Sample records for biomechanics clinical aspects

  1. [Biomechanical aspects of cervical trauma].

    PubMed

    Walz, F; Meine, J

    1994-07-01

    The biomechanical expert opinion on the injury mechanism is necessary in few cases only. However, the judgement of these cases is extremely compromised if mechanically wrong terms are introduced in the clinical report. Since the injury mechanism in the neck is very complex the clinical physician should concentrate on the clinical findings familiar to him; usually the clinician lacks technical case documentation and specific training in injury biomechanics. The relevant mechanisms of neck injuries are an indirect trauma induced by a) a head contact leading to compression, hyperflexion, hyperextension and/or hypertranslation and b) a non-head-contact mechanism (hyperflexion or hyperextension, hypertranslation, acceleration). A non-contact mechanism occurs e.g. during a rear end impact without head restraint (hyperextension) or a frontal collision of a belted occupant (hyperflexion) without head impact. The term "whiplash" is misleading and incorrect: It presumes a virtually non existing two phase movement back and forth (or vice versa) like during the development of the crack of the whip. Secondly, it mixes the physical criterion mechanism with the anatomical or morphological criterion injury e.g. distortion, sprain etc. A (head)-contact mechanism is due to a corresponding momentum exerted from the head on the neck. Again, the anatomical or morphological terms are equal, but the mechanism is different. During a contact mechanism as well as during a non-contact mechanism not only a hyperflexion or a hyperextension can occur; in the first phase of the impact also a shearing force between the upper vertebral bodies (CO-C2) may load the intervertebral structures by hypertranslation.

  2. Biomechanics of oral mucosa

    PubMed Central

    Chen, Junning; Ahmad, Rohana; Li, Wei; Swain, Michael; Li, Qing

    2015-01-01

    The prevalence of prosthodontic treatment has been well recognized, and the need is continuously increasing with the ageing population. While the oral mucosa plays a critical role in the treatment outcome, the associated biomechanics is not yet fully understood. Using the literature available, this paper provides a critical review on four aspects of mucosal biomechanics, including static, dynamic, volumetric and interactive responses, which are interpreted by its elasticity, viscosity/permeability, apparent Poisson's ratio and friction coefficient, respectively. Both empirical studies and numerical models are analysed and compared to gain anatomical and physiological insights. Furthermore, the clinical applications of such biomechanical knowledge on the mucosa are explored to address some critical concerns, including stimuli for tissue remodelling (interstitial hydrostatic pressure), pressure–pain thresholds, tissue displaceability and residual bone resorption. Through this review, the state of the art in mucosal biomechanics and their clinical implications are discussed for future research interests, including clinical applications, computational modelling, design optimization and prosthetic fabrication. PMID:26224566

  3. Biomechanics of the thorax - research evidence and clinical expertise.

    PubMed

    Lee, Diane Gail

    2015-07-01

    Understanding the biomechanics of the thorax is critical for understanding its role in multiple conditions since the thorax is part of many integrated systems including the musculoskeletal, respiratory, cardiac, digestive and urogynecological. The thorax is also an integrated system within itself and an element of the whole body/person. Therefore, understanding the biomechanics of the thorax is fundamental to all forms of treatment for multiple conditions. The interpretation of movement examination findings depends on one's view of optimal biomechanics and the influential factors. This article will provide a synopsis of the current state of research evidence as well as observations from clinical experience pertaining to the biomechanics of the thorax in order to help clinicians organise this knowledge and facilitate evidence-based and informed management of the, often complex, patient with or without thoracic pain and impairment. The integrated systems model (ISM) will be introduced as a way to determine when the noted biomechanical findings are relevant to a patient's clinical presentation.

  4. Poor relation between biomechanical and clinical studies for the proximal femoral locking compression plate

    PubMed Central

    Viberg, Bjarke; Rasmussen, Katrine M V; Overgaard, Søren; Rogmark, Cecilia

    2017-01-01

    Background and purpose The proximal femur locking compression plate (PF-LCP) is a new concept in the treatment of hip fractures. When releasing new implants onto the market, biomechanical studies are conducted to evaluate performance of the implant. We investigated the relation between biomechanical and clinical studies on PF-LCP. Methods A systematic literature search of relevant biomechanical and clinical studies was conducted in PubMed on December 1, 2015. 7 biomechanical studies and 15 clinical studies were included. Results Even though the biomechanical studies showed equivalent or higher failure loads for femoral neck fracture, the clinical results were far worse, with a 37% complication rate. There were no biomechanical studies on pertrochanteric fractures. Biomechanical studies on subtrochanteric fractures showed that PF-LCP had a lower failure load than with proximal femoral nail, but higher than with angled blade plate. 4 clinical studies had complication rates less than 8% and 9 studies had complication rates between 15% and 53%. Interpretation There was no clear relation between biomechanical and clinical studies. Biomechanical studies are generally inherently different from clinical studies, as they examine the best possible theoretical use of the implant without considering the long-term outcome in a clinical setting. Properly designed clinical studies are mandatory when introducing new implants, and they cannot be replaced by biomechanical studies. PMID:28287002

  5. Biomechanics of the thorax – research evidence and clinical expertise

    PubMed Central

    Lee, Diane Gail

    2015-01-01

    Understanding the biomechanics of the thorax is critical for understanding its role in multiple conditions since the thorax is part of many integrated systems including the musculoskeletal, respiratory, cardiac, digestive and urogynecological. The thorax is also an integrated system within itself and an element of the whole body/person. Therefore, understanding the biomechanics of the thorax is fundamental to all forms of treatment for multiple conditions. The interpretation of movement examination findings depends on one's view of optimal biomechanics and the influential factors. This article will provide a synopsis of the current state of research evidence as well as observations from clinical experience pertaining to the biomechanics of the thorax in order to help clinicians organise this knowledge and facilitate evidence-based and informed management of the, often complex, patient with or without thoracic pain and impairment. The integrated systems model (ISM) will be introduced as a way to determine when the noted biomechanical findings are relevant to a patient's clinical presentation. PMID:26309383

  6. Platelet biomechanics, platelet bioenergetics, and applications to clinical practice and translational research.

    PubMed

    George, Mitchell J; Bynum, James; Nair, Prajeeda; Cap, Andrew P; Wade, Charles E; Cox, Charles S; Gill, Brijesh S

    2018-07-01

    The purpose of this review is to explore the relationship between platelet bioenergetics and biomechanics and how this relationship affects the clinical interpretation of platelet function devices. Recent experimental and technological advances highlight platelet bioenergetics and biomechanics as alternative avenues for collecting clinically relevant data. Platelet bioenergetics drive energy production for key biomechanical processes like adhesion, spreading, aggregation, and contraction. Platelet function devices like thromboelastography, thromboelastometry, and aggregometry measure these biomechanical processes. Platelet storage, stroke, sepsis, trauma, or the activity of antiplatelet drugs alters measures of platelet function. However, the specific mechanisms governing these alterations in platelet function and how they relate to platelet bioenergetics are still under investigation.

  7. Automation and apps for clinical dental biomechanics.

    PubMed

    Adams, Bruce W

    2016-09-01

    The aim of this research summary is to introduce the current and ongoing work using smartphone video, tracking markers to measure musculoskeletal disorders of cranial and mandibular origin, and the potential significance of the technology to doctors and therapists. The MPA™ biomechanical measuring apps are in beta trials with various doctors and therapists. The technique requires substantial image processing and statistical analysis, best suited to server-side processing. A smartphone environment has enabled a virtual laboratory, which provides automated generation of graphics and in some cases automated interpretation. The system enables highly accurate real-time biomechanics studies using only a smartphone and tracking markers. Despite the technical challenges in setting up and testing of the virtual environment and with interpretation of clinical relevance, the trials have enabled a demonstration of real-time biomechanics studies. The technology has prompted a lot of discussion about the relevance of rapid assessment tools in clinical practice. It seems that a prior bias against motion tracking and its relevance is very strong with occlusion related use cases, yet there has been a general agreement about the use case for cranial movement tracking in managing complex issues related to the head, neck, and TMJ. Measurement of cranial and mandibular functions using a smartphone video as the input have been investigated. Ongoing research will depend upon doctors and therapists to provide feedback as to which uses are considered clinically relevant.

  8. [RESEARCH PROGRESS OF BIOMECHANICS OF PROXIMAL ROW CARPAL INSTABILITY].

    PubMed

    Guo, Jinhai; Huang, Fuguo

    2015-01-01

    To review the research progress of the biomechanics of proximal row carpal instability (IPRC). The related literature concerning IPRC was extensively reviewed. The biomechanical mechanism of the surrounding soft tissue in maintaining the stability of the proximal row carpal (PRC) was analyzed, and the methods to repair or reconstruct the stability and function of the PRC were summarized from two aspects including basic biomechanics and clinical biomechanics. The muscles and ligaments of the PRC are critical to its stability. Most scholars have reached a consensus about biomechanical mechanism of the PRC, but there are still controversial conclusions on the biomechanics mechanism of the surrounding soft tissue to stability of distal radioulnar joint when the triangular fibrocartilage complex are damaged and the biomechanics mechanism of the scapholunate ligament. At present, there is no unified standard about the methods to repair or reconstruct the stability and function of the PRC. So, it is difficult for clinical practice. Some strides have been made in the basic biomechanical study on muscle and ligament and clinical biomechanical study on the methods to repair or reconstruct the stability and function of PRC, but it will be needed to further study the morphology of carpal articular surface and the adjacent articular surface, the pressure of distal carpals to proximal carpal and so on.

  9. Biomechanics of occlusion--implications for oral rehabilitation.

    PubMed

    Peck, C C

    2016-03-01

    The dental occlusion is an important aspect of clinical dentistry; there are diverse functional demands ranging from highly precise tooth contacts to large crushing forces. Further, there are dogmatic, passionate and often diverging views on the relationship between the dental occlusion and various diseases and disorders including temporomandibular disorders, non-carious cervical lesions and tooth movement. This study provides an overview of the biomechanics of the masticatory system in the context of the dental occlusion's role in function. It explores the adaptation and precision of dental occlusion, its role in bite force, jaw movement, masticatory performance and its influence on the oro-facial musculoskeletal system. Biomechanics helps us better understand the structure and function of biological systems and consequently an understanding of the forces on, and displacements of, the dental occlusion. Biomechanics provides insight into the relationships between the dentition, jaws, temporomandibular joints, and muscles. Direct measurements of tooth contacts and forces are difficult, and biomechanical models have been developed to better understand the relationship between the occlusion and function. Importantly, biomechanical research will provide knowledge to help correct clinical misperceptions and inform better patient care. The masticatory system demonstrates a remarkable ability to adapt to a changing biomechanical environment and changes to the dental occlusion or other components of the musculoskeletal system tend to be well tolerated. © 2015 John Wiley & Sons Ltd.

  10. Using Clinical Gait Case Studies to Enhance Learning in Biomechanics

    ERIC Educational Resources Information Center

    Chester, Victoria

    2011-01-01

    Clinical case studies facilitate the development of clinical reasoning strategies through knowledge and integration of the basic sciences. Case studies have been shown to be more effective in developing problem-solving abilities than the traditional lecture format. To enhance the learning experiences of students in biomechanics, clinical case…

  11. Biomechanical properties of the spinal cord: implications for tissue engineering and clinical translation.

    PubMed

    Bartlett, Richard D; Choi, David; Phillips, James B

    2016-10-01

    Spinal cord injury is a severely debilitating condition which can leave individuals paralyzed and suffering from autonomic dysfunction. Regenerative medicine may offer a promising solution to this problem. Previous research has focused primarily on exploring the cellular and biological aspects of the spinal cord, yet relatively little remains known about the biomechanical properties of spinal cord tissue. Given that a number of regenerative strategies aim to deliver cells and materials in the form of tissue-engineered therapies, understanding the biomechanical properties of host spinal cord tissue is important. We review the relevant biomechanical properties of spinal cord tissue and provide the baseline knowledge required to apply these important physical concepts to spinal cord tissue engineering.

  12. Translating ocular biomechanics into clinical practice: current state and future prospects.

    PubMed

    Girard, Michaël J A; Dupps, William J; Baskaran, Mani; Scarcelli, Giuliano; Yun, Seok H; Quigley, Harry A; Sigal, Ian A; Strouthidis, Nicholas G

    2015-01-01

    Biomechanics is the study of the relationship between forces and function in living organisms and is thought to play a critical role in a significant number of ophthalmic disorders. This is not surprising, as the eye is a pressure vessel that requires a delicate balance of forces to maintain its homeostasis. Over the past few decades, basic science research in ophthalmology mostly confirmed that ocular biomechanics could explain in part the mechanisms involved in almost all major ophthalmic disorders such as optic nerve head neuropathies, angle closure, ametropia, presbyopia, cataract, corneal pathologies, retinal detachment and macular degeneration. Translational biomechanics in ophthalmology, however, is still in its infancy. It is believed that its use could make significant advances in diagnosis and treatment. Several translational biomechanics strategies are already emerging, such as corneal stiffening for the treatment of keratoconus, and more are likely to follow. This review aims to cultivate the idea that biomechanics plays a major role in ophthalmology and that the clinical translation, lead by collaborative teams of clinicians and biomedical engineers, will benefit our patients. Specifically, recent advances and future prospects in corneal, iris, trabecular meshwork, crystalline lens, scleral and lamina cribrosa biomechanics are discussed.

  13. Translating Ocular Biomechanics into Clinical Practice: Current State and Future Prospects

    PubMed Central

    Girard, Michaël J.A.; Dupps, William J.; Baskaran, Mani; Scarcelli, Giuliano; Yun, Seok H.; Quigley, Harry A.; Sigal, Ian A.; Strouthidis, Nicholas G.

    2014-01-01

    Biomechanics – the study of the relationship between forces and function in living organisms – is thought to play a critical role in a significant number of ophthalmic disorders. This is not surprising, as the eye is a pressure vessel that requires a delicate balance of forces to maintain its homeostasis. Over the past few decades, basic science research in ophthalmology mostly confirmed that ocular biomechanics could explain in part the mechanisms involved in almost all major ophthalmic disorders such as optic nerve head neuropathies, angle closure, ametropia, presbyopia, cataract, corneal pathologies, retinal detachment, and macular degeneration. Translational biomechanics in ophthalmology, however, is still in its infancy. It is believed that its use could make significant advances in diagnosis and treatment. Several translational biomechanics strategies are already emerging, such as corneal stiffening for the treatment of keratoconus, and more are likely to follow. This review aims to cultivate the idea that biomechanics plays a major role in ophthalmology and that its clinical translation, lead by collaborative teams of clinicians and biomedical engineers, will benefit our patients. Specifically, recent advances and future prospects in corneal, iris, trabecular meshwork, crystalline lens, scleral and lamina cribrosa biomechanics are discussed. PMID:24832392

  14. "Proprietary Processed" Allografts: Clinical Outcomes and Biomechanical Properties in Anterior Cruciate Ligament Reconstruction.

    PubMed

    Roberson, Troy A; Abildgaard, Jeffrey T; Wyland, Douglas J; Siffri, Paul C; Geary, Stephen P; Hawkins, Richard J; Tokish, John M

    2017-11-01

    The processing of allograft tissues in anterior cruciate ligament (ACL) reconstruction continues to be controversial. While high-dose irradiation of grafts has received scrutiny for high failure rates, lower dose irradiation and "proprietary-based" nonirradiated sterilization techniques have become increasingly popular, with little in the literature to evaluate their outcomes. Recent studies have suggested that the specifics of allograft processing techniques may be a risk factor for higher failure rates. To assess these proprietary processes and their clinical outcomes and biomechanical properties. Systematic review. A systematic review was performed using searches of PubMed, EMBASE, Google Scholar, and Cochrane databases. English-language studies were identified with the following search terms: "allograft ACL reconstruction" (title/abstract), "novel allograft processing" (title/abstract), "allograft anterior cruciate ligament" (title/abstract), "anterior cruciate ligament allograft processing" (title/abstract), or "biomechanical properties anterior cruciate ligament allograft" (title/abstract). Duplicate studies, studies not providing the allograft processing technique, and those not containing the outcomes of interest were excluded. Outcomes of interest included outcome scores, complication and failure rates, and biomechanical properties of the processed allografts. Twenty-four studies (13 clinical, 11 biomechanical) met inclusion criteria for review. No demonstrable difference in patient-reported outcomes was appreciated between the processing techniques, with the exception of the Tutoplast process. The clinical failure rate of the Tutoplast process was unacceptably high (45% at 6 years), but no other difference was found between other processing techniques (BioCleanse: 5.4%; AlloTrue: 5.7%; MTF: 6.7%). Several studies did show an increased failure rate, but these studies either combined processing techniques or failed to delineate enough detail to allow a

  15. Cycling biomechanics: a literature review.

    PubMed

    Wozniak Timmer, C A

    1991-01-01

    Submitted in partial fulfillment for a Master of Science degree at the University of Pittsburgh, School of Health Related Professions, Pittsburgh, PA 1.5213 This review of current literature on cycling biomechanics emphasizes lower extremity muscle actions and joint excursions, seat height, pedal position, pedaling rate, force application, and pedaling symmetry. Guidelines are discussed for optimal seat height, pedal position, and pedaling rate. Force application in the power and recovery phases of cycling and the relationship of force application to pedaling symmetry are discussed. The need for a biomechanical approach to cycling exists since a great deal of the literature is primarily physiologic in nature. The purpose of this review is to make cyclists and their advisors aware of the biomechanics of cycling and guidelines to follow. This approach is also important because cycling is a very common form of exercise prescribed by physical therapists for clinic or home programs. Biomechanical aspects of cycling should be considered by cyclists at any level of participation and by physical therapists in order for goal-oriented, efficient cycling to occur. J Orthop Sports Phys Ther 1991;14(3):106-113.

  16. [Rotator cuff repair: single- vs double-row. Clinical and biomechanical results].

    PubMed

    Baums, M H; Kostuj, T; Klinger, H-M; Papalia, R

    2016-02-01

    The goal of rotator cuff repair is a high initial mechanical stability as a requirement for adequate biological recovery of the tendon-to-bone complex. Notwithstanding the significant increase in publications concerning the topic of rotator cuff repair, there are still controversies regarding surgical technique. The aim of this work is to present an overview of the recently published results of biomechanical and clinical studies on rotator cuff repair using single- and double-row techniques. The review is based on a selective literature research of PubMed, Embase, and the Cochrane Database on the subject of the clinical and biomechanical results of single- and double-row repair. In general, neither the biomechanical nor the clinical evidence can recommend the use of a double-row concept for the treatment for every rotator cuff tear. Only tears of more than 3 cm seem to benefit from better results on both imaging and in clinical outcome studies compared with the use of single-row techniques. Despite a significant increase in publications on the surgical treatment of rotator cuff tears in recent years, the clinical results were not significantly improved in the literature so far. Unique information and algorithms, from which the optimal treatment of this entity can be derived, are still inadequate. Because of the cost-effectiveness and the currently vague evidence, the double-row techniques cannot be generally recommended for the repair of all rotator cuff tears.

  17. Lateral Augmentation Procedures in Anterior Cruciate Ligament Reconstruction: Anatomic, Biomechanical, Imaging, and Clinical Evidence.

    PubMed

    Weber, Alexander E; Zuke, William; Mayer, Erik N; Forsythe, Brian; Getgood, Alan; Verma, Nikhil N; Bach, Bernard R; Bedi, Asheesh; Cole, Brian J

    2018-02-01

    There has been an increasing interest in lateral-based soft tissue reconstructive techniques as augments to anterior cruciate ligament reconstruction (ACLR). The objective of these procedures is to minimize anterolateral rotational instability of the knee after surgery. Despite the relatively rapid increase in surgical application of these techniques, many clinical questions remain. To provide a comprehensive update on the current state of these lateral-based augmentation procedures by reviewing the origins of the surgical techniques, the biomechanical data to support their use, and the clinical results to date. Systematic review. A systematic search of the literature was conducted via the Medline, EMBASE, Scopus, SportDiscus, and CINAHL databases. The search was designed to encompass the literature on lateral extra-articular tenodesis (LET) procedures and the anterolateral ligament (ALL) reconstruction. Titles and abstracts were reviewed for relevance and sorted into the following categories: anatomy, biomechanics, imaging/diagnostics, surgical techniques, and clinical outcomes. The search identified 4016 articles. After review for relevance, 31, 53, 27, 35, 45, and 78 articles described the anatomy, biomechanics, imaging/diagnostics, surgical techniques, and clinical outcomes of either LET procedures or the ALL reconstruction, respectively. A multitude of investigations were available, revealing controversy in addition to consensus in several categories. The level of evidence obtained from this search was not adequate for systematic review or meta-analysis; thus, a current concepts review of the anatomy, biomechanics, imaging, surgical techniques, and clinical outcomes was performed. Histologically, the ALL appears to be a distinct structure that can be identified with advanced imaging techniques. Biomechanical evidence suggests that the anterolateral structures of the knee, including the ALL, contribute to minimizing anterolateral rotational instability

  18. Applications of artificial neural nets in clinical biomechanics.

    PubMed

    Schöllhorn, W I

    2004-11-01

    The purpose of this article is to provide an overview of current applications of artificial neural networks in the area of clinical biomechanics. The body of literature on artificial neural networks grew intractably vast during the last 15 years. Conventional statistical models may present certain limitations that can be overcome by neural networks. Artificial neural networks in general are introduced, some limitations, and some proven benefits are discussed.

  19. Dual mini-fragment plating for midshaft clavicle fractures: a clinical and biomechanical investigation.

    PubMed

    Prasarn, Mark L; Meyers, Kathleen N; Wilkin, Geoffrey; Wellman, David S; Chan, Daniel B; Ahn, Jaimo; Lorich, Dean G; Helfet, David L

    2015-12-01

    We sought to evaluate clinical and biomechanical outcomes of dual mini-fragment plate fixation for clavicle fractures. We hypothesized that this technique would produce an anatomical reduction with good clinical outcomes, be well tolerated by patients, and demonstrate equivalent biomechanics to single plating. Dual mini-fragment plating was performed for 17 isolated, displaced midshaft clavicle fractures. Functional outcomes and complications were retrospectively reviewed. A sawbones model compared dual plating biomechanics to a (1) superior 3.5-mm locking reconstruction plate, or (2) antero-inferior 3.5-mm locking reconstruction plate. On biomechanical testing, with anterior loading, dual plating was significantly more rigid than single locked anterior-plating (p = 0.02) but less rigid than single locked superior-plating (p = 0.001). With superior loading, dual plating trended toward higher rigidity versus single locked superior-plating (p = 0.07) but was less rigid than single locked anterior-plating (p = 0.03). No statistically significant differences in axial loading (p = 0.27) or torsion (p = 0.23) were detected. Average patient follow-up was 16.1 months (12-38). Anatomic reduction was achieved and maintained through final healing (average 14.7 weeks). No patient underwent hardware removal. Average 1-year DASH score was 4.0 (completed in 88 %). Displaced midshaft clavicle fractures can be effectively managed with dual mini-fragment plating. This technique results in high union rates and excellent clinical outcomes. Compared to single plating, dual plating is biomechanically equivalent in axial loading and torsion, yet offers better multi-planar bending stiffness despite the use of smaller plates. This technique may decrease the need for secondary surgery due to implant prominence and may aid in fracture reduction by buttressing butterfly fragments in two planes.

  20. Brillouin microscopy: assessing ocular tissue biomechanics.

    PubMed

    Yun, Seok Hyun; Chernyak, Dimitri

    2018-07-01

    Assessment of corneal biomechanics has been an unmet clinical need in ophthalmology for many years. Many researchers and clinicians have identified corneal biomechanics as source of variability in refractive procedures and one of the main factors in keratoconus. However, it has been difficult to accurately characterize corneal biomechanics in patients. The recent development of Brillouin light scattering microscopy heightens the promise of bringing biomechanics into the clinic. The aim of this review is to overview the progress and discuss prospective applications of this new technology. Brillouin microscopy uses a low-power near-infrared laser beam to determine longitudinal modulus or mechanical compressibility of tissue by analyzing the return signal spectrum. Human clinical studies have demonstrated significant difference in the elastic properties of normal corneas versus corneas diagnosed with mild and severe keratoconus. Clinical data have also shown biomechanical changes after corneal cross-linking treatment of keratoconus patients. Brillouin measurements of the crystalline lens and sclera have also been demonstrated. Brillouin microscopy is a promising technology under commercial development at present. The technique enables physicians to characterize the biomechanical properties of ocular tissues.

  1. Clinical and biomechanical perspectives on pressure injury prevention research: The case of prophylactic dressings.

    PubMed

    Gefen, A; Kottner, J; Santamaria, N

    2016-10-01

    In this perspective paper, we discuss clinical and biomechanical viewpoints on pressure injury (or pressure ulcer) prevention research. We have selected to focus on the case of prophylactic dressings for pressure injury prevention, and the background of the historical context of pressure injury research, as an exemplar to illuminate some of the good and not so good in current biomechanical and clinical research in the wound prevention and care arena. Investigators who are conducting medical or clinical research in academia, in medical settings or in industry to determine the efficacy of wound prevention and care products could benefit from applying some basic principles that are detailed in this paper, and that should leverage the research outcomes, thereby contributing to setting higher standards in the field. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Clinical and biomechanical assessment of patella resurfacing in total knee arthroplasty.

    PubMed

    Berti, Lisa; Benedetti, Maria Grazia; Ensini, Andrea; Catani, Fabio; Giannini, Sandro

    2006-07-01

    Currently there is a limited understanding of the factors influencing range of motion by comparing patellar resurfacing vs non-resurfacing in total knee arthroplasty during activities of daily living. A recent meta-analysis of patellar replacement confirms better outcome with patella resurfacing; however, the result can be influenced by many other factors, such as: component design, surgeon experience, and technical aspects of the surgery. This study compares the biomechanics of the knee in patients after total knee arthroplasty with and without patellar resurfacing during stair climbing. Forty-seven patients with total knee arthroplasty were assessed at the mean follow-up of 24 months. In all of them a posterior stabilised fixed bearing prosthesis (Optetrak PS, Exactech) was implanted. Twenty-six patients were treated without patellar resurfacing and 21 with patellar resurfacing. Clinical evaluations were performed using the International Knee Society and the Hospital for Special Surgery scores. Ten patients with patellar resurfacing and 10 patients without patellar resurfacing were also studied with motion analysis during stair climbing; 10 healthy subjects were studied for statistical comparison. Clinical passive knee flexion, International Knee Society Function and Hospital for Special Surgery scores were significantly higher in the patellar resurfacing group. During stair climbing, active knee joint range of motion during the stance phase was greater in patients with patellar resurfacing. The maximum adduction moment was significantly higher in the group without patellar resurfacing. Patients with patellar resurfacing demonstrated better clinical scores, and kinematic and kinetic data while ascending stairs.

  3. Importance of accurately assessing biomechanics of the cornea.

    PubMed

    Roberts, Cynthia J

    2016-07-01

    This article summarizes the state-of-the-art in clinical corneal biomechanics, including procedures in which biomechanics play a role, and the clinical consequences in terms of error in estimating intraocular pressure (IOP). Corneal biomechanical response to refractive surgery can be categorized into either stable alteration of surface shape and thus visual outcome, or unstable biomechanical decompensation. The stable response is characterized by central flattening and peripheral steepening that is potentiated in a stiffer cornea. Two clinical devices for assessing corneal biomechanics do not yet measure classic biomechanical properties, but rather provide assessment of corneal deformation response. Biomechanical parameters are a function of IOP, and both the cornea and sclera become stiffer as IOP increases. Any assessment of biomechanical parameters must include IOP, and one value of stiffness does not adequately characterize a cornea. Corneal biomechanics plays a role in the outcomes of any procedure in which lamellae are transected. Once the corneal structure has been altered in a manner that includes central thinning, IOP measurements with applanation tonometry are likely not valid, and other technologies should be used.

  4. Biomechanical aspects of gravitational training of the astronauts before the flight.

    PubMed

    Laputin, A N

    1997-07-01

    Researchers tested a hypothesis that astronauts can become more proficient in training for tasks during space flight by training in a high gravity suit. Computer image analysis of movements, tensodynamography, and myotonometry were used to analyze movement in the hypergravity suit, muscle response, and other biomechanical factors. Results showed that training in the hypergravity suit improved the biomechanics of motor performance.

  5. Qualitative biomechanical principles for application in coaching.

    PubMed

    Knudson, Duane

    2007-01-01

    Many aspects of human movements in sport can be readily understood by Newtonian rigid-body mechanics. Many of these laws and biomechanical principles, however, are counterintuitive to a lot of people. There are also several problems in the application of biomechanics to sports, so the application of biomechanics in the qualitative analysis of sport skills by many coaches has been limited. Biomechanics scholars have long been interested in developing principles that facilitate the qualitative application of biomechanics to improve movement performance and reduce the risk of injury. This paper summarizes the major North American efforts to establish a set of general biomechanical principles of movement, and illustrates how principles can be used to improve the application of biomechanics in the qualitative analysis of sport technique. A coach helping a player with a tennis serve is presented as an example. The standardization of terminology for biomechanical principles is proposed as an important first step in improving the application ofbiomechanics in sport. There is also a need for international cooperation and research on the effectiveness of applying biomechanical principles in the coaching of sport techniques.

  6. Foot orthoses in the treatment of symptomatic midfoot osteoarthritis using clinical and biomechanical outcomes: a randomised feasibility study.

    PubMed

    Halstead, Jill; Chapman, Graham J; Gray, Janine C; Grainger, Andrew J; Brown, Sarah; Wilkins, Richard A; Roddy, Edward; Helliwell, Philip S; Keenan, Anne-Maree; Redmond, Anthony C

    2016-04-01

    This randomised feasibility study aimed to examine the clinical and biomechanical effects of functional foot orthoses (FFOs) in the treatment of midfoot osteoarthritis (OA) and the feasibility of conducting a full randomised controlled trial. Participants with painful, radiographically confirmed midfoot OA were recruited and randomised to receive either FFOs or a sham control orthosis. Feasibility measures included recruitment and attrition rates, practicality of blinding and adherence rates. Clinical outcome measures were: change from baseline to 12 weeks for severity of pain (numerical rating scale), foot function (Manchester Foot Pain and Disability Index) and patient global impression of change scale. To investigate the biomechanical effect of foot orthoses, in-shoe foot kinematics and plantar pressures were evaluated at 12 weeks. Of the 119 participants screened, 37 were randomised and 33 completed the study (FFO = 18, sham = 15). Compliance with foot orthoses and blinding of the intervention was achieved in three quarters of the group. Both groups reported improvements in pain, function and global impression of change; the FFO group reporting greater improvements compared to the sham group. The biomechanical outcomes indicated the FFO group inverted the hindfoot and increased midfoot maximum plantar force compared to the sham group. The present findings suggest FFOs worn over 12 weeks may provide detectable clinical and biomechanical benefits compared to sham orthoses. This feasibility study provides useful clinical, biomechanical and statistical information for the design and implementation of a definitive randomised controlled trial to evaluate the effectiveness of FFOs in treating painful midfoot OA.

  7. Clinical applications of biomechanics cinematography.

    PubMed

    Woodle, A S

    1986-10-01

    Biomechanics cinematography is the analysis of movement of living organisms through the use of cameras, image projection systems, electronic digitizers, and computers. This article is a comparison of cinematographic systems and details practical uses of the modality in research and education.

  8. Clinical, biomechanical and morphological assessment of anterior cruciate ligament Kevlar®-based artificial prosthesis in rabbit model.

    PubMed

    de la Garza-Castro, Santiago; González-Rivera, Carlos E; Vílchez-Cavazos, Félix; Morales-Avalos, Rodolfo; Barrera-Flores, Francisco J; Elizondo-Omaña, Rodrigo E; Soto-Dominguez, Adolfo; Acosta-Olivo, Carlos; Mendoza-Lemus, Oscar F

    2017-07-27

    The aim of this study was to evaluate the clinical, biomechanical and morphological characteristics of a Kevlar®-based prosthetic ligament as a synthetic graft of the anterior cruciate ligament (ACL) in an experimental animal model in rabbits. A total of 27 knees of rabbits randomly divided into 3 groups (control, ACL excision and ACL replacement with a Kevlar® prosthesis) were analyzed using clinical, biomechanical and morphological tests at 6, 12 and 18 weeks postprocedure. The mean displacement in mechanical testing was 0.73 ± 0.06 mm, 1.58 ± 0.19 mm and 0.94 ± 0.20 mm for the control, ACL excision and ACL replacement with synthetic prosthesis groups, respectively. The results showed an improvement in the stability of the knee with the use of the Kevlar® synthetic prosthesis in the biomechanical testing (p<0.05) compared with rabbits that underwent ACL excision, in addition to displacements that were larger but comparable to that in the control group (p>0.05), between the replacement group and the control group. The histological study revealed a good morphological adaptation of the synthetic material to the knee. This study proposes a new animal model for the placement and evaluation of Kevlar®-based synthetic ACL implants. The studied prosthesis showed promising behavior in the clinical and biomechanical tests and in the histological analysis. This study lays the foundation for further basic and clinical studies of artificial ACL prostheses using this material.

  9. Biomechanical aspects of axonal damage in glaucoma: a brief review1

    PubMed Central

    Stowell, Cheri; Burgoyne, Claude; Tamm, Ernst R.; Ethier, C. Ross

    2017-01-01

    The biomechanical environment within the optic nerve head (ONH) is complex and is likely directly involved in the loss of retinal ganglion cells (RGCs) in glaucoma. Unfortunately, our understanding of this process is poor. Here we describe factors that influence ONH biomechanics, including ONH connective tissue microarchitecture and anatomy; intraocular pressure (IOP); and cerebrospinal fluid pressure (CSFp). We note that connective tissue factors can vary significantly from one individual to the next, as well as regionally within an eye, and that the understanding of ONH biomechanics is hindered by anatomical differences between small-animal models of glaucoma (rats and mice) and humans. Other challenges of using animal models of glaucoma to study the role of biomechanics include the complexity of assessing the degree of glaucomatous progression; and inadequate tools for monitoring and consistently elevating IOP in animal models. We conclude with a consideration of important open research questions/challenges in this area, including: (i) Creating a systems biology description of the ONH; (ii) addressing the role of astrocyte connective tissue remodeling and reactivity in glaucoma; (iii) providing a better characterization of ONH astrocytes and non-astrocytic constituent cells; (iv) better understanding the role of ONH astrocyte phagocytosis, proliferation and death; (v) collecting gene expression and phenotype data on a larger, more coordinated scale; and (vi) developing an implantable IOP sensor. PMID:28223180

  10. Consistency of clinical biomechanical measures between three different institutions: implications for multi-center biomechanical and epidemiological research.

    PubMed

    Myer, Gregory D; Wordeman, Samuel C; Sugimoto, Dai; Bates, Nathaniel A; Roewer, Benjamin D; Medina McKeon, Jennifer M; DiCesare, Christopher A; Di Stasi, Stephanie L; Barber Foss, Kim D; Thomas, Staci M; Hewett, Timothy E

    2014-05-01

    Multi-center collaborations provide a powerful alternative to overcome the inherent limitations to single-center investigations. Specifically, multi-center projects can support large-scale prospective, longitudinal studies that investigate relatively uncommon outcomes, such as anterior cruciate ligament injury. This project was conceived to assess within- and between-center reliability of an affordable, clinical nomogram utilizing two-dimensional video methods to screen for risk of knee injury. The authors hypothesized that the two-dimensional screening methods would provide good-to-excellent reliability within and between institutions for assessment of frontal and sagittal plane biomechanics. Nineteen female, high school athletes participated. Two-dimensional video kinematics of the lower extremity during a drop vertical jump task were collected on all 19 study participants at each of the three facilities. Within-center and between-center reliability were assessed with intra- and inter-class correlation coefficients. Within-center reliability of the clinical nomogram variables was consistently excellent, but between-center reliability was fair-to-good. Within-center intra-class correlation coefficient for all nomogram variables combined was 0.98, while combined between-center inter-class correlation coefficient was 0.63. Injury risk screening protocols were reliable within and repeatable between centers. These results demonstrate the feasibility of multi-site biomechanical studies and establish a framework for further dissemination of injury risk screening algorithms. Specifically, multi-center studies may allow for further validation and optimization of two-dimensional video screening tools. 2b.

  11. Training for Women's Basketball: A Biomechanical Emphasis for Preventing Anterior Cruciate Ligament Injury.

    ERIC Educational Resources Information Center

    Pettitt, Robert W.; Bryson, Erin R.

    2002-01-01

    Summarizes proposed variables linked with higher incidences of anterior cruciate ligament tears in females and the biomechanical aspects of the lower extremity during the performance of common basketball skills, focusing on gender differences in knee joint stability and neuromuscular control, biomechanical aspects of lower extremity skills in…

  12. Clinical, Biomechanical, and Physiological Translational Interpretations of Human Resting Myofascial Tone or Tension

    PubMed Central

    Masi, Alfonse T.; Nair, Kalyani; Evans, Tyler; Ghandour, Yousef

    2010-01-01

    Background Myofascial tissues generate integrated webs and networks of passive and active tensional forces that provide stabilizing support and that control movement in the body. Passive [central nervous system (CNS)–independent] resting myofascial tension is present in the body and provides a low-level stabilizing component to help maintain balanced postures. This property was recently called “human resting myofascial tone” (HRMT). The HRMT model evolved from electromyography (EMG) research in the 1950s that showed lumbar muscles usually to be EMG-silent in relaxed gravity-neutral upright postures. Methods Biomechanical, clinical, and physiological studies were reviewed to interpret the passive stiffness properties of HRMT that help to stabilize various relaxed functions such as quiet balanced standing. Biomechanical analyses and experimental studies of the lumbar multifidus were reviewed to interpret its passive stiffness properties. The lumbar multifidus was illustrated as the major core stabilizing muscle of the spine, serving an important passive biomechanical role in the body. Results Research into muscle physiology suggests that passive resting tension (CNS-independent) is generated in sarcomeres by the molecular elasticity of low-level cycling cross-bridges between the actomyosin filaments. In turn, tension is complexly transmitted to intimately enveloping fascial matrix fibrils and other molecular elements in connective tissue, which, collectively, constitute the myofascial unit. Postural myofascial tonus varies with age and sex. Also, individuals in the population are proposed to vary in a polymorphism of postural HRMT. A few people are expected to have outlier degrees of innate postural hypotonicity or hypertonicity. Such biomechanical variations likely predispose to greater risk of related musculoskeletal disorders, a situation that deserves greater attention in clinical practice and research. Axial myofascial hypertonicity was hypothesized to

  13. Clinical outcomes and frontal plane two-dimensional biomechanics during the 30-second single leg stance test in patients before and after hip abductor tendon reconstructive surgery.

    PubMed

    Huxtable, Rose E; Ackland, Timothy R; Janes, Gregory C; Ebert, Jay R

    2017-07-01

    Hip abductor tendon tears are a common cause of Greater Trochanteric Pain Syndrome. Conservative treatments are often ineffective and surgical reconstruction may be recommended. This study investigated the improvement in clinical outcomes and frontal plane two-dimensional biomechanics during a 30-second single leg stance test, in patients undergoing reconstruction. We hypothesized that clinical scores and pertinent biomechanical variables would significantly improve post-surgery, and these outcomes would be significantly correlated. Twenty-one patients with symptomatic tendon tears underwent reconstruction. Patients were evaluated pre-surgery, and at 6 and 12months post-surgery, using patient-reported outcome measures, assessment of hip abductor strength and six-minute walk capacity. Frontal plane, two-dimensional, biomechanical variables including pelvis-on-femur angle, pelvic drop, trunk lean and lateral pelvic shift, were evaluated throughout a 30-second single leg stance test. ANOVA evaluated outcomes over time, while Pearson's correlations investigated associations between clinical scores, pain, functional and biomechanical outcome variables. While clinical and functional measures significantly improved (P<0.05) over time, no significant group differences (P>0.05) were observed in biomechanical variables from pre- to post-surgery. While five patients displayed a positive Trendelenburg sign pre-surgery, only one was positive post-surgery. Clinical outcomes and biomechanical variables during the single leg stance test were not correlated. Despite improvements in clinical and functional measures over time, biomechanical changes during a weight bearing single leg stance test were not significantly different following tendon repair. Follow up beyond 12months may be required, whereby symptomatic relief may precede functional and biomechanical improvement. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. ON THE BIOMECHANICS OF HEART VALVE FUNCTION

    PubMed Central

    Sacks, Michael S.; Merryman, W. David; Schmidt, David E.

    2009-01-01

    Heart valves (HVs) are fluidic control components of the heart that ensure unidirectional blood flow during the cardiac cycle. However, this description does not adequately describe the biomechanical ramifications of their function in that their mechanics are multi-modal. Moreover, they must replicate their cyclic function over an entire lifetime, with an estimated total functional demand of least 3×109 cycles. The focus of the present review is on the functional biomechanics of heart valves. Thus, the focus of the present review is on functional biomechanics, referring primarily to biosolid as well as several key biofluid mechanical aspects underlying heart valve physiological function. Specifically, we refer to the mechanical behaviors of the extra-cellular matrix structural proteins, underlying cellular function, and their integrated relation to the major aspects of valvular hemodynamic function. While we focus on the work from the author’s laboratories, relevant works of other investigators have been included whenever appropriate. We conclude with a summary of important future trends. PMID:19540499

  15. Fundamentals of biomechanics in tissue engineering of bone.

    PubMed

    Athanasiou, K A; Zhu, C; Lanctot, D R; Agrawal, C M; Wang, X

    2000-08-01

    The objective of this review is to provide basic information pertaining to biomechanical aspects of bone as they relate to tissue engineering. The review is written for the general tissue engineering reader, who may not have a biomechanical engineering background. To this end, biomechanical characteristics and properties of normal and repair cortical and cancellous bone are presented. Also, this chapter intends to describe basic structure-function relationships of these two types of bone. Special emphasis is placed on salient classical and modern testing methods, with both material and structural properties described.

  16. The Glymphatic Hypothesis of Glaucoma: A Unifying Concept Incorporating Vascular, Biomechanical, and Biochemical Aspects of the Disease

    PubMed Central

    De Groot, Veva; Van Dam, Debby; Audenaert, Kurt; Killer, Hanspeter Esriel; De Deyn, Peter Paul

    2017-01-01

    The pathophysiology of primary open-angle glaucoma is still largely unknown, although a joint contribution of vascular, biomechanical, and biochemical factors is widely acknowledged. Since glaucoma is a leading cause of irreversible blindness worldwide, exploring its underlying pathophysiological mechanisms is extremely important and challenging. Evidence from recent studies appears supportive of the hypothesis that a “glymphatic system” exists in the eye and optic nerve, analogous to the described “glymphatic system” in the brain. As discussed in the present paper, elucidation of a glymphatic clearance pathway in the eye could provide a new unifying hypothesis of glaucoma that can incorporate many aspects of the vascular, biomechanical, and biochemical theories of the disease. It should be stressed, however, that the few research data currently available cannot be considered as proof of the existence of an “ocular glymphatic system” and that much more studies are needed to validate this possibility. Even though nothing conclusive can yet be said, the recent reports suggesting a paravascular transport system in the eye and optic nerve are encouraging and, if confirmed, may offer new perspectives for the development of novel diagnostic and therapeutic strategies for this devastating disorder. PMID:28948167

  17. The Glymphatic Hypothesis of Glaucoma: A Unifying Concept Incorporating Vascular, Biomechanical, and Biochemical Aspects of the Disease.

    PubMed

    Wostyn, Peter; De Groot, Veva; Van Dam, Debby; Audenaert, Kurt; Killer, Hanspeter Esriel; De Deyn, Peter Paul

    2017-01-01

    The pathophysiology of primary open-angle glaucoma is still largely unknown, although a joint contribution of vascular, biomechanical, and biochemical factors is widely acknowledged. Since glaucoma is a leading cause of irreversible blindness worldwide, exploring its underlying pathophysiological mechanisms is extremely important and challenging. Evidence from recent studies appears supportive of the hypothesis that a "glymphatic system" exists in the eye and optic nerve, analogous to the described "glymphatic system" in the brain. As discussed in the present paper, elucidation of a glymphatic clearance pathway in the eye could provide a new unifying hypothesis of glaucoma that can incorporate many aspects of the vascular, biomechanical, and biochemical theories of the disease. It should be stressed, however, that the few research data currently available cannot be considered as proof of the existence of an "ocular glymphatic system" and that much more studies are needed to validate this possibility. Even though nothing conclusive can yet be said, the recent reports suggesting a paravascular transport system in the eye and optic nerve are encouraging and, if confirmed, may offer new perspectives for the development of novel diagnostic and therapeutic strategies for this devastating disorder.

  18. Optic nerve head biomechanics in aging and disease.

    PubMed

    Downs, J Crawford

    2015-04-01

    This nontechnical review is focused upon educating the reader on optic nerve head biomechanics in both aging and disease along two main themes: what is known about how mechanical forces and the resulting deformations are distributed in the posterior pole and ONH (biomechanics) and what is known about how the living system responds to those deformations (mechanobiology). We focus on how ONH responds to IOP elevations as a structural system, insofar as the acute mechanical response of the lamina cribrosa is confounded with the responses of the peripapillary sclera, prelaminar neural tissues, and retrolaminar optic nerve. We discuss the biomechanical basis for IOP-driven changes in connective tissues, blood flow, and cellular responses. We use glaucoma as the primary framework to present the important aspects of ONH biomechanics in aging and disease, as ONH biomechanics, aging, and the posterior pole extracellular matrix (ECM) are thought to be centrally involved in glaucoma susceptibility, onset and progression. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Optic Nerve Head Biomechanics in Aging and Disease

    PubMed Central

    Downs, J. Crawford

    2015-01-01

    This nontechnical review is focused upon educating the reader on optic nerve head biomechanics in both aging and disease along two main themes: what is known about how mechanical forces and the resulting deformations are distributed in the posterior pole and ONH (biomechanics) and what is known about how the living system responds to those deformations (mechanobiology). We focus on how ONH responds to IOP elevations as a structural system, insofar as the acute mechanical response of the lamina cribrosa is confounded with the responses of the peripapillary sclera, prelaminar neural tissues, and retrolaminar optic nerve. We discuss the biomechanical basis for IOP-driven changes in connective tissues, blood flow, and cellular responses. We use glaucoma as the primary framework to present the important aspects of ONH biomechanics in aging and disease, as ONH biomechanics, aging, and the posterior pole extracellular matrix (ECM) are thought to be centrally involved in glaucoma susceptibility, onset and progression. PMID:25819451

  20. Early Specialization in Youth Sport: A Biomechanical Perspective

    ERIC Educational Resources Information Center

    Mattson, Jeffrey M.; Richards, Jim

    2010-01-01

    This article examines, from a biomechanical perspective, three issues related to early specialization: overuse injuries, the developmental aspects, and the performance aspects. It concludes that "there is no evidence that early specialization causes overuse injuries or hinders growth and maturation." At the same time, early specialization has…

  1. Vehicle-pedestrian collisions - Aspects regarding pedestrian kinematics, dynamics and biomechanics

    NASA Astrophysics Data System (ADS)

    Petrescu, L.; Petrescu, Al

    2017-10-01

    Vehicle-pedestrian collisions result in a substantial number of pedestrian fatalities and injuries worldwide. Concern continues to limit and reduce the tragic consequences suffered by pedestrians involved in road accidents, caused the vehicle-pedestrian accident reconstruction become an important area and distinctly outlined in the reconstruction of road incidents involving vehicle. This paper analyzes the dynamics of vehicle-pedestrian impact influence over pedestrian biomechanics, which is directly connected with the severity of injury after contact with the vehicle profile and with the place where the pedestrian is projected. The main goal of this paper is to highlight some features of reconstruction of road accidents involving pedestrian, looking at the kinematics and dynamics of pedestrian impact for a better understanding of the phenomena that occur. The study on the dynamics and biomechanics of the pedestrian hit by the vehicle is useful in order to understand how the injuries, including the lethal ones, are generated in the collision, what is essential in road accidents reconstruction.

  2. Gait biomechanics in the era of data science.

    PubMed

    Ferber, Reed; Osis, Sean T; Hicks, Jennifer L; Delp, Scott L

    2016-12-08

    Data science has transformed fields such as computer vision and economics. The ability of modern data science methods to extract insights from large, complex, heterogeneous, and noisy datasets is beginning to provide a powerful complement to the traditional approaches of experimental motion capture and biomechanical modeling. The purpose of this article is to provide a perspective on how data science methods can be incorporated into our field to advance our understanding of gait biomechanics and improve treatment planning procedures. We provide examples of how data science approaches have been applied to biomechanical data. We then discuss the challenges that remain for effectively using data science approaches in clinical gait analysis and gait biomechanics research, including the need for new tools, better infrastructure and incentives for sharing data, and education across the disciplines of biomechanics and data science. By addressing these challenges, we can revolutionize treatment planning and biomechanics research by capitalizing on the wealth of knowledge gained by gait researchers over the past decades and the vast, but often siloed, data that are collected in clinical and research laboratories around the world. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Biomechanical and Hemodynamic Measures of Right Ventricular Diastolic Function: Translating Tissue Biomechanics to Clinical Relevance.

    PubMed

    Jang, Sae; Vanderpool, Rebecca R; Avazmohammadi, Reza; Lapshin, Eugene; Bachman, Timothy N; Sacks, Michael; Simon, Marc A

    2017-09-12

    Right ventricular (RV) diastolic function has been associated with outcomes for patients with pulmonary hypertension; however, the relationship between biomechanics and hemodynamics in the right ventricle has not been studied. Rat models of RV pressure overload were obtained via pulmonary artery banding (PAB; control, n=7; PAB, n=5). At 3 weeks after banding, RV hemodynamics were measured using a conductance catheter. Biaxial mechanical properties of the RV free wall myocardium were obtained to extrapolate longitudinal and circumferential elastic modulus in low and high strain regions (E 1 and E 2 , respectively). Hemodynamic analysis revealed significantly increased end-diastolic elastance (E ed ) in PAB (control: 55.1 mm Hg/mL [interquartile range: 44.7-85.4 mm Hg/mL]; PAB: 146.6 mm Hg/mL [interquartile range: 105.8-155.0 mm Hg/mL]; P =0.010). Longitudinal E 1 was increased in PAB (control: 7.2 kPa [interquartile range: 6.7-18.1 kPa]; PAB: 34.2 kPa [interquartile range: 18.1-44.6 kPa]; P =0.018), whereas there were no significant changes in longitudinal E 2 or circumferential E 1 and E 2 . Last, wall stress was calculated from hemodynamic data by modeling the right ventricle as a sphere: stress=Pressure×radius2×thickness. RV pressure overload in PAB rats resulted in an increase in diastolic myocardial stiffness reflected both hemodynamically, by an increase in E ed , and biomechanically, by an increase in longitudinal E 1 . Modest increases in tissue biomechanical stiffness are associated with large increases in E ed . Hemodynamic measurements of RV diastolic function can be used to predict biomechanical changes in the myocardium. © 2017 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.

  4. Biomechanics in dermatology: Recent advances and future directions.

    PubMed

    Lewinson, Ryan T; Haber, Richard M

    2017-02-01

    Biomechanics is increasingly being recognized as an important research area in dermatology. To highlight only a few examples, biomechanics has contributed to the development of novel topical therapies for aesthetic and medical purposes, enhanced our understanding of the pathogenesis of plantar melanoma, and provided insight into the epidemiology of psoriatic disease. This article summarizes the findings from recent studies to demonstrate the important role that biomechanics may have in dermatologic disease and therapy and places these biomechanical findings in a clinical context for the practicing physician. In addition, areas for future biomechanics research and development in dermatology are discussed. Copyright © 2016 American Academy of Dermatology, Inc. Published by Elsevier Inc. All rights reserved.

  5. Systemic lupus erythematosus: Clinical and experimental aspects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smolen, J.S.

    1987-01-01

    This text covers questions related to the history, etiology, pathogenesis, clinical aspects and therapy of systematic lupus erythematosus (SLE). Both animal models and human SLE are considered. With regard to basic science, concise information on cellular immunology, autoantibodies, viral aspects and molecular biology in SLE is provided. Clinical topics then deal with medical, dermatologic, neurologic, radiologic, pathologic, and therapeutic aspects. The book not only presents the most recent information on clinical and experimental insights, but also looks at future aspects related to the diagnosis and therapy of SLE.

  6. Single versus double-row repair of the rotator cuff: does double-row repair with improved anatomical and biomechanical characteristics lead to better clinical outcome?

    PubMed

    Pauly, Stephan; Gerhardt, Christian; Chen, Jianhai; Scheibel, Markus

    2010-12-01

    Several techniques for arthroscopic repair of rotator cuff defects have been introduced over the past years. Besides established techniques such as single-row repairs, new techniques such as double-row reconstructions have gained increasing interest. The present article therefore provides an overview of the currently available literature on both repair techniques with respect to several anatomical, biomechanical, clinical and structural endpoints. Systematic literature review of biomechanical, clinical and radiographic studies investigating or comparing single- and double-row techniques. These results were evaluated and compared to provide an overview on benefits and drawbacks of the respective repair type. Reconstructions of the tendon-to-bone unit for full-thickness tears in either single- or double-row technique differ with respect to several endpoints. Double-row repair techniques provide more anatomical reconstructions of the footprint and superior initial biomechanical characteristics when compared to single-row repair. With regard to clinical results, no significant differences were found while radiological data suggest a better structural tendon integrity following double-row fixation. Presently published clinical studies cannot emphasize a clearly superior technique at this time. Available biomechanical studies are in favour of double-row repair. Radiographic studies suggest a beneficial effect of double-row reconstruction on structural integrity of the reattached tendon or reduced recurrent defect rates, respectively.

