Science.gov

Sample records for biomass fast pyrolysis

  1. Catalytic fast pyrolysis of lignocellulosic biomass.

    PubMed

    Liu, Changjun; Wang, Huamin; Karim, Ayman M; Sun, Junming; Wang, Yong

    2014-11-21

    Increasing energy demand, especially in the transportation sector, and soaring CO2 emissions necessitate the exploitation of renewable sources of energy. Despite the large variety of new energy carriers, liquid hydrocarbon still appears to be the most attractive and feasible form of transportation fuel taking into account the energy density, stability and existing infrastructure. Biomass is an abundant, renewable source of energy; however, utilizing it in a cost-effective way is still a substantial challenge. Lignocellulose is composed of three major biopolymers, namely cellulose, hemicellulose and lignin. Fast pyrolysis of biomass is recognized as an efficient and feasible process to selectively convert lignocellulose into a liquid fuel-bio-oil. However bio-oil from fast pyrolysis contains a large amount of oxygen, distributed in hundreds of oxygenates. These oxygenates are the cause of many negative properties, such as low heating value, high corrosiveness, high viscosity, and instability; they also greatly limit the application of bio-oil particularly as transportation fuel. Hydrocarbons derived from biomass are most attractive because of their high energy density and compatibility with the existing infrastructure. Thus, converting lignocellulose into transportation fuels via catalytic fast pyrolysis has attracted much attention. Many studies related to catalytic fast pyrolysis of biomass have been published. The main challenge of this process is the development of active and stable catalysts that can deal with a large variety of decomposition intermediates from lignocellulose. This review starts with the current understanding of the chemistry in fast pyrolysis of lignocellulose and focuses on the development of catalysts in catalytic fast pyrolysis. Recent progress in the experimental studies on catalytic fast pyrolysis of biomass is also summarized with the emphasis on bio-oil yields and quality. PMID:24801125

  2. Catalytic fast pyrolysis of lignocellulosic biomass

    SciTech Connect

    Liu, Changjun; Wang, Huamin; Karim, Ayman M.; Sun, Junming; Wang, Yong

    2014-11-21

    Increasing energy demand, especially in the transportation sector, and soaring CO2 emissions necessitate the exploitation of renewable sources of energy. Despite the large variety of new energy Q3 carriers, liquid hydrocarbon still appears to be the most attractive and feasible form of transportation fuel taking into account the energy density, stability and existing infrastructure. Biomass is an abundant, renewable source of energy; however, utilizing it in a cost-effective way is still a substantial challenge. Lignocellulose is composed of three major biopolymers, namely cellulose, hemicellulose and lignin. Fast pyrolysis of biomass is recognized as an efficient and feasible process to selectively convert lignocellulose into a liquid fuel—bio-oil. However bio-oil from fast pyrolysis contains a large amount of oxygen, distributed in hundreds of oxygenates. These oxygenates are the cause of many negative properties, such as low heating values, high corrosiveness, high viscosity, and instability; they also greatly Q4 limit the application of bio-oil particularly as transportation fuel. Hydrocarbons derived from biomass are most attractive because of their high energy density and compatibility with the existing infrastructure. Thus, converting lignocellulose into transportation fuels via catalytic fast pyrolysis has attracted much attention. Many studies related to catalytic fast pyrolysis of biomass have been published. The main challenge of this process is the development of active and stable catalysts that can deal with a large variety of decomposition intermediates from lignocellulose. This review starts with the current understanding of the chemistry in fast pyrolysis of lignocellulose and focuses on the development of catalysts in catalytic fast pyrolysis. Recent progress in the experimental studies on catalytic fast pyrolysis of biomass is also summarized with the emphasis on bio-oil yields and quality.

  3. Specialists' workshop on fast pyrolysis of biomass

    SciTech Connect

    Not Available

    1980-01-01

    This workshop brought together most of those who are currently working in or have published significant findings in the area of fast pyrolysis of biomass or biomass-derived materials, with the goal of attaining a better understanding of the dominant mechanisms which produce olefins, oxygenated liquids, char, and tars. In addition, background papers were given in hydrocarbon pyrolysis, slow pyrolysis of biomass, and techniques for powdered-feedstock preparation in order that the other papers did not need to introduce in depth these concepts in their presentations for continuity. In general, the authors were requested to present summaries of experimental data with as much interpretation of that data as possible with regard to mechanisms and process variables such as heat flux, temperatures, partial pressure, feedstock, particle size, heating rates, residence time, etc. Separate abstracts have been prepared of each presentation for inclusion in the Energy Data Base. (DMC)

  4. Fast pyrolysis of guayule biomass

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The sustainability of industrial crops like guayule, a domestic source of natural rubber, can be significantly enhanced by utilization of biomass residues. Guayule bagasse, a free-flowing solid, presents an attractive bioenergy feedstock due to its high energy content, small particle size, and high...

  5. Production and analysis of fast pyrolysis oils from proteinaceous biomass

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fast pyrolysis of lignocellulosic biomass is a facile method for producing high yields of liquid fuel intermediates. However, because most fast pyrolysis oils are highly oxygenated, acidic and unstable identification of feedstocks that produce higher quality pyrolysis liquids is desirable. Therefor...

  6. Fast biomass pyrolysis with an entrained-flow reactor

    NASA Astrophysics Data System (ADS)

    Bohn, M. S.; Benham, C.

    1982-02-01

    A tubular entrained flow reactor has been used to study the effect of process control variables on fast biomass pyrolysis. In this type of reactor, finely ground biomass particles are entrained by carrier gas and transported through a reactor tube which is heated to about 900 C. Biomass particles pyrolyze as a result of heat transfer from the reactor wall yielding a gas composed primarily of carbon monoxide, carbon dioxide, hydrogen, methane, and unsaturated hydrocarbons. In this experimental program three dependent variables, percent conversion to gas, gas composition, and process heat, have been measured as a function of several process control variables. These process variables include reactor temperature, carrier gas to biomass flow ratio, reactor residence time, biomass particle size, and reactor Reynolds number. The data allow one to design and predict the performance of large scale reactors and also elucidates heat transfer mechanisms in fast biomass pyrolysis.

  7. Acidity of biomass fast pyrolysis bio-oils

    SciTech Connect

    Oasmaa, Anja; Elliott, Douglas C.; Korhonen, Jaana

    2010-12-17

    The use of the TAN method for measuring the acidity of biomass fast pyrolysis bio-oil was evaluated. Suggestions for carrying out the analysis have been made. The TAN method by ASTM D664 or D3339 can be used for measuring the acidity of fast pyrolysis bio-oils and their hydrotreating products. The main difference between the methods is that ASTM D664 is specified for higher TAN values than ASTM D3339. Special focus should be placed on the interpretation of the TAN curves because they differ significantly from those of mineral oils. The curve for bio-oils is so gentle that the automatic detection may not observe the end point properly and derivatization should be used. The acidity of fast pyrolysis bio-oils is mainly derived (60-70%) from volatile acids. Other groups of compounds in fast pyrolysis bio-oils that influence acidity include phenolics, fatty and resin acids, and hydroxy acids.

  8. Dual fluidized bed design for the fast pyrolysis of biomass

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A mechanism for the transport of solids between fluidised beds in dual fluidised bed systems for the fast pyrolysis of biomass process was selected. This mechanism makes use of an overflow standpipe to transport solids from the fluidised bed used for the combustion reactions to a second fluidised be...

  9. Fast pyrolysis of biomass thermally pretreated by torrefaction

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Torrefied biomass samples were produced from hardwood and switchgrass pellets using the biochar experimenter’s kit (BEK) reactor and analyzed for their utility as pretreated feedstock for biofuels production via fast pyrolysis. The energy efficiency for the BEK torrefaction process with propane gas ...

  10. Transportation fuels from biomass via fast pyrolysis and hydroprocessing

    SciTech Connect

    Elliott, Douglas C.

    2013-09-21

    Biomass is a renewable source of carbon, which could provide a means to reduce the greenhouse gas impact from fossil fuels in the transportation sector. Biomass is the only renewable source of liquid fuels, which could displace petroleum-derived products. Fast pyrolysis is a method of direct thermochemical conversion (non-bioconversion) of biomass to a liquid product. Although the direct conversion product, called bio-oil, is liquid; it is not compatible with the fuel handling systems currently used for transportation. Upgrading the product via catalytic processing with hydrogen gas, hydroprocessing, is a means that has been demonstrated in the laboratory. By this processing the bio-oil can be deoxygenated to hydrocarbons, which can be useful replacements of the hydrocarbon distillates in petroleum. While the fast pyrolysis of biomass is presently commercial, the upgrading of the liquid product by hydroprocessing remains in development, although it is moving out of the laboratory into scaled-up process demonstration systems.

  11. Pyrolysis of fast-growing aquatic biomass -Lemna minor (duckweed): Characterization of pyrolysis products.

    PubMed

    Muradov, Nazim; Fidalgo, Beatriz; Gujar, Amit C; T-Raissi, Ali

    2010-11-01

    The aim of this work was to conduct the experimental study of pyrolysis of fast-growing aquatic biomass -Lemna minor (commonly known as duckweed) with the emphasis on the characterization of main products of pyrolysis. The yields of pyrolysis gas, pyrolytic oil (bio-oil) and char were determined as a function of pyrolysis temperature and the sweep gas (Ar) flow rate. Thermogravimetric/differential thermogravimetric (TG/DTG) analyses of duckweed samples in inert (helium gas) and oxidative (air) atmosphere revealed differences in the TG/DTG patterns obtained for duckweed and typical plant biomass. The bio-oil samples produced by duckweed pyrolysis at different reaction conditions were analyzed using GC-MS technique. It was found that pyrolysis temperature had minor effect on the bio-oil product slate, but exerted major influence on the relative quantities of the individual pyrolysis products obtained. While, the residence time of the pyrolysis vapors had negligible effect on the yield and composition of the duckweed pyrolysis products. PMID:20598878

  12. Biomass to hydrogen via fast pyrolysis and catalytic steam reforming

    SciTech Connect

    Chornet, E.; Wang, D.; Montane, D.

    1995-09-01

    Fast pyrolysis of biomass results in a pyrolytic oil which is a mixture of (a) carbohydrate-derived acids, aldehydes and polyols, (b) lignin-derived substituted phenolics, and (c) extractives-derived terpenoids and fatty acids. The conversion of this pyrolysis oil into H{sub 2} and CO{sub 2} is thermodynamically favored under appropriate steam reforming conditions. Our efforts have focused in understanding the catalysis of steam reforming which will lead to a successful process at reasonable steam/carbon ratios arid process severities. The experimental work, carried out at the laboratory and bench scale levels, has centered on the performance of Ni-based catalysts using model compounds as prototypes of the oxygenates present in the pyrolysis oil. Steam reforming of acetic acid, hydroxyacetaldehyde, furfural and syringol has been proven to proceed rapidly within a reasonable range of severities. Time-on-stream studies are now underway using a fixed bed barometric pressure reactor to ascertain the durability of the catalysts and thus substantiate the scientific and technical feasibility of the catalytic reforming option. Economic analyses are being carried out in parallel to determine the opportunity zones for the combined fast pyrolysis/steam reforming approach. A discussion on the current state of the project is presented.

  13. Screening acidic zeolites for catalytic fast pyrolysis of biomass and its components

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Zeolites have been shown to effectively promote cracking reactions during pyrolysis resulting in highly deoxygenated and hydrocarbon-rich compounds and stable pyrolysis oil product. Py/GC-MS was employed to study the catalytic fast pyrolysis of lignocellulosic biomass samples comprising oak, corn...

  14. Gluconic acid from biomass fast pyrolysis oils: specialty chemicals from the thermochemical conversion of biomass.

    PubMed

    Santhanaraj, Daniel; Rover, Marjorie R; Resasco, Daniel E; Brown, Robert C; Crossley, Steven

    2014-11-01

    Fast pyrolysis of biomass to produce a bio-oil followed by catalytic upgrading is a widely studied approach for the potential production of fuels from biomass. Because of the complexity of the bio-oil, most upgrading strategies focus on removing oxygen from the entire mixture to produce fuels. Here we report a novel method for the production of the specialty chemical, gluconic acid, from the pyrolysis of biomass. Through a combination of sequential condensation of pyrolysis vapors and water extraction, a solution rich in levoglucosan is obtained that accounts for over 30% of the carbon in the bio-oil produced from red oak. A simple filtration step yields a stream of high-purity levoglucosan. This stream of levoglucosan is then hydrolyzed and partially oxidized to yield gluconic acid with high purity and selectivity. This combination of cost-effective pyrolysis coupled with simple separation and upgrading could enable a variety of new product markets for chemicals from biomass. PMID:25204798

  15. Characterizing biomass fast pyrolysis oils by 13C-NMR and chemometric analysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Several biomass fast pyrolysis oils were characterized by 13C and DEPT NMR analysis to determine chemical functional group compositions as related to their energy content. Pyrolysis oils were produced from a variety of feedstocks including energy crops, woods, animal wastes and oil seed presscakes,...

  16. Fast pyrolysis of an ensemble of biomass particles in a fluidized bed

    NASA Astrophysics Data System (ADS)

    Rabinovich, O. S.; Borodulya, V. A.; Vinogradov, L. M.; Korban, V. V.

    2010-09-01

    A combined approach to the modeling of fast pyrolysis of biomass particles in a fluidized bed has been used. We used models of different levels: two models of pyrolysis of a single particle — with lumped and distributed parameters — and a model of pyrolysis of an ensemble of biomass particles based on the continuum equations for the gas blown through the bed and the equations of motion for individual particles. We have determined optimal (in terms of the biofuel yield) temperatures of the process for various particle sizes of wood biomass and various values of its moisture.

  17. Design Case Summary: Production of Gasoline and Diesel from Biomass via Fast Pyrolysis, Hydrotreating, and Hydrocracking

    SciTech Connect

    Jones, S. B.; Valkenburg, C.; Walkton, C. W.; Elliott, D. C.; Holladay, J. E.; Stevens, D. J.; Kinchin, C.; Czernik, S.

    2010-02-01

    The Biomass Program develops design cases to understand the current state of conversion technologies and to determine where improvements need to take place in the future. This design case is the first to establish detailed cost targest for the production of diesel and gasoline blendstock from biomass via a fast pyrolysis process.

  18. BIOTC: An open-source CFD code for simulating biomass fast pyrolysis

    NASA Astrophysics Data System (ADS)

    Xiong, Qingang; Aramideh, Soroush; Passalacqua, Alberto; Kong, Song-Charng

    2014-06-01

    The BIOTC code is a computer program that combines a multi-fluid model for multiphase hydrodynamics and global chemical kinetics for chemical reactions to simulate fast pyrolysis of biomass at reactor scale. The object-oriented characteristic of BIOTC makes it easy for researchers to insert their own sub-models, while the user-friendly interface provides users a friendly environment as in commercial software. A laboratory-scale bubbling fluidized bed reactor for biomass fast pyrolysis was simulated using BIOTC to demonstrate its capability.

  19. Characterization of water insoluble solids isolated from various biomass fast pyrolysis oils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A solid water insoluble material, commonly called pyrolytic lignin, can be isolated from biomass fast pyrolysis oils. Such material was isolated from the bio-oils produced from barley straw, barley hulls, switchgrass, soystraw and oak and then fully characterized. Analytical techniques employed in...

  20. Effect of torrefaction on biomass structure and hydrocarbon production from fast pyrolysis

    SciTech Connect

    Neupane, Sneha; Adhikari, Sushil; Wang, Zhouhong; Ragauskas, Arthur; Pu, Yunqiao

    2015-01-27

    Torrefaction has been shown to improve the chemical composition of bio-oils produced from fast pyrolysis by lowering its oxygen content and enhancing the aromatic yield. A Py-GC/MS study was employed to investigate the effect of torrefaction temperatures (225, 250 and 275 °C) and residence times (15, 30 and 45 min) on product distribution from non-catalytic and H+ZSM-5 catalyzed pyrolysis of pinewood. During torrefaction, structural transformations in biomass constitutive polymers: hemicellulose, cellulose and lignin took place, which were evaluated using component analysis, solid state CP/MAS 13C NMR and XRD techniques. Torrefaction caused deacetylation and decomposition of hemicellulose, cleavage of aryl ether linkages and demethoxylation of lignin, degradation of cellulose and an overall increase in aromaticity of biomass, all of which affected the product yield from pyrolysis of torrefied biomass. For non-catalytic pyrolysis, selectivity of phenolic compounds increased with an increase in torrefaction severity while that of furan compounds decreased. In the case of catalytic pyrolysis, the sample torrefied at 225 °C-30 min and 250 °C-15 min resulted in a significant increase in aromatic hydrocarbon (HC) and also total carbon yield (approx. 1.6 times higher) as compared to catalytic pyrolysis of non-torrefied pine. Cleavage of aryl ether linkages and demethoxylation in lignin due to torrefaction caused increased yield of phenolic compounds, which in the presence of a catalyst were dehydrated to form aromatic HC.

  1. Effect of torrefaction on biomass structure and hydrocarbon production from fast pyrolysis

    DOE PAGESBeta

    Neupane, Sneha; Adhikari, Sushil; Wang, Zhouhong; Ragauskas, Arthur; Pu, Yunqiao

    2015-01-27

    Torrefaction has been shown to improve the chemical composition of bio-oils produced from fast pyrolysis by lowering its oxygen content and enhancing the aromatic yield. A Py-GC/MS study was employed to investigate the effect of torrefaction temperatures (225, 250 and 275 °C) and residence times (15, 30 and 45 min) on product distribution from non-catalytic and H+ZSM-5 catalyzed pyrolysis of pinewood. During torrefaction, structural transformations in biomass constitutive polymers: hemicellulose, cellulose and lignin took place, which were evaluated using component analysis, solid state CP/MAS 13C NMR and XRD techniques. Torrefaction caused deacetylation and decomposition of hemicellulose, cleavage of aryl ethermore » linkages and demethoxylation of lignin, degradation of cellulose and an overall increase in aromaticity of biomass, all of which affected the product yield from pyrolysis of torrefied biomass. For non-catalytic pyrolysis, selectivity of phenolic compounds increased with an increase in torrefaction severity while that of furan compounds decreased. In the case of catalytic pyrolysis, the sample torrefied at 225 °C-30 min and 250 °C-15 min resulted in a significant increase in aromatic hydrocarbon (HC) and also total carbon yield (approx. 1.6 times higher) as compared to catalytic pyrolysis of non-torrefied pine. Cleavage of aryl ether linkages and demethoxylation in lignin due to torrefaction caused increased yield of phenolic compounds, which in the presence of a catalyst were dehydrated to form aromatic HC.« less

  2. Computational fluid dynamics modelling of biomass fast pyrolysis in fluidised bed reactors, focusing different kinetic schemes.

    PubMed

    Ranganathan, Panneerselvam; Gu, Sai

    2016-08-01

    The present work concerns with CFD modelling of biomass fast pyrolysis in a fluidised bed reactor. Initially, a study was conducted to understand the hydrodynamics of the fluidised bed reactor by investigating the particle density and size, and gas velocity effect. With the basic understanding of hydrodynamics, the study was further extended to investigate the different kinetic schemes for biomass fast pyrolysis process. The Eulerian-Eulerian approach was used to model the complex multiphase flows in the reactor. The yield of the products from the simulation was compared with the experimental data. A good comparison was obtained between the literature results and CFD simulation. It is also found that CFD prediction with the advanced kinetic scheme is better when compared to other schemes. With the confidence obtained from the CFD models, a parametric study was carried out to study the effect of biomass particle type and size and temperature on the yield of the products. PMID:26927234

  3. Production of Gasoline and Diesel from Biomass via Fast Pyrolysis, Hydrotreating and Hydrocracking: A Design Case

    SciTech Connect

    Jones, Susanne B.; Valkenburt, Corinne; Walton, Christie W.; Elliott, Douglas C.; Holladay, Johnathan E.; Stevens, Don J.; Kinchin, Christopher; Czernik, Stefan

    2009-02-25

    The purpose of this study is to evaluate a processing pathway for converting biomass into infrastructure-compatible hydrocarbon biofuels. This design case investigates production of fast pyrolysis oil from biomass and the upgrading of that bio-oil as a means for generating infrastructure-ready renewable gasoline and diesel fuels. This study has been conducted using similar methodology and underlying basis assumptions as the previous design cases for ethanol. The overall concept and specific processing steps were selected because significant data on this approach exists in the public literature. The analysis evaluates technology that has been demonstrated at the laboratory scale or is in early stages of commercialization. The fast pyrolysis of biomass is already at an early stage of commercialization, while upgrading bio-oil to transportation fuels has only been demonstrated in the laboratory and at small engineering development scale. Advanced methods of pyrolysis, which are under development, are not evaluated in this study. These may be the subject of subsequent analysis by OBP. The plant is designed to use 2000 dry metric tons/day of hybrid poplar wood chips to produce 76 million gallons/year of gasoline and diesel. The processing steps include: 1.Feed drying and size reduction 2.Fast pyrolysis to a highly oxygenated liquid product 3.Hydrotreating of the fast pyrolysis oil to a stable hydrocarbon oil with less than 2% oxygen 4.Hydrocracking of the heavy portion of the stable hydrocarbon oil 5.Distillation of the hydrotreated and hydrocracked oil into gasoline and diesel fuel blendstocks 6. Hydrogen production to support the hydrotreater reactors. The "as received" feedstock to the pyrolysis plant will be "reactor ready". This development will likely further decrease the cost of producing the fuel. An important sensitivity is the possibility of co-locating the plant with an existing refinery. In this case, the plant consists only of the first three steps: feed

  4. Production of Gasoline and Diesel from Biomass via Fast Pyrolysis, Hydrotreating and Hydrocracking: A Design Case

    SciTech Connect

    Jones, Susanne B.; Valkenburt, Corinne; Walton, Christie W.; Elliott, Douglas C.; Holladay, Johnathan E.; Stevens, Don J.; Kinchin, Christopher; Czernik, Stefan

    2009-02-28

    The purpose of this study is to evaluate a processing pathway for converting biomass into infrastructure-compatible hydrocarbon biofuels. This design case investigates production of fast pyrolysis oil from biomass and the upgrading of that bio-oil as a means for generating infrastructure-ready renewable gasoline and diesel fuels. This study has been conducted using the same methodology and underlying basis assumptions as the previous design cases for ethanol. The overall concept and specific processing steps were selected because significant data on this approach exists in the public literature. The analysis evaluates technology that has been demonstrated at the laboratory scale or is in early stages of commercialization. The fast pyrolysis of biomass is already at an early stage of commercialization, while upgrading bio-oil to transportation fuels has only been demonstrated in the laboratory and at small engineering development scale. Advanced methods of pyrolysis, which are under development, are not evaluated in this study. These may be the subject of subsequent analysis by OBP. The plant is designed to use 2000 dry metric tons/day of hybrid poplar wood chips to produce 76 million gallons/year of gasoline and diesel. The processing steps include: 1.Feed drying and size reduction 2.Fast pyrolysis to a highly oxygenated liquid product 3.Hydrotreating of the fast pyrolysis oil to a stable hydrocarbon oil with less than 2% oxygen 4.Hydrocracking of the heavy portion of the stable hydrocarbon oil 5.Distillation of the hydrotreated and hydrocracked oil into gasoline and diesel fuel blendstocks 6. Hydrogen production to support the hydrotreater reactors. The “as received” feedstock to the pyrolysis plant will be “reactor ready.” This development will likely further decrease the cost of producing the fuel. An important sensitivity is the possibility of co-locating the plant with an existing refinery. In this case, the plant consists only of the first three steps

  5. Analysis and comparison of bio-oil produced by fast pyrolysis from three barley biomass/byproduct streams

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fluidized bed fast pyrolysis was carried out on three different barley biomass coproduct streams, barley straw, barley hulls and DDGS from Saccharomyces cerevisiae fermentation of barley grain. Each of these are possible sources of feedstock for advanced bio-fuels production via fast pyrolysis as b...

  6. Production of hydrogen from biomass by catalytic steam reforming of fast pyrolysis oil

    SciTech Connect

    Czernik, S.; Wang, D.; Chornet, E.

    1998-08-01

    Hydrogen is the prototype of the environmentally cleanest fuel of interest for power generation using fuel cells and for transportation. The thermochemical conversion of biomass to hydrogen can be carried out through two distinct strategies: (a) gasification followed by water-gas shift conversion, and (b) catalytic steam reforming of specific fractions derived from fast pyrolysis and aqueous/steam processes of biomass. This paper presents the latter route that begins with fast pyrolysis of biomass to produce bio-oil. This oil (as a whole or its selected fractions) can be converted to hydrogen via catalytic steam reforming followed by a water-gas shift conversion step. Such a process has been demonstrated at the bench scale using model compounds, poplar oil aqueous fraction, and the whole pyrolysis oil with commercial Ni-based steam reforming catalysts. Hydrogen yields as high as 85% have been obtained. Catalyst initial activity can be recovered through regeneration cycles by steam or CO{sub 2} gasification of carbonaceous deposits.

  7. Design, optimization and evaluation of a free-fall biomass fast pyrolysis reactor and its products

    NASA Astrophysics Data System (ADS)

    Ellens, Cody James

    The focus of this work is a radiatively heated, free-fall, fast pyrolysis reactor. The reactor was designed and constructed for the production of bio-oil from the fast pyrolysis of biomass. A central composite design of experiments was performed to evaluate the novel reactor by varying four operating conditions: reactor temperature, biomass particle size, carrier gas flow rate and biomass feed rate. Maximum bio-oil yields of 72 wt % were achieved at a heater set point temperature of 600 °C, using particle sizes of 300 micron, carrier gas flow rates of 4 sL/min and Red oak biomass feed rates of 1.75 kg/hr. Optimal operating conditions were identified for maximum bio-oil yields at a heater set point temperature of 572 °C, feeding 240 micron sized Red oak biomass particles at 2 kg/hr. Carrier gas flow rates were not found to be significant over the 1 -- 5 sL/min range tested.

  8. A CFD model for biomass fast pyrolysis in fluidized-bed reactors

    NASA Astrophysics Data System (ADS)

    Xue, Qingluan; Heindel, T. J.; Fox, R. O.

    2010-11-01

    A numerical study is conducted to evaluate the performance and optimal operating conditions of fluidized-bed reactors for fast pyrolysis of biomass to bio-oil. A comprehensive CFD model, coupling a pyrolysis kinetic model with a detailed hydrodynamics model, is developed. A lumped kinetic model is applied to describe the pyrolysis of biomass particles. Variable particle porosity is used to account for the evolution of particle physical properties. The kinetic scheme includes primary decomposition and secondary cracking of tar. Biomass is composed of reference components: cellulose, hemicellulose, and lignin. Products are categorized into groups: gaseous, tar vapor, and solid char. The particle kinetic processes and their interaction with the reactive gas phase are modeled with a multi-fluid model derived from the kinetic theory of granular flow. The gas, sand and biomass constitute three continuum phases coupled by the interphase source terms. The model is applied to investigate the effect of operating conditions on the tar yield in a fluidized-bed reactor. The influence of various parameters on tar yield, including operating temperature and others are investigated. Predicted optimal conditions for tar yield and scale-up of the reactor are discussed.

  9. Report - Production of Gasoline and Diesel from Biomass via Fast Pyrolysis, Hydrotreating and Hydrocracking: A Design Case

    SciTech Connect

    Jones, S. B.; Valkenburg, C.; Walton, C. W.; Elliott, D. C.; Holladay, J. E.; Stevens, D. J.; Kinchin, C.; Czernik, S.

    2009-02-01

    The purpose of this design case study is to evaluate a processing pathway for converting biomass into infrastructure-compatible hydrocarbon biofuels. This design case investigates production of fast pyrolysis oil from biomass and the upgrading of that bio-oil as a means for generating infrastructure-ready renewable gasoline and diesel fuels.

  10. Improving the conversion of biomass in catalytic fast pyrolysis via white-rot fungal pretreatment.

    PubMed

    Yu, Yanqing; Zeng, Yelin; Zuo, Jiane; Ma, Fuying; Yang, Xuewei; Zhang, Xiaoyu; Wang, Yujue

    2013-04-01

    This study investigated the effect of white-rot fungal pretreatment on corn stover conversion in catalytic fast pyrolysis (CFP). Corn stover pretreated by white-rot fungus Irpex lacteus CD2 was fast pyrolyzed alone (non-CFP) and with ZSM-5 zeolite (CFP) in a semi-batch pyroprobe reactor. The fungal pretreatment considerably increased the volatile product yields (predominantly oxygenated compounds) in non-CFP, indicating that fungal pretreatment enhances the corn stover conversion in fast pyrolysis. In the presence of ZSM-5 zeolite, these oxygenated volatiles were further catalytically converted to aromatic hydrocarbons, whose yield increased from 10.03 wt.% for the untreated corn stover to 11.49 wt.% for the pretreated sample. In contrast, the coke yield decreased from 14.29 to 11.93 wt.% in CFP following the fungal pretreatment. These results indicate that fungal pretreatment can enhance the production of valuable aromatics and decrease the amount of undesired coke, and thus has a beneficial effect on biomass conversion in CFP. PMID:23506976

  11. The cyclone: A multifunctional reactor for the fast pyrolysis of biomass

    SciTech Connect

    Lede, J.

    2000-04-01

    This paper reports the experimental results of the fast pyrolysis of wood sawdust performed in two different cyclone reactors. The mass balances are close to 100% and the char fractions always smaller than 3%. The flexibility of the cyclone reactor is such that, according to the operating conditions, it can be used either for the fast gasification or for the gas liquefaction of biomass. Side experiments reveal that a fraction of the gaseous products can be used as the carrier gas (recycling process) without noticeable changes of the gas composition and with vast gasification yields close to 100%. It is shown that the vapor-phase cracking reactions mainly occur inside a very thin and hot boundary layer close to the heated surface of the cyclone. The results of the modeling of these phenomena are used to derive kinetic constants that provide to be in very good agreement with those of the literature. The conclusion is that the cyclone appears as a very efficient multifunctional reactor making it possible to perform in less than a second heating and pyrolysis of the reactants as well as the quenching and separation of the products.

  12. Norms, Standards, and Legislation for Fast Pyrolysis Bio-oils from Lignocellulosic Biomass

    SciTech Connect

    Oasmaa, Anja; van de Beld, Bert; Saari, Pia; Elliott, Douglas C.; Solantausta, Yrjo

    2015-04-16

    Fast pyrolysis of woody biomass is close to full maturity, with first-of-its-kind commercial size installations for fuel production being commissioned in Finland (Fortum) and in The Netherlands (Empyro), and in the design phase in Brazil (Ensyn). In the industrial-scale combustion tests, the use of fast pyrolysis bio-oil (FPBO) has been demonstrated to be a viable option to replace heavy fuel oil in district heating applications. Commercially usable district heating boilers and burners suitable for FPBO are available. There is research on diesel-engine and gas-turbine applications but, so far, no proven demonstrations. FPBO is completely different from mineral oils; hence, standards are needed. Analytical methods have been systematically validated and modifications to the standards as well as completely new methods have been made. Two ASTM burner fuel standards already exist and European boiler fuel grades are being developed under CEN. The focus on CEN standardization is on boiler use, because of its commercial readiness.

  13. Fast pyrolysis of tropical biomass species and influence of water pretreatment on product distributions

    DOE PAGESBeta

    Morgan, Trevor James; Turn, Scott Q.; Sun, Ning; George, Anthe; Gupta, Vijai

    2016-03-15

    Here, the fast pyrolysis behaviour of pretreated banagrass was examined at four temperatures (between 400 and 600 C) and four residence times (between ~1.2 and 12 s). The pretreatment used water washing/leaching to reduce the inorganic content of the banagrass. Yields of bio-oil, permanent gases and char were determined at each reaction condition and compared to previously published results from untreated banagrass. Comparing the bio-oil yields from the untreated and pretreated banagrass shows that the yields were greater from the pretreated banagrass by 4 to 11 wt% (absolute) at all reaction conditions. The effect of pretreatment (i.e. reducing the amountmore » of ash, and alkali and alkali earth metals) on pyrolysis products is: 1) to increase the dry bio-oil yield, 2) to decrease the amount of undetected material, 3) to produce a slight increase in CO yield or no change, 4) to slightly decrease CO2 yield or no change, and 5) to produce a more stable bio-oil (less aging). Char yield and total gas yield were unaffected by feedstock pretreatment. Four other tropical biomass species were also pyrolyzed under one condition (450°C and 1.4 s residence time) for comparison to the banagrass results. The samples include two hardwoods: leucaena and eucalyptus, and two grasses: sugarcane bagasse and energy-cane. A sample of pretreated energy-cane was also pyrolyzed. Of the materials tested, the best feedstocks for fast pyrolysis were sugarcane bagasse, pretreated energy cane and eucalyptus based on the yields of 'dry bio-oil', CO and CO2. On the same basis, the least productive feedstocks are untreated banagrass followed by pretreated banagrass and leucaena.« less

  14. Fast Pyrolysis of Tropical Biomass Species and Influence of Water Pretreatment on Product Distributions

    PubMed Central

    Morgan, Trevor James; Turn, Scott Q.; Sun, Ning; George, Anthe

    2016-01-01

    The fast pyrolysis behaviour of pretreated banagrass was examined at four temperatures (between 400 and 600 C) and four residence times (between ~1.2 and 12 s). The pretreatment used water washing/leaching to reduce the inorganic content of the banagrass. Yields of bio-oil, permanent gases and char were determined at each reaction condition and compared to previously published results from untreated banagrass. Comparing the bio-oil yields from the untreated and pretreated banagrass shows that the yields were greater from the pretreated banagrass by 4 to 11 wt% (absolute) at all reaction conditions. The effect of pretreatment (i.e. reducing the amount of ash, and alkali and alkali earth metals) on pyrolysis products is: 1) to increase the dry bio-oil yield, 2) to decrease the amount of undetected material, 3) to produce a slight increase in CO yield or no change, 4) to slightly decrease CO2 yield or no change, and 5) to produce a more stable bio-oil (less aging). Char yield and total gas yield were unaffected by feedstock pretreatment. Four other tropical biomass species were also pyrolyzed under one condition (450°C and 1.4 s residence time) for comparison to the banagrass results. The samples include two hardwoods: leucaena and eucalyptus, and two grasses: sugarcane bagasse and energy-cane. A sample of pretreated energy-cane was also pyrolyzed. Of the materials tested, the best feedstocks for fast pyrolysis were sugarcane bagasse, pretreated energy cane and eucalyptus based on the yields of 'dry bio-oil', CO and CO2. On the same basis, the least productive feedstocks are untreated banagrass followed by pretreated banagrass and leucaena. PMID:26978265

  15. Fast Pyrolysis of Tropical Biomass Species and Influence of Water Pretreatment on Product Distributions.

    PubMed

    Morgan, Trevor James; Turn, Scott Q; Sun, Ning; George, Anthe

    2016-01-01

    The fast pyrolysis behaviour of pretreated banagrass was examined at four temperatures (between 400 and 600 C) and four residence times (between ~1.2 and 12 s). The pretreatment used water washing/leaching to reduce the inorganic content of the banagrass. Yields of bio-oil, permanent gases and char were determined at each reaction condition and compared to previously published results from untreated banagrass. Comparing the bio-oil yields from the untreated and pretreated banagrass shows that the yields were greater from the pretreated banagrass by 4 to 11 wt% (absolute) at all reaction conditions. The effect of pretreatment (i.e. reducing the amount of ash, and alkali and alkali earth metals) on pyrolysis products is: 1) to increase the dry bio-oil yield, 2) to decrease the amount of undetected material, 3) to produce a slight increase in CO yield or no change, 4) to slightly decrease CO2 yield or no change, and 5) to produce a more stable bio-oil (less aging). Char yield and total gas yield were unaffected by feedstock pretreatment. Four other tropical biomass species were also pyrolyzed under one condition (450°C and 1.4 s residence time) for comparison to the banagrass results. The samples include two hardwoods: leucaena and eucalyptus, and two grasses: sugarcane bagasse and energy-cane. A sample of pretreated energy-cane was also pyrolyzed. Of the materials tested, the best feedstocks for fast pyrolysis were sugarcane bagasse, pretreated energy cane and eucalyptus based on the yields of 'dry bio-oil', CO and CO2. On the same basis, the least productive feedstocks are untreated banagrass followed by pretreated banagrass and leucaena. PMID:26978265

  16. Resole resin products derived from fractionated organic and aqueous condensates made by fast-pyrolysis of biomass materials

    DOEpatents

    Chum, H.L.; Black, S.K.; Diebold, J.P.; Kreibich, R.E.

    1993-08-10

    A process for preparing phenol-formaldehyde resole resins by fractionating organic and aqueous condensates made by fast-pyrolysis of biomass materials while using a carrier gas to move feed into a reactor to produce phenolic-containing/neutrals in which portions of the phenol normally contained in said resins are replaced by a phenolic/neutral fractions extract obtained by fractionation.

  17. Resole resin products derived from fractionated organic and aqueous condensates made by fast-pyrolysis of biomass materials

    DOEpatents

    Chum, Helena L.; Black, Stuart K.; Diebold, James P.; Kreibich, Roland E.

    1993-01-01

    A process for preparing phenol-formaldehyde resole resins by fractionating organic and aqueous condensates made by fast-pyrolysis of biomass materials while using a carrier gas to move feed into a reactor to produce phenolic-containing/neutrals in which portions of the phenol normally contained in said resins are replaced by a phenolic/neutral fractions extract obtained by fractionation.

  18. Biological mineral range effects on biomass conversion to aromatic hydrocarbons via catalytic fast pyrolysis over HZSM-5

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A set of 20 biomass samples, comprising 10 genotypes of switchgrass, sorghum and miscanthus grown in two different soils with high and low poultry manure input conditions, and having a wide biological range of mineral content, were subjected to catalytic fast pyrolysis (CFP) over HZMS-5 using py-G...

  19. Sustainable production of bioenergy and bio-char from the straw of high biomass soybean lines via fast pyrolysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The straws of two high-biomass soybean lines developed at ARS for bioenergy were subjected to thermochemical conversion by fast pyrolysis. The objective was to evaluate the potential use of the straw for the production of liquid fuel intermediates that can be burned “as is” and/or potentially upgra...

  20. Catalytic Hydroprocessing of Biomass Fast Pyrolysis Bio-oil to Produce Hydrocarbon Products

    SciTech Connect

    Elliott, Douglas C.; Hart, Todd R.; Neuenschwander, Gary G.; Rotness, Leslie J.; Zacher, Alan H.

    2009-10-01

    Catalytic hydroprocessing has been applied to biomass fast pyrolysis liquid product (bio-oil) in a bench-scale continuous-flow fixed-bed reactor system. The intent of the research was to develop process technology to convert the bio-oil into a petroleum refinery feedstock to supplement fossil energy resources and to displace imported feedstock. The project was a cooperative research and development agreement among UOP LLC, the National Renewable Energy Laboratory and the Pacific Northwest National Laboratory (PNNL). This paper is focused on the process experimentation and product analysis undertaken at PNNL. The paper describes the experimental methods used and relates the results of the product analyses. A range of catalyst formulations were tested over a range of operating parameters including temperature, pressure, and flow-rate with bio-oil derived from several different biomass feedstocks. Effects of liquid hourly space velocity and catalyst bed temperature were assessed. Details of the process results were presented including mass and elemental balances. Detailed analysis of the products were provided including elemental composition, chemical functional type determined by mass spectrometry, and product descriptors such as density, viscosity and Total Acid Number (TAN). In summation, the paper provides an understanding of the efficacy of hydroprocessing as applied to bio-oil.

  1. Enhancement of biomass conversion in catalytic fast pyrolysis by microwave-assisted formic acid pretreatment.

    PubMed

    Feng, Yu; Li, Guangyu; Li, Xiangyu; Zhu, Ning; Xiao, Bo; Li, Jian; Wang, Yujue

    2016-08-01

    This study investigated microwave-assisted formic acid (MW-FA) pretreatment as a possible way to improve aromatic production from catalytic fast pyrolysis (CFP) of lignocellulosic biomass. Results showed that short duration of MW-FA pretreatment (5-10min) could effectively disrupt the recalcitrant structure of beech wood and selectively remove its hemicellulose and lignin components. This increased the accessibility of cellulose component of biomass to subsequent thermal conversion in CFP. Consequently, the MW-FA pretreated beech wood produced 14.0-28.3% higher yields (26.4-29.8C%) for valuable aromatic products in CFP than the untreated control (23.2C%). In addition, the yields of undesired solid residue (char/coke) decreased from 33.1C% for the untreated control to 28.6-29.8C% for the MW-FA pretreated samples. These results demonstrate that MW-FA pretreatment can provide an effective way to improve the product distribution from CFP of lignocellulose. PMID:27176672

  2. Techno-Economic Analysis of Biomass Fast Pyrolysis to Transportation Fuels

    SciTech Connect

    Wright, M. M.; Satrio, J. A.; Brown, R. C.; Daugaard, D. E.; Hsu, D. D.

    2010-11-01

    This study develops techno-economic models for assessment of the conversion of biomass to valuable fuel products via fast pyrolysis and bio-oil upgrading. The upgrading process produces a mixture of naphtha-range (gasoline blend stock) and diesel-range (diesel blend stock) products. This study analyzes the economics of two scenarios: onsite hydrogen production by reforming bio-oil, and hydrogen purchase from an outside source. The study results for an nth plant indicate that petroleum fractions in the naphtha distillation range and in the diesel distillation range are produced from corn stover at a product value of $3.09/gal ($0.82/liter) with onsite hydrogen production or $2.11/gal ($0.56/liter) with hydrogen purchase. These values correspond to a $0.83/gal ($0.21/liter) cost to produce the bio-oil. Based on these nth plant numbers, product value for a pioneer hydrogen-producing plant is about $6.55/gal ($1.73/liter) and for a pioneer hydrogen-purchasing plant is about $3.41/gal ($0.92/liter). Sensitivity analysis identifies fuel yield as a key variable for the hydrogen-production scenario. Biomass cost is important for both scenarios. Changing feedstock cost from $50-$100 per short ton changes the price of fuel in the hydrogen production scenario from $2.57-$3.62/gal ($0.68-$0.96/liter).

  3. Biomass fast pyrolysis in a fluidized bed reactor under N2, CO2, CO, CH4 and H2 atmospheres.

    PubMed

    Zhang, Huiyan; Xiao, Rui; Wang, Denghui; He, Guangying; Shao, Shanshan; Zhang, Jubing; Zhong, Zhaoping

    2011-03-01

    Biomass fast pyrolysis is one of the most promising technologies for biomass utilization. In order to increase its economic potential, pyrolysis gas is usually recycled to serve as carrier gas. In this study, biomass fast pyrolysis was carried out in a fluidized bed reactor using various main pyrolysis gas components, namely N(2), CO(2), CO, CH(4) and H(2), as carrier gases. The atmosphere effects on product yields and oil fraction compositions were investigated. Results show that CO atmosphere gave the lowest liquid yield (49.6%) compared to highest 58.7% obtained with CH(4). CO and H(2) atmospheres converted more oxygen into CO(2) and H(2)O, respectively. GC/MS analysis of the liquid products shows that CO and CO(2) atmospheres produced less methoxy-containing compounds and more monofunctional phenols. The higher heating value of the obtained bio-oil under N(2) atmosphere is only 17.8 MJ/kg, while that under CO and H(2) atmospheres increased to 23.7 and 24.4 MJ/kg, respectively. PMID:21232946

  4. Entrained-Flow, Fast Ablative Pyrolysis of Biomass - Annual Report, 1 December 1984 - 31 December 1985

    SciTech Connect

    Diebold, J. P.; Scahill, J. W.; Evans, R. J.

    1986-07-01

    The ablative, fast pyrolysis system was relocated to SERI's new, permanent Field Test Laboratory. Pyrolysis system modifications were made to increase the energy available to the vortex reactor and to enhance the collection efficiency of primary pyrolysis vapors. Mathematical modeling of the vapor cracker has resulted in the ability to accurately predict experimental results with respect to the thermal cracking of the primary vapors, the generation of noncondensible gases, and the gas composition. The computer algorithm of this model can be readily used to perform experimental simulation and/or reactor scale-up due to its fundamental nature. Preliminary screening tests with pure ZSM-5 zeolite catalyst, supplied by Mobil Research and Development Corporation, have shown promise for the conversion of primary pyrolysis oil vapors to aromatic hydrocarbons; i.e., gasoline.

  5. Coupling DAEM and CFD for simulating biomass fast pyrolysis in fluidized beds

    SciTech Connect

    Xiong, Qingang; Zhang, Jingchao; Wiggins, Gavin; Daw, C. Stuart; Xu, Fei

    2015-12-03

    We report results from computational simulations of an experimental, lab-scale bubbling bed biomass pyrolysis reactor that include a distributed activation energy model (DAEM) for the kinetics. In this study, we utilized multiphase computational fluid dynamics (CFD) to account for the turbulent hydrodynamics, and this was combined with the DAEM kinetics in a multi-component, multi-step reaction network. Our results indicate that it is possible to numerically integrate the coupled CFD–DAEM system without significantly increasing computational overhead. It is also clear, however, that reactor operating conditions, reaction kinetics, and multiphase flow dynamics all have major impacts on the pyrolysis products exiting the reactor. We find that, with the same pre-exponential factors and mean activation energies, inclusion of distributed activation energies in the kinetics can shift the predicted average value of the exit vapor-phase tar flux and its statistical distribution, compared to single-valued activation-energy kinetics. Perhaps the most interesting observed trend is that increasing the diversity of the DAEM activation energies appears to increase the mean tar yield, all else being equal. As a result, these findings imply that accurate resolution of the reaction activation energy distributions will be important for optimizing biomass pyrolysis processes.

  6. Coupling DAEM and CFD for simulating biomass fast pyrolysis in fluidized beds

    DOE PAGESBeta

    Xiong, Qingang; Zhang, Jingchao; Wiggins, Gavin; Daw, C. Stuart; Xu, Fei

    2015-12-03

    We report results from computational simulations of an experimental, lab-scale bubbling bed biomass pyrolysis reactor that include a distributed activation energy model (DAEM) for the kinetics. In this study, we utilized multiphase computational fluid dynamics (CFD) to account for the turbulent hydrodynamics, and this was combined with the DAEM kinetics in a multi-component, multi-step reaction network. Our results indicate that it is possible to numerically integrate the coupled CFD–DAEM system without significantly increasing computational overhead. It is also clear, however, that reactor operating conditions, reaction kinetics, and multiphase flow dynamics all have major impacts on the pyrolysis products exiting themore » reactor. We find that, with the same pre-exponential factors and mean activation energies, inclusion of distributed activation energies in the kinetics can shift the predicted average value of the exit vapor-phase tar flux and its statistical distribution, compared to single-valued activation-energy kinetics. Perhaps the most interesting observed trend is that increasing the diversity of the DAEM activation energies appears to increase the mean tar yield, all else being equal. As a result, these findings imply that accurate resolution of the reaction activation energy distributions will be important for optimizing biomass pyrolysis processes.« less

  7. Biomass-to-hydrogen via fast pyrolysis and catalytic steam reforming

    SciTech Connect

    Chornet, E.; Wang, D.; Czernik, S.

    1996-10-01

    Pyrolysis of lignocellulosic biomass and reforming the pyroligneous oils is being studied as a strategy for producing hydrogen. Novel technologies for the rapid pyrolysis of biomass have been developed in the past decade. They provide compact and efficient systems to transform biomass into vapors that are condensed to oils, with yields as high as 75-80 wt.% of the anhydrous biomass. This {open_quotes}bio-oil{close_quotes} is a mixture of aldehydes, alcohols, acids, oligomers from the constitutive carbohydrates and lignin, and some water derived from the dehydration reactions. Hydrogen can be produced by reforming the bio-oil or its fractions with steam. A process of this nature has the potential to be cost competitive with conventional means of producing hydrogen. The reforming facility can be designed to handle alternate feedstocks, such as natural gas and naphtha, if necessary. Thermodynamic modeling of the major constituents of the bio-oil has shown that reforming is possible within a wide range of temperatures and steam-to-carbon ratios. Existing catalytic data on the reforming of oxygenates have been studied to guide catalyst selection. Tests performed on a microreactor interfaced with a molecular beam mass spectrometer showed that, by proper selection of the process variables: temperature, steam-to-carbon ratio, gas hourly space velocity, and contact time, almost total conversion of carbon in the feed to CO and CO{sub 2} could be obtained. These tests also provided possible reaction mechanisms where thermal cracking competes with catalytic processes. Bench-scale, fixed bed reactor tests demonstrated high hydrogen yields from model compounds and carbohydrate-derived pyrolysis oil fractions. Reforming bio-oil or its fractions required proper dispersion of the liquid to avoid vapor-phase carbonization of the feed in the inlet to the reactor. A special spraying nozzle injector was designed and successfully tested with an aqueous fraction of bio-oil.

  8. Catalytic fast co-pyrolysis of biomass and food waste to produce aromatics: Analytical Py-GC/MS study.

    PubMed

    Zhang, Bo; Zhong, Zhaoping; Min, Min; Ding, Kuan; Xie, Qinglong; Ruan, Roger

    2015-01-01

    In this study, catalytic fast co-pyrolysis (co-CFP) of corn stalk and food waste (FW) was carried out to produce aromatics using quantitative pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS), and ZSM-5 zeolite in the hydrogen form was employed as the catalyst. Co-CFP temperature and a parameter called hydrogen to carbon effective ratio (H/C(eff) ratio) were examined for their effects on the relative content of aromatics. Experimental results showed that co-CFP temperature of 600 °C was optimal for the formation of aromatics and other organic pyrolysis products. Besides, H/C(eff) ratio had an important influence on product distribution. The yield of total organic pyrolysis products and relative content of aromatics increased non-linearly with increasing H/C(eff) ratio. There was an apparent synergistic effect between corn stalk and FW during co-CFP process, which promoted the production of aromatics significantly. Co-CFP of biomass and FW was an effective method to produce aromatics and other petrochemicals. PMID:25864028

  9. Analysis of Oxygenated Compounds in Hydrotreated Biomass Fast Pyrolysis Oil Distillate Fractions

    SciTech Connect

    Christensen, Earl D.; Chupka, Gina; Luecke, Jon; Smurthwaite, Tricia D.; Alleman, Teresa L.; Iisa, Kristiina; Franz, James A.; Elliott, Douglas C.; McCormick, Robert L.

    2011-10-06

    Three hydrotreated bio-oils with different oxygen contents (8.2, 4.9, and 0.4 w/w) were distilled to produce Light, Naphtha, Jet, Diesel, and Gasoil boiling range fractions that were characterized for oxygen containing species by a variety of analytical methods. The bio-oils were originally generated from lignocellulosic biomass in an entrained-flow fast pyrolysis reactor. Analyses included elemental composition, carbon type distribution by {sup 13}C NMR, acid number, GC-MS, volatile organic acids by LC, and carbonyl compounds by DNPH derivatization and LC. Acid number titrations employed an improved titrant-electrode combination with faster response that allowed detection of multiple endpoints in many samples and for acid values attributable to carboxylic acids and to phenols to be distinguished. Results of these analyses showed that the highest oxygen content bio-oil fractions contained oxygen as carboxylic acids, carbonyls, aryl ethers, phenols, and alcohols. Carboxylic acids and carbonyl compounds detected in this sample were concentrated in the Light, Naphtha, and Jet fractions (<260 C boiling point). Carboxylic acid content of all of the high oxygen content fractions was likely too high for these materials to be considered as fuel blendstocks although potential for blending with crude oil or refinery intermediate streams may exist for the Diesel and Gasoil fractions. The 4.9 % oxygen sample contained almost exclusively phenolic compounds found to be present throughout the boiling range of this sample, but imparting measurable acidity primarily in the Light, Naphtha and Jet fractions. Additional study is required to understand what levels of the weakly acidic phenols could be tolerated in a refinery feedstock. The Diesel and Gasoil fractions from this upgraded oil had low acidity but still contained 3 to 4 wt% oxygen present as phenols that could not be specifically identified. These materials appear to have excellent potential as refinery feedstocks and some

  10. Fast co-pyrolysis of biomass and lignite in a micro fluidized bed reactor analyzer.

    PubMed

    Mao, Yebing; Dong, Lei; Dong, Yuping; Liu, Wenping; Chang, Jiafu; Yang, Shuai; Lv, Zhaochuan; Fan, Pengfei

    2015-04-01

    The co-pyrolysis characteristic of biomass and lignite were investigated in a Micro Fluidized Bed Reaction Analyzer under isothermal condition. The synergetic effect was evaluated by comparing the experimental gas yields and distributions with the calculated values, and iso-conversional method was used to calculate the kinetic parameters of formation of each gas component. The results showed that synergetic effect was manifested in co-pyrolysis. For the range of conversion investigated, the activation energies for H2, CH4, CO and CO2 were 72.90 kJ/mol, 43.90 kJ/mol, 18.51 kJ/mol and 13.44 kJ/mol, respectively; the reactions for CH4 and CO2 conformed to 2 order chemical reaction model, and for H2 and CO conformed to 1.5 order chemical reaction model; the pre-exponential factors for CH4, CO2, H2 and CO were 249.0 S(-1), 5.290 S(-1), 237.4 S(-1) and 2.693 S(-1), respectively. The discrepancy of the kinetic parameters implied that there were different pathways for forming the different gas. PMID:25647026

  11. Process Design and Economics for the Conversion of Lignocellulosic Biomass to Hydrocarbon Fuels: Fast Pyrolysis and Hydrotreating Bio-Oil Pathway

    SciTech Connect

    Jones, Susanne B.; Meyer, Pimphan A.; Snowden-Swan, Lesley J.; Padmaperuma, Asanga B.; Tan, Eric; Dutta, Abhijit; Jacobson, Jacob; Cafferty, Kara

    2013-11-01

    This report describes a proposed thermochemical process for converting biomass into liquid transportation fuels via fast pyrolysis followed by hydroprocessing of the condensed pyrolysis oil. As such, the analysis does not reflect the current state of commercially-available technology but includes advancements that are likely, and targeted to be achieved by 2017. The purpose of this study is to quantify the economic impact of individual conversion targets to allow a focused effort towards achieving cost reductions.

  12. Process Design and Economics for the Conversion of Lignocellulosic Biomass to Hydrocarbon Fuels: Fast Pyrolysis and Hydrotreating Bio-oil Pathway

    SciTech Connect

    Jones, S.; Meyer, P.; Snowden-Swan, L.; Padmaperuma, A.; Tan, E.; Dutta, A.; Jacobson, J.; Cafferty, K.

    2013-11-01

    This report describes a proposed thermochemical process for converting biomass into liquid transportation fuels via fast pyrolysis followed by hydroprocessing of the condensed pyrolysis oil. As such, the analysis does not reflect the current state of commercially-available technology but includes advancements that are likely, and targeted to be achieved by 2017. The purpose of this study is to quantify the economic impact of individual conversion targets to allow a focused effort towards achieving cost reductions.

  13. Tailoring ZSM-5 Zeolites for the Fast Pyrolysis of Biomass to Aromatic Hydrocarbons.

    PubMed

    Hoff, Thomas C; Gardner, David W; Thilakaratne, Rajeeva; Wang, Kaige; Hansen, Thomas W; Brown, Robert C; Tessonnier, Jean-Philippe

    2016-06-22

    The production of aromatic hydrocarbons from cellulose by zeolite-catalyzed fast pyrolysis involves a complex reaction network sensitive to the zeolite structure, crystallinity, elemental composition, porosity, and acidity. The interplay of these parameters under the reaction conditions represents a major roadblock that has hampered significant improvement in catalyst design for over a decade. Here, we studied commercial and laboratory-synthesized ZSM-5 zeolites and combined data from 10 complementary characterization techniques in an attempt to identify parameters common to high-performance catalysts. Crystallinity and framework aluminum site accessibility were found to be critical to achieve high aromatic yields. These findings enabled us to synthesize a ZSM-5 catalyst with enhanced activity, which offers the highest aromatic hydrocarbon yield reported to date. PMID:27167613

  14. Modeling the impact of bubbling bed hydrodynamics on tar yield and its fluctuations during biomass fast pyrolysis

    SciTech Connect

    Xiong, Qingang; Ramirez, Emilio; Pannala, Sreekanth; Daw, C. Stuart; Xu, Fei

    2015-10-09

    The impact of bubbling bed hydrodynamics on temporal variations in the exit tar yield for biomass fast pyrolysis was investigated using computational simulations of an experimental laboratory-scale reactor. A multi-fluid computational fluid dynamics model was employed to simulate the differential conservation equations in the reactor, and this was combined with a multi-component, multi-step pyrolysis kinetics scheme for biomass to account for chemical reactions. The predicted mean tar yields at the reactor exit appear to match corresponding experimental observations. Parametric studies predicted that increasing the fluidization velocity should improve the mean tar yield but increase its temporal variations. Increases in the mean tar yield coincide with reducing the diameter of sand particles or increasing the initial sand bed height. However, trends in tar yield variability are more complex than the trends in mean yield. The standard deviation in tar yield reaches a maximum with changes in sand particle size. As a result, the standard deviation in tar yield increases with the increases in initial bed height in freely bubbling state, while reaches a maximum in slugging state.

  15. Modeling the impact of bubbling bed hydrodynamics on tar yield and its fluctuations during biomass fast pyrolysis

    DOE PAGESBeta

    Xiong, Qingang; Ramirez, Emilio; Pannala, Sreekanth; Daw, C. Stuart; Xu, Fei

    2015-10-09

    The impact of bubbling bed hydrodynamics on temporal variations in the exit tar yield for biomass fast pyrolysis was investigated using computational simulations of an experimental laboratory-scale reactor. A multi-fluid computational fluid dynamics model was employed to simulate the differential conservation equations in the reactor, and this was combined with a multi-component, multi-step pyrolysis kinetics scheme for biomass to account for chemical reactions. The predicted mean tar yields at the reactor exit appear to match corresponding experimental observations. Parametric studies predicted that increasing the fluidization velocity should improve the mean tar yield but increase its temporal variations. Increases in themore » mean tar yield coincide with reducing the diameter of sand particles or increasing the initial sand bed height. However, trends in tar yield variability are more complex than the trends in mean yield. The standard deviation in tar yield reaches a maximum with changes in sand particle size. As a result, the standard deviation in tar yield increases with the increases in initial bed height in freely bubbling state, while reaches a maximum in slugging state.« less

  16. Structure-property characteristics of pyrolytic lignins derived from fast pyrolysis of a lignin rich biomass extract

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this study, various fractions of pyrolytic lignin were isolated from the fast pyrolysis oil of Etek lignin, a residue of acidic processing of wood. Based on the solubility differences in selected solvents, the water insolubles of the pyrolysis oil were separated into various fractions (methanol-i...

  17. Selectively improving the bio-oil quality by catalytic fast pyrolysis of heavy-metal-polluted biomass: take copper (Cu) as an example.

    PubMed

    Liu, Wu-Jun; Tian, Ke; Jiang, Hong; Zhang, Xue-Song; Ding, Hong-Sheng; Yu, Han-Qing

    2012-07-17

    Heavy-metal-polluted biomass derived from phytoremediation or biosorption is widespread and difficult to be disposed of. In this work, simultaneous conversion of the waste woody biomass into bio-oil and recovery of Cu in a fast pyrolysis reactor were investigated. The results show that Cu can effectively catalyze the thermo-decomposition of biomass. Both the yield and high heating value (HHV) of the Cu-polluted fir sawdust biomass (Cu-FSD) derived bio-oil are significantly improved compared with those of the fir sawdust (FSD) derived bio-oil. The results of UV-vis and (1)H NMR spectra of bio-oil indicate pyrolytic lignin is further decomposed into small-molecular aromatic compounds by the catalysis of Cu, which is in agreement with the GC-MS results that the fractions of C7-C10 compounds in the bio-oil significantly increase. Inductively coupled plasma-atomic emission spectrometry, X-ray diffraction, and X-ray photoelectron spectroscopy analyses of the migration and transformation of Cu in the fast pyrolysis process show that more than 91% of the total Cu in the Cu-FSD is enriched in the char in the form of zerovalent Cu with a face-centered cubic crystalline phase. This study gives insight into catalytic fast pyrolysis of heavy metals, and demonstrates the technical feasibility of an eco-friendly process for disposal of heavy-metal-polluted biomass. PMID:22708628

  18. Evaluation of Brazilian biomasses as potential feedstocks for fuel production via fast pyrolysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The utilization of lignocellulosic materials to generate energy is constantly expanding around the world. In addition to the well-known biofuels such as ethanol and biodiesel, advanced biofuels obtained by thermochemical conversion routes have been explored, including pyrolysis oil, biochar and syng...

  19. Bio-oil production via fast pyrolysis of biomass residues from cassava plants in a fluidised-bed reactor.

    PubMed

    Pattiya, Adisak

    2011-01-01

    Biomass residues from cassava plants, namely cassava stalk and cassava rhizome, were pyrolysed in a fluidised-bed reactor for production of bio-oil. The aims of this work were to investigate the yields and properties of pyrolysis products produced from both feedstocks as well as to identify the optimum pyrolysis temperature for obtaining the highest organic bio-oil yields. Results showed that the maximum yields of the liquid bio-oils derived from the stalk and rhizome were 62 wt.% and 65 wt.% on dry basis, respectively. The pyrolysis temperatures that gave highest bio-oil yields for both feedstocks were in the range of 475-510 °C. According to the analysis of the bio-oils properties, the bio-oil derived from cassava rhizome showed better quality than that derived from cassava stalk as the former had lower oxygen content, higher heating value and better storage stability. PMID:20864338

  20. Combustion, pyrolysis, gasification, and liquefaction of biomass

    SciTech Connect

    Reed, T.B.

    1980-09-01

    All the products now obtained from oil can be provided by thermal conversion of the solid fuels biomass and coal. As a feedstock, biomass has many advantages over coal and has the potential to supply up to 20% of US energy by the year 2000 and significant amounts of energy for other countries. However, it is imperative that in producing biomass for energy we practice careful land use. Combustion is the simplest method of producing heat from biomass, using either the traditional fixed-bed combustion on a grate or the fluidized-bed and suspended combustion techniques now being developed. Pyrolysis of biomass is a particularly attractive process if all three products - gas, wood tars, and charcoal - can be used. Gasification of biomass with air is perhaps the most flexible and best-developed process for conversion of biomass to fuel today, yielding a low energy gas that can be burned in existing gas/oil boilers or in engines. Oxygen gasification yields a gas with higher energy content that can be used in pipelines or to fire turbines. In addition, this gas can be used for producing methanol, ammonia, or gasoline by indirect liquefaction. Fast pyrolysis of biomass produces a gas rich in ethylene that can be used to make alcohols or gasoline. Finally, treatment of biomass with high pressure hydrogen can yield liquid fuels through direct liquefaction.

  1. Ablative fast pyrolysis of biomass in the entrained-flow cyclonic reactor at SERI

    SciTech Connect

    Diebold, J.; Scahill, J.

    1982-06-01

    Progress with the entrained flow cyclonic reactor at SERI is detailed. Feedstocks successfully used include wood flour and fairly large sawdust. Preliminary results show that relatively complete vaporization of the biomass is realized and that the yields of tar or gas can be varied over quite a range with trends following first order kinetic concepts.

  2. Biomass fast pyrolysis for bio-oil production in a fluidized bed reactor under hot flue atmosphere.

    PubMed

    Li, Ning; Wang, Xiang; Bai, Xueyuan; Li, Zhihe; Zhang, Ying

    2015-10-01

    Fast pyrolysis experiments of corn stalk were performed to investigate the optimal pyrolysis conditions of temperature and bed material for maximum bio-oil production under flue gas atmosphere. Under the optimized pyrolysis conditions, furfural residue, xylose residue and kelp seaweed were pyrolyzed to examine their yield distributions of products, and the physical characteristics of bio-oil were studied. The best flow rate of the flue gas at selected temperature is obtained, and the pyrolysis temperature at 500 degrees C and dolomite as bed material could give a maximum bio-oil yield. The highest bio-oil yield of 43.3% (W/W) was achieved from corn stalk under the optimal conditions. Two main fractions were recovered from the stratified bio-oils: light oils and heavy oils. The physical properties of heavy oils from all feedstocks varied little. The calorific values of heavy oils were much higher than that of light oils. The pyrolysis gas could be used as a gaseous fuel due to a relatively high calorific value of 6.5-8.5 MJ/m3. PMID:26964339

  3. Two-step fast microwave-assisted pyrolysis of biomass for bio-oil production using microwave absorbent and HZSM-5 catalyst.

    PubMed

    Zhang, Bo; Zhong, Zhaoping; Xie, Qinglong; Liu, Shiyu; Ruan, Roger

    2016-07-01

    A novel technology of two-step fast microwave-assisted pyrolysis (fMAP) of corn stover for bio-oil production was investigated in the presence of microwave absorbent (SiC) and HZSM-5 catalyst. Effects of fMAP temperature and catalyst-to-biomass ratio on bio-oil yield and chemical components were examined. The results showed that this technology, employing microwave, microwave absorbent and HZSM-5 catalyst, was effective and promising for biomass fast pyrolysis. The fMAP temperature of 500°C was considered the optimum condition for maximum yield and best quality of bio-oil. Besides, the bio-oil yield decreased linearly and the chemical components in bio-oil were improved sequentially with the increase of catalyst-to-biomass ratio from 1:100 to 1:20. The elemental compositions of bio-char were also determined. Additionally, compared to one-step fMAP process, two-step fMAP could promote the bio-oil quality with a smaller catalyst-to-biomass ratio. PMID:27372139

  4. Investigation on the quality of bio-oil produced through fast pyrolysis of biomass-polymer waste mixture

    NASA Astrophysics Data System (ADS)

    Jourabchi, S. A.; Ng, H. K.; Gan, S.; Yap, Z. Y.

    2016-06-01

    A high-impact poly-styrene (HIPS) was mixed with dried and ground coconut shell (CS) at equal weight percentage. Fast pyrolysis was carried out on the mixture in a fixed bed reactor over a temperature range of 573 K to 1073 K, and a nitrogen (N2) linear velocity range of 7.8x10-5 m/s to 6.7x10-2 m/s to produce bio-oil. Heat transfer and fluid dynamics of the pyrolysis process inside the reactor was visualised by using Computational Fluid Dynamics (CFD). The CFD modelling was validated by experimental results and they both indicated that at temperature of 923 K and N2 linear velocity of 7.8x10-5 m/s, the maximum bio-oil yield of 52.02 wt% is achieved.

  5. Feedstock Supply System Design and Economics for Conversion of Lignocellulosic Biomass to Hydrocarbon Fuels Conversion Pathway: Fast Pyrolysis and Hydrotreating Bio-Oil Pathway "The 2017 Design Case"

    SciTech Connect

    Kevin L. Kenney; Kara G. Cafferty; Jacob J. Jacobson; Ian J. Bonner; Garold L. Gresham; J. Richard Hess; William A. Smith; David N. Thompson; Vicki S. Thompson; Jaya Shankar Tumuluru; Neal Yancey

    2014-01-01

    The U.S. Department of Energy promotes the production of liquid fuels from lignocellulosic biomass feedstocks by funding fundamental and applied research that advances the state of technology in biomass sustainable supply, logistics, conversion, and overall system sustainability. As part of its involvement in this program, Idaho National Laboratory (INL) investigates the feedstock logistics economics and sustainability of these fuels. Between 2000 and 2012, INL quantified and the economics and sustainability of moving biomass from the field or stand to the throat of the conversion process using conventional equipment and processes. All previous work to 2012 was designed to improve the efficiency and decrease costs under conventional supply systems. The 2012 programmatic target was to demonstrate a biomass logistics cost of $55/dry Ton for woody biomass delivered to fast pyrolysis conversion facility. The goal was achieved by applying field and process demonstration unit-scale data from harvest, collection, storage, preprocessing, handling, and transportation operations into INL’s biomass logistics model.

  6. Process Design and Economics for the Conversion of Lignocellulosic Biomass to Hydrocarbon Fuels. Thermochemical Research Pathways with In Situ and Ex Situ Upgrading of Fast Pyrolysis Vapors

    SciTech Connect

    Dutta, Abhijit; Sahir, Asad; Tan, Eric; Humbird, David; Snowden-Swan, Lesley J.; Meyer, Pimphan; Ross, Jeff; Sexton, Danielle; Yap, Raymond; Lukas, John Lukas

    2015-03-01

    This report was developed as part of the U.S. Department of Energy’s Bioenergy Technologies Office’s efforts to enable the development of technologies for the production of infrastructurecompatible, cost-competitive liquid hydrocarbon fuels from biomass. Specifically, this report details two conceptual designs based on projected product yields and quality improvements via catalyst development and process integration. It is expected that these research improvements will be made within the 2022 timeframe. The two conversion pathways detailed are (1) in situ and (2) ex situ upgrading of vapors produced from the fast pyrolysis of biomass. While the base case conceptual designs and underlying assumptions outline performance metrics for feasibility, it should be noted that these are only two of many other possibilities in this area of research. Other promising process design options emerging from the research will be considered for future techno-economic analysis.

