Sample records for biomass carbon sequestration

  1. Carbon Sequestration

    NSDL National Science Digital Library

    2013-01-17

    In this inquiry-based lesson, learners measure the biomass of trees, calculate the carbon stored by the trees, and use this information to create recommendations about using trees for carbon sequestration. This activity encourages learners to think critically about managing forests for carbon sequestration.

  2. Rapid Assessment of U.S. Forest and Soil Organic Carbon Storage and Forest Biomass Carbon-Sequestration Capacity

    USGS Publications Warehouse

    Sundquist, Eric T.; Ackerman, Katherine V.; Bliss, Norman B.; Kellndorfer, Josef M.; Reeves, Matt C.; Rollins, Matthew G.

    2009-01-01

    This report provides results of a rapid assessment of biological carbon stocks and forest biomass carbon sequestration capacity in the conterminous United States. Maps available from the U.S. Department of Agriculture are used to calculate estimates of current organic carbon storage in soils (73 petagrams of carbon, or PgC) and forest biomass (17 PgC). Of these totals, 3.5 PgC of soil organic carbon and 0.8 PgC of forest biomass carbon occur on lands managed by the U.S. Department of the Interior (DOI). Maps of potential vegetation are used to estimate hypothetical forest biomass carbon sequestration capacities that are 3-7 PgC higher than current forest biomass carbon storage in the conterminous United States. Most of the estimated hypothetical additional forest biomass carbon sequestration capacity is accrued in areas currently occupied by agriculture and development. Hypothetical forest biomass carbon sequestration capacities calculated for existing forests and woodlands are within +or- 1 PgC of estimated current forest biomass carbon storage. Hypothetical forest biomass sequestration capacities on lands managed by the DOI in the conterminous United States are 0-0.4 PgC higher than existing forest biomass carbon storage. Implications for forest and other land management practices are not considered in this report. Uncertainties in the values reported here are large and difficult to quantify, particularly for hypothetical carbon sequestration capacities. Nevertheless, this rapid assessment helps to frame policy and management discussion by providing estimates that can be compared to amounts necessary to reduce predicted future atmospheric carbon dioxide levels.

  3. Carbon sequestration in soils, biomass and their relationships in dry environments: a case of central Botswana

    NASA Astrophysics Data System (ADS)

    Aynekulu, E.

    2009-04-01

    The study was conducted around Serowe village (26002'-26058' East and 22012'-22036' South), Botswana. Carbon is considered as a building block of life. Soil carbon for instance has been considered as a good indicator of ecosystem health. Moreover, understanding the carbon stock is becoming important in carbon sequestration as a response to climate change. Thus, this study aims at: (1) Assessing the Carbon stock in woody biomass; (2) Assessing Soil carbon stock (SOC) of the upper 30cm; and (3) Assessing the applicability of above ground biomass in estimating soil carbon stock. The area was stratified into three main landscape units: Sandveld (Upper slope), Escarpment (Middle slope) and Hardveld (Lower slope), and sampled, using 75 plots. Ankle height tree basal area was measured in the field and converted to fresh weight biomass using existing regression equations. The fresh weight biomass was converted to dry biomass using fresh to dry biomass conversation factors. Finally, the dry biomass was converted to carbon stock the Biomass to Carbon stock using existing conversion factors. Bulk density (using core sampler), course fragments % (using visual estimation) and Carbon content (using Walkley-Black method) were determined to SOC stock. The result indicated that the 95% confidence interval for Carbon stock in biomass and soils were 4.51±0.55 ton/ha and 20.6±1.82 ton/ha, respectively. The results indicate that, biomass poorly explains the variation in SOC, R2 = 17% and 0%, in the Sandveld and Escarpment, respectively. However, SOC was better explained by biomass in the Hardveld (R2 = 49%). By taking the Arenosols, which covers 78 % of the study area, biomass explained 13 % of the SOC variability. Based on this study it can be concluded that biomass is not a good estimator of SOC stock in the dry environment of central Botswana. Key words: biomass, Botswana, carbon sequestration, dry environments, soil organic carbon

  4. Sustainability: The capacity of smokeless biomass pyrolysis for energy production, global carbon capture and sequestration

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Application of modern smokeless biomass pyrolysis for biochar and biofuel production is potentially a revolutionary approach for global carbon capture and sequestration at gigatons of carbon (GtC) scales. A conversion of about 7% of the annual terrestrial gross photosynthetic product (120 GtC y-1) i...

  5. WithCarbonSequestration Biological-

    E-print Network

    WithCarbonSequestration Biomass Hydro Wind Solar Coal Nuclear Natural Gas Oil Biological 342928Net energy ratio 2.603.303.60$/kg H2Total cost Central Hydrogen from Biomass via Gasification · Techno-Economic Analysis of H2 Production by Gasification of Biomass · Renewables Analysis · Biomass

  6. CALIFORNIA CARBON SEQUESTRATION THROUGH

    E-print Network

    CALIFORNIA ENERGY COMMISSION CARBON SEQUESTRATION THROUGH CHANGES IN LAND USE IN WASHINGTON. Carbon Sequestration Through Changes in Land Use in Washington: Costs and Opportunities. California for Terrestrial Carbon Sequestration in Oregon. Report to Winrock International. #12;ii #12;iii Preface

  7. Carbon carry capacity and carbon sequestration potential in China based on an integrated analysis of mature forest biomass.

    PubMed

    Liu, YingChun; Yu, GuiRui; Wang, QiuFeng; Zhang, YangJian; Xu, ZeHong

    2014-12-01

    Forests play an important role in acting as a carbon sink of terrestrial ecosystem. Although global forests have huge carbon carrying capacity (CCC) and carbon sequestration potential (CSP), there were few quantification reports on Chinese forests. We collected and compiled a forest biomass dataset of China, a total of 5841 sites, based on forest inventory and literature search results. From the dataset we extracted 338 sites with forests aged over 80 years, a threshold for defining mature forest, to establish the mature forest biomass dataset. After analyzing the spatial pattern of the carbon density of Chinese mature forests and its controlling factors, we used carbon density of mature forests as the reference level, and conservatively estimated the CCC of the forests in China by interpolation methods of Regression Kriging, Inverse Distance Weighted and Partial Thin Plate Smoothing Spline. Combining with the sixth National Forest Resources Inventory, we also estimated the forest CSP. The results revealed positive relationships between carbon density of mature forests and temperature, precipitation and stand age, and the horizontal and elevational patterns of carbon density of mature forests can be well predicted by temperature and precipitation. The total CCC and CSP of the existing forests are 19.87 and 13.86 Pg C, respectively. Subtropical forests would have more CCC and CSP than other biomes. Consequently, relying on forests to uptake carbon by decreasing disturbance on forests would be an alternative approach for mitigating greenhouse gas concentration effects besides afforestation and reforestation. PMID:25424432

  8. Growing Cover Crops Improve Biomass Accumulation and Carbon Sequestration: A Phytotron Study

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Six of each winter and summer cover crops were grown in two soils, Krome gravelly loam soil (KGL), and Quincy fine sandy soil (QFS), in phytotrons at 3 temperatures (10/20, 15/25, 25/30 oC for winter/summer cover crops) to investigate their contributions for carbon (C) sequestration. The winter cove...

  9. Carbon sequestration by switchgrass

    NASA Astrophysics Data System (ADS)

    Ma, Zhiqin

    1999-11-01

    Increasing levels of carbon dioxide (CO2), which is partly due to use of fossil fuel, is primarily responsible for global climate warming. Producing and using switchgrass for bioenergy can help reduce atmospheric CO2 buildup by partly replacing use of fossil fuels and by carbon (C) sequestration. Switchgrass (Panicum virgatum L) is a potential bioenergy crop suited to the southeastern U.S. The objective of this study was to determine the effects of agricultural management practices on C sequestration by switchgrass. Field experiments were designed so that differences in row spacing, nitrogen (N) rate, switchgrass cultivar, harvest frequency, and soil type on C sequestration would be evaluated. Soil C dynamic studies indicated that soil C mineralization, microbial biomass C, and C turnover tended to increase with time after switchgrass establishment in Norfolk sandy sod. These changes were more apparent in 0 to 15 cm than 15 to 30 cm of the sandy loam soil. Ten years of continuous switchgrass resulted in higher soil C level than nearby fallow soils, but several years of continuous grass may be need before increases are measurable. Results from this study imply that management practices can impact soil C sequestration with switchgrass, such as several years for humification by conversion of the root accumulation to the stable soil C pool. The effect of N was to increase N but not C concentration of roots, which imply that any increases in C sequestration by switchgrass would be due to increases in root biomass. Switchgrass roots were more dense in Pacolet clay soil than the other soils used in this study. Carbon storage in switchgrass, shoots increased as row width and N rate increased. Carbon storage in shoots and roots generally increased with time after switchgrass establishment, and rate of increase of C storage in root was higher than that in shoot. Carbon partitioning analyses showed that C storage was soil C > root C > shoot C. The root/shoot ratio of C storage was 2.2, and this implied that C partitioning to roots plays a key role in C sequestration by switchgrass. Carbon storage in the overall switchgrass-soil system showed an upward trend after switchgrass establishment.

  10. Have ozone effects on carbon sequestration been overestimated? A new biomass response function for wheat

    NASA Astrophysics Data System (ADS)

    Pleijel, H.; Danielsson, H.; Simpson, D.; Mills, G.

    2014-08-01

    Elevated levels of tropospheric ozone can significantly impair the growth of crops. The reduced removal of CO2 by plants leads to higher atmospheric concentrations of CO2, enhancing radiative forcing. Ozone effects on economic yield, e.g. the grain yield of wheat (Triticum aestivum L.), are currently used to model effects on radiative forcing. However, changes in grain yield do not necessarily reflect changes in total biomass. Based on an analysis of 22 ozone exposure experiments with field-grown wheat, we investigated whether the use of effects on grain yield as a proxy for effects on biomass under- or overestimates effects on biomass. First, we confirmed that effects on partitioning and biomass loss are both of significant importance for wheat yield loss. Then we derived ozone dose response functions for biomass loss and for harvest index (the proportion of above-ground biomass converted to grain) based on 12 experiments and recently developed ozone uptake modelling for wheat. Finally, we used a European-scale chemical transport model (EMEP MSC-West) to assess the effect of ozone on biomass (-9%) and grain yield (-14%) loss over Europe. Based on yield data per grid square, we estimated above-ground biomass losses due to ozone in 2000 in Europe, totalling 22.2 million tonnes. Incorrectly applying the grain yield response function to model effects on biomass instead of the biomass response function of this paper would have indicated total above-ground biomass losses totalling 38.1 million (i.e. overestimating effects by 15.9 million tonnes). A key conclusion from our study is that future assessments of ozone-induced loss of agroecosystem carbon storage should use response functions for biomass, such as that provided in this paper, not grain yield, to avoid overestimation of the indirect radiative forcing from ozone effects on crop biomass accumulation.

  11. WithCarbonSequestration Electrolytic

    E-print Network

    WithCarbonSequestration Biomass Hydro Wind Solar Coal Nuclear Natural Gas Oil Electrolytic Hydrogen Based on Titan HM200 Industrial Gas Generator #12;R&D Direction Develop electrolysis technology hydrogen fueling stations · Increase utilization of stranded renewable electricity sources Develop

  12. Intro to Carbon Sequestration

    ScienceCinema

    None

    2010-01-08

    NETL's Carbon Sequestration Program is helping to develop technologies to capture, purify, and store carbon dioxide (CO2) in order to reduce greenhouse gas emissions without adversely influencing energy use or hindering economic growth. Carbon sequestration technologies capture and store CO2 that would otherwise reside in the atmosphere for long periods of time.

  13. Intro to Carbon Sequestration

    SciTech Connect

    2008-03-06

    NETL's Carbon Sequestration Program is helping to develop technologies to capture, purify, and store carbon dioxide (CO2) in order to reduce greenhouse gas emissions without adversely influencing energy use or hindering economic growth. Carbon sequestration technologies capture and store CO2 that would otherwise reside in the atmosphere for long periods of time.

  14. Carbon sequestration and the optimal forest harvest decision: A dynamic programming approach considering biomass and dead organic matter

    Microsoft Academic Search

    Patrick Asante; Glen W. Armstrong; Wiktor L. Adamowicz

    2011-01-01

    Carbon sequestration in forests is being considered as a mechanism to slow or reverse the trend of increasing concentrations of carbon dioxide in the atmosphere. We present results from a dynamic programming model used to determine the optimal harvest decision for a forest stand in the boreal forest of western Canada that provides both timber harvest volume and carbon sequestration

  15. Growth, productivity, aboveground biomass, and carbon sequestration of pure and mixed native tree plantations in the Caribbean lowlands of Costa Rica

    Microsoft Academic Search

    Alvaro Redondo-Brenes; Florencia Montagnini

    2006-01-01

    In Costa Rica, reforestation programs with indigenous tree species are a recent activity. Information is still scarce on long-term species performance and silvicultural management to ensure the success of tree plantings, especially for mixed stands. This study aims to estimate growth, aboveground biomass, and carbon sequestration of nine native tree species growing in mixed and pure plantings. The study was

  16. Carbon sequestration in soils

    SciTech Connect

    Bruce, J.P. [Soil and Water Conservation Society, Ottawa, Ontario (Canada); Frome, M. [Soil and Water Conservation Society, Washington, DC (United States); Haites, E. [Margaree Consultants, Toronto, Ontario (Canada); Janzen, H. [Agriculture and Agri-Food Canada, Lethbridge, Alberta (Canada); Lal, R. [Ohio State Univ., Columbus, OH (United States). School of Natural Resources; Paustian, K. [Colorado State Univ., Fort Collins, CO (United States). Natural Resource Ecology Lab.

    1999-01-01

    The purpose of this article is to examine (a) the magnitude of the potential for carbon sequestration in the soil as a means of reducing carbon dioxide (CO{sub 2}) in the atmosphere, (b) some of the measures that might be used to achieve this potential, (c) the methods available for estimating carbon sequestration on a farm or regional level, (d) what is needed to achieve international consensus, and (e) additional information needs. This article is not presented as a definitive document but rather as an overview of where scientific opinion converges and where more work is needed. In addition, it aims to provoke discussion of the measures that can increase soil carbon sequestration and the policies that might be used to implement those measures.

  17. Carbon sequestration by switchgrass

    Microsoft Academic Search

    Zhiqin Ma

    1999-01-01

    Increasing levels of carbon dioxide (CO2), which is partly due to use of fossil fuel, is primarily responsible for global climate warming. Producing and using switchgrass for bioenergy can help reduce atmospheric CO2 buildup by partly replacing use of fossil fuels and by carbon (C) sequestration. Switchgrass (Panicum virgatum L) is a potential bioenergy crop suited to the southeastern U.S.

  18. Biomass and Carbon Sequestration in Community Mangrove Plantations and a Natural Regeneration Stand in the Ayeyarwady Delta, Myanmar

    NASA Astrophysics Data System (ADS)

    Thant, Y. M.; Kanzaki, M.; nil

    2011-12-01

    Mangroves in the Ayeyarwady Delta is one of the most threatened ecosystems, and is rapidly disappearing as in many tropical countries. The deforestation and degradation of mangrove forest in the Ayeryarwady Delta results in the shortage of wood resources and declining of environmental services that have been provided by the mangrove ecosystem. Cyclone Nargis struck the Ayeyarwady Delta on 2 May 2008 with an intensity unprecedented in the history of Myanmar. The overexploitation of mangroves because of local demands for fuel wood and charcoal and the conversion of mangrove forest land into agricultural land or shrimp farms over the past decades have increased the loss of human life and the damage to settlements caused by the Cyclone.The biomass study was conducted in September of 2006 in Bogale Township in the Ayeyarwady Delta and continued monitoring in September of each year from 2007 to 2010. Above and below ground biomass was studied in six years old mangrove plantations of Avicenia marina (Am), Avicenia officinalis (Ao) and Sonneratia apetala (Sa) and a naturally regenerated stand under regeneration improving felling operation (NR: consists of Ceriops decandra, Bruguiera sexangula, and Aegicerus corniculatum) protected for seven years since 2000. These stands were established by small-scale Community Forestry scheme on abandoned paddy fields where natural mangroves once existed. Common allometric equations were developed for biomass estimation by performing regressions between dry weights of trees as dependent variables and biometric parameters such as stem diameter, height and wood density as independent variables. The above and below ground biomass in NR stand (70 Mg ha-1 and 104 Mg ha-1) was the greatest (P < 0.001), and followed by Sa plantation (69 Mg ha-1 and 32 Mg ha-1), Am plantation (25 Mg ha-1 and 27 Mg ha-1) and Ao plantation (21 Mg ha-1 and 26 Mg ha-1). The total carbon stock in biomass was 73 Mg C ha-1 in NR stand, 43 Mg C ha-1 in Sa plantation, 21 Mg C ha-1 in Am plantation and 18 Mg C ha-1 in Ao plantation respectively. The averaged total soil carbon stock up to 1 m soil depth in plantation site was estimated to be 167 ± 58 Mg C ha-1 which was nearly two times higher than that of current paddy fields 85 ± 17 Mg C ha-1. These facts suggest the feasibility of the mangrove plantation and induced natural regeneration as a carbon sequestration tool. The establishment of mangrove plantations appeared to be one measure for reducing the risk of cyclone damage after the Cyclone Nargis. This may reduce future human loss by cyclones and also improve the life of local people by increasing timber resources and environmental services.

  19. [Research progress on biochar carbon sequestration technology].

    PubMed

    Jiang, Zhi-Xiang; Zheng, Hao; Li, Feng-Min; Wang, Zhen-Yu

    2013-08-01

    Biochar is a fine-grained and porous material, which is produced by pyrolyzing biomass under anaerobic or oxygen-limiting condition. Due to the aromatic structure, it is resistant to the biotic and abiotic degradation which makes biochar production a promising carbon sequestration technology, and it has attracted widespread attention. Factors including biochar production, biochar stability in soil and the response of plant growth and soil organic carbon to the biochar addition can influence the carbon sequestration potential of biochar. Through exploring the mechanisms of biochar carbon sequestration, the influence of these factors was studied. Furthermore, the research progress of carbon sequestration potential and its economic viability were examined. Finally, aiming at the knowledge gaps in the influencing factors as well as the relationship between these factors, some further research needs were proposed for better application of biochar in China. PMID:24191586

  20. Soil carbon sequestration and changes in fungal and bacterial biomass following incorporation of forest residues

    Microsoft Academic Search

    Matt D. Busse; Felipe G. Sanchez; Alice W. Ratcliff; John R. Butnor; Emily A. Carter; Robert F. Powers

    2009-01-01

    Sequestering carbon (C) in forest soils can benefit site fertility and help offset greenhouse gas emissions. However, identifying soil conditions and forest management practices which best promote C accumulation remains a challenging task. We tested whether soil incorporation of masticated woody residues alters short-term C storage at forested sites in western and southeastern USA. Our hypothesis was that woody residues

  1. High biomass removal limits carbon sequestration potential of mature temperate pastures

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Decades of plowing have depleted organic carbon stocks in many agricultural soils. Conversion of plowed fields to pasture has the potential to reverse this process, recapturing organic matter that was lost under more intensive cropping systems. Temperate pastures in the northeast USA are highly prod...

  2. Carbon sequestration and biomass energy offset: theoretical, potential and achievable capacities globally, in Europe and the UK

    Microsoft Academic Search

    Melvin G. R. Cannell

    2003-01-01

    The extensive literature on the capacity to offset fossil fuel carbon emissions by enhancing terrestrial carbon sinks or biomass energy substitution is confused by different interpretations of the word ‘potential’. This paper presents an overview of these capacities for the world, the EU15 countries and the UK over the next 50–100 years, divided into what are considered: (i) theoretical potential

  3. Mechanisms of Soil Carbon Sequestration

    NASA Astrophysics Data System (ADS)

    Lal, Rattan

    2015-04-01

    Carbon (C) sequestration in soil is one of the several strategies of reducing the net emission of CO2 into the atmosphere. Of the two components, soil organic C (SOC) and soil inorganic C (SIC), SOC is an important control of edaphic properties and processes. In addition to off-setting part of the anthropogenic emissions, enhancing SOC concentration to above the threshold level (~1.5-2.0%) in the root zone has numerous ancillary benefits including food and nutritional security, biodiversity, water quality, among others. Because of its critical importance in human wellbeing and nature conservancy, scientific processes must be sufficiently understood with regards to: i) the potential attainable, and actual sink capacity of SOC and SIC, ii) permanence of the C sequestered its turnover and mean residence time, iii) the amount of biomass C needed (Mg/ha/yr) to maintain and enhance SOC pool, and to create a positive C budget, iv) factors governing the depth distribution of SOC, v) physical, chemical and biological mechanisms affecting the rate of decomposition by biotic and abiotic processes, vi) role of soil aggregation in sequestration and protection of SOC and SIC pool, vii) the importance of root system and its exudates in transfer of biomass-C into the SOC pools, viii) significance of biogenic processes in formation of secondary carbonates, ix) the role of dissolved organic C (DOC) in sequestration of SOC and SIC, and x) importance of weathering of alumino-silicates (e.g., powered olivine) in SIC sequestration. Lack of understanding of these and other basic processes leads to misunderstanding, inconsistencies in interpretation of empirical data, and futile debates. Identification of site-specific management practices is also facilitated by understanding of the basic processes of sequestration of SOC and SIC. Sustainable intensification of agroecosystems -- producing more from less by enhancing the use efficiency and reducing losses of inputs, necessitates thorough understanding of the processes, factors and causes of SOC and SIC dynamics in soils of natural and managed ecosystems.

  4. Carbon Sequestration in Forest Soils

    NASA Astrophysics Data System (ADS)

    Lal, R.

    2006-05-01

    Carbon (C) sequestration in soils and forests is an important strategy of reducing the net increase in atmospheric CO2 concentration by fossil fuel combustion, deforestation, biomass burning, soil cultivation and accelerated erosion. Further, the so-called "missing or fugitive CO2" is also probably being absorbed in a terrestrial sink. Three of the 15 strategies proposed to stabilize atmospheric CO2 concentrations by 2054, with each one to sequester 1 Pg Cyr-1, include: (i) biofuel plantations for bioethanol production, (ii) reforestation, afforestation and establishment of new plantations, and (iii) conversion of plow tillage to no-till farming. Enhancing soil organic carbon (SOC) pool is an important component in each of these three options, but especially so in conversion of degraded/marginal agricultural soils to short rotation woody perennials, and establishment of plantations for biofuel, fiber and timber production. Depending upon the prior SOC loss because of the historic land used and management-induced soil degradation, the rate of soil C sequestration in forest soils may be 0 to 3 Mg C ha-1 yr-1. Tropical forest ecosystems cover 1.8 billion hectares and have a SOC sequestration potential of 200 to 500 Tg C yr-1 over 59 years. However, increasing production of forest biomass may not always increase the SOC pool. Factors limiting the rate of SOC sequestration include C: N ratio, soil availability of N and other essential nutrients, concentration of recalcitrant macro-molecules (e.g., lignin, suberin), soil properties (e.g., clay content and mineralogy, aggregation), soil drainage, and climate (mean annual precipitation and temperature). The SOC pool can be enhanced by adopting recommended methods of forest harvesting and site preparation to minimize the "Covington effect," improving soil drainage, alleviating soil compaction, growing species with a high NPP, and improving soil fertility including the availability of micro-nutrients. Soil fertility enhancement and water management in the root zone are critical to exploiting the CO2 fertilization effect on forest growth. Fire is also a useful tool which can be judiciously managed to maximize NPP and the SOC pool, and increase the recalcitrant black C. The importance of SOC sequestration in forest soils can not be over-emphasized.

  5. Big Sky Carbon Sequestration Partnership

    Microsoft Academic Search

    Susan M. Capalbo

    2005-01-01

    The Big Sky Carbon Sequestration Partnership, led by Montana State University, is comprised of research institutions, public entities and private sectors organizations, and the Confederated Salish and Kootenai Tribes and the Nez Perce Tribe. Efforts under this Partnership in Phase I fall into four areas: evaluation of sources and carbon sequestration sinks that will be used to determine the location

  6. Carbon Code Requirements for voluntary carbon sequestration projects

    E-print Network

    Woodland Carbon Code Requirements for voluntary carbon sequestration projects ® Version 1.2 July trademark 10 3. Carbon sequestration 11 3.1 Units of carbon calculation 11 3.2 Carbon baseline 11 3.3 Carbon leakage 12 3.4 Project carbon sequestration 12 3.5 Net carbon sequestration 13 4. Environmental quality 14

  7. Microalgal biofuels; carbon capture and sequestration

    SciTech Connect

    Sayre, R

    2010-01-01

    There is growing recognition that microalgae are among the most productive biological systems for generating biomass and capturing carbon. Further efficiencies are gained by harvesting 100% of the biomass, much more than is possible in terrestrial biomass production systems. Micro-algae's ability to transport bicarbonate into cells makes them well suited to capture carbon. Carbon dioxide—or bicarbonate-capturing efficiencies as high as 90% have been reported in open ponds. The scale of microalgal production facilities necessary to capture carbon-dioxide (CO{sub 2}) emissions from stationary point sources such as power stations and cement kilns is also manageable; thus, microalgae can potentially be exploited for CO{sub 2} capture and sequestration. In this article, I discuss possible strategies using microalgae to sequester CO{sub 2} with reduced environmental consequences.

  8. Biochar and Carbon Sequestration: A Regional Perspective

    E-print Network

    Everest, Graham R

    Biochar and Carbon Sequestration: A Regional Perspective A report prepared for East of England #12;Low Carbon Innovation Centre Report for EEDA Biochar and Carbon Sequestration: A Regional Perspective 20/04/2009 ii Biochar and Carbon Sequestration: A Regional Perspective A report prepared for East

  9. Carbon Sequestration in Campus Trees

    NSDL National Science Digital Library

    Robert S. Cole

    In this activity, students use a spreadsheet to calculate the net carbon sequestration in a set of trees; they will utilize an allometric approach based upon parameters measured on the individual trees. They determine the species of trees in the set, measure trunk diameter at a particular height, and use the spreadsheet to calculate carbon content of the tree using forestry research data.

  10. CARBON SEQUESTRATION IN IRRIGATED PASTURES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Carbon sequestration potential for irrigated grazing lands is significant. We measured organic and inorganic carbon stored in southern Idaho soils having long-term land use histories that supported native sagebrush vegetation (NSB), irrigated pasture systems (IP), irrigated conservation tillage sit...

  11. Geological carbon sequestration: critical legal issues

    E-print Network

    Watson, Andrew

    Geological carbon sequestration: critical legal issues Ray Purdy and Richard Macrory January 2004 Tyndall Centre for Climate Change Research Working Paper 45 #12;1 Geological carbon sequestration an integrated assessment of geological carbon sequestration (Project ID code T2.21). #12;2 1 Introduction

  12. THE COMPARATIVE VALUE OF BIOLOGICAL CARBON SEQUESTRATION

    E-print Network

    McCarl, Bruce A.

    THE COMPARATIVE VALUE OF BIOLOGICAL CARBON SEQUESTRATION BRUCE A. MCCARL, BRIAN C. MURRAY, AND UWE A. SCHNEIDER A. Abstract Carbon sequestration via forests and agricultural soils saturates over time to sequestration because of (1) an ecosystems limited ability to take up carbon which we will call saturation

  13. THE COMPARATIVE VALUE OF BIOLOGICAL CARBON SEQUESTRATION

    E-print Network

    McCarl, Bruce A.

    THE COMPARATIVE VALUE OF BIOLOGICAL CARBON SEQUESTRATION 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 sequestration and between 1 and 49 percent for forest based carbon sequestration. Value adjustments offsets. Net present value analysis reveals value reductions between 0 and 62 percent for soil carbon

  14. Carbon Dioxide: Production and Sequestration

    NSDL National Science Digital Library

    2012-08-03

    In this problem set, learners will refer to a satellite image to calculate the rate of carbon sequestration in the areas of bare land and forested lawn shown to answer a series of questions. Answer key is provided. This is part of Earth Math: A Brief Mathematical Guide to Earth Science and Climate Change.

  15. Soil Carbon Sequestration/Markets

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Grasslands in the conterminous United States include about 212 of which about ~48 million hectares (Mha) of pasture and 164 Mha of rangeland. Rates of soil organic carbon (SOC) sequestration can range from none to approaching 1 metric ton (mt) SOC/year. Climate and management influence potential i...

  16. SOIL CARBON SEQUESTRATION/MARKETS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Grasslands in the conterminous United States include about 212 of which about ~48 million hectares (Mha) of pasture and 164 Mha of rangeland. Rates of soil organic carbon (SOC) sequestration can range from none to approaching 1 metric ton (mt) SOC/year. Climate and management influence potential i...

  17. Carbon Sequestration: State of the Science

    NSDL National Science Digital Library

    1999-01-01

    The US Department of Energy has released this report (.pdf format) entitled Carbon Sequestration: State of the Science. Divided into nine sections, the report covers separation and capture of carbon dioxide, carbon sequestration in terrestrial ecosystems, ocean sequestration, carbon sequestration in geological formations, and advanced chemical and biological approaches to sequestration. Heavy on high-tech solutions (and low on human restraint), the section entitled Detailed Descriptions of Ecosystems will be of particular interest to ecologists, as it describes how each ecosystem, with assistance from human technology (genetics, etc.), can reach its full potential as a carbon garbage can.

  18. Carbon Sequestration Potential in Mangrove Wetlands of Southern of India

    NASA Astrophysics Data System (ADS)

    Chokkalingam, L.; Ponnambalam, K.; Ponnaiah, J. M.; Roy, P.; Sankar, S.

    2012-12-01

    Mangrove forest and the soil on which it grows are major sinks of atmospheric carbon. We present the results of a study on the carbon sequestration in the ground biomass of Avicennia marina including the organic carbon deposition, degradation and preservation in wetland sediments of Muthupet mangrove forest (southeast coast of India) in order to evaluate the influence of forests in the global carbon cycle. The inventory for estimating the ground biomass of Avicennia marina was carried out using random sampling technique (10 m × 10 m plot) with allometric regression equation. The carbon content in different vegetal parts (leaves, stem and root) of mangrove species and associated marshy vegetations was estimated using the combustion method. We observe that the organic carbon was higher (ca. 54.8%) recorded in the stems of Aegiceras corniculatum and Salicornia brachiata and lower (ca. 30.3%) in the Sesuvium portulacastrum leaves. The ground biomass and carbon sequestration of Avicennia marina are 58.56±12.65 t/ ha and 27.52±5.95 mg C/ha, respectively. The depth integrated organic carbon model profiles indicate an average accumulation rate of 149.75gC/m2.yr and an average remineralization rate of 32.89gC/m2.yr. We estimate an oxidation of ca. 21.85% of organic carbon and preservation of ca. 78.15% of organic carbon in the wetland sediments. Keywords: Above ground biomass, organic carbon, sequestration, mangrove, wetland sediments, Muthupet.

  19. Carbon sequestration in reclaimed minesoils

    SciTech Connect

    Ussiri, D.A.N.; Lal, R. [Ohio State University, Columbus, OH (United States). School of Natural Resources

    2005-07-01

    Minesoils are drastically influenced by anthropogenic activities. They are characterized by low soil organic matter (SOM) content, low fertility, and poor physicochemical and biological properties, limiting their quality, capability, and functions. Reclamation of these soils has potential for resequestering some of the C lost and mitigating CO{sub 2} emissions. Soil organic carbon (SOC) sequestration rates in minesoils are high in the first 20 to 30 years after reclamation in the top 15 cm soil depth. In general, higher rates of SOC sequestration are observed for minesoils under pasture and grassland management than under forest land use. Observed rates of SOC sequestration are 0.3 to 1.85 Mg C ha{sup -1} yr{sup -1} for pastures and rangelands, and 0.2 to 1.64 Mg C ha{sup -1} yr{sup -1} for forest land use. Proper reclamation and postreclamation management may enhance SOC sequestration and add to the economic value of the mined sites. Management practices that may enhance SOC sequestration include increasing vegetative cover by deep-rooted perennial vegetation and afforestation, improving soil fertility, and alleviation of physical, chemical and biological limitations by fertilizers and soil amendments such as biosolids, manure, coal combustion by-products, and mulches. Soil and water conservation are important to SOC sequestration. The potential of SOC sequestration in minesoils of the US is estimated to be 1.28 Tg C yr{sup -1}, compared to the emissions from coal combustion of 506 Tg C yr{sup -1}.

  20. Carbon Sequestration via Mineral Carbonation: Overview and Assessment

    E-print Network

    1 Carbon Sequestration via Mineral Carbonation: Overview and Assessment 14 March 2002 Howard Herzog overview and assessment of carbon sequestration by mineral carbonation (referred to as "mineral sequestration R&D. The first is that carbonates have a lower energy state than CO2. Therefore, at least

  1. The future of carbon sequestration. 2nd ed.

    SciTech Connect

    NONE

    2007-04-15

    The report is an overview of the opportunities for carbon sequestration to reduce greenhouse gas emissions. It provides a concise look at what is driving interest in carbon sequestration, the challenges faced in implementing carbon sequestration projects, and the current and future state of carbon sequestration. Topics covered in the report include: Overview of the climate change debate; Explanation of the global carbon cycle; Discussion of the concept of carbon sequestration; Review of current efforts to implement carbon sequestration; Analysis and comparison of carbon sequestration component technologies; Review of the economic drivers of carbon sequestration project success; and Discussion of the key government and industry initiatives supporting carbon sequestration.

  2. Hurricane impacts on US forest carbon sequestration

    Microsoft Academic Search

    Steven G McNulty

    2002-01-01

    Recent focus has been given to US forests as a sink for increases in atmospheric carbon dioxide. Current estimates of US forest carbon sequestration average approximately 20 Tg (i.e. 1012 g) year. However, predictions of forest carbon sequestration often do not include the influence of hurricanes on forest carbon storage. Intense hurricanes occur two out of three years across the

  3. Big Sky Carbon Sequestration Partnership

    SciTech Connect

    Susan M. Capalbo

    2005-11-01

    The Big Sky Carbon Sequestration Partnership, led by Montana State University, is comprised of research institutions, public entities and private sectors organizations, and the Confederated Salish and Kootenai Tribes and the Nez Perce Tribe. Efforts under this Partnership in Phase I fall into four areas: evaluation of sources and carbon sequestration sinks that will be used to determine the location of pilot demonstrations in Phase II; development of GIS-based reporting framework that links with national networks; designing an integrated suite of monitoring, measuring, and verification technologies and assessment frameworks; and initiating a comprehensive education and outreach program. The groundwork is in place to provide an assessment of storage capabilities for CO2 utilizing the resources found in the Partnership region (both geological and terrestrial sinks), that would complement the ongoing DOE research agenda in Carbon Sequestration. The region has a diverse array of geological formations that could provide storage options for carbon in one or more of its three states. Likewise, initial estimates of terrestrial sinks indicate a vast potential for increasing and maintaining soil C on forested, agricultural, and reclaimed lands. Both options include the potential for offsetting economic benefits to industry and society. Steps have been taken to assure that the GIS-based framework is consistent among types of sinks within the Big Sky Partnership area and with the efforts of other DOE regional partnerships. The Partnership recognizes the critical importance of measurement, monitoring, and verification technologies to support not only carbon trading but all policies and programs that DOE and other agencies may want to pursue in support of GHG mitigation. The efforts in developing and implementing MMV technologies for geological sequestration reflect this concern. Research is also underway to identify and validate best management practices for soil C in the Partnership region, and to design a risk/cost effectiveness framework to make comparative assessments of each viable sink, taking into account economic costs, offsetting benefits, scale of sequestration opportunities, spatial and time dimensions, environmental risks, and long-term viability. Scientifically sound MMV is critical for public acceptance of these technologies. Deliverables for the 7th Quarter reporting period include (1) for the geological efforts: Reports on Technology Needs and Action Plan on the Evaluation of Geological Sinks and Pilot Project Deployment (Deliverables 2 and 3), and Report on the Feasibility of Mineralization Trapping in the Snake River Plain Basin (Deliverable 14); (2) for the terrestrial efforts: Report on the Evaluation of Terrestrial Sinks and a Report of the Best Production Practices for Soil C Sequestration (Deliverables 8 and 15). In addition, the 7th Quarter activities for the Partnership included further development of the proposed activities for the deployment and demonstration phase of the carbon sequestration pilots including geological and terrestrial pilots, expansion of the Partnership to encompass regions and institutions that are complimentary to the steps we have identified, building greater collaborations with industry and stakeholders in the region, contributed to outreach efforts that spanned all partnerships, co-authorship on the Carbon Capture and Separation report, and developed a regional basis to address future energy opportunities in the region. The deliverables and activities are discussed in the following sections and appended to this report. The education and outreach efforts have resulted in a comprehensive plan which serves as a guide for implementing the outreach activities under Phase I. The public website has been expanded and integrated with the GIS carbon atlas. We have made presentations to stakeholders and policy makers including two tribal sequestration workshops, and made connections to other federal and state agencies concerned with GHG emissions, climate change, and efficient and environmental

  4. Trading Water for Carbon with Biological Carbon Sequestration

    E-print Network

    Nacional de San Luis, Universidad

    Trading Water for Carbon with Biological Carbon Sequestration Robert B. Jackson,1 * Esteban G. Farley,1 David C. le Maitre,5 Bruce A. McCarl,6 Brian C. Murray7 Carbon sequestration strategies plantations feature prominently among tools for carbon sequestration (1­8). Plantations typi- cally combine

  5. Carbon Sequestration in Terrestrial Ecosystems

    NASA Astrophysics Data System (ADS)

    Jacobs, G. K.; Post, W. M.; Jastrow, J. D.; Izaurralde, R. C.

    2002-05-01

    CSiTE, the Department of Energy's research consortium performs fundamental research in support of new methods to enhance carbon sequestration in terrestrial ecosystems in an environmentally acceptable manner. The goal of CSiTE is to discover and characterize links between critical pathways and mechanisms across scales from the molecular to the landscape for creating larger, longer-lasting carbon pools in terrestrial ecosystems. This paper will present results relevant to increasing the biophysical potential of terrestrial C sequestration, but in addition will illustrate the importance of an integrative analysis in assessing this technological option (as well as all sequestration options). Our integrative approach involves six steps: (1) Identify promising technologies, (2) Understand controls on basic mechanisms at the site scale, (3) Perform sensitivity analyses over the range of applicable conditions (model, lab or field experiments), (4) Full C and greenhouse gas accounting, (5) Environmental impacts, and (6) Economic analysis including rate of adoption and cost tradeoffs. Many estimates of the potential contributions of sequestration by terrestrial ecosystems to the control of rising atmospheric carbon dioxide concentration have been rather modest. Indeed, there are many uncertainties and ancillary issues (permanence, land availability, water supply, etc) that must be considered. However, terrestrial ecosystems have not been viewed to-date as a "technology" to be implemented. Rather, the emphasis has been on the promotion of practices that are likely to be implemented for other benefits. It may be possible to use the attributes of terrestrial ecosystems to a greater extent in sequestering carbon. In this paper, we will discuss how a technology view of terrestrial ecosystems may alter the estimated contributions. Examples to be addressed include changing land use, shifting agricultural methods, manipulating soil properties, and altering soil microbial systems.

  6. The development and prospect of biochar carbon sequestration based on agriculture and forestry resources in China

    Microsoft Academic Search

    Jingyu Liu; Jingjing Meng; Shaopeng Huang

    2011-01-01

    The approach to biochar carbon sequestration from crop residues and forestry wastes offer a possibility to turn biomass management into a carbon-negative industry, by right of its long storage time and high carbon content in plant biomass. This approach is under development and is currently considered as an attractive candidate for inclusion in the global carbon market. This paper analyzes

  7. A Sustainability Initiative to Quantify Carbon Sequestration by Campus Trees

    ERIC Educational Resources Information Center

    Cox, Helen M.

    2012-01-01

    Over 3,900 trees on a university campus were inventoried by an instructor-led team of geography undergraduates in order to quantify the carbon sequestration associated with biomass growth. The setting of the project is described, together with its logistics, methodology, outcomes, and benefits. This hands-on project provided a team of students…

  8. BIG SKY CARBON SEQUESTRATION PARTNERSHIP

    SciTech Connect

    Susan M. Capalbo

    2004-01-04

    The Big Sky Partnership, led by Montana State University, is comprised of research institutions, public entities and private sectors organizations, and the Confederated Salish and Kootenai Tribes and the Nez Perce Tribe. Efforts during the first performance period fall into four areas: evaluation of sources and carbon sequestration sinks; development of GIS-based reporting framework; designing an integrated suite of monitoring, measuring, and verification technologies; and initiating a comprehensive education and outreach program. At the first Partnership meeting the groundwork was put in place to provide an assessment of capture and storage capabilities for CO{sub 2} utilizing the resources found in the Partnership region (both geological and terrestrial sinks), that would complement the ongoing DOE research. The region has a diverse array of geological formations that could provide storage options for carbon in one or more of its three states. Likewise, initial estimates of terrestrial sinks indicate a vast potential for increasing and maintaining soil C on forested, agricultural, and reclaimed lands. Both options include the potential for offsetting economic benefits to industry and society. Complementary to the efforts on evaluation of sources and sinks is the development of the Big Sky Partnership Carbon Cyberinfrastructure (BSP-CC) and a GIS Road Map for the Partnership. These efforts will put in place a map-based integrated information management system for our Partnership, with transferability to the national carbon sequestration effort. The Partnership recognizes the critical importance of measurement, monitoring, and verification technologies to support not only carbon trading but other policies and programs that DOE and other agencies may want to pursue in support of GHG mitigation. The efforts begun in developing and implementing MMV technologies for geological sequestration reflect this concern. Research is also underway to identify and validate best management practices for soil C in the partnership region, and to design a risk/cost effectiveness framework to make comparative assessments of each viable sink, taking into account economic costs, offsetting benefits, scale of sequestration opportunities, spatial and time dimensions, environmental risks, and long term viability. A series of meetings held in November and December, 2003, have laid the foundations for assessing the issues surrounding the implementation of a market-based setting for soil C credits. These include the impact of existing local, state, and federal permitting issues for terrestrial based carbon sequestration projects, consistency of final protocols and planning standards with national requirements, and alignments of carbon sequestration projects with existing federal and state cost-share programs. Finally, the education and outreach efforts during this performance period have resulted in a comprehensive plan which serves as a guide for implementing the outreach activities under Phase I. The primary goal of this plan is to increase awareness, understanding, and public acceptance of sequestration efforts and build support for a constituent based network which includes the initial Big Sky Partnership and other local and regional businesses and entities.

  9. Optimize carbon dioxide sequestration, enhance oil recovery

    E-print Network

    - 1 - Optimize carbon dioxide sequestration, enhance oil recovery January 8, 2014 Los Alamos simulation to optimize carbon dioxide (CO2) sequestration and enhance oil recovery (CO2-EOR) based on known production. Due to carbon capture and storage technology advances, prolonged high oil prices

  10. Fly Ash Characteristics and Carbon Sequestration Potential

    Microsoft Academic Search

    Anthony Vito Palumbo; James E. Amonette; Jana Randolph Phillips; Lisa Anne Fagan; Meghan S. McNeilly; William L. Daniels

    2007-01-01

    Concerns for the effects of global warming have lead to an interest in the potential for inexpensive methods to sequester carbon dioxide (CO2). One of the proposed methods is the sequestration of carbon in soil though the growth of crops or forests.4,6 If there is an economic value placed on sequestration of carbon dioxide in soil there may be an

  11. CARBON SEQUESTRATION THROUGH CHANGES IN LAND USE IN OREGON

    E-print Network

    CALIFORNIA ENERGY COMMISSION CARBON SEQUESTRATION THROUGH CHANGES IN LAND USE IN OREGON: COSTS, and J. Kadyszewski (Winrock International). 2007. Carbon Sequestration Through Changes in Land Use Curves, and Pilot Actions for Terrestrial Carbon Sequestration in Oregon. Report to Winrock

  12. Center for Research on Enhancing Carbon Sequestration in Terrestrial Ecosystems

    E-print Network

    #12;Center for Research on Enhancing Carbon Sequestration in Terrestrial Ecosystems Personnel. Blaine Metting #12;vii Abstract The Center for Research on Enhancing Carbon Sequestration in Terrestrial needed to evaluate the feasibility of environmentally sound strategies for enhancing carbon sequestration

  13. BIG SKY CARBON SEQUESTRATION PARTNERSHIP

    SciTech Connect

    Susan M. Capalbo

    2004-10-31

    The Big Sky Carbon Sequestration Partnership, led by Montana State University, is comprised of research institutions, public entities and private sectors organizations, and the Confederated Salish and Kootenai Tribes and the Nez Perce Tribe. Efforts under this Partnership fall into four areas: evaluation of sources and carbon sequestration sinks; development of GIS-based reporting framework; designing an integrated suite of monitoring, measuring, and verification technologies; and initiating a comprehensive education and outreach program. At the first two Partnership meetings the groundwork was put in place to provide an assessment of capture and storage capabilities for CO{sub 2} utilizing the resources found in the Partnership region (both geological and terrestrial sinks), that would complement the ongoing DOE research. During the third quarter, planning efforts are underway for the next Partnership meeting which will showcase the architecture of the GIS framework and initial results for sources and sinks, discuss the methods and analysis underway for assessing geological and terrestrial sequestration potentials. The meeting will conclude with an ASME workshop. The region has a diverse array of geological formations that could provide storage options for carbon in one or more of its three states. Likewise, initial estimates of terrestrial sinks indicate a vast potential for increasing and maintaining soil C on forested, agricultural, and reclaimed lands. Both options include the potential for offsetting economic benefits to industry and society. Steps have been taken to assure that the GIS-based framework is consistent among types of sinks within the Big Sky Partnership area and with the efforts of other western DOE partnerships. Efforts are also being made to find funding to include Wyoming in the coverage areas for both geological and terrestrial sinks and sources. The Partnership recognizes the critical importance of measurement, monitoring, and verification technologies to support not only carbon trading but all policies and programs that DOE and other agencies may want to pursue in support of GHG mitigation. The efforts begun in developing and implementing MMV technologies for geological sequestration reflect this concern. Research is also underway to identify and validate best management practices for soil C in the Partnership region, and to design a risk/cost effectiveness framework to make comparative assessments of each viable sink, taking into account economic costs, offsetting benefits, scale of sequestration opportunities, spatial and time dimensions, environmental risks, and long-term viability. Scientifically sound information on MMV is critical for public acceptance of these technologies. Two key deliverables were completed in the second quarter--a literature review/database to assess the soil carbon on rangelands, and the draft protocols, contracting options for soil carbon trading. The protocols developed for soil carbon trading are unique and provide a key component of the mechanisms that might be used to efficiently sequester GHG and reduce CO{sub 2} concentrations. While no key deliverables were due during the third quarter, progress on other deliverables is noted in the PowerPoint presentations and in this report. A series of meetings held during the second and third quarters have laid the foundations for assessing the issues surrounding carbon sequestration in this region, the need for a holistic approach to meeting energy demands and economic development potential, and the implementation of government programs or a market-based setting for soil C credits. These meetings provide a connection to stakeholders in the region and a basis on which to draw for the DOE PEIS hearings. In the fourth quarter, three deliverables have been completed, some in draft form to be revised and updated to include Wyoming. This is due primarily to some delays in funding to LANL and INEEL and the approval of a supplemental proposal to include Wyoming in much of the GIS data sets, analysis, and related materials. The de

  14. BIG SKY CARBON SEQUESTRATION PARTNERSHIP

    SciTech Connect

    Susan M. Capalbo

    2004-06-30

    The Big Sky Carbon Sequestration Partnership, led by Montana State University, is comprised of research institutions, public entities and private sectors organizations, and the Confederated Salish and Kootenai Tribes and the Nez Perce Tribe. Efforts under this Partnership fall into four areas: evaluation of sources and carbon sequestration sinks; development of GIS-based reporting framework; designing an integrated suite of monitoring, measuring, and verification technologies; and initiating a comprehensive education and outreach program. At the first two Partnership meetings the groundwork was put in place to provide an assessment of capture and storage capabilities for CO{sub 2} utilizing the resources found in the Partnership region (both geological and terrestrial sinks), that would complement the ongoing DOE research. During the third quarter, planning efforts are underway for the next Partnership meeting which will showcase the architecture of the GIS framework and initial results for sources and sinks, discuss the methods and analysis underway for assessing geological and terrestrial sequestration potentials. The meeting will conclude with an ASME workshop (see attached agenda). The region has a diverse array of geological formations that could provide storage options for carbon in one or more of its three states. Likewise, initial estimates of terrestrial sinks indicate a vast potential for increasing and maintaining soil C on forested, agricultural, and reclaimed lands. Both options include the potential for offsetting economic benefits to industry and society. Steps have been taken to assure that the GIS-based framework is consistent among types of sinks within the Big Sky Partnership area and with the efforts of other western DOE partnerships. Efforts are also being made to find funding to include Wyoming in the coverage areas for both geological and terrestrial sinks and sources. The Partnership recognizes the critical importance of measurement, monitoring, and verification technologies to support not only carbon trading but all policies and programs that DOE and other agencies may want to pursue in support of GHG mitigation. The efforts begun in developing and implementing MMV technologies for geological sequestration reflect this concern. Research is also underway to identify and validate best management practices for soil C in the Partnership region, and to design a risk/cost effectiveness framework to make comparative assessments of each viable sink, taking into account economic costs, offsetting benefits, scale of sequestration opportunities, spatial and time dimensions, environmental risks, and long-term viability. Scientifically sound information on MMV is critical for public acceptance of these technologies. Two key deliverables were completed in the second quarter--a literature review/database to assess the soil carbon on rangelands, and the draft protocols, contracting options for soil carbon trading. The protocols developed for soil carbon trading are unique and provide a key component of the mechanisms that might be used to efficiently sequester GHG and reduce CO2 concentrations. While no key deliverables were due during the third quarter, progress on other deliverables is noted in the PowerPoint presentations and in this report. A series of meetings held during the second and third quarters have laid the foundations for assessing the issues surrounding carbon sequestration in this region, the need for a holistic approach to meeting energy demands and economic development potential, and the implementation of government programs or a market-based setting for soil C credits. These meetings provide a connection to stakeholders in the region and a basis on which to draw for the DOE PEIS hearings. A third Partnership meeting has been planned for August 04 in Idaho Falls; a preliminary agenda is attached.

  15. Big Sky Carbon Sequestration Partnership

    SciTech Connect

    Susan Capalbo

    2005-12-31

    The Big Sky Carbon Sequestration Partnership, led by Montana State University, is comprised of research institutions, public entities and private sectors organizations, and the Confederated Salish and Kootenai Tribes and the Nez Perce Tribe. Efforts under this Partnership in Phase I are organized into four areas: (1) Evaluation of sources and carbon sequestration sinks that will be used to determine the location of pilot demonstrations in Phase II; (2) Development of GIS-based reporting framework that links with national networks; (3) Design of an integrated suite of monitoring, measuring, and verification technologies, market-based opportunities for carbon management, and an economic/risk assessment framework; (referred to below as the Advanced Concepts component of the Phase I efforts) and (4) Initiation of a comprehensive education and outreach program. As a result of the Phase I activities, the groundwork is in place to provide an assessment of storage capabilities for CO{sub 2} utilizing the resources found in the Partnership region (both geological and terrestrial sinks), that complements the ongoing DOE research agenda in Carbon Sequestration. The geology of the Big Sky Carbon Sequestration Partnership Region is favorable for the potential sequestration of enormous volume of CO{sub 2}. The United States Geological Survey (USGS 1995) identified 10 geologic provinces and 111 plays in the region. These provinces and plays include both sedimentary rock types characteristic of oil, gas, and coal productions as well as large areas of mafic volcanic rocks. Of the 10 provinces and 111 plays, 1 province and 4 plays are located within Idaho. The remaining 9 provinces and 107 plays are dominated by sedimentary rocks and located in the states of Montana and Wyoming. The potential sequestration capacity of the 9 sedimentary provinces within the region ranges from 25,000 to almost 900,000 million metric tons of CO{sub 2}. Overall every sedimentary formation investigated has significant potential to sequester large amounts of CO{sub 2}. Simulations conducted to evaluate mineral trapping potential of mafic volcanic rock formations located in the Idaho province suggest that supercritical CO{sub 2} is converted to solid carbonate mineral within a few hundred years and permanently entombs the carbon. Although MMV for this rock type may be challenging, a carefully chosen combination of geophysical and geochemical techniques should allow assessment of the fate of CO{sub 2} in deep basalt hosted aquifers. Terrestrial carbon sequestration relies on land management practices and technologies to remove atmospheric CO{sub 2} where it is stored in trees, plants, and soil. This indirect sequestration can be implemented today and is on the front line of voluntary, market-based approaches to reduce CO{sub 2} emissions. Initial estimates of terrestrial sinks indicate a vast potential for increasing and maintaining soil Carbon (C) on rangelands, and forested, agricultural, and reclaimed lands. Rangelands can store up to an additional 0.05 mt C/ha/yr, while the croplands are on average four times that amount. Estimates of technical potential for soil sequestration within the region in cropland are in the range of 2.0 M mt C/yr over 20 year time horizon. This is equivalent to approximately 7.0 M mt CO{sub 2}e/yr. The forestry sinks are well documented, and the potential in the Big Sky region ranges from 9-15 M mt CO{sub 2} equivalent per year. Value-added benefits include enhanced yields, reduced erosion, and increased wildlife habitat. Thus the terrestrial sinks provide a viable, environmentally beneficial, and relatively low cost sink that is available to sequester C in the current time frame. The Partnership recognizes the critical importance of measurement, monitoring, and verification technologies to support not only carbon trading but all policies and programs that DOE and other agencies may want to pursue in support of GHG mitigation. The efforts in developing and implementing MMV technologies for geological and terrestrial sequestration re

  16. Enhancement of Carbon Sequestration in US Soils

    NSDL National Science Digital Library

    WILFRED M. POST, R. CESAR IZAURRALDE, JULIE D. JASTROW, BRUCE A. McCARL, JAMES E. AMONETTE, VANESSA L. BAILEY, PHILIP M. JARDINE, TRISTRAM O. WEST, and JIZHONG ZHOU (; )

    2004-10-01

    This peer-reviewed article from Bioscience journal is about the importance of improving land management to increase carbon sequestration in US soils. Improved practices in agriculture, forestry, and land management could be used to increase soil carbon and thereby significantly reduce the concentration of atmospheric carbon dioxide. Understanding biological and edaphic processes that increase and retain soil carbon can lead to specific manipulations that enhance soil carbon sequestration. These manipulations, however, will only be suitable for adoption if they are technically feasible over large areas, economically competitive with alternative measures to offset greenhouse gas emissions, and environmentally beneficial. Here we present the elements of an integrated evaluation of soil carbon sequestration methods.

  17. CARBON SEQUESTRATION SURFACE MINE LANDS

    SciTech Connect

    Donald H. Graves; Christopher Barton; Richard Sweigard; Richard Warner

    2003-07-24

    Over 160 acres of tree seedlings were planted during the last quarter. This quarter marked the beginning of the installation of new instrumentation and the inspection and calibration of previously installed recording devices. Sampling systems were initiated to quantify initial seedling success as well as height measurements. Nursery seedlings have been inoculated to produce mycorrhizal treated stock for 2004 spring plantings to determine the effects on carbon sequestration. All planting areas in western Kentucky have been sampled with the recording cone penetrometer and the nuclear density gauge to measure soil density.