  7. Speciation through the lens of biomechanics: locomotion, prey capture and reproductive isolation

    PubMed Central

    Rogers, Sean M.; Langerhans, R. Brian; Jamniczky, Heather A.; Lauder, George V.; Stewart, William J.; Martin, Christopher H.; Reznick, David N.

    2016-01-01

    Speciation is a multifaceted process that involves numerous aspects of the biological sciences and occurs for multiple reasons. Ecology plays a major role, including both abiotic and biotic factors. Whether populations experience similar or divergent ecological environments, they often adapt to local conditions through divergence in biomechanical traits. We investigate the role of biomechanics in speciation using fish predator–prey interactions, a primary driver of fitness for both predators and prey. We highlight specific groups of fishes, or specific species, that have been particularly valuable for understanding these dynamic interactions and offer the best opportunities for future studies that link genetic architecture to biomechanics and reproductive isolation (RI). In addition to emphasizing the key biomechanical techniques that will be instrumental, we also propose that the movement towards linking biomechanics and speciation will include (i) establishing the genetic basis of biomechanical traits, (ii) testing whether similar and divergent selection lead to biomechanical divergence, and (iii) testing whether/how biomechanical traits affect RI. Future investigations that examine speciation through the lens of biomechanics will propel our understanding of this key process. PMID:27629033

  8. Unified Approach to the Biomechanics of Dental Implantology

    NASA Technical Reports Server (NTRS)

    Grenoble, D. E.; Knoell, A. C.

    1973-01-01

    The human need for safe and effective dental implants is well-recognized. Although many implant designs have been tested and are in use today, a large number have resulted in clinical failure. These failures appear to be due to biomechanical effects, as well as biocompatibility and surgical factors. A unified approach is proposed using multidisciplinary systems technology, for the study of the biomechanical interactions between dental implants and host tissues. The approach progresses from biomechanical modeling and analysis, supported by experimental investigations, through implant design development, clinical verification, and education of the dental practitioner. The result of the biomechanical modeling, analysis, and experimental phases would be the development of scientific design criteria for implants. Implant designs meeting these criteria would be generated, fabricated, and tested in animals. After design acceptance, these implants would be tested in humans, using efficient and safe surgical and restorative procedures. Finally, educational media and instructional courses would be developed for training dental practitioners in the use of the resulting implants.

  9. Mathematical foundations of biomechanics.

    PubMed

    Niederer, Peter F

    2010-01-01

    The aim of biomechanics is the analysis of the structure and function of humans, animals, and plants by means of the methods of mechanics. Its foundations are in particular embedded in mathematics, physics, and informatics. Due to the inherent multidisciplinary character deriving from its aim, biomechanics has numerous connections and overlapping areas with biology, biochemistry, physiology, and pathophysiology, along with clinical medicine, so its range is enormously wide. This treatise is mainly meant to serve as an introduction and overview for readers and students who intend to acquire a basic understanding of the mathematical principles and mechanics that constitute the foundation of biomechanics; accordingly, its contents are limited to basic theoretical principles of general validity and long-range significance. Selected examples are included that are representative for the problems treated in biomechanics. Although ultimate mathematical generality is not in the foreground, an attempt is made to derive the theory from basic principles. A concise and systematic formulation is thereby intended with the aim that the reader is provided with a working knowledge. It is assumed that he or she is familiar with the principles of calculus, vector analysis, and linear algebra.

  10. Premise and Prediction – How Optic Nerve Head Biomechanics Underlies the Susceptibility and Clinical Behavior of the Aged Optic Nerve Head

    PubMed Central

    Burgoyne, Claude F.; Downs, J. Crawford

    2009-01-01

    We propose that age-related alterations in optic nerve head (ONH) biomechanics underlie the clinical behavior and increased susceptibility of the aged ONH to glaucomatous damage. The literature which suggests that the aged ONH is more susceptible to glaucomatous damage at all levels of intraocular pressure is reviewed. The relevant biomechanics of the aged ONH are discussed and a biomechanical explanation for why, on average, the stiffened peripapillary scleral and lamina cribrosa connective tissues of the aged eye should lead to a shallow (senile sclerotic) form of cupping is proposed. A logic for why age-related axon loss and the optic neuropathy of glaucoma in the aged eye may overlap is discussed. Finally, we argue for a need to characterize all forms of clinical cupping into prelaminar and laminar components so as to add precision to the discussion of clinical cupping which does not currently exist. Such characterization may lead to the early detection of ONH axonal and connective tissue pathology in ocular hypertension and eventually aid in the assessment of etiology in all forms of optic neuropathy including those that may be purely age-related. PMID:18552618

  11. Plantar Fasciitis and the Windlass Mechanism: A Biomechanical Link to Clinical Practice

    PubMed Central

    Malone, Terry R.

    2004-01-01

    Objective: Plantar fasciitis is a prevalent problem, with limited consensus among clinicians regarding the most effective treatment. The purpose of this literature review is to provide a systematic approach to the treatment of plantar fasciitis based on the windlass mechanism model. Data Sources: We searched MEDLINE, SPORT Discus, and CINAHL from 1966 to 2003 using the key words plantar fasciitis, windlass mechanism, pronation, heel pain, and heel spur. Data Synthesis: We offer a biomechanical application for the evaluation and treatment of plantar fasciitis based on a review of the literature for the windlass mechanism model. This model provides a means for describing plantar fasciitis conditions such that clinicians can formulate a potential causal relationship between the conditions and their treatments. Conclusions/Recommendations: Clinicians' understanding of the biomechanical causes of plantar fasciitis should guide the decision-making process concerning the evaluation and treatment of heel pain. Use of this approach may improve clinical outcomes because intervention does not merely treat physical symptoms but actively addresses the influences that resulted in the condition. Principles from this approach might also provide a basis for future research investigating the efficacy of plantar fascia treatment. PMID:16558682

  12. Speciation through the lens of biomechanics: locomotion, prey capture and reproductive isolation.

    PubMed

    Higham, Timothy E; Rogers, Sean M; Langerhans, R Brian; Jamniczky, Heather A; Lauder, George V; Stewart, William J; Martin, Christopher H; Reznick, David N

    2016-09-14

    Speciation is a multifaceted process that involves numerous aspects of the biological sciences and occurs for multiple reasons. Ecology plays a major role, including both abiotic and biotic factors. Whether populations experience similar or divergent ecological environments, they often adapt to local conditions through divergence in biomechanical traits. We investigate the role of biomechanics in speciation using fish predator-prey interactions, a primary driver of fitness for both predators and prey. We highlight specific groups of fishes, or specific species, that have been particularly valuable for understanding these dynamic interactions and offer the best opportunities for future studies that link genetic architecture to biomechanics and reproductive isolation (RI). In addition to emphasizing the key biomechanical techniques that will be instrumental, we also propose that the movement towards linking biomechanics and speciation will include (i) establishing the genetic basis of biomechanical traits, (ii) testing whether similar and divergent selection lead to biomechanical divergence, and (iii) testing whether/how biomechanical traits affect RI. Future investigations that examine speciation through the lens of biomechanics will propel our understanding of this key process. © 2016 The Author(s).

  13. Biomechanical aspects of lower limb torsional deformation correction with the Ilizarov external fixator.

    PubMed

    Morasiewicz, Piotr; Filipiak, Jarosław; Krysztoforski, Krzysztof; Dragan, Szymon

    2014-03-01

    The correction of torsional deformities with the Ilizarov apparatus is accompanied by rotational and translational displacement, which affects the biomechanics of the bone fragments. Understanding the biomechanical factors will assist in designing the optimal treatment strategy and mechanical properties of the fixator, thus shortening the duration of treatment and improving the outcomes. In order to determine the impact of different types of derotators on the kinematics of bone fragments in Ilizarov apparatus, physical models were studied. Translational and derotational displacement was measured using non-contact method (Optotrak Certus Motion Capture System). The results of the studies conducted on physical models have shown that regardless of the type of the derotator, the divergence between the applied angle of derotation and the obtained angle of rotation relative to fragments needs to be taken into account. Transverse displacement of fragments occur by 3.5 mm to approximately 9 mm, depending on the angle of derotation. For correction of rotational deformities up to 30°, it is advisable to use the type Z derotators because of its higher accuracy of derotation. Different types of derotators can affect the biomechanical conditions in the regenerating bone tissue through different kinematics characteristics.

  14. Anterior Cruciate Ligament Biomechanics During Robotic and Mechanical Simulations of Physiologic and Clinical Motion Tasks: A Systematic Review and Meta-Analysis

    PubMed Central

    Bates, Nathaniel A.; Myer, Gregory D.; Shearn, Jason T.; Hewett, Timothy E.

    2014-01-01

    Investigators use in vitro joint simulations to invasively study the biomechanical behaviors of the anterior cruciate ligament. The aims of these simulations are to replicate physiologic conditions, but multiple mechanisms can be used to drive in vitro motions, which may influence biomechanical outcomes. The objective of this review was to examine, summarize, and compare biomechanical evidence related to anterior cruciate ligament function from in vitro simulations of knee motion. A systematic review was conducted (2004 to 2013) in Scopus, PubMed/Medline, and SPORTDiscus to identify peer-reviewed studies that reported kinematic and kinetic outcomes from in vitro simulations of physiologic or clinical tasks at the knee. Inclusion criteria for relevant studies were articles published in English that reported on whole-ligament anterior cruciate ligament mechanics during the in vitro simulation of physiologic or clinical motions on cadaveric knees that were unaltered outside of the anterior-cruciate-ligament-intact, -deficient, and -reconstructed conditions. A meta-analysis was performed to synthesize biomechanical differences between the anterior-cruciate-ligament-intact and reconstructed conditions. 77 studies met our inclusion/exclusion criteria and were reviewed. Combined joint rotations have the greatest impact on anterior cruciate ligament loads, but the magnitude by which individual kinematic degrees of freedom contribute to ligament loading during in vitro simulations is technique-dependent. Biomechanical data collected in prospective, longitudinal studies corresponds better with robotic-manipulator simulations than mechanical-impact simulations. Robotic simulation indicated that the ability to restore intact anterior cruciate ligament mechanics with anterior cruciate ligament reconstructions was dependent on loading condition and degree of freedom examined. PMID:25547070

  15. Ethical aspects of clinical chemistry.

    PubMed Central

    BenGershôm, E

    1983-01-01

    The work performed by the clinical chemist may deeply affect the decisions of the doctor and the well-being of the patient. Yet in contrast to the doctor and to the nurse the clinical chemist usually has no personal relationship with the patient. Being encumbered by much technology and anonymity is itself a reason for scrutinising his involvement in issues of health care ethics. This is an attempt at clarifying some major aspects: the relationship of his professional ethics to medical ethics as a whole, his ethical obligations to the patient and to society, and other aspects. PMID:6199500

  16. Corneal Biomechanics in Ectatic Diseases: Refractive Surgery Implications

    PubMed Central

    Ambrósio, Jr, Renato; Correia, Fernando Faria; Lopes, Bernardo; Salomão, Marcella Q.; Luz, Allan; Dawson, Daniel G.; Elsheikh, Ahmed; Vinciguerra, Riccardo; Vinciguerra, Paolo; Roberts, Cynthia J.

    2017-01-01

    Background: Ectasia development occurs due to a chronic corneal biomechanical decompensation or weakness, resulting in stromal thinning and corneal protrusion. This leads to corneal steepening, increase in astigmatism, and irregularity. In corneal refractive surgery, the detection of mild forms of ectasia pre-operatively is essential to avoid post-operative progressive ectasia, which also depends on the impact of the procedure on the cornea. Method: The advent of 3D tomography is proven as a significant advancement to further characterize corneal shape beyond front surface topography, which is still relevant. While screening tests for ectasia had been limited to corneal shape (geometry) assessment, clinical biomechanical assessment has been possible since the introduction of the Ocular Response Analyzer (Reichert Ophthalmic Instruments, Buffalo, USA) in 2005 and the Corvis ST (Oculus Optikgeräte GmbH, Wetzlar, Germany) in 2010. Direct clinical biomechanical evaluation is recognized as paramount, especially in detection of mild ectatic cases and characterization of the susceptibility for ectasia progression for any cornea. Conclusions: The purpose of this review is to describe the current state of clinical evaluation of corneal biomechanics, focusing on the most recent advances of commercially available instruments and also on future developments, such as Brillouin microscopy. PMID:28932334

  17. Biomechanical forces promote embryonic haematopoiesis

    PubMed Central

    Adamo, Luigi; Naveiras, Olaia; Wenzel, Pamela L.; McKinney-Freeman, Shannon; Mack, Peter J.; Gracia-Sancho, Jorge; Suchy-Dicey, Astrid; Yoshimoto, Momoko; Lensch, M. William; Yoder, Mervin C.; García-Cardeña, Guillermo; Daley, George Q.

    2009-01-01

    Biomechanical forces are emerging as critical regulators of embryogenesis, particularly in the developing cardiovascular system1,2. After initiation of the heartbeat in vertebrates, cells lining the ventral aspect of the dorsal aorta, the placental vessels, and the umbilical and vitelline arteries initiate expression of the transcription factor Runx1 (refs 3–5), a master regulator of haematopoiesis, and give rise to haematopoietic cells4. It remains unknown whether the biomechanical forces imposed on the vascular wall at this developmental stage act as a determinant of haematopoietic potential6. Here, using mouse embryonic stem cells differentiated in vitro, we show that fluid shear stress increases the expression of Runx1 in CD41+c-Kit+ haematopoietic progenitor cells7,concomitantly augmenting their haematopoietic colony-forming potential. Moreover, we find that shear stress increases haematopoietic colony-forming potential and expression of haematopoietic markers in the paraaortic splanchnopleura/aorta–gonads–mesonephros of mouse embryos and that abrogation of nitric oxide, a mediator of shear-stress-induced signalling8, compromises haematopoietic potential in vitro and in vivo. Collectively, these data reveal a critical role for biomechanical forces in haematopoietic development. PMID:19440194

  18. CURRENT CONCEPTS IN BIOMECHANICAL INTERVENTIONS FOR PATELLOFEMORAL PAIN

    PubMed Central

    Meira, Erik P.

    2016-01-01

    Patellofemoral pain (PFP) has historically been a complex and enigmatic issue. Many of the factors thought to relate to PFP remain after patients' symptoms have resolved making their clinical importance difficult to determine. The tissue homeostasis model proposed by Dye in 2005 can assist with understanding and implementing biomechanical interventions for PFP. Under this model, the goal of interventions for PFP should be to re-establish patellofemoral joint (PFJ) homeostasis through a temporary alteration of load to the offended tissue, followed by incrementally restoring the envelope of function to the baseline level or higher. High levels of PFJ loads, particularly in the presence of an altered PFJ environment, are thought to be a factor in the development of PFP. Clinical interventions often aim to alter the biomechanical patterns that are thought to result in elevated PFJ loads while concurrently increasing the load tolerance capabilities of the tissue through therapeutic exercise. Biomechanics may play a role in PFJ load modification not only when addressing proximal and distal components, but also when considering the involvement of more local factors such as the quadriceps musculature. Biomechanical considerations should consider the entire kinetic chain including the hip and the foot/ankle complex, however the beneficial effects of these interventions may not be the result of long-term biomechanical changes. Biomechanical alterations may be achieved through movement retraining, but the interventions likely need to be task-specific to alter movement patterns. The purpose of this commentary is to describe biomechanical interventions for the athlete with PFP to encourage a safe and complete return to sport. Level of Evidence 5 PMID:27904791

  19. Physical modelling in biomechanics.

    PubMed Central

    Koehl, M A R

    2003-01-01

    Physical models, like mathematical models, are useful tools in biomechanical research. Physical models enable investigators to explore parameter space in a way that is not possible using a comparative approach with living organisms: parameters can be varied one at a time to measure the performance consequences of each, while values and combinations not found in nature can be tested. Experiments using physical models in the laboratory or field can circumvent problems posed by uncooperative or endangered organisms. Physical models also permit some aspects of the biomechanical performance of extinct organisms to be measured. Use of properly scaled physical models allows detailed physical measurements to be made for organisms that are too small or fast to be easily studied directly. The process of physical modelling and the advantages and limitations of this approach are illustrated using examples from our research on hydrodynamic forces on sessile organisms, mechanics of hydraulic skeletons, food capture by zooplankton and odour interception by olfactory antennules. PMID:14561350

  20. Microfluidic analysis of oocyte and embryo biomechanical properties to improve outcomes in assisted reproductive technologies.

    PubMed

    Yanez, Livia Z; Camarillo, David B

    2017-04-01

    Measurement of oocyte and embryo biomechanical properties has recently emerged as an exciting new approach to obtain a quantitative, objective estimate of developmental potential. However, many traditional methods for probing cell mechanical properties are time consuming, labor intensive and require expensive equipment. Microfluidic technology is currently making its way into many aspects of assisted reproductive technologies (ART), and is particularly well suited to measure embryo biomechanics due to the potential for robust, automated single-cell analysis at a low cost. This review will highlight microfluidic approaches to measure oocyte and embryo mechanics along with their ability to predict developmental potential and find practical application in the clinic. Although these new devices must be extensively validated before they can be integrated into the existing clinical workflow, they could eventually be used to constantly monitor oocyte and embryo developmental progress and enable more optimal decision making in ART. © The Author 2016. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  1. Recent microfluidic devices for studying gamete and embryo biomechanics.

    PubMed

    Lai, David; Takayama, Shuichi; Smith, Gary D

    2015-06-25

    The technical challenges of biomechanic research such as single cell analysis at a high monetary cost, labor, and time for just a small number of measurements is a good match to the strengths of microfluidic devices. New scientific discoveries in the fertilization and embryo development process, of which biomechanics is a major subset of interest, is crucial to fuel the continual improvement of clinical practice in assisted reproduction. The following review will highlight some recent microfluidic devices tailored for gamete and embryo biomechanics where biomimicry arises as a major theme of microfluidic device design and function, and the application of fundamental biomechanic principles are used to improve outcomes of cryopreservation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Biomechanics and mechanobiology in functional tissue engineering

    PubMed Central

    Guilak, Farshid; Butler, David L.; Goldstein, Steven A.; Baaijens, Frank P.T.

    2014-01-01

    The field of tissue engineering continues to expand and mature, and several products are now in clinical use, with numerous other preclinical and clinical studies underway. However, specific challenges still remain in the repair or regeneration of tissues that serve a predominantly biomechanical function. Furthermore, it is now clear that mechanobiological interactions between cells and scaffolds can critically influence cell behavior, even in tissues and organs that do not serve an overt biomechanical role. Over the past decade, the field of “functional tissue engineering” has grown as a subfield of tissue engineering to address the challenges and questions on the role of biomechanics and mechanobiology in tissue engineering. Originally posed as a set of principles and guidelines for engineering of load-bearing tissues, functional tissue engineering has grown to encompass several related areas that have proven to have important implications for tissue repair and regeneration. These topics include measurement and modeling of the in vivo biomechanical environment; quantitative analysis of the mechanical properties of native tissues, scaffolds, and repair tissues; development of rationale criteria for the design and assessment of engineered tissues; investigation of the effects biomechanical factors on native and repair tissues, in vivo and in vitro; and development and application of computational models of tissue growth and remodeling. Here we further expand this paradigm and provide examples of the numerous advances in the field over the past decade. Consideration of these principles in the design process will hopefully improve the safety, efficacy, and overall success of engineered tissue replacements. PMID:24818797

  3. Biomechanics and mechanobiology in functional tissue engineering.

    PubMed

    Guilak, Farshid; Butler, David L; Goldstein, Steven A; Baaijens, Frank P T

    2014-06-27

    The field of tissue engineering continues to expand and mature, and several products are now in clinical use, with numerous other preclinical and clinical studies underway. However, specific challenges still remain in the repair or regeneration of tissues that serve a predominantly biomechanical function. Furthermore, it is now clear that mechanobiological interactions between cells and scaffolds can critically influence cell behavior, even in tissues and organs that do not serve an overt biomechanical role. Over the past decade, the field of "functional tissue engineering" has grown as a subfield of tissue engineering to address the challenges and questions on the role of biomechanics and mechanobiology in tissue engineering. Originally posed as a set of principles and guidelines for engineering of load-bearing tissues, functional tissue engineering has grown to encompass several related areas that have proven to have important implications for tissue repair and regeneration. These topics include measurement and modeling of the in vivo biomechanical environment; quantitative analysis of the mechanical properties of native tissues, scaffolds, and repair tissues; development of rationale criteria for the design and assessment of engineered tissues; investigation of the effects biomechanical factors on native and repair tissues, in vivo and in vitro; and development and application of computational models of tissue growth and remodeling. Here we further expand this paradigm and provide examples of the numerous advances in the field over the past decade. Consideration of these principles in the design process will hopefully improve the safety, efficacy, and overall success of engineered tissue replacements. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Biomechanics of compensatory mechanisms in spinal-pelvic complex

    NASA Astrophysics Data System (ADS)

    Ivanov, D. V.; Hominets, V. V.; Kirillova, I. V.; Kossovich, L. Yu; Kudyashev, A. L.; Teremshonok, A. V.

    2018-04-01

    3D geometric solid computer model of spinal-pelvic complex was constructed on the basis of computed tomography and full body X-ray in standing position data. The constructed model was used for biomechanical analysis of compensatory mechanisms arising in the spine with anteversion and retroversion of the pelvis. The results of numerical biomechanical 3D modeling are in good agreement with the clinical data.

  5. Arch index and running biomechanics in children aged 10-14 years.

    PubMed

    Hollander, Karsten; Stebbins, Julie; Albertsen, Inke Marie; Hamacher, Daniel; Babin, Kornelia; Hacke, Claudia; Zech, Astrid

    2018-03-01

    While altered foot arch characteristics (high or low) are frequently assumed to influence lower limb biomechanics and are suspected to be a contributing factor for injuries, the association between arch characteristics and lower limb running biomechanics in children is unclear. Therefore, the aim of this study was to investigate the relationship between a dynamically measured arch index and running biomechanics in healthy children. One hundred and one children aged 10-14 years were included in this study and underwent a biomechanical investigation. Plantar distribution (Novel, Emed) was used to determine the dynamic arch index and 3D motion capture (Vicon) to measure running biomechanics. Linear mixed models were established to determine the association between dynamic arch index and foot strike patterns, running kinematics, kinetics and temporal-spatial outcomes. No association was found between dynamic arch index and rate of rearfoot strikes (p = 0.072). Of all secondary outcomes, only the foot progression angle was associated with the dynamic arch index (p = 0.032) with greater external rotation in lower arched children. Overall, we found only few associations between arch characteristics and running biomechanics in children. However, altered foot arch characteristics are of clinical interest. Future studies should focus on detailed foot biomechanics and include clinically diagnosed high and low arched children. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Editorial Commentary: All-Suture Anchors, Foam Blocks, and Biomechanical Testing.

    PubMed

    Brand, Jefferson C

    2017-06-01

    Barber's biomechanical work is well known to Arthroscopy's readers as thorough, comprehensive, and inclusive of new designs as they become available. In "All-Suture Anchors: Biomechanical Analysis of Pullout Strength, Displacement, and Failure Mode," the latest iteration, Barber and Herbert test all-suture anchors in both porcine femurs and biphasic foam. While we await in vivo clinical trials that compare all-suture anchors to currently used anchors, Barber and Herbert have provided data to inform anchor choice, and using their biomechanical data at time zero from all-suture anchor trials in an animal model, we can determine the anchors' feasibility for human clinical investigations. Copyright © 2017 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.

  7. Psychological and Biomechanical Aspects of Patient Adaptation to Diabetic Neuropathy and Foot Ulceration.

    PubMed

    Vileikyte, Loretta; Crews, Ryan T; Reeves, Neil D

    2017-09-23

    The purpose of this review was to elucidate how psychological and biomechanical factors interrelate in shaping patients' experience with diabetic symmetric polyneuropathy (DSPN) and its sequela-diabetic foot ulceration (DFU). Recent findings emphasize the importance not only of neuropathic pain but also of other DSPN symptoms, such as unsteadiness. We highlight the negative spiral between unsteadiness, falls, and psychological distress. Moreover, unsteadiness is a key determinant of non-adherence to offloading resulting in the delayed DFU healing. While depression is an established predictor of incident DFU, findings linking depression and DFU healing remain inconclusive. Examination of physical activity in DFU development and healing represents the most recent application of research to this field. Research evidence indicates that DSPN markedly impairs physical and emotional functioning and suggests that there is an unmet need for the development of multifaceted interventions that address both psychological distress and biomechanical challenges experienced by patients with this debilitating complication of diabetes.

  8. Scapula fracture incidence in reverse total shoulder arthroplasty using screws above or below metaglene central cage: clinical and biomechanical outcomes.

    PubMed

    Kennon, Justin C; Lu, Caroline; McGee-Lawrence, Meghan E; Crosby, Lynn A

    2017-06-01

    Reverse total shoulder arthroplasty (RTSA) is a viable treatment option for rotator cuff tear arthropathy but carries a complication risk of scapular fracture. We hypothesized that using screws above the central glenoid axis for metaglene fixation creates a stress riser contributing to increased scapula fracture incidence. Clinical type III scapular fracture incidence was determined with screw placement correlation: superior screw vs. screws placed exclusively below the glenoid midpoint. Cadaveric RTSA biomechanical modeling was employed to analyze scapular fractures. We reviewed 318 single-surgeon single-implant RTSAs with screw correlation to identify type III scapular fractures. Seventeen cadaveric scapula specimens were matched for bone mineral density, metaglenes implanted, and fixation with 2 screw configurations: inferior screws alone (group 1 INF ) vs. inferior screws with one additional superior screw (group 2 SUP ). Biomechanical load to failure was analyzed. Of 206 patients, 9 (4.4%) from the superior screw group experienced scapula fractures (type III); 0 fractures (0/112; 0%) were identified in the inferior screw group. Biomechanically, superior screw constructs (group 2 SUP ) demonstrated significantly (P < .05) lower load to failure (1077 N vs. 1970 N) compared with constructs with no superior screws (group 1 INF ). There was no significant age or bone mineral density discrepancy. Clinical scapular fracture incidence significantly decreased (P < .05) for patients with no screws placed above the central cage compared with patients with superior metaglene screws. Biomechanical modeling demonstrates significant construct compromise when screws are used above the central cage, fracturing at nearly half the ultimate load of the inferior screw constructs. We recommend use of inferior screws, all positioned below the central glenoid axis, unless necessary to stabilize the metaglene construct. Copyright © 2016 Journal of Shoulder and Elbow Surgery

  9. Occlusal considerations in implant therapy: clinical guidelines with biomechanical rationale.

    PubMed

    Kim, Yongsik; Oh, Tae-Ju; Misch, Carl E; Wang, Hom-Lay

    2005-02-01

    Due to lack of the periodontal ligament, osseointegrated implants, unlike natural teeth, react biomechanically in a different fashion to occlusal force. It is therefore believed that dental implants may be more prone to occlusal overloading, which is often regarded as one of the potential causes for peri-implant bone loss and failure of the implant/implant prosthesis. Overloading factors that may negatively influence on implant longevity include large cantilevers, parafunctions, improper occlusal designs, and premature contacts. Hence, it is important to control implant occlusion within physiologic limit and thus provide optimal implant load to ensure a long-term implant success. The purposes of this paper are to discuss the importance of implant occlusion for implant longevity and to provide clinical guidelines of optimal implant occlusion and possible solutions managing complications related to implant occlusion. It must be emphasized that currently there is no evidence-based, implant-specific concept of occlusion. Future studies in this area are needed to clarify the relationship between occlusion and implant success.

  10. Compliant flooring to prevent fall-related injuries in older adults: A scoping review of biomechanical efficacy, clinical effectiveness, cost-effectiveness, and workplace safety

    PubMed Central

    Jurkowski, Michal P.; Dymarz, Ania C.; Robinovitch, Stephen N.; Feldman, Fabio; Laing, Andrew C.; Mackey, Dawn C.

    2017-01-01

    Background Compliant flooring, broadly defined as flooring systems or floor coverings with some level of shock absorbency, may reduce the incidence and severity of fall-related injuries in older adults; however, a lack of synthesized evidence may be limiting widespread uptake. Methods Informed by the Arksey and O’Malley framework and guided by a Research Advisory Panel of knowledge users, we conducted a scoping review to answer: what is presented about the biomechanical efficacy, clinical effectiveness, cost-effectiveness, and workplace safety associated with compliant flooring systems that aim to prevent fall-related injuries in healthcare settings? We searched academic and grey literature databases. Any record that discussed a compliant flooring system and at least one of biomechanical efficacy, clinical effectiveness, cost-effectiveness, or workplace safety was eligible for inclusion. Two independent reviewers screened and abstracted records, charted data, and summarized results. Results After screening 3611 titles and abstracts and 166 full-text articles, we included 84 records plus 56 companion (supplementary) reports. Biomechanical efficacy records (n = 50) demonstrate compliant flooring can reduce fall-related impact forces with minimal effects on standing and walking balance. Clinical effectiveness records (n = 20) suggest that compliant flooring may reduce injuries, but may increase risk for falls. Preliminary evidence suggests that compliant flooring may be a cost-effective strategy (n = 12), but may also result in increased physical demands for healthcare workers (n = 17). Conclusions In summary, compliant flooring is a promising strategy for preventing fall-related injuries from a biomechanical perspective. Additional research is warranted to confirm whether compliant flooring (i) prevents fall-related injuries in real-world settings, (ii) is a cost-effective intervention strategy, and (iii) can be installed without negatively impacting workplace

  11. Compliant flooring to prevent fall-related injuries in older adults: A scoping review of biomechanical efficacy, clinical effectiveness, cost-effectiveness, and workplace safety.

    PubMed

    Lachance, Chantelle C; Jurkowski, Michal P; Dymarz, Ania C; Robinovitch, Stephen N; Feldman, Fabio; Laing, Andrew C; Mackey, Dawn C

    2017-01-01

    Compliant flooring, broadly defined as flooring systems or floor coverings with some level of shock absorbency, may reduce the incidence and severity of fall-related injuries in older adults; however, a lack of synthesized evidence may be limiting widespread uptake. Informed by the Arksey and O'Malley framework and guided by a Research Advisory Panel of knowledge users, we conducted a scoping review to answer: what is presented about the biomechanical efficacy, clinical effectiveness, cost-effectiveness, and workplace safety associated with compliant flooring systems that aim to prevent fall-related injuries in healthcare settings? We searched academic and grey literature databases. Any record that discussed a compliant flooring system and at least one of biomechanical efficacy, clinical effectiveness, cost-effectiveness, or workplace safety was eligible for inclusion. Two independent reviewers screened and abstracted records, charted data, and summarized results. After screening 3611 titles and abstracts and 166 full-text articles, we included 84 records plus 56 companion (supplementary) reports. Biomechanical efficacy records (n = 50) demonstrate compliant flooring can reduce fall-related impact forces with minimal effects on standing and walking balance. Clinical effectiveness records (n = 20) suggest that compliant flooring may reduce injuries, but may increase risk for falls. Preliminary evidence suggests that compliant flooring may be a cost-effective strategy (n = 12), but may also result in increased physical demands for healthcare workers (n = 17). In summary, compliant flooring is a promising strategy for preventing fall-related injuries from a biomechanical perspective. Additional research is warranted to confirm whether compliant flooring (i) prevents fall-related injuries in real-world settings, (ii) is a cost-effective intervention strategy, and (iii) can be installed without negatively impacting workplace safety. Avenues for future research are

  12. Biomechanics of metastatic disease in the vertebral column.

    PubMed

    Whyne, Cari M

    2014-06-01

    Metastatic disease in the vertebral column compromises the structural stability of the spine leading to increased risk of fracture. The complex patterns of osteolytic and osteoblastic disease within the bony spine have motivated a multimodal approach to better characterize the biomechanics of tumor-involved bone. This review presents our current understanding of the biomechanical behavior of metastatically involved vertebrae, and experimental and computational image-based approaches that have been employed to quantify structural integrity in preclinical models with translation to clinical data sets.

  13. Surgical options for lumbosacral fusion: biomechanical stability, advantage, disadvantage and affecting factors in selecting options.

    PubMed

    Yoshihara, Hiroyuki

    2014-07-01

    Numerous surgical procedures and instrumentation techniques for lumbosacral fusion (LSF) have been developed. This is probably because of its high mechanical demand and unique anatomy. Surgical options include anterior column support (ACS) and posterior stabilization procedures. Biomechanical studies have been performed to verify the stability of those options. The options have their own advantage but also disadvantage aspects. This review article reports the surgical options for lumbosacral fusion, their biomechanical stability, advantages/disadvantages, and affecting factors in option selection. Review of literature. LSF has lots of options both for ACS and posterior stabilization procedures. Combination of posterior stabilization procedures is an option. Furthermore, combinations of ACS and posterior stabilization procedures are other options. It is difficult to make a recommendation or treatment algorithm of LSF from the current literature. However, it is important to know all aspects of the options and decision-making of surgical options for LSF needs to be tailored for each patient, considering factors such as biomechanical stress and osteoporosis.

  14. Tularaemia: clinical aspects in Europe.

    PubMed

    Maurin, Max; Gyuranecz, Miklós

    2016-01-01

    Tularaemia is a zoonotic disease caused by Francisella tularensis, a Gram-negative, facultative intracellular bacterium. Typically, human and animal infections are caused by F tularensis subspecies tularensis (type A) strains mainly in Canada and USA, and F tularensis subspecies holarctica (type B) strains throughout the northern hemisphere, including Europe. In the past, the epidemiological, clinical, therapeutic, and prognostic aspects of tularaemia reported in the English medical literature were mainly those that had been reported in the USA, where the disease was first described. Tularaemia has markedly changed in the past decade, and a large number of studies have provided novel data for the disease characteristics in Europe. In this Review we aim to emphasise the specific and variable aspects of tularaemia in different European countries. In particular, two natural lifecycles of F tularensis have been described in this continent, although not fully characterised, which are associated with different modes of transmission, clinical features, and public health burdens of tularaemia. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Why National Biomechanics Day?

    PubMed

    DeVita, Paul

    2018-04-11

    National Biomechanics Day (NBD) seeks to expand the influence and impact of Biomechanics on our society by expanding the awareness of Biomechanics among young people. NBD will manifest this goal through worldwide, synchronized and coordinated celebrations and demonstrations of all things Biomechanics with high school students. NBD invites all Biomechanists to participate in NBD 2018, http://nationalbiomechanicsday.asbweb.org/. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Vesicle biomechanics in a time-varying magnetic field.

    PubMed

    Ye, Hui; Curcuru, Austen

    2015-01-01

    Cells exhibit distortion when exposed to a strong electric field, suggesting that the field imposes control over cellular biomechanics. Closed pure lipid bilayer membranes (vesicles) have been widely used for the experimental and theoretical studies of cellular biomechanics under this electrodeformation. An alternative method used to generate an electric field is by electromagnetic induction with a time-varying magnetic field. References reporting the magnetic control of cellular mechanics have recently emerged. However, theoretical analysis of the cellular mechanics under a time-varying magnetic field is inadequate. We developed an analytical theory to investigate the biomechanics of a modeled vesicle under a time-varying magnetic field. Following previous publications and to simplify the calculation, this model treated the inner and suspending media as lossy dielectrics, the membrane thickness set at zero, and the electric resistance of the membrane assumed to be negligible. This work provided the first analytical solutions for the surface charges, electric field, radial pressure, overall translational forces, and rotational torques introduced on a vesicle by the time-varying magnetic field. Frequency responses of these measures were analyzed, particularly the frequency used clinically by transcranial magnetic stimulation (TMS). The induced surface charges interacted with the electric field to produce a biomechanical impact upon the vesicle. The distribution of the induced surface charges depended on the orientation of the coil and field frequency. The densities of these charges were trivial at low frequency ranges, but significant at high frequency ranges. The direction of the radial force on the vesicle was dependent on the conductivity ratio between the vesicle and the medium. At relatively low frequencies (<200 KHz), including the frequency used in TMS, the computed radial pressure and translational forces on the vesicle were both negligible. This work

  17. Invertebrate biomechanics.

    PubMed

    Patek, S N; Summers, A P

    2017-05-22

    Invertebrate biomechanics focuses on mechanical analyses of non-vertebrate animals, which at root is no different in aim and technique from vertebrate biomechanics, or for that matter the biomechanics of plants and fungi. But invertebrates are special - they are fabulously diverse in form, habitat, and ecology and manage this without the use of hard, internal skeletons. They are also numerous and, in many cases, tractable in an experimental and field setting. In this Primer, we will probe three axes of invertebrate diversity: worms (Phylum Annelida), spiders (Class Arachnida) and insects (Class Insecta); three habitats: subterranean, terrestrial and airborne; and three integrations with other fields: ecology, engineering and evolution. Our goal is to capture the field of invertebrate biomechanics, which has blossomed from having a primary focus on discoveries at the interface of physics and biology to being inextricably linked with integrative challenges that span biology, physics, mathematics and engineering. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Designing a biomechanics investigation: choosing the right model.

    PubMed

    Olson, Steven A; Marsh, J Lawrence; Anderson, Donald D; Latta Pe, Loren L

    2012-12-01

    Physical testing is commonly performed to answer important biomechanical questions in the treatment of patients with fractures and other orthopaedic conditions. However, a variety of mistakes that are made in performing such investigations can severely limit their impact. The goal of this article is to discuss important aspects of study design to consider when planning for biomechanical investigations so that the studies can provide maximal benefit to the field. The best mechanical investigations begin with a good research question, one that comes out of patient care experience, is clearly defined, and can be stated concisely. The first practical issue to be considered is often choosing the type of physical specimens to be tested to address the research question. A related issue involves determining how many specimens will be needed to answer the posed mechanical question. Cadavers are generally still the closest to the actual clinical situation, but they are limited by interspecimen variability, which often requires a matched pair design that can address only one question. Simulated bone specimens limit variability and can replicate normal and osteoporotic bone. In planning the physical testing, the critical mechanical variables involved in answering the research question must be identified and due consideration given to deciding how best to measure them. Another important issue that arises relates to whether or not single static loadings will suffice in the testing (eg, to study construct stiffness) or whether cyclic dynamic testing is necessary (eg, to study late failure likely attributable to fatigue). To summarize, experimental design should be carefully planned before initiating mechanical testing. Sample size calculations should be performed to ensure adequate power and that clinically relevant differences can be detected. This pregame analysis can save significant time and cost and greatly increase the likelihood that the results will advance knowledge.

  19. Research Techniques in Biomechanics.

    ERIC Educational Resources Information Center

    Ward, Terry

    Biomechanics involves the biological human beings interacting with his/her mechanical environment. Biomechanics research is being done in connection with sport, physical education, and general motor behavior, and concerns mechanics independent of implements. Biomechanics research falls in the following two general categories: (1) that specific…

  20. Tennis elbow: a biomechanical and therapeutic approach.

    PubMed

    Schnatz, P; Steiner, C

    1993-07-01

    Lateral epicondylitis, one of the most common lesions of the arm, affects some 50% of tennis players. This condition poses a problem in clinical management because treatment is dependent not only on proper medical therapy but also on correction of the improper on-court biomechanics. The most common flaw is a late contact on the backhand groundstroke, forcing the player to extend the wrist with the extensor muscles. This action predisposes to trauma of the tendon fibers at the lateral epicondyle. Understanding the biomechanics will better prepare the physician to advise the patient and to communicate with a tennis teaching professional to facilitate long-term relief.

  1. Posterior cruciate ligament: anatomy, biomechanics, and outcomes.

    PubMed

    Voos, James E; Mauro, Craig S; Wente, Todd; Warren, Russell F; Wickiewicz, Thomas L

    2012-01-01

    The optimal treatment of posterior cruciate ligament ruptures remains controversial despite numerous recent basic science advances on the topic. The current literature on the anatomy, biomechanics, and clinical outcomes of posterior cruciate ligament reconstruction is reviewed. Recent studies have quantified the anatomic location and biomechanical contribution of each of the 2 posterior cruciate ligament bundles on tunnel placement and knee kinematics during reconstruction. Additional laboratory and cadaveric studies have suggested double-bundle reconstructions of the posterior cruciate ligament may better restore normal knee kinematics than single-bundle reconstructions although clinical outcomes have not revealed such a difference. Tibial inlay posterior cruciate ligament reconstructions (either open or arthroscopic) are preferred by many authors to avoid the "killer turn" and graft laxity with cyclic loading. Posterior cruciate ligament reconstruction improves subjective patient outcomes and return to sport although stability and knee kinematics may not return to normal.

  2. Corneal biomechanical properties in different ocular conditions and new measurement techniques.

    PubMed

    Garcia-Porta, Nery; Fernandes, Paulo; Queiros, Antonio; Salgado-Borges, Jose; Parafita-Mato, Manuel; González-Méijome, Jose Manuel

    2014-01-01

    Several refractive and therapeutic treatments as well as several ocular or systemic diseases might induce changes in the mechanical resistance of the cornea. Furthermore, intraocular pressure measurement, one of the most used clinical tools, is also highly dependent on this characteristic. Corneal biomechanical properties can be measured now in the clinical setting with different instruments. In the present work, we review the potential role of the biomechanical properties of the cornea in different fields of ophthalmology and visual science in light of the definitions of the fundamental properties of matter and the results obtained from the different instruments available. The body of literature published so far provides an insight into how the corneal mechanical properties change in different sight-threatening ocular conditions and after different surgical procedures. The future in this field is very promising with several new technologies being applied to the analysis of the corneal biomechanical properties.

  3. Corneal Biomechanical Properties in Different Ocular Conditions and New Measurement Techniques

    PubMed Central

    Garcia-Porta, Nery; Salgado-Borges, Jose; Parafita-Mato, Manuel; González-Méijome, Jose Manuel

    2014-01-01

    Several refractive and therapeutic treatments as well as several ocular or systemic diseases might induce changes in the mechanical resistance of the cornea. Furthermore, intraocular pressure measurement, one of the most used clinical tools, is also highly dependent on this characteristic. Corneal biomechanical properties can be measured now in the clinical setting with different instruments. In the present work, we review the potential role of the biomechanical properties of the cornea in different fields of ophthalmology and visual science in light of the definitions of the fundamental properties of matter and the results obtained from the different instruments available. The body of literature published so far provides an insight into how the corneal mechanical properties change in different sight-threatening ocular conditions and after different surgical procedures. The future in this field is very promising with several new technologies being applied to the analysis of the corneal biomechanical properties. PMID:24729900

  4. Soft Tissue Structure Modelling for Use in Orthopaedic Applications and Musculoskeletal Biomechanics

    NASA Astrophysics Data System (ADS)

    Audenaert, E. A.; Mahieu, P.; van Hoof, T.; Pattyn, C.

    2009-12-01

    We present our methodology for the three-dimensional anatomical and geometrical description of soft tissues, relevant for orthopaedic surgical applications and musculoskeletal biomechanics. The technique involves the segmentation and geometrical description of muscles and neurovascular structures from high-resolution computer tomography scanning for the reconstruction of generic anatomical models. These models can be used for quantitative interpretation of anatomical and biomechanical aspects of different soft tissue structures. This approach should allow the use of these data in other application fields, such as musculoskeletal modelling, simulations for radiation therapy, and databases for use in minimally invasive, navigated and robotic surgery.

  5. Ecological biomechanics of benthic organisms: life history, mechanical design and temporal patterns of mechanical stress.

    PubMed

    Koehl, M A

    1999-12-01

    We can gain biomechanical insights if we couple knowledge of the environments, ecological roles and life history strategies of organisms with our laboratory analyses of their mechanical function or fluid dynamics, as illustrated by studies of the mechanical design of bottom-dwelling marine organisms. Obviously, measurements of the spatial and temporal distribution of loads on an organism in nature reveal the magnitudes and rates at which biomechanical tests should be performed in the laboratory. Furthermore, knowledge of the population biology and ecological interactions of the organisms being studied is crucial to determine when during the life of an individual particular aspects of mechanical performance should be measured; not only can the size, shape and material properties of an individual change during ontogeny, but so can its habitat, activities and ecological role. Such ecological information is also necessary to determine whether the aspects of mechanical performance being studied are biologically important, i.e. whether they affect the survivorship or fitness of the organisms. My point in raising these examples is to illustrate how ecological studies can enhance or change our understanding of biomechanical function.

  6. Animal Galloping and Human Hopping: An Energetics and Biomechanics Laboratory Exercise

    ERIC Educational Resources Information Center

    Lindstedt, Stan L.; Mineo, Patrick M.; Schaeffer, Paul J.

    2013-01-01

    This laboratory exercise demonstrates fundamental principles of mammalian locomotion. It provides opportunities to interrogate aspects of locomotion from biomechanics to energetics to body size scaling. It has the added benefit of having results with robust signal to noise so that students will have success even if not "meticulous" in…

  7. Matrix Metalloproteinase 9 (MMP-9) Regulates Vein Wall Biomechanics in Murine Thrombus Resolution

    PubMed Central

    Nguyen, Khanh P.; McGilvray, Kirk C.; Puttlitz, Christian M.; Mukhopadhyay, Subhradip; Chabasse, Christine; Sarkar, Rajabrata

    2015-01-01

    Objective Deep venous thrombosis is a common vascular problem with long-term complications including post-thrombotic syndrome. Post-thrombotic syndrome consists of leg pain, swelling and ulceration that is related to incomplete or maladaptive resolution of the venous thrombus as well as loss of compliance of the vein wall. We examine the role of metalloproteinase-9 (MMP-9), a gene important in extracellular remodeling in other vascular diseases, in mediating thrombus resolution and biomechanical changes of the vein wall. Methods and Results The effects of targeted deletion of MMP-9 were studied in an in vivo murine model of thrombus resolution using the FVB strain of mice. MMP-9 expression and activity significantly increased on day 3 after DVT. The lack of MMP-9 impaired thrombus resolution by 27% and this phenotype was rescued by the transplantation of wildtype bone marrow cells. Using novel biomechanical techniques, we demonstrated that the lack of MMP-9 significantly decreased thrombus-induced loss of vein wall compliance. Biomechanical analysis of the contribution of individual structural components showed that MMP-9 affected the elasticity of the extracellular matrix and collagen-elastin fibers. Biochemical and histological analyses correlated with these biomechanical effects as thrombi of mice lacking MMP-9 had significantly fewer macrophages and collagen as compared to those of wildtype mice. Conclusions MMP-9 mediates thrombus-induced loss of vein wall compliance by increasing stiffness of the extracellular matrix and collagen-elastin fibers during thrombus resolution. MMP-9 also mediates macrophage and collagen content of the resolving thrombus and bone-marrow derived MMP-9 plays a role in resolution of thrombus mass. These disparate effects of MMP-9 on various aspects of thrombus illustrate the complexity of individual protease function on biomechanical and morphometric aspects of thrombus resolution. PMID:26406902

  8. Biomechanics in Schools.

    ERIC Educational Resources Information Center

    Vincent, J. F. V.

    1980-01-01

    Examines current usage of the term "biomechanics" and emphasizes the importance of differentiating between structure and material. Describes current prolects in biomechanics and lists four points about the educational significance of the field. (GS)

  9. The Impact of Biomechanics in Tissue Engineering and Regenerative Medicine

    PubMed Central

    Butler, David L.; Goldstein, Steven A.; Guo, X. Edward; Kamm, Roger; Laurencin, Cato T.; McIntire, Larry V.; Mow, Van C.; Nerem, Robert M.; Sah, Robert L.; Soslowsky, Louis J.; Spilker, Robert L.; Tranquillo, Robert T.

    2009-01-01

    Biomechanical factors profoundly influence the processes of tissue growth, development, maintenance, degeneration, and repair. Regenerative strategies to restore damaged or diseased tissues in vivo and create living tissue replacements in vitro have recently begun to harness advances in understanding of how cells and tissues sense and adapt to their mechanical environment. It is clear that biomechanical considerations will be fundamental to the successful development of clinical therapies based on principles of tissue engineering and regenerative medicine for a broad range of musculoskeletal, cardiovascular, craniofacial, skin, urinary, and neural tissues. Biomechanical stimuli may in fact hold the key to producing regenerated tissues with high strength and endurance. However, many challenges remain, particularly for tissues that function within complex and demanding mechanical environments in vivo. This paper reviews the present role and potential impact of experimental and computational biomechanics in engineering functional tissues using several illustrative examples of past successes and future grand challenges. PMID:19583462

  10. The medical simulation markup language - simplifying the biomechanical modeling workflow.

    PubMed

    Suwelack, Stefan; Stoll, Markus; Schalck, Sebastian; Schoch, Nicolai; Dillmann, Rüdiger; Bendl, Rolf; Heuveline, Vincent; Speidel, Stefanie

    2014-01-01

    Modeling and simulation of the human body by means of continuum mechanics has become an important tool in diagnostics, computer-assisted interventions and training. This modeling approach seeks to construct patient-specific biomechanical models from tomographic data. Usually many different tools such as segmentation and meshing algorithms are involved in this workflow. In this paper we present a generalized and flexible description for biomechanical models. The unique feature of the new modeling language is that it not only describes the final biomechanical simulation, but also the workflow how the biomechanical model is constructed from tomographic data. In this way, the MSML can act as a middleware between all tools used in the modeling pipeline. The MSML thus greatly facilitates the prototyping of medical simulation workflows for clinical and research purposes. In this paper, we not only detail the XML-based modeling scheme, but also present a concrete implementation. Different examples highlight the flexibility, robustness and ease-of-use of the approach.

  11. Biomechanical principles and mechanobiologic aspects of flexible and locked plating.

    PubMed

    Claes, Lutz

    2011-02-01

    The goal of minimally invasive surgery in extramedullary internal fixation has led to the development of flexible plates, bridging plates, and locked internal fixators. The change from conventional compression plates to these new implants, however, resulted in different biomechanics of fixation and different mechanobiologic processes for fracture healing. The aim of a flexible fixation is the stimulation of fracture healing by callus formation. Fracture healing follows mechanobiologic rules based mainly on interfragmentary strain, which is dependent on the stability of the fixation construct and the type of fracture. Knowledge of the mechanobiologic processes and the factors influencing the stability of fracture fixation are necessary for the surgeon to choose the correct technique for fracture fixation. Problems in the selection of the correct technique and limitations with the available implants as well as possible future developments are discussed.

  12. Orbital stability analysis in biomechanics: a systematic review of a nonlinear technique to detect instability of motor tasks.

    PubMed

    Riva, F; Bisi, M C; Stagni, R

    2013-01-01

    Falls represent a heavy economic and clinical burden on society. The identification of individual chronic characteristics associated with falling is of fundamental importance for the clinicians; in particular, the stability of daily motor tasks is one of the main factors that the clinicians look for during assessment procedures. Various methods for the assessment of stability in human movement are present in literature, and methods coming from stability analysis of nonlinear dynamic systems applied to biomechanics recently showed promise. One of these techniques is orbital stability analysis via Floquet multipliers. This method allows to measure orbital stability of periodic nonlinear dynamic systems and it seems a promising approach for the definition of a reliable motor stability index, taking into account for the whole task cycle dynamics. Despite the premises, its use in the assessment of fall risk has been deemed controversial. The aim of this systematic review was therefore to provide a critical evaluation of the literature on the topic of applications of orbital stability analysis in biomechanics, with particular focus to methodologic aspects. Four electronic databases have been searched for articles relative to the topic; 23 articles were selected for review. Quality of the studies present in literature has been assessed with a customised quality assessment tool. Overall quality of the literature in the field was found to be high. The most critical aspect was found to be the lack of uniformity in the implementation of the analysis to biomechanical time series, particularly in the choice of state space and number of cycles to include in the analysis. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Effects of psychological and biomechanical trauma on brain and behavior

    PubMed Central

    McAllister, Thomas W.; Stein, Murray B.

    2011-01-01

    The current conflicts in Iraq and Afghanistan have resulted in a large cohort of military personnel exposed to combat-related psychological trauma as well as biomechanical trauma, including proximity to blast events. Historically, the long-term effects of both types of trauma have been viewed as having different neural substrates, with some controversy over the proper attribution of such symptoms evident after each of the major conflicts of the last century. Recently, great effort has been directed toward distinguishing which neuropsychiatric sequelae are due to which type of trauma. Of interest, however, is that the chronic effects of exposure to either process are associated with a significant overlap in clinical symptoms. Furthermore, similar brain regions are vulnerable to the effects of either psychological or biomechanical trauma, raising the possibility that shared mechanisms may underlie the clinically observed overlap in symptom profile. This paper reviews the literature on the neural substrate of biomechanical and psychological injury and discusses the implications for evaluation and treatment of the neuropsychiatric sequelae of these processes. PMID:20955325

  14. A review of biomechanically informed breast image registration

    NASA Astrophysics Data System (ADS)

    Hipwell, John H.; Vavourakis, Vasileios; Han, Lianghao; Mertzanidou, Thomy; Eiben, Björn; Hawkes, David J.

