, Jennifer; Hodson, Mark P; Chrysanthopoulos, Panagiotis; Plan, Manuel R; McQualter, Richard; Palfreyman, Robin W; Nielsen, Lars K

    2016-01-01

    The urgent need for major gains in industrial crops productivity and in biofuel production from bioenergy grasses have reinforced attention on understanding C4 photosynthesis. Systems biology studies of C4 model plants may reveal important features of C4 metabolism. Here we chose foxtail millet (Setaria italica), as a C4 model plant and developed protocols to perform systems biology studies. As part of the systems approach, we have developed and used a genome-scale metabolic reconstruction in combination with the use of multi-omics technologies to gain more insights into the metabolism of S. italica. mRNA, protein, and metabolite abundances, were measured in mature and immature stem/leaf phytomers, and the multi-omics data were integrated into the metabolic reconstruction framework to capture key metabolic features in different developmental stages of the plant. RNA-Seq reads were mapped to the S. italica resulting for 83% coverage of the protein coding genes of S. italica. Besides revealing similarities and differences in central metabolism of mature and immature tissues, transcriptome analysis indicates significant gene expression of two malic enzyme isoforms (NADP- ME and NAD-ME). Although much greater expression levels of NADP-ME genes are observed and confirmed by the correspondent protein abundances in the samples, the expression of multiple genes combined to the significant abundance of metabolites that participates in C4 metabolism of NAD-ME and NADP-ME subtypes suggest that S. italica may use mixed decarboxylation modes of C4 photosynthetic pathways under different plant developmental stages. The overall analysis also indicates different levels of regulation in mature and immature tissues in carbon fixation, glycolysis, TCA cycle, amino acids, fatty acids, lignin, and cellulose syntheses. Altogether, the multi-omics analysis reveals different biological entities and their interrelation and regulation over plant development. With this study, we demonstrated

  5. A genome-wide association study and biological pathway analysis of epilepsy prognosis in a prospective cohort of newly treated epilepsy

    PubMed Central

    Speed, Doug; Hoggart, Clive; Petrovski, Slave; Tachmazidou, Ioanna; Coffey, Alison; Jorgensen, Andrea; Eleftherohorinou, Hariklia; De Iorio, Maria; Todaro, Marian; De, Tisham; Smith, David; Smith, Philip E.; Jackson, Margaret; Cooper, Paul; Kellett, Mark; Howell, Stephen; Newton, Mark; Yerra, Raju; Tan, Meng; French, Chris; Reuber, Markus; Sills, Graeme E.; Chadwick, David; Pirmohamed, Munir; Bentley, David; Scheffer, Ingrid; Berkovic, Samuel; Balding, David; Palotie, Aarno; Marson, Anthony; O'Brien, Terence J.; Johnson, Michael R.

    2014-01-01

    We present the analysis of a prospective multicentre study to investigate genetic effects on the prognosis of newly treated epilepsy. Patients with a new clinical diagnosis of epilepsy requiring medication were recruited and followed up prospectively. The clinical outcome was defined as freedom from seizures for a minimum of 12 months in accordance with the consensus statement from the International League Against Epilepsy (ILAE). Genetic effects on remission of seizures after starting treatment were analysed with and without adjustment for significant clinical prognostic factors, and the results from each cohort were combined using a fixed-effects meta-analysis. After quality control (QC), we analysed 889 newly treated epilepsy patients using 472 450 genotyped and 6.9 × 106 imputed single-nucleotide polymorphisms. Suggestive evidence for association (defined as Pmeta < 5.0 × 10−7) with remission of seizures after starting treatment was observed at three loci: 6p12.2 (rs492146, Pmeta = 2.1 × 10−7, OR[G] = 0.57), 9p23 (rs72700966, Pmeta = 3.1 × 10−7, OR[C] = 2.70) and 15q13.2 (rs143536437, Pmeta = 3.2 × 10−7, OR[C] = 1.92). Genes of biological interest at these loci include PTPRD and ARHGAP11B (encoding functions implicated in neuronal development) and GSTA4 (a phase II biotransformation enzyme). Pathway analysis using two independent methods implicated a number of pathways in the prognosis of epilepsy, including KEGG categories ‘calcium signaling pathway’ and ‘phosphatidylinositol signaling pathway’. Through a series of power curves, we conclude that it is unlikely any single common variant explains >4.4% of the variation in the outcome of newly treated epilepsy. PMID:23962720

  6. Transcription Adaptation during In Vitro Adipogenesis and Osteogenesis of Porcine Mesenchymal Stem Cells: Dynamics of Pathways, Biological Processes, Up-Stream Regulators, and Gene Networks

    PubMed Central

    Bionaz, Massimo; Monaco, Elisa; Wheeler, Matthew B.

    2015-01-01

    The importance of mesenchymal stem cells (MSC) for bone regeneration is growing. Among MSC the bone marrow-derived stem cells (BMSC) are considered the gold standard in tissue engineering and regenerative medicine; however, the adipose-derived stem cells (ASC) have very similar properties and some advantages to be considered a good alternative to BMSC. The molecular mechanisms driving adipogenesis are relatively well-known but mechanisms driving osteogenesis are poorly known, particularly in pig. In the present study we have used transcriptome analysis to unravel pathways and biological functions driving in vitro adipogenesis and osteogenesis in BMSC and ASC. The analysis was performed using the novel Dynamic Impact Approach and functional enrichment analysis. In addition, a k-mean cluster analysis in association with enrichment analysis, networks reconstruction, and transcription factors overlapping analysis were performed in order to uncover the coordination of biological functions underlining differentiations. Analysis indicated a larger and more coordinated transcriptomic adaptation during adipogenesis compared to osteogenesis, with a larger induction of metabolism, particularly lipid synthesis (mostly triglycerides), and a larger use of amino acids for synthesis of feed-forward adipogenic compounds, larger cell signaling, lower cell-to-cell interactions, particularly for the cytoskeleton organization and cell junctions, and lower cell proliferation. The coordination of adipogenesis was mostly driven by Peroxisome Proliferator-activated Receptors together with other known adipogenic transcription factors. Only a few pathways and functions were more induced during osteogenesis compared to adipogenesis and some were more inhibited during osteogenesis, such as cholesterol and protein synthesis. Up-stream transcription factor analysis indicated activation of several lipid-related transcription regulators (e.g., PPARs and CEBPα) during adipogenesis but osteogenesis

  7. An Optimization-Based Framework for the Transformation of Incomplete Biological Knowledge into a Probabilistic Structure and Its Application to the Utilization of Gene/Protein Signaling Pathways in Discrete Phenotype Classification.

    PubMed

    Esfahani, Mohammad Shahrokh; Dougherty, Edward R

    2015-01-01

    Phenotype classification via genomic data is hampered by small sample sizes that negatively impact classifier design. Utilization of prior biological knowledge in conjunction with training data can improve both classifier design and error estimation via the construction of the optimal Bayesian classifier. In the genomic setting, gene/protein signaling pathways provide a key source of biological knowledge. Although these pathways are neither complete, nor regulatory, with no timing associated with them, they are capable of constraining the set of possible models representing the underlying interaction between molecules. The aim of this paper is to provide a framework and the mathematical tools to transform signaling pathways to prior probabilities governing uncertainty classes of feature-label distributions used in classifier design. Structural motifs extracted from the signaling pathways are mapped to a set of constraints on a prior probability on a Multinomial distribution. Being the conjugate prior for the Multinomial distribution, we propose optimization paradigms to estimate the parameters of a Dirichlet distribution in the Bayesian setting. The performance of the proposed methods is tested on two widely studied pathways: mammalian cell cycle and a p53 pathway model. PMID:26671803

  8. A Systems Biology Approach to Reveal Putative Host-Derived Biomarkers of Periodontitis by Network Topology Characterization of MMP-REDOX/NO and Apoptosis Integrated Pathways.

    PubMed

    Zeidán-Chuliá, Fares; Gürsoy, Mervi; Neves de Oliveira, Ben-Hur; Özdemir, Vural; Könönen, Eija; Gürsoy, Ulvi K

    2015-01-01

    Periodontitis, a formidable global health burden, is a common chronic disease that destroys tooth-supporting tissues. Biomarkers of the early phase of this progressive disease are of utmost importance for global health. In this context, saliva represents a non-invasive biosample. By using systems biology tools, we aimed to (1) identify an integrated interactome between matrix metalloproteinase (MMP)-REDOX/nitric oxide (NO) and apoptosis upstream pathways of periodontal inflammation, and (2) characterize the attendant topological network properties to uncover putative biomarkers to be tested in saliva from patients with periodontitis. Hence, we first generated a protein-protein network model of interactions ("BIOMARK" interactome) by using the STRING 10 database, a search tool for the retrieval of interacting genes/proteins, with "Experiments" and "Databases" as input options and a confidence score of 0.400. Second, we determined the centrality values (closeness, stress, degree or connectivity, and betweenness) for the "BIOMARK" members by using the Cytoscape software. We found Ubiquitin C (UBC), Jun proto-oncogene (JUN), and matrix metalloproteinase-14 (MMP14) as the most central hub- and non-hub-bottlenecks among the 211 genes/proteins of the whole interactome. We conclude that UBC, JUN, and MMP14 are likely an optimal candidate group of host-derived biomarkers, in combination with oral pathogenic bacteria-derived proteins, for detecting periodontitis at its early phase by using salivary samples from patients. These findings therefore have broader relevance for systems medicine in global health as well. PMID:26793622

  9. Biologically synthesized silver nanoparticles induce neuronal differentiation of SH-SY5Y cells via modulation of reactive oxygen species, phosphatases, and kinase signaling pathways.