  18. BIG SKY CARBON SEQUESTRATION PARTNERSHIP

    SciTech Connect

    Susan M. Capalbo

    2005-01-31

    The Big Sky Carbon Sequestration Partnership, led by Montana State University, is comprised of research institutions, public entities and private sectors organizations, and the Confederated Salish and Kootenai Tribes and the Nez Perce Tribe. Efforts under this Partnership in Phase I fall into four areas: evaluation of sources and carbon sequestration sinks that will be used to determine the location of pilot demonstrations in Phase II; development of GIS-based reporting framework that links with national networks; designing an integrated suite of monitoring, measuring, and verification technologies and assessment frameworks; and initiating a comprehensive education and outreach program. The groundwork is in place to provide an assessment of storage capabilities for CO{sub 2} utilizing the resources found in the Partnership region (both geological and terrestrial sinks), that would complement the ongoing DOE research. Efforts are underway to showcase the architecture of the GIS framework and initial results for sources and sinks. The region has a diverse array of geological formations that could provide storage options for carbon in one or more of its three states. Likewise, initial estimates of terrestrial sinks indicate a vast potential for increasing and maintaining soil C on forested, agricultural, and reclaimed lands. Both options include the potential for offsetting economic benefits to industry and society. Steps have been taken to assure that the GIS-based framework is consistent among types of sinks within the Big Sky Partnership area and with the efforts of other western DOE partnerships. The Partnership recognizes the critical importance of measurement, monitoring, and verification technologies to support not only carbon trading but all policies and programs that DOE and other agencies may want to pursue in support of GHG mitigation. The efforts in developing and implementing MMV technologies for geological sequestration reflect this concern. Research is also underway to identify and validate best management practices for soil C in the Partnership region, and to design a risk/cost effectiveness framework to make comparative assessments of each viable sink, taking into account economic costs, offsetting benefits, scale of sequestration opportunities, spatial and time dimensions, environmental risks, and long-term viability. Scientifically sound information on MMV is critical for public acceptance of these technologies.

  19. Carbon sequestration via wood burial

    PubMed Central

    Zeng, Ning

    2008-01-01

    To mitigate global climate change, a portfolio of strategies will be needed to keep the atmospheric CO2 concentration below a dangerous level. Here a carbon sequestration strategy is proposed in which certain dead or live trees are harvested via collection or selective cutting, then buried in trenches or stowed away in above-ground shelters. The largely anaerobic condition under a sufficiently thick layer of soil will prevent the decomposition of the buried wood. Because a large flux of CO2 is constantly being assimilated into the world's forests via photosynthesis, cutting off its return pathway to the atmosphere forms an effective carbon sink. It is estimated that a sustainable long-term carbon sequestration potential for wood burial is 10 ± 5 GtC y-1, and currently about 65 GtC is on the world's forest floors in the form of coarse woody debris suitable for burial. The potential is largest in tropical forests (4.2 GtC y-1), followed by temperate (3.7 GtC y-1) and boreal forests (2.1 GtC y-1). Burying wood has other benefits including minimizing CO2 source from deforestation, extending the lifetime of reforestation carbon sink, and reducing fire danger. There are possible environmental impacts such as nutrient lock-up which nevertheless appears manageable, but other concerns and factors will likely set a limit so that only part of the full potential can be realized. Based on data from North American logging industry, the cost for wood burial is estimated to be $14/tCO2($50/tC), lower than the typical cost for power plant CO2 capture with geological storage. The cost for carbon sequestration with wood burial is low because CO2 is removed from the atmosphere by the natural process of photosynthesis at little cost. The technique is low tech, distributed, easy to monitor, safe, and reversible, thus an attractive option for large-scale implementation in a world-wide carbon market. PMID:18173850

  20. Carbon sequestration via wood burial.

    PubMed

    Zeng, Ning

    2008-01-01

    To mitigate global climate change, a portfolio of strategies will be needed to keep the atmospheric CO2 concentration below a dangerous level. Here a carbon sequestration strategy is proposed in which certain dead or live trees are harvested via collection or selective cutting, then buried in trenches or stowed away in above-ground shelters. The largely anaerobic condition under a sufficiently thick layer of soil will prevent the decomposition of the buried wood. Because a large flux of CO2 is constantly being assimilated into the world's forests via photosynthesis, cutting off its return pathway to the atmosphere forms an effective carbon sink.It is estimated that a sustainable long-term carbon sequestration potential for wood burial is 10 +/- 5 GtC y-1, and currently about 65 GtC is on the world's forest floors in the form of coarse woody debris suitable for burial. The potential is largest in tropical forests (4.2 GtC y-1), followed by temperate (3.7 GtC y-1) and boreal forests (2.1 GtC y-1). Burying wood has other benefits including minimizing CO2 source from deforestation, extending the lifetime of reforestation carbon sink, and reducing fire danger. There are possible environmental impacts such as nutrient lock-up which nevertheless appears manageable, but other concerns and factors will likely set a limit so that only part of the full potential can be realized.Based on data from North American logging industry, the cost for wood burial is estimated to be $14/tCO2($50/tC), lower than the typical cost for power plant CO2 capture with geological storage. The cost for carbon sequestration with wood burial is low because CO2 is removed from the atmosphere by the natural process of photosynthesis at little cost. The technique is low tech, distributed, easy to monitor, safe, and reversible, thus an attractive option for large-scale implementation in a world-wide carbon market. PMID:18173850

  1. Estimating Leakage from Forest Carbon Sequestration Programs

    Microsoft Academic Search

    Brian C. Murray; Bruce A. McCarl; Heng-Chi Lee

    2004-01-01

    Leakage from forest carbon sequestration—the amount of a program’s direct carbon benefits undermined by carbon releases elsewhere—depends critically on demanders’ ability to substitute non-reserved timber for timber targeted by the program. Analytic, econometric, and sector-level optimization models are combined to estimate leakage from different forest carbon sequestration activities. Empirical estimates for the U.S. show leakage ranges from minimal (<10 percent)

  2. Carbon sequestration for everybody: decrease atmospheric carbon dioxide, earn money and improve the soil

    Microsoft Academic Search

    Folke Günther

    Summary: The easiest way to sequester atmospheric carbon dioxide is to convert plant biomass into charcoal and bury it in agricultural land. Doing this will open a new way for farmers and laymen to earn money (from carbon sequestration funds) and improve land fertility. It is also a way to avoid nutrient loss from land to sea.

  3. ISSUES IN EVALUATING CARBON SEQUESTRATION AND ATTRIBUTING CARBON CREDITS TO GRASSLAND RESTORATION EFFORTS

    E-print Network

    Wisconsin at Madison, University of

    ISSUES IN EVALUATING CARBON SEQUESTRATION AND ATTRIBUTING CARBON CREDITS TO GRASSLAND RESTORATION examines biological carbon sequestration using a grassland restoration as a model system. Chapter 1 for biological carbon sequestration. In this analysis, we found that significantly greater soil carbon

  4. BIG SKY CARBON SEQUESTRATION PARTNERSHIP

    SciTech Connect

    Susan M. Capalbo

    2004-06-01

    The Big Sky Partnership, led by Montana State University, is comprised of research institutions, public entities and private sectors organizations, and the Confederated Salish and Kootenai Tribes and the Nez Perce Tribe. Efforts during the second performance period fall into four areas: evaluation of sources and carbon sequestration sinks; development of GIS-based reporting framework; designing an integrated suite of monitoring, measuring, and verification technologies; and initiating a comprehensive education and outreach program. At the first two Partnership meetings the groundwork was put in place to provide an assessment of capture and storage capabilities for CO{sub 2} utilizing the resources found in the Partnership region (both geological and terrestrial sinks), that would complement the ongoing DOE research. The region has a diverse array of geological formations that could provide storage options for carbon in one or more of its three states. Likewise, initial estimates of terrestrial sinks indicate a vast potential for increasing and maintaining soil C on forested, agricultural, and reclaimed lands. Both options include the potential for offsetting economic benefits to industry and society. Steps have been taken to assure that the GIS-based framework is consistent among types of sinks within the Big Sky Partnership area and with the efforts of other western DOE partnerships. Efforts are also being made to find funding to include Wyoming in the coverage areas for both geological and terrestrial sinks and sources. The Partnership recognizes the critical importance of measurement, monitoring, and verification technologies to support not only carbon trading but all policies and programs that DOE and other agencies may want to pursue in support of GHG mitigation. The efforts begun in developing and implementing MMV technologies for geological sequestration reflect this concern. Research is also underway to identify and validate best management practices for soil C in the partnership region, and to design a risk/cost effectiveness framework to make comparative assessments of each viable sink, taking into account economic costs, offsetting benefits, scale of sequestration opportunities, spatial and time dimensions, environmental risks, and long term viability. Scientifically sound information on MMV is critical for public acceptance of these technologies. Two key deliverables were completed this quarter--a literature review/database to assess the soil carbon on rangelands, and the draft protocols, contracting options for soil carbon trading. To date, there has been little research on soil carbon on rangelands, and since rangeland constitutes a major land use in the Big Sky region, this is important in achieving a better understanding of terrestrial sinks. The protocols developed for soil carbon trading are unique and provide a key component of the mechanisms that might be used to efficiently sequester GHG and reduce CO{sub 2} concentrations. Progress on other deliverables is noted in the PowerPoint presentations. A series of meetings held during the second quarter have laid the foundations for assessing the issues surrounding the implementation of a market-based setting for soil C credits. These meetings provide a connection to stakeholders in the region and a basis on which to draw for the DOE PEIS hearings. Finally, the education and outreach efforts have resulted in a comprehensive plan and process which serves as a guide for implementing the outreach activities under Phase I. While we are still working on the public website, we have made many presentations to stakeholders and policy makers, connections to other federal and state agencies concerned with GHG emissions, climate change, and efficient and environmentally-friendly energy production. In addition, we have laid plans for integration of our outreach efforts with the students, especially at the tribal colleges and at the universities involved in our partnership. This includes collaboration with the film and media arts departments at MSU, with outreach effort

  5. Mechanisms of Carbon Sequestration in Soil Aggregates

    Microsoft Academic Search

    Humberto Blanco-Canqui; Rattan Lal

    2004-01-01

    Soil and crop management practices have a profound impact on carbon (C) sequestration, but the mechanisms of interaction between soil structure and soil organic C (SOC) dynamics are not well understood. Understanding how an aggregate stores and protects SOC is essential to developing proper management practices to enhance SOC sequestration. The objectives of this article are to: (1) describe the

  6. CARBON DIOXIDE SEQUESTRATION: WHEN AND HOWMUCH?

    Microsoft Academic Search

    Klaus Keller; Zili Yang; Matt Hall; David F. Bradford

    2003-01-01

    We analyze carbon dioxide (CO sequestration as a strategy to manage future climate change in an optimal economic growth framework. We approach the problem in two ways: first, by using a simple analytical model, and second, by using a numerical optimization model which allows us to explore the problem in a more realistic setting. CO sequestration is not a perfect

  7. How to Enhance Soil Organic Carbon Sequestration

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Optimizing crop yields and reducing soil erosion can enhance soil organic carbon (SOC) sequestration. The influence of management practices on crop residue C and N inputs to the soil, SOC sequestration, and NO3-N leaching potential under irrigated, continuous crop production in northern Texas was e...

  8. Measuring Carbon Sequestration in Pasture Soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Conversion of croplands to pasture can greatly increase sequestration of carbon in soil organic matter, removing carbon dioxide from the atmosphere and helping to reduce the impacts of climate change. The measurement of soil carbon, and its limitations, could impact future carbon credit programs. ...

  9. The leaky sink: persistent obstacles to a forest carbon sequestration program based on individual projects

    Microsoft Academic Search

    Kenneth Richards; Krister Andersson

    2001-01-01

    One strategy for mitigating the increase in atmospheric carbon dioxide is to expand the size of the terrestrial carbon sink, particularly forests, essentially using trees as biological scrubbers. Within relevant ranges of carbon abatement targets, augmenting carbon sequestration by protecting and expanding biomass sinks can potentially make large contributions at costs that are comparable or lower than for emission source

  10. Experimental Study of Carbon Sequestration Reactions Controlled

    E-print Network

    Demouchy, Sylvie

    Experimental Study of Carbon Sequestration Reactions Controlled by the Percolation of CO2-Rich. Carbonation of ultramafic rocks in geological reservoirs is, in theory, the most efficient way to trap CO2 irreversibly; however, possible feedback effects between carbonation reactions and changes in the reservoir

  11. Federal Control of Geological Carbon Sequestration

    SciTech Connect

    Reitze, Arnold

    2011-04-11

    The United States has economically recoverable coal reserves of about 261 billion tons, which is in excess of a 250-­?year supply based on 2009 consumption rates. However, in the near future the use of coal may be legally restricted because of concerns over the effects of its combustion on atmospheric carbon dioxide concentrations. In response, the U.S. Department of Energy is making significant efforts to help develop and implement a commercial scale program of geologic carbon sequestration that involves capturing and storing carbon dioxide emitted from coal-­?burning electric power plants in deep underground formations. This article explores the technical and legal problems that must be resolved in order to have a viable carbon sequestration program. It covers the responsibilities of the United States Environmental Protection Agency and the Departments of Energy, Transportation and Interior. It discusses the use of the Safe Drinking Water Act, the Clean Air Act, the National Environmental Policy Act, the Endangered Species Act, and other applicable federal laws. Finally, it discusses the provisions related to carbon sequestration that have been included in the major bills dealing with climate change that Congress has been considering in 2009 and 2010. The article concludes that the many legal issues that exist can be resolved, but whether carbon sequestration becomes a commercial reality will depend on reducing its costs or by imposing legal requirements on fossil-­?fired power plants that result in the costs of carbon emissions increasing to the point that carbon sequestration becomes a feasible option.

  12. Shallow Carbon Sequestration Demonstration Project

    SciTech Connect

    Pendergrass, Gary; Fraley, David; Alter, William; Bodenhamer, Steven

    2013-09-30

    The potential for carbon sequestration at relatively shallow depths was investigated at four power plant sites in Missouri. Exploratory boreholes were cored through the Davis Shale confining layer into the St. Francois aquifer (Lamotte Sandstone and Bonneterre Formation). Precambrian basement contact ranged from 654.4 meters at the John Twitty Energy Center in Southwest Missouri to over 1100 meters near the Sioux Power Plant in St. Charles County. Investigations at the John Twitty Energy Center included 3D seismic reflection surveys, downhole geophysical logging and pressure testing, and laboratory analysis of rock core and water samples. Plans to perform injectivity tests at the John Twitty Energy Center, using food grade CO{sub 2}, had to be abandoned when the isolated aquifer was found to have very low dissolved solids content. Investigations at the Sioux Plant and Thomas Hill Energy Center in Randolph County found suitably saline conditions in the St. Francois. A fourth borehole in Platte County was discontinued before reaching the aquifer. Laboratory analyses of rock core and water samples indicate that the St. Charles and Randolph County sites could have storage potentials worthy of further study. The report suggests additional Missouri areas for further investigation as well.

  13. Making carbon sequestration a paying proposition.

    PubMed

    Han, Fengxiang X; Lindner, Jeff S; Wang, Chuji

    2007-03-01

    Atmospheric carbon dioxide (CO(2)) has increased from a preindustrial concentration of about 280 ppm to about 367 ppm at present. The increase has closely followed the increase in CO(2) emissions from the use of fossil fuels. Global warming caused by increasing amounts of greenhouse gases in the atmosphere is the major environmental challenge for the 21st century. Reducing worldwide emissions of CO(2) requires multiple mitigation pathways, including reductions in energy consumption, more efficient use of available energy, the application of renewable energy sources, and sequestration. Sequestration is a major tool for managing carbon emissions. In a majority of cases CO(2) is viewed as waste to be disposed; however, with advanced technology, carbon sequestration can become a value-added proposition. There are a number of potential opportunities that render sequestration economically viable. In this study, we review these most economically promising opportunities and pathways of carbon sequestration, including reforestation, best agricultural production, housing and furniture, enhanced oil recovery, coalbed methane (CBM), and CO(2) hydrates. Many of these terrestrial and geological sequestration opportunities are expected to provide a direct economic benefit over that obtained by merely reducing the atmospheric CO(2) loading. Sequestration opportunities in 11 states of the Southeast and South Central United States are discussed. Among the most promising methods for the region include reforestation and CBM. The annual forest carbon sink in this region is estimated to be 76 Tg C/year, which would amount to an expenditure of $11.1-13.9 billion/year. Best management practices could enhance carbon sequestration by 53.9 Tg C/year, accounting for 9.3% of current total annual regional greenhouse gas emission in the next 20 years. Annual carbon storage in housing, furniture, and other wood products in 1998 was estimated to be 13.9 Tg C in the region. Other sequestration options, including the direct injection of CO(2) in deep saline aquifers, mineralization, and biomineralization, are not expected to lead to direct economic gain. More detailed studies are needed for assessing the ultimate changes to the environment and the associated indirect cost savings for carbon sequestration. PMID:17103136

  14. Making carbon sequestration a paying proposition

    NASA Astrophysics Data System (ADS)

    Han, Fengxiang X.; Lindner, Jeff S.; Wang, Chuji

    2007-03-01

    Atmospheric carbon dioxide (CO2) has increased from a preindustrial concentration of about 280 ppm to about 367 ppm at present. The increase has closely followed the increase in CO2 emissions from the use of fossil fuels. Global warming caused by increasing amounts of greenhouse gases in the atmosphere is the major environmental challenge for the 21st century. Reducing worldwide emissions of CO2 requires multiple mitigation pathways, including reductions in energy consumption, more efficient use of available energy, the application of renewable energy sources, and sequestration. Sequestration is a major tool for managing carbon emissions. In a majority of cases CO2 is viewed as waste to be disposed; however, with advanced technology, carbon sequestration can become a value-added proposition. There are a number of potential opportunities that render sequestration economically viable. In this study, we review these most economically promising opportunities and pathways of carbon sequestration, including reforestation, best agricultural production, housing and furniture, enhanced oil recovery, coalbed methane (CBM), and CO2 hydrates. Many of these terrestrial and geological sequestration opportunities are expected to provide a direct economic benefit over that obtained by merely reducing the atmospheric CO2 loading. Sequestration opportunities in 11 states of the Southeast and South Central United States are discussed. Among the most promising methods for the region include reforestation and CBM. The annual forest carbon sink in this region is estimated to be 76 Tg C/year, which would amount to an expenditure of 11.1-13.9 billion/year. Best management practices could enhance carbon sequestration by 53.9 Tg C/year, accounting for 9.3% of current total annual regional greenhouse gas emission in the next 20 years. Annual carbon storage in housing, furniture, and other wood products in 1998 was estimated to be 13.9 Tg C in the region. Other sequestration options, including the direct injection of CO2 in deep saline aquifers, mineralization, and biomineralization, are not expected to lead to direct economic gain. More detailed studies are needed for assessing the ultimate changes to the environment and the associated indirect cost savings for carbon sequestration.

  15. An Optimal Control Model of Forest Carbon Sequestration

    Microsoft Academic Search

    Brent Sohngen; Robert Mendelsohn

    2003-01-01

    This study develops an optimal control model of carbon sequestration and energy abatement to explore the potential role of forests in greenhouse gas mitigation. The article shows that if carbon accumulates in the atmosphere, the rental price for carbon sequestration should rise over time. From an empirical model, we find that carbon sequestration is costly, but that landowners can sequester

  16. Carbonation: An Efficient and Economical Process for CO2 Sequestration

    E-print Network

    Wisconsin-Milwaukee, University of

    Carbonation: An Efficient and Economical Process for CO2 Sequestration Tarun R Naik1 and Rakesh sequestration. Most of the studies related to the carbonation are limited to its effects on corrosion. The possibility of using carbonation process as a direct means for carbon dioxide sequestration is yet

  17. Anthropogenic nitrogen deposition enhances carbon sequestration in boreal soils.

    PubMed

    Maaroufi, Nadia I; Nordin, Annika; Hasselquist, Niles J; Bach, Lisbet H; Palmqvist, Kristin; Gundale, Michael J

    2015-08-01

    It is proposed that carbon (C) sequestration in response to reactive nitrogen (Nr ) deposition in boreal forests accounts for a large portion of the terrestrial sink for anthropogenic CO2 emissions. While studies have helped clarify the magnitude by which Nr deposition enhances C sequestration by forest vegetation, there remains a paucity of long-term experimental studies evaluating how soil C pools respond. We conducted a long-term experiment, maintained since 1996, consisting of three N addition levels (0, 12.5, and 50 kg N ha(-1)  yr(-1) ) in the boreal zone of northern Sweden to understand how atmospheric Nr deposition affects soil C accumulation, soil microbial communities, and soil respiration. We hypothesized that soil C sequestration will increase, and soil microbial biomass and soil respiration will decrease, with disproportionately large changes expected compared to low levels of N addition. Our data showed that the low N addition treatment caused a non-significant increase in the organic horizon C pool of ~15% and a significant increase of ~30% in response to the high N treatment relative to the control. The relationship between C sequestration and N addition in the organic horizon was linear, with a slope of 10 kg C kg(-1)  N. We also found a concomitant decrease in total microbial and fungal biomasses and a ~11% reduction in soil respiration in response to the high N treatment. Our data complement previous data from the same study system describing aboveground C sequestration, indicating a total ecosystem sequestration rate of 26 kg C kg(-1)  N. These estimates are far lower than suggested by some previous modeling studies, and thus will help improve and validate current modeling efforts aimed at separating the effect of multiple global change factors on the C balance of the boreal region. PMID:25711504

  18. ECONOMIC EVALUATION OF CO2 SEQUESTRATION TECHNOLOGIES TASK 4, BIOMASS GASIFICATION-BASED PROCESSING

    SciTech Connect

    Martha L. Rollins; Les Reardon; David Nichols; Patrick Lee; Millicent Moore; Mike Crim; Robert Luttrell; Evan Hughes

    2002-06-01

    Biomass derived energy currently accounts for about 3 quads of total primary energy use in the United States. Of this amount, about 0.8 quads are used for power generation. Several biomass energy production technologies exist today which contribute to this energy mix. Biomass combustion technologies have been the dominant source of biomass energy production, both historically and during the past two decades of expansion of modern biomass energy in the U. S. and Europe. As a research and development activity, biomass gasification has usually been the major emphasis as a method of more efficiently utilizing the energy potential of biomass, particularly wood. Numerous biomass gasification technologies exist today in various stages of development. Some are simple systems, while others employ a high degree of integration for maximum energy utilization. The purpose of this study is to conduct a technical and economic comparison of up to three biomass gasification technologies, including the carbon dioxide emissions reduction potential of each. To accomplish this, a literature search was first conducted to determine which technologies were most promising based on a specific set of criteria. The technical and economic performances of the selected processes were evaluated using computer models and available literature. Using these results, the carbon sequestration potential of the three technologies was then evaluated. The results of these evaluations are given in this final report.

  19. SOUTHWEST REGIONAL PARTNERSHIP ON CARBON SEQUESTRATION

    SciTech Connect

    Brian McPherson; Rick Allis; Barry Biediger; Joel Brown; Jim Cappa; George Guthrie; Richard Hughes; Eugene Kim; Robert Lee; Dennis Leppin; Charles Mankin; Orman Paananen; Rajesh Pawar; Tarla Peterson; Steve Rauzi; Jerry Stuth; Genevieve Young

    2004-11-01

    The Southwest Partnership Region includes six whole states, including Arizona, Colorado, Kansas, New Mexico, Oklahoma, and Utah, roughly one-third of Texas, and significant portions of adjacent states. The Partnership comprises a large, diverse group of expert organizations and individuals specializing in carbon sequestration science and engineering, as well as public policy and outreach. The main objective of the Southwest Partnership project is to achieve an 18% reduction in carbon intensity by 2012. The Partnership made great progress in this first year. Action plans for possible Phase II carbon sequestration pilot tests in the region are almost finished, including both technical and non-technical aspects necessary for developing and carrying out these pilot tests. All partners in the Partnership are taking an active role in evaluating and ranking optimum sites and technologies for capture and storage of CO{sub 2} in the Southwest Region. We are identifying potential gaps in all aspects of potential sequestration deployment issues.

  20. Forest and wood products role in carbon sequestration

    SciTech Connect

    Sampson, R.N.

    1997-12-31

    An evaluation of the use of U.S. forests and forest products for carbon emission mitigation is presented. The current role of forests in carbon sequestration is described in terms of regional differences and forest management techniques. The potential for increasing carbon storage by converting marginal crop and pasture land, increasing timberland growth, reducing wildfire losses, and changing timber harvest methods is examined. Post-harvest carbon flows, environmental impacts of wood products, biomass energy crops, and increased use of energy-conserving trees are reviewed for their potential in reducing or offsetting carbon emissions. It is estimated that these techniques could offset 20 to 40 percent of the carbon emitted annually in the U.S. 39 refs., 5 tabs.

  1. Connecting Carbon Sequestration Science With Policy

    NASA Astrophysics Data System (ADS)

    Folger, P. F.

    2007-12-01

    Is science ready for carbon sequestration policy? Interest in carbon sequestration as an option for decreasing CO2 emissions, or reducing the concentration of CO2 in the atmosphere, is accelerating in Congress, and legislation is being introduced that includes some form of direct or indirect carbon capture and storage. In many respects carbon sequestration is an ideal opportunity to connect science and engineering directly to policy solutions. For Earth scientists, it involves reservoir characterization using geology and geophysics, multi-phase fluid flow studies, measuring carbon sinks and sources, modeling carbon fluxes between the ocean, land surface, and atmosphere, exploring the long-term behavior of carbon in oceans and forests, and a host of other scientifically interesting topics. For policy makers, the science will need to connect with their questions about long-term reliability of geological reservoirs, environmental protection of ground water resources and human health, ownership of pore space and liability for stored CO2, efficacy of conservation tillage and other land-use practices for carbon storage, accuracy of measuring carbon uptake in trees, plants, and soils, and other issues that matter in a carbon-constrained world where CO2 is tallied and traded by the tonne. Are policy makers well- informed, misinformed, or uninformed about the level of scientific knowledge and uncertainty, for example, regarding the long-term behavior of carbon sequestered in deep saline reservoirs, northern boreal forests, Iowa soils, or in the Southern Ocean? Carbon sequestration is an opportunity for scientists to inform policy makers in real-time, and a chance for policy makers to tap a rich body of knowledge before setting long-term policy.

  2. Agricultural Soil Carbon Sequestration: Economic Issues and Research Needs

    E-print Network

    McCarl, Bruce A.

    Agricultural Soil Carbon Sequestration: Economic Issues and Research Needs Draft paper Bruce A Mc............................................................................................................. 5 2 Why Consider Promoting Agricultural Soil Carbon Sequestration?...................... 6 2 Agricultural Soil Carbon Sequestration....... 11 3.1 What is the cost of GHGE offsets arising from large

  3. Historical forest baselines reveal potential for continued carbon sequestration

    E-print Network

    Mladenoff, David

    Historical forest baselines reveal potential for continued carbon sequestration Jeanine M-based studies suggest that land-use history is a more important driver of carbon sequestration in these systems agricultural lands are being promoted as important avenues for future carbon sequestration (8). But the degree

  4. A SEARCH FOR REGULATORY ANALOGS TO CARBON SEQUESTRATION

    E-print Network

    A SEARCH FOR REGULATORY ANALOGS TO CARBON SEQUESTRATION D.M. Reiner and H.J. Herzog1 1 Laboratory for Energy and the Environment, M.I.T., Cambridge, MA. 02139, USA ABSTRACT Carbon capture and sequestration for determining the success of carbon sequestration as a viable climate policy option. INTRODUCTION To date

  5. Estimation of Parameters in Carbon Sequestration Models from Net Ecosystem

    E-print Network

    White, Luther

    Estimation of Parameters in Carbon Sequestration Models from Net Ecosystem Exchange Data Luther in the context of a deterministic com- partmental carbon sequestration system. Sensitivity and approximation usefulness in the estimation of parameters within a compartmental carbon sequestration model. Previously we

  6. Economic Modeling of Carbon Capture and Sequestration Technologies

    E-print Network

    Economic Modeling of Carbon Capture and Sequestration Technologies Jim McFarland (jrm1@mit.edu; +1 explores the economics of carbon capture and sequestration technologies as applied to electric generating of the world economy, is used to model two of the most promising carbon capture and sequestration (CCS

  7. DEVELOPING A SET OF REGULATORY ANALOGS FOR CARBON SEQUESTRATION

    E-print Network

    DEVELOPING A SET OF REGULATORY ANALOGS FOR CARBON SEQUESTRATION D.M. Reiner1 , H.J. Herzog2 1 Judge Avenue, Cambridge, MA 02139, USA, email: hjherzog@mit.edu ABSTRACT Carbon capture and sequestration variables critical for determining the success of carbon sequestration as a viable climate policy option

  8. Review and model-based analysis of factors influencing soil carbon sequestration beneath switchgrass (Panicum virgatum)

    SciTech Connect

    Garten Jr, Charles T [ORNL

    2012-01-01

    Abstract. A simple, multi-compartment model was developed to predict soil carbon sequestration beneath switchgrass (Panicum virgatum) plantations in the southeastern United States. Soil carbon sequestration is an important component of sustainable switchgrass production for bioenergy because soil organic matter promotes water retention, nutrient supply, and soil properties that minimize erosion. A literature review was included for the purpose of model parameterization and five model-based experiments were conducted to predict how changes in environment (temperature) or crop management (cultivar, fertilization, and harvest efficiency) might affect soil carbon storage and nitrogen losses. Predictions of soil carbon sequestration were most sensitive to changes in annual biomass production, the ratio of belowground to aboveground biomass production, and temperature. Predictions of ecosystem nitrogen loss were most sensitive to changes in annual biomass production, the soil C/N ratio, and nitrogen remobilization efficiency (i.e., nitrogen cycling within the plant). Model-based experiments indicated that 1) soil carbon sequestration can be highly site specific depending on initial soil carbon stocks, temperature, and the amount of annual nitrogen fertilization, 2) response curves describing switchgrass yield as a function of annual nitrogen fertilization were important to model predictions, 3) plant improvements leading to greater belowground partitioning of biomass could increase soil carbon sequestration, 4) improvements in harvest efficiency have no indicated effects on soil carbon and nitrogen, but improve cumulative biomass yield, and 5) plant improvements that reduce organic matter decomposition rates could also increase soil carbon sequestration, even though the latter may not be consistent with desired improvements in plant tissue chemistry to maximize yields of cellulosic ethanol.

  9. Carbon Sequestration and Its Role in the Global Carbon Cycle

    NASA Astrophysics Data System (ADS)

    McPherson, Brian J.; Sundquist, Eric T.

    For carbon sequestration the issues of monitoring, risk assessment, and verification of carbon content and storage efficacy are perhaps the most uncertain. Yet these issues are also the most critical challenges facing the broader context of carbon sequestration as a means for addressing climate change. In response to these challenges, Carbon Sequestration and Its Role in the Global Carbon Cycle presents current perspectives and research that combine five major areas: • The global carbon cycle and verification and assessment of global carbon sources and sinks • Potential capacity and temporal/spatial scales of terrestrial, oceanic, and geologic carbon storage • Assessing risks and benefits associated with terrestrial, oceanic, and geologic carbon storage • Predicting, monitoring, and verifying effectiveness of different forms of carbon storage • Suggested new CO2 sequestration research and management paradigms for the future. The volume is based on a Chapman Conference and will appeal to the rapidly growing group of scientists and engineers examining methods for deliberate carbon sequestration through storage in plants, soils, the oceans, and geological repositories.

  10. Carbon sequestration and its role in the global carbon cycle

    USGS Publications Warehouse

    McPherson, Brian J.; Sundquist, Eric T.

    2009-01-01

    For carbon sequestration the issues of monitoring, risk assessment, and verification of carbon content and storage efficacy are perhaps the most uncertain. Yet these issues are also the most critical challenges facing the broader context of carbon sequestration as a means for addressing climate change. In response to these challenges, Carbon Sequestration and Its Role in the Global Carbon Cycle presents current perspectives and research that combine five major areas: • The global carbon cycle and verification and assessment of global carbon sources and sinks • Potential capacity and temporal/spatial scales of terrestrial, oceanic, and geologic carbon storage • Assessing risks and benefits associated with terrestrial, oceanic, and geologic carbon storage • Predicting, monitoring, and verifying effectiveness of different forms of carbon storage • Suggested new CO2 sequestration research and management paradigms for the future. The volume is based on a Chapman Conference and will appeal to the rapidly growing group of scientists and engineers examining methods for deliberate carbon sequestration through storage in plants, soils, the oceans, and geological repositories.

  11. Carbon dioxide hydrate particles for ocean carbon sequestration

    E-print Network

    Chow, A.C.

    This paper presents strategies for producing negatively buoyant CO[subscript 2] hydrate composite particles for ocean carbon sequestration. Our study is based on recent field observations showing that a continuous-jet ...

  12. Grass roots of soil carbon sequestration

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soils rooted with perennial grasses have high organic matter content, and therefore, can contribute to an agricultural future with high soil quality; a condition that can help to mitigate greenhouse gas emissions through soil carbon sequestration and improve a multitude of other ecosystem responses,...

  13. Photobiological hydrogen production and carbon dioxide sequestration

    Microsoft Academic Search

    Halil Berberoglu

    2008-01-01

    Photobiological hydrogen production is an alternative to thermochemical and electrolytic technologies with the advantage of carbon dioxide sequestration. However, it suffers from low solar to hydrogen energy conversion efficiency due to limited light transfer, mass transfer, and nutrient medium composition. The present study aims at addressing these limitations and can be divided in three parts: (1) experimental measurements of the

  14. CARBON SEQUESTRATION FOLLOWING MANURE OR FERTILIZER APPLICATION

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Manure or compost application can increase carbon (C) sequestration in the soil since these organic sources contain significant amounts of C. Experiment was conducted from 1992 to 1996 to evaluate the effects of annual or biennial N- and P-based manure or composted manure application and fertilized ...

  15. Modified Light Use Efficiency Model for Assessment of Carbon Sequestration in Grasslands of Kazakhstan: Combining Ground Biomass Data and Remote-sensing

    NASA Technical Reports Server (NTRS)

    Propastin, Pavel A.; Kappas, Martin W.; Herrmann, Stefanie M.; Tucker, Compton J.

    2012-01-01

    A modified light use efficiency (LUE) model was tested in the grasslands of central Kazakhstan in terms of its ability to characterize spatial patterns and interannual dynamics of net primary production (NPP) at a regional scale. In this model, the LUE of the grassland biome (en) was simulated from ground-based NPP measurements, absorbed photosynthetically active radiation (APAR) and meteorological observations using a new empirical approach. Using coarse-resolution satellite data from the Sea-viewing Wide Field-of-view Sensor (SeaWiFS), monthly NPP was calculated from 1998 to 2008 over a large grassland region in Kazakhstan. The modelling results were verified against scaled up plot-level observations of grassland biomass and another available NPP data set derived from a field study in a similar grassland biome. The results indicated the reliability of productivity estimates produced by the model for regional monitoring of grassland NPP. The method for simulation of en suggested in this study can be used in grassland regions where no carbon flux measurements are accessible.

  16. Carbon sequestration research and development

    Microsoft Academic Search

    Dave Reichle; John Houghton; Bob Kane; Jim Ekmann

    1999-01-01

    Predictions of global energy use in the next century suggest a continued increase in carbon emissions and rising concentrations of carbon dioxide (COâ) in the atmosphere unless major changes are made in the way we produce and use energy--in particular, how we manage carbon. For example, the Intergovernmental Panel on Climate Change (IPCC) predicts in its 1995 ''business as usual''

  17. Cascade enzymatic reactions for efficient carbon sequestration.

    PubMed

    Xia, Shunxiang; Zhao, Xueyan; Frigo-Vaz, Benjamin; Zheng, Wenyun; Kim, Jungbae; Wang, Ping

    2015-04-01

    Thermochemical processes developed for carbon capture and storage (CCS) offer high carbon capture capacities, but are generally hampered by low energy efficiency. Reversible cascade enzyme reactions are examined in this work for energy-efficient carbon sequestration. By integrating the reactions of two key enzymes of RTCA cycle, isocitrate dehydrogenase and aconitase, we demonstrate that intensified carbon capture can be realized through such cascade enzymatic reactions. Experiments show that enhanced thermodynamic driving force for carbon conversion can be attained via pH control under ambient conditions, and that the cascade reactions have the potential to capture 0.5 mol carbon at pH 6 for each mole of substrate applied. Overall it manifests that the carbon capture capacity of biocatalytic reactions, in addition to be energy efficient, can also be ultimately intensified to approach those realized with chemical absorbents such as MEA. PMID:25708541

  18. Integrating Steel Production with Mineral Carbon Sequestration

    SciTech Connect

    Klaus Lackner; Paul Doby; Tuncel Yegulalp; Samuel Krevor; Christopher Graves

    2008-05-01

    The objectives of the project were (i) to develop a combination iron oxide production and carbon sequestration plant that will use serpentine ores as the source of iron and the extraction tailings as the storage element for CO2 disposal, (ii) the identification of locations within the US where this process may be implemented and (iii) to create a standardized process to characterize the serpentine deposits in terms of carbon disposal capacity and iron and steel production capacity. The first objective was not accomplished. The research failed to identify a technique to accelerate direct aqueous mineral carbonation, the limiting step in the integration of steel production and carbon sequestration. Objective (ii) was accomplished. It was found that the sequestration potential of the ultramafic resource surfaces in the US and Puerto Rico is approximately 4,647 Gt of CO2 or over 500 years of current US production of CO2. Lastly, a computer model was developed to investigate the impact of various system parameters (recoveries and efficiencies and capacities of different system components) and serpentinite quality as well as incorporation of CO2 from sources outside the steel industry.

  19. Conservation tillage for carbon sequestration

    Microsoft Academic Search

    R. Lal; J. M. Kimble

    1997-01-01

    World soils represent the largest terrestrial pool of organic carbon (C), about 1550 Pg compared with about 700 Pg in the\\u000a atmosphere and 600 Pg in land biota. Agricultural activities (e.g., deforestation, burning, plowing, intensive grazing) contribute\\u000a considerably to the atmospheric pool. Expansion of agriculture may have contributed substantially to the atmospheric carbon\\u000a pool. However, the exact magnitude of carbon

  20. Marine sequestration of carbon in bacterial metabolites.

    PubMed

    Lechtenfeld, Oliver J; Hertkorn, Norbert; Shen, Yuan; Witt, Matthias; Benner, Ronald

    2015-01-01

    Linking microbial metabolomics and carbon sequestration in the ocean via refractory organic molecules has been hampered by the chemical complexity of dissolved organic matter (DOM). Here, using bioassay experiments and ultra-high resolution metabolic profiling, we demonstrate that marine bacteria rapidly utilize simple organic molecules and produce exometabolites of remarkable molecular and structural diversity. Bacterial DOM is similar in chemical composition and structural complexity to naturally occurring DOM in sea water. An appreciable fraction of bacterial DOM has molecular and structural properties that are consistent with those of refractory molecules in the ocean, indicating a dominant role for bacteria in shaping the refractory nature of marine DOM. The rapid production of chemically complex and persistent molecules from simple biochemicals demonstrates a positive feedback between primary production and refractory DOM formation. It appears that carbon sequestration in diverse and structurally complex dissolved molecules that persist in the environment is largely driven by bacteria. PMID:25826720

  1. Marine sequestration of carbon in bacterial metabolites

    NASA Astrophysics Data System (ADS)

    Lechtenfeld, Oliver J.; Hertkorn, Norbert; Shen, Yuan; Witt, Matthias; Benner, Ronald

    2015-03-01

    Linking microbial metabolomics and carbon sequestration in the ocean via refractory organic molecules has been hampered by the chemical complexity of dissolved organic matter (DOM). Here, using bioassay experiments and ultra-high resolution metabolic profiling, we demonstrate that marine bacteria rapidly utilize simple organic molecules and produce exometabolites of remarkable molecular and structural diversity. Bacterial DOM is similar in chemical composition and structural complexity to naturally occurring DOM in sea water. An appreciable fraction of bacterial DOM has molecular and structural properties that are consistent with those of refractory molecules in the ocean, indicating a dominant role for bacteria in shaping the refractory nature of marine DOM. The rapid production of chemically complex and persistent molecules from simple biochemicals demonstrates a positive feedback between primary production and refractory DOM formation. It appears that carbon sequestration in diverse and structurally complex dissolved molecules that persist in the environment is largely driven by bacteria.

  2. Carbon Sequestration on Surface Mine Lands

    SciTech Connect

    Donald H. Graves; Christopher Barton; Richard Sweigard; Richard Warner

    2005-10-02

    During this quarter a general forest monitoring program was conducted to measure treatment effects on above ground and below ground carbon C and Nitrogen (N) pools for the tree planting areas. Detailed studies to address specific questions pertaining to Carbon cycling was initiated with the development of plots to examine the influence of mycorrhizae, spoil chemical and mineralogical properties, and use of amendment on forest establishment and carbon sequestration. Efforts continued during this period to examine decomposition and heterotrophic respiration on C cycling in the reforestation plots. Projected climate change resulting from elevated atmospheric carbon dioxide has given rise to various strategies to sequester carbon in various terrestrial ecosystems. Reclaimed surface mine soils present one such potential carbon sink where traditional reclamation objectives can complement carbon sequestration. New plantings required the modification and design and installation on monitoring equipment. Maintenance and data monitoring on past and present installations are a continuing operation. The Department of Mining Engineering continued the collection of penetration resistance, penetration depth, and bulk density on both old and new treatment areas. Data processing and analysis is in process for these variables. Project scientists and graduate students continue to present results at scientific meetings, tours and field days presentations of the research areas are being conducted on a request basis.

  3. Forest soils and carbon sequestration

    Microsoft Academic Search

    R. Lal

    2005-01-01

    Soils in equilibrium with a natural forest ecosystem have high carbon (C) density. The ratio of soil:vegetation C density increases with latitude. Land use change, particularly conversion to agricultural ecosystems, depletes the soil C stock. Thus, degraded agricultural soils have lower soil organic carbon (SOC) stock than their potential capacity. Consequently, afforestation of agricultural soils and management of forest plantations

  4. MIDWEST REGIONAL CARBON SEQUESTRATION PARTNERSHIP (MRCSP)

    SciTech Connect

    David Ball; Judith Bradbury; Rattan Lal; Larry Wickstrom; Neeraj Gupta; Robert Burns; Bob Dahowski

    2004-04-30

    This is the first semiannual report for Phase I of the Midwest Carbon Sequestration Partnership (MRCSP). The project consists of nine tasks to be conducted over a two year period that started in October 2003. The makeup of the MRCSP and objectives are described. Progress on each of the active Tasks is also described and where possible, for those Tasks at some point of completion, a summary of results is presented.

  5. Southwest Regional Partnership on Carbon Sequestration

    SciTech Connect

    Brian McPherson

    2006-04-01

    The Southwest Partnership on Carbon Sequestration completed several more tasks during the period of April 1, 2005-September 30, 2005. The main objective of the Southwest Partnership project is to evaluate and demonstrate the means for achieving an 18% reduction in carbon intensity by 2012. While Phase 2 planning is well under way, the content of this report focuses exclusively on Phase 1 objectives completed during this reporting period. Progress during this period was focused in the three areas: geological carbon storage capacity in New Mexico, terrestrial sequestration capacity for the project area, and the Integrated Assessment Model efforts. The geologic storage capacity of New Mexico was analyzed and Blanco Mesaverde (which extends into Colorado) and Basin Dakota Pools were chosen as top two choices for the further analysis for CO{sub 2} sequestration in the system dynamics model preliminary analysis. Terrestrial sequestration capacity analysis showed that the four states analyzed thus far (Arizona, Colorado, New Mexico and Utah) have relatively limited potential to sequester carbon in terrestrial systems, mainly due to the aridity of these areas, but the large land area offered could make up for the limited capacity per hectare. Best opportunities were thought to be in eastern Colorado/New Mexico. The Integrated Assessment team expanded the initial test case model to include all New Mexico sinks and sources in a new, revised prototype model in 2005. The allocation mechanism, or ''String of Pearls'' concept, utilizes potential pipeline routes as the links between all combinations of the source to various sinks. This technique lays the groundwork for future, additional ''String of Pearls'' analyses throughout the SW Partnership and other regions as well.

  6. An Index-Based Approach to Assessing Recalcitrance and Soil Carbon Sequestration Potential of Engineered Black Carbons (Biochars)

    SciTech Connect

    Harvey, Omar R.; Kuo, Li-Jung; Zimmerman, Andrew R.; Louchouarn, Patrick; Amonette, James E.; Herbert, Bruce

    2012-01-10

    The ability of engineered black carbons (or biochars) to resist abiotic and, or biotic degradation (herein referred to as recalcitrance) is crucial to their successful deployment as a soil carbon sequestration strategy. A new recalcitrance index, the R{sub 50}, for assessing biochar quality for carbon sequestration is proposed. The R{sub 50} is based on the relative thermal stability of a given biochar to that of graphite and was developed and evaluated with a variety of biochars (n = 59), and soot-like black carbons. Comparison of R{sub 50}, with biochar physicochemical properties and biochar-C mineralization revealed the existence of a quantifiable relationship between R{sub 50} and biochar recalcitrance. As presented here, the R{sub 50} is immediately applicable to pre-land application screening of biochars into Class A (R{sub 50} {>=} 0.70), Class B (0.50 {<=} R{sub 50} < 0.70) or Class C (R{sub 50} < 0.50) recalcitrance/carbon sequestration classes. Class A and Class C biochars would have carbon sequestration potential comparable to soot/graphite and uncharred plant biomass, respectively, while Class B biochars would have intermediate carbon sequestration potential. We believe that the coupling of the R{sub 50}, to an index-based degradation, and an economic model could provide a suitable framework in which to comprehensively assess soil carbon sequestration in biochars.

  7. Soil Carbon Sequestration: Perspectives from Australia

    NASA Astrophysics Data System (ADS)

    Sanderman, J.; Macdonald, L.; Baldock, J.

    2011-12-01

    Australia is currently embarking upon an unparalleled program to mitigate greenhouse gas emissions by engaging farmers and landholders to reduce emissions and store carbon in the soil. Currently, the magnitude of a potential soil carbon sink in Australian agricultural soils is largely unknown. The oft repeated rubric that adoption of recommended management practices (RMP) can raise soil carbon levels to 50-66% of pre-clearing levels has lead many to conclude that soil carbon sequestration can offset a large portion of Australia's current greenhouse gas emissions. Is there evidence in Australia (and abroad) to support these sequestration rates? In this presentation, we will present findings from both a retrospective analysis of existing field trial data and preliminary results from a national scale assessment of current soil carbon stocks under different agricultural management practices. A comprehensive review of field-trial data in Australia suggests that most management shifts within a given agricultural system (i.e. tillage, stubble management, fertilizer application, etc...) result in modest relative gains of 0.1 to 0.3 tC ha-1 yr-1. Importantly, whenever time series data was available, we found that the relative improvement in soil carbon stocks under RMPs was due to a reduction in the rate of loss of soil carbon and not in an actual increase in soil carbon. This finding has important repercussions for both how we think about soil carbon sequestration and how we can account for it in an accounting framework. Current research within the National Soil Carbon Research Program looks to assess the potential for agricultural management to influence soil carbon content and its distribution within various measurable carbon pools (particulate, humus, charcoal-like). For example, 200 randomly selected farms have been sampled in two major agricultural regions in South Australia based on a soil-type by rainfall stratification. In addition to measuring carbon content and its distribution amongst fractions, detailed farm management data has been collected. Multivariate approaches have been used to identify the relative importance of management versus environmental factors in driving differences in soil carbon stocks and composition.

  8. Fly Ash Characteristics and Carbon Sequestration Potential

    SciTech Connect

    Palumbo, Anthony V.; Amonette, James E.; Tarver, Jana R.; Fagan, Lisa A.; McNeilly, Meghan S.; Daniels, William L.

    2007-07-20

    Concerns for the effects of global warming have lead to an interest in the potential for inexpensive methods to sequester carbon dioxide (CO2). One of the proposed methods is the sequestration of carbon in soil though the growth of crops or forests.4,6 If there is an economic value placed on sequestration of carbon dioxide in soil there may be an an opportunity and funding to utilize fly ash in the reclamation of mine soils and other degraded lands. However, concerns associated with the use of fly ash must be addressed before this practice can be widely adopted. There is a vast extent of degraded lands across the world that has some degree of potential for use in carbon sequestration. Degraded lands comprise nearly 2 X 109 ha of land throughout the world.7 Although the potential is obviously smaller in the United States, there are still approximately 4 X 106 ha of degraded lands that previously resulted from mining operations14 and an additional 1.4 X 108 ha of poorly managed lands. Thus, according to Lal and others the potential is to sequester approximately 11 Pg of carbon over the next 50 years.1,10 The realization of this potential will likely be dependent on economic incentives and the use of soil amendments such as fly ash. There are many potential benefits documented for the use of fly ash as a soil amendment. For example, fly ash has been shown to increase porosity, water-holding capacity, pH, conductivity, and dissolved SO42-, CO32-, HCO3-, Cl- and basic cations, although some effects are notably decreased in high-clay soils.8,13,9 The potential is that these effects will promote increased growth of plants (either trees or grasses) and result in greater carbon accumulation in the soil than in untreated degraded soils. This paper addresses the potential for carbon sequestration in soils amended with fly ash and examines some of the issues that should be considered in planning this option. We describe retrospective studies of soil carbon accumulation on reclaimed mine lands, leaching studies of fly ash and carbon sorption studies of fly ash.

  9. Erosion of soil organic carbon: implications for carbon sequestration

    USGS Publications Warehouse

    Van Oost, Kristof; Van Hemelryck, Hendrik; Harden, Jennifer W.

    2009-01-01

    Agricultural activities have substantially increased rates of soil erosion and deposition, and these processes have a significant impact on carbon (C) mineralization and burial. Here, we present a synthesis of erosion effects on carbon dynamics and discuss the implications of soil erosion for carbon sequestration strategies. We demonstrate that for a range of data-based parameters from the literature, soil erosion results in increased C storage onto land, an effect that is heterogeneous on the landscape and is variable on various timescales. We argue that the magnitude of the erosion term and soil carbon residence time, both strongly influenced by soil management, largely control the strength of the erosion-induced sink. In order to evaluate fully the effects of soil management strategies that promote carbon sequestration, a full carbon account must be made that considers the impact of erosion-enhanced disequilibrium between carbon inputs and decomposition, including effects on net primary productivity and decomposition rates.

  10. Carbon sequestration and rangelands: Effects of length of management practice and precipitation gradients

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Management of rangelands can aid in the mitigation of rising atmospheric CO2 concentrations via carbon (C) storage in plant biomass and soil organic matter, a process termed C sequestration. Management practices that increase soil nitrogen (N), such as interseeding of N-fixing legumes, have the grea...

  11. Carbon capture and sequestration: integrating technology, monitoring, regulation

    Microsoft Academic Search

    E. Wilson; D. Gerard

    2007-01-01

    This book is the first systematic presentation of the technical, legal, and economic forces that must coalesce to realize carbon dioxide capture and geologic sequestration as a viable COâ reduction strategy. It synthesizes key engineering data and explains the technological and legal conditions that must be in place for carbon sequestration to be realized. Chapter headings are: 1: Carbon Capture

  12. Carbon Sequestration Atlas and Interactive Maps from the Southwest Regional Partnership on Carbon Sequestration

    DOE Data Explorer

    McPherson, Brian

    In November of 2002, DOE announced a global climate change initiative involving joint government-industry partnerships working together to find sensible, low cost solutions for reducing GHG emissions. As a result, seven regional partnerships were formed; the Southwest Regional Partnership on Carbon Sequestration (SWP) is one of those. These groups are utilizing their expertise to assess sequestration technologies to capture carbon emissions, identify and evaluate appropriate storage locations, and engage a variety of stakeholders in order to increase awareness of carbon sequestration. Stakeholders in this project are made up of private industry, NGOs, the general public, and government entities. There are a total of 44 current organizations represented in the partnership including electric utilities, oil and gas companies, state governments, universities, NGOs, and tribal nations. The SWP is coordinated by New Mexico Tech and encompasses New Mexico, Arizona, Colorado, Oklahoma, Utah, and portions of Kansas, Nevada, Texas, and Wyoming. Field test sites for the region are located in New Mexico (San Juan Basin), Utah (Paradox Basin), and Texas (Permian Basin).[Taken from the SWP C02 Sequestration Atlas] The SWP makes available at this website their CO2 Sequestration Atlas and an interactive data map.

  13. ANALYSIS OF ENHANCED COALBED METHANE RECOVERY THROUGH CARBON SEQUESTRATION IN THE CENTRAL

    E-print Network

    ANALYSIS OF ENHANCED COALBED METHANE RECOVERY THROUGH CARBON SEQUESTRATION IN THE CENTRAL recovered. Carbon sequestration, therefore, allows the utilization of unexploited mineral resources while potential of coalbed methane production using carbon dioxide sequestration in the Central Appalachian Basin

  14. Carbon sequestration potential of tropical pasture compared with afforestation in Panama

    E-print Network

    Potvin, Catherine

    Carbon sequestration potential of tropical pasture compared with afforestation in Panama S E B) to estimate the carbon sequestration potential of tropical pasture compared with afforestation; and (3 show the potential for considerable carbon sequestration of tropical afforestation and highlight

  15. Efficiency of incentives to jointly increase carbon sequestration and species conservation

    E-print Network

    Weiblen, George D

    Efficiency of incentives to jointly increase carbon sequestration and species conservation the provision of carbon sequestration and species conservation across heterogeneous landscapes. Using data from the Willamette Basin, Oregon, we compare the provision of carbon sequestration and species conservation under

  16. Computational Geosciences Improved Semi-Analytical Simulation of Geological Carbon Sequestration

    E-print Network

    Bau, Domenico A.

    Computational Geosciences Improved Semi-Analytical Simulation of Geological Carbon Sequestration of Geological Carbon Sequestration Article Type: Manuscript Keywords: Semi-Analytical Modeling; Iterative Methods; Geological Carbon Sequestration; Injection Site Assessment Corresponding Author: Brent Cody

  17. Invitation to Present, Sponsor, and Attend Geologic Carbon Sequestration Site Integrity: Characterization and

    E-print Network

    Daniels, Jeffrey J.

    Invitation to Present, Sponsor, and Attend Geologic Carbon Sequestration Site Integrity and long-term sustainability of geologic carbon sequestration sites depends upon the ability on geologic carbon sequestration site monitoring. The management framework and costs will be similar

  18. Monitoring of cropland practices for carbon sequestration purposes in north central Montana by Landsat remote sensing

    E-print Network

    Lawrence, Rick L.

    Monitoring of cropland practices for carbon sequestration purposes in north central Montana form 30 March 2009 Accepted 11 April 2009 Keywords: Carbon sequestration validation Tillage type. Cropland producers involved in terrestrial carbon sequestration programs are paid to implement practices

  19. WEST COAST REGIONAL CARBON SEQUESTRATION PARTNERSHIP

    SciTech Connect

    Larry Myer; Terry Surles; Kelly Birkinshaw

    2004-01-01

    The West Coast Regional Carbon Sequestration Partnership is one of seven partnerships which have been established by the US Department of Energy (DOE) to evaluate carbon dioxide capture, transport and sequestration (CT&S) technologies best suited for different regions of the country. The West Coast Region comprises Arizona, California, Nevada, Oregon, Washington, and the North Slope of Alaska. Led by the California Energy Commission, the West Coast Partnership is a consortium of over thirty five organizations, including state natural resource and environmental protection agencies; national labs and universities; private companies working on CO{sub 2} capture, transportation, and storage technologies; utilities; oil and gas companies; nonprofit organizations; and policy/governance coordinating organizations. In an eighteen month Phase I project, the Partnership will evaluate both terrestrial and geologic sequestration options. Work will focus on five major objectives: (1) Collect data to characterize major CO{sub 2} point sources, the transportation options, and the terrestrial and geologic sinks in the region, and compile and organize this data via a geographic information system (GIS) database; (2) Address key issues affecting deployment of CT&S technologies, including storage site permitting and monitoring, injection regulations, and health and environmental risks (3) Conduct public outreach and maintain an open dialogue with stakeholders in CT&S technologies through public meetings, joint research, and education work (4) Integrate and analyze data and information from the above tasks in order to develop supply curves and cost effective, environmentally acceptable sequestration options, both near- and long-term (5) Identify appropriate terrestrial and geologic demonstration projects consistent with the options defined above, and create action plans for their safe and effective implementation A kickoff meeting for the West Coast Partnership was held on Sept 30-Oct.1. Contracts were then put into place with twelve organizations which will carry out the technical work required to meet Partnership objectives.

