These are representative sample records from Science.gov related to your search topic.
For comprehensive and current results, perform a real-time search at Science.gov.
1

Biomass Crop Production: Benefits for Soil Quality and Carbon Sequestration  

SciTech Connect

Research at three locations in the southeastern US is quantifying changes in soil quality and soil carbon storage that occur during production of biomass crops compared with row crops. After three growing seasons, soil quality improved and soil carbon storage increased on plots planted to cottonwood, sycamore, sweetgum with a cover crop, switchgrass, and no-till corn. For tree crops, sequestered belowground carbon was found mainly in stumps and large roots. At the TN site, the coarse woody organic matter storage belowground was 1.3 Mg ha{sup {minus}1}yr{sup {minus}1}, of which 79% was stumps and large roots and 21% fine roots. Switchgrass at the AL site also stored considerable carbon belowground as coarse roots. Most of the carbon storage occurred mainly in the upper 30 cw although coarse roots were found to depths of greater than 60 cm. Biomass crops contributed to improvements in soil physical quality as well as increasing belowground carbon sequestration. The distribution and extent of carbon sequestration depends on the growth characteristics and age of the individual biomass crop species. Time and increasing crop maturity will determine the potential of these biomass crops to significantly contribute to the overall national goal of increasing carbon sequestration and reducing greenhouse gas emissions.

Bandaranayake, W.; Bock, B.R.; Houston, A.; Joslin, J.D.; Pettry, D.E.; Schoenholtz, S.; Thornton, F.C.; Tolbert, V.R.; Tyler, D.

1999-08-29

2

Carbon Sequestration  

NSDL National Science Digital Library

In this inquiry-based lesson, learners measure the biomass of trees, calculate the carbon stored by the trees, and use this information to create recommendations about using trees for carbon sequestration. This activity encourages learners to think critically about managing forests for carbon sequestration.

Science, New Y.

2012-01-01

3

Climate Change and Carbon Sequestration * Environmental Effects of Woody Biomass:  

E-print Network

The use of biomass for energy is becoming increasingly important as a resource to reduce greenhouse gas (GHG) emissions into our atmosphere (air) by replacing fossil fuels such as coal. Our atmosphere sustains life on Earth, maintains warmth, and shields the Earth from harmful radiation emitted by the Sun. With the advent of the Industrial Revolution, the mixture of gases and particles in our atmosphere began to change. While the primary gases in our atmosphere are nitrogen (N2) and oxygen (O2), the greenhouses gases water vapor, carbon dioxide (CO2), methane (CH4), nitrous oxide (NOx), and ozone act like a heat blanket and are important in insulating Earth’s surface. The burning of fossil fuels has considerably increased atmospheric carbon and other GHGs since the beginning of the Industrial Revolution. When burned, coal and other fossil fuels release CO2 and other gases into the Earth’s atmosphere where they trap and reflect more heat than would normally occur, thus, affecting climate change. Because this carbon came from fossilized storage (carbon that was produced and stored millions of years ago), it represents a net addition into the atmosphere and more than can be sequestered (stored) by today’s plants, soils, and oceans. The buildup of human-caused GHGs in our atmosphere from burning fossil fuels can be mitigated through the process of carbon sequestration, or removing CO2 from the atmosphere into long-lived carbon pools such as

Diomy S. Zamora; Charles R. Blinn; Eric L. Taylor; Gary J. Wyatt

4

Rapid Assessment of U.S. Forest and Soil Organic Carbon Storage and Forest Biomass Carbon-Sequestration Capacity  

USGS Publications Warehouse

This report provides results of a rapid assessment of biological carbon stocks and forest biomass carbon sequestration capacity in the conterminous United States. Maps available from the U.S. Department of Agriculture are used to calculate estimates of current organic carbon storage in soils (73 petagrams of carbon, or PgC) and forest biomass (17 PgC). Of these totals, 3.5 PgC of soil organic carbon and 0.8 PgC of forest biomass carbon occur on lands managed by the U.S. Department of the Interior (DOI). Maps of potential vegetation are used to estimate hypothetical forest biomass carbon sequestration capacities that are 3-7 PgC higher than current forest biomass carbon storage in the conterminous United States. Most of the estimated hypothetical additional forest biomass carbon sequestration capacity is accrued in areas currently occupied by agriculture and development. Hypothetical forest biomass carbon sequestration capacities calculated for existing forests and woodlands are within +or- 1 PgC of estimated current forest biomass carbon storage. Hypothetical forest biomass sequestration capacities on lands managed by the DOI in the conterminous United States are 0-0.4 PgC higher than existing forest biomass carbon storage. Implications for forest and other land management practices are not considered in this report. Uncertainties in the values reported here are large and difficult to quantify, particularly for hypothetical carbon sequestration capacities. Nevertheless, this rapid assessment helps to frame policy and management discussion by providing estimates that can be compared to amounts necessary to reduce predicted future atmospheric carbon dioxide levels.

Sundquist, Eric T.; Ackerman, Katherine V.; Bliss, Norman B.; Kellndorfer, Josef M.; Reeves, Matt C.; Rollins, Matthew G.

2009-01-01

5

WithCarbonSequestration Biological-  

E-print Network

WithCarbonSequestration Biomass Hydro Wind Solar Coal Nuclear Natural Gas Oil Biological 342928Net energy ratio 2.603.303.60$/kg H2Total cost Central Hydrogen from Biomass via Gasification · Techno-Economic Analysis of H2 Production by Gasification of Biomass · Renewables Analysis · Biomass

6

CALIFORNIA CARBON SEQUESTRATION THROUGH  

E-print Network

CALIFORNIA ENERGY COMMISSION CARBON SEQUESTRATION THROUGH CHANGES IN LAND USE IN WASHINGTON. Carbon Sequestration Through Changes in Land Use in Washington: Costs and Opportunities. California for Terrestrial Carbon Sequestration in Oregon. Report to Winrock International. #12;ii #12;iii Preface

7

Carbon sequestration by switchgrass  

NASA Astrophysics Data System (ADS)

Increasing levels of carbon dioxide (CO2), which is partly due to use of fossil fuel, is primarily responsible for global climate warming. Producing and using switchgrass for bioenergy can help reduce atmospheric CO2 buildup by partly replacing use of fossil fuels and by carbon (C) sequestration. Switchgrass (Panicum virgatum L) is a potential bioenergy crop suited to the southeastern U.S. The objective of this study was to determine the effects of agricultural management practices on C sequestration by switchgrass. Field experiments were designed so that differences in row spacing, nitrogen (N) rate, switchgrass cultivar, harvest frequency, and soil type on C sequestration would be evaluated. Soil C dynamic studies indicated that soil C mineralization, microbial biomass C, and C turnover tended to increase with time after switchgrass establishment in Norfolk sandy sod. These changes were more apparent in 0 to 15 cm than 15 to 30 cm of the sandy loam soil. Ten years of continuous switchgrass resulted in higher soil C level than nearby fallow soils, but several years of continuous grass may be need before increases are measurable. Results from this study imply that management practices can impact soil C sequestration with switchgrass, such as several years for humification by conversion of the root accumulation to the stable soil C pool. The effect of N was to increase N but not C concentration of roots, which imply that any increases in C sequestration by switchgrass would be due to increases in root biomass. Switchgrass roots were more dense in Pacolet clay soil than the other soils used in this study. Carbon storage in switchgrass, shoots increased as row width and N rate increased. Carbon storage in shoots and roots generally increased with time after switchgrass establishment, and rate of increase of C storage in root was higher than that in shoot. Carbon partitioning analyses showed that C storage was soil C > root C > shoot C. The root/shoot ratio of C storage was 2.2, and this implied that C partitioning to roots plays a key role in C sequestration by switchgrass. Carbon storage in the overall switchgrass-soil system showed an upward trend after switchgrass establishment.

Ma, Zhiqin

1999-11-01

8

Combined sustainable biomass feedstock combustion, CO 2\\/EOR, and Saline Reservoir Geological Carbon Sequestration in Northern Lower Michigan, USA: Towards negative CO 2 emissions  

Microsoft Academic Search

This paper presents the results of a combined biomass combustion and geological carbon sequestration feasibility study in Northern Lower Michigan, USA related to a proposed solid fuel-fired 600 MW electric power plant, the Wolverine Clean Energy Venture (WCEV), near Rogers City, MI, USA. The biomass feedstock resource assessment, focused on low intensity, high diversity forest and agriculture in the proposed plant

David Barnes; Robert E. Froese; R. G. Mannes; Brian Warner

2011-01-01

9

Have ozone effects on carbon sequestration been overestimated? A new biomass response function for wheat  

NASA Astrophysics Data System (ADS)

Elevated levels of tropospheric ozone can significantly impair the growth of crops. The reduced removal of CO2 by plants leads to higher atmospheric concentrations of CO2, enhancing radiative forcing. Ozone effects on economic yield, e.g. the grain yield of wheat (Triticum aestivum L.), are currently used to model effects on radiative forcing. However, changes in grain yield do not necessarily reflect changes in total biomass. Based on an analysis of 22 ozone exposure experiments with field-grown wheat, we investigated whether the use of effects on grain yield as a proxy for effects on biomass under- or overestimates effects on biomass. First, we confirmed that effects on partitioning and biomass loss are both of significant importance for wheat yield loss. Then we derived ozone dose response functions for biomass loss and for harvest index (the proportion of above-ground biomass converted to grain) based on 12 experiments and recently developed ozone uptake modelling for wheat. Finally, we used a European-scale chemical transport model (EMEP MSC-West) to assess the effect of ozone on biomass (-9%) and grain yield (-14%) loss over Europe. Based on yield data per grid square, we estimated above-ground biomass losses due to ozone in 2000 in Europe, totalling 22.2 million tonnes. Incorrectly applying the grain yield response function to model effects on biomass instead of the biomass response function of this paper would have indicated total above-ground biomass losses totalling 38.1 million (i.e. overestimating effects by 15.9 million tonnes). A key conclusion from our study is that future assessments of ozone-induced loss of agroecosystem carbon storage should use response functions for biomass, such as that provided in this paper, not grain yield, to avoid overestimation of the indirect radiative forcing from ozone effects on crop biomass accumulation.

Pleijel, H.; Danielsson, H.; Simpson, D.; Mills, G.

2014-08-01

10

Intro to Carbon Sequestration  

ScienceCinema

NETL's Carbon Sequestration Program is helping to develop technologies to capture, purify, and store carbon dioxide (CO2) in order to reduce greenhouse gas emissions without adversely influencing energy use or hindering economic growth. Carbon sequestration technologies capture and store CO2 that would otherwise reside in the atmosphere for long periods of time.

None

2010-01-08

11

Biomass Accumulation and Carbon Sequestration in Four Different Aged Casuarina equisetifolia Coastal Shelterbelt Plantations in South China  

PubMed Central

Thousands of kilometers of shelterbelt plantations of Casuarina equisetifolia have been planted to protect the southeast coastline of China. These plantations also play an important role in the regional carbon (C) cycling. In this study, we examined plant biomass increment and C accumulation in four different aged C. equisetifolia plantations in sandy beaches in South China. The C accumulated in the C. equisetifolia plant biomass increased markedly with stand age. The annual rate of C accumulation in the C. equisetifolia plant biomass during 0–3, 3–6, 6–13 and 13–18 years stage was 2.9, 8.2, 4.2 and 1.0 Mg C ha?1 yr?1, respectively. Soil organic C (SOC) at the top 1 m soil layer in these plantations was 17.74, 5.14, 6.93, and 11.87 Mg C ha?1, respectively, with SOC density decreasing with increasing soil depth. Total C storage in the plantation ecosystem averaged 26.57, 38.50, 69.78, and 79.79 Mg C ha?1 in the 3, 6, 13 and 18- yrs plantation, with most of the C accumulated in the aboveground biomass rather than in the belowground root biomass and soil organic C. Though our results suggest that C. equisetifolia plantations have the characteristics of fast growth, high biomass accumulation, and the potential of high C sequestration despite planting in poor soil conditions, the interactive effects of soil condition, natural disturbance, and human policies on the ecosystem health of the plantation need to be further studied to fully realize the ecological and social benefits of the C equisetifolia shelterbelt forests in South China. PMID:24143236

Zou, Bi; Guo, Zhihua; Li, Zhian; Zhu, Weixing

2013-01-01

12

Carbon sequestration in soils  

SciTech Connect

The purpose of this article is to examine (a) the magnitude of the potential for carbon sequestration in the soil as a means of reducing carbon dioxide (CO{sub 2}) in the atmosphere, (b) some of the measures that might be used to achieve this potential, (c) the methods available for estimating carbon sequestration on a farm or regional level, (d) what is needed to achieve international consensus, and (e) additional information needs. This article is not presented as a definitive document but rather as an overview of where scientific opinion converges and where more work is needed. In addition, it aims to provoke discussion of the measures that can increase soil carbon sequestration and the policies that might be used to implement those measures.

Bruce, J.P. [Soil and Water Conservation Society, Ottawa, Ontario (Canada); Frome, M. [Soil and Water Conservation Society, Washington, DC (United States); Haites, E. [Margaree Consultants, Toronto, Ontario (Canada); Janzen, H. [Agriculture and Agri-Food Canada, Lethbridge, Alberta (Canada); Lal, R. [Ohio State Univ., Columbus, OH (United States). School of Natural Resources; Paustian, K. [Colorado State Univ., Fort Collins, CO (United States). Natural Resource Ecology Lab.

1999-01-01

13

Biomass and Carbon Sequestration in Community Mangrove Plantations and a Natural Regeneration Stand in the Ayeyarwady Delta, Myanmar  

NASA Astrophysics Data System (ADS)

Mangroves in the Ayeyarwady Delta is one of the most threatened ecosystems, and is rapidly disappearing as in many tropical countries. The deforestation and degradation of mangrove forest in the Ayeryarwady Delta results in the shortage of wood resources and declining of environmental services that have been provided by the mangrove ecosystem. Cyclone Nargis struck the Ayeyarwady Delta on 2 May 2008 with an intensity unprecedented in the history of Myanmar. The overexploitation of mangroves because of local demands for fuel wood and charcoal and the conversion of mangrove forest land into agricultural land or shrimp farms over the past decades have increased the loss of human life and the damage to settlements caused by the Cyclone.The biomass study was conducted in September of 2006 in Bogale Township in the Ayeyarwady Delta and continued monitoring in September of each year from 2007 to 2010. Above and below ground biomass was studied in six years old mangrove plantations of Avicenia marina (Am), Avicenia officinalis (Ao) and Sonneratia apetala (Sa) and a naturally regenerated stand under regeneration improving felling operation (NR: consists of Ceriops decandra, Bruguiera sexangula, and Aegicerus corniculatum) protected for seven years since 2000. These stands were established by small-scale Community Forestry scheme on abandoned paddy fields where natural mangroves once existed. Common allometric equations were developed for biomass estimation by performing regressions between dry weights of trees as dependent variables and biometric parameters such as stem diameter, height and wood density as independent variables. The above and below ground biomass in NR stand (70 Mg ha-1 and 104 Mg ha-1) was the greatest (P < 0.001), and followed by Sa plantation (69 Mg ha-1 and 32 Mg ha-1), Am plantation (25 Mg ha-1 and 27 Mg ha-1) and Ao plantation (21 Mg ha-1 and 26 Mg ha-1). The total carbon stock in biomass was 73 Mg C ha-1 in NR stand, 43 Mg C ha-1 in Sa plantation, 21 Mg C ha-1 in Am plantation and 18 Mg C ha-1 in Ao plantation respectively. The averaged total soil carbon stock up to 1 m soil depth in plantation site was estimated to be 167 ± 58 Mg C ha-1 which was nearly two times higher than that of current paddy fields 85 ± 17 Mg C ha-1. These facts suggest the feasibility of the mangrove plantation and induced natural regeneration as a carbon sequestration tool. The establishment of mangrove plantations appeared to be one measure for reducing the risk of cyclone damage after the Cyclone Nargis. This may reduce future human loss by cyclones and also improve the life of local people by increasing timber resources and environmental services.

Thant, Y. M.; Kanzaki, M.; nil

2011-12-01

14

Carbon sequestration potential of tropical homegardens  

Microsoft Academic Search

This chapter examines the premise that tropical homegardens have a special role in carbon (C) sequestration because of their ability for carbon storage in the standing biomass, soil, and t he wood products. In doing so, it analyzes the potential for C storage in homegardens and the role of homegardens in reducing CO2 concentration in the atmosphere. Lack of reliable

B. M. KUMAR

15

Carbon sequestration and eruption hazards  

Microsoft Academic Search

In order to reduce the buildup of carbon dioxide in the atmosphere, proposals have been made to sequestrate carbon in ocean, or in coal mines and other underground formations. High gas concentration in ocean or underground formations has to potential to power gas-driven eruptions. In this presentation, possible eruption hazards are explored. Whenever carbon dioxide is sequestrated in the form

Y. Zhang

2007-01-01

16

BIOMASS ENERGY WITH GEOLOGICAL SEQUESTRATION OF CO2: TWO FOR THE PRICE OF ONE?  

Microsoft Academic Search

We explore the technical feasibility and economic implications of combining biomass energy systems with carbon capture and sequestration technology, resulting in energy products with negative net atmospheric carbon emissions. This represents an efficient strategy for biomass-based carbon mitigation and a mechanism for offsetting emissions sources elsewhere in the economy, fundamentally changing the role of biomass in achieving deep emissions reductions.

James S. Rhodes; David W. Keith

17

Big Sky Carbon Sequestration Partnership  

Microsoft Academic Search

The Big Sky Carbon Sequestration Partnership, led by Montana State University, is comprised of research institutions, public entities and private sectors organizations, and the Confederated Salish and Kootenai Tribes and the Nez Perce Tribe. Efforts under this Partnership in Phase I fall into four areas: evaluation of sources and carbon sequestration sinks that will be used to determine the location

Susan M. Capalbo

2005-01-01

18

Big Sky Carbon Sequestration Partnership  

Microsoft Academic Search

The Big Sky Carbon Sequestration Partnership, led by Montana State University, is comprised of research institutions, public entities and private sectors organizations, and the Confederated Salish and Kootenai Tribes and the Nez Perce Tribe. Efforts under this Partnership in Phase I are organized into four areas: (1) Evaluation of sources and carbon sequestration sinks that will be used to determine

Susan Capalbo

2005-01-01

19

Carbon dioxide sequestration by mineral carbonation  

Microsoft Academic Search

The increasing atmospheric carbon dioxide (CO2) concentration, mainly caused by fossil fuel combustion, has lead to concerns about global warming. A possible technology that can contribute to the reduction of carbon dioxide emissions is CO2 sequestration by mineral carbonation. The basic concept behind mineral CO2 sequestration is the mimicking of natural weathering processes in which calcium or magnesium containing minerals

W. J. J. Huijgen; R. N. J. Comans

2007-01-01

20

Carbon Code Requirements for voluntary carbon sequestration projects  

E-print Network

Woodland Carbon Code Requirements for voluntary carbon sequestration projects ® Version 1.2 July trademark 10 3. Carbon sequestration 11 3.1 Units of carbon calculation 11 3.2 Carbon baseline 11 3.3 Carbon leakage 12 3.4 Project carbon sequestration 12 3.5 Net carbon sequestration 13 4. Environmental quality 14

21

Accelerated Sequestration of Terrestrial Plant Biomass in the Deep Ocean  

NASA Astrophysics Data System (ADS)

One of the most efficient uses of aboveground agricultural residues to reduce atmospheric CO2 is burial in sites removed from contact with the atmosphere and in which degradation of lignocellulose is inhibited (Strand and Benford 2009). Similarly by burying forest residues greater benefits for atmospheric carbon accrue compared to incineration or bioethanol production. Accessible planetary sites that are most removed from contact with the atmosphere are primarily the deep ocean sediments. Many deep ocean sediment ecologies are acclimated to massive inputs of terrestrial plant biomass. Nonetheless, marine degradation rates of lignocellulose are slower than terrestrial rates (Keil et al. 2010). Additionally, anaerobic conditions are easily achieved in many deep ocean sediments, inhibiting lignocellulose degradation further, while the dominance of sulfate in the water column as electron acceptor prevents the release of methane from methanogenesis to the atmosphere. The potential benefit of massive removal of excess terrestrial biomass to the deep ocean will be estimated and compared to other uses including biochar and BECS. The impact of the biomass on the marine environment will be discussed and potential sequestration sites in the Gulf of Mexico and the Atlantic compared. Keil, R. G., J. M. Nuwer, et al. (2010). "Burial of agricultural byproducts in the deep sea as a form of carbon sequestration: A preliminary experiment." Marine Chemistry (In Press, online 6 August 2010). Strand, S. E. and G. Benford (2009). "Ocean sequestration of crop residue carbon: recycling fossil fuel carbon back to deep sediments." Environ. Sci. Technol. 43(4): 1000-1007.

Strand, S. E.

2010-12-01

22

Age-related and stand-wise estimates of carbon stocks and sequestration in the aboveground coarse wood biomass of wetland forests in the northern Pantanal, Brazil  

NASA Astrophysics Data System (ADS)

In this study we use allometric models combined with tree ring analysis to estimate carbon stocks and sequestration in the aboveground coarse wood biomass (AGWB) of wetland forests in the Pantanal, located in central South America. In four 1-ha plots in stands characterized by the pioneer tree species Vochysia divergens Pohl (Vochysiaceae) forest inventories (trees ?10 cm diameter at breast height, D) have been performed and converted to estimates of AGWB by two allometric models using three independent parameters (D, tree height H and wood density ?). We perform a propagation of measurement errors to estimate uncertainties in the estimates of AGWB. Carbon stocks of AGWB vary from 7.8 ± 1.5 to 97.2 ± 14.4 Mg C ha-1 between the four stands. From models relating tree ages determined by dendrochronological techniques to C-stocks in AGWB we derived estimates for C-sequestration which differs from 0.50 ± 0.03 to 3.34 ± 0.31 Mg C ha-1 yr-1. Maps based on geostatistic techniques indicate the heterogeneous spatial distribution of tree ages and C-stocks of the four studied stands. This distribution is the result of forest dynamics due to the colonizing and retreating of V. divergens and other species associated with pluriannual wet and dry episodes in the Pantanal, respectively. Such information is essential for the management of the cultural landscape of the Pantanal wetlands.

Schöngart, J.; Arieira, J.; Felfili Fortes, C.; Cezarine de Arruda, E.; Nunes da Cunha, C.

2011-11-01

23

Carbon Sequestration in Mine Residue  

NASA Astrophysics Data System (ADS)

Mining of silicate rocks produces as waste a reactive, fine-grained residue that is an ideal feedstock for mineral sequestration of carbon. Natural weathering of Mg-silicate mine tailings is rapid because of the fine grain size, and produces mineral crusts that bind carbon. Stable and radiogenic carbon isotope fingerprinting on the minerals confirms an atmospheric carbon source. In active mines that produce Mg-rich tailings, the carbon sequestration capacity of annual tailings production exceeds annual mine greenhouse gas production by a factor of 5 to 10. Hardrock mines therefore represent an ongoing industrial activity that could serve as a net carbon sink. New cation release rates from inorganic and microbially-mediated mineral dissolution experiments indicate that individual large mining operations could be engineered to sequester carbon dioxide at a rate of 10E4 to 10E6 tonnes per year. Our laboratory experiments also suggest that cyanobacteria could be employed to catalyze precipitation of Mg-carbonate minerals. Mg-silicate tailings are abundant and distributed globally. The global sequestration capacity of annual tailings production from nickel, diamond, platinum group element, and asbestos mining is approximately half a gigatonne of CO2. Parallel, but less efficient mineral sequestration pathways in other silicate tailings increase the sequestration capacity by as much as an order of magnitude. Global implementation of mineral sequestration in mine tailings could contribute as much as one of the seven "wedges" of Pacala and Socolow (2004) that are required to stabilize atmospheric CO2 content over the next 50 years.

Dipple, G. M.; Southam, G.; Power, I.; Thom, J.; Wilson, S.

2005-12-01

24

Carbon Sequestration in Campus Trees  

NSDL National Science Digital Library

In this activity, students use a spreadsheet to calculate the net carbon sequestration in a set of trees; they will utilize an allometric approach based upon parameters measured on the individual trees. They determine the species of trees in the set, measure trunk diameter at a particular height, and use the spreadsheet to calculate carbon content of the tree using forestry research data.

Cole, Robert S.; Spreadsheets Across the Curruculum; Washington Center; Science Education Resource Center (SERC)

25

Biochar and Carbon Sequestration: A Regional Perspective  

E-print Network

Biochar and Carbon Sequestration: A Regional Perspective A report prepared for East of England #12;Low Carbon Innovation Centre Report for EEDA Biochar and Carbon Sequestration: A Regional Perspective 20/04/2009 ii Biochar and Carbon Sequestration: A Regional Perspective A report prepared for East

Everest, Graham R

26

Geological carbon sequestration: critical legal issues  

E-print Network

Geological carbon sequestration: critical legal issues Ray Purdy and Richard Macrory January 2004 Tyndall Centre for Climate Change Research Working Paper 45 #12;1 Geological carbon sequestration an integrated assessment of geological carbon sequestration (Project ID code T2.21). #12;2 1 Introduction

Watson, Andrew

27

THE COMPARATIVE VALUE OF BIOLOGICAL CARBON SEQUESTRATION  

E-print Network

THE COMPARATIVE VALUE OF BIOLOGICAL CARBON SEQUESTRATION 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 sequestration and between 1 and 49 percent for forest based carbon sequestration. Value adjustments 18 19 20 21 22 BRUCE A. MCCARL, BRIAN C. MURRAY, AND UWE A. SCHNEIDER Abstract Carbon sequestered via

McCarl, Bruce A.

28

THE COMPARATIVE VALUE OF BIOLOGICAL CARBON SEQUESTRATION  

E-print Network

THE COMPARATIVE VALUE OF BIOLOGICAL CARBON SEQUESTRATION BRUCE A. MCCARL, BRIAN C. MURRAY, AND UWE A. SCHNEIDER A. Abstract Carbon sequestration via forests and agricultural soils saturates over time to sequestration because of (1) an ecosystems limited ability to take up carbon which we will call saturation

McCarl, Bruce A.

29

mineral sequestration by wollastonite carbonation  

NASA Astrophysics Data System (ADS)

In this paper, we demonstrated a new approach to CO2 mineral sequestration using wollastonite carbonation assisted by sulfuric acid and ammonia. Samples were characterized by X-ray diffraction, scanning electron microscopy, Fourier transform infrared spectroscopy, and 29Si nuclear magnetic resonance. The change in Gibbs free energy from -223 kJ/mol for the leaching reaction of wollastonite to -101 kJ/mol for the carbonation reaction indicated that these two reactions can proceed spontaneously. The leached and carbonated wollastonite showed fibrous bassanite and granular calcium carbonate, respectively, while the crystal structure of pristine wollastonite was destroyed and the majority of the Ca2+ in pristine wollastonite leached. The chemical changes in the phases were monitored during the whole process. A high carbonation rate of 91.1 % could be obtained under the action of sulfuric acid and ammonia at 30 °C at normal atmospheric pressure, indicating its potential use for CO2 sequestration.

Ding, Wenjin; Fu, Liangjie; Ouyang, Jing; Yang, Huaming

2014-07-01

30

Carbon Sequestration in Reclaimed Minesoils  

Microsoft Academic Search

Minesoils are drastically influenced by anthropogenic activities. They are characterized by low soil organic matter (SOM) content, low fertility, and poor physicochemical and biological properties, limiting their quality, capability, and functions. Reclamation of these soils has potential for resequestering some of the C lost and mitigating CO2 emissions. Soil organic carbon (SOC) sequestration rates in minesoils are high in the

David A. N. Ussiri; Rattan Lal

2005-01-01

31

Carbon Dioxide: Production and Sequestration  

NSDL National Science Digital Library

In this problem set, learners will refer to a satellite image to calculate the rate of carbon sequestration in the areas of bare land and forested lawn shown to answer a series of questions. Answer key is provided. This is part of Earth Math: A Brief Mathematical Guide to Earth Science and Climate Change.

32

Carbon Sequestration: State of the Science  

NSDL National Science Digital Library

The US Department of Energy has released this report (.pdf format) entitled Carbon Sequestration: State of the Science. Divided into nine sections, the report covers separation and capture of carbon dioxide, carbon sequestration in terrestrial ecosystems, ocean sequestration, carbon sequestration in geological formations, and advanced chemical and biological approaches to sequestration. Heavy on high-tech solutions (and low on human restraint), the section entitled Detailed Descriptions of Ecosystems will be of particular interest to ecologists, as it describes how each ecosystem, with assistance from human technology (genetics, etc.), can reach its full potential as a carbon garbage can.

1999-01-01

33

Carbon sequestration in European croplands.  

PubMed

The Marrakech Accords allow biospheric carbon sinks and sources to be included in attempts to meet emission reduction targets for the first commitment period of the Kyoto Protocol. Forest management, cropland management, grazing land management, and re-vegetation are allowable activities under Article 3.4 of the Kyoto Protocol. Soil carbon sinks (and sources) can, therefore, be included under these activities. Croplands are estimated to be the largest biospheric source of carbon lost to the atmosphere in Europe each year, but the cropland estimate is the most uncertain among all land-use types. It is estimated that European croplands (for Europe as far east as the Urals) lose 300 Tg (C) per year, with the mean figure for the European Union estimated to be 78 Tg (C) per year (with one SD=37). National estimates for EU countries are of a similar order of magnitude on a per-area basis. There is significant potential within Europe to decrease the flux of carbon to the atmosphere from cropland, and for cropland management to sequester soil carbon, relative to the amount of carbon stored in cropland soils at present. The biological potential for carbon storage in European (EU 15) cropland is of the order of 90-120 Tg (C) per year, with a range of options available that include reduced and zero tillage, set-aside, perennial crops, deep rooting crops, more efficient use of organic amendments (animal manure, sewage sludge, cereal straw, compost), improved rotations, irrigation, bioenergy crops, extensification, organic farming, and conversion of arable land to grassland or woodland. The sequestration potential, considering only constraints on land use, amounts of raw materials and available land, is up to 45 Tg (C) per year. The realistic potential and the conservative achievable potentials may be considerably lower than the biological potential because of socioeconomic and other constraints, with a realistically achievable potential estimated to be about 20% of the biological potential. As with other carbon sequestration options, potential impacts of non-CO, trace gases also need to be factored in. If carbon sequestration in croplands is to be used in helping to meet emission reduction targets for the first commitment period of the Kyoto Protocol, the changes in soil carbon must be measurable and verifiable. Changes in soil carbon can be difficult to measure over a 5-year commitment period, and this has implications for Kyoto accounting and verification. Currently, most countries can hope to achieve only a low level of verifiability during the first commitment period, whereas those with the best-developed national carbon accounting systems will be able to deliver an intermediate level of verifiability. Very stringent definitions of verifiability would require verification that would be prohibitively expensive for any country. There is considerable potential in European croplands to reduce carbon fluxes to the atmosphere and to sequester carbon iri the soil, but carbon sequestration in soil has a finite potential and is non-permanent. Given that carbon sequestration may also be difficult to measure and verify, soil carbon sequestration is a riskier long-term strategy for climate mitigation than direct reduction of carbon emissions. However, improved agricultural management often has a range of other environmental and economic benefits in addition to climate mitigation potential, and this may make attempts to improve soil carbon storage attractive as part of integrated sustainability policies. PMID:17633030

Smith, Pete; Falloon, Pete

2005-01-01

34

Carbon Sequestration via Mineral Carbonation: Overview and Assessment  

E-print Network

1 Carbon Sequestration via Mineral Carbonation: Overview and Assessment 14 March 2002 Howard Herzog overview and assessment of carbon sequestration by mineral carbonation (referred to as "mineral sequestration R&D. The first is that carbonates have a lower energy state than CO2. Therefore, at least

35

Big Sky Carbon Sequestration Partnership  

SciTech Connect

The Big Sky Carbon Sequestration Partnership, led by Montana State University, is comprised of research institutions, public entities and private sectors organizations, and the Confederated Salish and Kootenai Tribes and the Nez Perce Tribe. Efforts under this Partnership in Phase I fall into four areas: evaluation of sources and carbon sequestration sinks that will be used to determine the location of pilot demonstrations in Phase II; development of GIS-based reporting framework that links with national networks; designing an integrated suite of monitoring, measuring, and verification technologies and assessment frameworks; and initiating a comprehensive education and outreach program. The groundwork is in place to provide an assessment of storage capabilities for CO2 utilizing the resources found in the Partnership region (both geological and terrestrial sinks), that would complement the ongoing DOE research agenda in Carbon Sequestration. The region has a diverse array of geological formations that could provide storage options for carbon in one or more of its three states. Likewise, initial estimates of terrestrial sinks indicate a vast potential for increasing and maintaining soil C on forested, agricultural, and reclaimed lands. Both options include the potential for offsetting economic benefits to industry and society. Steps have been taken to assure that the GIS-based framework is consistent among types of sinks within the Big Sky Partnership area and with the efforts of other DOE regional partnerships. The Partnership recognizes the critical importance of measurement, monitoring, and verification technologies to support not only carbon trading but all policies and programs that DOE and other agencies may want to pursue in support of GHG mitigation. The efforts in developing and implementing MMV technologies for geological sequestration reflect this concern. Research is also underway to identify and validate best management practices for soil C in the Partnership region, and to design a risk/cost effectiveness framework to make comparative assessments of each viable sink, taking into account economic costs, offsetting benefits, scale of sequestration opportunities, spatial and time dimensions, environmental risks, and long-term viability. Scientifically sound MMV is critical for public acceptance of these technologies. Deliverables for the 7th Quarter reporting period include (1) for the geological efforts: Reports on Technology Needs and Action Plan on the Evaluation of Geological Sinks and Pilot Project Deployment (Deliverables 2 and 3), and Report on the Feasibility of Mineralization Trapping in the Snake River Plain Basin (Deliverable 14); (2) for the terrestrial efforts: Report on the Evaluation of Terrestrial Sinks and a Report of the Best Production Practices for Soil C Sequestration (Deliverables 8 and 15). In addition, the 7th Quarter activities for the Partnership included further development of the proposed activities for the deployment and demonstration phase of the carbon sequestration pilots including geological and terrestrial pilots, expansion of the Partnership to encompass regions and institutions that are complimentary to the steps we have identified, building greater collaborations with industry and stakeholders in the region, contributed to outreach efforts that spanned all partnerships, co-authorship on the Carbon Capture and Separation report, and developed a regional basis to address future energy opportunities in the region. The deliverables and activities are discussed in the following sections and appended to this report. The education and outreach efforts have resulted in a comprehensive plan which serves as a guide for implementing the outreach activities under Phase I. The public website has been expanded and integrated with the GIS carbon atlas. We have made presentations to stakeholders and policy makers including two tribal sequestration workshops, and made connections to other federal and state agencies concerned with GHG emissions, climate change, and efficient and environmental

Susan M. Capalbo

2005-11-01

36

Chapter 4: Geological Carbon Sequestration  

SciTech Connect

Carbon sequestration is the long term isolation of carbon dioxide from the atmosphere through physical, chemical, biological, or engineered processes. The largest potential reservoirs for storing carbon are the deep oceans and geological reservoirs in the earth's upper crust. This chapter focuses on geological sequestration because it appears to be the most promising large-scale approach for the 2050 timeframe. It does not discuss ocean or terrestrial sequestration. In order to achieve substantial GHG reductions, geological storage needs to be deployed at a large scale. For example, 1 Gt C/yr (3.6 Gt CO{sub 2}/yr) abatement, requires carbon capture and storage (CCS) from 600 large pulverized coal plants ({approx}1000 MW each) or 3600 injection projects at the scale of Statoil's Sleipner project. At present, global carbon emissions from coal approximate 2.5 Gt C. However, given reasonable economic and demand growth projections in a business-as-usual context, global coal emissions could account for 9 Gt C. These volumes highlight the need to develop rapidly an understanding of typical crustal response to such large projects, and the magnitude of the effort prompts certain concerns regarding implementation, efficiency, and risk of the enterprise. The key questions of subsurface engineering and surface safety associated with carbon sequestration are: (1) Subsurface issues: (a) Is there enough capacity to store CO{sub 2} where needed? (b) Do we understand storage mechanisms well enough? (c) Could we establish a process to certify injection sites with our current level of understanding? (d) Once injected, can we monitor and verify the movement of subsurface CO{sub 2}? (2) Near surface issues: (a) How might the siting of new coal plants be influenced by the distribution of storage sites? (b) What is the probability of CO{sub 2} escaping from injection sites? What are the attendant risks? Can we detect leakage if it occurs? (3) Will surface leakage negate or reduce the benefits of CCS? Importantly, there do not appear to be unresolvable open technical issues underlying these questions. Of equal importance, the hurdles to answering these technical questions well appear manageable and surmountable. As such, it appears that geological carbon sequestration is likely to be safe, effective, and competitive with many other options on an economic basis. This chapter explains the technical basis for these statements, and makes recommendations about ways of achieving early resolution of these broad concerns.

Friedmann, J; Herzog, H

2006-06-14

37

Trading Water for Carbon with Biological Carbon Sequestration  

E-print Network

Trading Water for Carbon with Biological Carbon Sequestration Robert B. Jackson,1 * Esteban G. Farley,1 David C. le Maitre,5 Bruce A. McCarl,6 Brian C. Murray7 Carbon sequestration strategies plantations feature prominently among tools for carbon sequestration (1­8). Plantations typi- cally combine

Nacional de San Luis, Universidad

38

Optimize carbon dioxide sequestration, enhance oil recovery  

E-print Network

- 1 - Optimize carbon dioxide sequestration, enhance oil recovery January 8, 2014 Los Alamos simulation to optimize carbon dioxide (CO2) sequestration and enhance oil recovery (CO2-EOR) based on known production. Due to carbon capture and storage technology advances, prolonged high oil prices

39

Southeast Regional Carbon Sequestration Partnership  

SciTech Connect

The Southeast Regional Carbon Sequestration Partnership's (SECARB) Phase I program focused on promoting the development of a framework and infrastructure necessary for the validation and commercial deployment of carbon sequestration technologies. The SECARB program, and its subsequent phases, directly support the Global Climate Change Initiative's goal of reducing greenhouse gas intensity by 18 percent by the year 2012. Work during the project's two-year period was conducted within a ''Task Responsibility Matrix''. The SECARB team was successful in accomplishing its tasks to define the geographic boundaries of the region; characterize the region; identify and address issues for technology deployment; develop public involvement and education mechanisms; identify the most promising capture, sequestration, and transport options; and prepare action plans for implementation and technology validation activity. Milestones accomplished during Phase I of the project are listed below: (1) Completed preliminary identification of geographic boundaries for the study (FY04, Quarter 1); (2) Completed initial inventory of major sources and sinks for the region (FY04, Quarter 2); (3) Completed initial development of plans for GIS (FY04, Quarter 3); (4) Completed preliminary action plan and assessment for overcoming public perception issues (FY04, Quarter 4); (5) Assessed safety, regulatory and permitting issues (FY05, Quarter 1); (6) Finalized inventory of major sources/sinks and refined GIS algorithms (FY05, Quarter 2); (7) Refined public involvement and education mechanisms in support of technology development options (FY05, Quarter 3); and (8) Identified the most promising capture, sequestration and transport options and prepared action plans (FY05, Quarter 4).

Kenneth J. Nemeth

2006-08-30

40

BIG SKY CARBON SEQUESTRATION PARTNERSHIP  

SciTech Connect

The Big Sky Carbon Sequestration Partnership, led by Montana State University, is comprised of research institutions, public entities and private sectors organizations, and the Confederated Salish and Kootenai Tribes and the Nez Perce Tribe. Efforts under this Partnership fall into four areas: evaluation of sources and carbon sequestration sinks; development of GIS-based reporting framework; designing an integrated suite of monitoring, measuring, and verification technologies; and initiating a comprehensive education and outreach program. At the first two Partnership meetings the groundwork was put in place to provide an assessment of capture and storage capabilities for CO{sub 2} utilizing the resources found in the Partnership region (both geological and terrestrial sinks), that would complement the ongoing DOE research. During the third quarter, planning efforts are underway for the next Partnership meeting which will showcase the architecture of the GIS framework and initial results for sources and sinks, discuss the methods and analysis underway for assessing geological and terrestrial sequestration potentials. The meeting will conclude with an ASME workshop. The region has a diverse array of geological formations that could provide storage options for carbon in one or more of its three states. Likewise, initial estimates of terrestrial sinks indicate a vast potential for increasing and maintaining soil C on forested, agricultural, and reclaimed lands. Both options include the potential for offsetting economic benefits to industry and society. Steps have been taken to assure that the GIS-based framework is consistent among types of sinks within the Big Sky Partnership area and with the efforts of other western DOE partnerships. Efforts are also being made to find funding to include Wyoming in the coverage areas for both geological and terrestrial sinks and sources. The Partnership recognizes the critical importance of measurement, monitoring, and verification technologies to support not only carbon trading but all policies and programs that DOE and other agencies may want to pursue in support of GHG mitigation. The efforts begun in developing and implementing MMV technologies for geological sequestration reflect this concern. Research is also underway to identify and validate best management practices for soil C in the Partnership region, and to design a risk/cost effectiveness framework to make comparative assessments of each viable sink, taking into account economic costs, offsetting benefits, scale of sequestration opportunities, spatial and time dimensions, environmental risks, and long-term viability. Scientifically sound information on MMV is critical for public acceptance of these technologies. Two key deliverables were completed in the second quarter--a literature review/database to assess the soil carbon on rangelands, and the draft protocols, contracting options for soil carbon trading. The protocols developed for soil carbon trading are unique and provide a key component of the mechanisms that might be used to efficiently sequester GHG and reduce CO{sub 2} concentrations. While no key deliverables were due during the third quarter, progress on other deliverables is noted in the PowerPoint presentations and in this report. A series of meetings held during the second and third quarters have laid the foundations for assessing the issues surrounding carbon sequestration in this region, the need for a holistic approach to meeting energy demands and economic development potential, and the implementation of government programs or a market-based setting for soil C credits. These meetings provide a connection to stakeholders in the region and a basis on which to draw for the DOE PEIS hearings. In the fourth quarter, three deliverables have been completed, some in draft form to be revised and updated to include Wyoming. This is due primarily to some delays in funding to LANL and INEEL and the approval of a supplemental proposal to include Wyoming in much of the GIS data sets, analysis, and related materials. The de

Susan M. Capalbo

2004-10-31

41

A Sustainability Initiative to Quantify Carbon Sequestration by Campus Trees  

ERIC Educational Resources Information Center

Over 3,900 trees on a university campus were inventoried by an instructor-led team of geography undergraduates in order to quantify the carbon sequestration associated with biomass growth. The setting of the project is described, together with its logistics, methodology, outcomes, and benefits. This hands-on project provided a team of students…

Cox, Helen M.

2012-01-01

42

Carbon sequestration through agroforestry in indigenous communities of Chiapas, Mexico  

Microsoft Academic Search

The importance of agroforestry systems as carbon sinks has recently been recognized due to the need of climate change mitigation.\\u000a The objective of this study was to compare the carbon content in living biomass, soil (0–10, 10–20, 20–30 cm in depth), dead\\u000a organic matter between a set of non-agroforestry and agroforestry prototypes in Chiapas, Mexico where the carbon sequestration\\u000a programme called

Lorena Soto-Pinto; Manuel Anzueto; Jorge Mendoza; Guillermo Jimenez Ferrer; Ben de Jong

2010-01-01

43

Center for Research on Enhancing Carbon Sequestration in Terrestrial Ecosystems  

E-print Network

#12;Center for Research on Enhancing Carbon Sequestration in Terrestrial Ecosystems Personnel. Blaine Metting #12;vii Abstract The Center for Research on Enhancing Carbon Sequestration in Terrestrial needed to evaluate the feasibility of environmentally sound strategies for enhancing carbon sequestration

44

CARBON SEQUESTRATION THROUGH CHANGES IN LAND USE IN OREGON  

E-print Network

CALIFORNIA ENERGY COMMISSION CARBON SEQUESTRATION THROUGH CHANGES IN LAND USE IN OREGON: COSTS, and J. Kadyszewski (Winrock International). 2007. Carbon Sequestration Through Changes in Land Use Curves, and Pilot Actions for Terrestrial Carbon Sequestration in Oregon. Report to Winrock

45

Enhancement of Carbon Sequestration in US Soils  

NSDL National Science Digital Library

This peer-reviewed article from Bioscience journal is about the importance of improving land management to increase carbon sequestration in US soils. Improved practices in agriculture, forestry, and land management could be used to increase soil carbon and thereby significantly reduce the concentration of atmospheric carbon dioxide. Understanding biological and edaphic processes that increase and retain soil carbon can lead to specific manipulations that enhance soil carbon sequestration. These manipulations, however, will only be suitable for adoption if they are technically feasible over large areas, economically competitive with alternative measures to offset greenhouse gas emissions, and environmentally beneficial. Here we present the elements of an integrated evaluation of soil carbon sequestration methods.

WILFRED M. POST, R. CESAR IZAURRALDE, JULIE D. JASTROW, BRUCE A. McCARL, JAMES E. AMONETTE, VANESSA L. BAILEY, PHILIP M. JARDINE, TRISTRAM O. WEST, and JIZHONG ZHOU (;)

2004-10-01

46

CARBON SEQUESTRATION SURFACE MINE LANDS  

SciTech Connect

Over 160 acres of tree seedlings were planted during the last quarter. This quarter marked the beginning of the installation of new instrumentation and the inspection and calibration of previously installed recording devices. Sampling systems were initiated to quantify initial seedling success as well as height measurements. Nursery seedlings have been inoculated to produce mycorrhizal treated stock for 2004 spring plantings to determine the effects on carbon sequestration. All planting areas in western Kentucky have been sampled with the recording cone penetrometer and the nuclear density gauge to measure soil density.

Donald H. Graves; Christopher Barton; Richard Sweigard; Richard Warner

2003-07-24

47

BIG SKY CARBON SEQUESTRATION PARTNERSHIP  

SciTech Connect

The Big Sky Carbon Sequestration Partnership, led by Montana State University, is comprised of research institutions, public entities and private sectors organizations, and the Confederated Salish and Kootenai Tribes and the Nez Perce Tribe. Efforts under this Partnership in Phase I fall into four areas: evaluation of sources and carbon sequestration sinks that will be used to determine the location of pilot demonstrations in Phase II; development of GIS-based reporting framework that links with national networks; designing an integrated suite of monitoring, measuring, and verification technologies and assessment frameworks; and initiating a comprehensive education and outreach program. The groundwork is in place to provide an assessment of storage capabilities for CO{sub 2} utilizing the resources found in the Partnership region (both geological and terrestrial sinks), that would complement the ongoing DOE research. Efforts are underway to showcase the architecture of the GIS framework and initial results for sources and sinks. The region has a diverse array of geological formations that could provide storage options for carbon in one or more of its three states. Likewise, initial estimates of terrestrial sinks indicate a vast potential for increasing and maintaining soil C on forested, agricultural, and reclaimed lands. Both options include the potential for offsetting economic benefits to industry and society. Steps have been taken to assure that the GIS-based framework is consistent among types of sinks within the Big Sky Partnership area and with the efforts of other western DOE partnerships. The Partnership recognizes the critical importance of measurement, monitoring, and verification technologies to support not only carbon trading but all policies and programs that DOE and other agencies may want to pursue in support of GHG mitigation. The efforts in developing and implementing MMV technologies for geological sequestration reflect this concern. Research is also underway to identify and validate best management practices for soil C in the Partnership region, and to design a risk/cost effectiveness framework to make comparative assessments of each viable sink, taking into account economic costs, offsetting benefits, scale of sequestration opportunities, spatial and time dimensions, environmental risks, and long-term viability. Scientifically sound information on MMV is critical for public acceptance of these technologies.

Susan M. Capalbo

2005-01-31

48

Carbon sequestration via wood burial  

PubMed Central

To mitigate global climate change, a portfolio of strategies will be needed to keep the atmospheric CO2 concentration below a dangerous level. Here a carbon sequestration strategy is proposed in which certain dead or live trees are harvested via collection or selective cutting, then buried in trenches or stowed away in above-ground shelters. The largely anaerobic condition under a sufficiently thick layer of soil will prevent the decomposition of the buried wood. Because a large flux of CO2 is constantly being assimilated into the world's forests via photosynthesis, cutting off its return pathway to the atmosphere forms an effective carbon sink. It is estimated that a sustainable long-term carbon sequestration potential for wood burial is 10 ± 5 GtC y-1, and currently about 65 GtC is on the world's forest floors in the form of coarse woody debris suitable for burial. The potential is largest in tropical forests (4.2 GtC y-1), followed by temperate (3.7 GtC y-1) and boreal forests (2.1 GtC y-1). Burying wood has other benefits including minimizing CO2 source from deforestation, extending the lifetime of reforestation carbon sink, and reducing fire danger. There are possible environmental impacts such as nutrient lock-up which nevertheless appears manageable, but other concerns and factors will likely set a limit so that only part of the full potential can be realized. Based on data from North American logging industry, the cost for wood burial is estimated to be $14/tCO2($50/tC), lower than the typical cost for power plant CO2 capture with geological storage. The cost for carbon sequestration with wood burial is low because CO2 is removed from the atmosphere by the natural process of photosynthesis at little cost. The technique is low tech, distributed, easy to monitor, safe, and reversible, thus an attractive option for large-scale implementation in a world-wide carbon market. PMID:18173850

Zeng, Ning

2008-01-01

49

Carbon sequestration and eruption hazards  

NASA Astrophysics Data System (ADS)

In order to reduce the buildup of carbon dioxide in the atmosphere, proposals have been made to sequestrate carbon in ocean, or in coal mines and other underground formations. High gas concentration in ocean or underground formations has to potential to power gas-driven eruptions. In this presentation, possible eruption hazards are explored. Whenever carbon dioxide is sequestrated in the form of carbon dioxide gas, or dissolved and/or absorbed carbon dioxide, it is necessary to exercise caution to avoid gas-driven eruption hazard. It is long known that explosive volcanic eruptions are driven by H2O gas in magma. Lake eruptions powered by dissolved CO2 in lake bottom water were discovered in the 1980's (Kling et al., 1987; Zhang, 1996). Gas-driven ocean eruptions with mechanism similar to lake eruptions have been hypothesized (Zhang, 2003; Zhang and Kling, 2006) although not confirmed. Mud volcanos are commonly thought to be driven by methane-rich fluids in sediment (Milkov, 2000). Recently, Zhang et al. (2007) have proposed that coal outbursts in underground coal mines are driven by dissolved high CO2 concentration in coal, causing coal fragmentation and outburst. That is, coal outbursts may be regarded as a new type of gas-driven eruptions. Therefore, high concentrations of free gas or dissolved/absorbed gas may power eruptions of magma, lake water, ocean water, sediment, and coal. Gas- driven volcanic, lake and ocean eruptions are due to volume expansion from bubble growth, whereas gas-driven coal and sediment eruptions are due to high gas-pressure, leading to fragmentation of coal and sediment. (In explosive volcanism, magma fragmentation is also a critical point.) The threshold conditions for many of these eruptions are not known yet. In planning large (industrial) scale injection of CO2 into a natural reservoir, it is important to know the eruption threshold and design the injection scheme accordingly. More safe sequestration in terms of eruption hazards would utilize chemical reactions to immobilize gaseous CO2 into carbonates. References Kling G.W. et al. (1987) Science 236, 169-175. Zhang Y. (1996) Nature 379, 57-59. Zhang Y. (2003) Geophys. Res. Lett. 30(7), (51-1)-(51-4), doi 10.1029/2002GL016658. Zhang Y., Kling G.W. (2006) Annu. Rev. Earth Planet. Sci. 34, 293-324. Zhang Y., Guan P., Wang H. (2007) 6th IPACES meeting abstract, 26-29 June 2007, Wuhan, China.