    PubMed

    Dayem, Ahmed Abdal; Kim, BongWoo; Gurunathan, Sangiliyandi; Choi, Hye Yeon; Yang, Gwangmo; Saha, Subbroto Kumar; Han, Dawoon; Han, Jihae; Kim, Kyeongseok; Kim, Jin-Hoi; Cho, Ssang-Goo

    2014-07-01

    Nano-scale materials are noted for unique properties, distinct from those of their bulk material equivalents. In this study, we prepared spherical silver nanoparticles (AgNPs) with an average size of about 30 nm and tested their potency to induce neuronal differentiation of SH-SY5Y cells. Human neuroblastoma SH-SY5Y cells are considered an ideal in vitro model for studying neurogenesis, as they can be maintained in an undifferentiated state or be induced to differentiate into neuron-like phenotypes in vitro by several differentiation-inducing agents. Treatment of SH-SY5Y cells by biologically synthesized AgNPs led to cell morphological changes and significant increase in neurite length and enhanced the expression of neuronal differentiation markers such as Map-2, β-tubulin III, synaptophysin, neurogenin-1, Gap-43, and Drd-2. Furthermore, we observed an increase in generation of intracellular reactive oxygen species (ROS), activation of several kinases such as ERK and AKT, and downregulation of expression of dual-specificity phosphatases (DUSPs) in AgNPs-exposed SH-SY5Y cells. Our results suggest that AgNPs modulate the intracellular signaling pathways, leading to neuronal differentiation, and could be applied as promising nanomaterials for stem cell research and therapy. PMID:24827677

  10. Pathway of FeEDTA transformation and its impact on performance of NOx removal in a chemical absorption-biological reduction integrated process

    PubMed Central

    Li, Wei; Zhao, Jingkai; Zhang, Lei; Xia, Yinfeng; Liu, Nan; Li, Sujing; Zhang, Shihan

    2016-01-01

    A novel chemical absorption-biological reduction (CABR) integrated process, employing ferrous ethylenediaminetetraacetate (Fe(II)EDTA) as a solvent, is deemed as a potential option for NOx removal from the flue gas. Previous work showed that the Fe(II)EDTA concentration was critical for the NOx removal in the CABR process. In this work, the pathway of FeEDTA (Fe(III)/Fe(II)-EDTA) transformation was investigated to assess its impact on the NOx removal in a biofilter. Experimental results revealed that the FeEDTA transformation involved iron precipitation and EDTA degradation. X-ray photoelectron spectroscopy analysis confirmed the iron was precipitated in the form of Fe(OH)3. The iron mass balance analysis showed 44.2% of the added iron was precipitated. The EDTA degradation facilitated the iron precipitation. Besides chemical oxidation, EDTA biodegradation occurred in the biofilter. The addition of extra EDTA helped recover the iron from the precipitation. The transformation of FeEDTA did not retard the NO removal. In addition, EDTA rather than the iron concentration determined the NO removal efficiency. PMID:26743930

  11. Distinctive features of the biological catch bond in the jump-ramp force regime predicted by the two-pathway model.

    PubMed

    Pereverzev, Yuriy V; Prezhdo, Oleg V; Thomas, Wendy E; Sokurenko, Evgeni V

    2005-07-01

    The receptor-ligand unbinding in the biological catch bond is analyzed within a simple model that comprises a single bound state and two unbinding pathways. This model is investigated in detail for the jump-ramp force regime, where the pulling force quickly jumps to a finite value and then is ramped linearly with time. Two qualitative criteria are identified that distinguish the catch bond from the slip bond. First, the rupture force probability density of the catch-bond exhibits a maximum-minimum pair, which develops at finite forces. In contrast, the slip bond produces a maximum that first appears at zero force. Second, the catch bond can be identified over a wide range of ramp rates by high rupture probabilities at low forces relative to the probability at the maximum, in contrast to the slip bond, where the probability at the maximum always corresponds to the most likely rupture force. Both distinctive features of the catch bond are masked by large jump forces, indicating that the catch bond is best identified in experiments with moderate loading rates and small jump forces. The catch-bond lifetime in the constant force regime is related to the probability density in the jump-ramp regime, allowing one to determine the bond lifetime for a constant force by measuring the initial probability density in the jump-ramp experiments with different jump forces and a fixed ramp rate. The key analytic results are illustrated with the P -selectin/P-selectin glucoprotein ligand-1 bond. PMID:16089930

  12. A Systems Biology Approach to Reveal Putative Host-Derived Biomarkers of Periodontitis by Network Topology Characterization of MMP-REDOX/NO and Apoptosis Integrated Pathways

    PubMed Central

    Zeidán-Chuliá, Fares; Gürsoy, Mervi; Neves de Oliveira, Ben-Hur; Özdemir, Vural; Könönen, Eija; Gürsoy, Ulvi K.

    2016-01-01

    Periodontitis, a formidable global health burden, is a common chronic disease that destroys tooth-supporting tissues. Biomarkers of the early phase of this progressive disease are of utmost importance for global health. In this context, saliva represents a non-invasive biosample. By using systems biology tools, we aimed to (1) identify an integrated interactome between matrix metalloproteinase (MMP)-REDOX/nitric oxide (NO) and apoptosis upstream pathways of periodontal inflammation, and (2) characterize the attendant topological network properties to uncover putative biomarkers to be tested in saliva from patients with periodontitis. Hence, we first generated a protein-protein network model of interactions (“BIOMARK” interactome) by using the STRING 10 database, a search tool for the retrieval of interacting genes/proteins, with “Experiments” and “Databases” as input options and a confidence score of 0.400. Second, we determined the centrality values (closeness, stress, degree or connectivity, and betweenness) for the “BIOMARK” members by using the Cytoscape software. We found Ubiquitin C (UBC), Jun proto-oncogene (JUN), and matrix metalloproteinase-14 (MMP14) as the most central hub- and non-hub-bottlenecks among the 211 genes/proteins of the whole interactome. We conclude that UBC, JUN, and MMP14 are likely an optimal candidate group of host-derived biomarkers, in combination with oral pathogenic bacteria-derived proteins, for detecting periodontitis at its early phase by using salivary samples from patients. These findings therefore have broader relevance for systems medicine in global health as well. PMID:26793622

  13. Comparison and contrast of genes and biological pathways responding to Marek’s disease virus infection using allele-specific expression and differential expression in broiler and layer chickens

    PubMed Central

    2013-01-01

    Background Marek’s disease (MD) is a commercially important neoplastic disease of chickens caused by the Marek’s disease virus (MDV), a naturally occurring oncogenic alphaherpesvirus. Enhancing MD genetic resistance is desirable to augment current vaccines and other MD control measures. High throughput sequencing was used to profile splenic transcriptomes from individual F1 progeny infected with MDV at 4 days of age from both outbred broilers (meat-type) and inbred layer (egg-type) chicken lines that differed in MD genetic resistance. The resulting information was used to identify SNPs, genes, and biological pathways exhibiting allele-specific expression (ASE) in response to MDV infection in each type of chicken. In addition, we compared and contrasted the results of pathway analyses (ASE and differential expression (DE)) between chicken types to help inform on the biological response to MDV infection. Results With 7 individuals per line and treatment group providing high power, we identified 6,132 single nucleotide polymorphisms (SNPs) in 4,768 genes and 4,528 SNPs in 3,718 genes in broilers and layers, respectively, that exhibited ASE in response to MDV infection. Furthermore, 548 and 434 genes in broilers and layers, respectively, were found to show DE following MDV infection. Comparing the datasets, only 72 SNPs and 850 genes for ASE and 20 genes for DE were common between the two bird types. Although the chicken types used in this study were genetically different, at the pathway level, both TLR receptor and JAK/STAT signaling pathways were enriched as well as exhibiting a high proportion of ASE genes, especially at the beginning of both above mentioned regulatory pathways. Conclusions RNA sequencing with adequate biological replicates is a powerful approach to identify high confidence SNPs, genes, and pathways that are associated with transcriptional response to MDV infection. In addition, the SNPs exhibiting ASE in response to MDV infection provide a

  14. Identifying Branched Metabolic Pathways by Merging Linear Metabolic Pathways

    NASA Astrophysics Data System (ADS)

    Heath, Allison P.; Bennett, George N.; Kavraki, Lydia E.

    This paper presents a graph-based algorithm for identifying complex metabolic pathways in multi-genome scale metabolic data. These complex pathways are called branched pathways because they can arrive at a target compound through combinations of pathways that split compounds into smaller ones, work in parallel with many compounds, and join compounds into larger ones. While most previous work has focused on identifying linear metabolic pathways, branched metabolic pathways predominate in metabolic networks. Automatic identification of branched pathways has a number of important applications in areas that require deeper understanding of metabolism, such as metabolic engineering and drug target identification. Our algorithm utilizes explicit atom tracking to identify linear metabolic pathways and then merges them together into branched metabolic pathways. We provide results on two well-characterized metabolic pathways that demonstrate that this new merging approach can efficiently find biologically relevant branched metabolic pathways with complex structures.

  15. Redox biology in normal cells and cancer: restoring function of the redox/Fyn/c-Cbl pathway in cancer cells offers new approaches to cancer treatment.