    2016-01-01

    Breast radiology encompasses the full range of imaging modalities from routine imaging via x-ray mammography, magnetic resonance imaging and ultrasound (both two- and three-dimensional), to more recent technologies such as digital breast tomosynthesis, and dedicated breast imaging systems for positron emission mammography and ultrasound tomography. In addition new and experimental modalities, such as Photoacoustics, Near Infrared Spectroscopy and Electrical Impedance Tomography etc, are emerging. The breast is a highly deformable structure however, and this greatly complicates visual comparison of imaging modalities for the purposes of breast screening, cancer diagnosis (including image guided biopsy), tumour staging, treatment monitoring, surgical planning and simulation of the effects of surgery and wound healing etc. Due primarily to the challenges posed by these gross, non-rigid deformations, development of automated methods which enable registration, and hence fusion, of information within and across breast imaging modalities, and between the images and the physical space of the breast during interventions, remains an active research field which has yet to translate suitable methods into clinical practice. This review describes current research in the field of breast biomechanical modelling and identifies relevant publications where the resulting models have been incorporated into breast image registration and simulation algorithms. Despite these developments there remain a number of issues that limit clinical application of biomechanical modelling. These include the accuracy of constitutive modelling, implementation of representative boundary conditions, failure to meet clinically acceptable levels of computational cost, challenges associated with automating patient-specific model generation (i.e. robust image segmentation and mesh generation) and the complexity of applying biomechanical modelling methods in routine clinical practice.

  15. Computerized Biomechanical Man-Model

    DTIC Science & Technology

    1976-07-01

    Force Systems Command Wright-Patterson AFB, Ohio ABSTRACT The COMputerized BIomechanical MAN-Model (called COMBIMAN) is a computer interactive graphics...concept was to build a mock- The use of mock-ups for biomechanical evalua- up which permitted the designer to visualize the tion has long been a tool...of the can become an obstacle to design change. Aerospace Medical Research Laboratory, we are developing a computerized biomechanical man-model

  16. Laser Metrology In Biomechanics

    NASA Astrophysics Data System (ADS)

    Pryputniewicz, Ryszard J.

    1983-12-01

    Modern treatment of sceletal disharmonies and malocclusions utilizes application of external forces. In order to effectively use these therapeutic forces, knowledge of three-dimensional displacements of bones with correlation to biological changes is required. In the past, this problem has been studied in a number of ways using, for example, strain gauges, brittle coatings, photoelasticity, as well as clinical observations and mathematical modeling. Becouse of their inherent limitations, these techniques did not always provide all the information necessary for development of meaningful relationships between the applied force system and the resulting biological remodeling. However, recent advances in the field of la-ser metrology allowed to overcome some of the dificulties found in the earlier methods and permitted development of new techniques for non-invasive measurements of bone motions in three-dimensional space. These laser techniques are particularly useful in biomechanics because they provide for rapid and accurate determination of displacements over the entire surface of the investigate object. In this paper, application of laser techniques for quantitative in-vivo and in-vitro measurements in biomechanics will be discussed and illustrated with representative examples.

  17. Changes in Drop-Jump Landing Biomechanics During Prolonged Intermittent Exercise

    PubMed Central

    Schmitz, Randy J.; Cone, John C.; Tritsch, Amanda J.; Pye, Michele L.; Montgomery, Melissa M.; Henson, Robert A.; Shultz, Sandra J.

    2014-01-01

    Background: As injury rates rise in the later stages of sporting activities, a better understanding of lower extremity biomechanics in the later phases of gamelike situations may improve training and injury prevention programs. Hypothesis: Lower extremity biomechanics of a drop-jump task (extracted from a principal components analysis) would reveal factors associated with risk of anterior cruciate ligament injury during a 90-minute individualized intermittent exercise protocol (IEP) and for 1 hour following the IEP. Study Design: Controlled laboratory study. Level of Evidence: Level 4. Methods: Fifty-nine athletes (29 women, 30 men) completed 3 sessions. The first session assessed fitness for an IEP designed to simulate the demands of a soccer match. An experimental session assessed drop-jump biomechanics, after a dynamic warm-up, every 15 minutes during the 90-minute IEP, and for 1 hour following the IEP. A control session with no exercise assessed drop-jump performance at the same intervals. Results: Two biomechanical factors early in the first half (hip flexion at initial contact and hip loading; ankle loading and knee shear force) decreased at the end of the IEP and into the 60-minute recovery period, while a third factor (knee loading) decreased only during the recovery period (P ≤ 0.05). Conclusion: The individualized sport-specific IEP may have more subtle effects on landing biomechanics when compared with short-term, exhaustive fatigue protocols. Clinical Relevance: Potentially injurious landing biomechanics may not occur until the later stages of soccer activity. PMID:24587862

  18. Clinical Aspects of Idiopathic Inflammatory Bowel Disease: A Review for Pathologists.

    PubMed

    Lee, Hwajeong; Westerhoff, Maria; Shen, Bo; Liu, Xiuli

    2016-05-01

    -Idiopathic inflammatory bowel disease manifests with different clinical phenotypes showing varying behavior and risk for neoplasia. The clinical questions that are posed to pathologists differ depending on phase of the disease and the clinical circumstances. Understanding the clinical aspects of the dynamic disease process will enhance the role of pathology in optimizing the care of patients with inflammatory bowel disease. -To review clinical and surgical aspects of inflammatory bowel disease that are relevant to practicing pathologists. -The literature was reviewed. -Diagnosis and management of inflammatory bowel disease require an integrated evaluation of clinical, endoscopic, radiologic, and pathologic features. Therefore, close interaction between clinicians and pathologists is crucial. Having this team approach improves understanding of the pertinent clinical and surgical aspects of the disease and assists in the recognition of unusual presentation of variants, as well as mimics of idiopathic inflammatory bowel disease, by pathologists.

  19. Biomechanical Stability of Dental Implants in Augmented Maxillary Sites: Results of a Randomized Clinical Study with Four Different Biomaterials and PRF and a Biological View on Guided Bone Regeneration

    PubMed Central

    Angelo, Troedhan; Marcel, Wainwright; Andreas, Kurrek; Izabela, Schlichting

    2015-01-01

    Introduction. Bone regenerates mainly by periosteal and endosteal humoral and cellular activity, which is given only little concern in surgical techniques and choice of bone grafts for guided bone regeneration. This study investigates on a clinical level the biomechanical stability of augmented sites in maxillary bone when a new class of moldable, self-hardening calcium-phosphate biomaterials (SHB) is used with and without the addition of Platelet Rich Fibrin (aPRF) in the Piezotome-enhanced subperiosteal tunnel-technique (PeSPTT). Material and Methods. 82 patients with horizontal atrophy of anterior maxillary crest were treated with PeSPTT and randomly assigned biphasic (60% HA/40% bTCP) or monophasic (100% bTCP) SHB without or with addition of aPRF. 109 implants were inserted into the augmented sites after 8.3 months and the insertion-torque-value (ITV) measured as clinical expression of the (bio)mechanical stability of the augmented bone and compared to ITVs of a prior study in sinus lifting. Results. Significant better results of (bio)mechanical stability almost by two-fold, expressed by higher ITVs compared to native bone, were achieved with the used biomaterials and more constant results with the addition of aPRF. Conclusion. The use of SHB alone or combined with aPRF seems to be favourable to achieve a superior (bio)mechanical stable restored alveolar bone. PMID:25954758

  20. Biomechanical Indices for Rupture Risk Estimation in Abdominal Aortic Aneurysms.

    PubMed

    Leemans, Eva L; Willems, Tineke P; van der Laan, Maarten J; Slump, Cornelis H; Zeebregts, Clark J

    2017-04-01

    To review the use of biomechanical indices for the estimation of abdominal aortic aneurysm (AAA) rupture risk, emphasizing their potential use in a clinical setting. A search of the PubMed, Embase, Scopus, and Compendex databases was made up to June 2015 to identify articles involving biomechanical analysis of AAA rupture risk. Outcome variables [aneurysm diameter, peak wall stress (PWS), peak wall shear stress (PWSS), wall strain, peak wall rupture index (PWRI), and wall stiffness] were compared for asymptomatic intact AAAs vs symptomatic or ruptured AAAs. For quantitative analysis of the pooled data, a random effects model was used to calculate the standard mean differences (SMDs) with the 95% confidence interval (CI) for the biomechanical indices. The initial database searches yielded 1894 independent articles of which 19 were included in the analysis. The PWS was significantly higher in the symptomatic/ruptured group, with a SMD of 1.11 (95% CI 0.93 to 1.26, p<0.001). Likewise, the PWRI was significantly higher in the ruptured or symptomatic group, with a SMD of 1.15 (95% CI 0.30 to 2.01, p=0.008). After adjustment for the aneurysm diameter, the PWS remained higher in the ruptured or symptomatic group, with a SMD of 0.85 (95% CI 0.46 to 1.23, p<0.001). Less is known of the wall shear stress and wall strain indices, as too few studies were available for analysis. Biomechanical indices are a promising tool in the assessment of AAA rupture risk as they incorporate several factors, including geometry, tissue properties, and patient-specific risk factors. However, clinical implementation of biomechanical AAA assessment remains a challenge owing to a lack of standardization.

  1. Advanced Computational Methods in Bio-Mechanics.

    PubMed

    Al Qahtani, Waleed M S; El-Anwar, Mohamed I

    2018-04-15

    A novel partnership between surgeons and machines, made possible by advances in computing and engineering technology, could overcome many of the limitations of traditional surgery. By extending surgeons' ability to plan and carry out surgical interventions more accurately and with fewer traumas, computer-integrated surgery (CIS) systems could help to improve clinical outcomes and the efficiency of healthcare delivery. CIS systems could have a similar impact on surgery to that long since realised in computer-integrated manufacturing. Mathematical modelling and computer simulation have proved tremendously successful in engineering. Computational mechanics has enabled technological developments in virtually every area of our lives. One of the greatest challenges for mechanists is to extend the success of computational mechanics to fields outside traditional engineering, in particular to biology, the biomedical sciences, and medicine. Biomechanics has significant potential for applications in orthopaedic industry, and the performance arts since skills needed for these activities are visibly related to the human musculoskeletal and nervous systems. Although biomechanics is widely used nowadays in the orthopaedic industry to design orthopaedic implants for human joints, dental parts, external fixations and other medical purposes, numerous researches funded by billions of dollars are still running to build a new future for sports and human healthcare in what is called biomechanics era.

  2. Surface-based prostate registration with biomechanical regularization

    NASA Astrophysics Data System (ADS)

    van de Ven, Wendy J. M.; Hu, Yipeng; Barentsz, Jelle O.; Karssemeijer, Nico; Barratt, Dean; Huisman, Henkjan J.

    2013-03-01

    Adding MR-derived information to standard transrectal ultrasound (TRUS) images for guiding prostate biopsy is of substantial clinical interest. A tumor visible on MR images can be projected on ultrasound by using MRUS registration. A common approach is to use surface-based registration. We hypothesize that biomechanical modeling will better control deformation inside the prostate than a regular surface-based registration method. We developed a novel method by extending a surface-based registration with finite element (FE) simulation to better predict internal deformation of the prostate. For each of six patients, a tetrahedral mesh was constructed from the manual prostate segmentation. Next, the internal prostate deformation was simulated using the derived radial surface displacement as boundary condition. The deformation field within the gland was calculated using the predicted FE node displacements and thin-plate spline interpolation. We tested our method on MR guided MR biopsy imaging data, as landmarks can easily be identified on MR images. For evaluation of the registration accuracy we used 45 anatomical landmarks located in all regions of the prostate. Our results show that the median target registration error of a surface-based registration with biomechanical regularization is 1.88 mm, which is significantly different from 2.61 mm without biomechanical regularization. We can conclude that biomechanical FE modeling has the potential to improve the accuracy of multimodal prostate registration when comparing it to regular surface-based registration.

  3. What Factors Influence the Biomechanical Properties of Allograft Tissue for ACL Reconstruction? A Systematic Review.

    PubMed

    Lansdown, Drew A; Riff, Andrew J; Meadows, Molly; Yanke, Adam B; Bach, Bernard R

    2017-10-01

    Allograft tissue is used in 22% to 42% of anterior cruciate ligament (ACL) reconstructions. Clinical outcomes have been inconsistent with allograft tissue, with some series reporting no differences in outcomes and others reporting increased risk of failure. There are numerous variations in processing and preparation that may influence the eventual performance of allograft tissue in ACL reconstruction. We sought to perform a systematic review to summarize the factors that affect the biomechanical properties of allograft tissue for use in ACL reconstruction. Many factors might impact the biomechanical properties of allograft tissue, and these should be understood when considering using allograft tissue or when reporting outcomes from allograft reconstruction. What factors affect the biomechanical properties of allograft tissue used for ACL reconstruction? We performed a systematic review to identify studies on factors that influence the biomechanical properties of allograft tissue through PubMed and SCOPUS databases. We included cadaveric and animal studies that reported on results of biomechanical testing, whereas studies on fixation, histologic evaluation, and clinical outcomes were excluded. There were 319 unique publications identified through the search with 48 identified as relevant to answering the study question. For each study, we recorded the type of tissue tested, parameters investigated, and the effects on biomechanical behavior, including load to failure and stiffness. Primary factors identified to influence allograft tissue properties were graft tissue type, sterilization methods (irradiation and chemical processing), graft preparation, donor parameters, and biologic adjuncts. Load to failure and graft stiffness varied across different tissue types, with nonlooped tibialis grafts exhibiting the lowest values. Studies on low-dose irradiation showed variable effects, whereas high-dose irradiation consistently produced decreased load to failure and

  4. Biomechanical Comparison of Single- Versus Double-Row Capsulolabral Repair for Shoulder Instability: A Review.

    PubMed

    Yousif, Matthew John; Bicos, James

    2017-12-01

    The glenohumeral joint is the most commonly dislocated joint in the body. Failure rates of capsulolabral repair have been reported to be approximately 8%. Recent focus has been on restoration of the capsulolabral complex by a double-row capsulolabral repair technique in an effort to decrease redislocation rates after arthroscopic capsulolabral repair. To present a review of the biomechanical literature comparing single- versus double-row capsulolabral repairs and discuss the previous case series of double-row fixation. Narrative review. A simple review of the literature was performed by PubMed search. Only biomechanical studies comparing single- versus double-row capsulolabral repair were included for review. Only those case series and descriptive techniques with clinical results for double-row repair were included in the discussion. Biomechanical comparisons evaluating the native footprint of the labrum demonstrated significantly superior restoration of the footprint through double-row capsulolabral repair compared with single-row repair. Biomechanical comparisons of contact pressure at the repair interface, fracture displacement in bony Bankart lesion, load to failure, and decreased external rotation (suggestive of increased load to failure) were also significantly in favor of double- versus single-row repair. Recent descriptive techniques and case series of double-row fixation have demonstrated good clinical outcomes; however, no comparative clinical studies between single- and double-row repair have assessed functional outcomes. The superiority of double-row capsulolabral repair versus single-row repair remains uncertain because comparative studies assessing clinical outcomes have yet to be performed.

  5. Change-of-Direction Biomechanics: Is What's Best for Anterior Cruciate Ligament Injury Prevention Also Best for Performance?

    PubMed

    Fox, Aaron S

    2018-05-02

    Change-of-direction maneuvers (e.g., side-step cutting) are an important aspect of performance in multi-directional sports, but these maneuvers are also associated with anterior cruciate ligament (ACL) injury. Despite this, the impact of biomechanics on ACL injury risk and performance is often examined in isolation. The purpose of this review was to examine the alignment between biomechanical recommendations for ACL injury prevention and performance with regard to change-of-direction maneuvers. Several studies linking change-of-direction biomechanics to both ACL injury risk and performance were examined. A degree of overlap was identified between biomechanical strategies that could both reduce ACL injury risk and enhance performance during change-of-direction maneuvers. A fore-foot footfall pattern along with trunk rotation and lateral flexion in the intended cutting direction were identified as biomechanical strategies that could both reduce potentially hazardous knee joint moments and enhance change-of-direction speed. Minimizing knee valgus during change-of-direction maneuvers may also reduce ACL injury risk, with this biomechanical strategy found to have no impact on performance. Certain biomechanical strategies proposed to reduce ACL injury risk were linked to reduced change-of-direction performance. A narrow foot placement and "soft" landings with greater knee flexion were identified as ACL injury prevention strategies that could have a negative impact on performance. The findings of this review emphasize the need to consider both ACL injury risk and performance when examining the biomechanics of change-of-direction maneuvers.

  6. [Clinical aspects of witchcraft delusions].

    PubMed

    Pashkovskiĭ, V E

    2005-01-01

    To distinguish clinical variants and to specify nosologic entity of witchcraft delusions, 69 patients (10 males, aged 15-72 years) have been examined. It was found that witchcraft delusions exist in passive and active forms. In a passive form, the patient is sure that unknown (mystic) power damaged him/her; in an active form the patient, possessing a gift for unusual abilities, can influence the others (bewitches, heals, etc). Five clinical syndromes, in the structure of which the above delusions were found, namely, paranoiac-hypochondriac, hallucination-paranoid, depressive-paranoid, paraphrenic and delirious, were identified. Psychoses of schizophrenia spectrum were diagnosed in 52 patients, organic--in 8, alcoholic--in 7 and recurrent depressive disorder--in 2. Clinical significance of witchcraft delusions is closely related to its social aspect. Being combined with ideas of persecution, poisoning and damage, it results in the brutal forms of delusions defense and may be considered as an unfavorable prognostic trait.

  7. Developmental dysplasia of the hip: A computational biomechanical model of the path of least energy for closed reduction.

    PubMed

    Zwawi, Mohammed A; Moslehy, Faissal A; Rose, Christopher; Huayamave, Victor; Kassab, Alain J; Divo, Eduardo; Jones, Brendan J; Price, Charles T

    2017-08-01

    This study utilized a computational biomechanical model and applied the least energy path principle to investigate two pathways for closed reduction of high grade infantile hip dislocation. The principle of least energy when applied to moving the femoral head from an initial to a final position considers all possible paths that connect them and identifies the path of least resistance. Clinical reports of severe hip dysplasia have concluded that reduction of the femoral head into the acetabulum may occur by a direct pathway over the posterior rim of the acetabulum when using the Pavlik harness, or by an indirect pathway with reduction through the acetabular notch when using the modified Hoffman-Daimler method. This computational study also compared the energy requirements for both pathways. The anatomical and muscular aspects of the model were derived using a combination of MRI and OpenSim data. Results of this study indicate that the path of least energy closely approximates the indirect pathway of the modified Hoffman-Daimler method. The direct pathway over the posterior rim of the acetabulum required more energy for reduction. This biomechanical analysis confirms the clinical observations of the two pathways for closed reduction of severe hip dysplasia. The path of least energy closely approximated the modified Hoffman-Daimler method. Further study of the modified Hoffman-Daimler method for reduction of severe hip dysplasia may be warranted based on this computational biomechanical analysis. © 2016 The Authors. Journal of Orthopaedic Research Published by Wiley Periodicals, Inc. on behalf of Orthopaedic Research Society. J Orthop Res 35:1799-1805, 2017. © 2016 The Authors. Journal of Orthopaedic Research Published by Wiley Periodicals, Inc. on behalf of Orthopaedic Research Society.

  8. Challenge of biomechanics.

    PubMed

    Volokh, K Y

    2013-06-01

    The application of mechanics to biology--biomechanics--bears great challenges due to the intricacy of living things. Their dynamism, along with the complexity of their mechanical response (which in itself involves complex chemical, electrical, and thermal phenomena) makes it very difficult to correlate empirical data with theoretical models. This difficulty elevates the importance of useful biomechanical theories compared to other fields of engineering. Despite inherent imperfections of all theories, a well formulated theory is crucial in any field of science because it is the basis for interpreting observations. This is all-the-more vital, for instance, when diagnosing symptoms, or planning treatment to a disease. The notion of interpreting empirical data without theory is unscientific and unsound. This paper attempts to fortify the importance of biomechanics and invigorate research efforts for those engineers and mechanicians who are not yet involved in the field. It is not aimed here, however, to give an overview of biomechanics. Instead, three unsolved problems are formulated to challenge the readers. At the micro-scale, the problem of the structural organization and integrity of the living cell is presented. At the meso-scale, the enigma of fingerprint formation is discussed. At the macro-scale, the problem of predicting aneurysm ruptures is reviewed. It is aimed here to attract the attention of engineers and mechanicians to problems in biomechanics which, in the author's opinion, will dominate the development of engineering and mechanics in forthcoming years.

  9. Authorship and sampling practice in selected biomechanics and sports science journals.

    PubMed

    Knudson, Duane V

    2011-06-01

    In some biomedical sciences, changes in patterns of collaboration and authorship have complicated the assignment of credit and responsibility for research. It is unclear if this problem of "promiscuous coauthorship" or "hyperauthorship" (defined as six or more authors) is also apparent in the applied research disciplines within sport and exercise science. This study documented the authorship and sampling of patterns of original research reports in three applied biomechanics (Clinical Biomechanics, Journal of Applied Biomechanics, and Sports Biomechanics) and five similar subdisciplinary journals within sport and exercise science (International Journal of Sports Physiology and Performance, Journal of Sport Rehabilitation, Journal of Teaching Physical Education, Measurement in Physical Education and Exercise Sciences, and Motor Control). Original research reports from the 2009 volumes of these biomechanics and sport and exercise journals were reviewed. Single authorship of papers was rare (2.6%) in these journals, with the mean number of authors ranging from 2.7 to 4.5. Sample sizes and the ratio of sample to authors varied widely, and these variables tended not to be associated with number of authors. Original research reports published in these journals in 2009 tended to be published by small teams of collaborators, so currently there may be few problems with promiscuous coauthorship in these subdisciplines of sport and exercise science.

  10. Biomechanical Strength of Retrograde Fixation in Proximal Third Scaphoid Fractures.

    PubMed

    Daly, Charles A; Boden, Allison L; Hutton, William C; Gottschalk, Michael B

    2018-04-01

    Current techniques for fixation of proximal pole scaphoid fractures utilize antegrade fixation via a dorsal approach endangering the delicate vascular supply of the dorsal scaphoid. Volar and dorsal approaches demonstrate equivalent clinical outcomes in scaphoid wrist fractures, but no study has evaluated the biomechanical strength for fractures of the proximal pole. This study compares biomechanical strength of antegrade and retrograde fixation for fractures of the proximal pole of the scaphoid. A simulated proximal pole scaphoid fracture was produced in 22 matched cadaveric scaphoids, which were then assigned randomly to either antegrade or retrograde fixation with a cannulated headless compression screw. Cyclic loading and load to failure testing were performed and screw length, number of cycles, and maximum load sustained were recorded. There were no significant differences in average screw length (25.5 mm vs 25.6 mm, P = .934), average number of cyclic loading cycles (3738 vs 3847, P = .552), average load to failure (348 N vs 371 N, P = .357), and number of catastrophic failures observed between the antegrade and retrograde fixation groups (3 in each). Practical equivalence between the 2 groups was calculated and the 2 groups were demonstrated to be practically equivalent (upper threshold P = .010). For this model of proximal pole scaphoid wrist fractures, antegrade and retrograde screw configuration have been proven to be equivalent in terms of biomechanical strength. With further clinical study, we hope surgeons will be able to make their decision for fixation technique based on approaches to bone grafting, concern for tenuous blood supply, and surgeon preference without fear of poor biomechanical properties.

  11. MRI-based biomechanical parameters for carotid artery plaque vulnerability assessment.

    PubMed

    Speelman, Lambert; Teng, Zhongzhao; Nederveen, Aart J; van der Lugt, Aad; Gillard, Jonathan H

    2016-03-01

    Carotid atherosclerotic plaques are a major cause of ischaemic stroke. The biomechanical environment to which the arterial wall and plaque is subjected to plays an important role in the initiation, progression and rupture of carotid plaques. MRI is frequently used to characterize the morphology of a carotid plaque, but new developments in MRI enable more functional assessment of carotid plaques. In this review, MRI based biomechanical parameters are evaluated on their current status, clinical applicability, and future developments. Blood flow related biomechanical parameters, including endothelial wall shear stress and oscillatory shear index, have been shown to be related to plaque formation. Deriving these parameters directly from MRI flow measurements is feasible and has great potential for future carotid plaque development prediction. Blood pressure induced stresses in a plaque may exceed the tissue strength, potentially leading to plaque rupture. Multi-contrast MRI based stress calculations in combination with tissue strength assessment based on MRI inflammation imaging may provide a plaque stress-strength balance that can be used to assess the plaque rupture risk potential. Direct plaque strain analysis based on dynamic MRI is already able to identify local plaque displacement during the cardiac cycle. However, clinical evidence linking MRI strain to plaque vulnerability is still lacking. MRI based biomechanical parameters may lead to improved assessment of carotid plaque development and rupture risk. However, better MRI systems and faster sequences are required to improve the spatial and temporal resolution, as well as increase the image contrast and signal-to-noise ratio.

  12. Biomechanical aspects of initial intraosseous stability and implant design: a quantitative micro-morphometric analysis.

    PubMed

    Akça, Kivanç; Chang, Ting-Ling; Tekdemir, Ibrahim; Fanuscu, Mete I

    2006-08-01

    The objective of this biomechanical study was to explore the effect of bone micro-morphology on initial intraosseous stability of implants with different designs. Straumann and Astra Tech dental implants were placed into anterior and posterior regions of completely edentulous maxilla and mandible of a human cadaver. Experiments were undertaken to quantify initial implant stability and bone micro-morphology. Installation torque values (ITVs) and implant stability quotients (ISQs) were measured to determine initial intraosseous implant stability. For quantification of relative bone volume and micro-architecture, sectioned implant-bone and bone core specimens of each implant placement site were consecutively scanned and trabecular bone was analyzed in a micro-computed tomography (micro-CT) unit. Experimental outcomes were evaluated for correlations among implant designs, initial intraosseous implant stability and bone micro-structural parameters. ITVs correlated higher with bone volume fraction (BV/TV) than ISQs, at 88.1% and 68.9% levels, respectively. Correlations between ITVs and micro-morphometric parameters were significant at the 95% confidence level (P<0.05) while ISQs were not. Differences in ITVs, ISQs and BV/TV data in regards to implant designs used were not significant at the 95% confidence level (P>0.05). Bone micro-morphology has a prevailing effect over implant design on intraosseus initial implant stability, and ITV is more sensitive in terms of revealing biomechanical properties at the bone-implant interface in comparison with ISQ.

  13. Biomechanical Comparison of Single- Versus Double-Row Capsulolabral Repair for Shoulder Instability: A Review

    PubMed Central

    Yousif, Matthew John; Bicos, James

    2017-01-01

    Background: The glenohumeral joint is the most commonly dislocated joint in the body. Failure rates of capsulolabral repair have been reported to be approximately 8%. Recent focus has been on restoration of the capsulolabral complex by a double-row capsulolabral repair technique in an effort to decrease redislocation rates after arthroscopic capsulolabral repair. Purpose: To present a review of the biomechanical literature comparing single- versus double-row capsulolabral repairs and discuss the previous case series of double-row fixation. Study Design: Narrative review. Methods: A simple review of the literature was performed by PubMed search. Only biomechanical studies comparing single- versus double-row capsulolabral repair were included for review. Only those case series and descriptive techniques with clinical results for double-row repair were included in the discussion. Results: Biomechanical comparisons evaluating the native footprint of the labrum demonstrated significantly superior restoration of the footprint through double-row capsulolabral repair compared with single-row repair. Biomechanical comparisons of contact pressure at the repair interface, fracture displacement in bony Bankart lesion, load to failure, and decreased external rotation (suggestive of increased load to failure) were also significantly in favor of double- versus single-row repair. Recent descriptive techniques and case series of double-row fixation have demonstrated good clinical outcomes; however, no comparative clinical studies between single- and double-row repair have assessed functional outcomes. Conclusion: The superiority of double-row capsulolabral repair versus single-row repair remains uncertain because comparative studies assessing clinical outcomes have yet to be performed. PMID:29230427

  14. Traumatic Extensor Tendon Injuries to the Hand: Clinical Anatomy, Biomechanics, and Surgical Procedure Review.

    PubMed

    Colzani, Giulia; Tos, Pierluigi; Battiston, Bruno; Merolla, Giovanni; Porcellini, Giuseppe; Artiaco, Stefano

    2016-04-01

    The extensor apparatus is a complex muscle-tendon system that requires integrity or optimal reconstruction to preserve hand function. Anatomical knowledge and the understanding of physiopathology of extensor tendons are essential for an accurate diagnosis of extensor tendon injuries (ETIs) of the hand and wrist, because these lesions are complex and commonly observed in clinical practice. A careful clinical history and assessment still remain the first step for the diagnosis, followed by US and MR to confirm the suspect of ETI or to investigate some doubtful conditions and rule out associate lesions. During last decades the evolution of surgical techniques and rehabilitative treatment protocol led to gradual improvement in clinical results of ETI treatment and surgical repair. Injury classification into anatomical zones and the evaluation of the characteristics of the lesions are considered key points to select the appropriate treatment for ETI. Both conservative and surgical management can be indicated in ETI, depending on the anatomical zone and on the characteristics of the injuries. As a general rule, an attempt of conservative treatment should be performed when the lesion is expected to have favorable result with nonoperative procedure. Many surgical techniques have been proposed over the time and with favorable results if the tendon injury is not underestimated and adequately treated. Despite recent research findings, a lack of evidence-based knowledge is still observed in surgical treatment and postoperative management of ETI. Further clinical and biomechanical investigations would be advisable to clarify this complex issue.

  15. Traumatic Extensor Tendon Injuries to the Hand: Clinical Anatomy, Biomechanics, and Surgical Procedure Review

    PubMed Central

    Colzani, Giulia; Tos, Pierluigi; Battiston, Bruno; Merolla, Giovanni; Porcellini, Giuseppe; Artiaco, Stefano

    2016-01-01

    The extensor apparatus is a complex muscle-tendon system that requires integrity or optimal reconstruction to preserve hand function. Anatomical knowledge and the understanding of physiopathology of extensor tendons are essential for an accurate diagnosis of extensor tendon injuries (ETIs) of the hand and wrist, because these lesions are complex and commonly observed in clinical practice. A careful clinical history and assessment still remain the first step for the diagnosis, followed by US and MR to confirm the suspect of ETI or to investigate some doubtful conditions and rule out associate lesions. During last decades the evolution of surgical techniques and rehabilitative treatment protocol led to gradual improvement in clinical results of ETI treatment and surgical repair. Injury classification into anatomical zones and the evaluation of the characteristics of the lesions are considered key points to select the appropriate treatment for ETI. Both conservative and surgical management can be indicated in ETI, depending on the anatomical zone and on the characteristics of the injuries. As a general rule, an attempt of conservative treatment should be performed when the lesion is expected to have favorable result with nonoperative procedure. Many surgical techniques have been proposed over the time and with favorable results if the tendon injury is not underestimated and adequately treated. Despite recent research findings, a lack of evidence-based knowledge is still observed in surgical treatment and postoperative management of ETI. Further clinical and biomechanical investigations would be advisable to clarify this complex issue. PMID:27616821

  16. Biomechanics of Interspinous Devices

    PubMed Central

    Parchi, Paolo D.; Evangelisti, Gisberto; Vertuccio, Antonella; Piolanti, Nicola; Andreani, Lorenzo; Cervi, Valentina; Giannetti, Christian; Calvosa, Giuseppe; Lisanti, Michele

    2014-01-01

    A number of interspinous devices (ISD) have been introduced in the lumbar spine implant market. Unfortunately, the use of these devices often is not associated with real comprehension of their biomechanical role. The aim of this paper is to review the biomechanical studies about interspinous devices available in the literature to allow the reader a better comprehension of the effects of these devices on the treated segment and on the adjacent segments of the spine. For this reason, our analysis will be limited to the interspinous devices that have biomechanical studies published in the literature. PMID:25114923

  17. Cervical spondylosis anatomy: pathophysiology and biomechanics.

    PubMed

    Shedid, Daniel; Benzel, Edward C

    2007-01-01

    Cervical spondylosis is the most common progressive disorder in the aging cervical spine. It results from the process of degeneration of the intervertebral discs and facet joints of the cervical spine. Biomechanically, the disc and the facets are the connecting structures between the vertebrae for the transmission of external forces. They also facilitate cervical spine mobility. Symptoms related to myelopathy and radiculopathy are caused by the formation of osteophytes, which compromise the diameter of the spinal canal. This compromise may also be partially developmental. The developmental process, together with the degenerative process, may cause mechanical pressure on the spinal cord at one or multiple levels. This pressure may produce direct neurological damage or ischemic changes and, thus, lead to spinal cord disturbances. A thorough understanding of the biomechanics, the pathology, the clinical presentation, the radiological evaluation, as well as the surgical indications of cervical spondylosis, is essential for the management of patients with cervical spondylosis.

  18. Cerebrospinal Fluid Pressure: Revisiting Factors Influencing Optic Nerve Head Biomechanics

    PubMed Central

    Hua, Yi; Voorhees, Andrew P.; Sigal, Ian A.

    2018-01-01

    Purpose To model the sensitivity of the optic nerve head (ONH) biomechanical environment to acute variations in IOP, cerebrospinal fluid pressure (CSFP), and central retinal artery blood pressure (BP). Methods We extended a previously published numerical model of the ONH to include 24 factors representing tissue anatomy and mechanical properties, all three pressures, and constraints on the optic nerve (CON). A total of 8340 models were studied to predict factor influences on 98 responses in a two-step process: a fractional factorial screening analysis to identify the 16 most influential factors, followed by a response surface methodology to predict factor effects in detail. Results The six most influential factors were, in order: IOP, CON, moduli of the sclera, lamina cribrosa (LC) and dura, and CSFP. IOP and CSFP affected different aspects of ONH biomechanics. The strongest influence of CSFP, more than twice that of IOP, was on the rotation of the peripapillary sclera. CSFP had similar influence on LC stretch and compression to moduli of sclera and LC. On some ONHs, CSFP caused large retrolamina deformations and subarachnoid expansion. CON had a strong influence on LC displacement. BP overall influence was 633 times smaller than that of IOP. Conclusions Models predict that IOP and CSFP are the top and sixth most influential factors on ONH biomechanics. Different IOP and CSFP effects suggest that translaminar pressure difference may not be a good parameter to predict biomechanics-related glaucomatous neuropathy. CON may drastically affect the responses relating to gross ONH geometry and should be determined experimentally. PMID:29332130

  19. Are biomechanical changes necessary for tumor progression?

    NASA Astrophysics Data System (ADS)

    Kas, Josef A.

    2014-03-01

    Already the Roman Celsus recognized rigid tissue as characteristic for solid tumors. Conversely, changes towards a weaker cytoskeleton have been described as a feature of cancer cells since the early days of tumor biology. It remains unclear if a carcinoma's rigid signature stems from more inflexible cells or is caused by the stroma. Despite that the importance of cell biomechanics for tumor progression becomes more and more evident the chicken-and-egg problem to what extent cancer cells already change their mechanical properties within the solid tumor in order to transgress its boundary or mechanical changes are induced by the microenvironment when the cell has left the tumor has been discussed highly controversial. Comprehensive clinical biomechanical measurements only exist from tumor tissue without the possibility to identify individual cells or from individual cancer cells from pleural effusions. Since the biomechanical properties of cells in carcinomas remain unknown measurements on individual cells that directly stem out of primary tumor samples are required, which we have conducted. We found in cervix and mammary carcinomas a distinctive increase of softer cells as well as contractile cells. A soft and contractile cell is like a strong elastic rope. The cell can generate a strong tensile tension to pull its self along and is soft against compression to avoid jamming.

  20. Chronic Mountain Sickness: Clinical Aspects, Etiology, Management, and Treatment

    PubMed Central

    Corante, Noemí

    2016-01-01

    Abstract Villafuerte, Francisco C., and Noemí Corante. Chronic mountain sickness: clinical aspects, etiology, management, and treatment. High Alt Med Biol. 17:61–69, 2016.—Millions of people worldwide live at a high altitude, and a significant number are at risk of developing Chronic Mountain Sickness (CMS), a progressive incapacitating syndrome caused by lifelong exposure to hypoxia. CMS is characterized by severe symptomatic excessive erythrocytosis (EE; Hb ≥19 g/dL for women and Hb ≥21 g/dL for men) and accentuated hypoxemia, which are frequently associated with pulmonary hypertension. In advanced cases, the condition may evolve to cor pulmonale and congestive heart failure. Current knowledge indicates a genetic predisposition to develop CMS. However, there are important risk factors and comorbidities that may trigger and aggravate the condition. Thus, appropriate medical information on CMS is necessary to provide adequate diagnosis and healthcare to high-altitude inhabitants. After reviewing basic clinical aspects of CMS, including its definition, diagnosis, and common clinical findings, we discuss aspects of its etiology, and address its epidemiology, risk factors, and treatment. PMID:27218284

  1. Confidence crisis of results in biomechanics research.

    PubMed

    Knudson, Duane

    2017-11-01

    Many biomechanics studies have small sample sizes and incorrect statistical analyses, so reporting of inaccurate inferences and inflated magnitude of effects are common in the field. This review examines these issues in biomechanics research and summarises potential solutions from research in other fields to increase the confidence in the experimental effects reported in biomechanics. Authors, reviewers and editors of biomechanics research reports are encouraged to improve sample sizes and the resulting statistical power, improve reporting transparency, improve the rigour of statistical analyses used, and increase the acceptance of replication studies to improve the validity of inferences from data in biomechanics research. The application of sports biomechanics research results would also improve if a larger percentage of unbiased effects and their uncertainty were reported in the literature.

  2. Ankle-Dorsiflexion Range of Motion and Landing Biomechanics

    PubMed Central

    Fong, Chun-Man; Blackburn, J. Troy; Norcross, Marc F.; McGrath, Melanie; Padua, Darin A.

    2011-01-01

    Abstract Context: A smaller amount of ankle-dorsiflexion displacement during landing is associated with less knee-flexion displacement and greater ground reaction forces, and greater ground reaction forces are associated with greater knee-valgus displacement. Additionally, restricted dorsiflexion range of motion (ROM) is associated with greater knee-valgus displacement during landing and squatting tasks. Because large ground reaction forces and valgus displacement and limited knee-flexion displacement during landing are anterior cruciate ligament (ACL) injury risk factors, dorsiflexion ROM restrictions may be associated with a greater risk of ACL injury. However, it is unclear whether clinical measures of dorsiflexion ROM are associated with landing biomechanics. Objective: To evaluate relationships between dorsiflexion ROM and landing biomechanics. Design: Descriptive laboratory study. Setting: Research laboratory. Patients or Other Participants: Thirty-five healthy, physically active volunteers. Intervention(s): Passive dorsiflexion ROM was assessed under extended-knee and flexed-knee conditions. Landing biomechanics were assessed via an optical motion-capture system interfaced with a force plate. Main Outcome Measure(s): Dorsiflexion ROM was measured in degrees using goniometry. Knee-flexion and knee-valgus displacements and vertical and posterior ground reaction forces were calculated during the landing task. Simple correlations were used to evaluate relationships between dorsiflexion ROM and each biomechanical variable. Results: Significant correlations were noted between extended-knee dorsiflexion ROM and knee-flexion displacement (r  =  0.464, P  =  .029) and vertical (r  =  −0.411, P  =  .014) and posterior (r  =  −0.412, P  =  .014) ground reaction forces. All correlations for flexed-knee dorsiflexion ROM and knee-valgus displacement were nonsignificant. Conclusions: Greater dorsiflexion ROM was associated with greater knee

  3. Documenting progress: hand therapy treatment shift from biomechanical to occupational adaptation.

    PubMed

    Jack, Jada; Estes, Rebecca I

    2010-01-01

    The investment of time and self to develop therapeutic relationships with clients appears incongruent with today's time-constrained health care system, yet bridging the gap of these incongruencies is the challenge therapists face to provide high-quality, client-centered, occupation-based treatment. This case report illustrates a shift in approach from biomechanical to occupational adaptation (OA) in an orthopedic outpatient clinic. The progress of a client with lupus-related arthritis who was 6 days postsurgery is documented. The intervention initially used a biomechanical frame of reference, but when little progress had been made at 10 weeks after surgery, a shift was made to the more client-centered OA approach. The Canadian Occupational Performance Measure was administered, and an OA approach was initiated. On reassessment, clinically important improvements were documented in all functional tasks addressed. An OA approach provides the bridge between the application of clinical expertise, client-centered, occupation-based therapy and the time constraints placed by payer sources.

  4. History of spine biomechanics: part I--the pre-Greco-Roman, Greco-Roman, and medieval roots of spine biomechanics.

    PubMed

    Naderi, Sait; Andalkar, Niteen; Benzel, Edward C

    2007-02-01

    The roots of spine biomechanics reside in the Antiquity and the Medieval and Renaissance periods. A review of historical treatises reveals detailed information regarding this often historically neglected discipline. Ancient medical, philosophical, and physical documents were reviewed, as they pertained to the historical foundation of spine biomechanics. These included medical case reports and observations of nature and motion by ancient philosophers and scientists. These documents heavily influenced the portion of the scientific literature that we now regard as "spine biomechanics" up through the Renaissance. The focus of Part I of this two-part series is placed on the ancient and medieval biomechanics-related literature and on associated literature that influenced the development of the field of modern spine biomechanics.

  5. Biomechanical factors associated with time to complete a change of direction cutting maneuver.

    PubMed

    Marshall, Brendan M; Franklyn-Miller, Andrew D; King, Enda A; Moran, Kieran A; Strike, Siobhán C; Falvey, Éanna C

    2014-10-01

    Cutting ability is an important aspect of many team sports, however, the biomechanical determinants of cutting performance are not well understood. This study aimed to address this issue by identifying the kinetic and kinematic factors correlated with the time to complete a cutting maneuver. In addition, an analysis of the test-retest reliability of all biomechanical measures was performed. Fifteen (n = 15) elite multidirectional sports players (Gaelic hurling) were recruited, and a 3-dimensional motion capture analysis of a 75° cut was undertaken. The factors associated with cutting time were determined using bivariate Pearson's correlations. Intraclass correlation coefficients (ICCs) were used to examine the test-retest reliability of biomechanical measures. Five biomechanical factors were associated with cutting time (2.28 ± 0.11 seconds): peak ankle power (r = 0.77), peak ankle plantar flexor moment (r = 0.65), range of pelvis lateral tilt (r = -0.54), maximum thorax lateral rotation angle (r = 0.51), and total ground contact time (r = -0.48). Intraclass correlation coefficient scores for these 5 factors, and indeed for the majority of the other biomechanical measures, ranged from good to excellent (ICC >0.60). Explosive force production about the ankle, pelvic control during single-limb support, and torso rotation toward the desired direction of travel were all key factors associated with cutting time. These findings should assist in the development of more effective training programs aimed at improving similar cutting performances. In addition, test-retest reliability scores were generally strong, therefore, motion capture techniques seem well placed to further investigate the determinants of cutting ability.

  6. [Cruciate ligament injuries under gender aspects].

    PubMed

    Grabau, D E; Vitzthum, K; Mache, S; Groneberg, D A; Quarcoo, D

    2011-12-01

    An injury of cruciate ligament is one the most common knee injuries. This accident happens mostly without external impact and towards the end of training and competition sessions. Women, especially athletes playing team sports ball games such as soccer or disciplines such as tennis, are affected 2 to 8 times more often than men. Anatomic, biomechanical and endocrinological differences are currently discussed as potential risk factors. In terms of prevention, biomechanical impact is of greatest importance given its influenceability through various training opportunities. Training programs including endurance aspects, strengthening knee musculature, balance as well as plyometric trainings were most effective. Further studies should focus more on concomitants of course of injuries. © Georg Thieme Verlag KG Stuttgart · New York.

  7. From conventional sensors to fibre optic sensors for strain and force measurements in biomechanics applications: a review.

    PubMed

    Roriz, Paulo; Carvalho, Lídia; Frazão, Orlando; Santos, José Luís; Simões, José António

    2014-04-11

    In vivo measurement, not only in animals but also in humans, is a demanding task and is the ultimate goal in experimental biomechanics. For that purpose, measurements in vivo must be performed, under physiological conditions, to obtain a database and contribute for the development of analytical models, used to describe human biomechanics. The knowledge and control of the mechanisms involved in biomechanics will allow the optimization of the performance in different topics like in clinical procedures and rehabilitation, medical devices and sports, among others. Strain gages were first applied to bone in a live animal in 40's and in 80's for the first time were applied fibre optic sensors to perform in vivo measurements of Achilles tendon forces in man. Fibre optic sensors proven to have advantages compare to conventional sensors and a great potential for biomechanical and biomedical applications. Compared to them, they are smaller, easier to implement, minimally invasive, with lower risk of infection, highly accurate, well correlated, inexpensive and multiplexable. The aim of this review article is to give an overview about the evolution of the experimental techniques applied in biomechanics, from conventional to fibre optic sensors. In the next sections the most relevant contributions of these sensors, for strain and force in biomechanical applications, will be presented. Emphasis was given to report of in vivo experiments and clinical applications. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. [A simulative biomechanical experiment on different position of none-cement acetabular components influencing the load distribution around acetabulum].

    PubMed

    Li, Dongsong; Liu, Jianguo; Li, Shuqiang; Fan, Honghui; Guan, Jikui

    2008-02-01

    In the present study, a three dimensional finite-element model of the human pelvic was reconstructed, and then, under different acetabular component position (the abduction angle ranges from 30 degrees to 70 degrees and the anteversion ranges from 5 degrees to 30degrees) the load distribution around the acetabular was evaluated by the computer biomechanical analysis program (Solidworks). Through the obtained load distribution results, the most even and reasonable range of the distribution was selected; therefore the safe range of the acetabular component implantation can be validated from the biomechanics aspect.

  9. Kinesiology/Biomechanics: Perspectives and Trends.

    ERIC Educational Resources Information Center

    Atwater, Anne E.

    1980-01-01

    Past and recent developments and future directions in kinesiology and biomechanics are reviewed. Similarities and differences between these two areas are clarified. The areas of kinesiology and biomechanics have distinct unique qualities and should be treated as separate disciplines. (CJ)

  10. Biomechanics-based in silico medicine: the manifesto of a new science.

    PubMed

    Viceconti, Marco

    2015-01-21

    In this perspective article we discuss the role of contemporary biomechanics in the light of recent applications such as the development of the so-called Virtual Physiological Human technologies for physiology-based in silico medicine. In order to build Virtual Physiological Human (VPH) models, computer models that capture and integrate the complex systemic dynamics of living organisms across radically different space-time scales, we need to re-formulate a vast body of existing biology and physiology knowledge so that it is formulated as a quantitative hypothesis, which can be expressed in mathematical terms. Once the predictive accuracy of these models is confirmed against controlled experiments and against clinical observations, we will have VPH model that can reliably predict certain quantitative changes in health status of a given patient, but also, more important, we will have a theory, in the true meaning this word has in the scientific method. In this scenario, biomechanics plays a very important role, biomechanics is one of the few areas of life sciences where we attempt to build full mechanistic explanations based on quantitative observations, in other words, we investigate living organisms like physical systems. This is in our opinion a Copernican revolution, around which the scope of biomechanics should be re-defined. Thus, we propose a new definition for our research domain "Biomechanics is the study of living organisms as mechanistic systems". Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Preventive Biomechanics: A Paradigm Shift With a Translational Approach to Injury Prevention.

    PubMed

    Hewett, Timothy E; Bates, Nathaniel A

    2017-09-01

    Preventive medicine techniques have alleviated billions of dollars' worth of the economic burden in the medical care system through the implementation of vaccinations and screenings before the onset of disease symptoms. Knowledge of biomechanical tendencies has progressed rapidly over the past 20 years such that clinicians can identify, in healthy athletes, the underlying mechanisms that lead to catastrophic injuries such as anterior cruciate ligament (ACL) ruptures. As such, preventive medicine concepts can be applied to noncontact musculoskeletal injuries to reduce the economic burden of sports medicine treatments and enhance the long-term health of athletes. To illustrate the practical medical benefits that could be gained from preventive biomechanics applied to the ACL as well as the need and feasibility for the broad implementation of these principles. Literature review. The recent literature pertinent to the screening and prevention of musculoskeletal injuries was reviewed and compiled into a clinical commentary on the current state and applicability of preventive biomechanics. Investigators have identified neuromuscular training protocols that screen for and correct the underlying biomechanical deficits that lead to ACL injuries. The literature shows that when athletes comply with these prescribed training protocols, the incidence of injuries is significantly reduced within that population. Such preventive biomechanics practices employ basic training methods that would be familiar to athletic coaches and have the potential to save billions of dollars in cost in sports medicine. The widespread implementation of preventive biomechanics concepts could profoundly affect the field of sports medicine with a minimum of initial investment.

  12. Assessment and characterization of in situ rotator cuff biomechanics

    NASA Astrophysics Data System (ADS)

    Trent, Erika A.; Bailey, Lane; Mefleh, Fuad N.; Raikar, Vipul P.; Shanley, Ellen; Thigpen, Charles A.; Dean, Delphine; Kwartowitz, David M.

    2013-03-01

    Rotator cuff disease is a degenerative disorder that is a common, costly, and often debilitating, ranging in severity from partial thickness tear, which may cause pain, to total rupture, leading to loss in function. Currently, clinical diagnosis and determination of disease extent relies primarily on subjective assessment of pain, range of motion, and possibly X-ray or ultrasound images. The final treatment plan however is at the discretion of the clinician, who often bases their decision on personal experiences, and not quantitative standards. The use of ultrasound for the assessment of tissue biomechanics is established, such as in ultrasound elastography, where soft tissue biomechanics are measured. Few studies have investigated the use of ultrasound elastography in the characterization of musculoskeletal biomechanics. To assess tissue biomechanics we have developed a device, which measures the force applied to the underlying musculotendentious tissue while simultaneously obtaining the related ultrasound images. In this work, the musculotendinous region of the infraspinatus of twenty asymptomatic male organized baseball players was examined to access the variability in tissue properties within a single patient and across a normal population. Elastic moduli at percent strains less than 15 were significantly different than those above 15 percent strain within the normal population. No significant difference in tissue properties was demonstrated within a single patient. This analysis demonstrated elastic moduli are variable across individuals and incidence. Therefore threshold elastic moduli will likely be a function of variation in local-tissue moduli as opposed to a specific global value.

  13. Investigation of Crew Restraint System Biomechanics.

    DTIC Science & Technology

    1982-05-01

    46FAMRL-TR-81 -103 SINVESTIGATION OF CREW RESTRAINT SYSTEM BIOMECHANICS NORMWAN S. PHILLIPS ROBERT A. THOMSON IRA B. FISCUS UNIVERSITY OF DA YTON RESEARCH...Escape System Biomechanics 20. ABSTRACT (Continue on reverse side If necessary and identify by block number) .Experimental data were collected and...properties and harness characteristics were included in the model. The analytical model was also used with biomechanical data for the rhesus monkey

  14. A numerical framework for studying the biomechanical behavior of abdominal aortic aneurysm

    NASA Astrophysics Data System (ADS)

    Jalalahmadi, Golnaz; Linte, Cristian; Helguera, María.

    2017-03-01

    Abdominal aortic aneurysm (AAA) is known as a leading cause of death in the United States. AAA is an abnormal dilation of the aorta, which usually occurs below the renal arteries and causes an expansion at least 1.5 times its normal diameter. It has been shown that biomechanical parameters of the aortic tissue coupled with a set of specific geometric parameters characterizing the vessel expansion, affect the risk of aneurysm rupture. Here, we developed a numerical framework that incorporates both biomechanical and geometrical factors to study the behavior of abdominal aortic aneurysm. Our workflow enables the extraction of the aneurysm geometry from both clinical quality, as well as low-resolution MR images. We used a two-parameter, hyper-elastic, isotropic, incompressible material to model the vessel tissue. Our numerical model was tested using both synthetic and mouse data and we evaluated the effects of the geometrical and biomechanical properties on the developed peak wall stress. In addition, we performed several parameter sensitivity studies to investigate the effect of different factors affecting the AAA and its behavior and rupture. Lastly, relationships between different geometrical and biomechanical parameters and peak wall stress were determined. These studies help us better understand vessel tissue response to various loading, geometry and biomechanics conditions, and we plan to further correlate these findings with the pathophysiological conditions from a patient population diagnosed with abdominal aortic aneurysms.

  15. Biomechanical and morphological multi-parameter photoacoustic endoscope for identification of early esophageal disease

    NASA Astrophysics Data System (ADS)

    Jin, Dayang; Yang, Fen; Chen, Zhongjiang; Yang, Sihua; Xing, Da

    2017-09-01

    The combination of phase-sensitive photoacoustic (PA) imaging of tissue viscoelasticity with the esophagus-adaptive PA endoscope (PAE) technique allows the characterization of the biomechanical and morphological changes in the early stage of esophageal disease with high accuracy. In this system, the tissue biomechanics and morphology are obtained by detecting the PA phase and PA amplitude information, respectively. The PAE has a transverse resolution of approximately 37 μm and an outer diameter of 1.2 mm, which is suitable for detecting rabbit esophagus. Here, an in-situ biomechanical and morphological study of normal and diseased rabbit esophagus (tumors of esophagus and reflux esophagitis) was performed. The in-situ findings were highly consistent with those observed by histology. In summary, we demonstrated the potential application of PAE for early clinical detection of esophageal diseases.