  20. Carbon Dioxide Sequestration Industrial-scale processes are available for separating carbon dioxide from the post-

    E-print Network

    Carbon Dioxide Sequestration Industrial-scale processes are available for separating carbon dioxide dioxide separation and sequestration because the lower cost of carbon dioxide separation from for injection of carbon dioxide into oil or gas-bearing formations. An advantage of sequestration involving

  1. Carbon Sequestration and Its Role in the Global Carbon Cycle Geophysical Monograph Series 183

    E-print Network

    Pennycook, Steve

    73 Carbon Sequestration and Its Role in the Global Carbon Cycle Geophysical Monograph Series 183. Blaine Metting2 The purpose of this chapter is to review terrestrial biological carbon sequestration Northwest National Laboratory, Richland, Washington, USA. #12;74 TERRESTRIAL BIOLOGICAL CARBON SEqUESTRATION

  2. The Midwest Regional Carbon Sequestration Partnership (MRCSP)

    SciTech Connect

    James J. Dooley; Robert Dahowski; Casie Davidson

    2005-12-01

    This final report summarizes the Phase I research conducted by the Midwest regional Carbon Sequestration Partnership (MRCSP). The Phase I effort began in October 2003 and the project period ended on September 31, 2005. The MRCSP is a public/private partnership led by Battelle with the mission of identifying the technical, economic, and social issues associated with implementation of carbon sequestration technologies in its seven state geographic region (Indiana, Kentucky, Maryland, Michigan, Ohio, Pennsylvania, and West Virginia) and identifying viable pathways for their deployment. It is one of seven partnerships that together span most of the U.S. and parts of Canada that comprise the U.S. Department of Energy's (DOE's) Regional Carbon Sequestration Program led by DOE's national Energy Technology Laboratory (NETL). The MRCSP Phase I research was carried out under DOE Cooperative Agreement No. DE-FC26-03NT41981. The total value of Phase I was $3,513,513 of which the DOE share was $2,410,967 or 68.62%. The remainder of the cost share was provided in varying amounts by the rest of the 38 members of MRCSP's Phase I project. The next largest cost sharing participant to DOE in Phase I was the Ohio Coal Development Office within the Ohio Air Quality Development Authority (OCDO). OCDO's contribution was $100,000 and was contributed under Grant Agreement No. CDO/D-02-17. In this report, the MRCSP's research shows that the seven state MRCSP region is a major contributor to the U. S. economy and also to total emissions of CO2, the most significant of the greenhouse gases thought to contribute to global climate change. But, the research has also shown that the region has substantial resources for sequestering carbon, both in deep geological reservoirs (geological sequestration) and through improved agricultural and land management practices (terrestrial sequestration). Geological reservoirs, especially deep saline reservoirs, offer the potential to permanently store CO2 for literally 100s of years even if all the CO2 emissions from the region's large point sources were stored there, an unlikely scenario under any set of national carbon emission mitigation strategies. The terrestrial sequestration opportunities in the region have the biophysical potential to sequester up to 20% of annual emissions from the region's large point sources of CO2. This report describes the assumptions made and methods employed to arrive at the results leading to these conclusions. It also describes the results of analyses of regulatory issues in the region affecting the potential for deployment of sequestration technologies. Finally, it describes the public outreach and education efforts carried out in Phase I including the creation of a web site dedicated to the MRCSP at www.mrcsp.org.

  3. Negative emissions from BioEnergy use, carbon capture and sequestration (BECS)—the case of biomass production by sustainable forest management from semi-natural temperate forests

    Microsoft Academic Search

    Florian Kraxner; Sten Nilsson; Michael Obersteiner

    2003-01-01

    In this paper, we show how nature oriented forestry measures in a typical temperate forest type in combination with bioenergy systems could lead to continuous and permanent removal of CO2 from the atmosphere. We employ a forest growth model suited for modeling uneven-aged mixed temperate stands and analyze the interaction with biomass energy systems that allow for CO2 removal and

  4. Continuous mode of carbon dioxide sequestration by C. sorokiniana and subsequent use of its biomass for hydrogen production by E. cloacae IIT-BT 08.

    PubMed

    Kumar, Kanhaiya; Roy, Shantonu; Das, Debabrata

    2013-10-01

    The present study investigated to find out the suitability of the CO2 sequestered algal biomass of Chlorella sorokiniana as substrate for the hydrogen production by Enterobacter cloacae IIT-BT 08. The maximum biomass productivity in continuous mode of operation in autotrophic condition was enhanced from 0.05 g L(-1) h(-1) in air to 0.11 g L(-1) h(-1) in 5% air-CO2 (v/v) gas mixture at an optimum dilution rate of 0.05 h(-1). Decrease in steady state biomass and productivity was less sensitive at higher dilution and found fitting with the model proposed by Eppley and Dyer (1965). Pretreated algal biomass of 10 g L(-1) with 2% (v/v) HCl-heat was found most suitable for hydrogen production yielding 9±2 mol H2 (kg COD reduced)(-1) and was found fitting with modified Gompertz equation. Further, hydrogen energy recovery in dark fermentation was significantly enhanced compared to earlier report of hydrogen production by biophotolysis of algae. PMID:23453984

  5. Black carbon sequestration as an alternative to bioenergy

    Microsoft Academic Search

    Malcolm Fowles

    2007-01-01

    Most policy and much research concerning the application of biomass to reduce global warming gas emissions has concentrated either on increasing the Earth's reservoir of biomass or on substituting biomass for fossil fuels, with or without CO2 sequestration. Suggested approaches entail varied risks of impermanence, delay, high costs, and unknowable side-effects. An under-researched alternative approach is to extract from biomass

  6. SOUTHEAST REGIONAL CARBON SEQUESTRATION PARTNERSHP (SECARB)

    SciTech Connect

    Kenneth J. Nemeth

    2005-04-01

    The Southeast Regional Carbon Sequestration Partnership (SECARB) is on schedule and within budget projections for the work completed during the first 18-months of its two year program. Work during the semiannual period (fifth and sixth project quarters) of the project (October 1, 2004-March 31, 2005) was conducted within a ''Task Responsibility Matrix.'' Under Task 1.0 Define Geographic Boundaries of the Region, no changes occurred during the fifth or sixth quarters of the project. Under Task 2.0 Characterize the Region, refinements have been made to the general mapping and screening of sources and sinks. Integration and geographical information systems (GIS) mapping is ongoing. Characterization during this period was focused on smaller areas having high sequestration potential. Under Task 3.0 Identify and Address Issues for Technology Deployment, SECARB continues to expand upon its assessment of safety, regulatory, permitting, and accounting frameworks within the region to allow for wide-scale deployment of promising terrestrial and geologic sequestration approaches. Under Task 4.0 Develop Public Involvement and Education Mechanisms, SECARB has used results of a survey and focus group meeting to refine approaches that are being taken to educate and involve the public. Under Task 5.0 Identify the Most Promising Capture, Sequestration, and Transport Options, SECARB has evaluated findings from work performed during the first 18-months. The focus of the project team has shifted from region-wide mapping and characterization to a more detailed screening approach designed to identify the most promising opportunities. Under Task 6.0 Prepare Action Plans for Implementation and Technology Validation Activity, the SECARB team is developing an integrated approach to implementing the most promising opportunities and in setting up measurement, monitoring and verification (MMV) programs for the most promising opportunities. Milestones completed during the fifth and sixth project quarters included: (1) Q1-FY05--Assess safety, regulatory and permitting issues; and (2) Q2-FY05--Finalize inventory of major sources/sinks and refine GIS algorithms.

  7. Trading Water for Carbon with Biological Carbon Sequestration

    Microsoft Academic Search

    Robert B. Jackson; Esteban G. Jobbagy; Roni Avissar; Somnath Baidya Roy; Damian J. Barrett; Charles W. Cook; Kathleen A. Farley; David C. le Maitre; Bruce A. McCarl; Brian C. Murray

    2005-01-01

    Carbon sequestration strategies highlight tree plantations without considering their full environmental consequences. We combined field research, synthesis of more than 600 observations, and climate and economic modeling to document substantial losses in stream flow, and increased soil salinization and acidification, with afforestation. Plantations decreased stream flow by 227 millimeters per year globally (52%), with 13% of streams drying completely for

  8. Modeling carbon sequestration in afforestation, agroforestry and forest management projects: the CO2FIX V.2 approach

    Microsoft Academic Search

    Omar R. Maseraa; J. F. Garza-Caligaris; M. Kanninen; T. Karjalainen; J. Liski; G. J. Nabuurs; A. Pussinen; B. H. J. de Jong; G. M. J. Mohren

    2003-01-01

    The paper describes the Version 2 of the CO2FIX (CO2FIX V.2) model, a user-friendly tool for dynamically estimating the carbon sequestration potential of forest management, agroforesty and afforestation projects. CO2FIX V.2 is a multi-cohort ecosystem-level model based on carbon accounting of forest stands, including forest biomass, soils and products. Carbon stored in living biomass is estimated with a forest cohort

  9. Water Challenges for Geologic Carbon Capture and Sequestration

    Microsoft Academic Search

    Robin L. Newmark; Samuel J. Friedmann; Susan A. Carroll

    2010-01-01

    Carbon capture and sequestration (CCS) has been proposed as a means to dramatically reduce greenhouse gas emissions with the continued use of fossil fuels. For geologic sequestration, the carbon dioxide is captured from large point sources (e.g., power plants or other industrial sources), transported to the injection site and injected into deep geological formations for storage. This will produce new

  10. Carbon dioxide sequestration in concrete in different curing environments

    E-print Network

    Wisconsin-Milwaukee, University of

    Carbon dioxide sequestration in concrete in different curing environments Y.-m. Chun, T.R. Naik, USA ABSTRACT: This paper summarizes the results of an investigation on carbon dioxide (CO2) sequestration in concrete. Concrete mixtures were not air entrained. Concrete mixtures were made containing

  11. Carbon sequestration and its potential in agricultural soils of China

    Microsoft Academic Search

    Wenjuan Sun; Yao Huang; Wen Zhang; Yongqiang Yu

    2010-01-01

    Agricultural soils hold potential for the expansion of carbon sequestration. With this in mind, we investigated changes in the soil organic carbon (SOC) on the basis of an analysis of data sets extracted from 146 publications and further projected the SOC sequestration potential in China's cropland. Our results suggest that a significant increase in the SOC occurred in east and

  12. Agricultural Encroachment: Implications for Carbon Sequestration in Tropical African Wetlands

    NASA Astrophysics Data System (ADS)

    Jones, M. B.; Saunders, M.; Kansiime, F.

    2013-12-01

    Tropical wetlands have been shown to exhibit high rates of net primary productivity and may therefore play an important role in global climate change mitigation through carbon assimilation and sequestration. Many permanently flooded areas of tropical East Africa are dominated by the highly productive C4 emergent macrophyte sedge, Cyperus papyrus L. (papyrus). However, increasing population densities around wetland margins in East Africa are reducing the extent of papyrus coverage due to the planting of subsistence crops such as Cocoyam (Colocasia esculenta). We have assessed the impact of this land use change on the carbon cycle in theis wetland environment. Eddy covariance techniques were used, on a campaign basis, to measure fluxes of carbon dioxide over both papyrus and cocoyam dominated wetlands located on the Ugandan shore of Lake Victoria. The integration of flux data over the annual cycle shows that papyrus wetlands have the potential to act as a sink for significant amounts of carbon, in the region of 10 t C ha-1 yr-1. The cocoyam vegetation was found to assimilate ~7 t C ha-1 yr-1 but when carbon exports from crop biomass removal were taken into account these wetlands represent a significant net loss of carbon of similar magnitude. The development of sustainable wetland management strategies are therefore required in order to promote the dual wetland function of crop production and the mitigation of greenhouse gas emissions especially under future climate change scenarios.

  13. Received 28 Apr 2013 | Accepted 9 Sep 2013 | Published 15 Oct 2013 Earthworms facilitate carbon sequestration through

    E-print Network

    Neher, Deborah A.

    carbon sequestration through unequal amplification of carbon stabilization compared with mineralization carbon would entirely reflect the earthworms' contribution to net carbon sequestration. We show how two widespread earthworm invaders affect net carbon sequestration through impacts on the balance of carbon

  14. Development of an agroforestry carbon sequestration project in Khammam district, India

    Microsoft Academic Search

    P. Sudha; V. Ramprasad; M. D. V. Nagendra; H. D. Kulkarni; N. H. Ravindranath

    2007-01-01

    This paper addresses methodological issues in estimating carbon (C) sequestration potential, baseline determination, additionality\\u000a and leakage in Khammam district, Andhra Pradesh, southern part of India. Technical potential for afforestation on cultivable\\u000a wastelands, fallow, and marginal croplands was considered for Eucalyptus clonal plantations. Field studies for aboveground and belowground biomass, woody litter, and soil organic carbon for baseline\\u000a and project scenarios

  15. Terrestrial Biological Carbon Sequestration: Science for Enhancement and Implementation

    SciTech Connect

    Post, W. M.; Amonette, James E.; Birdsey, Richard A.; Garten, Jr, C. T.; Izaurralde, Roberto C.; Jardine, Philip M.; Jastrow, Julie D.; Lal, Rattan; Marland , G.; McCarl, Bruce A.; Thomson, Allison M.; West, T. O.; Wullschleger, Stan D.; Metting, F. Blaine

    2009-12-01

    Fossil-fuel combustion and land-use change have elevated atmospheric CO2 concentrations from 280 ppmv at the beginning of the industrial era to more than 381 ppmv in 2006. Carbon dioxide emissions from fossil fuels and cement rose 71% during 1970–2000 to a rate of 7.0 PgC/y (1). Canadell et al. (2) estimated that CO2 emissions rose at a rate at 1.3% per year during 1990–1999, but since 2000 it has been growing at 3.3% per year. Emissions reached 8.4 PgC/y in 2006. It is likely that the current 2-ppm annual increase will accelerate as the global economy expands, increasing the risk of climate system impacts. There is good agreement that photosynthetic CO2 capture from the atmosphere and storage of the C in above- and belowground biomass and in soil organic and inorganic forms could be exploited for safe and affordable greenhouse gas (GHG) mitigation (3). Nevertheless, C sequestration in the terrestrial biosphere has been a source of contention before and since the drafting of the Kyoto Protocol in 1997. Concerns have been raised that C sequestration in the biosphere is not permanent, that it is difficult to measure and monitor, that there would be “carbon leakage” outside of the mitigation activity, and that any attention paid to environmental sequestration would be a distraction from the central issue of reducing GHG emissions from energy production and use. A decade after drafting the Kyoto Protocol, it is clear that international accord and success in reducing emissions from the energy system are not coming easily and concerns about climate change are growing. It is time to re-evaluate all available options that might not be permanent yet have the potential to buy time, bridging to a future when new energy system technologies and a transformed energy infrastructure can fully address the climate challenge. Terrestrial sequestration is one option large enough to make a contribution in the coming decades using proven land-management methods and with the possibility that new technologies could significantly enhance the opportunity. Here we review progress on key scientific, economic, and social issues; postulate the extent to which new technologies might significantly enhance terrestrial sequestration potential; and address remaining research needs.

  16. Harvesting capacitive carbon by carbonization of waste biomass in molten salts.

    PubMed

    Yin, Huayi; Lu, Beihu; Xu, Yin; Tang, Diyong; Mao, Xuhui; Xiao, Wei; Wang, Dihua; Alshawabkeh, Akram N

    2014-07-15

    Conversion of waste biomass to value-added carbon is an environmentally benign utilization of waste biomass to reduce greenhouse gas emissions and air pollution caused by open burning. In this study, various waste biomasses are converted to capacitive carbon by a single-step molten salt carbonization (MSC) process. The as-prepared carbon materials are amorphous with oxygen-containing functional groups on the surface. For the same type of waste biomass, the carbon materials obtained in Na2CO3-K2CO3 melt have the highest Brunauer-Emmett-Teller (BET) surface area and specific capacitance. The carbon yield decreases with increasing reaction temperature, while the surface area increases with increasing carbonization temperature. A working temperature above 700 °C is required for producing capacitive carbon. The good dissolving ability of alkaline carbonate molten decreases the yield of carbon from waste biomasses, but helps to produce high surface area carbon. The specific capacitance data confirm that Na2CO3-K2CO3 melt is the best for producing capacitive carbon. The specific capacitance of carbon derived from peanut shell is as high as 160 F g(-1) and 40 ?F cm(-2), and retains 95% after 10,000 cycles at a rate of 1 A g(-1). MSC offers a simple and environmentally sound way for transforming waste biomass to highly capacitive carbon as well as an effective carbon sequestration method. PMID:24983414

  17. Carbon Dioxide Sequestration in Concrete Using Vacuum-Carbonation Alain Azar, Prof. Yixin Shao

    E-print Network

    Barthelat, Francois

    Carbon Dioxide Sequestration in Concrete Using Vacuum-Carbonation Alain Azar, Prof. Yixin Shao promising carbon uptake results and is a viable option for carbonation curing. Carbon sequestration increase in Carbon dioxide (CO2) emissions over the past five decades, specific ways to reduce

  18. Animals as an indicator of carbon sequestration and valuable landscapes

    PubMed Central

    Szyszko, Jan; Schwerk, Axel; Malczyk, Jaros?aw

    2011-01-01

    Abstract Possibilities of the assessment of a landscape with the use of succession development stages, monitored with the value of the Mean Individual Biomass (MIB) of carabid beetles and the occurrence of bird species are discussed on the basis of an example from Poland. Higher variability of the MIB value in space signifies a greater biodiversity. Apart from the variability of MIB, it is suggested to adopt the occurrence of the following animals as indicators, (in the order of importance), representing underlying valuable landscapes: black stork, lesser spotted eagle, white-tailed eagle, wolf, crane and white stork. The higher number of these species and their greater density indicate a higher value of the landscape for biodiversity and ecosystem services, especially carbon sequestration. All these indicators may be useful to assess measures for sustainable land use. PMID:21738434

  19. Engineering carbon materials from the hydrothermal carbonization process of biomass.

    PubMed

    Hu, Bo; Wang, Kan; Wu, Liheng; Yu, Shu-Hong; Antonietti, Markus; Titirici, Maria-Magdalena

    2010-02-16

    Energy shortage, environmental crisis, and developing customer demands have driven people to find facile, low-cost, environmentally friendly, and nontoxic routes to produce novel functional materials that can be commercialized in the near future. Amongst various techniques, the hydrothermal carbonization (HTC) process of biomass (either of isolated carbohydrates or crude plants) is a promising candidate for the synthesis of novel carbon-based materials with a wide variety of potential applications. In this Review, we will discuss various synthetic routes towards such novel carbon-based materials or composites via the HTC process of biomass. Furthermore, factors that influence the carbonization process will be analyzed and the special chemical/physical properties of the final products will be discussed. Despite the lack of a clear mechanism, these novel carbonaceous materials have already shown promising applications in many fields such as carbon fixation, water purification, fuel cell catalysis, energy storage, CO(2) sequestration, bioimaging, drug delivery, and gas sensors. Some of the most promising examples will also be discussed here, demonstrating that the HTC process can rationally design a rich family of carbonaceous and hybrid functional carbon materials with important applications in a sustainable fashion. PMID:20217791

  20. A Resource Assessment Approach to Carbon Sequestration: Implications for Soil Carbon Science and Assessment

    NASA Astrophysics Data System (ADS)

    Sundquist, E. T.

    2008-12-01

    Carbon sequestration has emerged as an important concern in decisions affecting land, water, and ecosystem resources. There is a need for comprehensive carbon sequestration resource assessments that address (1) the full range of sequestration options (biological, geological, and oceanic sequestration; and actions that affect the vulnerability of existing carbon storage); (2) both potential rates and potential capacities of carbon storage; and (3) the broad information needs of managers and decision makers who are responsible for the array of both carbon and non-carbon resources that are involved in carbon sequestration decisions. The need for this comprehensive approach is well illustrated by the fact that biological carbon sequestration is most often evaluated in terms of potential rates, whereas geological sequestration is most often evaluated in terms of potential capacities. Non-specialists have no basis for comparing these two commonly used sequestration metrics. A further difficulty is that carbon sequestration options are often described in a context of advocacy for particular choices. Thus, non-specialists may be reluctant to make decisions based simply on reported information without further evaluation. Carbon sequestration resource assessment inherently requires evaluating the potential future availability and vulnerability of carbon storage. Soil carbon sequestration assessment is particularly challenging. The natural heterogeneity of soil properties makes soil carbon monitoring and accounting extremely difficult, especially given the need for resource assessments that are scalable from local projects to regional, national, and global estimates. Basic research is needed to understand the dynamic interactive processes that affect potential rates and capacities of soil carbon storage, including its permanence in both managed and unmanaged settings. Economic analysis is necessary to anticipate relevant costs, benefits, risks, and tradeoffs that are involved in decisions that affect soil carbon storage. Uncertainties of potential effects due to climate and land-use change are large and difficult to quantify, requiring innovative scenario-based evaluation. Comprehensive carbon sequestration resource assessments are needed to evaluate soil carbon sequestration in the context of other sequestration options and other resource priorities.

  1. Carbon sequestration may adversely affect deep sea life

    NSDL National Science Digital Library

    L. D. Danny Harvey

    The impact on surface water acidity and carbonate concentrations for various carbon dioxide-injection scenarios was assessed. Models simulated an increase, a decrease and unchanged quantities of carbon dioxide production. Results indicate that sequestration would be a useful method of mitigating carbon in the atmosphere only when paired with other carbon dioxide reduction methods, including major reductions in fossil fuel use.

  2. Comparison of Potential of Two High Spatial Resolution Optical Remote Sensing Data in Estimation of Carbon Sequestration of Vegetation

    NASA Astrophysics Data System (ADS)

    Prasad, Arun; Singh Rana, Sumit; Lakshmanan, Gnanappazham

    2012-07-01

    The estimation of biomass is one of the hot topics in the present scenario to unveil the quest that how much Carbon dioxide could be sequestrated by vegetation. Climate change modelling requires the rate of terrestrial carbon sequestration. The conventional methods of quantifying carbon sink in forest ecosystem are difficult and time consuming due to its topography and inaccessibility. Advances in Remote sensing and Image Processing have improvised the indirect estimation methods to estimate the amount of carbon stored in soil. The present study aims at the estimation of carbon sequestrated by the rubber plantation of Valiamala area, Thiruvananthapuram. Indirect method of estimating Leaf Area Index (LAI) from two high resolution satellite data, IKONOS and Geoeye-1 image is followed by correlating Normalized Differential Vegetation Index (NDVI) and field based LAI values measured by Plant Canopy Analyzer instrument from the study area. An allometric equation is derived to estimate LAI for the whole study area. The estimated LAI is highly correlated with NDVI map generated. Moreover, soil samples have been collected from equally distributed 15 sample points in the study area for the direct estimation of Total Organic Carbon (TOC) using elemental analysis. Carbon sequestration data for the 12 of the sample location data are used to derive the function of LAI for carbon estimation using multiple linear regression analysis. Remaining 3 sample location data are used to validate the equation derived. The results of the analysis of satellite data are compared for the carbon sequestration. Keywords: Carbon Sequestration, Leaf Area Index, Total Organic Carbon

  3. Carbon dioxide sequestration by direct mineral carbonation with carbonic acid

    SciTech Connect

    O'Connor, William K.; Dahlin, David C.; Nilsen, David N.; Walters, Richard P.; Turner, Paul C.

    2000-01-01

    The Albany Research Center (ARC) of the U.S. Dept. of Energy (DOE) has been conducting a series of mineral carbonation tests at its Albany, Oregon, facility over the past 2 years as part of a Mineral Carbonation Study Program within the DOE. Other participants in this Program include the Los Alamos National Laboratory, Arizona State University, Science Applications International Corporation, and the DOE National Energy Technology Laboratory. The ARC tests have focused on ex-situ mineral carbonation in an aqueous system. The process developed at ARC utilizes a slurry of water mixed with a magnesium silicate mineral, olivine [forsterite end member (Mg2SiO4)], or serpentine [Mg3Si2O5(OH)4]. This slurry is reacted with supercritical carbon dioxide (CO2) to produce magnesite (MgCO3). The CO2 is dissolved in water to form carbonic acid (H2CO3), which dissociates to H+ and HCO3 -. The H+ reacts with the mineral, liberating Mg2+ cations which react with the bicarbonate to form the solid carbonate. The process is designed to simulate the natural serpentinization reaction of ultramafic minerals, and for this reason, these results may also be applicable to in-situ geological sequestration regimes. Results of the baseline tests, conducted on ground products of the natural minerals, have been encouraging. Tests conducted at ambient temperature (22 C) and subcritical CO2 pressures (below 73 atm) resulted in very slow conversion to the carbonate. However, when elevated temperatures and pressures are utilized, coupled with continuous stirring of the slurry and gas dispersion within the water column, significant reaction occurs within much shorter reaction times. Extent of reaction, as measured by the stoichiometric conversion of the silicate mineral (olivine) to the carbonate, is roughly 90% within 24 hours, using distilled water, and a reaction temperature of 185?C and a partial pressure of CO2 (PCO2) of 115 atm. Recent tests using a bicarbonate solution, under identical reaction conditions, have achieved roughly 83% conversion of heat treated serpentine and 84% conversion of olivine to the carbonate in 6 hours. The results from the current studies suggest that reaction kinetics can be improved by pretreatment of the mineral, catalysis of the reaction, or some combination of the two. Future tests are intended to examine a broader pressure/temperature regime, various pretreatment options, as well as other mineral groups.

  4. Root biomass responses to elevated CO2 limit soil C sequestration in managed grasslands

    NASA Astrophysics Data System (ADS)

    Sillen, W. M. A.; Dieleman, W. I. J.

    2012-01-01

    Elevated atmospheric CO2 levels and increasing nitrogen deposition both stimulate plant production in terrestrial ecosystems. Moreover, nitrogen deposition could alleviate an increasing nitrogen limitation experienced by plants exposed to elevated CO2 concentrations. However, an increased rate of C flux through the soil compartment as a consequence of elevated CO2 concentrations has been suggested to limit C sequestration in terrestrial ecosystems, questioning the potential for terrestrial C uptake to mitigate the increasing atmospheric CO2 concentrations. Our study used data from 69 published studies to investigate whether CO2 elevation and/or nitrogen fertilization could induce an increased carbon storage in grasslands, and considered the influence of management practices involving biomass removal or irrigation on the elevated CO2 effects. Our results confirmed a positive effect of elevated CO2 levels and nitrogen fertilization on plant growth, but revealed that N availability is essential for the increased C influx under elevated CO2 to propagate into belowground C pools. However, moderate nutrient additions also promoted decomposition processes in elevated CO2, reducing the potential for increased soil C storage. An important role in the soil carbon response to elevated CO2 was attributed to the root response, since there was a lower potential for increases in soil C content when root biomass was more responsive to CO2 elevation. Future elevated CO2 concentrations and increasing N deposition might thus increase C storage in plant biomass, but the potential for increased soil C storage is limited.

  5. SOUTHEAST REGIONAL CARBON SEQUESTRATION PARTNERSHIP (SECARB)

    SciTech Connect

    Kenneth J. Nemeth

    2004-09-01

    The Southeast Regional Carbon Sequestration Partnership (SECARB) is on schedule and within budget projections for the work completed during the first year of its two year program. Work during the semiannual period (third and fourth quarter) of the project (April 1--September 30, 2004) was conducted within a ''Task Responsibility Matrix.'' Under Task 1.0 Define Geographic Boundaries of the Region, Texas and Virginia were added during the second quarter of the project and no geographical changes occurred during the third or fourth quarter of the project. Under Task 2.0 Characterize the Region, general mapping and screening of sources and sinks has been completed, with integration and Geographical Information System (GIS) mapping ongoing. The first step focused on the macro level characterization of the region. Subsequent characterization will focus on smaller areas having high sequestration potential. Under Task 3.0 Identify and Address Issues for Technology Deployment, SECARB has completed a preliminary assessment of safety, regulatory, permitting, and accounting frameworks within the region to allow for wide-scale deployment of promising terrestrial and geologic sequestration approaches. Under Task 4.0 Develop Public Involvement and Education Mechanisms, SECARB has conducted a survey and focus group meeting to gain insight into approaches that will be taken to educate and involve the public. Task 5.0 and 6.0 will be implemented beginning October 1, 2004. Under Task 5.0 Identify the Most Promising Capture, Sequestration, and Transport Options, SECARB will evaluate findings from work performed during the first year and shift the focus of the project team from region-wide mapping and characterization to a more detailed screening approach designed to identify the most promising opportunities. Under Task 6.0 Prepare Action Plans for Implementation and Technology Validation Activity, the SECARB team will develop an integrated approach to implementing and setting up measurement, monitoring and verification (MMV) programs for the most promising opportunities. During this semiannual period special attention was provided to Texas and Virginia, which were added to the SECARB region, to ensure a smooth integration of activities with the other 9 states. Milestones completed and submitted during the third and fourth quarter included: Q3-FY04--Complete initial development of plans for GIS; and Q4-FYO4--Complete preliminary action plan and assessment for overcoming public perception issues.

  6. Carbon Dioxide Enrichment Enhances Carbon Sequestration of Dryland Soil Microbial Communities

    NASA Astrophysics Data System (ADS)

    Lane, Richard; Menon, Manoj; McQuaid, Jim; Dougill, Andy; Adams, David; Thomas, Andrew; Hoon, Steve

    2013-04-01

    Biological Soil Crusts (BSCs) are found in many terrestrial environments, forming substantial biomass in dryland areas of the Earth; they play a key role in carbon and nitrogen cycling in these drylands where vascular vegetation is sparse and soil nutrient content poor. Metabolic activity of BSC is principally dependent on moisture availability, but also on temperature and light conditions. Less understood is how these communities would respond to elevated levels of CO2 in the atmosphere. We will report on the results of elevated levels of atmospheric CO2 and wetting treatments on carbon fluxes (photosynthesis and respiration) of cyanobacterial BSC from Kalahari Sands, using several newly designed dynamic gas exchange chambers (DGECs), in which the internal atmosphere was controlled. CO2 flux was monitored during controlled laboratory experiments in two phases under simulated rainfall events (2 & 5 mm plus control with no wetting, with three replicates of each) each lasting 3 days with a dry period in between. In phase 1, crusts were subjected to an atmosphere of 392 ppm CO2 (representing ambient level) in dry air; in phase 2, the CO2 concentration was 801 ppm (approximately twice the ambient level). Results showed that in both phases, there was a significant efflux (respiration) of CO2 immediately after the wetting treatments, followed by a substantial influx (sequestration) of CO2. The total carbon sequestrated was significantly higher than the controls in higher wetting and CO2 levels. There was an order of magnitude increase in C sequestration with 2 mm wetting treatment, and a threefold increase of C sequestration with 5 mm wetting treatment, when comparing results from elevated CO2 levels with results from ambient CO2 levels. These results reinforce the importance of BSCs as they are capable of fixing carbon in changing environmental conditions (short, erratic simulated rainfall events and rising CO2 levels) without any additional nutrient inputs, and would therefore play even greater roles in future global carbon budgets.

  7. Overview of the United States Priorities and Research Programs on Carbon Sequestration

    E-print Network

    Overview of the United States Priorities and Research Programs on Carbon Sequestration M. Karmis' Department of Energy established a Carbon Sequestration Program in 1998, Regional Carbon Sequestration. In conjunction with the Carbon Sequestration Program, the Department of Energy has funded and is funding numerous

  8. Permanence Discounting for Land-Based Carbon Sequestration Man-Keun Kim

    E-print Network

    McCarl, Bruce A.

    Permanence Discounting for Land-Based Carbon Sequestration By Man-Keun Kim Post Doctoral Fellow Discounting for Land-Based Carbon Sequestration 1. Introduction Land-based soil carbon sequestration has been explored the potential of land-based carbon sequestration strategies in the US such as afforestation

  9. [Seagrass ecosystems: contributions to and mechanisms of carbon sequestration].

    PubMed

    Qiu, Guang-Long; Lin, Hsing-Juh; Li, Zong-Shan; Fan, Hang-Qing; Zhou, Hao-Lang; Liu, Guo-Hua

    2014-06-01

    The ocean's vegetated habitats, in particular seagrasses, mangroves and salt marshes, each capture and store a comparable amount of carbon per year, forming the Earth's blue carbon sinks, the most intense carbon sinks on the planet. Seagrass meadows, characterized by high primary productivity, efficient water column filtration and sediment stability, have a pronounced capacity for carbon sequestration. This is enhanced by low decomposition rates in anaerobic seagrass sediments. The carbon captured by seagrass meadows contributes significantly to the total blue carbon. At a global scale, seagrass ecosystems are carbon sink hot spots and have profound influences on the global carbon cycle. This importance combined with the many other functions of seagrass meadows places them among the most valuable ecosystems in the world. Unfortunately, seagrasses are declining globally at an alarming rate owing to anthropogenic disturbances and climate change, making them also among the most threatened ecosystems on the Earth. The role of coastal systems in carbon sequestration has received far too little attention and thus there are still many uncertainties in evaluating carbon sequestration of global seagrass meadows accurately. To better assess the carbon sequestration of global seagrass ecosystems, a number of scientific issues should be considered with high priorities: 1) more accurate measurements of seagrass coverage at national and global levels; 2) more comprehensive research into species- and location-specific carbon sequestration efficiencies; 3) in-depth exploration of the effects of human disturbance and global climate change on carbon capture and storage by seagrass ecosystems. PMID:25223044

  10. CARBON SEQUESTRATION OF SURFACE MINE LANDS

    SciTech Connect

    Donald H. Graves; Christopher Barton; Richard Sweigard; Richard Warner

    2004-05-19

    The January-March 2004 Quarter was dedicated to tree planting activities in two locations in Kentucky. During year one of this project there was no available mine land to plant in the Hazard area so 107 acres were planted in the Martin county mine location. This year 120 acres was planted in the Hazard area to compensate for the prior year and an additional 57 acres was planted on Peabody properties in western Kentucky. An additional set of special plots were established on each of these areas that contained 4800 seedlings each for special carbon sequestration determinations. Plantings were also conducted to continue compaction and water quality studies on two newly established areas as well as confirmed measurements on the first years plantings. Total plantings on this project now amount to 357 acres containing 245,960 tree seedlings.

  11. Carbon Sequestration in Reclaimed Mined Soils of Ohio

    Microsoft Academic Search

    M. K. Shukla; K. Lorenz; R. Lal

    2006-01-01

    Assessment of soil organic carbon (SOC) sequestration potential of reclaimed minesoils (RMS) is important for preserving environmental quality and increasing agronomic yields. The mechanism of physical SOC sequestration is achieved by encapsulation of SOC in spaces within macro and microaggregates. The experimental sites, owned and maintained by American Electrical Power, were characterized by distinct age chronosequences of reclaimed minesoils and

  12. CARBON SEQUESTRATION IN RECLAIMED MINED SOILS OF OHIO

    Microsoft Academic Search

    M. K. Shukla; R. Lal

    2005-01-01

    Assessment of soil organic carbon (SOC) sequestration potential of reclaimed minesoils (RMS) is important for preserving environmental quality and increasing agronomic yields. The mechanism of physical SOC sequestration is achieved by encapsulation of SOM in spaces within macro and microaggregates. The experimental sites, owned and maintained by American Electrical Power, were characterized by distinct age chronosequences of reclaimed minesoils and

  13. An Overview of Geologic Carbon Sequestration Potential in California

    SciTech Connect

    Cameron Downey; John Clinkenbeard

    2005-10-01

    As part of the West Coast Regional Carbon Sequestration Partnership (WESTCARB), the California Geological Survey (CGS) conducted an assessment of geologic carbon sequestration potential in California. An inventory of sedimentary basins was screened for preliminary suitability for carbon sequestration. Criteria included porous and permeable strata, seals, and depth sufficient for critical state carbon dioxide (CO{sub 2}) injection. Of 104 basins inventoried, 27 met the criteria for further assessment. Petrophysical and fluid data from oil and gas reservoirs was used to characterize both saline aquifers and hydrocarbon reservoirs. Where available, well log or geophysical information was used to prepare basin-wide maps showing depth-to-basement and gross sand distribution. California's Cenozoic marine basins were determined to possess the most potential for geologic sequestration. These basins contain thick sedimentary sections, multiple saline aquifers and oil and gas reservoirs, widespread shale seals, and significant petrophysical data from oil and gas operations. Potential sequestration areas include the San Joaquin, Sacramento, Ventura, Los Angeles, and Eel River basins, followed by the smaller Salinas, La Honda, Cuyama, Livermore, Orinda, and Sonoma marine basins. California's terrestrial basins are generally too shallow for carbon sequestration. However, the Salton Trough and several smaller basins may offer opportunities for localized carbon sequestration.

  14. Soil Carbon Sequestration - Science for Enhancement and Implementation

    NASA Astrophysics Data System (ADS)

    Metting, F. B.; Post, W. M.; Amonette, J. E.; Bailey, V. L.; Garten, C. T.; Graham, R. L.; Izaurralde, R. C.; Jardine, P. M.; Jastrow, J.; Lal, R.; Marland, G.; McCarl, B. A.; Sands, R.; Thomson, A. M.; Tyler, D.; West, T. O.; Wullschleger, S. D.

    2008-12-01

    Introduction Fossil-fuel combustion and land-use change have elevated atmospheric CO2 concentrations from 280 ppmv at the beginning of the industrial era to more than 381 ppmv in 2006. Carbon dioxide emissions from fossil fuels and cement rose 71% during 1970-2000 to a rate of 7.0 PgC/y. It is estimated that CO2 emissions rose at a rate at 1.3% per year during 1990-1999, but have been growing since 2000 at a rate of3.3% per year, reaching 8.4 PgC in 2006. It is likely that the current 2-ppm annual increase will accelerate as the global economy expands, increasing the risk of climate system impacts. There is good agreement that photosynthetic CO2 capture from the atmosphere and storage of the C in above- and belowground biomass and in soil could be exploited for safe and affordable greenhouse gas (GHG) mitigation. Nevertheless, soil C sequestration in the terrestrial biosphere has been a source of contention before and since the drafting of the 1997 Kyoto Protocol. Concerns have been raised that soil C sequestration is not permanent, that it is difficult to measure and monitor, that there would be "carbon leakage" outside of the mitigation activity, and that it is a distraction from the central issue of reducing GHG emissions from energy production and use. A decade after drafting the Kyoto Protocol, it is clear that international accord and success in reducing emissions from the energy system are not coming easily and concerns about climate change are growing. It is time to re-evaluate options with potential to buy time, bridging to a future when new energy system technologies and a transformed energy infrastructure can fully address the climate challenge. Soil sequestration is one option large enough to make a difference in the coming decades using proven land management methods and with the possibility that new technologies could significantly enhance the opportunity. This presentation will review progress on key scientific, economic, and social issues, postulate the extent to which new technologies might significantly enhance soil sequestration potential, and address important ongoing research needs.

  15. Research Spotlight: Exploring storage stability for underground carbon sequestration

    Microsoft Academic Search

    Colin Schultz

    2011-01-01

    With the world turning on to concerns about global climate change, strategies are being weighed to combat rising atmospheric carbon dioxide levels. One proposed solution is geologic carbon sequestration---storing liquid carbon dioxide deep underground. However, for long-term underground storage of carbon dioxide, stability of the underground reservoirs is a major concern. Selecting the best storage locations requires a detailed understanding

  16. Carbon capture and sequestration: integrating technology, monitoring, regulation

    SciTech Connect

    Wilson, E.; Gerard, D. (eds.) [University of Minnesota, MI (United States). Energy and Environmental Policy and Law, Humphrey Institute of Public Affairs

    2007-05-15

    This book is the first systematic presentation of the technical, legal, and economic forces that must coalesce to realize carbon dioxide capture and geologic sequestration as a viable CO{sub 2} reduction strategy. It synthesizes key engineering data and explains the technological and legal conditions that must be in place for carbon sequestration to be realized. Chapter headings are: 1: Carbon Capture and Sequestration in Context: Technology, Regulation, and Social Acceptance; 2: Technologies: Separation and Capture; 3: Modeling to Understand and Simulate Physico-chemical Processes of CO{sub 2} Geological Storage; 4: Monitoring Geologic Storage of Carbon Dioxide; 5: Risks Assessment and Management for Geological Sequestration of Carbon Dioxide; 6: Migration Mechanisms and Potential Impacts of CO{sub 2} Leakage and Seepage; 7: Calculating the Costs of Electric Sector Carbon Mitigation; 8: Geological Sequestration under Current U.S. Regulations; 9: Initial Public Perceptions of Deep Geological and Oceanic Disposal of Carbon Dioxide; 10: Siting Geologic Sequestration; and 11: Property Interests and Liability of Geologic Carbon Dioxide Storage.

  17. Ecological carbon sequestration via wood harvest and storage: Practical constraints and real-world possibilities

    NASA Astrophysics Data System (ADS)

    Zeng, N.; King, A. W.; Zaitchik, B. F.; Wullschleger, S. D.

    2014-12-01

    A carbon sequestration strategy was recently proposed in which a forest is sustainably managed, and a fraction of the wood is selectively harvested and stored to prevent decomposition under anaerobic, dry or cold conditions. Because a large flux of CO2 is constantly assimilated into the world's forests via photosynthesis, partially cutting off its return pathway to the atmosphere forms an effective carbon sink. The live trees serve as a 'carbon scrubber' or 'carbon remover' that provides continuous sequestration. The stored wood is a semi-permanent carbon sink, but also serves as a 'biomass/bioenergy reserve' that could be utilized in the future if deemed more beneficial, for instance, by contributing to supply infrastructure for biomass power generation. Based on global forest coarse wood production rate, land availability, conservation, other wood use, and other practical constraints, we estimate a carbon sequestration potential for wood harvest and storage (WHS) 1-3 GtC y-1. The implementation of such a scheme at our estimated lower value of 1 GtC y-1 would imply a doubling of the current world wood harvest rate. This can be achieved by harvesting wood at a modest harvesting intensity of 1.2 tC ha-1 y-1, over a forest area of 8 Mkm2 (800 Mha). To achieve the higher value of 3 GtC y-1, forests need to be managed this way on half of the world's forested land, or on a smaller area but with higher harvest intensity. However, any successful implementation strategy will need to balance the needs of the local community and environment. It nonethelss provides a novel new addition to a portfolio of existing forest management strategies. We propose 'carbon sequestration and biomass farms' with mixed land use for carbon, energy, agriculture, as well as conservation, provided that governance issues are properly dealt with. In another example, the forests damaged by insects, fire, storms such as in the America West could be thinned to reduce fire danger and harvested for carbon sequestration. Based on forestry data, We estimate a cost of $10-50/tCO2 for harvest and storage around the landing site. The technique is low tech, distributed, easy to monitor and verify. We compare the potential and cost of WHS with a number of other carbon sequestration methods, and recommend research into WHS as a 'down-to-earth' strategy for climate mitigation.

  18. NATCARB Interactive Maps and the National Carbon Explorer: a National Look at Carbon Sequestration

    DOE Data Explorer

    NATCARB is a national look at carbon sequestration. The NATCARB home page, National Carbon Explorer (http://www.natcarb.org/) provides access to information and interactive maps on a national scale about climate change, DOE's carbon sequestration program and its partnerships, CO2 emissions, and sinks. This portal provides access to interactive maps based on the Carbon Sequestration Atlas of the United States and Canada.

  19. Photobiological hydrogen production and carbon dioxide sequestration

    NASA Astrophysics Data System (ADS)

    Berberoglu, Halil

    Photobiological hydrogen production is an alternative to thermochemical and electrolytic technologies with the advantage of carbon dioxide sequestration. However, it suffers from low solar to hydrogen energy conversion efficiency due to limited light transfer, mass transfer, and nutrient medium composition. The present study aims at addressing these limitations and can be divided in three parts: (1) experimental measurements of the radiation characteristics of hydrogen producing and carbon dioxide consuming microorganisms, (2) solar radiation transfer modeling and simulation in photobioreactors, and (3) parametric experiments of photobiological hydrogen production and carbon dioxide sequestration. First, solar radiation transfer in photobioreactors containing microorganisms and bubbles was modeled using the radiative transport equation (RTE) and solved using the modified method of characteristics. The study concluded that Beer-Lambert's law gives inaccurate results and anisotropic scattering must be accounted for to predict the local irradiance inside a photobioreactor. The need for accurate measurement of the complete set of radiation characteristics of microorganisms was established. Then, experimental setup and analysis methods for measuring the complete set of radiation characteristics of microorganisms have been developed and successfully validated experimentally. A database of the radiation characteristics of representative microorganisms have been created including the cyanobacteria Anabaena variabilis, the purple non-sulfur bacteria Rhodobacter sphaeroides and the green algae Chlamydomonas reinhardtii along with its three genetically engineered strains. This enabled, for the first time, quantitative assessment of the effect of genetic engineering on the radiation characteristics of microorganisms. In addition, a parametric experimental study has been performed to model the growth, CO2 consumption, and H 2 production of Anabaena variabilis as functions of irradiance and CO2 concentration. Kinetic models were successfully developed based on the Monod model and on a novel scaling analysis employing the CO2 consumption half-time as the time scale. Finally, the growth and hydrogen production of Anabaena variabilis have been compared in a flat panel photobioreactor using three different nutrient media under otherwise similar conditions. Light to hydrogen energy conversion efficiency for Allen-Arnon medium was superior by a factor of 5.5 to both BG-11 and BG-11o media. This was attributed to the presence of vanadium and larger heterocyst frequency observed in the Allen-Arnon medium.

  20. March 9 Morning Session 1 Geological Carbon Sequestration: Introductions (8:30-10:15), Jeff Daniels, Moderator

    E-print Network

    Daniels, Jeffrey J.

    Agenda March 9 ­ Morning Session 1 ­ Geological Carbon Sequestration: Introductions (8 Testing: The Laboratory for Geological Carbon Sequestration (Neeraj Gupta, Battelle) Session 2 ­ Carbon in Reducing the Costs for Carbon Capture (Bruce Sass, Battelle) 2. Capture and sequestration challenges

  1. Water Challenges for Geologic Carbon Capture and Sequestration

    Microsoft Academic Search

    Robin L. NewmarkSamuel; Samuel J. Friedmann; Susan A. Carroll

    2010-01-01

    Carbon capture and sequestration (CCS) has been proposed as a means to dramatically reduce greenhouse gas emissions with the\\u000a continued use of fossil fuels. For geologic sequestration, the carbon dioxide is captured from large point sources (e.g.,\\u000a power plants or other industrial sources), transported to the injection site and injected into deep geological formations\\u000a for storage. This will produce new

  2. Goodbye to carbon neutral: Getting biomass footprints right

    SciTech Connect

    Johnson, Eric [Atlantic Consulting, Obstgartenstrasse 14, CH-8136 Gattikon (Switzerland)], E-mail: ejohnson@ecosite.co.uk

    2009-04-15

    Most guidance for carbon footprinting, and most published carbon footprints or LCAs, presume that biomass heating fuels are carbon neutral. However, it is recognised increasingly that this is incorrect: biomass fuels are not always carbon neutral. Indeed, they can in some cases be far more carbon positive than fossil fuels. This flaw in carbon footprinting guidance and practice can be remedied. In carbon footprints (not just of biomass or heating fuels, but all carbon footprints), rather than applying sequestration credits and combustion debits, a 'carbon-stock change' line item could be applied instead. Not only would this make carbon footprints more accurate, it would make them consistent with UNFCCC reporting requirements and national reporting practice. There is a strong precedent for this change. This same flaw has already been recognised and partly remedied in standards for and studies of liquid biofuels (e.g. biodiesel and bioethanol), which now account for land-use change, i.e. deforestation. But it is partially or completely missing from other studies and from standards for footprinting and LCA of solid fuels. Carbon-stock changes can be estimated from currently available data. Accuracy of estimates will increase as Kyoto compliant countries report more land use, land use change and forestry (LULUCF) data.

  3. Final Report - "CO2 Sequestration in Cell Biomass of Chlorobium Thiosulfatophilum"

    SciTech Connect

    James L. Gaddy, PhD; Ching-Whan Ko, PhD

    2009-05-04

    World carbon dioxide emissions from the combustion of fossil fuels have increased at a rate of about 3 percent per year during the last 40 years to over 24 billion tons today. While a number of methods have been proposed and are under study for dealing with the carbon dioxide problem, all have advantages as well as disadvantages which limit their application. The anaerobic bacterium Chlorobium thiosulfatophilum uses hydrogen sulfide and carbon dioxide to produce elemental sulfur and cell biomass. The overall objective of this project is to develop a commercial process for the biological sequestration of carbon dioxide and simultaneous conversion of hydrogen sulfide to elemental sulfur. The Phase I study successfully demonstrated the technical feasibility of utilizing this bacterium for carbon dioxide sequestration and hydrogen sulfide conversion to elemental sulfur by utilizing the bacterium in continuous reactor studies. Phase II studies involved an advanced research and development to develop the engineering and scale-up parameters for commercialization of the technology. Tasks include culture isolation and optimization studies, further continuous reactor studies, light delivery systems, high pressure studies, process scale-up, a market analysis and economic projections. A number of anaerobic and aerobic microorgansims, both non-photosynthetic and photosynthetic, were examined to find those with the fastest rates for detailed study to continuous culture experiments. C. thiosulfatophilum was selected for study to anaerobically produce sulfur and Thiomicrospira crunogena waws selected for study to produce sulfate non-photosynthetically. Optimal conditions for growth, H2S and CO2 comparison, supplying light and separating sulfur were defined. The design and economic projections show that light supply for photosynthetic reactions is far too expensive, even when solar systems are considered. However, the aerobic non-photosynthetic reaction to produce sulfate with T. crunogena produces a reasonable return when treating a sour gas stream of 120 million SCFD containing 2.5 percent H2S. In this case, the primary source of revenue is from desulfurization of the gas stream. While the technology has significant application in sequestering carbon dioxide in cell biomass or single cell proten (SCP), perhaps the most immediate application is in desulfurizing LGNG or other gas streams. This biological approach is a viable economical alternative to existing hydrogen sulfide removal technology, and is not sensitive to the presence of hydrocarbons which act as catalyst poisons.

  4. Forest vintages and carbon sequestration (very preliminary version)

    Microsoft Academic Search

    Clara Costa-Duarte; Maria A. Cunha-e-Sá; Renato Rosa

    In the current paper we examine the role of forest carbon sequestration benefits in optimal forest management. When carbon benefits are consid- ered not only the forested area is relevant, but also the amount of carbon released when the forest is harvested. To account for all these impacts a multi-vintage forest setting is used, following Salo and Tahvonen (2005). We

  5. Soil Carbon Sequestration in the U.S. Corn Belt

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Terrestrial carbon sequestration has a potential role in reducing the increases in atmospheric carbon dioxide (CO2) that is, in part, mitigates global warming. The path to stabilization of the carbon cycle and, ultimately, reduction in the concentration of atmospheric CO2 is though a regime of carbo...

  6. CRADA Carbon Sequestration in Soils and Commercial Products

    SciTech Connect

    Jacobs, G.K.

    2002-01-31

    ORNL, through The Consortium for Research on Enhancing Carbon Sequestration in Terrestrial Ecosystems (CSiTE), collaborated with The Village Botanica, Inc. (VB) on a project investigating carbon sequestration in soils and commercial products from a new sustainable crop developed from perennial Hibiscus spp. Over 500 pre-treated samples were analyzed for soil carbon content. ORNL helped design a sampling scheme for soils during the planting phase of the project. Samples were collected and prepared by VB and analyzed for carbon content by ORNL. The project did not progress to a Phase II proposal because VB declined to prepare the required proposal.

  7. Carbon sequestration and greenhouse gas emissions in urban turf

    NASA Astrophysics Data System (ADS)

    Townsend-Small, Amy; Czimczik, Claudia I.

    2010-01-01

    Undisturbed grasslands can sequester significant quantities of organic carbon (OC) in soils. Irrigation and fertilization enhance CO2 sequestration in managed turfgrass ecosystems but can also increase emissions of CO2 and other greenhouse gases (GHGs). To better understand the GHG balance of urban turf, we measured OC sequestration rates and emission of N2O (a GHG ˜ 300 times more effective than CO2) in Southern California, USA. We also estimated CO2 emissions generated by fuel combustion, fertilizer production, and irrigation. We show that turf emits significant quantities of N2O (0.1-0.3 g N m-2 yr-1) associated with frequent fertilization. In ornamental lawns this is offset by OC sequestration (140 g C m-2 yr-1), while in athletic fields, there is no OC sequestration because of frequent surface restoration. Large indirect emissions of CO2 associated with turfgrass management make it clear that OC sequestration by turfgrass cannot mitigate GHG emissions in cities.

  8. Natural CO2 Analogs for Carbon Sequestration

    SciTech Connect

    Scott H. Stevens; B. Scott Tye

    2005-07-31

    The report summarizes research conducted at three naturally occurring geologic CO{sub 2} fields in the US. The fields are natural analogs useful for the design of engineered long-term storage of anthropogenic CO{sub 2} in geologic formations. Geologic, engineering, and operational databases were developed for McElmo Dome in Colorado; St. Johns Dome in Arizona and New Mexico; and Jackson Dome in Mississippi. The three study sites stored a total of 2.4 billion t (46 Tcf) of CO{sub 2} equivalent to 1.5 years of power plant emissions in the US and comparable in size with the largest proposed sequestration projects. The three CO{sub 2} fields offer a scientifically useful range of contrasting geologic settings (carbonate vs. sandstone reservoir; supercritical vs. free gas state; normally pressured vs. overpressured), as well as different stages of commercial development (mostly undeveloped to mature). The current study relied mainly on existing data provided by the CO{sub 2} field operator partners, augmented with new geochemical data. Additional study at these unique natural CO{sub 2} accumulations could further help guide the development of safe and cost-effective design and operation methods for engineered CO{sub 2} storage sites.

  9. Long-term impact of a gliricidia-maize intercropping system on carbon sequestration in southern Malawi

    Microsoft Academic Search

    Wilkson Makumba; Festus K. Akinnifesi; Bert Janssen; Oene Oenema

    2007-01-01

    Tree\\/crop systems under agroforestry practice are capable of sequestering carbon (C) in the standing biomass and soil. Although studies have been conducted to understand soil organic C increases in some agroforestry technologies, little is known about C sequestered in simultaneous tree\\/crop intercropping systems. The main objective of this study was to determine the effect of agroforestry practice on C sequestration

  10. Forest cover, carbon sequestration, and wildlife habitat: policy review and modeling of tradeoffs among land-use

    E-print Network

    Rissman, Adena

    Forest cover, carbon sequestration, and wildlife habitat: policy review and modeling of tradeoffs and services, including timber production, carbon sequestration and storage, scenic amenities, and wildlife habitat. International efforts to mitigate climate change through forest carbon sequestration

  11. Advancing the Science of Geologic Carbon Sequestration (Registration: www.earthsciences.osu.edu/~jeff/carbseq/carbseq 2009)

    E-print Network

    Daniels, Jeffrey J.

    Advancing the Science of Geologic Carbon Sequestration (Registration: www & American Electric Power Agenda March 9 ­ Morning Session 1 ­ Geological Carbon Sequestration: Introductions, AEP) 3. Field Testing: The Laboratory for Geological Carbon Sequestration (Neeraj Gupta, Battelle

  12. Amazon River enhances diazotrophy and carbon sequestration in the tropical North Atlantic Ocean

    E-print Network

    Subramaniam, Ajit

    #12;Amazon River enhances diazotrophy and carbon sequestration in the tropical North Atlantic Ocean in carbon sequestration. Here, we report that the Amazon River plume supports N2 fixation far from the mouth of atmospheric carbon to the deep ocean (3), or ``carbon sequestration'' (4). The Amazon River has the largest

  13. First National Conference on Carbon Sequestration Washington, DC, May 14-17, 2001

    E-print Network

    First National Conference on Carbon Sequestration Washington, DC, May 14-17, 2001 Caldeira, K for Research on Ocean Carbon Sequestration (DOCS) *Climate and Carbon Cycle Modeling Group, Lawrence Livermore carbon sequestration strategy. Therefore, we want to understand the effectiveness of oceanic injection

  14. Version 3 Bioscience1 Enhancement of Carbon Sequestration in U.S. Soils

    E-print Network

    McCarl, Bruce A.

    Version 3 Bioscience1 Enhancement of Carbon Sequestration in U.S. Soils W.M. Post, R.C. Izaurralde and retain soil carbon can lead to specific manipulations for enhancement of soil C sequestration for an integrated evaluation of soil carbon sequestration methods are presented. Keywords: soil carbon, greenhouse

  15. Assessing the effectiveness of direct injection for ocean carbon sequestration under the influence of climate change

    E-print Network

    Jain, Atul K.

    Assessing the effectiveness of direct injection for ocean carbon sequestration under the influence, ISAM-2.5D. Following the OCMIP carbon sequestration protocol, we carried out a series of carbon., and L. Cao (2005), Assessing the effectiveness of direct injection for ocean carbon sequestration under

  16. Post-Soviet farmland abandonment, forest recovery, and carbon sequestration in western Ukraine

    E-print Network

    Radeloff, Volker C.