    PubMed

    Noble, Mark; Mayer-Pröschel, Margot; Li, Zaibo; Dong, Tiefei; Cui, Wanchang; Pröschel, Christoph; Ambeskovic, Ibro; Dietrich, Joerg; Han, Ruolan; Yang, Yin Miranda; Folts, Christopher; Stripay, Jennifer; Chen, Hsing-Yu; Stevens, Brett M

    2015-02-01

    This review discusses a unique discovery path starting with novel findings on redox regulation of precursor cell and signaling pathway function and identification of a new mechanism by which relatively small changes in redox status can control entire signaling networks that regulate self-renewal, differentiation, and survival. The pathway central to this work, the redox/Fyn/c-Cbl (RFC) pathway, converts small increases in oxidative status to pan-activation of the c-Cbl ubiquitin ligase, which controls multiple receptors and other proteins of central importance in precursor cell and cancer cell function. Integration of work on the RFC pathway with attempts to understand how treatment with systemic chemotherapy causes neurological problems led to the discovery that glioblastomas (GBMs) and basal-like breast cancers (BLBCs) inhibit c-Cbl function through altered utilization of the cytoskeletal regulators Cool-1/βpix and Cdc42, respectively. Inhibition of these proteins to restore normal c-Cbl function suppresses cancer cell division, increases sensitivity to chemotherapy, disrupts tumor-initiating cell (TIC) activity in GBMs and BLBCs, controls multiple critical TIC regulators, and also allows targeting of non-TICs. Moreover, these manipulations do not increase chemosensitivity or suppress division of nontransformed cells. Restoration of normal c-Cbl function also allows more effective harnessing of estrogen receptor-α (ERα)-independent activities of tamoxifen to activate the RFC pathway and target ERα-negative cancer cells. Our work thus provides a discovery strategy that reveals mechanisms and therapeutic targets that cannot be deduced by standard genetics analyses, which fail to reveal the metabolic information, isoform shifts, protein activation, protein complexes, and protein degradation critical to our discoveries. PMID:25481740

  16. Transformation pathways of liposomes.

    PubMed

    Hotani, H

    1984-09-01

    Liposomes undergoing transformation were observed by dark-field light microscopy in order to study the role of lipid in morphogenesis of biological vesicular structures. Liposomes were found to transform sequentially in a well-defined manner through one of several transformation pathways. A circular biconcave form was an initial shape in all the pathways and it transformed into a stable thin flexible filament or small spheres via a variety of regularly shaped vesicles which possessed geometrical symmetry. The transformation was reversible up to a certain point in each pathway. Osmotic pressure was found to be the driving force for the transformations. Biological membrane vesicles such as trypsinized red cell ghosts also transformed by similar pathways. PMID:6548263

  17. Integrative analyses reveal transcriptome-proteome correlation in biological pathways and secondary metabolism clusters in A. flavus in response to temperature

    PubMed Central

    Bai, Youhuang; Wang, Sen; Zhong, Hong; Yang, Qi; Zhang, Feng; Zhuang, Zhenhong; Yuan, Jun; Nie, Xinyi; Wang, Shihua

    2015-01-01

    To investigate the changes in transcript and relative protein levels in response to temperature, complementary transcriptomic and proteomic analyses were used to identify changes in Aspergillus flavus grown at 28 °C and 37 °C. A total of 3,886 proteins were identified, and 2,832 proteins were reliably quantified. A subset of 664 proteins was differentially expressed upon temperature changes and enriched in several Kyoto Encyclopedia of Genes and Genomes pathways: translation-related pathways, metabolic pathways, and biosynthesis of secondary metabolites. The changes in protein profiles showed low congruency with alterations in corresponding transcript levels, indicating that post-transcriptional processes play a critical role in regulating the protein level in A. flavus. The expression pattern of proteins and transcripts related to aflatoxin biosynthesis showed that most genes were up-regulated at both the protein and transcript level at 28 °C. Our data provide comprehensive quantitative proteome data of A. flavus at conducive and nonconducive temperatures. PMID:26416011

  18. Systems Biology Modeling of Five Pathways for Regulation and Potent Inhibition of the Anaphase-Promoting Complex (APC/C): Pivotal Roles for MCC and BubR1

    PubMed Central

    2015-01-01

    Abstract Correct DNA segregation is a fundamental process that ensures the precise and reliable inheritance of genomic information for the propagation of cell life. Eukaryotic cells have evolved a conserved surveillance control mechanism for DNA segregation named the Spindle Assembly Checkpoint (SAC).The SAC ensures that the sister chromatids of the duplicated genome are not separated and distributed to the spindle poles before all chromosomes have been properly linked to the microtubules of the mitotic spindle. Biochemically, the SAC delays cell cycle progression by preventing activation of the anaphase-promoting complex (APC/C) or cyclosome whose activation by Cdc20 is required for sister-chromatid separation; this marks the transition into anaphase. In response to activation of the checkpoint, various species control the activity of both APC/C and Cdc20. However, the underlying regulatory pathways remain largely elusive. In this study, five possible model variants of APC/C regulation were constructed, namely BubR1, Mad2, MCC, MCF2, and an all-pathways model variant. These models were validated with experimental data from the literature. A wide range of parameter values has been tested to find the critical values of the APC/C binding rate. The results show that all variants are able to capture the wild-type behavior of the APC/C. However, only one model variant, which included both MCC as well as BubR1 as potent inhibitors of the APC/C, was able to reproduce both wild-type and mutant type behavior of APC/C regulation. In conclusion, the presented work informs the regulation of fundamental processes such as SAC and APC/C in cell biology and has successfully distinguished between five competing dynamical models using a systems biology approach. The results attest that systems-level approaches are vital for molecular and cell biology. PMID:25871779

  19. An introductory review of parallel independent component analysis (p-ICA) and a guide to applying p-ICA to genetic data and imaging phenotypes to identify disease-associated biological pathways and systems in common complex disorders

    PubMed Central

    Pearlson, Godfrey D.; Liu, Jingyu; Calhoun, Vince D.

    2015-01-01

    Complex inherited phenotypes, including those for many common medical and psychiatric diseases, are most likely underpinned by multiple genes contributing to interlocking molecular biological processes, along with environmental factors (Owen et al., 2010). Despite this, genotyping strategies for complex, inherited, disease-related phenotypes mostly employ univariate analyses, e.g., genome wide association. Such procedures most often identify isolated risk-related SNPs or loci, not the underlying biological pathways necessary to help guide the development of novel treatment approaches. This article focuses on the multivariate analysis strategy of parallel (i.e., simultaneous combination of SNP and neuroimage information) independent component analysis (p-ICA), which typically yields large clusters of functionally related SNPs statistically correlated with phenotype components, whose overall molecular biologic relevance is inferred subsequently using annotation software suites. Because this is a novel approach, whose details are relatively new to the field we summarize its underlying principles and address conceptual questions regarding interpretation of resulting data and provide practical illustrations of the method. PMID:26442095

  20. An introductory review of parallel independent component analysis (p-ICA) and a guide to applying p-ICA to genetic data and imaging phenotypes to identify disease-associated biological pathways and systems in common complex disorders.

    PubMed

    Pearlson, Godfrey D; Liu, Jingyu; Calhoun, Vince D

    2015-01-01

    Complex inherited phenotypes, including those for many common medical and psychiatric diseases, are most likely underpinned by multiple genes contributing to interlocking molecular biological processes, along with environmental factors (Owen et al., 2010). Despite this, genotyping strategies for complex, inherited, disease-related phenotypes mostly employ univariate analyses, e.g., genome wide association. Such procedures most often identify isolated risk-related SNPs or loci, not the underlying biological pathways necessary to help guide the development of novel treatment approaches. This article focuses on the multivariate analysis strategy of parallel (i.e., simultaneous combination of SNP and neuroimage information) independent component analysis (p-ICA), which typically yields large clusters of functionally related SNPs statistically correlated with phenotype components, whose overall molecular biologic relevance is inferred subsequently using annotation software suites. Because this is a novel approach, whose details are relatively new to the field we summarize its underlying principles and address conceptual questions regarding interpretation of resulting data and provide practical illustrations of the method. PMID:26442095

  1. Metabolomic analysis with GC-MS to reveal potential metabolites and biological pathways involved in Pb &Cd stress response of radish roots.

    PubMed

    Wang, Yan; Xu, Liang; Shen, Hong; Wang, Juanjuan; Liu, Wei; Zhu, Xianwen; Wang, Ronghua; Sun, Xiaochuan; Liu, Liwang

    2015-01-01

    The radish (Raphanus sativus L.) is an important root vegetable crop. In this study, the metabolite profiling analysis of radish roots exposed to lead (Pb) and cadmium (Cd) stresses has been performed using gas chromatography-mass spectrometry (GC-MS). The score plots of principal component analysis (PCA) and partial least squares-discriminate analysis (PLS-DA) showed clear discrimination between control and Pb- or Cd-treated samples. The metabolic profiling indicated Pb or Cd stress could cause large metabolite alteration mainly on sugars, amino acids and organic acids. Furthermore, an integrated analysis of the effects of Pb or Cd stress was performed on the levels of metabolites and gene transcripts from our previous transcriptome work in radish roots. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis of integration data demonstrated that exposure of radish to Pb stress resulted in profound biochemical changes including carbohydrate metabolism, energy metabolism and glutathione metabolism, while the treatment of Cd stress caused significant variations in energy production, amino acid metabolism and oxidative phosphorylation-related pathways. These results would facilitate further dissection of the mechanisms of heavy metal (HM) accumulation/tolerance in plants and the effective management of HM contamination in vegetable crops by genetic manipulation. PMID:26673153

  2. Metabolomic analysis with GC-MS to reveal potential metabolites and biological pathways involved in Pb & Cd stress response of radish roots

    PubMed Central

    Wang, Yan; Xu, Liang; Shen, Hong; Wang, Juanjuan; Liu, Wei; Zhu, Xianwen; Wang, Ronghua; Sun, Xiaochuan; Liu, Liwang

    2015-01-01

    The radish (Raphanus sativus L.) is an important root vegetable crop. In this study, the metabolite profiling analysis of radish roots exposed to lead (Pb) and cadmium (Cd) stresses has been performed using gas chromatography-mass spectrometry (GC-MS). The score plots of principal component analysis (PCA) and partial least squares-discriminate analysis (PLS-DA) showed clear discrimination between control and Pb- or Cd-treated samples. The metabolic profiling indicated Pb or Cd stress could cause large metabolite alteration mainly on sugars, amino acids and organic acids. Furthermore, an integrated analysis of the effects of Pb or Cd stress was performed on the levels of metabolites and gene transcripts from our previous transcriptome work in radish roots. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis of integration data demonstrated that exposure of radish to Pb stress resulted in profound biochemical changes including carbohydrate metabolism, energy metabolism and glutathione metabolism, while the treatment of Cd stress caused significant variations in energy production, amino acid metabolism and oxidative phosphorylation-related pathways. These results would facilitate further dissection of the mechanisms of heavy metal (HM) accumulation/tolerance in plants and the effective management of HM contamination in vegetable crops by genetic manipulation. PMID:26673153

  3. Pathways with PathWhiz.

    PubMed

    Pon, Allison; Jewison, Timothy; Su, Yilu; Liang, Yongjie; Knox, Craig; Maciejewski, Adam; Wilson, Michael; Wishart, David S

    2015-07-01

    PathWhiz (http://smpdb.ca/pathwhiz) is a web server designed to create colourful, visually pleasing and biologically accurate pathway diagrams that are both machine-readable and interactive. As a web server, PathWhiz is accessible from almost any place and compatible with essentially any operating system. It also houses a public library of pathways and pathway components that can be easily viewed and expanded upon by its users. PathWhiz allows users to readily generate biologically complex pathways by using a specially designed drawing palette to quickly render metabolites (including automated structure generation), proteins (including quaternary structures, covalent modifications and cofactors), nucleic acids, membranes, subcellular structures, cells, tissues and organs. Both small-molecule and protein/gene pathways can be constructed by combining multiple pathway processes such as reactions, interactions, binding events and transport activities. PathWhiz's pathway replication and propagation functions allow for existing pathways to be used to create new pathways or for existing pathways to be automatically propagated across species. PathWhiz pathways can be saved in BioPAX, SBGN-ML and SBML data exchange formats, as well as PNG, PWML, HTML image map or SVG images that can be viewed offline or explored using PathWhiz's interactive viewer. PathWhiz has been used to generate over 700 pathway diagrams for a number of popular databases including HMDB, DrugBank and SMPDB. PMID:25934797

  4. Pathways with PathWhiz

    PubMed Central

    Pon, Allison; Jewison, Timothy; Su, Yilu; Liang, Yongjie; Knox, Craig; Maciejewski, Adam; Wilson, Michael; Wishart, David S.