  16. Biomechanical implications of lumbar spinal ligament transection.

    PubMed

    Von Forell, Gregory A; Bowden, Anton E

    2014-11-01

    Many lumbar spine surgeries either intentionally or inadvertently damage or transect spinal ligaments. The purpose of this work was to quantify the previously unknown biomechanical consequences of isolated spinal ligament transection on the remaining spinal ligaments (stress transfer), vertebrae (bone remodelling stimulus) and intervertebral discs (disc pressure) of the lumbar spine. A finite element model of the full lumbar spine was developed and validated against experimental data and tested in the primary modes of spinal motion in the intact condition. Once a ligament was removed, stress increased in the remaining spinal ligaments and changes occurred in vertebral strain energy, but disc pressure remained similar. All major biomechanical changes occurred at the same spinal level as the transected ligament, with minor changes at adjacent levels. This work demonstrates that iatrogenic damage to spinal ligaments disturbs the load sharing within the spinal ligament network and may induce significant clinically relevant changes in the spinal motion segment.

  17. [Research Progress and Prospect of Applications of Finite Element Method in Lumbar Spine Biomechanics].

    PubMed

    Zhang, Zhenjun; Li, Yang; Liao, Zhenhua; Liu, Weiqiang

    2016-12-01

    Based on the application of finite element analysis in spine biomechanics,the research progress of finite element method applied in lumbar spine mechanics is reviewed and the prospect is forecasted.The related works,including lumbar ontology modeling,clinical application research,and occupational injury and protection,are summarized.The main research areas of finite element method are as follows:new accurate modeling process,the optimized simulation method,diversified clinical effect evaluation,and the clinical application of artificial lumbar disc.According to the recent research progress,the application prospects of finite element method,such as automation and individuation of modeling process,evaluation and analysis of new operation methods and simulation of mechanical damage and dynamic response,are discussed.The purpose of this paper is to provide the theoretical reference and practical guidance for the clinical lumbar problems by reviewing the application of finite element method in the field of the lumbar spine biomechanics.

  18. Inertial Measures of Motion for Clinical Biomechanics: Comparative Assessment of Accuracy under Controlled Conditions – Changes in Accuracy over Time

    PubMed Central

    Lebel, Karina; Boissy, Patrick; Hamel, Mathieu; Duval, Christian

    2015-01-01

    Background Interest in 3D inertial motion tracking devices (AHRS) has been growing rapidly among the biomechanical community. Although the convenience of such tracking devices seems to open a whole new world of possibilities for evaluation in clinical biomechanics, its limitations haven’t been extensively documented. The objectives of this study are: 1) to assess the change in absolute and relative accuracy of multiple units of 3 commercially available AHRS over time; and 2) to identify different sources of errors affecting AHRS accuracy and to document how they may affect the measurements over time. Methods This study used an instrumented Gimbal table on which AHRS modules were carefully attached and put through a series of velocity-controlled sustained motions including 2 minutes motion trials (2MT) and 12 minutes multiple dynamic phases motion trials (12MDP). Absolute accuracy was assessed by comparison of the AHRS orientation measurements to those of an optical gold standard. Relative accuracy was evaluated using the variation in relative orientation between modules during the trials. Findings Both absolute and relative accuracy decreased over time during 2MT. 12MDP trials showed a significant decrease in accuracy over multiple phases, but accuracy could be enhanced significantly by resetting the reference point and/or compensating for initial Inertial frame estimation reference for each phase. Interpretation The variation in AHRS accuracy observed between the different systems and with time can be attributed in part to the dynamic estimation error, but also and foremost, to the ability of AHRS units to locate the same Inertial frame. Conclusions Mean accuracies obtained under the Gimbal table sustained conditions of motion suggest that AHRS are promising tools for clinical mobility assessment under constrained conditions of use. However, improvement in magnetic compensation and alignment between AHRS modules are desirable in order for AHRS to reach their

  19. Biomechanical Characteristics and Determinants of Instep Soccer Kick

    PubMed Central

    Kellis, Eleftherios; Katis, Athanasios

    2007-01-01

    Good kicking technique is an important aspect of a soccer player. Therefore, understanding the biomechanics of soccer kicking is particularly important for guiding and monitoring the training process. The purpose of this review was to examine latest research findings on biomechanics of soccer kick performance and identify weaknesses of present research which deserve further attention in the future. Being a multiarticular movement, soccer kick is characterised by a proximal-to-distal motion of the lower limb segments of the kicking leg. Angular velocity is maximized first by the thigh, then by the shank and finally by the foot. This is accomplished by segmental and joint movements in multiple planes. During backswing, the thigh decelerates mainly due to a motion-dependent moment from the shank and, to a lesser extent, by activation of hip muscles. In turn, forward acceleration of the shank is accomplished through knee extensor moment as well as a motion-dependent moment from the thigh. The final speed, path and spin of the ball largely depend on the quality of foot-ball contact. Powerful kicks are achieved through a high foot velocity and coefficient of restitution. Preliminary data indicate that accurate kicks are achieved through slower kicking motion and ball speed values. Key pointsSoccer kick is achieved through segmental and joint rotations in multiple planes and via the proximal-to-distal sequence of segmental angular velocities until ball impact. The quality of ball - foot impact and the mechanical behavior of the foot are also important determinants of the final speed, path and spin of the ball.Ball speed values during the maximum instep kick range from 18 to 35 msec-1 depending on various factors, such as skill level, age, approach angle and limb dominance.The main bulk of biomechanics research examined the biomechanics of powerful kicks, mostly under laboratory conditions. A powerful kick is characterized by the achievement of maximal ball speed. However

  20. Smoothing spline analysis of variance models: A new tool for the analysis of cyclic biomechanical data.

    PubMed

    Helwig, Nathaniel E; Shorter, K Alex; Ma, Ping; Hsiao-Wecksler, Elizabeth T

    2016-10-03

    Cyclic biomechanical data are commonplace in orthopedic, rehabilitation, and sports research, where the goal is to understand and compare biomechanical differences between experimental conditions and/or subject populations. A common approach to analyzing cyclic biomechanical data involves averaging the biomechanical signals across cycle replications, and then comparing mean differences at specific points of the cycle. This pointwise analysis approach ignores the functional nature of the data, which can hinder one׳s ability to find subtle differences between experimental conditions and/or subject populations. To overcome this limitation, we propose using mixed-effects smoothing spline analysis of variance (SSANOVA) to analyze differences in cyclic biomechanical data. The SSANOVA framework makes it possible to decompose the estimated function into the portion that is common across groups (i.e., the average cycle, AC) and the portion that differs across groups (i.e., the contrast cycle, CC). By partitioning the signal in such a manner, we can obtain estimates of the CC differences (CCDs), which are the functions directly describing group differences in the cyclic biomechanical data. Using both simulated and experimental data, we illustrate the benefits of using SSANOVA models to analyze differences in noisy biomechanical (gait) signals collected from multiple locations (joints) of subjects participating in different experimental conditions. Using Bayesian confidence intervals, the SSANOVA results can be used in clinical and research settings to reliably quantify biomechanical differences between experimental conditions and/or subject populations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Recent software developments for biomechanical assessment

    NASA Astrophysics Data System (ADS)

    Greaves, John O. B.

    1990-08-01

    While much of the software developed in research laboratories is narrow in focus and suited for a specific experiment, some of it is broad enough and of high enough quality to be useful to others in solving similar problems. Several biomechanical assessment packages are now beginning to emerge, including: * 3D research biomechanics (5- and 6-DOF) with kinematics, kinetics, 32-channel analog data subsystem, and project management. * 3D full-body gait analysis with kinematics, kinetics, EMG charts, and force plate charts. * 2D dynamic rear-foot assessment. * 2D occupational biomechanics lifting task and personnel assessments. * 2D dynamic gait analysis. * Multiple 2D dynamic spine assessments. * 2D sport and biomechanics assessments with kinematics and kinetics. * 2D and 3D equine gait assessments.

  2. 4th International Plant Biomechanics Conference Proceedings (Abstracts)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frank W. Telewski; Lothar H. Koehler; Frank W. Ewers

    2003-07-20

    The 4th International Plant Biomechanics Conference facilitated an interdisciplinary exchange between scientists, engineers, and educators addressing the major questions encountered in the field of Plant Biomechanics. Subjects covered by the conference include: Evolution; Ecology; Mechanoreception; Cell Walls; Genetic Modification; Applied Biomechanics of Whole Plants, Plant Products, Fibers & Composites; Fluid Dynamics; Wood & Trees; Fracture Mechanics; Xylem Pressure & Water Transport; Modeling; and Introducing Plant Biomechanics in Secondary School Education.

  3. FEBio: finite elements for biomechanics.

    PubMed

    Maas, Steve A; Ellis, Benjamin J; Ateshian, Gerard A; Weiss, Jeffrey A

    2012-01-01

    In the field of computational biomechanics, investigators have primarily used commercial software that is neither geared toward biological applications nor sufficiently flexible to follow the latest developments in the field. This lack of a tailored software environment has hampered research progress, as well as dissemination of models and results. To address these issues, we developed the FEBio software suite (http://mrl.sci.utah.edu/software/febio), a nonlinear implicit finite element (FE) framework, designed specifically for analysis in computational solid biomechanics. This paper provides an overview of the theoretical basis of FEBio and its main features. FEBio offers modeling scenarios, constitutive models, and boundary conditions, which are relevant to numerous applications in biomechanics. The open-source FEBio software is written in C++, with particular attention to scalar and parallel performance on modern computer architectures. Software verification is a large part of the development and maintenance of FEBio, and to demonstrate the general approach, the description and results of several problems from the FEBio Verification Suite are presented and compared to analytical solutions or results from other established and verified FE codes. An additional simulation is described that illustrates the application of FEBio to a research problem in biomechanics. Together with the pre- and postprocessing software PREVIEW and POSTVIEW, FEBio provides a tailored solution for research and development in computational biomechanics.

  4. Modification of elastic stable intramedullary nailing with a 3rd nail in a femoral spiral fracture model - results of biomechanical testing and a prospective clinical study.

    PubMed

    Kaiser, Martin M; Stratmann, Christine; Zachert, Gregor; Schulze-Hessing, Maaike; Gros, Nina; Eggert, Rebecca; Rapp, Marion

    2014-01-08

    Elastic stable intramedullary nailing (ESIN) is the standard treatment for displaced diaphyseal femoral fractures in children. However, high complication rates (10-50%) are reported in complex fractures. This biomechanical study compares the stiffness with a 3rd nail implanted to that in the classical 2C-shaped configuration and presents the application into clinical practice. For each of the 3 configurations of ESIN-osteosynthesis with titanium nails eight composite femoral grafts (Sawbones®) with an identical spiral fracture were used: 2C configuration (2C-shaped nails, 2 × 3.5 mm), 3CM configuration (3rd nail from medial) and 3CL configuration (3rd nail from lateral). Each group underwent biomechanical testing in 4-point bending, internal/external rotation and axial compression. 2C and 3CM configurations showed no significant differences in this spiroid type fracture model. 3CL had a significantly higher stiffness during anterior-posterior bending, internal rotation and 9° compression than 2C, and was stiffer in the lateral-medial direction than 3CM. The 3CL was less stable during p-a bending and external rotation than both the others. As biomechanical testing showed a higher stability for the 3CL configuration in two (a-p corresponding to recurvation and 9° compression to shortening) of three directions associated with the most important clinical problems, we added a 3rd nail in ESIN-osteosynthesis for femoral fractures. 11 boys and 6 girls (2.5-15 years) were treated with modified ESIN of whom 12 were '3CL'; due to the individual character of the fractures 4 patients were treated with '3CM' (third nail from medial) and as an exception 1 adolescent with 4 nails and one boy with plate osteosynthesis. No additional stabilizations or re-operations were necessary. All patients achieved full points in the Harris-Score at follow-up; no limb length discrepancy occurred. The 3CL configuration provided a significantly higher stiffness than 2C and 3CM configurations

  5. Relationships between job organisational factors, biomechanical and psychosocial exposures.

    PubMed

    Bao, Stephen S; Kapellusch, Jay M; Merryweather, Andrew S; Thiese, Matthew S; Garg, Arun; Hegmann, Kurt T; Silverstein, Barbara A

    2016-01-01

    The relationships between work organisational, biomechanical and psychosocial factors were studied using cross-sectional data from a pooled dataset of 1834 participants. The work organisational factors included: job rotation, overtime work, having second jobs and work pace. Task and job level biomechanical variables were obtained through sub-task data collected in the field or analysed in the laboratory. Psychosocial variables were collected based on responses to 10 questions. The results showed that job rotations had significant effects on all biomechanical and most psychosocial measures. Those with job rotations generally had higher job biomechanical stressors, and lower job satisfaction. Overtime work was associated with higher job biomechanical stressors, and possibly self-reported physical exhaustion. Those having second jobs reported getting along with co-workers well. Work pace had significant influences on all biomechanical stressors, but its impact on job biomechanical stressors and psychosocial effects are complicated. The findings are based on a large number of subjects collected by three research teams in diverse US workplaces. Job rotation practices used in many workplaces may not be effective in reducing job biomechanical stressors for work-related musculoskeletal disorders. Overtime work is also associated with higher biomechanical stressors.

  6. Inertial Measures of Motion for Clinical Biomechanics: Comparative Assessment of Accuracy under Controlled Conditions - Effect of Velocity

    PubMed Central

    Lebel, Karina; Boissy, Patrick; Hamel, Mathieu; Duval, Christian

    2013-01-01

    Background Inertial measurement of motion with Attitude and Heading Reference Systems (AHRS) is emerging as an alternative to 3D motion capture systems in biomechanics. The objectives of this study are: 1) to describe the absolute and relative accuracy of multiple units of commercially available AHRS under various types of motion; and 2) to evaluate the effect of motion velocity on the accuracy of these measurements. Methods The criterion validity of accuracy was established under controlled conditions using an instrumented Gimbal table. AHRS modules were carefully attached to the center plate of the Gimbal table and put through experimental static and dynamic conditions. Static and absolute accuracy was assessed by comparing the AHRS orientation measurement to those obtained using an optical gold standard. Relative accuracy was assessed by measuring the variation in relative orientation between modules during trials. Findings Evaluated AHRS systems demonstrated good absolute static accuracy (mean error < 0.5o) and clinically acceptable absolute accuracy under condition of slow motions (mean error between 0.5o and 3.1o). In slow motions, relative accuracy varied from 2o to 7o depending on the type of AHRS and the type of rotation. Absolute and relative accuracy were significantly affected (p<0.05) by velocity during sustained motions. The extent of that effect varied across AHRS. Interpretation Absolute and relative accuracy of AHRS are affected by environmental magnetic perturbations and conditions of motions. Relative accuracy of AHRS is mostly affected by the ability of all modules to locate the same global reference coordinate system at all time. Conclusions Existing AHRS systems can be considered for use in clinical biomechanics under constrained conditions of use. While their individual capacity to track absolute motion is relatively consistent, the use of multiple AHRS modules to compute relative motion between rigid bodies needs to be optimized according to

  7. Biomechanical ToolKit: Open-source framework to visualize and process biomechanical data.

    PubMed

    Barre, Arnaud; Armand, Stéphane

    2014-04-01

    C3D file format is widely used in the biomechanical field by companies and laboratories to store motion capture systems data. However, few software packages can visualize and modify the integrality of the data in the C3D file. Our objective was to develop an open-source and multi-platform framework to read, write, modify and visualize data from any motion analysis systems using standard (C3D) and proprietary file formats (used by many companies producing motion capture systems). The Biomechanical ToolKit (BTK) was developed to provide cost-effective and efficient tools for the biomechanical community to easily deal with motion analysis data. A large panel of operations is available to read, modify and process data through C++ API, bindings for high-level languages (Matlab, Octave, and Python), and standalone application (Mokka). All these tools are open-source and cross-platform and run on all major operating systems (Windows, Linux, MacOS X). Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  8. Biomechanical and bioactivity concepts of polyetheretherketone composites for use in orthopedic implants-a review.

    PubMed

    Abdullah, Mohamed Ruslan; Goharian, Amirhossein; Abdul Kadir, Mohammed Rafiq; Wahit, Mat Uzir

    2015-11-01

    The use of polyetheretherketone (PEEK) composites in the trauma plating system, total replacement implants, and tissue scaffolds has found great interest among researchers. In recent years (2008 afterward), this type of composites has been examined for suitability as substitute material over stainless steel, titanium alloys, ultra high molecular weight polyethylene, or even biodegradable materials in orthopedic implant applications. Biomechanical and bioactivity concepts were contemplated for the development of PEEK orthopedic implants and a few primary clinical studies reported the clinical outcomes of PEEK-based orthopedic implants. This study aims to review and discuss the recent concepts and contribute further concepts in terms of biomechanical and bioactivity challenges for the development of PEEK and PEEK composites in orthopedic implants. © 2015 Wiley Periodicals, Inc.

  9. Development of Stabilimax NZ From Biomechanical Principles.

    PubMed

    Panjabi, Manohar M; Timm, Jens Peter

    2007-01-01

    Traditionally, spinal degeneration and injury have been associated with abnormal intervertebral motion; thus, treatment for lowback pain has centered on prevention of motion through spinal fusion. Although the rate of successful spinal fusions is improving, complications such as adjacent-level syndrome emphasize the need to develop alternatives for treating spinal degeneration. In an effort to improve the clinical outcomes associated with such treatment, we hypothesized that spinal stabilization and a consequent reduction in symptoms is achievable without the harsh restrictions to spinal motion imposed by fusion. This idea was based on the principle of the neutral zone and the neutral zone hypothesis of back pain. Performance requirements for a novel device were determined through a series of biomechanical experiments. From these data, the Stabilimax NZ was developed to provide stabilization to a degenerated or surgically destabilized spine while maintaining the maximum possible total range of motion. Applied Spine Technologies Inc has tested 70 bilateral assemblies of the final design of the Stabilimax NZ, and all exceeded the biomechanical, static, fatigue, wear, and histological requirements necessary to initiate clinical investigation. The Stabilimax NZ device has been systematically designed and tested under protocols developed by Applied Spine Technologies in conjunction with Panjabi, Patwardhan, and Goel. The device decreased the neutral zone in destabilized spines while maintaining substantial range of motion. Development testing has been submitted to the US Food and Drug Administration and permission obtained to initiate an investigational device exemption trial to clinically investigate the efficacy of the Stabilimax NZ device.

  10. The biomechanics of forward power skating.

    PubMed

    Humble, R N; Gastwirth, B W

    1988-04-01

    The authors review and discuss the biomechanics of forward power skating with respect to starting, acceleration, and striding. Comparisons are made to the biomechanics of walking. The dynamics of foot function within the skate boot are also discussed.

  11. Transosseous-equivalent rotator cuff repair: a systematic review on the biomechanical importance of tying the medial row.

    PubMed

    Mall, Nathan A; Lee, Andrew S; Chahal, Jaskarndip; Van Thiel, Geoffrey S; Romeo, Anthony A; Verma, Nikhil N; Cole, Brian J

    2013-02-01

    Double-row and transosseous-equivalent repair techniques have shown greater strength and improved healing than single-row techniques. The purpose of this study was to determine whether tying of the medial-row sutures provides added stability during biomechanical testing of a transosseous-equivalent rotator cuff repair. We performed a systematic review of studies directly comparing biomechanical differences. Five studies met the inclusion and exclusion criteria. Of the 5 studies, 4 showed improved biomechanical properties with tying the medial-row anchors before bringing the sutures laterally to the lateral-row anchors, whereas the remaining study showed no difference in contact pressure, mean failure load, or gap formation with a standard suture bridge with knots tied at the medial row compared with knotless repairs. The results of this systematic review and quantitative synthesis indicate that the biomechanical factors ultimate load, stiffness, gap formation, and contact area are significantly improved when medial knots are tied as part of a transosseous-equivalent suture bridge construct compared with knotless constructs. Further studies comparing the clinical healing rates and functional outcomes between medial knotted and knotless repair techniques are needed. This review indicates that biomechanical factors are improved when the medial row of a transosseous-equivalent rotator cuff is tied compared with a knotless repair. However, this has not been definitively proven to translate to improved healing rates clinically. Copyright © 2013 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.

  12. [Clinical aspects of congenital maxillofacial deformities].

    PubMed

    Sólya, Kitti; Dézsi, Csilla; Vanya, Melinda; Szabó, János; Sikovanyecz, János; Kozinszky, Zoltán; Szili, Károly

    2015-09-13

    The cleft lip and palate deformity is one of the most common type of congenital abnormalities. The aim of this paper is to summarise the literature knowledge about cleft lip and/or palate. The authors review and discuss international literature data on the prevention, genetic and environmental predisposing factors, anatomical and embryological features, as well as pre- and post-natal diagnosis and treatment of these deformities. The aetiology is multifactorial, driven by both genetic and environmental factors which lead to multifaceted phenotypes and clinical features of these malformations. The lack of the multidisciplinary knowledge about prenatal diagnosis, prevention, genetic aspects and treatment strategy could result in serious diagnostic errors, hence clinical teamwork is critically important to solve the problems of this pathology. Only the professional teamwork and multidisciplinary cooperation can guarantee the optimal level of health care and better quality of life for these patients and their families.

  13. Functional assessment of the ex vivo vocal folds through biomechanical testing: A review

    PubMed Central

    Dion, Gregory R.; Jeswani, Seema; Roof, Scott; Fritz, Mark; Coelho, Paulo; Sobieraj, Michael; Amin, Milan R.; Branski, Ryan C.

    2016-01-01

    The human vocal folds are complex structures made up of distinct layers that vary in cellular and extracellular composition. The mechanical properties of vocal fold tissue are fundamental to the study of both the acoustics and biomechanics of voice production. To date, quantitative methods have been applied to characterize the vocal fold tissue in both normal and pathologic conditions. This review describes, summarizes, and discusses the most commonly employed methods for vocal fold biomechanical testing. Force-elongation, torsional parallel plate rheometry, simple-shear parallel plate rheometry, linear skin rheometry, and indentation are the most frequently employed biomechanical tests for vocal fold tissues and each provide material properties data that can be used to compare native tissue verses diseased for treated tissue. Force-elongation testing is clinically useful, as it allows for functional unit testing, while rheometry provides physiologically relevant shear data, and nanoindentation permits micrometer scale testing across different areas of the vocal fold as well as whole organ testing. Thoughtful selection of the testing technique during experimental design to evaluate a hypothesis is important to optimizing biomechanical testing of vocal fold tissues. PMID:27127075

  14. Characterization of Ocular Biomechanics in Pellucid Marginal Degeneration.

    PubMed

    Lenk, Janine; Haustein, Michael; Terai, Naim; Spoerl, Eberhard; Raiskup, Frederik

    2016-04-01

    This study sought to investigate the diagnostic capacity of corneal biomechanical response parameters in a group of patients with pellucid marginal degeneration (PMD) using the Ocular Response Analyzer (ORA) and Corvis ST devices. In this prospective clinical study, we used the Corvis ST and ORA devices to investigate the ocular biomechanics of patients with PMD. Eighty-one eyes were included, and 2 study groups were formed: the PMD group (the study group, n = 29) and the control group (n = 52). We focused on 13 biomechanical parameters. Statistical analysis was performed using SPSS. Biomechanical parameters for the 2 groups were compared using analysis of covariance. The ORA results demonstrated that the Keratoconus Match Index was significantly lower in the PMD group than in the control group (0.031 ± 0.37 vs. 0.79 ± 0.33; P = 0.001). The 2 groups did not significantly differ with respect to intraocular pressure- and central corneal thickness-adjusted values for corneal hysteresis or corneal resistance factor. Regarding the Corvis parameters, differences between the control and PMD groups were detected for CorWmax amp (control 1.01 ± 0.01, PMD 1.06 ± 0.01; P = 0.020) and CorA2 t (control 21.78 ± 0.03, PMD 21.66 ± 0.04; P = 0.0003). We identified 2 Corvis parameters that could be used to characterize PMD and differentiate PMD corneas from normal corneas. These parameters support the hypothesis that there is significantly less deformation of the central cornea in PMD corneas than in healthy corneas. However, because useful "first-line" diagnostic devices for diagnosing PMD (such as Pentacam and the ORA) exist, the Corvis ST serves as an additional diagnostic tool that can also be used for long-term monitoring after diagnosis confirmation.

  15. An Evidence-Based Videotaped Running Biomechanics Analysis.

    PubMed

    Souza, Richard B

    2016-02-01

    Running biomechanics play an important role in the development of injuries. Performing a running biomechanics analysis on injured runners can help to develop treatment strategies. This article provides a framework for a systematic video-based running biomechanics analysis plan based on the current evidence on running injuries, using 2-dimensional (2D) video and readily available tools. Fourteen measurements are proposed in this analysis plan from lateral and posterior video. Identifying simple 2D surrogates for 3D biomechanic variables of interest allows for widespread translation of best practices, and have the best opportunity to impact the highly prevalent problem of the injured runner. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Biomechanical patterns of text-message distraction.

    PubMed

    Le, Peter; Hwang, Jaejin; Grawe, Sarah; Li, Jing; Snyder, Alison; Lee, Christina; Marras, William S

    2015-01-01

    The objective of this study was to identify biomechanical measures that can distinguish texting distraction in a laboratory-simulated driving environment. The goal would be to use this information to provide an intervention for risky driving behaviour. Sixteen subjects participated in this study. Three independent variables were tested: task (texting, visual targeting, weighted and non-weighted movements), task direction (front and side) and task distance (close and far). Dependent variables consisted of biomechanical moments, head displacement and the length of time to complete each task. Results revealed that the time to complete each task was higher for texting compared to other tasks. Peak moments during texting were only distinguishable from visual targeting. Peak head displacement and cumulative biomechanical exposure measures indicated that texting can be distinguished from other tasks. Therefore, it may be useful to take into account both temporal and biomechanical measures when considering warning systems to detect texting distraction.

  17. [Advances on biomechanics and kinematics of sprain of ankle joint].

    PubMed

    Zhao, Yong; Wang, Gang

    2015-04-01

    Ankle sprains are orthopedic clinical common disease, accounting for joint ligament sprain of the first place. If treatment is not timely or appropriate, the joint pain and instability maybe develop, and even bone arthritis maybe develop. The mechanism of injury of ankle joint, anatomical basis has been fully study at present, and the diagnostic problem is very clear. Along with the development of science and technology, biological modeling and three-dimensional finite element, three-dimensional motion capture system,digital technology study, electromyographic signal study were used for the basic research of sprain of ankle. Biomechanical and kinematic study of ankle sprain has received adequate attention, combined with the mechanism research of ankle sprain,and to explore the the biomechanics and kinematics research progress of the sprain of ankle joint.

  18. Morphogenesis and Biomechanics of Engineered Skin Cultured Under Uniaxial Strain

    PubMed Central

    Blackstone, Britani N.; Powell, Heather M.

    2012-01-01

    Background Split-thickness autograft is the standard wound treatment for full-thickness burns. In large burns, sparse availability of uninjured skin prevents rapid closure of the wound, resulting in increased scar tissue formation or mortality. Tissue-engineered skin (ES) offers promise when autografts are not available. The Problem ES, constructed from a polymeric scaffold and skin cells, has been shown to reduce donor site area required to permanently close wounds, mortality, and morbidity from scarring but cannot restore all skin functions. Current generations of ES are orders of magnitude weaker than normal human skin, leading to difficulty in surgical application, greater susceptibility to mechanical damage during fabrication and application, and less elasticity and strength once engrafted. Basic/Clinical Science Advances Previous studies to improve ES biomechanics focus on altering the scaffolding material, which resulted in modest improvements but often inhibited proper skin development. As the skin is naturally under static strain, adding these mechanical cues to the culture environment is hypothesized to improve ES biomechanics. ES was cultured under applied static strains ranging from 0% to 40% strain for a total of 10 days. Strain magnitudes of 10% and 20% strain resulted in significantly stronger ES than unstrained controls, showed upregulation of many genes encoding structural extracellular matrix proteins, and exhibited increased epidermal cell proliferation and differentiation. Clinical Care Relevance Enhanced biomechanical properties of ES can allow for facile surgical application and less damage during dressing changes. Conclusion These findings suggest that mechanical cues play a significant role in skin development and should be further explored. PMID:24527283

  19. MRI and CT lung biomarkers: Towards an in vivo understanding of lung biomechanics.

    PubMed

    Young, Heather M; Eddy, Rachel L; Parraga, Grace

    2017-09-29

    The biomechanical properties of the lung are necessarily dependent on its structure and function, both of which are complex and change over time and space. This makes in vivo evaluation of lung biomechanics and a deep understanding of lung biomarkers, very challenging. In patients and animal models of lung disease, in vivo evaluations of lung structure and function are typically made at the mouth and include spirometry, multiple-breath gas washout tests and the forced oscillation technique. These techniques, and the biomarkers they provide, incorporate the properties of the whole organ system including the parenchyma, large and small airways, mouth, diaphragm and intercostal muscles. Unfortunately, these well-established measurements mask regional differences, limiting their ability to probe the lung's gross and micro-biomechanical properties which vary widely throughout the organ and its subcompartments. Pulmonary imaging has the advantage in providing regional, non-invasive measurements of healthy and diseased lung, in vivo. Here we summarize well-established and emerging lung imaging tools and biomarkers and how they may be used to generate lung biomechanical measurements. We review well-established and emerging lung anatomical, microstructural and functional imaging biomarkers generated using synchrotron x-ray tomographic-microscopy (SRXTM), micro-x-ray computed-tomography (micro-CT), clinical CT as well as magnetic resonance imaging (MRI). Pulmonary imaging provides measurements of lung structure, function and biomechanics with high spatial and temporal resolution. Imaging biomarkers that reflect the biomechanical properties of the lung are now being validated to provide a deeper understanding of the lung that cannot be achieved using measurements made at the mouth. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Teaching undergraduate biomechanics with Just-in-Time Teaching.

    PubMed

    Riskowski, Jody L

    2015-06-01

    Biomechanics education is a vital component of kinesiology, sports medicine, and physical education, as well as for many biomedical engineering and bioengineering undergraduate programmes. Little research exists regarding effective teaching strategies for biomechanics. However, prior work suggests that student learning in undergraduate physics courses has been aided by using the Just-in-Time Teaching (JiTT). As physics understanding plays a role in biomechanics understanding, the purpose of study was to evaluate the use of a JiTT framework in an undergraduate biomechanics course. This two-year action-based research study evaluated three JiTT frameworks: (1) no JiTT; (2) mathematics-based JiTT; and (3) concept-based JiTT. A pre- and post-course assessment of student learning used the biomechanics concept inventory and a biomechanics concept map. A general linear model assessed differences between the course assessments by JiTT framework in order to evaluate learning and teaching effectiveness. The results indicated significantly higher learning gains and better conceptual understanding in a concept-based JiTT course, relative to a mathematics-based JiTT or no JiTT course structure. These results suggest that a course structure involving concept-based questions using a JiTT strategy may be an effective method for engaging undergraduate students and promoting learning in biomechanics courses.

  1. Knee Biomechanics During Jogging After Arthroscopic Partial Meniscectomy: A Longitudinal Study.

    PubMed

    Hall, Michelle; Wrigley, Tim V; Metcalf, Ben R; Hinman, Rana S; Cicuttini, Flavia M; Dempsey, Alasdair R; Lloyd, David G; Bennell, Kim L

    2017-07-01

    Altered knee joint biomechanics is thought to play a role in the pathogenesis of knee osteoarthritis and has been reported in patients after arthroscopic partial meniscectomy (APM) while performing various activities. Longitudinally, understanding knee joint biomechanics during jogging may assist future studies to assess the implications of jogging on knee joint health in this population. To investigate knee joint biomechanics during jogging in patients 3 months after APM and a healthy control group at baseline and 2 years later at follow-up. Controlled laboratory study. Seventy-eight patients who underwent medial APM and 38 healthy controls underwent a 3-dimensional motion analysis during barefoot overground jogging at baseline. Sixty-four patients who underwent APM and 23 controls returned at follow-up. External peak moments (flexion and adduction) and the peak knee flexion angle during stance were evaluated for the APM leg, non-APM leg (nonoperated leg), and control leg. At baseline, the peak knee flexion angle was 1.4° lower in the APM leg compared with the non-APM leg ( P = .03). No differences were found between the moments in the APM leg compared with the control leg (all P > .05). However, the normalized peak knee adduction moment was 35% higher in the non-APM leg compared with the control leg ( P = .008). In the non-APM leg, the normalized peak knee adduction and flexion moments were higher compared with the APM leg by 16% and 10%, respectively, at baseline ( P ≤ .004). Despite the increase in the peak knee flexion moment in the APM leg compared with the non-APM leg ( P < .001), there were no differences in the peak knee flexion moment or any other parameter assessed at 2-year follow-up between the legs ( P > .05). Comparing the APM leg and control leg, no differences in knee joint biomechanics during jogging for the variables assessed were observed. Higher knee moments in the non-APM leg may have clinical implications for the noninvolved leg. Kinematic

  2. Corneal biomechanical properties in floppy eyelid syndrome.

    PubMed

    Muniesa, MaJesús; Muniesa Royo, MaJesús; March, Ana; March de Ribot, Ana; Sánchez-de-la-Torre, Manuel; Huerva, Valetín; Huerva Escanilla, Valetín; Jurjo, Carmen; Jurjo Campo, Carmen; Barbé, Ferran; Barbé Illa, Ferran

    2015-05-01

    To determine corneal biomechanical properties in patients with floppy eyelid syndrome (FES) and to compare them with eyes of controls. This case-control study included 208 eyes (72 eyes with FES and 136 without FES) of 107 patients (37 patients with FES and 70 without FES). Patients underwent a complete clinical eye examination that included corneal biomechanical evaluation carried out with the Reichert Ocular Response Analyzer. Corneal hysteresis (CH), corneal resistance factor (CRF), central corneal thickness (CCT), Goldmann-correlated intraocular pressure (IOPg), and corneal-compensated intraocular pressure (IOPcc) were evaluated. Mean CH was significantly lower in patients with FES than in those without FES (9.51 ± 1.56 vs. 11.66 ± 9.11; P < 0.001). These results remained statistically significant after adjusting for age and apnea-hypoapnea index (AHI) (P = 0.028). Mean CRF was 10.02 ± 2.08 in the group of patients with FES and 11.21 ± 5.36 in the group of patients without FES (P = 0.001). Mean IOPcc was 17.7 ± 4.8 in patients with FES and 16.3 ± 4.4 in those without FES (P = 0.036). After adjusting for age and AHI, these differences in CRF and IOPcc were not statistically significant (P = 0.26 and P = 0.87, respectively). No statistically significant difference was found between patients with and without FES for Goldmann-correlated intraocular pressure or CCT. Patients with FES had statistically lower CH values. Our findings suggest that corneal biomechanical properties could be changed in patients with FES, reflecting additional structural changes in FES.

  3. Heterotopic gray matter. Neuroradiological aspects and clinical correlations.

    PubMed

    Canapicchi, R; Padolecchia, R; Puglioli, M; Collavoli, P; Marcella, F; Valleriani, A M

    1990-01-01

    Anomalies of cell migration manifest themselves in many ways with various clinical and morphological aspects. Among these, heterotopic gray matter, especially when isolated, is characterized by slighter symptoms and later onset. In this paper eight cases of gray matter heterotopia are presented which have been studied over a two-year period. Magnetic Resonance imaging is emphasised for a correct diagnosis.

  4. The scientific basis for the use of biomechanical foot orthoses in the treatment of lower limb sports injuries--a review of the literature.

    PubMed Central

    Kilmartin, T E; Wallace, W A

    1994-01-01

    While it is documented that many overuse injuries of the lower limb can be relieved with the use of biomechanical foot orthoses, what remains unclear is how an orthosis can produce this effect. A review of the literature indicates that biomechanical orthoses will reduce rearfoot movement, but the effect on knee function is negligible and the clinical significance of excessive rearfoot movement is yet to be proven. While many athletes may potentially benefit from the use of biomechanical orthoses, further research is necessary to justify and, if indicated, promote the use of biomechanical foot arthoses by athletes suffering from overuse injuries. PMID:8000817

  5. Animation of in vitro biomechanical tests.

    PubMed

    Cripton, P A; Sati, M; Orr, T E; Bourquin, Y; Dumas, G A; Nolte, L P

    2001-08-01

    Interdisciplinary communication of three-dimensional kinematic data arising from in vitro biomechanical tests is challenging. Complex kinematic representations such as the helical axes of motion (HAM) add to the challenge. The difficulty increases further when other quantities (i.e. load or tissue strain data) are combined with the kinematic data. The objectives of this study were to develop a method to graphically replay and animate in vitro biomechanical tests including HAM data. This will allow intuitive interpretation of kinematic and other data independent of the viewer's area of expertise. The value of this method was verified with a biomechanical test investigating load-sharing of the cervical spine. Three 3.0 mm aluminium spheres were glued to each of the two vertebrae from a C2-3 segment of a human cervical spine. Before the biomechanical tests, CT scans were made of the specimen (slice thickness=1.0 mm and slice spacing=1.5 mm). The specimens were subjected to right axial torsion moments (2.0 Nm). Strain rosettes mounted to the anterior surface of the C3 vertebral body and bilaterally beneath the facet joints on C3 were used to estimate the force flow through the specimen. The locations of the aluminium spheres were digitised using a space pointer and the motion analysis system. Kinematics were measured using an optoelectronic motion analysis system. HAMs were calculated to describe the specimen kinematics. The digitised aluminium sphere locations were used to match the CT and biomechanical test data (RMS errors between the CT and experimental points were less than 1.0 mm). The biomechanical tests were "replayed" by animating reconstructed CT models in accordance with the recorded experimental kinematics, using custom software. The animated test replays allowed intuitive analysis of the kinematic data in relation to the strain data. This technique improves the ability of experts from disparate backgrounds to interpret and discuss this type of

  6. Is There an Economical Running Technique? A Review of Modifiable Biomechanical Factors Affecting Running Economy.

    PubMed

    Moore, Isabel S

    2016-06-01

    Running economy (RE) has a strong relationship with running performance, and modifiable running biomechanics are a determining factor of RE. The purposes of this review were to (1) examine the intrinsic and extrinsic modifiable biomechanical factors affecting RE; (2) assess training-induced changes in RE and running biomechanics; (3) evaluate whether an economical running technique can be recommended and; (4) discuss potential areas for future research. Based on current evidence, the intrinsic factors that appeared beneficial for RE were using a preferred stride length range, which allows for stride length deviations up to 3 % shorter than preferred stride length; lower vertical oscillation; greater leg stiffness; low lower limb moment of inertia; less leg extension at toe-off; larger stride angles; alignment of the ground reaction force and leg axis during propulsion; maintaining arm swing; low thigh antagonist-agonist muscular coactivation; and low activation of lower limb muscles during propulsion. Extrinsic factors associated with a better RE were a firm, compliant shoe-surface interaction and being barefoot or wearing lightweight shoes. Several other modifiable biomechanical factors presented inconsistent relationships with RE. Running biomechanics during ground contact appeared to play an important role, specifically those during propulsion. Therefore, this phase has the strongest direct links with RE. Recurring methodological problems exist within the literature, such as cross-comparisons, assessing variables in isolation, and acute to short-term interventions. Therefore, recommending a general economical running technique should be approached with caution. Future work should focus on interdisciplinary longitudinal investigations combining RE, kinematics, kinetics, and neuromuscular and anatomical aspects, as well as applying a synergistic approach to understanding the role of kinetics.

  7. Computational biomechanics of bone's responses to dental prostheses - osseointegration, remodeling and resorption

    NASA Astrophysics Data System (ADS)

    Li, Wei; Rungsiyakull, Chaiy; Field, Clarice; Lin, Daniel; Zhang, Leo; Li, Qing; Swain, Michael

    2010-06-01

    Clinical and experimental studies showed that human bone has the ability to remodel itself to better adapt to its biomechanical environment by changing both its material properties and geometry. As a consequence of the rapid development and extensive applications of major dental restorations such as implantation and fixed partial denture (FPD), the effect of bone remodeling on the success of a dental restorative surgery is becoming critical for prosthetic design and pre-surgical assessment. This paper aims to provide a computational biomechanics framework to address dental bone's responses as a result of dental restoration. It explored three important issues of resorption, apposition and osseointegration in terms of remodeling simulation. The published remodeling data in long bones were regulated to drive the computational remodeling prediction for the dental bones by correlating the results to clinical data. It is anticipated that the study will provide a more predictive model of dental bone response and help develop a new design methodology for patient-specific dental prosthetic restoration.

  8. Regularity Aspects in Inverse Musculoskeletal Biomechanics

    NASA Astrophysics Data System (ADS)

    Lund, Marie; Stâhl, Fredrik; Gulliksson, Mârten

    2008-09-01

    Inverse simulations of musculoskeletal models computes the internal forces such as muscle and joint reaction forces, which are hard to measure, using the more easily measured motion and external forces as input data. Because of the difficulties of measuring muscle forces and joint reactions, simulations are hard to validate. One way of reducing errors for the simulations is to ensure that the mathematical problem is well-posed. This paper presents a study of regularity aspects for an inverse simulation method, often called forward dynamics or dynamical optimization, that takes into account both measurement errors and muscle dynamics. Regularity is examined for a test problem around the optimum using the approximated quadratic problem. The results shows improved rank by including a regularization term in the objective that handles the mechanical over-determinancy. Using the 3-element Hill muscle model the chosen regularization term is the norm of the activation. To make the problem full-rank only the excitation bounds should be included in the constraints. However, this results in small negative values of the activation which indicates that muscles are pushing and not pulling, which is unrealistic but the error maybe small enough to be accepted for specific applications. These results are a start to ensure better results of inverse musculoskeletal simulations from a numerical point of view.

  9. Evaluation of the risk of falling in institution-dwelling elderly: clinical tests versus biomechanical analysis of stepping-up.

    PubMed

    Michel-Pellegrino, Valérie; Hewson, David J; Drieux, Michèle; Duchêne, Jacques

    2007-01-01

    Falls in the elderly constitute a major socio-economic problem for modern healthcare. The aim of the study was to extract biomechanical parameters to indicate balance level and the risk of falling in the elderly. It is a preliminary work as part of the development of a home-test based on force-plate technology. Seven faller and 12 non-faller elderly subjects performed stepped up onto a forceplate. Each subject was tested once per weekday for three weeks. Tinetti, Mini Mental Scale test (MMS) and the Geriatric Depression Scale (GDS) scores were measured before the experimentations. Temporal and ground reaction force parameters were measured. The Tinetti test was not correlated with falls in the following six-month period. In contrast, the biomechanical parameters related to the forces measured at foot-contact and to the durations of the phases of the stepping-up were correlated with fall, as well as with MMS and GDS. These results demonstrated that biomechanical parameters could be used as indicators of balance and risk of fall.

  10. Fully automated segmentation of callus by micro-CT compared to biomechanics.

    PubMed

    Bissinger, Oliver; Götz, Carolin; Wolff, Klaus-Dietrich; Hapfelmeier, Alexander; Prodinger, Peter Michael; Tischer, Thomas

    2017-07-11

    A high percentage of closed femur fractures have slight comminution. Using micro-CT (μCT), multiple fragment segmentation is much more difficult than segmentation of unfractured or osteotomied bone. Manual or semi-automated segmentation has been performed to date. However, such segmentation is extremely laborious, time-consuming and error-prone. Our aim was to therefore apply a fully automated segmentation algorithm to determine μCT parameters and examine their association with biomechanics. The femura of 64 rats taken after randomised inhibitory or neutral medication, in terms of the effect on fracture healing, and controls were closed fractured after a Kirschner wire was inserted. After 21 days, μCT and biomechanical parameters were determined by a fully automated method and correlated (Pearson's correlation). The fully automated segmentation algorithm automatically detected bone and simultaneously separated cortical bone from callus without requiring ROI selection for each single bony structure. We found an association of structural callus parameters obtained by μCT to the biomechanical properties. However, results were only explicable by additionally considering the callus location. A large number of slightly comminuted fractures in combination with therapies that influence the callus qualitatively and/or quantitatively considerably affects the association between μCT and biomechanics. In the future, contrast-enhanced μCT imaging of the callus cartilage might provide more information to improve the non-destructive and non-invasive prediction of callus mechanical properties. As studies evaluating such important drugs increase, fully automated segmentation appears to be clinically important.

  11. Biomechanics of Atherosclerotic Coronary Plaque: Site, Stability and In Vivo Elasticity Modeling

    PubMed Central

    Ohayon, Jacques; Finet, Gérard; Le Floc’h, Simon; Cloutier, Guy; Gharib, Ahmed M.; Heroux, Julie; Pettigrew, Roderic I.

    2016-01-01

    Coronary atheroma develop in local sites that are widely variable among patients and are considerably variable in their vulnerability for rupture. This article summarizes studies conducted by our collaborative laboratories on predictive biomechanical modeling of coronary plaques. It aims to give insights into the role of biomechanics in the development and localization of atherosclerosis, the morphologic features that determine vulnerable plaque stability, and emerging in vivo imaging techniques that may detect and characterize vulnerable plaque. Composite biomechanical and hemodynamic factors that influence the actual site of development of plaques have been studied. Plaque vulnerability, in vivo, is more challenging to assess. Important steps have been made in defining the biomechanical factors that are predictive of plaque rupture and the likelihood of this occurring if characteristic features are known. A critical key in defining plaque vulnerability is the accurate quantification of both the morphology and the mechanical properties of the diseased arteries. Recently, an early IVUS based palpography technique developed to assess local strain, elasticity and mechanical instabilities has been successfully revisited and improved to account for complex plaque geometries. This is based on an initial best estimation of the plaque components’ contours, allowing subsequent iteration for elastic modulus assessment as a basis for plaque stability determination. The improved method has also been preliminarily evaluated in patients with successful histologic correlation. Further clinical evaluation and refinement are on the horizon. PMID:24043605

  12. Biomechanical Analysis of Treadmill Locomotion on the International Space Station

    NASA Technical Reports Server (NTRS)

    De Witt, J. K.; Fincke, R. S.; Guilliams, M. E.; Ploutz-Snyder, L. L.

    2011-01-01

    Treadmill locomotion exercise is an important aspect of ISS exercise countermeasures. It is widely believed that an optimized treadmill exercise protocol could offer benefits to cardiovascular and bone health. If training heart rate is high enough, treadmill exercise is expected to lead to improvements in aerobic fitness. If impact or bone loading forces are high enough, treadmill exercise may be expected to contribute to improved bone outcomes. Ground-based research suggests that joint loads increase with increased running speed. However, it is unknown if increases in locomotion speed results in similar increases in joint loads in microgravity. Although data exist regarding the biomechanics of running and walking in microgravity, a majority were collected during parabolic flight or during investigations utilizing a microgravity analog. The Second Generation Treadmill (T2) has been in use on the International Space Station (ISS) and records the ground reaction forces (GRF) produced by crewmembers during exercise. Biomechanical analyses will aid in understanding potential differences in typical gait motion and allow for modeling of the human body to determine joint and muscle forces during exercise. By understanding these mechanisms, more appropriate exercise prescriptions can be developed that address deficiencies. The objective of this evaluation is to collect biomechanical data from crewmembers during treadmill exercise prior to and during flight. The goal is to determine if locomotive biomechanics differ between normal and microgravity environments and to determine how combinations of subject load and speed influence joint loading during in-flight treadmill exercise. Further, the data will be used to characterize any differences in specific bone and muscle loading during locomotion in these two gravitational conditions. This project maps to the HRP Integrated Research Plan risks including Risk of Bone Fracture (Gap B15), Risk of Early Onset Osteoporosis Due to

  13. Perspectives on Sharing Models and Related Resources in Computational Biomechanics Research.

    PubMed

    Erdemir, Ahmet; Hunter, Peter J; Holzapfel, Gerhard A; Loew, Leslie M; Middleton, John; Jacobs, Christopher R; Nithiarasu, Perumal; Löhner, Rainlad; Wei, Guowei; Winkelstein, Beth A; Barocas, Victor H; Guilak, Farshid; Ku, Joy P; Hicks, Jennifer L; Delp, Scott L; Sacks, Michael; Weiss, Jeffrey A; Ateshian, Gerard A; Maas, Steve A; McCulloch, Andrew D; Peng, Grace C Y

    2018-02-01

    The role of computational modeling for biomechanics research and related clinical care will be increasingly prominent. The biomechanics community has been developing computational models routinely for exploration of the mechanics and mechanobiology of diverse biological structures. As a result, a large array of models, data, and discipline-specific simulation software has emerged to support endeavors in computational biomechanics. Sharing computational models and related data and simulation software has first become a utilitarian interest, and now, it is a necessity. Exchange of models, in support of knowledge exchange provided by scholarly publishing, has important implications. Specifically, model sharing can facilitate assessment of reproducibility in computational biomechanics and can provide an opportunity for repurposing and reuse, and a venue for medical training. The community's desire to investigate biological and biomechanical phenomena crossing multiple systems, scales, and physical domains, also motivates sharing of modeling resources as blending of models developed by domain experts will be a required step for comprehensive simulation studies as well as the enhancement of their rigor and reproducibility. The goal of this paper is to understand current perspectives in the biomechanics community for the sharing of computational models and related resources. Opinions on opportunities, challenges, and pathways to model sharing, particularly as part of the scholarly publishing workflow, were sought. A group of journal editors and a handful of investigators active in computational biomechanics were approached to collect short opinion pieces as a part of a larger effort of the IEEE EMBS Computational Biology and the Physiome Technical Committee to address model reproducibility through publications. A synthesis of these opinion pieces indicates that the community recognizes the necessity and usefulness of model sharing. There is a strong will to facilitate

  14. The biomechanics of seed germination.

    PubMed

    Steinbrecher, Tina; Leubner-Metzger, Gerhard

    2017-02-01

    From a biomechanical perspective, the completion of seed (and fruit) germination depends on the balance of two opposing forces: the growth potential of the embryonic axis (radicle-hypocotyl growth zone) and the restraint of the seed-covering layers (endosperm, testa, and pericarp). The diverse seed tissues are composite materials which differ in their dynamic properties based on their distinct cell wall composition and water uptake capacities. The biomechanics of embryo cell growth during seed germination depend on irreversible cell wall loosening followed by water uptake due to the decreasing turgor, and this leads to embryo elongation and eventually radicle emergence. Endosperm weakening as a prerequisite for radicle emergence is a widespread phenomenon among angiosperms. Research into the biochemistry and biomechanics of endosperm weakening has demonstrated that the reduction in puncture force of a seed's micropylar endosperm is environmentally and hormonally regulated and involves tissue-specific expression of cell wall remodelling proteins such as expansins, diverse hydrolases, and the production of directly acting apoplastic reactive oxygen. The endosperm-weakening biomechanics and its underlying cell wall biochemistry differ between the micropylar (ME) and chalazal (CE) endosperm domains. In the ME, they involve cell wall loosening, cell separation, and programmed cell death to provide decreased and localized ME tissue resistance, autolysis, and finally the formation of an ME hole required for radicle emergence. Future work will further unravel the molecular mechanisms, environmental regulation, and evolution of the diverse biomechanical cell wall changes underpinning the control of germination by endosperm weakening. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  15. Clinical aspects of the Mayo/IBM PACS project

    NASA Astrophysics Data System (ADS)

    Forbes, Glenn S.; Morin, Richard L.; Pavlicek, William

    1991-07-01

    A joint project between Mayo Clinic and IBM to develop a picture archival and communications system has been under development for three years. This project began as a potential solution to a pressing archival problem in magnetic resonance imaging. The project has grown to encompass a much larger sphere of activity including workstations, image retrieval, and report archival. This report focuses on the clinical aspects involved in the design, development, and implementation of such a system. In particular, emphasis is placed on the clinical impact of the system both inside and outside of the radiology department. The primary concerns have centered on fidelity of archival data, ease of use, and diagnostic efficacy. The project to date has been limited to neuroradiology practice. This group consists of nine staff radiologists and fellows. Administrative policy decisions regarding the accessibility and available of digital data in the clinical environment have been much more difficult and complex than originally conceived. Based on the observations thus far, the authors believe the system will become a useful and valuable adjunct to clinical practice of radiology.

  16. Biomechanics of Cardiac Function

    PubMed Central

    Voorhees, Andrew P.; Han, Hai-Chao

    2015-01-01

    The heart pumps blood to maintain circulation and ensure the delivery of oxygenated blood to all the organs of the body. Mechanics play a critical role in governing and regulating heart function under both normal and pathological conditions. Biological processes and mechanical stress are coupled together in regulating myocyte function and extracellular matrix structure thus controlling heart function. Here we offer a brief introduction to the biomechanics of left ventricular function and then summarize recent progress in the study of the effects of mechanical stress on ventricular wall remodeling and cardiac function as well as the effects of wall mechanical properties on cardiac function in normal and dysfunctional hearts. Various mechanical models to determine wall stress and cardiac function in normal and diseased hearts with both systolic and diastolic dysfunction are discussed. The results of these studies have enhanced our understanding of the biomechanical mechanism in the development and remodeling of normal and dysfunctional hearts. Biomechanics provide a tool to understand the mechanism of left ventricular remodeling in diastolic and systolic dysfunction and guidance in designing and developing new treatments. PMID:26426462

  17. Applied Biomechanics in an Instructional Setting

    ERIC Educational Resources Information Center

    Hudson, Jackie L.