    Post-Soviet farmland abandonment, forest recovery, and carbon sequestration in western Ukraine T O fluxes in western Ukraine (57 000 km2 ) and to assess the region's future carbon sequestration potential opportunities may exist in other parts of this region. Keywords: carbon flux, carbon sequestration potential

  17. Monitoring and verifying agricultural practices related to soil carbon sequestration with satellite imagery

    E-print Network

    Lawrence, Rick L.

    Monitoring and verifying agricultural practices related to soil carbon sequestration with satellite on agricultural management practices related to carbon sequestration seems more realistic, and analysis practices related to carbon sequestration over large areas. Published by Elsevier B.V. Keywords: Carbon

  18. Carbon Sequestration Potential of a Switchgrass Bioenergy Crop

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Switchgrass is an important bioenergy crop with the potential to provide a reliable supply of renewable energy while also removing carbon dioxide from the atmosphere and sequestering it in the soil. We conducted a four-year study to quantify carbon dioxide sequestration during the establishment and ...

  19. Biochar: A synthesis of its agronomic impact beyond carbon sequestration

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biochar has been recently heralded as an amendment to revitalize degraded soils, improve soil carbon sequestration, increase agronomic productivity and enter into future carbon trading markets. However, scientific and economic technicalities may limit the ability of biochar to consistently deliver o...

  20. The non-permanence of optimal soil carbon sequestration

    Microsoft Academic Search

    Werner Hediger

    2009-01-01

    Carbon sequestration in agricultural soils is considered as an option of greenhouse gas mitigation in many countries. But, the economic potential is limited by the dynamic process of saturation and the opportunity cost of land use change. In addition, this article shows that permanence cannot, in general, be achieved in the strict sense of maintaining the soil carbon stock on

  1. Carbon dioxide sequestration by ex-situ mineral carbonation

    SciTech Connect

    O'Connor, W.K.; Dahlin, D.C.; Turner, P.C.; and Walters, R.P.

    2000-01-01

    The process developed for carbon dioxide sequestration utilizes a slurry of water mixed with olivine- forsterite end member (Mg{sub 2}SiO{sub 4}), which is reacted with supercritical CO{sub 2} to produce magnesite (MgCO{sub 3}). Carbon dioxide is dissolved in water to form carbonic acid, which likely dissociates to H{sup +} and HCO{sub 3}{sup -}. The H{sup +} hydrolyzes the silicate mineral, freeing the cation (Mg{sup 2+}), which reacts with the HCO{sub 3}{sup -} to form the solid carbonate. Results of the baseline tests, conducted on ground products of the natural mineral, have demonstrated that the kinetics of the reaction are slow at ambient temperature (22 degrees C) and subcritical CO{sub 2} pressures (below 7.4 MPa). However, at elevated temperature and pressure, coupled with continuous stirring of the slurry and gas dispersion within the water column, significant conversion to the carbonate occurs. Extent of reaction is roughly 90% within 24 h, at 185 degrees C and partial pressure of CO{sub 2} (P{sub CO{sub 2}}) of 11.6 MPa. Current studies suggest that reaction kinetics can be improved by pretreatment of the mineral, catalysis of the reaction, and/or solution modification. Subsequent tests are intended to examine these options, as well as other mineral groups.

  2. Sequestration and selective oxidation of carbon monoxide on graphene edges

    NASA Astrophysics Data System (ADS)

    Paul, Sujata; Santiso, Erik E.; Nardelli, Marco B.

    2008-10-01

    The versatility of carbon nanostructures makes them attractive as possible catalytic materials, as they can be synthesized in various shapes and chemically modified by doping, functionalization, and the creation of defects in the nanostructure. In this work, we consider the carbon-mediated partial sequestration and selective oxidation of carbon monoxide (CO), an important problem in environmental chemistry and energy conversion. Using first principle calculations we study the key reactions of CO with carbon nanostructures, where the active sites can be regenerated by the deposition of carbon decomposed from the reactant (CO) to make the reactions self sustained. Carbon-mediated CO sequestration produces half of the CO2 compared to the direct oxidation of CO, which is used in the cleaning of automobile gas. Furthermore, the carbon-mediated oxidation of CO to CO2 is selectively favored when hydrogen is present, and could be used to purify hydrogen for use in fuel cells.

  3. A national look at carbon capture and storage—National carbon sequestration database and geographical information system (NatCarb)

    Microsoft Academic Search

    Timothy R. Carr; Asif Iqbal; Nick Callaghan; Dana-Adkins-Heljeson; Kurt Look; Shawn Saving; Ken Nelson

    2009-01-01

    The US Department of Energy’s Regional Carbon Sequestration Partnerships (RCSPs) are responsible for generating geospatial data for the maps displayed in the Carbon Sequestration Atlas of the United States and Canada. Key geospatial data (carbon sources, potential storage sites, transportation, land use, etc.) are required for the Atlas, and for efficient implementation of carbon sequestration on a national and regional

  4. CONFERENCE PROCEEDINGS EIGHTH ANNUAL CONFERENCE ON CARBON CAPTURE AND SEQUESTRATION -DOE/NETL

    E-print Network

    Mohaghegh, Shahab

    CONFERENCE PROCEEDINGS EIGHTH ANNUAL CONFERENCE ON CARBON CAPTURE AND SEQUESTRATION - DOE/NETL May ON CARBON CAPTURE AND SEQUESTRATION - DOE/NETL May 4 ­ 7, 2009 Abstract Reservoir simulation is the industry

  5. Land-Use Change and Carbon Sinks: Econometric Estimation of the Carbon Sequestration Supply Function

    Microsoft Academic Search

    Ruben N. Lubowski; Andrew J. Plantinga; Robert N. Stavins

    2005-01-01

    When and if the United States chooses to implement a greenhouse gas reduction program, it will be necessary to decide whether carbon sequestration policies — such as those that promote forestation and discourage deforestation — should be part of the domestic portfolio of compliance activities. We investigate the cost of forest-based carbon sequestration. In contrast with previous approaches, we econometrically

  6. Carbon Monoxide from Biomass Burning

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This pair of images shows levels of carbon monoxide at the atmospheric pressure level of 700 millibars (roughly 12,000 feet in altitude) over the continent of South America, as observed by the Measurements Of Pollution In The Troposphere (MOPITT) sensor flying aboard NASA's Terra spacecraft. Data for producing the image on the left were acquired on March 3, 2000, and for the image on the right on September 7, 2000. Blue pixels show low values, yellows show intermediate values, and the red to pink and then white pixels are progressively higher values. In the lefthand image (March 3), notice the fairly low levels of carbon monoxide over the entire continent. The slightly higher equatorial values are the result of burning emissions in sub-Saharan Africa that are convected at the Intertropical Convergence Zone (ITCZ) and spread by the trade winds. Also, notice the effect of the elevated surface topography across the Andes Mountains running north to south along the western coastline. (In this region, white pixels show no data.) In the righthand image (September 7), a large carbon monoxide plume is seen over Brazil, produced primarily by biomass burning across Amazonia and lofted into the atmosphere by strong cloud convection. The generally higher carbon monoxide levels as compared to March are both the result of South American fire emissions and the transport of carbon monoxide across the Atlantic Ocean from widespread biomass burning over Southern Africa. These images were produced using MOPITT data, which are currently being validated. These data were assimilated into an atmospheric chemical transport model using wind vectors provided by the National Center for Environmental Prediction (NCEP). Although there is good confidence in the relative seasonal values and geographic variation measured by MOPITT, that team anticipates their level of confidence will improve further with ongoing intensive validation campaigns and comparisons with in situ and ground-based spectroscopic measurements. Images courtesy David Edwards and John Gille, MOPITT Science Team, NCAR

  7. Carbon sequestration: An underexploited environmental benefit of agroforestry systems

    Microsoft Academic Search

    F. Montagnini; P. K. R. Nair

    2004-01-01

    Agroforestry has importance as a carbon sequestration strategy because of carbon storage potential in its multiple plant species\\u000a and soil as well as its applicability in agricultural lands and in reforestation. The potential seems to be substantial; but\\u000a it has not been even adequately recognized, let alone exploited. Proper design and management of agroforestry practices can\\u000a make them effective carbon

  8. Carbon storage and sequestration by urban trees in the USA

    Microsoft Academic Search

    David J. Nowak; Daniel E. Crane

    2002-01-01

    Based on field data from 10 USA cities and national urban tree cover data, it is estimated that urban trees in the coterminous USA currently store 700 million tonnes of carbon ($14,300 million value) with a gross carbon sequestration rate of 22.8 million tC\\/yr ($460 million\\/year). Carbon storage within cities ranges from 1.2 million tC in New York, NY, to

  9. Carbon Sequestration on Surface Mine Lands

    SciTech Connect

    Donald Graves; Christopher Barton; Richard Sweigard; Richard Warner; Carmen Agouridis

    2006-03-31

    Since the implementation of the federal Surface Mining Control and Reclamation Act of 1977 (SMCRA) in May of 1978, many opportunities have been lost for the reforestation of surface mines in the eastern United States. Research has shown that excessive compaction of spoil material in the backfilling and grading process is the biggest impediment to the establishment of productive forests as a post-mining land use (Ashby, 1998, Burger et al., 1994, Graves et al., 2000). Stability of mine sites was a prominent concern among regulators and mine operators in the years immediately following the implementation of SMCRA. These concerns resulted in the highly compacted, flatly graded, and consequently unproductive spoils of the early post-SMCRA era. However, there is nothing in the regulations that requires mine sites to be overly compacted as long as stability is achieved. It has been cultural barriers and not regulatory barriers that have contributed to the failure of reforestation efforts under the federal law over the past 27 years. Efforts to change the perception that the federal law and regulations impede effective reforestation techniques and interfere with bond release must be implemented. Demonstration of techniques that lead to the successful reforestation of surface mines is one such method that can be used to change perceptions and protect the forest ecosystems that were indigenous to these areas prior to mining. The University of Kentucky initiated a large-scale reforestation effort to address regulatory and cultural impediments to forest reclamation in 2003. During the three years of this project 383,000 trees were planted on over 556 acres in different physiographic areas of Kentucky (Table 1, Figure 1). Species used for the project were similar to those that existed on the sites before mining was initiated (Table 2). A monitoring program was undertaken to evaluate growth and survival of the planted species as a function of spoil characteristics and reclamation practice. In addition, experiments were integrated within the reforestation effort to address specific questions pertaining to sequestration of carbon (C) on these sites.

  10. Woody encroachment reduces nutrient limitation and promotes soil carbon sequestration.

    PubMed

    Blaser, Wilma J; Shanungu, Griffin K; Edwards, Peter J; Olde Venterink, Harry

    2014-04-01

    During the past century, the biomass of woody species has increased in many grassland and savanna ecosystems. As many of these species fix nitrogen symbiotically, they may alter not only soil nitrogen (N) conditions but also those of phosphorus (P). We studied the N-fixing shrub Dichrostachys cinerea in a mesic savanna in Zambia, quantifying its effects upon pools of soil N, P, and carbon (C), and availabilities of N and P. We also evaluated whether these effects induced feedbacks upon the growth of understory vegetation and encroaching shrubs. Dichrostachys cinerea shrubs increased total N and P pools, as well as resin-adsorbed N and soil extractable P in the top 10-cm soil. Shrubs and understory grasses differed in their foliar N and P concentrations along gradients of increasing encroachment, suggesting that they obtained these nutrients in different ways. Thus, grasses probably obtained them mainly from the surface upper soil layers, whereas the shrubs may acquire N through symbiotic fixation and probably obtain some of their P from deeper soil layers. The storage of soil C increased significantly under D. cinerea and was apparently not limited by shortages of either N or P. We conclude that the shrub D. cinerea does not create a negative feedback loop by inducing P-limiting conditions, probably because it can obtain P from deeper soil layers. Furthermore, C sequestration is not limited by a shortage of N, so that mesic savanna encroached by this species could represent a C sink for several decades. We studied the effects of woody encroachment on soil N, P, and C pools, and availabilities of N and P to Dichrostachys cinerea shrubs and to the understory vegetation. Both N and P pools in the soil increased along gradients of shrub age and cover, suggesting that N fixation by D. cinerea did not reduce the P supply. This in turn suggests that continued growth and carbon sequestration in this mesic savanna ecosystems are unlikely to be constrained by nutrient limitation and could represent a C sink for several decades. PMID:24834338

  11. Evaluating carbon sequestration efficiency in an ocean circulation model by adjoint sensitivity analysis

    E-print Network

    Follows, Mick

    Evaluating carbon sequestration efficiency in an ocean circulation model by adjoint sensitivity the application of the adjoint method to develop three-dimensional maps of carbon sequestration efficiency. Sequestration efficiency (the percentage of carbon injected at a continuous point source that remains

  12. Sustainability of terrestrial carbon sequestration: A case study in Duke Forest with inversion approach

    E-print Network

    DeLucia, Evan H.

    Sustainability of terrestrial carbon sequestration: A case study in Duke Forest with inversion of terrestrial carbon (C) sequestration is critical for the success of any policies geared toward stabilizing. Ellsworth, A. Finzi, J. Lichter, and W. H. Schlesinger, Sustainability of terrestrial carbon sequestration

  13. Organized Research Unit (ORU) on Carbon Capture and Sequestration: Meeting the Needs of the Energy Sector

    E-print Network

    Zhou, Chongwu

    Organized Research Unit (ORU) on Carbon Capture and Sequestration: Meeting the Needs of the Energy of an Organized Research Unit (ORU) on Carbon Capture and Sequestration (CCS). The purpose of this effort Frontier Research Center proposal: "Integrated Science of Geological Carbon Sequestration" to BES office

  14. ECONOMIC MODELING OF THE GLOBAL ADOPTION OF CARBON CAPTURE AND SEQUESTRATION TECHNOLOGIES

    E-print Network

    ECONOMIC MODELING OF THE GLOBAL ADOPTION OF CARBON CAPTURE AND SEQUESTRATION TECHNOLOGIES J. R. Mc of carbon capture and sequestration technologies as applied to electric generating plants. The MIT Emissions, is used to model carbon capture and sequestration (CCS) technologies based on a natural gas combined cycle

  15. CHARACTERIZATION OF CENTRAL APPALACHIAN BASIN CBM DEVELOPMENT: POTENTIAL FOR CARBON SEQUESTRATION

    E-print Network

    of the carbon sequestration potential of the Pennsylvanian-age coalbeds in the Central Appalachian Basin favorable reservoirs for carbon sequestration due to their thickness, depth, rank, and permeability high gas content should provide the optimum reservoirs for carbon sequestration since these coals

  16. Modeling impacts of carbon sequestration on net greenhouse gas emissions from agricultural soils in China

    E-print Network

    Modeling impacts of carbon sequestration on net greenhouse gas emissions from agricultural soils impacts of carbon sequestration on net greenhouse gas emissions from agricultural soils in China, Global Biogeochem. Cycles, 23, GB1007, doi:10.1029/2008GB003180. 1. Introduction [2] Carbon (C) sequestration has

  17. An XFEM Model for Carbon Sequestration Journal: International Journal for Numerical Methods in Engineering

    E-print Network

    Gracie, Robert

    PeerReview Only An XFEM Model for Carbon Sequestration Journal: International Journal for Numerical method, Carbon Sequestration, Multiphase flow, XFEM, Multifield systems, Petrov-Galerkin httpScience (www.interscience.wiley.com). DOI: 10.1002/nme An XFEM Model for Carbon Sequestration Chris Ladubec

  18. CARBON SEQUESTRATION VIA DIRECT INJECTION Howard J. Herzog, Ken Caldeira, and Eric Adams

    E-print Network

    CARBON SEQUESTRATION VIA DIRECT INJECTION Howard J. Herzog, Ken Caldeira, and Eric Adams and sequestration. Carbon sequestration is often associated with the planting of trees. As they mature, the trees INTRODUCTION The build-up of carbon dioxide (CO2) and other greenhouse gases in the Earth's atmosphere has

  19. Properties of Mutants of Synechocystis sp. Strain PCC 6803 Lacking Inorganic Carbon Sequestration Systems

    E-print Network

    Roegner, Matthias

    Properties of Mutants of Synechocystis sp. Strain PCC 6803 Lacking Inorganic Carbon SequestrationA is the only active inorganic carbon sequestration system showed low activity of HCO3 ­ uptake and grew under the significance of carbon sequestration in dissipating excess light energy. Keywords: CO2 and HCO3 À uptake -- CO2

  20. Uncertainty Discounting for Land-Based Carbon Sequestration Man-Keun Kim

    E-print Network

    McCarl, Bruce A.

    1 Uncertainty Discounting for Land-Based Carbon Sequestration By Man-Keun Kim Post Doctoral Fellow Discounting for Land-Based Carbon Sequestration Abstract The effect of various stochastic factors like weather% to 10% for the East Texas region. #12;3 Uncertainty Discounting for Land-Based Carbon Sequestration 1

  1. Carbon Capture and Sequestration: how much does this uncertain option affect near-term policy choices?

    E-print Network

    Paris-Sud XI, Université de

    Carbon Capture and Sequestration: how much does this uncertain option affect near-term policy Carbon Capture and Sequestration (CCS) as a key option to avoid costly emission reduction. While Carbon Capture and Sequestration (CCS) technologies are receiving increasing atten- tion, mainly

  2. A Review of Forest Carbon Sequestration Cost Studies: A Dozen Years of Research

    Microsoft Academic Search

    Kenneth R. Richards; Carrie Stokes

    2004-01-01

    Researchers have been analyzing the costs of carbon sequestration for approximately twelve years. The purpose of this paper is to critically review the carbon sequestration cost studies of the past dozen years that have evaluated the cost-effectiveness of the forestry option. Several conclusions emerge. While carbon sequestration cost studies all contain essentially the same components they are not comparable on

  3. DRAFT, November 2, 1998 Carbon Sequestration via Tree Planting on Agricultural Lands

    E-print Network

    McCarl, Bruce A.

    1 DRAFT, November 2, 1998 Carbon Sequestration via Tree Planting on Agricultural Lands: An Economic affect program cost and net carbon sequestration. The focus on the provisions of tree planting agreements the cost and net carbon gains under a sequestration program. We will also investigate design aspects

  4. Back to Exploration 2008 CSPG CSEG CWLS Convention 1 A Computational Model of Catalyzed Carbon Sequestration

    E-print Network

    Spiteri, Raymond J.

    explores the feasibility of catalysis-based carbon sequestration by efficiently and accurately modeling that this method can be scaled to accurately predict the efficacy of such systems for carbon sequestration to help find the most cost effective methods possible. Most carbon sequestration methods are capture

  5. An improved strategy to detect CO2 leakage for verification of geologic carbon sequestration

    E-print Network

    Hilley, George

    An improved strategy to detect CO2 leakage for verification of geologic carbon sequestration J. L the success of geologic carbon sequestration projects. To detect subtle CO2 leakage signals, we present), An improved strategy to detect CO2 leakage for verification of geologic carbon sequestration, Geophys. Res

  6. Pre-site Characterization Risk Analysis for Commercial-Scale Carbon Sequestration

    E-print Network

    Lu, Zhiming

    Pre-site Characterization Risk Analysis for Commercial-Scale Carbon Sequestration Zhenxue Dai a probability framework to evaluate subsurface risks associated with commercial-scale carbon sequestration to the atmosphere.1-3 The Big Sky Carbon Sequestration Partnership (BSCSP) is one of seven partnerships tasked

  7. Silvia Solano's interest in carbon sequestration was first sparked on a six-month internship

    E-print Network

    Yang, Zong-Liang

    Silvia Solano's interest in carbon sequestration was first sparked on a six-month internship experiments combining EOR with carbon sequestration. "I thought this was a win-win solution," she said. "You of a research team conduct- ing a large-scale test of carbon sequestration. "I knew I wanted to learn more about

  8. Pathways to Adoption of Carbon Capture and Sequestration in India: Technologies and Policies

    E-print Network

    Pathways to Adoption of Carbon Capture and Sequestration in India: Technologies and Policies, Technology and Policy Program #12;2 #12;Pathways to Carbon Capture and Sequestration in India: Technologies to control India's emissions will have to be a global priority. Carbon capture and sequestration (CCS) can

  9. 19.1 Introduction Carbon sequestration programs on land and in the

    E-print Network

    Jackson, Robert B.

    Chapter 19 19.1 Introduction Carbon sequestration programs on land and in the oceans are gaining sequestration programs emphasize storing carbon in soil organic matter in agri- cultural fields,in woody sequestration and management include the feasibil- ity and permanence of the carbon sequestered, the scale

  10. Nonlinear root-derived carbon sequestration across a gradient of nitrogen and phosphorous deposition

    E-print Network

    Fierer, Noah

    Nonlinear root-derived carbon sequestration across a gradient of nitrogen and phosphorous sequestration of plant-carbon (C) inputs to soil may mitigate rising atmo- spheric carbon dioxide (CO2) concentrations and related climate change but how this sequestration will respond to anthropogenic nitrogen (N

  11. Carbon dioxide sequestration: how much and when? Klaus Keller & David McInerney & David F. Bradford

    E-print Network

    Keller, Klaus

    Carbon dioxide sequestration: how much and when? Klaus Keller & David McInerney & David F. Bradford + Business Media B.V. 2008 Abstract Carbon dioxide (CO2) sequestration has been proposed as a key component fossil fuel requirement of CO2 sequestration, and the growth rate of carbon taxes. In this analytical

  12. Issues with the Use of Fly Ash for Carbon Sequestration A.V. Palumbo1*

    E-print Network

    Tiquia-Arashiro, Sonia M.

    Issues with the Use of Fly Ash for Carbon Sequestration A.V. Palumbo1* , L. S. Fisher1 , J of the potential for carbon sequestration in degraded mine lands, we have found that based on laboratory and field and its influence on carbon sequestration. Also, addition of fly ash to soil, while generally considered

  13. Evaluating the options for carbon sequestration Clair Gough and Simon Shackley

    E-print Network

    Watson, Andrew

    Evaluating the options for carbon sequestration Clair Gough and Simon Shackley Tyndall Centre for carbon sequestration Tyndall Centre Technical Report No. 2 November 2002 This is the final report from Tyndall research project IT1.22 (Carbon sequestration: a pilot stage multi-criteria evaluation

  14. Carbon Sequestration in Terrestrial Ecosystems (CSiTE) PRINCIPAL INVESTIGATOR: Stan D. Wullschleger

    E-print Network

    Carbon Sequestration in Terrestrial Ecosystems (CSiTE) PRINCIPAL INVESTIGATOR: Stan D. Wullschleger://csite.eds.ornl.gov PROJECT DESCRIPTION The Carbon Sequestration in Terrestrial Ecosystems (CSiTE) project conducts research of switchgrass growing in the field. #12;Carbon Sequestration in Terrestrial Ecosystems (CSiTE) tion of inputs

  15. What is the optimal heather moorland management regime for carbon sequestration?

    E-print Network

    Guo, Zaoyang

    What is the optimal heather moorland management regime for carbon sequestration? Supervisors: Prof, the Muirburn Code has no evidence base with regard to carbon sequestration. Given the increased concern use moorland carbon sequestration to offset emissions, it is essential that the most appropriate land

  16. Carbon storage and sequestration by trees in urban and community areas of the United States

    E-print Network

    Carbon storage and sequestration by trees in urban and community areas of the United States David J forestry Tree cover Forest inventory a b s t r a c t Carbon storage and sequestration by urban trees to determine total urban forest carbon storage and annual sequestration by state and nationally. Urban whole

  17. On-Farm Carbon Sequestration Can Farmers Employ it to Make Some Money?

    E-print Network

    McCarl, Bruce A.

    On-Farm Carbon Sequestration Can Farmers Employ it to Make Some Money? Tanveer A. Butt and Bruce A to the reduction in GHG emissions through what is known as carbon sequestration, which has gained attention mitigation policy, the comparative potential of carbon sequestration as a GHG mitigation alternative

  18. OCEAN CARBON SEQUESTRATION: A CASE STUDY IN PUBLIC AND INSTITUTIONAL PERCEPTIONS

    E-print Network

    OCEAN CARBON SEQUESTRATION: A CASE STUDY IN PUBLIC AND INSTITUTIONAL PERCEPTIONS M. A. de and institutional perceptions for future carbon sequestration projects. INTRODUCTION The United States Department scrutiny. DOE, NEDO and NRC agreed to an initial field experiment on ocean carbon sequestration via direct

  19. Soil carbon sequestration and land-use change: processes and potential

    E-print Network

    Soil carbon sequestration and land-use change: processes and potential W . M . P O S T * and K . C that may result in enhanced soil carbon sequestration with changes in land-use and soil management. We carbon accumulation. This data summary provides a guide to approximate rates of SOC sequestration

  20. An Assessment of Carbon Sequestration in Ecosystems of the Western United

    E-print Network

    Fleskes, Joe

    An Assessment of Carbon Sequestration in Ecosystems of the Western United States.J., and Bergamaschi, B.A., 2012, An assessment of carbon sequestration in ecosystems of the Western United States ........................................................................ 11 #12;This page intentionally blank #12;Chapter 1. An Assessment of Carbon Sequestration

  1. CARBON SEQUESTRATION FROM REMOTELY-SENSED NDVI AND NET ECOSYSTEM EXCHANGE

    E-print Network

    Hunt Jr., E. Raymond

    Chapter 8 CARBON SEQUESTRATION FROM REMOTELY- SENSED NDVI AND NET ECOSYSTEM EXCHANGE E. Raymond sampling to determine areas of carbon sequestration. With large areas of the globe covered by rangelands, the potential for carbon sequestration may be significant. R. S. Muttiah (ed.), From Laboratory Spectroscopy

  2. A Case Study from Norway on Gas-Fired Power Plants, Carbon Sequestration, and Politics

    E-print Network

    1 A Case Study from Norway on Gas-Fired Power Plants, Carbon Sequestration, and Politics Guillaume to hold off construction until new technology, such as carbon sequestration, allowed building more heard of carbon sequestration, did it play such a key role in Norwegian politics? To answer

  3. Modeling Impacts of Management on Carbon Sequestration and Trace Gas Emissions in Forested

    E-print Network

    Modeling Impacts of Management on Carbon Sequestration and Trace Gas Emissions in Forested Wetland-DNDC, was modified to enhance its capacity to predict the impacts of management practices on carbon sequestration nonnegligible roles in mitigation in comparison with carbon sequestration. Forests are recognized for having

  4. Carbon sequestration via wood harvest and storage: An assessment of its harvest potential

    E-print Network

    Zeng, Ning

    Carbon sequestration via wood harvest and storage: An assessment of its harvest potential Ning Zeng Abstract A carbon sequestration strategy has recently been proposed in which a forest is actively managed harvest, finds 0.1­0.5 GtC y-1 available for carbon sequestration. We suggest a range of 1­3 GtC y-1

  5. Simultaneous leaching and carbon sequestration in constrained aqueous solutions.

    PubMed

    Moon, Ji-Won; Cho, Kyu-Seong; Moberly, James G; Roh, Yul; Phelps, Tommy J

    2011-12-01

    The behavior of metal ions' leaching and precipitated mineral phases of metal-rich fly ash (FA) was examined in order to evaluate microbial impacts on carbon sequestration and metal immobilization. The leaching solutions consisted of aerobic deionized water (DW) and artificial eutrophic water (AEW) that was anaerobic, organic- and mineral-rich, and higher salinity as is typical of bottom water in eutrophic algae ponds. The Fe- and Ca-rich FAs were predominantly composed of quartz, mullite, portlandite, calcite, hannebachite, maghemite, and hematite. After 86 days, only Fe and Ca contents exhibited a decrease in leaching solutions while other major and trace elements showed increasing or steady trends in preference to the type of FA and leaching solution. Ca-rich FA showed strong carbon sequestration efficiency ranging up to 32.3 g CO(2)/kg FA after 86 days, corresponding to almost 65% of biotic carbon sequestration potential under some conditions. Variations in the properties of FAs such as chemical compositions, mineral constituents as well as the type of leaching solution impacted CO(2) capture. Even though the relative amount of calcite increased sixfold in the AEW and the relative amount of mineral phase reached 37.3 wt% using Ca-rich FA for 86 days, chemical sequestration did not accomplish simultaneous precipitation and sequestration of several heavy metals. PMID:21246259

  6. Simultaneous leaching and carbon sequestration in constrained aqueous solutions

    SciTech Connect

    Phelps, Tommy Joe [ORNL; Moon, Ji Won [ORNL; Roh, Yul [Chonnam National University, Gwangju; Cho, Kyu Seong [ORNL

    2011-01-01

    The behavior of metal ions leaching and precipitated mineral phases of metal-rich fly ash (FA) was examined in order to evaluate microbial impacts on carbon sequestration and metal immobilization. The leaching solutions consisted of aerobic deionized water (DW) and artificial eutrophic water (AEW) that was anaerobic, organic- and mineral-rich, and higher salinity as is typical of bottom water in eutrophic algae ponds. The Fe- and Ca-rich FAs were predominantly composed of quartz, mullite, portlandite, calcite, hannebachite, maghemite, and hematite. After 86 days, only Fe and Ca contents exhibited a decrease in leaching solutions while other major and trace elements showed increasing or steady trends in preference to the type of FA and leaching solution. Ca-rich FA showed strong carbon sequestration efficiency ranging up to 32.3 g CO(2)/kg FA after 86 days, corresponding to almost 65% of biotic carbon sequestration potential under some conditions. Variations in the properties of FAs such as chemical compositions, mineral constituents as well as the type of leaching solution impacted CO(2) capture. Even though the relative amount of calcite increased sixfold in the AEW and the relative amount of mineral phase reached 37.3 wt% using Ca-rich FA for 86 days, chemical sequestration did not accomplish simultaneous precipitation and sequestration of several heavy metals.

  7. Carbon dioxide sequestration by direct aqueous mineral carbonation

    SciTech Connect

    O'Connor, William K.; Dahlin, David C.; Nilsen, David N.; Walters, Richard P.; Turner, Paul C.

    2000-01-01

    Carbon dioxide sequestration by an ex-situ, direct aqueous mineral carbonation process has been investigated over the past two years. This process was conceived to minimize the steps in the conversion of gaseous CO2 to a stable solid. This meant combining two separate reactions, mineral dissolution and carbonate precipitation, into a single unit operation. It was recognized that the conditions favorable for one of these reactions could be detrimental to the other. However, the benefits for a combined aqueous process, in process efficiency and ultimately economics, justified the investigation. The process utilizes a slurry of water, dissolved CO2, and a magnesium silicate mineral, such as olivine [forsterite end member (Mg2SiO4)], or serpentine [Mg3Si2O5(OH)4]. These minerals were selected as the reactants of choice for two reasons: (1) significant abundance in nature; and (2) high molar ratio of the alkaline earth oxides (CaO, MgO) within the minerals. Because it is the alkaline earth oxide that combines with CO2 to form the solid carbonate, those minerals with the highest ratio of these oxides are most favored. Optimum results have been achieved using heat pretreated serpentine feed material, sodium bicarbonate and sodium chloride additions to the solution, and high partial pressure of CO2 (PCO2). Specific conditions include: 155?C; PCO2=185 atm; 15% solids. Under these conditions, 78% conversion of the silicate to the carbonate was achieved in 30 minutes. Future studies are intended to investigate various mineral pretreatment options, the carbonation solution characteristics, alternative reactants, scale-up to a continuous process, geochemical modeling, and process economics.

  8. SOIL CARBON SEQUESTRATION UNDER DIFFERENT MANAGEMENT PRACTICES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Five management systems: continuous corn (CC), cropland to woodland (CW), cropland to pastures (CP), no-till (NT), and conservation reserve program (CRP), were selected to evaluate their long-term impacts (5, 10 and 15 yr) on soil C sequestration. Nine soil cores from each system were randomly colle...

  9. Potential for Carbon Sequestration in Transplanted Salt Marshes

    NASA Astrophysics Data System (ADS)

    O'Brien, C.; Davis, J.; Currin, C.

    2014-12-01

    The photosynthetic uptake of atmospheric carbon dioxide (CO2) by tidal salt marshes results in the long-term storage of carbon in the sediment. In recent decades, pressures such as land-use change and sea level rise have significantly reduced the global extent of salt marshes and increased the need for restoration projects. Restored salt marshes have been shown to provide many of the same ecological and economic benefits as natural marshes, including fish habitat, pollution filtration, and shoreline stabilization. Given the high carbon sequestration capacity of tidal marshes, carbon storage is likely an additional benefit of restoration; however, the degree to which restored marshes achieve equivalency with natural marshes in terms of carbon burial has not been well-defined. In this study, annual carbon sequestration rates in transplanted marshes were estimated and belowground carbon stocks were compared in transplanted versus natural marshes. Sediment cores were collected from five transplanted Spartina alterniflora marshes of known age (12-38 years old) in the Newport River Estuary, NC and from two natural marshes of unknown age. Organic matter content was estimated using the loss on ignition method and carbon content was estimated based on previously established relationships. In transplanted marshes, the rate of carbon sequestration in the top 30 cm decreased with marsh age and ranged from 76.70 g C/m2/yr (38 year old marsh) to 212.83 g C/m2/yr (12 year old marsh). The natural marshes contained significantly larger carbon stocks in the top 30 cm (4534.61 - 7790.18 g C m-2) than the transplanted marshes (1822.97 - 3798.62 g C m-2). However, the annual sequestration rates in the transplanted marshes are similar to those observed by others in natural marshes, and therefore it is likely that over time restored marshes are capable of accreting belowground carbon stocks equivalent to those found in natural marshes.

  10. Carbon sequestration and plant nutrients in soil in different land types in Thingvellir Iceland

    NASA Astrophysics Data System (ADS)

    Svavarsdóttir, María; Gísladóttir, Guðrún; Mankasingh, Utra

    2015-04-01

    Special properties of volcanic soils (andisol) that is most common in Iceland can sequestrate considerably more carbon (C) that other types of soils. A mellow developed andisol with natural ecosystem such as birch forest or grass- and heathland is presumably to be fertile and sequestrate a lot of carbon. Coniferous tree species have been imported to Iceland for large scale utilisation in Icelandic forestry and is therefore an imported species/ecosystem. Abroad it has been noticed that coniferous trees acidify soil and change the properties of the soil so other species cannot thrive in it. The Icelandic Forest service is aiming tenfold the coverage of forests in Iceland before the year 2100 but about 50% of tree species that the institution uses is coniferous species. It is therefore important to research the soil due to the plant types that are planted in the soil. The aim of this project is to compare soil properties, soil nutrients and soil sequestration in heathland, birch forest and coniferous forest in Thingvellir national park in Iceland. Heathland and birch forest represent the natural ecosystem but coniferous forest imported ecosystem. Carbon (C) in soil will be measured, proportion of carbon and nitrogen (C:N), respiration from soil (CO2) and live green biomass and organic matter in the soil. The speed of decomposition of organic matter will be estimated. Important nutrients, pH and cation exchange capacity will be measured among other physical properties as bulk density, grain size and water holding capacity of the soil.

  11. Carbonic Acid Pretreatment of Biomass

    SciTech Connect

    G. Peter van Walsum; Kemantha Jayawardhana; Damon Yourchisin; Robert McWilliams; Vanessa Castleberry

    2003-05-31

    This project sought to address six objectives, outlined below. The objectives were met through the completion of ten tasks. 1) Solidify the theoretical understanding of the binary CO2/H2O system at reaction temperatures and pressures. The thermodynamics of pH prediction have been improved to include a more rigorous treatment of non-ideal gas phases. However it was found that experimental attempts to confirm theoretical pH predictions were still off by a factor of about 1.8 pH units. Arrhenius experiments were carried out and the activation energy for carbonic acid appears to be substantially similar to sulfuric acid. Titration experiments have not yet confirmed or quantified the buffering or acid suppression effects of carbonic acid on biomass. 2) Modify the carbonic acid pretreatment severity function to include the effect of endogenous acid formation and carbonate buffering, if necessary. It was found that the existing severity functions serve adequately to account for endogenous acid production and carbonate effects. 3) Quantify the production of soluble carbohydrates at different reaction conditions and severity. Results show that carbonic acid has little effect on increasing soluble carbohydrate concentrations for pretreated aspen wood, compared to pretreatment with water alone. This appears to be connected to the release of endogenous acids by the substrate. A less acidic substrate such as corn stover would derive benefit from the use of carbonic acid. 4) Quantify the production of microbial inhibitors at selected reaction conditions and severity. It was found that the release of inhibitors was correlated to reaction severity and that carbonic acid did not appear to increase or decrease inhibition compared to pretreatment with water alone. 5) Assess the reactivity to enzymatic hydrolysis of material pretreated at selected reaction conditions and severity. Enzymatic hydrolysis rates increased with severity, but no advantage was detected for the use of carbonic acid compared to water alone. 6) Determine optimal conditions for carbonic acid pretreatment of aspen wood. Optimal severities appeared to be in the mid range tested. ASPEN-Plus modeling and economic analysis of the process indicate that the process could be cost competitive with sulfuric acid if the concentration of solids in the pretreatment is maintained very high (~50%). Lower solids concentrations result in larger reactors that become expensive to construct for high pressure applications.

  12. Carbonic Acid Retreatment of Biomass

    SciTech Connect

    Baylor university

    2003-06-01

    This project sought to address six objectives, outlined below. The objectives were met through the completion of ten tasks. (1) Solidify the theoretical understanding of the binary CO{sub 2}/H{sub 2}O system at reaction temperatures and pressures. The thermodynamics of pH prediction have been improved to include a more rigorous treatment of non-ideal gas phases. However it was found that experimental attempts to confirm theoretical pH predictions were still off by a factor of about 1.8 pH units. Arrhenius experiments were carried out and the activation energy for carbonic acid appears to be substantially similar to sulfuric acid. Titration experiments have not yet confirmed or quantified the buffering or acid suppression effects of carbonic acid on biomass. (2) Modify the carbonic acid pretreatment severity function to include the effect of endogenous acid formation and carbonate buffering, if necessary. It was found that the existing severity functions serve adequately to account for endogenous acid production and carbonate effects. (3) Quantify the production of soluble carbohydrates at different reaction conditions and severity. Results show that carbonic acid has little effect on increasing soluble carbohydrate concentrations for pretreated aspen wood, compared to pretreatment with water alone. This appears to be connected to the release of endogenous acids by the substrate. A less acidic substrate such as corn stover would derive benefit from the use of carbonic acid. (4) Quantify the production of microbial inhibitors at selected reaction conditions and severity. It was found that the release of inhibitors was correlated to reaction severity and that carbonic acid did not appear to increase or decrease inhibition compared to pretreatment with water alone. (5) Assess the reactivity to enzymatic hydrolysis of material pretreated at selected reaction conditions and severity. Enzymatic hydrolysis rates increased with severity, but no advantage was detected for the use of carbonic acid compared to water alone. (6) Determine optimal conditions for carbonic acid pretreatment of aspen wood. Optimal severities appeared to be in the mid range tested. ASPEN-Plus modeling and economic analysis of the process indicate that the process could be cost competitive with sulfuric acid if the concentration of solids in the pretreatment is maintained very high ({approx}50%). Lower solids concentrations result in larger reactors that become expensive to construct for high pressure applications.

  13. Modeling carbon sequestration potential in Mollisols under climate change scenarios

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Carbon sequestration in agricultural soils, besides its importance in mitigating global climate change, impacts and will be impacted by provisioning, regulating and supporting agroecosystem services. The objectives of this study were to (1) provide an improved understanding of the role of projected ...

  14. Microbial Contribution to Organic Carbon Sequestration in Mineral Soil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil productivity and sustainability are dependent on soil organic matter (SOM). Our understanding on how organic inputs to soil from microbial processes become converted to SOM is still limited. This study aims to understand how microbes affect carbon (C) sequestration and the formation of recalcit...

  15. Carbon sequestration and environmental benefits from no-till systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agricultural carbon (C) sequestration may be one of the most cost-effective ways to slow processes of global warming. Information is needed on the mechanism and magnitude of gas generation and emission from agricultural soils with specific emphasis on tillage mechanisms. This work reviews the scient...

  16. CARBON SEQUESTRATION IN RECLAIMED MINED SOILS OF OHIO

    Microsoft Academic Search

    M. K. Shukla; R. Lal

    2004-01-01

    This research project is aimed at assessing the soil organic carbon (SOC) sequestration potential of reclaimed mine soils (RMS). Experimental sites characterized by distinct age chronosequences of reclaimed minesoil were identified. These sites are owned by Americal Electrical Power and are located in Guernsey, Morgan, Noble, and Muskingum Counties of Ohio. The sites chosen were: (1) reclaimed without topsoil application

  17. Carbon Sequestration in Reclaimed Mined Soils of Ohio

    Microsoft Academic Search

    K. Lorenz; R. Lal

    2007-01-01

    This research project was aimed at assessing the soil organic carbon (SOC) sequestration potential of reclaimed minesoils (RMS). The experimental sites were characterized by distinct age chronosequences of RMS and were located in Guernsey, Morgan, Noble, and Muskingum Counties of Ohio. Restoration of disturbed land is followed by the application of nutrients to the soil to promote the vegetation development.

  18. Carbon Sequestration in Reclaimed Mined Soils of Ohio

    Microsoft Academic Search

    M. K. Shukla; R. Lal

    2005-01-01

    Assessment of soil organic carbon (SOC) sequestration potential of reclaimed minesoils (RMS) is important for preserving environmental quality and increasing agronomic yields. The experimental sites were characterized by distinct age chronosequences of reclaimed minesoil and were located in Guernsey, Morgan, Noble, and Muskingum Counties of Ohio. These sites are owned and maintained by Americal Electrical Power. These sites were reclaimed

  19. Carbon Sequestration in Reclaimed Mined Soils of Ohio

    Microsoft Academic Search

    M. K. Shukla; K. Lorenz; R. Lal

    2005-01-01

    This research project is aimed at assessing the soil organic carbon (SOC) sequestration potential of reclaimed minesoils (RMS). The experimental sites, owned and maintained by the American Electrical Power, are located in Guernsey, Morgan, Noble, and Muskingum Counties of Ohio. These sites, characterized by age chronosequences, were reclaimed with and without topsoil application and are under continuous grass or forest

  20. Carbon Sequestration in Reclaimed Mined Soils of Ohio

    Microsoft Academic Search

    K. Lorenz; M. K. Shukla; R. Lal

    2006-01-01

    This research project is aimed at assessing the soil organic carbon (SOC) sequestration potential of reclaimed mine soils (RMS). The experimental sites were characterized by distinct age chronosequences of reclaimed mine soil and were located in Guernsey, Morgan, Noble, and Muskingum Counties of Ohio. These sites are owned and maintained by American Electrical Power. These sites were reclaimed (1) with

  1. CARBON SEQUESTRATION IN RECLAIMED MINED SOILS OF OHIO

    Microsoft Academic Search

    M. K. Shukla; R. Lal

    2004-01-01

    This research project is aimed at assessing the soil organic carbon (SOC) sequestration potential of reclaimed minesoils (RMS). The experimental sites, owned and maintained by the American Electrical Power, are located in Guernsey, Morgan, Noble, and Muskingum Counties of Ohio. These sites, characterized by age chronosequences, were reclaimed with and without topsoil application and are under continuous grass or forest

  2. Carbon Sequestration in Reclaimed Mined Soils of Ohio

    Microsoft Academic Search

    M. K. Shukla; R. Lal

    2004-01-01

    This research project is aimed at assessing the soil organic carbon (SOC) sequestration potential of reclaimed minesoils (RMS). The experimental sites were characterized by distinct age chronosequences of reclaimed minesoil and were located in Guernsey, Morgan, Noble, and Muskingum Counties of Ohio. These sites are owned and maintained by Americal Electrical Power. These sites were reclaimed (1) with topsoil application,

  3. Soil Carbon Sequestration and the Greenhouse Effect (2nd Edition)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This volume is a second edition of the book “Soil Carbon Sequestration and The Greenhouse Effect”. The first edition was published in 2001 as SSSA Special Publ. #57. The present edition is an update of the concepts, processes, properties, practices and the supporting data. All chapters are new co...

  4. Climate change and terrestrial carbon sequestration in Central Asia

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The topic of terrestrial carbon sequestration in Central Asia is extremely relevant and timely due to the increasing problem of land degradation and desertification in this region. Serious problems of soil and environmental degradation in general and that in Central Asia in particular exacerbated b...

  5. [Carbon sequestration status of forest ecosystems in Ningxia Hui Autonomous Region].

    PubMed

    Gao, Yang; Jin, Jing-Wei; Cheng, Ji-Min; Su, Ji-Shuai; Zhu, Ren-Bin; Ma, Zheng-Rui; Liu, Wei

    2014-03-01

    Based on the data of Ningxia Hui Autonomous Region forest resources inventory, field investigation and laboratory analysis, this paper studied the carbon sequestration status of forest ecosystems in Ningxia region, estimated the carbon density and storage of forest ecosystems, and analyzed their spatial distribution characteristics. The results showed that the biomass of each forest vegetation component was in the order of arbor layer (46.64 Mg x hm(-2)) > litterfall layer (7.34 Mg x hm(-2)) > fine root layer (6.67 Mg x hm(-2)) > shrub-grass layer (0.73 Mg x hm(-2)). Spruce (115.43 Mg x hm(-2)) and Pinus tabuliformis (94.55 Mg x hm(-2)) had higher vegetation biomasses per unit area than other tree species. Over-mature forest had the highest arbor carbon density among the forests with different ages. However, the young forest had the highest arbor carbon storage (1.90 Tg C) due to its widest planted area. Overall, the average carbon density of forest ecosystems in Ningxia region was 265.74 Mg C x hm(-2), and the carbon storage was 43.54 Tg C. Carbon density and storage of vegetation were 27.24 Mg C x hm(-2) and 4.46 Tg C, respectively. Carbon storage in the soil was 8.76 times of that in the vegetation. In the southern part of Ningxia region, the forest carbon storage was higher than in the northern part, where the low C storage was mainly related to the small forest area and young forest age structure. With the improvement of forest age structure and the further implementation of forestry ecoengineering, the forest ecosystems in Ningxia region would achieve a huge carbon sequestration potential. PMID:24984478

  6. Carbon Sequestration and Turnover in Semiarid Savannas and Dry Forest

    Microsoft Academic Search

    H. Tiessen; C. Feller; E. V. S. B. Sampaio; P. Garin

    1998-01-01

    Data on carbon and biomass budgets under different land use in tropical savannas and some dry forests are reviewed. Global data show wide ranges of biomass carbon stocks (20-150 Mg C ha-1), net primary production (2-15 Mg C ha-1y-1) and litter production (2-10 Mg C ha-1y-1) for the semiarid tropics. Although ranges for soil carbon are also wide, an average

  7. Role of Biofilms in Geological Carbon Sequestration

    Microsoft Academic Search

    Robin Gerlach; Andrew C. Mitchell; Lee H. Spangler; Al B. Cunningham

    2010-01-01

    Geologic sequestration of CO2 involves injection into underground formations including oil beds, deep un-minable coal seams, and deep saline aquifers with temperature and pressure conditions such that CO2 will likely be in the supercritical state. Supercritical CO2 (scCO2) is only slightly soluble in water (approximately 4%) and it is therefore likely that two fluid phases will develop in the subsurface,

  8. Carbon sequestration in the agricultural soils of Europe

    Microsoft Academic Search

    Annette Freibauer; Mark D. A Rounsevell; Pete Smith; Jan Verhagen

    2004-01-01

    In this review, technical and economically viable potentials for carbon sequestration in the agricultural soils of Europe by 2008–2012 are analysed against a business-as-usual scenario. We provide a quantitative estimation of the carbon absorption potential per hectare and the surface of agricultural land that is available and suitable for the implementation of those measures, their environmental effects as well as

  9. Modeling soil carbon sequestration in agricultural lands of Mali

    Microsoft Academic Search

    P. C. Doraiswamy; G. W. McCarty; E. R. Hunt Jr.; R. S. Yost; M. Doumbia; A. J. Franzluebbers

    2007-01-01

    Agriculture in sub-Saharan Africa is a low-input low-output system primarily for subsistence. Some of these areas are becoming less able to feed the people because of land degradation and erosion. The aim of this study is to characterize the potential for increasing levels of soil carbon for improving soil quality and carbon sequestration. A combination of high- and low-resolution imagery

  10. Cost Assessment of CO2 Sequestration by Mineral Carbonation 

    E-print Network

    Yeboah, F. E.; Yegulalp, T. M.; Singh, H.

    2006-01-01

    2000 km, then it is economical to capture CO 2 from the air for the sequestration process. 0 10 20 30 40 50 60 0 500 1000 1500 2000 2500 Length of Pipeline (km) C os t o f S e q u es t r a ti o n ( $ /t C O 2 ) Pure CO 2 Air Capture...Cost Assessment of CO2 Sequestration by Mineral Carbonation Frank E. Yeboah Tuncel M. Yegulalp Harmohindar Singh Research Associate Professor Professor Center for Energy Research...

  11. ECONOMIC ANALYSIS OF AGRICULTURAL SOIL CARBON SEQUESTRATION: AN INTEGRATED ASSESSMENT APPROACH

    Microsoft Academic Search

    John M. Antle; Susan M. Capalbo; Sian Mooney; Edward T. Elliott; Keith H. Paustian

    2001-01-01

    This study develops an integrated assessment approach for analysis of the economic potential for carbon sequestration in agricultural soils. By linking a site-specific economic simulation model of agricultural production to a crop ecosystem model, the approach shows the economic efficiency of soil carbon (C) sequestration depends on site-specific opportunity costs of changing production practices and rates of soil C sequestration.

  12. Evaluating variable switching and flash methods in modeling carbon sequestration in deep geologic formations

    E-print Network

    Mills, Richard

    Evaluating variable switching and flash methods in modeling carbon sequestration in deep geologic performance computing to assess the risks involved in carbon sequestration in deep geologic formations-thermal- chemical processes in variably saturated, non-isothermal porous media is applied to sequestration

  13. Effects of Biochar and Basalt Additions on Carbon Sequestration and Fluxes of Greenhouse Gases in Soils

    E-print Network

    Vallino, Joseph J.

    Effects of Biochar and Basalt Additions on Carbon Sequestration and Fluxes of Greenhouse Gases Emissions--Carbon Dioxide Emissions--Sequestration and Storage--Biochar--Basalt--Organic Fertilizers, this investigation focuses on the range of potential of different soil additives to enhance sequestration and storage

  14. Mineral sequestration of CO2 by aqueous carbonation of1 coal combustion fly-ash2

    E-print Network

    Paris-Sud XI, Université de

    1 Mineral sequestration of CO2 by aqueous carbonation of1 coal combustion fly-ash2 3 G. Montes that could possibly4 contribute to reducing carbon dioxide emissions is the in-situ mineral sequestration (long term5 geological storage) or the ex-situ mineral sequestration (controlled industrial reactors

  15. Field-project designs for carbon dioxide sequestration and enhanced coalbed methane production

    Microsoft Academic Search

    W. Neal Sams; Grant Bromhal; Sinisha Jikich; Turgay Ertekin; Duane H. Smith

    2005-01-01

    Worldwide concerns about global warming and possible contributions to it from anthropogenic carbon dioxide have become important during the past several years. Coal seams may make excellent candidates for COâ sequestration; coal-seam sequestration could enhance methane production and improve sequestration economics. Reservoir-simulation computations are an important component of any engineering design before carbon dioxide is injected underground. We have performed

  16. Controls on Soil Carbon Sequestration and Dynamics: Lessons from Land-use Change

    PubMed Central

    Conant, Richard; Mellor, Nathan; Brewer, Elizabeth; Paul, Eldor A.

    2010-01-01

    Soil carbon (C) dynamics and sequestration are controlled by interactions of chemical, physical and biological factors. These factors include biomass quantity and quality, physical environment and the biota. Management can alter these factors in ways that alter C dynamics. We have focused on a range of managed sites with documented land use change from agriculture or grassland to forest. Our results suggest that interactions of soil type, plant and environment impact soil C sequestration. Above and below ground C storage varied widely across sites. Results were related to plant type and calcium on sandy soils in our Northern sites. Predictors of sequestration were more difficult to detect over the temperature range of 12.4°C in the present study. Accrual of litter under pines in the moist Mississippi site limited C storage in a similar manner to our dry Nebraska site. Pre-planting heterogeneity of agricultural fields such as found in Illinois influences C contents. Manipulation of controls on C sequestration such as species planted or amelioration of soil quality before planting within managed sites could increase soil C to provide gains in terrestrial C storage. Cost effective management would also improve soil C pools positively affecting soil fertility and site productivity. PMID:22736841

  17. Estimation of carbon dioxide sequestration potential of microalgae grown in a batch photobioreactor.

    PubMed

    Kargupta, Wriju; Ganesh, Anuradda; Mukherji, Suparna

    2015-03-01

    The carbon dioxide (CO2) sequestration potential of two microalgae, Chlorella pyrenoidosa and Scenedesmus abundans was evaluated in a tubular batch photobioreactor with provision for continuous flow of 10% CO2 enriched air through the headspace. CO2 sequestration and biomass growth was affected by gas flow rate over the range 20-60ml/min and 40ml/min was found to maximize algal growth and CO2 sequestration. Moles of CO2 sequestered over 20h at a gas flow rate of 40ml/min was estimated using a novel rapid screening approach as 0.096 and 0.036, respectively, for C. pyrenoidosa and S. abundans. At this gas flow rate the maximum growth rate was 4.9mgL(-1)h(-1) and 2.5mgL(-1)h(-1) for C. pyrenoidosa and S. abundans, respectively. The CO2 sequestration and growth rate were comparable at height/diameter ratio of 8 and 16. PMID:25616748

  18. Seagrass restoration enhances "blue carbon" sequestration in coastal waters.

    PubMed

    Greiner, Jill T; McGlathery, Karen J; Gunnell, John; McKee, Brent A

    2013-01-01

    Seagrass meadows are highly productive habitats that provide important ecosystem services in the coastal zone, including carbon and nutrient sequestration. Organic carbon in seagrass sediment, known as "blue carbon," accumulates from both in situ production and sedimentation of particulate carbon from the water column. Using a large-scale restoration (>1700 ha) in the Virginia coastal bays as a model system, we evaluated the role of seagrass, Zosteramarina, restoration in carbon storage in sediments of shallow coastal ecosystems. Sediments of replicate seagrass meadows representing different age treatments (as time since seeding: 0, 4, and 10 years), were analyzed for % carbon, % nitrogen, bulk density, organic matter content, and ²¹?Pb for dating at 1-cm increments to a depth of 10 cm. Sediment nutrient and organic content, and carbon accumulation rates were higher in 10-year seagrass meadows relative to 4-year and bare sediment. These differences were consistent with higher shoot density in the older meadow. Carbon accumulation rates determined for the 10-year restored seagrass meadows were 36.68 g C m?² yr?¹. Within 12 years of seeding, the restored seagrass meadows are expected to accumulate carbon at a rate that is comparable to measured ranges in natural seagrass meadows. This the first study to provide evidence of the potential of seagrass habitat restoration to enhance carbon sequestration in the coastal zone. PMID:23967303

  19. The impact of atmospheric nitrogen deposition on carbon sequestration in boreal forests

    NASA Astrophysics Data System (ADS)

    Gundale, Michael

    2014-05-01

    It is proposed that increases in anthropogenic reactive nitrogen (Nr)-deposition may cause boreal forests to sequester a globally significant quantity of carbon (C); however, long-term data from boreal forests describing how C sequestration responds to realistic levels of chronic Nr-deposition are scarce. Using a long term (14-17 years) stand scale (0.1 ha) N-addition experiment (three levels: 0, 12.5, and 50 kg N ha-1yr-1) in the boreal zone of northern Sweden, we evaluated how chronic N additions altered N uptake and biomass of understory communities, and whether changes in understory communities explained N uptake and C sequestration by trees. We further explored whether N additions resulted in changes in soil C. Our data reveal that N additions resulted in increased C sequestration in both trees and soil (between 20-30 parts C per unit of N), with approximately 1/3 of this C sequestered in the humus layer, and 2/3 in plant biomass. The total quantity of C sequestered per unit N was far less than proposed by some modeling studies, and thus could account for only a very small portion of the unidentified terrestrial sink for anthropogenic CO2.