    2015-01-01

    PathWhiz (http://smpdb.ca/pathwhiz) is a web server designed to create colourful, visually pleasing and biologically accurate pathway diagrams that are both machine-readable and interactive. As a web server, PathWhiz is accessible from almost any place and compatible with essentially any operating system. It also houses a public library of pathways and pathway components that can be easily viewed and expanded upon by its users. PathWhiz allows users to readily generate biologically complex pathways by using a specially designed drawing palette to quickly render metabolites (including automated structure generation), proteins (including quaternary structures, covalent modifications and cofactors), nucleic acids, membranes, subcellular structures, cells, tissues and organs. Both small-molecule and protein/gene pathways can be constructed by combining multiple pathway processes such as reactions, interactions, binding events and transport activities. PathWhiz's pathway replication and propagation functions allow for existing pathways to be used to create new pathways or for existing pathways to be automatically propagated across species. PathWhiz pathways can be saved in BioPAX, SBGN-ML and SBML data exchange formats, as well as PNG, PWML, HTML image map or SVG images that can be viewed offline or explored using PathWhiz's interactive viewer. PathWhiz has been used to generate over 700 pathway diagrams for a number of popular databases including HMDB, DrugBank and SMPDB. PMID:25934797

  5. Cinnamaldehyde affects the biological behavior of human colorectal cancer cells and induces apoptosis via inhibition of the PI3K/Akt signaling pathway.

    PubMed

    Li, Jiepin; Teng, Yuhao; Liu, Shenlin; Wang, Zifan; Chen, Yan; Zhang, Yingying; Xi, Songyang; Xu, Song; Wang, Ruiping; Zou, Xi

    2016-03-01

    Cinnamaldehyde (CA) is a bioactive compound isolated from the stem bark of Cinnamomum cassia, that has been identified as an antiproliferative substance with pro-apoptotic effects on various cancer cell lines in vitro. In the present study, the effects of CA on human colon cancer cells were investigated at both the molecular and cellular levels. Three types of colorectal cancer cells at various stages of differentiation and invasive ability (SW480, HCT116 and LoVo) were treated with CA at final concentrations of 20, 40 and 80 µg/ml for 24 h. Compared with the control group, the proliferation inhibition rate of the human colorectal cancer cells following treatment with CA increased in a dose- and time-dependent manner. The invasion and adhesion abilities of the cells were significantly inhibited as indicated by Transwell and cell-matrix adhesion assays. Meanwhile, CA also upregulated the expression of E-cadherin and downregulated the expression of matrix metalloproteinase-2 (MMP-2) and MMP-9. CA also elevated the apoptotic rate. The levels of pro-apoptotic genes were upregulated while the levels of apoptosis inhibitory genes were decreased which further confirmed the pro-apoptotic effect of CA. In order to explore the mechanism of CA-induced apoptosis, insulin-like growth factor-1 (IGF-1) and PI3K inhibitor (LY294002) were used to regulate the phosphoinositide 3-kinase (PI3K)/AKT pathway. The transcription activity of PI3K/AKT was markedly inhibited by CA, as well as IGF-1 which functions as an anti-apoptotic factor. In conclusion, CA has the potential to be developed as a new antitumor drug. The mechanisms of action involve the regulation of expression of genes involved in apoptosis, invasion and adhesion via inhibition of the PI3K/Akt signaling pathway. PMID:26677144

  6. Quantitative proteomic analysis of HIV-1 infected CD4+ T cells reveals an early host response in important biological pathways: Protein synthesis, cell proliferation, and T-cell activation

    SciTech Connect

    Navare, Arti T.; Sova, Pavel; Purdy, David E.; Weiss, Jeffrey M.; Wolf-Yadlin, Alejandro; Korth, Marcus J.; Chang, Stewart T.; Proll, Sean C.; Jahan, Tahmina A.; Krasnoselsky, Alexei L.; Palermo, Robert E.; Katze, Michael G.

    2012-07-20

    Human immunodeficiency virus (HIV-1) depends upon host-encoded proteins to facilitate its replication while at the same time inhibiting critical components of innate and/or intrinsic immune response pathways. To characterize the host cell response on protein levels in CD4+ lymphoblastoid SUP-T1 cells after infection with HIV-1 strain LAI, we used mass spectrometry (MS)-based global quantitation with iTRAQ (isobaric tag for relative and absolute quantification). We found 266, 60 and 22 proteins differentially expressed (DE) (P-value{<=}0.05) at 4, 8, and 20 hours post-infection (hpi), respectively, compared to time-matched mock-infected samples. The majority of changes in protein abundance occurred at an early stage of infection well before the de novo production of viral proteins. Functional analyses of these DE proteins showed enrichment in several biological pathways including protein synthesis, cell proliferation, and T-cell activation. Importantly, these early changes before the time of robust viral production have not been described before.

  7. Caffeine affects the biological responses of human hematopoietic cells of myeloid lineage via downregulation of the mTOR pathway and xanthine oxidase activity

    PubMed Central

    Abooali, Maryam; Yasinska, Inna M.; Casely-Hayford, Maxwell A.; Berger, Steffen M.; Fasler-Kan, Elizaveta; Sumbayev, Vadim V.

    2015-01-01

    Correction of human myeloid cell function is crucial for the prevention of inflammatory and allergic reactions as well as leukaemia progression. Caffeine, a naturally occurring food component, is known to display anti-inflammatory effects which have previously been ascribed largely to its inhibitory actions on phosphodiesterase. However, more recent studies suggest an additional role in affecting the activity of the mammalian target of rapamycin (mTOR), a master regulator of myeloid cell translational pathways, although detailed molecular events underlying its mode of action have not been elucidated. Here, we report the cellular uptake of caffeine, without metabolisation, by healthy and malignant hematopoietic myeloid cells including monocytes, basophils and primary acute myeloid leukaemia mononuclear blasts. Unmodified caffeine downregulated mTOR signalling, which affected glycolysis and the release of pro-inflammatory/pro-angiogenic cytokines as well as other inflammatory mediators. In monocytes, the effects of caffeine were potentiated by its ability to inhibit xanthine oxidase, an enzyme which plays a central role in human purine catabolism by generating uric acid. In basophils, caffeine also increased intracellular cyclic adenosine monophosphate (cAMP) levels which further enhanced its inhibitory action on mTOR. These results demonstrate an important mode of pharmacological action of caffeine with potentially wide-ranging therapeutic impact for treating non-infectious disorders of the human immune system, where it could be applied directly to inflammatory cells. PMID:26384306

  8. Caffeine affects the biological responses of human hematopoietic cells of myeloid lineage via downregulation of the mTOR pathway and xanthine oxidase activity.

    PubMed

    Gibbs, Bernhard F; Gonçalves Silva, Isabel; Prokhorov, Alexandr; Abooali, Maryam; Yasinska, Inna M; Casely-Hayford, Maxwell A; Berger, Steffen M; Fasler-Kan, Elizaveta; Sumbayev, Vadim V

    2015-10-01

    Correction of human myeloid cell function is crucial for the prevention of inflammatory and allergic reactions as well as leukaemia progression. Caffeine, a naturally occurring food component, is known to display anti-inflammatory effects which have previously been ascribed largely to its inhibitory actions on phosphodiesterase. However, more recent studies suggest an additional role in affecting the activity of the mammalian target of rapamycin (mTOR), a master regulator of myeloid cell translational pathways, although detailed molecular events underlying its mode of action have not been elucidated. Here, we report the cellular uptake of caffeine, without metabolisation, by healthy and malignant hematopoietic myeloid cells including monocytes, basophils and primary acute myeloid leukaemia mononuclear blasts. Unmodified caffeine downregulated mTOR signalling, which affected glycolysis and the release of pro-inflammatory/pro-angiogenic cytokines as well as other inflammatory mediators. In monocytes, the effects of caffeine were potentiated by its ability to inhibit xanthine oxidase, an enzyme which plays a central role in human purine catabolism by generating uric acid. In basophils, caffeine also increased intracellular cyclic adenosine monophosphate (cAMP) levels which further enhanced its inhibitory action on mTOR. These results demonstrate an important mode of pharmacological action of caffeine with potentially wide-ranging therapeutic impact for treating non-infectious disorders of the human immune system, where it could be applied directly to inflammatory cells. PMID:26384306

  9. Updating the Wnt pathways

    PubMed Central

    Yu, Jia; Virshup, David M.