    2006-01-01

    Biomechanics is the science of how people move better, meaning more skillfully and more safely. This article places more emphasis on skill rather than safety, though there are many parallels between them. It shares a few features of the author's paradigm of applied biomechanics and discusses an integrated approach toward a middle school football…

  18. Correlation of breast image alignment using biomechanical modelling

    NASA Astrophysics Data System (ADS)

    Lee, Angela; Rajagopal, Vijay; Bier, Peter; Nielsen, Poul M. F.; Nash, Martyn P.

    2009-02-01

    Breast cancer is one of the most common causes of cancer death among women around the world. Researchers have found that a combination of imaging modalities (such as x-ray mammography, magnetic resonance, and ultrasound) leads to more effective diagnosis and management of breast cancers because each imaging modality displays different information about the breast tissues. In order to aid clinicians in interpreting the breast images from different modalities, we have developed a computational framework for generating individual-specific, 3D, finite element (FE) models of the breast. Medical images are embedded into this model, which is subsequently used to simulate the large deformations that the breasts undergo during different imaging procedures, thus warping the medical images to the deformed views of the breast in the different modalities. In this way, medical images of the breast taken in different geometric configurations (compression, gravity, etc.) can be aligned according to physically feasible transformations. In order to analyse the accuracy of the biomechanical model predictions, squared normalised cross correlation (NCC2) was used to provide both local and global comparisons of the model-warped images with clinical images of the breast subject to different gravity loaded states. The local comparison results were helpful in indicating the areas for improvement in the biomechanical model. To improve the modelling accuracy, we will need to investigate the incorporation of breast tissue heterogeneity into the model and altering the boundary conditions for the breast model. A biomechanical image registration tool of this kind will help radiologists to provide more reliable diagnosis and localisation of breast cancer.

  19. Dental Enamel: Genes Define Biomechanics

    PubMed Central

    Rauth, Rick J.; Potter, Karen S.; Ngan, Amanda Y.-W.; Saad, Deema M.; Mehr, Rana; Luong, Vivian Q.; Schuetter, Verna L.; Miklus, Vetea G.; Chang, PeiPei; Paine, Michael L.; Lacruz, Rodrigo S.; Snead, Malcolm L.; White, Shane N.

    2010-01-01

    Regulated gene expression assembles an extracellular proteinaceous matrix to control biomineralization and the resultant biomechanical function of tooth enamel. The importance of the dominant enamel matrix protein, amelogenin (Amel); a minor transiently expressed protein, dentin sialoprotein (Dsp); an electrogenic sodium bicarbonate cotransporter (NBCe1); the timely removal of the proteinaceous matrix by a serine protease, Kallikrein-4 (Klk4); and the late-stage expression of Amelotin (Amtn) on enamel biomechanical function were demonstrated and measured using mouse models. PMID:20066874

  20. Surface driven biomechanical breast image registration

    NASA Astrophysics Data System (ADS)

    Eiben, Björn; Vavourakis, Vasileios; Hipwell, John H.; Kabus, Sven; Lorenz, Cristian; Buelow, Thomas; Williams, Norman R.; Keshtgar, M.; Hawkes, David J.

    2016-03-01

    Biomechanical modelling enables large deformation simulations of breast tissues under different loading conditions to be performed. Such simulations can be utilised to transform prone Magnetic Resonance (MR) images into a different patient position, such as upright or supine. We present a novel integration of biomechanical modelling with a surface registration algorithm which optimises the unknown material parameters of a biomechanical model and performs a subsequent regularised surface alignment. This allows deformations induced by effects other than gravity, such as those due to contact of the breast and MR coil, to be reversed. Correction displacements are applied to the biomechanical model enabling transformation of the original pre-surgical images to the corresponding target position. The algorithm is evaluated for the prone-to-supine case using prone MR images and the skin outline of supine Computed Tomography (CT) scans for three patients. A mean target registration error (TRE) of 10:9 mm for internal structures is achieved. For the prone-to-upright scenario, an optical 3D surface scan of one patient is used as a registration target and the nipple distances after alignment between the transformed MRI and the surface are 10:1 mm and 6:3 mm respectively.

  1. Hominin Hip Biomechanics: Changing Perspectives.

    PubMed

    Warrener, Anna G

    2017-05-01

    The shape of the human pelvis reflects the unique demands placed on the hip abductor muscles (gluteus medius and gluteus minimus), which stabilize the body in the frontal plane during bipedal locomotion. This morphological shift occurred early in hominin evolution, yet important shape differences between hominin species have led to significant disagreement about abductor function and locomotor capability in these extinct taxa. A static biomechanical model that relies on a close association between skeletal measurements of the pelvis and femur has traditionally been used to reconstruct hip biomechanics in these species. However, experimental biomechanical approaches have highlighted the dynamic nature of mediolateral balance in walking and running, challenging the assumptions of the static hip model. This article reviews traditional approaches for understanding hip abductor function, shows how they have been applied to the fossil hominin record, and discusses new techniques that integrate the dynamic nature of mediolateral balance during human locomotion. Anat Rec, 300:932-945, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  2. The importance of hyaluronic acid in vocal fold biomechanics.

    PubMed

    Chan, R W; Gray, S D; Titze, I R

    2001-06-01

    This study examined the influence of hyaluronic acid (HA) on the biomechanical properties of the human vocal fold cover (the superficial layer of the lamina propria). Vocal fold tissues were freshly excised from 5 adult male cadavers and were treated with bovine testicular hyaluronidase to selectively remove HA from the lamina propria extracellular matrix (ECM). Linear viscoelastic shear properties (elastic shear modulus and dynamic viscosity) of the tissue samples before and after enzymatic treatment were quantified as a function of frequency (0.01 to 15 Hz) by a parallel-plate rotational rheometer at 37 degrees C. On removing HA from the vocal fold ECM, the elastic shear modulus (G' ) or stiffness of the vocal fold cover decreased by an average of around 35%, while the dynamic viscosity (eta') increased by 70% at higher frequencies (>1 Hz). The results suggested that HA plays an important role in determining the biomechanical properties of the vocal fold cover. As a highly hydrated glycosaminoglycan in the vocal fold ECM, it likely contributes to the maintenance of an optimal tissue viscosity that may facilitate phonation, and an optimal tissue stiffness that may be important for vocal fundamental frequency control. HA has been proposed as a potential bioimplant for the surgical repair of vocal fold ECM defects (eg, vocal fold scarring and sulcus vocalis). Our results suggested that such clinical use may be potentially optimal for voice production from a biomechanical perspective.

  3. Neck muscle biomechanics and neural control.

    PubMed

    Fice, Jason Bradley; Siegmund, Gunter P; Blouin, Jean-Sebastien

    2018-04-18

    The mechanics, morphometry, and geometry of our joints, segments and muscles are fundamental biomechanical properties intrinsic to human neural control. The goal of our study was to investigate if the biomechanical actions of individual neck muscles predicts their neural control. Specifically, we compared the moment direction & variability produced by electrical stimulation of a neck muscle (biomechanics) to their preferred activation direction & variability (neural control). Subjects sat upright with their head fixed to a 6-axis load cell and their torso restrained. Indwelling wire electrodes were placed into the sternocleidomastoid (SCM), splenius capitis (SPL), and semispinalis capitis (SSC) muscles. The electrically stimulated direction was defined as the moment direction produced when a current (2-19mA) was passed through each muscle's electrodes. Preferred activation direction was defined as the vector sum of the spatial tuning curve built from RMS EMG when subjects produced isometric moments at 7.5% and 15% of their maximum voluntary contraction (MVC) in 26 3D directions. The spatial tuning curves at 15% MVC were well-defined (unimodal, p<0.05) and their preferred directions were 23, 39, & 21{degree sign} different from their electrically stimulated directions for the SCM, SPL, and SSC respectively (p<0.05). Intra-subject variability was smaller in electrically stimulated moment directions when compared to voluntary preferred directions, and intra-subject variability decreased with increased activation levels. Our findings show that the neural control of neck muscles is not based solely on optimizing individual muscle biomechanics but, as activation increases, biomechanical constraints in part dictate the activation of synergistic neck muscles.

  4. Role of biomechanics in the understanding of normal, injured, and healing ligaments and tendons

    PubMed Central

    Jung, Ho-Joong; Fisher, Matthew B; Woo, Savio L-Y

    2009-01-01

    Ligaments and tendons are soft connective tissues which serve essential roles for biomechanical function of the musculoskeletal system by stabilizing and guiding the motion of diarthrodial joints. Nevertheless, these tissues are frequently injured due to repetition and overuse as well as quick cutting motions that involve acceleration and deceleration. These injuries often upset this balance between mobility and stability of the joint which causes damage to other soft tissues manifested as pain and other morbidity, such as osteoarthritis. The healing of ligament and tendon injuries varies from tissue to tissue. Tendinopathies are ubiquitous and can take up to 12 months for the pain to subside before one could return to normal activity. A ruptured medial collateral ligament (MCL) can generally heal spontaneously; however, its remodeling process takes years and its biomechanical properties remain inferior when compared to the normal MCL. It is also known that a midsubstance anterior cruciate ligament (ACL) tear has limited healing capability, and reconstruction by soft tissue grafts has been regularly performed to regain knee function. However, long term follow-up studies have revealed that 20–25% of patients experience unsatisfactory results. Thus, a better understanding of the function of ligaments and tendons, together with knowledge on their healing potential, may help investigators to develop novel strategies to accelerate and improve the healing process of ligaments and tendons. With thousands of new papers published in the last ten years that involve biomechanics of ligaments and tendons, there is an increasing appreciation of this subject area. Such attention has positively impacted clinical practice. On the other hand, biomechanical data are complex in nature, and there is a danger of misinterpreting them. Thus, in these review, we will provide the readers with a brief overview of ligaments and tendons and refer them to appropriate methodologies used to

  5. Biomechanically Engineered Athletes.

    ERIC Educational Resources Information Center

    Perry, Tekla S.

    1991-01-01

    The real-world meeting of electronics, computer monitoring, control systems, and mathematics, introduced in the context of sports, is described. Recent advances in the field of biomechanics and its use in improving athletic performance are discussed. (KR)

  6. Comparative Analysis between Total Disc Replacement and Posterior Foraminotomy for Posterolateral Soft Disc Herniation with Unilateral Radiculopathy : Clinical and Biomechanical Results of a Minimum 5 Years Follow-up

    PubMed Central

    Kim, Kyoung-Tae; Cho, Dae-Chul; Sung, Joo-Kyung; Kim, Young-Baeg; Kim, Du Hwan

    2017-01-01

    Objective To compare the clinical outcomes and biomechanical effects of total disc replacement (TDR) and posterior cervical foraminotomy (PCF) and to propose relative inclusion criteria. Methods Thirty-five patients who underwent surgery between 2006 and 2008 were included. All patients had single-level disease and only radiculopathy. The overall sagittal balance and angle and height of a functional segmental unit (FSU; upper and lower vertebral body of the operative lesion) were assessed by preoperative and follow-up radiographs. C2–7 range of motion (ROM), FSU, and the adjacent segment were also checked. Results The clinical outcome of TDR (group A) was tended to be superior to that of PCF (group B) without statistical significance. In the group A, preoperative and postoperative upper adjacent segment level motion values were 8.6±2.3 and 8.4±2.0, and lower level motion values were 8.4±2.2 and 8.3±1.9. Preoperative and postoperative FSU heights were 37.0±2.1 and 37.1±1.8. In the group B, upper level adjacent segment motion values were 8.1±2.6 and 8.2±2.8, and lower level motion values were 6.5±3.3 and 6.3±3.1. FSU heights were 37.1±2.0 and 36.2±1.8. The postoperative FSU motion and height changes were significant (p<0.05). The patient’s satisfaction rates for surgery were 88.2% in group A and 88.8% in group B. Conclusion TDR and PCF have favorable outcomes in patients with unilateral soft disc herniation. However, patients have different biomechanical backgrounds, so the patient’s biomechanical characteristics and economic status should be understood and treated using the optimal procedure. PMID:28061490

  7. Role of Aquaporin 0 in lens biomechanics.

    PubMed

    Sindhu Kumari, S; Gupta, Neha; Shiels, Alan; FitzGerald, Paul G; Menon, Anil G; Mathias, Richard T; Varadaraj, Kulandaiappan

    2015-07-10

    Maintenance of proper biomechanics of the eye lens is important for its structural integrity and for the process of accommodation to focus near and far objects. Several studies have shown that specialized cytoskeletal systems such as the beaded filament (BF) and spectrin-actin networks contribute to mammalian lens biomechanics; mutations or deletion in these proteins alters lens biomechanics. Aquaporin 0 (AQP0), which constitutes ∼45% of the total membrane proteins of lens fiber cells, has been shown to function as a water channel and a structural cell-to-cell adhesion (CTCA) protein. Our recent ex vivo study on AQP0 knockout (AQP0 KO) mouse lenses showed the CTCA function of AQP0 could be crucial for establishing the refractive index gradient. However, biomechanical studies on the role of AQP0 are lacking. The present investigation used wild type (WT), AQP5 KO (AQP5(-/-)), AQP0 KO (heterozygous KO: AQP0(+/-); homozygous KO: AQP0(-/-); all in C57BL/6J) and WT-FVB/N mouse lenses to learn more about the role of fiber cell AQPs in lens biomechanics. Electron microscopic images exhibited decreases in lens fiber cell compaction and increases in extracellular space due to deletion of even one allele of AQP0. Biomechanical assay revealed that loss of one or both alleles of AQP0 caused a significant reduction in the compressive load-bearing capacity of the lenses compared to WT lenses. Conversely, loss of AQP5 did not alter the lens load-bearing ability. Compressive load-bearing at the suture area of AQP0(+/-) lenses showed easy separation while WT lens suture remained intact. These data from KO mouse lenses in conjunction with previous studies on lens-specific BF proteins (CP49 and filensin) suggest that AQP0 and BF proteins could act co-operatively in establishing normal lens biomechanics. We hypothesize that AQP0, with its prolific expression at the fiber cell membrane, could provide anchorage for cytoskeletal structures like BFs and together they help to confer

  8. Influence of glucocorticosteroids on the biomechanical properties of in-vivo rabbit cornea.

    PubMed

    Yu, Ji-guo; Bao, Fang-jun; Joda, Akram; Fu, Xun-an; Zhou, Shi; Wang, Jing; Hu, Xiu-li; Wang, Qin-mei; Elsheikh, Ahmed

    2014-01-01

    Understanding corneal biomechanical responses during long-term glucocorticosteroids administration is important in clinical practice. The purpose of this study is to investigate the biomechanical influence of fluorometholone 0.1% eye drops on rabbit cornea. Thirty-eight Japanese white rabbits were randomly divided into three groups; a fluorometholone group, a supernatant group and a blank control group. For each rabbit in fluorometholone group, one cornea was treated with fluorometholone 0.1% eye drops four times a day for 8 weeks, while corneas of rabbits in supernatant group were treated in the same frequency with supernatant fraction centrifuged from fluorometholone 0.1% eye drops. The rabbits in the blank control group were not given any treatment. At the end of the 8 week observation period, the rabbits were euthanized and the eyes immediately enucleated and prepared for inflation testing. The experimental pressure-deformation data was used to derive the stress-strain behavior of each eye using an inverse modeling procedure. Comparisons of mechanical stiffness of corneas were conducted among the three groups to determine the influence of fluorometholone. The results showed that corneal stiffness decreased as the fluorometholone administration time prolonged. Comparisons of tangent modulus indicated average stiffness reductions of 34.2% and 33.5% in the fluorometholone group compared to the supernatant and control groups, respectively, at the end of the observation period. The stiffness-reduction effect of fluorometholone on the cornea should be considered in clinical management, especially when administrating it to biomechanically weakened corneas, such as after refractive surgeries and in cases of keratoconus. © 2013 Published by Elsevier Ltd.

  9. Comparison of biomechanical gait parameters of young children with haemophilia and those of age-matched peers.

    PubMed

    Stephensen, D; Drechsler, W; Winter, M; Scott, O

    2009-03-01

    Quality of life for children with haemophilia has improved since the introduction of prophylaxis. The frequency of joint haemorrhages has reduced, but the consequences of reduced bleeding on the biomechanical parameters of walking are not well understood. This study explored the differences in sagittal plane biomechanics of walking between a control group (Group 1) of normal age-matched children and children with haemophilia (Group 2) with a target ankle joint. A motion capture system and two force platforms were used to collect sagittal plane kinematic, kinetic and temporal-spatial data during walking of 14 age-matched normal children and 14 children with haemophilia aged 7-13 years. Group differences in maximum and minimum flexion/extension angles and moments of the hip, knee and ankle joints, ground reaction forces and temporal-spatial gait cycle parameters were analysed using one-way anova. Significant changes (P < 0.05) in kinematic and kinetic parameters but not temporal-spatial parameters were found in children with haemophilia; greater flexion angles and external moments of force at the knee, greater ankle plantarflexion external moments and lower hip flexion external moments. These results suggest that early biomechanical changes are present in young haemophilic children with a history of a target ankle joint and imply that lower limb joint function is more impaired than current clinical evaluations indicate. Protocols and quantitative data on the biomechanical gait pattern of children with haemophilia reported in this study provide a baseline to evaluate lower limb joint function and clinical progression.

  10. Trunk, pelvis and hip biomechanics in individuals with femoroacetabular impingement syndrome: Strategies for step ascent.

    PubMed

    Diamond, Laura E; Bennell, Kim L; Wrigley, Tim V; Hinman, Rana S; Hall, Michelle; O'Donnell, John; Hodges, Paul W

    2018-03-01

    Femoroacetabular impingment (FAI) syndrome is common among young active adults and a proposed risk factor for the future development of hip osteoarthritis. Pain is dominant and drives clinical decision-making. Evidence for altered hip joint function in this patient population is inconsistent, making the identification of treatment targets challenging. A broader assessment, considering adjacent body segments (i.e. pelvis, trunk) and individual movement strategies, may better inform treatment programs. This exploratory study aimed to compare trunk, pelvis, and hip biomechanics during step ascent between individuals with and without FAI syndrome. Fifteen participants diagnosed with symptomatic cam-type or combined (cam plus pincer) FAI who were scheduled for arthroscopic surgery, and 11 age-, and sex-comparable pain- and disease-free individuals, underwent three-dimensional motion analysis during a step ascent task. Trunk, pelvis and hip biomechanics were compared between groups. Participants with FAI syndrome exhibited altered ipsilateral trunk lean and pelvic rise towards the symptomatic side during single-leg support compared to controls. Alterations were not uniformly adopted across all individuals with FAI syndrome; those who exhibited more pronounced alterations to frontal plane pelvis control tended to report pain during the task. There were minimal between-group differences for hip biomechanics. Exploratory data suggest biomechanics at the trunk and pelvis during step ascent differ between individuals with and without FAI syndrome. Those with FAI syndrome implement a range of proximal strategies for task completion, some of which may have relevance for rehabilitation. Longitudinal investigations of larger cohorts are required to evaluate hypothesized clinical and structural consequences. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Role of Aquaporin 0 in lens biomechanics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sindhu Kumari, S.; Gupta, Neha; Shiels, Alan

    Maintenance of proper biomechanics of the eye lens is important for its structural integrity and for the process of accommodation to focus near and far objects. Several studies have shown that specialized cytoskeletal systems such as the beaded filament (BF) and spectrin-actin networks contribute to mammalian lens biomechanics; mutations or deletion in these proteins alters lens biomechanics. Aquaporin 0 (AQP0), which constitutes ∼45% of the total membrane proteins of lens fiber cells, has been shown to function as a water channel and a structural cell-to-cell adhesion (CTCA) protein. Our recent ex vivo study on AQP0 knockout (AQP0 KO) mouse lenses showedmore » the CTCA function of AQP0 could be crucial for establishing the refractive index gradient. However, biomechanical studies on the role of AQP0 are lacking. The present investigation used wild type (WT), AQP5 KO (AQP5{sup −/−}), AQP0 KO (heterozygous KO: AQP0{sup +/−}; homozygous KO: AQP0{sup −/−}; all in C57BL/6J) and WT-FVB/N mouse lenses to learn more about the role of fiber cell AQPs in lens biomechanics. Electron microscopic images exhibited decreases in lens fiber cell compaction and increases in extracellular space due to deletion of even one allele of AQP0. Biomechanical assay revealed that loss of one or both alleles of AQP0 caused a significant reduction in the compressive load-bearing capacity of the lenses compared to WT lenses. Conversely, loss of AQP5 did not alter the lens load-bearing ability. Compressive load-bearing at the suture area of AQP0{sup +/−} lenses showed easy separation while WT lens suture remained intact. These data from KO mouse lenses in conjunction with previous studies on lens-specific BF proteins (CP49 and filensin) suggest that AQP0 and BF proteins could act co-operatively in establishing normal lens biomechanics. We hypothesize that AQP0, with its prolific expression at the fiber cell membrane, could provide anchorage for cytoskeletal structures like BFs

  12. Application of a model to analyze shoulder biomechanics in adult patients with spinal cord injury when walking with crutches in two different gait patterns.

    PubMed

    Perez-Rizo, Enrique; Trincado-Alonso, Fernando; Pérez-Nombela, Soraya; Del Ama-Espinosa, Antonio; Jiménez-Díaz, Fernando; Lozano-Berrio, Vicente; Gil-Agudo, Angel

    2017-01-01

    Specific biomechanical models have been developed to study gait using crutches. Clinical application of these models is needed in adult spinal cord injury (SCI) population walking with different patterns of gait with crutches to prevent overuse shoulder injuries. To apply a biomechanical model in a clinical environment to analyze shoulder in adult SCI patients walking with two different patterns of gait with crutches: two point reciprocal gait (RG) and swing-through gait (SG). Load cells were fixed to the distal ends and forearm cuffs of a pair of crutches. An active markers system was used for kinematics. Five cycles for each gait pattern were analyzed applying a biomechanical model of the upper limbs. Fifteen subjects with SCI were analyzed. The flexo-extension range of motion was significantly greater when using SG (p < 0.01). Similarly, the superior, posterior and medial forces were significantly stronger for SG in all 3 directions. Flexion, adduction and internal rotation torques were also greater in SG (p < 0.01). A biomechanical model was successfully applied to study shoulder biomechanics in adult patients with SCI walking with crutches in two different gait patterns. Greater loads exerted on the shoulder walking with SG were confirmed compared to RG.

  13. Open Knee: Open Source Modeling & Simulation to Enable Scientific Discovery and Clinical Care in Knee Biomechanics

    PubMed Central

    Erdemir, Ahmet

    2016-01-01

    Virtual representations of the knee joint can provide clinicians, scientists, and engineers the tools to explore mechanical function of the knee and its tissue structures in health and disease. Modeling and simulation approaches such as finite element analysis also provide the possibility to understand the influence of surgical procedures and implants on joint stresses and tissue deformations. A large number of knee joint models are described in the biomechanics literature. However, freely accessible, customizable, and easy-to-use models are scarce. Availability of such models can accelerate clinical translation of simulations, where labor intensive reproduction of model development steps can be avoided. The interested parties can immediately utilize readily available models for scientific discovery and for clinical care. Motivated by this gap, this study aims to describe an open source and freely available finite element representation of the tibiofemoral joint, namely Open Knee, which includes detailed anatomical representation of the joint's major tissue structures, their nonlinear mechanical properties and interactions. Three use cases illustrate customization potential of the model, its predictive capacity, and its scientific and clinical utility: prediction of joint movements during passive flexion, examining the role of meniscectomy on contact mechanics and joint movements, and understanding anterior cruciate ligament mechanics. A summary of scientific and clinically directed studies conducted by other investigators are also provided. The utilization of this open source model by groups other than its developers emphasizes the premise of model sharing as an accelerator of simulation-based medicine. Finally, the imminent need to develop next generation knee models are noted. These are anticipated to incorporate individualized anatomy and tissue properties supported by specimen-specific joint mechanics data for evaluation, all acquired in vitro from varying age

  14. Integrative Structural Biomechanical Concepts of Ankylosing Spondylitis

    PubMed Central

    Masi, Alfonse T.; Nair, Kalyani; Andonian, Brian J.; Prus, Kristina M.; Kelly, Joseph; Sanchez, Jose R.; Henderson, Jacqueline

    2011-01-01

    Ankylosing spondylitis (AS) is not fully explained by inflammatory processes. Clinical, epidemiological, genetic, and course of disease features indicate additional host-related risk processes and predispositions. Collectively, the pattern of predisposition to onset in adolescent and young adult ages, male preponderance, and widely varied severity of AS is unique among rheumatic diseases. However, this pattern could reflect biomechanical and structural differences between the sexes, naturally occurring musculoskeletal changes over life cycles, and a population polymorphism. During juvenile development, the body is more flexible and weaker than during adolescent maturation and young adulthood, when strengthening and stiffening considerably increase. During middle and later ages, the musculoskeletal system again weakens. The novel concept of an innate axial myofascial hypertonicity reflects basic mechanobiological principles in human function, tissue reactivity, and pathology. However, these processes have been little studied and require critical testing. The proposed physical mechanisms likely interact with recognized immunobiological pathways. The structural biomechanical processes and tissue reactions might possibly precede initiation of other AS-related pathways. Research in the combined structural mechanobiology and immunobiology processes promises to improve understanding of the initiation and perpetuation of AS than prevailing concepts. The combined processes might better explain characteristic enthesopathic and inflammatory processes in AS. PMID:22216409

  15. Robot-aided therapy on the upper limb of subacute and chronic stroke patients: a biomechanical approach.

    PubMed

    Mazzoleni, S; Filippi, M; Carrozza, M C; Posteraro, F; Puzzolante, L; Falchi, E

    2011-01-01

    The goal of this study is to propose a methodology for evaluating recovery mechanisms in subacute and chronic post-stroke patients after a robot-aided upper-limb therapy, using a set of biomechanical parameters. Fifty-six post-stroke subjects, thirteen subacute and forty-three chronic patients participated in the study. A 2 dof robotic system, implementing an "assist-as-needed" control strategy, was used. Biomechanical parameters related (i) to the speed measured at the robot's end-effector and (ii) to the movement's smoothness were computed. Outcome clinical measures show a decrease in motor impairment after the treatment both in chronic and subacute patients. All the biomechanical parameters show an improvement between admission and discharge. Our results show that the robot-aided training can contribute to reduce the motor impairment in both subacute and chronic patients and identify neurophysiological mechanisms underlying the different stages of motor recovery. © 2011 IEEE

  16. Interpreting locomotor biomechanics from the morphology of human footprints.

    PubMed

    Hatala, Kevin G; Wunderlich, Roshna E; Dingwall, Heather L; Richmond, Brian G

    2016-01-01

    Fossil hominin footprints offer unique direct windows to the locomotor behaviors of our ancestors. These data could allow a clearer understanding of the evolution of human locomotion by circumventing issues associated with indirect interpretations of habitual locomotor patterns from fossil skeletal material. However, before we can use fossil hominin footprints to understand better the evolution of human locomotion, we must first develop an understanding of how locomotor biomechanics are preserved in, and can be inferred from, footprint morphologies. In this experimental study, 41 habitually barefoot modern humans created footprints under controlled conditions in which variables related to locomotor biomechanics could be quantified. Measurements of regional topography (depth) were taken from 3D models of those footprints, and principal components analysis was used to identify orthogonal axes that described the largest proportions of topographic variance within the human experimental sample. Linear mixed effects models were used to quantify the influences of biomechanical variables on the first five principal axes of footprint topographic variation, thus providing new information on the biomechanical variables most evidently expressed in the morphology of human footprints. The footprint's overall depth was considered as a confounding variable, since biomechanics may be linked to the extent to which a substrate deforms. Three of five axes showed statistically significant relationships with variables related to both locomotor biomechanics and substrate displacement; one axis was influenced only by biomechanics and another only by the overall depth of the footprint. Principal axes of footprint morphological variation were significantly related to gait type (walking or running), kinematics of the hip and ankle joints and the distribution of pressure beneath the foot. These results provide the first quantitative framework for developing hypotheses regarding the

  17. Biomechanical interpretation of a free-breathing lung motion model

    NASA Astrophysics Data System (ADS)

    Zhao, Tianyu; White, Benjamin; Moore, Kevin L.; Lamb, James; Yang, Deshan; Lu, Wei; Mutic, Sasa; Low, Daniel A.

    2011-12-01

    The purpose of this paper is to develop a biomechanical model for free-breathing motion and compare it to a published heuristic five-dimensional (5D) free-breathing lung motion model. An ab initio biomechanical model was developed to describe the motion of lung tissue during free breathing by analyzing the stress-strain relationship inside lung tissue. The first-order approximation of the biomechanical model was equivalent to a heuristic 5D free-breathing lung motion model proposed by Low et al in 2005 (Int. J. Radiat. Oncol. Biol. Phys. 63 921-9), in which the motion was broken down to a linear expansion component and a hysteresis component. To test the biomechanical model, parameters that characterize expansion, hysteresis and angles between the two motion components were reported independently and compared between two models. The biomechanical model agreed well with the heuristic model within 5.5% in the left lungs and 1.5% in the right lungs for patients without lung cancer. The biomechanical model predicted that a histogram of angles between the two motion components should have two peaks at 39.8° and 140.2° in the left lungs and 37.1° and 142.9° in the right lungs. The data from the 5D model verified the existence of those peaks at 41.2° and 148.2° in the left lungs and 40.1° and 140° in the right lungs for patients without lung cancer. Similar results were also observed for the patients with lung cancer, but with greater discrepancies. The maximum-likelihood estimation of hysteresis magnitude was reported to be 2.6 mm for the lung cancer patients. The first-order approximation of the biomechanical model fit the heuristic 5D model very well. The biomechanical model provided new insights into breathing motion with specific focus on motion trajectory hysteresis.

  18. Stents: Biomechanics, Biomaterials, and Insights from Computational Modeling.

    PubMed

    Karanasiou, Georgia S; Papafaklis, Michail I; Conway, Claire; Michalis, Lampros K; Tzafriri, Rami; Edelman, Elazer R; Fotiadis, Dimitrios I

    2017-04-01

    Coronary stents have revolutionized the treatment of coronary artery disease. Improvement in clinical outcomes requires detailed evaluation of the performance of stent biomechanics and the effectiveness as well as safety of biomaterials aiming at optimization of endovascular devices. Stents need to harmonize the hemodynamic environment and promote beneficial vessel healing processes with decreased thrombogenicity. Stent design variables and expansion properties are critical for vessel scaffolding. Drug-elution from stents, can help inhibit in-stent restenosis, but adds further complexity as drug release kinetics and coating formulations can dominate tissue responses. Biodegradable and bioabsorbable stents go one step further providing complete absorption over time governed by corrosion and erosion mechanisms. The advances in computing power and computational methods have enabled the application of numerical simulations and the in silico evaluation of the performance of stent devices made up of complex alloys and bioerodible materials in a range of dimensions and designs and with the capacity to retain and elute bioactive agents. This review presents the current knowledge on stent biomechanics, stent fatigue as well as drug release and mechanisms governing biodegradability focusing on the insights from computational modeling approaches.

  19. Theophylline-Induced Seizures: Clinical and Pathophysiologic Aspects

    PubMed Central

    Nakada, Tsutomu; Kwee, Ingrid L.; Lerner, Alfred M.; Remler, Michael P.

    1983-01-01

    The clinical features and management of theophylline-induced seizures are not well appreciated in spite of their unique aspects. These seizures tend to occur in neurologically intact patients and leave no or only minor neurologic sequelae if controlled early. They begin with focal motor seizures with or without secondary generalization and are followed by stupor or coma. They are responsive only to adjustment of theophylline dosage. Should the motor phenomenon persist, it takes the form of epilepsia partialis continua. Extensive workup for a structural brain lesion may be unrewarding. The electroencephalogram typically shows periodic lateralized epileptiform discharges, which may provide a diagnostic clue. PMID:6858124

  20. Biomechanical risk factors for proximal junctional kyphosis: a detailed numerical analysis of surgical instrumentation variables.

    PubMed

    Cammarata, Marco; Aubin, Carl-Éric; Wang, Xiaoyu; Mac-Thiong, Jean-Marc

    2014-04-15

    Biomechanical analysis of proximal junctional kyphosis (PJK) through computer simulations and sensitivity analysis. To gain biomechanical knowledge on the risk of PJK and find surgical solutions to reduce the risks. PJK is a pathological kyphotic deformity adjacent to the instrumentation. Clinical studies have documented its risk factors, but still little is known on how it is correlated with various individual instrumentation variables. Biomechanical spine models of 6 patients with adult scoliosis were developed, validated, and then used to perform 576 simulations, varying the proximal dissection procedure, the implant type at the upper instrumented vertebra, the sagittal rod curvature, and the proximal diameter of the proximal transition rods. Four biomechanical indices--the proximal junctional kyphotic angle, thoracic kyphosis, proximal flexion force, and proximal flexion moment--were assessed. The bilateral complete facetectomy, the posterior ligaments resection, and the combination of both increased the proximal junctional kyphotic angle (respectively, by 10%, 28% and 53%) and the proximal flexion force (4%, 12%, and 22%) and moment (16%, 44%, and 83%). Compared with pedicle screws at upper instrumented vertebra, proximal transverse process hooks reduced the 3 biomechanical indices by approximately 26%. The use of proximal transition rods with reduced proximal diameter from 5.5 mm to 4 mm decreased the proximal junctional kyphotic angle (by 6%) and the proximal flexion force (4%) and moment (8%). The increase of the sagittal rod curvature from 10° to 20°, 30°, and 40° increased the proximal junctional kyphotic angle (by 6%, 13%, and 19%) and the proximal flexion force (3%, 7%, and 10%) and moment (9%, 18%, and 27%). Preserving more posterior proximal intervertebral elements, the use of transition rods and transverse process hooks at upper instrumented vertebra, and reducing the global sagittal rod curvature each decreased the 4 biomechanical indices that

  1. The short-term effects of running on the deformation of knee articular cartilage and its relationship to biomechanical loads at the knee.

    PubMed

    Boocock, M; McNair, P; Cicuttini, F; Stuart, A; Sinclair, T

    2009-07-01

    To investigate the short-term effects of recreational running on the deformation of knee articular cartilage and to examine the relationship between changes in knee cartilage volume and biomechanical modulators of knee joint load. Twenty healthy volunteers participated in a two phase cross-sectional study. Session 1 involved Magnetic Resonance Imaging (MRI) of femoral and tibial cartilage volumes prior to and following a 30 min period of relaxed sitting, which was directly followed by a recreational run of 5000 steps. Subsequently, all participants undertook a laboratory study of their running gait to compare biomechanical derived measures of knee joint loading with changes in cartilage volume. Estimates of knee joint load were determined using a rigid-link segment, dynamic biomechanical model of the lower limbs and a simplified muscle model. Running resulted in significant deformation of the medial (5.3%, P<0.01) and lateral femoral cartilage (4.0%, P<0.05) and lateral aspect of the tibial cartilage (5.7%, P<0.01), with no significant differences between genders. Maximum compression stress was significantly correlated with percentage changes in lateral femoral cartilage volume (r(2)=0.456, P<0.05). No other biomechanical variables correlated with volume changes. Limited evidence was found linking biomechanical measures of knee joint loading and observed short-term deformation of knee articular cartilage volume following running. Further enhancement of knee muscle modelling and analysis of stress distribution across cartilage are needed if we are to fully understand the contribution of biomechanical factors to knee joint loading and the pathogenesis of knee osteoarthritis (OA).

  2. Physiological and Biomechanical Mechanisms of Distance Specific Human Running Performance.

    PubMed

    Thompson, M A

    2017-08-01

    Running events range from 60-m sprints to ultra-marathons covering 100 miles or more, which presents an interesting diversity in terms of the parameters for successful performance. Here, we review the physiological and biomechanical variations underlying elite human running performance in sprint to ultramarathon distances. Maximal running speeds observed in sprint disciplines are achieved by high vertical ground reaction forces applied over short contact times. To create this high force output, sprint events rely heavily on anaerobic metabolism, as well as a high number and large cross-sectional area of type II fibers in the leg muscles. Middle distance running performance is characterized by intermediates of biomechanical and physiological parameters, with the possibility of unique combinations of each leading to high-level performance. The relatively fast velocities in mid-distance events require a high mechanical power output, though ground reaction forces are less than in sprinting. Elite mid-distance runners exhibit local muscle adaptations that, along with a large anaerobic capacity, provide the ability to generate a high power output. Aerobic capacity starts to become an important aspect of performance in middle distance events, especially as distance increases. In distance running events, V˙O2max is an important determinant of performance, but is relatively homogeneous in elite runners. V˙O2 and velocity at lactate threshold have been shown to be superior predictors of elite distance running performance. Ultramarathons are relatively new running events, as such, less is known about physiological and biomechanical parameters that underlie ultra-marathon performance. However, it is clear that performance in these events is related to aerobic capacity, fuel utilization, and fatigue resistance. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology 2017. This work is written by US Government employees and is in

  3. A systematic review: the influence of real time feedback on wheelchair propulsion biomechanics.

    PubMed

    Symonds, Andrew; Barbareschi, Giulia; Taylor, Stephen; Holloway, Catherine

    2018-01-01

    Clinical guidelines recommend that, in order to minimize upper limb injury risk, wheelchair users adopt a semi-circular pattern with a slow cadence and a large push arc. To examine whether real time feedback can be used to influence manual wheelchair propulsion biomechanics. Clinical trials and case series comparing the use of real time feedback against no feedback were included. A general review was performed and methodological quality assessed by two independent practitioners using the Downs and Black checklist. The review was completed in accordance with the Preferred Reporting Items for Systematic Reviews and Meta Analyses (PRISMA) guidelines. Six papers met the inclusion criteria. Selected studies involved 123 participants and analysed the effect of visual and, in one case, haptic feedback. Across the studies it was shown that participants were able to achieve significant changes in propulsion biomechanics, when provided with real time feedback. However, the effect of targeting a single propulsion variable might lead to unwanted alterations in other parameters. Methodological assessment identified weaknesses in external validity. Visual feedback could be used to consistently increase push arc and decrease push rate, and may be the best focus for feedback training. Further investigation is required to assess such intervention during outdoor propulsion. Implications for Rehabilitation Upper limb pain and injuries are common secondary disorders that negatively affect wheelchair users' physical activity and quality of life. Clinical guidelines suggest that manual wheelchair users should aim to propel with a semi-circular pattern with low a push rate and large push arc in the range in order to minimise upper limbs' loading. Real time visual and haptic feedback are effective tools for improving propulsion biomechanics in both complete novices and experienced manual wheelchair users.

  4. Vocal fold proteoglycans and their influence on biomechanics.

    PubMed

    Gray, S D; Titze, I R; Chan, R; Hammond, T H

    1999-06-01

    To examine the interstitial proteins of the vocal fold and their influence on the biomechanical properties of that tissue. Anatomic study of the lamina propria of human cadaveric vocal folds combined with some viscosity testing. Identification of proteoglycans is performed with histochemical staining. Quantitative analysis is performed using an image analysis system. A rheometer is used for viscosity testing. Three-dimensional rendering program is used for the computer images. Proteoglycans play an important role in tissue biomechanics. Hyaluronic acid is a key molecule that affects viscosity. The proteoglycans of the lamina propria have important biological and biomechanical effects. The role of hyaluronic acid in determining tissue viscosity is emphasized. Viscosity, its effect on phonatory threshold pressure and energy expended due to phonation is discussed. Proteoglycans, particularly hyaluronic acid, play important roles in determining biomechanical properties of tissue oscillation. Future research will likely make these proteins of important therapeutic interest.

  5. Considerations for Reporting Finite Element Analysis Studies in Biomechanics

    PubMed Central

    Erdemir, Ahmet; Guess, Trent M.; Halloran, Jason; Tadepalli, Srinivas C.; Morrison, Tina M.

    2012-01-01

    Simulation-based medicine and the development of complex computer models of biological structures is becoming ubiquitous for advancing biomedical engineering and clinical research. Finite element analysis (FEA) has been widely used in the last few decades to understand and predict biomechanical phenomena. Modeling and simulation approaches in biomechanics are highly interdisciplinary, involving novice and skilled developers in all areas of biomedical engineering and biology. While recent advances in model development and simulation platforms offer a wide range of tools to investigators, the decision making process during modeling and simulation has become more opaque. Hence, reliability of such models used for medical decision making and for driving multiscale analysis comes into question. Establishing guidelines for model development and dissemination is a daunting task, particularly with the complex and convoluted models used in FEA. Nonetheless, if better reporting can be established, researchers will have a better understanding of a model’s value and the potential for reusability through sharing will be bolstered. Thus, the goal of this document is to identify resources and considerate reporting parameters for FEA studies in biomechanics. These entail various levels of reporting parameters for model identification, model structure, simulation structure, verification, validation, and availability. While we recognize that it may not be possible to provide and detail all of the reporting considerations presented, it is possible to establish a level of confidence with selective use of these parameters. More detailed reporting, however, can establish an explicit outline of the decision-making process in simulation-based analysis for enhanced reproducibility, reusability, and sharing. PMID:22236526

  6. Graphic-based musculoskeletal model for biomechanical analyses and animation.

    PubMed

    Chao, Edmund Y S

    2003-04-01

    The ability to combine physiology and engineering analyses with computer sciences has opened the door to the possibility of creating the 'Virtual Human' reality. This paper presents a broad foundation for a full-featured biomechanical simulator for the human musculoskeletal system physiology. This simulation technology unites the expertise in biomechanical analysis and graphic modeling to investigate joint and connective tissue mechanics at the structural level and to visualize the results in both static and animated forms together with the model. Adaptable anatomical models including prosthetic implants and fracture fixation devices and a robust computational infrastructure for static, kinematic, kinetic, and stress analyses under varying boundary and loading conditions are incorporated on a common platform, the VIMS (Virtual Interactive Musculoskeletal System). Within this software system, a manageable database containing long bone dimensions, connective tissue material properties and a library of skeletal joint system functional activities and loading conditions are also available and they can easily be modified, updated and expanded. Application software is also available to allow end-users to perform biomechanical analyses interactively. This paper details the design, capabilities, and features of the VIMS development at Johns Hopkins University, an effort possible only through academic and commercial collaborations. Examples using these models and the computational algorithms in a virtual laboratory environment are used to demonstrate the utility of this unique database and simulation technology. This integrated system will impact on medical education, basic research, device development and application, and clinical patient care related to musculoskeletal diseases, trauma, and rehabilitation.

  7. The biomechanics of upper extremity kinematic and kinetic modeling: applications to rehabilitation engineering.

    PubMed

    Slavens, Brooke A; Harris, Gerald F

    2008-01-01

    Human motion analysis has evolved from the lower extremity to the upper extremity. Rehabilitation engineering is reliant upon three-dimensional biome-chanical models for a thorough understanding of upper body motions and forces in order to improve treatment methods, rehabilitation strategies and to prevent injury. Due to the complex nature of upper body movements, a standard biomechanical model does not exist. This paper reviews several kinematic and kinetic rehabilitation engineering models from the literature. These models may capture a single joint; multijoints such as the shoulder, elbow and wrist; or a combination of joints and an ambulatory aid, which serves as the extension of the upper arm. With advances in software and hardware, new models continuously arise due to the clinical questions at hand. When designing a biomechanical upper extremity model, several key components must be determined. These include deciding on the anatomic segments of the model, the number of markers and placement on bony landmarks, the definition of joint coordinate systems, and the description of the joint motions. It is critical to apply the proper model to further our understanding of pathologic populations.

  8. Plaque hemorrhage in carotid artery disease: pathogenesis, clinical and biomechanical considerations.

    PubMed

    Teng, Zhongzhao; Sadat, Umar; Brown, Adam J; Gillard, Jonathan H

    2014-03-03

    Stroke remains the most prevalent disabling illness today, with internal carotid artery luminal stenosis due to atheroma formation responsible for the majority of ischemic cerebrovascular events. Severity of luminal stenosis continues to dictate both patient risk stratification and the likelihood of surgical intervention. But there is growing evidence to suggest that plaque morphology may help improve pre-existing risk stratification criteria. Plaque components such a fibrous tissue, lipid rich necrotic core and calcium have been well investigated but plaque hemorrhage (PH) has been somewhat overlooked. In this review we discuss the pathogenesis of PH, its role in dictating plaque vulnerability, PH imaging techniques, marterial properties of atherosclerotic tissues, in particular, those obtained based on in vivo measurements and effect of PH in modulating local biomechanics. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. [Biomechanical air-vibration stimulation in the medical rehabilitation of patients with chronic venous insufficiency of the lower extremities].

    PubMed

    Zhukov, B N; Katorkin, S E

    1993-01-01

    Biomechanical pneumo-vibration stimulation of lower extremities was used in 146 patients with different forms and stages of chronic venous insufficiency of lower extremities during conservative treatment in preoperative preparation and the following early rehabilitation, in 106 patients with consequences of the trauma and diseases of the spinal cord as well as in 35 healthy people. The biomechanical pneumo-vibration stimulation is thought by the authors to be a promising noninvasive conservative method of medical rehabilitation. It can be recommended for clinical use with due regard for contraindications.

  10. Gender differences in joint biomechanics during walking: normative study in young adults.

    PubMed

    Kerrigan, D C; Todd, M K; Della Croce, U

    1998-01-01

    The effect of gender on specific joint biomechanics during gait has been largely unexplored. Given the perceived, subjective, and temporal differences in walking between genders, we hypothesized that quantitative analysis would reveal specific gender differences in joint biomechanics as well. Sagittal kinematic (joint motion) and kinetic (joint torque and power) data from the lower limbs during walking were collected and analyzed in 99 young adult subjects (49 females), aged 20 to 40 years, using an optoelectronic motion analysis and force platform system. Kinetic data were normalized for both height and weight. Female and male data were compared graphically and statistically to assess differences in all major peak joint kinematic and kinetic values. Females had significantly greater hip flexion and less knee extension before initial contact, greater knee flexion moment in pre-swing, and greater peak mechanical joint power absorption at the knee in pre-swing (P < 0.0019 for each parameter). Other differences were noted (P < 0.05) that were not statistically significant when accounting for multiple comparisons. These gender differences may provide new insights into walking dynamics and may be important for both clinical and research studies in motivating the development of separate biomechanical reference databases for males and females.

  11. Ex vivo biomechanical characterization of syringe-needle ejections for intracerebral cell delivery.

    PubMed

    Wahlberg, Brendon; Ghuman, Harmanvir; Liu, Jessie R; Modo, Michel

    2018-06-15

    Intracerebral implantation of cell suspensions is finding its clinical translation with encouraging results in patients with stroke. However, the survival of cells in the brain remains poor. Although the biological potential of neural stem cells (NSCs) is widely documented, the biomechanical effects of delivering cells through a syringe-needle remain poorly understood. We here detailed the biomechanical forces (pressure, shear stress) that cells are exposed to during ejection through different sized needles (20G, 26G, 32G) and syringes (10, 50, 250 µL) at relevant flow rates (1, 5, 10 µL/min). A comparison of 3 vehicles, Phosphate Buffered Saline (PBS), Hypothermosol (HTS), and Pluronic, indicated that less viscous vehicles are favorable for suspension with a high cell volume fraction to minimize sedimentation. Higher suspension viscosity was associated with greater shear stress. Higher flow rates with viscous vehicle, such as HTS reduced viability by ~10% and also produced more apoptotic cells (28%). At 5 µL/min ejection using a 26G needle increased neuronal differentiation for PBS and HTS suspensions. These results reveal the biological impact of biomechanical forces in the cell delivery process. Appropriate engineering strategies can be considered to mitigate these effects to ensure the efficacious translation of this promising therapy.

  12. Physiology, biomechanics, and biomimetics of hagfish slime.

    PubMed

    Fudge, Douglas S; Schorno, Sarah; Ferraro, Shannon

    2015-01-01

    Hagfishes thwart attacks by fish predators by producing liters of defensive slime. The slime is produced when slime gland exudate is released into the predator's mouth, where it deploys in a fraction of a second and clogs the gills. Slime exudate is composed mainly of secretory products from two cell types, gland mucous cells and gland thread cells, which produce the mucous and fibrous components of the slime, respectively. Here, we review what is known about the composition of the slime, morphology of the slime gland, and physiology of the cells that produce the slime. We also discuss several of the mechanisms involved in the deployment of both mucous and thread cells during the transition from thick glandular exudate to ultradilute material. We review biomechanical aspects of the slime, along with recent efforts to produce biomimetic slime thread analogs, and end with a discussion of how hagfish slime may have evolved.

  13. Long-latency reflexes account for limb biomechanics through several supraspinal pathways

    PubMed Central

    Kurtzer, Isaac L.

    2015-01-01

    Accurate control of body posture is enforced by a multitude of corrective actions operating over a range of time scales. The earliest correction is the short-latency reflex (SLR) which occurs between 20–45 ms following a sudden displacement of the limb and is generated entirely by spinal circuits. In contrast, voluntary reactions are generated by a highly distributed network but at a significantly longer delay after stimulus onset (greater than 100 ms). Between these two epochs is the long-latency reflex (LLR) (around 50–100 ms) which acts more rapidly than voluntary reactions but shares some supraspinal pathways and functional capabilities. In particular, the LLR accounts for the arm’s biomechanical properties rather than only responding to local muscle stretch like the SLR. This paper will review how the LLR accounts for the arm’s biomechanical properties and the supraspinal pathways supporting this ability. Relevant experimental paradigms include clinical studies, non-invasive brain stimulation, neural recordings in monkeys, and human behavioral studies. The sum of this effort indicates that primary motor cortex and reticular formation (RF) contribute to the LLR either by generating or scaling its structured response appropriate for the arm’s biomechanics whereas the cerebellum scales the magnitude of the feedback response. Additional putative pathways are discussed as well as potential research lines. PMID:25688187

  14. Biomechanical performance of baseball pitchers with a history of ulnar collateral ligament reconstruction.

    PubMed

    Fleisig, Glenn S; Leddon, Charles E; Laughlin, Walter A; Ciccotti, Michael G; Mandelbaum, Bert R; Aune, Kyle T; Escamilla, Rafael F; MacLeod, Toran D; Andrews, James R

    2015-05-01

    no differences in passive range of motion between the 2 groups. Compared with a control group, active professional pitchers with a history of UCLr displayed no significant differences in shoulder and elbow passive range of motion and no significant differences in elbow and shoulder biomechanics. Clinical studies have previously shown that 10% to 33% of professional pitchers do not return to their preinjury level; however, the current study showed that those pitchers who successfully return to professional baseball after UCLr pitch with biomechanics similar to that of noninjured professionals. © 2015 The Author(s).

  15. Biomechanical response to ankle-foot orthosis stiffness during running.

    PubMed

    Russell Esposito, Elizabeth; Choi, Harmony S; Owens, Johnny G; Blanck, Ryan V; Wilken, Jason M

    2015-12-01

    The Intrepid Dynamic Exoskeletal Orthosis (IDEO) is an ankle-foot orthosis developed to address the high rates of delayed amputation in the military. Its use has enabled many wounded Service Members to run again. During running, stiffness is thought to influence an orthosis' energy storage and return mechanical properties. This study examined the effect of orthosis stiffness on running biomechanics in patients with lower limb impairments who had undergone unilateral limb salvage. Ten patients with lower limb impairments underwent gait analysis at a self-selected running velocity. 1. Nominal (clinically-prescribed), 2. Stiff (20% stiffer than nominal), and 3. Compliant (20% less stiff than nominal) ankle-foot orthosis stiffnesses were tested. Ankle joint stiffness was greatest in the stiffest strut and lowest in the compliant strut, however ankle mechanical work remained unchanged. Speed, stride length, cycle time, joint angles, moments, powers, and ground reaction forces were not significantly different among stiffness conditions. Ankle joint kinematics and ankle, knee and hip kinetics were different between limbs. Ankle power, in particular, was lower in the injured limb. Ankle-foot orthosis stiffness affected ankle joint stiffness but did not influence other biomechanical parameters of running in individuals with unilateral limb salvage. Foot strike asymmetries may have influenced the kinetics of running. Therefore, a range of stiffness may be clinically appropriate when prescribing ankle-foot orthoses for active individuals with limb salvage. Published by Elsevier Ltd.

  16. Validation of Computational Models in Biomechanics

    PubMed Central

    Henninger, Heath B.; Reese, Shawn P.; Anderson, Andrew E.; Weiss, Jeffrey A.

    2010-01-01

    The topics of verification and validation (V&V) have increasingly been discussed in the field of computational biomechanics, and many recent articles have applied these concepts in an attempt to build credibility for models of complex biological systems. V&V are evolving techniques that, if used improperly, can lead to false conclusions about a system under study. In basic science these erroneous conclusions may lead to failure of a subsequent hypothesis, but they can have more profound effects if the model is designed to predict patient outcomes. While several authors have reviewed V&V as they pertain to traditional solid and fluid mechanics, it is the intent of this manuscript to present them in the context of computational biomechanics. Specifically, the task of model validation will be discussed with a focus on current techniques. It is hoped that this review will encourage investigators to engage and adopt the V&V process in an effort to increase peer acceptance of computational biomechanics models. PMID:20839648

  17. Open Problems in Computational Vascular Biomechanics: Hemodynamics and Arterial Wall Mechanics

    PubMed Central

    Taylor, C.A.; Humphrey, J.D.