  20. Vegetation succession and carbon sequestration in a coastal wetland in northwest Florida: Evidence from carbon isotopes

    E-print Network

    Wang, Yang

    Vegetation succession and carbon sequestration in a coastal wetland in northwest Florida: Evidence from carbon isotopes Yonghoon Choi and Yang Wang Department of Geological Sciences, Florida State. Measurements of stable carbon isotopic ratios as well as carbon (C), nitrogen (N), and phosphorus (P) contents

  1. Carbon sequestration in depleted oil shale deposits

    DOEpatents

    Burnham, Alan K; Carroll, Susan A

    2014-12-02

    A method and apparatus are described for sequestering carbon dioxide underground by mineralizing the carbon dioxide with coinjected fluids and minerals remaining from the extraction shale oil. In one embodiment, the oil shale of an illite-rich oil shale is heated to pyrolyze the shale underground, and carbon dioxide is provided to the remaining depleted oil shale while at an elevated temperature. Conditions are sufficient to mineralize the carbon dioxide.

  2. Carbon Sequestration Potential of Agricultural Systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Through proper management, agricultural systems (cropland, pasture, and forest) have the ability to remove carbon dioxide from the atmosphere and sequester it in soils and wood products. The carbon thus sequestered can help slow the increase in atmospheric carbon dioxide currently occurring as a res...

  3. Carbonic anhydrase mediated carbon dioxide sequestration: promises, challenges and future prospects.

    PubMed

    Yadav, Raju R; Krishnamurthi, Kannan; Mudliar, Sandeep N; Devi, S Saravana; Naoghare, Pravin K; Bafana, Amit; Chakrabarti, Tapan

    2014-06-01

    Anthropogenic activities have substantially increased the level of greenhouse gases (GHGs) in the atmosphere and are contributing significantly to the global warming. Carbon dioxide (CO2 ) is one of the major GHGs which plays a key role in the climate change. Various approaches and methodologies are under investigation to address CO2 capture and sequestration worldwide. Carbonic anhydrase (CA) mediated CO2 sequestration is one of the promising options. Therefore, the present review elaborates recent developments in CA, its immobilization and bioreactor methodologies towards CO2 sequestration using the CA enzyme. The promises and challenges associated with the efficient utilization of CA for CO2 sequestration and scale up from flask to lab-scale bioreactor are critically discussed. Finally, the current review also recommends the possible future needs and directions to utilize CA for CO2 sequestration. PMID:24740638

  4. Land-use change and carbon sinks: Econometric estimation of the carbon sequestration supply function

    Microsoft Academic Search

    Ruben N. Lubowski; Andrew J. Plantinga; Robert N. Stavins

    2006-01-01

    If the United States chooses to implement a greenhouse gas reduction program, it would be necessary to decide whether to include carbon sequestration policies—such as those that promote forestation and discourage deforestation—as part of the domestic portfolio of compliance activities. We investigate the cost of forest-based carbon sequestration by analyzing econometrically micro-data on revealed landowner preferences, modeling six major private

  5. Impacts of crop rotations on soil organic carbon sequestration

    NASA Astrophysics Data System (ADS)

    Gobin, Anne; Vos, Johan; Joris, Ingeborg; Van De Vreken, Philippe

    2013-04-01

    Agricultural land use and crop rotations can greatly affect the amount of carbon sequestered in the soil. We developed a framework for modelling the impacts of crop rotations on soil carbon sequestration at the field scale with test case Flanders. A crop rotation geo-database was constructed covering 10 years of crop rotation in Flanders using the IACS parcel registration (Integrated Administration and Control System) to elicit the most common crop rotation on major soil types in Flanders. In order to simulate the impact of crop cover on carbon sequestration, the Roth-C model was adapted to Flanders' environment and coupled to common crop rotations extracted from the IACS geodatabases and statistical databases on crop yield. Crop allometric models were used to calculate crop residues from common crops in Flanders and subsequently derive stable organic matter fluxes to the soil (REGSOM). The REGSOM model was coupled to Roth-C model was run for 30 years and for all combinations of seven main arable crops, two common catch crops and two common dosages of organic manure. The common crops are winter wheat, winter barley, sugar beet, potato, grain maize, silage maize and winter rapeseed; the catch crops are yellow mustard and Italian ryegrass; the manure dosages are 35 ton/ha cattle slurry and 22 ton/ha pig slurry. Four common soils were simulated: sand, loam, sandy loam and clay. In total more than 2.4 million simulations were made with monthly output of carbon content for 30 years. Results demonstrate that crop cover dynamics influence carbon sequestration for a very large percentage. For the same rotations carbon sequestration is highest on clay soils and lowest on sandy soils. Crop residues of grain maize and winter wheat followed by catch crops contribute largely to the total carbon sequestered. This implies that agricultural policies that impact on agricultural land management influence soil carbon sequestration for a large percentage. The framework is therefore suited for further scenario analysis and impact assessment in order to support agri-environmental policy decisions.

  6. Interaction effects of climate and land use/land cover change on soil organic carbon sequestration

    E-print Network

    Grunwald, Sabine

    Interaction effects of climate and land use/land cover change on soil organic carbon sequestration carbon sequestration Climate change Soil carbon change Historically, Florida soils stored the largest in Florida (FL) have acted as a sink for carbon (C) over the last 40 years. · Climate interacting with land

  7. Dynamics of carbon sequestration in a coastal wetland using radiocarbon measurements

    E-print Network

    Wang, Yang

    Dynamics of carbon sequestration in a coastal wetland using radiocarbon measurements Yonghoon Choi1. Wang (2004), Dynamics of carbon sequestration in a coastal wetland using radiocarbon measurements carbon cycle. However, the dynamics of carbon (C) cycling in coastal wetlands and its response to sea

  8. Glaciation, aridification, and carbon sequestration in the Permo-Carboniferous: The isotopic record from low latitudes

    E-print Network

    Grossman, Ethan L.

    Glaciation, aridification, and carbon sequestration in the Permo-Carboniferous: The isotopic record and carbon sequestration in the Late Paleozoic, we have compiled new and published oxygen and carbon isotopic Carboniferous Stable isotopes Carbon cycling Brachiopods To evaluate the isotopic record of climate change

  9. Soil organic carbon sequestration potential of cropland in China Zhangcai Qin,1,2

    E-print Network

    Pittendrigh, Barry

    Soil organic carbon sequestration potential of cropland in China Zhangcai Qin,1,2 Yao Huang,1), Soil organic carbon sequestration potential of cropland in China, Global Biogeochem. Cycles, 27, doi:10 carbon (SOC) in cropland is of great importance to the global carbon (C) balance and to agricultural

  10. Biomass Supply and Carbon Accounting for

    E-print Network

    Informatics Group Dr. David Saah Spatial Informatics Group Adam Sherman Biomass Energy Resource Center and Carbon Accounting for Southeastern Forests study was conducted by the Biomass Energy Resource Center, the Forest Guild, and Spatial Informatics Group. The members of the study team included: Andrea Colnes

  11. Potential for Carbon Dioxide Sequestration in Flood Basalts

    SciTech Connect

    McGrail, B. PETER; Schaef, Herbert T.; Ho, Anita M.; Chien, Yi-Ju; Dooley, James J.; Davidson, Casie L.

    2006-12-01

    Flood basalts are a potentially important host medium for geologic sequestration of anthropogenic CO2. Most lava flows have flow tops that are porous, permeable, and have enormous capacity for storage of CO2. Interbedded sediment layers and dense low-permeability basalt rock overlying sequential flows may act as effective seals allowing time for mineralization reactions to occur. Laboratory experiments confirm relatively rapid chemical reaction of CO2-saturated pore water with basalts to form stable carbonate minerals. Calculations suggest a sufficiently short time frame for onset of carbonate precipitation after CO2 injection that verification of in situ mineralization rates appears feasible in field pilot studies. If proven viable, major flood basalts in the U.S. and India would provide significant additional CO2 storage capacity and additional geologic sequestration options in certain regions where more conventional storage options are limited.

  12. NATional CARBon Sequestration Database and Geographic Information System (NATCARB)

    SciTech Connect

    Timothy R. Carr

    2006-01-09

    This report provides a brief summary of the milestone for Quarter 1 of 2006 of the NATional CARBon Sequestration Database and Geographic Information System (NATCARB) This milestone assigns consistent symbology to the ''National CO{sub 2} Facilities'' GIS layer on the NATCARB website. As a default, CO{sub 2} sources provided by the Regional Carbon Sequestration Partnerships and the National Group are now all one symbol type. In addition for sinks such as oil and gas fields where data is drawn from multiple partnerships, the symbology is given a single color. All these modifications are accomplished as the layer is passed through the national portal (www.natcarb.org). This documentation is sent to National Energy Technology Laboratory (NETL) as a Topical Report and will be included in the next Annual Report.

  13. On carbon sequestration in desert ecosystems

    USGS Publications Warehouse

    Schlesinger, W.H.; Belnap, J.; Marion, G.

    2009-01-01

    Recent reports of net ecosysytem production >100 g C m-2 yr-1 in deserts are incompatible with existing measurements of net primary production and carbon pools in deserts. The comparisions suggest that gas exchange measurements should be used with caution and better validation if they are expected to indicate the magnitude of carbon sink in these ecosysytems. ?? 2009 Blackwell Publishing.

  14. Soil Carbon Sequestration in Pastureland and Rotation

    Microsoft Academic Search

    A. P. Moulin; P. McCaughey; D. McCartney; M. Entz; S. Bittman; W. F. Nuttall

    Degraded land with less than 1.5% organic carbon (class 4 and 5 land) in the Parkland of Western Canada has significant potential, from 5 to 15 Mg C ha-1 depending on management, for carbon storage with forages in the Parkland. The potential ranges from 5 to 15 Mg C ha-1, over a period from 15 to 20 years, depending on

  15. Carbon cycle: Sequestration in buried soils

    NASA Astrophysics Data System (ADS)

    Johnson, William C.

    2014-06-01

    Rapid deposition of wind-borne silt after the end of the last glacial period buried a large reservoir of organic carbon in the deep soil. Geochemical analyses suggest that this sequestered soil carbon could be released to the atmosphere if exposed to decomposition.

  16. Biochar for soil fertility and natural carbon sequestration

    USGS Publications Warehouse

    Rostad, C.E.; Rutherford, D.W.

    2011-01-01

    Biochar is charcoal (similar to chars generated by forest fires) that is made for incorporation into soils to increase soil fertility while providing natural carbon sequestration. The incorporation of biochar into soils can preserve and enrich soils and also slow the rate at which climate change is affecting our planet. Studies on biochar, such as those cited by this report, are applicable to both fire science and soil science.

  17. Technological learning for carbon capture and sequestration technologies

    Microsoft Academic Search

    Keywan Riahi; Edward S. Rubin; Margaret R. Taylor; Leo Schrattenholzer; David Hounshell

    2004-01-01

    This paper analyzes potentials of carbon capture and sequestration technologies (CCT) in a set of long-term energy-economic-environmental scenarios based on alternative assumptions for technological progress of CCT. In order to get a reasonable guide to future technological progress in managing CO2 emissions, we review past experience in controlling sulfur dioxide (SO2) emissions from power plants. By doing so, we quantify

  18. How strongly can forest management influence soil carbon sequestration?

    Microsoft Academic Search

    Robert Jandl; Marcus Lindner; Lars Vesterdal; B. M. S. D. L. Bauwens; Rainer Baritz; Frank Hagedorn; Dale W. Johnson; Kari Minkkinen; Kenneth A. Byrne

    2007-01-01

    We reviewed the experimental evidence for long-term carbon (C) sequestration in soils as consequence of specific forest management strategies. Utilization of terrestrial C sinks alleviates the burden of countries which are committed to reducing their greenhouse gas emissions. Land-use changes such as those which result from afforestation and management of fast-growing tree species, have an immediate effect on the regional

  19. The carbon-sequestration potential of municipal wastewater treatment

    Microsoft Academic Search

    Diego Rosso; Michael K. Stenstrom

    2008-01-01

    The lack of proper wastewater treatment results in production of CO2 and CH4 without the opportunity for carbon sequestration and energy recovery, with deleterious effects for global warming. Without extending wastewater treatment to all urban areas worldwide, CO2 and CH4 emissions associated with wastewater discharges could reach the equivalent of 1.91×105tCO2d-1 in 2025, with even more dramatic impact in the

  20. Sequestration of carbon dioxide (CO 2) using red mud

    Microsoft Academic Search

    Vishwajeet S. Yadav; Murari Prasad; Jeeshan Khan; S. S. Amritphale; M. Singh; C. B. Raju

    2010-01-01

    Red mud, an aluminium industry hazardous waste, has been reported to be an inexpensive and effective adsorbent. In the present work applicability of red mud for the sequestration of green house gases with reference to carbon dioxide has been studied. Red mud sample was separated into three different size fractions (RM I, RM II, RM III) of varying densities (1.5–2.2gcm?3).

  1. Brines as Possible Cation Sources for Biomimetic Carbon Dioxide Sequestration

    Microsoft Academic Search

    G. M. Bond; A. Abel; B. J. McPherson; J. Stringer

    2002-01-01

    The utility industry is currently producing 2.1 x 109 tonnes of CO2 per year from burning coal. The amounts of CO2 produced by a single coal-burning station are typically around 0.1 tonnes\\/MW\\/h for a coal burn of 0.04 tonnes\\/MW\\/h. These large fixed sources of CO2 constitute an obvious target for carbon sequestration to minimize greenhouse-gas emissions. The generally favored approach

  2. Implementation of Emission Trading in Carbon Dioxide Sequestration Optimization Management

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Duncan, I.

    2013-12-01

    As an effective mid- and long- term solution for large-scale mitigation of industrial CO2 emissions, CO2 capture and sequestration (CCS) has been paid more and more attention in the past decades. A general CCS management system has complex characteristics of multiple emission sources, multiple mitigation technologies, multiple sequestration sites, and multiple project periods. Trade-off exists among numerous environmental, economic, political, and technical factors, leading to varied system features. Sound decision alternatives are thus desired for provide decision supports for decision makers or managers for managing such a CCS system from capture to the final geologic storage phases. Carbon emission trading has been developed as a cost-effective tool for reducing the global greenhouse gas emissions. In this study, a carbon capture and sequestration optimization management model is proposed to address the above issues. The carbon emission trading is integrated into the model, and its impacts on the resulting management decisions are analyzed. A multi-source multi-period case study is provided to justify the applicability of the modeling approach, where uncertainties in modeling parameters are also dealt with.

  3. A brief overview of carbon sequestration economics and policy.

    PubMed

    Richards, Kenneth R

    2004-04-01

    This article provides an overview of the issues and challenges involved in analyzing the costs and program design for carbon sequestration. The first section examines some of the pitfalls of comparing the results of carbon sequestration cost studies and suggests some simple ways in which analysts could make their results more useful. The pitfalls in comparing studies include different definitions for the summary statistic "dollars per ton," differences in the type of costs that are estimated, and differences in underlying assumptions regarding program design and implementation. Future cost studies will benefit from improved treatment of leakage, general equilibrium interactions, and public finance interactions. The second section reviews issues related to the implementation of a carbon sequestration program, including which policy tools are available and which have received the most attention, some of the challenges for using those policy tools, and one alternative that has received little attention, but may become necessary. The discussion also provides an overview and analysis of the bills introduced in the last two congresses and considers the general policy implications of those proposals. PMID:15453407

  4. Accelerated Sequestration of Terrestrial Plant Biomass in the Deep Ocean

    Microsoft Academic Search

    S. E. Strand

    2010-01-01

    One of the most efficient uses of aboveground agricultural residues to reduce atmospheric CO2 is burial in sites removed from contact with the atmosphere and in which degradation of lignocellulose is inhibited (Strand and Benford 2009). Similarly by burying forest residues greater benefits for atmospheric carbon accrue compared to incineration or bioethanol production. Accessible planetary sites that are most removed

  5. Carbon dioxide sequestration from industrial flue gas by Chlorella sorokiniana.

    PubMed

    Kumar, Kanhaiya; Banerjee, Debopam; Das, Debabrata

    2014-01-01

    The present study investigated the feasibility of using Chlorella sorokiniana for CO2 sequestration from industrial flue gas. The flue gas emitted from the oil producing industry contains mostly CO2 and H2S (15.6% (v/v) and 120 mg L(-1), respectively) along with nitrogen, methane, and other hydrocarbons. The high concentration of CO2 and H2S had an inhibitory effect on the growth of C. sorokiniana. Some efforts were made for the maximization of the algal biomass production using different techniques such as diluted flue gas, flue gas after passing through the scrubber, flue gas passing through serially connected photobioreactors and two different reactors. The highest reduction in the CO2 content of inlet flue gas was 4.1% (v/v). Some new pigments were observed in the flue gas sequestered biomass. Fatty acid composition in the total lipid was determined to evaluate its suitability for food, feed, and biofuel. PMID:24292202

  6. CARBON DIOXIDE SEQUESTRATION IN TERRESTRIAL ECOSYSTEMS

    EPA Science Inventory

    The terrestrial biosphere plays a prominent role in the global carbon (C) cycle. errestrial ecosystems are currently accumulating C and it appears feasible to manage existing terrestrial (forest, agronomic, desert) ecosystems to maintain or increase C storage. orest ecosystems ca...

  7. CARBON SEQUESTRATION ON SURFACE MINE LANDS

    SciTech Connect

    Donald H. Graves; Christopher Barton; Richard Sweigard; Richard Warner

    2004-11-30

    A monitoring program to measure treatment effects on above ground, and below ground carbon and nitrogen pools for the planting areas is being conducted. The collection of soil and tissue samples from both the 2003 and 2004 plantings is complete and are currently being processed in the laboratory. Detailed studies have been initiated to address specific questions pertaining to carbon cycling. Examinations of decomposition and heterotropic respiration on carbon cycling in the reforestation plots were continued during this reporting period. A whole-tree harvesting method was employed to evaluate carbon accumulation as a function of time on the mined site. The trees were extracted from the sites and separated into the following components: foliage, stems, branches, and roots.

  8. The impact of co-occurring tree and grassland species on carbon sequestration and potential biofuel production

    E-print Network

    Weiblen, George D

    The impact of co-occurring tree and grassland species on carbon sequestration and potential biofuel for terrestrial carbon sequestration and potential biofuel production. For P. strobus, above- ground plant carbon harvest for biofuel would result in no net carbon sequestration as declines in soil carbon offset plant

  9. 1. BACKGROUND & OBJECTIVES For geological carbon sequestration, it is essential to

    E-print Network

    1. BACKGROUND & OBJECTIVES · For geological carbon sequestration, it is essential to understand Material Characterization for Intermediate-scale Testing to Develop Strategies for Geologic Sequestration to generate comprehensive data sets. Due to the nature of the CO2 geological sequestration where supercritical

  10. The Physical and Chemical Mechanisms Responsible for Carbon Sequestration in Soil Microaggregates

    E-print Network

    McCarthy, John F.

    The Physical and Chemical Mechanisms Responsible for Carbon Sequestration in Soil Microaggregates aggregate formation and stability have profound implications to understanding and enhancing C sequestration in soil. Soil microaggregates are particularly crucial to long-term sequestration because they protect C

  11. A General Methodology for Evaluation of Carbon Sequestration Activities and Carbon Credits

    SciTech Connect

    Klasson, KT

    2002-12-23

    A general methodology was developed for evaluation of carbon sequestration technologies. In this document, we provide a method that is quantitative, but is structured to give qualitative comparisons despite changes in detailed method parameters, i.e., it does not matter what ''grade'' a sequestration technology gets but a ''better'' technology should receive a better grade. To meet these objectives, we developed and elaborate on the following concepts: (1) All resources used in a sequestration activity should be reviewed by estimating the amount of greenhouse gas emissions for which they historically are responsible. We have done this by introducing a quantifier we term Full-Cycle Carbon Emissions, which is tied to the resource. (2) The future fate of sequestered carbon should be included in technology evaluations. We have addressed this by introducing a variable called Time-adjusted Value of Carbon Sequestration to weigh potential future releases of carbon, escaping the sequestered form. (3) The Figure of Merit of a sequestration technology should address the entire life-cycle of an activity. The figures of merit we have developed relate the investment made (carbon release during the construction phase) to the life-time sequestration capacity of the activity. To account for carbon flows that occur during different times of an activity we incorporate the Time Value of Carbon Flows. The methodology we have developed can be expanded to include financial, social, and long-term environmental aspects of a sequestration technology implementation. It does not rely on global atmospheric modeling efforts but is consistent with these efforts and could be combined with them.

  12. Climate Controls on Carbon Sequestration in Eastern North America

    NASA Technical Reports Server (NTRS)

    Peteet, D. M.; Renik, B.; Maenza-Gmeich, T.; Kurdyla, D.; Guilderson, T.

    2002-01-01

    Mid-latitude forest ecosystems have been proposed as a "missing sink" today. The role of soils (including wetlands) in this proposed sink is a very important unknown. In order to make estimates of future climate change effects on carbon storage, we can examine past wetland carbon sequestration. How did past climate change affect net wetland carbon storage? We present long-term data from existing wetland sites used for paleoclimate reconstruction to assess the net carbon storage in wetland over the last 15000 years. During times of colder and wetter climate, many mid-latitude sites show increases in carbon storage, while past warmer, drier climates produced decreases in storage. Comparison among bog, fen, swamp, and tidal marsh are demonstrated for the Hudson Valley region.

  13. Global Change Biology (1996)2,169-182 Measurements of carbon sequestration by long-term

    E-print Network

    Rose, Michael R.

    1996-01-01

    Global Change Biology (1996)2,169-182 Measurements of carbon sequestration by long-term eddy. The integrated carbon sequestration in 1994 was 2.1 t C ha-l y-l with a 90% confidence interval due to sampling an overall uncertainty on the annual carbon sequestration in 1994 of --0.3to +0.8 t C ha-l y-l. Keywords

  14. Biomass Production and Soil Carbon

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There is expanding interest in harvesting crop biomass for energy. Crop biomass such as corn stover, wheat straw, soybean straw or other crop straws can be used as feedstock to support several bioenergy platforms (cellulosic ethanol, gasification or pyrolysis). There are potential benefits for using...

  15. Global carbon sequestration in tidal, saline wetland soils

    USGS Publications Warehouse

    Chmura, G.L.; Anisfeld, S.C.; Cahoon, D.R.; Lynch, J.C.

    2003-01-01

    Wetlands represent the largest component of the terrestrial biological carbon pool and thus play an important role in global carbon cycles. Most global carbon budgets, however, have focused on dry land ecosystems that extend over large areas and have not accounted for the many small, scattered carbon-storing ecosystems such as tidal saline wetlands. We compiled data for 154 sites in mangroves and salt marshes from the western and eastern Atlantic and Pacific coasts, as well as the Indian Ocean, Mediterranean Ocean, and Gulf of Mexico. The set of sites spans a latitudinal range from 22.4??S in the Indian Ocean to 55.5??N in the northeastern Atlantic. The average soil carbon density of mangrove swamps (0.055 ?? 0.004 g cm-3) is significantly higher than the salt marsh average (0.039 ?? 0.003 g cm-3). Soil carbon density in mangrove swamps and Spartina patens marshes declines with increasing average annual temperature, probably due to increased decay rates at higher temperatures. In contrast, carbon sequestration rates were not significantly different between mangrove swamps and salt marshes. Variability in sediment accumulation rates within marshes is a major control of carbon sequestration rates masking any relationship with climatic parameters. Globally, these combined wetlands store at least 44.6 Tg C yr-1 and probably more, as detailed areal inventories are not available for salt marshes in China and South America. Much attention has been given to the role of freshwater wetlands, particularly northern peatlands, as carbon sinks. In contrast to peatlands, salt marshes and mangroves release negligible amounts of greenhouse gases and store more carbon per unit area. Copyright 2003 by the American Geophysical Union.

  16. Soil Carbon Sequestration Following Conservation Tillage of a Vineyard.

    NASA Astrophysics Data System (ADS)

    Alsina, M. M.; Smart, D. R.; Wolff, M. W.

    2014-12-01

    Cultivation of cover crops in the vineyard inter-row has been shown to have numerous benefits, but tests of the potential C sequestration benefits in perennial crops is limited. We investigated the impacts of three different between vine-row soil management treatments: a cover crop under minimum tillage (CC+mow); a cover crop mowed and incorporated to the soil in spring (CC+till); and a native weeds cover managed in the conventional manner (till), on root production and soil respiration (Rs) in a vineyard. Soil CO2 flux, gravimetric water content (qg) and total C, as well as leaf water potential, were monitored during a year. In early summer, a 1.5m deep trench per treatment was excavated, and three 15L soil samples were taken at 5 depths to determine the root distribution and total biomass. The root biomass was higher in the "CC+mow" treatment over the "till", especially the fine roots in the topsoil layer. The conventional vine-row management showed the highest yearly CO2 emission from Rs. The changes in the soil structure and therefore water retention resulting from the treatments, mainly in the topsoil layer, may explain the Rs differences. Our results point to conservation tillage as resource to enhance C sequestration in grapevine.

  17. Sequestration of CO2 by concrete carbonation.

    PubMed

    Galan, Isabel; Andrade, Carmen; Mora, Pedro; Sanjuan, Miguel A

    2010-04-15

    Carbonation of reinforced concrete is one of the causes of corrosion, but it is also a way to sequester CO2. The characteristics of the concrete cover should ensure alkaline protection for the steel bars but should also be able to combine CO2 to a certain depth. This work attempts to advance the knowledge of the carbon footprint of cement. As it is one of the most commonly used materials worldwide, it is very important to assess its impact on the environment. In order to quantify the capacity of cement based materials to combine CO2 by means of the reaction with hydrated phases to produce calcium carbonate, Thermogravimetry and the phenolphthalein indicator have been used to characterize several cement pastes and concretes exposed to different environments. The combined effect of the main variables involved in this process is discussed. The moisture content of the concrete seems to be the most influential parameter. PMID:20225850

  18. Economic Feasibility of Carbon Sequestration with Enhanced Gas Recovery (CSEGR)

    SciTech Connect

    Oldenburg, C.M.; Stevens, S.H.; Benson, S.M.

    2003-02-26

    Prior reservoir simulation and laboratory studies have suggested that injecting carbon dioxide into mature natural gas reservoirs for carbon sequestration with enhanced gas recovery (CSEGR) is technically feasible. Reservoir simulations show that the high density of carbon dioxide can be exploited to favor displacement of methane with limited gas mixing by injecting carbon dioxide in low regions of a reservoir while producing from higher regions in the reservoir. Economic sensitivity analysis of a prototypical CSEGR application at a large depleting gas field in California shows that the largest expense will be for carbon dioxide capture, purification, compression, and transport to the field. Other incremental costs for CSEGR include: (1) new or reconditioned wells for carbon dioxide injection, methane production, and monitoring; (2) carbon dioxide distribution within the field; and, (3) separation facilities to handle eventual carbon dioxide contamination of the methane. Economic feasibility is most sensitive to wellhead methane price, carbon dioxide supply costs, and the ratio of carbon dioxide injected to incremental methane produced. Our analysis suggests that CSEGR may be economically feasible at carbon dioxide supply costs of up to $4 to $12/t ($0.20 to $0.63/Mcf). Although this analysis is based on a particular gas field, the approach is general and can be applied to other gas fields. This economic analysis, along with reservoir simulation and laboratory studies that suggest the technical feasibility of CSEGR, demonstrates that CSEGR can be feasible and that a field pilot study of the process should be undertaken to test the concept further.

  19. Carbon sequestration in peatland: patterns and mechanisms of response to climate change

    E-print Network

    Carbon sequestration in peatland: patterns and mechanisms of response to climate change L I S A R., 2000; Turunen et al., 2002; Kremenetski et al., 2003). Rates of carbon (C) sequestration (i.e., uptake in the climatic water budget is crucial to predicting potential feedbacks on the global carbon (C) cycle. To gain

  20. Oxygen production and carbon sequestration in an upwelling coastal Burke Hales,1

    E-print Network

    Pierce, Stephen

    Oxygen production and carbon sequestration in an upwelling coastal margin Burke Hales,1 Lee Karp), Oxygen production and carbon sequestration in an upwelling coastal margin, Global Biogeochem. Cycles, 20 of particulate organic carbon (POC) and dissolved O2 during the upwelling season off the Oregon coast. Oxygen

  1. Carbon Sequestration in Rangelands Interseeded with Yellow-Flowering Alfalfa ( Medicago sativa ssp. falcata )

    Microsoft Academic Search

    Matthew C. Mortenson; Lachlan J. Ingram

    2004-01-01

    Management practices can significantly influence carbon sequestration by rangeland ecosystems. Grazing, burning, and fertilization have been shown to increase soil carbon storage in rangeland soils of the Great Plains. Research was initiated in 2001 in northwestern South Dakota to evaluate the role of interseeding a legume, Medicago sativa ssp. falcata, in northern mixed-grass rangelands on carbon sequestration. Sampling was undertaken

  2. The Effect of Land Use and Its Management Practices on Plant Nutrient Availability and Carbon Sequestration

    E-print Network

    Walter, M.Todd

    on soil degradation on both physical and chemical property of soil as well as on soil carbon sequestration availability and soil carbon sequestration in Bezawit Sub- Watershed, near Bahir Dar, Ethiopia. More The Effect of Land Use and Its Management Practices on Plant Nutrient Availability and Carbon

  3. THE ROLE OF CARBON CAPTURE & SEQUESTRATION IN A LONG-TERM TECHNOLOGY STRATEGY OF ATMOSPHERIC STABILIZATION

    Microsoft Academic Search

    JJ DOOLEY; JA EDMONDS; MA WISE

    In this paper, we examine the potential of carbon capture and sequestration technologies to make a significant contribution to national and global efforts to control carbon dioxide (CO 2) emissions. We examine the performance of these technologies under two alternative future energy-policy scenarios. We conclude that carbon capture and sequestration technologies could indeed play a significant role in reducing atmospheric

  4. Carbon sequestration in tropical agroforestry systems

    Microsoft Academic Search

    Alain Albrecht; Serigne T Kandji

    2003-01-01

    Removing atmospheric carbon (C) and storing it in the terrestrial biosphere is one of the options, which have been proposed to compensate greenhouse gas (GHG) emissions. Agricultural lands are believed to be a major potential sink and could absorb large quantities of C if trees are reintroduced to these systems and judiciously managed together with crops and\\/or animals. Thus, the

  5. Crop Management for Soil Carbon Sequestration

    Microsoft Academic Search

    Marek K. Jarecki; Rattan Lal

    2003-01-01

    Reducing emissions of greenhouse gases (GHG) from agriculture is related to increasing and protecting soil organic matter (SOM) concentration. Agricultural soils can be a significant sink for atmospheric carbon (C) through increase of the SOM concentration. The natural ecosystems such as forests or prairies, where C gains are in equilibrium with losses, lose a large fraction of the antecedent C

  6. Soil carbon sequestration: Quantifying this ecosystem service

    EPA Science Inventory

    Soils have a crucial role in supplying many goods and services that society depends upon on a daily basis. These include food and fiber production, water cleansing and supply, nutrient cycling, waste isolation and degradation. Soils also provide a significant amount of carbon s...

  7. Carbon Capture and Sequestration: Potential Environmental Impacts

    Microsoft Academic Search

    Paul Johnston; David Santillo

    Over the last few years, understanding of the profound implications of anthropogenically driven climate change has grown. In turn, this has fuelled research into options to mitigate likely im- pacts. Approaches involving the capture of carbon dioxide and its storage in geological forma- tions, or in marine waters, have generated a raft of proposed solutions. The scale of some of

  8. [Variation of forest vegetation carbon storage and carbon sequestration rate in Liaoning Province, Northeast China].

    PubMed

    Zhen, Wei; Huang, Mei; Zhai, Yin-Li; Chen, Ke; Gong, Ya-Zhen

    2014-05-01

    The forest vegetation carbon stock and carbon sequestration rate in Liaoning Province, Northeast China, were predicted by using Canadian carbon balance model (CBM-CFS3) combining with the forest resource data. The future spatio-temporal distribution and trends of vegetation carbon storage, carbon density and carbon sequestration rate were projected, based on the two scenarios, i. e. with or without afforestation. The result suggested that the total forest vegetation carbon storage and carbon density in Liaoning Province in 2005 were 133.94 Tg and 25.08 t x hm(-2), respectively. The vegetation carbon storage in Quercus was the biggest, while in Robinia pseudoacacia was the least. Both Larix olgensis and broad-leaved forests had higher vegetation carbon densities than others, and the vegetation carbon densities of Pinus tabuliformis, Quercus and Robinia pseudoacacia were close to each other. The spatial distribution of forest vegetation carbon density in Liaoning Province showed a decrease trend from east to west. In the eastern forest area, the future increase of vegetation carbon density would be smaller than those in the northern forest area, because most of the forests in the former part were matured or over matured, while most of the forests in the later part were young. Under the scenario of no afforestation, the future increment of total forest vegetation carbon stock in Liaoning Province would increase gradually, and the total carbon sequestration rate would decrease, while they would both increase significantly under the afforestation scenario. Therefore, afforestation plays an important role in increasing vegetation carbon storage, carbon density and carbon sequestration rate. PMID:25129923

  9. Soil carbon sequestration to mitigate climate change

    Microsoft Academic Search

    R. Lal

    2004-01-01

    The increase in atmospheric concentration of CO2 by 31% since 1750 from fossil fuel combustion and land use change necessitates identification of strategies for mitigating the threat of the attendant global warming. Since the industrial revolution, global emissions of carbon (C) are estimated at 270±30 Pg (Pg=petagram=1015 g=1 billion ton) due to fossil fuel combustion and 136±55 Pg due to

  10. Making carbon sequestration a paying proposition

    Microsoft Academic Search

    Fengxiang X. Han; Jeff S. Lindner; Chuji Wang

    2007-01-01

    Atmospheric carbon dioxide (CO2) has increased from a preindustrial concentration of about 280 ppm to about 367 ppm at present. The increase has closely\\u000a followed the increase in CO2 emissions from the use of fossil fuels. Global warming caused by increasing amounts of greenhouse gases in the atmosphere\\u000a is the major environmental challenge for the 21st century. Reducing worldwide emissions of CO2

  11. Sequestration — The Underground Storage of Carbon Dioxide

    Microsoft Academic Search

    Sam Holloway

    Underground storage of industrial quantities of carbon dioxide in porous and permeable reservoir rocks has been taking place\\u000a for the last 11 years at the Sleipner West gas field in the North Sea. A further commercial-scale CO2 storage project has recently begun at In Salah, Algeria, and the Snohvit field, Barents Sea, is to begin injecting CO2 underground in late

  12. Fluid Mechanical Modelling of Carbon Dioxide Sequestration

    NASA Astrophysics Data System (ADS)

    Huppert, H. E.

    2007-12-01

    The flow of supercritical carbon dioxide against an impermeable caprock will be considered from a theoretical and experimental point of view. A series of fundamental problems will be presented, along with some laboratory simulations. It will be shown that in the simplest case, when the caprock is totally impermeable and horizontal, with viscosity differences between the supercritical carbon dioxide and the fluid into which it is intruding neglected, the radius of the spreading of carbon dioxide increases like the square root of time. We will then consider the influence of a sloping caprock, where for time short compared to some critical time, ?c, the spreading pool is close to axisymmetric, while for times very much greater than ?c it is approximately three times larger in the upslope than cross-slope direction. For typical geological conditions, ?c can vary from between days and years, and hence the observed shape will depend on details at the injection site. A discussion of the effects of different viscosities of the intruding and intruded fluid will be presented and the important non- dimensional physical parameters outlined. The talk will conclude with a discussion of very recent research on the effects of heterogeneous porosity in the ambient and an application of the results to the analysis of the observations at Sleipner. The talk will be illustrated by colour movie sequences of experiments and a real desk- top experiment.

  13. A Holocene record of climate-driven shifts in coastal carbon sequestration

    USGS Publications Warehouse

    Mitra, Siddhartha; Zimmerman, A.R.; Hunsinger, G.B.; Willard, D.; Dunn, J.C.

    2009-01-01

    A sediment core collected in the mesohaline portion of Chesapeake Bay was found to contain periods of increased delivery of refractory black carbon (BC) and polycyclic aromatic hydrocarbons (PAHs). The BC was most likely produced by biomass combustion during four centennialscale dry periods as indicated by the Palmer Drought Severity Index (PDSI), beginning in the late Medieval Warm Period of 1100 CE. In contrast, wetter periods were associated with increased non-BC organic matter influx into the bay, likely due to greater runoff and associated nutrient delivery. In addition, an overall increase in both BC and non-BC organic matter deposition during the past millennium may reflect a shift in climate regime. The finding that carbon sequestration in the coastal zone responds to climate fluctuations at both centennial and millennial scales through fire occurrence and nutrient delivery has implications for past and future climate predictions. Drought-induced fires may lead, on longer timescales, to greater carbon sequestration and, therefore, represent a negative climate feedback. Copyright 2009 by the American Geophysical Union.

  14. Trace Metal Source Terms in Carbon Sequestration Environments

    SciTech Connect

    Karamalidis, Athanasios; Torres, Sharon G.; Hakala, Jacqueline A.; Shao, Hongbo; Cantrell, Kirk J.; Carroll, Susan A.

    2013-01-01

    ABSTRACT: Carbon dioxide sequestration in deep saline and depleted oil geologic formations is feasible and promising; however, possible CO2 or CO2-saturated brine leakage to overlying aquifers may pose environmental and health impacts. The purpose of this study was to experimentally define to provide a range of concentrations that can be used as the trace element source term for reservoirs and leakage pathways in risk simulations. Storage source terms for trace metals are needed to evaluate the impact of brines leaking into overlying drinking water aquifers. The trace metal release was measured from cements and sandstones, shales, carbonates, evaporites, and basalts from the Frio, In Salah, Illinois Basin, Decatur, Lower Tuscaloosa, Weyburn-Midale, Bass Islands, and Grand Ronde carbon sequestration geologic formations. Trace metal dissolution was tracked by measuring solution concentrations over time under conditions (e.g., pressures, temperatures, and initial brine compositions) specific to the sequestration projects. Existing metrics for maximum contaminant levels (MCLs) for drinking water as defined by the U.S. Environmental Protection Agency (U.S. EPA) were used to categorize the relative significance of metal concentration changes in storage environments because of the presence of CO2. Results indicate that Cr and Pb released from sandstone reservoir and shale cap rocks exceed the MCLs byan order of magnitude, while Cd and Cu were at or below drinking water thresholds. In carbonate reservoirs As exceeds the MCLs by an order of magnitude, while Cd, Cu, and Pb were at or below drinking water standards. Results from this study can be used as a reasonable estimate of the trace element source term for reservoirs and leakage pathways in risk simulations to further evaluate the impact of leakage on groundwater quality.

  15. Soil carbon sequestration via cover crops- A meta-analysis

    NASA Astrophysics Data System (ADS)

    Poeplau, Christopher; Don, Axel

    2014-05-01

    Agricultural soils are depleted in soil organic carbon (SOC) and have thus a huge potential to sequester SOC. This can primarily be achieved by increasing carbon inputs into the soil. Replacing winter fallows by cover crop cultivation for green manure has many benefits for the soil and forms an additional carbon input. An increase in carbon concentration has been reported in several studies worldwide. However, the effect on SOC stocks, as well as the influence of environmental parameters and management on SOC dynamics is not known. We therefore conducted a meta-analysis to investigate those issues. A total of 33 studies, comprising 47 sites and 147 plots were compiled. A pedotransfer function was used to estimate bulk densities and calculate SOC stocks. SOC stock change was found to be a linear function of time since introduction, with an annual sequestration rate of 0.32 Mg C ha-1 yr-1. Since no saturation was visible in the observations, we used the model RothC to estimate a new steady state level and the resulting total SOC stock change for an artificial "average cropland". The total average SOC stock change with an annual input of 1.87 Mg C ha-1 yr-1 was 16.76 Mg C ha-1 for the average soil depth of 22 cm. We estimated a potential global SOC sequestration of 0.12±0.03 Pg C yr-1, which would compensate for 8 % of the direct annual greenhouse gas emissions from agriculture.

  16. Phylogenetic variation of phytolith carbon sequestration in bamboos

    PubMed Central

    Li, Beilei; Song, Zhaoliang; Li, Zimin; Wang, Hailong; Gui, Renyi; Song, Ruisheng

    2014-01-01

    Phytoliths, the amorphous silica deposited in plant tissues, can occlude organic carbon (phytolith-occluded carbon, PhytOC) during their formation and play a significant role in the global carbon balance. This study explored phylogenetic variation of phytolith carbon sequestration in bamboos. The phytolith content in bamboo varied substantially from 4.28% to 16.42%, with the highest content in Sasa and the lowest in Chimonobambusa, Indocalamus and Acidosasa. The mean PhytOC production flux and rate in China's bamboo forests were 62.83?kg CO2 ha?1 y?1 and 4.5 × 108?kg CO2 y?1, respectively. This implies that 1.4 × 109?kg CO2 would be sequestered in world's bamboo phytoliths because the global bamboo distribution area is about three to four times higher than China's bamboo. Therefore, both increasing the bamboo area and selecting high phytolith-content bamboo species would increase the sequestration of atmospheric CO2 within bamboo phytoliths. PMID:24736571

  17. Phylogenetic variation of phytolith carbon sequestration in bamboos.

    PubMed

    Li, Beilei; Song, Zhaoliang; Li, Zimin; Wang, Hailong; Gui, Renyi; Song, Ruisheng

    2014-01-01

    Phytoliths, the amorphous silica deposited in plant tissues, can occlude organic carbon (phytolith-occluded carbon, PhytOC) during their formation and play a significant role in the global carbon balance. This study explored phylogenetic variation of phytolith carbon sequestration in bamboos. The phytolith content in bamboo varied substantially from 4.28% to 16.42%, with the highest content in Sasa and the lowest in Chimonobambusa, Indocalamus and Acidosasa. The mean PhytOC production flux and rate in China's bamboo forests were 62.83 kg CO2 ha(-1) y(-1) and 4.5 × 10(8)kg CO2 y(-1), respectively. This implies that 1.4 × 10(9) kg CO2 would be sequestered in world's bamboo phytoliths because the global bamboo distribution area is about three to four times higher than China's bamboo. Therefore, both increasing the bamboo area and selecting high phytolith-content bamboo species would increase the sequestration of atmospheric CO2 within bamboo phytoliths. PMID:24736571

  18. R E V I E W Liana Impacts on Carbon Cycling, Storage and Sequestration in Tropical Forests

    E-print Network

    Schnitzer, Stefan

    R E V I E W Liana Impacts on Carbon Cycling, Storage and Sequestration in Tropical Forests Geertje for carbon storage and sequestration. Lianas reduce tree growth, survival, and leaf productivity; however liana carbon stocks are unlikely to compensate for liana-induced losses in net carbon sequestration

  19. Carbon Sequestration in Turfgrass: An Eco-Friendly Benefit of Your Lawn Dale Bremer, Kansas State University

    E-print Network

    1 Carbon Sequestration in Turfgrass: An Eco-Friendly Benefit of Your Lawn Dale Bremer, Kansas State read this have no doubt heard of carbon sequestration and may even be well versed on the topic. Others't the slightest clue about carbon sequestration and others may not even care. After all, what does carbon

  20. Assessing the impact of changes in climate and CO2 on potential carbon sequestration in agricultural soils

    E-print Network

    Jain, Atul K.

    Assessing the impact of changes in climate and CO2 on potential carbon sequestration the influence of climate and CO2 feedbacks on soil carbon sequestration using a terrestrial carbon cycle model (2005), Assessing the impact of changes in climate and CO2 on potential carbon sequestration

  1. CARBON SEQUESTRATION ON MINED LANDS SUPPORTING ABANDONED GRASSLANDS: SOIL ORGANIC CARBON ACCUMULATION AND DISTRIBUTION1

    Microsoft Academic Search

    Beyhan Y. Amichev; James A. Burger

    Reclaimed surface coal mines in the eastern United States are commonly revegetated with grasses and legumes. The productivity and carbon sequestration potential of the vegetation varies with the condition and nature of the mined site and soil. This study was conducted to determine the distribution pattern of soil carbon stock on 9 mined grasslands reclaimed after the passage of SMCRA

  2. Remote Detection of Carbon Stable Isotope of CO2 for Carbon Sequestration

    Microsoft Academic Search

    S. D. Humphries; S. M. Clegg; J. E. Fessenden; L. Dobeck; L. Spangler

    2009-01-01

    Carbon storage in geologic formations is one method to prevent carbon dioxide (CO2), produced by fossil fuel combustion, from entering the Earth's atmosphere. The monitoring, verification and accounting (MVA) of geologically sequestered CO2 is critical to measure the operation and functioning of a geologic storage site. Surface monitoring techniques need to identify seepage from the sequestration reservoir at or below

  3. CARBON SEQUESTRATION ON SURFACE MINE LANDS

    SciTech Connect

    Donald H. Graves; Christopher Barton; Richard Sweigard; Richard Warner

    2004-08-02

    The April-June 2004 quarter was dedicated to the establishment of monitoring systems for all the new research areas. Hydrology and water quality monitoring continues to be conducted on all areas as does weather data pertinent to the research. Studies assessing specific questions pertaining to carbon flux has been established and the invasion of the vegetation by small mammals is being quantified. The approval of two experimental practices associated with this research by the United States Office of Surface Mining was a major accomplishment during this period of time. These experimental practices will eventually allow for tree planting on long steep slopes with loose grading systems and for the use of loose dumped spoil on mountain top removal areas with no grading in the final layer of rooting material for tree establishment.

  4. Climate change mitigation and sustainable development through carbon sequestration: experiences in Latin America

    Microsoft Academic Search

    Rob Bailis

    2006-01-01

    This article discusses the links between sustainable development and carbon sequestration as a climate change mitigation (CCM) strategy with a focus on Latin America, which has hosted the majority of sequestration activities to date. The global potential for CCM through a combination of sequestration and reduced deforestation is projected to be roughly 60-80 billion tonnes of carbon (GtC) by mid-century,

  5. Effects of Added Organic Matter and Water on Soil Carbon Sequestration in an Arid Region

    PubMed Central

    Tian, Yuan; Jiang, Lianhe; Zhao, Xuechun; Zhu, Linhai; Chen, Xi; Gao, Yong; Wang, Shaoming; Zheng, Yuanrun; Rimmington, Glyn M.

    2013-01-01

    It is generally predicted that global warming will stimulate primary production and lead to more carbon (C) inputs to soil. However, many studies have found that soil C does not necessarily increase with increased plant litter input. Precipitation has increased in arid central Asia, and is predicted to increase more, so we tested the effects of adding fresh organic matter (FOM) and water on soil C sequestration in an arid region in northwest China. The results suggested that added FOM quickly decomposed and had minor effects on the soil organic carbon (SOC) pool to a depth of 30 cm. Both FOM and water addition had significant effects on the soil microbial biomass. The soil microbial biomass increased with added FOM, reached a maximum, and then declined as the FOM decomposed. The FOM had a more significant stimulating effect on microbial biomass with water addition. Under the soil moisture ranges used in this experiment (21.0%–29.7%), FOM input was more important than water addition in the soil C mineralization process. We concluded that short-term FOM input into the belowground soil and water addition do not affect the SOC pool in shrubland in an arid region. PMID:23875022

  6. CO2 and albedo climate impacts of extratropical carbon and biomass plantations

    Microsoft Academic Search

    M. Schaeffer; B. Eickhout; M. Hoogwijk; B. Strengers; D. van Vuuren; R. Leemans; T. Opsteegh

    2006-01-01

    We explored the climate impacts for two land-use change scenarios, aimed at mitigating the buildup of greenhouse gases in the atmosphere. Using the integrated assessment model IMAGE 2.2, we found that the large-scale implementation in the extratropics of either carbon-sequestration or modern-biomass plantations decreases the CO2 concentration with 70–80 ppmv by the year 2100 compared to a nonmitigation baseline. In

  7. CO? sequestration through mineral carbonation of iron oxyhydroxides.

    PubMed

    Lammers, Kristin; Murphy, Riley; Riendeau, Amber; Smirnov, Alexander; Schoonen, Martin A A; Strongin, Daniel R

    2011-12-15

    Carbon dioxide sequestration via the use of sulfide reductants and mineral carbonation of the iron oxyhydroxide polymorphs lepidocrocite, goethite, and akaganeite with supercritical CO(2) (scCO(2)) was investigated using in situ attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR), X-ray diffraction (XRD), and transmission electron microscopy (TEM). The exposure of the different iron oxyhydroxides to aqueous sulfide in contact with scCO(2) at ?70-100 °C resulted in the partial transformation of the minerals to siderite (FeCO(3)) and sulfide phases such as pyrite (FeS(2)). The relative yield of siderite to iron sulfide bearing mineral product was a strong function of the initial sulfide concentration. The order of mineral reactivity with regard to the amount of siderite formation in the scCO(2)/sulfide environment for a specific reaction time was goethite < lepidocrocite ? akaganeite. Given the presence of goethite in sedimentary formations, this conversion reaction may have relevance to the subsurface sequestration and geologic storage of carbon dioxide. PMID:22066460

  8. Carbon Sequestration to Mitigate Climate Change

    USGS Publications Warehouse

    Sundquist, Eric; Burruss, Robert; Faulkner, Stephen; Gleason, Robert; Harden, Jennifer; Kharaka, Yousif; Tieszen, Larry; Waldrop, Mark

    2008-01-01

    Human activities, especially the burning of fossil fuels such as coal, oil, and gas, have caused a substantial increase in the concentration of carbon dioxide (CO2) in the atmosphere. This increase in atmospheric CO2 - from about 280 to more than 380 parts per million (ppm) over the last 250 years - is causing measurable global warming. Potential adverse impacts include sea-level rise; increased frequency and intensity of wildfires, floods, droughts, and tropical storms; changes in the amount, timing, and distribution of rain, snow, and runoff; and disturbance of coastal marine and other ecosystems. Rising atmospheric CO2 is also increasing the absorption of CO2 by seawater, causing the ocean to become more acidic, with potentially disruptive effects on marine plankton and coral reefs. Technically and economically feasible strategies are needed to mitigate the consequences of increased atmospheric CO2. The United States needs scientific information to develop ways to reduce human-caused CO2 emissions and to remove CO2 from the atmosphere.

  9. Accelerating Carbon Capture and Sequestration Projects: Analysis and Comparison of Policy Approaches

    Microsoft Academic Search

    Elizabeth A. Burton; Souheil Ezzedine; John Reed; John H. Beyer

    2011-01-01

    Many states and countries have adopted or are in the process of crafting policies to enable geologic carbon sequestration projects. These efforts reflect the recognition that existing statutory and regulatory frameworks leave ambiguities or gaps that elevate project risk for private companies considering carbon sequestration projects, and\\/or are insufficient to address a government’s mandate to protect the public interest. We

  10. Carbon sequestration potential of forest land: Management for products and bioenergy versus preservation

    Microsoft Academic Search

    P. Van Deusen

    2010-01-01

    A 40 year projection of potential carbon sequestration is based on USDA Forest Service Forest Inventory and Analysis (FIA) data from the state of Georgia. The objective is to compare carbon sequestration under a sustainable management strategy versus a preservation strategy. FIA plots are projected ahead in time with hotdeck matching. This matches each subject plot with another plot from

  11. Carbon sequestration in the U.S. forest sector from 1990 to 2010

    Microsoft Academic Search

    Peter B. Woodbury; James E. Smith; Linda S. Heath

    2007-01-01

    Forest inventory data supplemented with data from intensive research sites and models were used to estimate carbon stocks and sequestration rates in U.S. forests, including effects of land use change. Data on the production of wood products and emission from decomposition were used to estimate carbon stocks and sequestration rates in wood products and landfills. From 1990 through 2005, the

  12. POTENTIAL NITROGEN CONSTRAINTS ON SOIL CARBON SEQUESTRATION UNDER LOW AND ELEVATED ATMOSPHERIC CO 2

    Microsoft Academic Search

    Richard A. Gill; Laurel J. Anderson; H. Wayne Polley; Hyrum B. Johnson; Robert B. Jackson

    2006-01-01

    The interaction between nitrogen cycling and carbon sequestration is critical in predicting the consequences of anthropogenic increases in atmospheric CO2 (hereafter, Ca). The progressive N limitation (PNL) theory predicts that carbon sequestration in plants and soils with rising Ca may be constrained by the availability of nitrogen in many eco- systems. Here we report on the interaction between C and

  13. Valuation of carbon capture and sequestration under Greenhouse gas regulations: CCS as an offsetting activity

    SciTech Connect

    Lokey, Elizabeth

    2009-08-15

    When carbon capture and sequestration is conducted by entities that are not regulated, it could be counted as an offset that is fungible in the market or sold to a voluntary market. This paper addresses the complications that arise in accounting for carbon capture and sequestration as an offset, and methodologies that exist for accounting for CCS in voluntary and compliance markets. (author)

  14. A Simulation Study of Carbon Dioxide Sequestration in a Depleted Oil Reservoir

    Microsoft Academic Search

    A. Momeni; M. Aghajani; G. Zargar

    2012-01-01

    Oil fields offer significant potential for storing carbon dioxide (CO2) and will most likely be the first large-scale geological targets for sequestration because the infrastructure, experience, and permitting procedures already exist. In addition, almost 40 years' experience in enhanced oil recovery (EOR) allows utilization of carbon capture and storage (CCS) and CO2 sequestration techniques in such a way as to

  15. Development of a Rapid Assessment Method for Quantifying Carbon Sequestration on Reclaimed Coal Mine Sites

    Microsoft Academic Search

    S. Maharaj; C. D. Barton; A. D. Karathanasis

    2005-01-01

    Projected climate change resulting from elevated atmospheric carbon dioxide has given rise to various strategies designed to sequester carbon in various terrestrial ecosystems. Reclaimed coal mine soils present one such potential carbon sink where traditional reclamation objectives can complement carbon sequestration. However, quantifying new carbon (carbon that has been added to soil through recent biological processes) on reclaimed mine soils

  16. ECONOMIC EVALUATION OF CO2 SEQUESTRATION TECHNOLOGIES TASK 4, BIOMASS GASIFICATION-BASED PROCESSING

    SciTech Connect

    Martha L. Rollins; Les Reardon; David Nichols; Patrick Lee; Millicent Moore; Mike Crim; Robert Luttrell; Evan Hughes

    2002-04-01

    Biomass derived energy currently accounts for about 3 quads of total primary energy use in the United States. Of this amount, about 0.8 quads are used for power generation. Several biomass energy production technologies exist today which contribute to this energy mix. Biomass combustion technologies have been the dominant source of biomass energy production, both historically and during the past two decades of expansion of modern biomass energy in the U. S. and Europe. As a research and development activity, biomass gasification has usually been the major emphasis as a method of more efficiently utilizing the energy potential of biomass, particularly wood. Numerous biomass gasification technologies exist today in various stages of development. Some are simple systems, while others employ a high degree of integration for maximum energy utilization. The purpose of this study is to conduct a technical and economic comparison of up to three biomass gasification technologies, including the carbon dioxide emissions reduction potential of each. To accomplish this, a literature search was first conducted to determine which technologies were most promising based on a specific set of criteria. During this reporting period, the technical and economic performances of the selected processes were evaluated using computer models and available literature. The results of these evaluations are summarized in this report.

  17. The consequences of failure should be considered in siting geologic carbon sequestration projects

    SciTech Connect

    Price, P.N.; Oldenburg, C.M.

    2009-02-23

    Geologic carbon sequestration is the injection of anthropogenic CO{sub 2} into deep geologic formations where the CO{sub 2} is intended to remain indefinitely. If successfully implemented, geologic carbon sequestration will have little or no impact on terrestrial ecosystems aside from the mitigation of climate change. However, failure of a geologic carbon sequestration site, such as large-scale leakage of CO{sub 2} into a potable groundwater aquifer, could cause impacts that would require costly remediation measures. Governments are attempting to develop regulations for permitting geologic carbon sequestration sites to ensure their safety and effectiveness. At present, these regulations focus largely on decreasing the probability of failure. In this paper we propose that regulations for the siting of early geologic carbon sequestration projects should emphasize limiting the consequences of failure because consequences are easier to quantify than failure probability.

  18. Ocean carbon sequestration by fertilization: An integrated bioeochemical assessment

    SciTech Connect

    Gruber, N.; Sarmiento, J.L.; Gnandesikan, A.