  7. A critical view on catalytic pyrolysis of biomass.

    PubMed

    Venderbosch, R H

    2015-04-24

    The rapid heating of biomass in an oxygen-free environment optimizes the yield of fast-pyrolysis liquids. This liquid comprises a mix of acids, (dehydrated) carbohydrates, aldehydes, ketones, lignin fragments, aromatics, and alcohols, limiting its use. Deoxygenation of these liquids to replace hydrocarbons represents significant challenges. Catalytic pyrolysis is seen as a promising route to yield liquids with a higher quality. In this paper, literature data on catalytic fast pyrolysis of biomass are reviewed and deoxygenation results correlated with the overall carbon yield. Evidence is given that in an initial stage of the catalytic process reactive components are converted to coke, gas, and water, and only to a limited extent to a liquid product. Catalysts are not yet good enough, and an appropriate combination of pyrolysis conditions, reactive products formed, and different reactions to take place to yield improved quality liquids may be practically impossible. PMID:25872757

  8. Status of Process Development for Pyrolysis of Biomass for Liquid Fuels and Chemicals Production.

    SciTech Connect

    Elliott, Douglas C.

    2010-06-01

    Pyrolysis is one of several thermochemical conversion strategies to produce useful fuels from biomass material . The goal of fast pyrolysis is to maximize liquid product yield. Fast pyrolysis is accomplished by the thermal treatment of the biomass in an air-free environment. Very short heat up and cool-down is a requirement for fast pyrolysis. The typical residence time in the pyrolysis reactor is 1 second. In order to accomplish the fast heatup, grinding the biomass to a small particle size in the range of 1 mm is typical and pre-drying of the biomass to less than 10 weight percent moisture is considered the standard. Recovery of the product liquid, called bio-oil, is accomplished by a variety of methods all of which require a quick quench of the product vapor. A definition of fast pyrolysis bio-oil is provided for the CAS # RN 1207435-39-9 recently issued by ChemAbstracts Services.

  9. Lignin Fast Pyrolysis: Results from an International Collaboration

    SciTech Connect

    Nowakowski, Daniel J.; Bridgwater, Anthony V.; Elliott, Douglas C.; Meier, Dietrich; de Wild, Paul

    2010-05-01

    An international study of fast pyrolysis of lignin was undertaken. Fourteen laboratories in eight different countries contributed. Two lignin samples were distributed to the laboratories for analysis and bench-scale process testing in fast pyrolysis. Analyses included proximate and ultimate analysis, thermogravimetric analysis, and analytical pyrolysis. The bench-scale test included bubbling fluidized bed reactors and entrained flow systems. Based on the results of the various analyses and tests it was concluded that a concentrated lignin (estimated at about 50% lignin and 50% cellulose) behaved like a typical biomass, producing a slightly reduced amount of a fairly typical bio-oil, while a purified lignin material was difficult to process in the fast pyrolysis reactors and produced a much lower amount of a different kind of bio-oil. It was concluded that for highly concentrated lignin feedstocks new reactor designs will be required other than the typical fluidized bed fast pyrolysis systems.

  10. Catalytic fast pyrolysis of straw biomass in an internally interconnected fluidized bed to produce aromatics and olefins: effect of different catalysts.

    PubMed

    Zhang, Huiyan; Xiao, Rui; Jin, Baosheng; Shen, Dekui; Chen, Ran; Xiao, Guomin

    2013-06-01

    A novel reactor, named internally interconnected fluidized bed (IIFB), was specially designed for catalytic fast pyrolysis (CFP) of straw biomass. Catalytic characteristics of four types of catalysts (ZSM-5, LOSA-1, Gamma-Al2O3 and spent FCC catalysts) for producing aromatics and olefins were investigated in this reactor. The results show that IIFB reactor can realize CFP process. The maximum carbon yields of aromatics (12.8%) and C2-C4 olefins (10.5%) were obtained with ZSM-5. ZSM-5 shows the highest selectivity of naphthalene (12.1%), whereas spent FCC catalyst presents the highest selectivity of benzene (45.5%). The selectivity of ethylene and propylene are equal in the present of ZSM-5 and LOSA-1. Gamma-Al2O3 and spent FCC catalysts show a higher selectivity of ethylene than that of propylene. This paper provides a new reactor for CFP process and some suggestions for choosing catalyst. PMID:23587812

  11. Pyrolysis of microalgal biomass in carbon dioxide environment.

    PubMed

    Cho, Seong-Heon; Kim, Ki-Hyun; Jeon, Young Jae; Kwon, Eilhann E

    2015-10-01

    This work mechanistically investigated the influence of CO2 in the thermo-chemical process of microalgal biomass (Chlorella vulgaris and Microcystis aeruginosa) to achieve a fast virtuous cycle of carbon via recovering energy. This work experimentally justified that the influence of CO2 in pyrolysis of microalgal biomass could be initiated at temperatures higher than 530 °C, which directly led to the enhanced generation of syngas. For example, the concentration of CO from pyrolysis of M. aeruginosa increased up to ∼ 3000% at 670 °C in the presence of CO2. The identified universal influence of CO2 could be summarized by the expedited thermal cracking of VOCs evolved from microalgal biomass and by the unknown reaction between VOCs and CO2. This identified effectiveness of CO2 was different from the Boudouard reaction, which was independently occurred with dehydrogenation. Thus, microalgal biomass could be a candidate for the thermo-chemical process (pyrolysis and gasification). PMID:26133476

  12. Evaluation of the antifungal effects of bio-oil prepared with lignocellulosic biomass using fast pyrolysis technology.

    PubMed

    Kim, Kwang Ho; Jeong, Han Seob; Kim, Jae-Young; Han, Gyu Seong; Choi, In-Gyu; Choi, Joon Weon

    2012-10-01

    This study was performed to investigate the utility of bio-oil, produced via a fast pyrolysis process, as an antifungal agent against wood-rot fungi. Bio-oil solutions (25-100 wt.%) were prepared by diluting the bio-oil with EtOH. Wood block samples (yellow poplar and pitch pine) were treated with diluted bio-oil solutions and then subjected to a leaching process under hot water (70°C) for 72 h. After the wood block samples were thoroughly dried, they were subjected to a soil block test using Tyromyces palustris and Trametes versicolor. The antifungal effect of the 75% and 100% bio-oil solutions was the highest for both wood blocks. Scanning electron microscopy analysis indicated that some chemical components in the bio-oil solution could agglomerate together to form clusters in the inner part of the wood during the drying process, which could act as a wood preservative against fungal growth. According to GC/MS analysis, the components of the agglomerate were mainly phenolic compounds derived from lignin polymers. PMID:22784866

  13. Petroleomic Analysis of Bio- Oils from the Fast Pyrolysis or Biomass: Laser Desorption Ionization-Linear Ion Trap-Orbitrap mass Spectrometry Approach

    SciTech Connect

    Smith, Erica A.; Lee, Young Jin

    2010-08-23

    Fast pyrolysis of biomass produces bio-oils that can be upgraded into biofuels. Despite similar physical properties to petroleum, the chemical properties of bio-oils are quite different and their chemical compositions, particularly those of non-volatile compounds, are not well-known. Here, we report the first time attempt at analyzing bio-oils using high-resolution mass spectrometry (MS), which employed laser desorption ionization-linear ion trap-Orbitrap MS. Besides a few limitations, we could determine chemical compositions for over 100 molecular compounds in a bio-oil sample produced from the pyrolysis of a loblolly pine tree. These compounds consist of 3-6 oxygens and 9-17 double-bond equivalents (DBEs). Among those, O{sub 4} compounds with a DBE of 9-13 were most abundant. Unlike petroleum oils, the lack of nearby molecules within a {+-}2 Da mass window for major components enabled clear isolation of precursor ions for subsequent MS/MS structural investigations. Petroleomic analysis and a comparison to low-mass components in hydrolytic lignin suggest that they are dimers and trimers of depolymerized lignin.

  14. Microwave induced pyrolysis of oil palm biomass.

    PubMed

    Salema, Arshad Adam; Ani, Farid Nasir

    2011-02-01

    The purpose of this paper was to carry out microwave induced pyrolysis of oil palm biomass (shell and fibers) with the help of char as microwave absorber (MA). Rapid heating and yield of microwave pyrolysis products such as bio-oil, char, and gas was found to depend on the ratio of biomass to microwave absorber. Temperature profiles revealed the heating characteristics of the biomass materials which can rapidly heat-up to high temperature within seconds in presence of MA. Some characterization of pyrolysis products was also presented. The advantage of this technique includes substantial reduction in consumption of energy, time and cost in order to produce bio-oil from biomass materials. Large biomass particle size can be used directly in microwave heating, thus saving grinding as well as moisture removal cost. A synergistic effect was found in using MA with oil palm biomass. PMID:20970995

  15. Conceptual process design and techno-economic assessment of ex situ catalytic fast pyrolysis of biomass: A fixed bed reactor implementation scenario for future feasibility

    SciTech Connect

    Dutta, Abhijit; Schaidle, Joshua A.; Humbird, David; Baddour, Frederick G.; Sahir, Asad

    2015-10-06

    Ex situ catalytic fast pyrolysis of biomass is a promising route for the production of fungible liquid biofuels. There is significant ongoing research on the design and development of catalysts for this process. However, there are a limited number of studies investigating process configurations and their effects on biorefinery economics. Herein we present a conceptual process design with techno-economic assessment; it includes the production of upgraded bio-oil via fixed bed ex situ catalytic fast pyrolysis followed by final hydroprocessing to hydrocarbon fuel blendstocks. This study builds upon previous work using fluidized bed systems, as detailed in a recent design report led by the National Renewable Energy Laboratory (NREL/TP-5100-62455); overall yields are assumed to be similar, and are based on enabling future feasibility. Assuming similar yields provides a basis for easy comparison and for studying the impacts of areas of focus in this study, namely, fixed bed reactor configurations and their catalyst development requirements, and the impacts of an inline hot gas filter. A comparison with the fluidized bed system shows that there is potential for higher capital costs and lower catalyst costs in the fixed bed system, leading to comparable overall costs. The key catalyst requirement is to enable the effective transformation of highly oxygenated biomass into hydrocarbons products with properties suitable for blending into current fuels. Potential catalyst materials are discussed, along with their suitability for deoxygenation, hydrogenation and C–C coupling chemistry. This chemistry is necessary during pyrolysis vapor upgrading for improved bio-oil quality, which enables efficient downstream hydroprocessing; C–C coupling helps increase the proportion of diesel/jet fuel range product. One potential benefit of fixed bed upgrading over fluidized bed upgrading is catalyst flexibility, providing greater control over chemistry and product composition. Since this

  16. Conceptual process design and techno-economic assessment of ex situ catalytic fast pyrolysis of biomass: A fixed bed reactor implementation scenario for future feasibility

    DOE PAGESBeta

    Dutta, Abhijit; Schaidle, Joshua A.; Humbird, David; Baddour, Frederick G.; Sahir, Asad

    2015-10-06

    Ex situ catalytic fast pyrolysis of biomass is a promising route for the production of fungible liquid biofuels. There is significant ongoing research on the design and development of catalysts for this process. However, there are a limited number of studies investigating process configurations and their effects on biorefinery economics. Herein we present a conceptual process design with techno-economic assessment; it includes the production of upgraded bio-oil via fixed bed ex situ catalytic fast pyrolysis followed by final hydroprocessing to hydrocarbon fuel blendstocks. This study builds upon previous work using fluidized bed systems, as detailed in a recent design reportmore » led by the National Renewable Energy Laboratory (NREL/TP-5100-62455); overall yields are assumed to be similar, and are based on enabling future feasibility. Assuming similar yields provides a basis for easy comparison and for studying the impacts of areas of focus in this study, namely, fixed bed reactor configurations and their catalyst development requirements, and the impacts of an inline hot gas filter. A comparison with the fluidized bed system shows that there is potential for higher capital costs and lower catalyst costs in the fixed bed system, leading to comparable overall costs. The key catalyst requirement is to enable the effective transformation of highly oxygenated biomass into hydrocarbons products with properties suitable for blending into current fuels. Potential catalyst materials are discussed, along with their suitability for deoxygenation, hydrogenation and C–C coupling chemistry. This chemistry is necessary during pyrolysis vapor upgrading for improved bio-oil quality, which enables efficient downstream hydroprocessing; C–C coupling helps increase the proportion of diesel/jet fuel range product. One potential benefit of fixed bed upgrading over fluidized bed upgrading is catalyst flexibility, providing greater control over chemistry and product composition

  17. Fast pyrolysis of oil palm shell (OPS)

    NASA Astrophysics Data System (ADS)

    Abdullah, Nurhayati; Sulaiman, Fauziah; Aliasak, Zalila

    2015-04-01

    Biomass is an important renewable source of energy. Residues that are obtained from harvesting and agricultural products can be utilised as fuel for energy generation by conducting any thermal energy conversion technology. The conversion of biomass to bio oil is one of the prospective alternative energy resources. Therefore, in this study fast pyrolysis of oil palm shell was conducted. The main objective of this study was to find the optimum condition for high yield bio-oil production. The experiment was conducted using fixed-bed fluidizing pyrolysis system. The biomass sample was pyrolysed at variation temperature of 450°C - 650°C and at variation residence time of 0.9s - 1.35s. The results obtained were further discussed in this paper. The basic characteristic of the biomass sample was also presented here. The experiment shows that the optimum bio-oil yield was obtained at temperature of 500°C at residence time 1.15s.

  18. Process Design and Economics for the Conversion of Lignocellulosic Biomass to Hydrocarbon Fuels: Thermochemical Research Pathways with In Situ and Ex Situ Upgrading of Fast Pyrolysis Vapors

    SciTech Connect

    Dutta, Abhijit; Sahir, A. H.; Tan, Eric; Humbird, David; Snowden-Swan, Lesley J.; Meyer, Pimphan A.; Ross, Jeff; Sexton, Danielle; Yap, Raymond; Lukas, John

    2015-03-01

    This report was developed as part of the U.S. Department of Energy’s Bioenergy Technologies Office’s efforts to enable the development of technologies for the production of infrastructure-compatible, cost-competitive liquid hydrocarbon fuels from biomass. Specifically, this report details two conceptual designs based on projected product yields and quality improvements via catalyst development and process integration. It is expected that these research improvements will be made within the 2022 timeframe. The two conversion pathways detailed are (1) in situ and (2) ex situ upgrading of vapors produced from the fast pyrolysis of biomass. While the base case conceptual designs and underlying assumptions outline performance metrics for feasibility, it should be noted that these are only two of many other possibilities in this area of research. Other promising process design options emerging from the research will be considered for future techno-economic analysis. Both the in situ and ex situ conceptual designs, using the underlying assumptions, project MFSPs of approximately $3.5/gallon gasoline equivalent (GGE). The performance assumptions for the ex situ process were more aggressive with higher distillate (diesel-range) products. This was based on an assumption that more favorable reaction chemistry (such as coupling) can be made possible in a separate reactor where, unlike in an in situ upgrading reactor, one does not have to deal with catalyst mixing with biomass char and ash, which pose challenges to catalyst performance and maintenance. Natural gas was used for hydrogen production, but only when off gases from the process was not sufficient to meet the needs; natural gas consumption is insignificant in both the in situ and ex situ base cases. Heat produced from the burning of char, coke, and off-gases allows for the production of surplus electricity which is sold to the grid allowing a reduction of approximately 5¢/GGE in the MFSP.

  19. Fast Pyrolysis of Agricultural Wastes in a Fluidized Bed Reactor

    NASA Astrophysics Data System (ADS)

    Wang, X. H.; Chen, H. P.; Yang, H. P.; Dai, X. M.; Zhang, S. H.

    Solid biomass can be converted into liquid fuel through fast pyrolysis, which is convenient to be stored and transported with potential to be used as a fossil oil substitute. In China, agricultural wastes are the main biomass materials, whose pyrolysis process has not been researched adequately compared to forestry wastes. As the representative agricultural wastes in China, peanut shell and maize stalk were involved in this paper and pine wood sawdust was considered for comparing the different pyrolysis behaviors of agricultural wastes and forestry wastes. Fast pyrolysis experiments were carried out in a bench-scale fluidized-bed reactor. The bio-oil yieldsof peanut shell and maize stalk were obviously lower than that ofpine sawdust. Compared with pine sawdust, the char yields of peanut shell and maize stalk were higher but the heating value of uncondensable gaswas lower. This means that the bio-oil cost will be higher for agricultural wastes if taking the conventional pyrolysis technique. And the characteristic and component analysis resultsof bio-oil revealed that the quality of bio-oil from agricultural wastes, especially maize stalk, was worse than that from pine wood. Therefore, it is important to take some methods to improve the quality of bio-oilfrom agricultural wastes, which should promote the exploitation of Chinese biomass resources through fast pyrolysis in afluidized bed reactor.

  20. Microwave-assisted catalytic fast pyrolysis of biomass for bio-oil production using chemical vapor deposition modified HZSM-5 catalyst.

    PubMed

    Zhang, Bo; Zhong, Zhaoping; Chen, Paul; Ruan, Roger

    2015-12-01

    Chemical vapor deposition with tetra-ethyl-orthosilicate as the modifier was applied to deposit the external acid sites of HZSM-5, and the modified HZSM-5 samples were used for the microwave-assisted catalytic fast pyrolysis (MACFP) of biomass for bio-oil production. The experimental results showed that the external acid sites of HZSM-5 decreased significantly when SiO2 deposited amount increased from 0% to 5.9%. For product distribution, the coke yield decreased, the oil fraction yield decreased at first and then increased, and the yields of water and gas first increased and then decreased over the range of SiO2 deposited amount studied. For chemical compositions in oil fraction, the relative contents of aliphatic hydrocarbons, aromatic hydrocarbons and oxygen-containing aromatic compounds first increased to maximum values and then decreased, while the relative content of oxygen-containing aliphatic compounds first decreased and then increased with increasing SiO2 deposited amount. PMID:26318925

  1. Ex-Situ Catalytic Fast Pyrolysis Technology Pathway

    SciTech Connect

    Biddy, M.; Dutta, A.; Jones, S.; Meyer, A.

    2013-03-01

    This technology pathway case investigates converting woody biomass using ex-situ catalytic fast pyrolysis followed by upgrading to gasoline-, diesel-, and jet-range hydrocarbon blendstocks. Technical barriers and key research needs that should be pursued for this pathway to be competitive with petroleum-derived blendstocks have been identified.

  2. In-Situ Catalytic Fast Pyrolysis Technology Pathway

    SciTech Connect

    Biddy, M.; Dutta, A.; Jones, S.; Meyer, A.

    2013-03-01

    This technology pathway case investigates converting woody biomass using in-situ catalytic fast pyrolysis followed by upgrading to gasoline-, diesel-, and jet-range hydrocarbon blendstocks. Technical barriers and key research needs that should be pursued for this pathway to be competitive with petroleum-derived blendstocks have been identified.

  3. Extent of pyrolysis impacts on fast pyrolysis biochar properties.

    PubMed

    Brewer, Catherine E; Hu, Yan-Yan; Schmidt-Rohr, Klaus; Loynachan, Thomas E; Laird, David A; Brown, Robert C

    2012-01-01

    A potential concern about the use of fast pyrolysis rather than slow pyrolysis biochars as soil amendments is that they may contain high levels of bioavailable C due to short particle residence times in the reactors, which could reduce the stability of biochar C and cause nutrient immobilization in soils. To investigate this concern, three corn ( L.) stover fast pyrolysis biochars prepared using different reactor conditions were chemically and physically characterized to determine their extent of pyrolysis. These biochars were also incubated in soil to assess their impact on soil CO emissions, nutrient availability, microorganism population growth, and water retention capacity. Elemental analysis and quantitative solid-state C nuclear magnetic resonance spectroscopy showed variation in O functional groups (associated primarily with carbohydrates) and aromatic C, which could be used to define extent of pyrolysis. A 24-wk incubation performed using a sandy soil amended with 0.5 wt% of corn stover biochar showed a small but significant decrease in soil CO emissions and a decrease in the bacteria:fungi ratios with extent of pyrolysis. Relative to the control soil, biochar-amended soils had small increases in CO emissions and extractable nutrients, but similar microorganism populations, extractable NO levels, and water retention capacities. Corn stover amendments, by contrast, significantly increased soil CO emissions and microbial populations, and reduced extractable NO. These results indicate that C in fast pyrolysis biochar is stable in soil environments and will not appreciably contribute to nutrient immobilization. PMID:22751053

  4. Production of Gasoline and Diesel from Biomass via Fast Pyrolysis, Hydrotreating and Hydrocracking: 2012 State of Technology and Projections to 2017

    SciTech Connect

    Jones, Susanne B.; Snowden-Swan, Lesley J.

    2013-08-27

    This report summarizes the economic impact of the work performed at PNNL during FY12 to improve fast pyrolysis oil upgrading via hydrotreating. A comparison is made between the projected economic outcome and the actual results based on experimental data. Sustainability metrics are also included.

  5. Biofuel from fast pyrolysis and catalytic hydrodeoxygenation.

    SciTech Connect

    Elliott, Douglas C.

    2015-09-04

    This review addresses recent developments in biomass fast pyrolysis bio-oil upgrading by catalytic hydrotreating. The research in the field has expanded dramatically in the past few years with numerous new research groups entering the field while existing efforts from others expand. The issues revolve around the catalyst formulation and operating conditions. Much work in batch reactor tests with precious metal catalysts needs further validation to verify long-term operability in continuous flow systems. The effect of the low level of sulfur in bio-oil needs more study to be better understood. Utilization of the upgraded bio-oil for feedstock to finished fuels is still in an early stage of understanding.

  6. Physicochemical and adsorptive properties of fast-pyrolysis bio-chars and their steam activated counterparts

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fast pyrolysis is rapid heating in the absence of oxygen resulting in decomposition of organic material. When applied to biomass, it produces bio-oil, bio-char and gas. The Agricultural Research Service (ARS) of the USDA has studied fluidized-bed fast pyrolysis of several bimoass including perenni...

  7. Stabilization of Fast Pyrolysis Oil: Post Processing Final Report

    SciTech Connect

    Elliott, Douglas C.; Lee, Suh-Jane; Hart, Todd R.

    2012-03-01

    UOP LLC, a Honeywell Company, assembled a comprehensive team for a two-year project to demonstrate innovative methods for the stabilization of pyrolysis oil in accordance with DOE Funding Opportunity Announcement (FOA) DE-PS36-08GO98018, Biomass Fast Pyrolysis Oil (Bio-oil) Stabilization. In collaboration with NREL, PNNL, the USDA Agricultural Research Service (ARS), Pall Fuels and Chemicals, and Ensyn Corporation, UOP developed solutions to the key technical challenges outlined in the FOA. The UOP team proposed a multi-track technical approach for pyrolysis oil stabilization. Conceptually, methods for pyrolysis oil stabilization can be employed during one or both of two stages: (1) during the pyrolysis process (In Process); or (2) after condensation of the resulting vapor (Post-Process). Stabilization methods fall into two distinct classes: those that modify the chemical composition of the pyrolysis oil, making it less reactive; and those that remove destabilizing components from the pyrolysis oil. During the project, the team investigated methods from both classes that were suitable for application in each stage of the pyrolysis process. The post processing stabilization effort performed at PNNL is described in this report. The effort reported here was performed under a CRADA between PNNL and UOP, which was effective on March 13, 2009, for 2 years and was subsequently modified March 8, 2011, to extend the term to December 31, 2011.

  8. Fast Pyrolysis of Poplar Using a Captive Sample Reactor: Effects of Inorganic Salts on Primary Pyrolysis Products

    SciTech Connect

    Mukarakate, C.; Robichaud, D.; Donohoe, B.; Jarvis, M.; Mino, K.; Bahng, M. K.; Nimlos, M.

    2012-01-01

    We have constructed a captive sample reactor (CSR) to study fast pyrolysis of biomass. The reactor uses a stainless steel wire mesh to surround biomass materials with an isothermal environment by independent controlling of heating rates and pyrolysis temperatures. The vapors produced during pyrolysis are immediately entrained and transported in He carrier gas to a molecular beam mass spectrometer (MBMS). Formation of secondary products is minimized by rapidly quenching the sample support with liquid nitrogen. A range of alkali and alkaline earth metal (AAEM) and transition metal salts were tested to study their effect on composition of primary pyrolysis products. Multivariate curve resolution (MCR) analysis of the MBMS data shows that transition metal salts enhance pyrolysis of carbohydrates and AAEM salts enhances pyrolysis of lignin. This was supported by performing similar separate studies on cellulose, hemicellulose and extracted lignin. The effect of salts on char formation is also discussed.

  9. Hydrocarbon Liquid Production from Biomass via Hot-Vapor-Filtered Fast Pyrolysis and Catalytic Hydroprocessing of the Bio-oil

    SciTech Connect

    Elliott, Douglas C.; Wang, Huamin; French, Richard; Deutch, Steve; Iisa, Kristiina

    2014-08-14

    Hot-vapor filtered bio-oils were produced from two different biomass feedstocks, oak and switchgrass, and the oils were evaluated in hydroprocessing tests for production of liquid hydrocarbon products. Hot-vapor filtering reduced bio-oil yields and increased gas yields. The yields of fuel carbon as bio-oil were reduced by ten percentage points by hot-vapor filtering for both feedstocks. The unfiltered bio-oils were evaluated alongside the filtered bio-oils using a fixed bed catalytic hydrotreating test. These tests showed good processing results using a two-stage catalytic hydroprocessing strategy. Equal-sized catalyst beds, a sulfided Ru on carbon catalyst bed operated at 220°C and a sulfided CoMo on alumina catalyst bed operated at 400°C were used with the entire reactor at 100 atm operating pressure. The products from the four tests were similar. The light oil phase product was fully hydrotreated so that nitrogen and sulfur were below the level of detection, while the residual oxygen ranged from 0.3 to 2.0%. The density of the products varied from 0.80 g/ml up to 0.86 g/ml over the period of the test with a correlated change of the hydrogen to carbon atomic ratio from 1.79 down to 1.57, suggesting some loss of catalyst activity through the test. These tests provided the data needed to assess the suite of liquid fuel products from the process and the activity of the catalyst in relationship to the existing catalyst lifetime barrier for the technology.

  10. Biomass Feedstocks for Renewable Fuel Production: A review of the impacts of feedstock and pretreatment on the yield and product distribution of fast pyrolysis bio-oils and vapors

    SciTech Connect

    Daniel Carpenter; Stefan Czernik; Whitney Jablonski; Tyler L. Westover

    2014-02-01

    Renewable transportation fuels from biomass have the potential to substantially reduce greenhouse gas emissions and diversify global fuel supplies. Thermal conversion by fast pyrolysis converts up to 75% of the starting plant material (and its energy content) to a bio-oil intermediate suitable for upgrading to motor fuel. Woody biomass, by far the most widely-used and researched material, is generally preferred in thermochemical processes due to its low ash content and high quality bio-oil produced. However, the availability and cost of biomass resources, e.g. forest residues, agricultural residues, or dedicated energy crops, vary greatly by region and will be key determinates in the overall economic feasibility of a pyrolysis-to-fuel process. Formulation or blending of various feedstocks, combined with thermal and/or chemical pretreatment, could facilitate a consistent, high-volume, lower-cost biomass supply to an emerging biofuels industry. However, the impact of biomass type and pretreatment conditions on bio-oil yield and quality, and the potential process implications, are not well understood. This literature review summarizes the current state of knowledge regarding the effect of feedstock and pretreatments on the yield, product distribution, and upgradability of bio-oil.

  11. Electrocatalytic upgrading of biomass pyrolysis oils to chemical and fuel

    NASA Astrophysics Data System (ADS)

    Lam, Chun Ho

    The present project's aim is to liquefy biomass through fast pyrolysis and then upgrade the resulting "bio-oil" to renewable fuels and chemicals by intensifying its energy content using electricity. This choice reflects three points: (a) Liquid hydrocarbons are and will long be the most practical fuels and chemical feedstocks because of their energy density (both mass and volume basis), their stability and relative ease of handling, and the well-established infrastructure for their processing, distribution and use; (b) In the U.S., the total carbon content of annually harvestable, non-food biomass is significantly less than that in a year's petroleum usage, so retention of plant-captured carbon is a priority; and (c) Modern technologies for conversion of sunlight into usable energy forms---specifically, electrical power---are already an order of magnitude more efficient than plants are at storing solar energy in chemical form. Biomass fast pyrolysis (BFP) generates flammable gases, char, and "bio-oil", a viscous, corrosive, and highly oxygenated liquid consisting of large amounts of acetic acid and water together with hundreds of other organic compounds. With essentially the same energy density as biomass and a tendency to polymerize, this material cannot practically be stored or transported long distances. It must be upgraded by dehydration, deoxygenation, and hydrogenation to make it both chemically and energetically compatible with modern vehicles and fuels. Thus, this project seeks to develop low cost, general, scalable, robust electrocatalytic methods for reduction of bio-oil into fuels and chemicals.

  12. Methods for deoxygenating biomass-derived pyrolysis oil

    SciTech Connect

    Brandvold, Timothy A.

    2015-07-14

    Methods for deoxygenating a biomass-derived pyrolysis oil are provided. A method comprising the steps of diluting the biomass-derived pyrolysis oil with a phenolic-containing diluent to form a diluted pyoil-phenolic feed is provided. The diluted pyoil-phenolic feed is contacted with a deoxygenating catalyst in the presence of hydrogen at hydroprocessing conditions effective to form a low-oxygen biomass-derived pyrolysis oil effluent.

  13. Methods for deoxygenating biomass-derived pyrolysis oil

    DOEpatents

    Baird, Lance Awender; Brandvold, Timothy A.

    2015-06-30

    Methods for deoxygenating a biomass-derived pyrolysis oil are provided. A method for deoxygenating a biomass-derived pyrolysis oil comprising the steps of combining a biomass-derived pyrolysis oil stream with a heated low-oxygen-pyoil diluent recycle stream to form a heated diluted pyoil feed stream is provided. The heated diluted pyoil feed stream has a feed temperature of about 150.degree. C. or greater. The heated diluted pyoil feed stream is contacted with a first deoxygenating catalyst in the presence of hydrogen at first hydroprocessing conditions effective to form a low-oxygen biomass-derived pyrolysis oil effluent.

  14. Fast Pyrolysis Conversion Tests of Forest Concepts' Crumbles™. Final Report

    SciTech Connect

    Santosa, Daniel M.; Zacher, Alan H.; Eakin, David E.

    2012-04-02

    The report describes the work done by PNNL on assessing Forest Concept's engineered feedstock using the bench-scale continuous fast pyrolysis system to produce liquid bio-oil, char and gas. Specifically, bio-oil from the following process were evaluated for its yield and quality to determine impact of varying feed size parameters. Furthermore, the report also describes the handling process of the biomass and the challenges of operating the system with above average particle size.

  15. Hydrotreating of fast pyrolysis oils from protein-rich pennycress seed presscake

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The fast pyrolysis oils produced from proteinaceous biomass, such as pennycress presscake differ significantly from those produced from biomass with mostly lignocellulosic composition. Those from proteinaceous biomass tend to be deoxygenated, contain more nitrogen, be less acidic and be more stable...

  16. Fast Pyrolysis of Wood for Biofuels: Spatiotemporally Resolved Diffuse Reflectance In situ Spectroscopy of Particles.

    PubMed

    Paulsen, Alex D; Hough, Blake R; Williams, C Luke; Teixeira, Andrew R; Schwartz, Daniel T; Pfaendtner, Jim; Dauenhauer, Paul J

    2014-02-20

    Fast pyrolysis of woody biomass is a promising process capable of producing renewable transportation fuels to replace gasoline, diesel, and chemicals currently derived from nonrenewable sources. However, biomass pyrolysis is not yet economically viable and requires significant optimization before it can contribute to the existing oil-based transportation system. One method of optimization uses detailed kinetic models for predicting the products of biomass fast pyrolysis, which serve as the basis for the design of pyrolysis reactors capable of producing the highest value products. The goal of this work is to improve upon current pyrolysis models, usually derived from experiments with low heating rates and temperatures, by developing models that account for both transport and pyrolysis decomposition kinetics at high heating rates and high temperatures (>400 °C). A new experimental technique is proposed herein: spatiotemporally resolved diffuse reflectance in situ spectroscopy of particles (STR-DRiSP), which is capable of measuring biomass composition during fast pyrolysis with high spatial (10 μm) and temporal (1 ms) resolution. Compositional data were compared with a comprehensive 2D single-particle model, which incorporated a multistep, semiglobal reaction mechanism, prescribed particle shrinkage, and thermophysical properties that varied with temperature, composition, and orientation. The STR-DRiSP technique can be used to determine the transport-limited kinetic parameters of biomass decomposition for a wide variety of biomass feedstocks. PMID:24678023

  17. Catalytic and non-catalytic pyrolysis of biomass in non-inert environments for production of deoxygenated bio-oil and chemicals

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fast pyrolysis processes are among the most effective methods for liquefaction of lignocellulosic biomass. Catalytic fast pyrolysis (CFP) over HZSM-5 or other zeolites and/or utilization of reactive atmospheres such as in the non-catalytic Tail Gas Reactive Pyrolysis (TRGP) process, a recent patent...

  18. Dissolved phosphorus speciation of flash carbonization, slow pyrolysis, and fast pyrolysis biochars

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pyrolysis of waste biomass is a promising technology to produce sterile and renewable organic phosphorus fertilizers. Systematic studies are necessary to understand how different pyrolysis platforms influence the chemical speciation of dissolved (bioavailable) phosphorus. This study employed solut...

  19. Evaluation of Catalysts from Different Origin for Vapor Phase Upgrading in Biomass Pyrolysis

    SciTech Connect

    Zhang, X.; Mukarakate, C.; Zheng, Z.; Nimlos, M.

    2012-01-01

    Liquid fuels and chemicals from biomass resources arouse much interests in research and development. Fast pyrolysis of biomass has the potential to effectively change solid biomass materials into liquid products. However, bio-oil from traditional pyrolysis processes is difficult to apply in industry, because of its complicated composition, high oxygen content, low stability, etc. Upgrading or refining of the bio-oil should be performed for industrial application of biomass pyrolysis. Often, the process would be done in a separate reactor downstream of the pyrolysis process. In this paper, a laboratory scale micro test facility was constructed, wherein the pyrolysis of pine and catalytic upgrading of the resulting vapors were closely coupled in one reactor. The composition of vapor effluent was monitored with a molecular beam mass spectrometer (MBMS) for the online evaluation of the catalyst performance. Catalysts from different origin were tested and compared for the effectiveness of pyrolysis vapor upgrading, namely commercial zeolites, Ni based steam reforming catalyst, CaO, MgO, and several laboratory-made catalysts. The reaction temperature for catalytic upgrading varied between 400 and 600 centigrade, and the gaseous residence time ranged from 0.1 second to above 2 second, to simulate the conditions in industrial application. It is revealed that some catalysts are active in transform most of primary biomass pyrolysis vapors into hydrocarbons, resulting in nonoxygenated products, which is beneficial for downstream utilization. Others are not as effective, results in minor improvement compared with blank test results.

  20. Catalytic fast pyrolysis of cellulose and biomass to produce levoglucosenone using magnetic SO4(2-)/TiO2-Fe3O4.

    PubMed

    Lu, Qiang; Ye, Xiao-ning; Zhang, Zhi-bo; Dong, Chang-qing; Zhang, Ying

    2014-11-01

    Magnetic superacid (SO4(2-)/TiO2-Fe3O4) was prepared for catalytic fast pyrolysis of cellulose and poplar wood to produce levoglucosenone (LGO). Its catalytic activity was evaluated via pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS) experiments, and compared with the non-magnetic SO4(2-)/TiO2, phosphoric acid (H3PO4) and sulfur acid (H2SO4) catalysts. Moreover, the LGO yield was quantitatively determined. The results indicated that the magnetic SO4(2-)/TiO2-Fe3O4 was effective to selectively produce LGO from both cellulose and poplar wood. Its catalytic capability was a little better than the non-magnetic SO4(2-)/TiO2 and H3PO4, and much better than the H2SO4. The maximal LGO yields from both cellulose and poplar wood were obtained at 300 °C with the feedstock/catalyst ratio of 1/1, reaching as high as 15.43 wt% from cellulose and 7.06 wt% from poplar wood, respectively. PMID:25173471

  1. Co-generated fast pyrolysis biochar mitigates green-house gas emissions and increases carbon sequestration in temperate soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biochar (BC) is a product of thermochemical conversion of biomass via pyrolysis, together with gas (syngas), liquid (bio-oil), and heat. Fast pyrolysis is a promising process for bio-oil generation, which leaves 10-30% of the original biomass as char. When applied to soils, BC may increase soil C s...

  2. Development of advanced technologies for biomass pyrolysis

    NASA Astrophysics Data System (ADS)

    Xu, Ran

    The utilization of biomass resources as a renewable energy resource is of great importance in responding to concerns over the protection of the environment and the security of energy supply. This PhD research focuses on the investigation of the conversion of negative value biomass residues into value-added fuels through flash pyrolysis. Pyrolysis Process Study. A pilot plant bubbling fluidized bed pyrolyzer has been set up and extensively used to thermally crack various low or negative value agricultural, food and biofuel processing residues to investigate the yields and quality of the liquid [bio-oil] and solid (bio-char] products. Another novel aspect of this study is the establishment of an energy balance from which the thermal self-sustainability of the pyrolysis process can be assessed. Residues such as grape skins and mixture of grape skins and seeds, dried distiller's grains from bio-ethanol plants, sugarcane field residues (internal bagasse, external and whole plant) have been tested. The pyrolysis of each residue has been carried out at temperatures ranging from 300 to 600°C and at different vapor residence times, to determine its pyrolysis behavior including yields and the overall energy balance. The thermal sustainability of the pyrolysis process has been estimated by considering the energy contribution of the product gases and liquid bio-oll in relation to the pyrolysis heat requirements. The optimum pyrolysis conditions have been identified in terms of maximizing the liquid blo-oil yield, energy density and content of the product blo-oil, after ensuring a self-sustainable process by utilizing the product gases and part of char or bio-oil as heat sources. Adownflow pyrolyzer has also been set up. Preliminary tests have been conducted using much shorter residence times. Bio-oil Recovery. Bio-oil recovery from the pyrolysis unit includes condensation followed by demisting. A blo-oil cyclonic condensing system is designed A nearly tangential entry forces

  3. Effect of Catalytic Pyrolysis Conditions Using Pulse Current Heating Method on Pyrolysis Products of Wood Biomass

    PubMed Central

    Honma, Sensho; Hata, Toshimitsu; Watanabe, Takashi

    2014-01-01

    The influence of catalysts on the compositions of char and pyrolysis oil obtained by pyrolysis of wood biomass with pulse current heating was studied. The effects of catalysts on product compositions were analyzed using GC-MS and TEM. The compositions of some aromatic compounds changed noticeably when using a metal oxide species as the catalyst. The coexistence or dissolution of amorphous carbon and iron oxide was observed in char pyrolyzed at 800°C with Fe3O4. Pyrolysis oil compositions changed remarkably when formed in the presence of a catalyst compared to that obtained from the uncatalyzed pyrolysis of wood meal. We observed a tendency toward an increase in the ratio of polyaromatic hydrocarbons in the pyrolysis oil composition after catalytic pyrolysis at 800°C. Pyrolysis of biomass using pulse current heating and an adequate amount of catalyst is expected to yield a higher content of specific polyaromatic compounds. PMID:25614894

  4. Effect of catalytic pyrolysis conditions using pulse current heating method on pyrolysis products of wood biomass.

    PubMed

    Honma, Sensho; Hata, Toshimitsu; Watanabe, Takashi

    2014-01-01

    The influence of catalysts on the compositions of char and pyrolysis oil obtained by pyrolysis of wood biomass with pulse current heating was studied. The effects of catalysts on product compositions were analyzed using GC-MS and TEM. The compositions of some aromatic compounds changed noticeably when using a metal oxide species as the catalyst. The coexistence or dissolution of amorphous carbon and iron oxide was observed in char pyrolyzed at 800 °C with Fe3O4. Pyrolysis oil compositions changed remarkably when formed in the presence of a catalyst compared to that obtained from the uncatalyzed pyrolysis of wood meal. We observed a tendency toward an increase in the ratio of polyaromatic hydrocarbons in the pyrolysis oil composition after catalytic pyrolysis at 800 °C. Pyrolysis of biomass using pulse current heating and an adequate amount of catalyst is expected to yield a higher content of specific polyaromatic compounds. PMID:25614894

  5. INTEGRATED PYROLYSIS COMBINED CYCLE BIOMASS POWER SYSTEM CONCEPT DEFINITION

    SciTech Connect

    Eric Sandvig; Gary Walling; Robert C. Brown; Ryan Pletka; Desmond Radlein; Warren Johnson

    2003-03-01

    Advanced power systems based on integrated gasification/combined cycles (IGCC) are often presented as a solution to the present shortcomings of biomass as fuel. Although IGCC has been technically demonstrated at full scale, it has not been adopted for commercial power generation. Part of the reason for this situation is the continuing low price for coal. However, another significant barrier to IGCC is the high level of integration of this technology: the gas output from the gasifier must be perfectly matched to the energy demand of the gas turbine cycle. We are developing an alternative to IGCC for biomass power: the integrated (fast) pyrolysis/ combined cycle (IPCC). In this system solid biomass is converted into liquid rather than gaseous fuel. This liquid fuel, called bio-oil, is a mixture of oxygenated organic compounds and water that serves as fuel for a gas turbine topping cycle. Waste heat from the gas turbine provides thermal energy to the steam turbine bottoming cycle. Advantages of the biomass-fueled IPCC system include: combined cycle efficiency exceeding 37 percent efficiency for a system as small as 7.6 MW{sub e}; absence of high pressure thermal reactors; decoupling of fuel processing and power generation; and opportunities for recovering value-added products from the bio-oil. This report provides a technical overview of the system including pyrolyzer design, fuel clean-up strategies, pyrolysate condenser design, opportunities for recovering pyrolysis byproducts, gas turbine cycle design, and Rankine steam cycle. The report also reviews the potential biomass fuel supply in Iowa, provide and economic analysis, and present a summery of benefits from the proposed system.

  6. Fuel and fuel blending components from biomass derived pyrolysis oil

    DOEpatents

    McCall, Michael J.; Brandvold, Timothy A.; Elliott, Douglas C.

    2012-12-11

    A process for the conversion of biomass derived pyrolysis oil to liquid fuel components is presented. The process includes the production of diesel, aviation, and naphtha boiling point range fuels or fuel blending components by two-stage deoxygenation of the pyrolysis oil and separation of the products.

  7. [Bio-oil production from biomass pyrolysis in molten salt].

    PubMed

    Ji, Dengxiang; Cai, Tengyue; Ai, Ning; Yu, Fengwen; Jiang, Hongtao; Ji, Jianbing

    2011-03-01

    In order to investigate the effects of pyrolysis conditions on bio-oil production from biomass in molten salt, experiments of biomass pyrolysis were carried out in a self-designed reactor in which the molten salt ZnCl2-KCl (with mole ratio 7/6) was selected as heat carrier, catalyst and dispersion agent. The effects of metal salt added into ZnCl2-KCl and biomass material on biomass pyrolysis were discussed, and the main compositions of bio-oil were determined by GC-MS. Metal salt added into molten salt could affect pyrolysis production yields remarkably. Lanthanon salt could enhance bio-oil yield and decrease water content in bio-oil, when mole fraction of 5.0% LaCl3 was added, bio-oil yield could reach up to 32.0%, and water content of bio-oil could reduce to 61.5%. The bio-oil and char yields were higher when rice straw was pyrolysed, while gas yield was higher when rice husk was used. Metal salts showed great selectivity on compositions of bio-oil. LiCl and FeCl2 promoted biomass to pyrolyse into smaller molecular weight compounds. CrCl3, CaCl2 and LaCl3 could restrain second pyrolysis of bio-oil. The research provided a scientific reference for production of bio-oil from biomass pyrolysis in molten salt. PMID:21650030

  8. Impact of thermal pretreatment on the fast pyrolysis conversion of Southern Pine

    SciTech Connect

    Tyler L. Westover; Manunya Phanphanich; Micael L. Clark; Sharna R. Rowe; Steven E. Egan; Christopher T Wright; Richard D. Boardman; Alan H. Zacher

    2013-01-01

    Background: Thermal pretreatment of biomass ranges from simple (nondestructive) drying to more severe treatments that cause devolatization, depolymerization and carbonization. These pretreatments have demonstrated promise for transforming raw biomass into feedstock material that has improved milling, handling, storage and conversion properties. In this work, southern pine material was pretreated at 120, 180, 230 and 270 degrees C, and then subjected to pyrolysis tests in a continuous-feed bubbling-fluid bed pyrolysis system. Results: High pretreatment temperatures were associated with lower specific grinding energies, higher grinding rates and lower hydrogen and oxygen contents. Higher pretreatment temperatures were also correlated with increased char production, decreased total acid number and slight decrease in the oxygen content of the pyrolysis liquid fraction. Conclusion: Thermal pretreatment has both beneficial and detrimental impacts on fast pyrolysis conversion of pine material to bio-oil, and the effect of thermal pretreatment on upgrading of pyrolysis bio-oil requires further attention.

  9. Low-order modeling of internal heat transfer in biomass particle pyrolysis

    DOE PAGESBeta

    Wiggins, Gavin M.; Daw, C. Stuart; Ciesielski, Peter N.

    2016-05-11

    We present a computationally efficient, one-dimensional simulation methodology for biomass particle heating under conditions typical of fast pyrolysis. Our methodology is based on identifying the rate limiting geometric and structural factors for conductive heat transport in biomass particle models with realistic morphology to develop low-order approximations that behave appropriately. Comparisons of transient temperature trends predicted by our one-dimensional method with three-dimensional simulations of woody biomass particles reveal good agreement, if the appropriate equivalent spherical diameter and bulk thermal properties are used. Here, we conclude that, for particle sizes and heating regimes typical of fast pyrolysis, it is possible to simulatemore » biomass particle heating with reasonable accuracy and minimal computational overhead, even when variable size, aspherical shape, anisotropic conductivity, and complex, species-specific internal pore geometry are incorporated.« less

  10. Combustion Properties of Biomass Flash Pyrolysis Oils: Final Project Report

    SciTech Connect

    C. R. Shaddix; D. R. Hardesty

    1999-04-01

    Thermochemical pyrolysis of solid biomass feedstocks, with subsequent condensation of the pyrolysis vapors, has been investigated in the U.S. and internationally as a means of producing a liquid fuel for power production from biomass. This process produces a fuel with significantly different physical and chemical properties from traditional petroleum-based fuel oils. In addition to storage and handling difficulties with pyrolysis oils, concern exists over the ability to use this fuel effectively in different combustors. The report endeavors to place the results and conclusions from Sandia's research into the context of international efforts to utilize pyrolysis oils. As a special supplement to this report, Dr. Steven Gust, of Finland's Neste Oy, has provided a brief assessment of pyrolysis oil combustion research efforts and commercialization prospects in Europe.

  11. Thermogravimetric analysis and fast pyrolysis of Milkweed.

    PubMed

    Kim, Seung-Soo; Agblevor, Foster A

    2014-10-01

    Pyrolysis of Milkweed was carried out in a thermogravimetric analyzer and a bubbling fluidized bed reactor. Total liquid yield of Milkweed pyrolysis was between 40.74% and 44.19 wt% between 425 °C and 550 °C. The gas yield increased from 27.90 wt% to 33.33 wt% with increasing reaction temperature. The higher heating values (HHV) of the Milkweed bio-oil were relatively high (30.33-32.87 MJ/kg) and varied with reaction temperature, feeding rate and fluidization velocity. The selectivity for CO2 was highest within non-condensable gases, and the molar ratio of CO2/CO was about 3 at the different reaction conditions. The (13)C NMR analysis, of the bio-oil showed that the relative concentration carboxylic group and its derivatives was higher at 425 °C than 475 °C, which resulted in slightly higher oxygen content in bio-oil. The pH of aqueous phase obtained at 475 °C was 7.37 which is the highest reported for any lignocellulosic biomass pyrolysis oils. PMID:25064334

  12. Slow-pyrolysis and -oxidation of different biomass fuel samples.

    PubMed

    Haykiri-Acma, Hanzade; Yaman, Serdar

    2006-01-01

    Pyrolysis and oxidation characteristics of some biomass samples such as almond shell, walnut shell, hazelnut shell, tobacco waste, and rapeseed were investigated using Thermogravimetric Analysis (TGA) technique under slow heating conditions (20 K/min) from ambient to 1173 K. Pyrolysis experiments were carried out under dynamic nitrogen atmosphere of 40 mL/min. Dry air was used at the same rate in the oxidation experiments. The rates of mass losses from the biomass samples regarding temperature were obtained from the Differential Thermogravimetric Analysis (DTG) curves, and these rates were interpreted according to the pyrolysis and oxidation characteristics of the biomass samples. Since the heating rate was relatively very slow, individual peaks on the DTG curves resulting from the pyrolysis or oxidation of the major constituents that forming the complex structure of the biomass samples could be survived and distinguished from the thermograms. The maximum rates of mass losses (dm/dt)max from the oxidation experiments were determined to be higher than those from the pyrolysis experiments. On the other hand, the (dm/dt)max values were determined at about 550 K for pyrolysis, whereas they were below 500 K in case of oxidation irrespective of the type of the biomass samples. PMID:16849135

  13. Mass balance and exergy analysis of a fast pyrolysis system

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mass balance closure and exergetic efficiency is evaluated for a bench scale fast pyrolysis system. The USDA Agricultural Research Service (ARS) has developed this system for processing energy crops and agricultural residues for bio-oil (pyrolysis oil or pyrolysis liquids) production. Mass balance c...

  14. Ex-Situ Catalytic Fast Pyrolysis Technology Pathway

    SciTech Connect

    Biddy, Mary J.; Dutta, Abhijit; Jones, Susanne B.; Meyer, Pimphan A.

    2013-03-31

    In support of the Bioenergy Technologies Office, the National Renewable Energy Laboratory (NREL) and the Pacific Northwest National Laboratory (PNNL) are undertaking studies of biomass conversion technologies to hydrocarbon fuels to identify barriers and target research toward reducing conversion costs. Process designs and preliminary economic estimates for each of these pathway cases were developed using rigorous modeling tools (Aspen Plus and Chemcad). These analyses incorporated the best information available at the time of development, including data from recent pilot and bench-scale demonstrations, collaborative industrial and academic partners, and published literature and patents. This pathway case investigates converting woody biomass using ex-situ catalytic fast pyrolysis followed by upgrading to gasoline , diesel and jet range blendstocks . Technical barriers and key research needs that should be pursued for this pathway to be competitive with petroleum-derived blendstocks have been identified.

  15. In-Situ Catalytic Fast Pyrolysis Technology Pathway

    SciTech Connect

    Biddy, Mary J.; Dutta, Abhijit; Jones, Susanne B.; Meyer, Pimphan A.

    2013-03-31

    In support of the Bioenergy Technologies Office, the National Renewable Energy Laboratory (NREL) and the Pacific Northwest National Laboratory (PNNL) are undertaking studies of biomass conversion technologies to hydrocarbon fuels to identify barriers and target research toward reducing conversion costs. Process designs and preliminary economic estimates for each of these pathway cases were developed using rigorous modeling tools (Aspen Plus and Chemcad). These analyses incorporated the best information available at the time of development, including data from recent pilot and bench-scale demonstrations, collaborative industrial and academic partners, and published literature and patents. This pathway case investigates converting woody biomass using in-situ catalytic fast pyrolysis followed by upgrading to gasoline, diesel, and jet range blendstocks. Technical barriers and key research needs that should be pursued for this pathway to be competitive with petroleum-derived blendstocks have been identified.

  16. The slow and fast pyrolysis of cherry seed.

    PubMed

    Duman, Gozde; Okutucu, Cagdas; Ucar, Suat; Stahl, Ralph; Yanik, Jale

    2011-01-01

    The slow and fast pyrolysis of cherry seeds (CWS) and cherry seeds shells (CSS) was studied in fixed-bed and fluidized bed reactors at different pyrolysis temperatures. The effects of reactor type and temperature on the yields and composition of products were investigated. In the case of fast pyrolysis, the maximum bio-oil yield was found to be about 44 wt% at pyrolysis temperature of 500 °C for both CWS and CSS, whereas the bio yields were of 21 and 15 wt% obtained at 500 °C from slow pyrolysis of CWS and CSS, respectively. Both temperature and reactor type affected the composition of bio-oils. The results showed that bio-oils obtained from slow pyrolysis of CWS and CSS can be used as a fuel for combustion systems in industry and the bio-oil produced from fast pyrolysis can be evaluated as a chemical feedstock. PMID:20801019

  17. Thermochemical behavior of tris(2-butoxyethyl) phosphate (TBEP) during co-pyrolysis with biomass.

    PubMed

    Qian, Ting-Ting; Li, De-Chang; Jiang, Hong

    2014-09-16

    Co-pyrolysis of plastic waste and wood biomass to recover valuable chemicals is a cost-effective waste-recycling technology. However, widely used organophosphate ester additives in plastic, such as tris(2-butoxyethyl) phosphate (TBEP), can form diverse phosphorus (P)-containing species. These P-containing compounds can pose new environmental challenges when the biochar is reused. In this study, a mixture of TBEP and lignin was used to simulate the feedstock of plastic waste and wood biomass, and the thermochemical behavior of TBEP in slow pyrolysis (20 K min(-1)) and fast pyrolysis at 400-600 °C was investigated. The results show that low temperature in fast pyrolysis favors the enrichment of P in char. Up to 76.6% of initial P in the feedstock is retained in the char resulting from 400 °C, while only 51% is retained in the char from 600 °C. Slow pyrolysis favors the formation of stable P species regardless of the temperature; only 7% of the P retained in the char is extractable from char from slow pyrolysis, while 20-40% of P can be extracted from char resulting from fast pyrolysis. The addition of CaCl2 and MgCl2 can significantly increase the fraction of P retained in the char by the formation of Ca, Mg-P compounds. Online TG-FTIR-MS analysis suggests that TBEP undergoes decomposition through different temperature-dependent pathways. The P-containing radicals react with the aromatic rings produced by the pyrolysis of lignin to form Ar-P species, which is an important factor influencing the distribution and stabilization of P in char. PMID:25154038

  18. Catalytic pyrolysis of biomass by novel nanostructured catalysts

    NASA Astrophysics Data System (ADS)

    Dang, Phuong T.; Le, Hy G.; Pham, Giang T. T.; Vu, Hông T. M.; Nguyen, Kien T.; Dao, Canh D.; Le, Giang H.; Hoang, Thuy T. T.; Tran, Hoa T. K.; Nguyen, Quang K.; Vu, Tuan A.

    2013-12-01

    Nanostructured catalysts were successfully prepared by acidification of diatomites and the regeneration of used FCC catalysts. The obtained samples were characterized by IR, XRD, SEM, EDX, MAS-NMR (27Al and 29Si), NH3-TPD and tested in catalytic pyrolysis of biomass (rice straw). The results showed that the similar bio-oil yield of 41,4% can be obtained by pyrolysis in presence of catalysts at 450°C as compared to that of the pyrolysis without catalyst at 550°C. The bio-oil yield reached a maximum of 42,55 % at the pyrolysis temperature of 500°C with catalytic content of 20%. Moreover, by catalytic pyrolysis, bio-oil quality was better as reflected in higher ratio of H/C, lower ratio of O/C. This clearly indicated high application potential of these new nanostructured catalysts in the production of bio-oil with low oxygenated compounds.

  19. Liquid-phase processing of fast pyrolysis bio-oil using platinum/HZSM-5 catalyst

    NASA Astrophysics Data System (ADS)

    Santos, Bjorn Sanchez

    Recent developments in converting biomass to bio-chemicals and liquid fuels provide a promising sight to an emerging biofuels industry. Biomass can be converted to energy via thermochemical and biochemical pathways. Thermal degradation processes include liquefaction, gasification, and pyrolysis. Among these biomass technologies, pyrolysis (i.e. a thermochemical conversion process of any organic material in the absence of oxygen) has gained more attention because of its simplicity in design, construction and operation. This research study focuses on comparative assessment of two types of pyrolysis processes and catalytic upgrading of bio-oil for production of transportation fuel intermediates. Slow and fast pyrolysis processes were compared for their respective product yields and properties. Slow pyrolysis bio-oil displayed fossil fuel-like properties, although low yields limit the process making it uneconomically feasible. Fast pyrolysis, on the other hand, show high yields but produces relatively less quality bio-oil. Catalytic transformation of the high-boiling fraction (HBF) of the crude bio-oil from fast pyrolysis was therefore evaluated by performing liquid-phase reactions at moderate temperatures using Pt/HZSM-5 catalyst. High yields of upgraded bio-oils along with improved heating values and reduced oxygen contents were obtained at a reaction temperature of 200°C and ethanol/HBF ratio of 3:1. Better quality, however, was observed at 240 °C even though reaction temperature has no significant effect on coke deposition. The addition of ethanol in the feed has greatly attenuated coke deposition in the catalyst. Major reactions observed are esterification, catalytic cracking, and reforming. Overall mass and energy balances in the conversion of energy sorghum biomass to produce a liquid fuel intermediate obtained sixteen percent (16 wt.%) of the biomass ending up as liquid fuel intermediate, while containing 26% of its initial energy.

  20. A review of the toxicity of biomass pyrolysis liquids formed at low temperatures

    SciTech Connect

    Diebold, J P

    1997-04-01

    The scaleup of biomass fast pyrolysis systems to large pilot and commercial scales will expose an increasingly large number of personnel to potential health hazards, especially during the evaluation of the commercial use of the pyrolysis condensates. Although the concept of fast pyrolysis to optimize liquid products is relatively new, low-temperature pyrolysis processes have been used over the aeons to produce charcoal and liquid by-products, e.g., smoky food flavors, food preservatives, and aerosols containing narcotics, e.g., nicotine. There are a number of studies in the historical literature that concern the hazards of acute and long-term exposure to smoke and to the historical pyrolysis liquids formed at low temperatures. The reported toxicity of smoke, smoke food flavors, and fast pyrolysis oils is reviewed. The data found for these complex mixtures suggest that the toxicity may be less than that of the individual components. It is speculated that there may be chemical reactions that take place that serve to reduce the toxicity during aging. 81 refs.

  1. Methods and apparatuses for deoxygenating biomass-derived pyrolysis oil

    DOEpatents

    Baird, Lance Awender; Brandvold, Timothy A.

    2015-10-20

    Embodiments of methods and apparatuses for deoxygenating a biomass-derived pyrolysis oil are provided. In one example, a method comprises the steps of separating a low-oxygen biomass-derived pyrolysis oil effluent into a low-oxygen-pyoil organic phase stream and an aqueous phase stream. Phenolic compounds are removed from the aqueous phase stream to form a phenolic-rich diluent recycle stream. A biomass-derived pyrolysis oil stream is diluted and heated with the phenolic-rich diluent recycle stream to form a heated diluted pyoil feed stream. The heated diluted pyoil feed stream is contacted with a deoxygenating catalyst in the presence of hydrogen to deoxygenate the heated diluted pyoil feed stream.

  2. Total Acid Value Titration of Hydrotreated Biomass Fast Pyrolysis Oil: Determination of Carboxylic Acids and Phenolics with Multiple End-Point Detection

    SciTech Connect

    Christensen, E.; Alleman, T. L.; McCormick, R. L.

    2013-01-01

    Total acid value titration has long been used to estimate corrosive potential of petroleum crude oil and fuel oil products. The method commonly used for this measurement, ASTM D664, utilizes KOH in isopropanol as the titrant with potentiometric end point determination by pH sensing electrode and Ag/AgCl reference electrode with LiCl electrolyte. A natural application of the D664 method is titration of pyrolysis-derived bio-oil, which is a candidate for refinery upgrading to produce drop in fuels. Determining the total acid value of pyrolysis derived bio-oil has proven challenging and not necessarily amenable to the methodology employed for petroleum products due to the different nature of acids present. We presented an acid value titration for bio-oil products in our previous publication which also utilizes potentiometry using tetrabutylammonium hydroxide in place of KOH as the titrant and tetraethylammonium bromide in place of LiCl as the reference electrolyte to improve the detection of these types of acids. This method was shown to detect numerous end points in samples of bio-oil that were not detected by D664. These end points were attributed to carboxylic acids and phenolics based on the results of HPLC and GC-MS studies. Additional work has led to refinement of the method and it has been established that both carboxylic acids and phenolics can be determined accurately. Use of pH buffer calibration to determine half-neutralization potentials of acids in conjunction with the analysis of model compounds has allowed us to conclude that this titration method is suitable for the determination of total acid value of pyrolysis oil and can be used to differentiate and quantify weak acid species. The measurement of phenolics in bio-oil is subject to a relatively high limit of detection, which may limit the utility of titrimetric methodology for characterizing the acidic potential of pyrolysis oil and products.

  3. Experimental investigation of pyrolysis process of woody biomass mixture

    NASA Astrophysics Data System (ADS)

    Kosanić, Tijana R.; Ćeranić, Mirjana B.; Đurić, Slavko N.; Grković, Vojin R.; Milotić, Milan M.; Brankov, Saša D.

    2014-06-01

    This paper describes an experimental investigation of pyrolysis of woody biomass mixture. The mixture consists of oak, beech, fir, cherry, walnut and linden wood chips with equal mass fractions. During the experiment, the sample mass inside the reactor was 10 g with a particle diameter of 5-10 mm. The sample in the reactor was heated in the temperature range of 24-650°C. Average sample heating rates in the reactor were 21, 30 and 54 °C/min. The sample mass before, during and after pyrolysis was determined using a digital scale. Experimental results of the sample mass change indicate that the highest yield of pyrolytic gas was achieved at the temperature slightly above 650°C and ranged from 77 to 85%, while char yield ranged from 15 to 23%. Heating rate has significant influence on the pyrolytic gas and char yields. It was determined that higher pyrolysis temperatures and heating rates induce higher yields of pyrolytic gas, while the char mass reduces. Condensation of pyrolytic gas at the end of the pyrolysis process at 650°C produced 2.4-2.72 g of liquid phase. The results obtained represent a starting basis for determining material and heat balance of pyrolysis process as well as woody biomass pyrolysis equipment.

  4. Thermal lag, fusion, and the compensation effect during biomass pyrolysis

    SciTech Connect

    Narayan, R.; Antal, M.J. Jr.

    1996-05-01

    Results from a numerical model for endothermic biomass pyrolysis, which includes both high activation energy kinetics and heat transfer across a boundary layer to the reacting solid particle, are presented. The model accounts for conventional thermocouple thermal lag and unconventional thermal lag due to heat demand by the chemical reaction (which is governed by Arrhenius kinetics). Biomass fusion, first identified quantitatively by Lede and Villermaux, is shown to be a manifestation of severe thermal lag that results from the chemical reaction heat demand. Over the wide range or conditions studied, the true substrate temperature remains almost constant during pyrolysis, as is the case with compounds undergoing fusion or sublimation at constant pressure. A simple algebraic model, whose derivation presupposes the idea that biomass pyrolysis mimics the melting of a block of ice, accurately predicts the maximum value of thermal lag during pyrolysis. Unidentified thermal lag in TGA experiments lowers the values of the apparent activation energy and frequency factor associated with the experimental data but approximately retains the true value of their ratio. Thus, the widely varying values of kinetic parameters for cellulose pyrolysis reported in the literature may be a result of differing thermal lag characteristics of the experiments.

  5. Low oxygen biomass-derived pyrolysis oils and methods for producing the same

    SciTech Connect

    Marinangeli, Richard; Brandvold, Timothy A; Kocal, Joseph A

    2013-08-27

    Low oxygen biomass-derived pyrolysis oils and methods for producing them from carbonaceous biomass feedstock are provided. The carbonaceous biomass feedstock is pyrolyzed in the presence of a catalyst comprising base metal-based catalysts, noble metal-based catalysts, treated zeolitic catalysts, or combinations thereof to produce pyrolysis gases. During pyrolysis, the catalyst catalyzes a deoxygenation reaction whereby at least a portion of the oxygenated hydrocarbons in the pyrolysis gases are converted into hydrocarbons. The oxygen is removed as carbon oxides and water. A condensable portion (the vapors) of the pyrolysis gases is condensed to low oxygen biomass-derived pyrolysis oil.

  6. Catalytic microwave pyrolysis of biomass for renewable phenols and fuels

    NASA Astrophysics Data System (ADS)

    Bu, Quan

    Bio-oil is an unstable intermediate and needs to be upgraded before its use. This study focused on improving the selectivity of bio-oilby catalytic pyrolysis of biomass using activated carbon (AC) catalysts. Firstly, the effects of process conditions on product quality and product yield were investigated by catalytic microwave pyrolysis of biomass using AC as a catalyst. The optimized reaction condition for bio-oil and volatile was determined. Chemical composition analysis by GC/MS showed that phenols rich bio-oils were obtained. Furthermore, the effects of different carbon sources based AC catalysts on products yield and chemical composition selectivity of obtained bio-oils were investigated during microwave pyrolysis of Douglas fir pellet. The catalysts recycling test of the selected catalysts indicated that the AC catalysts can be used for 3-4 times with high concentration of phenolic compounds. The individual surface polar/acidic oxygen functional groups analysis suggested the changes of functional groups in ACs explained the reaction mechanism of this process. In addition, the potential for production of renewable phenols and fuels by catalytic pyrolysis of biomass using lignin as a model compound was explored. The main chemical compounds of the obtained bio-oils were phenols, guaiacols, hydrocarbons and esters. The thermal decomposition behaviors of lignin and kinetics study were investigated by TGA. The change of functional groups of AC catalyst indicated the bio-oil reduction was related to the reaction mechanism of this process. Finally, the effects of Fe-modified AC catalyst on bio-oil upgrading and kintic study of biomass pyrolysis were investigated. The catalytic pyrolysis of biomass using the Fe-modified AC catalyst may promote the occurrence of the fragmentation of cellulose, rather than repolymerization as in the non-catalytic pyrolysis which leads to partial of guaiacols derived from furans. Results showed that the main chemical compounds of bio

  7. Catalytic Fast Pyrolysis for the Production of the Hydrocarbon Biofuels

    SciTech Connect

    Nimlos, M. R.; Robichaud, D. J.; Mukaratate, C.; Donohoe, B. S.; Iisa, K.

    2013-01-01

    Catalytic fast pyrolysis is a promising technique for conversion of biomass into hydrocarbons for use as transportation fuels. For over 30 years this process has been studied and it has been demonstrated that oils can be produced with high concentrations of hydrocarbons and low levels of oxygen. However, the yields from this type of conversion are typically low and the catalysts, which are often zeolites, are quickly deactivated through coking. In addition, the hydrocarbons produced are primarily aromatic molecules (benzene, toluene, xylene) that not desirable for petroleum refineries and are not well suited for diesel or jet engines. The goals of our research are to develop new multifunction catalysts for the production of gasoline, diesel and jet fuel range molecules and to improve process conditions for higher yields and low coking rates. We are investigating filtration and the use of hydrogen donor molecules to improve catalyst performance.

  8. Microwave-assisted catalytic pyrolysis of lignocellulosic biomass for production of phenolic-rich bio-oil.

    PubMed

    Mamaeva, Alisa; Tahmasebi, Arash; Tian, Lu; Yu, Jianglong

    2016-07-01

    Catalytic microwave pyrolysis of peanut shell (PT) and pine sawdust (PS) using activated carbon (AC) and lignite char (LC) for production of phenolic-rich bio-oil and nanotubes was investigated in this study. The effects of process parameters such as pyrolysis temperature and biomass/catalyst ratio on the yields and composition of pyrolysis products were investigated. Fast heating rates were achieved under microwave irradiation conditions. Gas chromatography-mass spectrometry (GC-MS) analysis of bio-oil showed that activated carbon significantly enhanced the selectivity of phenolic compounds in bio-oil. The highest phenolics content in the bio-oil (61.19 %(area)) was achieved at 300°C. The selectivity of phenolics in bio-oil was higher for PT sample compared to that of PS. The formation of nanotubes in PT biomass particles was observed for the first time in biomass microwave pyrolysis. PMID:27030958

  9. An Idealized Direct-Contact Biomass Pyrolysis Reactor Model

    NASA Technical Reports Server (NTRS)

    Miller, R. S.; Bellan, J.

    1996-01-01

    A numerical study is performed in order to assess the performance of biomass pyrolysis reactors which utilize direct particle-wall thermal conduction heating. An idealized reactor configuration consisting of a flat-plate turbulent boundary layer flow with particle convection along the heated wall and incorporating particle re-entrainment is considered.

  10. Pyrolysis Strategies for Effective Utilization of Lignocellulosic and Algal Biomass

    NASA Astrophysics Data System (ADS)

    Maddi, Balakrishna

    Pyrolysis is a processing technique involving thermal degradation of biomass in the absence of oxygen. The bio-oils obtained following the condensation of the pyrolysis vapors form a convenient starting point for valorizing the major components of lignocellulosic as well as algal biomass feed stocks for the production of fuels and value-added chemicals. Pyrolysis can be implemented on whole biomass or on residues left behind following standard fractionation methods. Microalgae and oil seeds predominantly consist of protein, carbohydrate and triglycerides, whereas lignocellulose is composed of carbohydrates (cellulose and hemicellulose) and lignin. The differences in the major components of these two types of biomass will necessitate different pyrolysis strategies to derive the optimal benefits from the resulting bio-oils. In this thesis, novel pyrolysis strategies were developed that enable efficient utilization of the bio-oils (and/or their vapors) from lignocellulose, algae, as well as oil seed feed stocks. With lignocellulosic feed stocks, pyrolysis of whole biomass as well as the lignin residue left behind following well-established pretreatment and saccharification (i.e., depolymerization of cellulose and hemicellulose to their monomeric-sugars) of the biomass was studied with and without catalysts. Following this, pyrolysis of (lipid-deficient) algae and lignocellulosic feed stocks, under similar reactor conditions, was performed for comparison of product (bio-oil, gas and bio-char) yields and composition. In spite of major differences in component bio-polymers, feedstock properties relevant to thermo-chemical conversions, such as overall C, H and O-content, C/O and H/C molar ratio as well as calorific values, were found to be similar for algae and lignocellulosic material. Bio-oil yields from algae and some lignocellulosic materials were similar; however, algal bio-oils were compositionally different and contained several N-compounds (most likely from

  11. Kinetic modeling of solid yields formation in the fast pyrolysis of mahogany wood

    NASA Astrophysics Data System (ADS)

    Wijayanti, W.; Sasongko, M. N.