Zhang, Y.

2007-12-01

50

Carbon sequestration via wood burial.  

PubMed

To mitigate global climate change, a portfolio of strategies will be needed to keep the atmospheric CO2 concentration below a dangerous level. Here a carbon sequestration strategy is proposed in which certain dead or live trees are harvested via collection or selective cutting, then buried in trenches or stowed away in above-ground shelters. The largely anaerobic condition under a sufficiently thick layer of soil will prevent the decomposition of the buried wood. Because a large flux of CO2 is constantly being assimilated into the world's forests via photosynthesis, cutting off its return pathway to the atmosphere forms an effective carbon sink.It is estimated that a sustainable long-term carbon sequestration potential for wood burial is 10 +/- 5 GtC y-1, and currently about 65 GtC is on the world's forest floors in the form of coarse woody debris suitable for burial. The potential is largest in tropical forests (4.2 GtC y-1), followed by temperate (3.7 GtC y-1) and boreal forests (2.1 GtC y-1). Burying wood has other benefits including minimizing CO2 source from deforestation, extending the lifetime of reforestation carbon sink, and reducing fire danger. There are possible environmental impacts such as nutrient lock-up which nevertheless appears manageable, but other concerns and factors will likely set a limit so that only part of the full potential can be realized.Based on data from North American logging industry, the cost for wood burial is estimated to be $14/tCO2($50/tC), lower than the typical cost for power plant CO2 capture with geological storage. The cost for carbon sequestration with wood burial is low because CO2 is removed from the atmosphere by the natural process of photosynthesis at little cost. The technique is low tech, distributed, easy to monitor, safe, and reversible, thus an attractive option for large-scale implementation in a world-wide carbon market. PMID:18173850

Zeng, Ning

2008-01-01

51

Carbon sequestration research and development  

SciTech Connect

Predictions of global energy use in the next century suggest a continued increase in carbon emissions and rising concentrations of carbon dioxide (CO{sub 2}) in the atmosphere unless major changes are made in the way we produce and use energy--in particular, how we manage carbon. For example, the Intergovernmental Panel on Climate Change (IPCC) predicts in its 1995 ''business as usual'' energy scenario that future global emissions of CO{sub 2} to the atmosphere will increase from 7.4 billion tonnes of carbon (GtC) per year in 1997 to approximately 26 GtC/year by 2100. IPCC also projects a doubling of atmospheric CO{sub 2} concentration by the middle of next century and growing rates of increase beyond. Although the effects of increased CO{sub 2} levels on global climate are uncertain, many scientists agree that a doubling of atmospheric CO{sub 2} concentrations could have a variety of serious environmental consequences. The goal of this report is to identify key areas for research and development (R&D) that could lead to an understanding of the potential for future use of carbon sequestration as a major tool for managing carbon emissions. Under the leadership of DOE, researchers from universities, industry, other government agencies, and DOE national laboratories were brought together to develop the technical basis for conceiving a science and technology road map. That effort has resulted in this report, which develops much of the information needed for the road map.

Reichle, Dave; Houghton, John; Kane, Bob; Ekmann, Jim; and others

1999-12-31

52

Estimating Leakage from Forest Carbon Sequestration Programs  

Microsoft Academic Search

Leakage from forest carbon sequestration—the amount of a program’s direct carbon benefits undermined by carbon releases elsewhere—depends critically on demanders’ ability to substitute non-reserved timber for timber targeted by the program. Analytic, econometric, and sector-level optimization models are combined to estimate leakage from different forest carbon sequestration activities. Empirical estimates for the U.S. show leakage ranges from minimal (<10 percent)

Brian C. Murray; Bruce A. McCarl; Heng-Chi Lee

2004-01-01

53

Biologically Enhanced Carbon Sequestration: Research Needs and Opportunities  

SciTech Connect

Fossil fuel combustion, deforestation, and biomass burning are the dominant contributors to increasing atmospheric carbon dioxide (CO{sub 2}) concentrations and global warming. Many approaches to mitigating CO{sub 2} emissions are being pursued, and among the most promising are terrestrial and geologic carbon sequestration. Recent advances in ecology and microbial biology offer promising new possibilities for enhancing terrestrial and geologic carbon sequestration. A workshop was held October 29, 2007, at Lawrence Berkeley National Laboratory (LBNL) on Biologically Enhanced Carbon Sequestration (BECS). The workshop participants (approximately 30 scientists from California, Illinois, Oregon, Montana, and New Mexico) developed a prioritized list of research needed to make progress in the development of biological enhancements to improve terrestrial and geologic carbon sequestration. The workshop participants also identified a number of areas of supporting science that are critical to making progress in the fundamental research areas. The purpose of this position paper is to summarize and elaborate upon the findings of the workshop. The paper considers terrestrial and geologic carbon sequestration separately. First, we present a summary in outline form of the research roadmaps for terrestrial and geologic BECS. This outline is elaborated upon in the narrative sections that follow. The narrative sections start with the focused research priorities in each area followed by critical supporting science for biological enhancements as prioritized during the workshop. Finally, Table 1 summarizes the potential significance or 'materiality' of advances in these areas for reducing net greenhouse gas emissions.

Oldenburg, Curtis; Oldenburg, Curtis M.; Torn, Margaret S.

2008-03-21

54

Carbon sequestration for everybody: decrease atmospheric carbon dioxide, earn money and improve the soil  

Microsoft Academic Search

Summary: The easiest way to sequester atmospheric carbon dioxide is to convert plant biomass into charcoal and bury it in agricultural land. Doing this will open a new way for farmers and laymen to earn money (from carbon sequestration funds) and improve land fertility. It is also a way to avoid nutrient loss from land to sea.

Folke Günther

55

BIG SKY CARBON SEQUESTRATION PARTNERSHIP  

SciTech Connect

The Big Sky Partnership, led by Montana State University, is comprised of research institutions, public entities and private sectors organizations, and the Confederated Salish and Kootenai Tribes and the Nez Perce Tribe. Efforts during the second performance period fall into four areas: evaluation of sources and carbon sequestration sinks; development of GIS-based reporting framework; designing an integrated suite of monitoring, measuring, and verification technologies; and initiating a comprehensive education and outreach program. At the first two Partnership meetings the groundwork was put in place to provide an assessment of capture and storage capabilities for CO{sub 2} utilizing the resources found in the Partnership region (both geological and terrestrial sinks), that would complement the ongoing DOE research. The region has a diverse array of geological formations that could provide storage options for carbon in one or more of its three states. Likewise, initial estimates of terrestrial sinks indicate a vast potential for increasing and maintaining soil C on forested, agricultural, and reclaimed lands. Both options include the potential for offsetting economic benefits to industry and society. Steps have been taken to assure that the GIS-based framework is consistent among types of sinks within the Big Sky Partnership area and with the efforts of other western DOE partnerships. Efforts are also being made to find funding to include Wyoming in the coverage areas for both geological and terrestrial sinks and sources. The Partnership recognizes the critical importance of measurement, monitoring, and verification technologies to support not only carbon trading but all policies and programs that DOE and other agencies may want to pursue in support of GHG mitigation. The efforts begun in developing and implementing MMV technologies for geological sequestration reflect this concern. Research is also underway to identify and validate best management practices for soil C in the partnership region, and to design a risk/cost effectiveness framework to make comparative assessments of each viable sink, taking into account economic costs, offsetting benefits, scale of sequestration opportunities, spatial and time dimensions, environmental risks, and long term viability. Scientifically sound information on MMV is critical for public acceptance of these technologies. Two key deliverables were completed this quarter--a literature review/database to assess the soil carbon on rangelands, and the draft protocols, contracting options for soil carbon trading. To date, there has been little research on soil carbon on rangelands, and since rangeland constitutes a major land use in the Big Sky region, this is important in achieving a better understanding of terrestrial sinks. The protocols developed for soil carbon trading are unique and provide a key component of the mechanisms that might be used to efficiently sequester GHG and reduce CO{sub 2} concentrations. Progress on other deliverables is noted in the PowerPoint presentations. A series of meetings held during the second quarter have laid the foundations for assessing the issues surrounding the implementation of a market-based setting for soil C credits. These meetings provide a connection to stakeholders in the region and a basis on which to draw for the DOE PEIS hearings. Finally, the education and outreach efforts have resulted in a comprehensive plan and process which serves as a guide for implementing the outreach activities under Phase I. While we are still working on the public website, we have made many presentations to stakeholders and policy makers, connections to other federal and state agencies concerned with GHG emissions, climate change, and efficient and environmentally-friendly energy production. In addition, we have laid plans for integration of our outreach efforts with the students, especially at the tribal colleges and at the universities involved in our partnership. This includes collaboration with the film and media arts departments at MSU, with outreach effort

Susan M. Capalbo

2004-06-01

56

Carbon sequestration by young Norway spruce monoculture  

NASA Astrophysics Data System (ADS)

Many studies have been focused on allometry, wood-mass inventory, carbon (C) sequestration, and biomass expansion factors as the first step for the evaluation of C sinks of different plant ecosystems. To identify and quantify these terrestrial C sinks, and evaluate CO2 human-induced emissions on the other hand, information for C balance accounting (for impletion of commitment to Kyoto protocol) are currently highly needed. Temperate forest ecosystems have recently been identified as important C sink. Carbon sink might be associated with environmental changes (elevated [CO2], air temperature, N deposition etc.) and large areas of managed fast-growing young forests. Norway spruce (Pice abies L. Karst) is the dominant tree species (35%) in Central European forests. It covers 55 % of the total forested area in the Czech Republic, mostly at high altitudes. In this contribution we present C sequestration by young (30-35 year-old) Norway spruce monocultures in highland (650-700 m a.s.l., AT- mean annual temperature: 6.9 ° C; P- annual amount of precipitation: 700 mm; GL- growing season duration: 150 days) and mountain (850-900 m a.s.l.; AT of 5.5 ° C; P of 1300 mm; and GL of 120 days) areas and an effect of a different type of thinning. However, the similar stem diameter at the breast height and biomass proportions among above-ground tree organs were obtained in the both localities; the trees highly differ in their height, above-ground organ's biomass values and total above ground biomass, particularly in stem. On the total mean tree biomass needle, branch and stem biomass participated by 22 %, 24 % and 54 % in highland, and by 19 %, 23 % and 58 % in mountain area, respectively. Silvicultural management affects mainly structure, density, and tree species composition of the stand. Therefore, dendrometric parameters of a tree resulted from genotype, growth conditions and from management history as well. Low type of thinning (LT; common in highland) stimulates rather tree height increment comparing to stem thickness increment, whereas high type of thinning (HT; common in mountains) has an opposite effect. It leads to lower stem tapering under LT than HT management. HT stimulates more tree stability and biomass increment of all aboveground tree organs comparing to LT. Contrariwise, total aboveground biomass on the stand level was lower about 15 % in stand with HT management comparing to LT one in highland. Results from the tree ring analysis showed significant differences in early to late wood proportion; where early wood formed about 54 % and 79 % and late wood about 46 % and 21% in highland and mountain locality, respectively. High late wood proportion leads to higher wood density and C woody content in highland comparing to mountain areas. Acknowledgement The research under CzechGlobe (CZ.1.05/1.1.00/02.0073) and the National Infrastructure for Carbon Observation - CzeCOS/ICOS was supported by Ministry of Education CR (LM2010007).

Pokorny, R.; Rajsnerova, P.; Kubásek, J.

2012-04-01

57

ISSUES IN EVALUATING CARBON SEQUESTRATION AND ATTRIBUTING CARBON CREDITS TO GRASSLAND RESTORATION EFFORTS  

E-print Network

ISSUES IN EVALUATING CARBON SEQUESTRATION AND ATTRIBUTING CARBON CREDITS TO GRASSLAND RESTORATION examines biological carbon sequestration using a grassland restoration as a model system. Chapter 1 for biological carbon sequestration. In this analysis, we found that significantly greater soil carbon

Wisconsin at Madison, University of

58

Carbon sequestration in dryland ecosystems.  

PubMed

Drylands occupy 6.15 billion hectares (Bha) or 47.2% of the world's land area. Of this, 3.5 to 4.0 Bha (57%-65%) are either desertified or prone to desertification. Despite the low soil organic carbon (SOC) concentration, total SOC pool of soils of the drylands is 241 Pg (1 Pg = petagram = 10(15)g = 1 billion metric ton) or 15.5% of the world's total of 1550 Pg to 1-meter depth. Desertification has caused historic C loss of 20 to 30 Pg. Assuming that two-thirds of the historic loss can be resequestered, the total potential of SOC sequestration is 12 to 20 Pg C over a 50-year period. Land use and management practices to sequester SOC include afforestation with appropriate species, soil management on cropland, pasture management on grazing land, and restoration of degraded soils and ecosystems through afforestation and conversion to other restorative land uses. Tree species suitable for afforestation in dryland ecosystems include Mesquite, Acacia, Neem and others. Recommended soil management practices include application of biosolids (e.g., manure, sludge), which enhance activity of soil macrofauna (e.g., termites), use of vegetative mulches, water harvesting, and judicious irrigation systems. Recommended practices of managing grazing lands include controlled grazing at an optimal stocking rate, fire management, and growing improved species. The estimated potential of SOC sequestration is about 1 Pg C/y for the world and 50 Tg C/y for the U.S. This potential of dryland soils is relevant to both the Kyoto Protocol under UNFCCC and the U.S. Farm Bill 2002. PMID:15453406

Lal, Rattan

2004-04-01

59

Carbon sequestration potential of extensive green roofs.  

PubMed

Two studies were conducted with the objective of quantifying the carbon storage potential of extensive green roofs. The first was performed on eight roofs in Michigan and four roofs in Maryland, ranging from 1 to 6 years in age. All 12 green roofs were composed primarily of Sedum species, and substrate depths ranged from 2.5 to 12.7 cm. Aboveground plant material was harvested in the fall of 2006. On average, these roofs stored 162 g C x m(-2) in aboveground biomass. The second study was conducted on a roof in East Lansing, MI. Twenty plots were established on 21 April 2007 with a substrate depth of 6.0 cm. In addition to a substrate only control, the other plots were sown with a single species of Sedum (S. acre, S. album, S. kamtshaticum, or S. spurium). Species and substrate depth represent typical extensive green roofs in the United States. Plant material and substrate were harvested seven times across two growing seasons. Results at the end of the second year showed that aboveground plant material storage varied by species, ranging from 64 g C x m(-2) (S. acre) to 239 g C x m(-2) (S. album), with an average of 168 g C x m(-2). Belowground biomass ranged from 37 g C x m(-2) (S. acre) to 185 g C x m(-2) (S. kamtschaticum) and averaged 107 g C x m(-2). Substrate carbon content averaged 913 g C x m(-2), with no species effect, which represents a sequestration rate of 100 g C x m(-2) over the 2 years of this study. The entire extensive green roof system sequestered 375 g C x m(-2) in above- and belowground biomass and substrate organic matter. PMID:19848177

Getter, Kristin L; Rowe, D Bradley; Robertson, G Philip; Cregg, Bert M; Andresen, Jeffrey A

2009-10-01

60

Activated carbon from biomass  

NASA Astrophysics Data System (ADS)

Activated carbon are unique and versatile adsorbents having extended surface area, micro porous structure, universal adsorption effect, high adsorption capacity and high degree of surface reactivity. Activated carbons are synthesized from variety of materials. Most commonly used on a commercial scale are cellulosic based precursors such as peat, coal, lignite wood and coconut shell. Variation occurs in precursors in terms of structure and carbon content. Coir having very low bulk density and porous structure is found to be one of the valuable raw materials for the production of highly porous activated carbon and other important factor is its high carbon content. Exploration of good low cost and non conventional adsorbent may contribute to the sustainability of the environment and offer promising benefits for the commercial purpose in future. Carbonization of biomass was carried out in a horizontal muffle furnace. Both carbonization and activation were performed in inert nitrogen atmosphere in one step to enhance the surface area and to develop interconnecting porosity. The types of biomass as well as the activation conditions determine the properties and the yield of activated carbon. Activated carbon produced from biomass is cost effective as it is easily available as a waste biomass. Activated carbon produced by combination of chemical and physical activation has higher surface area of 2442 m2/gm compared to that produced by physical activation (1365 m2/gm).

Manocha, S.; Manocha, L. M.; Joshi, Parth; Patel, Bhavesh; Dangi, Gaurav; Verma, Narendra

2013-06-01

61

The leaky sink: persistent obstacles to a forest carbon sequestration program based on individual projects  

Microsoft Academic Search

One strategy for mitigating the increase in atmospheric carbon dioxide is to expand the size of the terrestrial carbon sink, particularly forests, essentially using trees as biological scrubbers. Within relevant ranges of carbon abatement targets, augmenting carbon sequestration by protecting and expanding biomass sinks can potentially make large contributions at costs that are comparable or lower than for emission source

Kenneth Richards; Krister Andersson

2001-01-01

62

Natural Carbon Sequestration in Mine Tailings  

Microsoft Academic Search

We have documented active sequestration of atmospheric carbon dioxide (CO2) in chrysotile mine tailings at Clinton Creek, Yukon and Cassiar, British Columbia. Hydrated magnesium carbonate minerals develop in mine tailings as a natural consequence of the weathering process within the residues. Magnesium, leached from minerals, reacts with dissolved CO2 in rainwater, precipitating carbonates at the surface of tailings upon evaporation

S. A. Wilson; G. M. Dipple; M. Raudsepp; R. G. Anderson

2005-01-01

63

Experimental Study of Carbon Sequestration Reactions Controlled  

E-print Network

Experimental Study of Carbon Sequestration Reactions Controlled by the Percolation of CO2-Rich. Carbonation of ultramafic rocks in geological reservoirs is, in theory, the most efficient way to trap CO2 irreversibly; however, possible feedback effects between carbonation reactions and changes in the reservoir

Demouchy, Sylvie

64

Federal Control of Geological Carbon Sequestration  

SciTech Connect

The United States has economically recoverable coal reserves of about 261 billion tons, which is in excess of a 250-­?year supply based on 2009 consumption rates. However, in the near future the use of coal may be legally restricted because of concerns over the effects of its combustion on atmospheric carbon dioxide concentrations. In response, the U.S. Department of Energy is making significant efforts to help develop and implement a commercial scale program of geologic carbon sequestration that involves capturing and storing carbon dioxide emitted from coal-­?burning electric power plants in deep underground formations. This article explores the technical and legal problems that must be resolved in order to have a viable carbon sequestration program. It covers the responsibilities of the United States Environmental Protection Agency and the Departments of Energy, Transportation and Interior. It discusses the use of the Safe Drinking Water Act, the Clean Air Act, the National Environmental Policy Act, the Endangered Species Act, and other applicable federal laws. Finally, it discusses the provisions related to carbon sequestration that have been included in the major bills dealing with climate change that Congress has been considering in 2009 and 2010. The article concludes that the many legal issues that exist can be resolved, but whether carbon sequestration becomes a commercial reality will depend on reducing its costs or by imposing legal requirements on fossil-­?fired power plants that result in the costs of carbon emissions increasing to the point that carbon sequestration becomes a feasible option.

Reitze, Arnold

2011-04-11

65

Genome-enabled Discovery of Carbon Sequestration Genes  

SciTech Connect

The fate of carbon below ground is likely to be a major factor determining the success of carbon sequestration strategies involving plants. Despite their importance, molecular processes controlling belowground C allocation and partitioning are poorly understood. This project is leveraging the Populus trichocarpa genome sequence to discover genes important to C sequestration in plants and soils. The focus is on the identification of genes that provide key control points for the flow and chemical transformations of carbon in roots, concentrating on genes that control the synthesis of chemical forms of carbon that result in slower turnover rates of soil organic matter (i.e., increased recalcitrance). We propose to enhance carbon allocation and partitioning to roots by 1) modifying the auxin signaling pathway, and the invertase family, which controls sucrose metabolism, and by 2) increasing root proliferation through transgenesis with genes known to control fine root proliferation (e.g., ANT), 3) increasing the production of recalcitrant C metabolites by identifying genes controlling secondary C metabolism by a major mQTL-based gene discovery effort, and 4) increasing aboveground productivity by enhancing drought tolerance to achieve maximum C sequestration. This broad, integrated approach is aimed at ultimately enhancing root biomass as well as root detritus longevity, providing the best prospects for significant enhancement of belowground C sequestration.

Tuskan, Gerald A [ORNL] [ORNL; Tschaplinski, Timothy J [ORNL] [ORNL; Kalluri, Udaya C [ORNL] [ORNL; Yin, Tongming [ORNL] [ORNL; Yang, Xiaohan [ORNL] [ORNL; Zhang, Xinye [ORNL] [ORNL; Engle, Nancy L [ORNL] [ORNL; Ranjan, Priya [ORNL] [ORNL; Basu, Manojit M [ORNL] [ORNL; Gunter, Lee E [ORNL] [ORNL; Jawdy, Sara [ORNL] [ORNL; Martin, Madhavi Z [ORNL] [ORNL; Campbell, Alina S [ORNL] [ORNL; DiFazio, Stephen P [ORNL] [ORNL; Davis, John M [University of Florida] [University of Florida; Hinchee, Maud [ORNL] [ORNL; Pinnacchio, Christa [U.S. Department of Energy, Joint Genome Institute] [U.S. Department of Energy, Joint Genome Institute; Meilan, R [Purdue University] [Purdue University; Busov, V. [Michigan Technological University] [Michigan Technological University; Strauss, S [Oregon State University] [Oregon State University

2009-01-01

66

Shallow Carbon Sequestration Demonstration Project  

SciTech Connect

The potential for carbon sequestration at relatively shallow depths was investigated at four power plant sites in Missouri. Exploratory boreholes were cored through the Davis Shale confining layer into the St. Francois aquifer (Lamotte Sandstone and Bonneterre Formation). Precambrian basement contact ranged from 654.4 meters at the John Twitty Energy Center in Southwest Missouri to over 1100 meters near the Sioux Power Plant in St. Charles County. Investigations at the John Twitty Energy Center included 3D seismic reflection surveys, downhole geophysical logging and pressure testing, and laboratory analysis of rock core and water samples. Plans to perform injectivity tests at the John Twitty Energy Center, using food grade CO{sub 2}, had to be abandoned when the isolated aquifer was found to have very low dissolved solids content. Investigations at the Sioux Plant and Thomas Hill Energy Center in Randolph County found suitably saline conditions in the St. Francois. A fourth borehole in Platte County was discontinued before reaching the aquifer. Laboratory analyses of rock core and water samples indicate that the St. Charles and Randolph County sites could have storage potentials worthy of further study. The report suggests additional Missouri areas for further investigation as well.

Pendergrass, Gary; Fraley, David; Alter, William; Bodenhamer, Steven

2013-09-30

67

Making carbon sequestration a paying proposition  

NASA Astrophysics Data System (ADS)

Atmospheric carbon dioxide (CO2) has increased from a preindustrial concentration of about 280 ppm to about 367 ppm at present. The increase has closely followed the increase in CO2 emissions from the use of fossil fuels. Global warming caused by increasing amounts of greenhouse gases in the atmosphere is the major environmental challenge for the 21st century. Reducing worldwide emissions of CO2 requires multiple mitigation pathways, including reductions in energy consumption, more efficient use of available energy, the application of renewable energy sources, and sequestration. Sequestration is a major tool for managing carbon emissions. In a majority of cases CO2 is viewed as waste to be disposed; however, with advanced technology, carbon sequestration can become a value-added proposition. There are a number of potential opportunities that render sequestration economically viable. In this study, we review these most economically promising opportunities and pathways of carbon sequestration, including reforestation, best agricultural production, housing and furniture, enhanced oil recovery, coalbed methane (CBM), and CO2 hydrates. Many of these terrestrial and geological sequestration opportunities are expected to provide a direct economic benefit over that obtained by merely reducing the atmospheric CO2 loading. Sequestration opportunities in 11 states of the Southeast and South Central United States are discussed. Among the most promising methods for the region include reforestation and CBM. The annual forest carbon sink in this region is estimated to be 76 Tg C/year, which would amount to an expenditure of 11.1-13.9 billion/year. Best management practices could enhance carbon sequestration by 53.9 Tg C/year, accounting for 9.3% of current total annual regional greenhouse gas emission in the next 20 years. Annual carbon storage in housing, furniture, and other wood products in 1998 was estimated to be 13.9 Tg C in the region. Other sequestration options, including the direct injection of CO2 in deep saline aquifers, mineralization, and biomineralization, are not expected to lead to direct economic gain. More detailed studies are needed for assessing the ultimate changes to the environment and the associated indirect cost savings for carbon sequestration.

Han, Fengxiang X.; Lindner, Jeff S.; Wang, Chuji

2007-03-01

68

Geologic Sequestration of Carbon Dioxide: Socioeconomic Characteristics and Landowner Acceptance of Carbon Sequestration Sites  

NASA Astrophysics Data System (ADS)

This study explores public acceptance of carbon dioxide sequestration sites through a mail survey of 4,001 landowners in central Illinois and Indiana, a region with high sequestration potential and recent siting proposals for FutureGen (an integrated power plant and sequestration demonstration project). The individuals sampled in this study include landowners both informed and uninformed about carbon sequestration, comparing groups based on ecological concern, economic conditions, views about the energy industry, environmental justice, familiarity with sequestration, and demographics. Of the survey respondents, 27% reported an understanding of carbon sequestration prior to receiving the survey, 2.5 times more than would be expected in the general U.S. population. Overall, 47% of survey respondents would oppose a local sequestration site while 30% would support one. The results suggest that greater familiarity with geologic sequestration has little influence on local site acceptance. Multivariate analysis found that landowner acceptance of sequestration sites derives primarily from gender, concern for the local environment, trust in government, experience with industrial activity, and belief in the potential of conservation/renewables. Because views on these issues are persistent, it may be difficult to overcome landowner opposition through education. Policy makers may, therefore, need to lower expectations for sequestration deployment in the United States and revisit other options for meeting the nation's CO2 emissions goals.

Parfomak, Elizabeth C.

69

Carbon dioxide sequestration: how much and when?  

Microsoft Academic Search

Carbon dioxide (CO2) sequestration has been proposed as a key component in technological portfolios for managing anthropogenic climate change,\\u000a since it may provide a faster and cheaper route to significant reductions in atmospheric CO2 concentrations than abating CO2 production. However, CO2 sequestration is not a perfect substitute for CO2 abatement because CO2 may leak back into the atmosphere (thus imposing

Klaus Keller; David McInerney; David F. Bradford

2008-01-01

70

Carbonation: An Efficient and Economical Process for CO2 Sequestration  

E-print Network

Carbonation: An Efficient and Economical Process for CO2 Sequestration Tarun R Naik1 and Rakesh sequestration. Most of the studies related to the carbonation are limited to its effects on corrosion. The possibility of using carbonation process as a direct means for carbon dioxide sequestration is yet

Wisconsin-Milwaukee, University of

71

An Optimal Control Model of Forest Carbon Sequestration  

Microsoft Academic Search

This study develops an optimal control model of carbon sequestration and energy abatement to explore the potential role of forests in greenhouse gas mitigation. The article shows that if carbon accumulates in the atmosphere, the rental price for carbon sequestration should rise over time. From an empirical model, we find that carbon sequestration is costly, but that landowners can sequester

Brent Sohngen; Robert Mendelsohn

2003-01-01

72

Connecting Carbon Sequestration Science With Policy  

NASA Astrophysics Data System (ADS)

Is science ready for carbon sequestration policy? Interest in carbon sequestration as an option for decreasing CO2 emissions, or reducing the concentration of CO2 in the atmosphere, is accelerating in Congress, and legislation is being introduced that includes some form of direct or indirect carbon capture and storage. In many respects carbon sequestration is an ideal opportunity to connect science and engineering directly to policy solutions. For Earth scientists, it involves reservoir characterization using geology and geophysics, multi-phase fluid flow studies, measuring carbon sinks and sources, modeling carbon fluxes between the ocean, land surface, and atmosphere, exploring the long-term behavior of carbon in oceans and forests, and a host of other scientifically interesting topics. For policy makers, the science will need to connect with their questions about long-term reliability of geological reservoirs, environmental protection of ground water resources and human health, ownership of pore space and liability for stored CO2, efficacy of conservation tillage and other land-use practices for carbon storage, accuracy of measuring carbon uptake in trees, plants, and soils, and other issues that matter in a carbon-constrained world where CO2 is tallied and traded by the tonne. Are policy makers well- informed, misinformed, or uninformed about the level of scientific knowledge and uncertainty, for example, regarding the long-term behavior of carbon sequestered in deep saline reservoirs, northern boreal forests, Iowa soils, or in the Southern Ocean? Carbon sequestration is an opportunity for scientists to inform policy makers in real-time, and a chance for policy makers to tap a rich body of knowledge before setting long-term policy.

Folger, P. F.

2007-12-01

73

Economic Modeling of Carbon Capture and Sequestration Technologies  

E-print Network

Economic Modeling of Carbon Capture and Sequestration Technologies Jim McFarland (jrm1@mit.edu; +1 explores the economics of carbon capture and sequestration technologies as applied to electric generating of the world economy, is used to model two of the most promising carbon capture and sequestration (CCS

74

A SEARCH FOR REGULATORY ANALOGS TO CARBON SEQUESTRATION  

E-print Network

A SEARCH FOR REGULATORY ANALOGS TO CARBON SEQUESTRATION D.M. Reiner and H.J. Herzog1 1 Laboratory for Energy and the Environment, M.I.T., Cambridge, MA. 02139, USA ABSTRACT Carbon capture and sequestration for determining the success of carbon sequestration as a viable climate policy option. INTRODUCTION To date

75

DEVELOPING A SET OF REGULATORY ANALOGS FOR CARBON SEQUESTRATION  

E-print Network

DEVELOPING A SET OF REGULATORY ANALOGS FOR CARBON SEQUESTRATION D.M. Reiner1 , H.J. Herzog2 1 Judge Avenue, Cambridge, MA 02139, USA, email: hjherzog@mit.edu ABSTRACT Carbon capture and sequestration variables critical for determining the success of carbon sequestration as a viable climate policy option

76

Estimation of Parameters in Carbon Sequestration Models from Net Ecosystem  

E-print Network

Estimation of Parameters in Carbon Sequestration Models from Net Ecosystem Exchange Data Luther in the context of a deterministic com- partmental carbon sequestration system. Sensitivity and approximation usefulness in the estimation of parameters within a compartmental carbon sequestration model. Previously we

White, Luther

77

Agricultural Soil Carbon Sequestration: Economic Issues and Research Needs  

E-print Network

Agricultural Soil Carbon Sequestration: Economic Issues and Research Needs Draft paper Bruce A Mc............................................................................................................. 5 2 Why Consider Promoting Agricultural Soil Carbon Sequestration?...................... 6 2 Agricultural Soil Carbon Sequestration....... 11 3.1 What is the cost of GHGE offsets arising from large

McCarl, Bruce A.

78

Historical forest baselines reveal potential for continued carbon sequestration  

E-print Network

Historical forest baselines reveal potential for continued carbon sequestration Jeanine M-based studies suggest that land-use history is a more important driver of carbon sequestration in these systems agricultural lands are being promoted as important avenues for future carbon sequestration (8). But the degree

Mladenoff, David

79

ECONOMIC EVALUATION OF CO2 SEQUESTRATION TECHNOLOGIES TASK 4, BIOMASS GASIFICATION-BASED PROCESSING  

SciTech Connect

Biomass derived energy currently accounts for about 3 quads of total primary energy use in the United States. Of this amount, about 0.8 quads are used for power generation. Several biomass energy production technologies exist today which contribute to this energy mix. Biomass combustion technologies have been the dominant source of biomass energy production, both historically and during the past two decades of expansion of modern biomass energy in the U. S. and Europe. As a research and development activity, biomass gasification has usually been the major emphasis as a method of more efficiently utilizing the energy potential of biomass, particularly wood. Numerous biomass gasification technologies exist today in various stages of development. Some are simple systems, while others employ a high degree of integration for maximum energy utilization. The purpose of this study is to conduct a technical and economic comparison of up to three biomass gasification technologies, including the carbon dioxide emissions reduction potential of each. To accomplish this, a literature search was first conducted to determine which technologies were most promising based on a specific set of criteria. The technical and economic performances of the selected processes were evaluated using computer models and available literature. Using these results, the carbon sequestration potential of the three technologies was then evaluated. The results of these evaluations are given in this final report.

Martha L. Rollins; Les Reardon; David Nichols; Patrick Lee; Millicent Moore; Mike Crim; Robert Luttrell; Evan Hughes

2002-06-01

80

Carbon dioxide sequestration as stable carbonate minerals - environmental barriers  

Microsoft Academic Search

This paper considers the major environmental impacts associated with industrial-scale carbon dioxide sequestration as stable carbonate minerals, material resulting from a study undertaken by CSMA Consultants Ltd. in 1999. The chemical bonding of carbon dioxide, through reaction of two or more products to produce magnesium or calcium carbonate has been suggested as a means to mitigate CO2 from fossil fuel

H. Haywood; J. Eyre; H. Scholes

2001-01-01

81

Carbon sequestration and its role in the global carbon cycle  

USGS Publications Warehouse

For carbon sequestration the issues of monitoring, risk assessment, and verification of carbon content and storage efficacy are perhaps the most uncertain. Yet these issues are also the most critical challenges facing the broader context of carbon sequestration as a means for addressing climate change. In response to these challenges, Carbon Sequestration and Its Role in the Global Carbon Cycle presents current perspectives and research that combine five major areas: • The global carbon cycle and verification and assessment of global carbon sources and sinks • Potential capacity and temporal/spatial scales of terrestrial, oceanic, and geologic carbon storage • Assessing risks and benefits associated with terrestrial, oceanic, and geologic carbon storage • Predicting, monitoring, and verifying effectiveness of different forms of carbon storage • Suggested new CO2 sequestration research and management paradigms for the future. The volume is based on a Chapman Conference and will appeal to the rapidly growing group of scientists and engineers examining methods for deliberate carbon sequestration through storage in plants, soils, the oceans, and geological repositories.

McPherson, Brian J.; Sundquist, Eric T.

2009-01-01

82

Photobiological hydrogen production and carbon dioxide sequestration  

Microsoft Academic Search

Photobiological hydrogen production is an alternative to thermochemical and electrolytic technologies with the advantage of carbon dioxide sequestration. However, it suffers from low solar to hydrogen energy conversion efficiency due to limited light transfer, mass transfer, and nutrient medium composition. The present study aims at addressing these limitations and can be divided in three parts: (1) experimental measurements of the

Halil Berberoglu

2008-01-01

83

The urgent need for carbon dioxide sequestration  

SciTech Connect

The danger of global warming has put in question the use of fossil fuels which constitute the most abundant and most reliable energy resource. Meeting the ever growing world demand for cheap energy, while simultaneously achieving the required drastic reduction in CO{sub 2} emissions can only be accomplished by actively preventing carbon dioxide generated in the combustion of fuels from accumulating in the atmosphere, i.e. by sequestration. Sequestration is possible and economically viable and is currently the only realistic solution to the dilemma of CO{sub 2} emissions. The authors have developed a very promising approach that disposes of carbon dioxide by chemically combining it in an exothermic reaction with readily available minerals to form carbonates. The resulting carbonates are stable solids that are known to be environmentally benign and to be stable on geological time scales. This stands in contrast to most other methods that do not appear to fully solve the long term problem.

Lackner, K.S.; Butt, D.P.; Jensen, R.; Ziock, H.

1998-09-01

84

Economics of Carbon Sequestration Projects Involving Smallholders  

Microsoft Academic Search

\\u000a Afforestation and reforestation projects have the potential to help mitigate global warming by acting as sinks for CO2. However, participation in carbon-sink projects may be constrained by high costs. This problem may be particularly severe\\u000a for projects involving smallholders in developing countries. Of particular concern are the transaction costs incurred in developing\\u000a projects and measuring, certifying, and selling the carbon-sequestration

Oscar Cacho

85

Carbon sequestration research and development  

Microsoft Academic Search

Predictions of global energy use in the next century suggest a continued increase in carbon emissions and rising concentrations of carbon dioxide (COâ) in the atmosphere unless major changes are made in the way we produce and use energy--in particular, how we manage carbon. For example, the Intergovernmental Panel on Climate Change (IPCC) predicts in its 1995 ''business as usual''

Dave Reichle; John Houghton; Bob Kane; Jim Ekmann

1999-01-01

86

SOUTHWEST REGIONAL PARTNERSHIP FOR CARBON SEQUESTRATION  

SciTech Connect

The Southwest Partnership Region includes five states (Arizona, Colorado, New Mexico, Oklahoma, Utah) and contiguous areas from three adjacent states (west Texas, south Wyoming, and west Kansas). This energy-rich region exhibits some of the largest growth rates in the nation, and it contains two major CO{sub 2} pipeline networks that presently tap natural subsurface CO{sub 2} reservoirs for enhanced oil recovery at a rate of 30 million tons per year. The ten largest coal-fired power plants in the region produce 50% (140 million tons CO{sub 2}/y) of the total CO{sub 2} from power-plant fossil fuel combustion, with power plant emissions close to half the total CO{sub 2} emissions. The Southwest Regional Partnership comprises a large, diverse group of expert organizations and individuals specializing in carbon sequestration science and engineering, as well as public policy and outreach. These partners include 21 state government agencies and universities, the five major electric utility industries, seven oil, gas and coal companies, three federal agencies, the Navajo Nation, several NGOs including the Western Governors Association, and data sharing agreements with four other surrounding states. The Partnership is developing action plans for possible Phase II carbon sequestration pilot tests in the region, as well as the non-technical aspects necessary for developing and carrying out these pilot tests. The establishment of a website network to facilitate data storage and information sharing, decision-making, and future management of carbon sequestration in the region is a priority. The Southwest Partnership's approach includes (1) dissemination of existing regulatory/permitting requirements, (2) assessing and initiating public acceptance of possible sequestration approaches, and (3) evaluation and ranking of the most appropriate sequestration technologies for capture and storage of CO{sub 2} in the Southwest Region. The Partnership will also identify potential gaps in monitoring and verification approaches needed to validate long-term storage efforts.

Brian McPherson

2004-04-01

87

Modified Light Use Efficiency Model for Assessment of Carbon Sequestration in Grasslands of Kazakhstan: Combining Ground Biomass Data and Remote-sensing  

NASA Technical Reports Server (NTRS)

A modified light use efficiency (LUE) model was tested in the grasslands of central Kazakhstan in terms of its ability to characterize spatial patterns and interannual dynamics of net primary production (NPP) at a regional scale. In this model, the LUE of the grassland biome (en) was simulated from ground-based NPP measurements, absorbed photosynthetically active radiation (APAR) and meteorological observations using a new empirical approach. Using coarse-resolution satellite data from the Sea-viewing Wide Field-of-view Sensor (SeaWiFS), monthly NPP was calculated from 1998 to 2008 over a large grassland region in Kazakhstan. The modelling results were verified against scaled up plot-level observations of grassland biomass and another available NPP data set derived from a field study in a similar grassland biome. The results indicated the reliability of productivity estimates produced by the model for regional monitoring of grassland NPP. The method for simulation of en suggested in this study can be used in grassland regions where no carbon flux measurements are accessible.

Propastin, Pavel A.; Kappas, Martin W.; Herrmann, Stefanie M.; Tucker, Compton J.

2012-01-01

88

Integrating Steel Production with Mineral Carbon Sequestration  

SciTech Connect

The objectives of the project were (i) to develop a combination iron oxide production and carbon sequestration plant that will use serpentine ores as the source of iron and the extraction tailings as the storage element for CO2 disposal, (ii) the identification of locations within the US where this process may be implemented and (iii) to create a standardized process to characterize the serpentine deposits in terms of carbon disposal capacity and iron and steel production capacity. The first objective was not accomplished. The research failed to identify a technique to accelerate direct aqueous mineral carbonation, the limiting step in the integration of steel production and carbon sequestration. Objective (ii) was accomplished. It was found that the sequestration potential of the ultramafic resource surfaces in the US and Puerto Rico is approximately 4,647 Gt of CO2 or over 500 years of current US production of CO2. Lastly, a computer model was developed to investigate the impact of various system parameters (recoveries and efficiencies and capacities of different system components) and serpentinite quality as well as incorporation of CO2 from sources outside the steel industry.

Klaus Lackner; Paul Doby; Tuncel Yegulalp; Samuel Krevor; Christopher Graves

2008-05-01

89

Climate Extremes and Forest Carbon Sequestration Capacities  

NASA Astrophysics Data System (ADS)

Several lines of evidence suggest that the warming climate plays a vital role in driving certain types of extreme weather. How these extreme climates affect forest carbon sequestration capacity is unknown. This knowledge gap is critical in understanding positive feedbacks to global warming by changing the amount of carbon that forests can hold. Here, we used a perfect-deficit approach to identify forest canopy photosynthetic capacity (CPC) deficits and analyze how they correlate to climate extremes, based on data measured by the eddy covariance method at 26 forest sites with total of 146 site-years. We found that droughts severely alter the carbon sequestration capacities of evergreen broadleaf forest and deciduous broadleaf forest. In addition, the carbon sequestration capacities of Mediterranean forests are mostly sensitive to climate extremes while that of forests under marine climate are insensitive to climate extremes. Acknowledgements This research was financially supported by PSC-CUNY Award (PSC-CUNY-ENHC-44-83) and National Science Foundation (NSF-DEB-0949637).

Wei, S.; Yi, C.; Hendrey, G. R.; Eaton, T. T.; Liu, H.; Rustic, G. T.; Krakauer, N.; Wang, S.

2013-12-01

90

Conservation tillage for carbon sequestration  

Microsoft Academic Search

World soils represent the largest terrestrial pool of organic carbon (C), about 1550 Pg compared with about 700 Pg in the\\u000a atmosphere and 600 Pg in land biota. Agricultural activities (e.g., deforestation, burning, plowing, intensive grazing) contribute\\u000a considerably to the atmospheric pool. Expansion of agriculture may have contributed substantially to the atmospheric carbon\\u000a pool. However, the exact magnitude of carbon

R. Lal; J. M. Kimble

1997-01-01

91

Carbon sequestration efforts receive international boost  

NASA Astrophysics Data System (ADS)

More than a dozen nations have signed a charter to support international cooperation in the research and development of non-biological sequestration of carbon that otherwise would be emitted into the atmosphere.The 25 June agreement promises to facilitate technological advances as well as commercial viability for capture and storage of carbon in geological formations such as oil and gas reservoirs, unmineable coal seams, and deep saline reservoirs. Some experts also are examining the possibility of storing carbon in the world's oceans.

Showstack, Randy

92

Southwest Regional Partnership on Carbon Sequestration  

SciTech Connect

The Southwest Partnership on Carbon Sequestration completed its Phase I program in December 2005. The main objective of the Southwest Partnership Phase I project was to evaluate and demonstrate the means for achieving an 18% reduction in carbon intensity by 2012. Many other goals were accomplished on the way to this objective, including (1) analysis of CO{sub 2} storage options in the region, including characterization of storage capacities and transportation options, (2) analysis and summary of CO{sub 2} sources, (3) analysis and summary of CO{sub 2} separation and capture technologies employed in the region, (4) evaluation and ranking of the most appropriate sequestration technologies for capture and storage of CO{sub 2} in the Southwest Region, (5) dissemination of existing regulatory/permitting requirements, and (6) assessing and initiating public knowledge and acceptance of possible sequestration approaches. Results of the Southwest Partnership's Phase I evaluation suggested that the most convenient and practical ''first opportunities'' for sequestration would lie along existing CO{sub 2} pipelines in the region. Action plans for six Phase II validation tests in the region were developed, with a portfolio that includes four geologic pilot tests distributed among Utah, New Mexico, and Texas. The Partnership will also conduct a regional terrestrial sequestration pilot program focusing on improved terrestrial MMV methods and reporting approaches specific for the Southwest region. The sixth and final validation test consists of a local-scale terrestrial pilot involving restoration of riparian lands for sequestration purposes. The validation test will use desalinated waters produced from one of the geologic pilot tests. The Southwest Regional Partnership comprises a large, diverse group of expert organizations and individuals specializing in carbon sequestration science and engineering, as well as public policy and outreach. These partners include 21 state government agencies and universities, five major electric utility companies, seven oil, gas and coal companies, three federal agencies, the Navajo Nation, several NGOs, and the Western Governors Association. This group is continuing its work in the Phase II Validation Program, slated to conclude in 2009.

Brian McPherson

2006-03-31

93

Southeast Regional Carbon Sequestration Partnership (SECARB)  

SciTech Connect

The Southeast Regional Carbon Sequestration Partnership (SECARB) is a diverse partnership covering eleven states involving the Southern States Energy Board (SSEB) an interstate compact; regulatory agencies and/or geological surveys from member states; the Electric Power Research Institute (EPRI); academic institutions; a Native American enterprise; and multiple entities from the private sector. Figure 1 shows the team structure for the partnership. In addition to the Technical Team, the Technology Coalition, an alliance of auxiliary participants, in the project lends yet more strength and support to the project. The Technology Coalition, with its diverse representation of various sectors, is integral to the technical information transfer, outreach, and public perception activities of the partnership. The Technology Coalition members, shown in Figure 2, also provide a breadth of knowledge and capabilities in the multiplicity of technologies needed to assure a successful outcome to the project and serve as an extremely important asset to the partnership. The eleven states comprising the multi-state region are: Alabama; Arkansas; Florida; Georgia; Louisiana; Mississippi; North Carolina; South Carolina; Tennessee; Texas; and Virginia. The states making up the SECARB area are illustrated in Figure 3. The primary objectives of the SECARB project include: (1) Supporting the U.S. Department of Energy (DOE) Carbon Sequestration Program by promoting the development of a framework and infrastructure necessary for the validation and deployment of carbon sequestration technologies. This requires the development of relevant data to reduce the uncertainties and risks that are barriers to sequestration, especially for geologic storage in the SECARB region. Information and knowledge are the keys to establishing a regional carbon dioxide (CO{sub 2}) storage industry with public acceptance. (2) Supporting the President's Global Climate Change Initiative with the goal of reducing greenhouse gas intensity by 18 percent by 2012. A corollary to the first objective, this objective requires the development of a broad awareness across government, industry, and the general public of sequestration issues and establishment of the technological and legal frameworks necessary to achieve the President's goal. The information developed by the SECARB team will play a vital role in achieving the President's goal for the southeastern region of the United States. (3) Evaluating options and potential opportunities for regional CO{sub 2} sequestration. This requires characterization of the region regarding the presence and location of sources of greenhouse gases (GHGs), primarily CO{sub 2}, the presence and location of potential carbon sinks and geological parameters, geographical features and environmental concerns, demographics, state and interstate regulations, and existing infrastructure.

Kenneth J. Nemeth

2005-09-30

94

Forest soils and carbon sequestration  

Microsoft Academic Search

Soils in equilibrium with a natural forest ecosystem have high carbon (C) density. The ratio of soil:vegetation C density increases with latitude. Land use change, particularly conversion to agricultural ecosystems, depletes the soil C stock. Thus, degraded agricultural soils have lower soil organic carbon (SOC) stock than their potential capacity. Consequently, afforestation of agricultural soils and management of forest plantations

R. Lal

2005-01-01

95

MIDWEST REGIONAL CARBON SEQUESTRATION PARTNERSHIP (MRCSP)  

SciTech Connect

This is the first semiannual report for Phase I of the Midwest Carbon Sequestration Partnership (MRCSP). The project consists of nine tasks to be conducted over a two year period that started in October 2003. The makeup of the MRCSP and objectives are described. Progress on each of the active Tasks is also described and where possible, for those Tasks at some point of completion, a summary of results is presented.

David Ball; Judith Bradbury; Rattan Lal; Larry Wickstrom; Neeraj Gupta; Robert Burns; Bob Dahowski

2004-04-30

96

Southwest Regional Partnership on Carbon Sequestration  

SciTech Connect

The Southwest Partnership on Carbon Sequestration completed several more tasks during the period of April 1, 2005-September 30, 2005. The main objective of the Southwest Partnership project is to evaluate and demonstrate the means for achieving an 18% reduction in carbon intensity by 2012. While Phase 2 planning is well under way, the content of this report focuses exclusively on Phase 1 objectives completed during this reporting period. Progress during this period was focused in the three areas: geological carbon storage capacity in New Mexico, terrestrial sequestration capacity for the project area, and the Integrated Assessment Model efforts. The geologic storage capacity of New Mexico was analyzed and Blanco Mesaverde (which extends into Colorado) and Basin Dakota Pools were chosen as top two choices for the further analysis for CO{sub 2} sequestration in the system dynamics model preliminary analysis. Terrestrial sequestration capacity analysis showed that the four states analyzed thus far (Arizona, Colorado, New Mexico and Utah) have relatively limited potential to sequester carbon in terrestrial systems, mainly due to the aridity of these areas, but the large land area offered could make up for the limited capacity per hectare. Best opportunities were thought to be in eastern Colorado/New Mexico. The Integrated Assessment team expanded the initial test case model to include all New Mexico sinks and sources in a new, revised prototype model in 2005. The allocation mechanism, or ''String of Pearls'' concept, utilizes potential pipeline routes as the links between all combinations of the source to various sinks. This technique lays the groundwork for future, additional ''String of Pearls'' analyses throughout the SW Partnership and other regions as well.