    2009-01-01

    The vasculature consists of a complex network of vessels ranging from large arteries to arterioles, capillaries, venules, and veins. This network is vital for the supply of oxygen and nutrients to tissues and the removal of carbon dioxide and waste products from tissues. Because of its primary role as a pressure-driven chemomechanical transport system, it should not be surprising that mechanics plays a vital role in the development and maintenance of the normal vasculature as well as in the progression and treatment of vascular disease. This review highlights some past successes of vascular biomechanics, but emphasizes the need for research that synthesizes complementary advances in molecular biology, biomechanics, medical imaging, computational methods, and computing power for purposes of increasing our understanding of vascular physiology and pathophysiology as well as improving the design of medical devices and clinical interventions, including surgical procedures. That is, computational mechanics has great promise to contribute to the continued improvement of vascular health. PMID:20161129

  18. Pregnancy- and delivery-induced biomechanical changes in rat vagina persist postpartum

    PubMed Central

    Alperin, Marianna; Feola, Andrew; Duerr, Robert; Moalli, Pamela; Abramowitch, Steven

    2010-01-01

    Introduction and hypothesis We sought to define changes in vaginal distensibility (VD) induced by pregnancy and vaginal delivery using a novel in vivo biomechanical testing protocol. Methods Under sedation, a balloon was inserted into the vagina of 27 virgin, pregnant and 4-week postpartum Long–Evans rats and incrementally distended. Pressure–volume curves were generated with slopes characterizing VD (higher slope = less distensible). One-way ANOVA with a Bonferroni post-hoc test were used for statistical analyses. Results Mean pressures at an infusion volume of 1 cc were lower in pregnant and postpartum rats than in virgins (P<0.001). VD was increased in pregnant vs. virgin rats (P<0.001) and did not recover to virgin levels post partum (P<0.001). Conclusions We have developed a test that measures VD in vivo under clinically relevant loading conditions. The increased VD in the late postpartum period defines a persistent change in biomechanical behavior of the vagina related to pregnancy and vaginal delivery. PMID:20424824

  19. Biomechanical Comparison: Single-Bundle versus Double-Bundle Posterior Cruciate Ligament Reconstruction Techniques.

    PubMed

    Milles, Jeffrey L; Nuelle, Clayton W; Pfeiffer, Ferris; Stannard, James P; Smith, Patrick; Kfuri, Mauricio; Cook, James L

    2017-05-01

    Controversy exists regarding double-bundle (DB) versus single-bundle (SB) posterior cruciate ligament (PCL) reconstruction, with differences in multiple variables affecting biomechanical and clinical results. Our objective was to compare immediate postimplantation biomechanics of SB versus DB reconstructions to determine the relative importance of restoring both PCL bundles versus total graft volume. Twenty knees were randomly assigned to five techniques ( n  = 4 knees/technique), performed by three surgeons experienced in their technique(s), three SB techniques ( n  = 12; all-inside arthroscopic inlay, all-inside suspensory fixation, and arthroscopic-assisted open onlay), and two DB techniques ( n  = 8; arthroscopic-assisted open inlay and all-inside suspensory fixation). Each knee was tested in three conditions: PCL-intact, PCL-deficient, and post-PCL reconstruction. Testing consisted of a posterior-directed force at four knee flexion angles, 10, 30, 60, and 90 degrees, to measure load to 5 mm of posterior displacement, maximum displacement (at 100 N load), and stiffness. Data for each knee were normalized, combined into two groups (SB and DB), and then compared using one-way analysis of variance. Graft volumes were calculated and analyzed to determine if differences significantly influenced the biomechanical results. Intact knees were stiffer than both groups at most angles ( p  < 0.02; p  < 0.05). DB was stiffer than SB at all angles except 30 degrees ( p  < 0.05). Intact knees had less laxity than SB ( p  < 0.03) and DB ( p  < 0.05) at 60 and 90 degrees. DB had less laxity than SB at all angles except 60 degrees ( p  < 0.05). Intact knees required more load than SB at 30, 60, and 90 degrees ( p  < 0.01) and more than DB at 60 and 90 degrees ( p  < 0.05). DB required more load than SB at 30, 60, and 90 degrees ( p  < 0.01). Graft volumes did not have strong correlations ( r  = 0.13-0.37) to any

  20. Biomechanics of plant-insect interactions.

    PubMed

    Whitney, Heather M; Federle, Walter

    2013-02-01

    Plant-insect interactions are determined by both chemical and physical mechanisms. Biomechanical factors play an important role across many ecological situations, including pollination, herbivory and plant carnivory, and have led to complex adaptations in both plants and insects. However, while mechanical factors involved in some highly specific interactions have been elucidated, more generalised effects may be widespread but are more difficult to isolate, due to the multifunctional properties of the plant surfaces and tissues where interactions occur. Novel methodologies are being developed to investigate the mechanisms of biomechanical interactions and discover to what extent adaptive structures could be exploited via biomimetics. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Biomechanics of Early Cardiac Development

    PubMed Central

    Goenezen, Sevan; Rennie, Monique Y.

    2012-01-01

    Biomechanics affect early cardiac development, from looping to the development of chambers and valves. Hemodynamic forces are essential for proper cardiac development, and their disruption leads to congenital heart defects. A wealth of information already exists on early cardiac adaptations to hemodynamic loading, and new technologies, including high resolution imaging modalities and computational modeling, are enabling a more thorough understanding of relationships between hemodynamics and cardiac development. Imaging and modeling approaches, used in combination with biological data on cell behavior and adaptation, are paving the road for new discoveries on links between biomechanics and biology and their effect on cardiac development and fetal programming. PMID:22760547

  2. Utilization of ACL Injury Biomechanical and Neuromuscular Risk Profile Analysis to Determine the Effectiveness of Neuromuscular Training.

    PubMed

    Hewett, Timothy E; Ford, Kevin R; Xu, Yingying Y; Khoury, Jane; Myer, Gregory D

    2016-12-01

    The widespread use of anterior cruciate ligament (ACL) injury prevention interventions has not been effective in reducing the injury incidence among female athletes who participate in high-risk sports. The purpose of this study was to determine if biomechanical and neuromuscular factors that contribute to the knee abduction moment (KAM), a predictor of future ACL injuries, could be used to characterize athletes by a distinct factor. Specifically, we hypothesized that a priori selected biomechanical and neuromuscular factors would characterize participants into distinct at-risk profiles. Controlled laboratory study. A total of 624 female athletes who participated in jumping, cutting, and pivoting sports underwent testing before their competitive season. During testing, athletes performed drop-jump tasks from which biomechanical measures were captured. Using data from these tasks, latent profile analysis (LPA) was conducted to identify distinct profiles based on preintervention biomechanical and neuromuscular measures. As a validation, we examined whether the profile membership was a significant predictor of the KAM. LPA using 6 preintervention biomechanical measures selected a priori resulted in 3 distinct profiles, including a low (profile 1), moderate (profile 2), and high (profile 3) risk for ACL injuries. Athletes with profiles 2 and 3 had a significantly higher KAM compared with those with profile 1 (P < .05). This is the first study to use LPA of biomechanical landing data to create ACL injury risk profiles. Three distinct risk groups were identified based on differences in the peak KAM. These findings demonstrate the existence of discernable groups of athletes that may benefit from injury prevention interventions. ClinicalTrials.gov NCT identifier: NCT01034527. © 2016 The Author(s).

  3. Artificial Intelligence in Sports Biomechanics: New Dawn or False Hope?

    PubMed Central

    Bartlett, Roger

    2006-01-01

    This article reviews developments in the use of Artificial Intelligence (AI) in sports biomechanics over the last decade. It outlines possible uses of Expert Systems as diagnostic tools for evaluating faults in sports movements (‘techniques’) and presents some example knowledge rules for such an expert system. It then compares the analysis of sports techniques, in which Expert Systems have found little place to date, with gait analysis, in which they are routinely used. Consideration is then given to the use of Artificial Neural Networks (ANNs) in sports biomechanics, focusing on Kohonen self-organizing maps, which have been the most widely used in technique analysis, and multi-layer networks, which have been far more widely used in biomechanics in general. Examples of the use of ANNs in sports biomechanics are presented for javelin and discus throwing, shot putting and football kicking. I also present an example of the use of Evolutionary Computation in movement optimization in the soccer throw in, which predicted an optimal technique close to that in the coaching literature. After briefly overviewing the use of AI in both sports science and biomechanics in general, the article concludes with some speculations about future uses of AI in sports biomechanics. Key Points Expert Systems remain almost unused in sports biomechanics, unlike in the similar discipline of gait analysis. Artificial Neural Networks, particularly Kohonen Maps, have been used, although their full value remains unclear. Other AI applications, including Evolutionary Computation, have received little attention. PMID:24357939

  4. Artificial intelligence in sports biomechanics: new dawn or false hope?

    PubMed

    Bartlett, Roger

    2006-12-15

    This article reviews developments in the use of Artificial Intelligence (AI) in sports biomechanics over the last decade. It outlines possible uses of Expert Systems as diagnostic tools for evaluating faults in sports movements ('techniques') and presents some example knowledge rules for such an expert system. It then compares the analysis of sports techniques, in which Expert Systems have found little place to date, with gait analysis, in which they are routinely used. Consideration is then given to the use of Artificial Neural Networks (ANNs) in sports biomechanics, focusing on Kohonen self-organizing maps, which have been the most widely used in technique analysis, and multi-layer networks, which have been far more widely used in biomechanics in general. Examples of the use of ANNs in sports biomechanics are presented for javelin and discus throwing, shot putting and football kicking. I also present an example of the use of Evolutionary Computation in movement optimization in the soccer throw in, which predicted an optimal technique close to that in the coaching literature. After briefly overviewing the use of AI in both sports science and biomechanics in general, the article concludes with some speculations about future uses of AI in sports biomechanics. Key PointsExpert Systems remain almost unused in sports biomechanics, unlike in the similar discipline of gait analysis.Artificial Neural Networks, particularly Kohonen Maps, have been used, although their full value remains unclear.Other AI applications, including Evolutionary Computation, have received little attention.

  5. Biomechanics of the Sensor–Tissue Interface—Effects of Motion, Pressure, and Design on Sensor Performance and the Foreign Body Response—Part I: Theoretical Framework

    PubMed Central

    Helton, Kristen L; Ratner, Buddy D; Wisniewski, Natalie A

    2011-01-01

    The importance of biomechanics in glucose sensor function has been largely overlooked. This article is the first part of a two-part review in which we look beyond commonly recognized chemical biocompatibility to explore the biomechanics of the sensor–tissue interface as an important aspect of continuous glucose sensor biocompatibility. Part I provides a theoretical framework to describe how biomechanical factors such as motion and pressure (typically micromotion and micropressure) give rise to interfacial stresses, which affect tissue physiology around a sensor and, in turn, impact sensor performance. Three main contributors to sensor motion and pressure are explored: applied forces, sensor design, and subject/patient considerations. We describe how acute forces can temporarily impact sensor signal and how chronic forces can alter the foreign body response and inflammation around an implanted sensor, and thus impact sensor performance. The importance of sensor design (e.g., size, shape, modulus, texture) and specific implant location on the tissue response are also explored. In Part II: Examples and Application (a sister publication), examples from the literature are reviewed, and the application of biomechanical concepts to sensor design are described. We believe that adding biomechanical strategies to the arsenal of material compositions, surface modifications, drug elution, and other chemical strategies will lead to improvements in sensor biocompatibility and performance. PMID:21722578

  6. Factors Related to Students' Learning of Biomechanics Concepts

    ERIC Educational Resources Information Center

    Hsieh, ChengTu; Smith, Jeremy D.; Bohne, Michael; Knudson, Duane

    2012-01-01

    The purpose of this study was to replicate and expand a previous study to identify the factors that affect students' learning of biomechanical concepts. Students were recruited from three universities (N = 149) located in the central and western regions of the United States. Data from 142 students completing the Biomechanics Concept Inventory…

  7. Biomechanics of subcellular structures by non-invasive Brillouin microscopy

    NASA Astrophysics Data System (ADS)

    Antonacci, Giuseppe; Braakman, Sietse

    2016-11-01

    Cellular biomechanics play a pivotal role in the pathophysiology of several diseases. Unfortunately, current methods to measure biomechanical properties are invasive and mostly limited to the surface of a cell. As a result, the mechanical behaviour of subcellular structures and organelles remains poorly characterised. Here, we show three-dimensional biomechanical images of single cells obtained with non-invasive, non-destructive Brillouin microscopy with an unprecedented spatial resolution. Our results quantify the longitudinal elastic modulus of subcellular structures. In particular, we found the nucleoli to be stiffer than both the nuclear envelope (p < 0.0001) and the surrounding cytoplasm (p < 0.0001). Moreover, we demonstrate the mechanical response of cells to Latrunculin-A, a drug that reduces cell stiffness by preventing cytoskeletal assembly. Our technique can therefore generate valuable insights into cellular biomechanics and its role in pathophysiology.

  8. Biomechanical study of anterior spinal instrumentation configurations

    PubMed Central

    Cloutier, Luc P.; Grimard, Guy

    2007-01-01

    The biomechanical impact of the surgical instrumentation configuration for spine surgery is hard to evaluate by the surgeons in pre-operative situation. This study was performed to evaluate different configurations of the anterior instrumentation of the spine, with simulated post-operative conditions, to recommend configurations to the surgeons. Four biomechanical parameters of the anterior instrumentation with simulated post-operative conditions have been studied. They were the screw diameter (5.5–7.5 mm) and its angle (0°–22.5°), the bone grip of the screw (mono–bi cortical) and the amount of instrumented levels (5–8). Eight configurations were tested using an experimental plan with instrumented synthetic spinal models. A follower load was applied and the models were loaded in flexion, torsion and lateral bending. At 5 Nm, average final stiffness was greater in flexion (0.92 Nm/°) than in lateral bending (0.56 Nm/°) and than in torsion (0.26 Nm/°). The screw angle was the parameter influencing the most the final stiffness and the coupling behaviors. It has a significant effect (p ≤ 0.05) on increasing the final stiffness for a 22.5° screw angle in flexion and for a coronal screw angle (0°) in lateral bending. The bi-cortical bone grip of the screw significantly increased the initial stiffness in flexion and lateral bending. Mathematical models representing the behavior of an instrumented spinal model have been used to identify optimal instrumentation configurations. A variation of the angle of the screw from 22.5° to 0° gave a global final stiffness diminution of 13% and a global coupling diminution of 40%. The screw angle was the most important parameter affecting the stiffness and the coupling of the instrumented spine with simulated post-operative conditions. Information about the effect of four different biomechanical parameters will be helpful in preoperative situations to guide surgeons in their clinical choices. PMID:17205240

  9. Application of acoustic microscopy to assessment of cardiovascular biomechanics

    NASA Astrophysics Data System (ADS)

    Saijo, Yoshifumi; Sasaki, Hidehiko; Nitta, Shin-ichi; Tanaka, Motonao; Joergensen, Claus S.; Falk, Erling

    2002-11-01

    Acoustic microscopy provides information on physical and mechanical properties of biological tissues, while optical microscopy with various staining techniques provides chemical properties. The biomechanics of tissues is especially important in cardiovascular system because its pathophysiology is closely related with mechanical stresses such as blood pressure or blood flow. A scanning acoustic microscope (SAM) system with tone-burst ultrasound in the frequency range of 100-200 MHz has been developed, and attenuation and sound speed of tissues have been measured. In human coronary arteries, attenuation and sound speed were high in calcification and collagen, while both values were low in smooth muscle and lipid. Another SAM system with 800-MHz-1.3-GHz ultrasound was applied for aortas of Apo-E deficient mouse, which is known to develop atherosclerosis. Attenuation of ultrasound was significantly higher in type 1 collagen compared to type 3 collagen. Recently, a new type FFT-SAM using a single-pulse, broadband frequency range ultrasound (20-150 MHz) has been developed. Cardiac allograft was observed by FFT-SAM and the acoustic properties were able to grade allograft rejection. SAM provides very useful information for assessing cardiovascular biomechanics and for understanding normal and abnormal images of clinical ultrasound.

  10. Double row equivalent for rotator cuff repair: A biomechanical analysis of a new technique.

    PubMed

    Robinson, Sean; Krigbaum, Henry; Kramer, Jon; Purviance, Connor; Parrish, Robin; Donahue, Joseph

    2018-06-01

    There are numerous configurations of double row fixation for rotator cuff tears however, there remains to be a consensus on the best method. In this study, we evaluated three different double-row configurations, including a new method. Our primary question is whether the new anchor and technique compares in biomechanical strength to standard double row techniques. Eighteen prepared fresh frozen bovine infraspinatus tendons were randomized to one of three groups including the New Double Row Equivalent, Arthrex Speedbridge and a transosseous equivalent using standard Stabilynx anchors. Biomechanical testing was performed on humeri sawbones and ultimate load, strain, yield strength, contact area, contact pressure, and a survival plots were evaluated. The new double row equivalent method demonstrated increased survival as well as ultimate strength at 415N compared to the remainder testing groups as well as equivalent contact area and pressure to standard double row techniques. This new anchor system and technique demonstrated higher survival rates and loads to failure than standard double row techniques. This data provides us with a new method of rotator cuff fixation which should be further evaluated in the clinical setting. Basic science biomechanical study.

  11. Cutaneous field cancerization: clinical, histopathological and therapeutic aspects*

    PubMed Central

    Torezan, Luís Antônio Ribeiro; Festa-Neto, Cyro

    2013-01-01

    The concept of "field cancerization" was first introduced by Slaughter in 1953 when studying the presence of histologically abnormal tissue surrounding oral squamous cell carcinoma. It was proposed to explain the development of multiple primary tumors and locally recurrent cancer. Organ systems in which field cancerization has been described since then are: head and neck (oral cavity, oropharynx, and larynx), lung, vulva, esophagus, cervix, breast, skin, colon, and bladder. Recent molecular studies support the carcinogenesis model in which the development of a field with genetically altered cells plays a central role. An important clinical implication is that fields often remain after the surgery for the primary tumor and may lead to new cancers, designated presently as "a second primary tumor" or "local recurrence," depending on the exact site and time interval. In conclusion, the development of an expanding pre-neoplastic field appears to be a critical step in epithelial carcinogenesis with important clinical consequences. Diagnosis and treatment of epithelial cancers should not only be focused on the tumor but also on the field from which it developed. The most important etiopathogenetic, clinical, histopathological and therapeutic aspects of field cancerization are reviewed in this article. PMID:24173184

  12. The Undergraduate Biomechanics Experience at Iowa State University.

    ERIC Educational Resources Information Center

    Francis, Peter R.

    This paper discusses the objectives of a program in biomechanics--the analysis of sports skills and movement--and the evolution of the biomechanics program at Iowa State University. The primary objective of such a course is to provide the student with the basic tools necessary for adequate analysis of human movement, with special emphasis upon…

  13. Developmental biomechanics of the human cervical spine.

    PubMed

    Nuckley, David J; Linders, David R; Ching, Randal P

    2013-04-05

    Head and neck injuries, the leading cause of death for children in the U.S., are difficult to diagnose, treat, and prevent because of a critical void in our understanding of the biomechanical response of the immature cervical spine. The objective of this study was to investigate the functional and failure biomechanics of the cervical spine across multiple axes of loading throughout maturation. A correlational study design was used to examine the relationships governing spinal maturation and biomechanical flexibility curves and tolerance data using a cadaver human in vitro model. Eleven human cadaver cervical spines from across the developmental spectrum (2-28 years) were dissected into segments (C1-C2, C3-C5, and C6-C7) for biomechanical testing. Non-destructive flexibility tests were performed in tension, compression, flexion, extension, lateral bending, and axial rotation. After measuring their intact biomechanical responses, each segment group was failed in different modes to measure the tissue tolerance in tension (C1-C2), compression (C3-C5), and extension (C5-C6). Classical injury patterns were observed in all of the specimens tested. Both the functional (p<0.014) and failure (p<0.0001) mechanics exhibited significant relationships with age. Nonlinear flexibility curves described the functional response of the cervical spine throughout maturation and elucidated age, spinal level, and mode of loading specificity. These data support our understanding of the child cervical spine from a developmental perspective and facilitate the generation of injury prevention or management schema for the mitigation of child spine injuries and their deleterious effects. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Biomechanics research in ski jumping, 1991-2006.

    PubMed

    Schwameder, Hermann

    2008-01-01

    In this paper, I review biomechanics research in ski jumping with a specific focus on publications presented between 1991 and 2006 on performance enhancement, limiting factors of the take-off, specific training and conditioning, aerodynamics, and safety. The first section presents a brief description of ski jumping phases (in-run, take-off, early flight, stable flight, and landing) regarding the biomechanical and functional fundamentals. The most important and frequently used biomechanical methods in ski jumping (kinematics, ground reaction force analyses, muscle activation patterns, aerodynamics) are summarized in the second section. The third section focuses on ski jumping articles and research findings published after the establishment of the V-technique in 1991, as the introduction of this technique has had a major influence on performance enhancement, ski jumping regulations, and the construction of hill profiles. The final section proposes topics for future research in the biomechanics of ski jumping, including: take-off and early flight and the relative roles of vertical velocity and forward somersaulting angular momentum; optimal jumping patterns utilizing the capabilities of individual athletes; development of kinematic and kinetic feedback systems for hill jumps; comparisons of simulated and hill jumps; effect of equipment modifications on performance and safety enhancement.

  15. Loads Carried by Soldiers: Historical, Physiological, Biomechanical and Medical Aspects

    DTIC Science & Technology

    1989-06-01

    EMG and cinematographic data in the study of load carriage. They showed that EMG activity of the trapezius, rectus femorls, gastrocnemus and erector... abdominal muscles. Backpack loads of 18 to 27 kg did not change the magnitude of this pressure while walking (45). MEDICAL ASPECTS RUCKSACK PARALYSIS...symptoms included minor pain , paresthesias, numbness and paralysis of the upper extremities. The shoulder girdle and elbow flexor muscle groups were usually

  16. High-resolution harmonic motion imaging (HR-HMI) for tissue biomechanical property characterization

    PubMed Central

    Ma, Teng; Qian, Xuejun; Chiu, Chi Tat; Yu, Mingyue; Jung, Hayong; Tung, Yao-Sheng; Shung, K. Kirk

    2015-01-01

    Background Elastography, capable of mapping the biomechanical properties of biological tissues, serves as a useful technique for clinicians to perform disease diagnosis and determine stages of many diseases. Many acoustic radiation force (ARF) based elastography, including acoustic radiation force impulse (ARFI) imaging and harmonic motion imaging (HMI), have been developed to remotely assess the elastic properties of tissues. However, due to the lower operating frequencies of these approaches, their spatial resolutions are insufficient for revealing stiffness distribution on small scale applications, such as cancerous tumor margin detection, atherosclerotic plaque composition analysis and ophthalmologic tissue characterization. Though recently developed ARF-based optical coherence elastography (OCE) methods open a new window for the high resolution elastography, shallow imaging depths significantly limit their usefulness in clinics. Methods The aim of this study is to develop a high-resolution HMI method to assess the tissue biomechanical properties with acceptable field of view (FOV) using a 4 MHz ring transducer for efficient excitation and a 40 MHz needle transducer for accurate detection. Under precise alignment of two confocal transducers, the high-resolution HMI system has a lateral resolution of 314 µm and an axial resolution of 
147 µm with an effective FOV of 2 mm in depth. Results The performance of this high resolution imaging system was validated on the agar-based tissue mimicking phantoms with different stiffness distributions. These data demonstrated the imaging system’s improved resolution and sensitivity on differentiating materials with varying stiffness. In addition, ex vivo imaging of a human atherosclerosis coronary artery demonstrated the capability of high resolution HMI in identifying layer-specific structures and characterizing atherosclerotic plaques based on their stiffness differences. Conclusions All together high resolution HMI

  17. High-resolution harmonic motion imaging (HR-HMI) for tissue biomechanical property characterization.

    PubMed

    Ma, Teng; Qian, Xuejun; Chiu, Chi Tat; Yu, Mingyue; Jung, Hayong; Tung, Yao-Sheng; Shung, K Kirk; Zhou, Qifa

    2015-02-01

    Elastography, capable of mapping the biomechanical properties of biological tissues, serves as a useful technique for clinicians to perform disease diagnosis and determine stages of many diseases. Many acoustic radiation force (ARF) based elastography, including acoustic radiation force impulse (ARFI) imaging and harmonic motion imaging (HMI), have been developed to remotely assess the elastic properties of tissues. However, due to the lower operating frequencies of these approaches, their spatial resolutions are insufficient for revealing stiffness distribution on small scale applications, such as cancerous tumor margin detection, atherosclerotic plaque composition analysis and ophthalmologic tissue characterization. Though recently developed ARF-based optical coherence elastography (OCE) methods open a new window for the high resolution elastography, shallow imaging depths significantly limit their usefulness in clinics. The aim of this study is to develop a high-resolution HMI method to assess the tissue biomechanical properties with acceptable field of view (FOV) using a 4 MHz ring transducer for efficient excitation and a 40 MHz needle transducer for accurate detection. Under precise alignment of two confocal transducers, the high-resolution HMI system has a lateral resolution of 314 µm and an axial resolution of 
147 µm with an effective FOV of 2 mm in depth. The performance of this high resolution imaging system was validated on the agar-based tissue mimicking phantoms with different stiffness distributions. These data demonstrated the imaging system's improved resolution and sensitivity on differentiating materials with varying stiffness. In addition, ex vivo imaging of a human atherosclerosis coronary artery demonstrated the capability of high resolution HMI in identifying layer-specific structures and characterizing atherosclerotic plaques based on their stiffness differences. All together high resolution HMI appears to be a promising ultrasound

  18. Arthrogryposis: an update on clinical aspects, etiology, and treatment strategies

    PubMed Central

    Feluś, Jarosław

    2016-01-01

    Arthrogryposes – multiple joint contractures – are a clinically and etiologically heterogeneous class of diseases, where accurate diagnosis, recognition of the underlying pathology and classification are of key importance for the prognosis as well as for selection of appropriate management. This treatment remains challenging and optimally in arthrogrypotic patients should be carried out by a team of specialists familiar with all aspects of arthrogryposis pathology and treatment modalities: rehabilitation, orthotics and surgery. In this comprehensive review article, based on literature and clinical experience, the authors present an update on current knowledge on etiology, classifications and treatment options for skeletal deformations possible in arthrogryposis. PMID:26925114

  19. Biomechanical analysis of intramedullary vs. superior plate fixation of transverse midshaft clavicle fractures.

    PubMed

    Wilson, David J; Scully, William F; Min, Kyong S; Harmon, Tess A; Eichinger, Josef K; Arrington, Edward D

    2016-06-01

    Middle-third clavicle fractures represent 2% to 4% of all skeletal trauma in the United States. Treatment options include intramedullary (IM) as well as plate and screw (PS) constructs. The purpose of this study was to analyze the biomechanical stability of a specific IM system compared with nonlocking PS fixation under low-threshold physiologic load. Twenty fourth-generation Sawbones (Pacific Research Laboratories, Vashon, WA, USA) with a simulated middle-third fracture pattern were repaired with either an IM device (n = 10) or superiorly positioned nonlocking PS construct (n = 10). Loads were modeled to simulate physiologic load. Combined axial compression and torsion forces were sequentially increased until failure. Data were analyzed on the basis of loss of rotational stability using 3 criteria: early (10°), clinical (30°), and terminal (120°). No significant difference was noted between constructs in early loss of rotational stability (P > .05). The PS group was significantly more rotationally stable than the IM group on the basis of clinical and terminal criteria (P < .05 for both). All test constructs failed in rotational stability. When tested under physiologic load, fixation failure occurred from loss of rotational stability. No statistical difference was seen between groups under early physiologic loads. However, during load to failure, the PS group was statistically more rotationally stable than the IM group. Given the clavicle's function as a bony strut for the upper extremity and the biomechanical results demonstrated, rotational stability should be carefully considered during surgical planning and postoperative advancement of activity in patients undergoing operative fixation of middle-third clavicle fractures. Basic Science Study; Biomechanics. Published by Elsevier Inc.

  20. Shoulder biomechanics and the success of translational research.

    PubMed

    Cutti, Andrea Giovanni; Chadwick, Edward K

    2014-03-01

    In 2009, the International Shoulder Group (ISG) had the opportunity to propose to the readers of Medical and Biological Engineering and Computing a Special Issue on shoulder biomechanics. At that time, we pointed out that the field was evolving to include more applied research. After 4 years, we can confirm that impression: 10 out of 12 papers included in this second Special Issue deal with clinical related questions, through theoretical and experimental methodologies. This demonstrates that the translational research at the base of ISG foundation in 1989 is effective. We think that the papers of this issue will have an impact on clinics in general and on the treatment of work-related injuries and diseases in particular. Based on the statistics of the Italian Workers' Compensation Authority (INAIL), injuries at the shoulder are first in terms of average duration of "temporary total disability to work". Moreover, occupational diseases at the shoulder in the industrial and services sector represented 16 % of all occupational diseases in 2012, i.e., 46 % of those related to the upper limb. These data stress the need for specific interventions, with the contribution of both researchers and policy makers. Starting from the papers included here, we would encourage additional efforts on: (1) quantitative analysis of shoulder loading during tasks associated with musculoskeletal injuries, and ways to reduce that loading, (2) simple and effective tools to improve the diagnosis and outcome assessment of motion-related shoulder diseases, and (3) the development of rehabilitation treatments focused on occupational tasks, taking advantage of state-of-the-art biofeedback technologies, and exploiting the power of biomechanical models for muscle force prediction.

  1. A scoping review of biomechanical testing for proximal humerus fracture implants.

    PubMed

    Cruickshank, David; Lefaivre, Kelly A; Johal, Herman; MacIntyre, Norma J; Sprague, Sheila A; Scott, Taryn; Guy, Pierre; Cripton, Peter A; McKee, Michael; Bhandari, Mohit; Slobogean, Gerard P

    2015-07-30

    Fixation failure is a relatively common sequela of surgical management of proximal humerus fractures (PHF). The purpose of this study is to understand the current state of the literature with regard to the biomechanical testing of proximal humerus fracture implants. A scoping review of the proximal humerus fracture literature was performed, and studies testing the mechanical properties of a PHF treatment were included in this review. Descriptive statistics were used to summarize the characteristics and methods of the included studies. 1,051 proximal humerus fracture studies were reviewed; 67 studies met our inclusion criteria. The most common specimen used was cadaver bone (87%), followed by sawbones (7%) and animal bones (4%). A two-part fracture pattern was tested most frequently (68%), followed by three-part (23%), and four-part (8%). Implants tested included locking plates (52%), intramedullary devices (25%), and non-locking plates (25%). Hemi-arthroplasty was tested in 5 studies (7%), with no studies using reverse total shoulder arthroplasty (RTSA) implants. Torque was the most common mode of force applied (51%), followed by axial loading (45%), and cantilever bending (34%). Substantial testing diversity was observed across all studies. The biomechanical literature was found to be both diverse and heterogeneous. More complex fracture patterns and RTSA implants have not been adequately tested. These gaps in the current literature will need to be addressed to ensure that future biomechanical research is clinically relevant and capable of improving the outcomes of challenging proximal humerus fracture patterns.

  2. Role of substrate biomechanics in controlling (stem) cell fate: Implications in regenerative medicine.

    PubMed

    Macri-Pellizzeri, Laura; De-Juan-Pardo, Elena M; Prosper, Felipe; Pelacho, Beatriz

    2018-04-01

    Tissue-specific stem cells reside in a specialized environment known as niche. The niche plays a central role in the regulation of cell behaviour and, through the concerted action of soluble molecules, supportive somatic cells, and extracellular matrix components, directs stem cells to proliferate, differentiate, or remain quiescent. Great efforts have been done to decompose and separately analyse the contribution of these cues in the in vivo environment. Specifically, the mechanical properties of the extracellular matrix influence many aspects of cell behaviour, including self-renewal and differentiation. Deciphering the role of biomechanics could thereby provide important insights to control the stem cells responses in a more effective way with the aim to promote their therapeutic potential. In this review, we provide a wide overview of the effect that the microenvironment stiffness exerts on the control of cell behaviour with a particular focus on the induction of stem cells differentiation. We also describe the process of mechanotransduction and the molecular effectors involved. Finally, we critically discuss the potential involvement of tissue biomechanics in the design of novel tissue engineering strategies. Copyright © 2017 John Wiley & Sons, Ltd.

  3. A Biomechanical Model of Artery Buckling

    PubMed Central

    Han, Hai-Chao

    2010-01-01

    The stability of arteries under blood pressure load is essential to the maintenance of normal arterial function and the loss of stability can lead to tortuosity and kinking that are associated with significant clinical complications. However, mechanical analysis of arterial bent buckling is lacking. To address this issue, this paper presents a biomechanical model of arterial buckling. Using a linear elastic cylindrical arterial model, the mechanical equations for arterial buckling were developed and the critical buckling pressure was found to be a function of the wall stiffness (Young’s modulus), arterial radius, length, wall thickness, and the axial strain. Both the model equations and experimental results demonstrated that the critical pressure is related to the axial strain. Arteries may buckle and become tortuous due to reduced (sub-physiological) axial strain, hypertensive pressure, and a weakened wall. These results are in accordance with, and provide a possible explanation to the clinical observations that these changes are the risk factors for arterial tortuosity and kinking. The current model is also applicable to veins and ureters. PMID:17689541

  4. Lower limb biomechanics in femoroacetabular impingement syndrome: a systematic review and meta-analysis.

    PubMed

    King, Matthew G; Lawrenson, Peter R; Semciw, Adam I; Middleton, Kane J; Crossley, Kay M

    2018-05-01

    (1) Identify differences in hip and pelvic biomechanics in patients with femoroacetabular impingement syndrome (FAIS) compared with controls during everyday activities (eg, walking, squatting); and (2) evaluate the effects of interventions on hip and pelvic biomechanics during everyday activities. Systematic review. Medline, CINAHL, EMBASE, Scopus and SPORTDiscus until February 2017. Primary aim: studies that investigated hip or pelvic kinematics and/or joint torques of everyday activities in patients with FAIS compared with the asymptomatic contralateral limb or a control group. Secondary aim: studies that evaluated effects of conservative or surgical interventions on patients with FAIS using pre-post or controlled clinical trial designs. Biomechanical data must have been collected using three-dimensional motion capture devices. Reporting quality was assessed using the Epidemiological Appraisal Instrument and data were pooled (standardised mean difference (SMD), 95% CI) where populations and primary outcomes were similar. Fourteen studies were included (11 cross-sectional and three pre/post intervention), varying between low and moderate reporting quality. Patients with FAIS walked with a lower: peak hip extension angle (SMD -0.40, 95% CI -0.71 to -0.09), peak internal rotation angle (-0.67, 95% CI -1.19 to -0.16) and external rotation joint torque (-0.71, 95% CI -1.07 to -0.35), and squatted to a lesser depth with no difference in hip flexion range. Pre/post intervention data were limited in number and quality, and to surgical cohorts. This review suggests that patients with FAIS may demonstrate hip biomechanical impairments during walking and squatting, with minimal literature available to comment on other tasks. The information presented in the review provides insight into the biomechanical differences associated with FAIS; however, the between-group differences were small to moderate. This information may aid in the development of management strategies for

  5. Combining epidemiology and biomechanics in sports injury prevention research: a new approach for selecting suitable controls.

    PubMed

    Finch, Caroline F; Ullah, Shahid; McIntosh, Andrew S

    2011-01-01

    Several important methodological issues need to be considered when designing sports injury case-control studies. Major design goals for case-control studies include the accounting for prior injury risk exposure, and optimal definitions of both cases and suitable controls are needed to ensure this. This article reviews methodological aspects of published sports injury case-control studies, particularly with regard to the selection of controls. It argues for a new approach towards selecting controls for case-control studies that draws on an interface between epidemiological and biomechanical concepts. A review was conducted to identify sport injury case-control studies published in the peer-review literature during 1985-2008. Overall, 32 articles were identified, of which the majority related to upper or lower extremity injuries. Matching considerations were used for control selection in 16 studies. Specific mention of application of biomechanical principles in the selection of appropriate controls was absent from all studies, including those purporting to evaluate the benefits of personal protective equipment to protect against impact injury. This is a problem because it could lead to biased conclusions, as cases and controls are not fully comparable in terms of similar biomechanical impact profiles relating to the injury incident, such as site of the impact on the body. The strength of the conclusions drawn from case-control studies, and the extent to which results can be generalized, is directly influenced by the definition and recruitment of cases and appropriate controls. Future studies should consider the interface between epidemiological and biomechanical concepts when choosing appropriate controls to ensure that proper adjustment of prior exposure to injury risk is made. To provide necessary guidance for the optimal selection of controls in case-control studies of interventions to prevent sports-related impact injury, this review outlines a new case

  6. Biomechanics of Pediatric Manual Wheelchair Mobility

    PubMed Central

    Slavens, Brooke A.; Schnorenberg, Alyssa J.; Aurit, Christine M.; Tarima, Sergey; Vogel, Lawrence C.; Harris, Gerald F.

    2015-01-01

    Currently, there is limited research of the biomechanics of pediatric manual wheelchair mobility. Specifically, the biomechanics of functional tasks and their relationship to joint pain and health is not well understood. To contribute to this knowledge gap, a quantitative rehabilitation approach was applied for characterizing upper extremity biomechanics of manual wheelchair mobility in children and adolescents during propulsion, starting, and stopping tasks. A Vicon motion analysis system captured movement, while a SmartWheel simultaneously collected three-dimensional forces and moments occurring at the handrim. A custom pediatric inverse dynamics model was used to evaluate three-dimensional upper extremity joint motions, forces, and moments of 14 children with spinal cord injury (SCI) during the functional tasks. Additionally, pain and health-related quality of life outcomes were assessed. This research found that joint demands are significantly different amongst functional tasks, with greatest demands placed on the shoulder during the starting task. Propulsion was significantly different from starting and stopping at all joints. We identified multiple stroke patterns used by the children, some of which are not standard in adults. One subject reported average daily pain, which was minimal. Lower than normal physical health and higher than normal mental health was found in this population. It can be concluded that functional tasks should be considered in addition to propulsion for rehabilitation and SCI treatment planning. This research provides wheelchair users and clinicians with a comprehensive, biomechanical, mobility assessment approach for wheelchair prescription, training, and long-term care of children with SCI. PMID:26442251

  7. Biomechanics of Pediatric Manual Wheelchair Mobility.

    PubMed

    Slavens, Brooke A; Schnorenberg, Alyssa J; Aurit, Christine M; Tarima, Sergey; Vogel, Lawrence C; Harris, Gerald F

    2015-01-01

    Currently, there is limited research of the biomechanics of pediatric manual wheelchair mobility. Specifically, the biomechanics of functional tasks and their relationship to joint pain and health is not well understood. To contribute to this knowledge gap, a quantitative rehabilitation approach was applied for characterizing upper extremity biomechanics of manual wheelchair mobility in children and adolescents during propulsion, starting, and stopping tasks. A Vicon motion analysis system captured movement, while a SmartWheel simultaneously collected three-dimensional forces and moments occurring at the handrim. A custom pediatric inverse dynamics model was used to evaluate three-dimensional upper extremity joint motions, forces, and moments of 14 children with spinal cord injury (SCI) during the functional tasks. Additionally, pain and health-related quality of life outcomes were assessed. This research found that joint demands are significantly different amongst functional tasks, with greatest demands placed on the shoulder during the starting task. Propulsion was significantly different from starting and stopping at all joints. We identified multiple stroke patterns used by the children, some of which are not standard in adults. One subject reported average daily pain, which was minimal. Lower than normal physical health and higher than normal mental health was found in this population. It can be concluded that functional tasks should be considered in addition to propulsion for rehabilitation and SCI treatment planning. This research provides wheelchair users and clinicians with a comprehensive, biomechanical, mobility assessment approach for wheelchair prescription, training, and long-term care of children with SCI.

  8. [The development of an oral biomechanical testing instrument].

    PubMed

    Zhang, X H; Sun, X D; Lin, Z

    2000-03-01

    An oral biomechanical testing instrument, which is portable, powered with batteries and controlled by single chip microcomputer, was described. The instrument was characterized by its multichannel, high accuracy, low power dissipation, wide rage of force measurement and stable performance. It can be used for acquisiting, displaying and storing data. And it may be expected to be an ideal instrument for oral biomechanical measurements.

  9. THE CLINICAL, FUNCTIONAL AND BIOMECHANICAL PRESENTATION OF PATIENTS WITH SYMPTOMATIC HIP ABDUCTOR TENDON TEARS.

    PubMed

    Ebert, Jay R; Retheesh, Theertha; Mutreja, Rinky; Janes, Gregory C

    2016-10-01

    Hip abductor tendon (HAT) tearing is commonly implicated in greater trochanteric pain syndrome (GTPS), though limited information exists on the disability associated with this condition and specific presentation of these patients. To describe the clinical, functional and biomechanical presentation of patients with symptomatic HAT tears. Secondary purposes were to investigate the association between these clinical and functional measures, and to compare the pain and disability reported by HAT tear patients to those with end-stage hip osteoarthritis (OA). Prospective case series. One hundred forty-nine consecutive patients with symptomatic HAT tears were evaluated using the Harris (HHS) and Oxford (OHS) Hip Scores, SF-12, an additional series of 10 questions more pertinent to those with lateral hip pain, active hip range of motion (ROM), maximal isometric hip abduction strength, six-minute walk capacity and 30-second single limb stance (SLS) test. The presence of a Trendelenburg sign and pelvis-on-femur (POF) angle were determined via 2D video analysis. An age matched comparative sample of patients with end-stage hip OA was recruited for comparison of all patient-reported outcome scores. Independent t-tests investigated group and limb differences, while analysis of variance evaluated pain changes during the functional tests. Pearson's correlation coefficients investigated the correlation between clinical measures in the HAT tear group. No differences existed in patient demographics and patient-reported outcome scores between HAT tear and hip OA cohorts, apart from significantly worse SF-12 mental subscale scores (p = 0.032) in the HAT tear group. Patients with HAT tears demonstrated significantly lower (p < 0.05) hip abduction strength and active ROM in all planes of motion on their affected limb. Pain significantly increased throughout the 30-second SLS test for the HAT tear group, with 57% of HAT tear patients demonstrating a positive Trendelenburg sign

  10. THE CLINICAL, FUNCTIONAL AND BIOMECHANICAL PRESENTATION OF PATIENTS WITH SYMPTOMATIC HIP ABDUCTOR TENDON TEARS

    PubMed Central

    Retheesh, Theertha; Mutreja, Rinky; Janes, Gregory C.

    2016-01-01

    Background Hip abductor tendon (HAT) tearing is commonly implicated in greater trochanteric pain syndrome (GTPS), though limited information exists on the disability associated with this condition and specific presentation of these patients. Purpose To describe the clinical, functional and biomechanical presentation of patients with symptomatic HAT tears. Secondary purposes were to investigate the association between these clinical and functional measures, and to compare the pain and disability reported by HAT tear patients to those with end-stage hip osteoarthritis (OA). Study Design Prospective case series. Methods One hundred forty-nine consecutive patients with symptomatic HAT tears were evaluated using the Harris (HHS) and Oxford (OHS) Hip Scores, SF-12, an additional series of 10 questions more pertinent to those with lateral hip pain, active hip range of motion (ROM), maximal isometric hip abduction strength, six-minute walk capacity and 30-second single limb stance (SLS) test. The presence of a Trendelenburg sign and pelvis-on-femur (POF) angle were determined via 2D video analysis. An age matched comparative sample of patients with end-stage hip OA was recruited for comparison of all patient-reported outcome scores. Independent t-tests investigated group and limb differences, while analysis of variance evaluated pain changes during the functional tests. Pearson's correlation coefficients investigated the correlation between clinical measures in the HAT tear group. Results No differences existed in patient demographics and patient-reported outcome scores between HAT tear and hip OA cohorts, apart from significantly worse SF-12 mental subscale scores (p = 0.032) in the HAT tear group. Patients with HAT tears demonstrated significantly lower (p < 0.05) hip abduction strength and active ROM in all planes of motion on their affected limb. Pain significantly increased throughout the 30-second SLS test for the HAT tear group, with 57% of HAT tear patients

  11. Biomechanics of Wheat/Barley Straw and Corn Stover

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Christopher T. Wright; Peter A. Pryfogle; Nathan A. Stevens

    2005-03-01

    The lack of understanding of the mechanical characteristics of cellulosic feedstocks is a limiting factor in economically collecting and processing crop residues, primarily wheat and barley stems and corn stover. Several testing methods, including compression, tension, and bend have been investigated to increase our understanding of the biomechanical behavior of cellulosic feedstocks. Biomechanical data from these tests can provide required input to numerical models and help advance harvesting, handling, and processing techniques. In addition, integrating the models with the complete data set from this study can identify potential tools for manipulating the biomechanical properties of plant varieties in such amore » manner as to optimize their physical characteristics to produce higher value biomass and more energy efficient harvesting practices.« less

  12. Challenge-Based Instruction: The VaNTH Biomechanics Learning Modules

    ERIC Educational Resources Information Center

    Barr, Ronald E.; Pandy, Marcus G.; Petrosino, Anthony J.; Roselli, Robert J.; Brophy, Sean; Freeman, Robert A.

    2007-01-01

    This paper presents the methodology and results of teaching an entire engineering course using challenge-based instruction. The challenges consisted of eight biomechanics multimedia learning modules developed by the authors as part of a broader NSF educational coalition. The biomechanics modules were presented in an undergraduate mechanical…

  13. Comparing handrim biomechanics for treadmill and overground wheelchair propulsion

    PubMed Central

    Kwarciak, Andrew M.; Turner, Jeffrey T.; Guo, Liyun; Richter, W. Mark

    2010-01-01

    Study design Cross-sectional study. Objectives To compare handrim biomechanics recorded during overground propulsion to those recorded during propulsion on a motor-driven treadmill. Setting Biomechanics laboratory. Methods Twenty-eight manual wheelchair users propelled their own wheelchairs, at a self-selected speed, on a low-pile carpet and on a wheelchair accessible treadmill. Handrim biomechanics were recorded with an OptiPush instrumented wheelchair wheel. Results Across the two conditions, all handrim biomechanics were found to be similar and highly correlated (r > 0.85). Contact angle, peak force, average force, and peak axle moment differed by 1.6% or less across the two conditions. While not significant, power output and cadence tended to be slightly higher for the treadmill condition (3.5% and 3.6%, respectively), due to limitations in adjusting the treadmill grade. Conclusion Based on the results of this study, a motor-driven treadmill can serve as a valid surrogate for overground studies of wheelchair propulsion. PMID:21042332

  14. Biomechanical analysis of two fixation methods for proximal chevron osteotomy of the first metatarsal.

    PubMed

    Schuh, Reinhard; Hofstaetter, Jochen Gerhard; Benca, Emir; Willegger, Madeleine; von Skrbensky, Gobert; Zandieh, Shahin; Wanivenhaus, Axel; Holinka, Johannes; Windhager, Reinhard

    2014-05-01

    The proximal chevron osteotomy provides high correctional power. However, relatively high rates of dorsiflexion malunion of up to 17 % are reported for this procedure. This leads to insufficient weight bearing of the first ray and therefore to metatarsalgia. Recent biomechanical and clinical studies pointed out the importance of rigid fixation of proximal metatarsal osteotomies. Therefore, the aim of the present study was to compare biomechanical properties of fixation of proximal chevron osteotomies with variable locking plate and cancellous screw respectively. Ten matched pairs of human fresh frozen cadaveric first metatarsals underwent proximal chevron osteotomy with either variable locking plate or cancellous screw fixation after obtaining bone mineral density. Biomechanical testing included repetitive plantar to dorsal loading from 0 to 31 N with the 858 Mini Bionix(®) (MTS(®) Systems Corporation, Eden Prairie, MN, USA). Dorsal angulation of the distal fragment was recorded. The variable locking plate construct reveals statistically superior results in terms of bending stiffness and dorsal angulation compared to the cancellous screw construct. There was a statistically significant correlation between bone mineral density and maximum tolerated load until construct failure occurred for the screw construct (r = 0.640, p = 0.406). The results of the present study indicate that variable locking plate fixation shows superior biomechanical results to cancellous screw fixation for proximal chevron osteotomy. Additionally, screw construct failure was related to levels of low bone mineral density. Based on the results of the present study we recommend variable locking plate fixation for proximal chevron osteotomy, especially in osteoporotic bone.

  15. Biomechanical analysis of plate systems for proximal humerus fractures: a systematic literature review.

    PubMed

    Jabran, Ali; Peach, Chris; Ren, Lei

    2018-04-27

    Proximal humerus fractures are the third most common in the human body but their management remains controversial. Open reduction and internal fixation with plates is one of the leading modes of operative treatment for these fractures. The development of technologies and techniques for these plates, during the recent decades, promise a bright future for their clinical use. A comprehensive review of in vitro biomechanical studies is needed for the comparison of plates' mechanical performance and the testing methodologies. This will not only guide clinicians with plate selection but also with the design of future in vitro biomechanical studies. This review was aimed to systematically categorise and review the in vitro biomechanical studies of these plates based on their protocols and discuss their results. The technologies and techniques investigated in these studies were categorised and compared to reach a census where possible. Web of Science and Scopus database search yielded 62 studies. Out of these, 51 performed axial loading, torsion, bending and/or combined bending and axial loading while 11 simulated complex glenohumeral movements by using tendons. Loading conditions and set-up, failure criteria and performance parameters, as well as results for each study, were reviewed. Only two studies tested four-part fracture model while the rest investigated two- and three-part fractures. In ten studies, synthetic humeri were tested instead of cadaveric ones. In addition to load-displacement data, three-dimensional motion analysis systems, digital image correlation and acoustic emission testing have been used for measurement. Overall, PHILOS was the most tested plate and locking plates demonstrated better mechanical performance than non-locking ones. Conflicting results have been published for their comparison with non-locking blade plates and polyaxial locking screws. Augmentation with cement [calcium phosphate or poly(methyl methacrylate)] or allografts (fibular and

  16. The History of Biomechanics in Total Hip Arthroplasty.

    PubMed

    Houcke, Jan Van; Khanduja, Vikas; Pattyn, Christophe; Audenaert, Emmanuel

    2017-01-01

    Biomechanics of the hip joint describes how the complex combination of osseous, ligamentous, and muscular structures transfers the weight of the body from the axial skeleton into the appendicular skeleton of the lower limbs. Throughout history, several biomechanical studies based on theoretical mathematics, in vitro , in vivo as well as in silico models have been successfully performed. The insights gained from these studies have improved our understanding of the development of mechanical hip pathologies such as osteoarthritis, hip fractures, and developmental dysplasia of the hip. The main treatment of end-stage degeneration of the hip is total hip arthroplasty (THA). The increasing number of patients undergoing this surgical procedure, as well as their demand for more than just pain relief and leading an active lifestyle, has challenged surgeons and implant manufacturers to deliver higher function as well as longevity with the prosthesis. The science of biomechanics has played and will continue to play a crucial and integral role in achieving these goals. The aim of this article, therefore, is to present to the readers the key concepts in biomechanics of the hip and their application to THA.

  17. Biomechanics of penetrating trauma.

    PubMed

    Yoganandan, N; Pintar, F A

    1997-01-01

    It is well known that injuries and deaths due to penetrating projectiles have become a national and an international epidemic in Western society. The application of biomedical engineering to solve day-to-day problems has produced considerable advances in safety and mitigation/prevention of trauma. The study of penetrating trauma has been largely in the military domain where war-time specific applications were advanced with the use of high-velocity weapons. With the velocity and weapon caliber in the civilian population at half or less compared with the military counterpart, wound ballistics is a largely different problem in today's trauma centers. The principal goal of the study of penetrating injuries in the civilian population is secondary prevention and optimized emergency care after occurrence. A thorough understanding of the dynamic biomechanics of penetrating injuries quantifies missile type, caliber, and velocity to hard and soft tissue damage. Such information leads to a comprehensive assessment of the acute and long-term treatment of patients with penetrating injuries. A review of the relevant military research applied to the civilian domain and presentation of new technology in the biomechanical study of these injuries offer foundation to this field. Relevant issues addressed in this review article include introduction of the military literature, the need for secondary prevention, environmental factors including projectile velocity and design, experimental studies with biological tissues and physical models, and mathematical simulations and analyses. Areas of advancement are identified that enables the pursuit of biomechanics research in order to arrive at better secondary prevention strategies.

  18. [The transsexualism syndrome: clinical aspects and therapeutic prospects].

    PubMed

    Gallarda, T; Amado, I; Coussinoux, S; Poirier, M F; Cordier, B; Olié, J P

    1997-01-01

    The prevalence rate of transsexualism varies from 1 to 50,000, to 1 to 100,000. Although it remains an infrequent affliction, transsexualism generates usually major suffering and may be responsible of many complications like suicide, self-mutilations, affective disorders and social disabilities. Since the first descriptions of Esquirol in the nineteenth, the medical community has always been questioned on medical, legal, social or ethical aspects of transsexualism. The aetiology of the trouble is still unknown. In the absence of biological marker, the syndrome of transsexualism can be defined only with clinical criteria. The main differential diagnosis are sexual ambiguities and psychotic disorders. For the specialists, satisfying the patients demand of a surgical and social reassignment still remains the only way to improve their clinical condition and avoid the onset of many dramatic complications. Without any treatment, the evolution of the trouble is chronic, without remission. Longitudinal studies of transsexual patients with a five year follow-up demonstrated subjective improvement in two thirds of the patients and don't find either higher rates of suicides nor psychotic decompensations after surgery and hormonotherapy. Clinical and neuropsychological studies of sexually differentiated cognitive abilities of transsexual patients, before and after hormonotherapy, could allow us in improving the understanding of sexual differences of the brain.