    2014-01-01

    In the three decades since the discovery of the Wnt1 proto-oncogene in virus-induced mouse mammary tumours, our understanding of the signalling pathways that are regulated by the Wnt proteins has progressively expanded. Wnts are involved in an complex signalling network that governs multiple biological processes and cross-talk with multiple additional signalling cascades, including the Notch, FGF (fibroblast growth factor), SHH (Sonic hedgehog), EGF (epidermal growth factor) and Hippo pathways. The Wnt signalling pathway also illustrates the link between abnormal regulation of the developmental processes and disease manifestation. Here we provide an overview of Wnt-regulated signalling cascades and highlight recent advances. We focus on new findings regarding the dedicated Wnt production and secretion pathway with potential therapeutic targets that might be beneficial for patients with Wnt-related diseases. PMID:25208913

  10. Feedstock Supply System Design and Economics for Conversion of Lignocellulosic Biomass to Hydrocarbon Fuels: Conversion Pathway: Biological Conversion of Sugars to Hydrocarbons The 2017 Design Case

    SciTech Connect

    Kevin Kenney; Kara G. Cafferty; Jacob J. Jacobson; Ian J Bonner; Garold L. Gresham; William A. Smith; David N. Thompson; Vicki S. Thompson; Jaya Shankar Tumuluru; Neal Yancey

    2013-09-01

    The U.S. Department of Energy promotes the production of a range of liquid fuels and fuel blendstocks from lignocellulosic biomass feedstocks by funding fundamental and applied research that advances the state of technology in biomass collection, conversion, and sustainability. As part of its involvement in this program, the Idaho National Laboratory (INL) investigates the feedstock logistics economics and sustainability of these fuels. Between 2000 and 2012, INL conducted a campaign to quantify the economics and sustainability of moving biomass from standing in the field or stand to the throat of the biomass conversion process. The goal of this program was to establish the current costs based on conventional equipment and processes, design improvements to the current system, and to mark annual improvements based on higher efficiencies or better designs. The 2012 programmatic target was to demonstrate a delivered biomass logistics cost of $35/dry ton. This goal was successfully achieved in 2012 by implementing field and process demonstration unit-scale data from harvest, collection, storage, preprocessing, handling, and transportation operations into INL’s biomass logistics model. Looking forward to 2017, the programmatic target is to supply biomass to the conversion facilities at a total cost of $80/dry ton and on specification with in-feed requirements. The goal of the 2017 Design Case is to enable expansion of biofuels production beyond highly productive resource areas by breaking the reliance of cost-competitive biofuel production on a single, abundant, low-cost feedstock. If this goal is not achieved, biofuel plants are destined to be small and/or clustered in select regions of the country that have a lock on low-cost feedstock. To put the 2017 cost target into perspective of past accomplishments of the cellulosic ethanol pathway, the $80 target encompasses total delivered feedstock cost, including both grower payment and logistics costs, while meeting all

  11. Adverse outcome pathway (AOP) development I: Strategies and principles

    EPA Science Inventory

    An adverse outcome pathway (AOP) is a conceptual framework that organizes existing knowledge concerning biologically plausible, and empirically-supported, links between molecular-level perturbation of a biological system and an adverse outcome at a level of biological organizatio...

  12. Nematode endogenous small RNA pathways

    PubMed Central

    Hoogstrate, Suzanne W; Volkers, Rita JM; Sterken, Mark G; Kammenga, Jan E; Snoek, L Basten

    2014-01-01

    The discovery of small RNA silencing pathways has greatly extended our knowledge of gene regulation. Small RNAs have been presumed to play a role in every field of biology because they affect many biological processes via regulation of gene expression and chromatin remodeling. Most well-known examples of affected processes are development, fertility, and maintenance of genome stability. Here we review the role of the three main endogenous small RNA silencing pathways in Caenorhabditis elegans: microRNAs, endogenous small interfering RNAs, and PIWI-interacting RNAs. After providing an entry-level overview on how these pathways function, we discuss research on other nematode species providing insight into the evolution of these small RNA pathways. In understanding the differences between the endogenous small RNA pathways and their evolution, a more comprehensive picture is formed of the functions and effects of small RNAs. PMID:25340013

  13. PATHWAYS - ELECTRON TUNNELING PATHWAYS IN PROTEINS

    NASA Technical Reports Server (NTRS)

    Beratan, D. N.

    1994-01-01

    The key to understanding the mechanisms of many important biological processes such as photosynthesis and respiration is a better understanding of the electron transfer processes which take place between metal atoms (and other groups) fixed within large protein molecules. Research is currently focused on the rate of electron transfer and the factors that influence it, such as protein composition and the distance between metal atoms. Current models explain the swift transfer of electrons over considerable distances by postulating bridge-mediated tunneling, or physical tunneling pathways, made up of interacting bonds in the medium around and between donor and acceptor sites. The program PATHWAYS is designed to predict the route along which electrons travel in the transfer processes. The basic strategy of PATHWAYS is to begin by recording each possible path element on a connectivity list, including in each entry which two atoms are connected and what contribution the connection would make to the overall rate if it were included in a pathway. The list begins with the bonded molecular structure (including the backbone sequence and side chain connectivity), and then adds probable hydrogen bond links and through-space contacts. Once this list is completed, the program runs a tree search from the donor to the acceptor site to find the dominant pathways. The speed and efficiency of the computer search offers an improvement over manual techniques. PATHWAYS is written in FORTRAN 77 for execution on DEC VAX series computers running VMS. The program inputs data from four data sets and one structure file. The software was written to input BIOGRAF (old format) structure files based on x-ray crystal structures and outputs ASCII files listing the best pathways and BIOGRAF vector files containing the paths. Relatively minor changes could be made in the input format statements for compatibility with other graphics software. The executable and source code are included with the

  14. Mechanistic study on the biological effects of silver and gold nanoparticles in Caco-2 cells--induction of the Nrf2/HO-1 pathway by high concentrations of silver nanoparticles.

    PubMed

    Aueviriyavit, Sasitorn; Phummiratch, Duangkamol; Maniratanachote, Rawiwan

    2014-01-01

    The most commonly used metal nanoparticles (NPs) across diverse applications, including in agro-food applications, include silver (AgNPs) and gold (AuNPs). In the present study, we aimed to investigate the biological responses and possible toxicological effects of AgNPs and AuNPs in the Caco-2 cells as an in vitro human GI tract model. Both AgNPs and AuNPs were internalized into the cytoplasm of Caco-2 cells, but not within the nucleus and only exposure to high concentrations of AgNPs, but not AuNPs, caused acute cytotoxicity and depolarization of the mitochondrial membrane potential. In addition, only AgNPs significantly depleted the total intracellular glutathione level, induced the activation of the stress-responsive gene, Nrf2, and dramatically increased the expression of heme oxygenase-1 (HO-1). Furthermore, siRNA silencing of Nrf2 transcripts significantly reduced the AgNP-induced HO-1 mRNA induction, suggesting a key role for Nrf2 in the control of HO-1 expression. Taken together, AgNPs but not AuNPs induced acute cytotoxicity and cellular responses via the oxidative stress-related activation of Nrf2/HO-1 signaling pathway in Caco-2 cells. The expression of HO-1 transcripts may be useful as a sensitive marker for safety evaluation of AgNPs in the GI tract of humans. PMID:24126012

  15. Mechanisms underlying protective effects of trimetazidine on endothelial progenitor cells biological functions against H2O2-induced injury: involvement of antioxidation and Akt/eNOS signaling pathways.

    PubMed

    Wu, Qinqin; Qi, Benling; Liu, Yun; Cheng, Bei; Liu, Lihua; Li, Yuanyuan; Wang, Qian

    2013-05-01

    Trimetazidine (TMZ) is a widely used drug exerting cardioprotective effects against ischemic heart disease through a number of mechanisms in conditions of oxidative stress. However, there are few data regarding the effects of TMZ on endothelial lineage, especially endothelial progenitor cells (EPCs). Thus, we sought to investigate whether TMZ could protect EPCs against oxidative stress injury induced by H2O2 (100 µM) and the preliminary mechanisms involved in vitro. The results showed that pretreatment of EPCs with TMZ (10 µM) protected the proliferation, adhesion, migration, and apoptosis of EPCs against H2O2, accompanied by an increase in superoxide dismutase (SOD) activity, a decrease in malonaldehyde (MDA) content, and increases in eNOS, Akt phosphorylation, and NO production. These TMZ-mediated beneficial effects on EPCs could be attenuated by pre-incubation with the Akt inhibitor triciribine. In conclusion, the present study demonstrates that TMZ ameliorated H2O2-induced impairment of biological functions in EPCs with the involvement of antioxidation and Akt/eNOS signaling pathway. These findings suggest that TMZ mediating preservation of EPCs may contribute to its cardioprotective effects on ischemic heart disease. PMID:23528356

  16. WikiPathways: capturing the full diversity of pathway knowledge.

    PubMed

    Kutmon, Martina; Riutta, Anders; Nunes, Nuno; Hanspers, Kristina; Willighagen, Egon L; Bohler, Anwesha; Mélius, Jonathan; Waagmeester, Andra; Sinha, Sravanthi R; Miller, Ryan; Coort, Susan L; Cirillo, Elisa; Smeets, Bart; Evelo, Chris T; Pico, Alexander R

    2016-01-01

    WikiPathways (http://www.wikipathways.org) is an open, collaborative platform for capturing and disseminating models of biological pathways for data visualization and analysis. Since our last NAR update, 4 years ago, WikiPathways has experienced massive growth in content, which continues to be contributed by hundreds of individuals each year. New aspects of the diversity and depth of the collected pathways are described from the perspective of researchers interested in using pathway information in their studies. We provide updates on extensions and services to support pathway analysis and visualization via popular standalone tools, i.e. PathVisio and Cytoscape, web applications and common programming environments. We introduce the Quick Edit feature for pathway authors and curators, in addition to new means of publishing pathways and maintaining custom pathway collections to serve specific research topics and communities. In addition to the latest milestones in our pathway collection and curation effort, we also highlight the latest means to access the content as publishable figures, as standard data files, and as linked data, including bulk and programmatic access. PMID:26481357

  17. WikiPathways: capturing the full diversity of pathway knowledge

    PubMed Central

    Kutmon, Martina; Riutta, Anders; Nunes, Nuno; Hanspers, Kristina; Willighagen, Egon L.; Bohler, Anwesha; Mélius, Jonathan; Waagmeester, Andra; Sinha, Sravanthi R.; Miller, Ryan; Coort, Susan L.; Cirillo, Elisa; Smeets, Bart; Evelo, Chris T.; Pico, Alexander R.