Brian McPherson

2006-04-01

97

Engineering economic analysis of biomass IGCC with carbon capture and storage  

Microsoft Academic Search

Integration of biomass energy technologies with carbon capture and sequestration could yield useful energy products and negative net atmospheric carbon emissions. We survey the methods of integrating biomass technologies with carbon dioxide capture, and model an IGCC electric power system in detail. Our engineering process model, based on analysis and operational results of the Battelle\\/Future Energy Resources Corporation gasifier technology,

James S. Rhodes; David W. Keith

2005-01-01

98

Fly Ash Characteristics and Carbon Sequestration Potential  

SciTech Connect

Concerns for the effects of global warming have lead to an interest in the potential for inexpensive methods to sequester carbon dioxide (CO2). One of the proposed methods is the sequestration of carbon in soil though the growth of crops or forests.4,6 If there is an economic value placed on sequestration of carbon dioxide in soil there may be an an opportunity and funding to utilize fly ash in the reclamation of mine soils and other degraded lands. However, concerns associated with the use of fly ash must be addressed before this practice can be widely adopted. There is a vast extent of degraded lands across the world that has some degree of potential for use in carbon sequestration. Degraded lands comprise nearly 2 X 109 ha of land throughout the world.7 Although the potential is obviously smaller in the United States, there are still approximately 4 X 106 ha of degraded lands that previously resulted from mining operations14 and an additional 1.4 X 108 ha of poorly managed lands. Thus, according to Lal and others the potential is to sequester approximately 11 Pg of carbon over the next 50 years.1,10 The realization of this potential will likely be dependent on economic incentives and the use of soil amendments such as fly ash. There are many potential benefits documented for the use of fly ash as a soil amendment. For example, fly ash has been shown to increase porosity, water-holding capacity, pH, conductivity, and dissolved SO42-, CO32-, HCO3-, Cl- and basic cations, although some effects are notably decreased in high-clay soils.8,13,9 The potential is that these effects will promote increased growth of plants (either trees or grasses) and result in greater carbon accumulation in the soil than in untreated degraded soils. This paper addresses the potential for carbon sequestration in soils amended with fly ash and examines some of the issues that should be considered in planning this option. We describe retrospective studies of soil carbon accumulation on reclaimed mine lands, leaching studies of fly ash and carbon sorption studies of fly ash.

Palumbo, Anthony V.; Amonette, James E.; Tarver, Jana R.; Fagan, Lisa A.; McNeilly, Meghan S.; Daniels, William L.

2007-07-20

99

Role of Biofilms in Geological Carbon Sequestration  

NASA Astrophysics Data System (ADS)

Geologic sequestration of CO2 involves injection into underground formations including oil beds, deep un-minable coal seams, and deep saline aquifers with temperature and pressure conditions such that CO2 will likely be in the supercritical state. Supercritical CO2 (scCO2) is only slightly soluble in water (approximately 4%) and it is therefore likely that two fluid phases will develop in the subsurface, an aqueous and a supercritical phase. Supercritical CO2 is less dense and much less viscous than water therefore creating the potential for upward leakage of CO2 through fractures, disturbed rock, or cement lining near injection wells. Our research focuses on microbially-based strategies for controlling leakage of CO2 during geologic sequestration and enhancing the process of CO2 trapping. We have demonstrated that engineered microbial biofilms are capable of enhancing formation, mineral, and solubility trapping in carbon sequestration-relevant formation materials. Batch and flow experiments at atmospheric and high pressures (> 74 bar) have shown the ability of microbial biofilms to decrease the permeability of natural and artificial porous media, survive the exposure to scCO2, and facilitate the conversion of gaseous and supercritical CO2 into long-term stable carbonate phases as well as increase the solubility of CO2 in brines. Successful development of these biologically-based concepts could result in microbially enhanced carbon sequestration strategies as well as CO2 leakage mitigation technologies which can be applied either before CO2 injection or as a remedial measure. Acknowledgement: This work was funded by the Zero Emissions Research and Technology (ZERT) program (U.S. DOE Award No. DE-FC26-04NT42262). However any opinions, conclusions, findings or recommendations expressed herein are those of the authors and do not necessarily reflect those of DOE.

Gerlach, Robin; Mitchell, Andrew C.; Spangler, Lee H.; Cunningham, Al B.

2010-05-01

100

Regional Carbon Sequestration Partnerships Initiatives review meeting. Proceedings  

SciTech Connect

A total of 32 papers were presented at the review meeting in sessions entitled: updates on regional characterization activities; CO{sub 2} sequestration with EOR; CO{sub 2} sequestration in saline formations I and II; and terrestrial carbon sequestration field projects. In addition are five introductory papers. These are all available on the website in slide/overview/viewgraph form.

NONE

2006-07-01

101

Erosion of soil organic carbon: implications for carbon sequestration  

USGS Publications Warehouse

Agricultural activities have substantially increased rates of soil erosion and deposition, and these processes have a significant impact on carbon (C) mineralization and burial. Here, we present a synthesis of erosion effects on carbon dynamics and discuss the implications of soil erosion for carbon sequestration strategies. We demonstrate that for a range of data-based parameters from the literature, soil erosion results in increased C storage onto land, an effect that is heterogeneous on the landscape and is variable on various timescales. We argue that the magnitude of the erosion term and soil carbon residence time, both strongly influenced by soil management, largely control the strength of the erosion-induced sink. In order to evaluate fully the effects of soil management strategies that promote carbon sequestration, a full carbon account must be made that considers the impact of erosion-enhanced disequilibrium between carbon inputs and decomposition, including effects on net primary productivity and decomposition rates.

Van Oost, K.; Van Hemelryck, H.; Harden, J.W.

2009-01-01

102

WEST COAST REGIONAL CARBON SEQUESTRATION PARTNERSHIP  

SciTech Connect

The West Coast Regional Carbon Sequestration Partnership is one of seven partnerships which have been established by the US Department of Energy (DOE) to evaluate carbon dioxide capture, transport and sequestration (CT&S) technologies best suited for different regions of the country. The West Coast Region comprises Arizona, California, Nevada, Oregon, Washington, and the North Slope of Alaska. Led by the California Energy Commission, the West Coast Partnership is a consortium of over thirty five organizations, including state natural resource and environmental protection agencies; national labs and universities; private companies working on CO{sub 2} capture, transportation, and storage technologies; utilities; oil and gas companies; nonprofit organizations; and policy/governance coordinating organizations. In an eighteen month Phase I project, the Partnership will evaluate both terrestrial and geologic sequestration options. Work will focus on five major objectives: (1) Collect data to characterize major CO{sub 2} point sources, the transportation options, and the terrestrial and geologic sinks in the region, and compile and organize this data via a geographic information system (GIS) database; (2) Address key issues affecting deployment of CT&S technologies, including storage site permitting and monitoring, injection regulations, and health and environmental risks (3) Conduct public outreach and maintain an open dialogue with stakeholders in CT&S technologies through public meetings, joint research, and education work (4) Integrate and analyze data and information from the above tasks in order to develop supply curves and cost effective, environmentally acceptable sequestration options, both near- and long-term (5) Identify appropriate terrestrial and geologic demonstration projects consistent with the options defined above, and create action plans for their safe and effective implementation A kickoff meeting for the West Coast Partnership was held on Sept 30-Oct.1. Contracts were then put into place with twelve organizations which will carry out the technical work required to meet Partnership objectives.

Larry Myer; Terry Surles; Kelly Birkinshaw

2004-01-01

103

Biochar as a viable carbon sequestration option: Global and Canadian perspective  

Microsoft Academic Search

Biochar production and mixing in soil are seen as the best options for atmospheric carbon sequestration, providing simultaneous benefits to soil and opportunities for distributed energy generation. The proximity of biomass source and biochar dispersal greatly reduces the energy and emissions footprint of the whole process. The viability of the whole biochar process is examined from two boundary points: is

Darko Matovic

2011-01-01

104

The Midwest Regional Carbon Sequestration Partnership (MRCSP)  

SciTech Connect

This final report summarizes the Phase I research conducted by the Midwest regional Carbon Sequestration Partnership (MRCSP). The Phase I effort began in October 2003 and the project period ended on September 31, 2005. The MRCSP is a public/private partnership led by Battelle with the mission of identifying the technical, economic, and social issues associated with implementation of carbon sequestration technologies in its seven state geographic region (Indiana, Kentucky, Maryland, Michigan, Ohio, Pennsylvania, and West Virginia) and identifying viable pathways for their deployment. It is one of seven partnerships that together span most of the U.S. and parts of Canada that comprise the U.S. Department of Energy's (DOE's) Regional Carbon Sequestration Program led by DOE's national Energy Technology Laboratory (NETL). The MRCSP Phase I research was carried out under DOE Cooperative Agreement No. DE-FC26-03NT41981. The total value of Phase I was $3,513,513 of which the DOE share was $2,410,967 or 68.62%. The remainder of the cost share was provided in varying amounts by the rest of the 38 members of MRCSP's Phase I project. The next largest cost sharing participant to DOE in Phase I was the Ohio Coal Development Office within the Ohio Air Quality Development Authority (OCDO). OCDO's contribution was $100,000 and was contributed under Grant Agreement No. CDO/D-02-17. In this report, the MRCSP's research shows that the seven state MRCSP region is a major contributor to the U. S. economy and also to total emissions of CO2, the most significant of the greenhouse gases thought to contribute to global climate change. But, the research has also shown that the region has substantial resources for sequestering carbon, both in deep geological reservoirs (geological sequestration) and through improved agricultural and land management practices (terrestrial sequestration). Geological reservoirs, especially deep saline reservoirs, offer the potential to permanently store CO2 for literally 100s of years even if all the CO2 emissions from the region's large point sources were stored there, an unlikely scenario under any set of national carbon emission mitigation strategies. The terrestrial sequestration opportunities in the region have the biophysical potential to sequester up to 20% of annual emissions from the region's large point sources of CO2. This report describes the assumptions made and methods employed to arrive at the results leading to these conclusions. It also describes the results of analyses of regulatory issues in the region affecting the potential for deployment of sequestration technologies. Finally, it describes the public outreach and education efforts carried out in Phase I including the creation of a web site dedicated to the MRCSP at www.mrcsp.org.

James J. Dooley; Robert Dahowski; Casie Davidson

2005-12-01

105

Carbon sequestration potential of tropical pasture compared with afforestation in Panama  

E-print Network

Carbon sequestration potential of tropical pasture compared with afforestation in Panama S E B) to estimate the carbon sequestration potential of tropical pasture compared with afforestation; and (3 show the potential for considerable carbon sequestration of tropical afforestation and highlight

Potvin, Catherine

106

Invitation to Present, Sponsor, and Attend Geologic Carbon Sequestration Site Integrity: Characterization and  

E-print Network

Invitation to Present, Sponsor, and Attend Geologic Carbon Sequestration Site Integrity and long-term sustainability of geologic carbon sequestration sites depends upon the ability on geologic carbon sequestration site monitoring. The management framework and costs will be similar

Daniels, Jeffrey J.

107

75 FR 33613 - Notice of the Carbon Sequestration-Geothermal Energy-Science Joint Workshop  

Federal Register 2010, 2011, 2012, 2013

...Renewable Energy Notice of the Carbon Sequestration--Geothermal Energy...ACTION: Notice of the Carbon Sequestration--Geothermal Energy...Office of Fossil Energy-Carbon Sequestration Program will be holding...

2010-06-14

108

ANALYSIS OF ENHANCED COALBED METHANE RECOVERY THROUGH CARBON SEQUESTRATION IN THE CENTRAL  

E-print Network

ANALYSIS OF ENHANCED COALBED METHANE RECOVERY THROUGH CARBON SEQUESTRATION IN THE CENTRAL recovered. Carbon sequestration, therefore, allows the utilization of unexploited mineral resources while potential of coalbed methane production using carbon dioxide sequestration in the Central Appalachian Basin

109

Computational Geosciences Improved Semi-Analytical Simulation of Geological Carbon Sequestration  

E-print Network

Computational Geosciences Improved Semi-Analytical Simulation of Geological Carbon Sequestration of Geological Carbon Sequestration Article Type: Manuscript Keywords: Semi-Analytical Modeling; Iterative Methods; Geological Carbon Sequestration; Injection Site Assessment Corresponding Author: Brent Cody

Bau, Domenico A.

110

Carbon Dioxide Sequestration Industrial-scale processes are available for separating carbon dioxide from the post-  

E-print Network

Carbon Dioxide Sequestration Industrial-scale processes are available for separating carbon dioxide dioxide separation and sequestration because the lower cost of carbon dioxide separation from for injection of carbon dioxide into oil or gas-bearing formations. An advantage of sequestration involving

111

Carbon Sequestration and Its Role in the Global Carbon Cycle Geophysical Monograph Series 183  

E-print Network

73 Carbon Sequestration and Its Role in the Global Carbon Cycle Geophysical Monograph Series 183. Blaine Metting2 The purpose of this chapter is to review terrestrial biological carbon sequestration Northwest National Laboratory, Richland, Washington, USA. #12;74 TERRESTRIAL BIOLOGICAL CARBON SEqUESTRATION

Pennycook, Steve

112

CARBON SEQUESTRATION ON SURFACE MINE LANDS  

SciTech Connect

An area planted in 2004 on Bent Mountain in Pike County was shifted to the Department of Energy project to centralize an area to become a demonstration site. An additional 98.3 acres were planted on Peabody lands in western Kentucky and Bent Mountain to bring the total area under study by this project to 556.5 acres as indicated in Table 2. Major efforts this quarter include the implementation of new plots that will examine the influence of differing geologic material on tree growth and survival, water quality and quantity and carbon sequestration. Normal monitoring and maintenance was conducted and additional instrumentation was installed to monitor the new areas planted.

Donald H. Graves; Christopher Barton; Richard Sweigard; Richard Warner

2005-06-22

113

?????????????????????????????????????????????????????????????????????????????????????????? EFFECT OF MIXED NITROGEN FERTILIZER ON CARBON SEQUESTRATION OF SOME PHOTO-INSENSITIVE RICE VARIETIES IN PADDY FIELD, PATHUM  

Microsoft Academic Search

This research studied regarding the carbon sequestration growing the photo- insensitive in the irrigated paddy fields within the central plain. In the sample mixed nitrogen fertilizers content were applied. The samples were collected during growth stages. The evaluation of carbon contents in the plants was done from the biomass. In addition, carbon contents in soils were studied in soil organic

THANI PROVINCE; Nuanchan Eaimpraphan; Charlie Navanugraha

114

Trading Water for Carbon with Biological Carbon Sequestration  

Microsoft Academic Search

Carbon sequestration strategies highlight tree plantations without considering their full environmental consequences. We combined field research, synthesis of more than 600 observations, and climate and economic modeling to document substantial losses in stream flow, and increased soil salinization and acidification, with afforestation. Plantations decreased stream flow by 227 millimeters per year globally (52%), with 13% of streams drying completely for

Robert B. Jackson; Esteban G. Jobbagy; Roni Avissar; Somnath Baidya Roy; Damian J. Barrett; Charles W. Cook; Kathleen A. Farley; David C. le Maitre; Bruce A. McCarl; Brian C. Murray

2005-01-01

115

Black carbon sequestration as an alternative to bioenergy  

Microsoft Academic Search

Most policy and much research concerning the application of biomass to reduce global warming gas emissions has concentrated either on increasing the Earth's reservoir of biomass or on substituting biomass for fossil fuels, with or without CO2 sequestration. Suggested approaches entail varied risks of impermanence, delay, high costs, and unknowable side-effects. An under-researched alternative approach is to extract from biomass

Malcolm Fowles

2007-01-01

116

Carbon sequestration in California agriculture, 1980-2000.  

PubMed

To better understand agricultural carbon fluxes in California, USA, we estimated changes in soil carbon and woody material between 1980 and 2000 on 3.6 x 10(6) ha of farmland in California. Combining the CASA (Carnegie-Ames-Stanford Approach) model with data on harvest indices and yields, we calculated net primary production, woody production in orchard and vineyard crops, and soil carbon. Over the 21-yr period, two trends resulted in carbon sequestration. Yields increased an average of 20%, corresponding to greater plant biomass and more carbon returned to the soils. Also, orchards and vineyards increased in area from 0.7 x 10(6) ha to 1.0 x 10(6) ha, displacing field crops and sequestering woody carbon. Our model estimates that California's agriculture sequestered an average of 19 g C x m(-2) x yr(-1). Sequestration was lowest in non-rice annual cropland, which sequestered 9 g C x m(-2) x yr(-1) of soil carbon, and highest on land that switched from annual cropland to perennial cropland. Land that switched from annual crops to vineyards sequestered 68 g C x m(-2) x yr(-1), and land that switched from annual crops to orchards sequestered 85 g C x m(-2) x yr(-1). Rice fields, because of a reduction in field burning, sequestered 55 g C x m(-2) x yr(-1) in the 1990s. Over the 21 years, California's 3.6 x 10(6) ha of agricultural land sequestered 11.0 Tg C within soils and 3.5 Tg C in woody biomass, for a total of 14.5 Tg C statewide. This is equal to 0.7% of the state's total fossil fuel emissions over the same time period. If California's agriculture adopted conservation tillage, changed management of almond and walnut prunings, and used all of its orchard and vineyard waste wood in the biomass power plants in the state, California's agriculture could offset up to 1.6% of the fossil fuel emissions in the state. PMID:17069388

Kroodsma, David A; Field, Christopher B

2006-10-01

117

Biomass Supply and Carbon Accounting for  

E-print Network

Biomass Supply and Carbon Accounting for Southeastern Forests February 2012 #12;This Biomass Supply and Carbon Accounting for Southeastern Forests study was conducted by the Biomass Energy Resource Center Biomass Energy Resource Center Kamalesh Doshi Biomass Energy Resource Center Hillary Emick Biomass Energy

118

Big Sky Carbon Sequestration Partnership--Phase I  

Microsoft Academic Search

The Big Sky Carbon Sequestration Partnership, led by Montana State University, is comprised of research institutions, public entities and private sectors organizations, and the Confederated Salish and Kootenai Tribes and the Nez Perce Tribe. Efforts under this Partnership in Phase I are organized into four areas: (1) Evaluation of sources and carbon sequestration sinks that will be used to determine

Susan M. Capalbo

2006-01-01

119

Big Sky Carbon Sequestration Partnership--Phase I  

Microsoft Academic Search

The Big Sky Carbon Sequestration Partnership, led by Montana State University, is comprised of research institutions, public entities and private sectors organizations, and the Confederated Salish and Kootenai Tribes and the Nez Perce Tribe. Efforts under this Partnership in Phase I are organized into four areas: (1) Evaluation of sources and carbon sequestration sinks that will be used to determine

Susan M. Capalbo

2005-01-01

120

Carbon dioxide sequestration in concrete in different curing environments  

E-print Network

Carbon dioxide sequestration in concrete in different curing environments Y.-m. Chun, T.R. Naik, USA ABSTRACT: This paper summarizes the results of an investigation on carbon dioxide (CO2) sequestration in concrete. Concrete mixtures were not air entrained. Concrete mixtures were made containing

Wisconsin-Milwaukee, University of

121

Carbon Sequestration: Enhanced Evaluation of Uncertainty  

NASA Astrophysics Data System (ADS)

Carbon capture and sequestration (CCS) is an option to mitigate impacts of atmospheric carbon emission. Initial studies indicate that for long-term geologic storage of carbon to be effective, the leakage rates must be less than 0.1 - 0.01%/yr. Recent efforts have been made to apply the existing probabilistic performance assessment (PA) methodology developed for deep nuclear waste geologic repositories to evaluate the effectiveness of subsurface carbon storage. However, to address the most pressing management, regulatory, and scientific concerns with subsurface carbon storage (CS), the existing PA methodology and tools must be enhanced and upgraded. For example, in the evaluation of a nuclear waste repository, a PA model is essentially a forward model that samples input parameters and runs multiple realizations to estimate future consequences and determine important parameters driving the system performance. In the CS evaluation, however, a PA model must be able to run both forward and inverse calculations to support real-time site monitoring as an integral part of the design and operational phases. The monitoring data must be continually fused into the PA model through model inversion and parameter estimation. Model calculations will in turn guide the design of optimal monitoring and carbon-injection strategies (e.g., in terms of monitoring techniques, locations, and time intervals). This study formulates the advanced PA concept for CS systems and establishes a prototype PA framework for the concept. The new PA framework includes a built-in optimization capability for model parameterization and monitoring system design. The capabilities of this framework will be demonstrated with a hypothetical CS system. The work lays the foundation for the development of a new generation of PA tools for effective management of CS activities. The work supports energy security and climate change/adaptation by furthering the capability to effectively manage proposed carbon capture and sequestration activities (both research and development as well as operational), and it greatly enhances the technical capability to address this national problem. This work focuses on conceptual development and the feasibility demonstration of the concept. This initial work links an existing reservoir simulator (TOUGH2) with an uncertainty and optimization code (DAKOTA), and then performs PA calculations for a simple hypothetical carbon storage (CS) system. These calculations demonstrate the key capabilities of the PA framework for uncertainty quantification, sensitivity analysis, and system optimization. Preliminary analyses were conducted to optimize natural system parameters including caprock properties, as well as engineering system parameters including the carbon injection rates. The next phase of the work will include more detailed application of the model system to carbon storage systems.

McNeish, J. A.; Wang, Y.; Dewars, T.; Hadgu, T.; Jove Colon, C. F.; Sun, A.

2010-12-01

122

HOW TO HARVEST TREES WHILE MAXIMIZING CARBON SEQUESTRATION  

EPA Science Inventory

The expected result of this project is a methodology to increase carbon sequestration through forest management and policy analysis. The decision analysis model will demonstrate tradeoffs between carbon storage and net present value through a joint productions possibilities c...

123

Agricultural Encroachment: Implications for Carbon Sequestration in Tropical African Wetlands  

NASA Astrophysics Data System (ADS)

Tropical wetlands have been shown to exhibit high rates of net primary productivity and may therefore play an important role in global climate change mitigation through carbon assimilation and sequestration. Many permanently flooded areas of tropical East Africa are dominated by the highly productive C4 emergent macrophyte sedge, Cyperus papyrus L. (papyrus). However, increasing population densities around wetland margins in East Africa are reducing the extent of papyrus coverage due to the planting of subsistence crops such as Cocoyam (Colocasia esculenta). We have assessed the impact of this land use change on the carbon cycle in theis wetland environment. Eddy covariance techniques were used, on a campaign basis, to measure fluxes of carbon dioxide over both papyrus and cocoyam dominated wetlands located on the Ugandan shore of Lake Victoria. The integration of flux data over the annual cycle shows that papyrus wetlands have the potential to act as a sink for significant amounts of carbon, in the region of 10 t C ha-1 yr-1. The cocoyam vegetation was found to assimilate ~7 t C ha-1 yr-1 but when carbon exports from crop biomass removal were taken into account these wetlands represent a significant net loss of carbon of similar magnitude. The development of sustainable wetland management strategies are therefore required in order to promote the dual wetland function of crop production and the mitigation of greenhouse gas emissions especially under future climate change scenarios.

Jones, M. B.; Saunders, M.; Kansiime, F.

2013-12-01

124

Modeling carbon sequestration in afforestation, agroforestry and forest management projects: the CO2FIX V.2 approach  

Microsoft Academic Search

The paper describes the Version 2 of the CO2FIX (CO2FIX V.2) model, a user-friendly tool for dynamically estimating the carbon sequestration potential of forest management, agroforesty and afforestation projects. CO2FIX V.2 is a multi-cohort ecosystem-level model based on carbon accounting of forest stands, including forest biomass, soils and products. Carbon stored in living biomass is estimated with a forest cohort

Omar R. Maseraa; J. F. Garza-Caligaris; M. Kanninen; T. Karjalainen; J. Liski; G. J. Nabuurs; A. Pussinen; B. H. J. de Jong; G. M. J. Mohren

2003-01-01

125

Investigations into Wetland Carbon Sequestration as Remediation for Global Warming  

SciTech Connect

Wetlands can potentially sequester vast amounts of carbon. However, over 50% of wetlands globally have been degraded or lost. Restoration of wetland systems may therefore result in increased sequestration of carbon. Preliminary results of our investigations into atmospheric carbon sequestration by restored coastal wetlands indicate that carbon can be sequestered in substantial quantities in the first 2-50 years after restoration of natural hydrology and sediment accretion processes.

Thom, Ronald M.; Blanton, Susan L.; Borde, Amy B.; Williams, Greg D.; Woodruff, Dana L.; Huesemann, Michael H.; KW Nehring and SE Brauning

2002-01-01

126

Carbon dioxide sequestration as stable carbonate minerals - environmental barriers  

NASA Astrophysics Data System (ADS)

This paper considers the major environmental impacts associated with industrial-scale carbon dioxide sequestration as stable carbonate minerals, material resulting from a study undertaken by CSMA Consultants Ltd. in 1999. The chemical bonding of carbon dioxide, through reaction of two or more products to produce magnesium or calcium carbonate has been suggested as a means to mitigate CO2 from fossil fuel power plants. The study considered six potential methods for sequestering carbon dioxide, notionally captured from fossil fuel burning power stations, as stable mineral carbonates, i.e. magnesite and limestone (calcium carbonate) and as sodium bicarbonate. Four methods were eliminated in the initial screening and two were selected for further detailed consideration. Following this stage the overall environmental costs, including environmental impacts, energy and carbon dioxide balances, meant that all the current technologies amenable to reasoned consideration had to be discarded as currently environmentally unacceptable.

Haywood, H.; Eyre, J.; Scholes, H.

2001-11-01

127

Received 28 Apr 2013 | Accepted 9 Sep 2013 | Published 15 Oct 2013 Earthworms facilitate carbon sequestration through  

E-print Network

carbon sequestration through unequal amplification of carbon stabilization compared with mineralization carbon would entirely reflect the earthworms' contribution to net carbon sequestration. We show how two widespread earthworm invaders affect net carbon sequestration through impacts on the balance of carbon

Neher, Deborah A.

128

Animals as an indicator of carbon sequestration and valuable landscapes  

PubMed Central

Abstract Possibilities of the assessment of a landscape with the use of succession development stages, monitored with the value of the Mean Individual Biomass (MIB) of carabid beetles and the occurrence of bird species are discussed on the basis of an example from Poland. Higher variability of the MIB value in space signifies a greater biodiversity. Apart from the variability of MIB, it is suggested to adopt the occurrence of the following animals as indicators, (in the order of importance), representing underlying valuable landscapes: black stork, lesser spotted eagle, white-tailed eagle, wolf, crane and white stork. The higher number of these species and their greater density indicate a higher value of the landscape for biodiversity and ecosystem services, especially carbon sequestration. All these indicators may be useful to assess measures for sustainable land use. PMID:21738434

Szyszko, Jan; Schwerk, Axel; Malczyk, Jaroslaw

2011-01-01

129

Carbon Dioxide Sequestration in Concrete Using Vacuum-Carbonation Alain Azar, Prof. Yixin Shao  

E-print Network

Carbon Dioxide Sequestration in Concrete Using Vacuum-Carbonation Alain Azar, Prof. Yixin Shao promising carbon uptake results and is a viable option for carbonation curing. Carbon sequestration increase in Carbon dioxide (CO2) emissions over the past five decades, specific ways to reduce

Barthelat, Francois

130

Assessing The Effectiveness Of Soil Carbon Sequestration In North America  

NASA Astrophysics Data System (ADS)

Soil carbon sequestration has been shown to be an important part of a portfolio of carbon sequestration strategies in the U.S. and Canada, and one that can be implemented at relatively low costs. This analysis focuses on the estimate of carbon sequestration in soil as a result of a change from conventional plow tillage (CT) to no-till (NT) in North America and the resulting uptake of CO2 from 1981-2000. We use the terrestrial component of the Integrated Science Assessment Model (ISAM-2), which simulates carbon and nitrogen fluxes as well as the interactions between carbon cycle and nitrogen cycle within the terrestrial biosphere at a 0.5o x 0.5o spatial resolution. To estimate carbon sequestration in soils, following a change in cropland management from CT to NT, we implement empirically-based sequestration estimates, or CMR curves in the ISAM. The CMR curves are based on the mean annual change in soil carbon over the expected duration of active sequestration. These empirical relationships have been developed for changes from CT to NT for five different climate regions, which are consistent with those used in the IPCC guidelines for carbon accounting. To calculate sequestration rates in North America, we use the measured area under NT over the period 1981- 2000. Cropland management (CT to NT) is accompanied by changes in CO2 concentration, climate, land use and land cover, and nitrogen deposition. Since these changes affect carbon and nitrogen cycles, and the interaction between them, which could augment or lessen carbon sequestration, we take a holistic approach to study carbon sequestration by incorporating major environmental changes.

Jain, A. K.; Yang, X.; Post, W.

2006-12-01

131

SOUTHEAST REGIONAL CARBON SEQUESTRATION PARTNERSHIP (SECARB)  

SciTech Connect

The Southeast Regional Carbon Sequestration Partnership (SECARB) is on schedule and within budget projections for the work completed during the first year of its two year program. Work during the semiannual period (third and fourth quarter) of the project (April 1--September 30, 2004) was conducted within a ''Task Responsibility Matrix.'' Under Task 1.0 Define Geographic Boundaries of the Region, Texas and Virginia were added during the second quarter of the project and no geographical changes occurred during the third or fourth quarter of the project. Under Task 2.0 Characterize the Region, general mapping and screening of sources and sinks has been completed, with integration and Geographical Information System (GIS) mapping ongoing. The first step focused on the macro level characterization of the region. Subsequent characterization will focus on smaller areas having high sequestration potential. Under Task 3.0 Identify and Address Issues for Technology Deployment, SECARB has completed a preliminary assessment of safety, regulatory, permitting, and accounting frameworks within the region to allow for wide-scale deployment of promising terrestrial and geologic sequestration approaches. Under Task 4.0 Develop Public Involvement and Education Mechanisms, SECARB has conducted a survey and focus group meeting to gain insight into approaches that will be taken to educate and involve the public. Task 5.0 and 6.0 will be implemented beginning October 1, 2004. Under Task 5.0 Identify the Most Promising Capture, Sequestration, and Transport Options, SECARB will evaluate findings from work performed during the first year and shift the focus of the project team from region-wide mapping and characterization to a more detailed screening approach designed to identify the most promising opportunities. Under Task 6.0 Prepare Action Plans for Implementation and Technology Validation Activity, the SECARB team will develop an integrated approach to implementing and setting up measurement, monitoring and verification (MMV) programs for the most promising opportunities. During this semiannual period special attention was provided to Texas and Virginia, which were added to the SECARB region, to ensure a smooth integration of activities with the other 9 states. Milestones completed and submitted during the third and fourth quarter included: Q3-FY04--Complete initial development of plans for GIS; and Q4-FYO4--Complete preliminary action plan and assessment for overcoming public perception issues.

Kenneth J. Nemeth

2004-09-01

132

Carbon Sequestration in San Francisco Bay Tidal Wetlands  

NASA Astrophysics Data System (ADS)

Many tidal wetlands accumulate soil carbon at relatively rapid rates, in large part because they build soil to counteract increases in sea-level rise. There is growing policy interest in carbon sequestration within tidal wetlands as California and other states consider incorporating tidal wetland restoration activities into carbon trading programs or other emission-reduction policies. Our research was designed to establish a baseline for carbon credits for tidal wetland restoration in the San Francisco Bay Estuary. We measured sediment accretion and carbon sequestration rates at six natural tidal wetlands representing the salinity and geographical range of the Estuary. These sites serve as potential analogs for long-term carbon sequestration in restored wetlands. We collected six cores at each natural wetland (two transects with three stations each). This approach allowed us to identify spatial variation both within and among wetlands in the Estuary. Cores from natural wetlands were dated using 137Cs and 210Pb. Although accretion rates could not be measured at restored wetlands, cores were also collected from two restored wetlands for comparison of soil organic matter and bulk density. Most sites accreted 0.3-0.5 cm/yr, with slightly higher rates of accretion at low marsh stations. Carbon sequestration rates averaged approximately 80 g/m2/yr over the 100-year time span of 210Pb and were slightly higher for 137Cs-based rates. Variation in long-term carbon sequestration rates across sites and stations was much smaller than the variation in mineral inputs, and there was little difference in sequestration rates among sites, or across stations within sites, indicating that a single carbon sequestration rate could be used for crediting tidal wetland restoration projects within the Estuary. Surface soil organic matter and bulk density values were similar across natural and restored wetlands, supporting the use of carbon sequestration data from natural wetlands as a surrogate for future carbon sequestration in restored tidal wetlands. Given the need for long-term carbon burial to receive credits within the carbon trading program, we recommend that carbon credit accounting be based on sequestration rates obtained from 210Pb or other long-term dating methods. Sequestration rates that are based on short-term accretion are likely to overestimate carbon sequestration over a century time-scale because much of the short-term accumulation will be eventually lost to belowground decomposition.

Callaway, J.; Borgnis, E.; Turner, R. E.; Milan, C.

2012-12-01

133

Exploring the Role of Plant Genetics to Enhance Soil Carbon Sequestration in Hybrid Poplar Plantations  

NASA Astrophysics Data System (ADS)

Atmospheric CO2 concentrations have increased in recent decades and are projected to increase even further during the coming century. These projections have prompted scientists and policy-makers to consider how plants and soils can be used to stabilize CO2 concentrations. Although storing carbon in terrestrial ecosystems represents an attractive near-term option for mitigating rising atmospheric CO2 concentrations, enhancing the sequestration potential of managed systems will require advancements in understanding the fundamental mechanisms that control rates of carbon transfer and turnover in plants and soils. To address this challenge, a mathematical model was constructed to evaluate how changes in particular plant traits and management practices could affect soil carbon storage beneath hybrid poplar (Populus) plantations. The model was built from four sub-models that describe aboveground biomass, root biomass, soil carbon dynamics, and soil nitrogen transformations for trees growing throughout a user-defined rotation. Simulations could be run over one or multiple rotations. A sensitivity analysis of the model indicated changes in soil carbon storage were affected by variables that could be linked to hybrid poplar traits like rates of aboveground production, partitioning of carbon to coarse and fine roots, and rates of root decomposition. A higher ratio of belowground to aboveground production was especially important and correlated directly with increased soil carbon storage. Faster decomposition rates for coarse and fine dead roots resulted in a greater loss of carbon to the atmosphere as CO2 and less residual organic carbon for transfer to the fast soil carbon pool. Hence, changes in root chemistry that prolonged dead root decomposition rates, a trait that is under potential genetic control, were predicted to increase soil carbon storage via higher soil carbon inputs. Nitrogen limitation of both aboveground biomass production and soil carbon sequestration was also predicted by the model and poplar genotypes with higher nitrogen use efficiency could be more beneficial to soil carbon sequestration at sites where there is a strong nitrogen limitation on poplar production. Site specific properties that were independent of plant traits, like initial soil carbon stocks and the turnover times of different soil carbon pools, were also important to predicted rates of soil carbon accrual and point to the importance of future model-based and empirical studies of genotype x site interactions in predictions of soil carbon sequestration under hybrid poplar plantations. Based on these simulations, we suggest that conventional plant breeding or marker-aided selection or advance genomic approaches could be used to enhance rates of soil carbon sequestration in managed hybrid poplar plantations.

Wullschleger, S. D.; Garten, C. T.; Classen, A. T.

2008-12-01

134

The Fluid Mechanics of Carbon Dioxide Sequestration  

NASA Astrophysics Data System (ADS)

Humans are faced with a potentially disastrous global problem owing to the current emission of 32 gigatonnes of carbon dioxide (CO2) annually into the atmosphere. A possible way to mitigate the effects is to store CO2 in large porous reservoirs within the Earth. Fluid mechanics plays a key role in determining both the feasibility and risks involved in this geological sequestration. We review current research efforts looking at the propagation of CO2 within the subsurface, the possible rates of leakage, the mechanisms that act to stably trap CO2, and the geomechanical response of the crust to large-scale CO2 injection. We conclude with an outline for future research.

Huppert, Herbert E.; Neufeld, Jerome A.

2014-01-01

135

Engineering carbon materials from the hydrothermal carbonization process of biomass.  

PubMed

Energy shortage, environmental crisis, and developing customer demands have driven people to find facile, low-cost, environmentally friendly, and nontoxic routes to produce novel functional materials that can be commercialized in the near future. Amongst various techniques, the hydrothermal carbonization (HTC) process of biomass (either of isolated carbohydrates or crude plants) is a promising candidate for the synthesis of novel carbon-based materials with a wide variety of potential applications. In this Review, we will discuss various synthetic routes towards such novel carbon-based materials or composites via the HTC process of biomass. Furthermore, factors that influence the carbonization process will be analyzed and the special chemical/physical properties of the final products will be discussed. Despite the lack of a clear mechanism, these novel carbonaceous materials have already shown promising applications in many fields such as carbon fixation, water purification, fuel cell catalysis, energy storage, CO(2) sequestration, bioimaging, drug delivery, and gas sensors. Some of the most promising examples will also be discussed here, demonstrating that the HTC process can rationally design a rich family of carbonaceous and hybrid functional carbon materials with important applications in a sustainable fashion. PMID:20217791

Hu, Bo; Wang, Kan; Wu, Liheng; Yu, Shu-Hong; Antonietti, Markus; Titirici, Maria-Magdalena

2010-02-16

136

Comparison of Potential of Two High Spatial Resolution Optical Remote Sensing Data in Estimation of Carbon Sequestration of Vegetation  

NASA Astrophysics Data System (ADS)

The estimation of biomass is one of the hot topics in the present scenario to unveil the quest that how much Carbon dioxide could be sequestrated by vegetation. Climate change modelling requires the rate of terrestrial carbon sequestration. The conventional methods of quantifying carbon sink in forest ecosystem are difficult and time consuming due to its topography and inaccessibility. Advances in Remote sensing and Image Processing have improvised the indirect estimation methods to estimate the amount of carbon stored in soil. The present study aims at the estimation of carbon sequestrated by the rubber plantation of Valiamala area, Thiruvananthapuram. Indirect method of estimating Leaf Area Index (LAI) from two high resolution satellite data, IKONOS and Geoeye-1 image is followed by correlating Normalized Differential Vegetation Index (NDVI) and field based LAI values measured by Plant Canopy Analyzer instrument from the study area. An allometric equation is derived to estimate LAI for the whole study area. The estimated LAI is highly correlated with NDVI map generated. Moreover, soil samples have been collected from equally distributed 15 sample points in the study area for the direct estimation of Total Organic Carbon (TOC) using elemental analysis. Carbon sequestration data for the 12 of the sample location data are used to derive the function of LAI for carbon estimation using multiple linear regression analysis. Remaining 3 sample location data are used to validate the equation derived. The results of the analysis of satellite data are compared for the carbon sequestration. Keywords: Carbon Sequestration, Leaf Area Index, Total Organic Carbon

Prasad, Arun; Singh Rana, Sumit; Lakshmanan, Gnanappazham

2012-07-01

137

Integrating science, economics and law into policy: The case of carbon sequestration in climate change policy  

NASA Astrophysics Data System (ADS)

Carbon sequestration, the extraction and storage of carbon from the atmosphere by biomass, could potentially provide a cost-effective means to reduce net greenhouse gas emissions. The claims on behalf of carbon sequestration may be inadvertently overstated, however. Several key observations emerge from this study. First, although carbon sequestration studies all report results in terms of dollars per ton, the definition of that term varies significantly, meaning that the results of various analyses can not be meaningfully compared. Second, when carbon sequestration is included in an energy-economy model of climate change policy, it appears that carbon sequestration could play a major, if not dominant role in a national carbon emission abatement program, reducing costs of emissions stabilization by as much as 80 percent, saving tens of billions of dollars per year. However, the results are very dependant upon landowners' perceived risk. Studies may also have overstated the potential for carbon sequestration because they have not considered the implementation process. This study demonstrates that three factors will reduce the cost-effectiveness of carbon sequestration. First, the implementation costs associated with measurement and governance of the government-private sector relation are higher than in the case of carbon source control. Second, legal constraints limit the range of instruments that the government can use to induce private landowners to expand their carbon sinks. The government will likely have to pay private parties to expand their sinks, or undertake direct government production. In either case, additional revenues will be required, introducing social costs associated with excess burden. Third, because of the very long time involved in developing carbon sinks (up to several decades) the government may not be able to make credible commitments against exactions of one type or another that would effectively reduce the value of private sector investments in carbon sinks. Consequently, the private sector will increase the rate of return required for participation, increasing the cost of this option. Carbon sequestration can still be a major factor in a national carbon emission abatement program. However, because of the interplay of science, economics and law, the most commonly prescribed environmental policy instruments--marketable allowance and taxes--have little or no direct role to play in the implementation process.

Richards, Kenneth

138

Overview of the United States Priorities and Research Programs on Carbon Sequestration  

E-print Network

Overview of the United States Priorities and Research Programs on Carbon Sequestration M. Karmis' Department of Energy established a Carbon Sequestration Program in 1998, Regional Carbon Sequestration. In conjunction with the Carbon Sequestration Program, the Department of Energy has funded and is funding numerous

139

Permanence Discounting for Land-Based Carbon Sequestration Man-Keun Kim  

E-print Network

Permanence Discounting for Land-Based Carbon Sequestration By Man-Keun Kim Post Doctoral Fellow Discounting for Land-Based Carbon Sequestration 1. Introduction Land-based soil carbon sequestration has been explored the potential of land-based carbon sequestration strategies in the US such as afforestation

McCarl, Bruce A.

140

[Seagrass ecosystems: contributions to and mechanisms of carbon sequestration].  

PubMed

The ocean's vegetated habitats, in particular seagrasses, mangroves and salt marshes, each capture and store a comparable amount of carbon per year, forming the Earth's blue carbon sinks, the most intense carbon sinks on the planet. Seagrass meadows, characterized by high primary productivity, efficient water column filtration and sediment stability, have a pronounced capacity for carbon sequestration. This is enhanced by low decomposition rates in anaerobic seagrass sediments. The carbon captured by seagrass meadows contributes significantly to the total blue carbon. At a global scale, seagrass ecosystems are carbon sink hot spots and have profound influences on the global carbon cycle. This importance combined with the many other functions of seagrass meadows places them among the most valuable ecosystems in the world. Unfortunately, seagrasses are declining globally at an alarming rate owing to anthropogenic disturbances and climate change, making them also among the most threatened ecosystems on the Earth. The role of coastal systems in carbon sequestration has received far too little attention and thus there are still many uncertainties in evaluating carbon sequestration of global seagrass meadows accurately. To better assess the carbon sequestration of global seagrass ecosystems, a number of scientific issues should be considered with high priorities: 1) more accurate measurements of seagrass coverage at national and global levels; 2) more comprehensive research into species- and location-specific carbon sequestration efficiencies; 3) in-depth exploration of the effects of human disturbance and global climate change on carbon capture and storage by seagrass ecosystems. PMID:25223044

Qiu, Guang-Long; Lin, Hsing-Juh; Li, Zong-Shan; Fan, Hang-Qing; Zhou, Hao-Lang; Liu, Guo-Hua

2014-06-01

141

Mechanical effect of adsorption Carbon sequestration and swelling of coal  

E-print Network

Mechanical effect of adsorption Carbon sequestration and swelling of coal Laurent BROCHARD SEQUESTRATION AND SWELLING OF COAL In most scenarios for stabilization of atmospheric greenhouse gas, San Juan Basin (NM), US DOE. (adapted from Pekot & Reeves (2002)) Cause: coal swells more in a CO2

Boyer, Edmond

142

Carbon sequestration and greenhouse gas emissions in urban turf  

Microsoft Academic Search

Undisturbed grasslands can sequester significant quantities of organic carbon (OC) in soils. Irrigation and fertilization enhance CO2 sequestration in managed turfgrass ecosystems but can also increase emissions of CO2 and other greenhouse gases (GHGs). To better understand the GHG balance of urban turf, we measured OC sequestration rates and emission of N2O (a GHG ? 300 times more effective than

Amy Townsend-Small; Claudia I. Czimczik

2010-01-01

143

Land-Use Change, Carbon Sequestration and Poverty Alleviation  

Microsoft Academic Search

In this article, we seek to identify where the greatest potential for synergies between carbon sequestration and poverty alleviation lie and ways they can be enhanced. We assess the amount and eligibility criteria of sequestration payment sources to developing countries. Many land-use changes accessible to low-income land users are potentially competitive in a market where payments are likely to range

Leslie Lipper; Romina Cavatassi

2004-01-01

144

An Overview of Geologic Carbon Sequestration Potential in California  

SciTech Connect

As part of the West Coast Regional Carbon Sequestration Partnership (WESTCARB), the California Geological Survey (CGS) conducted an assessment of geologic carbon sequestration potential in California. An inventory of sedimentary basins was screened for preliminary suitability for carbon sequestration. Criteria included porous and permeable strata, seals, and depth sufficient for critical state carbon dioxide (CO{sub 2}) injection. Of 104 basins inventoried, 27 met the criteria for further assessment. Petrophysical and fluid data from oil and gas reservoirs was used to characterize both saline aquifers and hydrocarbon reservoirs. Where available, well log or geophysical information was used to prepare basin-wide maps showing depth-to-basement and gross sand distribution. California's Cenozoic marine basins were determined to possess the most potential for geologic sequestration. These basins contain thick sedimentary sections, multiple saline aquifers and oil and gas reservoirs, widespread shale seals, and significant petrophysical data from oil and gas operations. Potential sequestration areas include the San Joaquin, Sacramento, Ventura, Los Angeles, and Eel River basins, followed by the smaller Salinas, La Honda, Cuyama, Livermore, Orinda, and Sonoma marine basins. California's terrestrial basins are generally too shallow for carbon sequestration. However, the Salton Trough and several smaller basins may offer opportunities for localized carbon sequestration.

Cameron Downey; John Clinkenbeard

2005-10-01

145

Earthworms facilitate carbon sequestration through unequal amplification of carbon stabilization compared with mineralization  

NASA Astrophysics Data System (ADS)

A recent review concluded that earthworm presence increases CO2 emissions by 33% but does not affect soil organic carbon stocks. However, the findings are controversial and raise new questions. Here we hypothesize that neither an increase in CO2 emission nor in stabilized carbon would entirely reflect the earthworms’ contribution to net carbon sequestration. We show how two widespread earthworm invaders affect net carbon sequestration through impacts on the balance of carbon mineralization and carbon stabilization. Earthworms accelerate carbon activation and induce unequal amplification of carbon stabilization compared with carbon mineralization, which generates an earthworm-mediated ‘carbon trap’. We introduce the new concept of sequestration quotient to quantify the unequal processes. The patterns of CO2 emission and net carbon sequestration are predictable by comparing sequestration quotient values between treatments with and without earthworms. This study clarifies an ecological mechanism by which earthworms may regulate the terrestrial carbon sink.

Zhang, Weixin; Hendrix, Paul F.; Dame, Lauren E.; Burke, Roger A.; Wu, Jianping; Neher, Deborah A.; Li, Jianxiong; Shao, Yuanhu; Fu, Shenglei

2013-10-01

146

Carbon sequestration from boreal wildfires via Pyrogenic Carbon production  

NASA Astrophysics Data System (ADS)

Fire releases important quantities of carbon (C) to the atmosphere. Every year, an average of 460 Million ha burn around the globe, generating C emissions equivalent to a third of the current annual contribution from fossil fuel combustion. Over the longer-term wildfires are widely considered as 'net zero C emission events', because C emissions from fires, excluding those associated with deforestation and peatland fires, are balanced by C uptake by regenerating vegetation. This 'zero C emission' scenario, however, may be flawed, as it does not consider the production of pyrogenic C (PyC). During fire, part of the biomass C burnt is emitted to the atmosphere but part is transformed into PyC (i.e. charcoal). The enhanced resistance of PyC to environmental degradation compared to unburnt biomass gives it the potential to sequester C over the medium/long term. Therefore, after complete regeneration of the vegetation, the PyC generated may represent an additional C pool and, hence, recurring fire-regrowth cycles could represent net sinks of atmospheric C. To estimate the quantitative importance of PyC production, accurate data on PyC generation with respect to the fuel combusted are needed. Unfortunately, detailed quantification of fuel prior to fire is normally only available for prescribed and experimental fires, which are usually of low-intensity and therefore not representative of higher-intensity wildfires. Furthermore, what little data is available is usually based on only a specific fraction of the PyC present following burning rather than the whole range of PyC products and pools (i.e. PyC in soil, ash, downed wood and standing vegetation). To address this research gap, we utilized the globally unique FireSmart experimental forest fires in Northwest Canada. They are aimed to reproduce wildfire conditions typical for boreal forest and, at the same time, allow pre-fire fuel assessment, fire behaviour monitoring and immediate post-fire fuel and PyC inventory. This allowed, for the first time, quantifying the whole range of PyC components found in-situ immediately after a typical boreal forest fire. The fire examined had a fireline intensity of ~8000 kw/m, which is typical of boreal fires in NW Canada and we found that more than 18% of the fuel consumed was converted to PyC. This rate by far exceeds previous estimates (1-3%) and suggests that PyC production has indeed been substantially underestimated. As boreal forests are the world's largest terrestrial biome and contain half of the forest ecosystem C with a third its net primary productivity being consumed by fire every year, our findings could imply that PyC production from wildfires is a potential carbon sequestration mechanism of sufficient magnitude that warrants inclusion in boreal and perhaps global C budget estimations.

Santin, Cristina; Doerr, Stefan; Preston, Caroline

2014-05-01

147

Soil carbon dioxide fluxes in established switchgrass land managed for biomass production  

Microsoft Academic Search

Switchgrass (Panicum virgatum L.) grown for biomass feedstock production has the potential to increase soil C sequestration, and soil CO2 flux in grassland is an important component in the global C budget. The objectives of this study were to: (1) determine the effects of N fertilization and harvest frequency on soil CO2 flux, soil microbial biomass carbon (SMBC), and potentially

D. K. Lee; J. J. Doolittle; V. N. Owens

2007-01-01

148

Mineral CO2 sequestration by steel slag carbonation  

Microsoft Academic Search

Mineral CO2 sequestration, i.e., carbonation of alkaline silicate Ca\\/Mg minerals, analogous to natural weathering processes, is a possible technology for the reduction of carbon dioxide emissions to the atmosphere. In this paper, alkaline Ca-rich industrial residues are presented as a possible feedstock for mineral CO2 sequestration. These materials are cheap, available near large point sources of CO2, and tend to

W. J. J. Huijgen; R. N. J. Comans

2005-01-01

149

Natural CO2 Analogs for Carbon Sequestration  

SciTech Connect

The report summarizes research conducted at three naturally occurring geologic CO{sub 2} fields in the US. The fields are natural analogs useful for the design of engineered long-term storage of anthropogenic CO{sub 2} in geologic formations. Geologic, engineering, and operational databases were developed for McElmo Dome in Colorado; St. Johns Dome in Arizona and New Mexico; and Jackson Dome in Mississippi. The three study sites stored a total of 2.4 billion t (46 Tcf) of CO{sub 2} equivalent to 1.5 years of power plant emissions in the US and comparable in size with the largest proposed sequestration projects. The three CO{sub 2} fields offer a scientifically useful range of contrasting geologic settings (carbonate vs. sandstone reservoir; supercritical vs. free gas state; normally pressured vs. overpressured), as well as different stages of commercial development (mostly undeveloped to mature). The current study relied mainly on existing data provided by the CO{sub 2} field operator partners, augmented with new geochemical data. Additional study at these unique natural CO{sub 2} accumulations could further help guide the development of safe and cost-effective design and operation methods for engineered CO{sub 2} storage sites.