    2005-05-31

    Under this grant, the authors investigated a range of issues associated with the proposal to fertilize the ocean with nutrients (such as iron) in order to increase the export of organic matter from the ocean's near surface waters and consequently increase the uptake of CO{sub 2} from the atmosphere. There are several critical scientific questions that have the potential to be make-or-break issues for this proposed carbon sequestration mechanism: (1) If iron is added to the ocean, will export of organic carbon from the surface actually occur? Clearly, if no export occurs, then there will be no sequestration. (2) if iron fertilization does lead to export of organic carbon from the surface of the ocean, how much CO{sub 2} will actually be removed from the atmosphere? Even if carbon is removed from the surface of the ocean, this does not guarantee that there will be significant removal of CO{sub 2} from the atmosphere, since the CO{sub 2} may be supplied by a realignment of dissolved inorganic carbon within the ocean. (3) What is the time scale of any sequestration that occurs? If sequestered CO{sub 2} returns to the atmosphere on a relatively short time scale, iron fertilization will not contribute significantly to slowing the growth of atmospheric CO{sub 2}. (4) Can the magnitude of sequestration be verified? If verification is extremely difficult or impossible, this option is likely to be viewed less favorably. (5) What unintended consequences might there be from fertilizing the ocean with iron? If these are severe enough, they will be a significant impact on policy decisions. Most research on carbon sequestration by fertilization has focused on the first of these issues. Although a number of in situ fertilization experiments have successfully demonstrated that the addition of iron leads to a dramatic increase in ocean productivity, the question of whether this results in enhanced export remains an open one. The primary focus of the research was on the development of models to examine topics (2) through (5), although some of the research they have accomplished has implications for the first of these topics as well. In this report, they present and discuss their main results and products. They start with a discussion of the results from large-scale fertilization experiments using a relatively simple ecosystem model. While these experiments are very instructive in highlighting the mechanisms and consequences, it is very unlikely that fertilization will ever be carried out on such scales. They therefore conducted a detailed study to investigate how patch-scale fertilization differs from that conducted at basin scale. After presenting the results of this study, they then discuss the results they obtained with regard to consequences of fertilization on ocean biogeochemistry and radiative forcing. Since the existing ecological/biogeochemical models at the beginning of the grant were not adequate to investigate many important components of how ocean ecology and biogeochemistry will respond to the addition of iron, a substantial fraction of their effort went also into the development of a model that would allow them to quantitatively predict phytoplankton functional group diversity. After reporting on their model development work, they close with a summary of their outreach activities and publications.

  19. Influence of Rock Types on Seismic Monitoring of CO2 Sequestration in Carbonate Reservoirs

    E-print Network

    Mammadova, Elnara

    2012-10-19

    ) techniques such as high pressure CO2 injection may normally be required to recover oil in place in carbonate reservoirs. This study addresses how different rock types can influence the seismic monitoring of CO2 sequestration in carbonates. This research...

  20. Optimal forest harvest age considering carbon sequestration in multiple carbon pools: A comparative statics analysis

    Microsoft Academic Search

    Patrick Asante; Glen W. Armstrong

    2012-01-01

    We present an analytical model for determination of the economically optimal harvest age of a forest stand considering timber value, and the value of carbon fluxes in living biomass, dead organic matter, and wood products pools. Through comparative statics analysis, we find that consideration of timber value and fluxes in biomass carbon increase harvest age relative to the timber only

  1. What can ecological science tell us about opportunities for carbon sequestration on arid rangelands in the United States?

    E-print Network

    Sayre, Nathan

    What can ecological science tell us about opportunities for carbon sequestration on arid rangelands). It is now commonplace to use the rationale of increasing carbon sequestration to argue for changes interest in carbon sequestration on rangelands is largely driven by their extent, while the interest

  2. Book (All chapters are peer-reviewed) Kumar, B. M. and Nair, P. K. R. (eds). Carbon Sequestration in Agroforestry

    E-print Network

    Hill, Jeffrey E.

    Book (All chapters are peer-reviewed) Kumar, B. M. and Nair, P. K. R. (eds). Carbon Sequestration. K. R., Nair, V. D., Kumar, B. M., and Showalter, J. M. 2010. Carbon sequestration in agroforestry Publications on Carbon Sequestration in Agroforestry Systems 2008 ­ 2011 (Contact: pknair@ufl.edu) #12;cacao

  3. Lithological control on phytolith carbon sequestration in moso bamboo forests.

    PubMed

    Li, Beilei; Song, Zhaoliang; Wang, Hailong; Li, Zimin; Jiang, Peikun; Zhou, Guomo

    2014-01-01

    Phytolith-occluded carbon (PhytOC) is a stable carbon (C) fraction that has effects on long-term global C balance. Here, we report the phytolith and PhytOC accumulation in moso bamboo leaves developed on four types of parent materials. The results show that PhytOC content of moso bamboo varies with parent material in the order of granodiorite (2.0 g kg(-1)) > granite (1.6 g kg(-1)) > basalt (1.3 g kg(-1)) > shale (0.7 g kg(-1)). PhytOC production flux of moso bamboo on four types of parent materials varies significantly from 1.0 to 64.8 kg CO? ha(-1) yr(-1), thus a net 4.7 × 10(6) -310.8 × 10(6) kg CO? yr(-1) would be sequestered by moso bamboo phytoliths in China. The phytolith C sequestration rate in moso bamboo of China will continue to increase in the following decades due to nationwide bamboo afforestation/reforestation, demonstrating the potential of bamboo in regulating terrestrial C balance. Management practices such as afforestation of bamboo in granodiorite area and granodiorite powder amendment may further enhance phytolith C sequestration through bamboo plants. PMID:24918576

  4. Water Challenges for Geologic Carbon Capture and Sequestration

    PubMed Central

    Friedmann, Samuel J.; Carroll, Susan A.

    2010-01-01

    Carbon capture and sequestration (CCS) has been proposed as a means to dramatically reduce greenhouse gas emissions with the continued use of fossil fuels. For geologic sequestration, the carbon dioxide is captured from large point sources (e.g., power plants or other industrial sources), transported to the injection site and injected into deep geological formations for storage. This will produce new water challenges, such as the amount of water used in energy resource development and utilization and the “capture penalty” for water use. At depth, brine displacement within formations, storage reservoir pressure increases resulting from injection, and leakage are potential concerns. Potential impacts range from increasing water demand for capture to contamination of groundwater through leakage or brine displacement. Understanding these potential impacts and the conditions under which they arise informs the design and implementation of appropriate monitoring and controls, important both for assurance of environmental safety and for accounting purposes. Potential benefits also exist, such as co-production and treatment of water to both offset reservoir pressure increase and to provide local water for beneficial use. PMID:20127328

  5. Carbon Sequestration in Forests and Agricultural Soils (Invited)

    NASA Astrophysics Data System (ADS)

    Schlesinger, W. H.

    2010-12-01

    Numerous proposals are before policy makers for enhanced carbon sequestration in terrestrial ecosystems—forests and agricultural soils—yielding carbon offsets in cap-and-trade systems aimed to control net U.S. emissions of greenhouse gases to the atmosphere. Each of these proposals should be examined carefully to evaluate its additionality, permanence and leakage characteristics . Carbon storage in forests is more rapid than in soils and often more efficient, given the higher C/N ratio in wood than in soil organic materials. The efficacy of maintaining carbon storage in old-growth forests, versus providing enhanced carbon uptake in younger, plantation forests, largely tips in favor of old-growth. Nevertheless, even planting fast-growing species would require an area the size of the state of Texas to sequester 10% of the current U.S. CO2 emissions. Schemes to enhance carbon storage in agricultural soils, derived from the adoption of no- or low-tlll technologies, fertilization, irrigation and biochar application, also need careful evaluation. The most efficient storage is likely to be found in areas of cold, wet soils, with impeded decomposition. In the best case scenarios, it will be unlikely to sequester more than 5% of U.S. emissions as enhanced soil organic matter in cropland soils.

  6. Carbon sequestration kinetic and storage capacity of ultramafic mining waste.

    PubMed

    Pronost, Julie; Beaudoin, Georges; Tremblay, Joniel; Larachi, Faïçal; Duchesne, Josée; Hébert, Réjean; Constantin, Marc

    2011-11-01

    Mineral carbonation of ultramafic rocks provides an environmentally safe and permanent solution for CO(2) sequestration. In order to assess the carbonation potential of ultramafic waste material produced by industrial processing, we designed a laboratory-scale method, using a modified eudiometer, to measure continuous CO(2) consumption in samples at atmospheric pressure and near ambient temperature. The eudiometer allows monitoring the CO(2) partial pressure during mineral carbonation reactions. The maximum amount of carbonation and the reaction rate of different samples were measured in a range of experimental conditions: humidity from dry to submerged, temperatures of 21 and 33 °C, and the proportion of CO(2) in the air from 4.4 to 33.6 mol %. The most reactive samples contained ca. 8 wt % CO(2) after carbonation. The modal proportion of brucite in the mining residue is the main parameter determining maximum storage capacity of CO(2). The reaction rate depends primarily on the proportion of CO(2) in the gas mixture and secondarily on parameters controlling the diffusion of CO(2) in the sample, such as relative saturation of water in pore space. Nesquehonite was the dominant carbonate for reactions at 21 °C, whereas dypingite was most common at 33 °C. PMID:21919443

  7. Southwest Regional Partnership on Carbon Sequestration Phase II

    SciTech Connect

    James Rutledge

    2011-02-01

    The Southwest Regional Partnership (SWP) on Carbon Sequestration designed and deployed a medium-scale field pilot test of geologic carbon dioxide (CO2) sequestration in the Aneth oil field. Greater Aneth oil field, Utah's largest oil producer, was discovered in 1956 and has produced over 455 million barrels of oil (72 million m3). Located in the Paradox Basin of southeastern Utah, Greater Aneth is a stratigraphic trap producing from the Pennsylvanian Paradox Formation. Because it represents an archetype oil field of the western U.S., Greater Aneth was selected as one of three geologic pilots to demonstrate combined enhanced oil recovery (EOR) and CO2 sequestration under the auspices of the SWP on Carbon Sequestration, sponsored by the U.S. Department of Energy. The pilot demonstration focuced on the western portion of the Aneth Unit as this area of the field was converted from waterflood production to CO2 EOR starting in late 2007. The Aneth Unit is in the northwestern part of the field and has produced 149 million barrels (24 million m3) of the estimated 450 million barrels (71.5 million m3) of the original oil in place - a 33% recovery rate. The large amount of remaining oil makes the Aneth Unit ideal to demonstrate both CO2 storage capacity and EOR by CO2 flooding. This report summarizes the geologic characterization research, the various field monitoring tests, and the development of a geologic model and numerical simulations conducted for the Aneth demonstration project. The Utah Geological Survey (UGS), with contributions from other Partners, evaluated how the surface and subsurface geology of the Aneth Unit demonstration site will affect sequestration operations and engineering strategies. The UGS-research for the project are summarized in Chapters 1 through 7, and includes (1) mapping the surface geology including stratigraphy, faulting, fractures, and deformation bands, (2) describing the local Jurassic and Cretaceous stratigraphy, (3) mapping the Desert Creek zone reservoir, Gothic seal, and overlying aquifers, (4) characterizing the depositional environments and diagenetic events that produced significant reservoir heterogeneity, (5) describing the geochemical, petrographic, and geomechanical properties of the seal to determine the CO2 or hydrocarbon column it could support, and (6) evaluating the production history to compare primary production from vertical and horizontal wells, and the effects of waterflood and wateralternating- gas flood programs. The field monitoring demonstrations were conducted by various Partners including New Mexico Institute of Mining and Technology, University of Utah, National Institute of Advanced Industrial Science and Technology, Japan, Los Alamos National Laboratory and Cambridge Geosciences. The monitoring tests are summarized in Chapters 8 through 12, and includes (1) interwell tracer studies during water- and CO2-flood operations to characterize tracer behavoirs in anticipation of CO2-sequestration applications, (2) CO2 soil flux monitoring to measure background levels and variance and assess the sensitivity levels for CO2 surface monitoring, (3) testing the continuous monitoring of self potential as a means to detect pressure anomalies and electrochemical reaction due to CO2 injection, (4) conducting time-lapse vertical seismic profiling to image change near a CO2 injection well, and (5) monitoring microseismicity using a downhole string of seismic receivers to detect fracture slip and deformation associated with stress changes. Finally, the geologic modeling and numerical simulation study was conducted by researcher at the University of Utah. Chapter 13 summarizes their efforts which focused on developing a site-specific geologic model for Aneth to better understand and design CO2 storage specifically tailored to oil reservoirs.

  8. Brines as Possible Cation Sources for Biomimetic Carbon Dioxide Sequestration

    NASA Astrophysics Data System (ADS)

    Bond, G. M.; Abel, A.; McPherson, B. J.; Stringer, J.

    2002-12-01

    The utility industry is currently producing 2.1 x 109 tonnes of CO2 per year from burning coal. The amounts of CO2 produced by a single coal-burning station are typically around 0.1 tonnes/MW/h for a coal burn of 0.04 tonnes/MW/h. These large fixed sources of CO2 constitute an obvious target for carbon sequestration to minimize greenhouse-gas emissions. The generally favored approach in present sequestration research is to achieve a CO2 stream that is highly concentrated, compress it, and transport it to geologic sequestration sites, such as deep saline aquifers. The volume of the CO2 is of some interest here. Supercritical CO2, as supplied for example from natural wells to enhanced oil recovery (EOR) sites, has a density of approximately 0.9, and is relatively incompressible, which means that the volume of sequestered supercritical CO2 will be somewhat greater than that of the coal from which it was formed. The volume of water displaced by CO2 injection into aquifers would be closely comparable to the volume of the CO2 itself. An alternative path, which we have been following, would capture the gas as calcium carbonate, CaCO3, in a biomimetic approach that offers some obvious advantages. Sequestration, in this case, is in the form of a safe, stable, environmentally benign product. On a geologic timeframe, considerable amounts of CO2 have been sequestered as, for example, oolitic limestone deposits and dolomite deposits, suggesting that very long-lived or even permanent sequestration is possible in solid carbonate form. Not only would our approach remove the costly steps of concentrating and compressing the CO2, but also it is anticipated that it would remove the need for long-term monitoring to check for CO2 leakage. In a separate collaborative study detailed by Abel and others (this volume), ramifications of geologic sequestration of CO2 and/or bicarbonate-enriched brines are evaluated with laboratory flow experiments and computer model simulations. Porosity and permeability changes in the porous medium induced by accelerated diagenetic reactions are of specific interest. Brine chemistry is critical both to the catalysis and precipitation steps in our biomimetic approach, and also as we design flow experiments and parameterize computer model simulations. We have accomplished brine cataloging and mapping by utilizing ArcGIS and produced water records that originate from a water analysis database at the Petroleum Recovery Research Center at New Mexico Tech and a GIS database compiled by the Bureau of Economic Geology at the University of Texas at Austin. The GIS database allows us to map spatially the chemical constituents of saline aquifers throughout the United States.

  9. A National Disturbance Modeling System to Support Ecological Carbon Sequestration Assessments

    NASA Astrophysics Data System (ADS)

    Hawbaker, T. J.; Rollins, M. G.; Volegmann, J. E.; Shi, H.; Sohl, T. L.

    2009-12-01

    The U.S. Geological Survey (USGS) is prototyping a methodology to fulfill requirements of Section 712 of the Energy Independence and Security Act (EISA) of 2007. At the core of the EISA requirements is the development of a methodology to complete a two-year assessment of current carbon stocks and other greenhouse gas (GHG) fluxes, and potential increases for ecological carbon sequestration under a range of future climate changes, land-use / land-cover configurations, and policy, economic and management scenarios. Disturbances, especially fire, affect vegetation dynamics and ecosystem processes, and can also introduce substantial uncertainty and risk to the efficacy of long-term carbon sequestration strategies. Thus, the potential impacts of disturbances need to be considered under different scenarios. As part of USGS efforts to meet EISA requirements, we developed the National Disturbance Modeling System (NDMS) using a series of statistical and process-based simulation models. NDMS produces spatially-explicit forecasts of future disturbance locations and severity, and the resulting effects on vegetation dynamics. NDMS is embedded within the Forecasting Scenarios of Future Land Cover (FORE-SCE) model and informs the General Ensemble Biogeochemical Modeling System (GEMS) for quantifying carbon stocks and GHG fluxes. For fires, NDMS relies on existing disturbance histories, such as the Landsat derived Monitoring Trends in Burn Severity (MTBS) and Vegetation Change Tracker (VCT) data being used to update LANDFIRE fuels data. The MTBS and VCT data are used to parameterize models predicting the number and size of fires in relation to climate, land-use/land-cover change, and socioeconomic variables. The locations of individual fire ignitions are determined by an ignition probability surface and then FARSITE is used to simulate fire spread in response to weather, fuels, and topography. Following the fire spread simulations, a burn severity model is used to determine annual changes in biomass pools. Vegetation succession among LANDFIRE vegetation types is initiated using burn perimeter and severity data at the end of each annual simulation. Results from NDMS are used to update land-use/land-cover layers used by FORE-SCE and also transferred to GEMS for quantifying and updating carbon stocks and greenhouse gas fluxes. In this presentation, we present: 1) an overview of NDMS and its role in USGS's national ecological carbon sequestration assessment; 2) validation of NDMS using historic data; and 3) initial forecasts of disturbances for the southeastern United States and their impacts on greenhouse gas emissions, and post-fire carbon stocks and fluxes.

  10. Differential Absorption Measurements of Carbon Dioxide for Carbon Sequestration Site Monitoring Using a Temperature Tunable Diode Laser

    Microsoft Academic Search

    S. D. Humphries; A. R. Nehrir; K. S. Repasky; J. L. Carlsten; L. H. Spangler; L. M. Dobeck; J. A. Shaw

    2007-01-01

    Carbon capture and sequestration in geologic formations provides a method to remove carbon dioxide (CO2) from entering the Earth's atmosphere. An important issue for the successful storage of CO2 is the ability to monitor geologic sequestration sites for leakage to verify site integrity. A differential absorption measurement instrument based on a continuous wave (cw) temperature tunable distributed feedback (DFB) laser

  11. Trees for carbon sequestration or fossil fuel substitution: the issue of cost vs. carbon benefit

    Microsoft Academic Search

    Anil Baral; Gauri S. Guha

    2004-01-01

    This study compares the costs and quantity of carbon mitigation by afforestation and fossil fuel substitution based on simple mathematical models of carbon stocks and flows assuming the growth conditions of trees in the southern US. Significant carbon benefit can be obtained by substituting biomass derived from short-rotation woody crops (SRWC) for coal or gasoline as opposed to sequestering carbon

  12. Breeding crop plants with deep roots: their role in sustainable carbon, nutrient and water sequestration

    PubMed Central

    Kell, Douglas B.

    2011-01-01

    Background The soil represents a reservoir that contains at least twice as much carbon as does the atmosphere, yet (apart from ‘root crops’) mainly just the above-ground plant biomass is harvested in agriculture, and plant photosynthesis represents the effective origin of the overwhelming bulk of soil carbon. However, present estimates of the carbon sequestration potential of soils are based more on what is happening now than what might be changed by active agricultural intervention, and tend to concentrate only on the first metre of soil depth. Scope Breeding crop plants with deeper and bushy root ecosystems could simultaneously improve both the soil structure and its steady-state carbon, water and nutrient retention, as well as sustainable plant yields. The carbon that can be sequestered in the steady state by increasing the rooting depths of crop plants and grasses from, say, 1 m to 2 m depends significantly on its lifetime(s) in different molecular forms in the soil, but calculations (http://dbkgroup.org/carbonsequestration/rootsystem.html) suggest that this breeding strategy could have a hugely beneficial effect in stabilizing atmospheric CO2. This sets an important research agenda, and the breeding of plants with improved and deep rooting habits and architectures is a goal well worth pursuing. PMID:21813565

  13. Preliminary Feasibility Assessment of Geologic Carbon Sequestration Potential for TVA's John Sevier and Kingston Power Plants

    SciTech Connect

    Smith, Ellen D [ORNL; Saulsbury, Bo [ORNL

    2008-03-01

    This is a preliminary assessment of the potential for geologic carbon sequestration for the Tennessee Valley Authority's (TVA) John Sevier and Kingston power plants. The purpose of this assessment is to make a 'first cut' determination of whether there is sufficient potential for geologic carbon sequestration within 200 miles of the plants for TVA and Oak Ridge National Laboratory (ORNL) to proceed with a joint proposal for a larger project with a strong carbon management element. This assessment does not consider alternative technologies for carbon capture, but assumes the existence of a segregated CO{sub 2} stream suitable for sequestration.

  14. Soil Carbon Sequestration Impacts on Global Climate Change and Food Security

    Microsoft Academic Search

    R. Lal

    2004-01-01

    The carbon sink capacity of the world's agricultural and degraded soils is 50 to 66% of the historic carbon loss of 42 to 78 gigatons of carbon. The rate of soil organic carbon sequestration with adoption of recommended technologies depends on soil texture and structure, rainfall, temperature, farming system, and soil management. Strategies to increase the soil carbon pool include

  15. Ecosystem carbon budgeting and soil carbon sequestration in reclaimed mine soil

    Microsoft Academic Search

    Raj K. Shrestha; Rattan Lal

    2006-01-01

    Global warming risks from emissions of green house gases (GHGs) by anthropogenic activities, and possible mitigation strategies of terrestrial carbon (C) sequestration have increased the need for the identification of ecosystems with high C sink capacity. Depleted soil organic C (SOC) pools of reclaimed mine soil (RMS) ecosystems can be restored through conversion to an appropriate land use and adoption

  16. Understanding Geochemical Impacts of Carbon Dioxide Leakage from Carbon Capture and Sequestration

    EPA Science Inventory

    US EPA held a technical Geochemical Impact Workshop in Washington, DC on July 10 and 11, 2007 to discuss geological considerations and Area of Review (AoR) issues related to geologic sequestration (GS) of Carbon Dioxide (CO2). Seventy=one (71) representatives of the electric uti...

  17. Carbon dioxide sequestration in deep-sea basalt.

    PubMed

    Goldberg, David S; Takahashi, Taro; Slagle, Angela L

    2008-07-22

    Developing a method for secure sequestration of anthropogenic carbon dioxide in geological formations is one of our most pressing global scientific problems. Injection into deep-sea basalt formations provides unique and significant advantages over other potential geological storage options, including (i) vast reservoir capacities sufficient to accommodate centuries-long U.S. production of fossil fuel CO2 at locations within pipeline distances to populated areas and CO2 sources along the U.S. west coast; (ii) sufficiently closed water-rock circulation pathways for the chemical reaction of CO2 with basalt to produce stable and nontoxic (Ca(2+), Mg(2+), Fe(2+))CO(3) infilling minerals, and (iii) significant risk reduction for post-injection leakage by geological, gravitational, and hydrate-trapping mechanisms. CO2 sequestration in established sediment-covered basalt aquifers on the Juan de Fuca plate offer promising locations to securely accommodate more than a century of future U.S. emissions, warranting energized scientific research, technological assessment, and economic evaluation to establish a viable pilot injection program in the future. PMID:18626013

  18. A Finite Element Model for Simulation of Carbon Dioxide Sequestration

    SciTech Connect

    Bao, Jie; Xu, Zhijie; Fang, Yilin

    2013-11-02

    We present a hydro-mechanical model, followed by stress, deformation, and shear-slip failure analysis for geological sequestration of carbon dioxide (CO2). The model considers the poroelastic effects by taking into account of the two-way coupling between the geomechanical response and the fluid flow process. Analytical solutions for pressure and deformation fields were derived for a typical geological sequestration scenario in our previous work. A finite element approach is introduced here for numerically solving the hydro-mechanical model with arbitrary boundary conditions. The numerical approach was built on an open-source finite element code Elmer, and results were compared to the analytical solutions. The shear-slip failure analysis was presented based on the numerical results, where the potential failure zone is identified. Information is relevant to the prediction of the maximum sustainable injection rate or pressure. The effects of caprock permeability on the fluid pressure, deformation, stress, and the shear-slip failure zone were also quantitatively studied. It was shown that a larger permeability in caprock and base rock leads to a larger uplift but a smaller shear-slip failure zone.

  19. Carbon dioxide sequestration in deep-sea basalt

    PubMed Central

    Goldberg, David S.; Takahashi, Taro; Slagle, Angela L.

    2008-01-01

    Developing a method for secure sequestration of anthropogenic carbon dioxide in geological formations is one of our most pressing global scientific problems. Injection into deep-sea basalt formations provides unique and significant advantages over other potential geological storage options, including (i) vast reservoir capacities sufficient to accommodate centuries-long U.S. production of fossil fuel CO2 at locations within pipeline distances to populated areas and CO2 sources along the U.S. west coast; (ii) sufficiently closed water-rock circulation pathways for the chemical reaction of CO2 with basalt to produce stable and nontoxic (Ca2+, Mg2+, Fe2+)CO3 infilling minerals, and (iii) significant risk reduction for post-injection leakage by geological, gravitational, and hydrate-trapping mechanisms. CO2 sequestration in established sediment-covered basalt aquifers on the Juan de Fuca plate offer promising locations to securely accommodate more than a century of future U.S. emissions, warranting energized scientific research, technological assessment, and economic evaluation to establish a viable pilot injection program in the future. PMID:18626013

  20. Testing carbon sequestration site monitor instruments using a controlled carbon dioxide release facility

    Microsoft Academic Search

    Seth D. Humphries; Amin R. Nehrir; Charlie J. Keith; Kevin S. Repasky; Laura M. Dobeck; John L. Carlsten; Lee H. Spangler

    2008-01-01

    Two laser-based instruments for carbon sequestration site monitoring have been developed and tested at a controlled carbon dioxide CO2 release facility. The first instrument uses a temperature tunable distributed feedback (DFB) diode laser capable of accessing the 2.0027-2.0042 m spectral region that contains three CO2 absorption lines and is used for aboveground atmospheric CO2 concentration mea- surements. The second instrument

  1. Geologic Carbon Sequestration and Biosequestration (Carbon Cycle 2.0)

    ScienceCinema

    DePaolo, Don [Director, LBNL Earth Sciences Division

    2011-06-08

    Don DePaolo, Director of LBNL's Earth Sciences Division, speaks at the Carbon Cycle 2.0 kick-off symposium Feb. 3, 2010. We emit more carbon into the atmosphere than natural processes are able to remove - an imbalance with negative consequences. Carbon Cycle 2.0 is a Berkeley Lab initiative to provide the science needed to restore this balance by integrating the Labs diverse research activities and delivering creative solutions toward a carbon-neutral energy future. http://carboncycle2.lbl.gov/

  2. Modeling of induced seismicity during mineral carbon sequestration

    NASA Astrophysics Data System (ADS)

    Yarushina, V.; Bercovici, D. A.

    2013-12-01

    Rapidly developing carbon capture and storage (CCS) technologies are a promising way of reducing the climate impact of greenhouse gases. These technologies involve injecting large amounts of CO2-bearing fluids underground, which potentially leads to high pore pressure and the conditions for seismic activity in the proximity of the injection site. Previously, we developed a simple conceptual model to estimate the seismic risk of mineral or mafic CCS operations (Yarushina & Bercovici, GRL vol.40, doi:10.1002/grl.50196, 2013). In this model, the storage reservoir is treated as a porous rock with grains that evolve during carbonation reactions. Seismic triggering occurs when local stresses at grain-grain contacts reach the Mohr-Coulomb failure criterion. We showed that injection of CO2 into reactive mafic or ultramafic rocks potentially reduces seismic risk since carbonation reactions increase the contact area between the rock grains and reduce the local stresses. Here we further develop this model and consider the effect of fluid injection flux and pressure gradients along grain boundaries on induced seismicity. Grain evolution not only changes the stress support but also alters the matrix permeability, which in turn affects the driving pressure gradients and the associated deviatoric stresses. The resulting coupled porous flow, chemical reactive grain-growth and failure model is an important step in understanding the seismic risks of carbon sequestration.

  3. SOIL ORGANIC CARBON SEQUESTRATION IN COTTON PRODUCTION SYSTEMS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Conservation tillage, crop intensification, sod-based rotations, and judicious application of fertilizers and herbicides are agricultural practices that are not only agronomically sound, but could increase soil organic C (SOC) sequestration. We calculated potential SOC sequestration under different ...

  4. The Effects of Grazing Management on Soil Carbon (Carbon Sequestration)

    Microsoft Academic Search

    Richard T. Conant; Keith Paustian

    This component of the VA RLEP consists of a field based sampling and research effort to document the efficacy of Management intensive Grazing (MiG) techniques to enhance the soil's inherent capacity to serve as a sink for carbon (four data collection sites were developed in VA). To the extent that MiG and associated conservation practices increase the storage of carbon

  5. Microbial characterization of basalt formation waters targeted for geological carbon sequestration.

    PubMed

    Lavalleur, Heather J; Colwell, Frederick S

    2013-07-01

    Geological carbon sequestration in basalts is a promising solution to mitigate carbon emissions into the Earth's atmosphere. The Wallula pilot well in Eastern Washington State, USA provides an opportunity to investigate how native microbial communities in basalts are affected by the injection of supercritical carbon dioxide into deep, alkaline formation waters of the Columbia River Basalt Group. Our objective was to characterize the microbial communities at five depth intervals in the Wallula pilot well prior to CO2 injection to establish a baseline community for comparison after the CO2 is injected. Microbial communities were examined using quantitative polymerase chain reaction to enumerate bacterial cells and 454 pyrosequencing to compare and contrast the diversity of the native microbial communities. The deepest depth sampled contained the greatest amount of bacterial biomass, as well as the highest bacterial diversity. The shallowest depth sampled harbored the greatest archaeal diversity. Pyrosequencing revealed the well to be dominated by the Proteobacteria, Firmicutes, and Actinobacteria, with microorganisms related to hydrogen oxidizers (Hydrogenophaga), methylotrophs (Methylotenera), methanotrophs (Methylomonas), iron reducers (Geoalkalibacter), sulfur oxidizers (Thiovirga), and methanogens (Methermicocccus). Thus, the Wallula pilot well is composed of a unique microbial community in which hydrogen and single-carbon compounds may play a significant role in sustaining the deep biosphere. PMID:23418786

  6. Magnesite formation in playas: A natural analogue for carbon sequestration

    NASA Astrophysics Data System (ADS)

    Power, Ian; Harrison, Anna; Wilson, Siobhan; Dipple, Gregory; Fallon, Stewart

    2015-04-01

    Non-marine carbonate deposits are of renewed interest as natural analogues for carbon sequestration and storage. Specifically, the sequestration of anthropogenic carbon dioxide (CO2)in Mg-carbonate minerals is being actively investigated as a strategy for reducing greenhouse gas emissions1. In northern British Columbia, hydromagnesite-magnesite playas (hectare-scale) have formed since the last deglaciation, suggesting that these minerals possess a level of stability required for long-term carbon storage2. Quantitative mineralogical and hydrogeochemical data, as well as microscopy and field observations, were used to formulate a comprehensive facies model that describes the depositional environments for the formation of these playas. Over several millennia, there have been transitions from deposition of siliciclastic to subaqueous Ca-Mg-carbonate to subaerial Mg-carbonate sediments3,4. Consequently, a complex assemblage of carbonate minerals is present within the playas including magnesite [MgCO3], the most stable Mg-carbonate for storing CO2. Magnesite precipitation at near-surface temperatures is kinetically inhibited due to the strong hydration of Mg2+ ions in solution5. Thus, understanding the rates of, and controls on, magnesite formation at low temperatures remains a challenge. Magnesite abundances at the surface (1 to 41 wt.%) and at depth (1 to 86 wt.%) within the playas are highly variable4. There is a propensity for hydrated Mg-carbonate minerals to undergo transformation to less hydrated, more stable forms (lansfordite > nesquehonite > dypingite > hydromagnesite)5; however, stable, radiogenic, and clumped isotope6 data as well as electron microscopy demonstrate that magnesite formation is likely dominated by direct precipitation from aqueous solution in the shallow subsurface (~3-10 ° C). An observed variation in magnesite crystal morphology with depth is attributed to different crystal growth mechanisms induced by changes in magnesite saturation state. Particle size analyses show a positive correlation between magnesite abundance and mean particle size, indicating that magnesite formation is primarily limited by nucleation rather than crystal growth kinetics. We estimate that the rate of magnesite formation (nucleation + growth) is between 10-17 to 10-16 mol/cm2/s. Conversely, in the Ca-Mg-carbonate unit, magnesite may be forming via diagenesis of Ca-carbonate minerals. Our continued focus is to further constrain the rates and modes of magnesite formation in the context of long-term storage of CO2. [1] Power et al. (2013) Rev. Mineral. Geochem. 77: 305-360. [2] Power et al. (2009) Chem. Geol. 206: 302-316. [3] Power et al. (2007) Geochem. Trans. 8: 13. [4] Power et al. (2014) Sedimentology. 61:1701-1733. [5] Hänchen et al. (2008) Chem. Eng. Sci. 63: 1012-1028. [6] Streit Falk and Kelemen, unpublished data.

  7. Connecting Soil Organic Carbon and Root Biomass with Land-Use and Vegetation in Temperate Grassland

    PubMed Central

    McGranahan, Devan Allen; Daigh, Aaron L.; Veenstra, Jessica J.; Engle, David M.; Miller, James R.; Debinski, Diane M.

    2014-01-01

    Soils contain much of Earth's terrestrial organic carbon but are sensitive to land-use. Rangelands are important to carbon dynamics and are among ecosystems most widely impacted by land-use. While common practices like grazing, fire, and tillage affect soil properties directly related to soil carbon dynamics, their magnitude and direction of change vary among ecosystems and with intensity of disturbance. We describe variability in soil organic carbon (SOC) and root biomass—sampled from 0–170?cm and 0–100?cm, respectively—in terms of soil properties, land-use history, current management, and plant community composition using linear regression and multivariate ordination. Despite consistency in average values of SOC and root biomass between our data and data from rangelands worldwide, broad ranges in root biomass and SOC in our data suggest these variables are affected by other site-specific factors. Pastures with a recent history of severe grazing had reduced root biomass and greater bulk density. Ordination suggests greater exotic species richness is associated with lower root biomass but the relationship was not apparent when an invasive species of management concern was specifically tested. We discuss how unexplained variability in belowground properties can complicate measurement and prediction of ecosystem processes such as carbon sequestration. PMID:25401142

  8. Potential and economics of forestry options for carbon sequestration in India

    Microsoft Academic Search

    N. H. Ravindranath; B. S. Somashekhar

    1995-01-01

    There is a need to understand the carbon (C) sequestration potential of the forestry option and its financial implications for each country.In India the C emissions from deforestation are estimated to be nearly offset by C sequestration in forests under succession and tree plantations. India has nearly succeeded in stabilizing the area under forests and has adequate forest conservation strategies.

  9. Carbon sequestration in the semi?arid tropics for improving livelihoods

    Microsoft Academic Search

    S. P. Wani; K. L. Sahrawat; T. K. Sreedevi; T. Bhattacharyya; Ch. Sreenivasa Rao

    2007-01-01

    This paper reviews the research conducted by ICRISAT and its partners on the role of management systems on carbon sequestration and crop productivity in the semi?arid regions of India. It is now established that apart from water shortages, the dryland productivity is also constrained by low fertility mainly caused by the low organic matter status of most soils. Sequestration of

  10. RANGELAND SEQUESTRATION POTENTIAL ASSESSMENT

    SciTech Connect

    Lee Spangler; George F. Vance; Gerald E. Schuman; Justin D. Derner

    2012-03-31

    Rangelands occupy approximately half of the world's land area and store greater than 10% of the terrestrial biomass carbon and up to 30% of the global soil organic carbon. Although soil carbon sequestration rates are generally low on rangelands in comparison to croplands, increases in terrestrial carbon in rangelands resulting from management can account for significant carbon sequestration given the magnitude of this land resource. Despite the significance rangelands can play in carbon sequestration, our understanding remains limited. Researchers conducted a literature review to identify sustainably management practices that conserve existing rangeland carbon pools, as well as increase or restore carbon sequestration potentials for this type of ecosystem. The research team also reviewed the impact of grazing management on rangeland carbon dynamics, which are not well understood due to heterogeneity in grassland types. The literature review on the impact of grazing showed a wide variation of results, ranging from positive to negative to no response. On further review, the intensity of grazing appears to be a major factor in controlling rangeland soil organic carbon dynamics. In 2003, researchers conducted field sampling to assess the effect of several drought years during the period 1993-2002. Results suggested that drought can significantly impact rangeland soil organic carbon (SOC) levels, and therefore, carbon sequestration. Resampling was conducted in 2006; results again suggested that climatic conditions may have overridden management effects on SOC due to the ecological lag of the severe drought of 2002. Analysis of grazing practices during this research effort suggested that there are beneficial effects of light grazing compared to heavy grazing and non-grazing with respect to increased SOC and nitrogen contents. In general, carbon storage in rangelands also increases with increased precipitation, although researchers identified threshold levels of precipitation where sequestration begins to decrease.

  11. Carbon sequestration potential of soils in southeast Germany derived from stable soil organic carbon saturation.

    PubMed

    Wiesmeier, Martin; Hübner, Rico; Spörlein, Peter; Geuß, Uwe; Hangen, Edzard; Reischl, Arthur; Schilling, Bernd; von Lützow, Margit; Kögel-Knabner, Ingrid

    2014-02-01

    Sequestration of atmospheric carbon (C) in soils through improved management of forest and agricultural land is considered to have high potential for global CO2 mitigation. However, the potential of soils to sequester soil organic carbon (SOC) in a stable form, which is limited by the stabilization of SOC against microbial mineralization, is largely unknown. In this study, we estimated the C sequestration potential of soils in southeast Germany by calculating the potential SOC saturation of silt and clay particles according to Hassink [Plant and Soil 191 (1997) 77] on the basis of 516 soil profiles. The determination of the current SOC content of silt and clay fractions for major soil units and land uses allowed an estimation of the C saturation deficit corresponding to the long-term C sequestration potential. The results showed that cropland soils have a low level of C saturation of around 50% and could store considerable amounts of additional SOC. A relatively high C sequestration potential was also determined for grassland soils. In contrast, forest soils had a low C sequestration potential as they were almost C saturated. A high proportion of sites with a high degree of apparent oversaturation revealed that in acidic, coarse-textured soils the relation to silt and clay is not suitable to estimate the stable C saturation. A strong correlation of the C saturation deficit with temperature and precipitation allowed a spatial estimation of the C sequestration potential for Bavaria. In total, about 395 Mt CO2 -equivalents could theoretically be stored in A horizons of cultivated soils - four times the annual emission of greenhouse gases in Bavaria. Although achieving the entire estimated C storage capacity is unrealistic, improved management of cultivated land could contribute significantly to CO2 mitigation. Moreover, increasing SOC stocks have additional benefits with respect to enhanced soil fertility and agricultural productivity. PMID:24038905

  12. Crop residue and tillage effects on carbon sequestration in a Luvisol in central Ohio

    Microsoft Academic Search

    S. W Duiker; R Lal

    1999-01-01

    Soils play a key role in the global carbon cycle. They can be a source or a sink of carbon and influence CO2 concentrations in the atmosphere. In order to calculate the carbon budget of a region, the effect of soil management practices on carbon sequestration in soils needs to be quantified. Objectives of this experiment were to determine: (i)

  13. Atmosphere-crust coupling and carbon sequestration on the young Mars Professor Martin R. Lee1

    E-print Network

    Guo, Zaoyang

    Atmosphere-crust coupling and carbon sequestration on the young Mars Professor Martin R. Lee1 *, Dr the idea that CO2 was `scrubbed' by precipitation of carbonate minerals within the planet's crust - a reaction termed `carbonation'. This project will seek evidence for carbonation by analysis of martian

  14. Ocean Sciences 2006 An Estimate of Carbon Sequestration via Antarctic Intermediate Water Formation in the

    E-print Network

    Talley, Lynne D.

    Ocean Sciences 2006 An Estimate of Carbon Sequestration via Antarctic Intermediate Water Formation traditional deep water formation via entrainment of carbon dioxide and other greenhouse-active species collected for oxygen, total carbon, alkalinity, nutrients, and CFCs. The alkalinity and total carbon data

  15. Management of water extracted from carbon sequestration projects

    SciTech Connect

    Harto, C. B.; Veil, J. A. (Environmental Science Division)

    2011-03-11

    Throughout the past decade, frequent discussions and debates have centered on the geological sequestration of carbon dioxide (CO{sub 2}). For sequestration to have a reasonably positive impact on atmospheric carbon levels, the anticipated volume of CO{sub 2} that would need to be injected is very large (many millions of tons per year). Many stakeholders have expressed concern about elevated formation pressure following the extended injection of CO{sub 2}. The injected CO{sub 2} plume could potentially extend for many kilometers from the injection well. If not properly managed and monitored, the increased formation pressure could stimulate new fractures or enlarge existing natural cracks or faults, so the CO{sub 2} or the brine pushed ahead of the plume could migrate vertically. One possible tool for management of formation pressure would be to extract water already residing in the formation where CO{sub 2} is being stored. The concept is that by removing water from the receiving formations (referred to as 'extracted water' to distinguish it from 'oil and gas produced water'), the pressure gradients caused by injection could be reduced, and additional pore space could be freed up to sequester CO{sub 2}. Such water extraction would occur away from the CO{sub 2} plume to avoid extracting a portion of the sequestered CO{sub 2} along with the formation water. While water extraction would not be a mandatory component of large-scale carbon storage programs, it could provide many benefits, such as reduction of pressure, increased space for CO{sub 2} storage, and potentially, 'plume steering.' Argonne National Laboratory is developing information for the U.S. Department of Energy's (DOE's) National Energy Technology Laboratory (NETL) to evaluate management of extracted water. If water is extracted from geological formations designated to receive injected CO{sub 2} for sequestration, the project operator will need to identify methods for managing very large volumes of water most of which will contain large quantities of salt and other dissolved minerals. Produced water from oil and gas production also typically contains large quantities of dissolved solids. Therefore, many of the same practices that are established and used for managing produced water also may be applicable for extracted water. This report describes the probable composition of the extracted water that is removed from the formations, options for managing the extracted water, the pros and cons of those options, and some opportunities for beneficial use of the water. Following the introductory material in Chapter 1, the report is divided into chapters covering the following topics: (Chapter 2) examines the formations that are likely candidates for CO{sub 2} sequestration and provides a general evaluation of the geochemical characteristics of the formations; (Chapter 3) makes some preliminary estimates of the volume of water that could be extracted; (Chapter 4) provides a qualitative review of many potential technologies and practices for managing extracted water and for each technology or management practice, pros and cons are provided; (Chapter 5) explores the potential costs of water management; and (Chapter 6) presents the conclusions.

  16. Microbial community changes as a possible factor controlling carbon sequestration in subsoil

    NASA Astrophysics Data System (ADS)

    Strücker, Juliane; Jörgensen, Rainer Georg

    2015-04-01

    In order to gain more knowledge regarding the microbial community and their influence on carbon sequestration in subsoil two depth profiles with different soil organic carbon (SOC) concentrations were sampled. The SOC concentrations developed naturally due to deposition and erosion. This experiment offers the opportunity to investigate to which extend natural SOC availability or other subsoil specific conditions influence the composition and the functional diversity of the microbial community and in return if there is any evidence how the microbial community composition affects carbon sequestration under these conditions. Soil samples were taken at four different depths on two neighbouring arable sites; one Kolluvisol with high SOC concentrations (8-12 g/kg) throughout the profile and one Luvisol with low SOC concentrations (3-4 g/kg) below 30 cm depth. The multi substrate induced respiration (MSIR) method was used to identify shifts in the functional diversity of the microbial community along the depth profiles. Amino sugars Muramic Acid and Glucosamine were measured as indicators for bacterial and fungal residues and ergosterol was determined as marker for saprotrophic fungi. The results of the discriminant analysis of the respiration values obtained from the 17 substrates used in the MSIR show that the substrate use in subsoil is different from the substrate use in topsoil. The amino sugar analysis and the ratio of ergosterol to microbial biomass C indicate that the fungal dominance of the microbial community decreases with depth. The results from this study support previous findings, which also observed decreasing fungal dominance with depth. Furthermore the MSIR approach shows clearly that not only the composition of the microbial community but also their substrate use changes with depth. Thus, a different microbial community with altered substrate requirements could be an important reason for enhanced carbon sequestration in subsoil. The fact that the MSIR was also able to differentiate between the two sites proves the assumption that resources are an important factor controlling the functional diversity of the microbial community, as abiotic factors are very similar for the two profiles, but the sites show a different depth gradient for SOC.

  17. Reinforcement effect of biomass carbon and protein in elastic biocomposites

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biomass carbon and soy protein were used to reinforce natural rubber biocomposites. The particle size of biomass carbon were reduced and characterized with elemental analysis, x-ray diffraction, infrared spectroscopy, and particle size analysis. The rubber composite reinforced with the biomass carbo...

  18. Predictable and efficient carbon sequestration in the North Pacific Ocean supported by symbiotic nitrogen fixation

    PubMed Central

    Karl, David M.; Church, Matthew J.; Dore, John E.; Letelier, Ricardo M.; Mahaffey, Claire

    2012-01-01

    The atmospheric and deep sea reservoirs of carbon dioxide are linked via physical, chemical, and biological processes. The last of these include photosynthesis, particle settling, and organic matter remineralization, and are collectively termed the “biological carbon pump.” Herein, we present results from a 13-y (1992–2004) sediment trap experiment conducted in the permanently oligotrophic North Pacific Subtropical Gyre that document a large, rapid, and predictable summertime (July 15–August 15) pulse in particulate matter export to the deep sea (4,000 m). Peak daily fluxes of particulate matter during the summer export pulse (SEP) average 408, 283, 24.1, 1.1, and 67.5 ?mol·m?2·d?1 for total carbon, organic carbon, nitrogen, phosphorus (PP), and biogenic silica, respectively. The SEP is approximately threefold greater than mean wintertime particle fluxes and fuels more efficient carbon sequestration because of low remineralization during downward transit that leads to elevated total carbon/PP and organic carbon/PP particle stoichiometry (371:1 and 250:1, respectively). Our long-term observations suggest that seasonal changes in the microbial assemblage, namely, summertime increases in the biomass and productivity of symbiotic nitrogen-fixing cyanobacteria in association with diatoms, are the main cause of the prominent SEP. The recurrent SEP is enigmatic because it is focused in time despite the absence of any obvious predictable stimulus or habitat condition. We hypothesize that changes in day length (photoperiodism) may be an important environmental cue to initiate aggregation and subsequent export of organic matter to the deep sea. PMID:22308450

  19. Carbon-negative Fuel from Stranded Energy with Carbon Sequestration

    NASA Astrophysics Data System (ADS)

    van Vechten, James; Graupner, Robert

    2010-03-01

    Stranded energy can be captured as nitrogen based fuels (ammonia, urea, guanidine) produced from hydrogen from saltwater electrolysis. The use of electrodialysis enables the co-production of NaOH(aq) and HCl(aq) together with oxygen and hydrogen. The NaOH can capture atmospheric CO2 as sodium carbonate or sodium bicarbonate and together with HCl and basaltic local rocks can produce a range of valuable commodity chemicals. Depending on the form of the sequestered carbon, either 2 or 4 moles of CO2 can be captured for each mole of hydrogen gas produced. The nitrogen based fuels can be used to power conventional thermal engines or solid oxide fuel cells. They can also be used as fertilizers, thereby avoiding the release of CO2 during their conventional production using natural gas or coal. With care the produced NaOH or carbonates may be used to counter ocean acidification

  20. Micro-and nano-environments of carbon sequestration: Multi-element STXMNEXAFS spectromicroscopy assessment of microbial carbon and

    E-print Network

    Lehmann, Johannes

    Micro- and nano-environments of carbon sequestration: Multi-element STXM­NEXAFS spectromicroscopy- and nano-C sequestration environments, and conduct submicron-level investigation of the compositional chem demonstrated the existence of spatially distinct seemingly terminal micro- and nano-C repository zones, where

  1. Evaluation of the environmental viability of direct injection schemes for ocean carbon sequestration

    E-print Network

    Israelsson, Peter H. (Peter Hampus), 1973-

    2008-01-01

    This thesis evaluates the expected impact of several promising schemes for ocean carbon sequestration by direct injection of CO2, and serves as an update to the assessment by Auerbach et al. (1997) and Caulfield et al. ...

  2. CARBON SEQUESTRATION AND LAND MANAGEMENT AT DOD INSTALLATIONS: AN EXPLORATORY STUDY

    EPA Science Inventory

    This report explores the influence of management practices such as tree harvesting, deforestation, and reforestation on carbon sequestration potential by DOD forests by performing a detailed analysis of a specific installation, Camp Shelby, Mississippi. amp Shelby was selected fo...

  3. Soil carbon dynamics and potential carbon sequestration by rangelands

    Microsoft Academic Search

    G. E Schuman; H. H Janzen; J. E Herrick

    2002-01-01

    The USA has about 336 Mha of grazing lands of which rangelands account for 48%. Changes in rangeland soil C can occur in response to a wide range of management and environmental factors. Grazing, fire, and fertilization have been shown to affect soil C storage in rangelands, as has converting marginal croplands into grasslands. Carbon losses due to soil erosion

  4. The impact of logging on biodiversity and carbon sequestration in tropical forests

    NASA Astrophysics Data System (ADS)

    Cazzolla Gatti, R.

    2012-04-01

    Tropical deforestation is one of the most relevant environmental issues at planetary scale. Forest clearcutting has dramatic effect on local biodiversity, on the terrestrial carbon sink and atmospheric GHGs balance. In terms of protection of tropical forests selective logging is, instead, often regarded as a minor or even positive management practice for the ecosystem and it is supported by international certifications. However, few studies are available on changes in the structure, biodiversity and ecosystem services due to the selective logging of African forests. This paper presents the results of a survey on tropical forests of West and Central Africa, with a comparison of long-term dynamics, structure, biodiversity and ecosystem services (such as the carbon sequestration) of different types of forests, from virgin primary to selectively logged and secondary forest. Our study suggests that there is a persistent effect of selective logging on biodiversity and carbon stock losses in the long term (up to 30 years since logging) and after repeated logging. These effects, in terms of species richness and biomass, are greater than the expected losses from commercial harvesting, implying that selective logging in West and Central Africa is impairing long term (at least until 30 years) ecosystem structure and services. A longer selective logging cycle (>30 years) should be considered by logging companies although there is not yet enough information to consider this practice sustainable.

  5. Carbon Sequestration in Reclaimed Mined Soils of Ohio

    SciTech Connect

    M.K. Shukla; K. Lorenz; R. Lal

    2006-01-01

    Assessment of soil organic carbon (SOC) sequestration potential of reclaimed minesoils (RMS) is important for preserving environmental quality and increasing agronomic yields. The mechanism of physical SOC sequestration is achieved by encapsulation of SOC in spaces within macro and microaggregates. The experimental sites, owned and maintained by American Electrical Power, were characterized by distinct age chronosequences of reclaimed minesoils and were located in Guernsey, Morgan, Noble, and Muskingum Counties of Ohio. These sites were reclaimed both with and without topsoil application, and were under continuous grass or forest cover. In this report results are presented from the sites reclaimed in 1994 (R94-F), in 1987 (R87-G), in 1982 (R82-F), in 1978 (R78-G), in 1969 (R69-F), in1956 (R56-G), and from the unmined control (UMS-G). Three sites are under continuous grass cover and three under forest cover since reclamation. The samples were air dried and fractionated using a wet sieving technique into macro (> 2.0 mm), meso (0.25-2.0 mm) and microaggregates (0.053-0.25 mm). The soil C and N concentrations were determined by the dry combustion method on these aggregate fractions. Soil C and N concentrations were higher at the forest sites compared to the grass sites in each aggregate fraction for both depths. Statistical analyses indicated that the number of random samples taken was probably not sufficient to properly consider distribution of SOC and TN concentrations in aggregate size fractions for both depths at each site. Erosional effects on SOC and TN concentrations were, however, small. With increasing time since reclamation, SOC and total nitrogen (TN) concentrations also increased. The higher C and N concentrations in each aggregate size fraction in older than the newly reclaimed sites demonstrated the C sink capacity of newer sites.

  6. The NatCarb geoportal: Linking distributed data from the Carbon Sequestration Regional Partnerships

    USGS Publications Warehouse

    Carr, T.R.; Rich, P.M.; Bartley, J.D.

    2007-01-01

    The Department of Energy (DOE) Carbon Sequestration Regional Partnerships are generating the data for a "carbon atlas" of key geospatial data (carbon sources, potential sinks, etc.) required for rapid implementation of carbon sequestration on a broad scale. The NATional CARBon Sequestration Database and Geographic Information System (NatCarb) provides Web-based, nation-wide data access. Distributed computing solutions link partnerships and other publicly accessible repositories of geological, geophysical, natural resource, infrastructure, and environmental data. Data are maintained and enhanced locally, but assembled and accessed through a single geoportal. NatCarb, as a first attempt at a national carbon cyberinfrastructure (NCCI), assembles the data required to address technical and policy challenges of carbon capture and storage. We present a path forward to design and implement a comprehensive and successful NCCI. ?? 2007 The Haworth Press, Inc. All rights reserved.

  7. Carbon sequestration monitoring with acoustic double-difference waveform inversion: A case study on SACROC walkaway VSP data

    E-print Network

    Malcolm, Alison

    Carbon sequestration monitoring with acoustic double-difference waveform inversion: A case study National Laboratory SUMMARY Geological carbon sequestration involves large-scale injection of carbon is crucial for ensuring safe and reliable carbon storage (Bickle et al., 2007). Conventional analysis of time

  8. Relative contribution of maize and external manure amendment to soil carbon sequestration in a long-term intensive maize cropping system.

    PubMed

    Zhang, Wenju; Liu, Kailou; Wang, Jinzhou; Shao, Xingfang; Xu, Minggang; Li, Jianwei; Wang, Xiujun; Murphy, Daniel V

    2015-01-01

    We aimed to quantify the relative contributions of plant residue and organic manure to soil carbon sequestration. Using a 27-year-long inorganic fertilizer and manure amendment experiment in a maize (Zea mays L.) double-cropping system, we quantified changes in harvestable maize biomass and soil organic carbon stocks (0-20?cm depth) between 1986-2012. By employing natural (13)C tracing techniques, we derived the proportional contributions of below-ground crop biomass return (maize-derived carbon) and external manure amendment (manure-derived carbon) to the total soil organic carbon stock. The average retention of maize-derived carbon plus manure-derived carbon during the early period of the trial (up to 11 years) was relatively high (10%) compared to the later period (22 to 27 years, 5.1-6.3%). About 11% of maize-derived carbon was converted to soil organic carbon, which was double the retention of manure-derived carbon (4.4-5.1%). This result emphasized that organic amendments were necessary to a win-win strategy for both SOC sequestration and maize production. PMID:26039186

  9. Relative contribution of maize and external manure amendment to soil carbon sequestration in a long-term intensive maize cropping system

    PubMed Central

    Zhang, Wenju; Liu, Kailou; Wang, Jinzhou; Shao, Xingfang; Xu, Minggang; Li, Jianwei; Wang, Xiujun; Murphy, Daniel V.

    2015-01-01

    We aimed to quantify the relative contributions of plant residue and organic manure to soil carbon sequestration. Using a 27-year-long inorganic fertilizer and manure amendment experiment in a maize (Zea mays L.) double-cropping system, we quantified changes in harvestable maize biomass and soil organic carbon stocks (0–20?cm depth) between 1986-2012. By employing natural 13C tracing techniques, we derived the proportional contributions of below-ground crop biomass return (maize-derived carbon) and external manure amendment (manure-derived carbon) to the total soil organic carbon stock. The average retention of maize-derived carbon plus manure-derived carbon during the early period of the trial (up to 11 years) was relatively high (10%) compared to the later period (22 to 27 years, 5.1–6.3%). About 11% of maize-derived carbon was converted to soil organic carbon, which was double the retention of manure-derived carbon (4.4–5.1%). This result emphasized that organic amendments were necessary to a win-win strategy for both SOC sequestration and maize production. PMID:26039186

  10. Measuring and Monitoring Soil Carbon Sequestration at the Project Level

    SciTech Connect

    Izaurralde, R Cesar C.