    2016-03-01

    There have been many research of biomass pyrolysis not only in heat transfer point of view but also in chemical reaction point of view. In the present study, the rate of reaction (kinetic rate) formation of solid yield was calculated by varying the pyrolysis temperature that gives a chance of 250 °C, 350 °C, 450 °C, 500 °C, 600 °C, 700 °C, until 800°C with heating rate around 700 °C/hour. The heating rate used was the fast pyrolysis in which the heating rate for heating furnaces takes place quickly. Pyrolysis was accomplished by direct pyrolysis process in which each process was conducted at the certain pyrolysis temperature variation that took over 3 hours. Biomass used was mahogany wood, while the inert gas used to hold in order to avoid combustion was nitrogen gas. The decreasing of solid yields formation obtained was used to calculate the kinetic rate of the pyrolysis process. It was calculated by using the similar Arrhenius equation that considering the temperature changes during the process and the decreasing mass of solid yield formation occurred. The kinetic rate results showed the decomposition of biomass occurs tended in two stages, namely a stage of water evaporation and degradation of biomass solid yield coal followed by a stage of constant formation. The decomposition is expressed by the magnitude of the rate of reaction at 25˚C-517˚C temperature range with a reaction rate constant k1 = 2151.67 exp (-2141/Tp). While at pyrolysis temperatures above 517˚C, the reaction rate constant is expressed with k2 = 32.20 exp (-127.8 / Tp).

  12. Miscanthus as a feedstock for fast-pyrolysis: does agronomic treatment affect quality?

    PubMed

    Hodgson, E M; Fahmi, R; Yates, N; Barraclough, T; Shield, I; Allison, G; Bridgwater, A V; Donnison, I S

    2010-08-01

    The objectives of the experiment were to assess the impact of nitrogen (N) and potassium (K) fertiliser application on the cell wall composition and fast-pyrolysis conversion quality of the commercially cultivated hybrid Miscanthus x giganteus. Five different fertiliser treatments were applied to mature Miscanthus plants which were sampled at five intervals over a growing season. The different fertiliser treatments produced significant variation in concentrations of cell wall components and ash within the biomass and affected the composition and quality of the resulting fast-pyrolysis liquids. The results indicated that application of high rates of N fertiliser had a negative effect on feedstock quality for this conversion pathway: reducing the proportion of cell wall components and increasing accumulation of ash in the harvested biomass. No exclusive effect of potassium fertiliser was observed. The low-N fertiliser treatment produced high quality, low ash-high lignin biomass most suitable as a feedstock for thermo-chemical conversion. PMID:20338753

  13. Fast pyrolysis char - Assessment of alternative uses within the bioliq® concept.

    PubMed

    Funke, A; Niebel, A; Richter, D; Abbas, M M; Müller, A-K; Radloff, S; Paneru, M; Maier, J; Dahmen, N; Sauer, J

    2016-01-01

    Experiments with a process development unit for fast pyrolysis of biomass residues of 10kgh(-1) have been performed to quantify the impact of two different product recovery options. Wheat straw, miscanthus and scrap wood have been used as feedstock. A separate recovery of char increases the organic oil yield as compared to a combined recovery of char and organic condensate (OC). Furthermore, it allows for an alternative use of the byproduct char which represents an important product fraction for the high ash biomass residues under consideration. The char produced shows little advantage over its biomass precursor when considered as energy carrier due to its high ash content. Significant value can be added by demineralizing and activating the char. The potential to increase the economic feasibility of fast pyrolysis is shown by an assessment of the bioliq® process chain. PMID:26609947

  14. Characterization of fast pyrolysis bio-oils produced from pretreated pine wood.

    PubMed

    Hassan, El-Barbary M; Steele, Philip H; Ingram, Leonard

    2009-05-01

    The pretreatment of biomass prior to the fast pyrolysis process has been shown to alter the structure and chemical composition of biomass feed stocks leading to a change in the mechanism of biomass thermal decomposition. Pretreatment of feed stocks prior to fast pyrolysis provides an opportunity to produce bio-oils with varied chemical composition and physical properties. This provides the potential to vary bio-oil chemical and physical properties for specific applications. To determine the influence of biomass pretreatments on bio-oil produced during fast pyrolysis, we applied six chemical pretreatments: dilute phosphoric acid, dilute sulfuric acid, sodium hydroxide, calcium hydroxide, ammonium hydroxide, and hydrogen peroxide. Bio-oils were produced from untreated and pretreated 10-year old pine wood feed stocks in an auger reactor at 450 degrees C. The bio-oils' physical properties of pH, water content, acid value, density, viscosity, and heating value were measured. Mean molecular weights and polydispersity were determined by gel permeation chromatography. Chemical characteristics of the bio-oils were determined by gas chromatography-mass spectrometry and Fourier transform infrared techniques. Results showed that the physical and chemical characteristics of the bio-oils produced from pretreated pine wood feed stocks were influenced by the biomass pretreatments applied. These physical and chemical changes are compared and discussed in detail in the paper. PMID:19050831

  15. Kinetics study on biomass pyrolysis for fuel gas production.

    PubMed

    Chen, Guan-Yi; Fang, Meng-Xiang; Andries, J; Luo, Zhong-Yang; Spliethoff, H; Cen, Ke-Fa

    2003-01-01

    Kinetic knowledge is of great importance in achieving good control of the pyrolysis and gasification process and optimising system design. An overall kinetic pyrolysis scheme is therefore addressed here. The kinetic modelling incorporates the following basic steps: the degradation of the virgin biomass materials into primary products (tar, gas and semi-char), the decomposition of primary tar into secondary products and the continuous interaction between primary gas and char. The last step is disregarded completely by models in the literature. Analysis and comparison of predicted results from different kinetic schemes and experimental data on our fixed bed pyrolyser yielded very positive evidence to support our kinetic scheme. PMID:12861621

  16. Co-pyrolysis characteristic of biomass and bituminous coal.

    PubMed

    Li, Shuaidan; Chen, Xueli; Liu, Aibin; Wang, Li; Yu, Guangsuo

    2015-03-01

    Co-pyrolysis characteristics of biomass and bituminous coal have been studied in this work. The temperature was up to 900°C with the heating rates of 10, 15, 20, 25 and 30°C/min. Rice straw, saw dust, microcrystalline cellulose, lignin and Shenfu bituminous coal were chosen as samples. Six different biomass ratios were used. The individual thermal behavior of each sample was obtained. The experimental weight fractions of the blended samples and the calculated values were compared. The results show that the weight fractions of the blended samples behave differently with calculated ones during the co-pyrolysis process. With the increasing biomass ratio, relative deviations between experimental weight fractions and calculated ones are larger. H/C molar ratio, heat transfer properties of biomass would affect to the interaction between biomass and coal. The maximum degradation rates are slower than the calculated ones. The activation energy distributions also changed by adding some biomass into coal. PMID:25553573

  17. Apparatuses and methods for deoxygenating biomass-derived pyrolysis oil

    SciTech Connect

    Kalnes, Tom N.

    2015-12-29

    Apparatuses and methods for deoxygenating a biomass-derived pyrolysis oil are provided herein. In one example, the method comprises of dividing a feedstock stream into first and second feedstock portions. The feedstock stream comprises the biomass-derived pyrolysis oil and has a temperature of about 60.degree. C. or less. The first feedstock portion is combined with a heated organic liquid stream to form a first heated diluted pyoil feed stream. The first heated diluted pyoil feed stream is contacted with a first deoxygenating catalyst in the presence of hydrogen to form an intermediate low-oxygen pyoil effluent. The second feedstock portion is combined with the intermediate low-oxygen pyoil effluent to form a second heated diluted pyoil feed stream. The second heated diluted pyoil feed stream is contacted with a second deoxygenating catalyst in the presence of hydrogen to form additional low-oxygen pyoil effluent.

  18. Phenol and phenolics from lignocellulosic biomass by catalytic microwave pyrolysis

    SciTech Connect

    Bu, Quan; Lei, Hanwu; Ren, Shoujie; Wang, Lu; Holladay, Johnathan E.; Zhang, Qin; Tang, Juming; Ruan, Roger

    2011-07-01

    Catalytic microwave pyrolysis of biomass using activated carbon was investigated to determine the effects of pyrolytic conditions on the yields of phenol and phenolics. The high concentrations of phenol (38.9%) and phenolics (66.9%) were obtained at the temperature of 589 K, catalyst-to-biomass ratio of 3:1 and retention time of 8 min. The increase of phenol and its derivatives compared to pyrolysis without catalysts has a close relationship with the decomposition of lignin under the performance of activated carbon. The concentration of esters was also increased using activated carbon as a catalyst. The high content of phenols obtained in this study can be used either directly as fuel after upgrading or as feedstock of biobased phenols for chemical industry.

  19. Thermal lag, fusion, and the compensation effect during biomass pyrolysis

    SciTech Connect

    Antal, M.J. Jr.; Narayan, R.

    1995-12-01

    Results from a numerical model for endothermic biomass pyrolysis, which includes both high activation energy kinetics and heat transfer to the reacting solid particle, are presented. The model accounts for conventional thermocouple thermal lag, and unconventional thermal lag due to heat demand by the chemical reaction (which is governed by Arrhenius kinetics). We show that biomass fusion, first identified quantitatively by Lede and Villermaux at the University of Nancy in France, is a manifestation of severe thermal lag that results from the chemical reaction heat demand. We also show that unidentified thermal lag in TGA experiments manifests itself as the compensation effect.

  20. Radiant flash pyrolysis of biomass using a xenon flashtube

    SciTech Connect

    Hopkins, M.W.; Antal, M.J. Jr.

    1984-06-01

    Biomass materials, including lignin, redwood, corn cob, Calotropis Procera, Leucaena wood, Kraft paper, newsprint, cow manure, D-glucose, and D-cellobiose, were pyrolyzed in vacuum by the visible radiant flux emitted from a Xenon flashtube. The flux density exceeded 8 kW/cm/sup 2/ during the 1 ms flash. Sirup yields were low (avg 25%), while the gas yield was high (avg 32%). The gaseous products were composed primarily of CO and CO/sub 2/. The high relative yields of CO establish the existence of a high temperature fragmentation pathway active during the flash pyrolysis of all biomass materials. 39 references, 2 figures, 5 tables.

  1. Processes for washing a spent ion exchange bed and for treating biomass-derived pyrolysis oil, and apparatuses for treating biomass-derived pyrolysis oil

    DOEpatents

    Baird, Lance Awender; Brandvold, Timothy A.

    2015-11-24

    Processes and apparatuses for washing a spent ion exchange bed and for treating biomass-derived pyrolysis oil are provided herein. An exemplary process for washing a spent ion exchange bed employed in purification of biomass-derived pyrolysis oil includes the step of providing a ion-depleted pyrolysis oil stream having an original oxygen content. The ion-depleted pyrolysis oil stream is partially hydrotreated to reduce the oxygen content thereof, thereby producing a partially hydrotreated pyrolysis oil stream having a residual oxygen content that is less than the original oxygen content. At least a portion of the partially hydrotreated pyrolysis oil stream is passed through the spent ion exchange bed. Water is passed through the spent ion exchange bed after passing at least the portion of the partially hydrotreated pyrolysis oil stream therethrough.

  2. Summary of Fast Pyrolysis and Upgrading GHG Analyses

    SciTech Connect

    Snowden-Swan, Lesley J.; Male, Jonathan L.

    2012-12-07

    by the rich dialogue and convergence around the energy content and GHG reduction of cellulosic ethanol (an example of these discussions can be found in Wang 2011). GHG analyses of fast pyrolysis technology routes are being developed and will require significant work to reach the levels of development and maturity of cellulosic ethanol models. This summary provides some of the first fast pyrolysis analyses and clarifies some of the reasons for differing results in an effort to begin the convergence on assumptions, discussion of quality of models, and harmonization.

  3. Pyrolysis Strategies for Effective Utilization of Lignocellulosic and Algal Biomass

    NASA Astrophysics Data System (ADS)

    Maddi, Balakrishna

    Pyrolysis is a processing technique involving thermal degradation of biomass in the absence of oxygen. The bio-oils obtained following the condensation of the pyrolysis vapors form a convenient starting point for valorizing the major components of lignocellulosic as well as algal biomass feed stocks for the production of fuels and value-added chemicals. Pyrolysis can be implemented on whole biomass or on residues left behind following standard fractionation methods. Microalgae and oil seeds predominantly consist of protein, carbohydrate and triglycerides, whereas lignocellulose is composed of carbohydrates (cellulose and hemicellulose) and lignin. The differences in the major components of these two types of biomass will necessitate different pyrolysis strategies to derive the optimal benefits from the resulting bio-oils. In this thesis, novel pyrolysis strategies were developed that enable efficient utilization of the bio-oils (and/or their vapors) from lignocellulose, algae, as well as oil seed feed stocks. With lignocellulosic feed stocks, pyrolysis of whole biomass as well as the lignin residue left behind following well-established pretreatment and saccharification (i.e., depolymerization of cellulose and hemicellulose to their monomeric-sugars) of the biomass was studied with and without catalysts. Following this, pyrolysis of (lipid-deficient) algae and lignocellulosic feed stocks, under similar reactor conditions, was performed for comparison of product (bio-oil, gas and bio-char) yields and composition. In spite of major differences in component bio-polymers, feedstock properties relevant to thermo-chemical conversions, such as overall C, H and O-content, C/O and H/C molar ratio as well as calorific values, were found to be similar for algae and lignocellulosic material. Bio-oil yields from algae and some lignocellulosic materials were similar; however, algal bio-oils were compositionally different and contained several N-compounds (most likely from

  4. Influence of Partial Combustion on Rapid Pyrolysis of Wood Biomass

    NASA Astrophysics Data System (ADS)

    Yasuda, Hajime; Yamada, Osamu; Kaiho, Mamoru; Shinagawa, Takuya; Matsui, Satoshi; Iwasaki, Toshihiko; Shimada, Sohei

    A batch reactor was made and used in this work. In an actual rapid pyrolyzer/gasifier, each biomass is thrown into high temperature zone in the reactor. In order to simulate the reaction occurred in a fluidized bed rapid pyrolyzer/gasifier, the reactor was designed to inject samples into reaction zone directly and to control the reaction time optionally. Rapid pyrolysis of wood biomasses, such as Konara, bagasse, and EFB (Empty Fruit Bunch), was carried out at 1073K in nitrogen with the reaction time range of 2-20s. Difference in product distribution with varying reaction time was observed apparently among Konara, bagasse, and EFB. The difference in the reactivity among sorts of biomass should be considered even when their elemental composition and/or components ratio are similar. Rapid pyrolysis of wood biomass (Japanese cedar) with small amount of oxygen as gasification agent was also carried out. The amount of product gas was decreased through 1s to 2s and the decreasing rate was higher with increase in the amount of oxygen.

  5. Characteristics and kinetic study on pyrolysis of five lignocellulosic biomass via thermogravimetric analysis.

    PubMed

    Chen, Zhihua; Hu, Mian; Zhu, Xiaolei; Guo, Dabin; Liu, Shiming; Hu, Zhiquan; Xiao, Bo; Wang, Jingbo; Laghari, Mahmood

    2015-09-01

    Pyrolysis characteristics and kinetic of five lignocellulosic biomass pine wood sawdust, fern (Dicranopteris linearis) stem, wheat stalk, sugarcane bagasse and jute (Corchorus capsularis) stick were investigated using thermogravimetric analysis. The pyrolysis of five lignocellulosic biomass could be divided into three stages, which correspond to the pyrolysis of hemicellulose, cellulose and lignin, respectively. Single Gaussian activation energy distributions of each stage are 148.50-201.13 kJ/mol with standard deviations of 2.60-13.37 kJ/mol. The kinetic parameters of different stages were used as initial guess values for three-parallel-DAEM model calculation with good fitting quality and fast convergence rate. The mean activation energy ranges of hemicellulose, cellulose and lignin were 148.12-164.56 kJ/mol, 171.04-179.54 kJ/mol and 175.71-201.60 kJ/mol, with standard deviations of 3.91-9.89, 0.29-1.34 and 23.22-27.24 kJ/mol, respectively. The mass fractions of hemicellulose, cellulose and lignin in lignocellulosic biomass were respectively estimated as 0.12-0.22, 0.54-0.65 and 0.17-0.29. PMID:26080101

  6. Thermochemical conversion of biomass - Gasification by flash pyrolysis study

    NASA Astrophysics Data System (ADS)

    Caubet, S.; Corte, P.; Fahim, C.; Traverse, J. P.

    1982-01-01

    Thermal decomposition of the basic components of dried biomass (cellulose, lignin, wood) is studied in inert atmosphere. Glucose is studied for comparison. The experiments are performed in an alumina porous bed reactor heated at temperatures between 600 and 1000 C. Flash pyrolysis (heating rate 250 C/sec) allows the production of a medium heating value synthetic gas with gas phase conversion thermal efficiency of up to 95 percent. The weight percent of carbon gasified during the pyrolysis reaches 90 percent for cellulose and 70 percent for wood. Light hydrocarbons (CH4, C2H4, C2H2, C2H6) provide about 50 percent of the energy recovered in the gas. Ethylene represents 5 percent (vol) of the pyrolysis gas. The overall ethylene and acetylene yield is markedly increased at high temperatures for short gas residence times. The pyrolysis reactions are endothermic. The total amount of energy required for pyrolysing wood at 850 C roughly corresponds to 20 percent of its heating value.

  7. An exergy based assessment of the production and conversion of switchgrass, equine waste and forest residue to bio-oil using fast pyrolysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The resource efficiency of biofuel production via biomass pyrolysis is evaluated using exergy as an assessment metric. Three feedstocks, important to various sectors of US agriculture, switchgrass, forest residue and equine waste are considered for conversion to bio-oil (pyrolysis oil) via fast pyro...

  8. Value added liquid products from waste biomass pyrolysis using pretreatments.

    PubMed

    Das, Oisik; Sarmah, Ajit K

    2015-12-15

    Douglas fir wood, a forestry waste, was attempted to be converted into value added products by pretreatments followed by pyrolysis. Four different types of pretreatments were employed, namely, hot water treatment, torrefaction, sulphuric acid and ammonium phosphate doping. Subsequently, pyrolysis was done at 500°C and the resulting bio-oils were analysed for their chemical composition using Karl Fischer titration, thermogravimetry, ion exchange, and gas chromatography. Pretreatment with acid resulted in the highest yield of bio-oil (~60%). The acid and salt pretreatments were responsible for drastic reduction in the lignin oligomers and enhancement of water content in the pyrolytic liquid. The quantity of xylose/mannose reduced as a result of pretreatments. Although, the content of fermentable sugars remained similar across all the pretreatments, the yield of levoglucosan increased. Pretreatment of the biomass with acid yielded the highest amount of levoglucosan in the bio-oil (13.21%). The acid and salt pretreatments also elevated the amount of acetic acid in the bio-oils. Addition of acid and salt to the biomass altered the interaction of cellulose-lignin in the pyrolysis regime. Application of pretreatments should be based on the intended end use of the liquid product having a desired chemical composition. PMID:26298257

  9. High quality fuel gas from biomass pyrolysis with calcium oxide.

    PubMed

    Zhao, Baofeng; Zhang, Xiaodong; Chen, Lei; Sun, Laizhi; Si, Hongyu; Chen, Guanyi

    2014-03-01

    The removal of CO2 and tar in fuel gas produced by biomass thermal conversion has aroused more attention due to their adverse effects on the subsequent fuel gas application. High quality fuel gas production from sawdust pyrolysis with CaO was studied in this paper. The results of pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS) experiments indicate that the mass ratio of CaO to sawdust (Ca/S) remarkably affects the behavior of sawdust pyrolysis. On the basis of Py-GC/MS results, one system of a moving bed pyrolyzer coupled with a fluid bed combustor has been developed to produce high quality fuel gas. The lower heating value (LHV) of the fuel gas was above 16MJ/Nm(3) and the content of tar was under 50mg/Nm(3), which is suitable for gas turbine application to generate electricity and heat. Therefore, this technology may be a promising route to achieve high quality fuel gas for biomass utilization. PMID:24486940

  10. Fusion-like behaviour of biomass pyrolysis

    SciTech Connect

    Lede, J.; Li, H.Z.; Villermaux, J.

    1987-04-01

    Considering a thermal reaction of a Solid Fluid type, the apparent rate of reaction can be controlled by chemistry, thermal and mass transfer resistances. If the chemical processes are very fast, and if the fluid products are easily eliminated from the medium, the overall rate of reaction is controlled by heat transfer resistances. This is the case of the ablation regime, characterized by a steep temperature gradient at the wood surface and consequently by a thin superficial layer of reacting solid moving at a constant velocity towards the cold unreacted parts of the solid.

  11. Thermal decomposition and gasification of biomass pyrolysis gases using a hot bed of waste derived pyrolysis char.

    PubMed

    Al-Rahbi, Amal S; Onwudili, Jude A; Williams, Paul T

    2016-03-01

    Chars produced from the pyrolysis of different waste materials have been investigated in terms of their use as a catalyst for the catalytic cracking of biomass pyrolysis gases during the two-stage pyrolysis-gasification of biomass. The chars were produced from the pyrolysis of waste tyres, refused derived fuel and biomass in the form of date stones. The results showed that the hydrocarbon tar yields decreased significantly with all the char materials used in comparison to the non-char catalytic experiments. For example, at a cracking temperature of 800°C, the total product hydrocarbon tar yield decreased by 70% with tyre char, 50% with RDF char and 9% with biomass date stones char compared to that without char. There was a consequent increase in total gas yield. Analysis of the tar composition showed that the content of phenolic compounds decreased and polycyclic aromatic hydrocarbons increased in the product tar at higher char temperatures. PMID:26773946

  12. Predicting properties of gas and solid streams by intrinsic kinetics of fast pyrolysis of wood

    DOE PAGESBeta

    Klinger, Jordan; Bar-Ziv, Ezra; Shonnard, David; Westover, Tyler; Emerson, Rachel

    2015-12-12

    Pyrolysis has the potential to create a biocrude oil from biomass sources that can be used as fuel or as feedstock for subsequent upgrading to hydrocarbon fuels or other chemicals. The product distribution/composition, however, is linked to the biomass source. This work investigates the products formed from pyrolysis of woody biomass with a previously developed chemical kinetics model. Different woody feedstocks reported in prior literature are placed on a common basis (moisture, ash, fixed carbon free) and normalized by initial elemental composition through ultimate analysis. Observed product distributions over the full devolatilization range are explored, reconstructed by the model, andmore » verified with independent experimental data collected with a microwave-assisted pyrolysis system. These trends include production of permanent gas (CO, CO2), char, and condensable (oil, water) species. Elementary compositions of these streams are also investigated. As a result, close agreement between literature data, model predictions, and independent experimental data indicate that the proposed model/method is able to predict the ideal distribution from fast pyrolysis given reaction temperature, residence time, and feedstock composition.« less

  13. Predicting properties of gas and solid streams by intrinsic kinetics of fast pyrolysis of wood

    SciTech Connect

    Klinger, Jordan; Bar-Ziv, Ezra; Shonnard, David; Westover, Tyler; Emerson, Rachel

    2015-12-12

    Pyrolysis has the potential to create a biocrude oil from biomass sources that can be used as fuel or as feedstock for subsequent upgrading to hydrocarbon fuels or other chemicals. The product distribution/composition, however, is linked to the biomass source. This work investigates the products formed from pyrolysis of woody biomass with a previously developed chemical kinetics model. Different woody feedstocks reported in prior literature are placed on a common basis (moisture, ash, fixed carbon free) and normalized by initial elemental composition through ultimate analysis. Observed product distributions over the full devolatilization range are explored, reconstructed by the model, and verified with independent experimental data collected with a microwave-assisted pyrolysis system. These trends include production of permanent gas (CO, CO2), char, and condensable (oil, water) species. Elementary compositions of these streams are also investigated. As a result, close agreement between literature data, model predictions, and independent experimental data indicate that the proposed model/method is able to predict the ideal distribution from fast pyrolysis given reaction temperature, residence time, and feedstock composition.

  14. Life Cycle Assessment of Gasoline and Diesel Produced via Fast Pyrolysis and Hydroprocessing

    SciTech Connect

    Hsu, D. D.

    2011-03-01

    In this work, a life cycle assessment (LCA) estimating greenhouse gas (GHG) emissions and net energy value (NEV) of the production of gasoline and diesel from forest residues via fast pyrolysis and hydroprocessing, from production of the feedstock to end use of the fuel in a vehicle, is performed. The fast pyrolysis and hydrotreating and hydrocracking processes are based on a Pacific Northwest National Laboratory (PNNL) design report. The LCA results show GHG emissions of 0.142 kg CO2-equiv. per km traveled and NEV of 1.00 MJ per km traveled for a process using grid electricity. Monte Carlo uncertainty analysis shows a range of results, with all values better than those of conventional gasoline in 2005. Results for GHG emissions and NEV of gasoline and diesel from pyrolysis are also reported on a per MJ fuel basis for comparison with ethanol produced via gasification. Although pyrolysis-derived gasoline and diesel have lower GHG emissions and higher NEV than conventional gasoline does in 2005, they underperform ethanol produced via gasification from the same feedstock. GHG emissions for pyrolysis could be lowered further if electricity and hydrogen are produced from biomass instead of from fossil sources.

  15. Phenols from pyrolysis and co-pyrolysis of tobacco biomass components.

    PubMed

    Kibet, Joshua K; Khachatryan, Lavrent; Dellinger, Barry

    2015-11-01

    Phenol and its derivatives (phenol, o-, m-, p-cresols, catechol, hydroquinone, methoxy substituted phenols, etc. referred to as phenolic compounds or phenols) are well-known toxicants that exist in the environment and affect both human and natural ecosystems. This study explores quantitatively the yields of phenolic compounds from the thermal degradation (pyrolysis and oxidative pyrolysis) of common tobacco biomass components (lignin, tyrosine, ethyl cellulose, sodium alginate, and laminarin) as well as some mixtures (lignin/tyrosine, ethyl cellulose/tyrosine and sodium alginate/tyrosine) considered important in high temperature cooking, tobacco smoking, and forest fires. Special attention has been given to binary mixtures including those containing tyrosine-pyrolysis of binary mixtures of tyrosine with lignin and ethyl cellulose results in significant reductions in the yields of majority phenols relative to those from the thermal degradation of tyrosine. These results imply that the significant reductions of phenol yields in mixtures are not only dependent upon the mass fractions of the components but also the synergetic inhibition effect of biomass components on the thermal degradation of tyrosine. A mechanistic description of this phenomenon is suggested. The results may also be implied in tobacco industry that the cigarette paper (as ethyl cellulose derivative) may play a critical role in reducing the concentration of phenolic compounds released during tobacco burning. PMID:26091866

  16. Fast profiling of food by analytical pyrolysis.

    PubMed

    Halket, J M; Schulten, H R

    1988-03-01

    The analytical application of direct pyrolysis (Py) field ionization (FI)-mass spectrometry (MS) und Curie-point pyrolysis gas chromatography-mass spectrometry (Py-GC/FIMS) to various whole foodstuffs is described for the first time. The former technique yields highly differentiated information from the sample in typically 15 min, namely the molecular weight distribution of released volatiles and pyrolysis products in a single spectrum which, owing to the good reproducibility and high significance of the resulting data, has previously been shown to be suitable for the application of chemometric methods. Such mass spectral peaks are further characterized and assigned by high resolution mass measurement and/or by electron ionization after Curie-point pyrolysis and gas chromatographic separation of the components. In this first report, typical results are presented for ground roasted coffee, rosehip tea, wheatmeal biscuit, chocolate drink powder and milk chocolate. The FI mass spectrum obtained from the latter sample is compared with those obtained using the complementary soft ionization techniques of chemical ionization (CI) and direct chemical ionization (DCI). PMID:3369241

  17. Fast pyrolysis of sweet soghum bagasse in a fluidized bed

    SciTech Connect

    Palm, M.; Peacocke, C.; Bridgewater, A.V.; Piskorz, J.; Scott, D.S.

    1993-12-31

    Samples of Italian sorghum bagasse were dried and ground and then pyrolyzed in the Waterloo Fast Pyrolysis bench scale reactor unit. Results were typical of agricultural grasses of this kind, and resembled those obtained from similar tests of sugar cane bagasse. A maximum liquid yield (dry feed basis) of 68% by weight of dry feed was achieved, with a corresponding char yield (ash included) of 16%. The high ash content of the bagasse (9.2%) gave a char with a very high ash content ({approx}50%), with calcium as the most abundant cation. Yields of hydroxyacetaldehyde were comparable to those obtained from softwoods. Deionized bagasse gave significant yields of anhydrosugars on pyrolysis. Sorghum bagasse appears to be a suitable feedstock, either for pyrolysis to yield an alternative fuel oil, or after pretreatment and pyrolysis, to yield a solution of fermentable sugars.

  18. Flash Pyrolysis and Fractional Pyrolysis of Oleaginous Biomass in a Fluidized-bed Reactor

    NASA Astrophysics Data System (ADS)

    Urban, Brook

    Thermochemical conversion methods such as pyrolysis have the potential for converting diverse biomass feedstocks into liquid fuels. In particular, bio-oil yields can be maximized by implementing flash pyrolysis to facilitate rapid heat transfer to the solids along with short vapor residence times to minimize secondary degradation of bio-oils. This study first focused on the design and construction of a fluidized-bed flash pyrolysis reactor with a high-efficiency bio-oil recovery unit. Subsequently, the reactor was used to perform flash pyrolysis of soybean pellets to assess the thermochemical conversion of oleaginous biomass feedstocks. The fluidized bed reactor design included a novel feed input mechanism through suction created by flow of carrier gas through a venturi which prevented plugging problems that occur with a more conventional screw feeders. In addition, the uniquely designed batch pyrolysis unit comprised of two tubes of dissimilar diameters. The bottom section consisted of a 1" tube and was connected to a larger 3" tube placed vertically above. At the carrier gas flow rates used in these studies, the feed particles remained fluidized in the smaller diameter tube, but a reduction in carrier gas velocity in the larger diameter "disengagement chamber" prevented the escape of particles into the condensers. The outlet of the reactor was connected to two Allihn condensers followed by an innovative packed-bed dry ice condenser. Due to the high carrier gas flow rates in fluidized bed reactors, bio-oil vapors form dilute aerosols upon cooling which that are difficult to coalesce and recover by traditional heat exchange condensers. The dry ice condenser provided high surface area for inertial impaction of these aerosols and also allowed easy recovery of bio-oils after natural evaporation of the dry ice at the end of the experiments. Single step pyrolysis was performed between 250-610°C with a vapor residence time between 0.3-0.6s. At 550°C or higher, 70% of

  19. Comparison for the compositions of fast and slow pyrolysis oils by NMR characterization.

    PubMed

    Ben, Haoxi; Ragauskas, Arthur J

    2013-11-01

    The pyrolysis of softwood (SW) kraft lignin and pine wood in different pyrolysis systems were examined at 400, 500 and 600 °C. NMR including quantitative (13)C and Heteronuclear Single-Quantum Correlation (HSQC)-NMR, and Gel Permeation Chromatography (GPC) were used to characterize various pyrolysis oils. The content of methoxyl groups decreased by 76% for pine wood and 70% for lignin when using fast pyrolysis system. The carbonyl groups also decreased by 76% and nearly completely eliminated in 600 °C pine wood fast pyrolysis oil. Compared to the slow pyrolysis process, fast pyrolysis process was found to improve the cleavage of methoxyl groups, aliphatic CC bonds and carbonyl groups and produce more polyaromatic hydrocarbons (PAH) from lignin and aliphatic CO bonds from carbohydrates. Another remarkable difference between fast and slow pyrolysis oils was the molecular weight of fast pyrolysis oils increased by 85-112% for pine wood and 104-112% for lignin. PMID:24013295

  20. Novel sorbent materials for environmental remediation via Pyrolysis of biomass

    NASA Astrophysics Data System (ADS)

    Zabaniotou, Anastasia

    2013-04-01

    One of the major challenges facing society at this moment is the transition from a non-sustainable, fossil resources-based economy to a sustainable bio-based economy. By producing multiple products, a biorefinery can take advantage of the differences in biomass components and intermediates and maximize the value derived from the biomass feedstock. The high-value products enhance profitability, the high-volume fuel helps meet national energy needs, and the power production reduces costs and avoids greenhouse-gas emissions From pyrolysis, besides gas and liquid products a solid product - char, is derived as well. This char contains the non converted carbon and can be used for activated carbon production and/or as additive in composite material production. Commercially available activated carbons are still considered expensive due to the use of non-renewable and relatively expensive starting material such as coal. The present study describes pyrolysis as a method to produce high added value carbon materials such as activated carbons (AC) from agricultural residues pyrolysis. Olive kernel has been investigated as the precursor of the above materials. The produced activated carbon was characterized by proximate and ultimate analyses, BET method and porosity estimation. Furthermore, its adsorption of pesticide compound in aqueous solution by was studied. Pyrolysis of olive kernel was conducted at 800 oC for 45min in a fixed reactor. For the production of the activated carbon the pyrolytic char was physically activated under steam in the presence of CO2 at 970oC for 3 h in a bench scale reactor. The active carbons obtained from both scales were characterized by N2 adsorption at 77 K, methyl-blue adsorption (MB adsorption) at room temperature and SEM analysis. Surface area and MB adsorption were found to increase with the degree of burn-off. The surface area of the activated carbons was found to increase up to 1500 m2/g at a burn-off level of 60-65wt.%, while SEM analysis

  1. Numerical Study of Pyrolysis of Biomass in Fluidized Beds

    NASA Technical Reports Server (NTRS)

    Bellan, Josette; Lathouwers, Danny

    2003-01-01

    A report presents a numerical-simulation study of pyrolysis of biomass in fluidized-bed reactors, performed by use of the mathematical model described in Model of Fluidized Bed Containing Reacting Solids and Gases (NPO-30163), which appears elsewhere in this issue of NASA Tech Briefs. The purpose of the study was to investigate the effect of various operating conditions on the efficiency of production of condensable tar from biomass. The numerical results indicate that for a fixed particle size, the fluidizing-gas temperature is the foremost parameter that affects the tar yield. For the range of fluidizing-gas temperatures investigated, and under the assumption that the pyrolysis rate exceeds the feed rate, the optimum steady-state tar collection was found to occur at 750 K. In cases in which the assumption was not valid, the optimum temperature for tar collection was found to be only slightly higher. Scaling up of the reactor was found to exert a small negative effect on tar collection at the optimal operating temperature. It is also found that slightly better scaling is obtained by use of shallower fluidized beds with greater fluidization velocities.

  2. Fast pyrolysis of eucalyptus waste in a conical spouted bed reactor.

    PubMed

    Amutio, Maider; Lopez, Gartzen; Alvarez, Jon; Olazar, Martin; Bilbao, Javier

    2015-10-01

    The fast pyrolysis of a forestry sector waste composed of Eucalyptus globulus wood, bark and leaves has been studied in a continuous bench-scale conical spouted bed reactor plant at 500°C. A high bio-oil yield of 75.4 wt.% has been obtained, which is explained by the suitable features of this reactor for biomass fast pyrolysis. Gas and bio-oil compositions have been determined by chromatographic techniques, and the char has also been characterized. The bio-oil has a water content of 35 wt.%, and phenols and ketones are the main organic compounds, with a concentration of 26 and 10 wt.%, respectively. In addition, a kinetic study has been carried out in thermobalance using a model of three independent and parallel reactions that allows quantifying this forestry waste's content of hemicellulose, cellulose and lignin. PMID:26203554

  3. Conventional and catalytic pyrolysis of pinyon juniper biomass

    NASA Astrophysics Data System (ADS)

    Yathavan, Bhuvanesh Kumar

    Pinyon and juniper are invasive woody species in Western United States that occupy over 47 million acres of land. The US Bureau of Land Management (BLM) has embarked on harvesting these woody species to make room for range grasses for grazing. The major application of harvested pinyon-juniper (PJ) is low value firewood. Thus, there is a need to develop new high value products from this woody biomass to reduce the cost of harvesting. In this research PJ biomass was processed through pyrolysis technology to produce value added products. The first part of the thesis demonstrates the effect of PJ wood, bark and mixture biomass and temperature on the product yield and on the quality of the bio-oil produced. The second part focuses on the optimization of process parameters for maximum yield and the third part focuses on upgrading the bio-oil with an industrial catalyst (HZSM5) and an industrial waste product (red mud). The results obtained from the first part showed that PJ wood produced maximum bio-oil yield, followed by PJ mixture and bark. The bio-oil yield from PJ wood had low viscosity when compared to PJ mixture and PJ bark. The second part focused on studying the effect of process parameters (temperature, feed rate and the gas flow rate) on the total liquid, organic, water, char and gas yield. The results show that each response is affected by different factor level combinations, and maximum yield for each response was obtained at different factors level. The third part focused on catalytic pyrolysis of PJ biomass using both HZSM-5 catalyst and red mud. The mechanisms of catalysis by the two catalysts were quite different. Whereas the HZSM-5 rejected oxygen mostly as carbon monoxide and water and produced lower amounts of carbon dioxide, on the contrary the red mud produced more carbon dioxide and water and less carbon monoxide. The higher heating value of the red mud catalyzed oil (29.46 MJ/kg) was slightly higher than that catalyzed by HZSM-5 (28.55 MJ/kg). Thus

  4. Effect of filter media size, mass flow rate and filtration stage number in a moving-bed granular filter on the yield and properties of bio-oil from fast pyrolysis of biomass.

    PubMed

    Paenpong, Chaturong; Inthidech, Sudsakorn; Pattiya, Adisak

    2013-07-01

    Fast pyrolysis of cassava rhizome was performed in a bench-scale fluidised-bed reactor unit incorporated with a cross-flow moving-bed granular filter. The objective of this research was to examine several process parameters including the granular size (425-1160 μm) and mass flow rate (0-12 g/min) as well as the number of the filtration stages (1-2 stages) on yields and properties of bio-oil. The results showed that the bio-oil yield decreased from 57.7 wt.% to 42.0-49.2 wt.% when increasing the filter media size, the mass flow rate and the filtration stage number. The effect of the process parameters on various properties of bio-oil is thoroughly discussed. In general, the bio-oil quality in terms of the solids content, ash content, initial viscosity, viscosity change and ageing rate could be enhanced by the hot vapour granular filtration. Therefore, bio-oil of high stability could be produced by the pyrolysis reactor configuration designed in this work. PMID:23644068

  5. Mass production of chemicals from biomass-derived oil by directly atmospheric distillation coupled with co-pyrolysis

    PubMed Central

    Zhang, Xue-Song; Yang, Guang-Xi; Jiang, Hong; Liu, Wu-Jun; Ding, Hong-Sheng

    2013-01-01

    Production of renewable commodity chemicals from bio-oil derived from fast pyrolysis of biomass has received considerable interests, but hindered by the presence of innumerable components in bio-oil. In present work, we proposed and experimentally demonstrated an innovative approach combining atmospheric distillation of bio-oil with co-pyrolysis for mass production of renewable chemicals from biomass, in which no waste was produced. It was estimated that 51.86 wt.% of distillate just containing dozens of separable organic components could be recovered using this approach. Ten protogenetic and three epigenetic compounds in distillate were qualitatively identified by gas chromatography/mass spectrometry and quantified by gas chromatography. Among them, the recovery efficiencies of acetic acid, propanoic acid, and furfural were all higher than 80 wt.%. Formation pathways of the distillate components in this process were explored. This work opens up a fascinating prospect for mass production of chemical feedstock from waste biomass. PMID:23350028

  6. Mass production of chemicals from biomass-derived oil by directly atmospheric distillation coupled with co-pyrolysis

    NASA Astrophysics Data System (ADS)

    Zhang, Xue-Song; Yang, Guang-Xi; Jiang, Hong; Liu, Wu-Jun; Ding, Hong-Sheng

    2013-01-01

    Production of renewable commodity chemicals from bio-oil derived from fast pyrolysis of biomass has received considerable interests, but hindered by the presence of innumerable components in bio-oil. In present work, we proposed and experimentally demonstrated an innovative approach combining atmospheric distillation of bio-oil with co-pyrolysis for mass production of renewable chemicals from biomass, in which no waste was produced. It was estimated that 51.86 wt.% of distillate just containing dozens of separable organic components could be recovered using this approach. Ten protogenetic and three epigenetic compounds in distillate were qualitatively identified by gas chromatography/mass spectrometry and quantified by gas chromatography. Among them, the recovery efficiencies of acetic acid, propanoic acid, and furfural were all higher than 80 wt.%. Formation pathways of the distillate components in this process were explored. This work opens up a fascinating prospect for mass production of chemical feedstock from waste biomass.

  7. Product Chemistry and Process Efficiency of Biomass Torrefaction, Pyrolysis and Gasification Studied by High-Throughput Techniques and Multivariate Analysis

    NASA Astrophysics Data System (ADS)

    Xiao, Li

    ), fast growing energy crops (switchgrass), and popular forage crop (alfalfa), as well as biochar derived from those materials and their mixtures. It demonstrated that Py-MBMS coupled with MVA could be used as fast analytical tools for the study of not only biomass composition but also its thermal decomposition behaviors. It found that the impact of biomass composition heavily depends on the thermal decomposition temperature because at different temperature, the composition of biomass decomposed and the impact of minerals on the decomposition reaction varies. At low temperature (200-500°C), organic compounds attribute to the majority of variation in thermal decomposition products. At higher temperature, inorganics dramatically changed the pyrolysis pathway of carbohydrates and possibly lignin. In gasification, gasification tar formation is also observed to be impacted by ash content in vapor and char. In real reactor, biochar structure also has interactions with other fractions to make the final pyrolysis and gasification product. Based on the evaluation of process efficiencies during torrefaction, temperature ranging from 275°C to 300°C with short residence time (<10min) are proposed to be optimal torrefaction conditions. 500°C is preferred to 700°C as primary pyrolysis temperature in two stage gasification because higher primary pyrolysis temperature resulted in more tar and less gasification char. Also, in terms of carbon yield, more carbon is lost in tar while less carbon is retained in gas product using 700°C as primary pyrolysis temperature. In addition, pyrolysis char is found to produce less tar and more gas during steam gasification compared with gasification of pyrolysis vapor. Thus it is suggested that torrefaction might be an efficient pretreatment for biomass gasification because it can largely improve the yield of pyrolysis char during the primary pyrolysis step of gasification thus reduce the total tar of the overall gasification products. Future work

  8. Spontaneous Aerosol Ejection: Origin of Inorganic Particles in Biomass Pyrolysis.

    PubMed

    Teixeira, Andrew R; Gantt, Rachel; Joseph, Kristeen E; Maduskar, Saurabh; Paulsen, Alex D; Krumm, Christoph; Zhu, Cheng; Dauenhauer, Paul J

    2016-06-01

    At high thermal flux and temperatures of approximately 500 °C, lignocellulosic biomass transforms to a reactive liquid intermediate before evaporating to condensable bio-oil for downstream upgrading to renewable fuels and chemicals. However, the existence of a fraction of nonvolatile compounds in condensed bio-oil diminishes the product quality and, in the case of inorganic materials, catalyzes undesirable aging reactions within bio-oil. In this study, ablative pyrolysis of crystalline cellulose was evaluated, with and without doped calcium, for the generation of inorganic-transporting aerosols by reactive boiling ejection from liquid intermediate cellulose. Aerosols were characterized by laser diffraction light scattering, inductively coupled plasma spectroscopy, and high-speed photography. Pyrolysis product fractionation revealed that approximately 3 % of the initial feed (both organic and inorganic) was transported to the gas phase as aerosols. Large bubble-to-aerosol size ratios and visualization of significant late-time ejections in the pyrolyzing cellulose suggest the formation of film bubbles in addition to the previously discovered jet formation mechanism. PMID:27125341

  9. The effect of torrefaction on the chemistry of fast-pyrolysis bio-oil.

    PubMed

    Meng, Jiajia; Park, Junyeong; Tilotta, David; Park, Sunkyu

    2012-05-01

    Fast pyrolysis was performed on torrefied loblolly pine and the collected bio-oils were analyzed to compare the effect of the torrefaction treatment on their quality. The results of the analyses show that bio-oils produced from torrefied wood have improved oxygen-to-carbon ratios compared to those from the original wood with the penalty of a decrease in bio-oil yield. The extent of this improvement depends on the torrefaction severity. Based on the GC/MS analysis of the pyrolysis bio-oils, bio-oils produced from torrefied biomass show different compositions compared to that from the original wood. Specifically, the former becomes more concentrated in pyrolytic lignin with less water content than the latter. It was considered that torrefaction could be a potential upgrading method to improve the quality of bio-oil, which might be a useful feedstock for phenolic-based chemicals. PMID:22370230

  10. A granular-biomass high temperature pyrolysis model based on the Darcy flow

    NASA Astrophysics Data System (ADS)

    Guan, Jian; Qi, Guoli; Dong, Peng

    2015-03-01

    We established a model for the chemical reaction kinetics of biomass pyrolysis via the high-temperature thermal cracking of liquid products. We divided the condensable volatiles into two groups, based on the characteristics of the liquid prdoducts., tar and biomass oil. The effects of temperature, residence time, particle size, velocity, pressure, and other parameters on biomass pyrolysis and high-temperature tar cracking were investigated numerically, and the results were compared with experimental data. The simulation results showed a large endothermic pyrolysis reaction effect on temperature and the reaction process. The pyrolysis reaction zone had a constant temperature period in several layers near the center of large biomass particles. A purely physical heating process was observed before and after this period, according to the temperature index curve.

  11. Structural analysis of pyrolytic lignins isolated from switchgrass fast pyrolysis oil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Structural characterization of lignin extracted from the bio-oil produced by fast pyrolysis of switchgrass (Panicum virgatum) is reported. This new information is important to understanding the utility of lignin as a chemical feedstock in a pyrolysis based biorefinery. Pyrolysis induces a variety of...

  12. Chemical composition of bio-oils produced by fast pyrolysis of two energy crops

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fast pyrolysis of switchgrass and alfalfa stems (from two stages of development: bud and full flower stages) has been carried out in a 2.5 kg/hr fluidized bed reactor. Pyrolysis experiments were conducted at 500 deg C under a nitrogen atmosphere. The liquid product, bio-oil (pyrolysis oil or pyrol...

  13. Microwave induced fast pyrolysis of scrap rubber tires

    NASA Astrophysics Data System (ADS)

    Ani, Farid Nasir; Mat Nor, Nor Syarizan

    2012-06-01

    Pyrolysis is the thermal degradation of carbonaceous solid by heat in the absence of oxygen. The feedstocks, such as biomass or solid wastes are heated to a temperature between 400 and 600°C, without introducing oxygen to support the reaction. The reaction produces three products: gas, pyro-fuel oil and char. This paper presents the techniques of producing pyro-oil from waste tires, as well as investigation of the fuel properties suitable for diesel engine applications. In this study, microwave heating technique is employed to pyrolyse the used rubber tires into pyro-oil. Thermal treatment of as received used rubber tires is carried out in a modified domestic microwave heated fixed bed technology. It has been found that, rubber tires, previously used by various researchers, are poor microwave absorbers. Studies have shown that an appropriate microwave-absorbing material, such as biomass char or activated carbon, could be added to enhance the pyrolysis process; thus producing the pyro-oil. The characteristics of pyro-oil, as well as the effect of microwave absorber on its yield, are briefly described in this paper. The temperature profiles during the microwave heating process are also illustratively emphasized. The study provides a means of converting scrap tires into pyro-oil and pyrolytic carbon black production. The proposed microwave thermal conversion process therefore has the potentials of substantially saving time and energy.

  14. Impact of the lignocellulosic material on fast pyrolysis yields and product quality.

    PubMed

    Carrier, Marion; Joubert, Jan-Erns; Danje, Stephen; Hugo, Thomas; Görgens, Johann; Knoetze, Johannes Hansie

    2013-12-01

    The paper describes the fast pyrolysis conversion of lignocellulosic materials inside a bubbling fluidized bed. The impact of biopolymers distribution in the biomass feed, namely hemicelluloses, cellulose and lignin, on the yields and properties of pyrolytic bio-oils and chars was investigated. Although it is not possible to deconvoluate chemical phenomena from transfer phenomena using bubbling fluidized bed reactors, the key role of hemicelluloses in biomass feedstocks was illustrated by: (i) its influence on the production of pyrolytic water, (ii) its impact on the production of organics, apparently due to its bonding relationship with the lignin and (iii) its ability to inhibit the development of chars porosity, while the cellulose appeared to be the precursor for the microporous character of the biochars. These results are of interest for the selection of suitable feedstocks aimed at producing bio-oil and char as fuels and soil amendment, respectively. PMID:24161551

  15. Lignin depolymerization and upgrading via fast pyrolysis and electrocatalysis for the production of liquid fuels and value-added products

    NASA Astrophysics Data System (ADS)

    Garedew, Mahlet

    The production of liquid hydrocarbon fuels from biomass is needed to replace fossil fuels, which are decreasing in supply at an unsustainable rate. Renewable fuels also address the rising levels of greenhouse gases, an issue for which the Intergovernmental Panel on Climate Change implicated humanity in 2013. In response, the Energy Independence and Security Act (EISA) mandates the production of 21 billion gallons of advanced biofuels by 2022. Biomass fast pyrolysis (BFP) uses heat (400-600 °C) without oxygen to convert biomass to liquids fuel precursors offering an alternative to fossil fuels and a means to meet the EISA mandate. The major product, bio-oil, can be further upgraded to liquid hydrocarbon fuels, while biochar can serve as a solid fuel or soil amendment. The combustible gas co-product is typically burned for process heat. Though the most valuable of the pyrolysis products, the liquid bio-oil is highly oxygenated, corrosive, low in energy content and unstable during storage. As a means of improving bio-oil properties, electrocatalytic hydrogenation (ECH) is employed to reduce and deoxygenate reactive compounds. This work specifically focuses on lignin as a feed material for BFP. As lignin comprises up to 30% of the mass and 40% of the energy stored in biomass, it offers great potential for the production of liquid fuels and value-added products by utilizing fast pyrolysis as a conversion method coupled with electrocatalysis as an upgrading method.

  16. Biofuels via Fast Pyrolysis of Perennial Grasses: A Life Cycle Evaluation of Energy Consumption and Greenhouse Gas Emissions.

    PubMed

    Zaimes, George G; Soratana, Kullapa; Harden, Cheyenne L; Landis, Amy E; Khanna, Vikas

    2015-08-18

    A well-to-wheel (WTW) life cycle assessment (LCA) model is developed to evaluate the environmental profile of producing liquid transportation fuels via fast pyrolysis of perennial grasses: switchgrass and miscanthus. The framework established in this study consists of (1) an agricultural model used to determine biomass growth rates, agrochemical application rates, and other key parameters in the production of miscanthus and switchgrass biofeedstock; (2) an ASPEN model utilized to simulate thermochemical conversion via fast pyrolysis and catalytic upgrading of bio-oil to renewable transportation fuel. Monte Carlo analysis is performed to determine statistical bounds for key sustainability and performance measures including life cycle greenhouse gas (GHG) emissions and Energy Return on Investment (EROI). The results of this work reveal that the EROI and GHG emissions (gCO2e/MJ-fuel) for fast pyrolysis derived fuels range from 1.52 to 2.56 and 22.5 to 61.0 respectively, over the host of scenarios evaluated. Further analysis reveals that the energetic performance and GHG reduction potential of fast pyrolysis-derived fuels are highly sensitive to the choice of coproduct scenario and LCA allocation scheme, and in select cases can change the life cycle carbon balance from meeting to exceeding the renewable fuel standard emissions reduction threshold for cellulosic biofuels. PMID:26196154

  17. Pyrolysis based bio-refinery for the production of bioethanol from demineralized ligno-cellulosic biomass.

    PubMed

    Luque, Luis; Westerhof, Roel; Van Rossum, Guus; Oudenhoven, Stijn; Kersten, Sascha; Berruti, Franco; Rehmann, Lars

    2014-06-01

    This paper evaluates a novel biorefinery approach for the conversion of lignocellulosic biomass from pinewood. A combination of thermochemical and biochemical conversion was chosen with the main product being ethanol. Fast pyrolysis of lignocellulosic biomasss with fractional condensation of the products was used as the thermochemical process to obtain a pyrolysis-oil rich in anhydro-sugars (levoglucosan) and low in inhibitors. After hydrolysis of these anhydro-sugars, glucose was obtained which was successfully fermented, after detoxification, to obtain bioethanol. Ethanol yields comparable to traditional biochemical processing were achieved (41.3% of theoretical yield based on cellulose fraction). Additional benefits of the proposed biorefinery concept comprise valuable by-products of the thermochemical conversion like bio-char, mono-phenols (production of BTX) and pyrolytic lignin as a source of aromatic rich fuel additive. The inhibitory effect of thermochemically derived fermentation substrates was quantified numerically to compare the effects of different process configurations and upgrading steps within the biorefinery approach. PMID:24681340

  18. Nitrogen conversion under rapid pyrolysis of two types of aquatic biomass and corresponding blends with coal.

    PubMed

    Yuan, Shuai; Chen, Xue-li; Li, Wei-feng; Liu, Hai-feng; Wang, Fu-chen

    2011-11-01

    Rapid pyrolysis of two types of aquatic biomass (blue-green algae and water hyacinth), and their blends with two coals (bituminous and anthracite) was carried out in a high-frequency furnace. Nitrogen conversions during rapid pyrolysis of the two biomass and the interactions between the biomass and coals on nitrogen conversions were investigated. Results show that little nitrogen retained in char after the biomass pyrolysis, and NH(3) yields were higher than HCN. During co-pyrolysis of biomass and coal, interactions between biomass and coal decreased char-N yields and increased volatile-N yields, but the total yields of NH(3)+HCN in volatile-N were decreased in which HCN formations were decreased consistently, while NH(3) formations were only decreased in the high-temperature range but promoted in the low-temperature range. Interactions between blue-green algae and coals are stronger than those between water hyacinth and coal, and interactions between biomass and bituminous are stronger than those between biomass and anthracite. PMID:21903383

  19. Conversion of agricultural bio-mass to energy via catalyst assisted pyrolysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    One method for converting agricultural waste or specifically grown crops to energy is by heating this “bio-mass” to high temperatures in the absence of oxygen, a process called pyrolysis. Burning bio-mass in the presence of oxygen produces mostly carbon dioxide and water. Burning biomass in the ab...

  20. H-ZSM5 Catalyzed co-pyrolysis of biomass and plastics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study aims at addressing two important problems vital to agriculture, disposal of agricultural plastics and production of drop-in fuels from biomass via co-pyrolysis of both feedstocks. Mixtures of biomass (switchgrass, cellulose, xylan and lignin) and plastic (polyethylene terephthalate (PET),...

  1. A Comparative study of microwave-induced pyrolysis of lignocellulosic and algal biomass.

    PubMed

    Wang, Nan; Tahmasebi, Arash; Yu, Jianglong; Xu, Jing; Huang, Feng; Mamaeva, Alisa

    2015-08-01

    Microwave (MW) pyrolysis of algal and lignocellulosic biomass samples were studied using a modified domestic oven. The pyrolysis temperature was recorded continuously by inserting a thermocouple into the samples. Temperatures as high as 1170 and 1015°C were achieved for peanut shell and Chlorella vulgaris. The activation energy for MW pyrolysis was calculated by Coats-Redfern method and the values were 221.96 and 214.27kJ/mol for peanut shell and C. vulgaris, respectively. Bio-oil yields reached to 27.7wt.% and 11.0wt.% during pyrolysis of C. vulgaris and peanut shell, respectively. The bio-oil samples from pyrolysis were analyzed by a gas chromatography-mass spectrometry (GC-MS). Bio-oil from lignocellulosic biomass pyrolysis contained more phenolic compounds while that from microalgae pyrolysis contained more nitrogen-containing species. Fourier transform infrared spectroscopy (FTIR) analysis results showed that concentration of OH, CH, CO, OCH3, and CO functional groups in char samples decreased significantly after pyrolysis. PMID:25935388

  2. Co-pyrolysis of Chinese lignite and biomass in a vacuum reactor.

    PubMed

    Yang, Xiao; Yuan, Chengyong; Xu, Jiao; Zhang, Weijiang

    2014-12-01

    A vacuum fixed bed reactor was applied to pyrolyze lignite, biomass (rice husk) and their blend with high temperature (900 °C) and low heating rate (10 °C/min). Pyrolytic products were kept in the vacuum reactor during the whole pyrolysis process, guaranteeing a long contact time (more than 2 h) for their interactions. Remarkable synergetic effects were observed. Addition of biomass obviously influenced the tar and char yields, gas volume yield, gas composition, char structure and tar composition during co-pyrolysis. It was highly possible that char gasification, gaseous phase interactions, and secondary tar cracking were facilitated when lignite and biomass were co-pyrolyzed. PMID:25277348

  3. Catalytic Fast Pyrolysis of Cellulose Using Nano Zeolite and Zeolite/Matrix Catalysts in a GC/Micro-Pyrolyzer.

    PubMed

    Lee, Kyong-Hwan

    2016-05-01

    Cellulose, as a model compound of biomass, was catalyzed over zeolite (HY,.HZSM-5) and zeolite/matrix (HY/Clay, HM/Clay) in a GC/micro-pyrolyzer at 500 degrees C, to produce the valuable products. The catalysts used were pure zeolite and zeolite/matrix including 20 wt% matrix content, which were prepared into different particle sizes (average size; 0.1 mm, 1.6 mm) to study the effect of the particle size of the catalyst for the distribution of product yields. Catalytic pyrolysis had much more volatile products as light components and less content of sugars than pyrolysis only. This phenomenon was strongly influenced by the particle size of the catalyst in catalytic fast pyrolysis. Also, in zeolite and zeolite/matrix catalysts the zeolite type gave the dominant impact on the distribution of product yields. PMID:27483802

  4. Numerical simulation of vortex pyrolysis reactors for condensable tar production from biomass

    SciTech Connect

    Miller, R.S.; Bellan, J.

    1998-08-01

    A numerical study is performed in order to evaluate the performance and optimal operating conditions of vortex pyrolysis reactors used for condensable tar production from biomass. A detailed mathematical model of porous biomass particle pyrolysis is coupled with a compressible Reynolds stress transport model for the turbulent reactor swirling flow. An initial evaluation of particle dimensionality effects is made through comparisons of single- (1D) and multi-dimensional particle simulations and reveals that the 1D particle model results in conservative estimates for total pyrolysis conversion times and tar collection. The observed deviations are due predominantly to geometry effects while directional effects from thermal conductivity and permeability variations are relatively small. Rapid ablative particle heating rates are attributed to a mechanical fragmentation of the biomass particles that is modeled using a critical porosity for matrix breakup. Optimal thermal conditions for tar production are observed for 900 K. Effects of biomass identity, particle size distribution, and reactor geometry and scale are discussed.

  5. Radiant flash pyrolysis as a source of liquid syrups from biomass

    SciTech Connect

    Hofmann, L.; Antal, M.J.

    1981-01-01

    Continuing research at Princeton has identified compelling reasons for the use of solar heat to flash pyrolyze biomass materials. Recent efforts to design a solar fired reactor which selectively produces high yields of sugar related syrups from particulate biomass materials are described. To obtain a high yield of liquid syrups, the flash pyrolysis reactor must decouple the solid's temperature from the temperature of the gaseous environment within the reactor. This can be accomplished by using the intense flux of concentrated solar energy to rapidly heat opaque particles of biomass to high temperatures, while minimizing heat transfer losses from the particles to their gaseous environment. Under these conditions, volatile matter evolved by ablative pyrolysis of the biomass particles rapidly cools in the gaseous environment. This cooling occurs before subsequent gas phase pyrolysis destroys the integrity of the monomeric sugar units composing the volatile matter. The results of a numerical simulation which analyzes in detail the heat transfer phenomena occurring in a reactor are discussed.

  6. Pyrolysis Treatment of Chromite Ore Processing Residue by Biomass: Cellulose Pyrolysis and Cr(VI) Reduction Behavior.

    PubMed

    Zhang, Da-Lei; Zhang, Mei-Yi; Zhang, Chu-Hui; Sun, Ying-Jie; Sun, Xiao; Yuan, Xian-Zheng

    2016-03-15

    The pyrolysis treatment with biomass is a promising technology for the remediation of chromite-ore-processing residue (COPR). However, the mechanism of this process is still unclear. In this study, the behavior of pyrolysis reduction of Cr(VI) by cellulose, the main component of biomass, was elucidated. The results showed that the volatile fraction (VF) of cellulose, ie. gas and tar, was responsible for Cr(VI) reduction. All organic compounds, as well as CO and H2 in VF, potentially reduced Cr(VI). X-ray absorption near-edge structure (XANES) spectroscopy and extended X-ray absorption fine-structure (EXAFS) spectroscopy confirmed the reduction of Cr(VI) to Cr(III) and the formation of amorphous Cr2O3. The remnant Cr(VI) content in COPR can be reduced below the detection limit (2 mg/kg) by the reduction of COPR particle and extension of reaction time between VF and COPR. This study provided a deep insight on the co-pyrolysis of cellulose with Cr(VI) in COPR and an ideal approach by which to characterize and optimize the pyrolysis treatment for COPR by other organics. PMID:26862886

  7. Co-pyrolysis of low rank coals and biomass: Product distributions

    SciTech Connect

    Soncini, Ryan M; Means, Nicholas C; Weiland, Nathan T

    2013-10-01

    Pyrolysis and gasification of combined low rank coal and biomass feeds are the subject of much study in an effort to mitigate the production of green house gases from integrated gasification combined cycle (IGCC) systems. While co-feeding has the potential to reduce the net carbon footprint of commercial gasification operations, the effects of co-feeding on kinetics and product distributions requires study to ensure the success of this strategy. Southern yellow pine was pyrolyzed in a semi-batch type drop tube reactor with either Powder River Basin sub-bituminous coal or Mississippi lignite at several temperatures and feed ratios. Product gas composition of expected primary constituents (CO, CO{sub 2}, CH{sub 4}, H{sub 2}, H{sub 2}O, and C{sub 2}H{sub 4}) was determined by in-situ mass spectrometry while minor gaseous constituents were determined using a GC-MS. Product distributions are fit to linear functions of temperature, and quadratic functions of biomass fraction, for use in computational co-pyrolysis simulations. The results are shown to yield significant nonlinearities, particularly at higher temperatures and for lower ranked coals. The co-pyrolysis product distributions evolve more tar, and less char, CH{sub 4}, and C{sub 2}H{sub 4}, than an additive pyrolysis process would suggest. For lignite co-pyrolysis, CO and H{sub 2} production are also reduced. The data suggests that evolution of hydrogen from rapid pyrolysis of biomass prevents the crosslinking of fragmented aromatic structures during coal pyrolysis to produce tar, rather than secondary char and light gases. Finally, it is shown that, for the two coal types tested, co-pyrolysis synergies are more significant as coal rank decreases, likely because the initial structure in these coals contains larger pores and smaller clusters of aromatic structures which are more readily retained as tar in rapid co-pyrolysis.

  8. The origin of molecular mobility during biomass pyrolysis as revealed by in situ (1)H NMR spectroscopy.

    PubMed

    Dufour, Anthony; Castro-Diaz, Miguel; Brosse, Nicolas; Bouroukba, Mohamed; Snape, Colin

    2012-07-01

    The thermochemical conversion of lignocellulosic biomass feedstocks offers an important potential route for the production of biofuels and value-added green chemicals. Pyrolysis is the first phenomenon involved in all biomass thermochemical processes and it controls to a major extent the product composition. The composition of pyrolysis products can be affected markedly by the extent of softening that occurs. In spite of extensive work on biomass pyrolysis, the development of fluidity during the pyrolysis of biomass has not been quantified. This paper provides the first experimental investigation of proton mobility during biomass pyrolysis by in situ (1)H NMR spectroscopy. The origin of mobility is discussed for cellulose, lignin and xylan. The effect of minerals on cellulose mobility is also investigated. Interactions between polymers in the native biomass network are revealed by in situ (1)H NMR analysis. PMID:22573541

  9. Preparation of brightness stabilization agent for lignin containing pulp from biomass pyrolysis oils

    DOEpatents

    Agblevor, Foster A.; Besler-Guran, Serpil

    2001-01-01

    A process for producing a brightness stabilization mixture of water-soluble organic compounds from biomass pyrolysis oils comprising: a) size-reducing biomass material and pyrolyzing the size-reduced biomass material in a fluidized bed reactor; b) separating a char/ash component while maintaining char-pot temperatures to avoid condensation of pyrolysis vapors; c) condensing pyrolysis gases and vapors, and recovering pyrolysis oils by mixing the oils with acetone to obtain an oil-acetone mixture; d) evaporating acetone and recovering pyrolysis oils; e) extracting the pyrolysis oils with water to obtain a water extract; f) slurrying the water extract with carbon while stirring, and filtering the slurry to obtain a colorless filtrate; g) cooling the solution and stabilizing the solution against thermally-induced gelling and solidification by extraction with ethyl acetate to form an aqueous phase lower layer and an organic phase upper layer; h) discarding the upper organic layer and extracting the aqueous layer with ethyl acetate, and discarding the ethyl acetate fraction to obtain a brown-colored solution not susceptible to gelling or solidification upon heating; i) heating the solution to distill off water and other light components and concentrating a bottoms fraction comprising hydroxyacetaldehyde and other non-volatile components having high boiling points; and j) decolorizing the stabilized brown solution with activated carbon to obtain a colorless solution.

  10. Enhancing biogas production of corn stover by fast pyrolysis pretreatment.

    PubMed

    Wang, Fang; Zhang, Deli; Wu, Houkai; Yi, Weiming; Fu, Peng; Li, Yongjun; Li, Zhihe

    2016-10-01

    A new thermo-chemical pretreatment by a lower temperature fast pyrolysis (LTFP) was applied to promote anaerobic digestion (AD) efficiency of corn stover (CS). The pretreatment experiment was performed by a fluidized bed pyrolysis reactor at 180, 200 and 220°C with a carrier gas flow rate of 4 and 3m(3)/h. The components characteristics, Scanning Electron Microscope (SEM) images and Crystal Intensity (CrI) of the pretreated CS were tested to explore effectiveness of the pretreatment. The results showed that the cumulative methane production at 180°C for 4 and 3m(3)/h were 199.8 and 200.3mL/g TS, respectively. As compared to the untreated CS, the LTFP pretreatment significantly (a<0.05) increased the methane production by 18.07% and 18.33%, respectively. Methane production was well fitted by the Gompertz models, and the maximum methane potential and AD efficiency was obtained at 180°C for 3m(3)/h. PMID:27420161

  11. Torrefaction of agriculture straws and its application on biomass pyrolysis poly-generation.

    PubMed

    Chen, Yingquan; Yang, Haiping; Yang, Qing; Hao, Hongmeng; Zhu, Bo; Chen, Hanping

    2014-03-01

    This study investigated the properties of corn stalk and cotton stalk after torrefaction, and the effects of torrefaction on product properties obtained under the optimal condition of biomass pyrolysis polygeneration. The color of the torrefied biomass chars darkened, and the grindability was upgraded, with finer particles formed and grinding energy consumption reduced. The moisture and oxygen content significantly decreased whereas the carbon content increased considerably. It was found that torrefaction had different effects on the char, liquid oil and biogas from biomass pyrolysis polygeneration. Compared to raw straws, the output of chars from pyrolysis of torrefied straws increased and the quality of chars as a solid fuel had no significant change, while the output of liquid oil and biogas decreased. The liquid oil contained more concentrated phenols with less water content below 40wt.%, and the biogas contained more concentrated H2 and CH4 with higher LHV up to 15MJ/nm(3). PMID:24486935

  12. Pyrolysis Research at the National Renewable Energy Laboratory

    SciTech Connect

    Iisa, Kristiina; Ciesielski, Peter N.; Nimlos, Mark R.

    2014-01-01

    The overwhelming majority of biomass pyrolysis research at NREL is supported by the US Department of Energy's Office of the Biomass Program and is focused on the production of 'drop-in' transportation fuels. This includes studies of fast pyrolysis and vapor phase upgrading of pyrolysis vapors to produce hydrocarbon fuel blendstocks or refinery feedstocks.