Scott H. Stevens; B. Scott Tye

2005-07-31

150

Mineland reclamation and soil organic carbon sequestration in Ohio  

SciTech Connect

The mining industry has been continuously involved in initiatives to reduce the emission of green house gases in to atmosphere. Control measures have been introduced in all steps starting from the mining of coal to energy production. Reclamation of mined land was and is one of the eco-friendly measures adopted by the industry. Apart from the inherent benefits of reclamation to improve on and offsite environmental quality, its potential to produce biomass and enhance soil organic carbon (SOC) has not been addressed. Reclamative effects of establishing forest and pasture with (graded) and without topsoil (ungraded) application on soil quality and soil carbon sequestration was studied on mine land in Ohio. The SOC pool for 0--30 cm depth for the undisturbed control sites was 56.6 MgC/ha for forest and 66.3 MgC/ha for pasture. In comparison, the SOC pool in the forest and pasture of graded mineland for 0--30 cm depth after 25 years of reclamation was 58.9 MgC/ha and 62.7 MgC/ha respectively. In ungraded mineland, the SOC pool in the 0--30 cm depth after 30 years of reclamation was 51.5 MgC/ha in forest and 58.9 MgC/ha in the pasture.

Akala, V.A.; Lal, R.

1999-07-01

151

Goodbye to carbon neutral: Getting biomass footprints right  

SciTech Connect

Most guidance for carbon footprinting, and most published carbon footprints or LCAs, presume that biomass heating fuels are carbon neutral. However, it is recognised increasingly that this is incorrect: biomass fuels are not always carbon neutral. Indeed, they can in some cases be far more carbon positive than fossil fuels. This flaw in carbon footprinting guidance and practice can be remedied. In carbon footprints (not just of biomass or heating fuels, but all carbon footprints), rather than applying sequestration credits and combustion debits, a 'carbon-stock change' line item could be applied instead. Not only would this make carbon footprints more accurate, it would make them consistent with UNFCCC reporting requirements and national reporting practice. There is a strong precedent for this change. This same flaw has already been recognised and partly remedied in standards for and studies of liquid biofuels (e.g. biodiesel and bioethanol), which now account for land-use change, i.e. deforestation. But it is partially or completely missing from other studies and from standards for footprinting and LCA of solid fuels. Carbon-stock changes can be estimated from currently available data. Accuracy of estimates will increase as Kyoto compliant countries report more land use, land use change and forestry (LULUCF) data.

Johnson, Eric [Atlantic Consulting, Obstgartenstrasse 14, CH-8136 Gattikon (Switzerland)], E-mail: ejohnson@ecosite.co.uk

2009-04-15

152

State and Regional Control of Geological Carbon Sequestration  

SciTech Connect

The United States has economically recoverable coal reserves of about 261 billion tons, which is in excess of a 250-­?year supply based on 2009 consumption rates. However, in the near future the use of coal may be legally restricted because of concerns over the effects of its combustion on atmospheric carbon dioxide concentrations. Carbon capture and geologic sequestration offer one method to reduce carbon emissions from coal and other hydrocarbon energy production. While the federal government is providing increased funding for carbon capture and sequestration, recent congressional legislative efforts to create a framework for regulating carbon emissions have failed. However, regional and state bodies have taken significant actions both to regulate carbon and facilitate its capture and sequestration. This article explores how regional bodies and state government are addressing the technical and legal problems that must be resolved in order to have a viable carbon sequestration program. Several regional bodies have formed regulations and model laws that affect carbon capture and storage, and three bodies comprising twenty-­?three states—the Regional Greenhouse Gas Initiative, the Midwest Regional Greenhouse Gas Reduction Accord, and the Western Climate initiative—have cap-­?and-­?trade programs in various stages of development. State property, land use and environmental laws affect the development and implementation of carbon capture and sequestration projects, and unless federal standards are imposed, state laws on torts and renewable portfolio requirements will directly affect the liability and viability of these projects. This paper examines current state laws and legislative efforts addressing carbon capture and sequestration.

Reitze, Arnold; Durrant, Marie

2011-03-31

153

Microbially induced magnesium carbonation reactions as a strategy for carbon sequestration in ultramafic mine tailings.  

E-print Network

??The atmospheric carbon dioxide (CO2) concentration has increased due to anthropogenic fossil fuel combustion, causing higher global temperatures and other negative environmental effects. CO2 sequestration… (more)

McCutcheon, Jenine

2013-01-01

154

High resolution modeling of direct ocean carbon sequestration  

SciTech Connect

This work has followed two themes: (1) Developing and using the adjoint of the MIT ocean biogeochemistry model to examine the efficiency of carbon sequestration in a global configuration. We have demonstrated the power of the adjoint method for systematic ocean model sensitivity studies. We have shown that the relative efficiency of carbon sequestration in the Atlantic and Pacific basins changes with the period of interest. For decadal to centennial scales, the Pacific is more efficient. On longer timescales the Atlantic is more efficient . (2) We have developed and applied a high-resolution, North Atlantic circulation and tracer model to investigate the role of the mesoscale in controlling sequestration efficiency. We show that the mesoscale eddy field, and its explicit representation, significantly affects the estimated sequestration efficiency for local sources on the Eastern US seaboard.

Michael Follows; John Marshall

2004-04-22

155

Trading water for carbon with biological carbon sequestration  

NASA Astrophysics Data System (ADS)

Carbon sequestration strategies highlight tree plantations without considering their full hydrologic and biogeochemical consequences. We combined field research, synthesis of more than 600 observations, and climate modeling of carbon-priced plantation scenarios for the U.S. to document substantial losses in stream flow and water availability with afforestation. At the catchment scale, plantations decreased stream flow by ~225 mm per year on average (52%), with 13% of streams drying up completely for at least one year. To assess potential climate feedbacks, we first used the Forest and Agricultural Sector Model - Greenhouse Gases (FASOMGHG) to estimate the U.S. lands projected to convert to plantations for C sequestration payments of 50 and 100 U.S.$ per Mg C. We then used the Regional Atmospheric Modeling System (RAMS) to examine potential hydroclimate feedbacks using these economically based scenarios of land use change. Climate simulations showed that plantations typically increased summer evapotranspiration (ET) by >0.3mm per day, decreased summer surface air temperature by as much as 0.3 deg C, and decreased convective and total precipitation by as much as 30 mm per month in the most densely afforested areas compared to the crop and pasture lands they replaced. Regional climate modeling of U.S. plantation scenarios suggests that feedbacks through rainfall or temperature are unlikely to offset water losses from plantations and could even exacerbate them.

Jackson, R. B.; Jobbagy, E. G.; Avissar, R.; Baidya Roy, S.; Barrett, D.; Cook, C. W.; Farley, K. A.; Le Maitre, D.; McCarl, B. A.; Murray, B. C.

2005-12-01

156

Hydrothermal carbonization of lignocellulosic biomass.  

PubMed

Hydrothermal carbonization (HTC) is a novel thermochemical conversion process to convert lignocellulosic biomass into value-added products. HTC processes were studied using two different biomass feedstocks: corn stalk and Tamarix ramosissima. The treatment brought an increase of the higher heating values up to 29.2 and 28.4 MJ/kg for corn stalk and T. ramosissima, respectively, corresponding to an increase of 66.8% and 58.3% as compared to those for the raw materials. The resulting lignite-like solid products contained mainly lignin with a high degree of aromatization and a large amount of oxygen-containing groups. Liquid products extracted with ethyl acetate were analyzed by gas chromatography-mass spectrometry. The identified degradation products were phenolic compounds and furan derivatives, which may be desirable feedstocks for biodiesel and chemical production. Based on these results, HTC is considered to be a potential treatment in a lignocellulosic biomass refinery. PMID:22698445

Xiao, Ling-Ping; Shi, Zheng-Jun; Xu, Feng; Sun, Run-Cang

2012-08-01

157

Carbon Sequestration Potential of Agroforestry Practices in Temperate North America  

Microsoft Academic Search

\\u000a Agroforestry, an ecologically and environmentally sustainable land use, offers great promise to sequester carbon (C). The\\u000a objectives of this chapter are to (1) provide a review of C sequestration opportunities available under various agroforestry\\u000a practices in temperate North America, and (2) estimate C sequestration potential by agroforestry in the US. Since accurate\\u000a land area under agroforestry was not available, the

Ranjith P. Udawatta; Shibu Jose

158

Contribution of Doñana wetlands to carbon sequestration.  

PubMed

Inland and transitional aquatic systems play an important role in global carbon (C) cycling. Yet, the C dynamics of wetlands and floodplains are poorly defined and field data is scarce. Air-water CO2 fluxes in the wetlands of Doñana Natural Area (SW Spain) were examined by measuring alkalinity, pH and other physiochemical parameters in a range of water bodies during 2010-2011. Areal fluxes were calculated and, using remote sensing, an estimate of the contribution of aquatic habitats to gaseous CO2 transport was derived. Semi-permanent ponds adjacent to the large Guadalquivir estuary acted as mild sinks, whilst temporal wetlands were strong sources of CO2 (-0.8 and 36.3 mmol(CO2) m(-2) d(-1)). Fluxes in semi-permanent streams and ponds changed seasonally; acting as sources in spring-winter and mild sinks in autumn (16.7 and -1.2 mmol(CO2) m(-2) d(-1)). Overall, Doñana's water bodies were a net annual source of CO2 (5.2 mol(C) m(-2) y(-1). Up-scaling clarified the overwhelming contribution of seasonal flooding and allochthonous organic matter inputs in determining regional air-water gaseous CO2 transport (13.1 Gg(C) y(-1)). Nevertheless, this estimate is about 6 times < local marsh net primary production, suggesting the system acts as an annual net CO2 sink. Initial indications suggest longer hydroperiods may favour autochthonous C capture by phytoplankton. Direct anthropogenic impacts have reduced the hydroperiod in Doñana and this maybe exacerbated by climate change (less rainfall and more evaporation), suggesting potential for the modification of C sequestration. PMID:23977044

Morris, Edward P; Flecha, Susana; Figuerola, Jordi; Costas, Eduardo; Navarro, Gabriel; Ruiz, Javier; Rodriguez, Pablo; Huertas, Emma

2013-01-01

159

Advancing the Science of Geologic Carbon Sequestration (Registration: www.earthsciences.osu.edu/~jeff/carbseq/carbseq 2009)  

E-print Network

Advancing the Science of Geologic Carbon Sequestration (Registration: www & American Electric Power Agenda March 9 ­ Morning Session 1 ­ Geological Carbon Sequestration: Introductions, AEP) 3. Field Testing: The Laboratory for Geological Carbon Sequestration (Neeraj Gupta, Battelle

Daniels, Jeffrey J.

160

Forest cover, carbon sequestration, and wildlife habitat: policy review and modeling of tradeoffs among land-use  

E-print Network

Forest cover, carbon sequestration, and wildlife habitat: policy review and modeling of tradeoffs and services, including timber production, carbon sequestration and storage, scenic amenities, and wildlife habitat. International efforts to mitigate climate change through forest carbon sequestration

Rissman, Adena

161

Research Spotlight: Exploring storage stability for underground carbon sequestration  

NASA Astrophysics Data System (ADS)

With the world turning on to concerns about global climate change, strategies are being weighed to combat rising atmospheric carbon dioxide levels. One proposed solution is geologic carbon sequestration—storing liquid carbon dioxide deep underground. However, for long-term underground storage of carbon dioxide, stability of the underground reservoirs is a major concern. Selecting the best storage locations requires a detailed understanding of the rock's internal structure. (Geophysical Research Letters, doi:10.1029/2010GL045875, 2011)

Schultz, Colin

2011-03-01

162

On Farm Management and its Effect on Carbon Sequestration  

Microsoft Academic Search

The interest in carbon sequestration in soils is increasing and how different farm management practices affect carbon is of interest to farmers and land managers. Much of the work in the past has been done on experimental plots and not in fields with the management found on producing or working farms. This work reports on studies on farms under normal

J. M. Kimble; S. Samson-Liebig; R. F. Follett

2002-01-01

163

Carbon sequestration in grasslands: grazing versus fire under climate change  

Microsoft Academic Search

We simulated different levels of grazing and frequencies of fire using the biogeochemical model DAYCENT across a climate gradient from Montana to New Mexico to look at their long-term implications on carbon sequestration in grasslands. We also used 3 future climate scenarios and 2 CO2 emission levels to estimate interactions between disturbance and climate. In all cases, total ecosystem carbon

D. M. Bachelet; R. Kelly; W. J. Parton

2009-01-01

164

Assessing the effectiveness of direct injection for ocean carbon sequestration under the influence of climate change  

E-print Network

Assessing the effectiveness of direct injection for ocean carbon sequestration under the influence, ISAM-2.5D. Following the OCMIP carbon sequestration protocol, we carried out a series of carbon., and L. Cao (2005), Assessing the effectiveness of direct injection for ocean carbon sequestration under

Jain, Atul K.

165

Monitoring and verifying agricultural practices related to soil carbon sequestration with satellite imagery  

E-print Network

Monitoring and verifying agricultural practices related to soil carbon sequestration with satellite on agricultural management practices related to carbon sequestration seems more realistic, and analysis practices related to carbon sequestration over large areas. Published by Elsevier B.V. Keywords: Carbon

Lawrence, Rick L.

166

Post-Soviet farmland abandonment, forest recovery, and carbon sequestration in western Ukraine  

E-print Network

Post-Soviet farmland abandonment, forest recovery, and carbon sequestration in western Ukraine T O fluxes in western Ukraine (57 000 km2 ) and to assess the region's future carbon sequestration potential opportunities may exist in other parts of this region. Keywords: carbon flux, carbon sequestration potential

Radeloff, Volker C.

167

First National Conference on Carbon Sequestration Washington, DC, May 14-17, 2001  

E-print Network

First National Conference on Carbon Sequestration Washington, DC, May 14-17, 2001 Caldeira, K for Research on Ocean Carbon Sequestration (DOCS) *Climate and Carbon Cycle Modeling Group, Lawrence Livermore carbon sequestration strategy. Therefore, we want to understand the effectiveness of oceanic injection

168

Version 3 Bioscience1 Enhancement of Carbon Sequestration in U.S. Soils  

E-print Network

Version 3 Bioscience1 Enhancement of Carbon Sequestration in U.S. Soils W.M. Post, R.C. Izaurralde and retain soil carbon can lead to specific manipulations for enhancement of soil C sequestration for an integrated evaluation of soil carbon sequestration methods are presented. Keywords: soil carbon, greenhouse

McCarl, Bruce A.

169

Amazon River enhances diazotrophy and carbon sequestration in the tropical North Atlantic Ocean  

E-print Network

#12;Amazon River enhances diazotrophy and carbon sequestration in the tropical North Atlantic Ocean in carbon sequestration. Here, we report that the Amazon River plume supports N2 fixation far from the mouth of atmospheric carbon to the deep ocean (3), or ``carbon sequestration'' (4). The Amazon River has the largest

Subramaniam, Ajit

170

The effect of ocean acidification on carbon storage and sequestration in seagrass beds; a global and UK context.  

PubMed

Ocean acidification will have many negative consequences for marine organisms and ecosystems, leading to a decline in many ecosystem services provided by the marine environment. This study reviews the effect of ocean acidification (OA) on seagrasses, assessing how this may affect their capacity to sequester carbon in the future and providing an economic valuation of these changes. If ocean acidification leads to a significant increase in above- and below-ground biomass, the capacity of seagrass to sequester carbon will be significantly increased. The associated value of this increase in sequestration capacity is approximately £500 and 600 billion globally between 2010 and 2100. A proportionally similar increase in carbon sequestration value was found for the UK. This study highlights one of the few positive stories for ocean acidification and underlines that sustainable management of seagrasses is critical to avoid their continued degradation and loss of carbon sequestration capacity. PMID:25103900

Garrard, Samantha L; Beaumont, Nicola J

2014-09-15

171

Organized Research Unit (ORU) on Carbon Capture and Sequestration: Meeting the Needs of the Energy Sector  

E-print Network

Organized Research Unit (ORU) on Carbon Capture and Sequestration: Meeting the Needs of the Energy of an Organized Research Unit (ORU) on Carbon Capture and Sequestration (CCS). The purpose of this effort

Zhou, Chongwu

172

CONFERENCE PROCEEDINGS EIGHTH ANNUAL CONFERENCE ON CARBON CAPTURE AND SEQUESTRATION -DOE/NETL  

E-print Network

CONFERENCE PROCEEDINGS EIGHTH ANNUAL CONFERENCE ON CARBON CAPTURE AND SEQUESTRATION - DOE/NETL May ON CARBON CAPTURE AND SEQUESTRATION - DOE/NETL May 4 ­ 7, 2009 Abstract Reservoir simulation is the industry

Mohaghegh, Shahab

173

Land-Use Change and Carbon Sinks: Econometric Estimation of the Carbon Sequestration Supply Function  

Microsoft Academic Search

When and if the United States chooses to implement a greenhouse gas reduction program, it will be necessary to decide whether carbon sequestration policies — such as those that promote forestation and discourage deforestation — should be part of the domestic portfolio of compliance activities. We investigate the cost of forest-based carbon sequestration. In contrast with previous approaches, we econometrically

Ruben N. Lubowski; Andrew J. Plantinga; Robert N. Stavins

2005-01-01

174

Peatland geoengineering: an alternative approach to terrestrial carbon sequestration.  

PubMed

Terrestrial and oceanic ecosystems contribute almost equally to the sequestration of ca 50 per cent of anthropogenic CO(2) emissions, and already play a role in minimizing our impact on Earth's climate. On land, the majority of the sequestered carbon enters soil carbon stores. Almost one-third of that soil carbon can be found in peatlands, an area covering just 2-3% of the Earth's landmass. Peatlands are thus well established as powerful agents of carbon capture and storage; the preservation of archaeological artefacts, such as ancient bog bodies, further attest to their exceptional preservative properties. Peatlands have higher carbon storage densities per unit ecosystem area than either the oceans or dry terrestrial systems. However, despite attempts over a number of years at enhancing carbon capture in the oceans or in land-based afforestation schemes, no attempt has yet been made to optimize peatland carbon storage capacity or even to harness peatlands to store externally captured carbon. Recent studies suggest that peatland carbon sequestration is due to the inhibitory effects of phenolic compounds that create an 'enzymic latch' on decomposition. Here, we propose to harness that mechanism in a series of peatland geoengineering strategies whereby molecular, biogeochemical, agronomical and afforestation approaches increase carbon capture and long-term sequestration in peat-forming terrestrial ecosystems. PMID:22869805

Freeman, Christopher; Fenner, Nathalie; Shirsat, Anil H

2012-09-13

175

Woody encroachment reduces nutrient limitation and promotes soil carbon sequestration  

PubMed Central

During the past century, the biomass of woody species has increased in many grassland and savanna ecosystems. As many of these species fix nitrogen symbiotically, they may alter not only soil nitrogen (N) conditions but also those of phosphorus (P). We studied the N-fixing shrub Dichrostachys cinerea in a mesic savanna in Zambia, quantifying its effects upon pools of soil N, P, and carbon (C), and availabilities of N and P. We also evaluated whether these effects induced feedbacks upon the growth of understory vegetation and encroaching shrubs. Dichrostachys cinerea shrubs increased total N and P pools, as well as resin-adsorbed N and soil extractable P in the top 10-cm soil. Shrubs and understory grasses differed in their foliar N and P concentrations along gradients of increasing encroachment, suggesting that they obtained these nutrients in different ways. Thus, grasses probably obtained them mainly from the surface upper soil layers, whereas the shrubs may acquire N through symbiotic fixation and probably obtain some of their P from deeper soil layers. The storage of soil C increased significantly under D. cinerea and was apparently not limited by shortages of either N or P. We conclude that the shrub D. cinerea does not create a negative feedback loop by inducing P-limiting conditions, probably because it can obtain P from deeper soil layers. Furthermore, C sequestration is not limited by a shortage of N, so that mesic savanna encroached by this species could represent a C sink for several decades. We studied the effects of woody encroachment on soil N, P, and C pools, and availabilities of N and P to Dichrostachys cinerea shrubs and to the understory vegetation. Both N and P pools in the soil increased along gradients of shrub age and cover, suggesting that N fixation by D. cinerea did not reduce the P supply. This in turn suggests that continued growth and carbon sequestration in this mesic savanna ecosystems are unlikely to be constrained by nutrient limitation and could represent a C sink for several decades. PMID:24834338

Blaser, Wilma J; Shanungu, Griffin K; Edwards, Peter J; Olde Venterink, Harry

2014-01-01

176

Woody encroachment reduces nutrient limitation and promotes soil carbon sequestration.  

PubMed

During the past century, the biomass of woody species has increased in many grassland and savanna ecosystems. As many of these species fix nitrogen symbiotically, they may alter not only soil nitrogen (N) conditions but also those of phosphorus (P). We studied the N-fixing shrub Dichrostachys cinerea in a mesic savanna in Zambia, quantifying its effects upon pools of soil N, P, and carbon (C), and availabilities of N and P. We also evaluated whether these effects induced feedbacks upon the growth of understory vegetation and encroaching shrubs. Dichrostachys cinerea shrubs increased total N and P pools, as well as resin-adsorbed N and soil extractable P in the top 10-cm soil. Shrubs and understory grasses differed in their foliar N and P concentrations along gradients of increasing encroachment, suggesting that they obtained these nutrients in different ways. Thus, grasses probably obtained them mainly from the surface upper soil layers, whereas the shrubs may acquire N through symbiotic fixation and probably obtain some of their P from deeper soil layers. The storage of soil C increased significantly under D. cinerea and was apparently not limited by shortages of either N or P. We conclude that the shrub D. cinerea does not create a negative feedback loop by inducing P-limiting conditions, probably because it can obtain P from deeper soil layers. Furthermore, C sequestration is not limited by a shortage of N, so that mesic savanna encroached by this species could represent a C sink for several decades. We studied the effects of woody encroachment on soil N, P, and C pools, and availabilities of N and P to Dichrostachys cinerea shrubs and to the understory vegetation. Both N and P pools in the soil increased along gradients of shrub age and cover, suggesting that N fixation by D. cinerea did not reduce the P supply. This in turn suggests that continued growth and carbon sequestration in this mesic savanna ecosystems are unlikely to be constrained by nutrient limitation and could represent a C sink for several decades. PMID:24834338

Blaser, Wilma J; Shanungu, Griffin K; Edwards, Peter J; Olde Venterink, Harry

2014-04-01

177

Carbon sequestration: An underexploited environmental benefit of agroforestry systems  

Microsoft Academic Search

Agroforestry has importance as a carbon sequestration strategy because of carbon storage potential in its multiple plant species\\u000a and soil as well as its applicability in agricultural lands and in reforestation. The potential seems to be substantial; but\\u000a it has not been even adequately recognized, let alone exploited. Proper design and management of agroforestry practices can\\u000a make them effective carbon

F. Montagnini; P. K. R. Nair

2004-01-01

178

Carbon storage and sequestration by urban trees in the USA  

Microsoft Academic Search

Based on field data from 10 USA cities and national urban tree cover data, it is estimated that urban trees in the coterminous USA currently store 700 million tonnes of carbon ($14,300 million value) with a gross carbon sequestration rate of 22.8 million tC\\/yr ($460 million\\/year). Carbon storage within cities ranges from 1.2 million tC in New York, NY, to

David J. Nowak; Daniel E. Crane

2002-01-01

179

Simultaneous leaching and carbon sequestration in constrained aqueous solutions  

SciTech Connect

The behavior of metal ions leaching and precipitated mineral phases of metal-rich fly ash (FA) was examined in order to evaluate microbial impacts on carbon sequestration and metal immobilization. The leaching solutions consisted of aerobic deionized water (DW) and artificial eutrophic water (AEW) that was anaerobic, organic- and mineral-rich, and higher salinity as is typical of bottom water in eutrophic algae ponds. The Fe- and Ca-rich FAs were predominantly composed of quartz, mullite, portlandite, calcite, hannebachite, maghemite, and hematite. After 86 days, only Fe and Ca contents exhibited a decrease in leaching solutions while other major and trace elements showed increasing or steady trends in preference to the type of FA and leaching solution. Ca-rich FA showed strong carbon sequestration efficiency ranging up to 32.3 g CO(2)/kg FA after 86 days, corresponding to almost 65% of biotic carbon sequestration potential under some conditions. Variations in the properties of FAs such as chemical compositions, mineral constituents as well as the type of leaching solution impacted CO(2) capture. Even though the relative amount of calcite increased sixfold in the AEW and the relative amount of mineral phase reached 37.3 wt% using Ca-rich FA for 86 days, chemical sequestration did not accomplish simultaneous precipitation and sequestration of several heavy metals.

Phelps, Tommy Joe [ORNL; Moon, Ji Won [ORNL; Roh, Yul [Chonnam National University, Gwangju; Cho, Kyu Seong [ORNL

2011-01-01

180

Looking ahead: Research agenda for the study of carbon sequestration  

NASA Astrophysics Data System (ADS)

The purpose of this chapter is to summarize the greatest scientific obstacles faced by the geologic sequestration community at this time and to suggest a research agenda that addresses the major scientific and policy gaps. This chapter focuses on geologic sequestration because although underground storage appears to lack the tremendous political resistance faced by deliberate oceanic sequestration, it poses a greater set of technical challenges than surface (terrestrial) sequestration. Geologic sequestration faces several major obstacles. Probably the greatest obstacle lies with risk assessment of fundamental CO2 trapping mechanisms, including hydrostratigraphic trapping, solubility trapping, residual gas trapping, and mineral trapping. New research is particularly needed to provide better resolution of trapping failure modes. Another major scientific challenge is effective monitoring of the "intermediate zone," defined as the section between the top seal of the intended storage reservoir and ˜100 m from the surface. Another scientific challenge of geologic carbon sequestration is induced seismicity. Previous and ongoing injection projects illustrate that induced seismicity is a real risk, but careful characterization and engineering should facilitate the ability to control it. On the other hand, previous studies suggest it is easier to predict where earthquakes will not occur than where they will occur. Thus, a critical research need is to identify how and why some sites are more prone to induced seismicity than others. Finally, with respect to the practical application of geologic sequestration and associated policy, this chapter identifies major gaps and simple suggestions to fill those gaps. These gaps include the lack of a thorough carbon sequestration site rating and certification system that fulfills all possible technical and nontechnical requirements. Finally, at the time of publication of this book, standard risk assessment protocols and capacity estimation protocols do not exist; accordingly, most ongoing test projects utilize different approaches. Establishing rigorous and consistent protocols for risk and capacity should be a priority for the community, before large-scale geologic sequestration projects are implemented. This chapter summarizes these and other basic research needs for geological sequestration to advance. Commercial-scale geologic sequestration is possible, but only with effective science and engineering as well as meaningful regulations to guide deployment.

McPherson, Brian J.

181

CARBON SEQUESTRATION FROM REMOTELY-SENSED NDVI AND NET ECOSYSTEM EXCHANGE  

E-print Network

Chapter 8 CARBON SEQUESTRATION FROM REMOTELY- SENSED NDVI AND NET ECOSYSTEM EXCHANGE E. Raymond sampling to determine areas of carbon sequestration. With large areas of the globe covered by rangelands, the potential for carbon sequestration may be significant. R. S. Muttiah (ed.), From Laboratory Spectroscopy

Hunt Jr., E. Raymond

182

Modeling Impacts of Management on Carbon Sequestration and Trace Gas Emissions in Forested  

E-print Network

Modeling Impacts of Management on Carbon Sequestration and Trace Gas Emissions in Forested Wetland-DNDC, was modified to enhance its capacity to predict the impacts of management practices on carbon sequestration nonnegligible roles in mitigation in comparison with carbon sequestration. Forests are recognized for having

183

Pathways to Adoption of Carbon Capture and Sequestration in India: Technologies and Policies  

E-print Network

Pathways to Adoption of Carbon Capture and Sequestration in India: Technologies and Policies, Technology and Policy Program #12;2 #12;Pathways to Carbon Capture and Sequestration in India: Technologies to control India's emissions will have to be a global priority. Carbon capture and sequestration (CCS) can

184

ECONOMIC MODELING OF THE GLOBAL ADOPTION OF CARBON CAPTURE AND SEQUESTRATION TECHNOLOGIES  

E-print Network

ECONOMIC MODELING OF THE GLOBAL ADOPTION OF CARBON CAPTURE AND SEQUESTRATION TECHNOLOGIES J. R. Mc of carbon capture and sequestration technologies as applied to electric generating plants. The MIT Emissions, is used to model carbon capture and sequestration (CCS) technologies based on a natural gas combined cycle

185

An Assessment of Carbon Sequestration in Ecosystems of the Western United  

E-print Network

An Assessment of Carbon Sequestration in Ecosystems of the Western United States.J., and Bergamaschi, B.A., 2012, An assessment of carbon sequestration in ecosystems of the Western United States ........................................................................ 11 #12;This page intentionally blank #12;Chapter 1. An Assessment of Carbon Sequestration

Fleskes, Joe

186

Evaluating the options for carbon sequestration Clair Gough and Simon Shackley  

E-print Network

Evaluating the options for carbon sequestration Clair Gough and Simon Shackley Tyndall Centre for carbon sequestration Tyndall Centre Technical Report No. 2 November 2002 This is the final report from Tyndall research project IT1.22 (Carbon sequestration: a pilot stage multi-criteria evaluation

Watson, Andrew

187

On-Farm Carbon Sequestration Can Farmers Employ it to Make Some Money?  

E-print Network

On-Farm Carbon Sequestration Can Farmers Employ it to Make Some Money? Tanveer A. Butt and Bruce A to the reduction in GHG emissions through what is known as carbon sequestration, which has gained attention mitigation policy, the comparative potential of carbon sequestration as a GHG mitigation alternative

McCarl, Bruce A.

188

19.1 Introduction Carbon sequestration programs on land and in the  

E-print Network

Chapter 19 19.1 Introduction Carbon sequestration programs on land and in the oceans are gaining sequestration programs emphasize storing carbon in soil organic matter in agri- cultural fields,in woody sequestration and management include the feasibil- ity and permanence of the carbon sequestered, the scale

Jackson, Robert B.

189

Properties of Mutants of Synechocystis sp. Strain PCC 6803 Lacking Inorganic Carbon Sequestration Systems  

E-print Network

Properties of Mutants of Synechocystis sp. Strain PCC 6803 Lacking Inorganic Carbon SequestrationA is the only active inorganic carbon sequestration system showed low activity of HCO3 ­ uptake and grew under the significance of carbon sequestration in dissipating excess light energy. Keywords: CO2 and HCO3 � uptake -- CO2

Roegner, Matthias

190

Sustainability of terrestrial carbon sequestration: A case study in Duke Forest with inversion approach  

E-print Network

Sustainability of terrestrial carbon sequestration: A case study in Duke Forest with inversion of terrestrial carbon (C) sequestration is critical for the success of any policies geared toward stabilizing. Ellsworth, A. Finzi, J. Lichter, and W. H. Schlesinger, Sustainability of terrestrial carbon sequestration

DeLucia, Evan H.

191

Carbon dioxide sequestration: how much and when? Klaus Keller & David McInerney & David F. Bradford  

E-print Network

Carbon dioxide sequestration: how much and when? Klaus Keller & David McInerney & David F. Bradford + Business Media B.V. 2008 Abstract Carbon dioxide (CO2) sequestration has been proposed as a key component fossil fuel requirement of CO2 sequestration, and the growth rate of carbon taxes. In this analytical

Keller, Klaus

192

Silvia Solano's interest in carbon sequestration was first sparked on a six-month internship  

E-print Network

Silvia Solano's interest in carbon sequestration was first sparked on a six-month internship experiments combining EOR with carbon sequestration. "I thought this was a win-win solution," she said. "You of a research team conduct- ing a large-scale test of carbon sequestration. "I knew I wanted to learn more about

Yang, Zong-Liang

193

CHARACTERIZATION OF CENTRAL APPALACHIAN BASIN CBM DEVELOPMENT: POTENTIAL FOR CARBON SEQUESTRATION  

E-print Network

of the carbon sequestration potential of the Pennsylvanian-age coalbeds in the Central Appalachian Basin favorable reservoirs for carbon sequestration due to their thickness, depth, rank, and permeability high gas content should provide the optimum reservoirs for carbon sequestration since these coals

194

Carbon storage and sequestration by trees in urban and community areas of the United States  

E-print Network

Carbon storage and sequestration by trees in urban and community areas of the United States David J forestry Tree cover Forest inventory a b s t r a c t Carbon storage and sequestration by urban trees to determine total urban forest carbon storage and annual sequestration by state and nationally. Urban whole

195

CARBON SEQUESTRATION VIA DIRECT INJECTION Howard J. Herzog, Ken Caldeira, and Eric Adams  

E-print Network

CARBON SEQUESTRATION VIA DIRECT INJECTION Howard J. Herzog, Ken Caldeira, and Eric Adams and sequestration. Carbon sequestration is often associated with the planting of trees. As they mature, the trees INTRODUCTION The build-up of carbon dioxide (CO2) and other greenhouse gases in the Earth's atmosphere has

196

A Review of Forest Carbon Sequestration Cost Studies: A Dozen Years of Research  

Microsoft Academic Search

Researchers have been analyzing the costs of carbon sequestration for approximately twelve years. The purpose of this paper is to critically review the carbon sequestration cost studies of the past dozen years that have evaluated the cost-effectiveness of the forestry option. Several conclusions emerge. While carbon sequestration cost studies all contain essentially the same components they are not comparable on

Kenneth R. Richards; Carrie Stokes

2004-01-01

197

Modeling impacts of carbon sequestration on net greenhouse gas emissions from agricultural soils in China  

E-print Network

Modeling impacts of carbon sequestration on net greenhouse gas emissions from agricultural soils impacts of carbon sequestration on net greenhouse gas emissions from agricultural soils in China, Global Biogeochem. Cycles, 23, GB1007, doi:10.1029/2008GB003180. 1. Introduction [2] Carbon (C) sequestration has

198

Soil carbon sequestration and land-use change: processes and potential  

E-print Network

Soil carbon sequestration and land-use change: processes and potential W . M . P O S T * and K . C that may result in enhanced soil carbon sequestration with changes in land-use and soil management. We carbon accumulation. This data summary provides a guide to approximate rates of SOC sequestration

199

Uncertainty Discounting for Land-Based Carbon Sequestration Man-Keun Kim  

E-print Network

1 Uncertainty Discounting for Land-Based Carbon Sequestration By Man-Keun Kim Post Doctoral Fellow Discounting for Land-Based Carbon Sequestration Abstract The effect of various stochastic factors like weather% to 10% for the East Texas region. #12;3 Uncertainty Discounting for Land-Based Carbon Sequestration 1

McCarl, Bruce A.

200

Back to Exploration 2008 CSPG CSEG CWLS Convention 1 A Computational Model of Catalyzed Carbon Sequestration  

E-print Network

explores the feasibility of catalysis-based carbon sequestration by efficiently and accurately modeling that this method can be scaled to accurately predict the efficacy of such systems for carbon sequestration to help find the most cost effective methods possible. Most carbon sequestration methods are capture

Spiteri, Raymond J.

201

OCEAN CARBON SEQUESTRATION: A CASE STUDY IN PUBLIC AND INSTITUTIONAL PERCEPTIONS  

E-print Network

OCEAN CARBON SEQUESTRATION: A CASE STUDY IN PUBLIC AND INSTITUTIONAL PERCEPTIONS M. A. de and institutional perceptions for future carbon sequestration projects. INTRODUCTION The United States Department scrutiny. DOE, NEDO and NRC agreed to an initial field experiment on ocean carbon sequestration via direct

202

Nonlinear root-derived carbon sequestration across a gradient of nitrogen and phosphorous deposition  

E-print Network

Nonlinear root-derived carbon sequestration across a gradient of nitrogen and phosphorous sequestration of plant-carbon (C) inputs to soil may mitigate rising atmo- spheric carbon dioxide (CO2) concentrations and related climate change but how this sequestration will respond to anthropogenic nitrogen (N

Fierer, Noah

203

What is the optimal heather moorland management regime for carbon sequestration?  

E-print Network

What is the optimal heather moorland management regime for carbon sequestration? Supervisors: Prof, the Muirburn Code has no evidence base with regard to carbon sequestration. Given the increased concern use moorland carbon sequestration to offset emissions, it is essential that the most appropriate land

Guo, Zaoyang

204

An improved strategy to detect CO2 leakage for verification of geologic carbon sequestration  

E-print Network

An improved strategy to detect CO2 leakage for verification of geologic carbon sequestration J. L the success of geologic carbon sequestration projects. To detect subtle CO2 leakage signals, we present), An improved strategy to detect CO2 leakage for verification of geologic carbon sequestration, Geophys. Res

Hilley, George

205

Pre-site Characterization Risk Analysis for Commercial-Scale Carbon Sequestration  

E-print Network

Pre-site Characterization Risk Analysis for Commercial-Scale Carbon Sequestration Zhenxue Dai a probability framework to evaluate subsurface risks associated with commercial-scale carbon sequestration to the atmosphere.1-3 The Big Sky Carbon Sequestration Partnership (BSCSP) is one of seven partnerships tasked

Lu, Zhiming

206

DRAFT, November 2, 1998 Carbon Sequestration via Tree Planting on Agricultural Lands  

E-print Network

1 DRAFT, November 2, 1998 Carbon Sequestration via Tree Planting on Agricultural Lands: An Economic affect program cost and net carbon sequestration. The focus on the provisions of tree planting agreements the cost and net carbon gains under a sequestration program. We will also investigate design aspects

McCarl, Bruce A.

207

Carbon Monoxide from Biomass Burning  

NASA Technical Reports Server (NTRS)

This pair of images shows levels of carbon monoxide at the atmospheric pressure level of 700 millibars (roughly 12,000 feet in altitude) over the continent of South America, as observed by the Measurements Of Pollution In The Troposphere (MOPITT) sensor flying aboard NASA's Terra spacecraft. Data for producing the image on the left were acquired on March 3, 2000, and for the image on the right on September 7, 2000. Blue pixels show low values, yellows show intermediate values, and the red to pink and then white pixels are progressively higher values. In the lefthand image (March 3), notice the fairly low levels of carbon monoxide over the entire continent. The slightly higher equatorial values are the result of burning emissions in sub-Saharan Africa that are convected at the Intertropical Convergence Zone (ITCZ) and spread by the trade winds. Also, notice the effect of the elevated surface topography across the Andes Mountains running north to south along the western coastline. (In this region, white pixels show no data.) In the righthand image (September 7), a large carbon monoxide plume is seen over Brazil, produced primarily by biomass burning across Amazonia and lofted into the atmosphere by strong cloud convection. The generally higher carbon monoxide levels as compared to March are both the result of South American fire emissions and the transport of carbon monoxide across the Atlantic Ocean from widespread biomass burning over Southern Africa. These images were produced using MOPITT data, which are currently being validated. These data were assimilated into an atmospheric chemical transport model using wind vectors provided by the National Center for Environmental Prediction (NCEP). Although there is good confidence in the relative seasonal values and geographic variation measured by MOPITT, that team anticipates their level of confidence will improve further with ongoing intensive validation campaigns and comparisons with in situ and ground-based spectroscopic measurements. Images courtesy David Edwards and John Gille, MOPITT Science Team, NCAR

2002-01-01

208

CARBON SEQUESTRATION ON SURFACE MINE LANDS  

SciTech Connect

The October-December Quarter was dedicated to analyzing the first two years tree planting activities and evaluation of the results. This included the analyses of the species success at each of the sites and quantifying the data for future year determination of research levels. Additional detailed studies have been planned to further quantify total carbon storage accumulation on the research areas. At least 124 acres of new plantings will be established in 2005 to bring the total to 500 acres or more in the study area across the state of Kentucky. During the first 2 years of activities, 172,000 tree seedlings were planted on 257 acres in eastern Kentucky and 77,520 seedlings were planted on 119 acres in western Kentucky. The quantities of each species was discussed in the first Annual Report. A monitoring program was implemented to measure treatment effects on above and below ground C and nitrogen (N) pools and fluxes. A sampling strategy was devised that will allow for statistical comparisons of the various species within planting conditions and sites. Seedling heights and diameters are measured for initial status and re-measured on an annual basis. Leaves were harvested and leaf area measurements were performed. They were then dried and weighed and analyzed for C and N. Whole trees were removed to determine biomass levels and to evaluate C and N levels in all components of the trees. Clip plots were taken to determine herbaceous production and litter was collected in baskets and gathered each month to quantify C & N levels. Soil samples were collected to determine the chemical and mineralogical characterization of each area. The physical attributes of the soils are also being determined to provide information on the relative level of compaction. Hydrology and water quality monitoring is being conducted on all areas. Weather data is also being recorded that measures precipitation values, temperature, relative humidity wind speed and direction and solar radiation. Detailed studies to address specific questions pertaining to carbon flux are continuing.

Donald H. Graves; Christopher Barton; Richard Sweigard; Richard Warner

2005-02-25

209

Economic modeling of carbon capture and sequestration technologies  

E-print Network

As policy makers consider strategies to reduce greenhouse gas emissions, they need to understand the available options and the conditions under which these options become economically attractive. This paper explores the economics of carbon capture and sequestration technologies as applied to electric generating plants. The MIT Emissions Prediction and Policy Analysis (EPPA) model, a general equilibrium model of the world economy, is used to model two of the most promising carbon capture and sequestration (CCS) technologies. The CCS technologies are based on a natural gas combined cycle plant and an integrated coal gasification combined cycle plant. Additionally, the role of natural gas combined cycle plants without capture and sequestration is modeled to represent a rapidly growing generation technology. These technologies have been fully specified within the EPPA model by production functions and we simulate how they perform under different policy scenarios. The results illustrate how changing input prices and general equilibrium effects influence technology choices between gas and coal capture plants and other technologies for electricity production. Results reflect the application of the technologies to the United States. BACKGROUND AND MOTIVATION Heightened concerns about global climate change have aroused interest in carbon capture and sequestration technologies as a means of decreasing the growth rate of atmospheric carbon dioxide concentrations. Projects are already underway to research and implement such

Jim Mcfarland; Howard Herzog; John Reilly; Henry Jacoby

2001-01-01

210

Forest carbon sequestration changes in response to timber harvest  

Microsoft Academic Search

Forest succession contributes to the global terrestrial carbon (C) sink, but changes in C sequestration in response to varied harvest intensities have been debated. The forests of the Central Appalachian region have been aggrading over the past 100 years following widespread clear-cutting that occurred in the early 1900s and these forests are now valuable timberlands. This study compared the history

Sarah C. Davis; Amy E. Hessl; Carrie J. Scott; Mary Beth Adams; Richard B. Thomas

2009-01-01

211

THE POTENTIAL OF CARBON SEQUESTRATION IN SOILS OF SOUTH ASIA  

Microsoft Academic Search

Assessment of the potential of carbon (C) sequestration in soils of 8 countries in South Asia (Afghanistan, Bangladesh, Bhutan, India, Iran, Nepal, Pakistan and Sri Lanka) is made on the basis of the available information on the area and soil C dynamics for different land use and soil management practices. Out of a total land area of 642 million hectares

R. Lal

2004-01-01

212

Land-use change and carbon sinks: Econometric estimation of the carbon sequestration supply function  

SciTech Connect

Increased attention by policy makers to the threat of global climate change has brought with it considerable interest in the possibility of encouraging the expansion of forest area as a means of sequestering carbon dioxide. The marginal costs of carbon sequestration or, equivalently, the carbon sequestration supply function will determine the ultimate effects and desirability of policies aimed at enhancing carbon uptake. In particular, marginal sequestration costs are the critical statistic for identifying a cost-effective policy mix to mitigate net carbon dioxide emissions. We develop a framework for conducting an econometric analysis of land use for the forty-eight contiguous United States and employing it to estimate the carbon sequestration supply function. By estimating the opportunity costs of land on the basis of econometric evidence of landowners' actual behavior, we aim to circumvent many of the shortcomings of previous sequestration cost assessments. By conducting the first nationwide econometric estimation of sequestration costs, endogenizing prices for land-based commodities, and estimating land-use transition probabilities in a framework that explicitly considers the range of land-use alternatives, we hope to provide better estimates eventually of the true costs of large-scale carbon sequestration efforts. In this way, we seek to add to understanding of the costs and potential of this strategy for addressing the threat of global climate change.

Lubowski, Ruben N.; Plantinga, Andrew J.; Stavins, Robert N.

2001-01-01

213

Carbon Sequestration and Turnover in Semiarid Savannas and Dry Forest  

Microsoft Academic Search

Data on carbon and biomass budgets under different land use in tropical savannas and some dry forests are reviewed. Global data show wide ranges of biomass carbon stocks (20-150 Mg C ha-1), net primary production (2-15 Mg C ha-1y-1) and litter production (2-10 Mg C ha-1y-1) for the semiarid tropics. Although ranges for soil carbon are also wide, an average

H. Tiessen; C. Feller; E. V. S. B. Sampaio; P. Garin

1998-01-01

214

Carbon sequestration in the agricultural soils of Europe  

Microsoft Academic Search

In this review, technical and economically viable potentials for carbon sequestration in the agricultural soils of Europe by 2008–2012 are analysed against a business-as-usual scenario. We provide a quantitative estimation of the carbon absorption potential per hectare and the surface of agricultural land that is available and suitable for the implementation of those measures, their environmental effects as well as

Annette Freibauer; Mark D. A Rounsevell; Pete Smith; Jan Verhagen

2004-01-01

215

[Carbon sequestration status of forest ecosystems in Ningxia Hui Autonomous Region].  

PubMed

Based on the data of Ningxia Hui Autonomous Region forest resources inventory, field investigation and laboratory analysis, this paper studied the carbon sequestration status of forest ecosystems in Ningxia region, estimated the carbon density and storage of forest ecosystems, and analyzed their spatial distribution characteristics. The results showed that the biomass of each forest vegetation component was in the order of arbor layer (46.64 Mg x hm(-2)) > litterfall layer (7.34 Mg x hm(-2)) > fine root layer (6.67 Mg x hm(-2)) > shrub-grass layer (0.73 Mg x hm(-2)). Spruce (115.43 Mg x hm(-2)) and Pinus tabuliformis (94.55 Mg x hm(-2)) had higher vegetation biomasses per unit area than other tree species. Over-mature forest had the highest arbor carbon density among the forests with different ages. However, the young forest had the highest arbor carbon storage (1.90 Tg C) due to its widest planted area. Overall, the average carbon density of forest ecosystems in Ningxia region was 265.74 Mg C x hm(-2), and the carbon storage was 43.54 Tg C. Carbon density and storage of vegetation were 27.24 Mg C x hm(-2) and 4.46 Tg C, respectively. Carbon storage in the soil was 8.76 times of that in the vegetation. In the southern part of Ningxia region, the forest carbon storage was higher than in the northern part, where the low C storage was mainly related to the small forest area and young forest age structure. With the improvement of forest age structure and the further implementation of forestry ecoengineering, the forest ecosystems in Ningxia region would achieve a huge carbon sequestration potential. PMID:24984478

Gao, Yang; Jin, Jing-Wei; Cheng, Ji-Min; Su, Ji-Shuai; Zhu, Ren-Bin; Ma, Zheng-Rui; Liu, Wei

2014-03-01

216

ECONOMIC ANALYSIS OF AGRICULTURAL SOIL CARBON SEQUESTRATION: AN INTEGRATED ASSESSMENT APPROACH  

Microsoft Academic Search

This study develops an integrated assessment approach for analysis of the economic potential for carbon sequestration in agricultural soils. By linking a site-specific economic simulation model of agricultural production to a crop ecosystem model, the approach shows the economic efficiency of soil carbon (C) sequestration depends on site-specific opportunity costs of changing production practices and rates of soil C sequestration.

John M. Antle; Susan M. Capalbo; Sian Mooney; Edward T. Elliott; Keith H. Paustian

2001-01-01

217

Mineral sequestration of CO2 by aqueous carbonation of1 coal combustion fly-ash2  

E-print Network

1 Mineral sequestration of CO2 by aqueous carbonation of1 coal combustion fly-ash2 3 G. Montes that could possibly4 contribute to reducing carbon dioxide emissions is the in-situ mineral sequestration (long term5 geological storage) or the ex-situ mineral sequestration (controlled industrial reactors

Paris-Sud XI, Université de

218

Evaluating variable switching and flash methods in modeling carbon sequestration in deep geologic formations  

E-print Network

Evaluating variable switching and flash methods in modeling carbon sequestration in deep geologic performance computing to assess the risks involved in carbon sequestration in deep geologic formations-thermal- chemical processes in variably saturated, non-isothermal porous media is applied to sequestration

Mills, Richard

219

Impact of parameter uncertainty on carbon sequestration modeling  

NASA Astrophysics Data System (ADS)

Geologic carbon sequestration through injection of supercritical carbon dioxide (CO2) into the subsurface is one option to reduce anthropogenic CO¬2 emissions. Widespread industrial-scale deployment, on the order of giga-tonnes of CO2 injected per year, will be necessary for carbon sequestration to make a significant contribution to solving the CO2 problem. Deep saline formations are suitable targets for CO2 sequestration due to their large storage capacity, high injectivity, and favorable pressure and temperature regimes. Due to the large areal extent of saline formations, and the need to inject very large amounts of CO2, multiple sequestration operations are likely to be developed in the same formation. The injection-induced migration of both CO2 and resident formation fluids (brine) needs to be predicted to determine the feasibility of industrial-scale deployment of carbon sequestration. Due to the larger spatial scale of the domain, many of the modeling parameters (e.g., permeability) will be highly uncertain. In this presentation we discuss a sensitivity analysis of both pressure response and CO2 plume migration to variations of model parameters such as permeability, compressibility and temperature. The impact of uncertainty in the stratigraphic succession is also explored. The sensitivity analysis is conducted using a numerical vertically-integrated modeling approach. The Illinois Basin, USA is selected as the test site for this study, due to its large storage capacity and large number of stationary CO2 sources. As there is currently only one active CO2 injection operation in the Illinois Basin, a hypothetical injection scenario is used, where CO2 is injected at the locations of large CO2 emitters related to electricity generation, ethanol production and hydrocarbon refinement. The Area of Review (AoR) is chosen as the comparison metric, as it includes both the CO2 plume size and pressure response.

Bandilla, K.; Celia, M. A.

2013-12-01

220

Rangeland Sequestration Potential Assessment.  

National Technical Information Service (NTIS)

Rangelands occupy approximately half of the world's land area and store greater than 10% of the terrestrial biomass carbon and up to 30% of the global soil organic carbon. Although soil carbon sequestration rates are generally low on rangelands in compari...