    2016-01-01

    WikiPathways (http://www.wikipathways.org) is an open, collaborative platform for capturing and disseminating models of biological pathways for data visualization and analysis. Since our last NAR update, 4 years ago, WikiPathways has experienced massive growth in content, which continues to be contributed by hundreds of individuals each year. New aspects of the diversity and depth of the collected pathways are described from the perspective of researchers interested in using pathway information in their studies. We provide updates on extensions and services to support pathway analysis and visualization via popular standalone tools, i.e. PathVisio and Cytoscape, web applications and common programming environments. We introduce the Quick Edit feature for pathway authors and curators, in addition to new means of publishing pathways and maintaining custom pathway collections to serve specific research topics and communities. In addition to the latest milestones in our pathway collection and curation effort, we also highlight the latest means to access the content as publishable figures, as standard data files, and as linked data, including bulk and programmatic access. PMID:26481357

  18. Management intensity alters decomposition via biological pathways

    USGS Publications Warehouse

    Wickings, Kyle; Grandy, A. Stuart; Reed, Sasha; Cleveland, Cory

    2011-01-01

    Current conceptual models predict that changes in plant litter chemistry during decomposition are primarily regulated by both initial litter chemistry and the stage-or extent-of mass loss. Far less is known about how variations in decomposer community structure (e.g., resulting from different ecosystem management types) could influence litter chemistry during decomposition. Given the recent agricultural intensification occurring globally and the importance of litter chemistry in regulating soil organic matter storage, our objectives were to determine the potential effects of agricultural management on plant litter chemistry and decomposition rates, and to investigate possible links between ecosystem management, litter chemistry and decomposition, and decomposer community composition and activity. We measured decomposition rates, changes in litter chemistry, extracellular enzyme activity, microarthropod communities, and bacterial versus fungal relative abundance in replicated conventional-till, no-till, and old field agricultural sites for both corn and grass litter. After one growing season, litter decomposition under conventional-till was 20% greater than in old field communities. However, decomposition rates in no-till were not significantly different from those in old field or conventional-till sites. After decomposition, grass residue in both conventional- and no-till systems was enriched in total polysaccharides relative to initial litter, while grass litter decomposed in old fields was enriched in nitrogen-bearing compounds and lipids. These differences corresponded with differences in decomposer communities, which also exhibited strong responses to both litter and management type. Overall, our results indicate that agricultural intensification can increase litter decomposition rates, alter decomposer communities, and influence litter chemistry in ways that could have important and long-term effects on soil organic matter dynamics. We suggest that future efforts to more accurately predict soil carbon dynamics under different management regimes may need to explicitly consider how changes in litter chemistry during decomposition are influenced by the specific metabolic capabilities of the extant decomposer communities.

  19. Biological Threats

    MedlinePlus

    ... Thunderstorms & Lightning Tornadoes Tsunamis Volcanoes Wildfires Main Content Biological Threats Biological agents are organisms or toxins that ... Centers for Disease Control and Prevention . Before a Biological Threat Unlike an explosion, a biological attack may ...

  20. Reactome from a WikiPathways Perspective.

    PubMed

    Bohler, Anwesha; Wu, Guanming; Kutmon, Martina; Pradhana, Leontius Adhika; Coort, Susan L; Hanspers, Kristina; Haw, Robin; Pico, Alexander R; Evelo, Chris T

    2016-05-01

    Reactome and WikiPathways are two of the most popular freely available databases for biological pathways. Reactome pathways are centrally curated with periodic input from selected domain experts. WikiPathways is a community-based platform where pathways are created and continually curated by any interested party. The nascent collaboration between WikiPathways and Reactome illustrates the mutual benefits of combining these two approaches. We created a format converter that converts Reactome pathways to the GPML format used in WikiPathways. In addition, we developed the ComplexViz plugin for PathVisio which simplifies looking up complex components. The plugin can also score the complexes on a pathway based on a user defined criterion. This score can then be visualized on the complex nodes using the visualization options provided by the plugin. Using the merged collection of curated and converted Reactome pathways, we demonstrate improved pathway coverage of relevant biological processes for the analysis of a previously described polycystic ovary syndrome gene expression dataset. Additionally, this conversion allows researchers to visualize their data on Reactome pathways using PathVisio's advanced data visualization functionalities. WikiPathways benefits from the dedicated focus and attention provided to the content converted from Reactome and the wealth of semantic information about interactions. Reactome in turn benefits from the continuous community curation available on WikiPathways. The research community at large benefits from the availability of a larger set of pathways for analysis in PathVisio and Cytoscape. The pathway statistics results obtained from PathVisio are significantly better when using a larger set of candidate pathways for analysis. The conversion serves as a general model for integration of multiple pathway resources developed using different approaches. PMID:27203685

  1. Reactome from a WikiPathways Perspective

    PubMed Central

    Bohler, Anwesha; Wu, Guanming; Pradhana, Leontius Adhika; Hanspers, Kristina; Haw, Robin; Pico, Alexander R.

    2016-01-01

    Reactome and WikiPathways are two of the most popular freely available databases for biological pathways. Reactome pathways are centrally curated with periodic input from selected domain experts. WikiPathways is a community-based platform where pathways are created and continually curated by any interested party. The nascent collaboration between WikiPathways and Reactome illustrates the mutual benefits of combining these two approaches. We created a format converter that converts Reactome pathways to the GPML format used in WikiPathways. In addition, we developed the ComplexViz plugin for PathVisio which simplifies looking up complex components. The plugin can also score the complexes on a pathway based on a user defined criterion. This score can then be visualized on the complex nodes using the visualization options provided by the plugin. Using the merged collection of curated and converted Reactome pathways, we demonstrate improved pathway coverage of relevant biological processes for the analysis of a previously described polycystic ovary syndrome gene expression dataset. Additionally, this conversion allows researchers to visualize their data on Reactome pathways using PathVisio’s advanced data visualization functionalities. WikiPathways benefits from the dedicated focus and attention provided to the content converted from Reactome and the wealth of semantic information about interactions. Reactome in turn benefits from the continuous community curation available on WikiPathways. The research community at large benefits from the availability of a larger set of pathways for analysis in PathVisio and Cytoscape. The pathway statistics results obtained from PathVisio are significantly better when using a larger set of candidate pathways for analysis. The conversion serves as a general model for integration of multiple pathway resources developed using different approaches. PMID:27203685

  2. SMPDB: The Small Molecule Pathway Database.

    PubMed

    Frolkis, Alex; Knox, Craig; Lim, Emilia; Jewison, Timothy; Law, Vivian; Hau, David D; Liu, Phillip; Gautam, Bijaya; Ly, Son; Guo, An Chi; Xia, Jianguo; Liang, Yongjie; Shrivastava, Savita; Wishart, David S

    2010-01-01

    The Small Molecule Pathway Database (SMPDB) is an interactive, visual database containing more than 350 small-molecule pathways found in humans. More than 2/3 of these pathways (>280) are not found in any other pathway database. SMPDB is designed specifically to support pathway elucidation and pathway discovery in clinical metabolomics, transcriptomics, proteomics and systems biology. SMPDB provides exquisitely detailed, hyperlinked diagrams of human metabolic pathways, metabolic disease pathways, metabolite signaling pathways and drug-action pathways. All SMPDB pathways include information on the relevant organs, organelles, subcellular compartments, protein cofactors, protein locations, metabolite locations, chemical structures and protein quaternary structures. Each small molecule is hyperlinked to detailed descriptions contained in the Human Metabolome Database (HMDB) or DrugBank and each protein or enzyme complex is hyperlinked to UniProt. All SMPDB pathways are accompanied with detailed descriptions, providing an overview of the pathway, condition or processes depicted in each diagram. The database is easily browsed and supports full text searching. Users may query SMPDB with lists of metabolite names, drug names, genes/protein names, SwissProt IDs, GenBank IDs, Affymetrix IDs or Agilent microarray IDs. These queries will produce lists of matching pathways and highlight the matching molecules on each of the pathway diagrams. Gene, metabolite and protein concentration data can also be visualized through SMPDB's mapping interface. All of SMPDB's images, image maps, descriptions and tables are downloadable. SMPDB is available at: http://www.smpdb.ca. PMID:19948758

  3. The BioPAX community standard for pathway

    SciTech Connect

    Syed, Mustafa H

    2010-01-01

    Biological Pathway Exchange (BioPAX) is a standard language to represent biological pathways at the molecular and cellular level and to facilitate the exchange of pathway data. The rapid growth of the volume of pathway data has spurred the development of databases and computational tools to aid interpretation; however, use of these data is hampered by the current fragmentation of pathway information across many databases with incompatible formats. BioPAX, which was created through a community process, solves this problem by making pathway data substantially easier to collect, index, interpret and share. BioPAX can represent metabolic and signaling pathways, molecular and genetic interactions and gene regulation networks. Using BioPAX, millions of interactions, organized into thousands of pathways, from many organisms are available from a growing number of databases. This large amount of pathway data in a computable form will support visualization, analysis and biological discovery.

  4. Improving Carbon Fixation Pathways

    PubMed Central

    Ducat, Daniel C.