  13. Sustainability assessment of water hyacinth fast pyrolysis in the Upper Paraguay River basin, Brazil.

    PubMed

    Buller, Luz Selene; Ortega, Enrique; Bergier, Ivan; Mesa-Pérez, Juan Miguel; Salis, Suzana Maria; Luengo, Carlos Alberto

    2015-11-01

    Fast pyrolysis of naturally produced water hyacinth was assessed through Emergy accounting approach. Two analyses were carried out to evaluate the influence of additional services and externalities on Emergy indicators for a pyrolysis plant unit able to process 1000 kg of dry biomass per hour. The initial approach was a traditional Emergy assessment in which financial fluxes and externalities were not considered. The second approach included taxes and fees of the Brazilian government, interests related to financing operations and assumes a reserve financial fund of 5% of the total investment as externalities cost. For the first evaluation, the renewability of 86% indicates that local and renewable resources mainly support the process and the Emergy Yield Ratio of 3.2 shows that the system has a potential contribution to the regional economy due to the local resources use. The inclusion of financial fluxes and externalities in the second evaluation reduces both renewability and Emergy Yield Ratio, whereas it increases the Emergy Investment Ratio which means a higher dependence on external resources. The second analysis allows portraying significant forces of the industrial and financial systems and the evaluation of the externalities' impact on the general system Emergy behavior. A comparison of the renewability of water hyacinth fast pyrolysis with other biofuels like soybean biodiesel and sugarcane ethanol indicates that the former is less dependent on fossil fuel resources, machinery and fertilizers. To complement the sustainability assessment provided by the Emergy method, a regular financial analysis for the second defined system was done. It shows that the system is financially attractive even with the accounting of additional costs. The results obtained in this study could be used as the maximum and minimum thresholds to subsidize regulatory policies for new economic activities in tropical wetlands involving natural resources exploitation and bio

  14. Flash pyrolysis of biomass with reactive and nonreactive gases

    SciTech Connect

    Sundaram, M.S.; Steinberg, M.; Fallon, P.

    1982-10-01

    Studies were done on the flash pyrolysis of Douglas fir wood in the presence of reactive and nonreactive gases including hydrogen, methane, and helium. Pyrolysis and gasification of the wood particles was done in one step, without catalysts. Almost complete (98%) gasification of the carbon in Douglas fir wood was achieved at 1000/sup 0/C and 500-psi hydrogen pressure. The reaction products were methane, ethane, ethylene, carbon monoxide, BTX, and water. Flash hydropyrolysis produced a large yield of hydrocarbon gases (up to 78% C) comprising methane and ethane. High yields of ethylene (up to 21% C) and BTX (up to 12% C) were obtained via methane pyrolysis of fir wood; a free-radical mechanism is proposed to explain the enhanced yield of ethylene in a methane atmosphere.

  15. Pyrolysis and solvolysis of biomass in supercritical fluid solvents

    SciTech Connect

    Townsend, S.H.; Klein, M.T.

    1987-04-01

    The reactions of diaryl ethers and alkanes were examined in water at varying densities. The ethers, namely benzyl phenyl ether (BPE), phenethyl phenyl ether (PPE) and dibenzyl ether (DBE) underwent parallel pyrolysis and hydrolysis. The former paths led to the usual products described in the literature, whereas the latter led to benzyl alcohol plus phenol, phenethyl alcohol plus phenol and two mols of benzyl alcohol for BPE, PPE and DBE, respectively. 1,2-Diphenylethane (DPE) and 1,3-diphenylpropane (DPP) fragmented according to the neat pyrolysis pathway only, even at the highest water density studied.

  16. Design and operation of a solar fired biomass flash pyrolysis reactor

    SciTech Connect

    Antal, M.J.; Hofmann, L.; Brown, C.T.; Steenblick, R.

    1981-01-01

    The results of continuing research on the radiant flash pyrolysis of biomass as a source of fluid fuels, industrial feedstocks, and chemicals are described. Bench-scale sources of intense, visible radiant energy were used to simulate the concentrated solar flux available at the focus of solar towers. Windowed transport reactors were developed, which act as cavity receivers for the focused radiant energy and provide a means for direct use of the radiation to rapidly pyrolyze the entering biomass. Detailed result of both bench scale experiments and experiments using the Georgia Tech 400 kW (thermal) solar furnace are presented. These results suggest the use of concentrated radiant energy as a selective means for the production of either a hydrocarbon-rich synthesis gas or sugar related syrups from biomass by flash pyrolysis. Sawdust, ground corncobs, and powdered microcrystal cellulose were the biomass feedstocks in this work.

  17. Pyrolysis and combustion kinetics of date palm biomass using thermogravimetric analysis.

    PubMed

    Sait, Hani H; Hussain, Ahmad; Salema, Arshad Adam; Ani, Farid Nasir

    2012-08-01

    The present research work is probably the first attempt to focus on the kinetics of pyrolysis and combustion process for date palm biomass wastes like seed, leaf and leaf stem by using Thermogravimetric Analysis (TGA) technique. The physical properties of biomass wastes were also examined. Proximate and ultimate analysis of the date palm biomass was investigated. FT-IR analysis was conducted to determine possible chemical functional groups in the biomass. Results showed that date palm seed and leaf can be characterized as high calorific values and high volatile content biomass materials as compared to the leaf stem. Kinetic analysis of this biomass was also given a particular attention. It is concluded that these biomasses can become useful source of energy, chemicals and bio-char. PMID:22705960

  18. Effect of Potassium on the Mechanisms of Biomass Pyrolysis Studied using Complementary Analytical Techniques.

    PubMed

    Le Brech, Yann; Ghislain, Thierry; Leclerc, Sébastien; Bouroukba, Mohammed; Delmotte, Luc; Brosse, Nicolas; Snape, Colin; Chaimbault, Patrick; Dufour, Anthony

    2016-04-21

    Complementary analytical methods have been used to study the effect of potassium on the pyrolysis mechanisms of cellulose and lignocellulosic biomasses. Thermogravimetry, calorimetry, high-temperature (1) H NMR spectroscopy (in situ and real-time analysis of the fluid phase formed during pyrolysis), and water extraction of quenched char followed by size-exclusion chromatography coupled with mass spectrometry have been combined. Potassium impregnated in cellulose suppresses the formation of anhydrosugars, reduces the formation of mobile protons, and gives rise to a mainly exothermic signal. The evolution of mobile protons formed from K-impregnated cellulose has a very similar pattern to the evolution of the mass loss rate. This methodology has been also applied to analyze miscanthus, demineralized miscanthus, miscanthus re-impregnated with potassium after demineralization, raw oak, and Douglas fir. Hydrogen mobility and transfer are of high importance in the mechanisms of biomass pyrolysis. PMID:26990591

  19. Study on pyrolysis characteristics of lignocellulosic biomass impregnated with ammonia source.

    PubMed

    Li, Kai; Zhu, Changpeng; Zhang, Liqiang; Zhu, Xifeng

    2016-06-01

    The current study presents the pyrolysis characteristics of rice husk impregnated with different kinds of ammonia source (ammonium acetate, urea, ammonium sulfate and ammonium dihydrogen phosphate) in a fixed bed reactor. The introduction of ammonia source in pyrolysis process achieved the conversation from carbonyl compounds to nitrogenous heterocyclic compounds. The liquid product of urea-impregnated biomass has higher content of nitrogenous heterocyclic compounds (8.35%) and phenols (30.4%). For ammonium sulfate and ammonium dihydrogen phosphate-impregnated biomass, the quantity of compounds in liquid products reduces remarkably, and the gas products are rich in CO and H2. All the solid products of pyrolysis have great potential application in biochar-based fertilizer and activated carbon for their high N content. PMID:26967337

  20. Sustainability: The capacity of smokeless biomass pyrolysis for energy production, global carbon capture and sequestration

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Application of modern smokeless biomass pyrolysis for biochar and biofuel production is potentially a revolutionary approach for global carbon capture and sequestration at gigatons of carbon (GtC) scales. A conversion of about 7% of the annual terrestrial gross photosynthetic product (120 GtC y-1) i...

  1. The characteristic and evaluation method of fast pyrolysis of microalgae to produce syngas.

    PubMed

    Hu, Zhifeng; Ma, Xiaoqian; Li, Longjun

    2013-07-01

    The fast pyrolysis of Chlorella vulgaris was carried out in a quartz tube reactor under different pyrolysis temperature levels. The product fractional yields, gaseous products and the evaluation method based on heating value and energy consumption were analyzed in order to obtain the optimal condition to produce syngas. The results indicated that the higher the pyrolysis temperature level was, the higher the bio-fuel yield was. 900°C is the best temperature to obtain the maximum bio-fuel yield (91.09 wt.%). And the highest emission of CO and H2 were achieved under the pyrolysis temperature of 800 and 900°C, respectively. According to the evaluation method based on heating value and energy consumption, there was a significant impact on the syngas production under different pyrolysis temperatures. Furthermore, the evaluation method based on energy consumption indicated that 800°C was the optimal pyrolysis temperature to produce syngas. PMID:23693148

  2. Process for preparing phenolic formaldehyde resole resin products derived from fractionated fast-pyrolysis oils

    DOEpatents

    Chum, Helena L.; Kreibich, Roland E.

    1992-01-01

    A process for preparing phenol-formaldehyde resole resins and adhesive compositions in which portions of the phenol normally contained in said resins are replaced by a phenol/neutral fractions extract obtained from fractionating fast-pyrolysis oils.

  3. Syngas production by two-stage method of biomass catalytic pyrolysis and gasification.

    PubMed

    Xie, Qinglong; Kong, Sifang; Liu, Yangsheng; Zeng, Hui

    2012-04-01

    A two-stage technology integrated with biomass catalytic pyrolysis and gasification processes was utilized to produce syngas (H(2)+CO). In the presence of different nickel based catalysts, effects of pyrolysis temperature and gasification temperature on gas production were investigated. Experimental results showed that more syngas and char of high quality could be obtained at a temperature of 750°C in the stage of pyrolysis, and in the stage of gasification, pyrolysis char (produced at 750°C) reacted with steam and the maximum yield of syngas was obtained at 850°C. Syngas yield in this study was greatly increased compared with previous studies, up to 3.29Nm(3)/kg biomass. The pyrolysis process could be well explained by Arrhenius kinetic first-order rate equation. XRD analyses suggested that formation of Mg(0.4)Ni(0.6)O and increase of Ni(0) crystallite size were two main reasons for the deactivation of nickel based catalysts at higher temperature. PMID:22342084

  4. Fast pyrolysis of microalgae remnants in a fluidized bed reactor for bio-oil and biochar production.

    PubMed

    Wang, Kaige; Brown, Robert C; Homsy, Sally; Martinez, Liliana; Sidhu, Sukh S

    2013-01-01

    In this study, pyrolysis of microalgal remnants was investigated for recovery of energy and nutrients. Chlorella vulgaris biomass was first solvent-extracted for lipid recovery then the remnants were used as the feedstock for fast pyrolysis experiments using a fluidized bed reactor at 500 °C. Yields of bio-oil, biochar, and gas were 53, 31, and 10 wt.%, respectively. Bio-oil from C. vulgaris remnants was a complex mixture of aromatics and straight-chain hydrocarbons, amides, amines, carboxylic acids, phenols, and other compounds with molecular weights ranging from 70 to 1200 Da. Structure and surface topography of the biochar were analyzed. The high inorganic content (potassium, phosphorous, and nitrogen) of the biochar suggests it may be suitable to provide nutrients for crop production. The bio-oil and biochar represented 57% and 36% of the energy content of the microalgae remnant feedstock, respectively. PMID:23069615

  5. Tar Production from Biomass Pyrolysis in a Fluidized Bed Reactor: A Novel Turbulent Multiphase Flow Formulation

    NASA Technical Reports Server (NTRS)

    Bellan, J.; Lathouwers, D.

    2000-01-01

    A novel multiphase flow model is presented for describing the pyrolysis of biomass in a 'bubbling' fluidized bed reactor. The mixture of biomass and sand in a gaseous flow is conceptualized as a particulate phase composed of two classes interacting with the carrier gaseous flow. The solid biomass is composed of three initial species: cellulose, hemicellulose and lignin. From each of these initial species, two new solid species originate during pyrolysis: an 'active' species and a char, thus totaling seven solid-biomass species. The gas phase is composed of the original carrier gas (steam), tar and gas; the last two species originate from the volumetric pyrolysis reaction. The conservation equations are derived from the Boltzmann equations through ensemble averaging. Stresses in the gaseous phase are the sum of the Newtonian and Reynolds (turbulent) contributions. The particulate phase stresses are the sum of collisional and Reynolds contributions. Heat transfer between phases, and heat transfer between classes in the particulate phase is modeled, the last resulting from collisions between sand and biomass. Closure of the equations must be performed by modeling the Reynolds stresses for both phases. The results of a simplified version (first step) of the model are presented.

  6. Experimental evaluation of a solar fired flash pyrolysis of biomass reactor

    SciTech Connect

    Antal, M.J. Jr.; Edwards, W.E.; Steenblik, R.A.; Brown, C.T.; Knight, J.A.; Elston, L.W.; Hurst, D.R.

    1981-01-01

    A Princeton-Georgia Institute of Technology flash pyrolysis of biomass test program was conducted at the DOE Advanced Components Test Facility (CTF) at Georgia Tech in August 1980. The 400 kWth solar thermal facility was used to provide a source of highly concentrated radiant energy for the flash pyrolysis of four types of biomass in a steam counterflow quartz reactor. The biomass materials were microcrystalline cellulose, hardwood sawdust, ground corn cob, and Kraft lignin. The experiments at Princeton and Georgia Tech suggest the use of concentrated radiant energy as a selective means for the production of either a hydrocarbon rich synthesis gas or sugar related syrups from biomass by flash pyrolysis. Experiments at Princeton have indicated that sugar related syrups are selectively produced when the biomass particles are rapidly heated by radiation in a cool gaseous environment. The gas temperatures in the reactor during the test program at Georgia Tech were relatively high, which selectively turned the chemistry toward the production of hydrocarbon rich synthesis gases.

  7. Mild hydrothermal conditioning prior to torrefaction and slow pyrolysis of low-value biomass.

    PubMed

    Van Poucke, R; Nachenius, R W; Agbo, K E; Hensgen, F; Bühle, L; Wachendorf, M; Ok, Y S; Tack, F M G; Prins, W; Ronsse, F; Meers, E

    2016-10-01

    The aim of this research was to establish whether hydrothermal conditioning and subsequent thermochemical processing via batch torrefaction or slow pyrolysis may improve the fuel quality of grass residues. A comparison in terms of fuel quality was made of the direct thermochemical processing of the feedstock versus hydrothermal conditioning as a pretreatment prior to thermochemical processing. Hydrothermal conditioning reduced ash content, and particularly nitrogen, potassium and chlorine contents in the biomass. The removal of volatile organic matter associated with thermochemical processes can increase the HHV to levels of volatile bituminous coal. However, slow pyrolysis only increased the HHV of biomass provided a low ash content (<6%) feedstock was used. In conclusion, hydrothermal conditioning can have a highly positive influence on the efficiency of thermochemical processes for upgrading low-value (high-ash) biomass to a higher quality fuel. PMID:26976062

  8. Release characteristics of alkali and alkaline earth metallic species during biomass pyrolysis and steam gasification process.

    PubMed

    Long, Jiang; Song, Hu; Jun, Xiang; Sheng, Su; Lun-Shi, Sun; Kai, Xu; Yao, Yao

    2012-07-01

    Investigating the release characteristics of alkali and alkaline earth metallic species (AAEMs) is of potential interest because of AAEM's possible useful service as catalysts in biomass thermal conversion. In this study, three kinds of typical Chinese biomass were selected to pyrolyse and their chars were subsequently steam gasified in a designed quartz fixed-bed reactor to investigate the release characteristics of alkali and alkaline earth metallic species (AAEMs). The results indicate that 53-76% of alkali metal and 27-40% of alkaline earth metal release in pyrolysis process, as well as 12-34% of alkali metal and 12-16% of alkaline earth metal evaporate in char gasification process, and temperature is not the only factor to impact AAEMs emission. The releasing characteristics of AAEMs during pyrolysis and char gasification process of three kinds of biomass were discussed in this paper. PMID:22525260

  9. Thermochemical conversion of raw and defatted algal biomass via hydrothermal liquefaction and slow pyrolysis.

    PubMed

    Vardon, Derek R; Sharma, Brajendra K; Blazina, Grant V; Rajagopalan, Kishore; Strathmann, Timothy J

    2012-04-01

    Thermochemical conversion is a promising route for recovering energy from algal biomass. Two thermochemical processes, hydrothermal liquefaction (HTL: 300 °C and 10-12 MPa) and slow pyrolysis (heated to 450 °C at a rate of 50 °C/min), were used to produce bio-oils from Scenedesmus (raw and defatted) and Spirulina biomass that were compared against Illinois shale oil. Although both thermochemical conversion routes produced energy dense bio-oil (35-37 MJ/kg) that approached shale oil (41 MJ/kg), bio-oil yields (24-45%) and physico-chemical characteristics were highly influenced by conversion route and feedstock selection. Sharp differences were observed in the mean bio-oil molecular weight (pyrolysis 280-360 Da; HTL 700-1330 Da) and the percentage of low boiling compounds (bp<400 °C) (pyrolysis 62-66%; HTL 45-54%). Analysis of the energy consumption ratio (ECR) also revealed that for wet algal biomass (80% moisture content), HTL is more favorable (ECR 0.44-0.63) than pyrolysis (ECR 0.92-1.24) due to required water volatilization in the latter technique. PMID:22285293

  10. The major parameters on biomass pyrolysis for hyperaccumulative plants--A review.

    PubMed

    Dilks, R T; Monette, F; Glaus, M

    2016-03-01

    Phytoextraction is one of the main phytoremediation techniques and it has often been described as a potentially feasible in situ soil decontamination method of large amounts of heavy metals, organic pollutants and explosive compounds. As this remediation technique is approaching extensive on-field experimentation and commercialization, research focus is on investigating new ways to achieve the valorisation of its by-products. Biomass pyrolysis represents a key step to numerous valorisation options and it is characterized by differential output products that are determined by the operating conditions of the process and the characteristics of the input. However, when used to valorise plants that have undergone significant metal uptake, this strategy involves some new aspects related to harvest, procedure and final product reutilization. This paper reviews the studies made on biomass pyrolysis of plants with emphasis on the differential quality and distribution of pyrolysis products in relation with the variables of the process and the metal-rich phytoextraction feedstock properties. By investigating these parameters, this survey provides indications on ways to optimize the valorisation of phytoremediation by-products through biomass pyrolysis. PMID:26741543

  11. Corrosion Studies Of Raw And Treated Biomass-Derived Pyrolysis Oils

    SciTech Connect

    Keiser, James R; Howell, Michael; Lewis Sr, Samuel Arthur; Connatser, Raynella M

    2012-01-01

    Rapid pyrolysis of biomass generates a liquid with properties that are particularly attractive for production of hydrocarbons that could be substituted for liquid fuels derived from petroleum. However, the high oxygen content of the biomass derived liquids presents a number of problems because of the high water content and the considerable concentration of carboxylic acids. Measurements of total acid number (TAN) of pyrolysis oil (bio-oil) samples show that values in the 90-100 range are fairly common. This level of acidity has been shown to cause corrosion problems that have to be addressed in the selection of structural materials that are used in the production, subsequent processing, storage and transport of the pyrolysis oils. Chemical analyses have been performed and laboratory corrosion studies have been conducted in order to assess the aggressiveness of the raw pyrolysis oil from several sources as well as the corrosion caused by a bio-oil that has been treated to reduce the acid and oxygen content. Components of biomass pyrolyzers have also been fabricated from various candidate alloys, and these components have been exposed for extended periods during operation of the pyrolyzers. This paper will report on results of these analyses and corrosion studies.

  12. Production of green aromatics and olefins by catalytic fast pyrolysis of wood sawdust

    SciTech Connect

    Carlson, Torren R.; Cheng, Yu-Ting; Jae, Jungho; Huber, George W.

    2011-10-26

    Catalytic fast pyrolysis of pine wood sawdust and furan (a model biomass compound) with ZSM-5 based catalysts was studied with three different reactors: a bench scale bubbling fluidized bed reactor, a fixed bed reactor and a semi-batch pyroprobe reactor. The highest aromatic yield from sawdust of 14% carbon in the fluidized bed reactor was obtained at low biomass weight hourly space velocities (less than 0.5 h-1) and high temperature (600 °C). Olefins (primarily ethylene and propylene) were also produced with a carbon yield of 5.4% carbon. The biomass weight hourly space velocity and the reactor temperature can be used to control both aromatic yield and selectivity. At low biomass WHSV the more valuable monocyclic aromatics are produced and the formation of less valuable polycyclic aromatics is inhibited. Lowering the reaction temperature also results in more valuable monocyclic aromatics. The olefins produced during the reaction can be recycled to the reactor to produce additional aromatics. Propylene is more reactive than ethylene. Co-feeding propylene to the reactor results in a higher aromatic yield in both continuous reactors and higher conversion of the intermediate furan in the fixed bed reactor. When olefins are recycled aromatic yields from wood of 20% carbon can be obtained. After ten reaction–regeneration cycles there were metal impurities deposited on the catalyst, however, the acid sites on the zeolite are not affected. Of the three reactors tested the batch pyroprobe reactor yielded the most aromatics, however, the aromatic product is largely naphthalene. The continuous reactors produce less naphthalene and the sum of aromatics plus olefin products is higher than the pyroprobe reactor.

  13. Valorization of selected biomass and wastes by co-pyrolysis with coal

    SciTech Connect

    Moliner, R.; Lazaro, M.J.; Suelves, I.; Blesa, M.J.

    2004-07-01

    Implementation of a more sensible energy-environmental policy should include a 'green alliance of biomass and coal to pursue eco-friendly technologies for co-utilizing biomass and other opportunity fuels with coal or natural gas'. This article discusses two parallel cases of copyolysis of coal with biomass or wastes. In the first case, smokeless fuel briquettes are prepared with a low-rank coal and biomass byproducts such as olive stones and sawdust. Additives to improve the mechanical properties and the sulfur retention in ash are used. The briquettes showed good mechanical properties and slow, uniform, smokeless combustion. In the second case, petroleum residua and waste lubrication oils are used to produce chemicals and energy by co-pyrolysis with coal. It has been shown that co-pyrolysis in the presence of coal char selectively promotes transfer of hydrogen from the parent material to the gas and liquid products, concentrating carbon in the remaining char. Split-off hydrogen from carbon is enhanced when the primary co-pyrolysis products are submitted to thermocatalytic decomposition in a subsequent catalytic step. This process represents an attractive route for the production of carbon dioxide free hydrogen from hydrocarbons, whatever their origin. 34 refs., 5 figs., 4 tabs.

  14. Comparative study on pyrolysis of lignocellulosic and algal biomass using a thermogravimetric and a fixed-bed reactor.

    PubMed

    Yuan, Ting; Tahmasebi, Arash; Yu, Jianglong

    2015-01-01

    Pyrolysis characteristics of four algal and lignocellulosic biomass samples were studied by using a thermogravimetric analyzer (TGA) and a fixed-bed reactor. The effects of pyrolysis temperature and biomass type on the yield and composition of pyrolysis products were investigated. The average activation energy for pyrolysis of biomass samples by FWO and KAS methods in this study were in the range of 211.09-291.19kJ/mol. CO2 was the main gas component in the early stage of pyrolysis, whereas H2 and CH4 concentrations increased with increasing pyrolysis temperature. Bio-oil from Chlorellavulgaris showed higher content of nitrogen containing compounds compared to lignocellulosic biomass. The concentration of aromatic organic compounds such as phenol and its derivatives were increased with increasing pyrolysis temperature up to 700°C. FTIR analysis results showed that with increasing pyrolysis temperature, the concentration of OH, CH, CO, OCH3, and CO functional groups in char decreased sharply. PMID:25459840

  15. TG-FTIR study on co-pyrolysis of municipal solid waste with biomass.

    PubMed

    Ren, Qiangqiang; Zhao, Changsui; Wu, Xin; Liang, Cai; Chen, Xiaoping; Shen, Jiezhong; Tang, Guoyong; Wang, Zheng

    2009-09-01

    Co-pyrolysis of cotton stalk, a representative agricultural biomass in China, mixed with municipal solid waste (MSW) with high ash content and low calorific value was carried out using a thermogravimetric analyzer (TGA) coupled with a Fourier transform infrared (FTIR) spectrometer in Ar atmosphere. Pyrolysis characteristic and pollutant emission performance from MSW and stalk blends at different mass proportions were studied. The results show that as the mass proportion of stalk added increases, the total weight loss of the blend during pyrolysis increases. The addition of stalk has substantial effects on the N-selectivity to HCN, NH(3) and HNCO. In the presence of stalk, lower concentrations of HCl are detected. PMID:19362817

  16. Experimental measurement of ablation rate of wood pieces, undergoing fast pyrolysis by contact with a heated wall

    SciTech Connect

    Lede, J.; Panagopoulos, J.; Villermaux, J.

    1983-01-01

    The conventional pyrolysis of biomass yields about equal amounts of gases, char and tar. When pyrolysis is carried out in severe heating conditions, the reaction products can be almost entirely gaseous and contain significant amounts of light unsaturated hydrocarbons. Authors involved in such research, generally recommend several types of conditions: small wood particles, high temperatures, high heating rates, high heat fluxes, etc. Few of them have associated the idea of ablation regime, to the observation of the fast pyrolysis reaction. Actually, the apparent rate of reaction is a function of two competitive processes within the wood particle: the rate of heat transfer and the rate of chemical decomposition of wood itself. If chemical processes are very fast, the heat transfer is rate controlling: this is the so called ablation regime characterized by a thin superficial layer of reacting wood). Such a regime can be represented by the rate at which the reacting layer moves towards the cold unreacted core of the piece of wood (ablation rate v) and the thickness of this reacting layer (e).

  17. Hydrothermal carbonization of biomass residuals: A comparative review of the chemistry, processes and applications of wet and dry pyrolysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This paper reviews chemistry, processes and application of hydrothermcally carbonized biomass wastes. Potential feedstock for the hydrothermal carbonization (HTC) includes variety of the non-traditional renewable wet agricultural and municipal waste streams. Pyrolysis and HTC show a comparable calor...

  18. [Influence of urea formaldehyde resin on pyrolysis of biomass: a modeling study by TG-FTIR].

    PubMed

    Li, Si-jin; Mu, Jun; Zhang, Yu

    2014-06-01

    Pyrolysis is an efficient and recycling way to utilize waste wood-based panels, in which urea-formaldehyde resin (UF) is the main difference between wood-based board and other kinds of biomass. The present paper studied the three main components (cellulose, hemicelluloses, lignin) of poplar wood, in order to effectively and environmentally utilize or dispose of waste wood-based panels with pyrolysis technique, to study the influence of urea formaldehyde resin on pyrolytic characteristic of wood during the process of the pyrolysis of waste wood-based panels, and to in-depth explore the mechanism of the effect of UF on each component of wood. Innovatively, the weight-loss character and gas evolution rule of the model (made from cellulose, xylan and lignin, based on the chemical components stud of poplar wood), the main components as well as the ones mixed with UF were analyzed by TG-FTIR (thermogravimetric analyzer coupled to a Fourier transform infrared spectrometer). Results indicated that UF promoted the generation of water and carboxylic acid substances during the cellulose pyrolysis process. UF combined with lignin, formed some kind of unstable nitrogenous structure which produced a large amount of NH3, which took part in the low-temperature (200-300 degrees C) pyrolysis of lignin, and directly affected the production of pyrolysis products. It can be concluded that during the process of the pyrolysis of waste wood-based panels, lignin was the one that UF mainly impacted among the three main components of wood. PMID:25358153

  19. Intrinsic activation: the relationship between biomass inorganic content and porosity formation during pyrolysis.

    PubMed

    Stratford, James P; Hutchings, Tony R; de Leij, Frans A A M

    2014-05-01

    The utility of pyrolytic carbons is closely related to their porosity and surface area, there is a clear benefit to the development of biomass pyrolysis processes which produce highly porous carbons. The results presented in this work demonstrate that by using biomass precursors with high inorganic content along with specified process conditions, carbons can be consistently produced with specific surface areas between 900 and 1600 m(2)/g. Results from 12 different source materials show that the formation of increased porosity in pyrolytic carbons is strongly associated with the presence of inorganic elements in the precursors including: magnesium, potassium and sulfur. It was found that pyrolysis of macro-algae can produce especially high specific surface area carbons (mean: 1500 m(2)/g), without externally applied activating agents. Using cheap readily available agricultural residues such as oilseed rape straw, pyrolytic carbons can be produced with specific surface areas of around 950 m(2)/g. PMID:24632632

  20. MINIMIZING NET CO2 EMISSIONS BY OXIDATIVE CO-PYROLYSIS OF COAL / BIOMASS BLENDS

    SciTech Connect

    Todd Lang; Robert Hurt

    2001-12-23

    This study presents a set of thermodynamic calculations on the optimal mode of solid fuel utilization considering a wide range of fuel types and processing technologies. The technologies include stand-alone combustion, biomass/coal cofiring, oxidative pyrolysis, and straight carbonization with no energy recovery but with elemental carbon storage. The results show that the thermodynamically optimal way to process solid fuels depends strongly on the specific fuels and technologies available, the local demand for heat or for electricity, and the local baseline energy-production method. Burning renewable fuels reduces anthropogenic CO{sub 2} emissions as widely recognized. In certain cases, however, other processing methods are equally or more effective, including the simple carbonization or oxidative pyrolysis of biomass fuels.

  1. Pyrolysis of oil palm empty fruit bunch biomass pellets using multimode microwave irradiation.

    PubMed

    Salema, Arshad Adam; Ani, Farid Nasir

    2012-12-01

    Oil palm empty fruit bunch pellets were subjected to pyrolysis in a multimode microwave (MW) system (1 kW and 2.45 GHz frequency) with and without the MW absorber, activated carbon. The ratio of biomass to MW absorber not only affected the temperature profiles of the EFB but also pyrolysis products such as bio-oil, char, and gas. The highest bio-oil yield of about 21 wt.% was obtained with 25% MW absorber. The bio-oil consisted of phenolic compounds of about 60-70 area% as detected by GC-MS and confirmed by FT-IR analysis. Ball lightning (plasma arc) occurred due to residual palm oil in the EFB biomass without using an MW absorber. The bio-char can be utilized as potential alternative fuel because of its heating value (25 MJ/kg). PMID:23026320

  2. Chemicals from Lignin by Catalytic Fast Pyrolysis, from Product Control to Reaction Mechanism.

    PubMed

    Ma, Zhiqiang; Custodis, Victoria; Hemberger, Patrick; Bährle, Christian; Vogel, Frédéric; Jeschk, Gunnar; van Bokhoven, Jeroen A

    2015-01-01

    Conversion of lignin into renewable and value-added chemicals by thermal processes, especially pyrolysis, receives great attention. The products may serve as feedstock for chemicals and fuels and contribute to the development of a sustainable society. However, the application of lignin conversion is limited by the low selectivity from lignin to the desired products. The opportunities for catalysis to selectively convert lignin into useful chemicals by catalytic fast pyrolysis and our efforts to elucidate the mechanism of lignin pyrolysis are discussed. Possible research directions will be identified. PMID:26598403

  3. Well-to-wheels analysis of fast pyrolysis pathways with the GREET model.

    SciTech Connect

    Han, J.; Elgowainy, A.; Palou-Rivera, I.; Dunn, J.B.; Wang, M.Q.

    2011-12-01

    The pyrolysis of biomass can help produce liquid transportation fuels with properties similar to those of petroleum gasoline and diesel fuel. Argonne National Laboratory conducted a life-cycle (i.e., well-to-wheels [WTW]) analysis of various pyrolysis pathways by expanding and employing the Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) model. The WTW energy use and greenhouse gas (GHG) emissions from the pyrolysis pathways were compared with those from the baseline petroleum gasoline and diesel pathways. Various pyrolysis pathway scenarios with a wide variety of possible hydrogen sources, liquid fuel yields, and co-product application and treatment methods were considered. At one extreme, when hydrogen is produced from natural gas and when bio-char is used for process energy needs, the pyrolysis-based liquid fuel yield is high (32% of the dry mass of biomass input). The reductions in WTW fossil energy use and GHG emissions relative to those that occur when baseline petroleum fuels are used, however, is modest, at 50% and 51%, respectively, on a per unit of fuel energy basis. At the other extreme, when hydrogen is produced internally via reforming of pyrolysis oil and when bio-char is sequestered in soil applications, the pyrolysis-based liquid fuel yield is low (15% of the dry mass of biomass input), but the reductions in WTW fossil energy use and GHG emissions are large, at 79% and 96%, respectively, relative to those that occur when baseline petroleum fuels are used. The petroleum energy use in all scenarios was restricted to biomass collection and transportation activities, which resulted in a reduction in WTW petroleum energy use of 92-95% relative to that found when baseline petroleum fuels are used. Internal hydrogen production (i.e., via reforming of pyrolysis oil) significantly reduces fossil fuel use and GHG emissions because the hydrogen from fuel gas or pyrolysis oil (renewable sources) displaces that from fossil fuel

  4. NOx and N2O precursors from biomass pyrolysis: nitrogen transformation from amino acid.

    PubMed

    Ren, Qiangqiang; Zhao, Changsui

    2012-04-01

    Large quantities of NO(x) and N(2)O emissions can be produced from biomass burning. Understanding nitrogen behavior during biomass pyrolysis is crucial. Nitrogen in biomass is mainly in forms of proteins (amino acids). Phenylalanine, aspartic acid, and glutamic acid were used as the model compounds for the nitrogen in biomass. Release behavior tests of nitrogen species from the three amino acids during pyrolysis in argon and gasification with O(2) and CO(2) were performed using a thermogravimetric analyzer (TGA) coupled with a Fourier transform infrared (FTIR) spectrometer. The results indicate that although the influence of oxygen and CO(2) in the atmosphere on nitrogen behavior is different for the amino acids, it is interesting to find some phenomenon in common. The presence of oxygen promotes NO and HNCO formation for all the three amino acids; HCN and HNCO formation are suppressed by introduced CO(2) for all the three amino acids. This can reveal the N-conversion mechanism from biomass in depth under the same conditions. PMID:22439902

  5. Jobs and Economic Development Impact (JEDI) User Reference Guide: Fast Pyrolysis Biorefinery Model

    SciTech Connect

    Zhang, Y.; Goldberg, M.

    2015-02-01

    This guide -- the JEDI Fast Pyrolysis Biorefinery Model User Reference Guide -- was developed to assist users in operating and understanding the JEDI Fast Pyrolysis Biorefinery Model. The guide provides information on the model's underlying methodology, as well as the parameters and data sources used to develop the cost data utilized in the model. This guide also provides basic instruction on model add-in features and a discussion of how the results should be interpreted. Based on project-specific inputs from the user, the JEDI Fast Pyrolysis Biorefinery Model estimates local (e.g., county- or state-level) job creation, earnings, and output from total economic activity for a given fast pyrolysis biorefinery. These estimates include the direct, indirect and induced economic impacts to the local economy associated with the construction and operation phases of biorefinery projects.Local revenue and supply chain impacts as well as induced impacts are estimated using economic multipliers derived from the IMPLAN software program. By determining the local economic impacts and job creation for a proposed biorefinery, the JEDI Fast Pyrolysis Biorefinery Model can be used to field questions about the added value biorefineries might bring to a local community.

  6. Life cycle environmental and economic tradeoffs of using fast pyrolysis products for power generation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bio-oils produced from small-scale pyrolysis technology may have economic and environmental benefits for both densifying agricultural biomass and supplying local bio-energy markets (e.g., Renewable Portfolio Standards). This study presents a life cycle assessment (LCA) of a farm-scale bio-oil produ...

  7. The effects of torrefaction on compositions of bio-oil and syngas from biomass pyrolysis by microwave heating.

    PubMed

    Ren, Shoujie; Lei, Hanwu; Wang, Lu; Bu, Quan; Chen, Shulin; Wu, Joan; Julson, James; Ruan, Roger

    2013-05-01

    Microwave pyrolysis of torrefied Douglas fir sawdust pellet was investigated to determine the effects of torrefaction on the biofuel production. Compared to the pyrolysis of raw biomass, the increased concentrations of phenols and sugars and reduced concentrations of guaiacols and furans were obtained from pyrolysis of torrefied biomass, indicating that torrefaction as a pretreatment favored the phenols and sugars production. Additionally, about 3.21-7.50 area% hydrocarbons and the reduced concentration of organic acids were obtained from pyrolysis of torrefied biomass. Torrefaction also altered the compositions of syngas by reducing CO2 and increasing H2 and CH4. The syngas was rich in H2, CH4, and CO implying that the syngas quality was significantly improved by torrefaction process. PMID:22840200

  8. Biomass pyrolysis: Thermal decomposition mechanisms of furfural and benzaldehyde

    NASA Astrophysics Data System (ADS)

    Vasiliou, AnGayle K.; Kim, Jong Hyun; Ormond, Thomas K.; Piech, Krzysztof M.; Urness, Kimberly N.; Scheer, Adam M.; Robichaud, David J.; Mukarakate, Calvin; Nimlos, Mark R.; Daily, John W.; Guan, Qi; Carstensen, Hans-Heinrich; Ellison, G. Barney

    2013-09-01

    The thermal decompositions of furfural and benzaldehyde have been studied in a heated microtubular flow reactor. The pyrolysis experiments were carried out by passing a dilute mixture of the aromatic aldehydes (roughly 0.1%-1%) entrained in a stream of buffer gas (either He or Ar) through a pulsed, heated SiC reactor that is 2-3 cm long and 1 mm in diameter. Typical pressures in the reactor are 75-150 Torr with the SiC tube wall temperature in the range of 1200-1800 K. Characteristic residence times in the reactor are 100-200 μsec after which the gas mixture emerges as a skimmed molecular beam at a pressure of approximately 10 μTorr. Products were detected using matrix infrared absorption spectroscopy, 118.2 nm (10.487 eV) photoionization mass spectroscopy and resonance enhanced multiphoton ionization. The initial steps in the thermal decomposition of furfural and benzaldehyde have been identified. Furfural undergoes unimolecular decomposition to furan + CO: C4H3O-CHO (+ M) → CO + C4H4O. Sequential decomposition of furan leads to the production of HC≡CH, CH2CO, CH3C≡CH, CO, HCCCH2, and H atoms. In contrast, benzaldehyde resists decomposition until higher temperatures when it fragments to phenyl radical plus H atoms and CO: C6H5CHO (+ M) → C6H5CO + H → C6H5 + CO + H. The H atoms trigger a chain reaction by attacking C6H5CHO: H + C6H5CHO → [C6H6CHO]* → C6H6 + CO + H. The net result is the decomposition of benzaldehyde to produce benzene and CO.

  9. Obtaining fermentable sugars by dilute acid hydrolysis of hemicellulose and fast pyrolysis of cellulose.

    PubMed

    Jiang, Liqun; Zheng, Anqing; Zhao, Zengli; He, Fang; Li, Haibin; Liu, Weiguo

    2015-04-01

    The objective of this study was to get fermentable sugars by dilute acid hydrolysis of hemicellulose and fast pyrolysis of cellulose from sugarcane bagasse. Hemicellulose could be easily hydrolyzed by dilute acid as sugars. The remained solid residue of acid hydrolysis was utilized to get levoglucosan by fast pyrolysis economically. Levoglucosan yield from crystalline cellulose could be as high as 61.47%. Dilute acid hydrolysis was also a promising pretreatment for levoglucosan production from lignocellulose. The dilute acid pretreated sugarcane bagasse resulted in higher levoglucosan yield (40.50%) in fast pyrolysis by micropyrolyzer, which was more effective than water washed (29.10%) and un-pretreated (12.84%). It was mainly ascribed to the effective removal of alkali and alkaline earth metals and the accumulation of crystalline cellulose. This strategy seems a promising route to achieve inexpensive fermentable sugars from lignocellulose for biorefinery. PMID:25690683

  10. Biomass pyrolysis for biochar or energy applications? A life cycle assessment.

    PubMed

    Peters, Jens F; Iribarren, Diego; Dufour, Javier

    2015-04-21

    The application of biochar as a soil amendment is a potential strategy for carbon sequestration. In this paper, a slow pyrolysis system for generating heat and biochar from lignocellulosic energy crops is simulated and its life-cycle performance compared with that of direct biomass combustion. The use of the char as biochar is also contrasted with alternative use options: cofiring in coal power plants, use as charcoal, and use as a fuel for heat generation. Additionally, the influence on the results of the long-term stability of the biochar in the soil, as well as of biochar effects on biomass yield, is evaluated. Negative greenhouse gas emissions are obtained for the biochar system, indicating a significant carbon abatement potential. However, this is achieved at the expense of lower energy efficiency and higher impacts in the other assessed categories when compared to direct biomass combustion. When comparing the different use options of the pyrolysis char, the most favorable result is obtained for char cofiring substituting fossil coal, even assuming high long-term stability of the char. Nevertheless, a high sensitivity to biomass yield increase is found for biochar systems. In this sense, biochar application to low-quality soils where high yield increases are expected would show a more favorable performance in terms of global warming. PMID:25830564

  11. Real-Time and Post-Reaction Microscopic Structural Analysis of Biomass Undergoing Pyrolysis

    SciTech Connect

    Haas, T. J.; Nimlos, M. R.; Donohoe, B. S.

    2009-01-01

    The structural complexity of unprocessed plant tissues used for thermochemical conversion of biomass to fuels and energy impedes heat and mass transfer and may increase the occurrence of tar-forming secondary chemical reactions. At industrial scales, gas and liquid products trapped within large biomass particles may reduce net fuel yields and increase tars, impacting industrial operations and increasing overall costs. Real-time microscopic analysis of poplar (Populus sp.) wood samples undergoing anoxic, pyrolytic heat treatment has revealed a pattern of tissue and macropore expansion and collapse. Post-reaction structural analyses of biomass char (biochar) by light and transmission electron microscopy have provided direct structural evidence of pyrolysis product mass-transfer issues, including trapped pyrolysis products and cell wall compression, and have demonstrated the impact of heat-transfer problems on biomass particles. Finally, microscopic imaging has revealed that pyrolyzed/gasified biochars recovered from a fluidized bed reactor retain a similar pre-reaction basic plant tissue structure as the samples used in this study, suggesting that the phenomena observed here are representative of those that occur in larger scale reactors.

  12. Tar reduction in pyrolysis vapours from biomass over a hot char bed.

    PubMed

    Gilbert, P; Ryu, C; Sharifi, V; Swithenbank, J

    2009-12-01

    The behaviour of pyrolysis vapours over char was investigated in order to maximise tar conversion for the development of a new fixed bed gasifier. Wood samples were decomposed at a typical pyrolysis temperature (500 degrees C) and the pyrolysis vapours were then passed directly through a tar cracking zone in a tubular reactor. The product yields and properties of the condensable phases and non-condensable gases were studied for different bed lengths of char (0-450 mm), temperatures (500-800 degrees C), particle sizes (10 and 15 mm) and nitrogen purge rates (1.84-14.70 mm/s). The carbon in the condensable phases showed about 66% reduction by a 300 mm long char section at 800 degrees C, compared to that for pyrolysis at 500 degrees C. The amount of heavy condensable phase decreased with increasing temperature from about 18.4 wt% of the biomass input at 500 degrees C to 8.0 wt% at 800 degrees C, forming CO, H(2) and other light molecules. The main mode of tar conversion was found to be in the vapour phase when compared to the results without the presence of char. The composition of the heavy condensable phase was simplified into much fewer secondary and tertiary tar components at 800 degrees C. Additional measures were required to maximise the heterogeneous effect of char for tar reduction. PMID:19604685

  13. Optimization of Biofuel and Biochar Production from the Slow Pyrolysis of Biomass

    NASA Astrophysics Data System (ADS)

    Fang, J.; Gao, B.; Nsf Reu in Water Resources

    2010-12-01

    Slow pyrolysis was performed on biomass samples (i.e., energy cane and air potato) to determine the most energy efficient conditions for producing biofuel and biochar. The potential of air potato as a source of fuel and char was also investigated. Dry biomass samples of 10, 15 and 20 g were heated in a reactor at a final temperatures of 300, 450, or 600 °C, and the minimum amount of time required to complete pyrolysis was recorded. Maximum biochar yield was obtained at 300°C for both energy cane and air potato at all masses, and maximum bio-oil yield was obtained at 450°C for all samples. Pyrolysis required the least amount of time at 450°C. Bio-oil yields for air potato were slightly lower than that of energy cane, while biochar yield was slightly higher. Since air potato showed similar product yields to energy cane, this indicates it has potential to be a good feedstock for biofuel and biochar productions.

  14. Biomass catalytic pyrolysis to produce olefins and aromatics with a physically mixed catalyst.

    PubMed

    Zhang, Huiyan; Xiao, Rui; Jin, Baosheng; Xiao, Guomin; Chen, Ran

    2013-07-01

    Zeolite catalysts with micropores present good catalytic characteristics in biomass catalytic pyrolysis process. However, large-molecule oxygenates produced from pyrolysis cannot enter their pores and would form coke on their surfaces, which decreases hydrocarbon yield and deactivates catalyst rapidly. This paper proposed adding some mesoporous and macroporous catalysts (Gamma-Al2O3, CaO and MCM-41) in the microporous catalyst (LOSA-1) for biomass catalytic pyrolysis. The added catalysts were used to crack the large-molecule oxygenates into small-molecule oxygenates, while LOSA-1 was used to convert these small-molecule oxygenates into olefins and aromatics. The results show that all the additives in LOSA-1 enhanced hydrocarbon yield obviously. The maximum aromatic+olefin yield of 25.3% obtained with 10% Gamma-Al2O3/90% LOSA-1, which was boosted by 39.8% compared to that obtained with pure LOSA-1. Besides, all the additives in LOSA-1 improved the selectivities of low-carbon components in olefins and aromatics significantly. PMID:23707913

  15. Selective production of chemicals from biomass pyrolysis over metal chlorides supported on zeolite.

    PubMed

    Leng, Shuai; Wang, Xinde; Cai, Qiuxia; Ma, Fengyun; Liu, Yue'e; Wang, Jianguo

    2013-12-01

    Direct biomass conversion into chemicals remains a great challenge because of the complexity of the compounds; hence, this process has attracted less attention than conversion into fuel. In this study, we propose a simple one-step method for converting bagasse into furfural (FF) and acetic acid (AC). In this method, bagasse pyrolysis over ZnCl2/HZSM-5 achieved a high FF and AC yield (58.10%) and a 1.01 FF/AC ratio, but a very low yield of medium-boiling point components. However, bagasse pyrolysis using HZSM-5 alone or ZnCl2 alone still remained large amounts of medium-boiling point components or high-boiling point components. The synergistic effect of HZSM-5 and ZnCl2, which combines pyrolysis, zeolite cracking, and Lewis acid-selective catalysis results in highly efficient bagasse conversion into FF and AC. Therefore, our study provides a novel, simple method for directly converting biomass into high-yield useful chemical. PMID:24128395

  16. Catalytic Hydroprocessing of Fast Pyrolysis Bio-oil from Pine Sawdust

    SciTech Connect

    Elliott, Douglas C.; Hart, Todd R.; Neuenschwander, Gary G.; Rotness, Leslie J.; Olarte, Mariefel V.; Zacher, Alan H.; Solantausta, Yrjo

    2012-06-01

    Catalytic hydroprocessing has been applied to the fast pyrolysis liquid product (bio-oil) from softwood biomass in a bench-scale continuous-flow fixed-bed reactor system. The intent of the research was to develop process technology to convert the bio-oil into a petroleum refinery feedstock to supplement fossil energy resources and to displace imported feedstock. This paper is focused on the process experimentation and product analysis. The paper describes the experimental methods used and relates the results of the product analyses. A range of operating parameters including temperature, and flow-rate were tested with bio-oil derived from pine wood as recovered and pyrolyzed in the pilot pyrolyzer of Metso Power in Tampere, Finland. Effects of time on stream and catalyst activity were assessed. Details of the process results were presented included product yields and hydrogen consumption. Detailed analysis of the products were provided including elemental composition and product descriptors such as density, viscosity and Total Acid Number (TAN). In summation, the paper provides an initial understanding of the efficacy of hydroprocessing as applied to the Finnish pine bio-oil.

  17. Oxygen speciation in upgraded fast pyrolysis bio-oils by comprehensive two-dimensional gas chromatography.

    PubMed

    Omais, Badaoui; Crepier, Julien; Charon, Nadège; Courtiade, Marion; Quignard, Alain; Thiébaut, Didier

    2013-04-21

    Biomass fast pyrolysis is considered as a promising route to produce liquid for the transportation field from a renewable resource. However, the derived bio-oils are mainly oxygenated (45-50%w/w O on a wet basis) and contain almost no hydrocarbons. Therefore, upgrading is necessary to obtain a liquid with lower oxygen content and characterization of oxygenated compounds in these products is essential to assist conversion reactions. For this purpose, comprehensive two-dimensional gas chromatography (GC × GC) can be investigated. Oxygen speciation in such matrices is hampered by the large diversity of oxygenated families and the complexity of the hydrocarbon matrix. Moreover, response factors must be taken into account for oxygenate quantification as the Flame Ionisation Detector (FID) response varies when a molecule contains heteroatoms. To conclude, no distillation cuts were accessible and the analysis had to cover a large range of boiling points (30-630 °C). To take up this analytical challenge, a thorough optimization approach was developed. In fact, four GC × GC column sets were investigated to separate oxygenated compounds from the hydrocarbon matrix. Both model mixtures and the upgraded biomass flash pyrolysis oil were injected using GC × GC-FID to reach a suitable chromatographic separation. The advantages and drawbacks of each column combination for oxygen speciation in upgraded bio-oils are highlighted in this study. Among the four sets, an original polar × semi-polar column combination was selected and enabled the identification by GC × GC-ToF/MS of more than 40 compounds belonging to eight chemical families: ketones, furans, alcohols, phenols, carboxylic acids, guaiacols, anisols, and esters. For quantification purpose, the GC × GC-FID chromatogram was divided into more than 60 blobs corresponding to the previously identified analyte and hydrocarbon zones. A database associating each blob to a molecule and its specific response factor (determined

  18. Pyrolysis of coal, biomass and their blends: performance assessment by thermogravimetric analysis.

    PubMed

    Ferrara, Francesca; Orsini, Alessandro; Plaisant, Alberto; Pettinau, Alberto

    2014-11-01

    With the aim to support the experimental tests in a gasification pilot plant, the thermal decomposition of coal, biomass and their mixtures has been carried out through a thermogravimetric analysis (TGA) and a simplified kinetic analysis. The TGA of pure fuels indicates the low reactivity of South African coal and the relatively high reactivity of Sardinian Sulcis coal during pyrolysis. Among the tested fuels, biomass (stone pine wood chips) is the most reactive one. These results fully confirm those obtained during the experimental tests in the gasification pilot plant. As for the fuel blends, the analysis shows that the synergic effects between the considered coals and biomass are negligible when they are co-pyrolyzed. The results of the analysis confirm that TGA could be very useful to generally predict the gasification performance and to optimize the experimental campaigns in pilot-scale gasification plants. PMID:25226060

  19. Optimizing anti-coking abilities of zeolites by ethylene diamine tetraacetie acid modification on catalytic fast pyrolysis of corn stalk

    NASA Astrophysics Data System (ADS)

    Zhang, Bo; Zhong, Zhaoping; Song, Zuwei; Ding, Kuan; Chen, Paul; Ruan, Roger

    2015-12-01

    In order to minimize coke yield during biomass catalytic fast pyrolysis (CFP) process, ethylene diamine tetraacetie acid (EDTA) chemical modification method is carried out to selectively remove the external framework aluminum of HZSM-5 catalyst. X-ray diffraction (XRD), nitrogen (N2)-adsorption and ammonia-temperature programmed desorption (NH3-TPD) techniques are employed to investigate the porosity and acidity characteristics of original and modified HZSM-5 samples. Py-GC/MS and thermo-gravimetric analyzer (TGA) experiments are further conducted to explore the catalytic effect of modified HZSM-5 samples on biomass CFP and to verify the positive effect on coke reduction. Results show that EDTA treatment does not damage the crystal structure of HZSM-5 zeolites, but leads to a slight increase of pore volume and pore size. Meanwhile, the elimination of the strong acid peak indicates the dealumination of outer surface of HZSM-5 zeolites. Treatment time of 2 h (labeled EDTA-2H) is optimal for acid removal and hydrocarbon formation. Among all modified catalysts, EDTA-2H performs the best for deacidification and can obviously increase the yields of positive chemical compositions in pyrolysis products. Besides, EDTA modification can improve the anti-coking properties of HZSM-5 zeolites, and EDTA-2H gives rise to the lowest coke yield.

  20. Effects of inherent alkali and alkaline earth metallic species on biomass pyrolysis at different temperatures.

    PubMed

    Hu, Song; Jiang, Long; Wang, Yi; Su, Sheng; Sun, Lushi; Xu, Boyang; He, Limo; Xiang, Jun

    2015-09-01

    This work aimed to investigate effects of inherent alkali and alkaline earth metallic species (AAEMs) on biomass pyrolysis at different temperatures. The yield of CO, H2 and C2H4 was increased and that of CO2 was suppressed with increasing temperature. Increasing temperature could also promote depolymerization and aromatization reactions of active tars, forming heavier polycyclic aromatic hydrocarbons, leading to decrease of tar yields and species diversity. Diverse performance of inherent AAEMs at different temperatures significantly affected the distribution of pyrolysis products. The presence of inherent AAEMs promoted water-gas shift reaction, and enhanced the yield of H2 and CO2. Additionally, inherent AAEMs not only promoted breakage and decarboxylation/decarbonylation reaction of thermally labile hetero atoms of the tar but also enhanced thermal decomposing of heavier aromatics. Inherent AAEMs could also significantly enhance the decomposition of levoglucosan, and alkaline earth metals showed greater effect than alkali metals. PMID:26005925

  1. Catalytic pyrolysis of wood biomass in an auger reactor using calcium-based catalysts.

    PubMed

    Veses, A; Aznar, M; Martínez, I; Martínez, J D; López, J M; Navarro, M V; Callén, M S; Murillo, R; García, T

    2014-06-01

    Wood catalytic pyrolysis using calcium-based materials was studied in an auger reactor at 450°C. Two different catalysts, CaO and CaO·MgO were evaluated and upgraded bio-oils were obtained in both cases. Whilst acidity and oxygen content remarkable decrease, both pH and calorific value increase with respect to the non-catalytic test. Upgrading process was linked to the fact that calcium-based materials could not only fix the CO2-like compounds but also promoted the dehydration reactions. In addition, process simulation demonstrated that the addition of these catalysts, especially CaO, could favour the energetic integration since a lowest circulation of heat carrier between combustor and auger reactor should be needed. An energy self-sustained system was obtained where thermal energy required for biomass drying and for pyrolysis reaction was supplied by non-condensable gas and char combustion, respectively. PMID:24759640

  2. Analysis of chemical and physical processes during the pyrolysis of large biomass pellets

    SciTech Connect

    Chan, W.C.R.

    1983-01-01

    The detailed chemical and physical processes that occur during the pyrolysis of large biomass pellets have been studied both experimentally and mathematically. The quantitative effects on product distribution of chemical composition and physical variables, such as external heat flux, pellet length, density and wood grain orientation, are determined systematically by using a Box-Behnken experimental design. The yield of each product is reported as a function of these variables in the form of a second order polynomial. The experimental apparatus consists of a single pellet reactor with one-dimensional radiant heat flux (2-6 cal/cm/sup 2/-sec) applied to a surface of the cylindrical pellet. Volatile product, which are collected by a cold trap and an automatic gas sampling system, are analyzed by gas chromatography. Temperatures along the pellet length are measured by an optical pyrometer and thermocouples, and the pellet density is obtained by an X-ray technique. The theoretical analysis extends previous mathematical models to include a multi-step reaction mechanism which predicts char yield. Variable properties, heat, and mass transfer effects during the pyrolysis are also treated. The differential equations are solved using a finite difference method. Experimental results in large particle pyrolysis show a different maximum release rate for each volatile component which offers a possibility for increased selectivity. Heat flux has the most significant effect on the pyrolysis rate and product distribution. Pellet length and grain orientation are secondary. The results obtained from this study will be useful in many applications such as improving wood combustion and fire safety. The methodology used in this work may also apply to coal and oil-shale pyrolysis.

  3. Feeding of banana (Musa spp.) plantation wastes for fast pyrolysis process

    NASA Astrophysics Data System (ADS)

    Abdullah, Nurhayati; Sulaiman, Fauziah; Taib, Rahmad Mohd

    2013-05-01

    Using the pyrolysis process, agricultural residue such as banana waste can be converted into bio-char, bio-oil, and gases. The fast pyrolysis process of banana wastes on the available 150g/h rig requires particle size reduction. The particle size of less than 150μm constitutes 50% and particles in the 150-250μm ranges make up 28% of the distribution of particle size of banana leaves. The particle size of less than 150μm makes up 52% and particles in the 150-250μm ranges constitute 28% of the distribution of particle size for banana pseudo-stem. A new gravity chute feeder is also designed for this fast pyrolysis system. A series of feeding tests were conducted using this new feeder. The advantages and limitations will be presented. A comparison with the previously designed feeder will be discussed.

  4. Chemical and ecotoxicological properties of three bio-oils from pyrolysis of biomasses.

    PubMed

    Campisi, Tiziana; Samorì, Chiara; Torri, Cristian; Barbera, Giuseppe; Foschini, Anna; Kiwan, Alisar; Galletti, Paola; Tagliavini, Emilio; Pasteris, Andrea

    2016-10-01

    In view of the potential use of pyrolysis-based technologies, it is crucial to understand the environmental hazards of pyrolysis-derived products, in particular bio-oils. Here, three bio-oils were produced from fast pyrolysis of pine wood and intermediate pyrolysis of corn stalk and poultry litter. They were fully characterized by chemical analysis and tested for their biodegradability and their ecotoxicity on the crustacean Daphnia magna and the green alga Raphidocelis subcapitata. These tests were chosen as required by the European REACH regulation. These three bio-oils were biodegradable, with 40-60% of biodegradation after 28 days, and had EC50 values above 100mgL(-1) for the crustacean and above 10mgL(-1) for the alga, showing low toxicity to the aquatic life. The toxic unit approach was applied to verify whether the observed toxicity could be predicted from the data available for the substances detected in the bio-oils. The predicted values largely underestimated the experimental values. PMID:27285282

  5. Analysis and comparison of biomass pyrolysis/gasification condensates: Final report

    SciTech Connect

    Elliott, D.C.

    1986-06-01

    This report provides results of chemical and physical analysis of condensates from eleven biomass gasification and pyrolysis systems. The samples were representative of the various reactor configurations being researched within the Department of Energy, Biomass Thermochemical Conversion program. The condensates included tar phases and aqueous phases. The analyses included gross compositional analysis (elemental analysis, ash, moisture), physical characterization (pour point, viscosity, density, heat of combustion, distillation), specific chemical analysis (gas chromatography/mass spectrometry, infrared spectrophotometry, proton and carbon-13 nuclear magnetic resonance spectrometry) and biological activity (Ames assay and mouse skin tumorigenicity tests). These results are the first step of a longer term program to determine the properties, handling requirements, and utility of the condensates recovered from biomass gasification and pyrolysis. The analytical data demonstrates the wide range of chemical composition of the organics recovered in the condensates and suggests a direct relationship between operating temperature and chemical composition of the condensates. A continuous pathway of thermal degradation of the tar components as a function of temperature is proposed. Variations in the chemical composition of the organic components in the tars are reflected in the physical properties of tars and phase stability in relation to water in the condensate. The biological activity appears to be limited to the tars produced at high temperatures. 56 refs., 25 figs., 21 tabs.

  6. Release of fuel-bound nitrogen in biomass during high temperature pyrolysis and gasification

    SciTech Connect

    Zhou, J.; Masutani, S.M.; Ishimura, D.M.; Turn, S.Q.; Kinoshita, C.M.

    1997-12-31

    Pyrolysis and gasification of two biomass feedstocks with significantly different fuel-bound nitrogen (FBN) content were investigated to determine the effect of operating conditions on the partitioning of FBN among gas species. Experiments were performed in a bench-scale, indirectly-heated, fluidized bed reactor. Data were obtained over a range of temperatures and equivalence ratios representative of commercial biomass gasification processes. An assay of all major nitrogenous components of the gasification products was performed for the first time, providing a clear accounting of the evolution of FBN. Results indicate that: (1) NH{sub 3} is the dominant nitrogenous gas species produced during pyrolysis of biomass; (2) the majority of FBN is converted to NH{sub 3} or N{sub 2} during gasification; relative levels of NH{sub 3} and N{sub 2} are determined by thermochemical reactions which are affected strongly by temperature; (3) N{sub 2} appears to be produced from NH{sub 3} in the gas phase.

  7. Analytical pyrolysis of synthetic chars derived from biomass with potential agronomic application (biochar). Relationships with impacts on microbial carbon dioxide production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A set of 20 biochar samples produced from the pyrolysis of different biomass feedstocks with potential applications as soil amendments were investigated by pyrolysis coupled to gas chromatography-mass spectrometry (Py-GC-MS). The yields of 38 pyrolysis products representative of charred (e.g., benze...

  8. Hydrocarbon Liquid Production via Catalytic Hydroprocessing of Phenolic Oils Fractionated from Fast Pyrolysis of Red Oak and Corn Stover

    SciTech Connect

    Elliott, Douglas C.; Wang, Huamin; Rover, Majorie; Whitmer, Lysle; Smith, Ryan; Brown, Robert C.

    2015-04-13

    Phenolic oils were produced from fast pyrolysis of two different biomass feedstocks, red oak and corn stover and evaluated in hydroprocessing tests for production of liquid hydrocarbon products. The phenolic oils were produced with a bio-oil fractionating process in combination with a simple water wash of the heavy ends from the fractionating process. Phenolic oils derived from the pyrolysis of red oak and corn stover were recovered with yields (wet biomass basis) of 28.7 wt% and 14.9 wt%, respectively, and 54.3% and 58.6% on a carbon basis. Both precious metal catalysts and sulfided base metal catalyst were evaluated for hydrotreating the phenolic oils, as an extrapolation from whole bio-oil hydrotreatment. They were effective in removing heteroatoms with carbon yields as high as 81% (unadjusted for the 90% carbon balance). There was nearly complete heteroatom removal with residual O of only 0.4% to 5%, while N and S were reduced to less than 0.05%. Use of the precious metal catalysts resulted in more saturated products less completely hydrotreated compared to the sulfided base metal catalyst, which was operated at higher temperature. The liquid product was 42-52% gasoline range molecules and about 43% diesel range molecules. Particulate matter in the phenolic oils complicated operation of the reactors, causing plugging in the fixed-beds especially for the corn stover phenolic oil. This difficulty contrasts with the catalyst bed fouling and plugging, which is typically seen with hydrotreatment of whole bio-oil. This problem was substantially alleviated by filtering the phenolic oils before hydrotreating. More thorough washing of the phenolic oils during their preparation from the heavy ends of bio-oil or on-line filtration of pyrolysis vapors to remove particulate matter before condensation of the bio-oil fractions is recommended.

  9. Hydrocarbon Liquid Production via Catalytic Hydroprocessing of Phenolic Oils Fractionated from Fast Pyrolysis of Red Oak and Corn Stover

    DOE PAGESBeta

    Elliott, Douglas C.; Wang, Huamin; Rover, Majorie; Whitmer, Lysle; Smith, Ryan; Brown, Robert C.

    2015-04-13

    Phenolic oils were produced from fast pyrolysis of two different biomass feedstocks, red oak and corn stover and evaluated in hydroprocessing tests for production of liquid hydrocarbon products. The phenolic oils were produced with a bio-oil fractionating process in combination with a simple water wash of the heavy ends from the fractionating process. Phenolic oils derived from the pyrolysis of red oak and corn stover were recovered with yields (wet biomass basis) of 28.7 wt% and 14.9 wt%, respectively, and 54.3% and 58.6% on a carbon basis. Both precious metal catalysts and sulfided base metal catalyst were evaluated for hydrotreatingmore » the phenolic oils, as an extrapolation from whole bio-oil hydrotreatment. They were effective in removing heteroatoms with carbon yields as high as 81% (unadjusted for the 90% carbon balance). There was nearly complete heteroatom removal with residual O of only 0.4% to 5%, while N and S were reduced to less than 0.05%. Use of the precious metal catalysts resulted in more saturated products less completely hydrotreated compared to the sulfided base metal catalyst, which was operated at higher temperature. The liquid product was 42-52% gasoline range molecules and about 43% diesel range molecules. Particulate matter in the phenolic oils complicated operation of the reactors, causing plugging in the fixed-beds especially for the corn stover phenolic oil. This difficulty contrasts with the catalyst bed fouling and plugging, which is typically seen with hydrotreatment of whole bio-oil. This problem was substantially alleviated by filtering the phenolic oils before hydrotreating. More thorough washing of the phenolic oils during their preparation from the heavy ends of bio-oil or on-line filtration of pyrolysis vapors to remove particulate matter before condensation of the bio-oil fractions is recommended.« less

  10. Guidelines for Transportation, Handling, and Use of Fast Pyrolysis Bio-Oil. Part 1. Flammability and Toxicity

    SciTech Connect

    Oasmaa, Anja; Kalli, Anssi; Lindfors, Christian; Elliott, Douglas C.; Springer, David L.; Peacocke, Cordner; Chiaramonti, David

    2012-05-04

    An alternative sustainable fuel, biomass-derived fast pyrolysis oil or 'bio-oil', is coming into the market. Fast pyrolysis pilot and demonstration plants for fuel applications producing tonnes of bio-oil are in operation, and commercial plants are under design. There will be increasingly larger amounts of bio-oil transportation on water and by land, leading to a need for specifications and supporting documentation. Bio-oil is different from conventional liquid fuels, and therefore must overcome both technical and marketing hurdles for its acceptability in the fuels market. A comprehensive Material Safety Data Sheet (MSDS) is required, backed with independent testing and certification. In order to standardise bio-oil quality specifications are needed. The first bio-oil burner fuel standard in ASTM (D7544) was approved in 2009. CEN standardisation has been initiated in Europe. In the EU a new chemical regulation system, REACH (Registration, Evaluation and Authorisation of Chemicals) is being applied. Registration under REACH has to be made if bio-oil is produced or imported to the EU. In the USA and Canada, bio-oil has to be filed under TOSCA (US Toxic Substances Control Act). In this paper the state of the art on standardisation is discussed, and new data for the transportation guidelines is presented. The focus is on flammability and toxicity.

  11. Fast microwave-assisted catalytic pyrolysis of sewage sludge for bio-oil production.

    PubMed

    Xie, Qinglong; Peng, Peng; Liu, Shiyu; Min, Min; Cheng, Yanling; Wan, Yiqin; Li, Yun; Lin, Xiangyang; Liu, Yuhuan; Chen, Paul; Ruan, Roger

    2014-11-01

    In this study, fast microwave-assisted catalytic pyrolysis of sewage sludge was investigated for bio-oil production, with HZSM-5 as the catalyst. Pyrolysis temperature and catalyst to feed ratio were examined for their effects on bio-oil yield and composition. Experimental results showed that microwave is an effective heating method for sewage sludge pyrolysis. Temperature has great influence on the pyrolysis process. The maximum bio-oil yield and the lowest proportions of oxygen- and nitrogen-containing compounds in the bio-oil were obtained at 550°C. The oil yield decreased when catalyst was used, but the proportions of oxygen- and nitrogen-containing compounds were significantly reduced when the catalyst to feed ratio increased from 1:1 to 2:1. Essential mineral elements were concentrated in the bio-char after pyrolysis, which could be used as a soil amendment in place of fertilizer. Results of XRD analyses demonstrated that HZSM-5 catalyst exhibited good stability during the microwave-assisted pyrolysis of sewage sludge. PMID:25260179

  12. Catalytic fast pyrolysis of white oak wood in-situ using a bubbling fluidized bed reactor

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Catalytic fast pyrolysis was performed on white oak wood using two zeolite-type catalysts as bed material in a bubbling fluidized bed reactor. The two catalysts chosen, based on a previous screening study, were Ca2+ exchanged Y54 (Ca-Y54) and a proprietary ß-zeolite type catalyst (catalyst M) both ...

  13. Activated Carbon Derived from Fast Pyrolysis Liquids Production of Agricultural Residues and Energy Crops

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fast pyrolysis is a thermochemical method that can be used for processing energy crops such as switchgrass, alfalfa, soybean straw, corn stover as well as agricultural residuals (broiler litter) for bio-oil production. Researchers with the Agriculture Research Service (ARS) of the USDA developed a 2...

  14. Characterization of fast-pyrolysis bio-oil distillation residues and their potential applications

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A typical petroleum refinery makes use of the vacuum gas oil by cracking the large molecular weight compounds into light fuel hydrocarbons. For various types of fast pyrolysis bio-oil, successful analogous methods for processing heavy fractions could expedite integration into a petroleum refinery fo...

  15. Characterization of various fast pyrolysis bio-oils by NMR spectroscopy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    NMR spectroscopy, including 1H, 13 C and DEPT spectra were used to characterize fast pyrolysis oil from numerous energy crops and other agricultural feedstocks. The bio-oils studied were produced from swithchgrass, alfalfa stems, corn stover, guayule (whole plant and latex extracted bagasse) and ch...

  16. Mass balance, energy and exergy analysis of bio-oil production by fast pyrolysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mass, energy and exergy balances are analyzed for bio-oil production in a bench scale fast pyrolysis system developed by the USDA’s Agricultural Research Service (ARS) for the processing of commodity crops to fuel intermediates. Because mass balance closure is difficult to achieve due, in part, to ...