  19. Biomechanics of the elbow joint in tennis players and relation to pathology.

    PubMed

    Eygendaal, Denise; Rahussen, F Th G; Diercks, R L

    2007-11-01

    Elbow injuries constitute a sizeable percentage of tennis injuries. A basic understanding of biomechanics of tennis and analysis of the forces, loads and motions of the elbow during tennis will improve the understanding of the pathophysiology of these injuries. All different strokes in tennis have a different repetitive biomechanical nature that can result in tennis-related injuries. In this article, a biomechanically-based evaluation of tennis strokes is presented. This overview includes all tennis-related pathologies of the elbow joint, whereby the possible relation of biomechanics to pathology is analysed, followed by treatment recommendations.

  20. Important learning factors in high- and low-achieving students in undergraduate biomechanics.

    PubMed

    Hsieh, ChengTu; Knudson, Duane

    2017-07-21

    The purpose of the present study was to document crucial factors associated with students' learning of biomechanical concepts, particularly between high- and-low achieving students. Students (N = 113) from three introductory biomechanics classes at two public universities volunteered for the study. Two measures of students' learning were obtained, final course grade and improvement on the Biomechanics Concept Inventory version 3 administered before and after the course. Participants also completed a 15-item questionnaire documenting student learning characteristics, effort, and confidence. Partial correlations controlling for all other variables in the study, confirmed previous studies that students' grade point average (p < 0.01), interest in biomechanics, (p < 0.05), and physics credits passed (p < 0.05) are factors uniquely associated with learning biomechanics concepts. Students' confidence when encountering difficult biomechanics concepts was also significantly (p < 0.05) associated with final grade. There were significant differences between top 15% and bottom 15% achievers on these variables (p < 0.05), as well as on readings completed, work to pay for college per week, and learning epistemology. Consequently, instructors should consider strategies to promote students' interest in biomechanics and confidence in solving relevant professional problems in order to improve learning for both low- and high-ability students.

  1. Brain-shift compensation using intraoperative ultrasound and constraint-based biomechanical simulation.

    PubMed

    Morin, Fanny; Courtecuisse, Hadrien; Reinertsen, Ingerid; Le Lann, Florian; Palombi, Olivier; Payan, Yohan; Chabanas, Matthieu

    2017-08-01

    During brain tumor surgery, planning and guidance are based on preoperative images which do not account for brain-shift. However, this deformation is a major source of error in image-guided neurosurgery and affects the accuracy of the procedure. In this paper, we present a constraint-based biomechanical simulation method to compensate for craniotomy-induced brain-shift that integrates the deformations of the blood vessels and cortical surface, using a single intraoperative ultrasound acquisition. Prior to surgery, a patient-specific biomechanical model is built from preoperative images, accounting for the vascular tree in the tumor region and brain soft tissues. Intraoperatively, a navigated ultrasound acquisition is performed directly in contact with the organ. Doppler and B-mode images are recorded simultaneously, enabling the extraction of the blood vessels and probe footprint, respectively. A constraint-based simulation is then executed to register the pre- and intraoperative vascular trees as well as the cortical surface with the probe footprint. Finally, preoperative images are updated to provide the surgeon with images corresponding to the current brain shape for navigation. The robustness of our method is first assessed using sparse and noisy synthetic data. In addition, quantitative results for five clinical cases are provided, first using landmarks set on blood vessels, then based on anatomical structures delineated in medical images. The average distances between paired vessels landmarks ranged from 3.51 to 7.32 (in mm) before compensation. With our method, on average 67% of the brain-shift is corrected (range [1.26; 2.33]) against 57% using one of the closest existing works (range [1.71; 2.84]). Finally, our method is proven to be fully compatible with a surgical workflow in terms of execution times and user interactions. In this paper, a new constraint-based biomechanical simulation method is proposed to compensate for craniotomy-induced brain

  2. Dual mobility cups provide biomechanical advantages in situations at risk for dislocation: a finite element analysis.

    PubMed

    Terrier, Alexandre; Latypova, Adeliya; Guillemin, Maika; Parvex, Valérie; Guyen, Olivier

    2017-03-01

    Constrained devices, standard implants with large heads, and dual mobility systems have become popular options to manage instability after total hip arthroplasty (THA). Clinical results with these options have shown variable success rates and significant higher rates of aseptic loosening and mechanical failures with constrained implants. Literature suggests potential advantages of dual mobility, however little is known about its biomechanics. We present a comparative biomechanical study of a standard implant, a constrained implant, and a dual mobility system. A finite element analysis was developed to assess and compare these acetabular options with regard to the range of motion (ROM) to impingement, the angle of dislocation, the resistive torque, the volume of polyethylene (PE) with a stress above 80% of the elastic limit, and the interfacial cup/bone stress. Dual mobility implants provided the greatest ROM to impingement and allowed delaying subluxation and dislocation when compared to standard and constrained implants. Dual mobility also demonstrated the lowest resistive torque at subluxation while the constrained implant provided the greatest one. The lowest critical PE volume was observed with the dual mobility implant, and the highest stress at the interfaces was observed with the constrained implant. This study highlights the biomechanical advantages of dual mobility systems over constrained and standard implants, and is supported by the clinical results reported. Therefore, the use of dual mobility systems in situations at risk for instability should be advocated and constrained implants should be restricted to salvage situations.

  3. Biomechanical Phenotyping of the Murine Aorta: What Is the Best Control?

    PubMed

    Bellini, C; Caulk, A W; Li, G; Tellides, G; Humphrey, J D

    2017-04-01

    The availability of diverse mouse models is revealing increasingly greater information on arterial mechanics, including homeostatic adaptations and pathologic maladaptations to genetic, pharmacological, and surgical manipulations. Fundamental to understanding such biomechanical changes, however, is reliable information on appropriate control vessels. In this paper, we contrast 15 different geometrical and mechanical metrics of biaxial wall mechanics for the ascending aorta across seven different types of possible control mice. We show that there is a comforting similarity across these multiple controls for most, though not all, metrics. In particular, three potential controls, namely, noninduced conditional mice, exhibit higher values of distensibility, an important clinical metric of structural stiffness, and two of these potential controls also have higher values of intrinsic circumferential material stiffness. There is motivation, therefore, to understand better the biomechanical changes that can arise with noninduced Cre-lox or similar approaches for generating mutations conditionally. In cases of germline mutations generated by breeding heterozygous +/- mice, however, the resulting homozygous +/+ mice tend to exhibit properties similar to traditional (C57BL/6) controls.

  4. Injury and biomechanical perspectives on the rugby scrum: a review of the literature.

    PubMed

    Trewartha, Grant; Preatoni, Ezio; England, Michael E; Stokes, Keith A

    2015-04-01

    As a collision sport, rugby union has a relatively high overall injury incidence, with most injuries being associated with contact events. Historically, the set scrum has been a focus of the sports medicine community due to the perceived risk of catastrophic spinal injury during scrummaging. The contemporary rugby union scrum is a highly dynamic activity but to this point has not been well characterised mechanically. In this review, we synthesise the available research literature relating to the medical and biomechanical aspects of the rugby union scrum, in order to (1) review the injury epidemiology of rugby scrummaging; (2) consider the evidence for specific injury mechanisms existing to cause serious scrum injuries and (3) synthesise the information available on the biomechanics of scrummaging, primarily with respect to force production. The review highlights that the incidence of acute injury associated with scrummaging is moderate but the risk per event is high. The review also suggests an emerging acknowledgement of the potential for scrummaging to lead to premature chronic degeneration injuries of the cervical spine and summarises the mechanisms by which these chronic injuries are thought to occur. More recent biomechanical studies of rugby scrummaging confirm that scrum engagement forces are high and multiplanar, but can be altered through modifications to the scrum engagement process which control the engagement velocity. As the set scrum is a relatively 'controlled' contact situation within rugby union, it remains an important area for intervention with a long-term goal of injury reduction. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  5. Newly occurred L4 spondylolysis in the lumbar spine with pre-existence L5 spondylolysis among sports players: case reports and biomechanical analysis.

    PubMed

    Sairyo, Koichi; Sakai, Toshinori; Yasui, Natsuo; Kiapour, Ali; Biyani, Ashok; Ebraheim, Nabil; Goel, Vijay K

    2009-10-01

    Case series and a biomechanical study using a finite element (FE) analysis. To report three cases with multi-level spondylolysis and to understand the mechanism biomechanically. Multi-level spondylolysis is a very rare condition. There have been few reports in the literature on multi-level spondylolysis among sports players. We reviewed three cases of the condition, clinically. These patients were very active young sports players and had newly developed fresh L4 spondylolysis and pre-existing L5 terminal stage spondylolysis. Thus, we assumed that L5 spondylolysis may have increased the pars stress at the cranial adjacent levels, leading to newly developed spondylolysis at these levels. Biomechanically, we investigated pars stress at L4 with or without spondylolysis at L5 using the finite element technique. L4 pars stress decreased in the presence of L5 spondylolysis, which does not support our first hypothesis. It seems that multi-level spondylolysis may occur due to genetic and not biomechanical reasons.

  6. Restoring Segmental Biomechanics Through Nucleus Augmentation: An In Vitro Study.

    PubMed

    Pelletier, Matthew H; Cohen, Charles S; Ducheyne, Paul; Walsh, William R

    2016-12-01

    In vitro biomechanical laboratory study. The purpose of this study is to evaluate a mechanical treatment to create a degenerative motion segment and the ability of nucleus augmentation to restore biomechanics. In cases with an intact annulus fibrosus, the replacement or augmentation of the nucleus pulposus alone may provide a less invasive option to restore normal biomechanics and disk height when compared with spinal fusion or total disk replacement. Laboratory testing allows these changes to be fully characterized. However, without preexisting pathology, nucleus augmentation therapies are difficult to evaluate in vitro. The present study evaluated pure moment bending and compressive biomechanics in 3 states (n=6): (1) intact, (2) after creep loading and nucleus disruption to induce degenerative biomechanical changes, and (3) after nucleus augmentation through an injectable polymer (DiscCell). Neutral zone and ROM were increased in all modes of bending after the degenerative treatment. The most sensitive mode of bending was lateral bending, with intact ROM (20.0±2.9 degrees) increased to 22.3±2.6 degrees after degenerative treatment and reduced to 18.4±1.6 degrees after injection of the polymer. All bending ROM and NZ changes induced by the degenerative treatment were reversed by nucleus augmentation. This material was shown to be effective at altering motion segment biomechanics and restoring disk height during time zero tests. This technique may provide a model to examine the time zero performance of a nucleus augmentation device/material.

  7. Changes in drop-jump landing biomechanics during prolonged intermittent exercise.

    PubMed

    Schmitz, Randy J; Cone, John C; Tritsch, Amanda J; Pye, Michele L; Montgomery, Melissa M; Henson, Robert A; Shultz, Sandra J

    2014-03-01

    As injury rates rise in the later stages of sporting activities, a better understanding of lower extremity biomechanics in the later phases of gamelike situations may improve training and injury prevention programs. Lower extremity biomechanics of a drop-jump task (extracted from a principal components analysis) would reveal factors associated with risk of anterior cruciate ligament injury during a 90-minute individualized intermittent exercise protocol (IEP) and for 1 hour following the IEP. Controlled laboratory study. Level 4. Fifty-nine athletes (29 women, 30 men) completed 3 sessions. The first session assessed fitness for an IEP designed to simulate the demands of a soccer match. An experimental session assessed drop-jump biomechanics, after a dynamic warm-up, every 15 minutes during the 90-minute IEP, and for 1 hour following the IEP. A control session with no exercise assessed drop-jump performance at the same intervals. Two biomechanical factors early in the first half (hip flexion at initial contact and hip loading; ankle loading and knee shear force) decreased at the end of the IEP and into the 60-minute recovery period, while a third factor (knee loading) decreased only during the recovery period (P ≤ 0.05). The individualized sport-specific IEP may have more subtle effects on landing biomechanics when compared with short-term, exhaustive fatigue protocols. Potentially injurious landing biomechanics may not occur until the later stages of soccer activity.

  8. Biomechanics of the anterior cruciate ligament: Physiology, rupture and reconstruction techniques

    PubMed Central

    Domnick, Christoph; Raschke, Michael J; Herbort, Mirco

    2016-01-01

    The influences and mechanisms of the physiology, rupture and reconstruction of the anterior cruciate ligament (ACL) on kinematics and clinical outcomes have been investigated in many biomechanical and clinical studies over the last several decades. The knee is a complex joint with shifting contact points, pressures and axes that are affected when a ligament is injured. The ACL, as one of the intra-articular ligaments, has a strong influence on the resulting kinematics. Often, other meniscal or ligamentous injuries accompany ACL ruptures and further deteriorate the resulting kinematics and clinical outcomes. Knowing the surgical options, anatomic relations and current evidence to restore ACL function and considering the influence of concomitant injuries on resulting kinematics to restore full function can together help to achieve an optimal outcome. PMID:26925379

  9. Applications of biomechanics for prevention of work-related musculoskeletal disorders.

    PubMed

    Garg, Arun; Kapellusch, Jay M

    2009-01-01

    This paper summarises applications of biomechanical principles and models in industry to control musculoskeletal disorders of the low back and upper extremity. Applications of 2-D and 3-D biomechanical models to estimate compressive force on the low back, the strength requirements of jobs, application of guidelines for overhead work and application of strain index and threshold limit value to address distal upper extremity musculoskeletal disorders are presented. Several case studies applied in the railroad industry, manufacturing, healthcare and warehousing are presented. Finally, future developments needed for improved biomechanical applications in industry are discussed. The information presented will be of value to practising ergonomists to recognise how biomechanics has played a significant role in identifying causes of musculoskeletal disorders and controlling them in the workplace. In particular, the information presented will help practising ergonomists with how physical stresses can be objectively quantified.

  10. In Vivo Multiphoton Microscopy for Investigating Biomechanical Properties of Human Skin.

    PubMed

    Liang, Xing; Graf, Benedikt W; Boppart, Stephen A

    2011-06-01

    The biomechanical properties of living cells depend on their molecular building blocks, and are important for maintaining structure and function in cells, the extracellular matrix, and tissues. These biomechanical properties and forces also shape and modify the cellular and extracellular structures under stress. While many studies have investigated the biomechanics of single cells or small populations of cells in culture, or the properties of organs and tissues, few studies have investigated the biomechanics of complex cell populations in vivo. With the use of advanced multiphoton microscopy to visualize in vivo cell populations in human skin, the biomechanical properties are investigated in a depth-dependent manner in the stratum corneum and epidermis using quasi-static mechanical deformations. A 2D elastic registration algorithm was used to analyze the images before and after deformation to determine displacements in different skin layers. In this feasibility study, the images and results from one human subject demonstrate the potential of the technique for revealing differences in elastic properties between the stratum corneum and the rest of the epidermis. This interrogational imaging methodology has the potential to enable a wide range of investigations for understanding how the biomechanical properties of in vivo cell populations influence function in health and disease.

  11. Synthetic Cannabinoids: Psychopharmacology, Clinical Aspects, Psychotic Onset.

    PubMed

    Martinotti, Giovanni; Santacroce, Rita; Papanti, Duccio; Elgharably, Yasmine; Prilutskaya, Mariya; Corazza, Ornella

    2017-01-01

    Synthetic Cannabinoids (SC) are the widest and most diffused class of Novel Psychoactive Substances. The short- and long- term health risks associated with the consumption of SC are often unknown to both users and health professionals. This review aims to provide a synthesis of the most recent and relevant insights on the pharmacology, clinical and psychopathological aspects of SC. A structured search of two bibliographic databases (PubMed and Scopus) was undertaken according to inclusion/exclusion criteria. The following terms "synthetic cannabinoid*", "synthetic cannabimimetic*", "synthetic cannabis", "synthetic marijuana" and "Spice AND cannabinoid*" were used as search strings. 162 relevant results, mainly published in the past two years were revealed. Most results emerged for the keyword "synthetic cannabinoid*", followed by the combination "Spice* AND "cannabinoid*". Most papers were epidemiological, forensic, toxicologic, or analytical. The results of studies were systematized according their contribution to the comprehension of pharmacological, clinical and psychopathological effects of SC. Fifteen SC-related fatality cases were reviewed according to their histories, pathology and toxicology findings. The findings of this review confirm the importance of prompt and reliable information available for health professionals More specific analytic techniques and designed preventive strategies are required to face unprecedented SC challenge. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  12. Biomechanics, diagnosis, and treatment outcome in inflammatory myopathy presenting as oropharyngeal dysphagia

    PubMed Central

    Williams, R B; Grehan, M J; Hersch, M; Andre, J; Cook, I J

    2003-01-01

    Aims: In patients with inflammatory myopathy and dysphagia, our aims were to determine: (1) the diagnostic utility of clinical and laboratory indicators; (2) the biomechanical properties of the pharyngo-oesophageal segment; (3) the usefulness of pharyngeal videomanometry in distinguishing neuropathic from myopathic dysphagia; and (4) clinical outcome. Methods: Clinical, laboratory, and videomanometric assessment was performed in 13 patients with myositis and dysphagia, in 17 disease controls with dysphagia (due to proven CNS disease), and in 22 healthy age matched controls. The diagnostic accuracy of creatine kinase (CPK), erythrocyte sedimentation rate, antinuclear antibody, and electromyography (EMG) were compared with the gold standard muscle biopsy. The biomechanical properties of the pharyngo-oesophageal segment were assessed by videomanometry. Results: Mean time from dysphagia onset to the diagnosis of myositis was 55 months (range 1–180). One third had no extrapharyngeal muscle weakness; 25% had normal CPK, and EMG was unhelpful in 28%. Compared with neurogenic controls, myositis patients had more prevalent cricopharyngeal restrictive disorders (69% v 14%; p=0.0003), reduced upper oesophageal sphincter (UOS) opening (p=0.01), and elevated hypopharyngeal intrabolus pressures (p=0.001). Videomanometric features favouring a myopathic over a neuropathic aetiology were: preserved pharyngeal swallow response, complete UOS relaxation, and normal swallow coordination. The 12 month mortality was 31%. Conclusions: The notable lack of supportive clinical signs and significant false negative rates for laboratory tests contribute to the marked delay in diagnosis. The myopathic process is strongly associated with restricted sphincter opening suggesting that cricopharyngeal disruption is a useful adjunct to immunosuppressive therapy. The condition has a poor prognosis. PMID:12631653

  13. Biomechanical analysis for primary stability of shoulder arthrodesis in different resection situations.

    PubMed

    Lerch, Solveig; Keller, Sebastian; Kirsch, Ludger; Berndt, Thomas; Rühmann, Oliver

    2013-07-01

    Only very few publications dealing with shoulder arthrodesis after bone resection procedures and no biomechanical studies are available. The presented biomechanical analysis should ascertain the type of arthrodesis with the highest primary stability in different bone loss situations. On 24 fresh cadaveric shoulder specimens three different bone loss situations were investigated under the stress of abduction, adduction, anteversion and retroversion without destruction by the use of a material testing machine. In each of the testings a 16-hole reconstruction plate was used and compared to arthrodesis with an additional dorsal 6-hole plate. The primary stability of shoulder arthrodesis with a 16-hole reconstruction plate after humeral head resection could be increased significantly if an additional dorsal plate was used. However, no significant improvement with the additional plate was detected after resection of the acromion. Of all investigated forms, arthrodesis after humeral head resection with additional plate showed the highest and arthrodesis after humeral head resection without additional plate showed the lowest force values. The mean values for forces achieved in abduction and adduction were considerably higher than those in anteversion and retroversion. There are no consistent specifications of arthrodesis techniques after resection situation available, thus the presented biomechanical testings give important information about the most stable form of arthrodesis in different types of bone loss. These findings provide an opportunity to minimize complications such as pseudarthrosis for a satisfying clinical outcome. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. A selection of biomechanical research problems: From modeling to experimentation

    NASA Astrophysics Data System (ADS)

    Abbasi, Cyrus Omid

    The research undertakings within this manuscript illustrate the importance of biomechanics in today's science. Without doubt, biomechanics can be utilized to obtain a better understanding of many unsolved mysteries involved in the field of medicine. Moreover, biomechanics can be used to develop better prosthetic or surgical devices as well. Chapter 2 represents a medical problem, which has not been solved for more than a century. With the use of fundamental principles of biomechanics', a better insight of this problem and its possible causes were obtained. Chapter 3 investigates the mechanical interaction between the human teeth and some processed food products during mastication, which is a routine but crucial daily activity of a human being. Chapter 4 looks at a problem within the field of surgery. In this chapter the stability and reliability of two different Suturing-Techniques are explored. Chapters 5 and 6 represent new patent designs as a result of the investigations made in Chapter 4. Chapter 7 studies the impact and load transfer patterns during the collision between a child's head and the ground. All of the above mentioned chapters show the significance of biomechanics in solving a range of different medical problems that involve physical and or mechanical characters.

  15. Evidence-based protocol for structural rehabilitation of the spine and posture: review of clinical biomechanics of posture (CBP®) publications

    PubMed Central

    Oakley, Paul A.; Harrison, Donald D.; Harrison, Deed E.; Haas, Jason W.

    2005-01-01

    BACKGROUND Although practice protocols exist for SMT and functional rehabilitation, no practice protocols exist for structural rehabilitation. Traditional chiropractic practice guidelines have been limited to acute and chronic pain treatment, with limited inclusion of functional and exclusion of structural rehabilitation procedures. OBJECTIVE (1) To derive an evidence-based practice protocol for structural rehabilitation from publications on Clinical Biomechanics of Posture (CBP®) methods, and (2) to compare the evidence for Diversified, SMT, and CBP®. METHODS Clinical control trials utilizing CBP® methods and spinal manipulative therapy (SMT) were obtained from searches in Mantis, CINAHL, and Index Medicus. Using data from SMT review articles, evidence for Diversified Technique (as taught in chiropractic colleges), SMT, and CBP® were rated and compared. RESULTS From the evidence from Clinical Control Trials on SMT and CBP®, there is very little evidence support for Diversified (our rating = 18), as taught in chiropractic colleges, for the treatment of pain subjects, while CBP® (our rating = 46) and SMT for neck pain (rating = 58) and low back pain (our rating = 202) have evidence-based support. CONCLUSIONS While CBP® Technique has approximately as much evidence-based support as SMT for neck pain, CBP® has more evidence to support its methods than the Diversified technique taught in chiropractic colleges, but not as much as SMT for low back pain. The evolution of chiropractic specialization has occurred, and doctors providing structural-based chiropractic care require protocol guidelines for patient quality assurance and standardization. A structural rehabilitation protocol was developed based on evidence from CBP® publications. PMID:17549209

  16. OPTICAL PRINCIPLES, BIOMECHANICS, AND INITIAL CLINICAL PERFORMANCE OF A DUAL-OPTIC ACCOMMODATING INTRAOCULAR LENS (AN AMERICAN OPHTHALMOLOGICAL SOCIETY THESIS)

    PubMed Central

    McLeod, Stephen D.

    2006-01-01

    Purpose To design and develop an accommodating intraocular lens (IOL) for endocapsular fixation with extended accommodative range that can be adapted to current standard extracapsular phacoemulsification technique. Methods Ray tracing analysis and lens design; finite element modeling of biomechanical properties; cadaver eye implantation; initial clinical evaluation. Results Ray tracing analysis indicated that a dual-optic design with a high plus-power front optic coupled to an optically compensatory minus posterior optic produced greater change in conjugation power of the eye compared to that produced by axial movement of a single-optic IOL, and that magnification effects were unlikely to account for improved near vision. Finite element modeling indicated that the two optics can be linked by spring-loaded haptics that allow anterior and posterior axial displacement of the front optic in response to changes in ciliary body tone and capsular tension. A dual-optic single-piece foldable silicone lens was constructed based on these principles. Subsequent initial clinical evaluation in 24 human eyes after phacoemulsification for cataract indicated mean 3.22 diopters of accommodation (range, 1 to 5 D) based on defocus curve measurement. Accommodative amplitude evaluation at 1- and 6-month follow-up in all eyes indicated that the accommodative range was maintained and that the lens was well tolerated. Conclusions A dual-optic design increases the accommodative effect of axial optic displacement, with minimal magnification effect. Initial clinical trials suggest that IOLs designed on this principle might provide true pseudophakic accommodation following cataract extraction and lens implantation. PMID:17471355

  17. Biomechanical Behavior of Bioprosthetic Heart Valve Heterograft Tissues: Characterization, Simulation, and Performance

    PubMed Central

    Soares, Joao S.; Feaver, Kristen R.; Zhang, Will; Kamensky, David; Aggarwal, Ankush; Sacks, Michael S.

    2017-01-01

    The use of replacement heart valves continues to grow due to the increased prevalence of valvular heart disease resulting from an ageing population. Since bioprosthetic heart valves (BHVs) continue to be the preferred replacement valve, there continues to be a strong need to develop better and more reliable BHVs through and improved the general understanding of BHV failure mechanisms. The major technological hurdle for the lifespan of the BHV implant continues to be the durability of the constituent leaflet biomaterials, which if improved can lead to substantial clinical impact. In order to develop improved solutions for BHV biomaterials, it is critical to have a better understanding of the inherent biomechanical behaviors of the leaflet biomaterials, including chemical treatment technologies, the impact of repetitive mechanical loading, and the inherent failure modes. This review seeks to provide a comprehensive overview of these issues, with a focus on developing insight on the mechanisms of BHV function and failure. Additionally, this review provides a detailed summary of the computational biomechanical simulations that have been used to inform and develop a higher level of understanding of BHV tissues and their failure modes. Collectively, this information should serve as a tool not only to infer reliable and dependable prosthesis function, but also to instigate and facilitate the design of future bioprosthetic valves and clinically impact cardiology. PMID:27507280

  18. Structural and biomechanical characteristics after early mobilization in an Achilles tendon rupture model: operative versus nonoperative treatment.

    PubMed

    Krapf, Daniel; Kaipel, Martin; Majewski, Martin

    2012-09-01

    Acute Achilles tendon ruptures are common sports injuries; however, treatment remains a clinical challenge. Studies show a superior effect of early mobilization and full weight bearing on tendon healing and clinical outcome; however, few data exist on structural and biomechanical characteristics in the early healing phase. This study investigated the histological and biomechanical characteristics of early mobilization and full weight bearing in an Achilles tendon rupture model. Eighty rats underwent dissection of a hindpaw Achilles tendon; 40 rats were treated conservatively and 40 underwent open repair of the transected Achilles tendon by suturing. Early mobilization and full weight bearing were allowed in both groups. At 1, 2, 4, and 8 weeks after tenotomy, tensile strength, stiffness, thickness, tissue characteristics (histological analysis), and length were determined. Dissected Achilles tendons healed in all animals during full weight-bearing early mobilization. One and 2 weeks after tenotomy, rats in the operative group showed increased tensile strength and stiffness compared with the nonoperative group. Repair-site diameters were increased at 1, 2, and 8 weeks after tenotomy. Tendon length was decreased in the operative group throughout observation, whereas the nonoperative group showed increased structural characteristics on the cellular level and a more homogeneous collagen distribution. Surgical treatment of dissected rat Achilles tendons showed superior biomechanical characteristics within the first 2 weeks. Conservative treatment resulted in superior histological findings but significant lengthening of the tendon in the early healing phase (weeks 1-8). Copyright 2012, SLACK Incorporated.

  19. Systems Biology and Biomechanical Model of Heart Failure

    PubMed Central

    Louridas, George E; Lourida, Katerina G

    2012-01-01

    Heart failure is seen as a complex disease caused by a combination of a mechanical disorder, cardiac remodeling and neurohormonal activation. To define heart failure the systems biology approach integrates genes and molecules, interprets the relationship of the molecular networks with modular functional units, and explains the interaction between mechanical dysfunction and cardiac remodeling. The biomechanical model of heart failure explains satisfactorily the progression of myocardial dysfunction and the development of clinical phenotypes. The earliest mechanical changes and stresses applied in myocardial cells and/or myocardial loss or dysfunction activate left ventricular cavity remodeling and other neurohormonal regulatory mechanisms such as early release of natriuretic peptides followed by SAS and RAAS mobilization. Eventually the neurohormonal activation and the left ventricular remodeling process are leading to clinical deterioration of heart failure towards a multi-organic damage. It is hypothesized that approaching heart failure with the methodology of systems biology we promote the elucidation of its complex pathophysiology and most probably we can invent new therapeutic strategies. PMID:22935019

  20. Reverse Anterior Cruciate Ligament Reconstruction Fixation: A Biomechanical Comparison Study of Tibial Cross-Pin and Femoral Interference Screw Fixation.

    PubMed

    Lawley, Richard J; Klein, Samuel E; Chudik, Steven C

    2017-03-01

    To evaluate the biomechanical performance of tibial cross-pin (TCP) fixation relative to femoral cross-pin (FCP), femoral interference screw (FIS), and tibial interference screw (TIS) fixation. We randomized 40 porcine specimens (20 tibias and 20 femurs) to TIS fixation (group 1, n = 10), FIS fixation (group 2, n = 10), TCP fixation (group 3, n = 10), or FCP fixation (group 4, n = 10) and performed biomechanical testing to compare ultimate load, stiffness, yield load, cyclic displacement, and load at 5-mm displacement. We performed cross-pin fixation of the looped end and interference screw fixation of the free ends of 9-mm-diameter bovine extensor digitorum communis tendon grafts. Graft fixation constructs were cyclically loaded and then loaded to failure in line with the tunnels. Regarding yield load, FIS was superior to TIS (704 ± 125 N vs 504 ± 118 N, P = .002), TCP was superior to TIS (1,449 ± 265 N vs 504 ± 118 N, P < .001), and TCP was superior to FCP (1,449 ± 265 N vs 792 ± 397 N, P < .001). Cyclic displacement for FCP was superior to TCP. Cyclic displacement for TIS versus FIS showed no statistically significant difference (2.5 ± 1.0 mm vs 2.2 ± 0.6 mm, P = .298). Interference screw fixation consistently failed by graft slippage, whereas TCP fixation failed by tibial bone failure. FCP fixation failed by either femoral bone failure or failure elsewhere in the testing apparatus. Regarding yield load, TCP fixation performed biomechanically superior to the clinically proven FCP at time zero. Because TIS fixation shows the lowest yield strength, it represents the weak link, and combined TCP-FIS fixation theoretically would be biomechanically superior relative to combined FCP-TIS fixation with regard to yield load. Cyclic displacement showed a small difference in favor of FCP over TCP fixation and no difference between TIS and FIS. Time-zero biomechanics of TCP fixation paired with FIS fixation show that this method of fixation can be

  1. Biomechanics as a window into the neural control of movement

    PubMed Central

    2016-01-01

    Abstract Biomechanics and motor control are discussed as parts of a more general science, physics of living systems. Major problems of biomechanics deal with exact definition of variables and their experimental measurement. In motor control, major problems are associated with formulating currently unknown laws of nature specific for movements by biological objects. Mechanics-based hypotheses in motor control, such as those originating from notions of a generalized motor program and internal models, are non-physical. The famous problem of motor redundancy is wrongly formulated; it has to be replaced by the principle of abundance, which does not pose computational problems for the central nervous system. Biomechanical methods play a central role in motor control studies. This is illustrated with studies with the reconstruction of hypothetical control variables and those exploring motor synergies within the framework of the uncontrolled manifold hypothesis. Biomechanics and motor control have to merge into physics of living systems, and the earlier this process starts the better. PMID:28149390

  2. Energetics, Biomechanics, and Performance in Masters' Swimmers: A Systematic Review.

    PubMed

    Ferreira, Maria I; Barbosa, Tiago M; Costa, Mário J; Neiva, Henrique P; Marinho, Daniel A

    2016-07-01

    Ferreira, MI, Barbosa, TM, Costa, MJ, Neiva, HP, and Marinho, DA. Energetics, biomechanics, and performance in masters' swimmers: a systematic review. J Strength Cond Res 30(7): 2069-2081, 2016-This study aimed to summarize evidence on masters' swimmers energetics, biomechanics, and performance gathered in selected studies. An expanded search was conducted on 6 databases, conference proceedings, and department files. Fifteen studies were selected for further analysis. A qualitative evaluation of the studies based on the Quality Index (QI) was performed by 2 independent reviewers. The studies were thereafter classified into 3 domains according to the reported data: performance (10 studies), energetics (4 studies), and biomechanics (6 studies). The selected 15 articles included in this review presented low QI scores (mean score, 10.47 points). The biomechanics domain obtained higher QI (11.5 points), followed by energetics and performance (10.6 and 9.9 points, respectively). Stroke frequency (SF) and stroke length (SL) were both influenced by aging, although SF is more affected than SL. Propelling efficiency (ηp) decreased with age. Swimming performance declined with age. The performance declines with age having male swimmers deliver better performances than female counterparts, although this difference tends to be narrow in long-distance events. One single longitudinal study is found in the literature reporting the changes in performance over time. The remaining studies are cross-sectional designs focusing on the energetics and biomechanics. Overall, biomechanics parameters, such as SF, SL, and ηp, tend to decrease with age. This review shows the lack of a solid body of knowledge (reflected in the amount and quality of the articles published) on the changes in biomechanics, energetics, and performance of master swimmers over time. The training programs for this age-group should aim to preserve the energetics as much as possible and, concurrently, improve the

  3. A biomechanical approach for in vivo lung tumor motion prediction during external beam radiation therapy

    NASA Astrophysics Data System (ADS)

    Karami, Elham; Gaede, Stewart; Lee, Ting-Yim; Samani, Abbas

    2015-03-01

    Lung Cancer is the leading cause of cancer death in both men and women. Among various treatment methods currently being used in the clinic, External Beam Radiation Therapy (EBRT) is used widely not only as the primary treatment method, but also in combination with chemotherapy and surgery. However, this method may lack desirable dosimetric accuracy because of respiration induced tumor motion. Recently, biomechanical modeling of the respiratory system has become a popular approach for tumor motion prediction and compensation. This approach requires reasonably accurate data pertaining to thoracic pressure variation, diaphragm position and biomechanical properties of the lung tissue in order to predict the lung tissue deformation and tumor motion. In this paper, we present preliminary results of an in vivo study obtained from a Finite Element Model (FEM) of the lung developed to predict tumor motion during respiration.

  4. Variable Torque Prescription: State of Art.

    PubMed Central

    Lacarbonara, Mariano; Accivile, Ettore; Abed, Maria R.; Dinoi, Maria Teresa; Monaco, Annalisa; Marzo, Giuseppe; Capogreco, Mario

    2015-01-01

    The variable prescription is widely described under the clinical aspect: the clinics is the result of the evolution of the state-of-the-art, aspect that is less considered in the daily literature. The state-of-the-art is the key to understand not only how we reach where we are but also to learn how to manage propely the torque, focusing on the technical and biomechanical purpos-es that led to the change of the torque values over time. The aim of this study is to update the clinicians on the aspects that affect the torque under the biomechanical sight, helping them to understand how to managing it, following the “timeline changes” in the different techniques so that the Variable Prescription Orthodontic (VPO) would be a suitable tool in every clinical case. PMID:25674173

  5. Community-acquired pneumonia in the elderly. Clinical and nutritional aspects.

    PubMed

    Riquelme, R; Torres, A; el-Ebiary, M; Mensa, J; Estruch, R; Ruiz, M; Angrill, J; Soler, N

    1997-12-01

    Community-acquired pneumonia (CAP) in the elderly has a different clinical presentation than CAP in other age groups. Confusion, alteration of functional physical capacity, and decompensation of underlying illnesses may appear as unique manifestations. Malnutrition is also an associated feature of CAP in this population. We undertook a study to assess the clinical and nutritional aspects of CAP requiring hospitalization in elderly patients (over 65 yr of age). One hundred and one patients with pneumonia, consecutively admitted to a 1,000-bed teaching hospital over an 8-mo period, were studied (age: 78 +/- 8 yr, mean +/- SD). Nutritional aspects and the mental status of patients with pneumonia were compared with those of a control population (n = 101) matched for gender, age, and date of hospitalization. The main symptoms were dyspnea (n = 71), cough (n = 67), and fever (n = 64). The association of these symptoms with CAP was observed in only 32 patients. The most common associated conditions were cardiac disease (n = 38) and chronic obstructive pulmonary disease (COPD) (n = 30). Seventy-seven (76%) episodes of pneumonia were clinically classified as typical and 24 as atypical. There was no association between the type of isolated microorganism and the clinical presentation of CAP, except for pleuritic chest pain, which was more common in pneumonia episodes caused by classical microorganisms (p = 0.02). This was confirmed by a multivariate analysis (relative risk [RR] = 11; 95% confidence interval [CI]: 1.7 to 65; p = 0.0099). The prevalence of chronic dementia was similar in the pneumonia cohort (n = 25) and control group (n = 18) (p = 0.22). However, delirium or acute confusion were significantly more frequent in the pneumonia cohort than in controls (45 versus 29 episodes; p = 0.019). Only 16 patients with pneumonia were considered to be well nourished, as compared with 47 control patients (p = 0.001). Kwashiorkor-like malnutrition was the predominant type of

  6. A Biomechanical Modeling Guided CBCT Estimation Technique

    PubMed Central

    Zhang, You; Tehrani, Joubin Nasehi; Wang, Jing

    2017-01-01

    Two-dimensional-to-three-dimensional (2D-3D) deformation has emerged as a new technique to estimate cone-beam computed tomography (CBCT) images. The technique is based on deforming a prior high-quality 3D CT/CBCT image to form a new CBCT image, guided by limited-view 2D projections. The accuracy of this intensity-based technique, however, is often limited in low-contrast image regions with subtle intensity differences. The solved deformation vector fields (DVFs) can also be biomechanically unrealistic. To address these problems, we have developed a biomechanical modeling guided CBCT estimation technique (Bio-CBCT-est) by combining 2D-3D deformation with finite element analysis (FEA)-based biomechanical modeling of anatomical structures. Specifically, Bio-CBCT-est first extracts the 2D-3D deformation-generated displacement vectors at the high-contrast anatomical structure boundaries. The extracted surface deformation fields are subsequently used as the boundary conditions to drive structure-based FEA to correct and fine-tune the overall deformation fields, especially those at low-contrast regions within the structure. The resulting FEA-corrected deformation fields are then fed back into 2D-3D deformation to form an iterative loop, combining the benefits of intensity-based deformation and biomechanical modeling for CBCT estimation. Using eleven lung cancer patient cases, the accuracy of the Bio-CBCT-est technique has been compared to that of the 2D-3D deformation technique and the traditional CBCT reconstruction techniques. The accuracy was evaluated in the image domain, and also in the DVF domain through clinician-tracked lung landmarks. PMID:27831866

  7. Piezosurgery applied to implant dentistry: clinical and biological aspects.

    PubMed

    Pereira, Cassiano Costa Silva; Gealh, Walter Cristiano; Meorin-Nogueira, Lamis; Garcia-Júnior, Idelmo Rangel; Okamoto, Roberta

    2014-07-01

    Piezosurgery is a new and modern technique of bone surgery in implantology. Selective cutting is possible for different ultrasonic frequencies acting only in hard tissues (mineralized), saving vital anatomical structures. With the piezoelectric osteotomy technique, receptor site preparation for implants, autogenous bone graft acquistition (particles and blocks), osteotomy for alveolar bone crest expansion, maxillary sinus lifting, and dental implant removal can be performed accurately and safely, providing excellent clinical and biological results, especially for osteocyte viability. The aim of this review was, through literature review, to present clinical applications of piezosurgery in implant dentistry and outline their advantages and disadvantages over conventional surgical systems. Moreover, this study addressed the biological aspects related to piezosurgery that differentiate it from those of bone tissue approaches. Overall, piezosurgery enables critical operations in simple and fully executable procedures; and effectively, areas that are difficult to access have less risk of soft tissue and neurovascular tissue damage via piezosurgery.

  8. Biomechanical pulping of kenaf

    Treesearch

    Aziz Ahmed; Masood Akhtar; Gary C. Myers; Gary M. Scott

    1999-01-01

    The objective of this study was to investigate the effect of fungal pretreatment of whole kenaf prior to refining on refiner electrical energy consumption, paper strength, and optical properties. We also explored the suitability of whole kenaf biomechanical pulp for making newsprint in terms of ISO brightness and strength properties. Kenaf was sterilized by autoclaving...

  9. Dance band on the Titanic: biomechanical signaling in cardiac hypertrophy.

    PubMed

    Sussman, Mark A; McCulloch, Andrew; Borg, Thomas K

    2002-11-15

    Biomechanical signaling is a complex interaction of both intracellular and extracellular components. Both passive and active components are involved in the extracellular environment to signal through specific receptors to multiple signaling pathways. This review provides an overview of extracellular matrix, specific receptors, and signaling pathways for biomechanical stimulation in cardiac hypertrophy.

  10. Sport-specific biomechanical responses to an ACL injury prevention programme: A randomised controlled trial.

    PubMed

    Taylor, Jeffrey B; Ford, Kevin R; Schmitz, Randy J; Ross, Scott E; Ackerman, Terry A; Shultz, Sandra J

    2018-04-19

    Anterior cruciate ligament (ACL) injury prevention programmes have not been as successful at reducing injury rates in women's basketball as in soccer. This randomised controlled trial (ClinicalTrials.gov #NCT02530333) compared biomechanical adaptations in basketball and soccer players during jump-landing activities after an ACL injury prevention programme. Eighty-seven athletes were cluster randomised into intervention (6-week programme) and control groups. Three-dimensional biomechanical analyses of drop vertical jump (DVJ), double- (SAG-DL) and single-leg (SAG-SL) sagittal, and double- (FRONT-DL) and single-leg (FRONT-SL) frontal plane jump landing tasks were tested before and after the intervention. Peak angles, excursions, and joint moments were analysed using two-way MANCOVAs of post-test scores while controlling for pre-test scores. During SAG-SL the basketball intervention group exhibited increased peak knee abduction angles (p = .004) and excursions (p = .003) compared to the basketball control group (p = .01) and soccer intervention group (p = .01). During FRONT-SL, the basketball intervention group exhibited greater knee flexion excursion after training than the control group (p = .01), but not the soccer intervention group (p = .11). Although women's soccer players exhibit greater improvements in knee abduction kinematics than basketball players, these athletes largely exhibit similar biomechanical adaptations to ACL injury prevention programmes.

  11. Biomechanical study of different fixation techniques for the treatment of sacroiliac joint injuries using finite element analyses and biomechanical tests.

    PubMed

    Lee, Chian-Her; Hsu, Ching-Chi; Huang, Po-Yuang

    2017-08-01

    The pelvis is one of the most stressed areas of the human musculoskeletal system due to the transfer of truncal loads to the lower extremities. Sacroiliac joint injury may lead to abnormal joint mechanics and an unstable pelvis. Various fixation techniques have been evaluated and discussed. However, it may be difficult to investigate each technique due to variations in bone quality, bone anatomy, fracture pattern, and fixation location. Additionally, the finite element method is one useful technology that avoids these variations. Unfortunately, most previous studies neglected the effects of the lumbar spine and femurs when they investigated the biomechanics of pelvises. Thus, the aim of this study was to investigate the biomechanical performance of intact, injured, and treated pelvises using numerical and experimental approaches. Three-dimensional finite element models of the spine-pelvis-femur complex with and without muscles and ligaments were developed. The intact pelvis, the pelvis with sacroiliac joint injury, and three types of pelvic fixation techniques were analyzed. Concurrently, biomechanical tests were conducted to validate the numerical outcomes using artificial pelvises. Posterior iliosacral screw fixation showed relatively better fixation stability and lower risks of implant failure and pelvic breakage than sacral bar fixation and a locking compression plate fixation. The present study can help surgeons and engineers understand the biomechanics of intact, injured, and treated pelvises. Both the simulation technique and the experimental setup can be applied to investigate different pelvic injuries. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Biomechanical properties of bone in a mouse model of Rett syndrome.

    PubMed

    Kamal, Bushra; Russell, David; Payne, Anthony; Constante, Diogo; Tanner, K Elizabeth; Isaksson, Hanna; Mathavan, Neashan; Cobb, Stuart R

    2015-02-01

    Rett syndrome (RTT) is an X-linked genetic disorder and a major cause of intellectual disability in girls. Mutations in the methyl-CpG binding protein 2 (MECP2) gene are the primary cause of the disorder. Despite the dominant neurological phenotypes, MECP2 is expressed ubiquitously throughout the body and a number of peripheral phenotypes such as scoliosis, reduced bone mineral density and skeletal fractures are also common and important clinical features of the disorder. In order to explore whether MeCP2 protein deficiency results in altered structural and functional properties of bone and to test the potential reversibility of any defects, we have conducted a series of histological, imaging and biomechanical tests of bone in a functional knockout mouse model of RTT. Both hemizygous Mecp2(stop/y) male mice in which Mecp2 is silenced in all cells and female Mecp2(stop/+) mice in which Mecp2 is silenced in ~50% of cells as a consequence of random X-chromosome inactivation, revealed significant reductions in cortical bone stiffness, microhardness and tensile modulus. Microstructural analysis also revealed alterations in both cortical and cancellous femoral bone between wild-type and MeCP2-deficient mice. Furthermore, unsilencing of Mecp2 in adult mice cre-mediated stop cassette deletion resulted in a restoration of biomechanical properties (stiffness, microhardness) towards wild-type levels. These results show that MeCP2-deficiency results in overt, but potentially reversible, alterations in the biomechanical integrity of bone and highlights the importance of targeting skeletal phenotypes in considering the development of pharmacological and gene-based therapies. Copyright © 2014. Published by Elsevier Inc.

  13. Biomechanical properties of bone in a mouse model of Rett syndrome

    PubMed Central

    Kamal, Bushra; Russell, David; Payne, Anthony; Constante, Diogo; Tanner, K. Elizabeth; Isaksson, Hanna; Mathavan, Neashan; Cobb, Stuart R.

    2015-01-01

    Rett syndrome (RTT) is an X-linked genetic disorder and a major cause of intellectual disability in girls. Mutations in the methyl-CpG binding protein 2 (MECP2) gene are the primary cause of the disorder. Despite the dominant neurological phenotypes, MECP2 is expressed ubiquitously throughout the body and a number of peripheral phenotypes such as scoliosis, reduced bone mineral density and skeletal fractures are also common and important clinical features of the disorder. In order to explore whether MeCP2 protein deficiency results in altered structural and functional properties of bone and to test the potential reversibility of any defects, we have conducted a series of histological, imaging and biomechanical tests of bone in a functional knockout mouse model of RTT. Both hemizygous Mecp2stop/y male mice in which Mecp2 is silenced in all cells and female Mecp2stop/+ mice in which Mecp2 is silenced in ~ 50% of cells as a consequence of random X-chromosome inactivation, revealed significant reductions in cortical bone stiffness, microhardness and tensile modulus. Microstructural analysis also revealed alterations in both cortical and cancellous femoral bone between wild-type and MeCP2-deficient mice. Furthermore, unsilencing of Mecp2 in adult mice cre-mediated stop cassette deletion resulted in a restoration of biomechanical properties (stiffness, microhardness) towards wild-type levels. These results show that MeCP2-deficiency results in overt, but potentially reversible, alterations in the biomechanical integrity of bone and highlights the importance of targeting skeletal phenotypes in considering the development of pharmacological and gene-based therapies. PMID:25445449

  14. [Depression in the elderly. Clinical aspects].

    PubMed

    Barbier, D

    2001-02-24

    DIFFICULT DIAGNOSIS: Depression in the elderly can take on many often misleading aspects. Sadness may be considered legitimate or "normal" for an elderly person. Depression may masquerade as an organic disorder where somatic complaints, pain and anxiety predominate. All these different clinical forms may mislead the clinician. THE MASK OF HYPOCHONDRIA: A tendency to hypochondria, found in more than one-half of all depressed elderly subjects, may be reinforced by bouts of complementary examinations. The patient is convinced of having an unrecognized organic disease. The mask of hypochondria must be considered with special care because it is a major risk factor for attempted and successful suicide. THE MASK OF DELUSIONS: Elderly patients often develop a state of melancolia-like depression with delusions. Delusions may be congruent with the predominant depressed mood, for example a guilt feeling for an act never committed, or inversely, non-congruent with the thymic state (persecution, negation delusin), for example Cotard syndrome where the patient is persuaded that his/her organs are malfunctioning or have disappeared. Despite these impressive mood disorders that often incite prescription of a neuroleptic, these elderly patients respond favorably to antidepressor treatment.

  15. Clinical and Neurobiological Aspects of Narcolepsy

    PubMed Central

    Nishino, Seiji

    2007-01-01

    Narcolepsy is characterized by excessive daytime sleepiness (EDS), cataplexy and/or other dissociated manifestations of rapid eye movement (REM) sleep (hypnagogic hallucinations and sleep paralysis). Narcolepsy is currently treated with amphetamine-like central nervous system (CNS) stimulants (for EDS) and antidepressants (for cataplexy). Some other classes of compounds such as modafinil (a non-amphetamine wake-promoting compound for EDS) and gamma-hydroxybutyrate (GHB, a short-acting sedative for EDS/fragmented nighttime sleep and cataplexy) given at night are also employed. The major pathophysiology of human narcolepsy has been recently elucidated based on the discovery of narcolepsy genes in animals. Using forward (i.e., positional cloning in canine narcolepsy) and reverse (i.e., mouse gene knockout) genetics, the genes involved in the pathogenesis of narcolepsy (hypocretin/orexin ligand and its receptor) in animals have been identified. Hypocretins/orexins are novel hypothalamic neuropeptides also involved in various hypothalamic functions such as energy homeostasis and neuroendocrine functions. Mutations in hypocretin-related genes are rare in humans, but hypocretin-ligand deficiency is found in many narcolepsy-cataplexy cases. In this review, the clinical, pathophysiological and pharmacological aspects of narcolepsy are discussed. PMID:17470414

  16. An Anatomic and Biomechanical Comparison of Bankart Repair Configurations.

    PubMed

    Judson, Christopher H; Voss, Andreas; Obopilwe, Elifho; Dyrna, Felix; Arciero, Robert A; Shea, Kevin P

    2017-11-01

    Suture anchor repair for anterior shoulder instability can be performed using a number of different repair techniques, but none has been proven superior in terms of anatomic and biomechanical properties. Purpose/Hypothesis: The purpose was to compare the anatomic footprint coverage and biomechanical characteristics of 4 different Bankart repair techniques: (1) single row with simple sutures, (2) single row with horizontal mattress sutures, (3) double row with sutures, and (4) double row with labral tape. The hypotheses were as follows: (1) double-row techniques would improve the footprint coverage and biomechanical properties compared with single-row techniques, (2) horizontal mattress sutures would increase the footprint coverage compared with simple sutures, and (3) repair techniques with labral tape and sutures would not show different biomechanical properties. Controlled laboratory study. Twenty-four fresh-frozen cadaveric specimens were dissected. The native labrum was removed and the footprint marked and measured. Repair for each of the 4 groups was performed, and the uncovered footprint was measured using a 3-dimensional digitizer. The strength of the repair sites was assessed using a servohydraulic testing machine and a digital video system to record load to failure, cyclic displacement, and stiffness. The double-row repair techniques with sutures and labral tape covered 73.4% and 77.0% of the footprint, respectively. These percentages were significantly higher than the footprint coverage achieved by single-row repair techniques using simple sutures (38.1%) and horizontal mattress sutures (32.8%) ( P < .001). The footprint coverage of the simple suture and horizontal mattress suture groups was not significantly different ( P = .44). There were no significant differences in load to failure, cyclic displacement, or stiffness between the single-row and double-row groups or between the simple suture and horizontal mattress suture techniques. Likewise, there was

  17. Biomechanics, Exercise Physiology, and the 75th Anniversary of RQES

    ERIC Educational Resources Information Center

    Hamill, Joseph; Haymes, Emily M.

    2005-01-01

    The purpose of this paper is to review the biomechanics and exercise physiology studies published in the Research Quarterly for Exercise and Sport (RQES) over the past 75 years. Studies in biomechanics, a relatively new subdiscipline that evolved from kinesiology, first appeared in the journal about 40 years ago. Exercise physiology studies have…

  18. [Air transport biomechanical risk: reduced mobility passengers' handling].

    PubMed

    Draicchio, F; Campoli, G; Silvetti, A; Badellino, E; Forzano, F; Ranavolo, A; Iavicoli, S; Campagna, G; Raffaele, G; Gismondi, M

    2012-01-01

    As the airport traffic increases there is a continuous increase of passengers with different motor disabilities. Disabled passenger's assistance causes a biomechanical overload in airport workers. Some disabled passengers are classified by IATA as WCHC (wheel chair in cabin or Charlie). Our study, was performed in one of the most important Italian airport on Charlie passengers (about 10% of all assistances). We identified four critical points: 1) wheelchair and baggage moving (unstable load), 2) inclined ramps with worker's backwards steps and braked wheelchair to prevent passenger tipping or falling, 3) transfer from standard wheelchair to bicycle wheelchair, specifically designed for the aisle; 4.) transfer from bicycle wheelchair to aircraft seat. The last two points required sometimes to lift passengers over the armrest and positioning them on a window side seat, causing a serious increase of biomechanical load. For each critical point we have proposed technical and organizational measures to reduce airport worker's biomechanical risk.