G. E. Schuman, G. F. Vance, J. D. Derner, L. Spangler

2011-01-01

221

The impact of atmospheric nitrogen deposition on carbon sequestration in boreal forests  

NASA Astrophysics Data System (ADS)

It is proposed that increases in anthropogenic reactive nitrogen (Nr)-deposition may cause boreal forests to sequester a globally significant quantity of carbon (C); however, long-term data from boreal forests describing how C sequestration responds to realistic levels of chronic Nr-deposition are scarce. Using a long term (14-17 years) stand scale (0.1 ha) N-addition experiment (three levels: 0, 12.5, and 50 kg N ha-1yr-1) in the boreal zone of northern Sweden, we evaluated how chronic N additions altered N uptake and biomass of understory communities, and whether changes in understory communities explained N uptake and C sequestration by trees. We further explored whether N additions resulted in changes in soil C. Our data reveal that N additions resulted in increased C sequestration in both trees and soil (between 20-30 parts C per unit of N), with approximately 1/3 of this C sequestered in the humus layer, and 2/3 in plant biomass. The total quantity of C sequestered per unit N was far less than proposed by some modeling studies, and thus could account for only a very small portion of the unidentified terrestrial sink for anthropogenic CO2.

Gundale, Michael

2014-05-01

222

Monitoring Forest Carbon Sequestration with Remote Sensing and Carbon Cycle Modeling  

E-print Network

Monitoring Forest Carbon Sequestration with Remote Sensing and Carbon Cycle Modeling DAVID P. Carbon-cycle process models cou- pled to regional climate databases can provide information on potential the current status of the global carbon cycle and to meeting re- quirements in the United Nations Framework

Lefsky, Michael

223

Vegetation succession and carbon sequestration in a coastal wetland in northwest Florida: Evidence from carbon isotopes  

E-print Network

Vegetation succession and carbon sequestration in a coastal wetland in northwest Florida: Evidence from carbon isotopes Yonghoon Choi and Yang Wang Department of Geological Sciences, Florida State. Measurements of stable carbon isotopic ratios as well as carbon (C), nitrogen (N), and phosphorus (P) contents

Wang, Yang

224

Carbon Dioxide Hydrate Particles for Ocean Carbon Sequestration  

SciTech Connect

This paper presents strategies for producing negatively buoyant CO{sub 2} hydrate composite particles for ocean carbon sequestration. Our study is based on recent field observations showing that a continuous-jet hydrate reactor located at an ocean depth of 1500 m produced curved negatively buoyant cylindrical particles with diameters {approx} 2.5 cm and lengths up to {approx} 1 m. Accordingly we performed new laboratory experiments to determine the drag coefficient of such particles and, based on the measured drag coefficient and the initial settling velocity observed in the field, have concluded that the reactor efficiency (percentage of liquid CO{sub 2} converted to hydrate) in the field was {approx} 16%. Using the dissolution rates observed in the field, we conclude that such particles would ultimately sink to depth below discharge of {approx} 115 m. We have also predicted the sinking depth of particles potentially produced from various scaled-up reactors and have shown that, for example, a 10 cm diameter particle produced with a hydrate conversion of 50% could reach the ocean bottom before completely dissolving. In a real sequestration scenario, we are interested in following large groups of hydrate particles released continuously. We have previously shown that increasing particle size and hydrate conversion efficiency enhances the sinking of hydrate particle plumes produced by the continuous release of CO{sub 2} in a quiescent ambient, but that a sufficiently strong current will cause the entrained particles to separate from the plume and settle discretely. In the latter case, particles of different sizes and hydrate conversions (hence different settling velocities) will follow different settling trajectories as they dissolve. This particle fractionation, if employed deliberately, spreads the discharged CO{sub 2} in the down current and vertical directions, enhancing mixing, while turbulent diffusion helps spread the CO{sub 2} in the third direction. A numerical model that incorporates these processes is used to predict the downstream concentrations and changes in pH from such particle plumes in a 'strong' current. An extension of this model simulates hydrate particles that are released continuously from a moving ship. Because of the ship speed, such particles would never form a coherent plume, but the combination of particle fractionation and advection due to the ship motion produces excellent dilution of the discharged CO{sub 2}.

Chow, Aaron C. [Massachusetts Institute of Technology (MIT); Adams, E. Eric [Massachusetts Institute of Technology (MIT); Israelsson, P. H. [Quantitative Environmental Analysis; Tsouris, Costas [ORNL

2009-01-01

225

Biologically Enhanced Carbon Sequestration: Research Needs and Opportunities.  

National Technical Information Service (NTIS)

Fossil fuel combustion, deforestation, and biomass burning are the dominant contributors to increasing atmospheric carbon dioxide (CO(sub 2)) concentrations and global warming. Many approaches to mitigating CO(sub 2) emissions are being pursued, and among...

C. M. Oldenburg, M. S. Tom

2008-01-01

226

Soil carbon sequestration in semi-arid soil through the addition of fuel gas desulfurization gypsum (FGDG)  

NASA Astrophysics Data System (ADS)

This study investigated a new strategy for increasing carbon retention in slightly alkaline soils through addition of fuel gas desulfurization gypsum (FGDG, CaSO4•2H2O). FGDG is moderately soluble and thus the FGDG amendment may be effective to reduce microbial respiration, to accelerate calcite (CaCO3) precipitation, and to promote soil organic carbon (SOC) complexation on mineral surfaces, but rates of these processes need to be understood. The effects of FGDG addition were tested in laboratory soil columns with and without FGDG-amended layers, and in greenhouse soil columns planted with switchgrass, a biofuel crop. The results of laboratory column experiments demonstrated that additions of FGDG promote soil carbon sequestration through suppressing microbial respiration to the extent of ~200 g per m2 soil per m of supplied water, and promoting calcite precipitation at similar rates. The greenhouse experiments showed that the FGDG treatments did not adversely affect biomass yield (~600 g dry biomass/m2/harvest) at the higher irrigation rate (50 cm/year), but substantially reduced recoverable biomass under the more water-limited conditions (irrigation rate = 20 cm/year). The main achievements of this study are (1) the identification of conditions in which inorganic and organic carbon sequestration is practical in semi-arid and arid soils, (2) development of a method for measuring the total carbon balance in unsaturated soil columns, and (3) the quantification of different pathways for soil carbon sequestration in response to FGDG amendments. These findings provide information for evaluating land use practices for increased soil carbon sequestration under semi-arid region biofuel crop production.

Han, Young-Soo; Tokunaga, Tetsu; Oh, Chamteut

2014-05-01

227

Land-use change and carbon sinks: Econometric estimation of the carbon sequestration supply function  

Microsoft Academic Search

If the United States chooses to implement a greenhouse gas reduction program, it would be necessary to decide whether to include carbon sequestration policies—such as those that promote forestation and discourage deforestation—as part of the domestic portfolio of compliance activities. We investigate the cost of forest-based carbon sequestration by analyzing econometrically micro-data on revealed landowner preferences, modeling six major private

Ruben N. Lubowski; Andrew J. Plantinga; Robert N. Stavins

2006-01-01

228

Organic carbon sequestration in earthworm burrows  

Microsoft Academic Search

Earthworms strongly affect soil organic carbon cycling. The aim of this study was to determine whether deep burrowing anecic earthworms enhance carbon storage in soils and decrease C turnover. Earthworm burrow linings were separated into thin cylindrical sections with different distances from the burrow wall to determine gradients from the burrow wall to the surrounding soil. Organic C, total N,

Axel Don; Bert Steinberg; Ingo Schöning; Karin Pritsch; Monika Joschko; Gerd Gleixner; Ernst-Detlef Schulze

2008-01-01

229

Carbon Trading Protocols for Geologic Sequestration  

National Technical Information Service (NTIS)

Carbon capture and storage (CCS) could become an instrumental part of a future carbon trading system in the US. If the US starts operating an emissions trading scheme (ETS) similar to that of the European Union's then limits on CO(sub 2) emissions will be...

S. Hoversten

2008-01-01

230

On carbon sequestration in desert ecosystems  

USGS Publications Warehouse

Recent reports of net ecosysytem production >100 g C m-2 yr-1 in deserts are incompatible with existing measurements of net primary production and carbon pools in deserts. The comparisions suggest that gas exchange measurements should be used with caution and better validation if they are expected to indicate the magnitude of carbon sink in these ecosysytems. ?? 2009 Blackwell Publishing.

Schlesinger, W.H.; Belnap, J.; Marion, G.

2009-01-01

231

Interaction effects of climate and land use/land cover change on soil organic carbon sequestration  

E-print Network

Interaction effects of climate and land use/land cover change on soil organic carbon sequestration carbon sequestration Climate change Soil carbon change Historically, Florida soils stored the largest in Florida (FL) have acted as a sink for carbon (C) over the last 40 years. � Climate interacting with land

Grunwald, Sabine

232

Glaciation, aridification, and carbon sequestration in the Permo-Carboniferous: The isotopic record from low latitudes  

E-print Network

Glaciation, aridification, and carbon sequestration in the Permo-Carboniferous: The isotopic record and carbon sequestration in the Late Paleozoic, we have compiled new and published oxygen and carbon isotopic Carboniferous Stable isotopes Carbon cycling Brachiopods To evaluate the isotopic record of climate change

Grossman, Ethan L.

233

Soil organic carbon sequestration potential of cropland in China Zhangcai Qin,1,2  

E-print Network

Soil organic carbon sequestration potential of cropland in China Zhangcai Qin,1,2 Yao Huang,1), Soil organic carbon sequestration potential of cropland in China, Global Biogeochem. Cycles, 27, doi:10 carbon (SOC) in cropland is of great importance to the global carbon (C) balance and to agricultural

Pittendrigh, Barry

234

Dynamics of carbon sequestration in a coastal wetland using radiocarbon measurements  

E-print Network

Dynamics of carbon sequestration in a coastal wetland using radiocarbon measurements Yonghoon Choi1. Wang (2004), Dynamics of carbon sequestration in a coastal wetland using radiocarbon measurements carbon cycle. However, the dynamics of carbon (C) cycling in coastal wetlands and its response to sea

Wang, Yang

235

CARBON SEQUESTRATION IN ARABLE SOILS IS LIKELY TO INCREASE NITROUS OXIDE EMISSIONS, OFFSETTING  

E-print Network

CARBON SEQUESTRATION IN ARABLE SOILS IS LIKELY TO INCREASE NITROUS OXIDE EMISSIONS, OFFSETTING in strategies for climate protection. 1. Introduction Carbon sequestration has been highlighted recently concentration of carbon dioxide (CO2) in the atmo- sphere include sequestering carbon (C) in soils

236

Cost evaluation of CO 2 sequestration by aqueous mineral carbonation  

Microsoft Academic Search

A cost evaluation of CO2 sequestration by aqueous mineral carbonation has been made using either wollastonite (CaSiO3) or steel slag as feedstock. First, the process was simulated to determine the properties of the streams as well as the power and heat consumption of the process equipment. Second, a basic design was made for the major process equipment, and total investment

Wouter J. J. Huijgen; Rob N. J. Comans; Geert-Jan Witkamp

2007-01-01

237

Technological learning for carbon capture and sequestration technologies  

Microsoft Academic Search

This paper analyzes potentials of carbon capture and sequestration technologies (CCT) in a set of long-term energy-economic-environmental scenarios based on alternative assumptions for technological progress of CCT. In order to get a reasonable guide to future technological progress in managing CO2 emissions, we review past experience in controlling sulfur dioxide (SO2) emissions from power plants. By doing so, we quantify

Keywan Riahi; Edward S. Rubin; Margaret R. Taylor; Leo Schrattenholzer; David Hounshell

2004-01-01

238

How strongly can forest management influence soil carbon sequestration?  

Microsoft Academic Search

We reviewed the experimental evidence for long-term carbon (C) sequestration in soils as consequence of specific forest management strategies. Utilization of terrestrial C sinks alleviates the burden of countries which are committed to reducing their greenhouse gas emissions. Land-use changes such as those which result from afforestation and management of fast-growing tree species, have an immediate effect on the regional

Robert Jandl; Marcus Lindner; Lars Vesterdal; B. M. S. D. L. Bauwens; Rainer Baritz; Frank Hagedorn; Dale W. Johnson; Kari Minkkinen; Kenneth A. Byrne

2007-01-01

239

Molecular and Metabolic Mechanisms of Carbon Sequestration in Marine Thrombolites  

NASA Technical Reports Server (NTRS)

The overall goal of my dissertation project has been to examine the molecular processes underlying carbon sequestration in lithifying microbial ecosystems, known as thrombolitic mats, and assess their feasibility for use in bioregenerative life support systems. The results of my research and education efforts funded by the Graduate Student Researchers Program can be summarized in four peer-reviewed research publication, one educational publication, two papers in preparation, and six research presentations at local and national science meetings (see below for specific details).

Mobberley, Jennifer

2013-01-01

240

Biochar for soil fertility and natural carbon sequestration  

USGS Publications Warehouse

Biochar is charcoal (similar to chars generated by forest fires) that is made for incorporation into soils to increase soil fertility while providing natural carbon sequestration. The incorporation of biochar into soils can preserve and enrich soils and also slow the rate at which climate change is affecting our planet. Studies on biochar, such as those cited by this report, are applicable to both fire science and soil science.

Rostad, C.E.; Rutherford, D.W.

2011-01-01

241

Mesoscale carbon sequestration site screening and CCS infrastructure analysis.  

PubMed

We explore carbon capture and sequestration (CCS) at the meso-scale, a level of study between regional carbon accounting and highly detailed reservoir models for individual sites. We develop an approach to CO(2) sequestration site screening for industries or energy development policies that involves identification of appropriate sequestration basin, analysis of geologic formations, definition of surface sites, design of infrastructure, and analysis of CO(2) transport and storage costs. Our case study involves carbon management for potential oil shale development in the Piceance-Uinta Basin, CO and UT. This study uses new capabilities of the CO(2)-PENS model for site screening, including reservoir capacity, injectivity, and cost calculations for simple reservoirs at multiple sites. We couple this with a model of optimized source-sink-network infrastructure (SimCCS) to design pipeline networks and minimize CCS cost for a given industry or region. The CLEAR(uff) dynamical assessment model calculates the CO(2) source term for various oil production levels. Nine sites in a 13,300 km(2) area have the capacity to store 6.5 GtCO(2), corresponding to shale-oil production of 1.3 Mbbl/day for 50 years (about 1/4 of U.S. crude oil production). Our results highlight the complex, nonlinear relationship between the spatial deployment of CCS infrastructure and the oil-shale production rate. PMID:20698546

Keating, Gordon N; Middleton, Richard S; Stauffer, Philip H; Viswanathan, Hari S; Letellier, Bruce C; Pasqualini, Donatella; Pawar, Rajesh J; Wolfsberg, Andrew V

2011-01-01

242

Carbon sequestration and its potential in agricultural soils of China  

NASA Astrophysics Data System (ADS)

Agricultural soils hold potential for the expansion of carbon sequestration. With this in mind, we investigated changes in the soil organic carbon (SOC) on the basis of an analysis of data sets extracted from 146 publications and further projected the SOC sequestration potential in China's cropland. Our results suggest that a significant increase in the SOC occurred in east and north China, while a decrease appeared in northeast China. As a whole, the organic carbon density in the topsoil to 30 cm depth increased by 3.36 (2.54 to 4.26) Mg/ha between 1980 and 2000. Accordingly, the croplands in China that cover an area of over 130 Mha sequestered 437 (331 to 555) Tg C, with an average rate of 21.9 (16.6 to 27.8) Tg/yr, during this period. The potential of SOC sequestration in China was estimated to be 2-2.5 Pg C, which could be achieved by the 2050s if crop production and field management are improved.

Sun, Wenjuan; Huang, Yao; Zhang, Wen; Yu, Yongqiang

2010-09-01

243

A brief overview of carbon sequestration economics and policy.  

PubMed

This article provides an overview of the issues and challenges involved in analyzing the costs and program design for carbon sequestration. The first section examines some of the pitfalls of comparing the results of carbon sequestration cost studies and suggests some simple ways in which analysts could make their results more useful. The pitfalls in comparing studies include different definitions for the summary statistic "dollars per ton," differences in the type of costs that are estimated, and differences in underlying assumptions regarding program design and implementation. Future cost studies will benefit from improved treatment of leakage, general equilibrium interactions, and public finance interactions. The second section reviews issues related to the implementation of a carbon sequestration program, including which policy tools are available and which have received the most attention, some of the challenges for using those policy tools, and one alternative that has received little attention, but may become necessary. The discussion also provides an overview and analysis of the bills introduced in the last two congresses and considers the general policy implications of those proposals. PMID:15453407

Richards, Kenneth R

2004-04-01

244

Carbon sequestration potential in reclaimed mine sites in seven east-central states  

SciTech Connect

Terrestrial systems represent a significant potential carbon (C) sink to help mitigate or offset greenhouse gas emissions. Nearly 3.2 Mha are permitted for mining activities in the United States, which are required to be reclaimed with vegetative cover. While site-specific studies have assessed C accumulation on reclaimed mine sites, regional analyses to estimate potential C increases have not been conducted. For this analysis, potential C sequestration is analyzed on 567000 ha of mine land in a seven-state region reclaimed to cropland, pasture, or forest. Carbon accumulation is estimated for cropland, pasture, and forest soils, forest litter layer, and aboveground biomass by estimating average annual rates of C accumulation from site-specific and general C sequestration studies. The average annual rate of C storage is highest when mine land is reclaimed to forest, where the potential sequestration is 0.7 to 2.2 Tg yr{sup -1}. The C from soils, litter layer, and biomass from mine lands reclaimed to forest represents 0.3 to 1.0% of the 1990 CO{sub 2} emissions from the study region (919 Tg CO{sub 2}). To achieve the greenhouse gas (GHG) emission reduction goal of 7% below the 1990 level as proposed by the Kyoto Treaty requires CO{sub 2} emissions in the study area to be reduced by just over 64 Tg CO{sub 2}. The potential carbon storage in mine sites reclaimed to forest could account for 4 to 12.5% of these required reductions.

Sperow, M. [West Virginia University, Morgantown, WV (United States). Division of Resources Managment

2006-07-15

245

CARBON SEQUESTRATION ON SURFACE MINE LANDS  

SciTech Connect

A monitoring program to measure treatment effects on above ground, and below ground carbon and nitrogen pools for the planting areas is being conducted. The collection of soil and tissue samples from both the 2003 and 2004 plantings is complete and are currently being processed in the laboratory. Detailed studies have been initiated to address specific questions pertaining to carbon cycling. Examinations of decomposition and heterotropic respiration on carbon cycling in the reforestation plots were continued during this reporting period. A whole-tree harvesting method was employed to evaluate carbon accumulation as a function of time on the mined site. The trees were extracted from the sites and separated into the following components: foliage, stems, branches, and roots.

Donald H. Graves; Christopher Barton; Richard Sweigard; Richard Warner

2004-11-30

246

Carbon-sequestration and ecosystem services in the boreal ecoregion of Alaska  

NASA Astrophysics Data System (ADS)

Managing public lands for carbon (C) sequestration is increasingly discussed as a component of national carbon policies. However, management of public land to facilitate carbon sequestration must be considered in the context of other management mandates and the effects on other ecosystem services. Of the United States Fish and Wildlife Service's (USFWS) National Wildlife Refuge lands in Alaska, about 35% are in the boreal ecoregion; primarily in the Intermountain and the Alaska Range Transition ecoregions. These refuges were established to conserve wildlife habitat, fulfill treaty obligations, provide for continued subsistence uses, and ensure necessary water quality and quantity. One of the major factors in determining ecosystem distribution in the boreal ecoregion is disturbance. Fire is the dominant disturbance for Alaska's boreal region. Most USFWS refuge lands are managed with "limited" suppression, where fires burn naturally and are monitored to assure the protection of human life, property, and site specific values (such as historical or religious). However, there is increasing interest in biomass harvest and combustion for local energy production. Harvest and fire can have differing effects on both the spatial and temporal aspects of carbon storage. The current biomass harvest for energy production proposals are considered to be C neutral because they focus on "hazardous" biomass which would burn naturally or in a prescribed burn. The goal of this effort is to explore the relation between C storage and other public land management priorities, as well as, to explore how disturbance type (fire and harvest) affect C storage and boreal ecosystem distribution in the context of wildlife habitat and subsistence use management priorities. We present a conceptual model that defines the linkages among these management priorities, a data gap analysis, and scenarios to be evaluated.

Wang, B.; Manies, K.; Labay, K.; Johnson, W. N.; Harden, J. W.

2011-12-01

247

Evaluating Soil Carbon Sequestration in Central Iowa  

NASA Astrophysics Data System (ADS)

The potential for reducing atmospheric carbon dioxide (CO2) concentration through landuse and management of agricultural systems is of great interest worldwide. Agricultural soils can be a source of CO2 when not properly managed but can also be a sink for sequestering CO2 through proper soil and crop management. The EPIC-CENTURY biogeochemical model was used to simulate the baseline level of soil carbon from soil survey data and project changes in soil organic carbon (SOC) under different tillage and crop management practices for corn and soybean crops. The study was conducted in central Iowa (50 km x 100 km) to simulate changes in soil carbon over the next 50 years. The simulations were conducted in two phases; initially a 25-year period (1971-1995) was simulated using conventional tillage practices since there was a transition in new management after 1995. In the second 25-year period (1996-2020), four different modeling scenarios were applied namely; conventional tillage, mulch tillage, no-tillage and no-tillage with a rye cover crop over the winter. The model simulation results showed potential gains in soil carbon in the top layers of the soil for conservation tillage. The simulations were made at a spatial resolution of 1.6 km x 1.6 km and mapped for the study area. There was a mean reduction in soil organic carbon of 0.095 T/ha per year over the 25-year period starting with 1996 for the conventional tillage practice. However, for management practices of mulch tillage, no tillage and no tillage with cover crop there was an increase in soil organic carbon of 0.12, 0.202 and 0.263 T/ha respectively over the same 25-year period. These results are in general similar to studies conducted in this region.

Doraiswamy, P. C.; Hunt, E. R.; McCarty, G. W.; Daughtry, C. S.; Izaurralde, C.

2005-12-01

248

Sequestration of Martian CO2 by mineral carbonation  

NASA Astrophysics Data System (ADS)

Carbonation is the water-mediated replacement of silicate minerals, such as olivine, by carbonate, and is commonplace in the Earth’s crust. This reaction can remove significant quantities of CO2 from the atmosphere and store it over geological timescales. Here we present the first direct evidence for CO2 sequestration and storage on Mars by mineral carbonation. Electron beam imaging and analysis show that olivine and a plagioclase feldspar-rich mesostasis in the Lafayette meteorite have been replaced by carbonate. The susceptibility of olivine to replacement was enhanced by the presence of smectite veins along which CO2-rich fluids gained access to grain interiors. Lafayette was partially carbonated during the Amazonian, when liquid water was available intermittently and atmospheric CO2 concentrations were close to their present-day values. Earlier in Mars’ history, when the planet had a much thicker atmosphere and an active hydrosphere, carbonation is likely to have been an effective mechanism for sequestration of CO2.

Tomkinson, Tim; Lee, Martin R.; Mark, Darren F.; Smith, Caroline L.

2013-10-01

249

Analysis and Comparison of Carbon Capture & Sequestration Policies  

NASA Astrophysics Data System (ADS)

Several states and countries have adopted or are in the process of crafting policies to enable geologic carbon sequestration projects. These efforts reflect the recognition that existing statutory and regulatory frameworks leave ambiguities or gaps that elevate project risk for private companies considering carbon sequestration projects, and/or are insufficient to address a government’s mandate to protect the public interest. We have compared the various approaches that United States’ state and federal governments have taken to provide regulatory frameworks to address carbon sequestration. A major purpose of our work is to inform the development of any future legislation in California, should it be deemed necessary to meet the goals of Assembly Bill 1925 (2006) to accelerate the adoption of cost-effective geologic sequestration strategies for the long-term management of industrial carbon dioxide in the state. Our analysis shows a diverse issues are covered by adopted and proposed carbon capture and sequestration (CCS) legislation and that many of the new laws focus on defining regulatory frameworks for underground injection of CO2, ambiguities in property issues, or assigning legal liability. While these approaches may enable the progress of early projects, future legislation requires a longer term and broader view that includes a quantified integration of CCS into a government’s overall climate change mitigation strategy while considering potentially counterproductive impacts on CCS of other climate change mitigation strategies. Furthermore, legislation should be crafted in the context of a vision for CCS as an economically viable and widespread industry. While an important function of new CCS legislation is enabling early projects, it must be kept in mind that applying the same laws or protocols in the future to a widespread CCS industry may result in business disincentives and compromise of the public interest in mitigating GHG emissions. Protection of the public interest requires that monitoring and verification track the long term fate of pipelined CO2 regardless of its end use in order to establish that climate change goals are being met.

Burton, E.; Ezzedine, S. M.; Reed, J.; Beyer, J. H.; Wagoner, J. L.

2010-12-01

250

Mechanically Activated Olivine as Feedstock for Ex-situ Carbon Dioxide Sequestration: Preliminary Experiments  

Microsoft Academic Search

Fossil fuel power plants need sequestration to significantly lower CO2 emissions. In nature, Mg- and Ca- rich silicates react with CO2(aq) and perform a natural sequestration by dissolution of silicates and a later precipitation of carbonates. This type of sequestration is environmentally friendly and stable. One severe problem with adopting this method for industrial processes is the slow reaction rate.

A. Haug; I. A. Munz; J. Kihle

2006-01-01

251

1. BACKGROUND & OBJECTIVES For geological carbon sequestration, it is essential to  

E-print Network

1. BACKGROUND & OBJECTIVES · For geological carbon sequestration, it is essential to understand Material Characterization for Intermediate-scale Testing to Develop Strategies for Geologic Sequestration to generate comprehensive data sets. Due to the nature of the CO2 geological sequestration where supercritical

252

Climate Controls on Carbon Sequestration in Eastern North America  

NASA Technical Reports Server (NTRS)

Mid-latitude forest ecosystems have been proposed as a "missing sink" today. The role of soils (including wetlands) in this proposed sink is a very important unknown. In order to make estimates of future climate change effects on carbon storage, we can examine past wetland carbon sequestration. How did past climate change affect net wetland carbon storage? We present long-term data from existing wetland sites used for paleoclimate reconstruction to assess the net carbon storage in wetland over the last 15000 years. During times of colder and wetter climate, many mid-latitude sites show increases in carbon storage, while past warmer, drier climates produced decreases in storage. Comparison among bog, fen, swamp, and tidal marsh are demonstrated for the Hudson Valley region.

Peteet, D. M.; Renik, B.; Maenza-Gmeich, T.; Kurdyla, D.; Guilderson, T.

2002-01-01

253

CARBON SEQUESTRATION ON SURFACE MINE LANDS  

Microsoft Academic Search

The April-June 2004 quarter was dedicated to the establishment of monitoring systems for all the new research areas. Hydrology and water quality monitoring continues to be conducted on all areas as does weather data pertinent to the research. Studies assessing specific questions pertaining to carbon flux has been established and the invasion of the vegetation by small mammals is being

Donald H. Graves; Christopher Barton; Richard Sweigard; Richard Warner

2004-01-01

254

Crop Management for Soil Carbon Sequestration  

Microsoft Academic Search

Reducing emissions of greenhouse gases (GHG) from agriculture is related to increasing and protecting soil organic matter (SOM) concentration. Agricultural soils can be a significant sink for atmospheric carbon (C) through increase of the SOM concentration. The natural ecosystems such as forests or prairies, where C gains are in equilibrium with losses, lose a large fraction of the antecedent C

Marek K. Jarecki; Rattan Lal

2003-01-01

255

Carbon sequestration in tropical agroforestry systems  

Microsoft Academic Search

Removing atmospheric carbon (C) and storing it in the terrestrial biosphere is one of the options, which have been proposed to compensate greenhouse gas (GHG) emissions. Agricultural lands are believed to be a major potential sink and could absorb large quantities of C if trees are reintroduced to these systems and judiciously managed together with crops and\\/or animals. Thus, the

Alain Albrecht; Serigne T Kandji

2003-01-01

256

The urgent need for carbon dioxide sequestration  

Microsoft Academic Search

The danger of global warming has put in question the use of fossil fuels which constitute the most abundant and most reliable energy resource. Meeting the ever growing world demand for cheap energy, while simultaneously achieving the required drastic reduction in COâ emissions can only be accomplished by actively preventing carbon dioxide generated in the combustion of fuels from accumulating

K. S. Lackner; D. P. Butt; R. Jensen; H. Ziock

1998-01-01

257

Global carbon sequestration in tidal, saline wetland soils  

USGS Publications Warehouse

Wetlands represent the largest component of the terrestrial biological carbon pool and thus play an important role in global carbon cycles. Most global carbon budgets, however, have focused on dry land ecosystems that extend over large areas and have not accounted for the many small, scattered carbon-storing ecosystems such as tidal saline wetlands. We compiled data for 154 sites in mangroves and salt marshes from the western and eastern Atlantic and Pacific coasts, as well as the Indian Ocean, Mediterranean Ocean, and Gulf of Mexico. The set of sites spans a latitudinal range from 22.4??S in the Indian Ocean to 55.5??N in the northeastern Atlantic. The average soil carbon density of mangrove swamps (0.055 ?? 0.004 g cm-3) is significantly higher than the salt marsh average (0.039 ?? 0.003 g cm-3). Soil carbon density in mangrove swamps and Spartina patens marshes declines with increasing average annual temperature, probably due to increased decay rates at higher temperatures. In contrast, carbon sequestration rates were not significantly different between mangrove swamps and salt marshes. Variability in sediment accumulation rates within marshes is a major control of carbon sequestration rates masking any relationship with climatic parameters. Globally, these combined wetlands store at least 44.6 Tg C yr-1 and probably more, as detailed areal inventories are not available for salt marshes in China and South America. Much attention has been given to the role of freshwater wetlands, particularly northern peatlands, as carbon sinks. In contrast to peatlands, salt marshes and mangroves release negligible amounts of greenhouse gases and store more carbon per unit area. Copyright 2003 by the American Geophysical Union.

Chmura, G.L.; Anisfeld, S.C.; Cahoon, D.R.; Lynch, J.C.

2003-01-01

258

Soil carbon sequestration to mitigate climate change  

Microsoft Academic Search

The increase in atmospheric concentration of CO2 by 31% since 1750 from fossil fuel combustion and land use change necessitates identification of strategies for mitigating the threat of the attendant global warming. Since the industrial revolution, global emissions of carbon (C) are estimated at 270±30 Pg (Pg=petagram=1015 g=1 billion ton) due to fossil fuel combustion and 136±55 Pg due to

R. Lal

2004-01-01

259

Carbon sequestration in peatland: patterns and mechanisms of response to climate change  

E-print Network

Carbon sequestration in peatland: patterns and mechanisms of response to climate change L I S A R., 2000; Turunen et al., 2002; Kremenetski et al., 2003). Rates of carbon (C) sequestration (i.e., uptake in the climatic water budget is crucial to predicting potential feedbacks on the global carbon (C) cycle. To gain

260

The Effect of Land Use and Its Management Practices on Plant Nutrient Availability and Carbon Sequestration  

E-print Network

on soil degradation on both physical and chemical property of soil as well as on soil carbon sequestration availability and soil carbon sequestration in Bezawit Sub- Watershed, near Bahir Dar, Ethiopia. More The Effect of Land Use and Its Management Practices on Plant Nutrient Availability and Carbon

Walter, M.Todd

261

Oxygen production and carbon sequestration in an upwelling coastal Burke Hales,1  

E-print Network

Oxygen production and carbon sequestration in an upwelling coastal margin Burke Hales,1 Lee Karp), Oxygen production and carbon sequestration in an upwelling coastal margin, Global Biogeochem. Cycles, 20 of particulate organic carbon (POC) and dissolved O2 during the upwelling season off the Oregon coast. Oxygen

Pierce, Stephen

262

Forest Optimal Rotation and Land Expectation Values under Carbon Sequestration and Radiation Budget.  

E-print Network

??International efforts strife to mitigate negative externalities caused by man released greenhouse gasses. Attributing an economical value to forest carbon sequestration might represent is an… (more)

Wei, Hui-Chun

2013-01-01

263

[Variation of forest vegetation carbon storage and carbon sequestration rate in Liaoning Province, Northeast China].  

PubMed

The forest vegetation carbon stock and carbon sequestration rate in Liaoning Province, Northeast China, were predicted by using Canadian carbon balance model (CBM-CFS3) combining with the forest resource data. The future spatio-temporal distribution and trends of vegetation carbon storage, carbon density and carbon sequestration rate were projected, based on the two scenarios, i. e. with or without afforestation. The result suggested that the total forest vegetation carbon storage and carbon density in Liaoning Province in 2005 were 133.94 Tg and 25.08 t x hm(-2), respectively. The vegetation carbon storage in Quercus was the biggest, while in Robinia pseudoacacia was the least. Both Larix olgensis and broad-leaved forests had higher vegetation carbon densities than others, and the vegetation carbon densities of Pinus tabuliformis, Quercus and Robinia pseudoacacia were close to each other. The spatial distribution of forest vegetation carbon density in Liaoning Province showed a decrease trend from east to west. In the eastern forest area, the future increase of vegetation carbon density would be smaller than those in the northern forest area, because most of the forests in the former part were matured or over matured, while most of the forests in the later part were young. Under the scenario of no afforestation, the future increment of total forest vegetation carbon stock in Liaoning Province would increase gradually, and the total carbon sequestration rate would decrease, while they would both increase significantly under the afforestation scenario. Therefore, afforestation plays an important role in increasing vegetation carbon storage, carbon density and carbon sequestration rate. PMID:25129923

Zhen, Wei; Huang, Mei; Zhai, Yin-Li; Chen, Ke; Gong, Ya-Zhen

2014-05-01

264

Big Sky Carbon Sequestration Partnership--Phase I  

SciTech Connect

The Big Sky Carbon Sequestration Partnership, led by Montana State University, is comprised of research institutions, public entities and private sectors organizations, and the Confederated Salish and Kootenai Tribes and the Nez Perce Tribe. Efforts under this Partnership in Phase I are organized into four areas: (1) Evaluation of sources and carbon sequestration sinks that will be used to determine the location of pilot demonstrations in Phase II; (2) Development of GIS-based reporting framework that links with national networks; (3) Design of an integrated suite of monitoring, measuring, and verification technologies, market-based opportunities for carbon management, and an economic/risk assessment framework (referred to below as the Advanced Concepts component of the Phase I efforts); and (4) Initiation of a comprehensive education and outreach program. As a result of the Phase I activities, the groundwork is in place to provide an assessment of storage capabilities for CO{sub 2} utilizing the resources found in the Partnership region (both geological and terrestrial sinks), that complements the ongoing DOE research agenda in Carbon Sequestration. The geology of the Big Sky Carbon Sequestration Partnership Region is favorable for the potential sequestration of enormous volume of CO{sub 2}. The United States Geological Survey (USGS 1995) identified 10 geologic provinces and 111 plays in the region. These provinces and plays include both sedimentary rock types characteristic of oil, gas, and coal productions as well as large areas of mafic volcanic rocks. Of the 10 provinces and 111 plays, 1 province and 4 plays are located within Idaho. The remaining 9 provinces and 107 plays are dominated by sedimentary rocks and located in the states of Montana and Wyoming. The potential sequestration capacity of the 9 sedimentary provinces within the region ranges from 25,000 to almost 900,000 million metric tons of CO{sub 2}. Overall every sedimentary formation investigated has significant potential to sequester large amounts of CO{sub 2}. Simulations conducted to evaluate mineral trapping potential of mafic volcanic rock formations located in the Idaho province suggest that supercritical CO{sub 2} is converted to solid carbonate mineral within a few hundred years and permanently entombs the carbon. Although MMV for this rock type may be challenging, a carefully chosen combination of geophysical and geochemical techniques should allow assessment of the fate of CO{sub 2} in deep basalt hosted aquifers. Terrestrial carbon sequestration relies on land management practices and technologies to remove atmospheric CO{sub 2} where it is stored in trees, plants, and soil. This indirect sequestration can be implemented today and is on the front line of voluntary, market-based approaches to reduce CO{sub 2} emissions. Initial estimates of terrestrial sinks indicate a vast potential for increasing and maintaining soil Carbon (C) on rangelands, and forested, agricultural, and reclaimed lands. Rangelands can store up to an additional 0.05 mt C/ha/yr, while the croplands are on average four times that amount. Estimates of technical potential for soil sequestration within the region in cropland are in the range of 2.0 M mt C/yr over 20 year time horizon. This is equivalent to approximately 7.0 M mt CO{sub 2}e/yr. The forestry sinks are well documented, and the potential in the Big Sky region ranges from 9-15 M mt CO{sub 2} equivalent per year. Value-added benefits include enhanced yields, reduced erosion, and increased wildlife habitat. Thus the terrestrial sinks provide a viable, environmentally beneficial, and relatively low cost sink that is available to sequester C in the current time frame. The Partnership recognizes the critical importance of measurement, monitoring, and verification technologies to support not only carbon trading but all policies and programs that DOE and other agencies may want to pursue in support of GHG mitigation. The efforts in developing and implementing MMV technologies for geological and terrestrial sequestration re

Susan M. Capalbo

2006-01-01

265

Big Sky Carbon Sequestration Partnership--Phase I  

SciTech Connect

The Big Sky Carbon Sequestration Partnership, led by Montana State University, is comprised of research institutions, public entities and private sectors organizations, and the Confederated Salish and Kootenai Tribes and the Nez Perce Tribe. Efforts under this Partnership in Phase I are organized into four areas: (1) Evaluation of sources and carbon sequestration sinks that will be used to determine the location of pilot demonstrations in Phase II; (2) Development of GIS-based reporting framework that links with national networks; (3) Design of an integrated suite of monitoring, measuring, and verification technologies, market-based opportunities for carbon management, and an economic/risk assessment framework (referred to below as the Advanced Concepts component of the Phase I efforts); and (4) Initiation of a comprehensive education and outreach program. As a result of the Phase I activities, the groundwork is in place to provide an assessment of storage capabilities for CO{sub 2} utilizing the resources found in the Partnership region (both geological and terrestrial sinks), that complements the ongoing DOE research agenda in Carbon Sequestration. The geology of the Big Sky Carbon Sequestration Partnership Region is favorable for the potential sequestration of enormous volume of CO{sub 2}. The United States Geological Survey (USGS 1995) identified 10 geologic provinces and 111 plays in the region. These provinces and plays include both sedimentary rock types characteristic of oil, gas, and coal productions as well as large areas of mafic volcanic rocks. Of the 10 provinces and 111 plays, 1 province and 4 plays are located within Idaho. The remaining 9 provinces and 107 plays are dominated by sedimentary rocks and located in the states of Montana and Wyoming. The potential sequestration capacity of the 9 sedimentary provinces within the region ranges from 25,000 to almost 900,000 million metric tons of CO{sub 2}. Overall every sedimentary formation investigated has significant potential to sequester large amounts of CO{sub 2}. Simulations conducted to evaluate mineral trapping potential of mafic volcanic rock formations located in the Idaho province suggest that supercritical CO{sub 2} is converted to solid carbonate mineral within a few hundred years and permanently entombs the carbon. Although MMV for this rock type may be challenging, a carefully chosen combination of geophysical and geochemical techniques should allow assessment of the fate of CO{sub 2} in deep basalt hosted aquifers. Terrestrial carbon sequestration relies on land management practices and technologies to remove atmospheric CO{sub 2} where it is stored in trees, plants, and soil. This indirect sequestration can be implemented today and is on the front line of voluntary, market-based approaches to reduce CO{sub 2} emissions. Initial estimates of terrestrial sinks indicate a vast potential for increasing and maintaining soil Carbon (C) on rangelands, and forested, agricultural, and reclaimed lands. Rangelands can store up to an additional 0.05 mt C/ha/yr, while the croplands are on average four times that amount. Estimates of technical potential for soil sequestration within the region in cropland are in the range of 2.0 M mt C/yr over 20 year time horizon. This is equivalent to approximately 7.0 M mt CO{sub 2}e/yr. The forestry sinks are well documented, and the potential in the Big Sky region ranges from 9-15 M mt CO{sub 2} equivalent per year. Value-added benefits include enhanced yields, reduced erosion, and increased wildlife habitat. Thus the terrestrial sinks provide a viable, environmentally beneficial, and relatively low cost sink that is available to sequester C in the current time frame. The Partnership recognizes the critical importance of measurement, monitoring, and verification technologies to support not only carbon trading but all policies and programs that DOE and other agencies may want to pursue in support of GHG mitigation. The efforts in developing and implementing MMV technologies for geological and terrestrial sequestration re

Susan M. Capalbo

2005-10-01

266

Carbon Trading Protocols for Geologic Sequestration  

SciTech Connect

Carbon capture and storage (CCS) could become an instrumental part of a future carbon trading system in the US. If the US starts operating an emissions trading scheme (ETS) similar to that of the European Union's then limits on CO{sub 2} emissions will be conservative in the beginning stages. The government will most likely start by distributing most credits for free; these free credits are called allowances. The US may follow the model of the EU ETS, which during the first five-year phase distributed 95% of the credits for free, bringing that level down to 90% for the second five-year phase. As the number of free allowances declines, companies will be forced to purchase an increasing number of credits at government auction, or else obtain them from companies selling surplus credits. In addition to reducing the number of credits allocated for free, with each subsequent trading period the number of overall credits released into the market will decline in an effort to gradually reduce overall emissions. Companies may face financial difficulty as the value of credits continues to rise due to the reduction of the number of credits available in the market each trading period. Governments operating emissions trading systems face the challenge of achieving CO{sub 2} emissions targets without placing such a financial burden on their companies that the country's economy is markedly affected.

Hoversten, Shanna

2008-08-07

267

Trace Metal Source Terms in Carbon Sequestration Environments  

SciTech Connect

ABSTRACT: Carbon dioxide sequestration in deep saline and depleted oil geologic formations is feasible and promising; however, possible CO2 or CO2-saturated brine leakage to overlying aquifers may pose environmental and health impacts. The purpose of this study was to experimentally define to provide a range of concentrations that can be used as the trace element source term for reservoirs and leakage pathways in risk simulations. Storage source terms for trace metals are needed to evaluate the impact of brines leaking into overlying drinking water aquifers. The trace metal release was measured from cements and sandstones, shales, carbonates, evaporites, and basalts from the Frio, In Salah, Illinois Basin, Decatur, Lower Tuscaloosa, Weyburn-Midale, Bass Islands, and Grand Ronde carbon sequestration geologic formations. Trace metal dissolution was tracked by measuring solution concentrations over time under conditions (e.g., pressures, temperatures, and initial brine compositions) specific to the sequestration projects. Existing metrics for maximum contaminant levels (MCLs) for drinking water as defined by the U.S. Environmental Protection Agency (U.S. EPA) were used to categorize the relative significance of metal concentration changes in storage environments because of the presence of CO2. Results indicate that Cr and Pb released from sandstone reservoir and shale cap rocks exceed the MCLs byan order of magnitude, while Cd and Cu were at or below drinking water thresholds. In carbonate reservoirs As exceeds the MCLs by an order of magnitude, while Cd, Cu, and Pb were at or below drinking water standards. Results from this study can be used as a reasonable estimate of the trace element source term for reservoirs and leakage pathways in risk simulations to further evaluate the impact of leakage on groundwater quality.

Karamalidis, Athanasios; Torres, Sharon G.; Hakala, Jacqueline A.; Shao, Hongbo; Cantrell, Kirk J.; Carroll, Susan A.

2013-01-01

268

Trace metal source terms in carbon sequestration environments.  

PubMed

Carbon dioxide sequestration in deep saline and depleted oil geologic formations is feasible and promising; however, possible CO(2) or CO(2)-saturated brine leakage to overlying aquifers may pose environmental and health impacts. The purpose of this study was to experimentally define a range of concentrations that can be used as the trace element source term for reservoirs and leakage pathways in risk simulations. Storage source terms for trace metals are needed to evaluate the impact of brines leaking into overlying drinking water aquifers. The trace metal release was measured from cements and sandstones, shales, carbonates, evaporites, and basalts from the Frio, In Salah, Illinois Basin, Decatur, Lower Tuscaloosa, Weyburn-Midale, Bass Islands, and Grand Ronde carbon sequestration geologic formations. Trace metal dissolution was tracked by measuring solution concentrations over time under conditions (e.g., pressures, temperatures, and initial brine compositions) specific to the sequestration projects. Existing metrics for maximum contaminant levels (MCLs) for drinking water as defined by the U.S. Environmental Protection Agency (U.S. EPA) were used to categorize the relative significance of metal concentration changes in storage environments because of the presence of CO(2). Results indicate that Cr and Pb released from sandstone reservoir and shale cap rocks exceed the MCLs by an order of magnitude, while Cd and Cu were at or below drinking water thresholds. In carbonate reservoirs As exceeds the MCLs by an order of magnitude, while Cd, Cu, and Pb were at or below drinking water standards. Results from this study can be used as a reasonable estimate of the trace element source term for reservoirs and leakage pathways in risk simulations to further evaluate the impact of leakage on groundwater quality. PMID:23215015

Karamalidis, Athanasios K; Torres, Sharon G; Hakala, J Alexandra; Shao, Hongbo; Cantrell, Kirk J; Carroll, Susan

2013-01-01

269

Phylogenetic variation of phytolith carbon sequestration in bamboos.  

PubMed

Phytoliths, the amorphous silica deposited in plant tissues, can occlude organic carbon (phytolith-occluded carbon, PhytOC) during their formation and play a significant role in the global carbon balance. This study explored phylogenetic variation of phytolith carbon sequestration in bamboos. The phytolith content in bamboo varied substantially from 4.28% to 16.42%, with the highest content in Sasa and the lowest in Chimonobambusa, Indocalamus and Acidosasa. The mean PhytOC production flux and rate in China's bamboo forests were 62.83 kg CO2 ha(-1) y(-1) and 4.5 × 10(8)kg CO2 y(-1), respectively. This implies that 1.4 × 10(9) kg CO2 would be sequestered in world's bamboo phytoliths because the global bamboo distribution area is about three to four times higher than China's bamboo. Therefore, both increasing the bamboo area and selecting high phytolith-content bamboo species would increase the sequestration of atmospheric CO2 within bamboo phytoliths. PMID:24736571

Li, Beilei; Song, Zhaoliang; Li, Zimin; Wang, Hailong; Gui, Renyi; Song, Ruisheng

2014-01-01

270

Soil carbon sequestration via cover crops- A meta-analysis  

NASA Astrophysics Data System (ADS)

Agricultural soils are depleted in soil organic carbon (SOC) and have thus a huge potential to sequester SOC. This can primarily be achieved by increasing carbon inputs into the soil. Replacing winter fallows by cover crop cultivation for green manure has many benefits for the soil and forms an additional carbon input. An increase in carbon concentration has been reported in several studies worldwide. However, the effect on SOC stocks, as well as the influence of environmental parameters and management on SOC dynamics is not known. We therefore conducted a meta-analysis to investigate those issues. A total of 33 studies, comprising 47 sites and 147 plots were compiled. A pedotransfer function was used to estimate bulk densities and calculate SOC stocks. SOC stock change was found to be a linear function of time since introduction, with an annual sequestration rate of 0.32 Mg C ha-1 yr-1. Since no saturation was visible in the observations, we used the model RothC to estimate a new steady state level and the resulting total SOC stock change for an artificial "average cropland". The total average SOC stock change with an annual input of 1.87 Mg C ha-1 yr-1 was 16.76 Mg C ha-1 for the average soil depth of 22 cm. We estimated a potential global SOC sequestration of 0.12±0.03 Pg C yr-1, which would compensate for 8 % of the direct annual greenhouse gas emissions from agriculture.

Poeplau, Christopher; Don, Axel

2014-05-01

271

The economic potential of carbon sequestration in Californian agricultural land  

NASA Astrophysics Data System (ADS)

This dissertation studies the potential success of a carbon sequestration policy based on payments to farmers for adoption of alternative, less intensive, management practices in California. Since this is a first approach from a Californian perspective, we focus on Yolo County, an important agricultural county of the State. We focus on the six more important crops of the region: wheat, tomato, corn, rice, safflower, and sunflower. In Chapter 1, we characterize the role of carbon sequestration in Climate Change policy. We also give evidence on which alternative management practices have greenhouse gas mitigation potential (reduced tillage, cover-cropping, and organic systems) based on a study of experimental sites. Chapter 2 advances recognizing the need for information at the field level, and describes the survey designed used to obtain data at the field level, something required to perform a complete integrated assessment of the issue. The survey design is complex in the sense that we use auxiliary information to obtain a control (subpopulation of conventional farmers)-case (subpopulation of innovative farmers) design with stratification for land use. We present estimates for population quantities of interest such as total variable costs, profits, managerial experience in different alternatives, etc. This information efficiently gives field level information for innovative farmers, a missing piece of information so far, since our sampling strategy required the inclusion with probability one of farmers identified as innovative. Using an agronomic process model (DayCent) for the sample and population units, we construct carbon mitigation cost curves for each crop and management observed. Chapter 3 builds different econometric models for cross-sectional data taking into account the survey design, and expanding the sample size constructing productivity potential under each alternative. Based on the yield productivity potential modeled for each unit, we conclude that a carbon sequestration program based in payments for management adoption is going to favor the probability of adoption of mitigating alternatives. Finally, in Chapter 4, we interpret the yield productivity potential, as a state variable, summarizing the complex system of environmental and land-use history of each field, and propose fully dynamic econometric models to structurally assess carbon sequestration policies.

Catala-Luque, Rosa

272

On leakage and seepage from geological carbon sequestration sites  

SciTech Connect

Geologic carbon sequestration is one strategy for reducing the rate of increase of global atmospheric carbon dioxide (CO{sub 2} ) concentrations (IEA, 1997; Reichle, 2000). As used here, the term geologic carbon sequestration refers to the direct injection of supercritical CO{sub 2} deep into subsurface target formations. These target formations will typically be either depleted oil and gas reservoirs, or brine-filled permeable formations referred to here as brine formations. Injected CO{sub 2} will tend to be trapped by one or more of the following mechanisms: (1) permeability trapping, for example when buoyant supercritical CO{sub 2} rises until trapped by a confining caprock; (2) solubility trapping, for example when CO{sub 2} dissolves into the aqueous phase in water-saturated formations, or (3) mineralogic trapping, such as occurs when CO{sub 2} reacts to produce stable carbonate minerals. When CO{sub 2} is trapped in the subsurface by any of these mechanisms, it is effectively sequestered away from the atmosphere where it would otherwise act as a greenhouse gas. The purpose of this report is to summarize our work aimed at quantifying potential CO{sub 2} seepage due to leakage from geologic carbon sequestration sites. The approach we take is to present first the relevant properties of CO{sub 2} over the range of conditions from the deep subsurface to the vadose zone (Section 2), and then discuss conceptual models for how leakage might occur (Section 3). The discussion includes consideration of gas reservoir and natural gas storage analogs, along with some simple estimates of seepage based on assumed leakage rates. The conceptual model discussion provides the background for the modeling approach wherein we focus on simulating transport in the vadose zone, the last potential barrier to CO{sub 2} seepage (Section 4). Because of the potentially wide range of possible properties of actual future geologic sequestration sites, we carry out sensitivity analyses by means of numerical simulation and derive the trends in seepage flux and near-surface CO{sub 2} concentrations that will arise from variations in fundamental hydrogeological properties.