  17. Fast Pyrolysis Behavior of Banagrass as a Function of Temperature and Volatiles Residence Time in a Fluidized Bed Reactor

    PubMed Central

    Morgan, Trevor James; Turn, Scott Q.; George, Anthe

    2015-01-01

    A reactor was designed and commissioned to study the fast pyrolysis behavior of banagrass as a function of temperature and volatiles residence time. Four temperatures between 400 and 600°C were examined as well as four residence times between ~1.0 and 10 seconds. Pyrolysis product distributions of bio-oil, char and permanent gases were determined at each reaction condition. The elemental composition of the bio-oils and chars was also assessed. The greatest bio-oil yield was recorded when working at 450°C with a volatiles residence time of 1.4 s, ~37 wt% relative to the dry ash free feedstock (excluding pyrolysis water). The amounts of char (organic fraction) and permanent gases under these conditions are ~4 wt% and 8 wt% respectively. The bio-oil yield stated above is for 'dry' bio-oil after rotary evaporation to remove solvent, which results in volatiles and pyrolysis water being removed from the bio-oil. The material removed during drying accounts for the remainder of the pyrolysis products. The 'dry' bio-oil produced under these conditions contains ~56 wt% carbon which is ~40 wt% of the carbon present in the feedstock. The oxygen content of the 450°C, 1.4 s 'dry' bio-oil is ~38 wt%, which accounts for ~33 wt% of the oxygen in the feedstock. At higher temperature or longer residence time less bio-oil and char is recovered and more gas and light volatiles are produced. Increasing the temperature has a more significant effect on product yields and composition than increasing the volatiles residence time. At 600°C and a volatiles residence time of 1.2 seconds the bio-oil yield is ~21 wt% of the daf feedstock, with a carbon content of 64 wt% of the bio-oil. The bio-oil yield from banagrass is significantly lower than from woody biomass or grasses such as switchgrass or miscanthus, but is similar to barley straw. The reason for the low bio-oil yield from banagrass is thought to be related to its high ash content (8.5 wt% dry basis) and high concentration of alkali

  18. Fast Pyrolysis Behavior of Banagrass as a Function of Temperature and Volatiles Residence Time in a Fluidized Bed Reactor

    DOE PAGESBeta

    Morgan, Trevor James; Turn, Scott Q.; George, Anthe

    2015-08-26

    A reactor was designed and commissioned to study the fast pyrolysis behavior of banagrass as a function of temperature and volatiles residence time. Four temperatures between 400 and 600°C were examined as well as four residence times between ~1.0 and 10 seconds. Pyrolysis product distributions of bio-oil, char and permanent gases were determined at each reaction condition. The elemental composition of the bio-oils and chars was also assessed. The greatest bio-oil yield was recorded when working at 450°C with a volatiles residence time of 1.4 s, ~37 wt% relative to the dry ash free feedstock (excluding pyrolysis water). The amountsmore » of char (organic fraction) and permanent gases under these conditions are ~4 wt% and 8 wt% respectively. The bio-oil yield stated above is for 'dry' bio-oil after rotary evaporation to remove solvent, which results in volatiles and pyrolysis water being removed from the bio-oil. The material removed during drying accounts for the remainder of the pyrolysis products. The 'dry' bio-oil produced under these conditions contains ~56 wt% carbon which is ~40 wt% of the carbon present in the feedstock. The oxygen content of the 450°C, 1.4 s 'dry' bio-oil is ~38 wt%, which accounts for ~33 wt% of the oxygen in the feedstock. At higher temperature or longer residence time less bio-oil and char is recovered and more gas and light volatiles are produced. Increasing the temperature has a more significant effect on product yields and composition than increasing the volatiles residence time. At 600°C and a volatiles residence time of 1.2 seconds the bio-oil yield is ~21 wt% of the daf feedstock, with a carbon content of 64 wt% of the bio-oil. The bio-oil yield from banagrass is significantly lower than from woody biomass or grasses such as switchgrass or miscanthus, but is similar to barley straw. In conclusion, the reason for the low bio-oil yield from banagrass is thought to be related to its high ash content (8.5 wt% dry basis) and high

  19. Fast Pyrolysis Behavior of Banagrass as a Function of Temperature and Volatiles Residence Time in a Fluidized Bed Reactor.

    PubMed

    Morgan, Trevor James; Turn, Scott Q; George, Anthe

    2015-01-01

    A reactor was designed and commissioned to study the fast pyrolysis behavior of banagrass as a function of temperature and volatiles residence time. Four temperatures between 400 and 600°C were examined as well as four residence times between ~1.0 and 10 seconds. Pyrolysis product distributions of bio-oil, char and permanent gases were determined at each reaction condition. The elemental composition of the bio-oils and chars was also assessed. The greatest bio-oil yield was recorded when working at 450°C with a volatiles residence time of 1.4 s, ~37 wt% relative to the dry ash free feedstock (excluding pyrolysis water). The amounts of char (organic fraction) and permanent gases under these conditions are ~4 wt% and 8 wt% respectively. The bio-oil yield stated above is for 'dry' bio-oil after rotary evaporation to remove solvent, which results in volatiles and pyrolysis water being removed from the bio-oil. The material removed during drying accounts for the remainder of the pyrolysis products. The 'dry' bio-oil produced under these conditions contains ~56 wt% carbon which is ~40 wt% of the carbon present in the feedstock. The oxygen content of the 450°C, 1.4 s 'dry' bio-oil is ~38 wt%, which accounts for ~33 wt% of the oxygen in the feedstock. At higher temperature or longer residence time less bio-oil and char is recovered and more gas and light volatiles are produced. Increasing the temperature has a more significant effect on product yields and composition than increasing the volatiles residence time. At 600°C and a volatiles residence time of 1.2 seconds the bio-oil yield is ~21 wt% of the daf feedstock, with a carbon content of 64 wt% of the bio-oil. The bio-oil yield from banagrass is significantly lower than from woody biomass or grasses such as switchgrass or miscanthus, but is similar to barley straw. The reason for the low bio-oil yield from banagrass is thought to be related to its high ash content (8.5 wt% dry basis) and high concentration of alkali

  20. Fast Pyrolysis Behavior of Banagrass as a Function of Temperature and Volatiles Residence Time in a Fluidized Bed Reactor

    SciTech Connect

    Morgan, Trevor James; Turn, Scott Q.; George, Anthe

    2015-08-26

    A reactor was designed and commissioned to study the fast pyrolysis behavior of banagrass as a function of temperature and volatiles residence time. Four temperatures between 400 and 600°C were examined as well as four residence times between ~1.0 and 10 seconds. Pyrolysis product distributions of bio-oil, char and permanent gases were determined at each reaction condition. The elemental composition of the bio-oils and chars was also assessed. The greatest bio-oil yield was recorded when working at 450°C with a volatiles residence time of 1.4 s, ~37 wt% relative to the dry ash free feedstock (excluding pyrolysis water). The amounts of char (organic fraction) and permanent gases under these conditions are ~4 wt% and 8 wt% respectively. The bio-oil yield stated above is for 'dry' bio-oil after rotary evaporation to remove solvent, which results in volatiles and pyrolysis water being removed from the bio-oil. The material removed during drying accounts for the remainder of the pyrolysis products. The 'dry' bio-oil produced under these conditions contains ~56 wt% carbon which is ~40 wt% of the carbon present in the feedstock. The oxygen content of the 450°C, 1.4 s 'dry' bio-oil is ~38 wt%, which accounts for ~33 wt% of the oxygen in the feedstock. At higher temperature or longer residence time less bio-oil and char is recovered and more gas and light volatiles are produced. Increasing the temperature has a more significant effect on product yields and composition than increasing the volatiles residence time. At 600°C and a volatiles residence time of 1.2 seconds the bio-oil yield is ~21 wt% of the daf feedstock, with a carbon content of 64 wt% of the bio-oil. The bio-oil yield from banagrass is significantly lower than from woody biomass or grasses such as switchgrass or miscanthus, but is similar to barley straw. In conclusion, the reason for the low bio-oil yield from banagrass is thought to be related to its high ash content (8.5 wt% dry basis) and high

  1. Leaching behaviour and ecotoxicity evaluation of chars from the pyrolysis of forestry biomass and polymeric materials.

    PubMed

    Bernardo, M; Mendes, S; Lapa, N; Gonçalves, M; Mendes, B; Pinto, F; Lopes, H

    2014-09-01

    The main objective of this study was to assess the environmental risk of chars derived from the pyrolysis of mixtures of pine, plastics, and scrap tires, by studying their leaching potential and ecotoxicity. Relationships between chemical composition and ecotoxicity were established to identify contaminants responsible for toxicity. Since metallic contaminants were the focus of the present study, an EDTA washing step was applied to the chars to selectively remove metals that can be responsible for the observed toxicity. The results indicated that the introduction of biomass to the pyrolysis feedstock enhanced the acidity of chars and promote the mobilisation of inorganic compounds. Chars resulting from the pyrolysis of blends of pine and plastics did not produce ecotoxic eluates. A relationship between zinc concentrations in eluates and their ecotoxicity was found for chars obtained from mixtures with tires. A significant reduction in ecotoxicity was found when the chars were treated with EDTA, which was due to a significant reduction in zinc in chars after EDTA washing. PMID:24905691

  2. Volatilisation of alkali and alkaline earth metallic species during the pyrolysis of biomass: differences between sugar cane bagasse and cane trash.

    PubMed

    Keown, Daniel M; Favas, George; Hayashi, Jun-ichiro; Li, Chun-Zhu

    2005-09-01

    Sugar cane bagasse and cane trash were pyrolysed in a novel quartz fluidised-bed/fixed-bed reactor. Quantification of the Na, K, Mg and Ca in chars revealed that pyrolysis temperature, heating rate, valence and biomass type were important factors influencing the volatilisation of these alkali and alkaline earth metallic (AAEM) species. Pyrolysis at a slow heating rate (approximately 10 K min(-1)) led to minimal (often <20%) volatilisation of AAEM species from these biomass samples. Fast heating rates (>1000 K s(-1)), encouraging volatile-char interactions with the current reactor configuration, resulted in the volatilisation of around 80% of Na, K, Mg and Ca from bagasse during pyrolysis at 900 degrees C. Similar behaviour was observed for monovalent Na and K with cane trash, but the volatilisation of Mg and Ca from cane trash was always restricted. The difference in Cl content between bagasse and cane trash was not sufficient to fully explain the difference in the volatilisation of Mg and Ca. PMID:15978989

  3. Comparison of biochar properties from biomass residues produced by slow pyrolysis at 500°C.

    PubMed

    Lee, Yongwoon; Park, Jinje; Ryu, Changkook; Gang, Ki Seop; Yang, Won; Park, Young-Kwon; Jung, Jinho; Hyun, Seunghun

    2013-11-01

    Application of biochar from biomass pyrolysis to soil is gaining greater interest; this can ameliorate the soil quality, reduce fertilizer consumption, and sequestrate carbon. This study compares the characteristics of biochar produced by slow pyrolysis at 500°C for agricultural residues: sugarcane bagasse, cocopeat, paddy straw, palm kernel shell (PKS) and umbrella tree. In the biochar yield, the influence of the inert and lignin contents was significant. The wood stem, bagasse and paddy straw had biochar yields of 24-28 wt.% from the organic fraction while cocopeat had 46 wt.%. The carbon content of biochar ranged from 84 wt.% to 89 wt.%, which corresponded to 43-63% of carbon in the biomass. The biochar from wood stem and bagasse had well-developed pores of various sizes with large surface areas. Although the surface area was significant, PKS biochar had dense matrix with few large pores. The elemental composition and pH of biochars were also compared. PMID:24047681

  4. Flash pyrolysis of biomass with reactive and non-reactive gases

    NASA Astrophysics Data System (ADS)

    Steinberg, M.; Fallon, P. T.; Sundaram, M. S.

    1983-03-01

    The process chemistry of the flash pyrolysis of biomass (wood) with the reactive gases, H2 and CH4 and with the nonreactive gas He was determined in a 1 in. downflow tubular reactor. It is found that with hydrogen, flash hydropyrolysis leads to high yields of methane and CO which can be used for SNG and methanol production. With methane, flash methanolysis of wood, leads to high yields of ethylene, benzene and CO which can be used for the production of valuable feedstocks and methanol fuel. At reactor conditions of 50 psi and 10,000 C and approximately 1 sec residence time, the ethylene yield based on wood carbon converted is 22%, benzene 12% and the CO yield is 48%. The yield of ethylene is 2.2 times higher with methane than with helium, which indicates a free radical reaction between CH4 and the pyrolyzed wood. A preliminary process analysis indicates an economically competitive process for the production of ethylene, benzene and ethanol based on the methanolysis of wood. The development of the data base for the flash pyrolysis of wood and other biomass materials with methane and other reactive gases and the determination of the role of the hemicellulose and lignin in the formation of these valuable fuels and feedstocks are recommended.

  5. Pilot-Scale Biorefinery: Sustainable Transport Fuels from Biomass via Integrated Pyrolysis and Catalytic Hydroconversion - Wastewater Cleanup by Catalytic Hydrothermal Gasification

    SciTech Connect

    Elliott, Douglas C.; Olarte, Mariefel V.; Hart, Todd R.

    2015-06-19

    DOE-EE Bioenergy Technologies Office has set forth several goals to increase the use of bioenergy and bioproducts derived from renewable resources. One of these goals is to facilitate the implementation of the biorefinery. The biorefinery will include the production of liquid fuels, power and, in some cases, products. The integrated biorefinery should stand-alone from an economic perspective with fuels and power driving the economy of scale while the economics/profitability of the facility will be dependent on existing market conditions. UOP LLC proposed to demonstrate a fast pyrolysis based integrated biorefinery. Pacific Northwest National Laboratory (PNNL) has expertise in an important technology area of interest to UOP for use in their pyrolysis-based biorefinery. This CRADA project provides the supporting technology development and demonstration to allow incorporation of this technology into the biorefinery. PNNL developed catalytic hydrothermal gasification (CHG) for use with aqueous streams within the pyrolysis biorefinery. These aqueous streams included the aqueous phase separated from the fast pyrolysis bio-oil and the aqueous byproduct streams formed in the hydroprocessing of the bio-oil to finished products. The purpose of this project was to demonstrate a technically and economically viable technology for converting renewable biomass feedstocks to sustainable and fungible transportation fuels. To demonstrate the technology, UOP constructed and operated a pilot-scale biorefinery that processed one dry ton per day of biomass using fast pyrolysis. Specific objectives of the project were to: The anticipated outcomes of the project were a validated process technology, a range of validated feedstocks, product property and Life Cycle data, and technical and operating data upon which to base the design of a full-scale biorefinery. The anticipated long-term outcomes from successful commercialization of the technology were: (1) the replacement of a significant

  6. Successful scaling-up of self-sustained pyrolysis of oil palm biomass under pool-type reactor.

    PubMed

    Idris, Juferi; Shirai, Yoshihito; Andou, Yoshito; Mohd Ali, Ahmad Amiruddin; Othman, Mohd Ridzuan; Ibrahim, Izzudin; Yamamoto, Akio; Yasuda, Nobuhiko; Hassan, Mohd Ali

    2016-02-01

    An appropriate technology for waste utilisation, especially for a large amount of abundant pressed-shredded oil palm empty fruit bunch (OFEFB), is important for the oil palm industry. Self-sustained pyrolysis, whereby oil palm biomass was combusted by itself to provide the heat for pyrolysis without an electrical heater, is more preferable owing to its simplicity, ease of operation and low energy requirement. In this study, biochar production under self-sustained pyrolysis of oil palm biomass in the form of oil palm empty fruit bunch was tested in a 3-t large-scale pool-type reactor. During the pyrolysis process, the biomass was loaded layer by layer when the smoke appeared on the top, to minimise the entrance of oxygen. This method had significantly increased the yield of biochar. In our previous report, we have tested on a 30-kg pilot-scale capacity under self-sustained pyrolysis and found that the higher heating value (HHV) obtained was 22.6-24.7 MJ kg(-1) with a 23.5%-25.0% yield. In this scaled-up study, a 3-t large-scale procedure produced HHV of 22.0-24.3 MJ kg(-1) with a 30%-34% yield based on a wet-weight basis. The maximum self-sustained pyrolysis temperature for the large-scale procedure can reach between 600 °C and 700 °C. We concluded that large-scale biochar production under self-sustained pyrolysis was successfully conducted owing to the comparable biochar produced, compared with medium-scale and other studies with an electrical heating element, making it an appropriate technology for waste utilisation, particularly for the oil palm industry. PMID:26612557

  7. Fast pyrolysis product distribution of biopretreated corn stalk by methanogen.

    PubMed

    Wang, Tipeng; Ye, Xiaoning; Yin, Jun; Jin, Zaixing; Lu, Qiang; Zheng, Zongming; Dong, Changqing

    2014-10-01

    After pretreated by methanogen for 5, 15 and 25 days, corn stalk (CS) were pyrolyzed at 250, 300, 350, 400, 450 and 500 °C by Py-GC/MS and product distribution in bio-oil was analyzed. Results indicated that methanogen pretreatment changed considerably the product distribution: the contents of sugar and phenols increased; the contents of linear carbonyls and furans decreased; the contents of linear ketones and linear acids changed slightly. Methanogen pretreatment improved significantly the pyrolysis selectivity of CS to phenols especially 4-VP. At 250 °C, the phenols content increased from 42.25% for untreated CS to 79.32% for biopretreated CS for 5 days; the 4-VP content increased from 28.6% to 60.9%. Increasing temperature was contributed to convert more lignin into 4-VP, but decreased its content in bio-oil due to more other chemicals formed. The effects of biopretreatment time on the chemicals contents were insignificant. PMID:25113883

  8. Bio-oil and biochar production from corn cobs and stover by fast pyrolysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bio-oil and bio-char were produced from corn cobs and corn stover (stalks, leaves and husks) by fast pyrolysis using a pilot scale fluidized bed reactor. Yields of 60% (mass/mass) bio-oil (high heating values are ~20,000 kJ/kg, and densities > 1.0 g/mL) were realized from both corn cobs and from co...

  9. Linking pyrolysis and anaerobic digestion (Py-AD) for the conversion of lignocellulosic biomass.

    PubMed

    Fabbri, Daniele; Torri, Cristian

    2016-04-01

    Biogas is a mixture of CO2 and CH4 produced by a consortia of Bacteria and Archeae operating in anaerobic digestion (AD) plants. Biogas can be burnt as such in engines to produce electricity and heat or upgraded into biomethane. Biomethane is a drop-in fuel that can be injected in the natural gas grid or utilised as a transport fuel. While a wide array of biomass feedstock can be degraded into biogas, unconverted lignin, hemicellulose and cellulose end up in the co-product digestate leaving a large portion of chemical energy unutilised. Pyrolysis (Py) transforms in a single step and without chemical reagents the lignocellulose matrix into gaseous (syngas), liquid (bio-oil, pyrolysis oil) and solid (biochar) fractions for the development of renewable fuels and materials. The Py route applied downstream to AD is actively investigated in order to valorise the solid digestate presently destined only for soil applications. Coupling Py upstream to AD is an emerging field of research aimed at expanding the feedstock towards biologically recalcitrant substrates (wood, paper, sludge). The biomethanation potential was demonstrated for gaseous (H2/CO) and water soluble pyrolysis products, while the influence of insoluble pyrolytic lignin remains fairly unexplored. Biochar can promote the production of biomethane by acting as a support for microorganism colonisation, conductor for direct interspecies electron transfer, sorbent for hydrophobic inhibitors, and reactant for in situ biogas upgrading. Enhancing the advantages (carbon source) over the side effects (toxicity) of Py fractions represents the main challenge of Py-AD. This can be addressed by increasing the selectivity of the thermochemical process or improving the ecological flexibility of mixed bacterial consortia towards chemically complex environments. PMID:26948108

  10. Role of Brønsted acid in selective production of furfural in biomass pyrolysis.

    PubMed

    Zhang, Haiyan; Liu, Xuejun; Lu, Meizhen; Hu, Xinyue; Lu, Leigang; Tian, Xiaoning; Ji, Jianbing

    2014-10-01

    In this work, the role of Brønsted acid for furfural production in biomass pyrolysis on supported sulfates catalysts was investigated. The introduction of Brønsted acid was shown to improve the degradation of polysaccharides to intermediates for furfural, which did not work well when only Lewis acids were used in the process. Experimental results showed that CuSO4/HZSM-5 catalyst exhibited the best performance for furfural (28% yield), which was much higher than individual HZSM-5 (5%) and CuSO4 (6%). The optimum reaction conditions called for the mass ratio of CuSO4/HZSM-5 to be 0.4 and the catalyst/biomass mass ratio to be 0.5. The recycled catalyst exhibited low productivity (9%). Analysis of the catalysts by Py-IR revealed that the CuSO4/HZSM-5 owned a stronger Brønsted acid intensity than HZSM-5 or the recycled CuSO4/HZSM-5. Therefore, the existence of Brønsted acid is necessary to achieve a more productive degradation of biomass for furfural. PMID:25106779

  11. Impact of Miscanthus x giganteus senescence times on fast pyrolysis bio-oil quality.

    PubMed

    Mos, M; Banks, S W; Nowakowski, D J; Robson, P R H; Bridgwater, A V; Donnison, I S

    2013-02-01

    In this study the impact of senescence and harvest time in Miscanthus on the quality of fast pyrolysis liquid (bio-oil) was investigated. Bio-oil was produced using a 1 kg h(-1) fast pyrolysis reactor to obtain a quantity of bio-oil comparable with existing industrial reactors. Bio-oil stability was measured using viscosity, water content, pH and heating value changes under specific conditions. Plant developmental characteristics were significantly different (P≤0.05) between all harvest points. The stage of crop senescence was correlated with nutrient remobilisation (N, P, K; r2=0.9043, r2=0.9920, r2=0.9977 respectively) and affected bio-oil quality. Harvest time and senescence impacted bio-oil quality and stability. For fast pyrolysis processing of Miscanthus, the harvest time of Miscanthus can be extended to cover a wider harvest window whilst still maintaining bio-oil quality but this may impact mineral depletion in, and long term sustainability of, the crop unless these minerals can be recycled. PMID:23262009

  12. Toxic potentiality of bio-oils, from biomass pyrolysis, in cultured cells and Caenorhabditis elegans.

    PubMed

    Chatterjee, Nivedita; Eom, Hyun-Jeong; Jung, Su-Hwa; Kim, Joo-Sik; Choi, Jinhee

    2014-12-01

    Bio-oils, which are multicomponent mixtures, were produced from two different biomass (rice straw (rice oil) and sawdust of oak tree (oak oil)) by using the slow pyrolysis process, and chemical compositional screening with GC-MS detected several hazardous compounds in both bio-oil samples. The two bio-oils vary in their chemical compositional nature and concentrations. To know the actual hazard potentialities of these bio-oils, toxicological assessments were carried out in a comparative approach by using in vitro (Jurkat T and HepG2 cell) as well as in vivo (Caenorhabditis elegans) systems. A dose-dependent increase in cytotoxicity, cell death (apoptosis), and genotoxicity were observed in cultured cell systems. Similarly, the in vivo system, C. elegans also displayed a dose-dependent decrease in survival. It was found that in comparison with rice oil, oak oil displayed higher toxicity to all models systems, and the susceptibility order of the model systems were Jurkat T > HepG2 > C. elegans. Pursuing the study further toward the underlying mechanism by exploiting the C. elegans mutants screening assay, the bio-oils seem to mediate toxicity through oxidative stress and impairment of immunity. Taken together, bio-oils compositions mainly depend on the feedstock used and the pyrolysis conditions which in turn modulate their toxic potentiality. PMID:23766135

  13. Pyrolysis of chitin biomass: TG-MS analysis and solid char residue characterization.

    PubMed

    Qiao, Yan; Chen, Shuai; Liu, Ying; Sun, Haizhen; Jia, Shiyu; Shi, Junyan; Pedersen, Christian Marcus; Wang, Yingxiong; Hou, Xianglin

    2015-11-20

    The thermal degradation of chitin biomass with various molecular structures was investigated by thermogravimetric analysis (TG), and the gaseous products were analyzed by connected mass spectroscopy (MS). The chemical structure and morphology of char residues collected at 750°C using the model substrates GlcNH2 and GlcNAc, were characterized systematically. The experimental results disclosed that one main mass loss stage was observed for each substrate. Chitosan samples with high molecular weight shown the more thermal stability, and chitin showed the highest thermal stability. Additionally, it was found that catalysts play a significant role during the pyrolysis. The gaseous evolution components, including NH3, H2O, CO, and CO2 were observed by on line MS. The experimental results disclosed that the obtained carbonaceous materials had lost the original hydrocarbon structure totally, and transformed into an aromatic structure with high carbon and nitrogen content, which was identified by XPS and solid state NMR. PMID:26344268

  14. KINETIC STUDY OF COAL AND BIOMASS CO-PYROLYSIS USING THERMOGRAVIMETRY

    SciTech Connect

    Wang, Ping; Hedges, Sheila; Chaudharib, Kiran; Turtonb, Richard

    2013-10-29

    The objectives of this study are to investigate thermal behavior of coal and biomass blends in inert gas environment at low heating rates and to develop a simplified kinetic model using model fitting techniques based on TGA experimental data. Differences in thermal behavior and reactivity in co-pyrolysis of Powder River Basin (PRB) sub-bituminous coal and pelletized southern yellow pine wood sawdust blends at low heating rates are observed. Coal/wood blends have higher reactivity compared to coal alone in the lower temperature due to the high volatile matter content of wood. As heating rates increase, weight loss rates increase. The experiment data obtained from TGA has a better fit with proposed two step first order reactions model compared single first order reaction model.

  15. Pyrolysis kinetic and product analysis of different microalgal biomass by distributed activation energy model and pyrolysis-gas chromatography-mass spectrometry.

    PubMed

    Yang, Xuewei; Zhang, Rui; Fu, Juan; Geng, Shu; Cheng, Jay Jiayang; Sun, Yuan

    2014-07-01

    To assess the energy potential of different microalgae, Chlorella sorokiniana and Monoraphidium were selected for studying the pyrolytic behavior at different heating rates with the analytical method of thermogravimetric analysis (TG), distributed activation energy model (DAEM) and pyrolysis-gas chromatography-mass spectrometry (Py-GC/MS). Results presented that Monoraphidium 3s35 showed superiority for pyrolysis at low heating rate. Calculated by DAEM, during the conversion rate range from 0.1 to 0.7, the activation energies of C. sorokiniana 21 were much lower than that of Monoraphidium 3s35. Both C. sorokiniana 21 and Monoraphidium 3s35 can produce certain amount (up to 20.50%) of alkane compounds, with 9-Octadecyne (C18H34) as the primary compound. Short-chain alkanes (C7-C13) with unsaturated carbon can be released in the pyrolysis at 500°C for both microalgal biomass. It was also observed that the pyrolysis of C. sorokiniana 21 released more alcohol compounds, while Monoraphidium 3s35 produced more saccharides. PMID:24835746

  16. Intermediate pyrolysis of agro-industrial biomasses in bench-scale pyrolyser: Product yields and its characterization.

    PubMed

    Tinwala, Farha; Mohanty, Pravakar; Parmar, Snehal; Patel, Anant; Pant, Kamal K

    2015-01-01

    Pyrolysis of woody biomass, agro-residues and seed was carried out at 500 ± 10 °C in a fixed bed pyrolyser. Bio-oil yield was found varying from 20.5% to 47.5%, whereas the biochar and pyrolysis gas ranged from 27.5% to 40% and 24.5% to 40.5%, respectively. Pyrolysis gas was measured for flame temperature along with CO, CO2, H2, CH4 and other gases composition. HHV of biochar (29.4 MJ/kg) and pyrolitic gas (8.6 MJ/kg) of woody biomass was higher analogous to sub-bituminous coal and steam gasification based producer gas respectively, whereas HHV of bio-oil obtained from seed (25.6 MJ/kg) was significantly more than husks, shells and straws. TGA-DTG studies showed the husks as potential source for the pyrolysis. Bio-oils as a major by-product of intermediate pyrolysis have several applications like substitute of furnace oil, extraction of fine chemicals, whereas biochar as a soil amendment for enhancing soil fertility and gases for thermal application. PMID:25770670

  17. Determination of cadmium in water samples by fast pyrolysis-chemical vapor generation atomic fluorescence spectrometry

    NASA Astrophysics Data System (ADS)

    Zhang, Jingya; Fang, Jinliang; Duan, Xuchuan

    2016-08-01

    A pyrolysis-vapor generation procedure to determine cadmium by atomic fluorescence spectrometry has been established. Under fast pyrolysis, cadmium ion can be reduced to volatile cadmium species by sodium formate. The presence of thiourea enhanced the efficiency of cadmium vapor generation and eliminated the interference of copper. The possible mechanism of vapor generation of cadmium was discussed. The optimization of the parameters for pyrolysis-chemical vapor generation, including pyrolysis temperature, amount of sodium formate, concentration of hydrochloric acid, and carrier argon flow rate were carried out. Under the optimized conditions, the absolute and concentration detection limits were 0.38 ng and 2.2 ng ml- 1, respectively, assuming that 0.17 ml of sample was injected. The generation efficiency of was 28-37%. The method was successfully applied to determine trace amounts of cadmium in two certified reference materials of Environmental Water (GSB07-1185-2000 and GSBZ 50009-88). The results were in good agreement with the certified reference values.

  18. Two-step catalytic hydrodeoxygenation of fast pyrolysis oil to hydrocarbon liquid fuels.

    PubMed

    Xu, Xingmin; Zhang, Changsen; Liu, Yonggang; Zhai, Yunpu; Zhang, Ruiqin

    2013-10-01

    Two-step catalytic hydrodeoxygenation (HDO) of fast pyrolysis oil was investigated for translating pyrolysis oil to transportation grade hydrocarbon liquid fuels. At the first mild HDO step, various organic solvents were employed to promote HDO of bio-oil to overcome coke formation using noble catalyst (Ru/C) under mild conditions (300 °C, 10 MPa). At the second deep HDO step, conventional hydrogenation setup and catalyst (NiMo/Al2O3) were used under severe conditions (400 °C, 13 MPa) for obtaining hydrocarbon fuel. Results show that the phenomenon of coke formation is effectively eliminated, and the properties of products have been significantly improved, such as oxygen content decreases from 48 to 0.5 wt% and high heating value increases from 17 to 46 MJ kg(-1). GC-MS analysis indicates that the final products include C11-C27 aliphatic hydrocarbons and aromatic hydrocarbons. In short, the fast pyrolysis oils were successfully translated to hydrocarbon liquid fuels using a two-step catalytic HDO process. PMID:23876507

  19. Preliminary studies of bio-oil from fast pyrolysis of coconut fibers.

    PubMed

    Almeida, Tarciana M; Bispo, Mozart D; Cardoso, Anne R T; Migliorini, Marcelo V; Schena, Tiago; de Campos, Maria Cecilia V; Machado, Maria Elisabete; López, Jorge A; Krause, Laiza C; Caramão, Elina B

    2013-07-17

    This work studied fast pyrolysis as a way to use the residual fiber obtained from the shells of coconut ( Cocos nucifera L. var. Dwarf, from Aracaju, northeastern Brazil). The bio-oil produced by fast pyrolysis and the aqueous phase (formed during the pyrolysis) were characterized by GC/qMS and GC×GC/TOF-MS. Many oxygenated compounds such as phenols, aldehydes, and ketones were identified in the extracts obtained in both phases, with a high predominance of phenolic compounds, mainly alkylphenols. Eighty-one compounds were identified in the bio-oil and 42 in the aqueous phase using GC/qMS, and 95 and 68 in the same samples were identified by GC×GC/TOF-MS. The better performance of GC×GC/TOF-MS was due to the possibility of resolving some coeluted peaks in the one-dimension gas chromatography. Semiquantitative analysis of the samples verified that 59% of the area on the chromatogram of bio-oil is composed by phenols and 12% by aldehydes, mainly furfural. Using the same criterion, 77% of the organic compounds in the aqueous phase are phenols. Therefore, this preliminary assessment indicates that coconut fibers have the potential to be a cost-effective and promising alternative to obtain new products and minimize environmental impact. PMID:23815555

  20. Analysis and comparison of biomass pyrolysis/gasification condensates: an interim report

    SciTech Connect

    Elliott, D.C.

    1985-09-01

    This report provides results of chemical and physical analysis of condensates from eleven biomass gasification and pyrolysis systems. The analyses were performed in order to provide more detailed data concerning these condensates for the different process research groups and to allow a determination of the differences in properties of the condensates as a function of reactor environment. The samples were representative of the various reactor configurations being researched within the Department of Energy, Biomass Thermochemical Conversion program. The condensates included tar phases, aqueous phases and, in some cases, both phases depending on the output of the particular reactor system. The analyses included gross compositional analysis (elemental analysis, ash, moisture), physical characterization (pour point, viscosity, density, heat of combustion, distillation), specific chemical analysis (gas chromatography/mass spectrometry, infrared spectrophotometry, proton and carbon-13 nuclear magnetic resonance spectrometry) and biological activity (Ames assay). The analytical data demonstrate the wide range of chemical composition of the organics recovered in the condensates and suggests a direct relationship between operating temperature and chemical composition of the condensates. A continuous pathway of thermal degradation of the tar components as a function of temperature is proposed. Variations in the chemical composition of the organic components in the tars are reflected in the physical properties of tars and phase stability in relation to water in the condensate. The biological activity appears to be limited to the tars produced at high temperatures as a result of formation of polycyclic aromatic hydrocarbons in high concentrations. 55 refs., 13 figs., 6 tabs.

  1. Novel Fast Pyrolysis/Catalytic Technology for the Production of Stable Upgraded Liquids

    SciTech Connect

    Oyama, Ted; Agblevor, Foster; Battaglia, Francine; Klein, Michael

    2013-01-18

    The objective of the proposed research is the demonstration and development of a novel biomass pyrolysis technology for the production of a stable bio-oil. The approach is to carry out catalytic hydrodeoxygenation (HDO) and upgrading together with pyrolysis in a single fluidized bed reactor with a unique two-level design that permits the physical separation of the two processes. The hydrogen required for the HDO will be generated in the catalytic section by the water-gas shift reaction employing recycled CO produced from the pyrolysis reaction itself. Thus, the use of a reactive recycle stream is another innovation in this technology. The catalysts will be designed in collaboration with BASF Catalysts LLC (formerly Engelhard Corporation), a leader in the manufacture of attrition-resistant cracking catalysts. The proposed work will include reactor modeling with state-of-the-art computational fluid dynamics in a supercomputer, and advanced kinetic analysis for optimization of bio-oil production. The stability of the bio-oil will be determined by viscosity, oxygen content, and acidity determinations in real and accelerated measurements. A multi-faceted team has been assembled to handle laboratory demonstration studies and computational analysis for optimization and scaleup.

  2. Comparative analysis of pinewood, peanut shell, and bamboo biomass derived biochars produced via hydrothermal conversion and pyrolysis.

    PubMed

    Huff, Matthew D; Kumar, Sandeep; Lee, James W

    2014-12-15

    Biochars were produced from pinewood, peanut shell, and bamboo biomass through hydrothermal conversion (HTC) at 300 °C and comparatively by slow pyrolysis over a temperature range of 300, 400, and 500 °C. These biochars were characterized by FT-IR, cation exchange capacity (CEC) assay, methylene blue adsorption, as well as proximate and elemental analysis. The experimental results demonstrated higher retained oxygen content in biochars produced at lower pyrolysis temperatures and through HTC, which also correlated to the higher CEC of respective biochars. Furthermore, all types of biochar studied herein were capable of adsorption of methylene blue from solution and the adsorption did not appear to strongly correlate with CEC, indicating that the methylene blue adsorption appears to be dependent more upon the non-electrostatic molecular interactions such as the likely dispersive π-π interactions between the graphene-like sheets of the biochar with the aromatic ring structure of the dye, than the electrostatic CEC. A direct comparison of hydrothermal and pyrolysis converted biochars reveals that biochars produced through HTC have much higher CEC than the biochars produced by slow pyrolysis. Analysis by FT-IR reveals a higher retention of oxygen functional groups in HTC biochars; additionally, there is an apparent trend of increasing aromaticity of the pyrolysis biochars when produced at higher temperatures. The CEC value of the HTC biochar appears correlated with its oxygen functional group content as indicated by the FT-IR measurements and its O:C ratio. PMID:25190598

  3. Carbon dioxide assisted sustainability enhancement of pyrolysis of waste biomass: A case study with spent coffee ground.

    PubMed

    Cho, Dong-Wan; Cho, Seong-Heon; Song, Hocheol; Kwon, Eilhann E

    2015-01-01

    This work mainly presents the influence of CO2 as a reaction medium in the thermo-chemical process (pyrolysis) of waste biomass. Our experimental work mechanistically validated two key roles of CO2 in pyrolysis of biomass. For example, CO2 expedited the thermal cracking of volatile organic compounds (VOCs) evolved from the thermal degradation of spent coffee ground (SCG) and reacted with VOCs. This enhanced thermal cracking behavior and reaction triggered by CO2 directly led to the enhanced generation of CO (∼ 3000%) in the presence of CO2. As a result, this identified influence of CO2 also directly led to the substantial decrease (∼ 40-60%) of the condensable hydrocarbons (tar). Finally, the morphologic change of biochar was distinctive in the presence of CO2. Therefore, a series of the adsorption experiments with dye were conducted to preliminary explore the physico-chemical properties of biochar induced by CO2. PMID:25864025

  4. Comparison of non-catalytic and catalytic fast pyrolysis of corncob in a fluidized bed reactor.

    PubMed

    Zhang, Huiyan; Xiao, Rui; Huang, He; Xiao, Gang

    2009-02-01

    Fast pyrolysis of corncob with and without catalyst was investigated in a fluidized bed to determine the effects of pyrolysis parameters (temperature, gas flow rate, static bed height and particle size) and a HZSM-5 zeolite catalyst on the product yields and the qualities of the liquid products. The result showed that the optimal conditions for liquid yield (56.8%) were a pyrolysis temperature of 550 degrees C, gas flow rate of 3.4 L/min, static bed height of 10 cm and particle size of 1.0-2.0mm. The presence of the catalyst increased the yields of non-condensable gas, water and coke, while decreased the liquid and char yields. The elemental analysis showed that more than 25% decrease in oxygen content of the collected liquid in the second condenser with HZSM-5 was observed compared with that without catalyst. The H/C, O/C molar ratios and the higher heating value of the oil fraction in the collected liquid with the catalyst were 1.511, 0.149 and 34.6 MJ/kg, respectively. It was indicated that the collected liquid in the second condenser had high qualities and might be used as transport oil. PMID:18829306

  5. Pressurized fast-pyrolysis characteristics of typical Chinese coals with different ranks

    SciTech Connect

    Chunyu Li; Jiantao Zhao; Yitian Fang; Yang Wang

    2009-09-15

    The pressurized fast pyrolysis of three typical Chinese coals with different coal ranks (Huolinhe lignite, Shenmu bituminous coal, and Jincheng anthracite) was conducted on a self-made pressurized fixed-bed reactor. The physicochemical characteristics of the chars were studied via scanning electron microscopy (SEM), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FT-IR). In addition, thermogravimetric analysis (TGA) at ambient pressure has been used to study the influence of the residence time, the pyrolysis temperature, and pressure on the gasification reactivity of residual chars. The results show that the change in char yield and reactivity with pressure, at a residence time of 1 min, is different from that at longer residence time. This is related to the changing impacts of the rapid primary release of volatiles and the slower secondary cracking reactions of the evolved tars and the graphitization of the char structure. Furthermore, as the coal rank, pyrolysis pressure, temperature, and residence time increase, the surface structure of the char becomes much denser, the degree of graphitization is enhanced, and the number of the functional groups is reduced, which lead to the decrease in the gasification reactivity of the coal char. 23 refs., 1 figs., 2 tabs.

  6. Bio-oils from biomass slow pyrolysis: a chemical and toxicological screening.

    PubMed

    Cordella, Mauro; Torri, Cristian; Adamiano, Alessio; Fabbri, Daniele; Barontini, Federica; Cozzani, Valerio

    2012-09-15

    Bio-oils were produced from bench-scale slow-pyrolysis of three different biomass samples (corn stalks, poplar and switchgrass). Experimental protocols were developed and applied in order to screen their chemical composition. Several hazardous compounds were detected in the bio-oil samples analysed, including phenols, furans and polycyclic aromatic hydrocarbons. A procedure was outlined and applied to the assessment of toxicological and carcinogenic hazards of the bio-oils. The following hazardous properties were considered: acute toxicity; ecotoxicity; chronic toxicity; carcinogenicity. Parameters related to these properties were quantified for each component identified in the bio-oils and overall values were estimated for the bio-oils. The hazard screening carried out for the three bio-oils considered suggested that: (i) hazards to human health could be associated with chronic exposures to the bio-oils; (ii) acute toxic effects on humans and eco-toxic effects on aquatic ecosystems could also be possible in the case of loss of containment; and (iii) bio-oils may present a marginal potential carcinogenicity. The approach outlined allows the collection of screening information on the potential hazards posed by the bio-oils. This can be particularly useful when limited time and analytical resources reduce the possibility to obtain detailed specific experimental data. PMID:22790394

  7. A review of catalytic hydrodeoxygenation of lignin-derived phenols from biomass pyrolysis.

    PubMed

    Bu, Quan; Lei, Hanwu; Zacher, Alan H; Wang, Lu; Ren, Shoujie; Liang, Jing; Wei, Yi; Liu, Yupeng; Tang, Juming; Zhang, Qin; Ruan, Roger

    2012-11-01

    Catalytic hydrodeoxygenation (HDO) of lignin-derived phenols which are the lowest reactive chemical compounds in biomass pyrolysis oils has been reviewed. The hydrodeoxygenation (HDO) catalysts have been discussed including traditional HDO catalysts such as CoMo/Al(2)O(3) and NiMo/Al(2)O(3) catalysts and transition metal catalysts (noble metals). The mechanism of HDO of lignin-derived phenols was analyzed on the basis of different model compounds. The kinetics of HDO of different lignin-derived model compounds has been investigated. The diversity of bio-oils leads to the complexities of HDO kinetics. The techno-economic analysis indicates that a series of major technical and economical efforts still have to be investigated in details before scaling up the HDO of lignin-derived phenols in existed refinery infrastructure. Examples of future investigation of HDO include significant challenges of improving catalysts and optimum operation conditions, further understanding of kinetics of complex bio-oils, and the availability of sustainable and cost-effective hydrogen source. PMID:23021958

  8. Catalytic conversion of biomass pyrolysis-derived compounds with chemical liquid deposition (CLD) modified ZSM-5.

    PubMed

    Zhang, Huiyan; Luo, Mengmeng; Xiao, Rui; Shao, Shanshan; Jin, Baosheng; Xiao, Guomin; Zhao, Ming; Liang, Junyu

    2014-03-01

    Chemical liquid deposition (CLD) with KH550, TEOS and methyl silicone oil as the modifiers was used to modify ZSM-5 and deposit its external acid sites. The characteristics of modified catalysts were tested by catalytic conversion of biomass pyrolysis-derived compounds. The effects of different modifying conditions (deposited amount, temperature, and time) on the product yields and selectivities were investigated. The results show KH550 modified ZSM-5 (deposited amount of 4%, temperature of 20°C and time of 6h) produced the maximum yields of aromatics (24.5%) and olefins (16.5%), which are much higher than that obtained with original ZSM-5 catalyst (18.8% aromatics and 9.8% olefins). The coke yield decreased from 44.1% with original ZSM-5 to 26.7% with KH550 modified ZSM-5. The selectivities of low-molecule-weight hydrocarbons (ethylene and benzene) decreased, while that of higher molecule-weight hydrocarbons (propylene, butylene, toluene, and naphthalene) increased comparing with original ZSM-5. PMID:24413482

  9. Modeling of biomass to hydrogen via the supercritical water pyrolysis process

    SciTech Connect

    Divilio, R.J.

    1998-08-01

    A heat transfer model has been developed to predict the temperature profile inside the University of Hawaii`s Supercritical Water Reactor. A series of heat transfer tests were conducted on the University of Hawaii`s apparatus to calibrate the model. Results of the model simulations are shown for several of the heat transfer tests. Tests with corn starch and wood pastes indicated that there are substantial differences between the thermal properties of the paste compared to pure water, particularly near the pseudo critical temperature. The assumption of constant thermal diffusivity in the temperature range of 250 to 450 C gave a reasonable prediction of the reactor temperatures when paste is being fed. A literature review is presented for pyrolysis of biomass in water at elevated temperatures up to the supercritical range. Based on this review, a global reaction mechanism is proposed. Equilibrium calculations were performed on the test results from the University of Hawaii`s Supercritical Water Reactor when corn starch and corn starch and wood pastes were being fed. The calculations indicate that the data from the reactor falls both below and above the equilibrium hydrogen concentrations depending on test conditions. The data also indicates that faster heating rates may be beneficial to the hydrogen yield. Equilibrium calculations were also performed to examine the impact of wood concentration on the gas mixtures produced. This calculation showed that increasing wood concentrations favors the formation of methane at the expense of hydrogen.

  10. Life cycle assessment of the production of hydrogen and transportation fuels from corn stover via fast pyrolysis

    NASA Astrophysics Data System (ADS)

    Zhang, Yanan; Hu, Guiping; Brown, Robert C.

    2013-06-01

    This life cycle assessment evaluates and quantifies the environmental impacts of the production of hydrogen and transportation fuels from the fast pyrolysis and upgrading of corn stover. Input data for this analysis come from Aspen Plus modeling, a GREET (Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation) model database and a US Life Cycle Inventory Database. SimaPro 7.3 software is employed to estimate the environmental impacts. The results indicate that the net fossil energy input is 0.25 MJ and 0.23 MJ per km traveled for a light-duty vehicle fueled by gasoline and diesel fuel, respectively. Bio-oil production requires the largest fossil energy input. The net global warming potential (GWP) is 0.037 kg CO2eq and 0.015 kg CO2eq per km traveled for a vehicle fueled by gasoline and diesel fuel, respectively. Vehicle operations contribute up to 33% of the total positive GWP, which is the largest greenhouse gas footprint of all the unit processes. The net GWPs in this study are 88% and 94% lower than for petroleum-based gasoline and diesel fuel (2005 baseline), respectively. Biomass transportation has the largest impact on ozone depletion among all of the unit processes. Sensitivity analysis shows that fuel economy, transportation fuel yield, bio-oil yield, and electricity consumption are the key factors that influence greenhouse gas emissions.

  11. Organic compounds leached from fast pyrolysis mallee leaf and bark biochars.

    PubMed

    Lievens, Caroline; Mourant, Daniel; Gunawan, Richard; Hu, Xun; Wang, Yi

    2015-11-01

    Characterization of organic compounds leached from biochars is essential in assessing the possible toxicity of the biochar to the soils' biota. In this study the nature of the leached organic compounds from Mallee biochars, produced from pyrolysis of Mallee leaf and bark in a fluidised-bed pyrolyser at 400 and 580°C was investigated. Light bio-oil compounds and aromatic organic compounds were investigated. The 'bio-oil like' light compounds from leaf and bark biochars 'surfaces were obtained after leaching the chars with a solvent, suitable to dissolve the respective bio-oils. GC/MS was implemented to investigate the leachates. Phenolics, which are potentially harmful toxins, were detected and their concentration shown to be dependent on the char's origin and the char production temperature. Further, to simulate biochars amendment to soils, the chars were leached with water. The water-leached aromatic compounds from leaf and bark biochars were characterized using UV-fluorescence spectroscopy. Those results suggested that biochars contain leachable compounds of which the nature and amount is dependent on the biomass feedstock, pyrolysis temperature and leaching time. PMID:25434266

  12. Kinetic and energy production analysis of pyrolysis of lignocellulosic biomass using a three-parallel Gaussian reaction model.

    PubMed

    Chen, Tianju; Zhang, Jinzhi; Wu, Jinhu

    2016-07-01

    The kinetic and energy productions of pyrolysis of a lignocellulosic biomass were investigated using a three-parallel Gaussian distribution method in this work. The pyrolysis experiment of the pine sawdust was performed using a thermogravimetric-mass spectroscopy (TG-MS) analyzer. A three-parallel Gaussian distributed activation energy model (DAEM)-reaction model was used to describe thermal decomposition behaviors of the three components, hemicellulose, cellulose and lignin. The first, second and third pseudocomponents represent the fractions of hemicellulose, cellulose and lignin, respectively. It was found that the model is capable of predicting the pyrolysis behavior of the pine sawdust. The activation energy distribution peaks for the three pseudo-components were centered at 186.8, 197.5 and 203.9kJmol(-1) for the pine sawdust, respectively. The evolution profiles of H2, CH4, CO, and CO2 were well predicted using the three-parallel Gaussian distribution model. In addition, the chemical composition of bio-oil was also obtained by pyrolysis-gas chromatography/mass spectrometry instrument (Py-GC/MS). PMID:27035484

  13. Comprehensive two dimensional gas chromatography with fast-quadrupole mass spectrometry detector analysis of polar compounds extracted from the bio-oil from the pyrolysis of sawdust.

    PubMed

    Schneider, Jaderson K; da Cunha, Michele E; dos Santos, Anaí L; Maciel, Gabriela P S; Brasil, Márcia C; Pinho, Andrea R; Mendes, Fábio L; Jacques, Rosângela A; Caramão, Elina B

    2014-08-22

    In this paper it is studied the most polar fractions of bio-oil produced by fast pyrolysis of Lignocel BK40-90 (sawdust from forest timber). The biomass was submitted to the pyrolysis in an existing FCC pilot plant that was adapted for this procedure. The equipment consists of a fluidized bed reactor with nitrogen injection. The unit operates with continuous biomass feeding and continuous solids circulation. The produced bio-oil was submitted to an aqueous alkaline extraction, isolating the acidic compounds that were analyzed by one-dimensional gas chromatography and comprehensive two-dimensional gas chromatography with quadrupole mass spectrometry detection (qMS). One hundred and thirty compounds (mainly phenols and ketones) were tentatively identified in the extract, some of them by the use of retention indexes. The main differences between chromatographic techniques were the substantial increasing in the peak capacity of GC×GC and the resolution of some co-elutions that occurred in GC/qMS. It is also possible to conclude that this extract is rich in important raw materials for the chemical industry and can be used for this end. PMID:25022485

  14. Preparation and characterization of nanostructured metal oxides for application to biomass upgrading Polar (111) metal oxide surfaces for pyrolysis oil upgrading and lignin depolymerization

    NASA Astrophysics Data System (ADS)

    Finch, Kenneth

    2013-01-01

    Pyrolysis oil, or bio-oil, is one of the most promising methods to upgrade a variety of biomass to transportation fuels. Moving toward a more "green" catalytic process requires heterogeneous catalysis over homogeneous catalysis to avoid extraction solvent waste. Nanoscale catalysts are showing great promise due to their high surface area and unusual surfaces. Base catalyzed condensation reactions occur much quicker than acid catalyzed condensation reactions. However, MgO is slightly soluble in water and is susceptible to degradation by acidic environments, similar to those found in fast-pyrolysis oil. Magnesium oxide (111) has a highly active Lewis base surface, which can catalyze Claisen-Schmidt condensation reactions in the organic phase. It has been shown previously that carbon coating a catalyst, such as a metal oxide, provides integrity while leaving the catalytic activity intact. Here, carbon-coated MgO(111) will be discussed with regards to synthesis, characterization and application to bio-oil upgrading through model compounds. Raman spectroscopy and HR-TEM are used to characterize the thickness and carbon-bonding environment of the carbon coating. Propanal self-condensation reactions have been conducted in the aqueous phase with varying amounts of acetic acid present. Quantitative analysis by gas chromatography was completed to determine the catalytic activity of CC-MgO(111). ICP-OES analysis has been conducted to measure the magnesium concentration in the product solution and give insight into the leaching of the catalyst into the reaction solution.

  15. Beneficial synergetic effect on gas production during co-pyrolysis of sewage sludge and biomass in a vacuum reactor.

    PubMed

    Zhang, Weijiang; Yuan, Chengyong; Xu, Jiao; Yang, Xiao

    2015-05-01

    A vacuum fixed bed reactor was used to pyrolyze sewage sludge, biomass (rice husk) and their blend under high temperature (900°C). Pyrolytic products were kept in the vacuum reactor during the whole pyrolysis process, guaranteeing a long contact time (more than 2h) for their interactions. Remarkable synergetic effect on gas production was observed. Gas yield of blend fuel was evidently higher than that of both parent fuels. The syngas (CO and H2) content and gas lower heating value (LHV) were obviously improved as well. It was highly possible that sewage sludge provided more CO2 and H2O during co-pyrolysis, promoting intense CO2-char and H2O-char gasification, which benefited the increase of gas yield and lower heating value. The beneficial synergetic effect, as a result, made this method a feasible one for gas production. PMID:25728344

  16. The flash pyrolysis and methanolysis of biomass (wood) for production of ethylene, benzene and methanol

    SciTech Connect

    Steinberg, M.; Fallon, P.T.; Sundaram, M.S.

    1990-02-01

    The process chemistry of the flash pyrolysis of biomass (wood) with the reactive gases, H{sub 2} and CH{sub 4} and with the non-reactive gases He and N{sub 2} is being determined in a 1 in. downflow tubular reactor at pressures from 20 to 1000 psi and temperatures from 600 to 1000{degrees}C. With hydrogen, flash hydropyrolysis leads to high yields of methane and CO which can be used for SNG and methanol fuel production. With methane, flash methanolysis leads to high yields of ethylene, benzene and CO which can be used for the production of valuable chemical feedstocks and methanol transportation fuel. At reactor conditions of 50 psi and 1000{degrees}C and approximately 1 sec residence time, the yields based on pine wood carbon conversion are up to 25% for ethylene, 25% for benzene, and 45% for CO, indicating that over 90% of the carbon in pine is converted to valuable products. Pine wood produces higher yields of hydrocarbon products than Douglas fir wood; the yield of ethylene is 2.3 times higher with methane than with helium or nitrogen, and for pine, the ratio is 7.5 times higher. The mechanism appears to be a free radical reaction between CH{sub 4} and the pyrolyzed wood. There appears to be no net production or consumption of methane. A preliminary process design and analysis indicates a potentially economical competitive system for the production of ethylene, benzene and methanol based on the methanolysis of wood. 10 refs., 18 figs., 1 tab.

  17. Catalytic Fast Pyrolysis of Wild Reed Over Nanoporous SBA-15 Catalysts.

    PubMed

    Park, Y K; Yoo, Myung Lang; Park, Sung Hoon

    2016-05-01

    Wild reed was pyrolyzed over two nanoporous SBA-15 catalysts with different acid characteristics: Si-SBA-15 and Al-SBA-15. Al was grafted on Si-SBA-15 to increase the acidity and enhance the catalytic activity. Fast pyrolysis was carried out using a pyrolysis-gas chromatography/mass spectrometry system at 550 degrees C for real-time analysis of the products. Significant improvement of the product bio-oil quality was attained by catalytic reforming over nanoporous Al-SBA-15. The fraction of total oxygenates was reduced because of the decrease in. the fraction of ketones, aldehydes, and carboxylates, which deteriorate the fuel quality of bio-oil. On the other hand, the fractions of furans and aromatics, which are the chemicals with high value-added, were increased by the catalytic reforming. The catalytic activity of Al-SBA-15 was considerably higher than that of Si-SBA-15 because the incorporation of Al increased the catalyst acidity. PMID:27483790

  18. Biofuels from continuous fast pyrolysis of soybean oil: a pilot plant study.

    PubMed

    Wiggers, V R; Meier, H F; Wisniewski, A; Chivanga Barros, A A; Wolf Maciel, M R

    2009-12-01

    The continuous fast pyrolysis of soybean oil in a pilot plant was investigated. The experimental runs were carried out according to an experimental design alternating the temperature (from 450 to 600 degrees C) and the concentration of water (from 0% to 10%). The liquid products were analyzed by gas chromatography and by true boiling point (TPB) distillation. A simple distillation was used to obtain purified products such as gasoline and diesel. Physical-chemical analysis showed that these biofuels are similar to fossil fuels. Mass and energy balances were carried out in order to determine the vaporization enthalpy and the reaction enthalpy for each experiment. The thermal analysis showed that it is possible to use the products as an energy source for the process. PMID:19692230

  19. Oil production by entrained pyrolysis of biomass and processing of oil and char

    DOEpatents

    Knight, James A.; Gorton, Charles W.

    1990-01-02

    Entrained pyrolysis of lignocellulosic material proceeds from a controlled pyrolysis-initiating temperature to completion of an oxygen free environment at atmospheric pressure and controlled residence time to provide a high yield recovery of pyrolysis oil together with char and non-condensable, combustible gases. The residence time is a function of gas flow rate and the initiating temperature is likewise a function of the gas flow rate, varying therewith. A controlled initiating temperature range of about 400.degree. C. to 550.degree. C. with corresponding gas flow rates to maximize oil yield is disclosed.

  20. Thermogravimetric kinetic study of agricultural residue biomass pyrolysis based on combined kinetics.

    PubMed

    Wang, Xun; Hu, Mian; Hu, Wanyong; Chen, Zhihua; Liu, Shiming; Hu, Zhiquan; Xiao, Bo

    2016-11-01

    Pyrolytic kinetic of an agricultural residue (AR) feedstock, a mixture of plants (cotton, wheat, rich, corn) stems, was investigated based on combined kinetics. The most suitable mechanism for AR one-step pyrolysis was f(α)=(1-α)(1.1816)α(-1.8428) with kinetic parameters of: apparent activation energy 221.7kJ/mol, pre-exponential factor 4.17E16s(-1). Pyrolysis of AR feedstock could not be described by one-step reaction attributes to heterogeneous features of pyrolysis processes. Combined kinetics three-parallel-reaction (CK-TPR) model fitted the pyrolysis experimental data very well. Reaction mechanisms for pseudo hemicelluloses, cellulose, lignin in CK-TPR model was f(α)=(1-α)(1.6244)α(-0.3371)[-ln(1-α)](-0.0515), f(α)=(1-α)(1.0597)α(-0.6909)[-ln(1-α)](0.9026) and f(α)=(1-α)(2.9577)α(-4.7719), respectively. Apparent activation energy of three pseudo components followed the order of Elignin(197.3kJ/mol)>Ecellulose(176.3kJ/mol)>Ehemicelluloses (151.1kJ/mol). Mechanism of hemicelluloses pyrolysis could be further expressed as f(α)=(1-α)(1.4). The pyrolytic mechanism of cellulose met the Nucleation well. However, mechanism of lignin pyrolysis was complex, which possibly was the combined effects of Nucleation, Diffusion, Geometrical contraction, and Power law. PMID:27521788

  1. Biocrude oils from the fast pyrolysis of poultry litter and hardwood.

    PubMed

    Agblevor, F A; Beis, S; Kim, S S; Tarrant, R; Mante, N O

    2010-02-01

    The safe and economical disposal of poultry litter is becoming a major problem for the USA poultry industry. Current disposal methods such as land application and feeding to cattle are now under pressure because of pollution of water resources due to leaching, runoffs and concern for mad cow disease contamination of the food chain. Incineration or combustion is potentially applicable to large scale operations, but for small scale growers and EPA non-attainment areas, this is not a suitable option because of the high cost of operation. Thus, there is a need for developing appropriate technologies to dispose poultry litter. Poultry litters from broiler chicken and turkey houses, as well as bedding material were converted into biocrude oil in a fast pyrolysis fluidized bed reactor. The biocrude oil yields were relatively low ranging from 36 wt% to 50 wt% depending on the age and bedding material content of the litter. The bedding material (which was mostly hardwood shavings) biocrude oil yield was 63 wt%. The higher heating value (HHV) of the poultry litter biocrude oils ranged from 26 MJ/kg to 29 MJ/kg while that of the bedding material was 24 MJ/kg. The oils had relatively high nitrogen content ranging from 4 wt% to 8 wt%, very low sulfur (<1 wt%) content and high viscosity. The viscosities of the oils appeared to be a function of both the source of litter and the pyrolysis temperature. The biochar yield ranged from 27 wt% to 40 wt% depending on the source, age and composition of the poultry litter. The biochar ash content ranged from 24 wt% to 54 wt% and was very rich in inorganic components such as potassium and phosphorous. PMID:19880302

  2. Biocrude oils from the fast pyrolysis of poultry litter and hardwood

    SciTech Connect

    Agblevor, F.A.; Beis, S.; Kim, S.S.; Tarrant, R.; Mante, N.O.

    2010-02-15

    The safe and economical disposal of poultry litter is becoming a major problem for the USA poultry industry. Current disposal methods such as land application and feeding to cattle are now under pressure because of pollution of water resources due to leaching, runoffs and concern for mad cow disease contamination of the food chain. Incineration or combustion is potentially applicable to large scale operations, but for small scale growers and EPA non-attainment areas, this is not a suitable option because of the high cost of operation. Thus, there is a need for developing appropriate technologies to dispose poultry litter. Poultry litters from broiler chicken and turkey houses, as well as bedding material were converted into biocrude oil in a fast pyrolysis fluidized bed reactor. The biocrude oil yields were relatively low ranging from 36 wt% to 50 wt% depending on the age and bedding material content of the litter. The bedding material (which was mostly hardwood shavings) biocrude oil yield was 63 wt%. The higher heating value (HHV) of the poultry litter biocrude oils ranged from 26 MJ/kg to 29 MJ/kg while that of the bedding material was 24 MJ/kg. The oils had relatively high nitrogen content ranging from 4 wt% to 8 wt%, very low sulfur (<1 wt%) content and high viscosity. The viscosities of the oils appeared to be a function of both the source of litter and the pyrolysis temperature. The biochar yield ranged from 27 wt% to 40 wt% depending on the source, age and composition of the poultry litter. The biochar ash content ranged from 24 wt% to 54 wt% and was very rich in inorganic components such as potassium and phosphorous.

  3. Thermal behaviour and kinetics of alga Polysiphonia elongata biomass during pyrolysis.

    PubMed

    Ceylan, Selim; Topcu, Yıldıray; Ceylan, Zeynep

    2014-11-01

    The pyrolysis characteristics and kinetics of Polysiphonia elongata were investigated using a thermogravimetric analyzer. The main decomposition of samples occurred between 225 °C and 485 °C at heating rates of 5-40 °C/min; owing to release of 78-82% of total volatiles. The heating rate effected pyrolysis characteristics such as maximum devolatilization rate and decomposition temperature. However, total volatile matter yield was not significantly affected by heating rate. The activation energy of pyrolysis reaction was calculated by model free Friedman and Kissenger-Akahira-Sunose methods and mean values were 116.23 kJ/mol and 126.48 kJ/mol, respectively. A variance in the activation energy with the proceeding conversions was observed for the models applied, which shows that the pyrolysis process was composed of multi-step kinetics. The Coats-Redfern method was used to determine pre-exponential factor and reaction order. The obtained parameters were used in simulation of pyrolysis process and results were in a good agreement with experimental data. PMID:25194914

  4. Pyrolysis of biomass and refuse-derived fuel performance in laboratory scale batch reactor

    NASA Astrophysics Data System (ADS)

    Kluska, Jacek; Klein, Marek; Kazimierski, Paweł; Kardaś, Dariusz

    2014-03-01

    The results of pyrolysis of pine chips and refuse derived fuel fractions are presented. The experiments were carried out in a pilot pyrolysis reactor. The feedstock was analyzed by an elemental analyzer and the X-ray fluorescence spectrometer to determine the elemental composition. To find out optimum conditions for pyrolysis and mass loss as a function of temperature the thermogravimetric analysis was applied. Gases from the thermogravimetric analysis were directed to the infrared spectrometer using gas-flow cuvette to online analysis of gas composition. Chemical composition of the produced gas was measured using gas chromatography with a thermal conductivity detector and a flame ionization detector. The product analysis also took into account the mass balance of individual products.

  5. Effects of various reactive gas atmospheres on the properties of bio-oil using microwave pyrolysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fast pyrolysis of lignocellulosic biomass produces organic liquids (bio-oil), bio-char, water, and non-condensable gases. The non-condensable gas component typically contains syngas (H2, CO and CO2) as well as small hydrocarbons (CH4, C2H6, and C3H8). Tail Gas Reactive Pyrolysis (TGRP), a patent p...

  6. Fast procedure for the analysis of poly(hydroxyalkanoates) in bacterial cells by off-line pyrolysis/gas-chromatography with flame ionization detector.

    PubMed

    Torri, Cristian; Cordiani, Helena; Samorì, Chiara; Favaro, Lorenzo; Fabbri, Daniele

    2014-09-12

    Poly(hydroxyalkanoates) (PHAs) are polyesters formed by saturated short chain hydroxyacids, among which 3-hydroxybutanoic (HB) and 3-hydroxypentanoic (3-hydroxyvalerate, HV) are the most common monomers of homopolymers (e.g. poly(3-hydroxybutyrate), PHB) and copolymers (e.g. poly(3-hydroxybutyrate-co-3-hydroxyhexanoate), PHB-HC). The most widely used approach for their determination is the polymer methanolysis followed by gas chromatography-mass spectrometry (GC-MS) analysis of the methylated monomers; this procedure generally requires the use of additional reagents (e.g. sulfuric acid) and is performed with harmful chlorinated solvents, such as chloroform. The development of fast routine solventless methods for the quantitative determination of PHAs and their monomeric composition is highly desirable to reduce sample pretreatment, speed up the analysis and decrease overall costs. It has been reported that under thermal treatment (e.g. pyrolysis, Py), PHAs are degraded in high yield (>40%, w/wPHA) into the corresponding 2-alkenoic acid (e.g. crotonic acid from PHB). This work aimed at investigating this reaction for direct analysis of PHAs in bacterial cells. The sample was directly subjected to pyrolysis and trapped pyrolysis products were analyzed by GC-FID. Off-line Py/GC-FID was first optimized on pure polymers with different monomer composition (PHB, PHB-HV, PHB-HC) and then applied to bacterial samples deriving from both mixed microbial cultures or selected strains, containing various types and amounts of PHAs. The Py/GC-FID method provided RSD <15% range, limit of detection of 100μg (1% PHAs in biomass), and results comparable to that of methanolysis (R(2)=0.9855), but with minimal sample pretreatment. PMID:25069742

  7. Phenolic compounds containing/neutral fractions extract and products derived therefrom from fractionated fast-pyrolysis oils

    DOEpatents

    Chum, H.L.; Black, S.K.; Diebold, J.P.; Kreibich, R.E.

    1993-06-29

    A process is described for preparing phenol-formaldehyde novolak resins and molding compositions in which portions of the phenol normally contained in said resins are replaced by a phenol/neutral fractions extract obtained from fractionating fast-pyrolysis oils. The fractionation consists of a neutralization stage which can be carried out with aqueous solutions of bases or appropriate bases in the dry state, followed by solvent extraction with an organic solvent having at least a moderate solubility parameter and good hydrogen bonding capacity. Phenolic compounds-containing/neutral fractions extracts obtained by fractionating fast-pyrolysis oils from a lignocellulosic material, is such that the oil is initially in the pH range of 2-4, being neutralized with an aqueous bicarbonate base, and extracted into a solvent having a solubility parameter of approximately 8.4-9.11 [cal/cm[sup 3

  8. Acetylene from the co-pyrolysis of biomass and waste tires or coal in the H{sub 2}/Ar plasma

    SciTech Connect

    Bao, W.; Cao, Q.; Lv, Y.; Chang, L.

    2008-07-01

    Acetylene from carbon-containing materials via plasma pyrolysis is not only simple but also environmentally friendly. In this article, the acetylene produced from co-pyrolyzing biomass with waste tire or coal under the conditions of H{sub 2}/Ar DC arc plasma jet was investigated. The experimental results showed that the co-pyrolysis of mixture with biomass and waste tire or coal can improve largely the acetylene relative volume fraction (RVF) in gaseous products and the corresponding yield of acetylene. The change trends for the acetylene yield of plasma pyrolysis from mixture with raw sample properties were the same as relevant RVF. But the yield change trend with feeding rate is different from its RVF. The effects of the feeding rate of raw materials and the electric current of plasmatron on acetylene formation are also discussed.

  9. Production of aromatic hydrocarbons via catalytic pyrolysis of biomass over fe-modified HZSM-5 zeolites

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Iron modified HZSM-5 catalysts were prepared by partial ion exchange of NH4ZSM-5 with Fe (II) at three different loadings (1.4, 2.8 and 4.2 wt%), and their effectiveness for producing aromatic hydrocarbons from cellulose, cellobiose, lignin and switchgrass by catalytic pyrolysis were screened using ...

  10. New applications of x-ray tomography in pyrolysis of biomass: biochar imaging

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We report on the first ever use of non-destructive micrometer-scale synchrotron computed microtomography for characterization of biochar materials as a function of pyrolysis temperature. Using this innovative approach we have observed an increase in marcropore fraction of the sample, resulting in 29...