    2012-01-01

    A recent resurgence in basic and applied research on photosynthesis has been driven in part by recognition that fulfilling future food and energy requirements will necessitate improvements in crop carbon-fixation efficiencies. Photosynthesis in traditional terrestrial crops is being reexamined in light of molecular strategies employed by photosynthetic microbes to enhance the activity of the Calvin cycle. Synthetic biology is well-situated to provide original approaches for compartmentalizing and enhancing photosynthetic reactions in a species independent manner. Furthermore, the elucidation of alternative carbon-fixation routes distinct from the Calvin cycle raises possibilities that alternative pathways and organisms can be utilized to fix atmospheric carbon dioxide into useful materials. PMID:22647231

  5. Improving carbon fixation pathways

    SciTech Connect

    Ducat, DC; Silver, PA

    2012-08-01

    A recent resurgence in basic and applied research on photosynthesis has been driven in part by recognition that fulfilling future food and energy requirements will necessitate improvements in crop carbon-fixation efficiencies. Photosynthesis in traditional terrestrial crops is being reexamined in light of molecular strategies employed by photosynthetic microbes to enhance the activity of the Calvin cycle. Synthetic biology is well-situated to provide original approaches for compartmentalizing and enhancing photosynthetic reactions in a species independent manner. Furthermore, the elucidation of alternative carbon-fixation routes distinct from the Calvin cycle raises possibilities that novel pathways and organisms can be utilized to fix atmospheric carbon dioxide into useful materials.

  6. Computational representation of biological systems

    SciTech Connect

    Frazier, Zach; McDermott, Jason E.; Guerquin, Michal; Samudrala, Ram

    2009-04-20

    Integration of large and diverse biological data sets is a daunting problem facing systems biology researchers. Exploring the complex issues of data validation, integration, and representation, we present a systematic approach for the management and analysis of large biological data sets based on data warehouses. Our system has been implemented in the Bioverse, a framework combining diverse protein information from a variety of knowledge areas such as molecular interactions, pathway localization, protein structure, and protein function.

  7. Chemical reporters for biological discovery

    PubMed Central

    Grammel, Markus; Hang, Howard C.

    2013-01-01

    Functional tools are needed to understand complex biological systems. Here we review how chemical reporters in conjunction with bioorthogonal labeling methods can be used to image and retrieve nucleic acids, proteins, glycans, lipids and other metabolites in vitro, in cells as well as in whole organisms. By tagging these biomolecules, researchers can now monitor their dynamics in living systems and discover specific substrates of cellular pathways. These advances in chemical biology are thus providing important tools to characterize biological pathways and are poised to facilitate our understanding of human diseases. PMID:23868317

  8. Adverse Outcome Pathway (AOP) Network Development for Fatty Liver

    EPA Science Inventory

    Adverse outcome pathways (AOPs) are descriptive biological sequences that start from a molecular initiating event (MIE) and end with an adverse health outcome. AOPs provide biological context for high throughput chemical testing and further prioritize environmental health risk re...

  9. Synthetic Biology: Putting Synthesis into Biology

    PubMed Central

    Liang, Jing; Luo, Yunzi; Zhao, Huimin

    2010-01-01

    The ability to manipulate living organisms is at the heart of a range of emerging technologies that serve to address important and current problems in environment, energy, and health. However, with all its complexity and interconnectivity, biology has for many years been recalcitrant to engineering manipulations. The recent advances in synthesis, analysis, and modeling methods have finally provided the tools necessary to manipulate living systems in meaningful ways, and have led to the coining of a field named synthetic biology. The scope of synthetic biology is as complicated as life itself – encompassing many branches of science, and across many scales of application. New DNA synthesis and assembly techniques have made routine the customization of very large DNA molecules. This in turn has allowed the incorporation of multiple genes and pathways. By coupling these with techniques that allow for the modeling and design of protein functions, scientists have now gained the tools to create completely novel biological machineries. Even the ultimate biological machinery – a self-replicating organism – is being pursued at this moment. It is the purpose of this review to dissect and organize these various components of synthetic biology into a coherent picture. PMID:21064036

  10. Construction and engineering of large biochemical pathways via DNA assembler

    PubMed Central

    Shao, Zengyi; Zhao, Huimin

    2015-01-01

    Summary DNA assembler enables rapid construction and engineering of biochemical pathways in a one-step fashion by exploitation of the in vivo homologous recombination mechanism in Saccharomyces cerevisiae. It has many applications in pathway engineering, metabolic engineering, combinatorial biology, and synthetic biology. Here we use two examples including the zeaxanthin biosynthetic pathway and the aureothin biosynthetic gene cluster to describe the key steps in the construction of pathways containing multiple genes using the DNA assembler approach. Methods for construct design, pathway assembly, pathway confirmation, and functional analysis are shown. The protocol for fine genetic modifications such as site-directed mutagenesis for engineering the aureothin gene cluster is also illustrated. PMID:23996442

  11. Modeling biochemical pathways in the gene ontology

    PubMed Central

    Hill, David P.; D’Eustachio, Peter; Berardini, Tanya Z.; Mungall, Christopher J.; Renedo, Nikolai; Blake, Judith A.

    2016-01-01

    The concept of a biological pathway, an ordered sequence of molecular transformations, is used to collect and represent molecular knowledge for a broad span of organismal biology. Representations of biomedical pathways typically are rich but idiosyncratic presentations of organized knowledge about individual pathways. Meanwhile, biomedical ontologies and associated annotation files are powerful tools that organize molecular information in a logically rigorous form to support computational analysis. The Gene Ontology (GO), representing Molecular Functions, Biological Processes and Cellular Components, incorporates many aspects of biological pathways within its ontological representations. Here we present a methodology for extending and refining the classes in the GO for more comprehensive, consistent and integrated representation of pathways, leveraging knowledge embedded in current pathway representations such as those in the Reactome Knowledgebase and MetaCyc. With carbohydrate metabolic pathways as a use case, we discuss how our representation supports the integration of variant pathway classes into a unified ontological structure that can be used for data comparison and analysis. PMID:27589964

  12. Modeling biochemical pathways in the gene ontology.

    PubMed

    Hill, David P; D'Eustachio, Peter; Berardini, Tanya Z; Mungall, Christopher J; Renedo, Nikolai; Blake, Judith A

    2016-01-01

    The concept of a biological pathway, an ordered sequence of molecular transformations, is used to collect and represent molecular knowledge for a broad span of organismal biology. Representations of biomedical pathways typically are rich but idiosyncratic presentations of organized knowledge about individual pathways. Meanwhile, biomedical ontologies and associated annotation files are powerful tools that organize molecular information in a logically rigorous form to support computational analysis. The Gene Ontology (GO), representing Molecular Functions, Biological Processes and Cellular Components, incorporates many aspects of biological pathways within its ontological representations. Here we present a methodology for extending and refining the classes in the GO for more comprehensive, consistent and integrated representation of pathways, leveraging knowledge embedded in current pathway representations such as those in the Reactome Knowledgebase and MetaCyc. With carbohydrate metabolic pathways as a use case, we discuss how our representation supports the integration of variant pathway classes into a unified ontological structure that can be used for data comparison and analysis. PMID:27589964

  13. Biological Technicians

    MedlinePlus

    ... Biological technicians typically need a bachelor’s degree in biology or a closely related field. It is important ... Biological technicians typically need a bachelor’s degree in biology or a closely related field. It is important ...

  14. Minimal metabolic pathway structure is consistent with associated biomolecular interactions

    PubMed Central

    Bordbar, Aarash; Nagarajan, Harish; Lewis, Nathan E; Latif, Haythem; Ebrahim, Ali; Federowicz, Stephen; Schellenberger, Jan; Palsson, Bernhard O

    2014-01-01

    Pathways are a universal paradigm for functionally describing cellular processes. Even though advances in high-throughput data generation have transformed biology, the core of our biological understanding, and hence data interpretation, is still predicated on human-defined pathways. Here, we introduce an unbiased, pathway structure for genome-scale metabolic networks defined based on principles of parsimony that do not mimic canonical human-defined textbook pathways. Instead, these minimal pathways better describe multiple independent pathway-associated biomolecular interaction datasets suggesting a functional organization for metabolism based on parsimonious use of cellular components. We use the inherent predictive capability of these pathways to experimentally discover novel transcriptional regulatory interactions in Escherichia coli metabolism for three transcription factors, effectively doubling the known regulatory roles for Nac and MntR. This study suggests an underlying and fundamental principle in the evolutionary selection of pathway structures; namely, that pathways may be minimal, independent, and segregated. PMID:24987116

  15. Minimal metabolic pathway structure is consistent with associated biomolecular interactions.

    PubMed

    Bordbar, Aarash; Nagarajan, Harish; Lewis, Nathan E; Latif, Haythem; Ebrahim, Ali; Federowicz, Stephen; Schellenberger, Jan; Palsson, Bernhard O

    2014-01-01

    Pathways are a universal paradigm for functionally describing cellular processes. Even though advances in high-throughput data generation have transformed biology, the core of our biological understanding, and hence data interpretation, is still predicated on human-defined pathways. Here, we introduce an unbiased, pathway structure for genome-scale metabolic networks defined based on principles of parsimony that do not mimic canonical human-defined textbook pathways. Instead, these minimal pathways better describe multiple independent pathway-associated biomolecular interaction datasets suggesting a functional organization for metabolism based on parsimonious use of cellular components. We use the inherent predictive capability of these pathways to experimentally discover novel transcriptional regulatory interactions in Escherichia coli metabolism for three transcription factors, effectively doubling the known regulatory roles for Nac and MntR. This study suggests an underlying and fundamental principle in the evolutionary selection of pathway structures; namely, that pathways may be minimal, independent, and segregated. PMID:24987116

  16. Biological Filters.

    ERIC Educational Resources Information Center

    Klemetson, S. L.

    1978-01-01

    Presents the 1978 literature review of wastewater treatment. The review is concerned with biological filters, and it covers: (1) trickling filters; (2) rotating biological contractors; and (3) miscellaneous reactors. A list of 14 references is also presented. (HM)

  17. Biological Agents

    MedlinePlus

    ... to Z Index Contact Us FAQs What's New Biological Agents This page requires that javascript be enabled ... and Health Topics A-Z Index What's New Biological agents include bacteria, viruses, fungi, other microorganisms and ...