Oldenburg, C.M.; Unger, A.J.A.; Hepple, R.P.; Jordan, P.D.

2002-07-18

273

Carbon sequestration through wood burial and storage: practical potential and policy considerations (Invited)  

NASA Astrophysics Data System (ADS)

The urgency of the climate problem is prompting serious policies that will likely transform the role of forestry and agriculture in climate mitigation and adaptation. A novel yet intuitive concept has emerged recently for carbon sequestration by wood burial and storage (WBS), in which forests are managed to optimal productivity and selected coarse woody materials are harvested, then buried in trenches or stowed away in above-ground piles or shelters to prevent decomposition. The stored wood is also a carbon/energy bank that can be a biomass/bioenergy reserve should future bioenergy technologies become practical. An initial estimate suggests a global potential of 1-5 GtC per year, and a US potential to offset 10% of its fossil fuel emissions. Here, we present the foundation for this estimate, including an evaluation of uncertainties. Next, we present the conclusions of a recent workshop on WBS where scientists, policy makers, and implementation experts critically assessed the practical carbon sequestration potential of WBS, surveyed real-world opportunities in the US and internationally, and identified means to address key considerations such as permanence, leakage, verifiability and long-term sustainability.

Zaitchik, B. F.; King, A. W.; Zeng, N.; Hamburg, S.; Abbas, D.; West, T.; Marland, G.; Wullschleger, S. D.

2010-12-01

274

Interactions between the carbon cycle and the nitrogen cycle are critical to predicting terrestrial carbon sequestration  

Microsoft Academic Search

The extent to which terrestrial ecosystems mitigate rising concentrations of atmospheric CO2 depends on the coupled interactions between climate the carbon cycle and nutrient cycling. In nearly terrestrial ecosystems the availability of nitrogen poses a fundamental constraint on carbon sequestration, yet the incorporation of nitrogen cycle feedbacks into global-scale models is often simplistic and sometimes completely ignored. This is in

A. C. Finzi

2008-01-01

275

March 9 Morning Session 1 Geological Carbon Sequestration: Introductions (8:30-10:15), Jeff Daniels, Moderator  

E-print Network

Agenda March 9 ­ Morning Session 1 ­ Geological Carbon Sequestration: Introductions (8 Testing: The Laboratory for Geological Carbon Sequestration (Neeraj Gupta, Battelle) Session 2 ­ Carbon in Reducing the Costs for Carbon Capture (Bruce Sass, Battelle) 2. Capture and sequestration challenges

Daniels, Jeffrey J.

276

Carbon Sequestration in Turfgrass: An Eco-Friendly Benefit of Your Lawn Dale Bremer, Kansas State University  

E-print Network

1 Carbon Sequestration in Turfgrass: An Eco-Friendly Benefit of Your Lawn Dale Bremer, Kansas State read this have no doubt heard of carbon sequestration and may even be well versed on the topic. Others't the slightest clue about carbon sequestration and others may not even care. After all, what does carbon

277

The Deep Carbon Cycle and CO2 Sequestration  

NASA Astrophysics Data System (ADS)

Increased understanding of the Earth’s carbon cycle may provide insight for future carbon storage. Long term geologic sequestration of CO2 occurs in the earth via exothermic reactions between CO2 and silicate minerals to form carbonate minerals. It has been shown that while there is a large enough supply of ultra mafic igneous rock to sequester the CO2 [1], the kinetics of this natural process are too slow to effectively manage our CO2 output. Most studies have focused on studying reaction kinetics at relatively low temperatures and pressures [2,3], and have found that the reaction kinetics are either too slow or (in the case of serpentine) necessitate an uneconomical heat pretreatment [3,4]. Our experiments expand the pressures and temperatures (up to 500 bars and exceeding 200 °C) at which the CO2 + silicate reaction is studied using fused silica capillary cells and Raman and XRD analysis. By increasing our understanding of the kinetics of this process and providing a valuable input for reactive flow and transport models, these results may guide approaches for practical CO2 sequestration in carbonate minerals as a way to manage atmospheric CO2 levels. High pressure and temperature results on carbonates have implications for understanding the deep carbon cycle. Most of the previous high pressure studies on carbonates have concentrated on magnesite (MgCO3), calcite (CaCO3), or dolomite ((Ca,Mg)CO3) [5,6]. While the Mg and Ca carbonates are the most abundant, iron-rich siderite (FeCO3) may be a significant player at greater depths within the earth. We performed XRD and Raman spectroscopy experiments on siderite to lower mantle pressures (up to 40 GPa) and observed a possible phase change around 13 GPa. References 1. Lackner, Klaus S., Wendt, Christopher H., Butt, Darryl P., Joyce, Edward L., Sharp, David H., 1995, Carbon dioxide disposal in carbonate minerals, Energy, Vol.20, No. 11, pp. 1153-1170 2. Bearat, Hamdallah, McKelvy, Michael J., Chizmeshya, Andrew V.G., Gormley, Deirdre, Nunez, Ryan, Carpenter, R.W., Squires, Kyle, Wolf, George, 2006, Carbon Sequestration via Aqueous Olivine Mineral Carbonation: Role of Passivating Layer Formation, Environ. Sci. Technol., Vol. 40, pp 4802-4808 3. Wolf, George H., Chizmeshya, Andrew V. G., Diefenbacher, Jason, McKelvy, Michael J., 2004, In Situ Observation of CO2 Sequestration Reactions Using a Novel Microreaction System, Environmental Science & Technology, Vol.38, No.3, pp 932-936 4. O’Connor, W. K., Dahlin, D. C., Nilsen, D.N., Rush, G.E., Walters, R.P., and Turner, P. C., 2000, “CO2 Storage in Solid Form: A Study of Direct Mineral Carbonation,” Proc. of the 5th International Conference on Greenhouse Gas Technologies, Cairns, Australia, August 14-18, pp. 1-7 5. Isshiki, Maiko, Irifune, Tetsuo, Hirose, Kei, Ono, Shigeaki, Ohishi, Yasuo, Watanuki, Tetsu, Nishibori, Eiji, Takata, Masaki, Sakata, Makoto, 2004, Stability of magnesite and its high-pressure form in the lowermost mantle, Nature, Vol. 427, pp. 60-63 6. Kawano, Jun, Miyake, Akira, Shimobayashi, Norimasa, Kitamura, Masao, 2009, Molecular dynamics simulation of the phase transition between calcite and CaCO3-II , Journal of Physics: Condensed Matter, Vol. 21, pp. 1-11

Filipovitch, N. B.; Mao, W. L.; Chou, I.; Mu, K.

2009-12-01

278

Carbon Sequestration to Mitigate Climate Change  

USGS Publications Warehouse

Human activities, especially the burning of fossil fuels such as coal, oil, and gas, have caused a substantial increase in the concentration of carbon dioxide (CO2) in the atmosphere. This increase in atmospheric CO2 - from about 280 to more than 380 parts per million (ppm) over the last 250 years - is causing measurable global warming. Potential adverse impacts include sea-level rise; increased frequency and intensity of wildfires, floods, droughts, and tropical storms; changes in the amount, timing, and distribution of rain, snow, and runoff; and disturbance of coastal marine and other ecosystems. Rising atmospheric CO2 is also increasing the absorption of CO2 by seawater, causing the ocean to become more acidic, with potentially disruptive effects on marine plankton and coral reefs. Technically and economically feasible strategies are needed to mitigate the consequences of increased atmospheric CO2. The United States needs scientific information to develop ways to reduce human-caused CO2 emissions and to remove CO2 from the atmosphere.

Sundquist, Eric; Burruss, Robert; Faulkner, Stephen; Gleason, Robert; Harden, Jennifer; Kharaka, Yousif; Tieszen, Larry; Waldrop, Mark

2008-01-01

279

Biogeologic Carbon Sequestration - a Cost-Effective Proposal  

NASA Astrophysics Data System (ADS)

Carbon sequestration has been proposed as a strategy for reducing the impact of carbon dioxide emissions from burning of fossil fuels. There are two main routes: 1) capture CO2 emissions from power plants or other large point sources followed by some form of "burial/sequestration", and 2) extraction of CO2 from the ambient atmosphere (involving substantial concentration relative to atmospheric levels) also followed by burial/sequestration. In either case the goal is to achieve significant long-term isolation of CO2 at an economically sustainable price, perhaps measured by some "market price" for CO2, such as the European carbon futures market, where the price is now (2/3/09) about 14-15/tonne of CO2. The second approach, removal of CO2 from the atmosphere, has the potential benefit of reversing the previous buildup of atmospheric CO2, and perhaps even providing a means to "adjust" terrestrial climate by regulating atmospheric CO2 concentrations. For the present, ideas of planetary "geo-engineering" are not as popular as reducing the impact of continued CO2 emissions. In fact, the energy and capital costs of extraction from a dilute atmosphere appear to make this approach uneconomical. Proposals to fertilize the open ocean suffer from concerns about long term ecosystem effects, to say nothing of a lack of verifiability. There is, however, an approach using biological systems that can not only extract significant amounts of CO2, but can do so cost-effectively. Lakes are known in which primary productivity approaches or exceeds 1gm C/cm2-yr. This equates to removal of 35,000 tonnes of CO2 per km2 per year, with a "market value" of about 500,000/yr. Such productivity only occurs under highly eutrophic conditions, and presumably requires significant nutrient additions. As such it would be unthinkable to pursue this technique on a large scale in extant lakes. If, however, it is possible to produce one or more large artificial lakes under acceptable conditions it is conceivable that this approach to carbon sequestration could prove invaluable in both the near and long term.

Shaw, G. H.; Kuhns, R.

2009-05-01

280

Climate change mitigation and sustainable development through carbon sequestration: experiences in Latin America  

Microsoft Academic Search

This article discusses the links between sustainable development and carbon sequestration as a climate change mitigation (CCM) strategy with a focus on Latin America, which has hosted the majority of sequestration activities to date. The global potential for CCM through a combination of sequestration and reduced deforestation is projected to be roughly 60-80 billion tonnes of carbon (GtC) by mid-century,

Rob Bailis

2006-01-01

281

Mineralogy and Microbial Survival During Carbon Sequestration  

NASA Astrophysics Data System (ADS)

When CO2 is sequestered in deep saline aquifers, a region of high dissolved CO2 surrounds the supercritical CO2 plume. While microbial life will doubtless be perturbed as a result of the CO2 injection, survival may be possible in the region of high dissolved CO2. Mineralogy of the aquifer may influence which microorganisms survive by providing substrates for lithotrophic microbes and determining the competitiveness of microbes in the subsurface. Iron-rich minerals like hematite, for example, provide a terminal electron acceptor for dissimilatory iron reducing bacteria (DIRB) that is essential for their respiration. Mineral dissolution may also provide toxicity for microbes providing increased concentration of toxic elements like Al in groundwater as a result of feldspar or clay dissolution. We investigated, Shewanella oneidensis MR-1, a model DIRB, grown in the presence of representative minerals found in deep saline aquifers including carbonate minerals, silicate minerals, and clays. Cultures were subjected to 20 to 25 atm of CO2 at 30° C for 2 to 8 hours in modified Parr reactors. Cultures were plated to determine viability after CO2 stress and imaged using environmental scanning electron microscopy (ESEM). Preliminary results show that MR-1 grown in the presence of dolomite and subjected to 20 atm of CO2 for 2 hours results in decreased viability in comparison to cells grown with hematite or no minerals present. This suggests there is selective toxicity with dolomite, possibly due to an increase in dissolved Mg. Additionally, ESEM imaging revealed a change in cell morphology from plump rods to thin, pointy cells after incubating in CO2 for 8 hours at 25 atm. This change in cell morphology may be the result of cell damage due to CO2 stress. This material is based upon work supported as part of the Center for Frontiers of Subsurface Energy Security, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0001114.

Santillan, E. U.; Gilbert, K.; Bennett, P.

2010-12-01

282

Effects of Added Organic Matter and Water on Soil Carbon Sequestration in an Arid Region  

PubMed Central

It is generally predicted that global warming will stimulate primary production and lead to more carbon (C) inputs to soil. However, many studies have found that soil C does not necessarily increase with increased plant litter input. Precipitation has increased in arid central Asia, and is predicted to increase more, so we tested the effects of adding fresh organic matter (FOM) and water on soil C sequestration in an arid region in northwest China. The results suggested that added FOM quickly decomposed and had minor effects on the soil organic carbon (SOC) pool to a depth of 30 cm. Both FOM and water addition had significant effects on the soil microbial biomass. The soil microbial biomass increased with added FOM, reached a maximum, and then declined as the FOM decomposed. The FOM had a more significant stimulating effect on microbial biomass with water addition. Under the soil moisture ranges used in this experiment (21.0%–29.7%), FOM input was more important than water addition in the soil C mineralization process. We concluded that short-term FOM input into the belowground soil and water addition do not affect the SOC pool in shrubland in an arid region. PMID:23875022

Tian, Yuan; Jiang, Lianhe; Zhao, Xuechun; Zhu, Linhai; Chen, Xi; Gao, Yong; Wang, Shaoming; Zheng, Yuanrun; Rimmington, Glyn M.

2013-01-01

283

Effect of mature blood-stage Plasmodium parasite sequestration on pathogen biomass in mathematical and in vivo models of malaria.  

PubMed

Parasite biomass and microvasculature obstruction are strongly associated with disease severity and death in Plasmodium falciparum-infected humans. This is related to sequestration of mature, blood-stage parasites (schizonts) in peripheral tissue. The prevailing view is that schizont sequestration leads to an increase in pathogen biomass, yet direct experimental data to support this are lacking. Here, we first studied parasite population dynamics in inbred wild-type (WT) mice infected with the rodent species of malaria, Plasmodium berghei ANKA. As is commonly reported, these mice became moribund due to large numbers of parasites in multiple tissues. We then studied infection dynamics in a genetically targeted line of mice, which displayed minimal tissue accumulation of parasites. We constructed a mathematical model of parasite biomass dynamics, incorporating schizont-specific host clearance, both with and without schizont sequestration. Combined use of mathematical and in vivo modeling indicated, first, that the slowing of parasite growth in the genetically targeted mice can be attributed to specific clearance of schizonts from the circulation and, second, that persistent parasite growth in WT mice can be explained solely as a result of schizont sequestration. Our work provides evidence that schizont sequestration could be a major biological process driving rapid, early increases in parasite biomass during blood-stage Plasmodium infection. PMID:24144725

Khoury, David S; Cromer, Deborah; Best, Shannon E; James, Kylie R; Kim, Peter S; Engwerda, Christian R; Haque, Ashraful; Davenport, Miles P

2014-01-01

284

Economics of carbon sequestration with special reference to Finnish private forests  

Microsoft Academic Search

The concern on the effects of rising CO2 levels in the atmosphere has created a possible new product of forestry, namely carbon sequestration. Forests can biologically sequester much more carbon than what takes place when forests are managed for the timber production (economic) objective. Because increased sequestration reduces the present value of timber returns, there is a need to analyse

Lauri Valsta; Jyri Mononen; Johanna Pohjola

285

Full Scale Bioreactor Landfill for Carbon Sequestration and Greenhouse Emission Control  

Microsoft Academic Search

The Yolo County Department of Planning and Public Works constructed a full-scale bioreactor landfill as a part of the Environmental Protection Agency's (EPA) Project XL program to develop innovative approaches for carbon sequestration and greenhouse emission control. The overall objective was to manage landfill solid waste for rapid waste decomposition and maximum landfill gas generation and capture for carbon sequestration

Ramin Yazdani; Jeff Kieffer; Kathy Sananikone; Don Augenstein

2005-01-01

286

Valuation of carbon capture and sequestration under Greenhouse gas regulations: CCS as an offsetting activity  

SciTech Connect

When carbon capture and sequestration is conducted by entities that are not regulated, it could be counted as an offset that is fungible in the market or sold to a voluntary market. This paper addresses the complications that arise in accounting for carbon capture and sequestration as an offset, and methodologies that exist for accounting for CCS in voluntary and compliance markets. (author)

Lokey, Elizabeth

2009-08-15

287

Carbon sequestration in the U.S. forest sector from 1990 to 2010  

Microsoft Academic Search

Forest inventory data supplemented with data from intensive research sites and models were used to estimate carbon stocks and sequestration rates in U.S. forests, including effects of land use change. Data on the production of wood products and emission from decomposition were used to estimate carbon stocks and sequestration rates in wood products and landfills. From 1990 through 2005, the

Peter B. Woodbury; James E. Smith; Linda S. Heath

2007-01-01

288

Ocean carbon sequestration by fertilization: An integrated bioeochemical assessment  

SciTech Connect

Under this grant, the authors investigated a range of issues associated with the proposal to fertilize the ocean with nutrients (such as iron) in order to increase the export of organic matter from the ocean's near surface waters and consequently increase the uptake of CO{sub 2} from the atmosphere. There are several critical scientific questions that have the potential to be make-or-break issues for this proposed carbon sequestration mechanism: (1) If iron is added to the ocean, will export of organic carbon from the surface actually occur? Clearly, if no export occurs, then there will be no sequestration. (2) if iron fertilization does lead to export of organic carbon from the surface of the ocean, how much CO{sub 2} will actually be removed from the atmosphere? Even if carbon is removed from the surface of the ocean, this does not guarantee that there will be significant removal of CO{sub 2} from the atmosphere, since the CO{sub 2} may be supplied by a realignment of dissolved inorganic carbon within the ocean. (3) What is the time scale of any sequestration that occurs? If sequestered CO{sub 2} returns to the atmosphere on a relatively short time scale, iron fertilization will not contribute significantly to slowing the growth of atmospheric CO{sub 2}. (4) Can the magnitude of sequestration be verified? If verification is extremely difficult or impossible, this option is likely to be viewed less favorably. (5) What unintended consequences might there be from fertilizing the ocean with iron? If these are severe enough, they will be a significant impact on policy decisions. Most research on carbon sequestration by fertilization has focused on the first of these issues. Although a number of in situ fertilization experiments have successfully demonstrated that the addition of iron leads to a dramatic increase in ocean productivity, the question of whether this results in enhanced export remains an open one. The primary focus of the research was on the development of models to examine topics (2) through (5), although some of the research they have accomplished has implications for the first of these topics as well. In this report, they present and discuss their main results and products. They start with a discussion of the results from large-scale fertilization experiments using a relatively simple ecosystem model. While these experiments are very instructive in highlighting the mechanisms and consequences, it is very unlikely that fertilization will ever be carried out on such scales. They therefore conducted a detailed study to investigate how patch-scale fertilization differs from that conducted at basin scale. After presenting the results of this study, they then discuss the results they obtained with regard to consequences of fertilization on ocean biogeochemistry and radiative forcing. Since the existing ecological/biogeochemical models at the beginning of the grant were not adequate to investigate many important components of how ocean ecology and biogeochemistry will respond to the addition of iron, a substantial fraction of their effort went also into the development of a model that would allow them to quantitatively predict phytoplankton functional group diversity. After reporting on their model development work, they close with a summary of their outreach activities and publications.

Gruber, N.; Sarmiento, J.L.; Gnandesikan, A.

2005-05-31

289

Carbon Dioxide Sequestration Capacity of the Mt Simon Formation  

NASA Astrophysics Data System (ADS)

A technique has been developed to better predict the quantity of carbon dioxide that can be sequestered in a formation through solubility or free phase trapping. The technique is being improved to incorporate the potential for carbonate mineral precipitation. The current study evaluates the extent to which the Mt. Simon formation can serve as a trapping reservoir. The Mt. Simon formation was selected for this study because it meets many of the criteria required for sequestration. To determine the capacity of the Mt. Simon formation to trap carbon dioxide as a soluble component, an experiment was conducted in natural Mt. Simon formation brine. The experiment was conducted at 55 degrees Celsius and pressures from 50 to 350 bars, conditions that fall within the range expected for the entire formation. The data collected compare well to existing models that only account for carbon dioxide solubility. Thus, the solubility model can be reliably used to predict dissolved carbon dioxide concentrations for the range of temperatures and pressures expected to be encountered. The capacity of the Mt. Simon formation to sequester dissolved carbon dioxide was calculated using results of the solubility model, estimation of the density of carbon dioxide saturated brine, estimation of the formation porosity, and geographic information system data on the extent of the formation. Results indicate that the Mt. Simon formation can sequester as much as 26 Gt of dissolved carbon dioxide or 255 Gt of free phase carbon dioxide depending on the efficiency of the system. The current estimated annual production of carbon dioxide from power plant emissions of IL, IA and MI is 0.24 Gt. This indicates that the basin could accept the annual emissions of these power plants for approximately 100 years or more if current carbon dioxide production does not increase.

Allen, D. E.; Dilmore, B.; Hedges, S.; Soong, Y.

2008-12-01

290

Water Challenges for Geologic Carbon Capture and Sequestration  

PubMed Central

Carbon capture and sequestration (CCS) has been proposed as a means to dramatically reduce greenhouse gas emissions with the continued use of fossil fuels. For geologic sequestration, the carbon dioxide is captured from large point sources (e.g., power plants or other industrial sources), transported to the injection site and injected into deep geological formations for storage. This will produce new water challenges, such as the amount of water used in energy resource development and utilization and the “capture penalty” for water use. At depth, brine displacement within formations, storage reservoir pressure increases resulting from injection, and leakage are potential concerns. Potential impacts range from increasing water demand for capture to contamination of groundwater through leakage or brine displacement. Understanding these potential impacts and the conditions under which they arise informs the design and implementation of appropriate monitoring and controls, important both for assurance of environmental safety and for accounting purposes. Potential benefits also exist, such as co-production and treatment of water to both offset reservoir pressure increase and to provide local water for beneficial use. PMID:20127328

Friedmann, Samuel J.; Carroll, Susan A.

2010-01-01

291

Water challenges for geologic carbon capture and sequestration.  

PubMed

Carbon capture and sequestration (CCS) has been proposed as a means to dramatically reduce greenhouse gas emissions with the continued use of fossil fuels. For geologic sequestration, the carbon dioxide is captured from large point sources (e.g., power plants or other industrial sources), transported to the injection site and injected into deep geological formations for storage. This will produce new water challenges, such as the amount of water used in energy resource development and utilization and the "capture penalty" for water use. At depth, brine displacement within formations, storage reservoir pressure increases resulting from injection, and leakage are potential concerns. Potential impacts range from increasing water demand for capture to contamination of groundwater through leakage or brine displacement. Understanding these potential impacts and the conditions under which they arise informs the design and implementation of appropriate monitoring and controls, important both for assurance of environmental safety and for accounting purposes. Potential benefits also exist, such as co-production and treatment of water to both offset reservoir pressure increase and to provide local water for beneficial use. PMID:20127328

Newmark, Robin L; Friedmann, Samuel J; Carroll, Susan A

2010-04-01

292

Water Challenges for Geologic Carbon Capture and Sequestration  

NASA Astrophysics Data System (ADS)

Carbon capture and sequestration (CCS) has been proposed as a means to dramatically reduce greenhouse gas emissions with the continued use of fossil fuels. For geologic sequestration, the carbon dioxide is captured from large point sources (e.g., power plants or other industrial sources), transported to the injection site and injected into deep geological formations for storage. This will produce new water challenges, such as the amount of water used in energy resource development and utilization and the “capture penalty” for water use. At depth, brine displacement within formations, storage reservoir pressure increases resulting from injection, and leakage are potential concerns. Potential impacts range from increasing water demand for capture to contamination of groundwater through leakage or brine displacement. Understanding these potential impacts and the conditions under which they arise informs the design and implementation of appropriate monitoring and controls, important both for assurance of environmental safety and for accounting purposes. Potential benefits also exist, such as co-production and treatment of water to both offset reservoir pressure increase and to provide local water for beneficial use.

Newmark, Robin L.; Friedmann, Samuel J.; Carroll, Susan A.

2010-04-01

293

Microseismic Monitoring of a Carbon Sequestration Field Test  

NASA Astrophysics Data System (ADS)

Microseismic monitoring was implemented as part of a comprehensive carbon sequestration monitoring program at the Midwest Regional Carbon Sequestration Partnership's geologic field test site in Otsego County, Michigan. The field test itself consisted of the injection of ~10,000 tonnes of CO2 over 31 days. The intent of the microseismic monitoring program was to understand its potential for verifying cap rock integrity and for identifying the position of the CO2 plume. Microseismic monitoring was achieved using two downhole geophone arrays located in observation wells within 750m of the injection well. One event was recorded during a period of higher relative injection rate and located at the base of the cap rock within the permitted injection interval, suggesting a possible linkage with pressure change or fluid mobilization caused by the CO2 injection processes. The full seismic moment tensor was determined for the injection related event revealing a complex failure mechanism that is consistent with a fracture initiation. The orientation of the fracture is consistant with the maximum horizontal stress in the region. In this context, failure mechanism is taken to be the description of the movement of the rocks. Microseismic monitoring has proved to be a valuable tool for monitoring cap rock integrity.

Urbancic, T. I.; Daugherty, J.; Baig, A. M.

2009-12-01

294

Lithological control on phytolith carbon sequestration in moso bamboo forests  

NASA Astrophysics Data System (ADS)

Phytolith-occluded carbon (PhytOC) is a stable carbon (C) fraction that has effects on long-term global C balance. Here, we report the phytolith and PhytOC accumulation in moso bamboo leaves developed on four types of parent materials. The results show that PhytOC content of moso bamboo varies with parent material in the order of granodiorite (2.0 g kg-1) > granite (1.6 g kg-1) > basalt (1.3 g kg-1) > shale (0.7 g kg-1). PhytOC production flux of moso bamboo on four types of parent materials varies significantly from 1.0 to 64.8 kg CO2 ha-1 yr-1, thus a net 4.7 × 106 -310.8 × 106 kg CO2 yr-1 would be sequestered by moso bamboo phytoliths in China. The phytolith C sequestration rate in moso bamboo of China will continue to increase in the following decades due to nationwide bamboo afforestation/reforestation, demonstrating the potential of bamboo in regulating terrestrial C balance. Management practices such as afforestation of bamboo in granodiorite area and granodiorite powder amendment may further enhance phytolith C sequestration through bamboo plants.

Li, Beilei; Song, Zhaoliang; Wang, Hailong; Li, Zimin; Jiang, Peikun; Zhou, Guomo

2014-06-01

295

Brines as Possible Cation Sources for Biomimetic Carbon Dioxide Sequestration  

NASA Astrophysics Data System (ADS)

The utility industry is currently producing 2.1 x 109 tonnes of CO2 per year from burning coal. The amounts of CO2 produced by a single coal-burning station are typically around 0.1 tonnes/MW/h for a coal burn of 0.04 tonnes/MW/h. These large fixed sources of CO2 constitute an obvious target for carbon sequestration to minimize greenhouse-gas emissions. The generally favored approach in present sequestration research is to achieve a CO2 stream that is highly concentrated, compress it, and transport it to geologic sequestration sites, such as deep saline aquifers. The volume of the CO2 is of some interest here. Supercritical CO2, as supplied for example from natural wells to enhanced oil recovery (EOR) sites, has a density of approximately 0.9, and is relatively incompressible, which means that the volume of sequestered supercritical CO2 will be somewhat greater than that of the coal from which it was formed. The volume of water displaced by CO2 injection into aquifers would be closely comparable to the volume of the CO2 itself. An alternative path, which we have been following, would capture the gas as calcium carbonate, CaCO3, in a biomimetic approach that offers some obvious advantages. Sequestration, in this case, is in the form of a safe, stable, environmentally benign product. On a geologic timeframe, considerable amounts of CO2 have been sequestered as, for example, oolitic limestone deposits and dolomite deposits, suggesting that very long-lived or even permanent sequestration is possible in solid carbonate form. Not only would our approach remove the costly steps of concentrating and compressing the CO2, but also it is anticipated that it would remove the need for long-term monitoring to check for CO2 leakage. In a separate collaborative study detailed by Abel and others (this volume), ramifications of geologic sequestration of CO2 and/or bicarbonate-enriched brines are evaluated with laboratory flow experiments and computer model simulations. Porosity and permeability changes in the porous medium induced by accelerated diagenetic reactions are of specific interest. Brine chemistry is critical both to the catalysis and precipitation steps in our biomimetic approach, and also as we design flow experiments and parameterize computer model simulations. We have accomplished brine cataloging and mapping by utilizing ArcGIS and produced water records that originate from a water analysis database at the Petroleum Recovery Research Center at New Mexico Tech and a GIS database compiled by the Bureau of Economic Geology at the University of Texas at Austin. The GIS database allows us to map spatially the chemical constituents of saline aquifers throughout the United States.

Bond, G. M.; Abel, A.; McPherson, B. J.; Stringer, J.

2002-12-01

296

Southwest Regional Partnership on Carbon Sequestration Phase II  

SciTech Connect

The Southwest Regional Partnership (SWP) on Carbon Sequestration designed and deployed a medium-scale field pilot test of geologic carbon dioxide (CO2) sequestration in the Aneth oil field. Greater Aneth oil field, Utah's largest oil producer, was discovered in 1956 and has produced over 455 million barrels of oil (72 million m3). Located in the Paradox Basin of southeastern Utah, Greater Aneth is a stratigraphic trap producing from the Pennsylvanian Paradox Formation. Because it represents an archetype oil field of the western U.S., Greater Aneth was selected as one of three geologic pilots to demonstrate combined enhanced oil recovery (EOR) and CO2 sequestration under the auspices of the SWP on Carbon Sequestration, sponsored by the U.S. Department of Energy. The pilot demonstration focuced on the western portion of the Aneth Unit as this area of the field was converted from waterflood production to CO2 EOR starting in late 2007. The Aneth Unit is in the northwestern part of the field and has produced 149 million barrels (24 million m3) of the estimated 450 million barrels (71.5 million m3) of the original oil in place - a 33% recovery rate. The large amount of remaining oil makes the Aneth Unit ideal to demonstrate both CO2 storage capacity and EOR by CO2 flooding. This report summarizes the geologic characterization research, the various field monitoring tests, and the development of a geologic model and numerical simulations conducted for the Aneth demonstration project. The Utah Geological Survey (UGS), with contributions from other Partners, evaluated how the surface and subsurface geology of the Aneth Unit demonstration site will affect sequestration operations and engineering strategies. The UGS-research for the project are summarized in Chapters 1 through 7, and includes (1) mapping the surface geology including stratigraphy, faulting, fractures, and deformation bands, (2) describing the local Jurassic and Cretaceous stratigraphy, (3) mapping the Desert Creek zone reservoir, Gothic seal, and overlying aquifers, (4) characterizing the depositional environments and diagenetic events that produced significant reservoir heterogeneity, (5) describing the geochemical, petrographic, and geomechanical properties of the seal to determine the CO2 or hydrocarbon column it could support, and (6) evaluating the production history to compare primary production from vertical and horizontal wells, and the effects of waterflood and wateralternating- gas flood programs. The field monitoring demonstrations were conducted by various Partners including New Mexico Institute of Mining and Technology, University of Utah, National Institute of Advanced Industrial Science and Technology, Japan, Los Alamos National Laboratory and Cambridge Geosciences. The monitoring tests are summarized in Chapters 8 through 12, and includes (1) interwell tracer studies during water- and CO2-flood operations to characterize tracer behavoirs in anticipation of CO2-sequestration applications, (2) CO2 soil flux monitoring to measure background levels and variance and assess the sensitivity levels for CO2 surface monitoring, (3) testing the continuous monitoring of self potential as a means to detect pressure anomalies and electrochemical reaction due to CO2 injection, (4) conducting time-lapse vertical seismic profiling to image change near a CO2 injection well, and (5) monitoring microseismicity using a downhole string of seismic receivers to detect fracture slip and deformation associated with stress changes. Finally, the geologic modeling and numerical simulation study was conducted by researcher at the University of Utah. Chapter 13 summarizes their efforts which focused on developing a site-specific geologic model for Aneth to better understand and design CO2 storage specifically tailored to oil reservoirs.

James Rutledge

2011-02-01

297

Efficiency of incentives to jointly increase carbon sequestration and species conservation on a landscape  

PubMed Central

We develop an integrated model to predict private land-use decisions in response to policy incentives designed to increase the provision of carbon sequestration and species conservation across heterogeneous landscapes. Using data from the Willamette Basin, Oregon, we compare the provision of carbon sequestration and species conservation under five simple policies that offer payments for conservation. We evaluate policy performance compared with the maximum feasible combinations of carbon sequestration and species conservation on the landscape for various conservation budgets. None of the conservation payment policies produce increases in carbon sequestration and species conservation that approach the maximum potential gains on the landscape. Our results show that policies aimed at increasing the provision of carbon sequestration do not necessarily increase species conservation and that highly targeted policies do not necessarily do as well as more general policies. PMID:18621703

Nelson, Erik; Polasky, Stephen; Lewis, David J.; Plantinga, Andrew J.; Lonsdorf, Eric; White, Denis; Bael, David; Lawler, Joshua J.

2008-01-01

298

Comparing carbon sequestration potential of pyrogenic carbon from natural and anthropogenic sources  

NASA Astrophysics Data System (ADS)

The enhanced resistance to environmental degradation of Pyrogenic Carbon (PyC), both produced in wildfires (charcoal), and man-made (biochar), gives it the potential to sequester carbon by preventing it to be released into the atmosphere. Sustainable addition of biochar to soils is seen as a viable global approach for carbon sequestration and climate change mitigation. Also the role of its 'natural counterpart', i.e. wildfire charcoal, as a long-term carbon sink in soils is widely recognized. However, in spite of their fundamental similarities, research on the potential of 'man-made' biochar and wildfire charcoal for carbon sequestration has been carried out essentially in isolation as analogous materials for accurate comparison are not easily available. Here we assess the carbon sequestration potential of man-made biochar and wildfire charcoal generated from the same material under known production conditions: (i) charcoal from forest floor and down wood produced during an experimental boreal forest fire (FireSmart, June 2012, NWT- Canada) and (ii) biochar produced from the same feedstock by slow pyrolysis [three treatments: 2 h at 350, 500 and 650°C, respectively]. The carbon sequestration potential of these PyC materials is given by the recalcitrance index, R50, proposed by Harvey et al. (2012). R50 is based on the relative thermal stability of a given PyC material to that of graphite and is calculated using thermogravimetric analyses. Our results show highest R50 for PyC materials produced from down wood than from forest floor, which points to the importance of feedstock chemical composition in determining the C sequestration potential of PyC both from natural (charcoal) and anthropogenic (biochar) sources. Moreover, production temperature is also a major factor affecting the carbon sequestration potential of the studied PyC materials, with higher R50 for PyC produced at higher temperatures. Further investigation on the similarities and differences between man-made biochar and wildfire charcoal is needed to elucidate the potential of knowledge transferability of PyC characteristics between the biochar and the wildfire research communities. Reference: Harvey et al. (2012) An index-based approach to assessing recalcitrance and soil carbon sequestration potential of engineered Black Carbons (Biochars). Environmental Science & Technology 46:1415-1421.

Santin, Cristina; Doerr, Stefan; Merino, Augustin

2014-05-01

299

Influence of Rock Types on Seismic Monitoring of CO2 Sequestration in Carbonate Reservoirs  

E-print Network

) techniques such as high pressure CO2 injection may normally be required to recover oil in place in carbonate reservoirs. This study addresses how different rock types can influence the seismic monitoring of CO2 sequestration in carbonates. This research...

Mammadova, Elnara

2012-10-19

300

What can ecological science tell us about opportunities for carbon sequestration on arid rangelands in the United States?  

E-print Network

What can ecological science tell us about opportunities for carbon sequestration on arid rangelands). It is now commonplace to use the rationale of increasing carbon sequestration to argue for changes interest in carbon sequestration on rangelands is largely driven by their extent, while the interest

Sayre, Nathan

301

Book (All chapters are peer-reviewed) Kumar, B. M. and Nair, P. K. R. (eds). Carbon Sequestration in Agroforestry  

E-print Network

Book (All chapters are peer-reviewed) Kumar, B. M. and Nair, P. K. R. (eds). Carbon Sequestration. K. R., Nair, V. D., Kumar, B. M., and Showalter, J. M. 2010. Carbon sequestration in agroforestry Publications on Carbon Sequestration in Agroforestry Systems 2008 ­ 2011 (Contact: pknair@ufl.edu) #12;cacao

Hill, Jeffrey E.

302

ECONOMIC EVALUATION OF CO2 SEQUESTRATION TECHNOLOGIES TASK 4, BIOMASS GASIFICATION-BASED PROCESSING  

SciTech Connect

Biomass derived energy currently accounts for about 3 quads of total primary energy use in the United States. Of this amount, about 0.8 quads are used for power generation. Several biomass energy production technologies exist today which contribute to this energy mix. Biomass combustion technologies have been the dominant source of biomass energy production, both historically and during the past two decades of expansion of modern biomass energy in the U. S. and Europe. As a research and development activity, biomass gasification has usually been the major emphasis as a method of more efficiently utilizing the energy potential of biomass, particularly wood. Numerous biomass gasification technologies exist today in various stages of development. Some are simple systems, while others employ a high degree of integration for maximum energy utilization. The purpose of this study is to conduct a technical and economic comparison of up to three biomass gasification technologies, including the carbon dioxide emissions reduction potential of each. To accomplish this, a literature search was first conducted to determine which technologies were most promising based on a specific set of criteria. During this reporting period, the technical and economic performances of the selected processes were evaluated using computer models and available literature. The results of these evaluations are summarized in this report.

Martha L. Rollins; Les Reardon; David Nichols; Patrick Lee; Millicent Moore; Mike Crim; Robert Luttrell; Evan Hughes

2002-04-01

303

Enhanced Performance Assessment System (EPAS) for carbon sequestration.  

SciTech Connect

Carbon capture and sequestration (CCS) is an option to mitigate impacts of atmospheric carbon emission. Numerous factors are important in determining the overall effectiveness of long-term geologic storage of carbon, including leakage rates, volume of storage available, and system costs. Recent efforts have been made to apply an existing probabilistic performance assessment (PA) methodology developed for deep nuclear waste geologic repositories to evaluate the effectiveness of subsurface carbon storage (Viswanathan et al., 2008; Stauffer et al., 2009). However, to address the most pressing management, regulatory, and scientific concerns with subsurface carbon storage (CS), the existing PA methodology and tools must be enhanced and upgraded. For example, in the evaluation of a nuclear waste repository, a PA model is essentially a forward model that samples input parameters and runs multiple realizations to estimate future consequences and determine important parameters driving the system performance. In the CS evaluation, however, a PA model must be able to run both forward and inverse calculations to support optimization of CO{sub 2} injection and real-time site monitoring as an integral part of the system design and operation. The monitoring data must be continually fused into the PA model through model inversion and parameter estimation. Model calculations will in turn guide the design of optimal monitoring and carbon-injection strategies (e.g., in terms of monitoring techniques, locations, and time intervals). Under the support of Laboratory-Directed Research & Development (LDRD), a late-start LDRD project was initiated in June of Fiscal Year 2010 to explore the concept of an enhanced performance assessment system (EPAS) for carbon sequestration and storage. In spite of the tight time constraints, significant progress has been made on the project: (1) Following the general PA methodology, a preliminary Feature, Event, and Process (FEP) analysis was performed for a hypothetical CS system. Through this FEP analysis, relevant scenarios for CO{sub 2} release were defined. (2) A prototype of EPAS was developed by wrapping an existing multi-phase, multi-component reservoir simulator (TOUGH2) with an uncertainty quantification and optimization code (DAKOTA). (3) For demonstration, a probabilistic PA analysis was successfully performed for a hypothetical CS system based on an existing project in a brine-bearing sandstone. The work lays the foundation for the development of a new generation of PA tools for effective management of CS activities. At a top-level, the work supports energy security and climate change/adaptation by furthering the capability to effectively manage proposed carbon capture and sequestration activities (both research and development as well as operational), and it greatly enhances the technical capability to address this national problem. The next phase of the work will include (1) full capability demonstration of the EPAS, especially for data fusion, carbon storage system optimization, and process optimization of CO{sub 2} injection, and (2) application of the EPAS to actual carbon storage systems.

Wang, Yifeng; Sun, Amy Cha-Tien; McNeish, Jerry A. (Sandia National Laboratories, Livermore, CA); Dewers, Thomas A.; Hadgu, Teklu; Jove-Colon, Carlos F.

2010-09-01

304

Goodbye to carbon neutral: Getting biomass footprints right  

Microsoft Academic Search

Most guidance for carbon footprinting, and most published carbon footprints or LCAs, presume that biomass heating fuels are carbon neutral. However, it is recognised increasingly that this is incorrect: biomass fuels are not always carbon neutral. Indeed, they can in some cases be far more carbon positive than fossil fuels.This flaw in carbon footprinting guidance and practice can be remedied.

Eric Johnson

2009-01-01

305

Modeling The Mechanism Of Carbon Capture And Sequestration (Ccs) In A System  

E-print Network

Abstract: Rate of carbon sequestration or annual uptake was modeled. Data from Mississippi Delta, ponderosa pine and black walnut, all in USA were used to validate the models. The co-relations of these models for these three sources of data were very high, suggesting that carbon sequestration is modelable and predictable provided that there is a perfect experimental method to capture and sequester the carbon compound with time. This work is a stepping stone to solving carbon capture and sequestration problem of our planet earth. Through a global engineering and technology it is feasible.

unknown authors

306

Preliminary Feasibility Assessment of Geologic Carbon Sequestration Potential for TVA's John Sevier and Kingston Power Plants  

SciTech Connect

This is a preliminary assessment of the potential for geologic carbon sequestration for the Tennessee Valley Authority's (TVA) John Sevier and Kingston power plants. The purpose of this assessment is to make a 'first cut' determination of whether there is sufficient potential for geologic carbon sequestration within 200 miles of the plants for TVA and Oak Ridge National Laboratory (ORNL) to proceed with a joint proposal for a larger project with a strong carbon management element. This assessment does not consider alternative technologies for carbon capture, but assumes the existence of a segregated CO{sub 2} stream suitable for sequestration.

Smith, Ellen D [ORNL; Saulsbury, Bo [ORNL

2008-03-01

307

Understanding Geochemical Impacts of Carbon Dioxide Leakage from Carbon Capture and Sequestration  

EPA Science Inventory

US EPA held a technical Geochemical Impact Workshop in Washington, DC on July 10 and 11, 2007 to discuss geological considerations and Area of Review (AoR) issues related to geologic sequestration (GS) of Carbon Dioxide (CO2). Seventy=one (71) representatives of the electric uti...

308

Breeding crop plants with deep roots: their role in sustainable carbon, nutrient and water sequestration  

PubMed Central

Background The soil represents a reservoir that contains at least twice as much carbon as does the atmosphere, yet (apart from ‘root crops’) mainly just the above-ground plant biomass is harvested in agriculture, and plant photosynthesis represents the effective origin of the overwhelming bulk of soil carbon. However, present estimates of the carbon sequestration potential of soils are based more on what is happening now than what might be changed by active agricultural intervention, and tend to concentrate only on the first metre of soil depth. Scope Breeding crop plants with deeper and bushy root ecosystems could simultaneously improve both the soil structure and its steady-state carbon, water and nutrient retention, as well as sustainable plant yields. The carbon that can be sequestered in the steady state by increasing the rooting depths of crop plants and grasses from, say, 1 m to 2 m depends significantly on its lifetime(s) in different molecular forms in the soil, but calculations (http://dbkgroup.org/carbonsequestration/rootsystem.html) suggest that this breeding strategy could have a hugely beneficial effect in stabilizing atmospheric CO2. This sets an important research agenda, and the breeding of plants with improved and deep rooting habits and architectures is a goal well worth pursuing. PMID:21813565

Kell, Douglas B.

2011-01-01

309

Carbon dioxide sequestration in deep-sea basalt  

PubMed Central

Developing a method for secure sequestration of anthropogenic carbon dioxide in geological formations is one of our most pressing global scientific problems. Injection into deep-sea basalt formations provides unique and significant advantages over other potential geological storage options, including (i) vast reservoir capacities sufficient to accommodate centuries-long U.S. production of fossil fuel CO2 at locations within pipeline distances to populated areas and CO2 sources along the U.S. west coast; (ii) sufficiently closed water-rock circulation pathways for the chemical reaction of CO2 with basalt to produce stable and nontoxic (Ca2+, Mg2+, Fe2+)CO3 infilling minerals, and (iii) significant risk reduction for post-injection leakage by geological, gravitational, and hydrate-trapping mechanisms. CO2 sequestration in established sediment-covered basalt aquifers on the Juan de Fuca plate offer promising locations to securely accommodate more than a century of future U.S. emissions, warranting energized scientific research, technological assessment, and economic evaluation to establish a viable pilot injection program in the future. PMID:18626013

Goldberg, David S.; Takahashi, Taro; Slagle, Angela L.

2008-01-01

310

Options for accounting carbon sequestration in German forests  

PubMed Central

Background The Accra climate change talks held from 21–27 August 2008 in Accra, Ghana, were part of an ongoing series of meetings leading up to the Copenhagen meeting in December 2009. During the meeting a set of options for accounting carbon sequestration in forestry on a post-2012 framework was presented. The options include gross-net and net-net accounting and approaches for establishing baselines. Results This article demonstrates the embedded consequences of Accra Accounting Options for the case study of German national GHG accounting. It presents the most current assessment of sequestration rates by forest management for the period 1990 – 2007, provides an outlook of future emissions and removals (up to the year 2042) as related to three different management scenarios, and shows that implementation of some Accra options may reverse sources to sinks, or sinks to sources. Conclusion The results of the study highlight the importance of elaborating an accounting system that would prioritize the climate convention goals, not national preferences. PMID:19650896

Krug, Joachim; Koehl, Michael; Riedel, Thomas; Bormann, Kristin; Rueter, Sebastian; Elsasser, Peter

2009-01-01

311

A Finite Element Model for Simulation of Carbon Dioxide Sequestration  

SciTech Connect

We present a hydro-mechanical model, followed by stress, deformation, and shear-slip failure analysis for geological sequestration of carbon dioxide (CO2). The model considers the poroelastic effects by taking into account of the two-way coupling between the geomechanical response and the fluid flow process. Analytical solutions for pressure and deformation fields were derived for a typical geological sequestration scenario in our previous work. A finite element approach is introduced here for numerically solving the hydro-mechanical model with arbitrary boundary conditions. The numerical approach was built on an open-source finite element code Elmer, and results were compared to the analytical solutions. The shear-slip failure analysis was presented based on the numerical results, where the potential failure zone is identified. Information is relevant to the prediction of the maximum sustainable injection rate or pressure. The effects of caprock permeability on the fluid pressure, deformation, stress, and the shear-slip failure zone were also quantitatively studied. It was shown that a larger permeability in caprock and base rock leads to a larger uplift but a smaller shear-slip failure zone.

Bao, Jie; Xu, Zhijie; Fang, Yilin

2013-11-02

312

Geologic Carbon Sequestration and Biosequestration (Carbon Cycle 2.0)  

ScienceCinema

Don DePaolo, Director of LBNL's Earth Sciences Division, speaks at the Carbon Cycle 2.0 kick-off symposium Feb. 3, 2010. We emit more carbon into the atmosphere than natural processes are able to remove - an imbalance with negative consequences. Carbon Cycle 2.0 is a Berkeley Lab initiative to provide the science needed to restore this balance by integrating the Labs diverse research activities and delivering creative solutions toward a carbon-neutral energy future. http://carboncycle2.lbl.gov/

DePaolo, Don [Director, LBNL Earth Sciences Division

2011-06-08

313

Geologic Carbon Sequestration and Biosequestration (Carbon Cycle 2.0)  

SciTech Connect

Don DePaolo, Director of LBNL's Earth Sciences Division, speaks at the Carbon Cycle 2.0 kick-off symposium Feb. 3, 2010. We emit more carbon into the atmosphere than natural processes are able to remove - an imbalance with negative consequences. Carbon Cycle 2.0 is a Berkeley Lab initiative to provide the science needed to restore this balance by integrating the Labs diverse research activities and delivering creative solutions toward a carbon-neutral energy future. http://carboncycle2.lbl.gov/

DePaolo, Don [Director, LBNL Earth Sciences Division] [Director, LBNL Earth Sciences Division

2010-02-03

314

Carbon sequestration and its role in the global carbon cycle  

Microsoft Academic Search

The science of climate change, and the role carbon dioxide (CO2) plays in it, was launched into the public consciousness by Charles David Keeling's investigations in the late 1950s. Keeling conducted early atmospheric carbon measurements high on Hawaii's Mauna Loa volcano and found that even after ruling out natural fluctuations, the concentration of CO2 in the atmosphere was increasing year

Colin Schultz

2011-01-01

315

Management of forest fires to maximize carbon sequestration in temperate and boreal forests  

SciTech Connect

This study examines opportunities for applying prescribed burning strategies to forest stands to enhance net carbon sequestration and compared prescribed burning strategies with more conventional forestry-based climate change mitigation alternatives, including fire suppression and afforestation. Biomass burning is a major contributor to greenhouse gas accumulation in the atmosphere. Biomass burning has increased by 50% since 1850. Since 1977, the annual extent of burning in the northern temperate and boreal forests has increased dramatically, from six- to nine-fold. Long-term suppression of fires in North America, Russia, and other parts of the world has led to accumulated fuel load and an increase in the destructive power of wildfires. Prescribed burning has been used successfully to reduce the destructiveness of wildfires. However, across vast areas of Russia and other regions, prescribed burning is not a component of forest management practices. Given these factors and the sheer size of the temperate-boreal carbon sink, increasing attention is being focused on the role of these forests in mitigating climate change, and the role of fire management strategies, such as prescribed burning, which could work alongside more conventional forestry-based greenhouse gas offset strategies, such as afforestation.

Guggenheim, D.E. [Applied Environmental Research, Inc., Falls Church, VA (United States); [George Mason Univ., Fairfax, VA (United States). Program on Global Change

1996-12-31

316

Carbon stewardship: land management decisions and the potential for carbon sequestration in Colorado, USA  

NASA Astrophysics Data System (ADS)

Land use and its role in reducing greenhouse gases is a key element of policy negotiations to address climate change. Calculations of the potential for enhanced terrestrial sequestration have largely focused on the technical characteristics of carbon stocks, such as vegetation type and management regime, and to some degree, on economic incentives. However, the actual potential for carbon sequestration critically depends on who owns the land and additional land management decision drivers. US land ownership patterns are complex, and consequently land use decision making is driven by a variety of economic, social and policy incentives. These patterns and incentives make up the 'carbon stewardship landscape'—that is, the decision making context for carbon sequestration. We examine the carbon stewardship landscape in the US state of Colorado across several public and private ownership categories. Achieving the full potential for land use management to help mitigate carbon emissions requires not only technical feasibility and financial incentives, but also effective implementing mechanisms within a suite of often conflicting and hard to quantify factors such as multiple-use mandates, historical precedents, and non-monetary decision drivers.