  11. New applications of X-ray tomography in pyrolysis of biomass: Biochar imaging

    DOE PAGESBeta

    Jones, Keith; Ramakrishnan, Girish; Uchimiya, Minori; Orlov, Alexander

    2015-01-30

    We report on the first ever use of non-destructive micrometer-scale synchrotron-computed microtomography (CMT) for biochar material characterization as a function of pyrolysis temperature. This innovative approach demonstrated an increase in micron-sized marcropore fraction of the Cotton Hull (CH) sample, resulting in up to 29% sample porosity. We have also found that initial porosity development occurred at low temperatures (below 350°C) of pyrolysis, consistent with chemical composition of CH. This innovative technique can be highly complementary to traditional BET measurements, considering that Barrett–Joyner–Halenda (BJH) analysis of pore size distribution cannot detect these macropores. Such information can be of substantial relevance tomore » environmental applications, given that water retention by biochars added to soils is controlled by macropore characteristic among the other factors. In addition, complementing our data with SEM, EDX, and XRF characterization techniques allowed us to develop a better understanding of evolution of biochar properties during its production, such presence of metals and initial morphological features of biochar before pyrolysis. These results have significant implications for using biochar as a soil additive and for clarifying the mechanisms of biofuel production by pyrolysis.« less

  12. New applications of X-ray tomography in pyrolysis of biomass: Biochar imaging

    SciTech Connect

    Jones, Keith; Ramakrishnan, Girish; Uchimiya, Minori; Orlov, Alexander

    2015-01-30

    We report on the first ever use of non-destructive micrometer-scale synchrotron-computed microtomography (CMT) for biochar material characterization as a function of pyrolysis temperature. This innovative approach demonstrated an increase in micron-sized marcropore fraction of the Cotton Hull (CH) sample, resulting in up to 29% sample porosity. We have also found that initial porosity development occurred at low temperatures (below 350°C) of pyrolysis, consistent with chemical composition of CH. This innovative technique can be highly complementary to traditional BET measurements, considering that Barrett–Joyner–Halenda (BJH) analysis of pore size distribution cannot detect these macropores. Such information can be of substantial relevance to environmental applications, given that water retention by biochars added to soils is controlled by macropore characteristic among the other factors. In addition, complementing our data with SEM, EDX, and XRF characterization techniques allowed us to develop a better understanding of evolution of biochar properties during its production, such presence of metals and initial morphological features of biochar before pyrolysis. These results have significant implications for using biochar as a soil additive and for clarifying the mechanisms of biofuel production by pyrolysis.

  13. Field-to-Fuel Performance Testing of Lignocellulosic Feedstocks: An Integrated Study of the Fast Pyrolysis/Hydrotreating Pathway

    SciTech Connect

    Howe, Daniel T.; Westover, Tyler; Carpenter, Daniel; Santosa, Daniel M.; Emerson, Rachel; Deutch, Steve; Starace, Anne; Kutnyakov, Igor V.; Lukins, Craig D.

    2015-05-21

    Feedstock composition can affect final fuel yields and quality for the fast pyrolysis and hydrotreatment upgrading pathway. However, previous studies have focused on individual unit operations rather than the integrated system. In this study, a suite of six pure lignocellulosic feedstocks (clean pine, whole pine, tulip poplar, hybrid poplar, switchgrass, and corn stover) and two blends (equal weight percentages whole pine/tulip poplar/switchgrass and whole pine/clean pine/hybrid poplar) were prepared and characterized at Idaho National Laboratory. These blends then underwent fast pyrolysis at the National Renewable Energy Laboratory and hydrotreatment at Pacific Northwest National Laboratory. Although some feedstocks showed a high fast pyrolysis bio-oil yield such as tulip poplar at 57%, high yields in the hydrotreater were not always observed. Results showed overall fuel yields of 15% (switchgrass), 18% (corn stover), 23% (tulip poplar, Blend 1, Blend 2), 24% (whole pine, hybrid poplar) and 27% (clean pine). Simulated distillation of the upgraded oils indicated that the gasoline fraction varied from 39% (clean pine) to 51% (corn stover), while the diesel fraction ranged from 40% (corn stover) to 46% (tulip poplar). Little variation was seen in the jet fuel fraction at 11 to 12%. Hydrogen consumption during hydrotreating, a major factor in the economic feasibility of the integrated process, ranged from 0.051 g/g dry feed (tulip poplar) to 0.070 g/g dry feed (clean pine).

  14. Accumulation of inorganic impurities on HZSM-5 during catalytic fast pyrolysis of switchgrass

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The fate of inorganic species present in switchgrass during fluidized bed catalytic pyrolysis over HZSM-5 catalysts was studied with emphasis on their accumulation on the catalyst. Five catalytic pyrolysis experiments were performed in two series, reusing the catalyst after each sample. Catalysts w...

  15. ASPEN+ and economic modeling of equine waste utilization for localized hot water heating via fast pyrolysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    ASPEN Plus based simulation models have been developed to design a pyrolysis process for the on-site production and utilization of pyrolysis oil from equine waste at the Equine Rehabilitation Center at Morrisville State College (MSC). The results indicate that utilization of all available Equine Reh...

  16. Characterizations of Bio-char from Fast Pyrolysis of Meranti Wood Sawdust

    NASA Astrophysics Data System (ADS)

    Mazlan, M. A. F.; Uemura, Y.; Osman, N. B.; Yusup, S.

    2015-06-01

    In this research, Meranti wood sawdust (MWS) was pyrolyzed in a fixed bed drop- type pyrolyzer under an inert condition. The first part of the study is to determine the influence of pyrolysis temperature (450, 500 and 550 °C) on the yield of pyrolysis products. Pyrolysis of the waste MWS material generated the highest amount of bio-char with approximately 38 wt.% at pyrolysis temperature of 450 °C. Next, the char product (from pyrolysis at 450 °C) was analyzed to compare its characteristics with the raw MWS feedstock. The major component of the char is carbon element, significantly contributed to its high calorific value. TGA profile shows the MWS char could withstand high temperature of up to 400 °C. Under extensive heating, particle size of the bio-char from SEM images decreased due to breakage and shrinkage processes.

  17. Effects of Post-Pyrolysis Air Oxidation of Biomass Chars on Adsorption of Neutral and Ionizable Compounds.

    PubMed

    Xiao, Feng; Pignatello, Joseph J

    2016-06-21

    This study was conducted to understand the effects of thermal air oxidation of biomass chars experienced during formation or production on their adsorptive properties toward various compounds, including five neutral nonpolar and polar compounds and seven weak acids and bases (pKa = 3-5.2) selected from among industrial chemicals and the triazine and phenoxyacetic acid herbicide classes. Post-pyrolysis air oxidation (PPAO) at 400 °C of anoxically prepared wood and pecan shell chars for up to 40 min enhanced the mass-normalized adsorption at pH ∼ 7.4 of all test compounds, especially the weak acids and bases, by up to 100-fold. Both general and specific effects were identified. The general effect results from "reaming" of pores by the oxidative removal of pore wall matter and/or tarry deposits generated during the pyrolysis step. Reaming creates new surface area and enlarges nanopores, which helps relieve steric hindrance to adsorption. The specific effect results from creation of new acidic functionality that provides sites for the formation of very strong, charge-assisted hydrogen bonds (CAHB) with solutes having comparable pKa. The CAHB hypothesis was supported by competition experiments and the finding that weak acid anion adsorption increased with surface carboxyl content, despite electrostatic repulsion from the growing negative charge. The results provide insight into the effects of air oxidation on pollutant retention. PMID:27152745

  18. Universal model of slow pyrolysis technology producing biochar and heat from standard biomass needed for the techno-economic assessment.

    PubMed

    Klinar, Dušan

    2016-04-01

    Biochar as a soil amendment and carbon sink becomes in last period one of the vast, interesting product of slow pyrolysis. Simplest and most used industrial process arrangement is a production of biochar and heat at the same time. Proposed mass and heat balance model consist of heat consumers (heat demand side) and heat generation-supply side. Direct burning of all generated uncondensed volatiles from biomass provides heat. Calculation of the mass and heat balance of both sides reveals the internal distribution of masses and energy inside process streams and units. Thermodynamic calculations verified not only the concept but also numerical range of the results. The comparisons with recent published scientific and vendors data prove its general applicability and reliability. The model opens the possibility for process efficiency innovations. Finally, the model was adapted to give more investors favorable results and support techno-economic assessments entirely. PMID:26851894

  19. Intermediate pyrolysis of biomass energy pellets for producing sustainable liquid, gaseous and solid fuels.

    PubMed

    Yang, Y; Brammer, J G; Mahmood, A S N; Hornung, A

    2014-10-01

    This work describes the use of intermediate pyrolysis system to produce liquid, gaseous and solid fuels from pelletised wood and barley straw feedstock. Experiments were conducted in a pilot-scale system and all products were collected and analysed. The liquid products were separated into an aqueous phase and an organic phase (pyrolysis oil) under gravity. The oil yields were 34.1 wt.% and 12.0 wt.% for wood and barley straw, respectively. Analysis found that both oils were rich in heterocyclic and phenolic compounds and have heating values over 24 MJ/kg. The yields of char for both feedstocks were found to be about 30 wt.%, with heating values similar to that of typical sub-bituminous class coal. Gas yields were calculated to be approximately 20 wt.%. Studies showed that both gases had heating values similar to that of downdraft gasification producer gas. Analysis on product energy yields indicated the process efficiency was about 75%. PMID:25088312

  20. Lignin-rich biomass of cotton by-products for biorefineries via pyrolysis.

    PubMed

    Chen, Jiao; Liang, Jiajin; Wu, Shubin

    2016-10-01

    Pyrolysis was demonstrated to investigate the thermal decomposition characteristics and potential of lignin-rich cotton by-products cotton exocarp (CE) and spent mushroom substrate consisted of cotton by-products (MSC) for biorefineries. The chemical component and structure alteration of CE and MSC was found to affect their thermochemical behaviors. The bio-oil yield from CE was 58.13wt% while the maximum yield from MSC was 45.01% at 600°C. The phenolic compounds obtained from CE and MSC were 33.9% and 39.2%, respectively. The yield of acetic acid from MSC between 400 and 600°C was about 30-38% lower than that from CE, which suggests the high quality of bio-oil was obtained. Biochar from MSC via slow pyrolysis had a high mass yield (44.38wt%) with well-developed pore structure. PMID:27393830

  1. Flash Pyrolysis of Biomass with Reactive and Non-Reactive Gases: Summary Report for Period July 1983 through September 1984

    SciTech Connect

    Steinberg M.; Fallon, P.T.; Sundaram, M.S.

    1984-10-01

    The purpose of this program is to study the conversion of biomass to liquid and gaseous hydrocarbon fuels and chemical feedstocks by a flash or rapid pyrolysis technique. During this period of study pine wood was flash pyrolyzed in atmospheres of methane and helium at a pressure of 50 psi and at temperatures up to 1050 C. The 1-inch I.D. entrained downflow tubular reactor was used in these experiments. Product yields of methane, ethane, ethylene, BTX, carbon monoxide and carbon dioxide were determined as a function of temperature and gas to wood ratio. Of particular interest were the ethylene and BTX yields. These represented as much as 29.6% and 24.6% of the carbon contained in the feed wood respectively when flash pyrolyzing in methane (flash methanolysls) and 14.7% and 9.7% when pyrolyzing in helium. In the case of flash methanolysis of wood the yields of ethylene and benzene increased with increasing methane to wood feed ratios. In the case of flash pyrolysis in helium the yields of ethylene and BTX decreased with increasing helium gas to wood feed ratios. These results indicate a mechanism by which a free radical reactive species originating from the wood interacts with the methane pyrolyzing gas to produce an enhanced yield of ethylene and benzene. The flash methanolysis of lignin extract from wood produced lower yields of ethylene, indicating the yields mainly originate from the cellulosic fractions of the wood. Some work was also performed on substituting wood ash for sillca flour (Cab-O-Sil) to allow free flow of wood particles through the entrained flow reactor. Preliminary process design and analysis indicates an economically competitive process for the flash methanolysis of wood for the production of methanol, benzene and ethylene. Future plans include completing the studies on obtaining the process chemistry of the flash methanolysis of woods, to obtain a better understanding of the enhanced ethylene and benzene yield and to investigate other biomass

  2. Genetic and Quantitative Trait Locus Analysis for Bio-Oil Compounds after Fast Pyrolysis in Maize Cobs.

    PubMed

    Jeffrey, Brandon; Kuzhiyil, Najeeb; de Leon, Natalia; Lübberstedt, Thomas

    2016-01-01

    Fast pyrolysis has been identified as one of the biorenewable conversion platforms that could be a part of an alternative energy future, but it has not yet received the same attention as cellulosic ethanol in the analysis of genetic inheritance within potential feedstocks such as maize. Ten bio-oil compounds were measured via pyrolysis/gas chromatography-mass spectrometry (Py/GC-MS) in maize cobs. 184 recombinant inbred lines (RILs) of the intermated B73 x Mo17 (IBM) Syn4 population were analyzed in two environments, using 1339 markers, for quantitative trait locus (QTL) mapping. QTL mapping was performed using composite interval mapping with significance thresholds established by 1000 permutations at α = 0.05. 50 QTL were found in total across those ten traits with R2 values ranging from 1.7 to 5.8%, indicating a complex quantitative inheritance of these traits. PMID:26745365

  3. Genetic and Quantitative Trait Locus Analysis for Bio-Oil Compounds after Fast Pyrolysis in Maize Cobs

    PubMed Central

    Jeffrey, Brandon; Kuzhiyil, Najeeb; de Leon, Natalia; Lübberstedt, Thomas

    2016-01-01

    Fast pyrolysis has been identified as one of the biorenewable conversion platforms that could be a part of an alternative energy future, but it has not yet received the same attention as cellulosic ethanol in the analysis of genetic inheritance within potential feedstocks such as maize. Ten bio-oil compounds were measured via pyrolysis/gas chromatography-mass spectrometry (Py/GC-MS) in maize cobs. 184 recombinant inbred lines (RILs) of the intermated B73 x Mo17 (IBM) Syn4 population were analyzed in two environments, using 1339 markers, for quantitative trait locus (QTL) mapping. QTL mapping was performed using composite interval mapping with significance thresholds established by 1000 permutations at α = 0.05. 50 QTL were found in total across those ten traits with R2 values ranging from 1.7 to 5.8%, indicating a complex quantitative inheritance of these traits. PMID:26745365

  4. Mechanism of waste biomass pyrolysis: Effect of physical and chemical pre-treatments.

    PubMed

    Das, Oisik; Sarmah, Ajit K

    2015-12-15

    To impart usability in waste based biomass through thermo-chemical reactions, several physical and chemical pre-treatments were conducted to gain an insight on their mode of action, effect on the chemistry and the change in thermal degradation profiles. Two different waste biomasses (Douglas fir, a softwood and hybrid poplar, a hardwood) were subjected to four different pre-treatments, namely, hot water pre-treatment, torrefaction, acid (sulphuric acid) and salt (ammonium phosphate) doping. Post pre-treatments, the changes in the biomass structure, chemistry, and thermal makeup were studied through electron microscopy, atomic absorption/ultra violet spectroscopy, ion exchange chromatography, and thermogravimetry. The pre-treatments significantly reduced the amounts of inorganic ash, extractives, metals, and hemicellulose from both the biomass samples. Furthermore, hot water and torrefaction pre-treatment caused mechanical disruption in biomass fibres leading to smaller particle sizes. Torrefaction of Douglas fir wood yielded more solid product than hybrid poplar. Finally, the salt pre-treatment increased the activation energies of the biomass samples (especially Douglas fir) to a great extent. Thus, salt pre-treatment was found to bestow thermal stability in the biomass. PMID:26282766

  5. Determination of lead in biomass and products of the pyrolysis process by direct solid or liquid sample analysis using HR-CS GF AAS.

    PubMed

    Duarte, Álvaro T; Borges, Aline R; Zmozinski, Ariane V; Dessuy, Morgana B; Welz, Bernhard; de Andrade, Jailson B; Vale, Maria Goreti R

    2016-01-01

    A method has been developed for the determination of lead in biomass, bio-oil, pyrolysis aqueous phase, and biomass ashes by high-resolution continuum source graphite furnace atomic absorption spectrometry (HR-CS GF AAS) and direct solid or liquid sample analysis. All measurements were performed without chemical modifier and calibration could be carried out using aqueous standard solutions. A pyrolysis temperature of 800°C and an atomization temperature of 2200°C were applied. The limits of detection and quantification were, respectively, 0.5 µg kg(-1) and 2 µg kg(-1) using the analytical line at 217.001 nm and 6 µg kg(-1) and 19 µg kg(-1) at 283.306 nm. The precision, expressed as relative standard deviation, was between 3% and 10%, which is suitable for direct analysis. The lead concentrations found for the solid samples varied between 0.28 and 1.4 mg kg(-1) for biomass and between 0.25 and 2.3 mg kg(-1) for ashes, these values were much higher than those found for bio-oil (2.2-16.8 µg kg(-1)) and pyrolysis aqueous phase (3.2-18.5 µg kg(-1)). After the determination of lead in the samples, it was possible to estimate the relative distribution of this element in the fractions of the pyrolysis products, and it was observed that most of the lead present in the biomass was eliminated to the environment during the pyrolysis process, with a significant portion retained in the ashes. PMID:26695248

  6. Molybdenum carbides, active and in situ regenerable catalysts in hydroprocessing of fast pyrolysis bio-oil

    DOE PAGESBeta

    Choi, Jae -Soon; Zacher, Alan; Wang, Huamin; Olarte, Mariefel V.; Armstrong, Beth L.; Meyer, III, Harry M.; Schwartz, Viviane; Soykal, I. Ilgaz

    2016-05-19

    This paper describes properties of molybdenum carbides as a potential catalyst for fast pyrolysis bio-oil hydroprocessing. Currently, high catalyst cost, short catalyst lifetime, and lack of effective regeneration methods are hampering the development of this otherwise attractive renewable hydrocarbon technology. A series of metal-doped bulk Mo carbides were synthesized, characterized, and evaluated in sequential low-temperature stabilization and high-temperature deoxygenation of a pine-derived bio-oil. During a typical 60 h run, Mo carbides were capable of upgrading raw bio-oil to a level suitable for direct insertion into the current hydrocarbon infrastructure with residual oxygen content and total acid number of upgraded oilsmore » below 2 wt % and 0.01 mg KOH g–1, respectively. The performance was shown to be sensitive to the type of metal dopant, Ni-doped Mo carbides outperforming Co-, Cu-, or Ca-doped counterparts; a higher Ni loading led to a superior catalytic performance. No bulk oxidation or other significant structural changes were observed. Besides the structural robustness, another attractive property of Mo carbides was in situ regenerability. The effectiveness of regeneration was demonstrated by successfully carrying out four consecutive 60 h runs with a reductive decoking between two adjacent runs. These results strongly suggest that Mo carbides are a good catalyst candidate which could lead to a significant cost reduction in hydroprocessing bio-oils. Furthermore, we highlight areas for future research which will be needed to further understand carbide structure–function relationships and help design practical bio-oil upgrading catalysts based on Mo carbides.« less

  7. Lead sorptive removal using magnetic and nonmagnetic fast pyrolysis energy cane biochars.

    PubMed

    Mohan, Dinesh; Singh, Prachi; Sarswat, Ankur; Steele, Philip H; Pittman, Charles U

    2015-06-15

    Energy cane biochar (ECBC) was prepared in a 72 s fast pyrolysis at 425 °C in an auger-fed reactor and ground into 250-600 μm diameter particles. This biochar was magnetized by fusing an iron oxide phase to the particles by mixing aqueous biochar suspensions with aqueous Fe(3+)/Fe(2+) solutions, followed by NaOH treatment (MECBC). These biochars were characterized by Raman, FT-IR, X-ray, SEM, SEM-EDX, TEM, EDXRF, pHzpc, elemental analyses, S(BET), and magnetic moment determinations. The S(BET) of energy cane biochar was negligible and increased to 37.13 m(2)/g after Fe(3+)/Fe(2+)/NaOH magnetization. The dry biochar contains 18.4% oxygen. This allows swelling in water and permits sorption inside the solid as well as on its pore surfaces, leading to high capacities at low surface areas. Maximum lead removal occurred at pH 4-5. Sorption isotherms exhibited increasing lead removal (Q(0), mg/g) as temperature increased for nonmagnetic [Q(0)(25 °C)=45.70; Q(0)(35 °C)=52.01 and Q(0)(45 °C)=69.37] and magnetic [Q(0)(25 °C)=40.56; Q(0)(35 °C)=51.17 and Q(0)(45 °C)=51.75] biochars. Second order kinetics best fit the lead removal data. Furthermore, magnetic energy cane biochar was easily manipulated by low external magnetic field, thereby, allowing its easy recovery for further recycling and replacement from water. ECBC and MECBC were also successfully applied for Pb(2+) removal from contaminated ground water. Therefore, both chars can be used as potential green low cost sorbents for lead remediation to replace commercial activated carbon. PMID:25744855

  8. Aqueous extractive upgrading of bio-oils created by tail-gas reactive pyrolysis to produce pure hydrocarbons and phenols

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tail-gas reactive pyrolysis (TGRP) of biomass produces bio-oil that is lower in oxygen (~15 wt% total) and significantly more hydrocarbon-rich than traditional bio-oils or even catalytic fast pyrolysis. TGRP bio-oils lend themselves toward mild and inexpensive upgrading procedures. We isolated oxyge...

  9. Biochar enables anaerobic digestion of aqueous phase from intermediate pyrolysis of biomass.

    PubMed

    Torri, Cristian; Fabbri, Daniele

    2014-11-01

    Intermediate pyrolysis produces a two-phase liquid whose aqueous phase is characterized by low heating value and high water content (aqueous pyrolysis liquid, APL). Anaerobic digestion can be the straightest way to produce a fuel (methane) from this material. Batch tests showed poor performance in anaerobic digestion of APL, which underlined the inhibition of biological process. Nutrient supplementation was ineffective, whereas biochar addition increased yield of methane (60±15% of theoretical) with respect to pure APL (34±6% of theoretical) and improved the reaction rate. On the basis of batch results, a semi-continuous biomethanation test was set up, by adding an increasingly amount of APL in a 30ml reactor preloaded with biochar (0.8gml(-1)). With a daily input of 5gd(-1)l(-1) of APL (corresponding to overall amount of 0.1kgl(-1) added before the end of the study) the yield of methane was 65±5% of the theoretical. PMID:25277261

  10. p-n Heterojunction of doped graphene films obtained by pyrolysis of biomass precursors.

    PubMed

    Latorre-Sánchez, Marcos; Primo, Ana; Atienzar, Pedro; Forneli, Amparo; García, Hermenegildo

    2015-02-25

    Nitrogen-doped graphene [(N)G] obtained by pyrolysis at 900 °C of nanometric chitosan films exhibits a Hall effect characteristic of n-type semiconductors. In contrast, boron-doped graphene [(B)G] obtained by pyrolysis of borate ester of alginate behaves as a p-type semiconductor based also on the Hall effect. A p-n heterojunction of (B)G-(N)G films is built by stepwise coating of a quartz plate using a mask. The heterojunction is created by the partial overlapping of the (B)G-(N)G films. Upon irradiation with a xenon lamp of aqueous solutions of H(2) PtCl(6) and MnCl(2) in contact with the heterojunction, preferential electron migration from (B)G to (N)G with preferential location of positive holes on (B)G is established by observation in scanning electron microscopy of the formation of Pt nanoparticles (NP) on (N)G and MnO(2) NP on (B)G. The benefits of the heterojunction with respect to the devices having one individual component as a consequence of the electron migration through the p-n heterojunction are illustrated by measuring the photocurrent in the (B)G-(N)G heterojunction (180% current enhancement with respect to the dark current) and compared it to the photocurrent of the individual (B)G (15% enhancement) and (N)G (55% enhancement) components. PMID:25302489

  11. Investigation on thermochemical behaviour of low rank Malaysian coal, oil palm biomass and their blends during pyrolysis via thermogravimetric analysis (TGA).

    PubMed

    Idris, Siti Shawalliah; Abd Rahman, Norazah; Ismail, Khudzir; Alias, Azil Bahari; Abd Rashid, Zulkifli; Aris, Mohd Jindra

    2010-06-01

    This study aims to investigate the behaviour of Malaysian sub-bituminous coal (Mukah Balingian), oil palm biomass (empty fruit bunches (EFB), kernel shell (PKS) and mesocarp fibre (PMF)) and their respective blends during pyrolysis using thermogravimetric analysis (TGA). The coal/palm biomass blends were prepared at six different weight ratios and experiments were carried out under dynamic conditions using nitrogen as inert gas at various heating rates to ramp the temperature from 25 degrees C to 900 degrees C. The derivative thermogravimetric (DTG) results show that thermal decomposition of EFB, PMF and PKS exhibit one, two and three distinct evolution profiles, respectively. Apparently, the thermal profiles of the coal/oil palm biomass blends appear to correlate with the percentage of biomass added in the blends, thus, suggesting lack of interaction between the coal and palm biomass. First-order reaction model were used to determine the kinetics parameters for the pyrolysis of coal, palm biomass and their respective blends. PMID:20153633

  12. Fractionation and identification of organic nitrogen species from bio-oil produced by fast pyrolysis of sewage sludge.

    PubMed

    Cao, Jing-Pei; Zhao, Xiao-Yan; Morishita, Kayoko; Wei, Xian-Yong; Takarada, Takayuki

    2010-10-01

    Pyrolysis of sewage sludge was performed at 500 degrees C and a sweeping gas flow rate of 300 cm(3)/min in a drop tube furnace. Liquid fraction (i.e., bio-oil) from the sewage sludge pyrolysis was separated by silica-gel column chromatography (SGCC) with different solvents, including mixed solvents, as eluants. A series of alkanenitriles (C(13)-C(18)), oleamide, alkenenitrile, fatty acid amides and aromatic nitrogen species were fractionated from the bio-oil by SGCC and analyzed with a gas chromatography/mass spectrometry (GC/MS). Most of the GC/MS-detectable organic nitrogen species (ONSs) are lactams, amides and N-heterocyclic compounds, among which acetamide is the most abundant. N-heterocyclics with 1-3 rings, including pyrrole, pyridine, indole, benzoimidazole, carbazole, norharman and harman, were observed. The lactams detected include pyrrolidin-2-one, succinimide, phathalimide, glutarimide, piperidin-2-one and 3-isobutylhexahydropyrrolo[1,2-a]pyrazine-1,4-dione, all of which should be formed via decarboxylation and cyclization of gamma- and delta-amino acids. Such a procedure provides an effective approach to fractionation and identification of ONSs from bio-oil produced by fast pyrolysis of sewage sludge. PMID:20488694

  13. PCDDs, PCDFs and PCNs in products of microwave-assisted pyrolysis of woody biomass--Distribution among solid, liquid and gaseous phases and effects of material composition.

    PubMed

    Gao, Qiuju; Budarin, Vitaliy L; Cieplik, Mariusz; Gronnow, Mark; Jansson, Stina

    2016-02-01

    Microwave-assisted pyrolysis (MAP) of lignocellulosic biomass is a technique that could potentially be used to produce and upgrade renewable energy carriers. However, there is no available information about the formation of dioxins and other organic pollutants in MAP treatment of woody biomass. In this study, MAP experiments were conducted in lab-scale using virgin softwood, bark, and impregnated wood as feedstocks. The non-condensable gas, liquid (fractionated into aqueous and oil phases), and char fractions generated during pyrolysis were collected and analysed for polychlorinated dibenzo-p-dioxins (PCDDs), dibenzofurans (PCDFs) and naphthalenes (PCNs). The concentrations of PCDDs, PCDFs and PCNs in the pyrolysis products ranged from 0.52 to 43.7 ng kg(-1). All investigated compound groups were most abundant in the oil fraction, accounting for up to 68% (w/w) of the total concentrations. The highest PCDD, PCDF and PCN concentrations were found from the pyrolysis of bark, which has relatively high contents of chlorine and mineral matter, followed by impregnated wood, which contains organic and metal-based preservatives. The homologue profiles of all three compound groups were dominated by the less chlorinated homologues. The homologue abundance decreased as the degree of chlorination increased. This trend was observed for all three feedstocks. PMID:26688256

  14. Polarized Matrix Infrared Spectra of Cyclopentadienone - AN Important Reactive Intermediate in Combustion and Biomass Pyrolysis

    NASA Astrophysics Data System (ADS)

    Ormond, Thomas; Ellison, Barney; Stanton, John F.

    2014-06-01

    A detailed vibrational analysis of the infrared spectra of cyclopentadienone (C5H4=O and C5D4=O) in rare gas matrices has been carried out. Ab initio coupled-cluster anharmonic force field calculations were used to guide the assignments. Flash pyrolysis of o-phenylene sulfite (C6H4O2SO and C6D4O2SO) was used to provide a molecular beam of cyclopentadienone entrained in the rare gas carrier. The beam was interrogated with time-of-flight photoionization mass spectrometry (TOF-PIMS), confirming the clean, intense production of C5H4=O. Matrix isolation infrared spectroscopy was coupled with 355 nm polarized UV for photo-orientation and linear dichroism experiments to determine the symmetries of the vibrations.

  15. Production of aromatic hydrocarbons through catalytic pyrolysis of γ-valerolactone from biomass.

    PubMed

    Zhao, Yan; Fu, Yao; Guo, Qing-Xiang

    2012-06-01

    In the present study, γ-valerolactone (GVL) is firstly reported to be converted into aromatic hydrocarbons through catalytic pyrolysis. The catalysts and reaction conditions are both critical in maximizing the hydrocarbon selectivity. Four zeolites, i.e. MCM-41, β-zeolite, ZSM-5 and HZSM-5 were tested in this work, among which HZSM-5 (Si/Al=25) was found to be the most effective catalyst in both reactivity and selectivity. Under the reaction temperature of 500 °C, the highest carbon yield of 56.71% of aromatics was achieved from GVL with HZSM-5 (Si/Al=25) as catalyst. Moreover, the HZSM-5 catalyst was recycled for five times without significant decrease in product selectivity. PMID:22507905

  16. Life Cycle Assessment of high ligno-cellulosic biomass pyrolysis coupled with anaerobic digestion.

    PubMed

    Righi, Serena; Bandini, Vittoria; Marazza, Diego; Baioli, Filippo; Torri, Cristian; Contin, Andrea

    2016-07-01

    A Life Cycle Assessment is conducted on pyrolysis coupled to anaerobic digestion to treat corn stovers and to obtain bioenergy and biochar. The analysis takes into account the feedstock treatment process, the fate of products and the indirect effects due to crop residue removal. The biochar is considered to be used as solid fuel for coal power plants or as soil conditioner. All results are compared with a corresponding fossil-fuel-based scenario. It is shown that the proposed system always enables relevant primary energy savings of non-renewable sources and a strong reduction of greenhouse gases emissions without worsening the abiotic resources depletion. Conversely, the study points out that the use of corn stovers for mulch is critical when considering acidification and eutrophication impacts. Therefore, removal of corn stovers from the fields must be planned carefully. PMID:27107341

  17. Effect of torrefaction on structure and fast pyrolysis behavior of corncobs.

    PubMed

    Zheng, Anqing; Zhao, Zengli; Chang, Sheng; Huang, Zhen; Wang, Xiaobo; He, Fang; Li, Haibin

    2013-01-01

    Pretreatment of corncobs using torrefaction was conducted in an auger reactor at 250-300 °C and residence times of 10-60 min. The torrefied corncobs were fast pyrolyzed in a bubbling fluidized bed reactor at 470 °C to obtain high-quality bio-oil. The heating value and pH of the bio-oil improved when the torrefaction as pretreatment was applied; however, increasing bio-oil yield penalties were observed with increasing torrefaction severity. Fourier transform infrared Spectroscopy (FTIR) and quantitative solid (13)C nuclear magnetic resonance spectrometry (NMR) analysis of torrefied corncobs showed that the devolatilization, crosslinking and charring of corncobs during torrefaction could be responsible for the bio-oil yield penalties. Gas chromatography-mass spectrometry (GC-MS) analysis showed that the acetic acid and furfural contents of the bio-oil decreased with torrefaction temperature or residence time. The results showed that torrefaction is an effective method of pretreatment for improving bio-oil quality if the crosslinking and charring of biomass can be restricted. PMID:23201517

  18. Utilization of CO2 and biomass char derived from pyrolysis of Dunaliella salina: the effects of steam and catalyst on CO and H2 gas production.

    PubMed

    Yang, Chao; Jia, Lishan; Su, Shuai; Tian, Zhongbiao; Song, Qianqian; Fang, Weiping; Chen, Changping; Liu, Guangfa

    2012-04-01

    Biomass char, by-product of Dunaliella salina pyrolysis at a final pyrolysis temperature of 500°C, was used as feedstock material in this study. The reactions of biomass char with CO(2) were performed in a fixed-bed reactor to evaluate the effect of temperature and steam on the CO(2) conversion, CO yield and gas composition. The CO(2) conversion and CO yield without steam and catalyst reached about 61.84% and 0.99mol/(mol CO(2)) at 800°C, respectively. Steam and high temperature led to high CO(2) conversion. A new approach for improving H(2) was carried out by using biomass char and Au/Al(2)O(3) catalyst, which combined steam gasification of biomass char and water gas shift reaction, and the H(2) concentration was 1.8 times higher than without catalyst. The process not only mitigated CO(2) emission and made use of residual biomass char, but also created renewable source. PMID:22336747

  19. High-yield harvest of nanofibers/mesoporous carbon composite by pyrolysis of waste biomass and its application for high durability electrochemical energy storage.

    PubMed

    Liu, Wu-Jun; Tian, Ke; He, Yan-Rong; Jiang, Hong; Yu, Han-Qing

    2014-12-01

    Disposal and recycling of the large scale biomass waste is of great concern. Themochemically converting the waste biomass to functional carbon nanomaterials and bio-oil is an environmentally friendly apporach by reducing greenhouse gas emissions and air pollution caused by open burning. In this work, we reported a scalable, "green" method for the synthesis of the nanofibers/mesoporous carbon composites through pyrolysis of the Fe(III)-preloaded biomass, which is controllable by adjustment of temperature and additive of catalyst. It is found that the coupled catalytic action of both Fe and Cl species is able to effectively catalyze the growth of the carbon nanofibers on the mesoporous carbon and form magnetic nanofibers/mesoporous carbon composites (M-NMCCs). The mechanism for the growth of the nanofibers is proposed as an in situ vapor deposition process, and confirmed by the XRD and SEM results. M-NMCCs can be directly used as electrode materials for electrochemical energy storage without further separation, and exhibit favorable energy storage performance with high EDLC capacitance, good retention capability, and excellent stability and durability (more than 98% capacitance retention after 10,000 cycles). Considering that biomass is a naturally abundant and renewable resource (over billions tons biomass produced every year globally) and pyrolysis is a proven technique, M-NMCCs can be easily produced at large scale and become a sustainable and reliable resource for clean energy storage. PMID:25372400

  20. Consider Upgrading Pyrolysis Oils Into Renewale Fuels

    SciTech Connect

    Holmgren, J.; Marinangeli, R.; Nair, P.; Elliott, D.; Bain, R.

    2008-09-01

    To enable a sustained supply of biomass-based transportation fuels, the capability to process feedstocks outside the food chain must be developed. Significant industry efforts are underway to develop these new technologies, such as converting cellulosic wastes to ethanol. An alternate route being pursued involves using a fast pyrolysis operation to generate pyrolysis oil (pyoil for short). Current efforts are focused on developing a thermochemical platform to convert pyoils to renewable gasoline, diesel and jet fuel. The fuels produced will be indistinguishable from their fossil fuel counterparts and, therefore, will be compatible with existing transport and distribution infrastructure.

  1. Pyrolysis of wetland biomass waste: Potential for carbon sequestration and water remediation.

    PubMed

    Cui, Xiaoqiang; Hao, Hulin; He, Zhenli; Stoffella, Peter J; Yang, Xiaoe

    2016-05-15

    Management of biomass waste is crucial to the efficiency and sustainable operation of constructed wetlands. In this study, biochars were prepared using the biomass of 22 plant species from constructed wetlands and characterized by BET-N2 surface area analysis, FTIR, TGA, SEM, EDS, and elemental compositions analysis. Biochar yields ranged from 32.78 to 49.02%, with mesopores dominating the pore structure of most biochars. The biochars had a R50 recalcitrance index of class C and the carbon sequestration potential of 19.4-28%. The aquatic plant biomass from all the Chinese constructed wetlands if made into biochars has the potential to sequester 11.48 Mt carbon yr(-1) in soils over long time periods, which could offset 0.4% of annual CO2 emissions from fossil fuel combustion in China. In terms of adsorption capacity for selected pollutants, biochar derived from Canna indica plant had the greatest adsorption capacity for Cd(2+) (98.55 mg g(-1)) and NH4(+) (7.71 mg g(-1)). Whereas for PO4(3-), Hydrocotyle verticillata derived biochar showed the greatest adsorption capacities (2.91 mg g(-1)). The results from this present study demonstrated that wetland plants are valuable feedstocks for producing biochars with potential application for carbon sequestration and contaminant removal in water remediation. PMID:26978731

  2. Phenolic compounds containing/neutral fractions extract and products derived therefrom from fractionated fast-pyrolysis oils

    DOEpatents

    Chum, Helena L.; Black, Stuart K.; Diebold, James P.; Kreibich, Roland E.

    1993-01-01

    A process for preparing phenol-formaldehyde novolak resins and molding compositions in which portions of the phenol normally contained in said resins are replaced by a phenol/neutral fractions extract obtained from fractionating fast-pyrolysis oils. The fractionation consists of a neutralization stage which can be carried out with aqueous solutions of bases or appropriate bases in the dry state, followed by solvent extraction with an organic solvent having at least a moderate solubility parameter and good hydrogen bonding capacity. Phenolic compounds-containing/neutral fractions extracts obtained by fractionating fast-pyrolysis oils from a lignocellulosic material, is such that the oil is initially in the pH range of 2-4, being neutralized with an aqueous bicarbonate base, and extracted into a solvent having a solubility parameter of approximately 8.4-9.11 [cal/cm.sup.3 ].sup.1/2 with polar components in the 1.8-3.0 range and hydrogen bonding components in the 2-4.8 range and the recovery of the product extract from the solvent with no further purification being needed for use in adhesives and molding compounds. The product extract is characterized as being a mixture of very different compounds having a wide variety of chemical functionalities, including phenolic, carbonyl, aldehyde, methoxyl, vinyl and hydroxyl. The use of the product extract on phenol-formaldehyde thermosetting resins is shown to have advantages over the conventional phenol-formaldehyde resins.

  3. Production of bio-oil from alfalfa stems by fluidized-bed fast pyrolysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study focused on the production of bio-oil from alfalfa stem material. Two alfalfa maturity stages, harvested at early bud and full flower stages of development, were examined to evaluate the impact of variation in cell wall polysaccharide and lignin content on pyrolysis oil yields, production ...

  4. The influence of recycling non-condensable gases in the fractional catalytic pyrolysis of biomass.

    PubMed

    Mante, Ofei D; Agblevor, F A; Oyama, S T; McClung, R

    2012-05-01

    In this study, the effect of recycling the non-condensable gases (NCG) in the catalytic pyrolysis of hybrid poplar using FCC catalyst was investigated. A 50mm bench scale fluidized bed reactor at 475°C with a weight hourly space velocity (WHSV) of 2h(-1) and a gas recycling capability was used for the studies. Model fluidizing gas mixtures of CO/N(2), CO(2)/N(2), CO/CO(2)/N(2) and H(2)/N(2) were used to determine their independent effects. Recycling of the NCG in the process was found to potentially increase the liquid yield and decrease char/coke yield. The model fluidizing gases increased the liquid yield and the CO(2)/N(2) fluidizing gas had the lowest char/coke yield. The (13)C-NMR analysis showed that recycling of NCG increases the aromatic fractions and decreases the methoxy, carboxylic and sugar fractions. Recycling of NCG increased the higher heating value and the pH of the bio-oil as well as decreased the viscosity and density. PMID:22382295

  5. Mechanistic evaluation of polychlorinated dibenzo-p-dioxin, dibenzofuran and naphthalene isomer fingerprints in microwave pyrolysis of biomass.

    PubMed

    Gao, Qiuju; Cieplik, Mariusz K; Budarin, Vitaliy L; Gronnow, Mark; Jansson, Stina

    2016-05-01

    Isomer distribution patterns of polychlorinated dibenzo-p-dioxins (PCDDs), dibenzofurans (PCDFs) and naphthalenes (PCNs) were investigated in microwave-assisted pyrolysis (MAP) products of woody biomass. The feedstocks included bark and impregnated wood. The results indicated that isomer distributions in MAP are more selective compared to those reported from wood burning and waste incineration. Favored formation of 4-MoCDF and highly selective chlorine substitution at the 2,4-position observed during MAP suggested a preferred formation pathway of PCDFs involving (chloro)phenol precursors followed by subsequent chlorination. The PCDD distribution was dominated by isomers typically formed from chlorophenol condensation at relatively low temperature. The PCN isomer distributions showed a tendency for sequential chlorination from non-substituted naphthalene at successive positions. The presence of isomers such as 1-MoCDD, 4-MoCDF, 1,2,3-TriCN with low thermodynamic stability indicates that kinetic factors may be important in the MAP process. PMID:26901473

  6. Survival of Salmonella, Escherichia coli 0157:H7, non-0157 shiga toxin producing E.coli, and potential surrogate bacteria in crop soil as affected by the addition of fast pyrolysis-generated switchgrass biochar

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fast pyrolysis of switchgrass (and resultant biochar) can be used for bio-fuel production, soil amendments for fertilizing crops, binding heavy metals, and sequestering environmental biocarbon. To determine the influence of fast pyrolysis-generated switchgrass biochar on survival of foodborne path...

  7. Methods and apparatuses for preparing upgraded pyrolysis oil

    SciTech Connect

    Brandvold, Timothy A; Baird, Lance Awender; Frey, Stanley Joseph

    2013-10-01

    Methods and apparatuses for preparing upgraded pyrolysis oil are provided herein. In an embodiment, a method of preparing upgraded pyrolysis oil includes providing a biomass-derived pyrolysis oil stream having an original oxygen content. The biomass-derived pyrolysis oil stream is hydrodeoxygenated under catalysis in the presence of hydrogen to form a hydrodeoxygenated pyrolysis oil stream comprising a cyclic paraffin component. At least a portion of the hydrodeoxygenated pyrolysis oil stream is dehydrogenated under catalysis to form the upgraded pyrolysis oil.

  8. Highly selective BTX from catalytic fast pyrolysis of lignin over supported mesoporous silica.

    PubMed

    Elfadly, A M; Zeid, I F; Yehia, F Z; Rabie, A M; Aboualala, M M; Park, Sang-Eon

    2016-10-01

    The post synthesis of Al(3+) or Zr(4+) substituted MCM-48 framework with controlled acidity is challenging because the functional groups exhibiting acidity often jeopardize the framework integrity. Herein, we report the post-synthesis of two hierarchically porous MCM-48 composed of either aluminum (Al(3+)) or zirconium (Zr(4+)) clusters with high throughput. All prepared catalysts have been characterized by HR-TEM, XRD, IR, N2-adsorption, NH3-TPD, TGA and MAS NMR. They exhibit BET surface areas of 597 and 1112m(2)g(-1) for 8.4% Al/MCM-48 and 2.9% Zr/MCM-48, respectively. XRD analysis reveals that the hierarchical porosity of parental MCM-48 is reserved even after incorporation of Al(3+)or Zr(4+). Zr/MCM-48 catalysts are demonstrate a superior performance versus that of Al/MCM-48 and MCM-48 because of the mild (ZrO2) or nil (SiO2) Lewis acidity contributed from Zr-μ2-O group as well as smaller pore sizes suitable for the restriction of unwanted side reactions. The reaction conditions which were affecting the catalytic pyrolysis and final products were gas flow rate, pyrolysis temperature, and catalyst to lignin ratio. A total of 49% of BTX product were obtained over 2.9% Zr/MCM-48 at 600°C. The Lewis acid character was the governing factor which helps in pyrolysis and directly affects the BTX formation. PMID:27196367

  9. Catalytic Fast Pyrolysis of Lignin over High-Surface-Area Mesoporous Aluminosilicates: Effect of Porosity and Acidity.

    PubMed

    Custodis, Victoria B F; Karakoulia, Stamatia A; Triantafyllidis, Kostas S; van Bokhoven, Jeroen A

    2016-05-23

    Catalytic fast pyrolysis (CFP) of lignin with amorphous mesoporous aluminosilicates catalysts yields a high fraction of aromatics and a relatively low amount of char/coke. The relationship between the acidity and porosity of Al-MCM-41, Al-SBA-15, and Al-MSU-J with product selectivity during lignin CFP is determined. The acid sites (mild Brønsted and stronger Lewis) are able to catalyze pyrolysis intermediates towards fewer oxygenated phenols and aromatic hydrocarbons. A generalized correlation of the product selectivity and yield with the aluminum content and acidity of the mesoporous aluminosilicates is hard to establish. Zeolitic strong acid sites are not required to achieve high conversion and selectivity to aromatic hydrocarbon because nanosized MCM-41 produces a high liquid yield and selectivity. The two most essential parameters are diffusion, which is influenced by pore and grain size, and the active site, which may be mildly acidic, but is dominated by Lewis acid sites. Nanosized grains and mild acidity are essential ingredients for a good lignin CFP catalyst. PMID:27079742

  10. Inactivation of E. coli O157:H7 in cultivable soil by fast and slow pyrolysis-generated biochar.

    PubMed

    Gurtler, Joshua B; Boateng, Akwasi A; Han, Yanxue Helen; Douds, David D

    2014-03-01

    An exploratory study was performed to determine the influence of fast pyrolysis (FP) and slow pyrolysis (SP) biochars on enterohemorrhagic Escherichia coli O157:H7 (EHEC) in soil. Soil + EHEC (inoculated at 7 log colony-forming units [CFU]/g of soil) + 1 of 12 types of biochar (10% total weight:weight in soil) was stored at 22°C and sampled for 8 weeks. FP switchgrass and FP horse litter biochars inactivated 2.8 and 2.1 log CFU/g more EHEC than no-biochar soils by day 14. EHEC was undetectable by surface plating at weeks 4 and 5 in standard FP switchgrass, FP oak, and FP switchgrass pellet biochars. Conversely, EHEC populations in no-biochar control samples remained as high as 5.8 and 4.0 log CFU/g at weeks 4 and 5, respectively. Additionally, three more SP hardwood pellet biochars (generated at 500°C for 1 h, or 2 h, or generated at 700°C for 30 min) inactivated greater numbers of EHEC than did the no-biochar control samples during weeks 4 and 5. These results suggest that biochar can inactivate E. coli O157:H7 in cultivable soil, which might mitigate risks associated with EHEC contamination on fresh produce. PMID:24328454

  11. Bio-oil production of softwood and hardwood forest industry residues through fast and intermediate pyrolysis and its chromatographic characterization.

    PubMed

    Torri, Isadora Dalla Vecchia; Paasikallio, Ville; Faccini, Candice Schmitt; Huff, Rafael; Caramão, Elina Bastos; Sacon, Vera; Oasmaa, Anja; Zini, Claudia Alcaraz

    2016-01-01

    Bio-oils were produced through intermediate (IP) and fast pyrolysis (FP), using Eucalyptus sp. (hardwood) and Picea abies (softwood), wood wastes produced in large scale in Pulp and Paper industries. Characterization of these bio-oils was made using GC/qMS and GC×GC/TOFMS. The use of GC×GC provided a broader characterization of bio-oils and it allowed tracing potential markers of hardwood bio-oil, such as dimethoxy-phenols, which might co-elute in 1D-GC. Catalytic FP increased the percentage of aromatic hydrocarbons in P. abies bio-oil, indicating its potential for fuel production. However, the presence of polyaromatic hydrocarbons (PAH) draws attention to the need of a proper management of pyrolysis process in order to avoid the production of toxic compounds and also to the importance of GC×GC/TOFMS use to avoid co-elutions and consequent inaccuracies related to identification and quantification associated with GC/qMS. Ketones and phenols were the major bio-oil compounds and they might be applied to polymer production. PMID:26556402

  12. Combustion, pyrolysis, gasification, and liquefaction of biomas

    NASA Astrophysics Data System (ADS)

    Reed, T. B.

    1980-09-01

    The advantages of biomass as a feedstock are examined and biomass conversion techniques are described. Combustion is the simplest method of producing heat from biomass, using either the traditional fixed bed combustion on a grate or the fluidized bed and suspended combustion techniques now being developed. Pyrolysis of biomass is a particularly attractive process if all three products gas, wood tars, and charcoal can be used. Gasification of biomass with air is perhaps the most flexible and best developed process for conversion of biomass to fuel, yielding a low energy gas that can be burned in existing gas/oil boilers or in engines. Oxygen gasification yields a gas with higher energy content that can be used in pipelines or to fire turbines. In addition, this gas can be used for producing methanol, ammonia, or gasoline by indirect liquefaction. Fast pyrolysis of biomass produces a gas rich in ethylene that can be used to make alcohols or gasoline. Finally, treatment of biomass with high pressure hydrogen can yield liquid fuels through direct liquefaction.

  13. Corn stalks char from fast pyrolysis as precursor material for preparation of activated carbon in fluidized bed reactor.

    PubMed

    Wang, Zhiqi; Wu, Jingli; He, Tao; Wu, Jinhu

    2014-09-01

    Corn stalks char from fast pyrolysis was activated by physical and chemical activation process in a fluidized bed reactor. The structure and morphology of the carbons were characterized by N2 adsorption and SEM. Effects of activation time and activation agents on the structure of activation carbon were investigated. The physically activated carbons with CO2 have BET specific surface area up to 880 m(2)/g, and exhibit microporous structure. The chemically activated carbons with H3PO4 have BET specific surface area up to 600 m(2)/g, and exhibit mesoporous structure. The surface morphology shows that physically activated carbons exhibit fibrous like structure in nature with long ridges, resembling parallel lines. Whereas chemically activated carbons have cross-interconnected smooth open pores without the fibrous like structure. PMID:24974241

  14. Optimization of a free-fall reactor for the production of fast pyrolysis bio-oil.

    PubMed

    Ellens, C J; Brown, R C

    2012-01-01

    A central composite design of experiments was performed to optimize a free-fall reactor for the production of bio-oil from red oak biomass. The effects of four experimental variables including heater set-point temperature, biomass particle size, sweep gas flow rate and biomass feed rate were studied. Heater set-point temperature ranged from 450 to 650 °C, average biomass particle size from 200 to 600 μm, sweep gas flow rate from 1 to 5 sL/min and biomass feed rate from 1 to 2 kg/h. Optimal operating conditions yielding over 70 wt.% bio-oil were identified at a heater set-point temperature of 575 °C, while feeding red oak biomass sized less than 300 μm at 2 kg/h into the 0.021 m diameter, 1.8m tall reactor. Sweep gas flow rate did not have significant effect on bio-oil yield over the range tested. PMID:22036914

  15. Influence of the gas and particle residence time on fast pyrolysis of lignite

    SciTech Connect

    Cui, L.J.; Song, W.L.; Zhang, J.Y.; Yao, J.Z.; Lin, W.G.

    2007-06-15

    Coal resource is abundant in China, while the reserves of natural gas and petroleum are limited. Due to the rapid increase in the number of automobiles, a competitive way to produce liquid fuels from coal is urgently needed in China. A so-called 'coal topping process' is under development at the Institute of Process Engineering, Chinese Academy of Sciences, from which liquid products can be obtained by flash pyrolysis in an integrated circulating fluidized bed system. In order to achieve a high yield of liquid products from high volatile coal, controlling the residence time of coal particles and produced gas may be of importance for minimizing the degree of the secondary reactions; i.e., polymerization and cracking of the liquid products. Experiments of the flash pyrolysis of coal have been conducted in an entrained bed reactor which is especially designed to study the influence of the coal particle residence time on the product distribution. The results show that the gaseous, liquid, and solid product distribution, the gas compositions as well as the liquid compositions depend strongly on the gas and particle residence time.

  16. Proceedings of the Biomass Pyrolysis Oil Properties and Combustion Meeting, 26-28 September 1994, Estes Park, Colorado

    SciTech Connect

    Milne, T.

    1995-01-01

    The increasing scale-up of fast pyrolysis in North America and Europe, as well as the exploration and expansion of markets for the energy use of biocrude oils that now needs to take place, suggested that it was timely to convene an international meeting on the properties and combustion behavior of these oils. A common understanding of the state-of-the-art and technical and other challenges which need to be met during the commercialization of biocrude fuel use, can be achieved. The technical issues and understanding of combustion of these oils are rapidly being advanced through R&D in the United States. Canada, Europe and Scandinavia. It is obvious that for the maximum economic impact of biocrude, it will be necessary to have a common set of specifications so that oils can be used interchangeably with engines and combustors which require minimal modification to use these renewable fuels. Fundamental and applied studies being pursued in several countries are brought together in this workshop so that we can arrive at common strategies. In this way, both the science and the commercialization are advanced to the benefit of all, without detracting from the competitive development of both the technology and its applications. This United States-Canada-Finland collaboration has led to the two and one half day specialists meeting at which the technical basis for advances in biocrude development is discussed. The goal is to arrive at a common agenda on issues that cross national boundaries in this area. Examples of agenda items are combustion phenomena, the behavior of trace components of the oil (N, alkali metals), the formation of NOx in combustion, the need for common standards and environmental safety and health issues in the handling, storage and transportation of biocrudes.

  17. Hydrodeoxygenation of fast-pyrolysis bio-oils from various feedstocks using carbon-supported catalysts

    Technology Transfer Automated Retrieval System (TEKTRAN)

    While much work has been accomplished in developing hydrodeoxygenation technologies for bio-oil upgrading, very little translation has occurred to other biomass feedstocks and feedstock processing technologies. In this paper, we sought to elucidate the relationships between the feedstock type and th...

  18. Biomass Thermochemical Conversion Program. 1983 Annual report

    SciTech Connect

    Schiefelbein, G.F.; Stevens, D.J.; Gerber, M.A.

    1984-08-01

    Highlights of progress achieved in the program of thermochemical conversion of biomass into clean fuels during 1983 are summarized. Gasification research projects include: production of a medium-Btu gas without using purified oxygen at Battelle-Columbus Laboratories; high pressure (up to 500 psia) steam-oxygen gasification of biomass in a fluidized bed reactor at IGT; producing synthesis gas via catalytic gasification at PNL; indirect reactor heating methods at the Univ. of Missouri-Rolla and Texas Tech Univ.; improving the reliability, performance, and acceptability of small air-blown gasifiers at Univ. of Florida-Gainesville, Rocky Creek Farm Gasogens, and Cal Recovery Systems. Liquefaction projects include: determination of individual sequential pyrolysis mechanisms at SERI; research at SERI on a unique entrained, ablative fast pyrolysis reactor for supplying the heat fluxes required for fast pyrolysis; work at BNL on rapid pyrolysis of biomass in an atmosphere of methane to increase the yields of olefin and BTX products; research at the Georgia Inst. of Tech. on an entrained rapid pyrolysis reactor to produce higher yields of pyrolysis oil; research on an advanced concept to liquefy very concentrated biomass slurries in an integrated extruder/static mixer reactor at the Univ. of Arizona; and research at PNL on the characterization and upgrading of direct liquefaction oils including research to lower oxygen content and viscosity of the product. Combustion projects include: research on a directly fired wood combustor/gas turbine system at Aerospace Research Corp.; adaptation of Stirling engine external combustion systems to biomass fuels at United Stirling, Inc.; and theoretical modeling and experimental verification of biomass combustion behavior at JPL to increase biomass combustion efficiency and examine the effects of additives on combustion rates. 26 figures, 1 table.

  19. Pyrolytic sugars from cellulosic biomass

    NASA Astrophysics Data System (ADS)

    Kuzhiyil, Najeeb

    Sugars are the feedstocks for many promising advanced cellulosic biofuels. Traditional sugars derived from starch and sugar crops are limited in their availability. In principle, more plentiful supply of sugars can be obtained from depolymerization of cellulose, the most abundant form of biomass in the world. Breaking the glycosidic bonds between the pyranose rings in the cellulose chain to liberate glucose has usually been pursued by enzymatic hydrolysis although a purely thermal depolymerization route to sugars is also possible. Fast pyrolysis of pure cellulose yields primarily levoglucosan, an anhydrosugar that can be hydrolyzed to glucose. However, naturally occurring alkali and alkaline earth metals (AAEM) in biomass are strongly catalytic toward ring-breaking reactions that favor formation of light oxygenates over anhydrosugars. Removing the AAEM by washing was shown to be effective in increasing the yield of anhydrosugars; but this process involves removal of large amount of water from biomass that renders it energy intensive and thereby impractical. In this work passivation of the AAEM (making them less active or inactive) using mineral acid infusion was explored that will increase the yield of anhydrosugars from fast pyrolysis of biomass. Mineral acid infusion was tried by previous researchers, but the possibility of chemical reactions between infused acid and AAEM in the biomass appears to have been overlooked, possibly because metal cations might be expected to already be substantially complexed to chlorine or other strong anions that are found in biomass. Likewise, it appears that previous researchers assumed that as long as AAEM cations were in the biomass, they would be catalytically active regardless of the nature of their complexion with anions. On the contrary, we hypothesized that AAEM can be converted to inactive or less active salts using mineral acids. Various biomass feedstocks were infused with mineral (hydrochloric, nitric, sulfuric and

  20. Characterization and Catalytic Upgrading of Crude Bio-oil Produced by Hydrothermal Liquefaction of Swine Manure and Pyrolysis of Biomass

    NASA Astrophysics Data System (ADS)

    Cheng, Dan

    The distillation curve of crude bio-oil from glycerol-assisted hydrothermal liquefaction of swine manure was measured using an advanced distillation apparatus. The crude bio-oil had much higher distillation temperatures than diesel and gasoline and was more distillable than the bio-oil produced by the traditional liquefaction of swine manure and the pyrolysis of corn stover. Each 10% volumetric fraction was analyzed from aspects of its chemical compositions, chemical and physical properties. The appearance of hydrocarbons in the distillates collected at the temperature of 410.9°C and above indicated that the thermal cracking at a temperature from 410°C to 500°C may be a proper approach to upgrade the crude bio-oil produced from the glycerol-assisted liquefaction of swine manure. The effects of thermal cracking conditions including reaction temperature (350-425°C), retention time (15-60 min) and catalyst loadings (0-10 wt%) on the yield and quality of the upgraded oil were analyzed. Under the optimum thermal cracking conditions at 400°C, a catalyst loading of 5% by mass and the reaction time of 30 min, the yield of bio-oil was 46.14% of the mass of the crude bio-oil and 62.5% of the energy stored in the crude bio-oil was recovered in the upgraded bio-oil. The upgraded bio-oil with a heating value of 41.4 MJ/kg and viscosity of 3.6 cP was comparable to commercial diesel. In upgrading crude bio-oil from fast pyrolysis, converting organic acids into neutral esters is significant and can be achieved by sulfonated activated carbon/bio-char developed from fermentation residues. Acitivated carbon and bio-char were sulfonated by concentrated sulfuric acid at 150°C for 18 h. Sulfonation helped activated carbon/bio-char develop acid functional groups. Sulfonated activated carbon with BET surface area of 349.8 m2/g, was effective in converting acetic acid. Acetic acid can be effectively esterified by sulfonated activated carbon (5 wt%) at 78°C for 60 min with the

  1. Flash vacuum pyrolysis of lignin model compounds

    SciTech Connect

    Cooney, M.J.; Britt, P.F.; Buchanan, A.C. III

    1997-03-01

    Despite the extensive research into the pyrolysis of lignin, the underlying chemical reactions that lead to product formation are poorly understood. Detailed mechanistic studies on the pyrolysis of biomass and lignin under conditions relevant to current process conditions could provide insight into utilizing this renewable resource for the production of chemicals and fuel. Currently, flash or fast pyrolysis is the most promising process to maximize the yields of liquid products (up to 80 wt %) from biomass by rapidly heating the substrate to moderate temperatures, typically 500{degrees}C, for short residence times, typically less than two seconds. To provide mechanistic insight into the primary reaction pathways under process relevant conditions, we are investigating the flash vacuum pyrolysis (FVP) of lignin model compounds that contain a {beta}-ether. linkage and {alpha}- or {gamma}-alcohol, which are key structural elements in lignin. The dominant products from the FVP of PhCH{sub 2}CH{sub 2}OPh (PPE), PhC(OH)HCH{sub 2}OPh, and PhCH{sub 2}CH(CH{sub 2}OH)OPh at 500{degrees}C can be attributed to homolysis of the weakest bond in the molecule (C-O bond) or 1,2-elimination. Surprisingly, the hydroxy-substituent dramatically increases the decomposition of PPE. It is proposed that internal hydrogen bonding is accelerating the reaction.

  2. Catalytic fast pyrolysis of mushroom waste to upgraded bio-oil products via pre-coked modified HZSM-5 catalyst.

    PubMed

    Wang, Jia; Zhong, Zhaoping; Ding, Kuan; Xue, Zeyu

    2016-07-01

    In this paper, HZSM-5 catalyst was modified by pre-coked to cover the strong external acid sites by methanol to olefins reaction, and the modified catalysts were then applied to conduct the catalyst fast pyrolysis of mushroom waste for upgraded bio-fuel production. Experiment results showed that the strong external acid sites and specific surface area decreased with pre-coked percentage increasing from 0% to 5.4%. Carbon yields of hydrocarbons increased at first and then decreased with a maximum value of 53.47%. While the obtained oxygenates presented an opposite variation tendency, and the minimum values could be reached when pre-coked percentage was 2.7%. Among the achieved hydrocarbons, toluene and p-xylene were found to be the main products, and the selectivity of p-xylene increased at first and then decreased with a maximum value of 34.22% when the pre-coked percentage was 1.3%, and the selectivity of toluene showed the opposite tendency with a minimum value of 25.47%. PMID:27065226

  3. Fast Pyrolysis Oil Stabilization: An Integrated Catalytic and Membrane Approach for Improved Bio-oils. Final Report

    SciTech Connect

    George W. Huber; Upadhye, Aniruddha A.; Ford, David M.; Bhatia, Surita R.; Badger, Phillip C.

    2012-10-19

    This University of Massachusetts, Amherst project, "Fast Pyrolysis Oil Stabilization: An Integrated Catalytic and Membrane Approach for Improved Bio-oils" started on 1st February 2009 and finished on August 31st 2011. The project consisted following tasks: Task 1.0: Char Removal by Membrane Separation Technology The presence of char particles in the bio-oil causes problems in storage and end-use. Currently there is no well-established technology to remove char particles less than 10 micron in size. This study focused on the application of a liquid-phase microfiltration process to remove char particles from bio-oil down to slightly sub-micron levels. Tubular ceramic membranes of nominal pore sizes 0.5 and 0.8m were employed to carry out the microfiltration, which was conducted in the cross-flow mode at temperatures ranging from 38 to 45 C and at three different trans-membrane pressures varying from 1 to 3 bars. The results demonstrated the removal of the major quantity of char particles with a significant reduction in overall ash content of the bio-oil. The results clearly showed that the cake formation mechanism of fouling is predominant in this process. Task 2.0 Acid Removal by Membrane Separation Technology The feasibility of removing small organic acids from the aqueous fraction of fast pyrolysis bio-oils using nanofiltration (NF) and reverse osmosis (RO) membranes was studied. Experiments were carried out with a single solute solutions of acetic acid and glucose, binary solute solutions containing both acetic acid and glucose, and a model aqueous fraction of bio-oil (AFBO). Retention factors above 90% for glucose and below 0% for acetic acid were observed at feed pressures near 40 bar for single and binary solutions, so that their separation in the model AFBO was expected to be feasible. However, all of the membranes were irreversibly damaged when experiments were conducted with the model AFBO due to the presence of guaiacol in the feed solution. Experiments

  4. Catalytic pyrolysis-gc/ms of spirulina: evaluation of a highly proteinaceous biomass source for production of fuels and chemicals

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pyrolysis of microalgae offers a pathway towards the production of compounds derived from the thermal decomposition of triglycerides, proteins as well as lignocelluloses and their combinations thereof. When catalytically induced, this could lead to the production of fuels and chemicals including aro...

  5. Characterization and thermal conversion of charcoal derived from fluidized-bed fast pyrolysis oil production of switchgrass

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The char coproduct of pyrolysis oil production can have many potential uses. Applications including soil amendment, use as combustion fuel, or gasifier feedstock have been proposed but not extensively studied. In this work the charcoal produced from making pyrolysis oil (bio-oil) from switchgrass in...

  6. Process for fractionating fast-pyrolysis oils, and products derived therefrom

    DOEpatents

    Chum, Helena L.; Black, Stuart K.

    1990-01-01

    A process is disclosed for fractionating lignocellulosic materials fast-prolysis oils to produce phenol-containing compositions suitable for the manufacture of phenol-formaldehyde resins. The process includes admixing the oils with an organic solvent having at least a moderate solubility parameter and good hydrogen The United States Government has rights in this invention under Contract No. DE-AC02-83CH10093 between the United States Department of Energy and the Solar Energy Research Institute, a Division of the Midwest Research Institute.

  7. Pyrolysis oil combustion in a horizontal box furnace with an externally mixed nozzle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Combustion characteristics of neat biomass fast-pyrolysis oil were studied in a horizontal combustion chamber with a rectangular cross-section. An air-assisted externally mixed nozzle known to successfully atomize heavy fuel oils was installed in a modified nominal 100 kW (350,000 BTU/h nominal cap...

  8. Optimization and characterization of bio-oil produced by microwave assisted pyrolysis of oil palm shell waste biomass with microwave absorber.

    PubMed

    Mushtaq, Faisal; Abdullah, Tuan Amran Tuan; Mat, Ramli; Ani, Farid Nasir

    2015-08-01

    In this study, solid oil palm shell (OPS) waste biomass was subjected to microwave pyrolysis conditions with uniformly distributed coconut activated carbon (CAC) microwave absorber. The effects of CAC loading (wt%), microwave power (W) and N2 flow rate (LPM) were investigated on heating profile, bio-oil yield and its composition. Response surface methodology based on central composite design was used to study the significance of process parameters on bio-oil yield. The coefficient of determination (R(2)) for the bio-oil yield is 0.89017 indicating 89.017% of data variability is accounted to the model. The largest effect on bio-oil yield is from linear and quadratic terms of N2 flow rate. The phenol content in bio-oil is 32.24-58.09% GC-MS area. The bio-oil also contain 1,1-dimethyl hydrazine of 10.54-21.20% GC-MS area. The presence of phenol and 1,1-dimethyl hydrazine implies that the microwave pyrolysis of OPS with carbon absorber has the potential to produce valuable fuel products. PMID:25794811

  9. Flash Vacuum Pyrolysis of Lignin Model Compounds: Reaction Pathways of Aromatic Methoxy Groups

    SciTech Connect

    Britt, P.F.; Buchanan, A.C., III; Martineau, D.R.

    1999-03-21

    Currently, there is interest in utilizing lignin, a major constituent of biomass, as a renewable source of chemicals and fuels. High yields of liquid products can be obtained from the flash or fast pyrolysis of biomass, but the reaction pathways that lead to product formation are not understood. To provide insight into the primary reaction pathways under process relevant conditions, we are investigating the flash vacuum pyrolysis (FVP) of lignin model compounds at 500 C. This presentation will focus on the FVP of {beta}-ether linkages containing aromatic methoxy groups and the reaction pathways of methoxy-substituted phenoxy radicals.

  10. Formate-assisted pyrolysis

    SciTech Connect

    DeSisto, William Joseph; Wheeler, Marshall Clayton; van Heiningen, Adriaan R. P.

    2015-03-17

    The present invention provides, among other thing, methods for creating significantly deoxygenated bio-oils form biomass including the steps of providing a feedstock, associating the feedstock with an alkali formate to form a treated feedstock, dewatering the treated feedstock, heating the dewatered treated feedstock to form a vapor product, and condensing the vapor product to form a pyrolysis oil, wherein the pyrolysis oil contains less than 30% oxygen by weight.

  11. Bio-oil deoxygenation by catalytic pyrolysis: new catalysts for the conversion of biomass into densified and deoxygenated bio-oil.

    PubMed

    Sanna, Aimaro; Andrésen, John M

    2012-10-01

    This work proposes an innovative catalytic pyrolysis process that converts bio-refinery residues, such as spent grains, into intermediate bio-oil with improved properties compared to traditional bio-oils, which allows the use of existing crude-oil refinery settings for bio-oil upgrading into fuels. The integration of bio-oil into a crude-oil refinery would decrease the economic disadvantage of biomass compared to fossil fuels. The catalytic pyrolysis was able to produce bio-oil with a lower O and N content and high levels of aliphatics and H by using activated serpentine and olivine at 430-460 °C. The activated materials seem to be beneficial to the bio-oil energy content by increasing it from less than 20 MJ kg(-1) in the original biomass to 26 MJ kg(-1). Approximately 70-74 % of the starting energy remains in the bio-oil using activated olivine (ACOL) and activated serpentine (ACSE) at 430 °C, whereas only 52 % is retained using alumina (ALU) at the same temperature. There was a strong reduction of the O content in the bio-oils, and the deoxygenation power decreased in the following order: ACOL>ACSE>ALU. In particular, ACOL at 430-460 °C was able to reduce the O content of the bio-oil by 40 %. The oxygenated bio-oil macromolecules interact in the catalyst's active sites with the naturally present metallic species and undergo decarboxylation with the formation of C(5)-C(6) O-depleted species. PMID:22899352

  12. Techno-economic and uncertainty analysis of in situ and ex situ fast pyrolysis for biofuel production.

    PubMed

    Li, Boyan; Ou, Longwen; Dang, Qi; Meyer, Pimphan; Jones, Susanne; Brown, Robert; Wright, Mark

    2015-11-01

    This study evaluates the techno-economic uncertainty in cost estimates for two emerging technologies for biofuel production: in situ and ex situ catalytic pyrolysis. The probability distributions for the minimum fuel-selling price (MFSP) indicate that in situ catalytic pyrolysis has an expected MFSP of $1.11 per liter with a standard deviation of 0.29, while the ex situ catalytic pyrolysis has a similar MFSP with a smaller deviation ($1.13 per liter and 0.21 respectively). These results suggest that a biorefinery based on ex situ catalytic pyrolysis could have a lower techno-economic uncertainty than in situ pyrolysis compensating for a slightly higher MFSP cost estimate. Analysis of how each parameter affects the NPV indicates that internal rate of return, feedstock price, total project investment, electricity price, biochar yield and bio-oil yield are parameters which have substantial impact on the MFSP for both in situ and ex situ catalytic pyrolysis. PMID:26226581

  13. Techno-economic and uncertainty analysis of in situ and ex situ fast pyrolysis for biofuel production

    SciTech Connect

    Li, Boyan; Ou, Longwen; Dang, Qi; Meyer, Pimphan A.; Jones, Susanne B.; Brown, Robert C.; Wright, Mark

    2015-11-01

    This study evaluates the techno-economic uncertainty in cost estimates for two emerging biorefinery technologies for biofuel production: in situ and ex situ catalytic pyrolysis. Stochastic simulations based on process and economic parameter distributions are applied to calculate biorefinery performance and production costs. The probability distributions for the minimum fuel-selling price (MFSP) indicate that in situ catalytic pyrolysis has an expected MFSP of $4.20 per gallon with a standard deviation of 1.15, while the ex situ catalytic pyrolysis has a similar MFSP with a smaller deviation ($4.27 per gallon and 0.79 respectively). These results suggest that a biorefinery based on ex situ catalytic pyrolysis could have a lower techno-economic risk than in situ pyrolysis despite a slightly higher MFSP cost estimate. Analysis of how each parameter affects the NPV indicates that internal rate of return, feedstock price, total project investment, electricity price, biochar yield and bio-oil yield are significant parameters which have substantial impact on the MFSP for both in situ and ex situ catalytic pyrolysis.