  18. WholePathwayScope: a comprehensive pathway-based analysis tool for high-throughput data

    PubMed Central

    Yi, Ming; Horton, Jay D; Cohen, Jonathan C; Hobbs, Helen H; Stephens, Robert M

    2006-01-01

    Background Analysis of High Throughput (HTP) Data such as microarray and proteomics data has provided a powerful methodology to study patterns of gene regulation at genome scale. A major unresolved problem in the post-genomic era is to assemble the large amounts of data generated into a meaningful biological context. We have developed a comprehensive software tool, WholePathwayScope (WPS), for deriving biological insights from analysis of HTP data. Result WPS extracts gene lists with shared biological themes through color cue templates. WPS statistically evaluates global functional category enrichment of gene lists and pathway-level pattern enrichment of data. WPS incorporates well-known biological pathways from KEGG (Kyoto Encyclopedia of Genes and Genomes) and Biocarta, GO (Gene Ontology) terms as well as user-defined pathways or relevant gene clusters or groups, and explores gene-term relationships within the derived gene-term association networks (GTANs). WPS simultaneously compares multiple datasets within biological contexts either as pathways or as association networks. WPS also integrates Genetic Association Database and Partial MedGene Database for disease-association information. We have used this program to analyze and compare microarray and proteomics datasets derived from a variety of biological systems. Application examples demonstrated the capacity of WPS to significantly facilitate the analysis of HTP data for integrative discovery. Conclusion This tool represents a pathway-based platform for discovery integration to maximize analysis power. The tool is freely available at . PMID:16423281

  19. Noise in Biology

    PubMed Central

    Tsimring, Lev S.

    2014-01-01

    Noise permeates biology on all levels, from the most basic molecular, sub-cellular processes to the dynamics of tissues, organs, organisms, and populations. The functional roles of noise in biological processes can vary greatly. Along with standard, entropy-increasing effects of producing random mutations, diversifying phenotypes in isogenic populations, limiting information capacity of signaling relays, it occasionally plays more surprising constructive roles by accelerating the pace of evolution, providing selective advantage in dynamic environments, enhancing intracellular transport of biomolecules and increasing information capacity of signaling pathways. This short review covers the recent progress in understanding mechanisms and effects of fluctuations in biological systems of different scales and the basic approaches to their mathematical modeling. PMID:24444693

  20. [Biological weapons].

    PubMed

    Kerwat, K; Becker, S; Wulf, H; Densow, D

    2010-08-01

    Biological weapons are weapons of mass destruction that use pathogens (bacteria, viruses) or the toxins produced by them to target living organisms or to contaminate non-living substances. In the past, biological warfare has been repeatedly used. Anthrax, plague and smallpox are regarded as the most dangerous biological weapons by various institutions. Nowadays it seems quite unlikely that biological warfare will be employed in any military campaigns. However, the possibility remains that biological weapons may be used in acts of bioterrorism. In addition all diseases caused by biological weapons may also occur naturally or as a result of a laboratory accident. Risk assessment with regard to biological danger often proves to be difficult. In this context, an early identification of a potentially dangerous situation through experts is essential to limit the degree of damage. PMID:20717866

  1. The Reactome pathway Knowledgebase.

    PubMed

    Fabregat, Antonio; Sidiropoulos, Konstantinos; Garapati, Phani; Gillespie, Marc; Hausmann, Kerstin; Haw, Robin; Jassal, Bijay; Jupe, Steven; Korninger, Florian; McKay, Sheldon; Matthews, Lisa; May, Bruce; Milacic, Marija; Rothfels, Karen; Shamovsky, Veronica; Webber, Marissa; Weiser, Joel; Williams, Mark; Wu, Guanming; Stein, Lincoln; Hermjakob, Henning; D'Eustachio, Peter

    2016-01-01

    The Reactome Knowledgebase (www.reactome.org) provides molecular details of signal transduction, transport, DNA replication, metabolism and other cellular processes as an ordered network of molecular transformations-an extended version of a classic metabolic map, in a single consistent data model. Reactome functions both as an archive of biological processes and as a tool for discovering unexpected functional relationships in data such as gene expression pattern surveys or somatic mutation catalogues from tumour cells. Over the last two years we redeveloped major components of the Reactome web interface to improve usability, responsiveness and data visualization. A new pathway diagram viewer provides a faster, clearer interface and smooth zooming from the entire reaction network to the details of individual reactions. Tool performance for analysis of user datasets has been substantially improved, now generating detailed results for genome-wide expression datasets within seconds. The analysis module can now be accessed through a RESTFul interface, facilitating its inclusion in third party applications. A new overview module allows the visualization of analysis results on a genome-wide Reactome pathway hierarchy using a single screen page. The search interface now provides auto-completion as well as a faceted search to narrow result lists efficiently. PMID:26656494

  2. Cell and molecular biology of Chlamydomonas

    SciTech Connect

    Not Available

    1988-01-01

    This document contains only the abstracts of 92 presentations on the biology of Chlamydomonas. Topics include gene transformations, gene regulation, biosynthetic pathways, cell surfaces, circadian clocks, and the development and structure of the flagellar apparatus. (TEM)

  3. Systems Biology

    SciTech Connect

    Wiley, H S.

    2006-06-01

    The biology revolution over the last 50 years has been driven by the ascendancy of molecular biology. This was enthusiastically embraced by most biologists because it took us into increasingly familiar territory. It took mysterious processes, such as the replication of genetic material and assigned them parts that could be readily understood by the human mind. When we think of ''molecular machines'' as being the underlying basis of life, we are using a paradigm derived from everyday experience. However, the price that we paid was a relentless drive towards reductionism and the attendant balkanization of biology. Now along comes ''systems biology'' that promises us a solution to the problem of ''knowing more and more about less and less''. Unlike molecular biology, systems biology appears to be taking us into unfamiliar intellectual territory, such as statistics, mathematics and computer modeling. Not surprisingly, systems biology has met with widespread skepticism and resistance. Why do we need systems biology anyway and how does this new area of research promise to change the face of biology in the next couple of decades?

  4. Coherence in electron transfer pathways.

    PubMed

    Skourtis, Spiros S; Beratan, David N; Waldeck, David H

    2011-01-01

    Central to the view of electron-transfer reactions is the idea that nuclear motion generates a transition state geometry at which the electron/hole amplitude propagates coherently from the electron donor to the electron acceptor. In the weakly coupled or nonadiabatic regime, the electron amplitude tunnels through an electronic barrier between the donor and acceptor. The structure of the barrier is determined by the covalent and noncovalent interactions of the bridge. Because the tunneling barrier depends on the nuclear coordinates of the reactants (and on the surrounding medium), the tunneling barrier is highly anisotropic, and it is useful to identify particular routes, or pathways, along which the transmission amplitude propagates. Moreover, when more than one such pathway exists, and the paths give rise to comparable transmission amplitude magnitudes, one may expect to observe quantum interferences among pathways if the propagation remains coherent. Given that the effective tunneling barrier height and width are affected by the nuclear positions, the modulation of the nuclear coordinates will lead to a modulation of the tunneling barrier and hence of the electron flow. For long distance electron transfer in biological and biomimetic systems, nuclear fluctuations, arising from flexible protein moieties and mobile water bridges, can become quite significant. We discuss experimental and theoretical results that explore the quantum interferences among coupling pathways in electron-transfer kinetics; we emphasize recent data and theories associated with the signatures of chirality and inelastic processes, which are manifested in the tunneling pathway coherence (or absence of coherence). PMID:23833692

  5. Is synthetic biology mechanical biology?

    PubMed

    Holm, Sune

    2015-12-01

    A widespread and influential characterization of synthetic biology emphasizes that synthetic biology is the application of engineering principles to living systems. Furthermore, there is a strong tendency to express the engineering approach to organisms in terms of what seems to be an ontological claim: organisms are machines. In the paper I investigate the ontological and heuristic significance of the machine analogy in synthetic biology. I argue that the use of the machine analogy and the aim of producing rationally designed organisms does not necessarily imply a commitment to mechanical biology. The ideal of applying engineering principles to biology is best understood as expressing recognition of the machine-unlikeness of natural organisms and the limits of human cognition. The paper suggests an interpretation of the identification of organisms with machines in synthetic biology according to which it expresses a strategy for representing, understanding, and constructing living systems that are more machine-like than natural organisms. PMID:26205204

  6. Textbook Errors & Misconceptions in Biology: Cell Metabolism.

    ERIC Educational Resources Information Center

    Storey, Richard D.

    1991-01-01

    The idea that errors and misconceptions in biology textbooks are often slow to be discovered and corrected is discussed. Selected errors, misconceptions, and topics of confusion about cell metabolism are described. Fermentation, respiration, Krebs cycle, pentose phosphate pathway, uniformity of catabolism, and metabolic pathways as models are…

  7. Biology Notes.

    ERIC Educational Resources Information Center

    School Science Review, 1982

    1982-01-01

    Presents procedures, exercises, demonstrations, and information on a variety of biology topics including labeling systems, biological indicators of stream pollution, growth of lichens, reproductive capacity of bulbous buttercups, a straw balance to measure transpiration, interaction of fungi, osmosis, and nitrogen fixation and crop production. (DC)

  8. Biology Notes.

    ERIC Educational Resources Information Center

    School Science Review, 1978

    1978-01-01

    Presents experiments, demonstrations, activities and ideas relating to various fields of biology to be used in biology courses in secondary schools. Among those experiments presented are demonstrating the early stages of ferns and mosses and simple culture methods for fern prothalli. (HM)

  9. Biology Notes.

    ERIC Educational Resources Information Center

    School Science Review, 1983

    1983-01-01

    Describes laboratory procedures, demonstrations, and classroom activities/materials, including chi-square tests on a microcomputer, an integrated biology game, microscope slides of leaf stomata, culturing soil nematodes, technique for watering locust egg-laying tubes, hazards of biological chemicals (such as benzene, benzidene, calchicine,…

  10. Biology Notes.

    ERIC Educational Resources Information Center

    School Science Review, 1982

    1982-01-01

    Describes laboratory procedures, demonstrations, and classroom activities/materials, including use of dwarf cichlids (fishes) in secondary school biology, teaching edge effects on stomatal diffusion, computer program on effects of selection on gene frequencies, biological oxidation/reduction reactions, short cuts with Drosophila, computer program…