    2005-05-26

    This paper presents an overview of the status of soil carbon sequestration (SCS) and discusses methods for measuring and monitoring carbon changes in agricultural and grassland soils. The topics reviewed include: soil sampling, analysis, models and remote sensing. Significant scientific and technological advances in the area of SCS have been achieved during the last 15 years. A number of feasibility or pilot projects are underway worldwide under a variety of environmental and socioeconomic situations. To further advance the field of SCS, more projects like these will have to be implemented in order to develop an internationally-accepted and adaptable framework that can guide landowner, energy, and government groups in the development of SCS projects. The formation of a collaborative network for this type of SCS projects can be very helpful to compare the methodologies in use across diverse environments and to exchange data for laboratory quality controls and verification of simulation models among other purposes. These projects will also be useful to advance new methodologies that integrate many of the novel concepts discussed in the previous sections as well as many yet to be discovered.

  11. Significant Role for Microbial Autotrophy in the Sequestration of Soil Carbon

    PubMed Central

    Yuan, Hongzhao; Ge, Tida; Chen, Caiyan; O'Donnell, Anthony G.

    2012-01-01

    Soils were incubated for 80 days in a continuously labeled 14CO2 atmosphere to measure the amount of labeled C incorporated into the microbial biomass. Microbial assimilation of 14C differed between soils and accounted for 0.12% to 0.59% of soil organic carbon (SOC). Assuming a terrestrial area of 1.4 × 108 km2, this represents a potential global sequestration of 0.6 to 4.9 Pg C year?1. Estimated global C sequestration rates suggest a “missing sink” for carbon of between 2 and 3 Pg C year?1. To determine whether 14CO2 incorporation was mediated by autotrophic microorganisms, the diversity and abundance of CO2-fixing bacteria and algae were investigated using clone library sequencing, terminal restriction fragment length polymorphism (T-RFLP), and quantitative PCR (qPCR) of the ribulose 1,5-bisphosphate carboxylase/oxygenase (RubisCO) gene (cbbL). Phylogenetic analysis showed that the dominant cbbL-containing bacteria were Azospirillum lipoferum, Rhodopseudomonas palustris, Bradyrhizobium japonicum, Ralstonia eutropha, and cbbL-containing chromophytic algae of the genera Xanthophyta and Bacillariophyta. Multivariate analyses of T-RFLP profiles revealed significant differences in cbbL-containing microbial communities between soils. Differences in cbbL gene diversity were shown to be correlated with differences in SOC content. Bacterial and algal cbbL gene abundances were between 106 and 108 and 103 to 105 copies g?1 soil, respectively. Bacterial cbbL abundance was shown to be positively correlated with RubisCO activity (r = 0.853; P < 0.05), and both cbbL abundance and RubisCO activity were significantly related to the synthesis rates of [14C]SOC (r = 0.967 and 0.946, respectively; P < 0.01). These data offer new insights into the importance of microbial autotrophy in terrestrial C cycling. PMID:22286999

  12. Energy Crops and their Implications on Soil Carbon Sequestration, Surface Energy and Water Balance

    NASA Astrophysics Data System (ADS)

    Song, Y.; Barman, R.; Jain, A. K.

    2011-12-01

    The quest to meet growing energy demand with low greenhouse gas emissions has increased attention on the potential of existing and advanced biomass energy crops. Potential energy crops include row crops such as corn, and perennial grasses such as switchgrass. However, a massive expansion of bioenergy crops raises many questions such as: how and where to grow energy crops; and what will be the impacts of growing large scale biofuel crops on the terrestrial hydrological cycle, the surface energy budget, soil carbon sequestration and the concurrent effects on the climate system. An integrated modeling system is being developed with in the framework of a land surface model, the Integrated Science Assessment Model (ISAM), and being applied to address these questions.This framework accounts for the biophysical, physiological and biogeochemical systems governing important processes that regulate crop growth including water, energy and nutrient cycles within the soil-plant-atmosphere system. One row crop (Corn) and two energy crops (Switchgrass and Miscanthus) are studied in current framework. Dynamic phenology processes and parameters for simulating each crop have been developed using observed data from a north to south gradient of field trial sites. This study will specifically focus on the agricultural regions in the US and in Europe. The potential productivity of these three crops will be assessed in terms of carbon sequestration, surface energy and water balance and their spatial variability. This study will help to quantify the importance of various environmental aspects towards modeling bioenergy crops and to better understand the spatial and temporal dynamics of bioenergy crop yields.

  13. Carbon sequestration in deep ploughed Luvisols and Podzols of Northern Germany

    NASA Astrophysics Data System (ADS)

    Alcántara, Viridiana; Don, Axel; Nieder, Rolf; Well, Reinhard

    2014-05-01

    Research on carbon sequestration in arable soils up to now has mainly focused on reduced and no-tillage systems even though the effects on soil carbon stocks are marginal. This study addresses the long-term effects of deep ploughing. We are sampling five Luvisols and five Podzols under agriculture as well as five Podzols under forest in Northern Germany, which were deep ploughed (50 to 90 cm depth) in the 1960s. Adjacent equally managed, but conventionally ploughed (approx. 30 cm depth) subplots are used as a reference respectively. At each site two subplots of 20 by 40 meters, we collect samples from different depths of a soil profile (down to 1.5 meter depth) after digging a pit. Additionally, five composite core samples down to 1 meter depth randomly distributed over the field subplot are collected. Soil bulk density, gravel fraction as well as organic and inorganic carbon content will be determined to calculate organic C stocks. First results from an arable loess soil (Haplic Luvisol) near Salzgitter, which was ploughed to 90 cm depth in 1966, show a mean C stock of 82,5 Mg ha-1 in the deep ploughed subplot compared to 65,9 Mg ha-1 in the reference subplot. This is equal to a long-term increase of 30% in soil organic carbon due to deep ploughing, which is several times higher than the effects of reduced ploughing or no-tillage. Moreover, we will conduct incubation experiments to determine soil respiration and microbial biomass via substrate induced respiration in order to elucidate the stability of the buried carbon. Further analysis will address the stabilization mechanisms of the buried soil organic matter including pH measurements, soil texture analysis, atomic absorption spectroscopy to quantify pedogenic iron and aluminum oxides, cation-exchange capacity, C density fractionation and radiocarbon dating. We will present data from the first sampling campaigns and discuss their implications for our view on subsoil carbon stability.

  14. Mineral sequestration of carbon dioxide in peridotitic and basaltic rocks using seawater for carbonation

    Microsoft Academic Search

    Domenik Wolff-Boenisch; Stefan Wenau; Sigurdur Gislason

    2010-01-01

    In-situ mineral sequestration requires huge volumes of water for carbonation of CO2 which is injected as one fluid phase into the appropriate reactive subsurface for subsequent mineralization. The amount of water needed to dissolve one ton of CO2 is about 27 tons at 25 bar partial pressure and 25 ° C (Gislason et al., 2010). The CarbFix pilot injection project

  15. Carbon Sequestration in Wetland Soils of the Northern Gulf of Mexico Coastal Region

    EPA Science Inventory

    Coastal wetlands play an important but complex role in the global carbon cycle, contributing to the ecosystem service of greenhouse gas regulation through carbon sequestration. Although coastal wetlands occupy a small percent of the total US land area, their potential for carbon...

  16. Estimates of Carbon Sequestration in Tidal Coastal Wetlands Along the US east Coast

    EPA Science Inventory

    Globally, salt marshes are reported to sequester carbon (210 g C m-2 y -1), and along with mangroves in the US, they are reported to account for 1?2 % of the carbon sink for the conterminous US. Using the published salt marsh carbon sequestration rate and National Wetland Invent...

  17. Carbon sequestration in leaky reservoirs Alain Jean-Marie, INRIA and UMR LIRMM

    E-print Network

    Boyer, Edmond

    Carbon sequestration in leaky reservoirs Alain Jean-Marie, INRIA and UMR LIRMM Michel Moreaux, February 2, 2011 Abstract We propose in this paper a model of optimal Carbon Capture and Storage in which the reservoir of sequestered carbon is leaky, and pollution eventually is released into the atmosphere. We

  18. Economic Evaluation of Leading Technology Options for Sequestration of Carbon Dioxide

    E-print Network

    1 Economic Evaluation of Leading Technology Options for Sequestration of Carbon Dioxide by Jérémy, which releases nearly six billion tons of carbon per year into the atmosphere. These fuels will continue development. Since power plants are the largest point sources of CO2 emissions, capturing the carbon dioxide

  19. Estimates of Carbon Sequestration and Storage in Tidal Coastal Wetlands Along the US East Coast

    EPA Science Inventory

    Globally, salt marshes are reported to sequester carbon (210 g C m-2 y -1), and along with mangroves in the US, they are reported to account for 1?2 % of the carbon sink for the conterminous US. Using the published salt marsh carbon sequestration rate and National Wetland Invent...

  20. Simulating options for carbon sequestration through improved management of a lowland tropical rainforest

    Microsoft Academic Search

    MARCO BOSCOLO; JOSEPH BUONGIORNO; THEODORE PANAYOTOU

    1997-01-01

    The growing evidence that increased levels of carbon dioxide in the atmosphere are related to global warming has prompted several countries to consider options for reducing and offsetting current carbon dioxide emissions. Opportunities for carbon sequestration with forestry activities have been analysed in detail primarily in industrialized nations, mainly because of data availability. This article presents a model that simulates

  1. Submicron structures provide preferential spots for carbon and nitrogen sequestration in soils.

    PubMed

    Vogel, Cordula; Mueller, Carsten W; Höschen, Carmen; Buegger, Franz; Heister, Katja; Schulz, Stefanie; Schloter, Michael; Kögel-Knabner, Ingrid

    2014-01-01

    The sequestration of carbon and nitrogen by clay-sized particles in soils is well established, and clay content or mineral surface area has been used to estimate the sequestration potential of soils. Here, via incubation of a sieved (<2?mm) topsoil with labelled litter, we find that only some of the clay-sized surfaces bind organic matter (OM). Surprisingly, <19% of the visible mineral areas show an OM attachment. OM is preferentially associated with organo-mineral clusters with rough surfaces. By combining nano-scale secondary ion mass spectrometry and isotopic tracing, we distinguish between new labelled and pre-existing OM and show that new OM is preferentially attached to already present organo-mineral clusters. These results, which provide evidence that only a limited proportion of the clay-sized surfaces contribute to OM sequestration, revolutionize our view of carbon sequestration in soils and the widely used carbon saturation estimates. PMID:24399306

  2. Submicron structures provide preferential spots for carbon and nitrogen sequestration in soils

    PubMed Central

    Vogel, Cordula; Mueller, Carsten W.; Höschen, Carmen; Buegger, Franz; Heister, Katja; Schulz, Stefanie; Schloter, Michael; Kögel-Knabner, Ingrid

    2014-01-01

    The sequestration of carbon and nitrogen by clay-sized particles in soils is well established, and clay content or mineral surface area has been used to estimate the sequestration potential of soils. Here, via incubation of a sieved (<2?mm) topsoil with labelled litter, we find that only some of the clay-sized surfaces bind organic matter (OM). Surprisingly, <19% of the visible mineral areas show an OM attachment. OM is preferentially associated with organo-mineral clusters with rough surfaces. By combining nano-scale secondary ion mass spectrometry and isotopic tracing, we distinguish between new labelled and pre-existing OM and show that new OM is preferentially attached to already present organo-mineral clusters. These results, which provide evidence that only a limited proportion of the clay-sized surfaces contribute to OM sequestration, revolutionize our view of carbon sequestration in soils and the widely used carbon saturation estimates. PMID:24399306

  3. Genetic Analysis in Populus Reveals Potential to Enhance Soil Carbon Sequestration In a paper published in the August, 2005 issue of Canadian Journal of Forest Research, scientists

    E-print Network

    Genetic Analysis in Populus Reveals Potential to Enhance Soil Carbon Sequestration In a paper carbon sequestration by an estimated 0.35Gt carbon/year. This represents ca. 4% of global carbon in terrestrial ecosystems. This work is supported by research funded through the Carbon Sequestration Program

  4. Mobilization of Trace Metals in an Experimental Carbon Sequestration Scenario

    NASA Astrophysics Data System (ADS)

    Marcon, V.; Kaszuba, J. P.

    2012-12-01

    Mobilizing trace metals with injection of supercritical CO2 into deep saline aquifers is a concern for geologic carbon sequestration. The potential for leakage from these systems requires an understanding of how injection reservoirs interact with the overlying potable aquifers. Hydrothermal experiments were performed to evaluate metal mobilization and mechanisms of release in a carbonate storage reservoir and at the caprock-reservoir boundary. Experiments react synthetic Desert Creek limestone and/or Gothic Shale, formations in the Paradox Basin, Utah, with brine that is close to equilibrium with these rocks. A reaction temperature of 1600C accelerates the reaction kinetics without changing in-situ water-rock reactions. The experiments were allowed to reach steady state before injecting CO2. Changes in major and trace element water chemistry, dissolved carbon and sulfide, and pH were tracked throughout the experiments. CO2 injection decreases the pH by 1 to 2 units; concomitant mineral dissolution produces elevated Ba, Cu, Fe, Pb, and Zn concentrations in the brine. Concentrations subsequently decrease to approximately steady state values after 120-330 hours, likely due to mineral precipitation as seen in SEM images and predicted by geochemical modeling. In experiments that emulate the caprock-reservoir boundary, final Fe (0.7ppb), an element of secondary concern for the EPA, and Pb (0.05ppb) concentrations exceed EPA limits, whereas Ba (0.140ppb), Cu (48ppb), and Zn (433ppb) values remain below EPA limits. In experiments that simulate deeper reservoir conditions, away from the caprock boundary, final Fe (3.5ppb) and Pb (0.017ppb) values indicate less mobilization than seen at the caprock-reservoir boundary, but values still exceed EPA limits. Barium concentrations always remain below the EPA limit of 2ppb, but are more readily mobilized in experiments replicating deeper reservoir conditions. In both systems, transition elements Cd, Cr, Cu, Pb and Zn behave in a similar manner, increasing in concentration with injection but continually decreasing after about 830 hours until termination of the experiment. SEM images and geochemical models indicate initial dissolution of all rocks and minerals, re-precipitation of Ca-Mg-Fe carbonates and Fe-sulfides, and precipitation of anhydrite in both systems. Calcite dissolves more readily than dolomite in these experiments, but re-precipitates in veins on dolomite. If brines leak from a storage reservoir and mix with a potable aquifer, the experimental results suggest that Ba, Cu, and Zn will not be contaminants of concern. Pb, Fe and As (still under consideration) initially exceed the EPA threshold and may require careful attention in a sequestration scenario. However, experimentally observed trends of decreasing trace metal concentration suggest that these metals could become less of a concern during the life of a carbon repository. Finally, the caprock plays an active role in trace metal mobilization in the system. The caprock provides a source of metals, although subsequent precipitation may remove metals from solution.

  5. SOIL ORGANIC CARBON SEQUESTRATION IN COTTON PRODUCTION SYSTEMS

    Microsoft Academic Search

    Hector J. Causarano; Alan J. Franzluebbers; D. Wayne Reeves; J. N. Shaw; M. L. Norfleet

    Conservation tillage, crop intensification, sod-based rotations, and judicious application of fertilizers and herbicides are agricultural practices that are not only agronomically sound, but could increase soil organic C (SOC) sequestration. These practices have great potential for adoption by cotton (Gossypium hirsutum L) producers in the southeastern USA. We calculated potential SOC sequestration under different management scenarios of five major land

  6. The Urgent Need for Carbon Dioxide Sequestration Klaus S. Lackner, Darryl P. Butt, Reed Jensen and Hans Ziock

    E-print Network

    1 The Urgent Need for Carbon Dioxide Sequestration Klaus S. Lackner, Darryl P. Butt, Reed Jensen in this field. This memo explains why the development of a viable sequestration technology is a long term stra- tegic goal of utmost importance and why sequestration provides a goal worthy of the attention

  7. Optimizing root system architecture in biofuel crops for sustainable energy production and soil carbon sequestration

    PubMed Central

    To, Jennifer PC; Zhu, Jinming; Benfey, Philip N

    2010-01-01

    Root system architecture (RSA) describes the dynamic spatial configuration of different types and ages of roots in a plant, which allows adaptation to different environments. Modifications in RSA enhance agronomic traits in crops and have been implicated in soil organic carbon content. Together, these fundamental properties of RSA contribute to the net carbon balance and overall sustainability of biofuels. In this article, we will review recent data supporting carbon sequestration by biofuel crops, highlight current progress in studying RSA, and discuss future opportunities for optimizing RSA for biofuel production and soil carbon sequestration. PMID:21173868

  8. Enzymes for carbon sequestration: neutron crystallographic studies of carbonic anhydrase

    PubMed Central

    Fisher, S. Z.; Kovalevsky, A. Y.; Domsic, J.; Mustyakimov, M.; Silverman, D. N.; McKenna, R.; Langan, P.

    2010-01-01

    Carbonic anhydrase (CA) is a ubiquitous metalloenzyme that catalyzes the reversible hydration of CO2 to form HCO3 ? and H+ using a Zn–hydroxide mechanism. The first part of catalysis involves CO2 hydration, while the second part deals with removing the excess proton that is formed during the first step. Proton transfer (PT) is thought to occur through a well ordered hydrogen-bonded network of waters that stretches from the metal center of CA to an internal proton shuttle, His64. These waters are oriented and ordered through a series of hydrogen-bonding interactions to hydrophilic residues that line the active site of CA. Neutron studies were conducted on wild-type human CA isoform II (HCA II) in order to better understand the nature and the orientation of the Zn-bound solvent (ZS), the charged state and conformation of His64, the hydrogen-bonding patterns and orientations of the water molecules that mediate PT and the ionization of hydrophilic residues in the active site that interact with the water network. Several interesting and unexpected features in the active site were observed which have implications for how PT proceeds in CA. PMID:21041933

  9. Carbon accumulation rate of peatland in the High Arctic, Svalbard: Implications for carbon sequestration

    NASA Astrophysics Data System (ADS)

    Nakatsubo, Takayuki; Uchida, Masaki; Sasaki, Akiko; Kondo, Miyuki; Yoshitake, Shinpei; Kanda, Hiroshi

    2015-06-01

    Moss tundra that accumulates a thick peat layer is one of the most important ecosystems in the High Arctic, Svalbard. The importance of this ecosystem for carbon sequestration was estimated from the apparent rates of carbon accumulation based on the 14C age and amount of peat in the active layer. The study site at Stuphallet, Brøgger Peninsula, northwestern Svalbard was covered with a thick peat layer dominated by moss species such as Calliergon richardsonii, Paludella squarrosa, Tomenthypnum nitens, and Warnstorfia exannulata. The average thickness of the active layer (brown moss and peat) was approximately 28 cm in 1 August 2011. The calibrated (cal) age of peat from the bottom of the active layer (20-30 cm below the peatland surface) ranged from 81 to 701 cal yr BP (median value of 2? range). Based on the total carbon (4.5-9.2 kg C m-2), the apparent rate of carbon accumulation in the active layer was 9.0-19.2 (g C m-2 yr-1), which is similar to or greater than the net ecosystem production or net primary production reported for other vegetation types in this area. Our data suggest that moss tundra plays an important role in carbon sequestration in this area.

  10. Carbon Sequestration in Unconventional Reservoirs: Advantages and Limitations

    NASA Astrophysics Data System (ADS)

    Zakharova, N. V.; Slagle, A. L.; Goldberg, D.

    2014-12-01

    To make a significant impact on anthropogenic CO2 emissions, geologic carbon sequestration would require thousands of CO2 repositories around the world. Unconventional reservoirs, such as igneous rocks and fractured formations, may add substantial storage capacity and diversify CO2 storage options. In particular, basaltic rocks represent a promising target due to their widespread occurrence, potentially suitable reservoir structure and high reactivity with CO2, but a comprehensive evaluation of worldwide CO2 sequestration capacity in unconventional reservoirs is lacking. In this presentation we summarize available data on storage potential of basaltic rocks and fractured formations illustrated by field examples from the Columbia River Basalt, the Newark Rift Basin and IODP Site 1256, and discuss potential limiting factors, such as effective porosity and the risk of inducing earthquakes by CO2 injections. Large Igneous Provinces (LIPs), low-volume flows and intrusions, and ocean floor basalt represent three general classes of basaltic reservoirs, each characterized by different structure and storage capacity. Oceanic plateaus and LIPs are projected to have the highest CO2 storage capacity, on the order of thousands gigatons (Gt) per site, followed by continental LIPs and ocean floor basalts (hundreds to thousands Gt per site). Isolated basalt flows and intrusions are likely to offer only low- to moderate-capacity options. An important limiting factor on CO2 injection volumes and rates is the risk of inducing earthquakes by increasing pore pressure in the subsurface. On continents, available in situ stress analysis suggests that local stress perturbations at depth may create relaxed stress conditions, allowing for pore pressure increase without reactivating fractures and faults. Remote storage sites on oceanic plateaus and below the seafloor are advantageous due to low impact of potential seismic and/or leakage events. Other effects, such as thermal stresses created by temperature difference between injected fluid and the host formation, may be particularly important for reservoir stability in high-temperature offshore locations. Overall, unconventional reservoirs in offshore locations offer the potential benefits of vast and safe storage for captured CO2 emissions.

  11. House Committee on Natural Resources The Future of Fossil Fuels: Geological and Terrestrial Sequestration of Carbon Dioxide

    E-print Network

    and Terrestrial Sequestration of Carbon Dioxide Howard Herzog Principal Research Engineer Massachusetts Institute to the Technical Group of the Carbon Sequestration Leadership Forum (see www.cslforum.org). Just two weeks ago, thank you for the opportunity to appear before you today to discuss Carbon Dioxide (CO2) geological

  12. Managing Commercial Tree Species for Timber Production and Carbon Sequestration: Management Guidelines and Financial Returns

    SciTech Connect

    Gary D. Kronrad

    2006-09-19

    A carbon credit market is developing in the United States. Information is needed by buyers and sellers of carbon credits so that the market functions equitably and efficiently. Analyses have been conducted to determine the optimal forest management regime to employ for each of the major commercial tree species so that profitability of timber production only or the combination of timber production and carbon sequestration is maximized. Because the potential of a forest ecosystem to sequester carbon depends on the tree species, site quality and management regimes utilized, analyses have determined how to optimize carbon sequestration by determining how to optimally manage each species, given a range of site qualities, discount rates, prices of carbon credits and other economic variables. The effects of a carbon credit market on the method and profitability of forest management, the cost of sequestering carbon, the amount of carbon that can be sequestered, and the amount of timber products produced has been determined.

  13. Sequestration of Single-Walled Carbon Nanotubes in a Polymer

    NASA Technical Reports Server (NTRS)

    Bley, Richard A.

    2007-01-01

    Sequestration of single-walled carbon nanotubes (SWCNs) in a suitably chosen polymer is under investigation as a means of promoting the dissolution of the nanotubes into epoxies. The purpose of this investigation is to make it possible to utilize SWCNs as the reinforcing fibers in strong, lightweight epoxy-matrix/carbon-fiber composite materials. SWCNs are especially attractive for use as reinforcing fibers because of their stiffness and strength-to-weight ratio: Their Young s modulus has been calculated to be 1.2 TPa, their strength has been calculated to be as much as 100 times that of steel, and their mass density is only one-sixth that of steel. Bare SWCNs cannot be incorporated directly into composite materials of the types envisioned because they are not soluble in epoxies. Heretofore, SWCNS have been rendered soluble by chemically attaching various molecular chains to them, but such chemical attachments compromise their structural integrity. In the method now under investigation, carbon nanotubes are sequestered in molecules of poly(m-phenylenevinylene-co-2,5-dioctyloxy-p-phenylenevinylene) [PmPV]. The strength of the carbon nanotubes is preserved because they are not chemically bonded to the PmPV. This method exploits the tendency of PmPV molecules to wrap themselves around carbon nanotubes: the wrapping occurs partly because there exists a favorable interface between the conjugated face of a nanotube and the conjugated backbone of the polymer and partly because of the helical molecular structure of PmPV. The constituents attached to the polymer backbones (the side chains) render the PmPV-wrapped carbon nanotubes PmPV soluble in organic materials that, in turn, could be used to suspend the carbon nanotubes in epoxy precursors. At present, this method is being optimized: The side chains on the currently available form of PmPV are very nonpolar and unable to react with the epoxy resins and/or hardeners; as a consequence, SWCN/PmPV composites have been observed to precipitate out of epoxies while the epoxies were being cured. If the side chains of the PmPV molecules were functionalized to make them capable of reacting with the epoxy matrices, it might be possible to make progress toward practical applications. By bonding the side chains of the PmPV molecules to an epoxy matrix, one would form an PmPV conduit between the epoxy matrix and the carbon nanotubes sequestered in the PmPV. This conduit would transfer stresses from the epoxy matrix to the nanotubes. This proposed load-transfer mode is similar to that of the current practice in which silane groups are chemically bonded to both the epoxy matrices and the fibers (often glass fibers) in epoxymatrix/fiber composites.

  14. Nitrogen deposition enhances carbon sequestration by plantations in northern China.

    PubMed

    Du, Zhihong; Wang, Wei; Zeng, Wenjing; Zeng, Hui

    2014-01-01

    Nitrogen (N) deposition and its ecological effects on forest ecosystems have received global attention. Plantations play an important role in mitigating climate change through assimilating atmospheric CO2. However, the mechanisms by which increasing N additions affect net ecosystem production (NEP) of plantations remain poorly understood. A field experiment was initialized in May 2009, which incorporated additions of four rates of N (control (no N addition), low-N (5 g N m?² yr?¹), medium-N (10 g N m?² yr?¹), and high-N (15 g N m?² yr?¹) at the Saihanba Forestry Center, Hebei Province, northern China, a locality that contains the largest area of plantations in China. Net primary production (NPP), soil respiration, and its autotrophic and heterotrophic components were measured. Plant tissue carbon (C) and N concentrations (including foliage, litter, and fine roots), microbial biomass, microbial community composition, extracellular enzyme activities, and soil pH were also measured. N addition significantly increased NPP, which was associated with increased litter N concentrations. Autotrophic respiration (AR) increased but heterotrophic respiration (HR) decreased in the high N compared with the medium N plots, although the HR in high and medium N plots did not significantly differ from that in the control. The increased AR may derive from mycorrhizal respiration and rhizospheric microbial respiration, not live root respiration, because fine root biomass and N concentrations showed no significant differences. Although the HR was significantly suppressed in the high-N plots, soil microbial biomass, composition, or activity of extracellular enzymes were not significantly changed. Reduced pH with fertilization also could not explain the pattern of HR. The reduction of HR may be related to altered microbial C use efficiency. NEP was significantly enhanced by N addition, from 149 to 426.6 g C m?² yr?¹. Short-term N addition may significantly enhance the role of plantations as an important C sink. PMID:24498416

  15. Carbon sequestration is related to mycorrhizal fungal community shifts during long-term succession in boreal forests.

    PubMed

    Clemmensen, Karina E; Finlay, Roger D; Dahlberg, Anders; Stenlid, Jan; Wardle, David A; Lindahl, Björn D

    2015-03-01

    Boreal forest soils store a major proportion of the global terrestrial carbon (C) and below-ground inputs contribute as much as above-ground plant litter to the total C stored in the soil. A better understanding of the dynamics and drivers of root-associated fungal communities is essential to predict long-term soil C storage and climate feedbacks in northern ecosystems. We used 454-pyrosequencing to identify fungal communities across fine-scaled soil profiles in a 5000 yr fire-driven boreal forest chronosequence, with the aim of pinpointing shifts in fungal community composition that may underlie variation in below-ground C sequestration. In early successional-stage forests, higher abundance of cord-forming ectomycorrhizal fungi (such as Cortinarius and Suillus species) was linked to rapid turnover of mycelial biomass and necromass, efficient nitrogen (N) mobilization and low C sequestration. In late successional-stage forests, cord formers declined, while ericoid mycorrhizal ascomycetes continued to dominate, potentially facilitating long-term humus build-up through production of melanized hyphae that resist decomposition. Our results suggest that cord-forming ectomycorrhizal fungi and ericoid mycorrhizal fungi play opposing roles in below-ground C storage. We postulate that, by affecting turnover and decomposition of fungal tissues, mycorrhizal fungal identity and growth form are critical determinants of C and N sequestration in boreal forests. PMID:25494880

  16. Soil carbon sequestration is a climate stabilization wedge: comments on Sommer and Bossio (2014).

    PubMed

    Lassaletta, Luis; Aguilera, Eduardo

    2015-04-15

    Sommer and Bossio (2014) model the potential soil organic carbon (SOC) sequestration in agricultural soils (croplands and grasslands) during the next 87 years, concluding that this process cannot be considered as a climate stabilization wedge. We argue, however, that the amounts of SOC potentially sequestered in both scenarios (pessimistic and optimistic) fulfil the requirements for being considered as wedge because in both cases at least 25 GtC would be sequestered during the next 50 years. We consider that it is precisely in the near future, and meanwhile other solutions are developed, when this stabilization effort is most urgent even if after some decades the sequestration rate is significantly reduced. Indirect effects of SOC sequestration on mitigation could reinforce the potential of this solution. We conclude that the sequestration of organic carbon in agricultural soils as a climate change mitigation tool still deserves important attention for scientists, managers and policy makers. PMID:25646676

  17. The Role of Carbon Capture, Sequestration and Emissions Trading in Achieving Short-Term Carbon Emissions Reductions

    SciTech Connect

    Dooley, James J. (BATTELLE (PACIFIC NW LAB)); Kim, Son H. (BATTELLE (PACIFIC NW LAB)); Runci, Paul J. (BATTELLE (PACIFIC NW LAB)); D. Williams

    2001-08-10

    The near- to mid-term deployment of carbon capture and sequestration technologies can accelerate the process of significantly reducing emissions of carbon dioxide under a wide range of policy scenarios and reduce significantly the costs of complying with a climate change mitigation protocol -- by as much as$1 trillion over the period 2005-2050. These carbon capture and sequestration technologies also allow the continued use of fossil fuels, while reducing their carbon emissions and keeping the cost of electricity generated from fossil fuels competitive with other generation technologies.

  18. Mercury in terrestrial biomass and soils and factors determining atmospheric mercury sequestration

    NASA Astrophysics Data System (ADS)

    Obrist, D.; Johnson, D. W.; Lindberg, S.; Luo, Y.

    2008-12-01

    Terrestrial carbon (C) pools play an important role in uptake, deposition, sequestration, and emission of atmospheric mercury (Hg). The objective of this study is to assess atmospheric Hg sequestration associated with vegetation and soil C pools in forest ecosystems. As part of an ongoing EPA STAR project, we are systematically evaluating Hg pools and fluxes associated with terrestrial C pools in all major ecosystem compartments (i.e., leaves, branches, bole, litter, soils) across selected US forest ecosystems. Results from the first five sites located in the remote western United States show that the dominant above-ground pool of mercury is associated with surface litter with smaller pools associated with leaves and branches. Mass concentrations greatly increase in the following order: green leaves, dry leaves, initial litter, partially decomposed litter, humus. Based on detailed comparison of stochiometric relationships (e.g., Hg/C and Hg/N ratios) we conclude that these concentration increases are dominated by additional atmospheric deposition retained in the decomposing plant material while exposed to the environment rather than by organic C losses during decomposition. The large majority of total ecosystem mercury, up to 98 percent, however, is sequestered belowground in the soils. Soil Hg accumulation across all sites is greatly determined by the availability of organic matter in these systems, with soil C and soil N explaining more than 90 percent of the variability in observed soil Hg stocks. Our results suggest that the availability of soil organic matter is the main determinant for retention of atmospheric inputs in soils and hence in terrestrial ecosystems. Ecosystem structure and soil organic accumulation hence determine the resilience of Hg in terrestrial ecosystems with important implication for the stability and runoff of atmospheric Hg deposition to surrounding waterbodies.

  19. Contribution of trees to soil carbon sequestration under agroforestry systems in the West African Sahel

    Microsoft Academic Search

    Asako Takimoto; Vimala D. Nair; P. K. Ramachandran Nair

    2009-01-01

    Consequent to recent recognition of agricultural soils as carbon (C) sinks, agroforestry practices in the West African Sahel\\u000a (WAS) region have received attention for their C sequestration potential. This study was undertaken in the Ségou region of\\u000a Mali that represents the WAS, to examine the extent of C sequestration, especially in soils, in agroforestry systems. Five\\u000a land-use systems were selected

  20. Mineral sequestration of CO2 by aqueous carbonation of coal combustion fly-ash

    Microsoft Academic Search

    G. Montes-Hernandez

    The increasing CO2 concentration in the Earth's atmosphere, mainly caused by fossil fuel combustion, has led to concerns about global warming. A technology that could possibly contribute to reducing carbon dioxide emissions is the in-situ mineral sequestration (long term geological storage) or the ex-situ min- eral sequestration (controlled industrial reactors) of CO2. In the present study, we propose to use

  1. Dynamics and climate change mitigation potential of soil organic carbon sequestration.

    PubMed

    Sommer, Rolf; Bossio, Deborah

    2014-11-01

    When assessing soil organic carbon (SOC) sequestration and its climate change (CC) mitigation potential at global scale, the dynamic nature of soil carbon storage and interventions to foster it should be taken into account. Firstly, adoption of SOC-sequestration measures will take time, and reasonably such schemes could only be implemented gradually at large-scale. Secondly, if soils are managed as carbon sinks, then SOC will increase only over a limited time, up to the point when a new SOC equilibrium is reached. This paper combines these two processes and predicts potential SOC sequestration dynamics in agricultural land at global scale and the corresponding CC mitigation potential. Assuming that global governments would agree on a worldwide effort to gradually change land use practices towards turning agricultural soils into carbon sinks starting 2014, the projected 87-year (2014-2100) global SOC sequestration potential of agricultural land ranged between 31 and 64 Gt. This is equal to 1.9-3.9% of the SRES-A2 projected 87-year anthropogenic emissions. SOC sequestration would peak 2032-33, at that time reaching 4.3-8.9% of the projected annual SRES-A2 emission. About 30 years later the sequestration rate would have reduced by half. Thus, SOC sequestration is not a C wedge that could contribute increasingly to mitigating CC. Rather, the mitigation potential is limited, contributing very little to solving the climate problem of the coming decades. However, we deliberately did not elaborate on the importance of maintaining or increasing SOC for sustaining soil health, agro-ecosystem functioning and productivity; an issue of global significance that deserves proper consideration irrespectively of any potential additional sequestration of SOC. PMID:24929498

  2. The Effect of Emissions Trading And Carbon Sequestration on The Cost Of CO2 Emissions Mitigation

    SciTech Connect

    Mahasenan, Natesan; Scott, Michael J.; Smith, Steven J.

    2002-08-05

    The deployment of carbon capture and sequestration (CC&S) technologies is greatly affected by the marginal cost of controlling carbon emissions (also the value of carbon, when emissions permits are traded). Emissions limits that are more stringent in the near term imply higher near-term carbon values and therefore encourage the local development and deployment of CC&S technologies. In addition, trade in emissions obligations lowers the cost of meeting any regional or global emissions limit and so affects the rate of penetration of CC&S technologies. We examine the effects of the availability of sequestration opportunities and emissions trading (either within select regions or globally) on the cost of emissions mitigation and compliance with different emissions reduction targets for the IPCC SRES scenarios. For each base scenario and emissions target, we examine the issues outlined above and present quantitative estimates for the impacts of trade and the availability of sequestration opportunities in meeting emissions limitation obligations.

  3. Carbon Sequestration to Mitigate Climate Change Human activities, especially the burning of fossil fuels such as coal, oil, and gas, have caused a substantial increase

    E-print Network

    Carbon Sequestration to Mitigate Climate Change Human activities, especially the burning of fossil-caused CO2 emissions and to remove CO2 from the atmosphere. 2.0 What is carbon sequestration? The term "carbon sequestration" is used to describe both natural and deliberate CARBON,INGIGATONSPERYEAR 1.5 Fossil

  4. Biomass and carbon storage of Gracilariopsis lemaneiformis (Rhodophyta) in Zhanshan Bay, Qingdao, China

    NASA Astrophysics Data System (ADS)

    Zhou, Wei; Sui, Zhenghong; Wang, Jinguo; Hu, Yiyi; Kang, Kyoungho; Oh, Junyeong; Kim, Sangchul; Huang, Jianhui; Wang, Pengyun

    2014-09-01

    Marine macroalgae can absorb carbon and play an important role in carbon sequestration. As an important economic macroalga, Gracilariopsis lemaneiformis has the potential to significantly affect carbon absorption and storage in wave-sheltered intertidal reef systems. However, detailed knowledge on seasonal biomass changes and carbon storage of G. lemaneiformis is lacking, especially in many small and scattered ecosystems. Considering the influence of human activities on wild distribution of G. lemaneiformis, the understanding of seasonal dynamics of an economically important species in nature is necessary. In this study, we first investigated seasonal variations in biomass, coverage area, and carbon storage during low tide from August 2011 to July 2012 in Zhanshan Bay, Qingdao, China. Furthermore, we estimated the carbon storage potential of wild G. lemaneiformis using light use efficiency (LUE). The results show that the standing biomass and coverage area changed significantly with season. However, seasonal variations in carbon content and water content were not obvious, with an average content of 35.1% and 83.64%, respectively. Moreover, carbon storage in individual months varied between 0.67 and 47.03 g C/m2, and the value of carbon storage was the highest in August and June and the lowest in February. In Zhanshan Bay, LUE of G. lemaneiformis was only 0.23%. If it is increased to the theoretical maximum (5%-6%), the carbon storage will have an increase of at least 21 times compared with the current, which suggested that carbon storage of wild G. lemaneiformis had a high enhancement potential. The study will help to assess a potential role of G. lemaneiformis in reducing atmospheric CO2.

  5. Integrated Mid-Continent Carbon Capture, Sequestration & Enhanced Oil Recovery Project

    SciTech Connect

    Brian McPherson

    2010-08-31

    A consortium of research partners led by the Southwest Regional Partnership on Carbon Sequestration and industry partners, including CAP CO2 LLC, Blue Source LLC, Coffeyville Resources, Nitrogen Fertilizers LLC, Ash Grove Cement Company, Kansas Ethanol LLC, Headwaters Clean Carbon Services, Black & Veatch, and Schlumberger Carbon Services, conducted a feasibility study of a large-scale CCS commercialization project that included large-scale CO{sub 2} sources. The overall objective of this project, entitled the 'Integrated Mid-Continent Carbon Capture, Sequestration and Enhanced Oil Recovery Project' was to design an integrated system of US mid-continent industrial CO{sub 2} sources with CO{sub 2} capture, and geologic sequestration in deep saline formations and in oil field reservoirs with concomitant EOR. Findings of this project suggest that deep saline sequestration in the mid-continent region is not feasible without major financial incentives, such as tax credits or otherwise, that do not exist at this time. However, results of the analysis suggest that enhanced oil recovery with carbon sequestration is indeed feasible and practical for specific types of geologic settings in the Midwestern U.S.

  6. Multiphase modeling of geologic carbon sequestration in saline aquifers.

    PubMed

    Bandilla, Karl W; Celia, Michael A; Birkholzer, Jens T; Cihan, Abdullah; Leister, Evan C

    2015-05-01

    Geologic carbon sequestration (GCS) is being considered as a climate change mitigation option in many future energy scenarios. Mathematical modeling is routinely used to predict subsurface CO2 and resident brine migration for the design of injection operations, to demonstrate the permanence of CO2 storage, and to show that other subsurface resources will not be degraded. Many processes impact the migration of CO2 and brine, including multiphase flow dynamics, geochemistry, and geomechanics, along with the spatial distribution of parameters such as porosity and permeability. In this article, we review a set of multiphase modeling approaches with different levels of conceptual complexity that have been used to model GCS. Model complexity ranges from coupled multiprocess models to simplified vertical equilibrium (VE) models and macroscopic invasion percolation models. The goal of this article is to give a framework of conceptual model complexity, and to show the types of modeling approaches that have been used to address specific GCS questions. Application of the modeling approaches is shown using five ongoing or proposed CO2 injection sites. For the selected sites, the majority of GCS models follow a simplified multiphase approach, especially for questions related to injection and local-scale heterogeneity. Coupled multiprocess models are only applied in one case where geomechanics have a strong impact on the flow. Owing to their computational efficiency, VE models tend to be applied at large scales. A macroscopic invasion percolation approach was used to predict the CO2 migration at one site to examine details of CO2 migration under the caprock. PMID:25662534

  7. Exploring the role of arbuscular mycorrhizal fungi in carbon sequestration in agricultural soil, Part III

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sequestering carbon in agricultural soils can help mitigate increases in atmospheric CO2. Work at Rodale Institute’s Farming Systems Trial indicates significant potential for carbon sequestration in organically farmed soils. A potential mechanism for this is C storage in the arbuscular mycorrhizal...

  8. Mathematical Modeling of Carbon Dioxide Injection in the Subsurface for Improved Hydrocarbon Recovery and Sequestration

    E-print Network

    Firoozabadi, Abbas

    Mathematical Modeling of Carbon Dioxide Injection in the Subsurface for Improved Hydrocarbon Recovery and Sequestration Philip C. Myint, Laurence Rongy, Kjetil B. Haugen, Abbas Firoozabadi Department. Combustion of fossil fuels contributes to rising atmospheric carbon dioxide (CO2) levels that have been

  9. Tillage and soil carbon sequestration—What do we really know?

    Microsoft Academic Search

    John M. Baker; Tyson E. Ochsner; Rodney T. Venterea; Timothy J. Griffis

    2007-01-01

    It is widely believed that soil disturbance by tillage was a primary cause of the historical loss of soil organic carbon (SOC) in North America, and that substantial SOC sequestration can be accomplished by changing from conventional plowing to less intensive methods known as conservation tillage. This is based on experiments where changes in carbon storage have been estimated through

  10. Quantifying the impacts on biodiversity of policies for carbon sequestration in forests

    Microsoft Academic Search

    Stephen Matthews; Raymond O'Connor; Andrew J. Plantinga

    2002-01-01

    There is currently a great deal of interest in the use of afforestation (conversion of non-forest land to forest) to reduce atmospheric concentrations of carbon dioxide. To date, economic analyses have focused on the costs of forest carbon sequestration policies related to foregone profits from agricultural production. No studies have examined additional costs or benefits associated with impacts on biodiversity.

  11. Possibilities for Future Carbon Sequestration in Canadian Agriculture in Relation to Land Use Changes

    Microsoft Academic Search

    J. Dumanski; R. L. Desjardins; C. Tarnocai; C. Monreal; E. G. Gregorich; V. Kirkwood; C. A. Campbell

    1998-01-01

    Increasing carbon sequestration in agricultural soils in Canada is examined as a possible strategy in slowing or stopping the current increase in atmospheric CO2 concentrations. Estimates are provided on the amount of carbon that could be sequestered in soils in various regions in Canada by reducing summerfallow area, increased use of forage crops, improved erosion control, shifts from conventional to

  12. A National Disturbance Modeling System to Support Ecological Carbon Sequestration Assessments

    Microsoft Academic Search

    T. J. Hawbaker; M. G. Rollins; J. E. Volegmann; H. Shi; T. L. Sohl

    2009-01-01

    The U.S. Geological Survey (USGS) is prototyping a methodology to fulfill requirements of Section 712 of the Energy Independence and Security Act (EISA) of 2007. At the core of the EISA requirements is the development of a methodology to complete a two-year assessment of current carbon stocks and other greenhouse gas (GHG) fluxes, and potential increases for ecological carbon sequestration

  13. CARBON SEQUESTRATION IN RANGELANDS INTERSEEDED WITH YELLOW-FLOWERING ALFALFA (MEDICAGO SATIVA SSP. FALCATA)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Management practices can significantly influence carbon sequestration by rangeland ecosystems. Grazing, burning, and fertilization have been shown to increase soil carbon storage in rangeland soils of the Great Plains. Research was initiated in 2001 in northwestern South Dakota to evaluate the role ...

  14. Impact on bacterial activities of ocean sequestration of carbon dioxide into bathypelagic layers

    Microsoft Academic Search

    N. Yamada; M. Suzumura; N. Tsurushima; K. Harada

    2008-01-01

    The ocean sequestration of carbon dioxide (CO2), direct injection of CO2 into bathypelagic layers, is one of the climate change mitigation options. It is essential to assess the potential environmental impacts on the marine ecosystem. In bathypelagic layers, bacteria are dominant organisms and play significant roles in oceanic carbon cycling through utilization and transformation of organic matter. We performed laboratory

  15. 75 FR 33613 - Notice of the Carbon Sequestration-Geothermal Energy-Science Joint Workshop

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-14

    The DOE Geothermal Technologies Program, Office of Science- Geosciences Program and Office of Fossil Energy-Carbon Sequestration Program will be holding a joint workshop on Common Research Themes for Carbon Storage and Geothermal Energy, June 15-16, 2010. Experts from industry, academia, national labs, and State and Federal geological surveys will discuss geosciences research needs for subsurface......

  16. Forest Carbon Sequestration under the U.S. Biofuel Energy Policies

    Microsoft Academic Search

    Do-il Yoo; Kenneth E. Skog; Peter J. Ince; Andrew D. Kramp

    2011-01-01

    This paper analyzes impacts of the U.S. biofuel energy policies on the carbon sequestration by forest products, which is expressed as Harvested Wood Products (HWP) Contribution under the United Nations Framework Convention on Climate Change. Estimation for HWP Contribution is based on tracking carbon stock stored in wood and paper products in use and in solid-waste disposal sites (SWDS) from

  17. Carbon dioxide sequestration in municipal solid waste incinerator (MSWI) bottom ash

    Microsoft Academic Search

    Eva Rendek; Gaëlle Ducom; Patrick Germain

    2006-01-01

    During bottom ash weathering, carbonation under atmospheric conditions induces physico-chemical evolutions leading to the pacification of the material. Fresh bottom ash samples were subjected to an accelerated carbonation using pure CO2. The aim of this work was to quantify the volume of CO2 that could be sequestrated with a view to reduce greenhouse gas emissions and investigate the possibility of

  18. Fungal bioremediation of chromates: conformational changes of biomass during sequestration, binding, and reduction of hexavalent chromium ions.

    PubMed

    Sanghi, Rashmi; Sankararamakrishnan, Nalini; Dave, Bakul C

    2009-09-30

    This paper highlights the mechanistic aspects of white rot fungus Coriolus versicolor as a complexing/reducing agent for chromium bioremediation. The chemical reduction of Cr(VI) to Cr(III) via the formation of Cr(VI) thio ester as an intermediate, is pH dependent and controls the overall chromium adsorption kinetics. The strong adsorption affinity of the biomass towards Cr(VI) anions was evaluated by the Freundlich and the Langmuir adsorption isotherms. The FTIR spectroscopic analysis suggested the involvement of amino, carboxylate, and thiol groups from fungal cell wall in chromium binding and reduction. The mechanism of the adsorption was preferential sequestration along with binding of the metal to the ligating groups present in the biomass followed by reduction to trivalent state. The results indicate step-wise progression of overall reaction dictated and modulated by structural and conformation effects in the biomass that lead to saturation, acceleration, and ultimate saturation kinetics effects. PMID:19467785

  19. CARBON SEQUESTRATION IN RECLAIMED MINED SOILS OF OHIO

    SciTech Connect

    M.K. Shukla; R. Lal

    2004-10-01

    This research project is aimed at assessing the soil organic carbon (SOC) sequestration potential of reclaimed minesoils (RMS). The experimental sites, owned and maintained by the American Electrical Power, are located in Guernsey, Morgan, Noble, and Muskingum Counties of Ohio. These sites, characterized by age chronosequences, were reclaimed with and without topsoil application and are under continuous grass or forest cover. During this quarter, water infiltration tests were performed on the soil surface in the experimental sites. Soil samples were analyzed for the soil carbon and nitrogen contents, texture, water stable aggregation, and mean weight and geometric mean diameter of aggregates. This report presents the results from two sites reclaimed during 1978 and managed under grass (Wilds) and forest (Cumberland) cover, respectively. The trees were planted in 1982 in the Cumberland site. The analyses of data on soil bulk density ({rho}{sub b}), SOC and total nitrogen (TN) concentrations and stocks were presented in the third quarter report. This report presents the data on infiltration rates, volume of transport and storage pores, available water capacity (AWC) of soil, particle size distribution, and soil inorganic carbon (SIC) and coal carbon contents. The SIC content ranged from 0.04 to 1.68% in Cumberland tree site and 0.01 to 0.65% in the Wilds. The coal content assumed to be the carbon content after oven drying the sample at 350 C varied between 0.04 and 3.18% for Cumberland and 0.06 and 3.49% for Wilds. The sand, silt and clay contents showed moderate to low variability (CV < 0.16) for 0-15 and 15-30 cm depths. The volume of transmission (VTP) and storage pores (VSP) also showed moderate to high variability (CV ranged from 0.22 to 0.39 for Wilds and 0.17 to 0.36 for Cumberland). The CV for SIC was high (0.7) in Cumberland whereas that for coal content was high (0.4) in the Wilds. The steady state infiltration rates (i{sub c}) also showed high variability (CV > 0.6) and ranged from 0.01 to 0.98 cm min{sup -1} in Cumberland and 0.1 to 1.68 cm min{sup -1} in Wilds. The cumulative infiltration (I) was highly variable (CV > 0.6) and ranged from 4.2 to 110 cm in Cumberland and 17.4 to 250 cm in Wilds. The AWC for 0-15 cm depth also showed moderate variability (CV = 0.3) for Cumberland but high for Wilds (CV = 0.4). The sand and silt contents showed strong spatial dependence with nugget-sill ratio of 15 and 23%, respectively with a range of 50 m in Cumberland site. Strong spatial dependence for sand content was also obtained for Wilds. The VSP, AWC, I, clay content, VTP, and i{sub c}, showed moderate to low spatial dependence (nugget-sill ratio varied from 32 to 72% in Cumberland and 37 to 88% in Wilds). These preliminary results along with those reported earlier during the third quarter suggest that the management effects are important and indicative of these sources of variability.

  20. Uncertainties and novel prospects in the study of the soil carbon dynamics

    Microsoft Academic Search

    Yang Wang; Yuch-Ping Hsieh

    2002-01-01

    Establishment of the Kyoto Protocol has resulted in an effort to look towards living biomass and soils for carbon sequestration. In order for carbon credits to be meaningful, sustained carbon sequestration for decades or longer is required. It has been speculated that improved land management could result in sequestration of a substantial amount of carbon in soils within several decades

  1. Phosphorus-Assisted Biomass Thermal Conversion: Reducing Carbon Loss and Improving Biochar Stability

    PubMed Central

    Zhao, Ling; Cao, Xinde; Zheng, Wei; Kan, Yue

    2014-01-01

    There is often over 50% carbon loss during the thermal conversion of biomass into biochar, leading to it controversy for the biochar formation as a carbon sequestration strategy. Sometimes the biochar also seems not to be stable enough due to physical, chemical, and biological reactions in soils. In this study, three phosphorus-bearing materials, H3PO4, phosphate rock tailing (PRT), and triple superphosphate (TSP), were used as additives to wheat straw with a ratio of 1: 0.4–0.8 for biochar production at 500°C, aiming to alleviate carbon loss during pyrolysis and to increase biochar-C stabilization. All these additives remarkably increased the biochar yield from 31.7% (unmodified biochar) to 46.9%–56.9% (modified biochars). Carbon loss during pyrolysis was reduced from 51.7% to 35.5%–47.7%. Thermogravimetric analysis curves showed that the additives had no effect on thermal stability of biochar but did enhance its oxidative stability. Microbial mineralization was obviously reduced in the modified biochar, especially in the TSP-BC, in which the total CO2 emission during 60-d incubation was reduced by 67.8%, compared to the unmodified biochar. Enhancement of carbon retention and biochar stability was probably due to the formation of meta-phosphate or C-O-PO3, which could either form a physical layer to hinder the contact of C with O2 and bacteria, or occupy the active sites of the C band. Our results indicate that pre-treating biomass with phosphors-bearing materials is effective for reducing carbon loss during pyrolysis and for increasing biochar stabilization, which provides a novel method by which biochar can be designed to improve the carbon sequestration capacity. PMID:25531111

  2. Interactive effects of frequent burning and timber harvesting on above ground carbon biomass in temperate eucalypt forests

    NASA Astrophysics Data System (ADS)

    Collins, Luke; Penman, Trent; Ximenes, Fabiano; Bradstock, Ross

    2015-04-01

    The sequestration of carbon has been identified as an important strategy to mitigate the effects of climate change. Fuel reduction burning and timber harvesting are two common co-occurring management practices within forests. Frequent burning and timber harvesting may alter forest carbon pools through the removal and redistribution of biomass and demographic and structural changes to tree communities. Synergistic and antagonistic interactions between frequent burning and harvesting are likely to occur, adding further complexity to the management of forest carbon stocks. Research aimed at understanding the interactive effects of frequent fire and timber harvesting on carbon biomass is lacking. This study utilised data from two long term (25 - 30 years) manipulative burning experiments conducted in southern Australia in temperate eucalypt forests dominated by resprouting canopy species. Specifically we examined the effect of fire frequency and harvesting on (i) total biomass of above ground carbon pools and (ii) demographic and structural characteristics of live trees. We also investigated some of the mechanisms driving these changes. Frequent burning reduced carbon biomass by up to 20% in the live tree carbon pool. Significant interactions occurred between fire and harvesting, whereby the reduction in biomass of trees >20 cm diameter breast height (DBH) was amplified by increased fire frequency. The biomass of trees <20 cm DBH increased with harvesting intensity in frequently burnt areas, but was unaffected by harvesting intensity in areas experiencing low fire frequency. Biomass of standing and fallen coarse woody debris was relatively unaffected by logging and fire frequency. Fire and harvesting significantly altered stand structure over the study period. Comparison of pre-treatment conditions to current conditions revealed that logged sites had a significantly greater increase in the number of small trees (<40 cm DBH) than unlogged sites. Logged sites showed a significant decrease in the number of large trees (>60 cm DBH) over the study period, while unlogged sites showed an increase. Frequently burnt logged sites showed the greatest reduction in large trees, presumably due to increased fire related mortality and collapse. Analysis of tree survival and growth data suggest that mortality rate is increased and growth rate reduced in frequently burnt areas compared to unburnt areas. Our findings suggest that future shifts towards more frequent fire (both prescribed fire and wildfire) could potentially lead to broad scale reductions in carbon sequestration in temperate forests and woodlands dominated by resprouting canopy species. Reductions in carbon sequestration associated with frequent burning will potentially be amplified in intensively harvested landscapes.

  3. GEOC R Lee Penn Sunday, March 25, 2012 12 -Biogeochemical transformation of Fe-and Mn-along a redox gradient: Implications for carbon sequestration

    E-print Network

    Sparks, Donald L.

    a redox gradient: Implications for carbon sequestration within the Christina River Basin Critical Zone States Organic carbon (C)-mineral complexation mechanism is crucial in C sequestration. It is a function

  4. Geochemical Impacts to Groundwater from Geologic Carbon Sequestration: Controls on pH and Inorganic Carbon Concentrations from Reaction Path and Kinetic Modeling

    EPA Science Inventory

    Geologic carbon sequestration has the potential to cause long-term reductions in global emissions of carbon dioxide to the atmosphere. Safe and effective application of carbon sequestration technology requires an understanding of the potential risks to the quality of underground...