  14. Kinetics of the pyrolysis of arundo, sawdust, corn stover and switch grass biomass by thermogravimetric analysis using a multi-stage model.

    PubMed

    Biney, Paul O; Gyamerah, Michael; Shen, Jiacheng; Menezes, Bruna

    2015-03-01

    A new multi-stage kinetic model has been developed for TGA pyrolysis of arundo, corn stover, sawdust and switch grass that accounts for the initial biomass weight (W0). The biomass were decomposed in a nitrogen atmosphere from 23°C to 900°C in a TGA at a single 20°C/min ramp rate in contrast with the isoconversion technique. The decomposition was divided into multiple stages based on the absolute local minimum values of conversion derivative, (dx/dT), obtained from DTG curves. This resulted in three decomposition stages for arundo, corn stover and sawdust and four stages for switch grass. A linearized multi-stage model was applied to the TGA data for each stage to determine the pre-exponential factor, activation energy, and reaction order. The activation energies ranged from 54.7 to 60.9 kJ/mol, 62.9 to 108.7 kJ/mol, and 18.4 to 257.9 kJ/mol for the first, second and the third decomposition stages respectively. PMID:25531683

  15. Aspen Plus® and economic modeling of equine waste utilization for localized hot water heating via fast pyrolysis.

    PubMed

    Hammer, Nicole L; Boateng, Akwasi A; Mullen, Charles A; Wheeler, M Clayton

    2013-10-15

    Aspen Plus(®) based simulation models have been developed to design a pyrolysis process for on-site production and utilization of pyrolysis oil from equine waste at the Equine Rehabilitation Center at Morrisville State College (MSC). The results indicate that utilization of all the available waste from the site's 41 horses requires a 6 oven dry metric ton per day (ODMTPD) pyrolysis system but it will require a 15 ODMTPD system for waste generated by an additional 150 horses at the expanded area including the College and its vicinity. For this a dual fluidized bed combustion reduction integrated pyrolysis system (CRIPS) developed at USDA's Agricultural Research Service (ARS) was identified as the technology of choice for pyrolysis oil production. The Aspen Plus(®) model was further used to consider the combustion of the produced pyrolysis oil (bio-oil) in the existing boilers that generate hot water for space heating at the Equine Center. The model results show the potential for both the equine facility and the College to displace diesel fuel (fossil) with renewable pyrolysis oil and alleviate a costly waste disposal problem. We predict that all the heat required to operate the pyrolyzer could be supplied by non-condensable gas and about 40% of the biochar co-produced with bio-oil. Techno-economic Analysis shows neither design is economical at current market conditions; however the 15 ODMTPD CRIPS design would break even when diesel prices reach $11.40/gal. This can be further improved to $7.50/gal if the design capacity is maintained at 6 ODMTPD but operated at 4950 h per annum. PMID:23845952

  16. Enhancement of bio-oil production via pyrolysis of wood biomass by pretreatment with H2SO4.

    PubMed

    Kumagai, Shogo; Matsuno, Ryo; Grause, Guido; Kameda, Tomohito; Yoshioka, Toshiaki

    2015-02-01

    In this work, a Japanese cedar wood sample was treated during the first step at ambient temperature and atmospheric pressure using several concentrations of sulfuric acid (H2SO4) in a stirred flask. During this pretreatment C-O bonds of cellulose, hemicellulose, and lignin were cleaved. The second step involved the pyrolysis of the pretreated wood sample at 550 °C in a quartz glass tube reactor. A maximum oil yield of 46.8 wt% with the minimum char yield of 10.1 wt% was obtained by the treatment with 3 M H2SO4, whereas untreated wood samples resulted in a 30.1 wt% yield of oil. The main components in the oils were levoglucosan and tar. These results suggest that moderate acid pretreatment produced shorter chain units of cellulose, hemicellulose, and lignin, thereby facilitating the conversion into oil by pyrolysis. The results of thermogravimetry-mass spectroscopy supported the presence of shorter chain units in the pretreated wood samples. PMID:25451777

  17. Fast microwave-assisted catalytic co-pyrolysis of corn stover and scum for bio-oil production with CaO and HZSM-5 as the catalyst.

    PubMed

    Liu, Shiyu; Xie, Qinglong; Zhang, Bo; Cheng, Yanling; Liu, Yuhuan; Chen, Paul; Ruan, Roger

    2016-03-01

    This study investigated fast microwave-assisted catalytic co-pyrolysis of corn stover and scum for bio-oil production with CaO and HZSM-5 as the catalyst. Effects of reaction temperature, CaO/HZSM-5 ratio, and corn stover/scum ratio on co-pyrolysis product fractional yields and selectivity were investigated. Results showed that co-pyrolysis temperature was selected as 550°C, which provides the maximum bio-oil and aromatic yields. Mixed CaO and HZSM-5 catalyst with the weight ratio of 1:4 increased the aromatic yield to 35.77 wt.% of feedstock, which was 17% higher than that with HZSM-5 alone. Scum as the hydrogen donor, had a significant synergistic effect with corn stover to promote the production of bio-oil and aromatic hydrocarbons when the H/C(eff) value exceeded 1. The maximum yield of aromatic hydrocarbons (29.3 wt.%) were obtained when the optimal corn stover to scum ratio was 1:2. PMID:26773959

  18. Lignin pyrolysis products, lignans, and resin acids as specific tracers of plant classes in emissions from biomass combustion

    SciTech Connect

    Simoneit, B.R.T. ); Rogge, W.F.; Cass, G.R. ); Mazurek, M.A. ); Standley, L.J. ); Hildemann, L.M. )

    1993-11-01

    Biomass smoke aerosols contain thermally unaltered and partially altered biomarker compounds from major vegetation taxa. These compounds range from C[sub 8] to C[sub 31] and include phytosterols, lignans, phenolic products from lignin, and diterpenoids from resins. Certain of the higher molecular weight biomarkers are vaporized from the parent plant material and subsequently condense unaltered into the particle phase. Other compounds undergo pyrolytic alteration and possibly dimerization. In both cases it is possible to assign many of these compounds to the plant taxa of the unburned fuel. The diterpenoids are good indicators for smoke from burning of gymnosperm wood. The relative distribution of the OH/OCH[sub 3] substituent patterns on the phenolic products indicates the plant class of the biomass that was burned. Application of these relationships to the interpretation of ambient smoke aerosols may permit further evaluation of the sources that contribute to regional biomass burning. 80 refs., 5 figs., 1 tab.

  19. Dewatering and granulation of sewage sludge by biophysical drying and thermo-degradation performance of prepared sludge particles during succedent fast pyrolysis.

    PubMed

    Han, Rong; Liu, Jinwen; Zhang, Yuancheng; Fan, Xiaoqian; Lu, Wenjing; Wang, Hongtao

    2012-03-01

    A novel two-step technology, fast biophysical drying (BPD) coupling with fast pyrolysis (FP), was investigated for moisture removal and energy recovery from sewage sludge. For BPD, combined operations of extreme thermophilic amendment (with accelerated increasing and controllable maintenance of substrate temperature) and enhanced convective evaporation were conducted, both beneficial for moisture removal (moisture content reaching 23.1% for 7d) and organic preservation. Biophysical-dried sludge (BPDS) was characterized by homogeneous fine-particle morphology and well-developed porous microstructure. The synthesized BPDS particle preserved most organic components (92% volatile matters and 79% HHV of traditional thermal-dried sludge [TTDS]) attributable to the inhibitory effect of BPD adjustment, presenting considerable capacity for subsequent residue-derived energy. For FP, the distribution of products from BPDS pyrolysis indicated that syngas and char yields were higher than those of TTDS. The syngas from BPDS is a type of hydrogen-rich gas composed of 42.6 vol.% H(2) at 900°C. PMID:22230778

  20. CFD modeling of space-time evolution of fast pyrolysis products in a bench-scale fluidized-bed reactor

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A model for the evolution of pyrolysis products in a fluidized bed has been developed. In this study the unsteady constitutive transport equations for inert gas flow and decomposition kinetics were modeled using the commercial computational fluid dynamics (CFD) software FLUENT-12. The model system d...

  1. CONVERTING PYROLYSIS OILS TO RENEWABLE TRANSPORT FUELS: PROCESSING CHALLENGES & OPPORTUNITIES

    SciTech Connect

    Holmgren, Jennifer; Nair, Prabhakar N.; Elliott, Douglas C.; Bain, Richard; Marinangelli, Richard

    2008-03-11

    To enable a sustained supply of biomass-based transportation fuels, the capability to process feedstocks outside the food chain must be developed. Significant industry efforts are underway to develop these new technologies, such as converting cellulosic wastes to ethanol. UOP, in partnership with U.S. Government labs, NREL and PNNL, is developing an alternate route using cellulosic feedstocks. The waste biomass is first subjected to a fast pyrolysis operation to generate pyrolysis oil (pyoil for short). Current efforts are focused on developing a thermochemical platform to convert pyoils to renewable gasoline, diesel and jet fuel. The fuels produced will be indistinguishable from their fossil fuel counterparts and, therefore, will be compatible with existing transport and distribution infrastructure.

  2. Particle size distributions from laboratory-scale biomass fires using fast response instruments

    NASA Astrophysics Data System (ADS)

    Hosseini, S.; Qi, L.; Cocker, D.; Weise, D.; Miller, A.; Shrivastava, M.; Miller, W.; Mahalingam, S.; Princevac, M.; Jung, H.

    2010-04-01

    Particle size distribution from biomass combustion is an important parameter as it affects air quality, climate modelling and health effects. To date particle size distributions reported from prior studies vary not only due to difference in fuels but also difference in experimental conditions. This study aims to report characteristics of particle size distribution in a well controlled repeatable lab scale biomass fires for southwestern US fuels. The combustion facility at the USDA Forest Service's Fire Science Laboratory (FSL), Missoula, MT provided repeatable combustion and dilution environment ideal for particle size distribution study. For a variety of fuels tested the major mode of particle size distribution was in the range of 29 to 52 nm, which was attributable to dilution of the fresh smoke. Comparing volume size distribution from Fast Mobility Particle Sizer (FMPS) and Aerodynamic Particle Sizer (APS) measurements, ~30% of particle volume was attributable to the particles ranging from 0.5 to 10 μm for PM10. Geometric mean diameter rapidly increased during flaming and gradually decreased during mixed and smoldering phase combustion. Most of fuels gave unimodal distribution during flaming phase and strong biomodal distribution during smoldering phase. The mode of combustion (flaming, mixed and smoldering) could be better distinguished using slopes in Modified Combustion Efficiency (MCE) vs. geometric mean diameter from each mode of combustion than only using MCE values.

  3. Slow pyrolysis of poultry litter and pine woody biomass: impact of chars and bio-oils on microbial growth.

    PubMed

    Das, K C; Garcia-Perez, M; Bibens, B; Melear, N

    2008-06-01

    Accidental or prescribed fires in forests and in cultivated fields, as well as primitive charcoal production practices, are responsible for the release of large amounts of gases, char and condensable organic molecules into the environment. This paper describes the impact of condensable organic molecules and chars resulting from the slow pyrolysis of poultry litter, pine chips and pine pellets on the growth of microbial populations in soil and water. The proximate and elemental analyses as well as the content of proteins, cellulose, hemicellulose, lignin, and ash for each of these bio-materials are reported. The yields and some properties of char and condensable liquids are also documented. The behavior of microbial populations in soil and water is followed through respiration studies. It was found that biological activity was highest when aqueous fractions from poultry litter were applied in water. Cumulative oxygen consumption over a 120-h period was highest in the aqueous phases from poultry litter coarse fraction (1.82 mg/g). On average the oxygen consumption when oily fractions from poultry litter were applied represented 44 to 62% of that when aqueous fractions were applied. Pine chip and pine pellet derived liquids and chars produced respiration activity that were an order of magnitude lower than that of poultry litter liquid fractions. These results suggest that the growth observed is due to the effect of protein-derived molecules. PMID:18444073

  4. Peat pyrolysis and the analytical semi-empirical model

    SciTech Connect

    Feng, J.; Green, A.E.S.

    2007-07-01

    Pyrolysis of peat could convert this material into useful fuels and valuable hydrocarbons. A study of peat pyrolysis can also serve as a useful bridge between studies of coal pyrolysis and biomass pyrolysis. Using an analytical model of pyrolysis that has previously been applied to biomass and to coal, we present here the results of applications of this model to a representative peat. The analysis suggests means of organizing and processing rate and yield data that should be useful in applications of pyrolysis for the production of fuels and chemicals.

  5. Production of bio-oil rich in acetic acid and phenol from fast pyrolysis of palm residues using a fluidized bed reactor: Influence of activated carbons.

    PubMed

    Jeong, Jae-Yong; Lee, Uen-Do; Chang, Won-Seok; Jeong, Soo-Hwa

    2016-11-01

    In this study, palm residues were pyrolyzed in a bench-scale (3kg/h) fast pyrolysis plant equipped with a fluidized bed reactor and bio-oil separation system for the production of bio-oil rich in acetic acid and phenol. Pyrolysis experiments were performed to investigate the effects of reaction temperature and the types and amounts of activated carbon on the bio-oil composition. The maximum bio-oil yield obtained was approximately 47wt% at a reaction temperature of 515°C. The main compounds produced from the bio-oils were acetic acid, hydroxyacetone, phenol, and phenolic compounds such as cresol, xylenol, and pyrocatechol. When coal-derived activated carbon was applied, the acetic acid and phenol yields in the bio-oils reached 21 and 19wt%, respectively. Finally, bio-oils rich in acetic acid and phenol could be produced separately by using an in situ bio-oil separation system and activated carbon as an additive. PMID:27501032

  6. Hydrogen-rich gas production via fast pyrolysis of biophysical dried sludge: Effect of particle size and moisture content on product yields and syngas composition.

    PubMed

    Han, Rong; Liu, Jinwen; Zhao, Chenxi; Li, Yuliang; Chen, Aixia

    2016-06-01

    After biophysical drying, a novel biophysical dried sludge particle was obtained. This work aims to investigate the function and effects of particle sizes and moisture contents on the fast pyrolysis of biophysical dried sludge particles. The results showed that large particles (>4 mm) favoured the oil generation with a maximum value of 19.0%, and small particles (<0.27 mm) favoured the char yield with a maximum value of 60.6%. Medium particle fractions (between 0.27 mm and 4 mm) benefited syngas production and induced higher H2 and CO emission, owing to the well-developed microstructure, enrichment of cellulose, and enhanced catalytic effects during the charring process. The introduction of proper moisture content (53.9% to 62.6%) to biophysical dried sludge was found to dramatically enhance syngas yield, hydrogen production, and carbon conversion efficiency. H2 molar concentration reached a maximum of 46.02% at a moisture content of 53.9%, which was attributed to the steam reforming and steam gasification accompanying the initial biophysical dried sludge pyrolysis. PMID:27118735

  7. Steam reforming of fast pyrolysis-derived aqueous phase oxygenates over Co, Ni, and Rh metals supported on MgAl2O4

    DOE PAGESBeta

    Xing, Rong; Dagle, Vanessa Lebarbier; Flake, Matthew; Kovarik, Libor; Albrecht, Karl O.; Deshmane, Chinmay; Dagle, Robert A.

    2016-02-03

    In this paper we examine the feasibility of steam reforming the mixed oxygenate aqueous fraction derived from fast pyrolysis bio-oils. Catalysts selective towards hydrogen formation and resistant to carbon formation utilizing feeds with relatively low steam-to-carbon (S/C) ratios are desired. Rh (5 wt%), Pt (5 wt%), Ru (5 wt%), Ir (5 wt%), Ni (15 wt%), and Co (15 wt%) metals supported on MgAl2O4 were evaluated for catalytic performance at 500 °C and 1 atm using a complex feed mixture comprising acids, polyols, cycloalkanes, and phenolic compounds. The Rh catalyst was found to be the most active and resistant to carbonmore » formation. The Ni and Co catalysts were found to be more active than the other noble metal catalysts investigated (Pt, Ru, and Ir).« less

  8. Life cycle water footprint of hydrogenation-derived renewable diesel production from lignocellulosic biomass.

    PubMed

    Wong, Alain; Zhang, Hao; Kumar, Amit

    2016-10-01

    The conversion of lignocellulosic biomass to biofuel requires water. This study is focused on the production of hydrogenation-derived renewable diesel (HDRD) from lignocellulosic biomass. Although there has been considerable focus on the assessment of greenhouse gas (GHG) emissions, there is limited work on the assessment of the life cycle water footprint of HDRD production. This paper presents a life cycle water consumption study on lignocellulosic biomass to HDRD via pyrolysis and hydrothermal liquefaction (HTL) processes. The results of this study show that whole tree (i.e., tree chips) biomass has water requirements of 497.79 L/MJ HDRD and 376.16 L/MJ HDRD for production through fast pyrolysis and the HTL process, respectively. Forest residues (i.e., chips from branches and tops generated during logging operations) have water requirements of 338.58 L/MJ HDRD and 255.85 L/MJ HDRD for production through fast pyrolysis and the HTL process, respectively. Agricultural residues (i.e., straw from wheat, oats, and barley), which are more water efficient, have water requirements of 83.7 L/MJ HDRD and 59.1 L/MJ HDRD through fast pyrolysis and the HTL process, respectively. Differences in water use between feedstocks and conversion processes indicate that the choices of biomass feedstock and conversion pathway water efficiency are crucial factors affecting water use efficiency of HDRD production. PMID:27379729

  9. Fast pyrolysis and bio-oil production from energy crops being developed within USDA's Agricultural Research Service

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The US DOE-USDA biomass initiative vision is counting on lignocellulosic conversion to boost the quantities of biofuels currently produced from starches in order to achieve much needed energy security. However, with the current challenges in the lignocellulosic conversion to ethanol via the sugar te...

  10. Preliminary Economics for the Production of Pyrolysis Oil from Lignin in a Cellulosic Ethanol Biorefinery

    SciTech Connect

    Jones, Susanne B.; Zhu, Yunhua

    2009-04-01

    Cellulosic ethanol biorefinery economics can be potentially improved by converting by-product lignin into high valued products. Cellulosic biomass is composed mainly of cellulose, hemicellulose and lignin. In a cellulosic ethanol biorefinery, cellulose and hemicellullose are converted to ethanol via fermentation. The raw lignin portion is the partially dewatered stream that is separated from the product ethanol and contains lignin, unconverted feed and other by-products. It can be burned as fuel for the plant or can be diverted into higher-value products. One such higher-valued product is pyrolysis oil, a fuel that can be further upgraded into motor gasoline fuels. While pyrolysis of pure lignin is not a good source of pyrolysis liquids, raw lignin containing unconverted feed and by-products may have potential as a feedstock. This report considers only the production of the pyrolysis oil and does not estimate the cost of upgrading that oil into synthetic crude oil or finished gasoline and diesel. A techno-economic analysis for the production of pyrolysis oil from raw lignin was conducted. comparing two cellulosic ethanol fermentation based biorefineries. The base case is the NREL 2002 cellulosic ethanol design report case where 2000 MTPD of corn stover is fermented to ethanol (NREL 2002). In the base case, lignin is separated from the ethanol product, dewatered, and burned to produce steam and power. The alternate case considered in this report dries the lignin, and then uses fast pyrolysis to generate a bio-oil product. Steam and power are generated in this alternate case by burning some of the corn stover feed, rather than fermenting it. This reduces the annual ethanol production rate from 69 to 54 million gallons/year. Assuming a pyrolysis oil value similar to Btu-adjusted residual oil, the estimated ethanol selling price ranges from $1.40 to $1.48 (2007 $) depending upon the yield of pyrolysis oil. This is considerably above the target minimum ethanol selling

  11. Characteristics of products from fast pyrolysis of fractions of waste square timber and ordinary plywood using a fluidized bed reactor.

    PubMed

    Jung, Su-Hwa; Kim, Seon-Jin; Kim, Joo-Sik

    2012-06-01

    Fractions of waste square timber and waste ordinary plywood were pyrolyzed in a pyrolysis plant equipped with a fluidized bed reactor and a dual char separation system. The maximum bio-oil yield of about 65 wt.% was obtained at reaction temperatures of 450-500 °C for both feed materials. For quantitative analysis of bio-oil, the relative response factor (RRF) of each component was calculated using an effective carbon number (ECN) that was multiplied by the peak area of each component detected by a GC-FID. The predominant compounds in the bio-oils were methyl acetate, acids, hydroxyacetone, furfural, non-aromatic ketones, levoglucosan and phenolic compounds. The WOP-derived bio-oil showed it to have relatively high nitrogen content. Increasing the reaction temperature was shown to have little effect on nitrogen removal. The ash and solid contents of both bio-oils were below 0.1 wt.% due to the excellent performance of the char separation system. PMID:22513256

  12. Comparison of Pyrolysis Characteristics of degreased and synthesized Mongolian Pine

    NASA Astrophysics Data System (ADS)

    Wang, Kaige; Wang, Shurong; Guo, Xiujuan; Luo, Zhongyang; Fransson, Torsten

    2010-11-01

    In order to study the influence of components' cross-interaction on biomass pyrolysis, research of degreased and synthesized Mongolian Pine (MP) was performed on a thermogravimetric analyzer coupled with a Fourier transform infrared spectroscopy (TG-FTIR) and the fast pyrolysis device. Compared with synthesized MP, the thermal behavior of degreased MP is much closer to the original and the degreased MP produces less aldehydes, alcohols or phenols and acids due to the cross-interactions of components. Synthesized MP has lower bio-oil yield and higher gas production than the degreased one. And the contents of furfural, acetic acid and levoglucosan change with the kind of samples obviously due to the intense cross-interactions of components.

  13. A case study of pyrolysis of oil palm wastes in Malaysia

    NASA Astrophysics Data System (ADS)

    Abdullah, Nurhayati; Sulaiman, Fauziah; Aliasak, Zalila

    2013-05-01

    Biomass seems to have a great potential as a source of renewable energy compared with other sources. The use of biomass as a source of energy could help to reduce the wastes and also to minimize the dependency on non-renewable energy, hence minimize environmental degradation. Among other types of biomass, oil palm wastes are the major contribution for energy production in Malaysia since Malaysia is one of the primary palm oil producers in the world. Currently, Malaysia's plantation area covers around 5 million hectares. In the oil palm mill, only 10% palm oil is produced and the other 90% is in the form of wastes such as empty fruit bunches (EFB), oil palm shells (OPS), oil palm fibre (OPFb) and palm oil mill effluent (POME). If these wastes are being used as a source of renewable energy, it is believed that it will help to increase the country's economy. Recently, the most potential and efficient thermal energy conversion technology is pyrolysis process. The objective of this paper is to review the current research on pyrolysis of oil palm wastes in Malaysia. The scope of this paper is to discuss on the types of pyrolysis process and its production. At present, most of the research conducted in this country is on EFB and OPS by fast, slow and microwave-assisted pyrolysis processes for fuel applications.

  14. Pyrolysis processing for solid waste resource recovery

    NASA Technical Reports Server (NTRS)

    Serio, Michael A. (Inventor); Kroo, Erik (Inventor); Wojtowicz, Marek A. (Inventor); Suuberg, Eric M. (Inventor)

    2007-01-01

    Solid waste resource recovery in space is effected by pyrolysis processing, to produce light gases as the main products (CH.sub.4, H.sub.2, CO.sub.2, CO, H.sub.2O, NH.sub.3) and a reactive carbon-rich char as the main byproduct. Significant amounts of liquid products are formed under less severe pyrolysis conditions, and are cracked almost completely to gases as the temperature is raised. A primary pyrolysis model for the composite mixture is based on an existing model for whole biomass materials, and an artificial neural network models the changes in gas composition with the severity of pyrolysis conditions.

  15. Pyrolysis process for producing fuel gas

    NASA Technical Reports Server (NTRS)

    Serio, Michael A. (Inventor); Kroo, Erik (Inventor); Wojtowicz, Marek A. (Inventor); Suuberg, Eric M. (Inventor)

    2007-01-01

    Solid waste resource recovery in space is effected by pyrolysis processing, to produce light gases as the main products (CH.sub.4, H.sub.2, CO.sub.2, CO, H.sub.2O, NH.sub.3) and a reactive carbon-rich char as the main byproduct. Significant amounts of liquid products are formed under less severe pyrolysis conditions, and are cracked almost completely to gases as the temperature is raised. A primary pyrolysis model for the composite mixture is based on an existing model for whole biomass materials, and an artificial neural network models the changes in gas composition with the severity of pyrolysis conditions.

  16. Direct determination of arsenic in soil samples by fast pyrolysis-chemical vapor generation using sodium formate as a reductant followed by nondispersive atomic fluorescence spectrometry

    NASA Astrophysics Data System (ADS)

    Duan, Xuchuan; Zhang, Jingya; Bu, Fanlong

    2015-09-01

    This new study shows for the first time that sodium formate can react with trace arsenic to form volatile species via fast pyrolysis - chemical vapor generation. We found that the presence of thiourea greatly enhanced the generation efficiency and eliminated the interference of copper. We studied the reaction temperature, the volume of sodium formate, the reaction acidity, and the carried argon rate using nondispersive atomic fluorescence spectrometry. Under optimal conditions of T = 500 °C, the volumes of 30% sodium formate and 10% thiourea were 0.2 ml and 0.05 ml, respectively. The carrier argon rate was 300 ml min- 1 and the detection limit and precision of arsenic were 0.39 ng and 3.25%, respectively. The amount of arsenic in soil can be directly determined by adding trace amount of hydrochloric acid as a decomposition reagent without any sample pretreatment. The method was successfully applied to determine trace amount of arsenic in two soil-certified reference materials (GBW07453 and GBW07450), and the results were found to be in agreement with certified reference values.

  17. Results of the IEA Round Robin on Viscosity and Aging of Fast Pyrolysis Bio-oils: Long-Term Tests and Repeatability

    SciTech Connect

    Elliott, Douglas C.; Oasmaa, Anja; Meier, Dietrich; Preto, Fernando; Bridgwater, Anthony V.

    2012-11-06

    An international round robin study of the viscosity and aging of fast pyrolysis bio-oil has been undertaken recently and this work is an outgrowth from that effort. Two bio-oil samples were distributed to the laboratories for aging tests and extended viscosity studies. The accelerated aging test was defined as the change in viscosity of a sealed sample of bio-oil held for 24 h at 80 °C. The test was repeated 10 times over consecutive days to determine the repeatability of the method. Other bio-oil samples were placed in storage at three temperatures, 21 °C, 4 °C and -17 °C for a period up to a year to evaluate the change in viscosity. The variation in the results of the aging test was shown to be low within a given laboratory. Storage of bio-oil under refrigeration can minimize the amount of change in viscosity. The accelerated aging test gives a measure of change similar to that of 6-12 months of storage at room temperature. These results can be helpful in setting standards for use of bio-oil, which is just coming into the marketplace.

  18. Phytotoxicity assessment on corn stover biochar, derived from fast pyrolysis, based on seed germination, early growth, and potential plant cell damage.

    PubMed

    Li, Yang; Shen, Fei; Guo, Haiyan; Wang, Zhanghong; Yang, Gang; Wang, Lilin; Zhang, Yanzong; Zeng, Yongmei; Deng, Shihuai

    2015-06-01

    The potential phytotoxicity of water extractable toxicants in a typical corn stover biochar, the product of fast pyrolysis, was investigated using an aqueous biochar extract on a soil-less bioassay with tomato plants. The biochar dosage of 0.0-16.0 g beaker(-1) resulted in an inverted U-shaped dose-response relationship between biochar doasage and seed germination/seedling growth. This indicated that tomato growth was slightly stimulated by low dosages of biochar and inhibited with higher dosages of biochar. Additionally, antioxidant enzyme activities in the roots and leaves were enhanced at lower dosages, but rapidly decreased with higher dosages of biochar. With the increased dosages of biochar, the malondialdehyde content in the roots and leaves increased, in addition with the observed morphology of necrotic root cells, suggesting that serious damage to tomato seedlings occurred. EC50 of root length inhibition occurred with biochar dosages of 9.2 g beaker(-1) (3.5th day) and 16.7 g beaker(-1) (11th day) (equivalent to 82.8 and 150.3 t ha(-1), respectively), which implied that toxicity to the early growth of tomato can potentially be alleviated as the plant grows. PMID:25628114

  19. Bactericidal Mechanism of Bio-oil Obtained from Fast Pyrolysis of Pinus densiflora Against Two Foodborne Pathogens, Bacillus cereus and Listeria monocytogenes.

    PubMed

    Patra, Jayanta Kumar; Hwang, Hyewon; Choi, Joon Weon; Baek, Kwang-Hyun

    2015-06-01

    Foodborne bacteria are the leading cause of food spoilage and other related diseases. In the present study, the antibacterial activity of bio-oil (BO) manufactured by fast pyrolysis of pinewood sawdust (Pinus densiflora Siebold and Zucc.) against two disease-causing foodborne pathogens (Bacillus cereus and Listeria monocytogenes) was evaluated. BO at a concentration of 1000 μg/disc was highly active against both B. cereus (10.0-10.6 mm-inhibition zone) and L. monocytogenes (10.6-12.0-mm inhibition zone). The minimum inhibitory concentration (MIC) and minimum bactericidal concentration values of BO were 500 and 1000 μg/mL, respectively, for both pathogens. At the MIC concentration, BO exhibited an inhibitory effect on the viability of the bacterial pathogens. The mechanism of action of BO revealed its strong impairing effect on the membrane integrity of bacterial cells, which was confirmed by a marked release of 260-nm absorbing material, leakage of electrolytes and K(+) ions, and reduced capacity for osmoregulation under high salt concentration. Scanning electron microscopy clearly showed morphological alteration of the cell membrane due to the effect of BO. Overall, the results of this study suggest that BO exerts effective antibacterial potential against foodborne pathogens and can therefore potentially be used in food processing and preservation. PMID:25928035

  20. Coal structure vs flash pyrolysis products

    SciTech Connect

    Calkins, W.H.

    1983-01-01

    The fast pyrolysis of coal produces tar, char and a range of low molecular weight gases in various proportions and amounts depending on the pyrolysis conditions (temperature, pressure) and the coal being pyrolyzed. Much research effort has been devoted to study of the reaction kinetics and effect of process variables, attempting thereby to elucidate the pyrolysis mechanism. Less effort has been focused on coal chemical structure and its relationship to the pyrolysis reactions and pyrolysis products. It was to attempt to better understand coal structure and its influence on pyrolysis products and pyrolysis mechanisms that this project was undertaken. This paper reports only on that portion of the work concerned with the aliphatic hydrocarbon products and particularly the light olefins. (7 tables, 12 figures, 16 refs.)

  1. CORROSIVITY AND COMPOSITION OF RAW AND TREATED PYROLYSIS OILS

    SciTech Connect

    Keiser, Jim; Howell, Michael; Connatser, Raynella M.; Lewis, Sam; Elliott, Douglas C.

    2012-10-14

    Fast pyrolysis offers a relatively low cost method of processing biomass to produce a liquid product that has the potential for conversion to several types of liquid fuels. The liquid product of fast pyrolysis, known as pyrolysis oil or bio-oil, contains a high oxygen content primarily in the form of water, carboxylic acids, phenols, ketones and aldehydes. These oils are typically very acidic with a Total Acid Number that is often in the range of 50 to 100, and previous studies have shown this material to be quite corrosive to common structural materials. Removal of at least some of the oxygen and conversion of this oil to a more useful product that is considerably less corrosive can be accomplished through a hydrogenation process. The product of such a treatment is considered to have the potential for blending with crude oil for processing in petroleum refineries. Corrosion studies and chemical analyses have been conducted using as produced bio-oil samples as well as samples that have been subjected to different levels of oxygen removal. Chemical analyses show treatment affected the concentrations of carboxylic acids contained in the oil, and corrosion studies showed a positive benefit of the oxygen removal. Results of these studies will be presented in this paper.

  2. Influence of a glass wool hot vapour filter on yields and properties of bio-oil derived from rapid pyrolysis of paddy residues.

    PubMed

    Pattiya, Adisak; Suttibak, Suntorn

    2012-07-01

    This article reports experimental results of rapid or fast pyrolysis of rice straw (RS) and rice husk (RH) in a fluidised-bed reactor unit incorporated with a hot vapour filter. The objective of this research was to investigate the effects of pyrolysis temperatures and the use of glass wool hot vapour filtration on pyrolysis products. The results showed that the optimum pyrolysis temperatures for RS and RH were 405 and 452 °C, which gave maximum bio-oil yields of 54.1 and 57.1 wt.% on dry biomass basis, respectively. The use of the hot filter led to a reduction of 4-7 wt.% bio-oil yield. Nevertheless, the glass wool hot filtered bio-oils appeared to have better quality in terms of initial viscosity, solids content and ash content than the non-filtered ones. PMID:22609663

  3. Valorization of cotton stalks by fast pyrolysis and fixed bed air gasification for syngas production as precursor of second generation biofuels and sustainable agriculture.

    PubMed

    Kantarelis, E; Zabaniotou, A

    2009-01-01

    In the present study, the potential of cotton stalks utilization for H(2) and syngas production with respect to CO(2) mitigation, by means of thermochemical conversion (pyrolysis and gasification) was investigated. Pyrolysis was conducted at temperature range of 400-760 degrees C and the main parametric study concerned the effect of temperature on pyrolysis product distribution. Atmospheric pressure, air gasification at 750-950 degrees C for various lambda (0.02-0.07) was also studied. Experimental results showed that high temperature favors gas production in both processes; while low lambda gasification gave high gas yield. Syngas (CO and H(2)) was increased with temperature, while CO(2) followed an opposite trend. By pyrolysis, higher H(2) concentration in the produced gas (approximately 39% v/v) was achieved and at the same time lower amounts of CO(2) produced, compared to air gasification. PMID:18783941

  4. Sorption of arsenic, cadmium, and lead by chars produced from fast pyrolysis of wood and bark during bio-oil production.

    PubMed

    Mohan, Dinesh; Pittman, Charles U; Bricka, Mark; Smith, Fran; Yancey, Ben; Mohammad, Javeed; Steele, Philip H; Alexandre-Franco, Maria F; Gómez-Serrano, Vicente; Gong, Henry

    2007-06-01

    Bio-char by-products from fast wood/bark pyrolyses, were investigated as adsorbents for the removal of the toxic metals (As(3+), Cd(2+), Pb(2+)) from water. Oak bark, pine bark, oak wood, and pine wood chars were obtained from fast pyrolysis at 400 and 450 degrees C in an auger-fed reactor and characterized. A commercial activated carbon was also investigated for comparison. Chars were sieved (>600, 600-250, 250-177, 177-149, and <149 microm) and the particle size fraction from 600 to 250 microm was used without further modification for all studies unless otherwise stated. Sorption studies were performed at different temperatures, pHs, and solid to liquid ratios in the batch mode. Maximum adsorption occurred over a pH range 3-4 for arsenic and 4-5 for lead and cadmium. Kinetic studies yielded an optimum equilibrium time of 24 h with an adsorbent dose of 10 g/L and concentration approximately 100 mg/L for lead and cadmium. Sorption isotherms studies were conducted in broad concentration ranges (1-1000 ppb for arsenic, 1x10(-5)-5x10(-3) M for lead and cadmium). Oak bark out-performed the other chars and nearly mimicked Calgon F-400 adsorption for lead and cadmium. In an aqueous lead solution with initial concentration of 4.8x10(-4) M, both oak bark and Calgon F-400 (10 g/L) removed nearly 100% of the heavy metal. Oak bark (10 g/L) also removed about 70% of arsenic and 50% of cadmium from aqueous solutions. Varying temperatures (e.g., 5, 25, and 40 degrees C) were used to determine the effect of temperatures. The equilibrium data were modeled with the help of Langmuir and Freundlich equations. Overall, the data are well fitted with both the models, with a slight advantage for Langmuir model. The oak bark char's ability to remove Pb(II) and Cd(II) is remarkable when considered in terms of the amount of metal adsorbed per unit surface area (0.5157 mg/m(2) for Pb(II) and 0.213 mg/m(2) for Cd(II) versus that of commercial activated carbon. PMID:17331527

  5. Fast microwave-assisted catalytic gasification of biomass for syngas production and tar removal.

    PubMed

    Xie, Qinglong; Borges, Fernanda Cabral; Cheng, Yanling; Wan, Yiqin; Li, Yun; Lin, Xiangyang; Liu, Yuhuan; Hussain, Fida; Chen, Paul; Ruan, Roger

    2014-03-01

    In the present study, a microwave-assisted biomass gasification system was developed for syngas production. Three catalysts including Fe, Co and Ni with Al2O3 support were examined and compared for their effects on syngas production and tar removal. Experimental results showed that microwave is an effective heating method for biomass gasification. Ni/Al2O3 was found to be the most effective catalyst for syngas production and tar removal. The gas yield reached above 80% and the composition of tar was the simplest when Ni/Al2O3 catalyst was used. The optimal ratio of catalyst to biomass was determined to be 1:5-1:3. The addition of steam was found to be able to improve the gas production and syngas quality. Results of XRD analyses demonstrated that Ni/Al2O3 catalyst has good stability during gasification process. Finally, a new concept of microwave-assisted dual fluidized bed gasifier was put forward for the first time in this study. PMID:24508907

  6. Comparison of the effect of wet and dry torrefaction on chemical structure and pyrolysis behavior of corncobs.

    PubMed

    Zheng, Anqing; Zhao, Zengli; Chang, Sheng; Huang, Zhen; Zhao, Kun; Wei, Guoqiang; He, Fang; Li, Haibin

    2015-01-01

    Wet and dry torrefaction of corncobs was conducted in high-pressure reactor and tube-type reactor, respectively. Effect of wet and dry torrefaction on chemical structure and pyrolysis behavior of corncobs was compared. The results showed that hemicellulose could be effectively removed from corncobs by torrefaction. However, dry torrefaction caused severe degradation of cellulose and the cross-linking and charring of corncobs. X-ray diffraction analysis revealed that crystallinity degree of corncobs was evidently enhanced during wet torrefaction, but reduced during dry torrefaction as raising treatment temperature. In thermogravimetric analysis, wet torrefied corncobs produced less carbonaceous residues than raw corncobs, while dry torrefied corncobs gave much more residues owing to increased content of acid insoluble lignin. Pyrolysis-gas chromatography/mass spectroscopy analysis indicated that wet torrefaction significantly promoted levoglucosan yield owing to the removal of alkali metals. Therefore, wet torrefaction can be considered as a more effective pretreatment method for fast pyrolysis of biomass. PMID:25460979

  7. Particle size distributions from laboratory-scale biomass fires using fast response instruments

    NASA Astrophysics Data System (ADS)

    Hosseini, S.; Li, Q.; Cocker, D.; Weise, D.; Miller, A.; Shrivastava, M.; Miller, J. W.; Mahalingam, S.; Princevac, M.; Jung, H.

    2010-08-01

    Particle size distribution from biomass combustion is an important parameter as it affects air quality, climate modelling and health effects. To date, particle size distributions reported from prior studies vary not only due to difference in fuels but also difference in experimental conditions. This study aims to report characteristics of particle size distributions in well controlled repeatable lab scale biomass fires for southwestern United States fuels with focus on chaparral. The combustion laboratory at the United States Department of Agriculture-Forest Service's Fire Science Laboratory (USDA-FSL), Missoula, MT provided a repeatable combustion and dilution environment ideal for measurements. For a variety of fuels tested the major mode of particle size distribution was in the range of 29 to 52 nm, which is attributable to dilution of the fresh smoke. Comparing mass size distribution from FMPS and APS measurement 51-68% of particle mass was attributable to the particles ranging from 0.5 to 10 μm for PM10. Geometric mean diameter rapidly increased during flaming and gradually decreased during mixed and smoldering phase combustion. Most fuels produced a unimodal distribution during flaming phase and strong biomodal distribution during smoldering phase. The mode of combustion (flaming, mixed and smoldering) could be better distinguished using the slopes in MCE (Modified Combustion Efficiency) vs. geometric mean diameter than only using MCE values.

  8. Particle Size Distributions During Laboratory-Scale Biomass Burns and Prescribed Burns Using Fast Response Instruments

    NASA Astrophysics Data System (ADS)

    Jung, H.; Hosseini, E.; Li, Q.; Cocker, D.; Weise, D.; Miller, A.; Shrivastava, M.; Miller, W.; Princevac, M.; Mahalingam, S.

    2010-12-01

    Particle size distribution from biomass combustion in an important parameter as it affects air quality, climate modelling and health effects. To date particle size distributions reported from prior studies varies not only due to difference in fuels but also difference in experimental conditions. This study aims to report characteristics of particle size distribution in a well controlled repeatable lab scale biomass fires for southwestern US fuels and compare with that from prescribed burns. The combustion laboratory at the USDA Forest Service’s Fire Science Laboratory (FSL), Missoula, MT provided repeatable combustion and dilution environment ideal for particle size distribution study. For a variety of fuels tested the major mode of particle size distribution was in the range of 29 to 52 nm, which is attributable to dilution of the fresh smoke. Comparing volume size distribution from FMPS and APS measurement ~30 % of particle volume was attributable to the particles ranging from 0.5 to 10 µm for PM10. Geometric mean diameter rapidly increased during flaming and gradually decreased during mixed and smoldering phase combustion. Most of fuels gave unimodal distribution during flaming phase and strong biomodal distribution during smoldering phase. The mode of combustion (flaming, mixed and smoldering) could be better distinguished using slopes in MCE vs geometric mean diameter from each mode of combustion than only using MCE values. Prescribed burns were carried out at wildland managed by military bases. Evolution of particle distribution in and out of the plume will be compared with particle distribution from lab scale burning.

  9. Biomass conversion processes for energy and fuels

    NASA Astrophysics Data System (ADS)

    Sofer, S. S.; Zaborsky, O. R.

    The book treats biomass sources, promising processes for the conversion of biomass into energy and fuels, and the technical and economic considerations in biomass conversion. Sources of biomass examined include crop residues and municipal, animal and industrial wastes, agricultural and forestry residues, aquatic biomass, marine biomass and silvicultural energy farms. Processes for biomass energy and fuel conversion by direct combustion (the Andco-Torrax system), thermochemical conversion (flash pyrolysis, carboxylolysis, pyrolysis, Purox process, gasification and syngas recycling) and biochemical conversion (anaerobic digestion, methanogenesis and ethanol fermentation) are discussed, and mass and energy balances are presented for each system.

  10. Adding value to ethanol production byproducts through microwave assisted pyrolysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The aim of this project is to increase the value of distillers grain by utilizing it as a feedstock for microwave assisted pyrolysis (MAP). Pyrolysis is the chemical/thermal conversion of biomass without the presence of oxygen into newly formed products: gases, liquids and solids. This conversion pr...

  11. Charcoal from the pyrolysis of rapeseed plant straw-stalk

    SciTech Connect

    Karaosmanoglu, F.; Tetik, E.

    1999-07-01

    Charcoal is an important product of pyrolysis of biomass sources. Charcoal can be used for domestic, agricultural, metallurgical, and chemical purposes. In this study different characteristics of charcoal, one of the rape seed plant straw-stalk pyrolysis product, was researched and presented as candidates.

  12. An investigation into the impact of CO2 co-feed on pyrolysis and gasification.

    PubMed

    Kwon, Eilhan; Kim, Sungpyo

    2010-08-01

    This paper presents experimental results of the impact of CO(2) co-feed on a gasification/pyrolysis process for various feedstocks (biomass, coal, and municipal solid waste (MSW)). Various feedstocks were thermo-gravimetrically characterized under various atmospheric conditions and heating rates. A substantial amount of char burn out was identified in the presence of CO(2) via a series of thermo-gravimetric analysis tests, which enabled high conversion of final mass (approximately 99%) to be achieved. The impact of CO(2) co-feed on the volatilization regime during the pyrolysis/gasification process was not apparent at a heating rate of 10-40 degrees C min(-1). However, the impact of CO(2) on the volatilization regime at a fast heating rate (950 degrees C min(-1)) was substantial. For example, significant enhancement in the generation of CO, by a factor of approximately 2, was observed in the presence of CO(2). The generation of major chemical species, such as CH(4) and C(2)H(4), were enhanced, but this was not as apparent as in the case with CO. In addition, introducing CO(2) to the pyrolysis/gasification process enabled the amount of condensable liquid hydrocarbons, such as tar (approximately 30-40%) to be significantly reduced in the presence of CO(2), in that injecting CO(2) into the pyrolysis/gasification process expedites cracking the volatilized chemical species. Experimental work confirmed that biomass and MSW could be feasible and desirable feedstocks for the pyrolysis/gasification process as these feedstocks can be easily treated compared to coal. To extend this understanding to a more practical level, various feedstocks were tested in a tubular reactor and drop tube reactor under various experimental conditions. PMID:20546843

  13. Corrosivity Of Pyrolysis Oils

    SciTech Connect

    Keiser, James R; Bestor, Michael A; Lewis Sr, Samuel Arthur; Storey, John Morse

    2011-01-01

    Pyrolysis oils from several sources have been analyzed and used in corrosion studies which have consisted of exposing corrosion coupons and stress corrosion cracking U-bend samples. The chemical analyses have identified the carboxylic acid compounds as well as the other organic components which are primarily aromatic hydrocarbons. The corrosion studies have shown that raw pyrolysis oil is very corrosive to carbon steel and other alloys with relatively low chromium content. Stress corrosion cracking samples of carbon steel and several low alloy steels developed through-wall cracks after a few hundred hours of exposure at 50 C. Thermochemical processing of biomass can produce solid, liquid and/or gaseous products depending on the temperature and exposure time used for processing. The liquid product, known as pyrolysis oil or bio-oil, as produced contains a significant amount of oxygen, primarily as components of water, carboxylic acids, phenols, ketones and aldehydes. As a result of these constituents, these oils are generally quite acidic with a Total Acid Number (TAN) that can be around 100. Because of this acidity, bio-oil is reported to be corrosive to many common structural materials. Despite this corrosive nature, these oils have the potential to replace some imported petroleum. If the more acidic components can be removed from this bio-oil, it is expected that the oil could be blended with crude oil and then processed in existing petroleum refineries. The refinery products could be transported using customary routes - pipelines, barges, tanker trucks and rail cars - without a need for modification of existing hardware or construction of new infrastructure components - a feature not shared by ethanol.

  14. Catalytic conversion of lignocellulosic biomass to fine chemicals and fuels.

    PubMed

    Zhou, Chun-Hui; Xia, Xi; Lin, Chun-Xiang; Tong, Dong-Shen; Beltramini, Jorge

    2011-11-01

    Lignocellulosic biomass is the most abundant and bio-renewable resource with great potential for sustainable production of chemicals and fuels. This critical review provides insights into the state-of the-art accomplishments in the chemocatalytic technologies to generate fuels and value-added chemicals from lignocellulosic biomass, with an emphasis on its major component, cellulose. Catalytic hydrolysis, solvolysis, liquefaction, pyrolysis, gasification, hydrogenolysis and hydrogenation are the major processes presently studied. Regarding catalytic hydrolysis, the acid catalysts cover inorganic or organic acids and various solid acids such as sulfonated carbon, zeolites, heteropolyacids and oxides. Liquefaction and fast pyrolysis of cellulose are primarily conducted over catalysts with proper acidity/basicity. Gasification is typically conducted over supported noble metal catalysts. Reaction conditions, solvents and catalysts are the prime factors that affect the yield and composition of the target products. Most of processes yield a complex mixture, leading to problematic upgrading and separation. An emerging technique is to integrate hydrolysis, liquefaction or pyrolysis with hydrogenation over multifunctional solid catalysts to convert lignocellulosic biomass to value-added fine chemicals and bio-hydrocarbon fuels. And the promising catalysts might be supported transition metal catalysts and zeolite-related materials. There still exist technological barriers that need to be overcome (229 references). PMID:21863197

  15. Recent advances in hydrotreating of pyrolysis bio-oil and its oxygen-containing model compounds

    SciTech Connect

    Wang, Huamin; Male, Jonathan L.; Wang, Yong

    2013-05-01

    There is considerable world-wide interest in discovering renewable sources of energy that can substitute for fossil fuels. Lignocellulosic biomass, which is the most abundant and inexpensive renewable feedstock on the planet, has a great potential for sustainable production of fuels, chemicals, and carbon-based materials. Fast pyrolysis integrated with hydrotreating is one of the simplest, most cost-effective and most efficient processes to convert lignocellulosic biomass to liquid hydrocarbon fuels for transportation, which has attracted significant attention in recent decades. However, effective hydrotreating of pyrolysis bio-oil presents a daunting challenge to the commercialization of biomass conversion via pyrolysis-hydrotreating. Specifically, development of active, selective, and stable hydrotreating catalysts is the bottleneck due to the poor quality of pyrolysis bio-oil feedstock (high oxygen content, molecular complexity, coking propensity, and corrosiveness). Significant research has been conducted to address the practical issues and provide the fundamental understanding of the hydrotreating/hydrodeoxygenation (HDO) of bio-oils and their oxygen-containing model compounds, including phenolics, furans, and carboxylic acids. A wide range of catalysts have been studied, including conventional Mo-based sulfide catalysts and noble metal catalysts, with the latter being the primary focus of the recent research because of their excellent catalytic performances and no requirement of environmentally unfriendly sulfur. The reaction mechanisms of HDO of model compounds on noble metal catalysts as well as their efficacy for hydrotreating or stabilization of bio-oil have been recently reported. This review provides a survey of the relevant literatures of recent 10 years about the advances in the understanding of the HDO chemistry of bio-oils and their model compounds mainly on noble metal catalysts.

  16. Clean fuels from biomass

    NASA Technical Reports Server (NTRS)

    Hsu, Y.-Y.

    1976-01-01

    The paper discusses the U.S. resources to provide fuels from agricultural products, the present status of conversion technology of clean fuels from biomass, and a system study directed to determine the energy budget, and environmental and socioeconomic impacts. Conversion processes are discussed relative to pyrolysis and anaerobic fermentation. Pyrolysis breaks the cellulose molecules to smaller molecules under high temperature in the absence of oxygen, wheras anaerobic fermentation is used to convert biomass to methane by means of bacteria. Cost optimization and energy utilization are also discussed.

  17. Catalytic pyrolysis using UZM-39 aluminosilicate zeolite

    SciTech Connect

    Nicholas, Christopher P; Boldingh, Edwin P

    2014-10-07

    A new family of coherently grown composites of TUN and IMF zeotypes has been synthesized and shown to be effective catalysts for catalytic pyrolysis of biomass. These zeolites are represented by the empirical formula. Na.sub.nM.sub.m.sup.n+R.sub.rQ.sub.qAl.sub.1-xE.sub.xSi.sub.yO.s- ub.z where M represents zinc or a metal or metals from Group 1, Group 2, Group 3 or the lanthanide series of the periodic table, R is an A,.OMEGA.-dihalosubstituted paraffin such as 1,4-dibromobutane, Q is a neutral amine containing 5 or fewer carbon atoms such as 1-methylpyrrolidine and E is a framework element such as gallium. The process involves contacting a carbonaceous biomass feedstock with UZM-39 at pyrolysis conditions to produce pyrolysis gases comprising hydrocarbons. The catalyst catalyzes a deoxygenation reaction converting oxygenated hydrocarbons into hydrocarbons and removing the oxygen as carbon oxides and water. A portion of the pyrolysis gases is condensed to produce low oxygen biomass-derived pyrolysis oil.

  18. Catalytic pyrolysis using UZM-39 aluminosilicate zeolite

    SciTech Connect

    Nicholas, Christpher P; Boldingh, Edwin P

    2013-12-17

    A new family of coherently grown composites of TUN and IMF zeotypes has been synthesized and show to be effective catalysts for catalytic pyrolysis of biomass. These zeolites are represented by the empirical formula. Na.sub.nM.sub.m.sup.n+R.sub.rQ.sub.qAl.sub1-xE.sub.xSi.sub.yO.s- ub.z where M represents zinc or a metal or metals from Group 1, Group 2, Group 3 or the lanthanide series of the periodic table, R is an A,.OMEGA.-dihalosubstituted paraffin such as 1,4-dibromobutane, Q is a neutral amine containing 5 or fewer carbon atoms such as 1-methylpyrrolidine and E is a framework element such as gallium. The process involves contacting a carbonaceous biomass feedstock with UZM-39 at pyrolysis conditions to produce pyrolysis gases comprising hydrocarbons. The catalyst catalyzes a deoxygenation reaction converting oxygenated hyrdocarbons into hydrocarbons removing the oxygen as carbon oxides and water. A portion of the pyrolysis gases is condensed to produce low oxygen biomass-derived pyrolysis oil.

  19. Synfuels from biomass grow slowly

    SciTech Connect

    Black, J.; Wedlock, J.C.

    1982-01-01

    Current developments in the manufacture of synfuels are discussed with emphasis on the sources of biomass suitable for synfuels production, processes for converting biomass to synfuels, and the economics of the technology. The sources include wood, nonwood crops, root crops, aquatic biomass, and oils from plants such as soybean, safflower, and peanut. The biomass conversion processes discussed include pyrolysis, gasification, liquefaction, and aerobic and anaerobic digestion.

  20. Review of NMR characterization of pyrolysis oils

    DOE PAGESBeta

    Hao, Naijia; Ben, Haoxi; Yoo, Chang Geun; Adhikari, Sushil; Ragauskas, Arthur J.

    2016-08-24

    Here, pyrolysis of renewable biomass has been developed as a method to produce green fuels and chemicals in response to energy security concerns as well as to alleviate environmental issues incurred with fossil fuel usage. However, pyrolysis oils still have limited commercial application, mainly because unprocessed oils cannot be readily blended with current petroleum-based transportation fuels. To better understand these challenges, researchers have applied diverse characterization techniques in the development of bio-oil studies. In particular, nuclear magnetic resonance (NMR) is a key spectroscopic characterization method through analysis of bio-oil components. This review highlights the NMR strategies for pyrolysis oil characterizationmore » and critically discusses the applications of 1H, 13C, 31P, 19F, and two-dimensional (2-D NMR) analyses such as heteronuclear single quantum correlation (HSQC) in representative pyrolysis oil studies.« less

  1. Pyrolysis of Wood and Bark in an Auger Reactor: Physical Properties and Chemical Analysis of the Produced Bio-oils

    SciTech Connect

    Ingram, L.; Mohan, D.; Bricka, M.; Steele, P.; Strobel, D.; Crocker, D.; Mitchell, B.; Mohammed, J.; Cantrell, K.; Pittman, C. U. Jr.

    2008-01-01

    Bio-oil was produced at 450C by fast pyrolysis in a continuous auger reactor. Four feed stocks were used: pine wood, pine bark, oak wood, and oak bark. After extensive characterization of the whole bio-oils and their pyrolytic lignin-rich ethyl acetate fractions by gas chromatography/mass spectrometry (GC/MS), gel permeation chromatography (GPC), calorific values, viscosity dependences on shear rates and temperatures, elemental analyses, {sup 1}H and {sup 13}C NMR spectroscopy, water analyses, and ash content, these bio-oils were shown to be comparable to bio-oils produced by fast pyrolysis in fluidized bed and vacuum pyrolysis processes. This finding suggests that portable auger reactors might be used to produce bio-oil at locations in forests to generate bio-oil on-site for transport of the less bulky bio-oil (versus raw biomass) to biorefineries or power generation units. The pyrolysis reported herein had lower heat transfer rates than those achieved in fluidized bed reactors, suggesting significant further improvements are possible.

  2. Plasma Treatments and Biomass Gasification

    NASA Astrophysics Data System (ADS)

    Luche, J.; Falcoz, Q.; Bastien, T.; Leninger, J. P.; Arabi, K.; Aubry, O.; Khacef, A.; Cormier, J. M.; Lédé, J.

    2012-02-01

    Exploitation of forest resources for energy production includes various methods of biomass processing. Gasification is one of the ways to recover energy from biomass. Syngas produced from biomass can be used to power internal combustion engines or, after purification, to supply fuel cells. Recent studies have shown the potential to improve conventional biomass processing by coupling a plasma reactor to a pyrolysis cyclone reactor. The role of the plasma is twofold: it acts as a purification stage by reducing production of tars and aerosols, and simultaneously produces a rich hydrogen syngas. In a first part of the paper we present results obtained from plasma treatment of pyrolysis oils. The outlet gas composition is given for various types of oils obtained at different experimental conditions with a pyrolysis reactor. Given the complexity of the mixtures from processing of biomass, we present a study with methanol considered as a model molecule. This experimental method allows a first modeling approach based on a combustion kinetic model suitable to validate the coupling of plasma with conventional biomass process. The second part of the paper is summarizing results obtained through a plasma-pyrolysis reactor arrangement. The goal is to show the feasibility of this plasma-pyrolysis coupling and emphasize more fundamental studies to understand the role of the plasma in the biomass treatment processes.

  3. Feedstock source, pyrolysis process, and steam activation effect on biochar properties

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pyrolysis is one of the technologies used in converting biomass to energy. During the process about 15-40% of the initial biomass is recovered as biochar. The pyrolysis process alters feedstock composition and chemistry, rendering its components (e.g. carbon, nutrients) less biodegradable and avai...

  4. Numberical studies of the radiant flash pyrolysis of cellulose

    SciTech Connect

    Kothari, V.; Antal, M.J. Jr.

    1983-01-01

    When biomass particles are heated very rapidly (>1000/sup 0/ C/s) in an oxygen free environment, they undergo pyrolysis with the formation of little or no char. If concentrated solar energy is used to rapidly heat the particles their temperature may exceed that of the surrounding gaseous environment by several hundred degrees Celsius when pyrolysis occurs. This ''two temperature'' effect gives rise to the formation of high yields of syrups from the pyrolyzing biomass. Numberical exploration of the combined effects of heat and mass transfer on the radiative flash pyrolysis phenonmena are described in this paper. (5 tables, 8 figs, 12 refs.)

  5. Numerical studies of the radiant flash pyrolysis of cellulose

    SciTech Connect

    Kothari, V.; Antal, M.J. Jr.

    1983-01-01

    When biomass particles are heated very rapidly (temperatures greater than 1000 degrees/s) in an oxygen free environment, they undergo pyrolysis with the formation of little or no char. If concentrated solar energy is used to rapidly heat the particles their temperature may exceed that of the surrounding gaseous environment by several hundred degrees Celsius when pyrolysis occurs. This two temperature effect gives rise to the formation of high yields of syrups from the pyrolyzing biomass. Numerical exploration of the combined effects of heat and mass transfer on the radiative flash pyrolysis phenonmena are described in this paper. 12 references.

  6. Mesoporous carbon stabilized MgO nanoparticles synthesized by pyrolysis of MgCl2 preloaded waste biomass for highly efficient CO2 capture.

    PubMed

    Liu, Wu-Jun; Jiang, Hong; Tian, Ke; Ding, Yan-Wei; Yu, Han-Qing

    2013-08-20

    Anthropogenic CO2 emission makes significant contribution to global climate change and CO2 capture and storage is a currently a preferred technology to change the trajectory toward irreversible global warming. In this work, we reported a new strategy that the inexhaustible MgCl2 in seawater and the abundantly available biomass waste can be utilized to prepare mesoporous carbon stabilized MgO nanoparticles (mPC-MgO) for CO2 capture. The mPC-MgO showed excellent performance in the CO2 capture process with the maximum capacity of 5.45 mol kg(-1), much higher than many other MgO based CO2 trappers. The CO2 capture capacity of the mPC-MgO material kept almost unchanged in 19-run cyclic reuse, and can be regenerated at low temperature. The mechanism for the CO2 capture by the mPC-MgO was investigated by FTIR and XPS, and the results indicated that the high CO2 capture capacity and the favorable selectivity of the as-prepared materials were mainly attributed to their special structure (i.e., surface area, functional groups, and the MgO NPs). This work would open up a new pathway to slow down global warming as well as resolve the pollution of waste biomass. PMID:23895233

  7. Hydrothermal Liquefaction of Biomass

    SciTech Connect

    Elliott, Douglas C.

    2010-12-10

    Hydrothermal liquefaction technology is describes in its relationship to fast pyrolysis of biomass. The scope of work at PNNL is discussed and some intial results are presented. HydroThermal Liquefaction (HTL), called high-pressure liquefaction in earlier years, is an alternative process for conversion of biomass into liquid products. Some experts consider it to be pyrolysis in solvent phase. It is typically performed at about 350 C and 200 atm pressure such that the water carrier for biomass slurry is maintained in a liquid phase, i.e. below super-critical conditions. In some applications catalysts and/or reducing gases have been added to the system with the expectation of producing higher yields of higher quality products. Slurry agents ('carriers') evaluated have included water, various hydrocarbon oils and recycled bio-oil. High-pressure pumping of biomass slurry has been a major limitation in the process development. Process research in this field faded away in the 1990s except for the HydroThermal Upgrading (HTU) effort in the Netherlands, but has new resurgence with other renewable fuels in light of the increased oil prices and climate change concerns. Research restarted at Pacific Northwest National Laboratory (PNNL) in 2007 with a project, 'HydroThermal Liquefaction of Agricultural and Biorefinery Residues' with partners Archer-Daniels-Midland Company and ConocoPhillips. Through bench-scale experimentation in a continuous-flow system this project investigated the bio-oil yield and quality that could be achieved from a range of biomass feedstocks and derivatives. The project was completed earlier this year with the issuance of the final report. HydroThermal Liquefaction research continues within the National Advanced Biofuels Consortium with the effort focused at PNNL. The bench-scale reactor is being used for conversion of lignocellulosic biomass including pine forest residue and corn stover. A complementary project is an international collaboration with

  8. Hydropyrolysis of biomass

    SciTech Connect

    Kobayashi, Atsushi; Steinberg, M.

    1992-01-01

    The pyrolysis and hydropyrolysis of biomass was investigated. Experimental runs using the biomass (Poplar wood sawdust) were performed using a tubular reactor of dimensions 1 inch inside diameter and 8 feet long heated at a temperature of 800 C and pressures between 450 and 750 psig. At low heat-up rate the reaction precedes in two steps. First pyrolysis takes place at temperatures of 300 to 400 c and subsequent hydropyrolysis takes place at 700 C and above. This is also confirmed by pressurized thermogravimetric analysis (PTGA). Under conditions of rapid heat-up at higher temperatures and higher hydrogen pressure gasification and hydrogasification of biomass is especially effective in producing carbon monoxide and methane. An overall conversion of 88 to 90 wt % of biomass was obtained. This value is in agreement with the previous work of flash pyrolysis and hydropyrolysis of biomass for rapid heat-up and short residence time. Initial rates of biomass conversion indicate that the rate increases significantly with increase in hydrogen pressure. At 800 C and 755 psig the initial rate of biomass conversion to gases is 0.92 1/min.

  9. PYROLYSIS OF MUNICIPAL AND INDUSTRIAL WASTE

    EPA Science Inventory

    The paper provides a historical overview of some 21 U.S. research and development activities associated with municipal/industrial waste and biomass conversion-to-energy pyrolysis technologies. The history begins in the early 1970's and is brought forward to the present. Of the 21...

  10. Pyrolysis of lipids using various catalysts

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A specific pursuit of the thermochemical (combustion, gasification, pyrolysis, and liquefaction) conversion of biomass to energy research effort is the potential of converting lipids to alkanes, petroleum-like fuels and chemicals. Arguments can be made for, and against, the use of agricultural lipi...

  11. Numerical studies of the radiant flash pyrolysis of cellulose

    SciTech Connect

    Kothari, V.; Antal, M.J.

    1983-01-01

    When biomass particles are heated very rapidly (>1000/sup 0/C/s) in an oxygen free environment, they undergo pyrolysis with the formation of little or no char. If concentrated solar energy is used to rapidly heat the particles, their temperature may exceed that of the surrounding gaseous environment by several hundred degrees Celsius when pyrolysis occurs. This ''two temperature'' effect gives rise to the formation of high yields of sirups from the pyrolyzing biomass. Interest in the selective formation of sirups during the radiative flash pyrolysis of biomass caused the authors to initiate numerical explorations of the combined effects of heat and mass transfer on the radiative flash pyrolysis phenomena. These explorations are described in this paper.

  12. Update of Hydrogen from Biomass -- Determination of the Delivered Cost of Hydrogen

    SciTech Connect

    Spath, P. L.; Mann, M. K.; Amos, W. A.

    2003-12-01

    Milestone report summarizing the economic feasibility of producing hydrogen from biomass via (1) gasification/reforming of the resulting syngas and (2) fast pyrolysis/reforming of the resulting bio-oil. Hydrogen has the potential to be a clean alternative to the fossil fuels currently used in the transportation sector. This is especially true if the hydrogen is manufactured from renewable resources, primarily sunlight, wind, and biomass. Analyses have been conducted to assess the economic feasibility of producing hydrogen from biomass via two thermochemical processes: (1) gasification followed by reforming of the syngas, and (2) fast pyrolysis followed by reforming of the carbohydrate fraction of the bio-oil. This study was conducted to update previous analyses of these processes in order to include recent experimental advances and any changes in direction from previous analyses. The systems examined were gasification in the Battelle/FERCO low pressure indirectly-heated gasifier followed by steam reforming, gasification in the Institute of Gas Technology (IGT) high pressure direct-fired gasifier followed by steam reforming, and pyrolysis followed by coproduct separation and steam reforming. In each process, water-gas shift is used to convert the reformed gas into hydrogen, and pressure swing adsorption is used to purify the product. The delivered cost of hydrogen, as well as the plant gate hydrogen selling price, were determined. All analyses included Latin Hypercube sampling to obtain a detailed sensitivity analysis.

  13. Biomass Production and Soil Carbon

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There is expanding interest in harvesting crop biomass for energy. Crop biomass such as corn stover, wheat straw, soybean straw or other crop straws can be used as feedstock to support several bioenergy platforms (cellulosic ethanol, gasification or pyrolysis). There are potential benefits for using...

  14. Lifecycle Assessment of Biofuel Production from Wood Pyrolysis Technology

    ERIC Educational Resources Information Center

    Manyele, S. V.