Failey, Elisabeth L.; Dilling, Lisa

2010-04-01

317

Potential and cost of carbon sequestration in the Tanzanian forest sector  

SciTech Connect

The forest sector in Tanzania offers ample opportunities to reduce greenhouse gas emissions (GHG) and sequestered carbon (C) in terrestrial ecosystems. More than 90% of the country's demand for primary energy is obtained from biomass mostly procured unsustainably from natural forests. This study examines the potential to sequester C through expansion of forest plantations aimed at reducing the dependence on natural forest for wood fuel production, as well as increase the country's output of industrial wood from plantations. These were compared ton conservation options in the tropical and miombo ecosystems. Three sequestration options were analyzed, involving the establishment of short rotation and long rotation plantations on about 1.7 x 106 hectares. The short rotation community forest option has a potential to sequester an equilibrium amount of 197.4 x 106 Mg C by 2024 at a net benefit of $79.5 x 106, while yielding a NPV of $0.46 Mg-1 C. The long rotation options for softwood and hardwood plantations will reach an equilibrium sequestration of 5.6 and 11.8 x 106 Mg C at a negative NPV of $0.60 Mg-1 C and $0.32 Mg-1 C. The three options provide cost competitive opportunities for sequestering about 7.5 x 106 Mg C yr -1 while providing desired forest products and easing the pressure on the natural forests in Tanzania. The endowment costs of the sequestration options were all found to be cheaper than the emission avoidance cost for conservation options which had an average cost of $1.27 Mg-1 C, rising to $ 7.5 Mg-1 C under some assumptions on vulnerability to encroachment. The estimates shown here may represent the upper bound, because the actual potential will be influenced by market prices for inputs and forest products, land use policy constraints and the structure of global C transactions.

Makundi, Willy R.

2001-01-01

318

Potential and economics of forestry options for carbon sequestration in India  

Microsoft Academic Search

There is a need to understand the carbon (C) sequestration potential of the forestry option and its financial implications for each country.In India the C emissions from deforestation are estimated to be nearly offset by C sequestration in forests under succession and tree plantations. India has nearly succeeded in stabilizing the area under forests and has adequate forest conservation strategies.

N. H. Ravindranath; B. S. Somashekhar

1995-01-01

319

Evaluating carbon sequestration efficiency in an ocean circulation model by adjoint sensitivity analysis  

E-print Network

the application of the adjoint method to develop three-dimensional maps of carbon sequestration efficiency lowest in the North Atlantic basin (except for regions of deep convection in the Labrador Sea) relative sequestration is more efficient in the long term. Our calculations draw out the dual role of convective mixing

Follows, Mick

320

A cost-effective monitoring strategy for carbon-sequestrated deep saline aquifers  

Microsoft Academic Search

Substantial research efforts are now underway on injecting (sequestrating) carbon dioxide (CO 2 ) into deep saline aquifers. These sequestration efforts require remote monitoring using available geophysical tools to ensure that the sequestrat ed CO 2 is in place and does not disturb the geological integrity of the surrounding rocks. Since seismic method is the only accepted geophysical tool that

Subhashis Mallick; Pradip K. Muhkopadhyay; Ahana Dwivedi; Mohit Agrawal

321

On Farm Management and its Effect on Carbon Sequestration  

NASA Astrophysics Data System (ADS)

The interest in carbon sequestration in soils is increasing and how different farm management practices affect carbon is of interest to farmers and land managers. Much of the work in the past has been done on experimental plots and not in fields with the management found on producing or working farms. This work reports on studies on farms under normal management and not on research plots. Sites were studied in the grasslands of the central U.S. that were converted to CRP to look at the effect of various management practices on soil carbon. The effects of no-till were evaluated under a variety of management regimes in several different climatic zones. Native, no-till and conventional tilled sites on the same soil series were sampled in Ohio (long term no-till), Nebraska (irrigated fields) and Kansas (hog manure application both dryland and irrigated). Soils were sampled in 2-meter deep pits and laboratory measurements were made of the chemical and physical properties of the soil. Aggregate stability was one of the measured properties that was indicative of a improved soil structure and it clearly demonstrates that the aggregate stability improved rapidly under both CRP and also when no-till was used.

Kimble, J. M.; Samson-Liebig, S.; Follett, R. F.

2002-12-01

322

Potential for Advanced Carbon Capture and Sequestration Technologies in a Climate Constrained World  

E-print Network

This study assesses the potential of advanced power plant carbon capture and sequestration technologies for the stabilization of atmospheric CO2 concentration. Although the current cost of power plant carbon capture and sequestration technology is high, the availability of advanced carbon capture and sequestration technologies could have a significant role in reducing the impact of climate change. Mitigating carbon emissions while continuing to utilize fossil fuels for electricity generation limits drastic changes to the global energy system. The ability to use abundant and cheap fossil fuels without contributing to climate change prevents large reductions in energy consumption and the substitution to more expensive sources of energy. Our analysis shows that significant cost savings could be achieved in stabilizing the atmospheric concentration of CO2 with advanced carbon capture and sequestration technologies over the next century. iii iv Executive Summary

Sh Kim

2000-01-01

323

Carbon sequestration via aqueous olivine mineral carbonation: role of passivating layer formation.  

PubMed

CO2 sequestration via carbonation of widely available low-cost minerals, such as olivine, can permanently dispose of CO2 in an environmentally benign and a geologically stable form. We report the results of studies of the mechanisms that limit aqueous olivine carbonation reactivity under the optimum sequestration reaction conditions observed to date: 1 M NaCl + 0.64 M NaHCO3 at Te 185 degrees C and P(CO2) approximately equal to 135 bar. A reaction limiting silica-rich passivating layer (PL) forms on the feedstock grains, slowing carbonate formation and raising process cost. The morphology and composition of the passivating layers are investigated using scanning and transmission electron microscopy and atomic level modeling. Postreaction analysis of feedstock particles, recovered from stirred autoclave experiments at 1500 rpm, provides unequivocal evidence of local mechanical removal (chipping) of PL material, suggesting particle abrasion. This is corroborated by our observation that carbonation increases dramatically with solid particle concentration in stirred experiments. Multiphase hydrodynamic calculations are combined with experimentto better understand the associated slurry-flow effects. Large-scale atomic-level simulations of the reaction zone suggest that the PL possesses a "glassy" but highly defective SiO2 structure that can permit diffusion of key reactants. Mitigating passivating layer effectiveness is critical to enhancing carbonation and lowering sequestration process cost. PMID:16913142

Béarat, Hamdallah; McKelvy, Michael J; Chizmeshya, Andrew V G; Gormley, Deirdre; Nunez, Ryan; Carpenter, R W; Squires, Kyle; Wolf, George H

2006-08-01

324

Activation of magnesium rich minerals as carbonation feedstock materials for CO 2 sequestration  

Microsoft Academic Search

Mineral carbonation, the reaction of magnesium-rich minerals such as olivine and serpentine with CO2 to form stable mineral carbonates, is a novel and promising approach to carbon sequestration. However, the preparation of the minerals prior to carbonation can be energy intensive, where some current studies have been exploring extensive pulverization of the minerals below 37 ?m, heat treatment of minerals

M. M. Maroto-Valer; D. J. Fauth; M. E. Kuchta; Y. Zhang; J. M. Andrésen

2005-01-01

325

Ocean Sciences 2006 An Estimate of Carbon Sequestration via Antarctic Intermediate Water Formation in the  

E-print Network

Ocean Sciences 2006 An Estimate of Carbon Sequestration via Antarctic Intermediate Water Formation traditional deep water formation via entrainment of carbon dioxide and other greenhouse-active species collected for oxygen, total carbon, alkalinity, nutrients, and CFCs. The alkalinity and total carbon data

Talley, Lynne D.

326

Crop residue and tillage effects on carbon sequestration in a Luvisol in central Ohio  

Microsoft Academic Search

Soils play a key role in the global carbon cycle. They can be a source or a sink of carbon and influence CO2 concentrations in the atmosphere. In order to calculate the carbon budget of a region, the effect of soil management practices on carbon sequestration in soils needs to be quantified. Objectives of this experiment were to determine: (i)

S. W Duiker; R Lal

1999-01-01

327

Atmosphere-crust coupling and carbon sequestration on the young Mars Professor Martin R. Lee1  

E-print Network

Atmosphere-crust coupling and carbon sequestration on the young Mars Professor Martin R. Lee1 *, Dr the idea that CO2 was `scrubbed' by precipitation of carbonate minerals within the planet's crust - a reaction termed `carbonation'. This project will seek evidence for carbonation by analysis of martian

Guo, Zaoyang

328

RANGELAND SEQUESTRATION POTENTIAL ASSESSMENT  

SciTech Connect

Rangelands occupy approximately half of the world's land area and store greater than 10% of the terrestrial biomass carbon and up to 30% of the global soil organic carbon. Although soil carbon sequestration rates are generally low on rangelands in comparison to croplands, increases in terrestrial carbon in rangelands resulting from management can account for significant carbon sequestration given the magnitude of this land resource. Despite the significance rangelands can play in carbon sequestration, our understanding remains limited. Researchers conducted a literature review to identify sustainably management practices that conserve existing rangeland carbon pools, as well as increase or restore carbon sequestration potentials for this type of ecosystem. The research team also reviewed the impact of grazing management on rangeland carbon dynamics, which are not well understood due to heterogeneity in grassland types. The literature review on the impact of grazing showed a wide variation of results, ranging from positive to negative to no response. On further review, the intensity of grazing appears to be a major factor in controlling rangeland soil organic carbon dynamics. In 2003, researchers conducted field sampling to assess the effect of several drought years during the period 1993-2002. Results suggested that drought can significantly impact rangeland soil organic carbon (SOC) levels, and therefore, carbon sequestration. Resampling was conducted in 2006; results again suggested that climatic conditions may have overridden management effects on SOC due to the ecological lag of the severe drought of 2002. Analysis of grazing practices during this research effort suggested that there are beneficial effects of light grazing compared to heavy grazing and non-grazing with respect to increased SOC and nitrogen contents. In general, carbon storage in rangelands also increases with increased precipitation, although researchers identified threshold levels of precipitation where sequestration begins to decrease.

Lee Spangler; George F. Vance; Gerald E. Schuman; Justin D. Derner

2012-03-31

329

Experimental observations of dolomite dissolution in geologic carbon sequestration conditions  

NASA Astrophysics Data System (ADS)

One sequestration scenario proposed to reduce CO2 emissions involves injecting CO2 into saline formations or hydrocarbon reservoirs, where dolomite frequently occurs. To better understand fluid-mineral interactions in these sequestration settings, we have conducted a series of single-pass, flow-through experiments on dolomite core samples with CO2-bearing brine. An important component of the experimental design was to maintain the fabric of the rock so as to more accurately simulate fluid flow in natural dolomite-bearing systems. Seven experiments were conducted at 100°C and a pore-fluid pressure of 150 bars with a fluid containing 1 molal NaCl and 0.6 molal dissolved CO2. Flow rates ranged from 0.01 to 1 ml/min. Each experiment was terminated before dissolution breakthrough, but permeability increased by approximately an order of magnitude for all experiments. In general, Ca and Mg concentrations were initially high, but then decreased with reaction progress. We hypothesize that time-dependent changes in fluid chemistry reflect reduction in reactive surface area. Fluid chemistry also indicates preferential removal of Ba, Mn, and Sr with respect to Ca and Mg. In the extreme case, 70% of the Ba was removed from one core, while only 3% of the Ca, Mg, or the entire core mass was removed by dissolution. Ongoing work is focused on identifying elemental distributions throughout the rock to better understand the dissolution process. With fluid chemistry and BET surface area, we model dissolution rate as a function of core length using reactive transport simulations and compare our whole rock, far from equilibrium dissolution rates with analogous data reported in the literature. Finally, X-ray computed tomography images enable reconstructions of dissolution patterns, and they are being used to explore the effect of pore space heterogeneity on flow path development. Geologic carbon sequestration in dolomite will produce significant dissolution at the brine/CO2 interface that facilitates additional solubility trapping of CO2 if the brine remains in contact with the CO2 plume. However, the dissolution process is complex, with major cation release decreasing with time because of reduction in reactive surface area and preferential removal of minor cations.

Luhmann, A. J.; Kong, X.; Tutolo, B. M.; Saar, M. O.; Seyfried, W. E.

2013-12-01

330

Soil carbon dynamics and potential carbon sequestration by rangelands  

Microsoft Academic Search

The USA has about 336 Mha of grazing lands of which rangelands account for 48%. Changes in rangeland soil C can occur in response to a wide range of management and environmental factors. Grazing, fire, and fertilization have been shown to affect soil C storage in rangelands, as has converting marginal croplands into grasslands. Carbon losses due to soil erosion

G. E Schuman; H. H Janzen; J. E Herrick

2002-01-01

331

Measurement of carbon for carbon sequestration and site monitoring  

SciTech Connect

A 2 to 6 degree C increase in global temperature by 2050 has been predicted due to the production of greenhouse gases that is directly linked to human activities. This has encouraged an increase in the international efforts on ways to reduce anthropogenic emissions of greenhouse gases particularly carbon dioxide (CO{sub 2}) as evidence for the link between atmospheric greenhouse gases and climate change has been established. Suggestion that soils and vegetation could be managed to increase their uptake and storage of CO{sub 2}, and thus become 'land carbon sinks' is an incentive for scientists to undertake the ability to measure and quantify the carbon in soils and vegetation to establish base-line quantities present at this time. The verification of the permanence of these carbon sinks has raised some concern regarding the accuracy of their long-term existence. Out of the total percentage of carbon that is potentially sequestered in the terrestrial land mass, only 25% of that is sequestered above ground and almost 75% is hypothesized to be sequestered underground. Soil is composed of solids, liquids, and gases which is similar to a three-phase system. The gross chemical composition of soil organic carbon (SOC) consists of 65% humic substances that are amorphous, dark-colored, complex, polyelectrolyte-like materials that range in molecular weight from a few hundred to several thousand Daltons. The very complex structure of humic and fulvic acid makes it difficult to obtain a spectral signature for all soils in general. The humic acids of different soils have been observed to have polymeric structure, appearing as rings, chains and clusters as seen in electron microscope observations. The humification processes of the soils will decide the sizes of their macromolecules that range from 60-500 angstroms. The percentage of the humus that occurs in the light brown soils is much lower than the humus present in dark brown soils. The humus of forest soils is characterized by a high content of fulvic acids while the humus of peat and grassland soils is high in humic acids. Similarly it is well known that the amount of carbon present in forest soils is lower than the amount present in grassland soils.

Martin, Madhavi Z [ORNL; Wullschleger, Stan D [ORNL; Garten Jr, Charles T [ORNL; Palumbo, Anthony Vito [ORNL

2007-01-01

332

Micro-and nano-environments of carbon sequestration: Multi-element STXMNEXAFS spectromicroscopy assessment of microbial carbon and  

E-print Network

Micro- and nano-environments of carbon sequestration: Multi-element STXM­NEXAFS spectromicroscopy- and nano-C sequestration environments, and conduct submicron-level investigation of the compositional chem demonstrated the existence of spatially distinct seemingly terminal micro- and nano-C repository zones, where

Lehmann, Johannes

333

Carbon Capture and Sequestration: A Regulatory Gap Assessment  

SciTech Connect

Though a potentially significant climate change mitigation strategy, carbon capture and sequestration (CCS) remains mired in demonstration and development rather than proceeding to full-scale commercialization. Prior studies have suggested numerous reasons for this stagnation. This Report seeks to empirically assess those claims. Using an anonymous opinion survey completed by over 200 individuals involved in CCS, it concludes that there are four primary barriers to CCS commercialization: (1) cost, (2) lack of a carbon price, (3) liability risks, and (4) lack of a comprehensive regulatory regime. These results largely confirm previous work. They also, however, expose a key barrier that prior studies have overlooked: the need for comprehensive, rather than piecemeal, CCS regulation. The survey data clearly show that the CCS community sees this as one of the most needed incentives for CCS deployment. The community also has a relatively clear idea of what that regulation should entail: a cooperative federalism approach that directly addresses liability concerns and that generally does not upset traditional lines of federal-state authority.

Lincoln Davies; Kirsten Uchitel; John Ruple; Heather Tanana

2012-04-30

334

CARBON SEQUESTRATION AND LAND MANAGEMENT AT DOD INSTALLATIONS: AN EXPLORATORY STUDY  

EPA Science Inventory

This report explores the influence of management practices such as tree harvesting, deforestation, and reforestation on carbon sequestration potential by DOD forests by performing a detailed analysis of a specific installation, Camp Shelby, Mississippi. amp Shelby was selected fo...

335

Big Sky Carbon Sequestration Partnership. (Quarterly Report, April 1, 2005-June 30, 2005).  

National Technical Information Service (NTIS)

The Big Sky Carbon Sequestration Partnership, led by Montana State University, is comprised of research institutions, public entities and private sectors organizations, and the Confederated Salish and Kootenai Tribes and the Nez Perce Tribe. Efforts under...

S. M. Capalbo

2005-01-01

336

Southwest Regional Partnership on Carbon Sequestration. (Revised Semiannual Report, April 1, 2005-September 30, 2005).  

National Technical Information Service (NTIS)

The Southwest Partnership on Carbon Sequestration completed several more tasks during the period of April 1, 2005 September 30, 2005. The main objective of the Southwest Partnership project is to evaluate and demonstrate the means for achieving an 18% red...

B. McPherson

2006-01-01

337

Evaluation of the environmental viability of direct injection schemes for ocean carbon sequestration  

E-print Network

This thesis evaluates the expected impact of several promising schemes for ocean carbon sequestration by direct injection of CO2, and serves as an update to the assessment by Auerbach et al. (1997) and Caulfield et al. ...

Israelsson, Peter H. (Peter Hampus), 1973-

2008-01-01

338

Connecting Soil Organic Carbon and Root Biomass with Land-Use and Vegetation in Temperate Grassland  

PubMed Central

Soils contain much of Earth's terrestrial organic carbon but are sensitive to land-use. Rangelands are important to carbon dynamics and are among ecosystems most widely impacted by land-use. While common practices like grazing, fire, and tillage affect soil properties directly related to soil carbon dynamics, their magnitude and direction of change vary among ecosystems and with intensity of disturbance. We describe variability in soil organic carbon (SOC) and root biomass—sampled from 0–170?cm and 0–100?cm, respectively—in terms of soil properties, land-use history, current management, and plant community composition using linear regression and multivariate ordination. Despite consistency in average values of SOC and root biomass between our data and data from rangelands worldwide, broad ranges in root biomass and SOC in our data suggest these variables are affected by other site-specific factors. Pastures with a recent history of severe grazing had reduced root biomass and greater bulk density. Ordination suggests greater exotic species richness is associated with lower root biomass but the relationship was not apparent when an invasive species of management concern was specifically tested. We discuss how unexplained variability in belowground properties can complicate measurement and prediction of ecosystem processes such as carbon sequestration.

McGranahan, Devan Allen; Daigh, Aaron L.; Veenstra, Jessica J.; Engle, David M.; Miller, James R.; Debinski, Diane M.

2014-01-01

339

Sequestration of CO2 discharged from anode by algal cathode in microbial carbon capture cells (MCCs).  

PubMed

Due to increased discharge of CO(2) is incurring problems, CO(2) sequestration technologies require substantial development. By introducing anodic off gas into an algae grown cathode (Chlorella vulgaris), new microbial carbon capture cells (MCCs) were constructed and demonstrated here to be an effective technology for CO(2) emission reduction with simultaneous voltage output without aeration (610+/-50 mV, 1000 Omega). Maximum power densities increased from 4.1 to 5.6 W/m(3) when the optical density (OD) of cathodic algae suspension increased from 0.21 to 0.85 (658 nm). Compared to a stable voltage of 706+/-21 mV (1000 Omega) obtained with cathodic dissolved oxygen (DO) of 6.6+/-1.0 mg/L in MCC, voltage outputs decreased from 654 to 189 mV over 70 h in the control reactor (no algae) accompanied with a decrease in DO from 7.6 to 0.9 mg/L, indicating that cathode electron acceptor was oxygen. Gas analysis showed that all the CO(2) generated from anode was completely eliminated by catholyte, and the soluble inorganic carbon was further converted into algal biomass. These results showed the possibility of a new method for simultaneous carbon fixing, power generation and biodiesel production during wastewater treatment without aeration. PMID:20547055

Wang, Xin; Feng, Yujie; Liu, Jia; Lee, He; Li, Chao; Li, Nan; Ren, Nanqi

2010-08-15

340

The impact of logging on biodiversity and carbon sequestration in tropical forests  

NASA Astrophysics Data System (ADS)

Tropical deforestation is one of the most relevant environmental issues at planetary scale. Forest clearcutting has dramatic effect on local biodiversity, on the terrestrial carbon sink and atmospheric GHGs balance. In terms of protection of tropical forests selective logging is, instead, often regarded as a minor or even positive management practice for the ecosystem and it is supported by international certifications. However, few studies are available on changes in the structure, biodiversity and ecosystem services due to the selective logging of African forests. This paper presents the results of a survey on tropical forests of West and Central Africa, with a comparison of long-term dynamics, structure, biodiversity and ecosystem services (such as the carbon sequestration) of different types of forests, from virgin primary to selectively logged and secondary forest. Our study suggests that there is a persistent effect of selective logging on biodiversity and carbon stock losses in the long term (up to 30 years since logging) and after repeated logging. These effects, in terms of species richness and biomass, are greater than the expected losses from commercial harvesting, implying that selective logging in West and Central Africa is impairing long term (at least until 30 years) ecosystem structure and services. A longer selective logging cycle (>30 years) should be considered by logging companies although there is not yet enough information to consider this practice sustainable.

Cazzolla Gatti, R.

2012-04-01

341

Energy Consumption and Net CO2 Sequestration of Aqueous Mineral Carbonation  

Microsoft Academic Search

Aqueous mineral carbonation is a potentially attractive sequestration technology to reduce CO2 emissions. The energy consumption of this technology, however, reduces the net amount of CO2 sequestered. Therefore, the energetic CO2 sequestration efficiency of aqueous mineral carbonation was studied in dependence of various process variables using either wollastonite (CaSiO3) or steel slag as feedstock. For wollastonite, the maximum energetic CO2

W. J. J. Huijgen; R. N. J. Comans; G. J. Witkamp; G. J. Ruijg

2006-01-01

342

Regulatory Constraints to Carbon Sequestration in Terrestrial Ecosystems and Geologic Formations: A California Perspective  

Microsoft Academic Search

Carbon sequestration in terrestrialecosystems and geologic formations providesa significant opportunity for California toaddress global climate change. The physicalsize of its resources (e.g., forests,agriculture, soils, rangeland, and geologicformations) and the expertise in Californiaprovides a substantial foundation fordeveloping carbon sequestration activities.Furthermore, the co-benefits of carbonsequestration – such as improved soil andwater quality, restoration of degradedecosystems, increased plant and cropproductivity, and enhanced oil

Edward Vine

2004-01-01

343

Carbon sequestration monitoring with acoustic double-difference waveform inversion: A case study on SACROC walkaway VSP data  

E-print Network

Carbon sequestration monitoring with acoustic double-difference waveform inversion: A case study National Laboratory SUMMARY Geological carbon sequestration involves large-scale injection of carbon is crucial for ensuring safe and reliable carbon storage (Bickle et al., 2007). Conventional analysis of time

Malcolm, Alison

344

Barnsley Biomass Working towards carbon emissions reduction in Yorkshire  

E-print Network

Barnsley Biomass Working towards carbon emissions reduction in Yorkshire objectives Fifteen years Yorkshire town are being replaced by a cleaner, green alternative: biomass. Barnsley's Communal Biomass on to residents. · To increase energy efficiency. · To develop biomass usage in new and refurbished public

345

Significant Role for Microbial Autotrophy in the Sequestration of Soil Carbon  

PubMed Central

Soils were incubated for 80 days in a continuously labeled 14CO2 atmosphere to measure the amount of labeled C incorporated into the microbial biomass. Microbial assimilation of 14C differed between soils and accounted for 0.12% to 0.59% of soil organic carbon (SOC). Assuming a terrestrial area of 1.4 × 108 km2, this represents a potential global sequestration of 0.6 to 4.9 Pg C year?1. Estimated global C sequestration rates suggest a “missing sink” for carbon of between 2 and 3 Pg C year?1. To determine whether 14CO2 incorporation was mediated by autotrophic microorganisms, the diversity and abundance of CO2-fixing bacteria and algae were investigated using clone library sequencing, terminal restriction fragment length polymorphism (T-RFLP), and quantitative PCR (qPCR) of the ribulose 1,5-bisphosphate carboxylase/oxygenase (RubisCO) gene (cbbL). Phylogenetic analysis showed that the dominant cbbL-containing bacteria were Azospirillum lipoferum, Rhodopseudomonas palustris, Bradyrhizobium japonicum, Ralstonia eutropha, and cbbL-containing chromophytic algae of the genera Xanthophyta and Bacillariophyta. Multivariate analyses of T-RFLP profiles revealed significant differences in cbbL-containing microbial communities between soils. Differences in cbbL gene diversity were shown to be correlated with differences in SOC content. Bacterial and algal cbbL gene abundances were between 106 and 108 and 103 to 105 copies g?1 soil, respectively. Bacterial cbbL abundance was shown to be positively correlated with RubisCO activity (r = 0.853; P < 0.05), and both cbbL abundance and RubisCO activity were significantly related to the synthesis rates of [14C]SOC (r = 0.967 and 0.946, respectively; P < 0.01). These data offer new insights into the importance of microbial autotrophy in terrestrial C cycling. PMID:22286999

Yuan, Hongzhao; Ge, Tida; Chen, Caiyan; O'Donnell, Anthony G.

2012-01-01

346

Can recent increases in forest biomass be translated into long-term carbon storage?  

NASA Astrophysics Data System (ADS)

The biomass of forests across the globe is rapidly increasing in the past decades. The rates of biomass accumulations over years/decades are much higher than those derived from long-term chronosequences, which has been taken as the evidence of elevated carbon sink in responses to increasing atmospheric CO2 and climate change. But there is a gap between increases in forest biomass over a short-term and the biomass carbon sequestration for a long period of time in a stochastic dynamic system like forests characterized by 'slow in - fast out' processes, because the disturbances happened at century time scales may erase the accumulated biomass over decades. According to our mathematical analysis, in such a system, the short-term biomass accumulation rate should be always higher than that at long-term scale. It is unknown that how many short-term increases in biomass can be translated into long-term trends at given disturbance regimes. In this paper, we derived an analytical model linking the short-term biomass increase to long-term biomass accumulation at given disturbance regimes. And, based on the analytical solutions of this model, we analyzed the chronosequence and time series biomass data of the temperate forests of Northeastern America obtained from literature and forest inventory (FIA data). Our results show the current biomass increase rates cannot maintain statistically significant higher trends of biomass accumulation than those derived from chronosequences (i.e., historic long-term rates) at current disturbance regimes. And, the potential of carbon storage in live biomass doesn't increase over past decade due to increasing mortality rates in the forests with high biomass. If disturbances become more frequent and severe as predicted by other studies, forest carbon storage will be reduced in the future. This analysis suggests that the temperate forests in Northeastern America will not store so much carbon as expected based on the trends of increasing biomass in recent decades if the disturbances are not controlled at a very low frequency or severity.

Weng, E.; Pacala, S. W.

2013-12-01

347

Carbon sequestration in deep ploughed Luvisols and Podzols of Northern Germany  

NASA Astrophysics Data System (ADS)

Research on carbon sequestration in arable soils up to now has mainly focused on reduced and no-tillage systems even though the effects on soil carbon stocks are marginal. This study addresses the long-term effects of deep ploughing. We are sampling five Luvisols and five Podzols under agriculture as well as five Podzols under forest in Northern Germany, which were deep ploughed (50 to 90 cm depth) in the 1960s. Adjacent equally managed, but conventionally ploughed (approx. 30 cm depth) subplots are used as a reference respectively. At each site two subplots of 20 by 40 meters, we collect samples from different depths of a soil profile (down to 1.5 meter depth) after digging a pit. Additionally, five composite core samples down to 1 meter depth randomly distributed over the field subplot are collected. Soil bulk density, gravel fraction as well as organic and inorganic carbon content will be determined to calculate organic C stocks. First results from an arable loess soil (Haplic Luvisol) near Salzgitter, which was ploughed to 90 cm depth in 1966, show a mean C stock of 82,5 Mg ha-1 in the deep ploughed subplot compared to 65,9 Mg ha-1 in the reference subplot. This is equal to a long-term increase of 30% in soil organic carbon due to deep ploughing, which is several times higher than the effects of reduced ploughing or no-tillage. Moreover, we will conduct incubation experiments to determine soil respiration and microbial biomass via substrate induced respiration in order to elucidate the stability of the buried carbon. Further analysis will address the stabilization mechanisms of the buried soil organic matter including pH measurements, soil texture analysis, atomic absorption spectroscopy to quantify pedogenic iron and aluminum oxides, cation-exchange capacity, C density fractionation and radiocarbon dating. We will present data from the first sampling campaigns and discuss their implications for our view on subsoil carbon stability.

Alcántara, Viridiana; Don, Axel; Nieder, Rolf; Well, Reinhard

2014-05-01

348

SOIL ORGANIC CARBON SEQUESTRATION IN COTTON PRODUCTION SYSTEMS  

Microsoft Academic Search

Conservation tillage, crop intensification, sod-based rotations, and judicious application of fertilizers and herbicides are agricultural practices that are not only agronomically sound, but could increase soil organic C (SOC) sequestration. These practices have great potential for adoption by cotton (Gossypium hirsutum L) producers in the southeastern USA. We calculated potential SOC sequestration under different management scenarios of five major land

Hector J. Causarano; Alan J. Franzluebbers; D. Wayne Reeves; J. N. Shaw; M. L. Norfleet

349

Mobilization of Trace Metals in an Experimental Carbon Sequestration Scenario  

NASA Astrophysics Data System (ADS)

Mobilizing trace metals with injection of supercritical CO2 into deep saline aquifers is a concern for geologic carbon sequestration. The potential for leakage from these systems requires an understanding of how injection reservoirs interact with the overlying potable aquifers. Hydrothermal experiments were performed to evaluate metal mobilization and mechanisms of release in a carbonate storage reservoir and at the caprock-reservoir boundary. Experiments react synthetic Desert Creek limestone and/or Gothic Shale, formations in the Paradox Basin, Utah, with brine that is close to equilibrium with these rocks. A reaction temperature of 1600C accelerates the reaction kinetics without changing in-situ water-rock reactions. The experiments were allowed to reach steady state before injecting CO2. Changes in major and trace element water chemistry, dissolved carbon and sulfide, and pH were tracked throughout the experiments. CO2 injection decreases the pH by 1 to 2 units; concomitant mineral dissolution produces elevated Ba, Cu, Fe, Pb, and Zn concentrations in the brine. Concentrations subsequently decrease to approximately steady state values after 120-330 hours, likely due to mineral precipitation as seen in SEM images and predicted by geochemical modeling. In experiments that emulate the caprock-reservoir boundary, final Fe (0.7ppb), an element of secondary concern for the EPA, and Pb (0.05ppb) concentrations exceed EPA limits, whereas Ba (0.140ppb), Cu (48ppb), and Zn (433ppb) values remain below EPA limits. In experiments that simulate deeper reservoir conditions, away from the caprock boundary, final Fe (3.5ppb) and Pb (0.017ppb) values indicate less mobilization than seen at the caprock-reservoir boundary, but values still exceed EPA limits. Barium concentrations always remain below the EPA limit of 2ppb, but are more readily mobilized in experiments replicating deeper reservoir conditions. In both systems, transition elements Cd, Cr, Cu, Pb and Zn behave in a similar manner, increasing in concentration with injection but continually decreasing after about 830 hours until termination of the experiment. SEM images and geochemical models indicate initial dissolution of all rocks and minerals, re-precipitation of Ca-Mg-Fe carbonates and Fe-sulfides, and precipitation of anhydrite in both systems. Calcite dissolves more readily than dolomite in these experiments, but re-precipitates in veins on dolomite. If brines leak from a storage reservoir and mix with a potable aquifer, the experimental results suggest that Ba, Cu, and Zn will not be contaminants of concern. Pb, Fe and As (still under consideration) initially exceed the EPA threshold and may require careful attention in a sequestration scenario. However, experimentally observed trends of decreasing trace metal concentration suggest that these metals could become less of a concern during the life of a carbon repository. Finally, the caprock plays an active role in trace metal mobilization in the system. The caprock provides a source of metals, although subsequent precipitation may remove metals from solution.

Marcon, V.; Kaszuba, J. P.

2012-12-01

350

Submicron structures provide preferential spots for carbon and nitrogen sequestration in soils  

PubMed Central

The sequestration of carbon and nitrogen by clay-sized particles in soils is well established, and clay content or mineral surface area has been used to estimate the sequestration potential of soils. Here, via incubation of a sieved (<2?mm) topsoil with labelled litter, we find that only some of the clay-sized surfaces bind organic matter (OM). Surprisingly, <19% of the visible mineral areas show an OM attachment. OM is preferentially associated with organo-mineral clusters with rough surfaces. By combining nano-scale secondary ion mass spectrometry and isotopic tracing, we distinguish between new labelled and pre-existing OM and show that new OM is preferentially attached to already present organo-mineral clusters. These results, which provide evidence that only a limited proportion of the clay-sized surfaces contribute to OM sequestration, revolutionize our view of carbon sequestration in soils and the widely used carbon saturation estimates. PMID:24399306

Vogel, Cordula; Mueller, Carsten W.; Höschen, Carmen; Buegger, Franz; Heister, Katja; Schulz, Stefanie; Schloter, Michael; Kögel-Knabner, Ingrid

2014-01-01

351

Concomitant Production of High Purity Hydrogen and Sequestration Ready Carbon Dioxide From Coal  

Microsoft Academic Search

A novel process on the production of a high purity stream of hydrogen from gasification products with concomitant generation of sequestration-ready carbon dioxide stream is presented. The central theme of the process lies in the sequential use of a) an oxygen transfer compound (OTC) to oxidize carbon monoxide present in syngas and b) capture of CO2 using an appropriate carbon

Kanchan Mondal; Krzysztof Piotrowski; Tomasz Wiltowski

352

Carbon dioxide sequestration monitoring and verification via laser based detection system in the 2 mum band  

Microsoft Academic Search

Carbon Dioxide (CO2) is a known contributor to the green house gas effect. Emissions of CO2 are rising as the global demand for inexpensive energy is placated through the consumption and combustion of fossil fuels. Carbon capture and sequestration (CCS) may provide a method to prevent CO2 from being exhausted to the atmosphere. The carbon may be captured after fossil

Seth David Humphries

2008-01-01

353

Carbon Sequestration in Wetland Soils of the Northern Gulf of Mexico Coastal Region  

EPA Science Inventory

Coastal wetlands play an important but complex role in the global carbon cycle, contributing to the ecosystem service of greenhouse gas regulation through carbon sequestration. Although coastal wetlands occupy a small percent of the total US land area, their potential for carbon...

354

Carbon sequestration in leaky reservoirs Alain Jean-Marie, INRIA and UMR LIRMM  

E-print Network

Carbon sequestration in leaky reservoirs Alain Jean-Marie, INRIA and UMR LIRMM Michel Moreaux, February 2, 2011 Abstract We propose in this paper a model of optimal Carbon Capture and Storage in which the reservoir of sequestered carbon is leaky, and pollution eventually is released into the atmosphere. We

Boyer, Edmond

355

Economic Evaluation of Leading Technology Options for Sequestration of Carbon Dioxide  

E-print Network

1 Economic Evaluation of Leading Technology Options for Sequestration of Carbon Dioxide by Jérémy, which releases nearly six billion tons of carbon per year into the atmosphere. These fuels will continue development. Since power plants are the largest point sources of CO2 emissions, capturing the carbon dioxide

356

Estimates of Carbon Sequestration in Tidal Coastal Wetlands Along the US east Coast  

EPA Science Inventory

Globally, salt marshes are reported to sequester carbon (210 g C m-2 y -1), and along with mangroves in the US, they are reported to account for 1?2 % of the carbon sink for the conterminous US. Using the published salt marsh carbon sequestration rate and National Wetland Invent...

357

CALCIUM CARBONATE PRODUCTION BY COCCOLITHOPHORID ALGAE IN LONG TERM, CARBON DIOXIDE SEQUESTRATION  

SciTech Connect

Predictions of increasing levels of anthropogenic carbon dioxide (CO{sub 2}) and the specter of global warming have intensified research efforts to identify ways to sequester carbon. A number of novel avenues of research are being considered, including bioprocessing methods to promote and accelerate biosequestration of CO{sub 2} from the environment through the growth of organisms such as coccolithophorids, which are capable of sequestering CO{sub 2} relatively permanently. Calcium and magnesium carbonates are currently the only proven, long-term storage reservoirs for carbon. Whereas organic carbon is readily oxidized and releases CO{sub 2} through microbial decomposition on land and in the sea, carbonates can sequester carbon over geologic time scales. This proposal investigates the use of coccolithophorids--single-celled, marine algae that are the major global producers of calcium carbonate--to sequester CO{sub 2} emissions from power plants. Cultivation of coccolithophorids for calcium carbonate (CaCO{sub 3}) precipitation is environmentally benign and results in a stable product with potential commercial value. Because this method of carbon sequestration does not impact natural ecosystem dynamics, it avoids controversial issues of public acceptability and legality associated with other options such as direct injection of CO{sub 2} into the sea and ocean fertilization. Consequently, cultivation of coccolithophorids could be carried out immediately and the amount of carbon sequestered as CaCO{sub 3} could be readily quantified. The significant advantages of this approach warrant its serious investigation. The major goals of the proposed research are to identify the growth conditions that will result in the maximum amount of CO{sub 2} sequestration through coccolithophorid calcite production and to evaluate the costs/benefits of using coccolithophorid cultivation ponds to abate CO{sub 2} emissions from power plants.

V.J. Fabry, Ph.D.

2001-09-10

358

CALCIUM CARBONATE PRODUCTION BY COCCOLITHOPHORID ALGAE IN LONG TERM, CARBON DIOXIDE SEQUESTRATION  

SciTech Connect

Predictions of increasing levels of anthropogenic carbon dioxide (CO{sub 2}) and the specter of global warming have intensified research efforts to identify ways to sequester carbon. A number of novel avenues of research are being considered, including bioprocessing methods to promote and accelerate biosequestration of CO{sub 2} from the environment through the growth of organisms such as coccolithophorids, which are capable of sequestering CO{sub 2} relatively permanently. Calcium and magnesium carbonates are currently the only proven, long-term storage reservoirs for carbon. Whereas organic carbon is readily oxidized and releases CO{sub 2} through microbial decomposition on land and in the sea, carbonates can sequester carbon over geologic time scales. This proposal investigates the use of coccolithophorids--single-celled, marine algae that are the major global producers of calcium carbonate--to sequester CO{sub 2} emissions from power plants. Cultivation of coccolithophorids for calcium carbonate (CaCO{sub 3}) precipitation is environmentally benign and results in a stable product with potential commercial value. Because this method of carbon sequestration does not impact natural ecosystem dynamics, it avoids controversial issues of public acceptability and legality associated with other options such as direct injection of CO{sub 2} into the sea and ocean fertilization. Consequently, cultivation of coccolithophorids could be carried out immediately and the amount of carbon sequestered as CaCO{sub 3} could be readily quantified. The significant advantages of this approach warrant its serious investigation. The major goals of the proposed research are to identify the growth conditions that will result in the maximum amount of CO{sub 2} sequestration through coccolithophorid calcite production and to evaluate the costs/benefits of using coccolithophorid cultivation ponds to abate CO{sub 2} emissions from power plants.

V.J. Fabry, Ph.D.

2002-04-05

359

CALCIUM CARBONATE PRODUCTION BY COCCOLITHOPHORID ALGAE IN LONG TERM, CARBON DIOXIDE SEQUESTRATION  

SciTech Connect

Predictions of increasing levels of anthropogenic carbon dioxide (CO{sub 2}) and the specter of global warming have intensified research efforts to identify ways to sequester carbon. A number of novel avenues of research are being considered, including bioprocessing methods to promote and accelerate biosequestration of CO{sub 2} from the environment through the growth of organisms such as coccolithophorids, which are capable of sequestering CO{sub 2} relatively permanently. Calcium and magnesium carbonates are currently the only proven, long-term storage reservoirs for carbon. Whereas organic carbon is readily oxidized and releases CO{sub 2} through microbial decomposition on land and in the sea, carbonates can sequester carbon over geologic time scales. This proposal investigates the use of coccolithophorids single-celled, marine algae that are the major global producers of calcium carbonate to sequester CO{sub 2} emissions from power plants. Cultivation of coccolithophorids for calcium carbonate (CaCO{sub 3}) precipitation is environmentally benign and results in a stable product with potential commercial value. Because this method of carbon sequestration does not impact natural ecosystem dynamics, it avoids controversial issues of public acceptability and legality associated with other options such as direct injection of CO{sub 2} into the sea and ocean fertilization. Consequently, cultivation of coccolithophorids could be carried out immediately and the amount of carbon sequestered as CaCO{sub 3} could be readily quantified. The significant advantages of this approach warrant its serious investigation. The major goals of the proposed research are to identify the growth conditions that will result in the maximum amount of CO{sub 2} sequestration through coccolithophorid calcite production and to evaluate the costs/benefits of using coccolithophorid cultivation ponds to abate CO{sub 2} emissions from power plants.

V.J. Fabry

2001-07-01

360

CALCIUM CARBONATE PRODUCTION BY COCCOLITHOPHORID ALGAE IN LONG TERM, CARBON DIOXIDE SEQUESTRATION  

SciTech Connect

Predictions of increasing levels of anthropogenic carbon dioxide (CO{sub 2}) and the specter of global warming have intensified research efforts to identify ways to sequester carbon. A number of novel avenues of research are being considered, including bioprocessing methods to promote and accelerate biosequestration of CO{sub 2} from the environment through the growth of organisms such as coccolithophorids, which are capable of sequestering CO{sub 2} relatively permanently. Calcium and magnesium carbonates are currently the only proven, long-term storage reservoirs for carbon. Whereas organic carbon is readily oxidized and releases CO{sub 2} through microbial decomposition on land and in the sea, carbonates can sequester carbon over geologic time scales. This proposal investigates the use of coccolithophorids--single-celled, marine algae that are the major global producers of calcium carbonate--to sequester CO{sub 2} emissions from power plants. Cultivation of coccolithophorids for calcium carbonate (CaCO{sub 3}) precipitation is environmentally benign and results in a stable product with potential commercial value. Because this method of carbon sequestration does not impact natural ecosystem dynamics, it avoids controversial issues of public acceptability and legality associated with other options such as direct injection of CO{sub 2} into the sea and ocean fertilization. Consequently, cultivation of coccolithophorids could be carried out immediately and the amount of carbon sequestered as CaCO{sub 3} could be readily quantified. The significant advantages of this approach warrant its serious investigation. The major goals of the proposed research are to identify the growth conditions that will result in the maximum amount of CO{sub 2} sequestration through coccolithophorid calcite production and to evaluate the costs/benefits of using coccolithophorid cultivation ponds to abate CO{sub 2} emissions from power plants.

V.J. Fabry, Ph.D.

2002-07-09

361

CALCIUM CARBONATE PRODUCTION BY COCCOLITHOPHORID ALGAE IN LONG TERM, CARBON DIOXIDE SEQUESTRATION  

SciTech Connect

Predictions of increasing levels of anthropogenic carbon dioxide (CO{sub 2}) and the specter of global warming have intensified research efforts to identify ways to sequester carbon. A number of novel avenues of research are being considered, including bioprocessing methods to promote and accelerate biosequestration of CO{sub 2} from the environment through the growth of organisms such as coccolithophorids, which are capable of sequestering CO{sub 2} relatively permanently. Calcium and magnesium carbonates are currently the only proven, long-term storage reservoirs for carbon. Whereas organic carbon is readily oxidized and releases CO{sub 2} through microbial decomposition on land and in the sea, carbonates can sequester carbon over geologic time scales. This proposal investigates the use of coccolithophorids--single-celled, marine algae that are the major global producers of calcium carbonate--to sequester CO{sub 2} emissions from power plants. Cultivation of coccolithophorids for calcium carbonate (CaCO{sub 3}) precipitation is environmentally benign and results in a stable product with potential commercial value. Because this method of carbon sequestration does not impact natural ecosystem dynamics, it avoids controversial issues of public acceptability and legality associated with other options such as direct injection of CO{sub 2} into the sea and ocean fertilization. Consequently, cultivation of coccolithophorids could be carried out immediately and the amount of carbon sequestered as CaCO{sub 3} could be readily quantified. The significant advantages of this approach warrant its serious investigation. The major goals of the proposed research are to identify the growth conditions that will result in the maximum amount of CO{sub 2} sequestration through coccolithophorid calcite production and to evaluate the costs/benefits of using coccolithophorid cultivation ponds to abate CO{sub 2} emissions from power plants.

V.J. Fabry, Ph.D.

2002-09-30

362

CALCIUM CARBONATE PRODUCTION BY COCCOLITHOPHORID ALGAE IN LONG TERM, CARBON DIOXIDE SEQUESTRATION  

SciTech Connect

Predictions of increasing levels of anthropogenic carbon dioxide (CO{sub 2}) and the specter of global warming have intensified research efforts to identify ways to sequester carbon. A number of novel avenues of research are being considered, including bioprocessing methods to promote and accelerate biosequestration of CO{sub 2} from the environment through the growth of organisms such as coccolithophorids, which are capable of sequestering CO{sub 2} relatively permanently. Calcium and magnesium carbonates are currently the only proven, long-term storage reservoirs for carbon. Whereas organic carbon is readily oxidized and releases CO{sub 2} through microbial decomposition on land and in the sea, carbonates can sequester carbon over geologic time scales. This proposal investigates the use of coccolithophorids--single-celled, marine algae that are the major global producers of calcium carbonate--to sequester CO{sub 2} emissions from power plants. Cultivation of coccolithophorids for calcium carbonate (CaCO{sub 3}) precipitation is environmentally benign and results in a stable product with potential commercial value. Because this method of carbon sequestration does not impact natural ecosystem dynamics, it avoids controversial issues of public acceptability and legality associated with other options such as direct injection of CO{sub 2} into the sea and ocean fertilization. Consequently, cultivation of coccolithophorids could be carried out immediately and the amount of carbon sequestered as CaCO{sub 3} could be readily quantified. The significant advantages of this approach warrant its serious investigation. The major goals of the proposed research are to identify the growth conditions that will result in the maximum amount of CO{sub 2} sequestration through coccolithophorid calcite production and to evaluate the costs/benefits of using coccolithophorid cultivation ponds to abate CO{sub 2} emissions from power plants.

V.J. Fabry, Ph.D.

2001-12-15

363

CALCIUM CARBONATE PRODUCTION BY COCCOLITHOPHORID ALGAE IN LONG TERM, CARBON DIOXIDE SEQUESTRATION  

SciTech Connect

Predictions of increasing levels of anthropogenic carbon dioxide (CO{sub 2}) and the specter of global warming have intensified research efforts to identify ways to sequester carbon. A number of novel avenues of research are being considered, including bioprocessing methods to promote and accelerate biosequestration of CO{sub 2} from the environment through the growth of organisms such as coccolithophorids, which are capable of sequestering CO{sub 2} relatively permanently. Calcium and magnesium carbonates are currently the only proven, long-term storage reservoirs for carbon. Whereas organic carbon is readily oxidized and releases CO{sub 2} through microbial decomposition on land and in the sea, carbonates can sequester carbon over geologic time scales. This proposal investigates the use of coccolithophorids--single-celled, marine algae that are the major global producers of calcium carbonate--to sequester CO{sub 2} emissions from power plants. Cultivation of coccolithophorids for calcium carbonate (CaCO{sub 3}) precipitation is environmentally benign and results in a stable product with potential commercial value. Because this method of carbon sequestration does not impact natural ecosystem dynamics, it avoids controversial issues of public acceptability and legality associated with other options such as direct injection of CO{sub 2} into the sea and ocean fertilization. Consequently, cultivation of coccolithophorids could be carried out immediately and the amount of carbon sequestered as CaCO{sub 3} could be readily quantified. The significant advantages of this approach warrant its serious investigation. The major goals of the proposed research are to identify the growth conditions that will result in the maximum amount of CO{sub 2} sequestration through coccolithophorid calcite production and to evaluate the costs/benefits of using coccolithophorid cultivation ponds to abate CO{sub 2} emissions from power plants.

V.J. Fabry, Ph.D.

2002-12-15

364

CALCIUM CARBONATE PRODUCTION BY COCCOLITHOPHORID ALGAE IN LONG TERM, CARBON DIOXIDE SEQUESTRATION  

SciTech Connect

Predictions of increasing levels of anthropogenic carbon dioxide (CO{sub 2}) and the specter of global warming have intensified research efforts to identify ways to sequester carbon. A number of novel avenues of research are being considered, including bioprocessing methods to promote and accelerate biosequestration of CO{sub 2} from the environment through the growth of organisms such as coccolithophorids, which are capable of sequestering CO{sub 2} relatively permanently. Calcium and magnesium carbonates are currently the only proven, long-term storage reservoirs for carbon. Whereas organic carbon is readily oxidized and releases CO{sub 2} through microbial decomposition on land and in the sea, carbonates can sequester carbon over geologic time scales. This proposal investigates the use of coccolithophorids ? single-celled, marine algae that are the major global producers of calcium carbonate ? to sequester CO{sub 2} emissions from power plants. Cultivation of coccolithophorids for calcium carbonate (CaCO{sub 3}) precipitation is environmentally benign and results in a stable product with potential commercial value. Because this method of carbon sequestration does not impact natural ecosystem dynamics, it avoids controversial issues of public acceptability and legality associated with other options such as direct injection of CO{sub 2} into the sea and ocean fertilization. Consequently, cultivation of coccolithophorids could be carried out immediately and the amount of carbon sequestered as CaCO{sub 3} could be readily quantified. The significant advantages of this approach warrant its serious investigation. The major goals of the proposed research are to identify the growth conditions that will result in the maximum amount of CO{sub 2} sequestration through coccolithophorid calcite production and to evaluate the costs/benefits of using coccolithophorid cultivation ponds to abate CO{sub 2} emissions from power plants.