  5. SubSurface Carbon Dioxide Concentration Measurement Using a Fiber Based Sensor in a Call\\/Return Geometry for Carbon Sequestration Site Monitoring

    Microsoft Academic Search

    G. R. Wicks; B. Soukup; K. S. Repasky; J. Carlsten; J. L. Barr; L. Dobeck

    2010-01-01

    Geologic carbon sequestration is a means to mitigate the increasing atmospheric concentration of carbon dioxide (CO2) by capturing the CO2 at a source such as a power generation facility and storing the captured CO2 in geologic formations. Many technologic advances will need to occur for successful carbon sequestration including near surface monitoring tools and techniques to ensure site integrity and

  6. Biotic and abiotic effects on CO2 sequestration during microbially-induced calcium carbonate precipitation.

    PubMed

    Okyay, Tugba Onal; Rodrigues, Debora F

    2015-03-01

    In this study, CO2 sequestration was investigated through the microbially-induced calcium carbonate precipitation (MICP) process with isolates obtained from a cave called 'Cave Without A Name' (Boerne, TX, USA) and the Pamukkale travertines (Denizli, Turkey). The majority of the bacterial isolates obtained from these habitats belonged to the genera Sporosarcina, Brevundimonas, Sphingobacterium and Acinetobacter. The isolates were investigated for their capability to precipitate calcium carbonate and sequester CO2. Biotic and abiotic effects of CO2 sequestration during MICP were also investigated. In the biotic effect, we observed that the rate and concentration of CO2 sequestered was dependent on the species or strains. The main abiotic factors affecting CO2 sequestration during MICP were the pH and medium components. The increase in pH led to enhanced CO2 sequestration by the growth medium. The growth medium components, on the other hand, were shown to affect both the urease activity and CO2 sequestration. Through the Plackett-Burman experimental design, the most important growth medium component involved in CO2 sequestration was determined to be urea. The optimized medium composition by the Plackett-Burman design for each isolate led to a statistically significant increase, of up to 148.9%, in CO2 uptake through calcification mechanisms. PMID:25764465

  7. The production of phytolith-occluded carbon in China's forests: implications to biogeochemical carbon sequestration.

    PubMed

    Song, Zhaoliang; Liu, Hongyan; Li, Beilei; Yang, Xiaomin

    2013-09-01

    The persistent terrestrial carbon sink regulates long-term climate change, but its size, location, and mechanisms remain uncertain. One of the most promising terrestrial biogeochemical carbon sequestration mechanisms is the occlusion of carbon within phytoliths, the silicified features that deposit within plant tissues. Using phytolith content-biogenic silica content transfer function obtained from our investigation, in combination with published silica content and aboveground net primary productivity (ANPP) data of leaf litter and herb layer in China's forests, we estimated the production of phytolith-occluded carbon (PhytOC) in China's forests. The present annual phytolith carbon sink in China's forests is 1.7 ± 0.4 Tg CO2  yr(-1) , 30% of which is contributed by bamboo because the production flux of PhytOC through tree leaf litter for bamboo is 3-80 times higher than that of other forest types. As a result of national and international bamboo afforestation and reforestation, the potential of phytolith carbon sink for China's forests and world's bamboo can reach 6.8 ± 1.5 and 27.0 ± 6.1 Tg CO2  yr(-1) , respectively. Forest management practices such as bamboo afforestation and reforestation may significantly enhance the long-term terrestrial carbon sink and contribute to mitigation of global climate warming. PMID:23729188

  8. UBC Social Ecological Economic Development Studies (SEEDS) Student Report The carbon sequestration potential of three common turfgrasses

    E-print Network

    of a project/report. #12;2 The carbon sequestration potential of three common turfgrasses: Lolium perenne1 UBC Social Ecological Economic Development Studies (SEEDS) Student Report The carbon sequestration potential of three common turfgrasses: Lolium perenne; Fescue rubra; and Poa pratensis Yihan Wu

  9. A Survey of Measurement, Mitigation, and Verification Field Technologies for Carbon Sequestration Geologic Storage

    NASA Astrophysics Data System (ADS)

    Cohen, K. K.; Klara, S. M.; Srivastava, R. D.

    2004-12-01

    The U.S. Department of Energy's (U.S. DOE's) Carbon Sequestration Program is developing state-of-the-science technologies for measurement, mitigation, and verification (MM&V) in field operations of geologic sequestration. MM&V of geologic carbon sequestration operations will play an integral role in the pre-injection, injection, and post-injection phases of carbon capture and storage projects to reduce anthropogenic greenhouse gas emissions. Effective MM&V is critical to the success of CO2 storage projects and will be used by operators, regulators, and stakeholders to ensure safe and permanent storage of CO2. In the U.S. DOE's Program, Carbon sequestration MM&V has numerous instrumental roles: Measurement of a site's characteristics and capability for sequestration; Monitoring of the site to ensure the storage integrity; Verification that the CO2 is safely stored; and Protection of ecosystems. Other drivers for MM&V technology development include cost-effectiveness, measurement precision, and frequency of measurements required. As sequestration operations are implemented in the future, it is anticipated that measurements over long time periods and at different scales will be required; this will present a significant challenge. MM&V sequestration technologies generally utilize one of the following approaches: below ground measurements; surface/near-surface measurements; aerial and satellite imagery; and modeling/simulations. Advanced subsurface geophysical technologies will play a primary role for MM&V. It is likely that successful MM&V programs will incorporate multiple technologies including but not limited to: reservoir modeling and simulations; geophysical techniques (a wide variety of seismic methods, microgravity, electrical, and electromagnetic techniques); subsurface fluid movement monitoring methods such as injection of tracers, borehole and wellhead pressure sensors, and tiltmeters; surface/near surface methods such as soil gas monitoring and infrared sensors and; aerial and satellite imagery. This abstract will describe results, similarities, and contrasts for funded studies from the U.S. DOE's Carbon Sequestration Program including examples from the Sleipner North Sea Project, the Canadian Weyburn Field/Dakota Gasification Plant Project, the Frio Formation Texas Project, and Yolo County Bioreactor Landfill Project. The abstract will also address the following: How are the terms ``measurement,'' ``mitigation''and ``verification'' defined in the Program? What is the U.S. DOE's Carbon Sequestration Program Roadmap and what are the Roadmap goals for MM&V? What is the current status of MM&V technologies?

  10. Carbon sequestration monitoring with acoustic double-difference waveform inversion: A case study on SACROC walkaway VSP data

    E-print Network

    Yang, Di

    2011-01-01

    Geological carbon sequestration involves large-scale injection of carbon dioxide into underground geologic formations and is considered as a potential approach for mitigating global warming. Changes in reservoir properties ...

  11. Carbon sequestration in a long-term conventional versus conservation tillage experiment

    Microsoft Academic Search

    W Deen; P. K Kataki

    2003-01-01

    The impact of conservation tillage practices on carbon sequestration has been of great interest in recent years. Changes in the soil organic carbon (SOC) as influenced by tillage, is more noticeable under long-term rather than short-term tillage practices. This experiment analyzed the organic carbon status of soils sampled at depth increments from 0 to 60cm after 25 years of five

  12. Pathways and Mechanisms of OceanTracer Transport: Implications for Carbon Sequestration

    SciTech Connect

    Marshall, John; Follows, MIchael

    2006-11-06

    This funding enabled the following published manuscripts in which we have developed models of direct relevance to ocean carbon sequestration and of the oceanic iron cycle, its connection to the global carbon cycle, and the sensitivity of atmospheric carbon dioxide to the external source of iron. As part of this process we have developed the adjoint of the MIT ocean biogeochemistry model which has enabled us to perform rigorous and efficient sensitivity studies.

  13. Carbon Sequestration in Reclaimed Mined Soils of Ohio

    SciTech Connect

    K. Lorenz; M.K. Shukla; R. Lal

    2006-04-01

    This research project is aimed at assessing the soil organic carbon (SOC) sequestration potential of reclaimed mine soils (RMS). The experimental sites were characterized by distinct age chronosequences of reclaimed mine soil and were located in Guernsey, Morgan, Noble, and Muskingum Counties of Ohio. These sites are owned and maintained by American Electrical Power. These sites were reclaimed (1) with topsoil application, and (2) without topsoil application, and were under continuous grass or forest cover. This report presents the results from two forest sites reclaimed with topsoil application and reclaimed in 1994 (R94-F) and in 1973 (R73-F), and two forest sites without topsoil application and reclaimed in 1969 (R69-F) and 1962 (R62-F). Results from one site under grass without topsoil application and reclaimed in 1962 (R62-G) are also shown. Three core soil samples were collected from each of the experimental sites and each landscape position (upper, middle and lower) for 0-15 and 15-30 cm depths, and saturated hydraulic conductivity (Ks), volumes of transport (VTP) pores, and available water capacity (AWC) were determined. No significant differences were observed in VTP and AWC in 0-15 cm and 15-30 cm depths among the sites R94-F and R73-F reclaimed with topsoil application and under continuous forest cover (P<0.05). VTP and AWC did also not differ among upper, middle and lower landscape positions. However, saturated hydraulic conductivity in 0-15 cm depth at R73-F was significantly lower at the lower compared to the upper landscape position. No significant differences were observed for Ks among landscape positions at R94-F. No significant differences were observed in VTP and AWC among landscape positions and depths within R69-F, R62-F and R62-G. However, saturated hydraulic conductivity was higher in 0-15 cm depth at R62-F than at R69-F and R62-G. At the latter site, Ks was higher in the upper compared to the lower landscape position whereas Ks did not differ among landscape positions at the other sites. Statistical analyses indicated that the number of random samples taken was probably not sufficient to properly consider distribution of VTP and AWC in 0-15 cm and 15-30 cm depths across the sites, in particular for the sites without topsoil application.

  14. 150 G. Marland et al. / Climate Policy 3 (2003) 149157 Strategies to mitigate anthropogenic climate change recognize that carbon sequestration in the terrestrial biosphere

    E-print Network

    Niyogi, Dev

    2003-01-01

    anthropogenic climate change recognize that carbon sequestration in the terrestrial biosphere can reduce to create a system of credits and debits wherein emission or sequestration of carbon in the biosphere; Carbon sequestration; Land use change; Land surface change; Surface energy balance 1. Introduction Human

  15. RESEARCH SUMMARY BY QUANLIN ZHOU During my stay at LBNL from March 2001, I have been working on (1) geologic carbon sequestration

    E-print Network

    Zhou, Quanlin

    on (1) geologic carbon sequestration (GCS) projects for mitigating global climate change, (2) the DOE projects. 1 Research Highlights 1.1. Geological Carbon Sequestration I have been working on eight research projects in the area of geologic carbon sequestration since 2006. I have been PI or Co-PI for six projects

  16. Biomass carbon pool of forest ecosystems and carbon-containing gas emission from biomass burning in China

    SciTech Connect

    Xiaoke Wang; Yahui Zhuang; Zongwei Feng

    1997-12-31

    With the increasing study on global climatic change, scientists have paid more attention to the role of forest ecosystem in global carbon cycle, especially to the uncertainty of atmospheric carbon source and sink involved in forest ecosystems. However, to date it is lack of the information of forest carbon cycle in China for many studies of global carbon cycle. By investigations of forest ecosystem biomass and experiment of chamber combustion, in this paper it was estimated that the carbon pool of forest ecosystem and the carbon-containing gases released from forest biomass burning in China.

  17. Proteomic analysis of carbon concentrating chemolithotrophic bacteria Serratia sp. for sequestration of carbon dioxide.

    PubMed

    Bharti, Randhir K; Srivastava, Shaili; Thakur, Indu Shekhar

    2014-01-01

    A chemolithotrophic bacterium enriched in the chemostat in presence of sodium bicarbonate as sole carbon source was identified as Serratia sp. by 16S rRNA sequencing. Carbon dioxide sequestering capacity of bacterium was detected by carbonic anhydrase enzyme and ribulose-1, 5- bisphosphate carboxylase/oxygenase (RuBisCO). The purified carbonic anhydrase showed molecular weight of 29 kDa. Molecular weight of RuBisCO was 550 kDa as determined by fast protein liquid chromatography (FPLC), however, sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) showed presence of two subunits whose molecular weights were 56 and 14 kDa. The Western blot analysis of the crude protein and purified sample cross reacted with RuBisCO large-subunit polypeptides antibodies showed strong band pattern at molecular weight around 56 kDa regions. Whole cell soluble proteins of Serratia sp. grown under autotrophic and heterotrophic conditions were resolved by two-dimensional gel electrophoresis and MALDI-TOF/MS for differential expression of proteins. In proteomic analysis of 63 protein spots, 48 spots were significantly up-regulated in the autotrophically grown cells; seven enzymes showed its utilization in autotrophic carbon fixation pathways and other metabolic activities of bacterium including lipid metabolisms indicated sequestration potency of carbon dioxide and production of biomaterials. PMID:24619032

  18. Proteomic Analysis of Carbon Concentrating Chemolithotrophic Bacteria Serratia sp. for Sequestration of Carbon Dioxide

    PubMed Central

    Bharti, Randhir K.; Srivastava, Shaili; Thakur, Indu Shekhar

    2014-01-01

    A chemolithotrophic bacterium enriched in the chemostat in presence of sodium bicarbonate as sole carbon source was identified as Serratia sp. by 16S rRNA sequencing. Carbon dioxide sequestering capacity of bacterium was detected by carbonic anhydrase enzyme and ribulose-1, 5- bisphosphate carboxylase/oxygenase (RuBisCO). The purified carbonic anhydrase showed molecular weight of 29 kDa. Molecular weight of RuBisCO was 550 kDa as determined by fast protein liquid chromatography (FPLC), however, sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) showed presence of two subunits whose molecular weights were 56 and 14 kDa. The Western blot analysis of the crude protein and purified sample cross reacted with RuBisCO large-subunit polypeptides antibodies showed strong band pattern at molecular weight around 56 kDa regions. Whole cell soluble proteins of Serratia sp. grown under autotrophic and heterotrophic conditions were resolved by two-dimensional gel electrophoresis and MALDI-TOF/MS for differential expression of proteins. In proteomic analysis of 63 protein spots, 48 spots were significantly up-regulated in the autotrophically grown cells; seven enzymes showed its utilization in autotrophic carbon fixation pathways and other metabolic activities of bacterium including lipid metabolisms indicated sequestration potency of carbon dioxide and production of biomaterials. PMID:24619032

  19. An Integrated Functional Genomics Consortium to Increase Carbon Sequestration in Poplars: Optimizing Aboveground Carbon Gain

    SciTech Connect

    Karnosky, David F (deceased); Podila, G Krishna; Burton, Andrew J (for DF Karnosky)

    2009-02-17

    This project used gene expression patterns from two forest Free-Air CO2 Enrichment (FACE) experiments (Aspen FACE in northern Wisconsin and POPFACE in Italy) to examine ways to increase the aboveground carbon sequestration potential of poplars (Populus). The aim was to use patterns of global gene expression to identify candidate genes for increased carbon sequestration. Gene expression studies were linked to physiological measurements in order to elucidate bottlenecks in carbon acquisition in trees grown in elevated CO2 conditions. Delayed senescence allowing additional carbon uptake late in the growing season, was also examined, and expression of target genes was tested in elite P. deltoides x P. trichocarpa hybrids. In Populus euramericana, gene expression was sensitive to elevated CO2, but the response depended on the developmental age of the leaves. Most differentially expressed genes were upregulated in elevated CO2 in young leaves, while most were downregulated in elevated CO2 in semi-mature leaves. In P. deltoides x P. trichocarpa hybrids, leaf development and leaf quality traits, including leaf area, leaf shape, epidermal cell area, stomatal number, specific leaf area, and canopy senescence were sensitive to elevated CO2. Significant increases under elevated CO2 occurred for both above- and belowground growth in the F-2 generation. Three areas of the genome played a role in determining aboveground growth response to elevated CO2, with three additional areas of the genome important in determining belowground growth responses to elevated CO2. In Populus tremuloides, CO2-responsive genes in leaves were found to differ between two aspen clones that showed different growth responses, despite similarity in many physiological parameters (photosynthesis, stomatal conductance, and leaf area index). The CO2-responsive clone shunted C into pathways associated with active defense/response to stress, carbohydrate/starch biosynthesis and subsequent growth. The CO2-unresponsive clone partitioned C into pathways associated with passive defense and cell wall thickening. These results indicate that there is significant variation in gene expression patterns between different tree genotypes. Consequently, future efforts to improve productivity or other advantageous traits for carbon sequestration should include an examination of genetic variability in CO2 responsiveness.

  20. Improved grazing management may increase soil carbon sequestration in temperate steppe

    PubMed Central

    Chen, Wenqing; Huang, Ding; Liu, Nan; Zhang, Yingjun; Badgery, Warwick B.; Wang, Xiaoya; Shen, Yue

    2015-01-01

    Different grazing strategies impact grassland plant production and may also regulate the soil carbon formation. For a site in semiarid temperate steppe, we studied the effect of combinations of rest, high and moderate grazing pressure over three stages of the growing season, on the process involved in soil carbon sequestration. Results show that constant moderate grazing (MMM) exhibited the highest root production and turnover accumulating the most soil carbon. While deferred grazing (RHM and RMH) sequestered less soil carbon compared to MMM, they showed higher standing root mass, maintained a more desirable pasture composition, and had better ability to retain soil N. Constant high grazing pressure (HHH) caused diminished above- and belowground plant production, more soil N losses and an unfavorable microbial environment and had reduced carbon input. Reducing grazing pressure in the last grazing stage (HHM) still had a negative impact on soil carbon. Regression analyses show that adjusting stocking rate to ~5SE/ha with ~40% vegetation utilization rate can get the most carbon accrual. Overall, the soil carbon sequestration in the temperate grassland is affected by the grazing regime that is applied, and grazing can be altered to improve soil carbon sequestration in the temperate steppe. PMID:26137980

  1. Improved grazing management may increase soil carbon sequestration in temperate steppe.

    PubMed

    Chen, Wenqing; Huang, Ding; Liu, Nan; Zhang, Yingjun; Badgery, Warwick B; Wang, Xiaoya; Shen, Yue

    2015-01-01

    Different grazing strategies impact grassland plant production and may also regulate the soil carbon formation. For a site in semiarid temperate steppe, we studied the effect of combinations of rest, high and moderate grazing pressure over three stages of the growing season, on the process involved in soil carbon sequestration. Results show that constant moderate grazing (MMM) exhibited the highest root production and turnover accumulating the most soil carbon. While deferred grazing (RHM and RMH) sequestered less soil carbon compared to MMM, they showed higher standing root mass, maintained a more desirable pasture composition, and had better ability to retain soil N. Constant high grazing pressure (HHH) caused diminished above- and belowground plant production, more soil N losses and an unfavorable microbial environment and had reduced carbon input. Reducing grazing pressure in the last grazing stage (HHM) still had a negative impact on soil carbon. Regression analyses show that adjusting stocking rate to ~5SE/ha with ~40% vegetation utilization rate can get the most carbon accrual. Overall, the soil carbon sequestration in the temperate grassland is affected by the grazing regime that is applied, and grazing can be altered to improve soil carbon sequestration in the temperate steppe. PMID:26137980

  2. Bacterial and Fungal Contributions to Carbon Sequestration in Agroecosystems

    Microsoft Academic Search

    S. D. Frey; R. K. Thiet; K. M. Batten

    2006-01-01

    This paper reviews the current knowledge of microbial processes affecting C sequestration in agroecosystems. The microbial contri- bution to soil C storage is directly related to microbial community dynamics and the balance between formation and degradation of mi- crobial byproducts. Soil microbes also indirectly influence C cycling by improving soil aggregation, which physically protects soil organic matter (SOM). Consequently, the

  3. Potential for Carbon Dioxide Sequestration in Flood Basalts

    Microsoft Academic Search

    B. PETER McGrail; Herbert T. Schaef; Anita M. Ho; Yi-Ju Chien; James J. Dooley; Casie L. Davidson

    2006-01-01

    Flood basalts are a potentially important host medium for geologic sequestration of anthropogenic CO2. Most lava flows have flow tops that are porous, permeable, and have enormous capacity for storage of CO2. Interbedded sediment layers and dense low-permeability basalt rock overlying sequential flows may act as effective seals allowing time for mineralization reactions to occur. Laboratory experiments confirm relatively rapid

  4. Computational Modeling of the Geologic Sequestration of Carbon Dioxide

    EPA Science Inventory

    Geologic sequestration of CO2 is a component of C capture and storage (CCS), an emerging technology for reducing CO2 emissions to the atmosphere, and involves injection of captured CO2 into deep subsurface formations. Similar to the injection of hazardous wastes, before injection...

  5. Combustion of biomass as a global carbon sink

    E-print Network

    Ball, Rowena

    2008-01-01

    This note is intended to highlight the important role of black carbon produced from biomass burning in the global carbon cycle, and encourage further research in this area. Consideration of the fundamental physical chemistry of cellulose thermal decomposition suggests that suppression of biomass burning or biasing burning practices to produce soot-free flames must inevitably transfer more carbon to the atmosphere. A simple order-of-magnitude quantitative analysis indicates that black carbon may be a significant carbon reservoir that persists over geological time scales.

  6. Linking carbon sequestration science with local sustainability: an integrated assessment approach.

    PubMed

    Yin, Y; Xu, W; Zhou, S

    2007-11-01

    This paper introduces an integrated assessment (IA) approach for a Canada-China joint research project that linked forest carbon sequestration, forest resource management, and local sustainability enhancement. The purpose of the IA was to improve the measurement of carbon in different land uses and vegetation covers, as well as to direct decision makers to those land uses or options as an CO(2) emission reduction strategy while supporting rural sustainable development. In this connection, three questions are addressed in this paper: 1) How will forestry carbon sequestration land use policies affect regional sustainability prospects in rural China? 2) How could carbon sequestration land use plans be better integrated into sustainable development strategies? and 3) How can the IA approach assist Chinese government agencies in design effective forestry land use policies? The IA approach was applied in three rural sites of western China. These case studies are described in detail by following articles in this volume. The project improved the capacity of local resource managers in identifying the economic, social and environmental impacts of rural land use decisions that might increase carbon sequestration and enhance local livelihood. PMID:17098351

  7. An Improved Strategy to Detect Carbon Dioxide Leakage for Verification of Geologic Carbon Sequestration

    NASA Astrophysics Data System (ADS)

    Lewicki, J. L.; Hilley, G. E.; Oldenburg, C. M.

    2005-12-01

    One strategy to mitigate potential climate change associated with elevated atmospheric CO2 concentrations is the sequestration or storage of anthropogenic CO2 in deep geologic formations. While the purpose of geologic carbon sequestration is to trap CO2 underground, the potential exists for CO2 to migrate away from the intended storage site along permeable pathways such as well bores or faults and pass from the subsurface to the atmosphere. Therefore, to ensure the success of geologic carbon sequestration projects, the long-term storage of CO2 must be verified. Although numerous technologies are available to measure near-surface CO2 concentrations and fluxes, storage verification may be challenging due to the large variation in natural background CO2 fluxes and concentrations, within which a potentially small CO2 anomaly will have to be detected. To detect and quantify subtle CO2 leakage signals, we present a strategy that integrates near-surface measurements of CO2 fluxes or concentrations with an algorithm that enhances temporally- and spatially-correlated leakage signals while suppressing random background noise. The algorithm consists of a filter that highlights spatial coherence, and temporal stacking (averaging) that reduces noise from temporally uncorrelated background fluxes. We assess the performance of our strategy using synthetic data sets in which the surface leakage signal is either specified directly or calculated using flow and transport simulations of a variety of leakage source geometries one might expect to be present at sequestration sites. These simulations provide a means of estimating the number of measurements required to detect a potential CO2 leakage signal of given magnitude and area. Our results show that given a rigorous and well-planned field sampling program, subtle CO2 leakage may be detected using the statistical algorithm; however, leakage of very limited spatial extent or exceedingly small magnitude may be difficult to detect with a reasonable set of monitoring resources. This work was supported in part by the Ernest Lawrence Berkeley National Laboratory, managed for the U.S. Department of Energy under Contract No. DE-AC03-76SF00098.

  8. Long term (>100 years) Carbon Sequestration in California Coastal Salt Marshes

    NASA Astrophysics Data System (ADS)

    Brown, L. N.; MacDonald, G. M.; Holmquist, J. R.

    2014-12-01

    Coastal salt marsh ecosystems rank as one of the ecosystems which sequester the most carbon (C) in the world (Chmura, 2003; Mcleod et al., 2011). California hosts multiple small marsh ecosystems outside of the San Francisco Bay that are limited in geographic extent but still contribute significantly to global soil C. This study evaluates 11 marsh sites along the California coast for annual soil C sequestration rates using 14C, 137Cs, and 210Pb chronologies. Estimates of carbon sequestration for California over the past 100 years from this study average at 49 g C m-2 yr-1. Long term estimates of soil C generally are lower because of natural decomposition of organic C, but this study indicates a persistence of high C storage capacity for coastal marsh systems. These estimates provide valuable insight into the long term capacity for coastal salt marshes to mitigate climate change through sequestration of C.

  9. Infrequently burned prairies dominated by Andropogon gerardii and their role in carbon sequestration

    Microsoft Academic Search

    KATIE ARNOLD; DEVAN MCGRANAHAN; LIZ SEIFERT

    Global climate change has been widely attributed to the accumulation of CO2 in the atmosphere. This global warming is brought on by excess atmospheric carbon dioxide produced by the burning of fossil fuels. However, the burning of biomass does not contribute a net gain in atmospheric CO2 because this carbon is part of the active carbon cycle, whereas the carbon

  10. Native plant restoration combats environmental change: development of carbon and nitrogen sequestration capacity using small cordgrass in European salt marshes.

    PubMed

    Curado, Guillermo; Rubio-Casal, Alfredo E; Figueroa, Enrique; Grewell, Brenda J; Castillo, Jesús M

    2013-10-01

    Restoration of salt marshes is critical in the context of climate change and eutrophication of coastal waters because their vegetation and sediments may act as carbon and nitrogen sinks. Our primary objectives were to quantify carbon (C) and nitrogen (N) stocks and sequestration rates in restored marshes dominated by Spartina maritima to provide support for restoration and management strategies that may offset negative aspects of eutrophication and climate change in estuarine ecosystems. Sediment C content was between ca. 13 mg C g(-1)and sediment N content was ca. 1.8 mg N g(-1). The highest C content for S. maritima was recorded in leaves and stems (ca. 420 mg C g(-1)) and the lowest in roots (361?±?4 mg C g(-1)). S. maritima also concentrated more N in its leaves (31?±?1 mg N g(-1)) than in other organs. C stock in the restored marshes was 29.6 t C ha(-1); ca. 16 % was stored in S. maritima tissues. N stock was 3.6 t N ha(-1), with 8.3 % stored in S. maritima. Our results showed that the S. maritima restored marshes, 2.5 years after planting, were sequestering atmospheric C and, therefore, provide some mitigation for global warming. Stands are also capturing nitrogen and reducing eutrophication. The concentrations of C and N contents in sediments, and cordgrass relative cover of 62 %, and low below-ground biomass (BGB) suggest restored marshes can sequester more C and N. S. maritima plantations in low marshes replace bare sediments and invasive populations of exotic Spartina densiflora and increase the C and N sequestration capacity of the marsh by increasing biomass production and accumulation. PMID:23591677

  11. Carbon dioxide sequestration by urban vegetation at neighbourhood scale in tropical cities

    NASA Astrophysics Data System (ADS)

    Velasco, E.; Roth, M.; Tan, S.; Quak, M.; Perrusquia, R.; Molina, L. T.; Norford, L.

    2013-12-01

    Urban surfaces are usually net sources of CO2. Vegetation can potentially have an important role in reducing the CO2 emitted by anthropogenic activities in cities, particularly when vegetation is extensive and/or evergreen. A direct and accurate estimation of carbon uptake by urban vegetation is difficult to achieve due to the particular characteristics of the urban ecosystem and high variability in tree distribution and species. Here, we investigate the role of urban vegetation in the carbon exchange using as reference recent long-term sets of CO2 flux data from two residential neighborhoods in Singapore and Mexico City. CO2 fluxes measured directly by eddy covariance are compared with emissions estimated from emissions factors and activity data. The latter includes contributions from vehicular traffic, household combustion, soil respiration and human breathing. The difference between estimated emissions and measured fluxes should approximate the aboveground biomass flux. In addition, tree surveys were conducted to estimate the annual CO2 sequestration using allometric equations. The annual biomass growth for Singapore's trees was estimated using an alternative model of the metabolic theory of ecology for tropical forests. For Mexico City, growth prediction equations for urban trees from California were used. Palm trees, banana plants, yuccas and turfgrass were also included in the surveys with their annual CO2 uptake obtained from published growth rates. For the case of Singapore, both approaches agree within 2% and suggest that aboveground vegetation sequesters 8% of the total emitted CO2 in the residential neighbourhood studied. An uptake of 1.4 ton km-2 day-1 (510 ton km-2 yr-1) was estimated from the difference between the daily CO2 uptake by photosynthesis (3.95 ton km-2) and release by plant respiration at night (2.55 ton km-2). However, when soil respiration is added to photosynthesis and nocturnal plant respiration, the biogenic component amounts to 4% of the total CO2 emissions to the atmosphere. For the neighbourhood studied in Mexico City an uptake of 1.6 ton km-2 day-1 (568 ton km-2 yr-1) was estimated by allometry and represents 2% of the observed flux by eddy covariance. Due to the large extension of impervious surfaces, soil respiration contributes only 0.6%, resulting in a net offset of 1.4% by the biogenic component to the total CO2 flux. Surprisingly, the estimated aboveground CO2 sequestration was similar for both neighbourhoods, even though the differences in the number of trees, species and size. The available surface for soil respiration in Singapore's neighbourhood (15%) is three times the surface in Mexico City's neighbourhood (5%), and explains why the biogenic component acts as an emission source for the former and as a sink for the latter. The relevance of urban vegetation in the carbon flux at neighbourhood scale depends on the characteristics of trees, extension of green areas and intensity of the anthropogenic sources.

  12. Development of an assessment methodology for hydrocarbon recovery potential using carbon dioxide and associated carbon sequestration-Workshop findings

    USGS Publications Warehouse

    Verma, Mahendra K.; Warwick, Peter D.

    2011-01-01

    The Energy Independence and Security Act of 2007 (Public Law 110-140) authorized the U.S. Geological Survey (USGS) to conduct a national assessment of geologic storage resources for carbon dioxide (CO2) and requested that the USGS estimate the "potential volumes of oil and gas recoverable by injection and sequestration of industrial carbon dioxide in potential sequestration formations" (121 Stat. 1711). The USGS developed a noneconomic, probability-based methodology to assess the Nation's technically assessable geologic storage resources available for sequestration of CO2 (Brennan and others, 2010) and is currently using the methodology to assess the Nation's CO2 geologic storage resources. Because the USGS has not developed a methodology to assess the potential volumes of technically recoverable hydrocarbons that could be produced by injection and sequestration of CO2, the Geologic Carbon Sequestration project initiated an effort in 2010 to develop a methodology for the assessment of the technically recoverable hydrocarbon potential in the sedimentary basins of the United States using enhanced oil recovery (EOR) techniques with CO2 (CO2-EOR). In collaboration with Stanford University, the USGS hosted a 2-day CO2-EOR workshop in May 2011, attended by 28 experts from academia, natural resource agencies and laboratories of the Federal Government, State and international geologic surveys, and representatives from the oil and gas industry. The geologic and the reservoir engineering and operations working groups formed during the workshop discussed various aspects of geology, reservoir engineering, and operations to make recommendations for the methodology.

  13. Modeling the contribution of dissolved organic carbon to carbon sequestration during the last glacial maximum

    NASA Astrophysics Data System (ADS)

    Ma, Wentao; Tian, Jun

    2014-10-01

    Dissolved organic carbon (DOC) is a carbon reservoir that is as large as the atmospheric CO2 pool, and its contribution to the global carbon cycle is gaining attention. As DOC is a dissolved tracer, its distribution can serve to trace the mixing of water masses and the pathways of ocean circulation. Published proxy and model reconstructions have revealed that, during the last glacial maximum (LGM), the pattern of deep ocean circulation differed from that of the modern ocean, whereby additional carbon is assumed to have been sequestered in stratified LGM deep water. The aim of this study is to explore the distribution of DOC and its production/removal rate during the LGM using the Grid ENabled Integrated Earth system model (GENIE). Modeled results reveal that increased salinity of bottom waters in the Southern Ocean is associated with stronger stratification and oxygen depletion. The stratified LGM deep ocean traps more nutrients, resulting in a decrease in the DOC reservoir size that, in turn, causes a negative feedback for carbon sequestration. This finding requires an increase in DOC lifetime to compensate for the negative feedback. The upper limit of DOC lifetime is assumed to be 20,000 years. Modeled results derive an increase (decrease) in DOC reservoir by 100 Pg C leading to an atmospheric CO2 decrease (increase) of 9.1 ppm and a dissolved inorganic carbon ?13C increase (decrease) of 0.06‰. The DOC removal rate is estimated to be 39.5 Tg C year-1 in the deep sea during the LGM. The contribution of DOC to the LGM carbon cycle elucidates potential carbon sink-increasing strategies.

  14. A pre-publication version of Carbon Trends in U.S. forestlands: a context for the role of soils in forest carbon sequestration. The Potential of U.S. Forest Soils to Sequester Carbon. Chapter 3

    E-print Network

    in forest carbon sequestration. The Potential of U.S. Forest Soils to Sequester Carbon. Chapter 3 in: Kimble-45. Carbon Trends in U.S. Forestlands: A Context for the Role of Soils in Forest Carbon Sequestration Linda SA pre-publication version of Carbon Trends in U.S. forestlands: a context for the role of soils

  15. A disconnect between O horizon and mineral soil carbon - Implications for soil C sequestration

    SciTech Connect

    Garten Jr, Charles T [ORNL

    2009-01-01

    Changing inputs of carbon to soil is one means of potentially increasing carbon sequestration in soils for the purpose of mitigating projected increases in atmospheric CO{sub 2} concentrations. The effect of manipulations of aboveground carbon input on soil carbon storage was tested in a temperate, deciduous forest in east Tennessee, USA. A 4.5-year experiment included exclusion of aboveground litterfall and supplemental litter additions (three times ambient) in an upland and a valley that differed in soil nitrogen availability. The estimated decomposition rate of the carbon stock in the O horizon was greater in the valley than in the upland due to higher litter quality (i.e., lower C/N ratios). Short-term litter exclusion or addition had no effect on carbon stock in the mineral soil, measured to a depth of 30 cm, or the partitioning of carbon in the mineral soil between particulate- and mineral-associated organic matter. A two-compartment model was used to interpret results from the field experiments. Field data and a sensitivity analysis of the model were consistent with little carbon transfer between the O horizon and the mineral soil. Increasing aboveground carbon input does not appear to be an effective means of promoting carbon sequestration in forest soil at the location of the present study because a disconnect exists in carbon dynamics between O horizon and mineral soil. Factors that directly increase inputs to belowground soil carbon, via roots, or reduce decomposition rates of organic matter are more likely to benefit efforts to increase carbon sequestration in forests where carbon dynamics in the O horizon are uncoupled from the mineral soil.

  16. RESTORING SUSTAINABLE FORESTS ON APPALACHIAN MINED LANDS FOR WOOD PRODUCTS, RENEWABLE ENERGY, CARBON SEQUESTRATION, AND OTHER ECOSYSTEM SERVICES

    SciTech Connect

    James A. Burger; J. Galbraith; T. Fox; G. Amacher; J. Sullivan; C. Zipper

    2005-02-15

    The overall purpose of this project is to evaluate the biological and economic feasibility of restoring high-quality forests on mined land, and to measure carbon sequestration and wood production benefits that would be achieved from forest restoration procedures. During the reporting period (October-December 2004) we completed the validation of a forest productivity classification model for mined land. A coefficient of determination (R{sup 2}) of 0.68 confirms the model's ability to predict SI based on a selection of mine soil properties. To determine carbon sequestration under different forest management scenarios, a field study was installed as a 3 x 3 factorial in a random complete block design with three replications at each of three locations, Ohio (Figure 1), West Virginia (Figure 2), and Virginia (Figure 3). The treatments included three forest types (white pine, hybrid poplar, mixed hardwood) and three silvicultural regimes (competition control, competition control plus tillage, competition control plus tillage plus fertilization). For hybrid poplar, total plant biomass differences increased significantly with the intensity of silvicultural input. Root, stem, and foliage biomass also increased with the level of silvicultural intensity. Financial feasibility analyses of reforestation on mined lands previously reclaimed to grassland have been completed for conversion to white pine and mixed hardwood species. Examination of potential policy instruments for promoting financial feasibility also have been completed, including lump sum payments at time of conversion, annual payments through the life of the stand, and payments based on carbon sequestration that provide both minimal profitability and fully offset initial reforestation outlays. We have compiled a database containing mine permit information obtained from permitting agencies in Virginia, West Virginia, Pennsylvania, Ohio, and Kentucky. Due to differences and irregularities in permitting procedures between states, we found it necessary to utilize an alternative method to determine mined land acreages in the Appalachian region. We have initiated a proof of concept study, focused in the State of Ohio, to determine the feasibility of using images from the Landsat Thematic Mapper (TM) and/or Enhanced Thematic Mapper Plus (ETM+) to accurately identify mined lands.

  17. Policy Alternatives to Increase the Demand for Forest-Based Carbon Sequestration

    Microsoft Academic Search

    Alexander Hovani; Mike Fotos

    2007-01-01

    National, regional, and international actors can use a range of different policies to increase the demand for forest-based carbon sequestration. Demand for these services has the potential to significantly impact the decisions of landowners, land managers, and private investors by increasing the incentives for creation or maintenance of forest ecosystems. The Kyoto process is at the center of discussions regarding

  18. Forest carbon sequestration and harvests in Scots pine stand under different climate and nitrogen deposition scenarios

    Microsoft Academic Search

    Ari Pussinen; Timo Karjalainen; Raisa Mäkipää; Lauri Valsta; Seppo Kellomäki

    2002-01-01

    In this study, effects of altered rotation length, nitrogen deposition and changing climate on harvest removal and carbon sequestration of forest, as well as on economic profitability of forestry, were assessed. This study was based on simulations with a gap-type forest succession model in the conditions that represent Scots pine stands in southern Finland.Both warmer climatic conditions and increased nitrogen

  19. The impact of nitrogen deposition on carbon sequestration in European forests and forest soils

    Microsoft Academic Search

    WIM DE VRIES; GERT JAN REINDS; PER GUNDERSEN; HUBERT STERBA

    2006-01-01

    An estimate of net carbon (C) pool changes and long-term C sequestration in trees and soils was made at more than 100 intensively monitored forest plots (level II plots) and scaled up to Europe based on data for more than 6000 forested plots in a systematic 16 km x 16 km grid (level I plots). C pool changes in trees

  20. Spatial heterogeneity, contract design, and the efficiency of carbon sequestration policies for agriculture

    Microsoft Academic Search

    John Antle; Susan Capalbo; Siân Mooney; Edward Elliott; Keith Paustian

    2003-01-01

    In this paper we develop methods to investigate the efficiency of alternative contracts for Carbon (C) sequestration in cropland soils, taking into account the spatial heterogeneity of agricultural production systems and the costs of implementing more efficient contracts. We describe contracts being proposed for implementation in the United States and other countries that would pay farmers for adoption of specified

  1. Optimizing joint production of timber and carbon sequestration of afforestation projects

    Microsoft Academic Search

    Roland Olschewski; Pablo C. Benítez

    2010-01-01

    Optimizing harvesting decisions has been a matter of concern in the forestry literature for centuries. However, in some tropical countries, growth models for fast-growing tree species have been developed only recently. Additionally, environmental services of forests gain importance and should be integrated in forest management decisions. We determine the impact of a joint production of timber and carbon sequestration on

  2. Conservation practices to enhance soil carbon sequestration across the Southeastern coastal plain

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A conservation system that promotes minimal surface disturbance combined with high residue cover crops can sequester carbon (C), but the ability to predict C sequestration amounts across specific conservation systems is not known at the field scale. A factorial arrangement of conservation tillage s...

  3. CARBON SEQUESTRATION IN TWO RANGELAND ECOSYSTEMS FROM REMOTE SENSING AN DNET ECOSYSTEM EXCHANGE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    With large areas of the globe covered by rangelands, the potential for carbon sequestration is significant. Aircraft eddy flux measurements of net ecosystem exchange (NEE) were acquired in 1999 over two southeastern Wyoming landscapes, a mixed-grass prairie and a sagebrush steppe. A linear relations...

  4. Climate Effects on Soil Carbon Sequestration in a Grass, Oak and Conifer Ecosystem of California

    Microsoft Academic Search

    S. L. Pittiglio; R. Zasoski

    2007-01-01

    Dissolved organic matter (DOM) leaching from decomposing detritus accumulated above mineral soils is an important carbon (C) and nitrogen (N) flux that influences biogeochemical processes, C sequestration and the health of individual ecosystems. Previous studies have shown that the main process controlling DOM mobility in soils is sorption in the mineral horizons that adds to stabilized organic matter pools. The

  5. The Effect of Land Use and Its Management Practices on Plant Nutrient Availability and Carbon Sequestration

    Microsoft Academic Search

    HABTAMU T. KASSAHUN; TEGENU A. ENGDA; AMY S. COLLICK; HUSIEN A. OUMER; HAIMANOTE K. BAYABIL; TIGIST Y. TEBEBU; ANTENEH A. ZEWDIE; DAWIT SOLOMON; CHARLES F. NICHOLSON

    The problems of land degradation and low agricultural productivity in Ethiopia, resulting in food insecurity and poverty, are particularly severe in the rural highlands. Different land use practices have a varied impact on soil degradation on both physical and chemical property of soil as well as on soil carbon sequestration capacity. Few studies have examined the effects of land use

  6. Does expansion of western snowberry enhance ecosystem carbon sequestration and storage in Canadian Prairies?

    Microsoft Academic Search

    Yuguang Bai; Tyler Colberg; J. T. Romo; Brian McConkey; Dan Pennock; Richard Farrell

    2009-01-01

    Aerial expansion of woody species in grasslands is common in arid and semiarid areas. The ecological consequences of shrub expansion, including ecosystem function and carbon sequestration, are complex and dependent on local environmental conditions. This research was conducted in the Northern Mixed Prairie of Canada to determine the effects of western snowberry (Symphoricarpos occidentalis) expansion on phytomass production and ecosystem

  7. Grassland afforestation in Southern South America: Carbon sequestration potential & soil/water costs

    E-print Network

    Nacional de San Luis, Universidad

    Grassland afforestation in Southern South America: Carbon sequestration potential & soil of grasslands to forests/tree plantations? What are the most common impacts of these transformations on soil and water resources? Native grasslands in Southern South America experience a fast expansion of pine

  8. Potential contribution of the forest sector to carbon sequestration in Finland

    Microsoft Academic Search

    Ari Pussinen; Timo Karjalainen; Seppo Kellomäki; Raisa Mäkipää

    1997-01-01

    Although Finland's forest resources have been utilized intensively, the size of the total volume of the growing stock has increased since the mid-1960s, and hence increasing amounts of carbon have been sequestered by forests. The net sequestration by forests has also been substantial when compared with the CO2 emissions resulting from energy generation and consumption based on fossil fuels and

  9. CARBON SEQUESTRATION ON SEVERAL FARMING SYSTEMS AS ONE OF THE AGRICULTURAL MUL IFUNCTIONALITY ASPECT

    Microsoft Academic Search

    Rizaldi Boer

    Carbon sequestration is one of the mechanism to decrease green house gas effect particularly CO2 in the atmosphere. The effort is the responsibility of every developed countries, the largest green house gas contributors. Developing countries, participate in this mechanism and seek for incentives through trade and non trade agreements. The effort to decrease green house gas emission is important in

  10. Fluid flow and transport phenomena during geological sequestration of carbon dioxide

    Microsoft Academic Search

    Saikiran Rapaka

    2010-01-01

    Geological sequestration of carbon dioxide (CO2) is one of the key technological options that can play a substantial role in mitigating greenhouse gas emissions in the short term. The long-term fate of CO2 injected into geological formations is dictated by the interplay of many physical phenomenon. Obtaining an understanding of these fundamental processes is crucial to guaranteeing security of the

  11. Carbon dioxide sequestration through novel use of ion exchange fibers (IX-fibers)

    Microsoft Academic Search

    S. Padungthon; J. E. Greenleaf; A. K. Sengupta

    2011-01-01

    Electrical power generation and metal removal processes are practiced globally and share two common attributes that make them ideal candidates to be incorporated in a novel carbon dioxide sequestration scheme using ion exchange fibers (IX-fibers). First, the softening of boiler feed water used in power generation and the removal of metals from finishing wastewaters often employs the use of ion

  12. Effect of Crop Rotation, Tillage, and Soil Series on Soil Organic Carbon Sequestration.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Farm fields in eastern Virginia with corn-soybean and corn-small grain-soybean rotations from multiple farms were sampled to depths of 0-10 and 10-20 cm to measure soil organic carbon (SOC) sequestration for ‘continuous no-till’ (no-till) vs. ‘conventional no-till’ (conv-till) (tillage prior to smal...

  13. EFFECT OF CROP ROTATION, TILLAGE, AND SOIL SERIES ON SOIL ORGANIC CARBON SEQUESTRATION

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Farm fields in eastern Virginia with corn-soybean and corn-small grain-soybean rotations from multiple farms were sampled to depths of 0-10 and 10-20 cm to measure soil organic carbon (SOC) sequestration for ‘complete no-till’ (no-till) vs. ‘conventional-till’ (conv-till) (tillage prior to small gra...

  14. A REGULATORY FRAMEWORK FOR CARBON CAPTURING AND SEQUESTRATION WITHIN THE POST-KYOTO PROCESS

    Microsoft Academic Search

    Ottmar Edenhofer; Hermann Held; Nico Bauer

    The option of capturing CO2 at large power stations and storing it in geological formations allows for the use of fossil energy resources without further destabilization of the climate system. From an economic point of view, the efficiency of Carbon Capturing and Sequestration (CCS) depends mainly on leakage rates, marginal costs of CCS (including the energy penalty) and the volume

  15. Carbon sequestration in a boreal forest ecosystem: results from the ecosystem simulation model, FORECAST

    Microsoft Academic Search

    Brad Seely; Clive Welham; Hamish Kimmins

    2002-01-01

    The effect of alternative harvesting practices on long-term ecosystem productivity and carbon sequestration was investigated with the ecosystem simulation model, FORECAST. Three tree species, white spruce (Picea glauca), trembling aspen (Populus tremuloides), and lodgepole pine (Pinus contorta var. latifolia), were each used in combination with different rotation lengths. An additional run was conducted to investigate the effect of nitrogen addition

  16. Effects of biomass utilization on the carbon balance of Finnish forests

    NASA Astrophysics Data System (ADS)

    Sievänen, Risto; Salminen, Olli; Kallio, Maarit

    2015-04-01

    The boreal forests cover three fourths of the land area of Finland. About 80 per cent of the total forest area is managed for commercial forestry. The forests produce timber for wood processing and pulp and paper industries and provide also bioenergy. The harvests of timber vary depending on demand of products of forest industry; the harvest level has been on average about 70 per cent of growth in recent years. The utilization of forest biomass is therefore the most important factor affecting the carbon balance of Finnish forests. We made projections of carbon balance of Finnish forests during 2012-2050 based on scenarios of timber and bioenergy demands. To assess the changes in carbon stock of forests, we combined three models: a large-scale forestry model, the soil carbon model Yasso07 for mineral soils, and a method based on emission factors for peatland soils. We considered two harvest scenarios based on the recent projections of plausible levels (min, max) of timber demand. For the bioenergy demand, we compared cases in which the wood energy use was low or high. In the past decades, the Finnish forests have been a steadily growing and substantial carbon sink. Its size has been more than 40% of the national GHG emissions during 1990-2012. The planned use of wood from the forests to forest and energy industry does not threaten the increasing trend of the forest sink; with the lowest use of forest biomass the sink may even match the national GHG emissions until 2050. The stock change of trees is the most important component of carbon balance of forests; it accounts for approximately 80 % of the total stock change. Trees and mineral soils act as carbon sinks and the drained peatland soils as a carbon source. By comparing the scenarios of wood energy use we conclude that the amount of carbon emissions avoided by replacing fossil fuels with stemwood is outweighed by the loss in carbon sequestration.

  17. Mapping the Mineral Resource Base for Mineral Carbon-Dioxide Sequestration in the Conterminous United States

    USGS Publications Warehouse

    Krevor, S.C.; Graves, C.R.; Van Gosen, B. S.; McCafferty, A.E.

    2009-01-01

    This database provides information on the occurrence of ultramafic rocks in the conterminous United States that are suitable for sequestering captured carbon dioxide in mineral form, also known as mineral carbon-dioxide sequestration. Mineral carbon-dioxide sequestration is a proposed greenhouse gas mitigation technology whereby carbon dioxide (CO2) is disposed of by reacting it with calcium or magnesium silicate minerals to form a solid magnesium or calcium carbonate product. The technology offers a large capacity to permanently store CO2 in an environmentally benign form via a process that takes little effort to verify or monitor after disposal. These characteristics are unique among its peers in greenhouse gas disposal technologies. The 2005 Intergovernmental Panel on Climate Change report on Carbon Dioxide Capture and Storage suggested that a major gap in mineral CO2 sequestration is locating the magnesium-silicate bedrock available to sequester the carbon dioxide. It is generally known that silicate minerals with high concentrations of magnesium are suitable for mineral carbonation. However, no assessment has been made in the United States that details their geographical distribution and extent, nor has anyone evaluated their potential for use in mineral carbonation. Researchers at Columbia University and the U.S. Geological Survey have developed a digital geologic database of ultramafic rocks in the conterminous United States. Data were compiled from varied-scale geologic maps of magnesium-silicate ultramafic rocks. The focus of our national-scale map is entirely on ultramafic rock types, which typically consist primarily of olivine- and serpentine-rich rocks. These rock types are potentially suitable as source material for mineral CO2 sequestration.

  18. CARBON SEQUESTRATION IN RECLAIMED MINED SOILS OF OHIO

    SciTech Connect

    M.K. Shukla; R. Lal

    2004-07-01

    This research project is aimed at assessing the soil organic carbon (SOC) sequestration potential of reclaimed minesoils (RMS). The experimental sites, owned and maintained by the American Electrical Power, are located in Guernsey, Morgan, Noble, and Muskingum Counties of Ohio. These sites, characterized by age chronosequences, were reclaimed with and without topsoil application and are under continuous grass or forest cover. During this quarter, bulk and core soil samples were collected from all 13 experimental sites for 0-15 cm, 15-30 cm, and 30-50 cm depths. In addition, 54 experimental plots (4 x 4 m) were established at three separate locations on reclaimed minesites to assess the influence of compost application on SOC during project period 2. This report presents the results from two sites reclaimed during 1978. The first site is under grass and the other under forest cover. The soil bulk density ({rho}{sub b}), SOC, total nitrogen (TN) concentrations and stocks were determined for these two sites on a 20 x 20 m grid. The preliminary analysis showed that the {rho}{sub b} ranged from 0.88 Mg m{sup -3} to 1.16 Mg m{sup -3} for 0-15 cm, 0.91 Mg m{sup -3} to 1.32 Mg m{sup -3} for 15-30 cm, and 1.37 Mg m{sup -3} to 1.93 Mg m{sup -3} for 30-50 cm depths in Cumberland tree site, and it's statistical variability was low. The variability in {rho}{sub b} was also low in Wilds grass site and ranged from 0.82 Mg m{sup -3} to 1.18 Mg m{sup -3} for 0-15 cm, 1.04 Mg m{sup -3} to 1.37 Mg m{sup -3} for 15-30 cm, and 1.18 Mg m{sup -3} to 1.83 Mg m{sup -3} for 30-50 cm depths. The {rho}{sub b} showed strong spatial dependence for 0-15 cm depth only in the Cumberland tree site. The SOC concentrations and stocks were highly variable with CV > 0.36 from all depths in both Wilds grass site and Cumberland tree site. The SOC stocks showed strong spatial dependence for 0-15 cm and 15-30 cm depths and moderate to strong for 20-50 cm depth in the Cumberland tree site. In contrast, in Wilds grass site, {rho}{sub b} was weakly and SOC stocks moderately spatially dependent for all depths. These preliminary results suggest that the management effects are important and indicative of these sources of variability.

  19. Carbon Sequestration in Reclaimed Mined Soils of Ohio

    SciTech Connect

    M.K. Shukla; R. Lal

    2005-01-01

    Assessment of soil organic carbon (SOC) sequestration potential of reclaimed minesoils (RMS) is important for preserving environmental quality and increasing agronomic yields. The experimental sites were characterized by distinct age chronosequences of reclaimed minesoil and were located in Guernsey, Morgan, Noble, and Muskingum Counties of Ohio. These sites are owned and maintained by Americal Electrical Power. These sites were reclaimed (1) with topsoil application, and (2) without topsoil application, and were under continuous grass or forest cover. In this report results are presented from the sites reclaimed without topsoil application between 1956 and 1969. Three sites are under continuous grass cover and the three under forest cover since reclamation. Three core and three bulk soil samples were collected from each site from three slope positions (upper; middle, and lower) for 0-15 cm and 15-30 cm depths, and texture, pH and electrical conductivity (EC), soil bulk density ({rho}{sub b}), SOC, total nitrogen (TN) stocks were determined. No differences in sand and clay contents, bulk density, SOC and TN stocks were observed within different slope positions within each site. However, sand [R56-G (17.1%) < R69-G (29.1%) = R62-G (29.1%)], and silt [R56-G (58.3%) > R69-G (47.7%)] contents, bulk density [R62-G (1.25 Mg ha{sup -1}) > R69-G (0.94 Mg ha{sup -1}) = R62-G (0.90 Mg ha{sup -1})] varied significantly on the upper slope position among sites under continuous grass cover. Smaller but significant differences were also observed for pH [R69-G (8.3) > R56-G (7.7) = R62-G (7.9)] and EC [R56-G (0.66 dS m{sup -1}) > R62-G (0.25 dS m{sup -1}) = R69-G (0.24 dS m{sup -1})] on upper slope positions among sites under grass. Comparing all sites stochastically, sand and clay contents were similar among all sites except R62-F for both depths. Similarly, soil bulk density was also similar among all sites except R62-G for both depths. There were few differences in total nitrogen and soil organic C stocks among different sites with R56-F having the highest TN (4.3 Mg ha{sup -1}) and SOC (70.7 Mg ha{sup -1}) stock and R62-F the lowest (1.1 and 28.0 Mg ha{sup -1}, respectively). The lowest TN and SOC stocks were mainly due to the sandy nature of soil. However, possibility of coal contamination cannot be totally ruled out in SOC stocks stock from R56-F. The increases in SOC are important for improving soil and environment quality, and soil productivity. No significant differences in SOC among most sites also indicate that these sites reclaimed without topsoil application have reached the equilibrium.

  20. Carbon Sequestration in Reclaimed Mined Soils of Ohio

    SciTech Connect

    M.K. Shukla; K. Lorenz; R. Lal

    2005-10-01

    This research project is aimed at assessing the soil organic carbon (SOC) sequestration potential of reclaimed minesoils (RMS). The experimental sites, owned and maintained by the American Electrical Power, are located in Guernsey, Morgan, Noble, and Muskingum Counties of Ohio. These sites, characterized by age chronosequences, were reclaimed with and without topsoil application and are under continuous grass or forest cover. Among the three sites chosen for this study one was reclaimed in 1978 (Cumberland), one in 1987 (Switch Grass) and one site was reclaimed in 1994 (Tilton's Run). All three sites were reclaimed with topsoil application and were under continuous grass cover. Eighteen experimental plots were developed on each site. Five fertilization treatments were applied in triplicate on each experimental site. During this quarter, water infiltration tests were performed on the soil surface in the experimental plots. Soil samples were analyzed for soil moisture characteristics. This report presents the data on infiltration rates, volume of transport and storage pores, and available water capacity (AWC) of soil. The infiltration rates after 5 min (i{sub 5}) showed high statistical variability (CV > 0.62) among the three sites. Both steady state infiltration rate and cumulative infiltration showed moderate to high variability (CV > 0.35). The mean values for the infiltration rate after 5 min, steady state infiltration rate, and cumulative infiltration were higher for Switch Grass (2.93 {+-} 2.05 cm min{sup -1}; 0.63 {+-} 0.34 cm min{sup -1}; 113.07 {+-} 39.37 cm) than for Tilton's Run (1.76 {+-} 1.42 cm min{sup -1}; 0.40 {+-} 0.18 cm min{sup -1}; 73.68 {+-} 25.94 cm), and lowest for Cumberland (0.63 {+-} 0.34 cm min{sup -1}; 0.27 {+-} 0.19 cm min{sup -1}; 57.89 {+-} 31.00 cm). The AWC for 0-15 cm soil was highest at Tilton's Run (4.21 {+-} 1.75 cm) followed by Cumberland (3.83 {+-} 0.77 cm) and Switch Grass (3.31 {+-} 0.10 cm). In 15-30 cm depth Switch Grass had higher AWC (3.15 {+-} 0.70 cm) than Tilton's Run (3.00 {+-} 0.43 cm) and Cumberland (2.78 {+-} 0.34 cm). In 30-50 cm depth Tilton's Run had higher AWC (4.31 {+-} 1.25 cm) than Switch Grass (3.18 {+-} 0.70 cm) and Cumberland (2.95 {+-} 1.07 cm). The volumes of transport and storage pores were fairly similar among sites up to 30 cm depth, but were variable for 30-50 cm depth. These preliminary results along with those reported earlier for the third quarter suggest that the management effects are important and indicative of these sources of variability.