    2007-01-01

    Due to a stronger dependency on biomass for energy, there is a need for improved technologies in biomass-to-energy conversion in Tanzania. This paper presents a life cycle assessment (LCA) of pyrolysis technology used for conversion of wood and wood waste to liquid biofuel. In particular, a survey of environmental impacts of the process is…

  15. Influence of mineral matter on pyrolysis of palm oil wastes

    SciTech Connect

    Yang, Haiping; Chen, Hanping; Zheng, Chuguang; Yan, Rong; Lee, Dong Ho; Liang, David Tee

    2006-09-15

    The influence of mineral matter on pyrolysis of biomass (including pure biomass components, synthesized biomass, and natural biomass) was investigated using a thermogravimetric analyzer (TGA). First, the mineral matter, KCl, K{sub 2}CO{sub 3}, Na{sub 2}CO{sub 3}, CaMg(CO{sub 3}){sub 2}, Fe{sub 2}O{sub 3}, and Al{sub 2}O{sub 3}, was mixed respectively with the three main biomass components (hemicellulose, cellulose, and lignin) at a weight ratio (C/W) of 0.1 and its pyrolysis characteristics were investigated. Most of these mineral additives, except for K{sub 2}CO{sub 3}, demonstrated negligible influence. Adding K{sub 2}CO{sub 3} inhibited the pyrolysis of hemicellulose by lowering its mass loss rate by 0.3 wt%/{sup o}C, while it enhanced the pyrolysis of cellulose by shifting the pyrolysis to a lower temperature. With increased K{sub 2}CO{sub 3} added, the weight loss of cellulose in the lower temperature zone (200-315 {sup o}C) increased greatly, and the activation energies of hemicellulose and cellulose pyrolysis decreased notably from 204 to 42 kJ/mol. Second, studies on the synthetic biomass of hemicellulose, cellulose, lignin, and K{sub 2}CO{sub 3} (as a representative of minerals) indicated that peaks of cellulose and hemicellulose pyrolysis became overlapped with addition of K{sub 2}CO{sub 3} (at C/W=0.05-0.1), due to the catalytic effect of K{sub 2}CO{sub 3} lowering cellulose pyrolysis to a lower temperature. Finally, a local representative biomass--palm oil waste (in the forms of original material and material pretreated through water washing or K{sub 2}CO{sub 3} addition)--was studied. Water washing shifted pyrolysis of palm oil waste to a higher temperature by 20 {sup o}C, while K{sub 2}CO{sub 3} addition lowered the peak temperature of pyrolysis by {approx}50{sup o}C. It was therefore concluded that the obvious catalytic effect of adding K{sub 2}CO{sub 3} might be attributed to certain fundamental changes in terms of chemical structure of

  16. Valorization of Rhizoclonium sp. algae via pyrolysis and catalytic pyrolysis.

    PubMed

    Casoni, Andrés I; Zunino, Josefina; Piccolo, María C; Volpe, María A

    2016-09-01

    The valorization of Rhizoclonium sp. algae through pyrolysis for obtaining bio-oils is studied in this work. The reaction is carried out at 400°C, at high contact time. The bio-oil has a practical yield of 35% and is rich in phytol. Besides, it is simpler than the corresponding to lignocellulosic biomass due to the absence of phenolic compounds. This property leads to a bio-oil relatively stable to storage. In addition, heterogeneous catalysts (Al-Fe/MCM-41, SBA-15 and Cu/SBA-15), in contact with algae during pyrolysis, are analyzed. The general trend is that the catalysts decrease the concentration of fatty alcohols and other high molecular weight products, since their mild acidity sites promote degradation reactions. Thus, the amount of light products increases upon the use of the catalysts. Particularly, acetol concentration in the bio-oils obtained from the catalytic pyrolysis with SBA-15 and Cu/SBA-15 is notably high. PMID:27253478

  17. Hybrid thermochemical processing: fermentation of pyrolysis-derived bio-oil.

    PubMed

    Jarboe, Laura R; Wen, Zhiyou; Choi, DongWon; Brown, Robert C

    2011-09-01

    Thermochemical processing of biomass by fast pyrolysis provides a nonenzymatic route for depolymerization of biomass into sugars that can be used for the biological production of fuels and chemicals. Fermentative utilization of this bio-oil faces two formidable challenges. First is the fact that most bio-oil-associated sugars are present in the anhydrous form. Metabolic engineering has enabled utilization of the main anhydrosugar, levoglucosan, in workhorse biocatalysts. The second challenge is the fact that bio-oil is rich in microbial inhibitors. Collection of bio-oil in distinct fractions, detoxification of bio-oil prior to fermentation, and increased robustness of the biocatalyst have all proven effective methods for addressing this inhibition. PMID:21789490

  18. Biofuels from Pyrolysis: Catalytic Biocrude Production in a Novel, Short-Contact Time Reactor

    SciTech Connect

    2010-01-01

    Broad Funding Opportunity Announcement Project: RTI is developing a new pyrolysis process to convert second-generation biomass into biofuels in one simple step. Pyrolysis is the decomposition of substances by heating—the same process used to render wood into charcoal, caramelize sugar, and dry roast coffee and beans. RTI’s catalytic biomass pyrolysis differs from conventional flash pyrolysis in that its end product contains less oxygen, metals, and nitrogen—all of which contribute to corrosion, instability, and inefficiency in the fuel-production process. This technology is expected to easily integrate into the existing domestic petroleum refining infrastructure, making it an economically attractive option for biofuels production.

  19. Production of bio-based phenolic resin and activated carbon from bio-oil and biochar derived from fast pyrolysis of palm kernel shells.

    PubMed

    Choi, Gyung-Goo; Oh, Seung-Jin; Lee, Soon-Jang; Kim, Joo-Sik

    2015-02-01

    A fraction of palm kernel shells (PKS) was pyrolyzed in a fluidized bed reactor. The experiments were performed in a temperature range of 479-555 °C to produce bio-oil, biochar, and gas. All the bio-oils were analyzed quantitatively and qualitatively by GC-FID and GC-MS. The maximum content of phenolic compounds in the bio-oil was 24.8 wt.% at ∼500 °C. The maximum phenol content in the bio-oil, as determined by the external standard method, was 8.1 wt.%. A bio-oil derived from the pyrolysis of PKS was used in the synthesis of phenolic resin, showing that the bio-oil could substitute for fossil phenol up to 25 wt.%. The biochar was activated using CO2 at a final activation temperature of 900 °C with different activation time (1-3 h) to produce activated carbon. Activated carbons produced were microporous, and the maximum surface area of the activated carbons produced was 807 m(2)/g. PMID:25227587

  20. Modelling of pyrolysis of large wood particles.

    PubMed

    Sadhukhan, Anup Kumar; Gupta, Parthapratim; Saha, Ranajit Kumar

    2009-06-01

    A fully transient mathematical model has been developed to describe the pyrolysis of large biomass particles. The kinetic model consists of both primary and secondary reactions. The heat transfer model includes conductive and internal convection within the particle and convective and radiative heat transfer between the external surface and the bulk. An implicit Finite Volume Method (FVM) with Tridiagonal Matrix Algorithm (TDMA) is employed to solve the energy conservation equation. Experimental investigations are carried out for wood fines and large wood cylinder and sphere in an electrically heated furnace under inert atmosphere. The model predictions for temperature and mass loss histories are in excellent agreement with experimental results. The effect of internal convection and particle shrinkage on pyrolysis behaviour is investigated and found to be significant. Finally, simulation studies are carried out to analyze the effect of bulk temperature and particle size on total pyrolysis time and the final yield of char. PMID:19231172

  1. Pyrolysis: theory and industrial practice

    SciTech Connect

    Albright, L.F.; Crynes, B.L.; Corcoran, W.H.

    1983-01-01

    This book is useful for the study of pyrolysis from two perspectives: theory and industrial practice. Topics included are thermal decompositions and reactions of methane pyrolysis of ethane and propane, pyrolysis of n-butane, thermal reaction of olefins and diolefins, pyrolysis of heavy hydrocarbons, formation of aromatics, hydrogenolysis of toluene, mathematical modeling of hydrocarbon pyrolysis reactions, nonpetroleum feedstocks, formation and gasification of coke, surface reactions in pyrolysis units, pyrolysis furnace design, laboratory reactors for pyrolysis, and economic considerations in the design and operation of conventional pyrolysis furnaces.

  2. Rapid pyrolysis of agricultural residues at high temperatures

    SciTech Connect

    Zanzi, R.; Sjoestroem, K.; Bjoernbom, E.

    1995-11-01

    Agriculture plays an important role in the economy of many countries especially in Latin America. Gasification of agricultural residues such as bagasse from sugar cane for electricity production is a solution to meet energy demands with a favourable effect on the environment. Pyrolysis (heating solid biomass in absence of air to produce solid, liquid or gaseous fuels) is the first step in gasification and combustion. Depending on the conditions the solid, liquid or gaseous products are maximized. The treatment conditions in the pyrolysis determine the char yield and its reactivity in gasification. Char yield and char reactivity are important for the capacity of the gasifier. The rapid pyrolysis of biomass is performed in a free-fall reactor at 850{degrees}C. The biomass used in the study was wood (birch) and agricultural residues such as bagasse and leaves both from sugar cane and banana. The reactivity of the char obtained in pyrolysis is determined by reaction with steam in a thermobalance. The low amounts of a highly porous char and the high yield of gaseous products obtained in rapid pyrolysis of bagasse at high temperature are similar to those produced in rapid pyrolysis of wood. Bagasse gives more volatiles and less char than sugar cane residues and banana harvest residues. Bagasse produces a less reactive char after devolatilization than wood. The char obtained by rapid pyrolysis contains a fraction that can be further volatilized by slow pyrolysis. The fraction of char removed by slow pyrolysis is lower in chars from bagasse and sugar cane leaves than in chars from wood. The structures of the chars obtained from birch, bagasse, sugar cane and banana leaves were observed by scanning electron microscope. Qualitative X-ray microanalysis of the chars was made using an electron microscope supplied with an energy dispersive spectrometer. Ca, K, S, Si, Al and Mg were visible on the surface of the chars.

  3. Novel technologies to improve the performance of biomass pyrolsis systems

    NASA Astrophysics Data System (ADS)

    Liaw, Shi-Shen

    Biomass pyrolysis is a thermochemical conversion process to convert lignocellosic materials into bio-oil, gas, and char. The bio-oil can be further refined to produce transportation fuels, high-value chemicals and heat. Although fast pyrolysis is a very promising technology for high bio-oil production yield, the reactors used have several technological problems that limit their future techno-economic viability. Current fast pyrolysis reactors use large quantities of carrier gas that reduce their thermal efficiency. The use of sand to accelerate heating rates results in serious attrition problems responsible for sand contamination of the bio-char produced. Most of the fast pyrolysis reactors currently used need to process very small particles which consume large quantities of energy in grinding. The bio-oil produced is also highly acidic and corrosive mainly due to the presence of acetic acid. The lack of a viable technology to use the acetic acid contained in these oils is a major challenge for the development of viable bio-oil refineries. The objective of this dissertation is to evaluate several technologies to improve the techno-economic viability of biomass pyrolysis systems. The main hypotheses of this dissertation are: (1) high yields of bio-oils could also be obtained by using auger pyrolysis reactors using very low volumes of carried gas and no sand as a heat carrier if the system is fed with very small particles (2) The grinding energy can be reduced if the biomass is torrefied. There are torrefaction conditions that will not affect the overall yield of pyrolysis products (3) Acetic acid produced during pyrolysis can be removed with the use of a fractional condensation system (4) The acids produced during the torrefaction and pyrolysis with the use of the fractional condensation system can be anaerobically digested to produce methane. In this dissertation, it was proved through Py-GC/MS studies that yield of most of the pyrolytic products can be explained

  4. Catalytic pyrolysis using UZM-44 aluminosilicate zeolite

    DOEpatents

    Nicholas, Christopher P; Boldingh, Edwin P

    2014-04-29

    A new family of aluminosilicate zeolites designated UZM-44 has been synthesized. These zeolites are represented by the empirical formula. Na.sub.nM.sub.m.sup.k+T.sub.tAl.sub.1-xE.sub.xSi.sub.yO.sub.z where "n" is the mole ratio of Na to (Al+E), M represents a metal or metals from zinc, Group 1, Group 2, Group 3 and or the lanthanide series of the periodic table, "m" is the mole ratio of M to (Al+E), "k" is the average charge of the metal or metals M, T is the organic structure directing agent or agents, and E is a framework element such as gallium. The process involves contacting a carbonaceous biomass feedstock with UZM-44 at pyrolysis conditions to produce pyrolysis gases comprising hydrocarbons. The catalyst catalyzes a deoxygenation reaction converting oxygenated hydrocarbons into hydrocarbons and removing the oxygen as carbon oxides and water. A portion of the pyrolysis gases is condensed to produce low oxygen biomass-derived pyrolysis oil.

  5. Catalytic pyrolysis using UZM-44 aluminosilicate zeolite

    SciTech Connect

    Nicholas, Christopher P; Boldingh, Edwin P

    2013-12-17

    A new family of aluminosilicate zeolites designated UZM-44 has been synthesized. These zeolites are represented by the empirical formula Na.sub.nM.sub.m.sup.k+T.sub.tAl.sub.1-xE.sub.xSi.sub.yO.sub.z where "n" is the mole ratio of Na to (Al+E), M represents a metal or metals from zinc, Group 1, Group 2, Group 3 and or the lanthanide series of the periodic table, "m" is the mole ratio of M to (Al+E), "k" is the average charge of the metal or metals M, T is the organic structure directing agent or agents, and E is a framework element such as gallium. The process involves contacting a carbonaceous biomass feedstock with UZM-44 at pyrolysis conditions to produce pyrolysis gases comprising hydrocarbons. The catalyst catalyzes a deoxygenation reaction converting oxygenated hydrocarbons into hydrocarbons and removing the oxygen as carbon oxides and water. A portion of the pyrolysis gases is condensed to produce low oxygen biomass-derived pyrolysis oil.

  6. Fundamental Pyrolysis Studies

    SciTech Connect

    Milne, T. A.; Evans, R. J.; Soltys, M. N.

    1983-03-01

    Progress on the direct mass spectrometric sampling of pyrolysis products from wood and its constituents is described for the period from June 1982 to February 1983. A brief summary and references to detailed reports, of the qualitative demonstration of our approach to the study of the separated processes of primary and secondary pyrolysis is presented. Improvements and additions to the pyrolysis and data acquisition systems are discussed and typical results shown. Chief of these are a heated-grid pyrolysis system for controlled primary pyrolysis and a sheathed flame arrangement for secondary cracking studies. Qualitative results of the secondary cracking of cellulose, lignin, and wood are shown as are comparisons with the literature for the pyrolysis spectra of cellulose, lignin, and levoglucosan. 'Fingerprints' for a number of materials are shown, with spectra taken under carefully controlled conditions so that sensitivity calibrations for different compounds, now being determined, can be applied.

  7. Effect of fertilizers on Cd uptake of Amaranthus hypochondriacus, a high biomass, fast growing and easily cultivated potential Cd hyperaccumulator.

    PubMed

    Li, Ning Yu; Fu, Qing Lin; Zhuang, Ping; Guo, Bing; Zou, Bi; Li, Zhi An

    2012-02-01

    In a greenhouse pot experiment, we assessed the phytoextraction potential for Cd of three amaranth cultivars (Amaranthus hypochondriacus L. Cvs. K112, R104, and K472) and the effect of application of N, NP, and NPK fertilizer on Cd uptake of the three cultivars from soil contaminated with 5 mg kg(-1) Cd. All three amaranth cultivars had high levels of Cd concentration in their tissues, which ranged from 95.1 to 179.1 mg kg(-1) in leaves, 58.9 to 95.4 mg kg(-1) in stems, and 62.4 to 107.2 mg kg(-1) in roots, resulting in average bioaccumulation factors ranging from 17.7 to 29.7. Application of N, NP, or NPK fertilizers usually increased Cd content in leaves but decreased Cd content in stem and root. Fertilizers of N or NP combined did not substantially increase dry biomass of the 3 cultivars, leading to a limited increment of Cd accumulation. NPK fertilizer greatly increased dry biomass, by a factor of 2.7-3.8, resulting in a large increment of Cd accumulation. Amaranth cultivars (K112, R104, and K472) have great potential in phytoextraction of Cd contaminated soil. They have the merits of high Cd content in tissues, high biomass, easy cultivation and little effect on Cd uptake by fertilization. PMID:22567702

  8. Pyrolysis system evaluation study

    NASA Technical Reports Server (NTRS)

    1974-01-01

    An evaluation of two different pyrolysis concepts which recover energy from solid waste was conducted in order to determine the merits of each concept for integration into a Integrated Utility System (IUS). The two concepts evaluated were a Lead Bath Furnace Pyrolysis System and a Slagging Vertical Shaft, Partial Air Oxidation Pyrolysis System. Both concepts will produce a fuel gas from the IUS waste and sewage sludge which can be used to offset primary fuel consumption in addition to the sanitary disposal of the waste. The study evaluated the thermal integration of each concept as well as the economic impact on the IUS resulting from integrating each pyrolysis concepts. For reference, the pyrolysis concepts were also compared to incineration which was considered the baseline IUS solid waste disposal system.

  9. Biomass Direct Liquefaction Options. TechnoEconomic and Life Cycle Assessment

    SciTech Connect

    Tews, Iva J.; Zhu, Yunhua; Drennan, Corinne; Elliott, Douglas C.; Snowden-Swan, Lesley J.; Onarheim, Kristin; Solantausta, Yrjo; Beckman, David

    2014-07-31

    The purpose of this work was to assess the competitiveness of two biomass to transportation fuel processing routes, which were under development in Finland, the U.S. and elsewhere. Concepts included fast pyrolysis (FP), and hydrothermal liquefaction (HTL), both followed by hydrodeoxygenation, and final product refining. This work was carried out as a collaboration between VTT (Finland), and PNNL (USA). The public funding agents for the work were Tekes in Finland and the Bioenergy Technologies Office of the U.S. Department of Energy. The effort was proposed as an update of the earlier comparative technoeconomic assessment performed by the IEA Bioenergy Direct Biomass Liquefaction Task in the 1980s. New developments in HTL and the upgrading of the HTL biocrude product triggered the interest in reinvestigating this comparison of these biomass liquefaction processes. In addition, developments in FP bio-oil upgrading had provided additional definition of this process option, which could provide an interesting comparison.

  10. Novel technologies to improve the performance of biomass pyrolsis systems

    NASA Astrophysics Data System (ADS)

    Liaw, Shi-Shen

    Biomass pyrolysis is a thermochemical conversion process to convert lignocellosic materials into bio-oil, gas, and char. The bio-oil can be further refined to produce transportation fuels, high-value chemicals and heat. Although fast pyrolysis is a very promising technology for high bio-oil production yield, the reactors used have several technological problems that limit their future techno-economic viability. Current fast pyrolysis reactors use large quantities of carrier gas that reduce their thermal efficiency. The use of sand to accelerate heating rates results in serious attrition problems responsible for sand contamination of the bio-char produced. Most of the fast pyrolysis reactors currently used need to process very small particles which consume large quantities of energy in grinding. The bio-oil produced is also highly acidic and corrosive mainly due to the presence of acetic acid. The lack of a viable technology to use the acetic acid contained in these oils is a major challenge for the development of viable bio-oil refineries. The objective of this dissertation is to evaluate several technologies to improve the techno-economic viability of biomass pyrolysis systems. The main hypotheses of this dissertation are: (1) high yields of bio-oils could also be obtained by using auger pyrolysis reactors using very low volumes of carried gas and no sand as a heat carrier if the system is fed with very small particles (2) The grinding energy can be reduced if the biomass is torrefied. There are torrefaction conditions that will not affect the overall yield of pyrolysis products (3) Acetic acid produced during pyrolysis can be removed with the use of a fractional condensation system (4) The acids produced during the torrefaction and pyrolysis with the use of the fractional condensation system can be anaerobically digested to produce methane. In this dissertation, it was proved through Py-GC/MS studies that yield of most of the pyrolytic products can be explained

  11. Effect of hydrothermal pretreatment on properties of bio-oil produced from fast pyrolysis of eucalyptus wood in a fluidized bed reactor.

    PubMed

    Chang, Sheng; Zhao, Zengli; Zheng, Anqing; Li, Xiaoming; Wang, Xiaobo; Huang, Zhen; He, Fang; Li, Haibin

    2013-06-01

    Eucalyptus wood powder was first subjected to hydrothermal pretreatment in a high-pressure reactor at 160-190°C, and subsequently fast pyrolyzed in a fluidized bed reactor at 500°C to obtain high quality bio-oil. This study focused on investigating effect of hydrothermal pretreatment on bio-oil properties. Hemicellulose and some metals were effectively removed from eucalyptus wood, while cellulose content was enhanced. No significant charring and carbonization of constituents was observed during hydrothermal pretreatment. Thus pretreated eucalyptus wood gave higher bio-oil yield than original eucalyptus wood. Chemical composition of bio-oil was examined by GC/MS and (13)C NMR analyses. Bio-oil produced from pretreated eucalyptus wood exhibited lower contents of ketones and acids, while much higher levoglucosan content than bio-oil produced from original eucalyptus wood, which would help to improve thermal stability of bio-oil and extract levoglucosan from bio-oil. Hydrothermal pretreatment also improved bio-oil fuel quality through lowering water content and enhancing heating value. PMID:23624050

  12. Biomass thermal conversion research at SERI

    SciTech Connect

    Milne, T. A.; Desrosiers, R. E.; Reed, T. B.

    1980-09-01

    SERI's involvement in the thermochemical conversion of biomass to fuels and chemicals is reviewed. The scope and activities of the Biomass Thermal Conversion and Exploratory Branch are reviewed. The current status and future plans for three tasks are presented: (1) Pyrolysis Mechanisms; (2) High Pressure O/sub 2/ Gasifier; and (3) Gasification Test Facility.

  13. Process to convert biomass and refuse derived fuel to ethers and/or alcohols

    DOEpatents

    Diebold, J.P.; Scahill, J.W.; Chum, H.L.; Evans, R.J.; Rejai, B.; Bain, R.L.; Overend, R.P.

    1996-04-02

    A process is described for conversion of a feedstock selected from the group consisting of biomass and refuse derived fuel (RDF) to provide reformulated gasoline components comprising a substantial amount of materials selected from the group consisting of ethers, alcohols, or mixtures thereof, comprising: drying said feedstock; subjecting said dried feedstock to fast pyrolysis using a vortex reactor or other means; catalytically cracking vapors resulting from said pyrolysis using a zeolite catalyst; condensing any aromatic byproduct fraction; catalytically alkylating any benzene present in said vapors after condensation; catalytically oligomerizing any remaining ethylene and propylene to higher olefins; isomerizing said olefins to reactive iso-olefins; and catalytically reacting said iso-olefins with an alcohol to form ethers or with water to form alcohols. 35 figs.

  14. Process to convert biomass and refuse derived fuel to ethers and/or alcohols

    DOEpatents

    Diebold, James P.; Scahill, John W.; Chum, Helena L.; Evans, Robert J.; Rejai, Bahman; Bain, Richard L.; Overend, Ralph P.

    1996-01-01

    A process for conversion of a feedstock selected from the group consisting of biomass and refuse derived fuel (RDF) to provide reformulated gasoline components comprising a substantial amount of materials selected from the group consisting of ethers, alcohols, or mixtures thereof, comprising: drying said feedstock; subjecting said dried feedstock to fast pyrolysis using a vortex reactor or other means; catalytically cracking vapors resulting from said pyrolysis using a zeolite catalyst; condensing any aromatic byproduct fraction; catalytically alkylating any benzene present in said vapors after condensation; catalytically oligomerizing any remaining ethylene and propylene to higher olefins; isomerizing said olefins to reactive iso-olefins; and catalytically reacting said iso-olefins with an alcohol to form ethers or with water to form alcohols.

  15. Effect of dry torrefaction on kinetics of catalytic pyrolysis of sugarcane bagasse

    NASA Astrophysics Data System (ADS)

    Daniyanto, Sutijan, Deendarlianto, Budiman, Arief

    2015-12-01

    Decreasing world reserve of fossil resources (i.e. petroleum oil, coal and natural gas) encourage discovery of renewable resources as subtitute for fossil resources. Biomass is one of the main natural renewable resources which is promising resource as alternate resources to meet the world's energy needs and raw material to produce chemical platform. Conversion of biomass, as source of energy, fuel and biochemical, is conducted using thermochemical process such as pyrolysis-gasification process. Pyrolysis step is an important step in the mechanism of pyrolysis - gasification of biomass. The objective of this study is to obtain the kinetic reaction of catalytic pyrolysis of dry torrified sugarcane bagasse which used Ca and Mg as catalysts. The model of kinetic reaction is interpreted using model n-order of single reaction equation of biomass. Rate of catalytic pyrolysis reaction depends on the weight of converted biomass into char and volatile matters. Based on TG/DTA analysis, rate of pyrolysis reaction is influenced by the composition of biomass (i.e. hemicellulose, cellulose and lignin) and inorganic component especially alkali and alkaline earth metallic (AAEM). From this study, it has found two equations rate of reaction of catalytic pyrolysis in sugarcane bagasse using catalysts Ca and Mg. First equation is equation of pyrolysis reaction in rapid zone of decomposition and the second equation is slow zone of decomposition. Value of order reaction for rapid decomposition is n > 1 and for slow decomposition is n<1. Constant and order of reactions for catalytic pyrolysis of dry-torrified sugarcane bagasse with presence of Ca tend to higher than that's of presence of Mg.

  16. Gasification of biomass as a source of synfuels for developing countries

    NASA Astrophysics Data System (ADS)

    Moreira, J. R.; Antal, M. J., Jr.

    The economic viability of forest biomass gasification in furnishing feedstocks for synfuels production in Brazil is argued, on grounds of high net energy yield (due to minimal use of mechanization in the cultivation of timber such as Eucalyptus) and the high efficiency of acid hydrolysis and fast pyrolysis methods already being used. A thermochemical process still under development promises still-higher efficiency and greater economy than coal gasification and coal-fired electrical generation. Assuming a feedback cost of $1.00 per million Btu, a minimum gasoline precursor cost would be $0.35 a gallon.

  17. Effect of torrefaction pretreatment and catalytic pyrolysis on the pyrolysis poly-generation of pine wood.

    PubMed

    Chen, Dengyu; Li, Yanjun; Deng, Minsi; Wang, Jiayang; Chen, Miao; Yan, Bei; Yuan, Qiqiang

    2016-08-01

    Torrefaction of pine wood was performed in a tube furnace at three temperatures (220, 250, and 280°C) for 30min. Then catalytic pyrolysis of raw and torrefied pine wood was performed using HZSM-5 catalyst in a fixed-bed pyrolysis reactor at 550°C for 15min. Torrefaction pretreatment and catalytic pyrolysis have an very important effect on the yield, property, and energy distribution of pyrolysis products. The results showed that the yield of biochar rapidly increased, while that of bio-oil decreased with increasing torrefaction temperature. The oxy-compound content of bio-oil, such as acids and aldehydes, sharply decreased. However, the aromatic hydrocarbon content not only increased but also further promoted by HZSM-5 catalyst. With highest mass yields and energy yields, biochar was also the very important product of pyrolysis. The oxygen content in biomass was mainly removed in the form of CO2 and H2O, leading to increasing CO2 content in non-condensable gas. PMID:27183238

  18. Review of the Pyrolysis Platform for Producing Bio-oil and Biochar: Technology, Logistics, and Potential Impacts on Greenhouse Gas Emissions, Water Quality, Soil Quality, and Agricultural Productivity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pyrolysis is a relatively simple, inexpensive, and robust thermochemical technology for transforming biomass into bio-oil, biochar, and syngas. The robust nature of the pyrolysis technology, which allows considerable flexibility in both the type and quality of the biomass feedstock, combined with a ...

  19. Pyrolysis with staged recovery

    DOEpatents

    Green, Norman W.; Duraiswamy, Kandaswamy; Lumpkin, Robert E.; Winter, Bruce L.

    1979-03-20

    In a continuous process for recovery of values contained in a solid carbonaceous material, the carbonaceous material is comminuted and then subjected to flash pyrolysis in the presence of a particulate heat source fed over an overflow weir to form a pyrolysis product stream containing a carbon containing solid residue and volatilized hydrocarbons. After the carbon containing solid residue is separated from the pyrolysis product stream, values are obtained by condensing volatilized hydrocarbons. The particulate source of heat is formed by oxidizing carbon in the solid residue.

  20. Pyrolysis with cyclone burner

    DOEpatents

    Green, Norman W.; Duraiswamy, Kandaswamy; Lumpkin, Robert E.

    1978-07-25

    In a continuous process for recovery of values contained in a solid carbonaceous material, the carbonaceous material is comminuted and then subjected to flash pyrolysis in the presence of a particulate heat source over an overflow weir to form a pyrolysis product stream containing a carbon containing solid residue and volatilized hydrocarbons. After the carbon containing solid residue is separated from the pyrolysis product stream, values are obtained by condensing volatilized hydrocarbons. The particulate source of heat is formed by oxidizing carbon in the solid residue and separating out the fines.

  1. Metals Solubility in Biochar from Different Feedstock and Pyrolysis Processes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biochar is a co-product of the pyrolysis process of biomass-to-energy conversion. About 15-40% of the feedstock is recovered as biochar in the process. Further use of biochar in soil is suggested as a means to increase soil productivity, and to store and sequester much of the biochar-recalcitrant ...

  2. Maximizing the stability of pyrolysis oil/diesel fuel emulsions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Several emulsions consisting of biomass pyrolysis oil (bio-oil) in diesel fuel were produced and analyzed for stability over time. An ultrasonic probe was used to generate microscopic droplets of bio-oil suspended in diesel fuel, and this emulsion was stabilized using surfactant chemicals. The most...

  3. Effect of temperature on pyrolysis product of empty fruit bunches

    SciTech Connect

    Rahman, Aizuddin Abdul; Sulaiman, Fauziah; Abdullah, Nurhayati

    2015-04-24

    Pyrolysis of empty fruit bunches (EFB) was performed in a fixed bed reactor equipped with liquid collecting system. Pyrolysis process was conducted by varying the terminal pyrolysis temperature from 300 to 500°C under heating rate of 10°C/min for at least 2 hours. Char yield was obtained highest at 300°C around 55.88 wt%, and started to decrease as temperature increase. The maximum yield of pyrolysis liquid was obtained around 54.75 wt% as pyrolysis temperature reach 450°C. For gas yield percentage, the yield gained as temperature was increased from 300 to 500°C, within the range between 8.44 to 19.32 wt%. The char obtained at 400°C has great potential as an alternative solid fuel, due to its high heating value of 23.37 MJ/kg, low in volatile matter and ash content which are approximately around 40.32 and 11.12 wt%, respectively. The collected pyrolysis liquid within this temperature range found to have high water content of around 16.15 to 18.20 wt%. The high aqueous fraction seemed to cause the pyrolysis liquid to have low HHV which only ranging from 10.81 to 12.94 MJ/kg. These trends of results showed that necessary enhancement should be employ either on the raw biomass or pyrolysis products in order to approach at least the minimum quality of common hydrocarbon solid or liquid fuel. For energy production, both produced bio-char and pyrolysis liquid are considered as sustainable sources of bio-energy since they contained low amounts of nitrogen and sulphur, which are considered as environmental friendly solid and liquid fuel.

  4. Effect of temperature on pyrolysis product of empty fruit bunches

    NASA Astrophysics Data System (ADS)

    Rahman, Aizuddin Abdul; Sulaiman, Fauziah; Abdullah, Nurhayati

    2015-04-01

    Pyrolysis of empty fruit bunches (EFB) was performed in a fixed bed reactor equipped with liquid collecting system. Pyrolysis process was conducted by varying the terminal pyrolysis temperature from 300 to 500°C under heating rate of 10°C/min for at least 2 hours. Char yield was obtained highest at 300°C around 55.88 wt%, and started to decrease as temperature increase. The maximum yield of pyrolysis liquid was obtained around 54.75 wt% as pyrolysis temperature reach 450°C. For gas yield percentage, the yield gained as temperature was increased from 300 to 500°C, within the range between 8.44 to 19.32 wt%. The char obtained at 400°C has great potential as an alternative solid fuel, due to its high heating value of 23.37 MJ/kg, low in volatile matter and ash content which are approximately around 40.32 and 11.12 wt%, respectively. The collected pyrolysis liquid within this temperature range found to have high water content of around 16.15 to 18.20 wt%. The high aqueous fraction seemed to cause the pyrolysis liquid to have low HHV which only ranging from 10.81 to 12.94 MJ/kg. These trends of results showed that necessary enhancement should be employ either on the raw biomass or pyrolysis products in order to approach at least the minimum quality of common hydrocarbon solid or liquid fuel. For energy production, both produced bio-char and pyrolysis liquid are considered as sustainable sources of bio-energy since they contained low amounts of nitrogen and sulphur, which are considered as environmental friendly solid and liquid fuel.

  5. A Low-cost, High-yield Process for the Direct Productin of High Energy Density Liquid Fuel from Biomass

    SciTech Connect

    Agrawal, Rakesh

    2014-02-21

    The primary objective and outcome of this project was the development and validation of a novel, low-cost, high-pressure fast-hydropyrolysis/hydrodeoxygenation (HDO) process (H{sub 2}Bioil) using supplementary hydrogen (H{sub 2}) to produce liquid hydrocarbons from biomass. The research efforts under the various tasks of the project have culminated in the first experimental demonstration of the H2Bioil process, producing 100% deoxygenated >C4+ hydrocarbons containing 36-40% of the carbon in the feed of pyrolysis products from biomass. The demonstrated H{sub 2}Bioil process technology (i.e. reactor, catalyst, and downstream product recovery) is scalable to a commercial level and is estimated to be economically competitive for the cases when supplementary H{sub 2} is sourced from coal, natural gas, or nuclear. Additionally, energy systems modeling has revealed several process integration options based on the H{sub 2}Bioil process for energy and carbon efficient liquid fuel production. All project tasks and milestones were completed or exceeded. Novel, commercially-scalable, high-pressure reactors for both fast-hydropyrolysis and hydrodeoxygenation were constructed, completing Task A. These reactors were capable of operation under a wide-range of conditions; enabling process studies that lead to identification of optimum process conditions. Model compounds representing biomass pyrolysis products were studied, completing Task B. These studies were critical in identifying and developing HDO catalysts to target specific oxygen functional groups. These process and model compound catalyst studies enabled identification of catalysts that achieved 100% deoxygenation of the real biomass feedstock, sorghum, to form hydrocarbons in high yields as part of Task C. The work completed during this grant has identified and validated the novel and commercially scalable H2Bioil process for production of hydrocarbon fuels from biomass. Studies on model compounds as well as real biomass

  6. Dual Fluidized Bed Biomass Gasification

    SciTech Connect

    2005-09-30

    The dual fluidized bed reactor is a recirculating system in which one half of the unit operates as a steam pyrolysis device for biomass. The pyrolysis occurs by introducing biomass and steam to a hot fluidized bed of inert material such as coarse sand. Syngas is produced during the pyrolysis and exits the top of the reactor with the steam. A crossover arm, fed by gravity, moves sand and char from the pyrolyzer to the second fluidized bed. This sand bed uses blown air to combust the char. The exit stream from this side of the reactor is carbon dioxide, water and ash. There is a second gravity fed crossover arm to return sand to the pyrolysis side. The recirculating action of the sand and the char is the key to the operation of the dual fluidized bed reactor. The objective of the project was to design and construct a dual fluidized bed prototype reactor from literature information and in discussion with established experts in the field. That would be appropriate in scale and operation to measure the relative performance of the gasification of biomass and low ranked coals to produce a high quality synthesis gas with no dilution from nitrogen or combustion products.

  7. 90 Seconds of Discovery: Fast Pyrolysis

    ScienceCinema

    Weber, Robert; Elliot, Douglas

    2014-06-13

    Fossil fuels have provided a time-proven, energy-dense fuel for more than a century. The challenge facing America today is developing alternatives that work within our existing infrastructure; to decrease environmental impact; and to increase energy security.

  8. 90 Seconds of Discovery: Fast Pyrolysis

    SciTech Connect

    Weber, Robert; Elliot, Douglas

    2013-01-08

    Fossil fuels have provided a time-proven, energy-dense fuel for more than a century. The challenge facing America today is developing alternatives that work within our existing infrastructure; to decrease environmental impact; and to increase energy security.

  9. Investigating the use of phenolic rich fraction of pyrolysis bio-oils as an adhesive system

    NASA Astrophysics Data System (ADS)

    Sahaf, Amir

    Fast pyrolysis allows converting of up to 75 % of biomass into a crude bio-oil, which can be separated into a phenolic rich fraction (PRF) via ethyl acetate extraction while a sugar rich fraction preferentially concentrates in the aqueous phase. Rheological and thermal characterization of heat treated PRF from pyrolysis of Douglas Fir is performed using cone and plate rheology set up, dynamic mechanical analysis (DMA) and differential scanning calorimetry (DSC). The results show that this material demonstrates a unique thermoplastic behavior with low Tg and softening point that can be systematically manipulated through changes in thermal history. As these materials are good candidates for development of hot melt adhesives, lap shear tests were also performed using wood stripes to evaluate their mechanical properties as an adhesive. Optimization of properties of the PRF is sought in this study through polymer blending with other bio-degradable thermoplastic poly(epsilon-caprolactone) (PCL) and poly(lactic acid) (PLA). Blends of PRF/PCL and PRF/PLA of different ratios are prepared by solvent casting and melt blending and thermally and thermomechanically characterized for their miscibility and phase behavior. Presence of molecular interactions are furthur investigated using Fourier transform infrared spectoscopy (FTIR). The blends show complete miscibility based on their Tg and melting points and significant improvement in shear strength is observed. Mechanisms leading to changes in properties are described and a physical model is proposed. The blend systems have good potential to be used as a thermoplastic bio degradable adhesives with satisfactoty properies.

  10. Comparison of the pyrolysis behavior of lignins from different tree species.

    PubMed

    Wang, Shurong; Wang, Kaige; Liu, Qian; Gu, Yueling; Luo, Zhongyang; Cen, Kefa; Fransson, Torsten

    2009-01-01

    Despite the increasing importance of biomass pyrolysis, little is known about the pyrolysis behavior of lignin--one of the main components of biomass--due to its structural complexity and the difficulty in its isolation. In the present study, we extracted lignins from Manchurian ash (Fraxinus mandschurica) and Mongolian Scots pine (Pinus sylvestris var. mongolica) using the Bjorkman procedure, which has little effect on the structure of lignin. Fourier transform infrared (FTIR) spectrometry was used to characterize the microstructure of the Bjorkman lignins, i.e., milled wood lignins (MWLs), from the different tree species. The pyrolysis characteristics of MWLs were investigated using a thermogravimetric analyzer, and the release of the main volatile and gaseous products of pyrolysis were detected by FTIR spectroscopy. During the pyrolysis process, MWLs underwent thermo-degradation over a wide temperature range. Manchurian ash MWL showed a much higher thermal degradation rate than Mongolian Scots pine MWL in the temperature range from 290-430 degrees C. High residue yields were achieved at 37 wt.% for Mongolian Scots pine MWL and 26 wt.% for Manchurian ash MWL. In order to further investigate the mechanisms of lignin pyrolysis, we also analyzed the FTIR profiles for the main pyrolysis products (CO(2), CO, methane, methanol, phenols and formaldehyde) and investigated the variation in pyrolysis products between the different MWLs. PMID:19393737

  11. Engineering bulletin: Pyrolysis treatment

    SciTech Connect

    Not Available

    1992-10-01

    The Engineering Bulletins are a series of documents that summarize the latest information available on selected treatment and site remediation technologies and related issues. Pyrolysis is formally defined as chemical decomposition induced in organic materials by heat in the absence of oxygen. Pyrolysis is a thermal process that transforms hazardous organic materials into gaseous components and a solid residue (coke) containing fixed carbon and ash. Upon cooling, the gaseous components condense, leaving an oil/tar residue. Pyrolysis is applicable to a wide range of organic wastes and is generally not used in treating wastes consisting primarily of inorganics and metals. The bulletin provides information on the technology applicability, the types of residuals resulting from the use of the technology, the latest performance data, site requirements, the status of the technology, and where to go for further information.

  12. Polycyclic aromatic hydrocarbons (PAH) formation from the pyrolysis of different municipal solid waste fractions

    SciTech Connect

    Zhou, Hui; Wu, Chunfei; Onwudili, Jude A.; Meng, Aihong; Zhang, Yanguo; Williams, Paul T.

    2015-02-15

    Highlights: • PAH from pyrolysis of 9 MSW fractions was investigated. • Pyrolysis of plastics released more PAH than that of biomass. • Naphthalene was the most abundant PAH in the tar. • The mechanism of PAH release from biomass and plastics was proposed. - Abstract: The formation of 2–4 ring polycyclic aromatic hydrocarbons (PAH) from the pyrolysis of nine different municipal solid waste fractions (xylan, cellulose, lignin, pectin, starch, polyethylene (PE), polystyrene (PS), polyvinyl chloride (PVC), and polyethylene terephthalate (PET)) were investigated in a fixed bed furnace at 800 °C. The mass distribution of pyrolysis was also reported. The results showed that PS generated the most total PAH, followed by PVC, PET, and lignin. More PAH were detected from the pyrolysis of plastics than the pyrolysis of biomass. In the biomass group, lignin generated more PAH than others. Naphthalene was the most abundant PAH, and the amount of 1-methynaphthalene and 2-methynaphthalene was also notable. Phenanthrene and fluorene were the most abundant 3-ring PAH, while benzo[a]anthracene and chrysene were notable in the tar of PS, PVC, and PET. 2-ring PAH dominated all tar samples, and varied from 40 wt.% to 70 wt.%. For PS, PET and lignin, PAH may be generated directly from the aromatic structure of the feedstock.

  13. A steady state model of agricultural waste pyrolysis: A mini review.

    PubMed

    Trninić, M; Jovović, A; Stojiljković, D

    2016-09-01

    Agricultural waste is one of the main renewable energy resources available, especially in an agricultural country such as Serbia. Pyrolysis has already been considered as an attractive alternative for disposal of agricultural waste, since the technique can convert this special biomass resource into granular charcoal, non-condensable gases and pyrolysis oils, which could furnish profitable energy and chemical products owing to their high calorific value. In this regard, the development of thermochemical processes requires a good understanding of pyrolysis mechanisms. Experimental and some literature data on the pyrolysis characteristics of corn cob and several other agricultural residues under inert atmosphere were structured and analysed in order to obtain conversion behaviour patterns of agricultural residues during pyrolysis within the temperature range from 300 °C to 1000 °C. Based on experimental and literature data analysis, empirical relationships were derived, including relations between the temperature of the process and yields of charcoal, tar and gas (CO2, CO, H2 and CH4). An analytical semi-empirical model was then used as a tool to analyse the general trends of biomass pyrolysis. Although this semi-empirical model needs further refinement before application to all types of biomass, its prediction capability was in good agreement with results obtained by the literature review. The compact representation could be used in other applications, to conveniently extrapolate and interpolate these results to other temperatures and biomass types. PMID:27281226

  14. Facile synthesis of highly efficient and recyclable magnetic solid acid from biomass waste.

    PubMed

    Liu, Wu-Jun; Tian, Ke; Jiang, Hong; Yu, Han-Qing

    2013-01-01

    In this work, sawdust, a biomass waste, is converted into a magnetic porous carbonaceous (MPC) solid acid catalyst by an integrated fast pyrolysis-sulfonation process. The resultant magnetic solid acid has a porous structure with high surface area of 296.4 m(2) g(-1), which can be attributed to the catalytic effect of Fe. The catalytic activity and recyclability of the solid acid catalyst are evaluated during three typical acid-catalyzed reactions: esterification, dehydration, and hydrolysis. The favorable catalytic performance in all three reactions is attributed to the acid's high strength with 2.57 mmol g(-1) of total acid sites. Moreover, the solid acid can be reused five times without a noticeable decrease in catalytic activity, indicating the stability of the porous carbon (PC)-sulfonic acid group structure. The findings in the present work offer effective alternatives for environmentally friendly utilization of abundant biomass waste. PMID:23939253

  15. Facile synthesis of highly efficient and recyclable magnetic solid acid from biomass waste

    NASA Astrophysics Data System (ADS)

    Liu, Wu-Jun; Tian, Ke; Jiang, Hong; Yu, Han-Qing

    2013-08-01

    In this work, sawdust, a biomass waste, is converted into a magnetic porous carbonaceous (MPC) solid acid catalyst by an integrated fast pyrolysis-sulfonation process. The resultant magnetic solid acid has a porous structure with high surface area of 296.4 m2 g-1, which can be attributed to the catalytic effect of Fe. The catalytic activity and recyclability of the solid acid catalyst are evaluated during three typical acid-catalyzed reactions: esterification, dehydration, and hydrolysis. The favorable catalytic performance in all three reactions is attributed to the acid's high strength with 2.57 mmol g-1 of total acid sites. Moreover, the solid acid can be reused five times without a noticeable decrease in catalytic activity, indicating the stability of the porous carbon (PC)-sulfonic acid group structure. The findings in the present work offer effective alternatives for environmentally friendly utilization of abundant biomass waste.

  16. Gasoline from biomass through refinery-friendly carbohydrate-based bio-oil produced by ketalization.

    PubMed

    Batalha, Nuno; da Silva, Alessandra V; de Souza, Matheus O; da Costa, Bruna M C; Gomes, Elisa S; Silva, Thiago C; Barros, Thalita G; Gonçalves, Maria L A; Caramão, Elina B; dos Santos, Luciana R M; Almeida, Marlon B B; de Souza, Rodrigo O M A; Lam, Yiu L; Carvalho, Nakédia M F; Miranda, Leandro S M; Pereira, Marcelo M

    2014-06-01

    The introduction of biomass-derived compounds as an alternative feed into the refinery structure that already exists can potentially converge energy uses with ecological sustainability. Herein, we present an approach to produce a bio-oil based on carbohydrate-derived isopropylidene ketals obtained by reaction with acetone under acidic conditions directly from second-generation biomass. The obtained bio-oil showed a greater chemical inertness and miscibility with gasoil than typical bio-oil from fast pyrolysis. Catalytic upgrading of the bio-oil over zeolites (USY and Beta) yielded gasoline with a high octane number. Moreover, the co-processing of gasoil and bio-oil improved the gasoline yield and quality compared to pure gasoil and also reduced the amount of oxygenated compounds and coke compared with pure bio-oil, which demonstrates a synergistic effect. PMID:24753476

  17. Pyrolysis of the tetra pak

    SciTech Connect

    Korkmaz, Ahmet; Yanik, Jale Brebu, Mihai; Vasile, Cornelia

    2009-11-15

    This study deals with pyrolysis of tetra pak which is widely used as an aseptic beverage packaging material. Pyrolysis experiments were carried out under inert atmosphere in a batch reactor at different temperatures and by different pyrolysis modes (one- and two-step). The yields of char, liquid and gas were quantified. Pyrolysis liquids produced were collected as three separate phases; aqueous phase, tar and polyethylene wax. Characterization of wax and the determination of the total amount of phenols in aqueous phase were performed. Chemical compositions of gas and char products relevant to fuel applications were determined. Pure aluminum can be also recovered by pyrolysis.

  18. ENGINEERING BULLETIN: PYROLYSIS TREATMENT

    EPA Science Inventory

    Pyrolysis is formally defined as chemical decomposition induced in organic materials by heat in the absence of oxygen. In practice, it is not possible to achieve a completely oxygen-free atmosphere; actual pyrolytic systems are operated with less than stoichiometric quantities of...

  19. Performance of rotary kiln reactor for the elephant grass pyrolysis.

    PubMed

    De Conto, D; Silvestre, W P; Baldasso, C; Godinho, M

    2016-10-01

    The influence of process conditions (rotary speed/temperature) on the performance of a rotary kiln reactor for non-catalytic pyrolysis of a perennial grass (elephant grass) was investigated. The product yields, the production of non-condensable gases as well as the biochar properties were evaluated. The maximum H2 yield was close to that observed for catalytic pyrolysis processes, while the bio-oil yield was higher than reported for pyrolysis of other biomass in rotary kiln reactors. A H2/CO ratio suitable for Fischer-Tropsch synthesis (FTS) was obtained. The biochars presented an alkaline pH (above 10) and interesting contents of nutrients, as well as low electrical conductivity, indicating a high potential as soil amendment. PMID:27367811

  20. Pyrolysis of sugar cane bagasse in a wire-mesh reactor

    SciTech Connect

    Drummond, A.R.F.; Drummond, I.W.

    1996-04-01

    Improved experimental techniques are described, using a wire mesh reactor; for determining the pyrolysis yields of lignocellulosic materials. In this apparatus pyrolysis tars are rapidly swept from the hot zone of the reactor and quenched, secondary reactions are thereby greatly diminished. Particular emphasis is placed upon the measurement of the pyrolysis yields for sugar cane bagasse, an abundant agricultural waste product. The role of the important pyrolysis parameters, peak temperature and heating rate, in defining the ultimate tar yield is investigated, with the value for bagasse being 54.6% at 500 C and 1,000 C/s. The pyrolysis yields, under similar conditions, of another biomass material, silver birch, are also reported and compared to those of bagasse.

  1. Variability in pyrolysis product yield from novel shrub willow genotypes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fast pyrolysis is becoming a more attractive conversion option for the production of biofuels, due to the potential for directly producing hydrocarbon fuels seamlessly compatible with petroleum products (drop-in fuels). Dedicated bioenergy crops, like perennial grasses and short-rotation woody crop...

  2. Study on co-pyrolysis characteristics of rice straw and Shenfu bituminous coal blends in a fixed bed reactor.

    PubMed

    Li, Shuaidan; Chen, Xueli; Liu, Aibin; Wang, Li; Yu, Guangsuo

    2014-03-01

    Co-pyrolysis behaviors of rice straw and Shenfu bituminous coal were studied in a fixed bed reactor under nitrogen atmosphere. The pyrolysis temperatures were 700°C, 800°C and 900°C, respectively. Six different biomass ratios were used. Gas, tar components were analyzed by a gas chromatograph and a gas chromatography-mass spectrometry respectively. Under co-pyrolysis conditions, the gas volume yields are higher than the calculated values. Co-pyrolysis tar contains more phenolics, less oxygenate compounds than calculated values. The addition of biomass changes the atmosphere during the pyrolysis process and promotes tar decomposition. The SEM results show that the differences between the blended char and their parents char are not significant. The results of char yields and ultimate analysis also show that no significant interactions exist between the two kinds of particles. The changes of gas yield and components are caused by the secondary reactions and tar decomposition. PMID:24457309

  3. Production of phenol-rich bio-oil during catalytic fixed-bed and microwave pyrolysis of palm kernel shell.

    PubMed

    Omoriyekomwan, Joy Esohe; Tahmasebi, Arash; Yu, Jianglong

    2016-05-01

    Catalytic fixed-bed and microwave pyrolysis of palm kernel shell using activated carbon (AC) and lignite char (LC) as catalysts and microwave receptors are investigated. The effects of process parameters including temperature and biomass:catalyst ratio on the yield and composition of pyrolysis products were studied. The addition of catalyst increased the bio-oil yield, but decreased the selectivity of phenol in fixed-bed. Catalytic microwave pyrolysis of PKS significantly enhanced the selectivity of phenol production. The highest concentration of phenol in bio-oil of 64.58 %(area) and total phenolics concentration of 71.24 %(area) were obtained at 500°C using AC. Fourier transform infrared spectroscopy (FTIR) results indicated that concentration of OH, CH, CO and CO functional groups in char samples decreased after pyrolysis. Scanning electron microscopy (SEM) analysis clearly indicated the development of liquid phase in biomass particles during microwave pyrolysis, and the mechanism is also discussed. PMID:26890793

  4. Economic assessment of flash co-pyrolysis of short rotation coppice and biopolymer waste streams.

    PubMed

    Kuppens, T; Cornelissen, T; Carleer, R; Yperman, J; Schreurs, S; Jans, M; Thewys, T

    2010-12-01

    The disposal problem associated with phytoextraction of farmland polluted with heavy metals by means of willow requires a biomass conversion technique which meets both ecological and economical needs. Combustion and gasification of willow require special and costly flue gas treatment to avoid re-emission of the metals in the atmosphere, whereas flash pyrolysis mainly results in the production of (almost) metal free bio-oil with a relatively high water content. Flash co-pyrolysis of biomass and waste of biopolymers synergistically improves the characteristics of the pyrolysis process: e.g. reduction of the water content of the bio-oil, more bio-oil and less char production and an increase of the HHV of the oil. This research paper investigates the economic consequences of the synergistic effects of flash co-pyrolysis of 1:1 w/w ratio blends of willow and different biopolymer waste streams via cost-benefit analysis and Monte Carlo simulations taking into account uncertainties. In all cases economic opportunities of flash co-pyrolysis of biomass with biopolymer waste are improved compared to flash pyrolysis of pure willow. Of all the biopolymers under investigation, polyhydroxybutyrate (PHB) is the most promising, followed by Eastar, Biopearls, potato starch, polylactic acid (PLA), corn starch and Solanyl in order of decreasing profits. Taking into account uncertainties, flash co-pyrolysis is expected to be cheaper than composting biopolymer waste streams, except for corn starch. If uncertainty increases, composting also becomes more interesting than flash co-pyrolysis for waste of Solanyl. If the investment expenditure is 15% higher in practice than estimated, the preference for flash co-pyrolysis compared to composting biopolymer waste becomes less clear. Only when the system of green current certificates is dismissed, composting clearly is a much cheaper processing technique for disposing of biopolymer waste. PMID:20724061

  5. A techno-economic analysis of using mobile distributed pyrolysis facilities to deliver a forest residue resource.

    PubMed

    Brown, Duncan; Rowe, Andrew; Wild, Peter

    2013-12-01

    Distributed mobile conversion facilities using either fast pyrolysis or torrefaction processes can be used to convert forest residues to more energy dense substances (bio-oil, bio-slurry or torrefied wood) that can be transported as feedstock for bio-fuel facilities. Results show that the levelised delivered cost of a forest residue resource using mobile facility networks can be lower than using conventional woodchip delivery methods under appropriate conditions. Torrefied wood is the lowest cost pathway of delivering a forest residue resource when using mobile facilities. Cost savings occur against woodchip delivery for annual forest residue harvests above 2.5 million m(3) or when transport distances greater than 300 km are required. Important parameters that influence levelised delivered costs are transport distances (forest residue spatial density), haul cost factors, and initial moisture content of forest residues. Relocating mobile facilities can be optimised for lowest cost delivery as transport distances of raw biomass are reduced. PMID:24185419

  6. Pyrolysis of pine and gasification of pine chars--influence of organically bound metals.

    PubMed

    Aho, A; DeMartini, N; Pranovich, A; Krogell, J; Kumar, N; Eränen, K; Holmbom, B; Salmi, T; Hupa, M; Murzin, D Yu

    2013-01-01

    Pyrolysis of pine and gasification of pine chars was studied in this work, focusing on the influence of organically bound metals. Selective leaching of the major ash-forming elements in pine wood was performed with different acids, namely, nitric, sulfuric, hydrochloric and oxalic acids. No other major changes in the chemical composition of the biomass were observed except the removal of the metals. The effect of organically bound sodium, potassium, magnesium and calcium was studied in both pyrolysis and gasification. Removal of the metals had a positive effect on the pyrolysis, resulting in higher bio-oil, lower char and gas yields. PMID:23196217

  7. Pyrolysis and gasification of typical components in wastes with macro-TGA.

    PubMed

    Meng, Aihong; Chen, Shen; Long, Yanqiu; Zhou, Hui; Zhang, Yanguo; Li, Qinghai

    2015-12-01

    The pyrolysis and gasification of typical components of solid waste, cellulose, hemicellulose, lignin, pectin, starch, polyethylene (PE), polystyrene (PS), polyvinyl chloride (PVC) and poly(ethylene terephthalate) (PET) were performed and compared in a macro thermogravimetric analyzer (macro-TGA). Three model biomasses, poplar stem, orange peel and Chinese cabbage, were applied to pyrolysis and gasification simulation by their components based on TG curves. Compared to those from TGA, peaks temperature of the differential thermogravimetric (DTG) curves of each samples pyrolysis on macro-TGA delayed 30-55°C due to heat transferring effect. CO2 promoted the thermal decomposition of hemicellulose, lignin, starch, pectin and model biomasses significantly by Boudouard reaction, and enhanced slightly the decomposition of PET. The activation energy (AE) of biomass components pyrolysis on macro-TGA was 167-197 kJ/mol, while that of plastic samples was 185-235 kJ/mol. The activation energy of 351-377 kJ/mol was corresponding to the Boudouard reaction in CO2 gasification. All overlap ratios in pseudo-components simulation were higher than 0.98 to indicate that pseudo-components model could be applied to both pyrolysis and CO2 gasification, and the mass fractions of components derived from pyrolysis and gasification were slightly different but not brought in obvious difference in simulating curves when they were applied across. PMID:26318422

  8. Solar coal gasification reactor with pyrolysis gas recycle

    DOEpatents

    Aiman, William R.; Gregg, David W.

    1983-01-01

    Coal (or other carbonaceous matter, such as biomass) is converted into a duct gas that is substantially free from hydrocarbons. The coal is fed into a solar reactor (10), and solar energy (20) is directed into the reactor onto coal char, creating a gasification front (16) and a pyrolysis front (12). A gasification zone (32) is produced well above the coal level within the reactor. A pyrolysis zone (34) is produced immediately above the coal level. Steam (18), injected into the reactor adjacent to the gasification zone (32), reacts with char to generate product gases. Solar energy supplies the energy for the endothermic steam-char reaction. The hot product gases (38) flow from the gasification zone (32) to the pyrolysis zone (34) to generate hot char. Gases (38) are withdrawn from the pyrolysis zone (34) and reinjected into the region of the reactor adjacent the gasification zone (32). This eliminates hydrocarbons in the gas by steam reformation on the hot char. The product gas (14) is withdrawn from a region of the reactor between the gasification zone (32) and the pyrolysis zone (34). The product gas will be free of tar and other hydrocarbons, and thus be suitable for use in many processes.

  9. Dielectric properties of biomass and biochar mixtures for bioenergy applications

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biomass is an abundant and renewable energy resource, which may be converted into energy-dense products through thermochemical processes such as pyrolysis and gasification. Since microwave heating depends on the dielectric properties of the biomass material, these properties were measured at freque...

  10. Pyrolysis and hydrolysis of mixed polymer waste comprising polyethyleneterephthalate and polyethylene to sequentially recover

    DOEpatents

    Evans, Robert J.; Chum, Helena L.

    1998-01-01

    A process of using fast pyrolysis in a carrier gas to convert a plastic waste feedstream having a mixed polymeric composition in a manner such that pyrolysis of a given polymer to its high value monomeric constituent occurs prior to pyrolysis of other plastic components therein comprising: selecting a first temperature program range to cause pyrolysis of said given polymer to its high value monomeric constituent prior to a temperature range that causes pyrolysis of other plastic components; selecting a catalyst and support for treating said feed streams with said catalyst to effect acid or base catalyzed reaction pathways to maximize yield or enhance separation of said high value monomeric constituent in said temperature program range; differentially heating said feed stream at a heat rate within the first temperature program range to provide differential pyrolysis for selective recovery of optimum quantities of the high value monomeric constituent prior to pyrolysis of other plastic components; separating the high value monomeric constituents; selecting a second higher temperature range to cause pyrolysis of a different high value monomeric constituent of said plastic waste and differentially heating the feedstream at the higher temperature program range to cause pyrolysis of the different high value monomeric constituent; and separating the different high value monomeric constituent.

  11. Pyrolysis and co-pyrolysis of Laminaria japonica and polypropylene over mesoporous Al-SBA-15 catalyst

    NASA Astrophysics Data System (ADS)

    Lee, Hyung Won; Choi, Suek Joo; Park, Sung Hoon; Jeon, Jong-Ki; Jung, Sang-Chul; Kim, Sang Chai; Park, Young-Kwon

    2014-08-01

    The catalytic co-pyrolysis of a seaweed biomass, Laminaria japonica, and a typical polymer material, polypropylene, was studied for the first time. A mesoporous material Al-SBA-15 was used as a catalyst. Pyrolysis experiments were conducted using a fixed-bed reactor and pyrolysis gas chromatography/mass spectrometry (Py-GC/MS). BET surface area, N2 adsorption-desorption isotherms, and NH3 temperature programmed desorption were measured to examine the catalyst characteristics. When only L. japonica was pyrolyzed, catalytic reforming slightly increased the gas yield and decreased the oil yield. The H2O content in bio-oil was increased by catalytic reforming from 42.03 to 50.32 wt% due to the dehydration reaction occurring on the acid sites inside the large pores of Al-SBA-15. Acids, oxygenates, mono-aromatics, poly aromatic hydrocarbons, and phenolics were the main components of the bio-oil obtained from the pyrolysis of L. japonica. Upon catalytic reforming over Al-SBA-15, the main oxygenate species 1,4-anhydro- d-galactitol and 1,5-anhydro- d-manitol were completely removed. When L. japonica was co-pyrolyzed with polypropylene, the H2O content in bio-oil was decreased dramatically (8.93 wt% in the case of catalytic co-pyrolysis), contributing to the improvement of the oil quality. A huge increase in the content of gasoline-range and diesel-range hydrocarbons in bio-oil was the most remarkable change that resulted from the co-pyrolysis with polypropylene, suggesting its potential as a transport fuel. The content of mono-aromatics with high economic value was also increased significantly by catalytic co-pyrolysis.

  12. Pyrolysis and co-pyrolysis of Laminaria japonica and polypropylene over mesoporous Al-SBA-15 catalyst

    PubMed Central

    2014-01-01

    The catalytic co-pyrolysis of a seaweed biomass, Laminaria japonica, and a typical polymer material, polypropylene, was studied for the first time. A mesoporous material Al-SBA-15 was used as a catalyst. Pyrolysis experiments were conducted using a fixed-bed reactor and pyrolysis gas chromatography/mass spectrometry (Py-GC/MS). BET surface area, N2 adsorption-desorption isotherms, and NH3 temperature programmed desorption were measured to examine the catalyst characteristics. When only L. japonica was pyrolyzed, catalytic reforming slightly increased the gas yield and decreased the oil yield. The H2O content in bio-oil was increased by catalytic reforming from 42.03 to 50.32 wt% due to the dehydration reaction occurring on the acid sites inside the large pores of Al-SBA-15. Acids, oxygenates, mono-aromatics, poly aromatic hydrocarbons, and phenolics were the main components of the bio-oil obtained from the pyrolysis of L. japonica. Upon catalytic reforming over Al-SBA-15, the main oxygenate species 1,4-anhydro-d-galactitol and 1,5-anhydro-d-manitol were completely removed. When L. japonica was co-pyrolyzed with polypropylene, the H2O content in bio-oil was decreased dramatically (8.93 wt% in the case of catalytic co-pyrolysis), contributing to the improvement of the oil quality. A huge increase in the content of gasoline-range and diesel-range hydrocarbons in bio-oil was the most remarkable change that resulted from the co-pyrolysis with polypropylene, suggesting its potential as a transport fuel. The content of mono-aromatics with high economic value was also increased significantly by catalytic co-pyrolysis. PMID:25136282

  13. Pyrolysis products of PCBs.

    PubMed Central

    Paasivirta, J; Herzschuh, R; Humppi, T; Kantolahti, E; Knuutinen, J; Lahtiperä, M; Laitinen, R; Salovaara, J; Tarhanen, J; Virkki, L

    1985-01-01

    Model compound studies which were previously done for impurities and environmental residues of chlorophenols and for wastes of chlorination processes were extended to the impurities and pyrolysis products of polychlorinated biphenyls (PCBs). Model compounds were commercial products or synthesized and their structures proven by spectroscopic methods. These models were used as analytical reference substances in GC/ECD and GC/MS studies of the pyrolyzed PCB samples. In addition to previously known neutral components like polychlorinated dibenzofurans (PCDFs), chlorophenolic substances, especially polychlorophenols (PCPs) and polychlorinated biphenylols (PCB-OHs) were observed as major pyrolysis products of PCBs. Capacitor fires are suggested to produce in many cases chlorophenols which are major toxic hazards to people. PMID:3928353

  14. Pyrolysis process and apparatus

    DOEpatents

    Lee, Chang-Kuei

    1983-01-01

    This invention discloses a process and apparatus for pyrolyzing particulate coal by heating with a particulate solid heating media in a transport reactor. The invention tends to dampen fluctuations in the flow of heating media upstream of the pyrolysis zone, and by so doing forms a substantially continuous and substantially uniform annular column of heating media flowing downwardly along the inside diameter of the reactor. The invention is particularly useful for bituminous or agglomerative type coals.

  15. Catalytic pyrolysis of miscanthus × giganteus in a spouted bed reactor.

    PubMed

    Du, Shoucheng; Sun, Yijia; Gamliel, David P; Valla, Julia A; Bollas, George M

    2014-10-01

    A conical spouted bed reactor was designed and tested for fast catalytic pyrolysis of miscanthus × giganteus over Zeolite Socony Mobil-5 (ZSM-5) catalyst, in the temperature range of 400-600 °C and catalyst to biomass ratios 1:1-5:1. The effect of operating conditions on the lumped product distribution, bio-oil selectivity and gas composition was investigated. In particular, it was shown that higher temperature favors the production of gas and bio-oil aromatics and results in lower solid and liquid yields. Higher catalyst to biomass ratios increased the gas yield, at the expense of liquid and solid products, while enhancing aromatic selectivity. The separate catalytic effects of ZSM-5 catalyst and its Al2O3 support were studied. The support contributes to increased coke/char formation, due to the uncontrolled spatial distribution and activity of its alumina sites. The presence of ZSM-5 zeolite in the catalyst enhanced the production of aromatics due to its proper pore size distribution and activity. PMID:25058293

  16. Making biopower work for utilities: A rationale for near-term investment in integrated biomass power system. Final

    SciTech Connect

    1995-12-01

    This reports presents the lessons learned from the feasibility studies of six integrated biomass power systems that were selected for cofunding by the US Department of Energy and EPRI. The studies evaluated proposed systems in different regions of the country and considered a broad range of potential feedstocks: willow, alfalfa, varietals of sugarcane, switchgrass and other native prairie grasses, short-rotation trees such as eucalyptus and silver maple, and wood wastes. Conversion technologies that were assessed included three biomass-gasification-combined-cycle (BGCC) options and a fast pyrolysis facility as well as cofiring in existing pulverized coal, units. Five of the six studies produced comprehensive business plans for the implementation of fully sustainable systems. Regional economic pressures and the specifics of local biomass production systems determined the timing and scope of these projects, which are expected to be deployed over the next five years. Corollary benefits are currently required to make the integrated projects economically viable. Valued coproducts include animal feed, ethanol, charcoal, pulp, and tree cuttings. The ``closed loop`` biomass tax credit will be used in several instances to make the energy crops more cost-competitive with fossil resources. Biomass power systems are an effective option for decreasing the contribution to atmospheric CO{sub 2} associated with production of electricity from fossil fuels. A valid ``no-regrets`` policy for global climate change mitigation could include near-term investments in biomass system development, which would potentially result in large payoffs over the next several decades.

  17. On methane pyrolysis special applications

    NASA Astrophysics Data System (ADS)

    Toncu, D. C.; Toncu, G.; Soleimani, S.

    2015-11-01

    Methane pyrolysis represents one of the most important processes in industrial use, with applications rising from the chemical and petrochemical industry, combustion, materials and protective coatings. Despite the intense research, experimental data lack kinetic aspects, and the thermodynamics involved often leads to inaccurate results when applied to various systems. Carrying out a comparative analysis of several available data on methane pyrolysis, the paper aims to study the phenomenon of methane pyrolysis under different environments (combustion and plasma), concluding on the most possible reaction pathways involved in many of its applications. Computer simulation using different database underlines the conclusion, helping to the understanding of methane pyrolysis importance in future technologies.

  18. Biomass Burning

    Atmospheric Science Data Center

    2015-07-27

    Projects:  Biomass Burning Definition/Description:  Biomass Burning: This data set represents the geographical and temporal distribution of total amount of biomass burned. These data may be used in general circulation models (GCMs) and ...

  19. Co-gasification of biomass and plastics: pyrolysis kinetics studies, experiments on 100 kW dual fluidized bed pilot plant and development of thermodynamic equilibrium model and balances.

    PubMed

    Narobe, M; Golob, J; Klinar, D; Francetič, V; Likozar, B

    2014-06-01

    Thermo-gravimetric analysis (TGA) of volatilization reaction kinetics for 50 wt.% mixtures of plastics (PE) and biomass (wood pellets) as well as for 100 wt.% plastics was conducted to predict decomposition times at 850°C and 900°C using iso-conversional model method. For mixtures, agreement with residence time of dual fluidized bed (DFB) reactor, treated as continuous stirred-tank reactor (CSTR), was obtained at large conversions. Mono-gasification of plastics and its co-gasification with biomass were performed in DFB pilot plant, using olivine as heterogeneous catalyst and heat transfer agent. It was found that co-gasification led to successful thermochemical conversion of plastics as opposed to mono-gasification. Unknown flow rates were determined applying nonlinear regression to energy and mass balances acknowledging combustion fuel, air, steam, feedstock, but also exiting char, tar, steam and other components in DFB gasification unit. Water-gas shift equilibrium and methanol synthesis requirements were incorporated into gasification model, based on measurements. PMID:24736208

  20. Thermogravimetric and calorimetric characteristics during co-pyrolysis of municipal solid waste components.

    PubMed

    Ansah, Emmanuel; Wang, Lijun; Shahbazi, Abolghasem

    2016-10-01

    The thermogravimetric and calorimetric characteristics during pyrolysis of wood, paper, textile and polyethylene terephthalate (PET) plastic in municipal solid wastes (MSW), and co-pyrolysis of biomass-derived and plastic components with and without torrefaction were investigated. The active pyrolysis of the PET plastic occurred at a much higher temperature range between 360°C and 480°C than 220-380°C for the biomass derived components. The plastic pyrolyzed at a heating rate of 10°C/min had the highest maximum weight loss rate of 18.5wt%/min occurred at 420°C, followed by 10.8wt%/min at 340°C for both paper and textile, and 9.9wt%/min at 360°C for wood. At the end of the active pyrolysis stage, the final mass of paper, wood, textile and PET was 28.77%, 26.78%, 21.62% and 18.31%, respectively. During pyrolysis of individual MSW components at 500°C, the wood required the least amount of heat at 665.2J/g, compared to 2483.2J/g for textile, 2059.4J/g for paper and 2256.1J/g for PET plastic. The PET plastic had much higher activation energy of 181.86kJ/mol, compared to 41.47kJ/mol for wood, 50.01kJ/mol for paper and 36.65kJ/mol for textile during pyrolysis at a heating rate of 10°C/min. H2O and H2 peaks were observed on the MS curves for the pyrolysis of three biomass-derived materials but there was no obvious H2O and H2 peaks on the MS curves of PET plastic. There was a significant interaction between biomass and PET plastic during co-pyrolysis if the biomass fraction was dominant. The amount of heat required for the co-pyrolysis of the biomass and plastic mixture increased with the increase of plastic mass fraction in the mixture. Torrefaction at a proper temperature and time could improve the grindability of PET plastic. The increase of torrefaction temperature and time did not affect the temperature where the maximum pyrolytic rates occurred for both biomass and plastic but decreased the maximum pyrolysis rate of biomass and increased the maximum pyrolysis