V. J. Fabry

2005-01-24

365

Calcium Carbonate Produced by Coccolithophorid Algae in Long Term, Carbon Dioxide Sequestration  

SciTech Connect

Predictions of increasing levels of anthropogenic carbon dioxide (CO{sub 2}) and the specter of global warming have intensified research efforts to identify ways to sequester carbon. A number of novel avenues of research are being considered, including bioprocessing methods to promote and accelerate biosequestration of CO{sub 2} from the environment through the growth of organisms such as coccolithophorids, which are capable of sequestering CO{sub 2} relatively permanently. Calcium and magnesium carbonates are currently the only proven, long-term storage reservoirs for carbon. Whereas organic carbon is readily oxidized and releases CO2 through microbial decomposition on land and in the sea, carbonates can sequester carbon over geologic time scales. This proposal investigates the use of coccolithophorids - single-celled, marine algae that are the major global producers of calcium carbonate - to sequester CO{sub 2} emissions from power plants. Cultivation of coccolithophorids for calcium carbonate (CaCO{sub 3}) precipitation is environmentally benign and results in a stable product with potential commercial value. Because this method of carbon sequestration does not impact natural ecosystem dynamics, it avoids controversial issues of public acceptability and legality associated with other options such as direct injection of CO{sub 2} into the sea and ocean fertilization. Consequently, cultivation of coccolithophorids could be carried out immediately and the amount of carbon sequestered as CaCO{sub 3} could be readily quantified. The significant advantages of this approach warrant its serious investigation. The major goals of the proposed research are to identify the growth conditions that will result in the maximum amount of CO{sub 2} sequestration through coccolithophorid calcite production and to evaluate the costs/benefits of using coccolithophorid cultivation ponds to abate CO{sub 2} emissions from power plants.

V.J. Fabry

2007-06-30

366

Contribution of Do?ana Wetlands to Carbon Sequestration  

PubMed Central

Inland and transitional aquatic systems play an important role in global carbon (C) cycling. Yet, the C dynamics of wetlands and floodplains are poorly defined and field data is scarce. Air-water fluxes in the wetlands of Doñana Natural Area (SW Spain) were examined by measuring alkalinity, pH and other physiochemical parameters in a range of water bodies during 2010–2011. Areal fluxes were calculated and, using remote sensing, an estimate of the contribution of aquatic habitats to gaseous transport was derived. Semi-permanent ponds adjacent to the large Guadalquivir estuary acted as mild sinks, whilst temporal wetlands were strong sources of (?0.8 and 36.3 ). Fluxes in semi-permanent streams and ponds changed seasonally; acting as sources in spring-winter and mild sinks in autumn (16.7 and ?1.2 ). Overall, Doñana's water bodies were a net annual source of (5.2 ). Up–scaling clarified the overwhelming contribution of seasonal flooding and allochthonous organic matter inputs in determining regional air-water gaseous transport (13.1 ). Nevertheless, this estimate is about 6 times < local marsh net primary production, suggesting the system acts as an annual net sink. Initial indications suggest longer hydroperiods may favour autochthonous C capture by phytoplankton. Direct anthropogenic impacts have reduced the hydroperiod in Doñana and this maybe exacerbated by climate change (less rainfall and more evaporation), suggesting potential for the modification of C sequestration. PMID:23977044

Morris, Edward P.; Flecha, Susana; Figuerola, Jordi; Costas, Eduardo; Navarro, Gabriel; Ruiz, Javier; Rodriguez, Pablo; Huertas, Emma

2013-01-01

367

Risk assessment framework for geologic carbon sequestration sites  

SciTech Connect

We have developed a simple and transparent approach for assessing CO{sub 2} and brine leakage risk associated with CO{sub 2} injection at geologic carbon sequestration (GCS) sites. The approach, called the Certification Framework (CF), is based on the concept of effective trapping, which takes into account both the probability of leakage from the storage formation and impacts of leakage. The effective trapping concept acknowledges that GCS can be safe and effective even if some CO{sub 2} and brine were to escape from the storage formation provided the impact of such leakage is below agreed-upon limits. The CF uses deterministic process models to calculate expected well- and fault-related leakage fluxes and concentrations. These in turn quantify the impacts under a given leakage scenario to so-called 'compartments,' which comprise collections of vulnerable entities. The probabilistic part of the calculated risk comes from the likelihood of (1) the intersections of injected CO{sub 2} and related pressure perturbations with well or fault leakage pathways, and (2) intersections of leakage pathways with compartments. Two innovative approaches for predicting leakage likelihood, namely (1) fault statistics, and (2) fuzzy rules for fault and fracture intersection probability, are highlighted here.

Oldenburg, C.; Jordan, P.; Zhang, Y.; Nicot, J.-P.; Bryant, S.L.

2010-02-01

368

Carbon offsets from biomass energy projects  

SciTech Connect

The UN Framework Convention on Climate Change (FCCC) allows for the joint implementation (JI) of measures to mitigate the emissions of greenhouse gases. The concept of JI refers to the implementation of such measures in one country with partial or full financial and/or technical support from another country, potentially fulfilling some of the supporting country`s emission-reduction commitment under the FCCC. This paper addresses some key issues related to JI under the FCCC as they relate to the development of biomass energy projects for carbon offsets in developing countries. Issues include the reference case or baselines, carbon accounting and net carbon storage, potential project implementation barriers and risks, monitoring and verification, local agreements and host-country approval. All of these issues are important in project design and evaluation.

Swisher, J.N.; Renner, F.P. [Econergy International Corp., Boulder, CO (United States)

1996-12-31

369

Soil carbon stocks and carbon sequestration rates in seminatural grassland in Aso region, Kumamoto, Southern Japan.  

PubMed

Global soil carbon (C) stocks account for approximately three times that found in the atmosphere. In the Aso mountain region of Southern Japan, seminatural grasslands have been maintained by annual harvests and/or burning for more than 1000 years. Quantification of soil C stocks and C sequestration rates in Aso mountain ecosystem is needed to make well-informed, land-use decisions to maximize C sinks while minimizing C emissions. Soil cores were collected from six sites within 200 km(2) (767-937 m asl.) from the surface down to the k-Ah layer established 7300 years ago by a volcanic eruption. The biological sources of the C stored in the Aso mountain ecosystem were investigated by combining C content at a number of sampling depths with age (using (14) C dating) and ?(13) C isotopic fractionation. Quantification of plant phytoliths at several depths was used to make basic reconstructions of past vegetation and was linked with C-sequestration rates. The mean total C stock of all six sites was 232 Mg C ha(-1) (28-417 Mg C ha(-1) ), which equates to a soil C sequestration rate of 32 kg C ha(-1)  yr(-1) over 7300 years. Mean soil C sequestration rates over 34, 50 and 100 years were estimated by an equation regressing soil C sequestration rate against soil C accumulation interval, which was modeled to be 618, 483 and 332 kg C ha(-1)  yr(-1) , respectively. Such data allows for a deeper understanding in how much C could be sequestered in Miscanthus grasslands at different time scales. In Aso, tribe Andropogoneae (especially Miscanthus and Schizoachyrium genera) and tribe Paniceae contributed between 64% and 100% of soil C based on ?(13) C abundance. We conclude that the seminatural, C4 -dominated grassland system serves as an important C sink, and worthy of future conservation. PMID:23504937

Toma, Yo; Clifton-Brown, John; Sugiyama, Shinji; Nakaboh, Makoto; Hatano, Ryusuke; Fernández, Fabián G; Ryan Stewart, J; Nishiwaki, Aya; Yamada, Toshihiko

2013-06-01

370

Spatio-temporal changes in biomass carbon sinks in China's forests from 1977 to 2008.  

PubMed

Forests play a leading role in regional and global carbon (C) cycles. Detailed assessment of the temporal and spatial changes in C sinks/sources of China's forests is critical to the estimation of the national C budget and can help to constitute sustainable forest management policies for climate change. In this study, we explored the spatio-temporal changes in forest biomass C stocks in China between 1977 and 2008, using six periods of the national forest inventory data. According to the definition of the forest inventory, China's forest was categorized into three groups: forest stand, economic forest, and bamboo forest. We estimated forest biomass C stocks for each inventory period by using continuous biomass expansion factor (BEF) method for forest stands, and the mean biomass density method for economic and bamboo forests. As a result, China's forests have accumulated biomass C (i.e., biomass C sink) of 1896 Tg (1 Tg=10(12) g) during the study period, with 1710, 108 and 78 Tg C in forest stands, and economic and bamboo forests, respectively. Annual forest biomass C sink was 70.2 Tg C a(-1), offsetting 7.8% of the contemporary fossil CO2 emissions in the country. The results also showed that planted forests have functioned as a persistent C sink, sequestrating 818 Tg C and accounting for 47.8% of total C sink in forest stands, and that the old-, mid- and young-aged forests have sequestrated 930, 391 and 388 Tg C from 1977 to 2008. Our results suggest that China's forests have a big potential as biomass C sink in the future because of its large area of planted forests with young-aged growth and low C density. PMID:23722235

Guo, Zhaodi; Hu, Huifeng; Li, Pin; Li, Nuyun; Fang, Jingyun

2013-07-01

371

Genetic Analysis in Populus Reveals Potential to Enhance Soil Carbon Sequestration In a paper published in the August, 2005 issue of Canadian Journal of Forest Research, scientists  

E-print Network

Genetic Analysis in Populus Reveals Potential to Enhance Soil Carbon Sequestration In a paper carbon sequestration by an estimated 0.35Gt carbon/year. This represents ca. 4% of global carbon in terrestrial ecosystems. This work is supported by research funded through the Carbon Sequestration Program

372

Sequestration of Single-Walled Carbon Nanotubes in a Polymer  

NASA Technical Reports Server (NTRS)

Sequestration of single-walled carbon nanotubes (SWCNs) in a suitably chosen polymer is under investigation as a means of promoting the dissolution of the nanotubes into epoxies. The purpose of this investigation is to make it possible to utilize SWCNs as the reinforcing fibers in strong, lightweight epoxy-matrix/carbon-fiber composite materials. SWCNs are especially attractive for use as reinforcing fibers because of their stiffness and strength-to-weight ratio: Their Young s modulus has been calculated to be 1.2 TPa, their strength has been calculated to be as much as 100 times that of steel, and their mass density is only one-sixth that of steel. Bare SWCNs cannot be incorporated directly into composite materials of the types envisioned because they are not soluble in epoxies. Heretofore, SWCNS have been rendered soluble by chemically attaching various molecular chains to them, but such chemical attachments compromise their structural integrity. In the method now under investigation, carbon nanotubes are sequestered in molecules of poly(m-phenylenevinylene-co-2,5-dioctyloxy-p-phenylenevinylene) [PmPV]. The strength of the carbon nanotubes is preserved because they are not chemically bonded to the PmPV. This method exploits the tendency of PmPV molecules to wrap themselves around carbon nanotubes: the wrapping occurs partly because there exists a favorable interface between the conjugated face of a nanotube and the conjugated backbone of the polymer and partly because of the helical molecular structure of PmPV. The constituents attached to the polymer backbones (the side chains) render the PmPV-wrapped carbon nanotubes PmPV soluble in organic materials that, in turn, could be used to suspend the carbon nanotubes in epoxy precursors. At present, this method is being optimized: The side chains on the currently available form of PmPV are very nonpolar and unable to react with the epoxy resins and/or hardeners; as a consequence, SWCN/PmPV composites have been observed to precipitate out of epoxies while the epoxies were being cured. If the side chains of the PmPV molecules were functionalized to make them capable of reacting with the epoxy matrices, it might be possible to make progress toward practical applications. By bonding the side chains of the PmPV molecules to an epoxy matrix, one would form an PmPV conduit between the epoxy matrix and the carbon nanotubes sequestered in the PmPV. This conduit would transfer stresses from the epoxy matrix to the nanotubes. This proposed load-transfer mode is similar to that of the current practice in which silane groups are chemically bonded to both the epoxy matrices and the fibers (often glass fibers) in epoxymatrix/fiber composites.

Bley, Richard A.

2007-01-01

373

Estimating the carbon sequestration efficiency of ocean fertilization in ocean models  

NASA Astrophysics Data System (ADS)

Fertilization of marine biota by direct addition of limiting nutrients, such as iron, has been widely discussed as a possible means of enhancing the oceanic uptake of anthropogenic CO2. Several startup companies have even proposed to offer carbon credits in exchange for fertilizing patches of ocean. However, spatial variability in ocean circulation and air-sea gas exchange causes large regional differences in the efficiency with which carbon can be sequestered in the ocean in response to ocean fertilization. Because of the long timescales associated with carbon sequestration in the ocean, this efficiency cannot be derived from field studies but must be estimated using ocean models. However, due to the computational burden of simulating the oceanic uptake of CO2 in response to ocean fertilization, modeling studies have focused on estimating the carbon sequestration efficiency at only a handful of locations throughout the ocean. Here we present a new method for estimating the carbon sequestration efficiency of ocean fertilization in ocean models. By appropriately linearizing the CO2 system chemistry, we can use the adjoint ocean transport model to efficiently probe the spatial structure of the sequestration efficiency. We apply the method to a global data-constrained ocean circulation model to estimate global patterns of sequestration efficiency at a horizontal resolution of 2 degrees. This calculation produces maps showing where carbon sequestration by ocean fertilization will be most effective. We also show how to rapidly compute the sensitivity of the carbon sequestration efficiency to the spatial pattern of the production and remineralization anomalies produced by ocean fertilization, and we explore these sensitivities in the data-constrained ocean circulation model.

DeVries, T. J.; Primeau, F. W.; Deutsch, C. A.

2012-12-01

374

Managing Commercial Tree Species for Timber Production and Carbon Sequestration: Management Guidelines and Financial Returns  

SciTech Connect

A carbon credit market is developing in the United States. Information is needed by buyers and sellers of carbon credits so that the market functions equitably and efficiently. Analyses have been conducted to determine the optimal forest management regime to employ for each of the major commercial tree species so that profitability of timber production only or the combination of timber production and carbon sequestration is maximized. Because the potential of a forest ecosystem to sequester carbon depends on the tree species, site quality and management regimes utilized, analyses have determined how to optimize carbon sequestration by determining how to optimally manage each species, given a range of site qualities, discount rates, prices of carbon credits and other economic variables. The effects of a carbon credit market on the method and profitability of forest management, the cost of sequestering carbon, the amount of carbon that can be sequestered, and the amount of timber products produced has been determined.

Gary D. Kronrad

2006-09-19

375

House Committee on Natural Resources The Future of Fossil Fuels: Geological and Terrestrial Sequestration of Carbon Dioxide  

E-print Network

and Terrestrial Sequestration of Carbon Dioxide Howard Herzog Principal Research Engineer Massachusetts Institute to the Technical Group of the Carbon Sequestration Leadership Forum (see www.cslforum.org). Just two weeks ago, thank you for the opportunity to appear before you today to discuss Carbon Dioxide (CO2) geological

376

ECONOMIC MODELING OF THE GLOBAL ADOPTION OF CARBON CAPTURE AND SEQUESTRATION TECHNOLOGIES  

E-print Network

As policy makers consider strategies to reduce greenhouse gas emissions, they need to understand the available options and the conditions under which these options become economically attractive. This paper explores the economics of carbon capture and sequestration technologies as applied to electric generating plants. The MIT Emissions Prediction and Policy Analysis (EPPA) model, a computable general equilibrium model of the world economy, is used to model carbon capture and sequestration (CCS) technologies based on a natural gas combined cycle (NGCC) plant and an integrated coal gasification combined cycle (IGCC) plant. These technologies have been fully specified within the EPPA model for all regions of the world by production functions. We simulate the adoption of these technologies under scenarios with and without carbon taxes. The results illustrate how changing input prices and general equilibrium effects influence the global adoption of carbon sequestration technologies and other technologies for electricity production. Rising carbon prices lead first to the adoption of NGCC plants without carbon capture and sequestration followed by IGCC plants with capture and sequestration as natural gas prices rise.

J. R. Mcfarl; H. J. Herzog; J. Reilly

377

CWP-624 Facing the main challenges in carbon capture and sequestration  

E-print Network

We discuss the main hurdles in implementing carbon capture and sequestration, these are (1) reducing the cost to a level that is comparable with the cost of steps towards energy efficiency and conservation, (2) upscaling the current technology with a factor 1000, and (3) monitoring leakage rates less than a percent per year. Unless we are able to address these question in a satisfactory way, carbon carbon and sequestration holds little promise for being helping curb anthropogenic global warming. Key words: carbon capture and sequestration Anthropogenic emission of greenhouse gases, notably CO2, contributes significantly to global warming (Pachauri & Reisinger, 2007). Economic growth in developing countries, increasing reliance on nonconventional oil, and use of coal as a power source are all leading to increased emissions of CO2 (Kerr, 2008).

Roel Snieder; Terry Young

378

Physical and Economic Integration of Carbon Capture Methods with Sequestration Sinks  

NASA Astrophysics Data System (ADS)

Currently there are several different carbon capture technologies either available or in active development for coal- fired power plants. Each approach has different advantages, limitations and costs that must be integrated with the method of sequestration and the physiochemical properties of carbon dioxide to evaluate which approach is most cost effective. For large volume point sources such as coal-fired power stations, the only viable sequestration sinks are either oceanic or geological in nature. However, the carbon processes and systems under consideration produce carbon dioxide at a variety of pressure and temperature conditions that must be made compatible with the sinks. Integration of all these factors provides a basis for meaningful economic comparisons between the alternatives. The high degree of compatibility between carbon dioxide produced by integrated gasification combined cycle technology and geological sequestration conditions makes it apparent that this coupling currently holds the advantage. Using a basis that includes complete source-to-sink sequestration costs, the relative cost benefit of pre-combustion IGCC compared to other post-combustion methods is on the order of 30%. Additional economic benefits arising from enhanced oil recovery revenues and potential sequestration credits further improve this coupling.

Murrell, G. R.; Thyne, G. D.

2007-12-01

379

FULL SCALE BIOREACTOR LANDFILL FOR CARBON SEQUESTRATION AND GREENHOUSE EMISSION CONTROL  

Microsoft Academic Search

The Yolo County Department of Planning and Public Works is constructing a full-scale bioreactor landfill as a part of the Environmental Protection Agency's (EPA) Project XL program to develop innovative approaches for carbon sequestration and greenhouse emission control. The overall objective is to manage landfill solid waste for rapid waste decomposition and maximum landfill gas generation and capture for carbon

Ramin Yazdani; Jeff Kieffer; Heather Akau

2002-01-01

380

FULL SCALE BIOREACTOR LANDFILL FOR CARBON SEQUESTRATION AND GREENHOUSE EMISSION CONTROL  

Microsoft Academic Search

The Yolo County Department of Planning and Public Works is constructing a full-scale bioreactor landfill as a part of the Environmental Protection Agency's (EPA) Project XL program to develop innovative approaches for carbon sequestration and greenhouse emission control. The overall objective is to manage landfill solid waste for rapid waste decomposition and maximum landfill gas generation and capture for carbon

Ramin Yazdani; Jeff Kieffer; Heather Akau

2003-01-01

381

Tillage and soil carbon sequestration—What do we really know?  

Microsoft Academic Search

It is widely believed that soil disturbance by tillage was a primary cause of the historical loss of soil organic carbon (SOC) in North America, and that substantial SOC sequestration can be accomplished by changing from conventional plowing to less intensive methods known as conservation tillage. This is based on experiments where changes in carbon storage have been estimated through

John M. Baker; Tyson E. Ochsner; Rodney T. Venterea; Timothy J. Griffis

2007-01-01

382

Possibilities for Future Carbon Sequestration in Canadian Agriculture in Relation to Land Use Changes  

Microsoft Academic Search

Increasing carbon sequestration in agricultural soils in Canada is examined as a possible strategy in slowing or stopping the current increase in atmospheric CO2 concentrations. Estimates are provided on the amount of carbon that could be sequestered in soils in various regions in Canada by reducing summerfallow area, increased use of forage crops, improved erosion control, shifts from conventional to

J. Dumanski; R. L. Desjardins; C. Tarnocai; C. Monreal; E. G. Gregorich; V. Kirkwood; C. A. Campbell

1998-01-01

383

Mathematical Modeling of Carbon Dioxide Injection in the Subsurface for Improved Hydrocarbon Recovery and Sequestration  

E-print Network

Mathematical Modeling of Carbon Dioxide Injection in the Subsurface for Improved Hydrocarbon Recovery and Sequestration Philip C. Myint, Laurence Rongy, Kjetil B. Haugen, Abbas Firoozabadi Department. Combustion of fossil fuels contributes to rising atmospheric carbon dioxide (CO2) levels that have been

Firoozabadi, Abbas

384

Quantifying the impacts on biodiversity of policies for carbon sequestration in forests  

Microsoft Academic Search

There is currently a great deal of interest in the use of afforestation (conversion of non-forest land to forest) to reduce atmospheric concentrations of carbon dioxide. To date, economic analyses have focused on the costs of forest carbon sequestration policies related to foregone profits from agricultural production. No studies have examined additional costs or benefits associated with impacts on biodiversity.

Stephen Matthews; Raymond O'Connor; Andrew J. Plantinga

2002-01-01

385

Carbon Sequestration to Mitigate Climate Change Human activities, especially the burning of fossil fuels such as coal, oil, and gas, have caused a substantial increase  

E-print Network

Carbon Sequestration to Mitigate Climate Change Human activities, especially the burning of fossil-caused CO2 emissions and to remove CO2 from the atmosphere. 2.0 What is carbon sequestration? The term "carbon sequestration" is used to describe both natural and deliberate CARBON,INGIGATONSPERYEAR 1.5 Fossil

386

Biomass Chronosequences of United States Forests: Implications for Carbon Storage  

E-print Network

Chapter 14 Biomass Chronosequences of United States Forests: Implications for Carbon Storage ecosystems (Loucks 1970; Bormann and Likens 1979). For example, data in Canada's National Forest Biomass substantial declines in live biomass density expected as forests aged, this would clearly be one factor

Lichstein, Jeremy W.

387

[Characteristics of carbon storage and sequestration in different age beech (Castanopsis hystrix) plantations in south subtropical area of China].  

PubMed

To transform large area pure conifer plantations by planting indigenous and valuable broad-leaved tree species has been advocated as an effective close-to-nature forest management in sub-tropical China. Taking the 10-, 20- and 27-year-old Castanopsis hystrix plantations in Guangxi of South China as test objects and by the methods of plot investigation and biomass measurement, this paper studied the carbon content in different plant organs, litter layers, and soil layers and the carbon storage and its allocation in tree layer, litter layer and soil layer. For the test plantations, the carbon content in different C. hystrix organs ranged from 49.7% to 57.9%, and that in litter layer was 40.8%-50.5%, being higher in fresh litter layer than in semi-decomposed litter layer. The carbon storage in the soil profiles (0-60 cm) increased with plantation age but decreased with soil depth. The total carbon storage in the 10-, 20- and 27-year-old plantations was 182. 42, 234.75 and 269. 75 t x hm(-2), respectively, among which, tree layer, litter layer and soil layer occupied 19.8%, 32.0% and 32.8%, 1.5%, 1.6% and 1.3%, and 78.7%, 66.4% and 65.9%, respectively. The annual net carbon sequestration of the 10-, 20- and 27-year-old plantations was 4.70, 5.64 and 5.18 t x hm(-2), respectively. It was considered that C. hystrix had a high capability in carbon sequestration, being able to be an ideal tree species for multi-purpose forest management with large and valuable timber production. PMID:22586955

Liu, En; Wang, Hui; Liu, Shi-Rong

2012-02-01

388

Maintenance of a living understory enhances soil carbon sequestration in subtropical orchards.  

PubMed

Orchard understory represents an important component of the orchards, performing numerous functions related to soil quality, water relations and microclimate, but little attention has been paid on its effect on soil C sequestration. In the face of global climate change, fruit producers also require techniques that increase carbon (C) sequestration in a cost-effective manner. Here we present a case study to compare the effects of understory management (sod culture vs. clean tillage) on soil C sequestration in four subtropical orchards. The results of a 10-year study indicated that the maintenance of sod significantly enhanced the soil C stock in the top 1 m of orchard soils. Relative to clean tillage, sod culture increased annual soil C sequestration by 2.85 t C ha(-1), suggesting that understory management based on sod culture offers promising potential for soil carbon sequestration. Considering that China has the largest area of orchards in the world and that few of these orchards currently have sod understories, the establishment and maintenance of sod in orchards can help China increase C sequestration and greatly contribute to achieving CO2 reduction targets at a regional scale and potentially at a national scale. PMID:24116188

Liu, Zhanfeng; Lin, Yongbiao; Lu, Hongfang; Ding, Mingmao; Tan, Yaowen; Xu, Shejin; Fu, Shenglei

2013-01-01

389

Maintenance of a Living Understory Enhances Soil Carbon Sequestration in Subtropical Orchards  

PubMed Central

Orchard understory represents an important component of the orchards, performing numerous functions related to soil quality, water relations and microclimate, but little attention has been paid on its effect on soil C sequestration. In the face of global climate change, fruit producers also require techniques that increase carbon (C) sequestration in a cost-effective manner. Here we present a case study to compare the effects of understory management (sod culture vs. clean tillage) on soil C sequestration in four subtropical orchards. The results of a 10-year study indicated that the maintenance of sod significantly enhanced the soil C stock in the top 1 m of orchard soils. Relative to clean tillage, sod culture increased annual soil C sequestration by 2.85 t C ha-1, suggesting that understory management based on sod culture offers promising potential for soil carbon sequestration. Considering that China has the largest area of orchards in the world and that few of these orchards currently have sod understories, the establishment and maintenance of sod in orchards can help China increase C sequestration and greatly contribute to achieving CO2 reduction targets at a regional scale and potentially at a national scale. PMID:24116188

Liu, Zhanfeng; Lin, Yongbiao; Lu, Hongfang; Ding, Mingmao; Tan, Yaowen; Xu, Shejin; Fu, Shenglei

2013-01-01

390

GEOC R Lee Penn Sunday, March 25, 2012 12 -Biogeochemical transformation of Fe-and Mn-along a redox gradient: Implications for carbon sequestration  

E-print Network

a redox gradient: Implications for carbon sequestration within the Christina River Basin Critical Zone States Organic carbon (C)-mineral complexation mechanism is crucial in C sequestration. It is a function

Sparks, Donald L.

391

Geochemical Impacts to Groundwater from Geologic Carbon Sequestration: Controls on pH and Inorganic Carbon Concentrations from Reaction Path and Kinetic Modeling  

EPA Science Inventory

Geologic carbon sequestration has the potential to cause long-term reductions in global emissions of carbon dioxide to the atmosphere. Safe and effective application of carbon sequestration technology requires an understanding of the potential risks to the quality of underground...

392

Biomass and carbon storage of Gracilariopsis lemaneiformis (Rhodophyta) in Zhanshan Bay, Qingdao, China  

NASA Astrophysics Data System (ADS)

Marine macroalgae can absorb carbon and play an important role in carbon sequestration. As an important economic macroalga, Gracilariopsis lemaneiformis has the potential to significantly affect carbon absorption and storage in wave-sheltered intertidal reef systems. However, detailed knowledge on seasonal biomass changes and carbon storage of G. lemaneiformis is lacking, especially in many small and scattered ecosystems. Considering the influence of human activities on wild distribution of G. lemaneiformis, the understanding of seasonal dynamics of an economically important species in nature is necessary. In this study, we first investigated seasonal variations in biomass, coverage area, and carbon storage during low tide from August 2011 to July 2012 in Zhanshan Bay, Qingdao, China. Furthermore, we estimated the carbon storage potential of wild G. lemaneiformis using light use efficiency (LUE). The results show that the standing biomass and coverage area changed significantly with season. However, seasonal variations in carbon content and water content were not obvious, with an average content of 35.1% and 83.64%, respectively. Moreover, carbon storage in individual months varied between 0.67 and 47.03 g C/m2, and the value of carbon storage was the highest in August and June and the lowest in February. In Zhanshan Bay, LUE of G. lemaneiformis was only 0.23%. If it is increased to the theoretical maximum (5%-6%), the carbon storage will have an increase of at least 21 times compared with the current, which suggested that carbon storage of wild G. lemaneiformis had a high enhancement potential. The study will help to assess a potential role of G. lemaneiformis in reducing atmospheric CO2.

Zhou, Wei; Sui, Zhenghong; Wang, Jinguo; Hu, Yiyi; Kang, Kyoungho; Oh, Junyeong; Kim, Sangchul; Huang, Jianhui; Wang, Pengyun

2014-09-01

393

Carbon Sequestration in Reclaimed Mined Soils of Ohio  

SciTech Connect

This research project is aimed at assessing the soil organic carbon (SOC) sequestration potential of reclaimed mine soils (RMS). The experimental sites were characterized by distinct age chronosequences of reclaimed mine soil and were located in Guernsey, Morgan, Noble, and Muskingum Counties of Ohio. These sites are owned and maintained by American Electrical Power. These sites were reclaimed (1) with topsoil application, and (2) without topsoil application, and were under continuous grass or forest cover. This report presents the results from two forest sites reclaimed with topsoil application and reclaimed in 1994 (R94-F) and in 1973 (R73-F), and two forest sites without topsoil application and reclaimed in 1969 (R69-F) and 1962 (R62-F). Results from one site under grass without topsoil application and reclaimed in 1962 (R62-G) are also shown. Three core soil samples were collected from each of the experimental sites and each landscape position (upper, middle and lower) for 0-15 and 15-30 cm depths, and saturated hydraulic conductivity (Ks), volumes of transport (VTP) pores, and available water capacity (AWC) were determined. No significant differences were observed in VTP and AWC in 0-15 cm and 15-30 cm depths among the sites R94-F and R73-F reclaimed with topsoil application and under continuous forest cover (P<0.05). VTP and AWC did also not differ among upper, middle and lower landscape positions. However, saturated hydraulic conductivity in 0-15 cm depth at R73-F was significantly lower at the lower compared to the upper landscape position. No significant differences were observed for Ks among landscape positions at R94-F. No significant differences were observed in VTP and AWC among landscape positions and depths within R69-F, R62-F and R62-G. However, saturated hydraulic conductivity was higher in 0-15 cm depth at R62-F than at R69-F and R62-G. At the latter site, Ks was higher in the upper compared to the lower landscape position whereas Ks did not differ among landscape positions at the other sites. Statistical analyses indicated that the number of random samples taken was probably not sufficient to properly consider distribution of VTP and AWC in 0-15 cm and 15-30 cm depths across the sites, in particular for the sites without topsoil application.

K. Lorenz; M.K. Shukla; R. Lal

2006-04-01

394

Mineral Influence on Microbial Survival During Carbon Sequestration  

NASA Astrophysics Data System (ADS)

CO2 sequestered in a deep saline aquifer will perturb subsurface biogeochemistry by acidifying the groundwater and accelerating mineral diagenesis. Subsurface microbial communities heavily influence geochemistry through their metabolic processes, such as with dissimilatory iron reducing bacteria (DIRB). However, CO2 also acts as a sterilant and will perturb these communities. We investigated the role of mineralogy and its effect on the survival of microbes at high PCO2 conditions using the model DIRB Shewanella oneidensis MR-1. Batch cultures of Shewanella were grown to stationary phase and exposed to high PCO2 using modified Parr reactors. Cell viability was then determined by plating cultures after exposure. Results indicate that at low PCO2 (2 bar), growth and iron reduction are decreased and cell death occurs within 1 hour when exposed to CO2 pressures of 10 bar or greater. Further, fatty acid analysis indicates microbial lipid degradation with C18 fatty acids being the slowest lipids to degrade. When cultures were grown in the presence of rocks or minerals representative of the deep subsurface such as carbonates and silicates and exposed to 25 bar CO2, survival lasted beyond 2 hours. The most effective protecting substratum was quartz sandstone, with cultures surviving beyond 8 hours of CO2 exposure. Scanning electron microscope images reveal biofilm formation on the mineral surfaces with copious amounts of extracellular polymeric substances (EPS) present. EPS from these biofilms acts as a reactive barrier to the CO2, slowing the penetration of CO2 into cells and resulting in increased survival. When biofilm cultures were grown with Al and As to simulate the release of toxic metals from minerals such as feldspars and clays, survival time decreased, indicating mineralogy may also enhance microbial death. Biofilms were then grown on iron-coated quartz sand to determine conversely what influence biofilms may have on mineral dissolution during CO2 perturbation. Growth media was allowed to flow through a sand-packed column at a constant flow rate with pulses of liquid CO2 injected directly into the column. Preliminary data of dissolved iron measured from the effluent indicates that biofilm columns show a slight increase in dissolved iron concentrations before and after CO2 exposure in comparison to abiotic columns. These findings imply the important relationship between microbes and minerals during CO2 sequestration. The ability minerals have to contribute to the selection of microbes has important consequences to the survival of different microbial populations in the subsurface and the consequent biogeochemical changes that may happen.

Santillan, E. U.; Shanahan, T. M.; Wolfe, W. W.; Bennett, P.

2012-12-01

395

Genome Enabled Discovery of Carbon Sequestration Genes in Poplar  

SciTech Connect

The goals of the S.H. Strauss laboratory portion of 'Genome-enabled discovery of carbon sequestration genes in poplar' are (1) to explore the functions of candidate genes using Populus transformation by inserting genes provided by Oakridge National Laboratory (ORNL) and the University of Florida (UF) into poplar; (2) to expand the poplar transformation toolkit by developing transformation methods for important genotypes; and (3) to allow induced expression, and efficient gene suppression, in roots and other tissues. As part of the transformation improvement effort, OSU developed transformation protocols for Populus trichocarpa 'Nisqually-1' clone and an early flowering P. alba clone, 6K10. Complete descriptions of the transformation systems were published (Ma et. al. 2004, Meilan et. al 2004). Twenty-one 'Nisqually-1' and 622 6K10 transgenic plants were generated. To identify root predominant promoters, a set of three promoters were tested for their tissue-specific expression patterns in poplar and in Arabidopsis as a model system. A novel gene, ET304, was identified by analyzing a collection of poplar enhancer trap lines generated at OSU (Filichkin et. al 2006a, 2006b). Other promoters include the pGgMT1 root-predominant promoter from Casuarina glauca and the pAtPIN2 promoter from Arabidopsis root specific PIN2 gene. OSU tested two induction systems, alcohol- and estrogen-inducible, in multiple poplar transgenics. Ethanol proved to be the more efficient when tested in tissue culture and greenhouse conditions. Two estrogen-inducible systems were evaluated in transgenic Populus, neither of which functioned reliably in tissue culture conditions. GATEWAY-compatible plant binary vectors were designed to compare the silencing efficiency of homologous (direct) RNAi vs. heterologous (transitive) RNAi inverted repeats. A set of genes was targeted for post transcriptional silencing in the model Arabidopsis system; these include the floral meristem identity gene (APETALA1 or AP1), auxin response factor gene (ETTIN), the gene encoding transcriptional factor of WD40 family (TRANSPARENTTESTAGLABRA1 or TTG1), and the auxin efflux carrier (PIN-FORMED2 or PIN2) gene. More than 220 transgenic lines of the 1st, 2nd and 3rd generations were analyzed for RNAi suppression phenotypes (Filichkin et. al., manuscript submitted). A total of 108 constructs were supplied by ORNL, UF and OSU and used to generate over 1,881 PCR verified transgenic Populus and over 300 PCR verified transgenic Arabidopsis events. The Populus transgenics alone required Agrobacterium co-cultivations of 124.406 explants.

Filichkin, Sergei; Etherington, Elizabeth; Ma, Caiping; Strauss, Steve

2007-02-22

396

Assessing trade-offs between carbon sequestration and timber production within a framework of multi-purpose forestry in Austria  

Microsoft Academic Search

Numerous studies have analyzed the carbon sequestration potential of forests and forest management. However, most studies either focused on national and supra-national scales or on the project level in the context of the flexible mechanisms of the Kyoto Protocol. Few studies are available which analyze the effects of alternative silvicultural strategies on carbon sequestration, timber production and other forest services

Rupert Seidl; Werner Rammer; Dietmar Jäger; William S. Currie; Manfred J. Lexer

2007-01-01

397

Technical Report on Application and Development of Appropriate Tools and Technologies for Cost-Effective Carbon Sequestration  

Microsoft Academic Search

The Nature Conservancy participated in a Cooperative Agreement with the Department of Energy (DOE) National Energy Technology Laboratory (NETL) to explore the compatibility of carbon sequestration in terrestrial ecosystems and the conservation of biodiversity. The title of the research project was 'Application and Development of Appropriate Tools and Technologies for Cost-Effective Carbon Sequestration'. The objectives of the project were to:

Bill Stanley; Sandra Brown; Zoe Kant; Patrick Gonzalez

2009-01-01

398

Geomechanical risks in coal bed carbon dioxide sequestration  

SciTech Connect

The purpose of this report is to summarize and evaluate geomechanical factors which should be taken into account in assessing the risk of leakage of CO{sub 2} from coal bed sequestration projects. The various steps in developing such a project will generate stresses and displacements in the coal seam and the adjacent overburden. The question is whether these stresses and displacements will generate new leakage pathways by failure of the rock or slip on pre-existing discontinuities such as fractures and faults. In order to evaluate the geomechanical issues in CO{sub 2} sequestration in coal beds, it is necessary to review each step in the process of development of such a project and evaluate its geomechanical impact. A coal bed methane production/CO{sub 2} sequestration project will be developed in four steps: (1) Formation dewatering and methane production; (2) CO{sub 2} injection with accompanying methane production; (3) Possible CO{sub 2} injection for sequestration only; and The approach taken in this study was to review each step: Identify the geomechanical processes associated with it, and assess the risks that leakage would result from these processes.

Myer, Larry R.

2003-07-01

399

Bacterial and Fungal Contributions to Carbon Sequestration in Agroecosystems  

Microsoft Academic Search

This paper reviews the current knowledge of microbial processes affecting C sequestration in agroecosystems. The microbial contri- bution to soil C storage is directly related to microbial community dynamics and the balance between formation and degradation of mi- crobial byproducts. Soil microbes also indirectly influence C cycling by improving soil aggregation, which physically protects soil organic matter (SOM). Consequently, the

S. D. Frey; R. K. Thiet; K. M. Batten

2006-01-01

400

Potential for Carbon Dioxide Sequestration in Flood Basalts  

Microsoft Academic Search

Flood basalts are a potentially important host medium for geologic sequestration of anthropogenic CO2. Most lava flows have flow tops that are porous, permeable, and have enormous capacity for storage of CO2. Interbedded sediment layers and dense low-permeability basalt rock overlying sequential flows may act as effective seals allowing time for mineralization reactions to occur. Laboratory experiments confirm relatively rapid

B. PETER McGrail; Herbert T. Schaef; Anita M. Ho; Yi-Ju Chien; James J. Dooley; Casie L. Davidson

2006-01-01

401

Significant role for microbial autotrophy in the sequestration of soil carbon.  

PubMed

Soils were incubated for 80 days in a continuously labeled (14)CO(2) atmosphere to measure the amount of labeled C incorporated into the microbial biomass. Microbial assimilation of (14)C differed between soils and accounted for 0.12% to 0.59% of soil organic carbon (SOC). Assuming a terrestrial area of 1.4 × 10(8) km(2), this represents a potential global sequestration of 0.6 to 4.9 Pg C year(-1). Estimated global C sequestration rates suggest a "missing sink" for carbon of between 2 and 3 Pg C year(-1). To determine whether (14)CO(2) incorporation was mediated by autotrophic microorganisms, the diversity and abundance of CO(2)-fixing bacteria and algae were investigated using clone library sequencing, terminal restriction fragment length polymorphism (T-RFLP), and quantitative PCR (qPCR) of the ribulose 1,5-bisphosphate carboxylase/oxygenase (RubisCO) gene (cbbL). Phylogenetic analysis showed that the dominant cbbL-containing bacteria were Azospirillum lipoferum, Rhodopseudomonas palustris, Bradyrhizobium japonicum, Ralstonia eutropha, and cbbL-containing chromophytic algae of the genera Xanthophyta and Bacillariophyta. Multivariate analyses of T-RFLP profiles revealed significant differences in cbbL-containing microbial communities between soils. Differences in cbbL gene diversity were shown to be correlated with differences in SOC content. Bacterial and algal cbbL gene abundances were between 10(6) and 10(8) and 10(3) to 10(5) copies g(-1) soil, respectively. Bacterial cbbL abundance was shown to be positively correlated with RubisCO activity (r = 0.853; P < 0.05), and both cbbL abundance and RubisCO activity were significantly related to the synthesis rates of [(14)C]SOC (r = 0.967 and 0.946, respectively; P < 0.01). These data offer new insights into the importance of microbial autotrophy in terrestrial C cycling. PMID:22286999

Yuan, Hongzhao; Ge, Tida; Chen, Caiyan; O'Donnell, Anthony G; Wu, Jinshui

2012-04-01

402

Carbon sequestration in a long-term conventional versus conservation tillage experiment  

Microsoft Academic Search

The impact of conservation tillage practices on carbon sequestration has been of great interest in recent years. Changes in the soil organic carbon (SOC) as influenced by tillage, is more noticeable under long-term rather than short-term tillage practices. This experiment analyzed the organic carbon status of soils sampled at depth increments from 0 to 60cm after 25 years of five

W Deen; P. K Kataki

2003-01-01

403

Pathways and Mechanisms of OceanTracer Transport: Implications for Carbon Sequestration  

SciTech Connect

This funding enabled the following published manuscripts in which we have developed models of direct relevance to ocean carbon sequestration and of the oceanic iron cycle, its connection to the global carbon cycle, and the sensitivity of atmospheric carbon dioxide to the external source of iron. As part of this process we have developed the adjoint of the MIT ocean biogeochemistry model which has enabled us to perform rigorous and efficient sensitivity studies.

Marshall, John; Follows, MIchael

2006-11-06

404

Carbon sequestration monitoring with acoustic double-difference waveform inversion: A case study on SACROC walkaway VSP data  

E-print Network

Geological carbon sequestration involves large-scale injection of carbon dioxide into underground geologic formations and is considered as a potential approach for mitigating global warming. Changes in reservoir properties ...

Yang, Di

2011-01-01

405

150 G. Marland et al. / Climate Policy 3 (2003) 149157 Strategies to mitigate anthropogenic climate change recognize that carbon sequestration in the terrestrial biosphere  

E-print Network

anthropogenic climate change recognize that carbon sequestration in the terrestrial biosphere can reduce to create a system of credits and debits wherein emission or sequestration of carbon in the biosphere; Carbon sequestration; Land use change; Land surface change; Surface energy balance 1. Introduction Human

Niyogi, Dev

406

RESEARCH SUMMARY BY QUANLIN ZHOU During my stay at LBNL from March 2001, I have been working on (1) geologic carbon sequestration  

E-print Network

on (1) geologic carbon sequestration (GCS) projects for mitigating global climate change, (2) the DOE projects. 1 Research Highlights 1.1. Geological Carbon Sequestration I have been working on eight research projects in the area of geologic carbon sequestration since 2006. I have been PI or Co-PI for six projects

Zhou, Quanlin

407

The United States Department of Energy's Regional Carbon Sequestration Partnerships program: a collaborative approach to carbon management.  

PubMed

This paper reviews the Regional Carbon Sequestration Partnerships (RCSP) concept, which is a first attempt to bring the U.S. Department of Energy's (DOE) carbon sequestration program activities into the "real world" by using a geographically-disposed-system type approach for the U.S. Each regional partnership is unique and covers a unique section of the U.S. and is tasked with determining how the research and development activities of DOE's carbon sequestration program can best be implemented in their region of the country. Although there is no universal agreement on the cause, it is generally understood that global warming is occurring, and many climate scientists believe that this is due, in part, to the buildup of carbon dioxide (CO(2)) in the atmosphere. This is evident from the finding presented in the National Academy of Science Report to the President on Climate Change which stated "Greenhouse gases are accumulating in Earth's atmosphere as a result of human activities, causing surface air temperatures and subsurface ocean temperatures to rise. Temperatures are, in fact, rising. The changes observed over the last several decades are likely mostly due to human activities, ...". In the United States, emissions of CO(2) originate mainly from the combustion of fossil fuels for energy production, transportation, and other industrial processes. Roughly one third of U.S. anthropogenic CO(2) emissions come from power plants. Reduction of CO(2) emissions through sequestration of carbon either in geologic formations or in terrestrial ecosystems can be part of the solution to the problem of global warming. However, a number of steps must be accomplished before sequestration can become a reality. Cost effective capture and separation technology must be developed, tested, and demonstrated; a database of potential sequestration sites must be established; and techniques must be developed to measure, monitor, and verify the sequestered CO(2). Geographical differences in fossil fuel use, the industries present, and potential sequestration sinks across the United States dictate the use of a regional approach to address the sequestration of CO(2). To accommodate these differences, the DOE has created a nationwide network of seven Regional Carbon Sequestration Partnerships (RCSP) to help determine and implement the carbon sequestration technologies, infrastructure, and regulations most appropriate to promote CO(2) sequestration in different regions of the nation. These partnerships currently represent 40 states, three Indian Nations, four Canadian Provinces, and over 200 organizations, including academic institutions, research institutions, coal companies, utilities, equipment manufacturers, forestry and agricultural representatives, state and local governments, non-governmental organizations, and national laboratories. These partnerships are dedicated to developing the necessary infrastructure and validating the carbon sequestration technologies that have emerged from DOE's core R&D and other programs to mitigate emissions of CO(2), a potent greenhouse gas. The partnerships provide a critical link to DOE's plans for FutureGen, a highly efficient and technologically sophisticated coal-fired power plant that will produce both hydrogen and electricity with near-zero emissions. Though limited to the situation in the U.S., the paper describes for the international scientific community the approach being taken by the U.S. to prepare for carbon sequestration, should that become necessary. PMID:16054694

Litynski, John T; Klara, Scott M; McIlvried, Howard G; Srivastava, Rameshwar D

2006-01-01

408

Use of native species to improve carbon sequestration and contribute towards solving the environmental problems of the timberlands in Biscay, northern Spain.  

PubMed

The rapid transformation of natural forest areas into fast-growing exotic species plantations, where the main objective is timber and pulp production, has led to a neglect of other services forests provide in many parts of the world. One example of such a problem is the county of Biscay, where the management of these plantations has negative impacts on the environment, creating the necessity to evaluate alternative tree species for use in forestry. The actual crisis in the forest sector of the region could be an opportunity to change to native species plantations that could help restore ecosystem structure and function. However, forest managers of the region are using the current interest on carbon sequestration by forest to persist with the "pine and eucalyptus culture", arguing that these species provide a big C sequestration service. Moreover, they are promoting the expansion of eucalyptus plantations to obtain biomass for the pulp and paper industry and for bioenergy. The aim of this paper is to answer the following questions: Is this argument used by the foresters well-founded? or, could the use of native species in plantations improve the C sequestration service in Biscay while avoiding the environmental problems the actual plantations cause? To answer these questions we created three alternative future scenarios: a) the Services scenario, where there is a substitution of fast-growing exotic plantations by native broadleaf species plantations; b) the Biomass scenario, where there is a bet on eucalyptus plantations; and c) the Business as usual scenario. The changes in the C stock in living biomass in these scenarios have been simulated by a hybrid approach utilising inventories and models, and the period considered was 150 years. Our results show that the substitution of existing exotic plantations by plantations of native species has the greatest potential for increasing C sequestration. Although short- and mid-term outcomes may differ, when the long-term (more than 50 years) is considered, the C stock in the living biomass in the Services scenario is the greatest, accumulating 38% more C than the Business as usual scenario and 70% more C than the Biomass scenario at the end of the study period. Thus, changing pine and eucalyptus by native species in plantations, while solving some of the environmental problems of the actual plantations, sequesters more C in the long-term. As C sequestration initiatives only make sense if there is a good chance of long-term persistence of the C stocks created, there is no C sequestration argument for the foresters to continue with the actual policy of the use of fast-growing exotic species. PMID:23500105

Rodríguez-Loinaz, Gloria; Amezaga, Ibone; Onaindia, Miren

2013-05-15

409

Long-term effect of a single application of organic refuse on carbon sequestration and soil physical properties.  

PubMed

Restoration of degraded lands could be a way to reverse soil degradation and desertification in semiarid areas and mitigate greenhouse gases (GHG). Our objective was to evaluate the long-term effects of a single addition of organic refuse on soil physical properties and measure its carbon sequestration potential. In 1988, a set of five plots (87 m(2) each) was established in an open desert-like scrubland (2-4% cover) in Murcia, Spain, to which urban solid refuse (USR) was added in a single treatment at different rates. Soil properties were monitored over a 5-yr period. Sixteen years after the addition, three of the plots were monitored again (P0: control, P1: 13 kg m(-2), P2: 26 kg m(-2) of USR added) to assess the lasting effect of the organic addition on the soil organic carbon (SOC) pools and on the physical characteristics of the soil. The SOC content was higher in P2 (16.4 g kg(-1)) and in P1 (11.8 g kg(-1)) than in P0 (7.9 g kg(-1)). Likewise, aerial biomass increased from 0.18 kg m(-2) in P0 up to 0.27 kg m(-2) in P1 and 0.46 kg m(-2) in P2. This represents a total C sequestration of 9.5 Mg ha(-1) in P2 and 3.4 Mg ha(-1) in P1, most of the sequestered C remaining in the recalcitrant soil pool. Additionally, higher saturated hydraulic conductivity, aggregate stability, and available water content values and lower bulk density values were measured in the restored plots. Clearly, a single addition of organic refuse to the degraded soils to increase the potential for C sequestration was effective. PMID:18948462

Albaladejo, J; Lopez, J; Boix-Fayos, C; Barbera, G G; Martinez-Mena, M

2008-01-01

410

Development of an assessment methodology for hydrocarbon recovery potential using carbon dioxide and associated carbon sequestration-Workshop findings  

USGS Publications Warehouse

The Energy Independence and Security Act of 2007 (Public Law 110-140) authorized the U.S. Geological Survey (USGS) to conduct a national assessment of geologic storage resources for carbon dioxide (CO2) and requested that the USGS estimate the "potential volumes of oil and gas recoverable by injection and sequestration of industrial carbon dioxide in potential sequestration formations" (121 Stat. 1711). The USGS developed a noneconomic, probability-based methodology to assess the Nation's technically assessable geologic storage resources available for sequestration of CO2 (Brennan and others, 2010) and is currently using the methodology to assess the Nation's CO2 geologic storage resources. Because the USGS has not developed a methodology to assess the potential volumes of technically recoverable hydrocarbons that could be produced by injection and sequestration of CO2, the Geologic Carbon Sequestration project initiated an effort in 2010 to develop a methodology for the assessment of the technically recoverable hydrocarbon potential in the sedimentary basins of the United States using enhanced oil recovery (EOR) techniques with CO2 (CO2-EOR). In collaboration with Stanford University, the USGS hosted a 2-day CO2-EOR workshop in May 2011, attended by 28 experts from academia, natural resource agencies and laboratories of the Federal Government, State and international geologic surveys, and representatives from the oil and gas industry. The geologic and the reservoir engineering and operations working groups formed during the workshop discussed various aspects of geology, reservoir engineering, and operations to make recommendations for the methodology.

Verma, Mahendra K.; Warwick, Peter D.

2011-01-01