  19. Verification, Validation and Sensitivity Studies in Computational Biomechanics

    PubMed Central

    Anderson, Andrew E.; Ellis, Benjamin J.; Weiss, Jeffrey A.

    2012-01-01

    Computational techniques and software for the analysis of problems in mechanics have naturally moved from their origins in the traditional engineering disciplines to the study of cell, tissue and organ biomechanics. Increasingly complex models have been developed to describe and predict the mechanical behavior of such biological systems. While the availability of advanced computational tools has led to exciting research advances in the field, the utility of these models is often the subject of criticism due to inadequate model verification and validation. The objective of this review is to present the concepts of verification, validation and sensitivity studies with regard to the construction, analysis and interpretation of models in computational biomechanics. Specific examples from the field are discussed. It is hoped that this review will serve as a guide to the use of verification and validation principles in the field of computational biomechanics, thereby improving the peer acceptance of studies that use computational modeling techniques. PMID:17558646

  20. The effect of ankle bracing on lower extremity biomechanics during landing: A systematic review.

    PubMed

    Mason-Mackay, A R; Whatman, C; Reid, D

    2016-07-01

    To examine the evidence for effect of ankle bracing on lower-extremity landing biomechanics. Literature review. Systematic search of the literature on EBSCO health databases. Articles critiqued by two reviewers. Ten studies were identified which investigated the effect of ankle bracing on landing biomechanics. Overall results suggest that landing biomechanics are altered with some brace types but studies disagree as to the particular variables affected. There is evidence that ankle bracing may alter lower-extremity landing biomechanics in a manner which predisposes athletes to injury. The focus of studies on specific biomechanical variables rather than biomechanical patterns, analysis of pooled data means in the presence of differing landing styles between participants, variation in landing-tasks investigated in different studies, and lack of studies investigating goal-directed sport-specific landing tasks creates difficulty in interpreting results. These areas require further research. Copyright © 2015 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  1. Fundamental biomechanics of the spine--What we have learned in the past 25 years and future directions.

    PubMed

    Oxland, Thomas R

    2016-04-11

    Since the publication of the 2nd edition of White and Panjabi׳s textbook, Clinical Biomechanics of the Spine in 1990, there has been considerable research on the biomechanics of the spine. The focus of this manuscript will be to review what we have learned in regards to the fundamentals of spine biomechanics. Topics addressed include the whole spine, the functional spinal unit, and the individual components of the spine (e.g. vertebra, intervertebral disc, spinal ligaments). In these broad categories, our understanding in 1990 is reviewed and the important knowledge or understanding gained through the subsequent 25 years of research is highlighted. Areas where our knowledge is lacking helps to identify promising topics for future research. In this manuscript, as in the White and Panjabi textbook, the emphasis is on experimental research using human material, either in vivo or in vitro. The insights gained from mathematical models and animal experimentation are included where other data are not available. This review is intended to celebrate the substantial gains that have been made in the field over these past 25 years and also to identify future research directions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Advances in Proximal Interphalangeal Joint Arthroplasty: Biomechanics and Biomaterials.

    PubMed

    Zhu, Andy F; Rahgozar, Paymon; Chung, Kevin C

    2018-05-01

    Proximal interphalangeal (PIP) joint arthritis is a debilitating condition. The complexity of the joint makes management particularly challenging. Treatment of PIP arthritis requires an understanding of the biomechanics of the joint. PIP joint arthroplasty is one treatment option that has evolved over time. Advances in biomaterials have improved and expanded arthroplasty design. This article reviews biomechanics and arthroplasty design of the PIP joint. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. Harnessing biomechanics to develop cartilage regeneration strategies.

    PubMed

    Athanasiou, Kyriacos A; Responte, Donald J; Brown, Wendy E; Hu, Jerry C

    2015-02-01

    As this review was prepared specifically for the American Society of Mechanical Engineers H.R. Lissner Medal, it primarily discusses work toward cartilage regeneration performed in Dr. Kyriacos A. Athanasiou's laboratory over the past 25 years. The prevalence and severity of degeneration of articular cartilage, a tissue whose main function is largely biomechanical, have motivated the development of cartilage tissue engineering approaches informed by biomechanics. This article provides a review of important steps toward regeneration of articular cartilage with suitable biomechanical properties. As a first step, biomechanical and biochemical characterization studies at the tissue level were used to provide design criteria for engineering neotissues. Extending this work to the single cell and subcellular levels has helped to develop biochemical and mechanical stimuli for tissue engineering studies. This strong mechanobiological foundation guided studies on regenerating hyaline articular cartilage, the knee meniscus, and temporomandibular joint (TMJ) fibrocartilage. Initial tissue engineering efforts centered on developing biodegradable scaffolds for cartilage regeneration. After many years of studying scaffold-based cartilage engineering, scaffoldless approaches were developed to address deficiencies of scaffold-based systems, resulting in the self-assembling process. This process was further improved by employing exogenous stimuli, such as hydrostatic pressure, growth factors, and matrix-modifying and catabolic agents, both singly and in synergistic combination to enhance neocartilage functional properties. Due to the high cell needs for tissue engineering and the limited supply of native articular chondrocytes, costochondral cells are emerging as a suitable cell source. Looking forward, additional cell sources are investigated to render these technologies more translatable. For example, dermis isolated adult stem (DIAS) cells show potential as a source of

  4. Biomechanical evaluation of a biomimetic spinal construct.

    PubMed

    Wang, Tian; Ball, Jonathon R; Pelletier, Mattew H; Walsh, William R

    2014-12-01

    Laboratory spinal biomechanical tests using human cadaveric or animal spines have limitations in terms of disease transmission, high sample variability, decay and fatigue during extended testing protocols. Therefore, a synthetic biomimetic spine model may be an acceptable substitute. The goal of current study is to evaluate the properties of a synthetic biomimetic spine model; also to assess the mechanical performance of lateral plating following lateral interbody fusion. Three L3/4 synthetic spinal motion segments were examined using a validated pure moment testing system. Moments (±7.5 Nm) were applied in flexion-extension (FE), lateral bending (LB) and axial rotation (AR) at 1Hz for total 10000 cycles in MTS Bionix. An additional test was performed 12 hours after 10000 cycles. A ±10 Nm cycle was also performed to allow provide comparison to the literature. For implantation evaluation, each model was tested in the 4 following conditions: 1) intact, 2) lateral cage alone, 3) lateral cage and plate 4) anterior cage and plate. Results were analysed using ANOVA with post-hoc Tukey's HSD test. Range of motion (ROM) exhibited logarithmic growth with cycle number (increases of 16%, 37.5% and 24.3% in AR, FE and LB respectively). No signification difference (p > 0.1) was detected between 4 cycles, 10000 cycles and 12 hour rest stages. All measured parameters were comparable to that of reported cadaveric values. The ROM for a lateral cage and plate construct was not significantly different to the anterior lumbar interbody construct for FE (p = 1.00), LB (p = 0.995) and AR (p = 0.837). Based on anatomical and biomechanical similarities, the synthetic spine tested here provides a reasonable model to represent the human lumbar spine. Repeated testing did not dramatically alter biomechanics which may allow non-destructive testing between many different procedures and devices without the worry of carry over effects. Small intra-specimen variability

  5. Biomechanics of the Optic Nerve Sheath in VIIP Syndrome

    NASA Technical Reports Server (NTRS)

    Ethier, C. Ross; Raykin, Julia; Gleason, Rudy; Mulugeta, Lealem; Myers, Jerry; Nelson, Emily; Samuels, Brian C.

    2014-01-01

    Long-duration space flight carries the risk of developing Visual Impairment and Intracranial Pressure (VIIP) syndrome, a spectrum of ophthalmic changes including posterior globe flattening, choroidal folds, distension of the optic nerve sheath (ONS), optic nerve kinking and potentially permanent degradation of visual function. The slow onset of VIIP, its chronic nature, and certain clinical features strongly suggest that biomechanical factors acting on the ONS play a role in VIIP. Here we measure several relevant ONS properties needed to model VIIP biomechanics. The ONS (meninges) of fresh porcine eyes (n7) was reflected, the nerve proper was truncated near the sclera, and the meninges were repositioned to create a hollow cylinder of meningeal connective tissue attached to the posterior sclera. The distal end was cannulated, sealed, and pressure clamped (mimicking cerebrospinal fluid [CSF] pressure), while the eye was also cannulated for independent control of intraocular pressure (IOP). The meninges were inflated (CSF pressure cycling 7-50 mmHg) while ONS outer diameter was imaged. In another set of experiments (n4), fluid permeation rate across the meninges was recorded by observing the drainage of an elevated fluid reservoir (30 mmHg) connected to the meninges. The ONS showed behavior typical of soft tissues: viscoelasticity, with hysteresis in early preconditioning cycles and repeatable behavior after 4 cycles, and nonlinear stiffening, particularly at CSF pressures 15 mmHg (Figure). Tangent moduli measured from the loading curve were 372 101, 1199 358, and 2050 379 kPa (mean SEM) at CSF pressures of 7, 15 and 30 mmHg, respectively. Flow rate measurements through the intact meninges at 30mmHg gave a permeability of 1.34 0.46 lmincm2mmHg (mean SEM). The ONS is a tough, strain-stiffening connective tissue that is surprisingly permeable. The latter observation suggests that there could be significant CSF drainage through the ONS into the orbit, likely important

  6. Analysis of Big Data in Gait Biomechanics: Current Trends and Future Directions.

    PubMed

    Phinyomark, Angkoon; Petri, Giovanni; Ibáñez-Marcelo, Esther; Osis, Sean T; Ferber, Reed

    2018-01-01

    The increasing amount of data in biomechanics research has greatly increased the importance of developing advanced multivariate analysis and machine learning techniques, which are better able to handle "big data". Consequently, advances in data science methods will expand the knowledge for testing new hypotheses about biomechanical risk factors associated with walking and running gait-related musculoskeletal injury. This paper begins with a brief introduction to an automated three-dimensional (3D) biomechanical gait data collection system: 3D GAIT, followed by how the studies in the field of gait biomechanics fit the quantities in the 5 V's definition of big data: volume, velocity, variety, veracity, and value. Next, we provide a review of recent research and development in multivariate and machine learning methods-based gait analysis that can be applied to big data analytics. These modern biomechanical gait analysis methods include several main modules such as initial input features, dimensionality reduction (feature selection and extraction), and learning algorithms (classification and clustering). Finally, a promising big data exploration tool called "topological data analysis" and directions for future research are outlined and discussed.

  7. [Evaluation of corneal biomechanics in keratoconus using dynamic ultra-high-speed Scheimpflug measurements].

    PubMed

    Brettl, S; Franko Zeitz, P; Fuchsluger, T A

    2018-06-22

    The in vivo analysis of corneal biomechanics in patients with keratoconus is especially of interest with respect to diagnosis, follow-up and monitoring of the disease. For a better understanding it is necessary to describe the potential of dynamic Scheimpflug measurements for the detection and interpretation of biomechanical changes in keratoconus. The current state of analyzing biomechanical changes in keratoconus with the Corvis ST (Oculus Optikgeräte GmbH, Wetzlar, Germany) is described. This technique represents a new approach for understanding corneal biomechanics. Furthermore, it was investigated whether the device can biomechanically quantify a rigidity increasing effect of therapeutic UV-crosslinking and whether early stages of keratoconus can be detected using dynamic Scheimpflug analysis. In patients with keratoconus, the in vivo analysis of corneal biomechanics using dynamic Scheimpflug measurements as a supplementary procedure can be of advantage with respect to disease management. By optimization of screening of subclinical keratoconus stages, this method widens the analytic spectrum regarding diagnosis and follow-up of the disease; however, further studies are required to evaluate whether visual outcome of affected patients can be improved by earlier diagnosis.

  8. Identification of biomechanical properties of the cornea: the ocular response analyzer.

    PubMed

    Terai, Naim; Raiskup, Frederik; Haustein, Michael; Pillunat, Lutz E; Spoerl, Eberhard

    2012-07-01

    Several methods have been devised for measuring geometric parameters of the cornea but, until now, the biomechanics of the cornea have been largely ignored. The relatively new Ocular Response Analyzer (ORA) provides such biomechanical information. In order to correctly interpret the underlying biomechanics of ORA data, we review reported ORA measurements and provide a compendium of factors influencing these measurements, with discussion of possible explanations for ORA measurement results. This review comprised a literature search using "ocular response analyzer" and "ocular response analyser" as keywords. We reviewed and compared reported results from recent ORA studies so obtained, with an eye to understanding corneal biomechanics. Several ORA biomechanical parameters of the cornea - corneal hysteresis (CH) and corneal resistant factor (CRF) - characterize the viscoelastic properties of the cornea, especially those of the ground substance. The impact on CH and CRF values of various independent factors, e.g. intraocular pressure (IOP), age, central corneal thickness (CCT), and corneal swelling, are discussed. The impact on CH and CRF of treatment-related structural changes of the cornea, i.e. those occurring after refractive surgical procedures, placement of intracorneal rings, and collagen crosslinking (CXL), as well as pathological changes of the cornea, e.g. those resulting from keratoconus, edema, and glaucoma, are discussed. Changes in CRF and CH may be reflective of structural changes in the ground substance of the cornea. Thus, ORA provides invaluable information for delineating biomechanical conditions pertaining to the cornea, with special regard to ocular diseases, e.g. keratoconus and glaucoma.

  9. Biomechanical forces in the skeleton and their relevance to bone metastasis: biology and engineering considerations

    PubMed Central

    Lynch, Maureen; Fischbach, Claudia

    2014-01-01

    Bone metastasis represents the leading cause of breast cancer related-deaths. However, the effect of skeleton-associated biomechanical signals on the initiation, progression, and therapy response of breast cancer bone metastasis is largely unknown. This review seeks to highlight possible functional connections between skeletal mechanical signals and breast cancer bone metastasis and their contribution to clinical outcome. It provides an introduction to the physical and biological signals underlying bone functional adaptation and discusses the modulatory roles of mechanical loading and breast cancer metastasis in this process. Following a definition of biophysical design criteria, in vitro and in vivo approaches from the fields of bone biomechanics and tissue engineering will be reviewed that may be suitable to investigate breast cancer bone metastasis as a function of varied mechano-signaling. Finally, an outlook of future opportunities and challenges associated with this newly emerging field will be provided. PMID:25174311

  10. Biomechanical effects of trees on soil and regolith: beyond treethrow

    Treesearch

    Jonathan D. Phillips; Daniel A. Marion

    2006-01-01

    Forest soils are profoundly influenced by the biomechanical as well as the chemical and biological effects of trees. Studies of biomechanical impacts have focused mainly on uprooting (treethrow), but this study shows that at least two other effects are significant: physical displacement of soil by root growth, and infilling of stump rot pits. Rocky soils in the...

  11. Morphology and biomechanics of human heart

    NASA Astrophysics Data System (ADS)

    Chelnokova, Natalia O.; Golyadkina, Anastasiya A.; Kirillova, Irina V.; Polienko, Asel V.; Ivanov, Dmitry V.

    2016-03-01

    Object of study: A study of the biomechanical characteristics of the human heart ventricles was performed. 80 hearts were extracted during autopsy of 80 corpses of adults (40 women and 40 men) aged 31-70 years. The samples were investigated in compliance with the recommendations of the ethics committee. Methods: Tension and compression tests were performed with help of the uniaxial testing machine Instron 5944. Cardiometry was also performed. Results: In this work, techniques for human heart ventricle wall biomechanical properties estimation were developed. Regularities of age and gender variability in deformative and strength properties of the right and left ventricle walls were found. These properties were characterized by a smooth growth of myocardial tissue stiffness and resistivity at a relatively low strain against reduction in their strength and elasticity from 31-40 to 61-70 years. It was found that tissue of the left ventricle at 61-70 years had a lower stretchability and strength compared with tissues of the right ventricle and septum. These data expands understanding of the morphological organization of the heart ventricles, which is very important for the development of personalized medicine. Taking into account individual, age and gender differences of the heart ventricle tissue biomechanical characteristics allows to rationally choosing the type of patching materials during reconstructive operations on heart.

  12. Morphological and biomechanical response to eutrophication and hydrodynamic stresses.

    PubMed

    Zhu, Guorong; Yuan, Changbo; Di, Guilan; Zhang, Meng; Ni, Leyi; Cao, Te; Fang, Rongting; Wu, Gongguo

    2018-05-01

    Eutrophication and hydrodynamics determine the final distribution patterns of aquatic macrophytes; however, there is limited available knowledge regarding their interactive effects. Morphological and biomechanical responses to eutrophication and hydrodynamic stresses were assessed by sampling five abundant and dominant species, Potamogeton maackianus, P. pectinatus, P. lucens, Ceratophyllum demersum and Myriophyllum spicatum, in three macrophyte beds in Lake Erhai, Yunnan Province, China: one exposed to eutrophication and moderate southeast (SE) wind; one with mesotrophication, but sheltered by the lakeshore, with weak wind disturbance; and one with meso-eutrophication and strong SE wind. The results showed significant interactive effects of eutrophication and hydrodynamics on most biomechanical traits and some morphological traits, suggesting that aquatic macrophytes preferentially undergo biomechanical adjustments to resist the coexisting eutrophication and hydrodynamic stresses. In particular, hydrodynamics increased both the tensile force and tensile strain of P. maackianus under meso-eutrophication and dramatically decreased them in eutrophic areas, suggesting that eutrophication triggers mechanical failure in this species. Additionally, P. pectinatus, C. demersum and M. spicatum showed the lowest and highest values for the biomechanical variables (greater values for M. spicatum) in the most eutrophic and hydrodynamic areas, respectively, implying that increases in hydrodynamics primarily induce mechanical damage in eutrophic species. The plants generally exhibited greater tensile strain in both shallow and deep waters and the greatest tensile force at moderate depths. The stem cross-sectional area, plant height, stem length, internode length, and branch traits were all responsible for determining the biomechanical variables. This study reveals that hydrodynamic changes primarily induce mechanical damage in eutrophic species, whereas eutrophication triggers

  13. How to Assess the Biomechanical Risk Levels in Beekeeping.

    PubMed

    Maina, G; Rossi, F; Baracco, A

    2016-01-01

    Beekeepers are at particular risk of developing work-related musculoskeletal disorders, but many of the studies lack detailed exposure assessment. To evaluate the biomechanical overload exposure in a specific farming activity, a multitasking model has been developed through the characterization of 37 basic operational tasks typical of the beekeeping activity. The Occupational Repetitive Actions (OCRA) Checklist and the National Institute for Occupational Safety and Health (NIOSH) Lifting Index methodologies have been applied to these elementary tasks to evaluate the exposure, and the resulting risk indices have been time-weighted averaged. Finally, an easy access, computer-assisted toolkit has been developed to help the beekeepers in the biomechanical risk assessment process. The risk of biomechanical overload for the upper limbs ranges from acceptable (maintenance and recovery of woody material and honey packaging with dosing machine tasks) to high (distribution of the top supers) risk level. The risk for back injury is always borderline in women and increases with exposure time, whereas it ranges from acceptable to borderline in men. The definition of the biomechanical risk levels allows for planning of corrective actions aimed at preventing and reducing the risk of musculoskeletal disorders through engineering, administrative, and behavioral interventions. The methodology can be used for risk assessment in other mainly manual agricultural activities.

  14. Low-Back Biomechanics and Static Stability During Isometric Pushing

    PubMed Central

    Granata, Kevin P.; Bennett, Bradford C.

    2006-01-01

    Pushing and pulling tasks are increasingly prevalent in industrial workplaces. Few studies have investigated low-back biomechanical risk factors associated with pushing, and we are aware of none that has quantified spinal stability during pushing exertions. Data recorded from 11 healthy participants performing isometric pushing exertions demonstrated that trunk posture, vector force direction of the applied load, and trunk moment were influenced (p < .01) by exertion level, elevation of the handle for the pushing task, and foot position. A biomechanical model was used to analyze the posture and hand force data gathered from the pushing exertions. Model results indicate that pushing exertions provide significantly (p < .01) less stability than lifting when antagonistic cocontraction is ignored. However, stability can be augmented by recruitment of muscle cocontraction. Results suggest that cocontraction may be recruited to compensate for the fact that equilibrium mechanics provide little intrinsic trunk stiffness and stability during pushing exertions. If one maintains stability by means of cocontraction, additional spinal load is thereby created, increasing the risk of overload injury. Thus it is important to consider muscle cocontraction when evaluating the biomechanics of pushing exertions. Potential applications of this research include improved assessment of biomechanical risk factors for the design of industrial pushing tasks. PMID:16435695

  15. Biomechanical behaviour of a jawbone loaded with a prosthetic system supported by monophasic and biphasic implants.

    PubMed

    Inchingolo, F; Paracchini, L; DE Angelis, F; Cielo, A; Orefici, A; Spitaleri, D; Santacroce, L; Gheno, E; Palermo, A

    2016-01-01

    Modern implantology is based on the use of endosseous dental implants and on the study of osseointegration processes. The loss of marginal bone around a dental implant can be caused by many factors; the proper distribution of the masticatory loads is important and is closely dependent on the quality and quantity of bone tissue surrounding the implant. In fact, bone has the ability to adapt its microstructure, through processes of resorption and neoformation of new bone matrix, as a result of the mechanical stimuli that are generated during the chewing cycles. The purpose of this article is to redefine in a modern key and in light of current industrial and engineering technology, clinical and biomechanical concepts that characterize the monophasic implants, in order to assess proper use by evaluating the biomechanical differences with the biphasic implants.

  16. Lower- extremity biomechanics and maintenance of vertical-jump height during prolonged intermittent exercise.

    PubMed

    Schmitz, Randy J; Cone, John C; Copple, Timothy J; Henson, Robert A; Shultz, Sandra J

    2014-11-01

    Potential biomechanical compensations allowing for maintenance of maximal explosive performance during prolonged intermittent exercise, with respect to the corresponding rise in injury rates during the later stages of exercise or competition, are relatively unknown. To identify lower-extremity countermovement-jump (CMJ) biomechanical factors using a principal-components approach and then examine how these factors changed during a 90-min intermittent-exercise protocol (IEP) while maintaining maximal jump height. Mixed-model design. Laboratory. Fifty-nine intermittent-sport athletes (30 male, 29 female) participated in experimental and control conditions. Before and after a dynamic warm-up and every 15 min during the 1st and 2nd halves of an individually prescribed 90-min IEP, participants were assessed on rating of perceived exertion, sprint/cut speed, and 3-dimensional CMJ biomechanics (experimental). On a separate day, the same measures were obtained every 15 min during 90 min of quiet rest (control). Univariate piecewise growth models analyzed progressive changes in CMJ performance and biomechanical factors extracted from a principal-components analysis of the individual biomechanical dependent variables. While CMJ height was maintained during the 1st and 2nd halves, the body descended less and knee kinetic and energetic magnitudes decreased as the IEP progressed. The results indicate that vertical-jump performance is maintained along with progressive biomechanical changes commonly associated with decreased performance. A better understanding of lower-extremity biomechanics during explosive actions in response to IEP allows us to further develop and individualize performance training programs.

  17. A biomechanical comparison of four different fixation methods for midshaft clavicle fractures.

    PubMed

    Chen, Yang; Yang, Yang; Ma, Xinlong; Xu, Weiguo; Ma, Jianxiong; Zhu, Shaowen; Ma, Baoyi; Xing, Dan

    2016-01-01

    Clavicle fractures may occur in all age groups, and 70%-80% of clavicle fractures occur in the midshaft. Many methods for treating midshaft clavicular fractures have been reported and remain controversial. To provide some guidance for clinical treatment, 30 artificial polymethyl methacrylate models of the clavicle were sewn obliquely at the midshaft to simulate the most common type of clavicular fractures, and the fracture models were divided into five groups randomly and were fixed as follows: the reconstruction plates were placed at the superior position of the fracture model (R-S group), the reconstruction plates were placed at the anteroinferior position of the fracture model (R-AI group), the locking plates were placed at the superior position (L-S group), the locking plates were placed at the anteroinferior position (L-AI group); and the control models were unfixed (control group). The strain gauges were attached to the bone surface near the fracture fragments, and then, the biomechanical properties of the specimens were measured using the compression test, torsion test and three-point bending test. The results showed that plate fixation can provide a stable construct to help with fracture healing and is the preferred method in the treatment of clavicle fractures. The locking plate provides the best biomechanical stability when placed at the anteroinferior position, and this surgical method can reduce the operation time and postoperative complications; thus, it would be a better choice in clinical practice. © IMechE 2015.

  18. Biomechanical comparison of straight DCP and helical plates for fixation of transverse and oblique bone fractures.

    PubMed

    Aksakal, Bunyamin; Gurger, Murat; Say, Yakup; Yilmaz, Erhan

    2014-01-01

    Biomechanical comparison of straight DCP and helical plates for fixation of transversal and oblique tibial bone fractures were analyzed and compared to each other by axial compression, bending and torsion tests. An in vitro osteosynthesis of transverse (TF) and oblique bone fracture (OF) fixations have been analysed on fresh sheep tibias by using the DCP and helical compression plates (HP). Statistically significant differences were found for both DCP and helical plate fixations under axial compression, bending and torsional loads. The strength of fixation systems was in favor of DC plating with exception of the TF-HP fixation group under compression loads and torsional moments. The transvers fracture (TF) stability was found to be higher than that found in oblique fracture (OF) fixed by helical plates (HP). However, under torsional testing, compared to conventional plating, the helical plate fixations provided a higher torsional resistance and strength. The maximum stiffness at axial compression loading and maximum torsional strength was achieved in torsional testing for the TF-HP fixations. From in vitro biomechanical analysis, fracture type and plate fixation system groups showed different responses under different loadings. Consequently, current biomechanical analyses may encourage the usage of helical HP fixations in near future during clinical practice for transverse bone fractures.

  19. Biomechanical Assessment of the Canadian Integrated Load Carriage System using Objective Assessment Measures

    DTIC Science & Technology

    2001-05-01

    UNCLASSIFIED Defense Technical Information Center Compilation Part Notice ADPO 11004 TITLE: Biomechanical Assessment of the Canadian Integrated Load...ADP010987 thru ADPO11009 UNCLASSIFIED 21-1 Biomechanical Assessment of the Canadian Integrated Load Carriage System using Objective Assessment Measures Joan...CANADA, B3J 2X4 Summary The purpose of this study was to provide an overview of contributions by biomechanical testing to the design of the final

  20. Biomechanical Tolerance of Calcaneal Fractures

    PubMed Central

    Yoganandan, Narayan; Pintar, Frank A.; Gennarelli, Thomas A.; Seipel, Robert; Marks, Richard

    1999-01-01

    Biomechanical studies have been conducted in the past to understand the mechanisms of injury to the foot-ankle complex. However, statistically based tolerance criteria for calcaneal complex injuries are lacking. Consequently, this research was designed to derive a probability distribution that represents human calcaneal tolerance under impact loading such as those encountered in vehicular collisions. Information for deriving the distribution was obtained by experiments on unembalmed human cadaver lower extremities. Briefly, the protocol included the following. The knee joint was disarticulated such that the entire lower extremity distal to the knee joint remained intact. The proximal tibia was fixed in polymethylmethacrylate. The specimens were aligned and impact loading was applied using mini-sled pendulum equipment. The pendulum impactor dynamically loaded the plantar aspect of the foot once. Following the test, specimens were palpated and radiographs in multiple planes were obtained. Injuries were classified into no fracture, and extra-and intra-articular fractures of the calcaneus. There were 14 cases of no injury and 12 cases of calcaneal fracture. The fracture forces (mean: 7802 N) were significantly different (p<0.01) from the forces in the no injury (mean: 4144 N) group. The probability of calcaneal fracture determined using logistic regression indicated that a force of 6.2 kN corresponds to 50 percent probability of calcaneal fracture. The derived probability distribution is useful in the design of dummies and vehicular surfaces.

  1. Selected clinical aspects of acute intoxication with baclofen.

    PubMed

    Sein Anand, Jacek; Chodorowski, Zygmunt; Burda, Piotr

    2005-01-01

    Baclofen is a lipophilic analogue of gamma-aminobutyric acid (GABA), an inhibitory neurotransmitter in central nervous system. The aim of the study was to evaluate some clinical aspects of acute intoxication with baclofen. Fifty two patients (37 females and 15 males) aged from 14 to 58 (mean 30.6 +/- 13.7) years were analyzed. Patients were admitted to the Clinic of Internal Diseases and Acute Poisonings Medical University of Gdańsk and the Centre of Acute Poisonings of Praski Hospital in Warszawa during the years 1996-2004 because of suicidal intoxication with baclofen. The doses of baclofen varied from 100 to 1500 (mean 444.8 +/- 317.8) mg. There were twenty eight patients (53.8%) in deep coma (III and IV grade of Matthew scale). Acute respiratory failure which required mechanical ventilation was observed in 18 cases (34.6%). Cardiac abnormalities included bradycardia (36.5%), hypertension (32.7%) and hypotension (3.8%). Toxic psychoses were observed in 6 cases (11.5%). The dosage of baclofen in patients with acute respiratory failure (ARF) was significantly higher than in patients without ARF. Treatment of patients with acute baclofen intoxication should take place in hospitals appropriately equipped which can provide artificial respiration.

  2. Multiscale Modeling in Computational Biomechanics: Determining Computational Priorities and Addressing Current Challenges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tawhai, Merryn; Bischoff, Jeff; Einstein, Daniel R.

    2009-05-01

    Abstract In this article, we describe some current multiscale modeling issues in computational biomechanics from the perspective of the musculoskeletal and respiratory systems and mechanotransduction. First, we outline the necessity of multiscale simulations in these biological systems. Then we summarize challenges inherent to multiscale biomechanics modeling, regardless of the subdiscipline, followed by computational challenges that are system-specific. We discuss some of the current tools that have been utilized to aid research in multiscale mechanics simulations, and the priorities to further the field of multiscale biomechanics computation.

  3. Whiplash injury: cases with a long period of sick leave need biomechanical assessment.

    PubMed

    Schmitt, K-U; Walz, F; Vetter, D; Muser, M

    2003-06-01

    A total of 668 cases of cervical spine disorders (CSD) sustained in automotive collisions were analysed. All cases had a minimum sick leave duration of 4 weeks. To evaluate these cases a scheme was developed that takes into account technical, medical, and biomechanical aspects. For each case, the delta-v value of the underlying collision was estimated, the medical files were analysed, and a QTF (Québec Task Force) grade was assigned. In addition, the medical history of the patient was reviewed. It was found that the QTF grade for patients with pre-existing damage of the neck or pre-existing signs differed significantly from those patients without such a history. The overall assessment, which stated the extent to which the symptoms claimed could be explained by the impact, was also found to be significantly influenced by a history of neck injury. The results of the study showed that in about 50% of the cases where the technical analysis alone would not suggest that the symptoms shown could be explained by the impact, those symptoms could be explained when patient history and the collision circumstances were taken into consideration. It also found that medical evaluation based on a QTF grade alone cannot assess the explicability of claimed CSD without taking into account the collision circumstances. Therefore, the assessment of critical individual relevant biomechanical factors is necessary.

  4. Link between immunoexpression of hMLH1 and hMSH2 proteins and clinical-epidemiological aspects of actinic cheilitis*

    PubMed Central

    Sarmento, Dmitry José de Santana; Godoy, Gustavo Pina; Miguel, Márcia Cristina da Costa; da Silveira, Éricka Janine Dantas

    2016-01-01

    Background The studies found in the literature associate the immunoexpression of hMLH1 and hMSH2 proteins with histologic aspects, but do not correlate it with clinical and epidemiological data. Objective To evaluate the immunoexpression of hMLH1 and hMSH2 in actinic cheilitis, correlating it with clinical characteristics. Methods We analyzed 40 cases. Histological and immunohistochemical analyses were performed. The following clinical variables were evaluated: gender, age range, ethnicity, clinical aspect and occupational sunlight exposure. Statistical evaluation included the Student t-test, while the significance level was set at 5%. Results Greater immunoexpression of hMLH1 and hMSH2 was observed in females, individuals aged over 40, and mixed-race/black patients. Furthermore, the immunoexpression of these proteins was greater in actinic cheilitis with a white-colored appearance and in patients without occupational sunlight exposure. No statistical differences were observed for the variables studied. Conclusion This study uncovered variations of hMLH1 and hMSH2 protein expression upon evaluation of clinical aspects in actinic cheilitis. PMID:27579741

  5. Link between immunoexpression of hMLH1 and hMSH2 proteins and clinical-epidemiological aspects of actinic cheilitis.

    PubMed

    Sarmento, Dmitry José de Santana; Godoy, Gustavo Pina; Miguel, Márcia Cristina da Costa; Silveira, Éricka Janine Dantas da

    2016-01-01

    The studies found in the literature associate the immunoexpression of hMLH1 and hMSH2 proteins with histologic aspects, but do not correlate it with clinical and epidemiological data. To evaluate the immunoexpression of hMLH1 and hMSH2 in actinic cheilitis, correlating it with clinical characteristics. We analyzed 40 cases. Histological and immunohistochemical analyses were performed. The following clinical variables were evaluated: gender, age range, ethnicity, clinical aspect and occupational sunlight exposure. Statistical evaluation included the Student t-test, while the significance level was set at 5%. Greater immunoexpression of hMLH1 and hMSH2 was observed in females, individuals aged over 40, and mixed-race/black patients. Furthermore, the immunoexpression of these proteins was greater in actinic cheilitis with a white-colored appearance and in patients without occupational sunlight exposure. No statistical differences were observed for the variables studied. This study uncovered variations of hMLH1 and hMSH2 protein expression upon evaluation of clinical aspects in actinic cheilitis.

  6. Biomechanics and biorheology of red blood cells in sickle cell anemia

    PubMed Central

    Li, Xuejin; Dao, Ming; Lykotrafitis, George; Karniadakis, George Em

    2017-01-01

    Sickle cell anemia (SCA) is an inherited blood disorder that causes painful crises due to vaso-occlusion of small blood vessels. The primary cause of the clinical phenotype of SCA is the intracellular polymerization of sickle hemoglobin resulting in sickling of red blood cells (RBCs) in deoxygenated conditions. In this review, we discuss the biomechanical and biorheological characteristics of sickle RBCs and sickle blood as well as their implications toward a better understanding of the pathophysiology and pathogenesis of SCA. Additionally, we highlight the adhesive heterogeneity of RBCs in SCA and their specific contribution to vaso-occlusive crisis. PMID:27876368

  7. Single-row modified mason-allen versus double-row arthroscopic rotator cuff repair: a biomechanical and surface area comparison.

    PubMed

    Nelson, Cory O; Sileo, Michael J; Grossman, Mark G; Serra-Hsu, Frederick

    2008-08-01

    The purpose of this study was to compare the time-zero biomechanical strength and the surface area of repair between a single-row modified Mason-Allen rotator cuff repair and a double-row arthroscopic repair. Six matched pairs of sheep infraspinatus tendons were repaired by both techniques. Pressure-sensitive film was used to measure the surface area of repair for each configuration. Specimens were biomechanically tested with cyclic loading from 20 N to 30 N for 20 cycles and were loaded to failure at a rate of 1 mm/s. Failure was defined at 5 mm of gap formation. Double-row suture anchor fixation restored a mean surface area of 258.23 +/- 69.7 mm(2) versus 148.08 +/- 75.5 mm(2) for single-row fixation, a 74% increase (P = .025). Both repairs had statistically similar time-zero biomechanics. There was no statistical difference in peak-to-peak displacement or elongation during cyclic loading. Single-row fixation showed a higher mean load to failure (110.26 +/- 26.4 N) than double-row fixation (108.93 +/- 21.8 N). This was not statistically significant (P = .932). All specimens failed at the suture-tendon interface. Double-row suture anchor fixation restores a greater percentage of the anatomic footprint when compared with a single-row Mason-Allen technique. The time-zero biomechanical strength was not significantly different between the 2 study groups. This study suggests that the 2 factors are independent of each other. Surface area and biomechanical strength of fixation are 2 independent factors in the outcome of rotator cuff repair. Maximizing both factors may increase the likelihood of complete tendon-bone healing and ultimately improve clinical outcomes. For smaller tears, a single-row modified Mason-Allen suture technique may provide sufficient strength, but for large amenable tears, a double row can provide both strength and increased surface area for healing.

  8. MR elastography to measure the effects of cancer and pathology fixation on prostate biomechanics, and comparison with T 1, T 2 and ADC

    NASA Astrophysics Data System (ADS)

    McGrath, Deirdre M.; Lee, Jenny; Foltz, Warren D.; Samavati, Navid; van der Kwast, Theo; Jewett, Michael A. S.; Chung, Peter; Ménard, Cynthia; Brock, Kristy K.

    2017-02-01

    MRI is under evaluation for image-guided intervention for prostate cancer. The sensitivity and specificity of MRI parameters is determined via correlation with the gold-standard of histopathology. Whole-mount histopathology of prostatectomy specimens can be digitally registered to in vivo imaging for correlation. When biomechanical-based deformable registration is employed to account for deformation during histopathology processing, the ex vivo biomechanical properties are required. However, these properties are altered by pathology fixation, and vary with disease. Hence, this study employs magnetic resonance elastography (MRE) to measure ex vivo prostate biomechanical properties before and after fixation. A quasi-static MRE method was employed to measure high resolution maps of Young’s modulus (E) before and after fixation of canine prostate and prostatectomy specimens (n  =  4) from prostate cancer patients who had previously received radiation therapy. For comparison, T 1, T 2 and apparent diffusion coefficient (ADC) were measured in parallel. E (kPa) varied across clinical anatomy and for histopathology-identified tumor: peripheral zone: 99(±22), central gland: 48(±37), tumor: 85(±53), and increased consistently with fixation (factor of 11  ±  5 p  <  0.02). T 2 decreased consistently with fixation, while changes in T 1 and ADC were more complex and inconsistent. The biomechanics of the clinical prostate specimens varied greatly with fixation, and to a lesser extent with disease and anatomy. The data obtained will improve the precision of prostate pathology correlation, leading to more accurate disease detection and targeting.

  9. Exploring the biomechanics of taurodontism.

    PubMed

    Benazzi, Stefano; Nguyen, Huynh N; Kullmer, Ottmar; Hublin, Jean-Jacques

    2015-02-01

    Taurodontism (i.e. enlarged pulp chamber with concomitant apical displacement of the root bi/trifurcation) is considered a dental anomaly with relatively low incidence in contemporary societies, but it represents a typical trait frequently found in Neandertal teeth. Four hypotheses can be envisioned to explain the high frequency in Neandertals: adaptation to a specific occlusal loading regime (biomechanical advantage), adaptation to a high attrition diet, pleiotropic or genetic drift effects. In this contribution we used finite element analysis (FEA) and advanced loading concepts based on macrowear information to evaluate whether taurodontism supplies some dental biomechanical advantages. Loads were applied to the digital model of the lower right first molar (RM1 ) of the Neandertal specimen Le Moustier 1, as well as to the digital models of both a shortened and a hyper-taurodontic version of Le Moustier RM1 . Moreover, we simulated a scenario where an object is held between teeth and pulled in different directions to investigate whether taurodontism might be useful for para-masticatory activities. Our results do not show any meaningful difference among all the simulations, pointing out that taurodontism does not improve the functional biomechanics of the tooth and does not favour para-masticatory pulling activities. Therefore, taurodontism should be considered either an adaptation to a high attrition diet or most likely the result of pleiotropic or genetic drift effects. Finally, our results have important implications for modern dentistry during endodontic treatments, as we observed that filling the pulp chamber with dentine-like material increases tooth stiffness, and ultimately tensile stresses in the crown, thus favouring tooth failure. © 2014 Anatomical Society.

  10. Development of custom measurement system for biomechanical evaluation of independent wheelchair transfers

    PubMed Central

    Koontz, Alicia M.; Lin, Yen-Sheng; Kankipati, Padmaja; Boninger, Michael L.; Cooper, Rory A.

    2017-01-01

    This study describes a new custom measurement system designed to investigate the biomechanics of sitting-pivot wheelchair transfers and assesses the reliability of selected biomechanical variables. Variables assessed include horizontal and vertical reaction forces underneath both hands and three-dimensional trunk, shoulder, and elbow range of motion. We examined the reliability of these measures between 5 consecutive transfer trials for 5 subjects with spinal cord injury and 12 non-disabled subjects while they performed a self-selected sitting pivot transfer from a wheelchair to a level bench. A majority of the biomechanical variables demonstrated moderate to excellent reliability (r > 0.6). The transfer measurement system recorded reliable and valid biomechanical data for future studies of sitting-pivot wheelchair transfers. We recommend a minimum of five transfer trials to obtain a reliable measure of transfer technique for future studies. PMID:22068376

  11. Development of custom measurement system for biomechanical evaluation of independent wheelchair transfers.

    PubMed

    Koontz, Alicia M; Lin, Yen-Sheng; Kankipati, Padmaja; Boninger, Michael L; Cooper, Rory A

    2011-01-01

    This study describes a new custom measurement system designed to investigate the biomechanics of sitting-pivot wheelchair transfers and assesses the reliability of selected biomechanical variables. Variables assessed include horizontal and vertical reaction forces underneath both hands and three-dimensional trunk, shoulder, and elbow range of motion. We examined the reliability of these measures between 5 consecutive transfer trials for 5 subjects with spinal cord injury and 12 nondisabled subjects while they performed a self-selected sitting pivot transfer from a wheelchair to a level bench. A majority of the biomechanical variables demonstrated moderate to excellent reliability (r > 0.6). The transfer measurement system recorded reliable and valid biomechanical data for future studies of sitting-pivot wheelchair transfers.We recommend a minimum of five transfer trials to obtain a reliable measure of transfer technique for future studies.

  12. Optically inspired biomechanical model of the human eyeball.

    PubMed

    Sródka, Wieslaw; Iskander, D Robert

    2008-01-01

    Currently available biomechanical models of the human eyeball focus mainly on the geometries and material properties of its components while little attention has been given to its optics--the eye's primary function. We postulate that in the evolution process, the mechanical structure of the eyeball has been influenced by its optical functions. We develop a numerical finite element analysis-based model in which the eyeball geometry and its material properties are linked to the optical functions of the eye. This is achieved by controlling in the model all essential optical functions while still choosing material properties from a range of clinically available data. In particular, it is assumed that in a certain range of intraocular pressures, the eye is able to maintain focus. This so-called property of optical self-adjustments provides a more constrained set of numerical solutions in which the number of free model parameters significantly decreases, leading to models that are more robust. Further, we investigate two specific cases of a model that satisfies optical self-adjustment: (1) a full model in which the cornea is flexibly attached to sclera at the limbus, and (2) a fixed cornea model in which the cornea is not allowed to move at the limbus. We conclude that for a biomechanical model of the eyeball to mimic the optical function of a real eye, it is crucial that the cornea is allowed to move at the limbal junction, that the materials used for the cornea and sclera are strongly nonlinear, and that their moduli of elasticity remain in a very close relationship.

  13. Biomechanics of Reverse Shoulder Arthroplasty: 
Current Concepts.

    PubMed

    Lorenzetti, Adam J; Stone, Geoffrey P; Simon, Peter; Frankle, Mark A

    2016-01-01

    The evolution of reverse shoulder arthroplasty has provided surgeons with new solutions for many complex shoulder problems. A primary goal of orthopaedics is the restoration or re-creation of functional anatomy to reduce pain and improve function, which can be accomplished by either repairing injured structures or replacing them as anatomically as possible. If reconstructible tissue is lacking or not available, which is seen in patients who have complex shoulder conditions such as an irreparable rotator cuff-deficient shoulder, cuff tear arthropathy, or severe glenoid bone loss, substantial problems may arise. Historically, hemiarthroplasty or glenoid grafting with total shoulder arthroplasty yielded inconsistent and unsatisfactory results. Underlying pathologies in patients who have an irreparable rotator cuff-deficient shoulder, cuff tear arthropathy, or severe glenoid bone loss can considerably alter the mechanical function of the shoulder and create treatment dilemmas that are difficult to overcome. A better biomechanical understanding of these pathologic adaptations has improved treatment options. In the past three decades, reverse total shoulder arthroplasty was developed to treat these complex shoulder conditions not by specifically re-creating the anatomy but by using the remaining functional tissue to improve shoulder balance. Reverse total shoulder arthroplasty has achieved reliable improvements in both pain and function. Initial implant designs lacked scientific evidence to support the design rationale, and many implants failed because surgeons did not completely understand the forces involved or the pathology being treated. Implant function and clinical results will continue to improve as surgeons' biomechanical understanding of shoulder disease and reverse shoulder arthroplasty implants increases.

  14. Methodological and ethical aspects of randomized controlled clinical trials in minors with malignant diseases.

    PubMed

    Rothenberger, Lillian G; Henschel, Andreas Dirk; Schrey, Dominik; Becker, Andreas; Boos, Joachim

    2011-10-01

    Due to the new European regulations for pediatric medications, future clinical trials will include an increasing number of minors. It is therefore important to reconsider and evaluate recent methodological and ethical aspects of clinical trials in minors. The following questions were investigated: How are randomized controlled clinical trials (RCTs) performed in practice? Do investigators take into consideration biomedical ethical principles, explicated for example by Beauchamp and Childress, when planning and conducting a trial? The study was conducted in a descriptive manner. A systematic, algorithm-guided search focusing on RCTs in minors with malignant diseases was carried out in PubMed. One-thousand-nine-hundred-sixty-two publications from 2001 to 2005 were randomized in sequence. The first 1,000 publications were screened according to a priori defined inclusion criteria. One hundred seventy-five publications met the criteria and were reviewed using the SIGN methodological checklist (2004), the CONSORT Statement (2001, section Methods, items 3-12) and indicators for ethical aspects. Seventeen publications were checked by two raters. Information on randomization and blinding was often equivocal. The publications were mainly rated positive for the criteria of the SIGN checklist, and mostly rated negative for the additional items of the CONSORT Statement. Regarding the ethical principles, only few contributions were found in the publications. Inter-rater reliability was good. In the publications analyzed, we found only limited information concerning methods and reflections on ethical principles of the trials. Improvements are thus necessary and possible. We suggest how such trials and their respective publications can be optimized for these aspects. Copyright © 2011 Wiley-Liss, Inc.

  15. Biomechanical forces in the skeleton and their relevance to bone metastasis: biology and engineering considerations.

    PubMed

    Lynch, Maureen E; Fischbach, Claudia

    2014-12-15

    Bone metastasis represents the leading cause of breast cancer related-deaths. However, the effect of skeleton-associated biomechanical signals on the initiation, progression, and therapy response of breast cancer bone metastasis is largely unknown. This review seeks to highlight possible functional connections between skeletal mechanical signals and breast cancer bone metastasis and their contribution to clinical outcome. It provides an introduction to the physical and biological signals underlying bone functional adaptation and discusses the modulatory roles of mechanical loading and breast cancer metastasis in this process. Following a definition of biophysical design criteria, in vitro and in vivo approaches from the fields of bone biomechanics and tissue engineering that may be suitable to investigate breast cancer bone metastasis as a function of varied mechano-signaling will be reviewed. Finally, an outlook of future opportunities and challenges associated with this newly emerging field will be provided. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. The Influence of Lower Extremity Lean Mass on Landing Biomechanics During Prolonged Exercise.

    PubMed

    Montgomery, Melissa M; Tritsch, Amanda J; Cone, John R; Schmitz, Randy J; Henson, Robert A; Shultz, Sandra J

    2017-08-01

      The extent to which lower extremity lean mass (LELM) relative to total body mass influences one's ability to maintain safe landing biomechanics during prolonged exercise when injury incidence increases is unknown.   To examine the influence of LELM on (1) pre-exercise lower extremity biomechanics and (2) changes in biomechanics during an intermittent exercise protocol (IEP) and (3) determine whether these relationships differ by sex. We hypothesized that less LELM would predict higher-risk baseline biomechanics and greater changes toward higher-risk biomechanics during the IEP.   Cohort study.   Controlled laboratory.   A total of 59 athletes (30 men: age = 20.3 ± 2.0 years, height = 1.79 ± 0.05 m, mass = 75.2 ± 7.2 kg; 29 women: age = 20.6 ± 2.3 years, height = 1.67 ± 0.08 m, mass = 61.8 ± 9.0 kg) participated.   Before completing an individualized 90-minute IEP designed to mimic a soccer match, participants underwent dual-energy x-ray absorptiometry testing for LELM.   Three-dimensional lower extremity biomechanics were measured during drop-jump landings before the IEP and every 15 minutes thereafter. A previously reported principal components analysis reduced 40 biomechanical variables to 11 factors. Hierarchical linear modeling analysis then determined the extent to which sex and LELM predicted the baseline score and the change in each factor over time.   Lower extremity lean mass did not influence baseline biomechanics or the changes over time. Sex influenced the biomechanical factor representing knee loading at baseline (P = .04) and the changes in the anterior cruciate ligament-loading factor over time (P = .03). The LELM had an additional influence only on women who possessed less LELM (P = .03 and .02, respectively).   Lower extremity lean mass influenced knee loading during landing in women but not in men. The effect appeared to be stronger in women with less LELM. Continually decreasing knee loading over time may reflect a

  17. Conservative treatment of a patient with previously unresponsive whiplash-associated disorders using clinical biomechanics of posture rehabilitation methods.

    PubMed

    Ferrantelli, Joseph R; Harrison, Deed E; Harrison, Donald D; Stewart, Denis

    2005-01-01

    To describe the treatment of a patient with chronic whiplash-associated disorders (WADs) previously unresponsive to multiple physical therapy and chiropractic treatments, which resolved following Clinical Biomechanics of Posture (CBP) rehabilitation methods. A 40-year-old man involved in a high-speed rear-impact collision developed chronic WADs including cervicothoracic, shoulder, and arm pain and headache. The patient was diagnosed with a confirmed chip fracture of the C5 vertebra and cervical and thoracic disk herniations. He was treated with traditional chiropractic and physical therapy modalities but experienced only temporary symptomatic reduction and was later given a whole body permanent impairment rating of 33% by an orthopedic surgeon. The patient was treated with CBP mirror-image cervical spine adjustments, exercise, and traction to reduce forward head posture and cervical kyphosis. A presentation of abnormal head protrusion resolved and cervical kyphosis returned to lordosis posttreatment. His initial neck disability index was 46% and 0% at the end of care. Verbal pain rating scales also improved for neck pain (from 5/10 to 0/10). A patient with chronic WADs and abnormal head protrusion, cervical kyphosis, and disk herniation experienced an improvement in symptoms and function after the use of CBP rehabilitation protocols when other traditional chiropractic and physical therapy procedures showed little or no lasting improvement.

  18. Biomechanical characterization of decellularized and cross-linked bovine pericardium.

    PubMed

    Oswal, Dilip; Korossis, Sotirios; Mirsadraee, Saeed; Wilcox, Hilox; Watterson, Kevin; Fisher, John; Ingham, Eileen

    2007-03-01

    Although bovine pericardium has been used extensively in cardiothoracic surgery, its degeneration and calcification are important limiting factors in the continued use of this material. The study aims were to decellularize bovine pericardium and to compare the biomechanical properties of fresh and decellularized bovine pericardia to those treated with different concentrations of glutaraldehyde (GA). An established protocol for decellularization using sodium dodecyl sulfate was used, and histological analysis performed to validate the adequacy of decellularization. Contact cytotoxicity was used to study the in-vitro biocompatibility of variously treated pericardia. Mechanical testing involved uniaxial testing to failure. Mechanical properties of the fresh and decellularized pericardia (untreated and treated with 0.5% and 0.05% GA) were compared. Histological analysis of decellularized bovine pericardium did not show any remaining cells or cell fragments. The histoarchitecture of the collagen-elastin matrix appeared well preserved. Untreated decellularized pericardium was biocompatible in contact cytotoxicity tests with smooth muscle and fibroblast cells. The GA-treated tissue was cytotoxic. There were no significant differences in the mechanical properties of fresh and decellularized pericardia, but there was an overall tendency for GA-treated pericardia to be stiffer than their untreated counterparts. An acellular matrix, cross-linked with a reduced concentration of GA, can be produced using bovine pericardium. This biomaterial has excellent biomechanical properties and, potentially, may be used in the manufacture of heart valves and pericardial patches for clinical application.

  19. An experimental study to investigate biomechanical aspects of the initial stability of press-fit implants.

    PubMed

    Berahmani, Sanaz; Janssen, Dennis; van Kessel, Sal; Wolfson, David; de Waal Malefijt, Maarten; Buma, Pieter; Verdonschot, Nico

    2015-02-01

    Initial fixation of press-fit implants depends on interference fit, surface morphology, and bone material properties. To understand the biomechanical effect of each factor and their interactions, the pull-out strength of seven types of CoCrMo tapered implants, with four different interference fits, three different surface morphologies (low, medium and high roughness), and at two time points (0 and 30 min) were tested in trabecular bone with varying density. The effect of interference fit on pull-out strength depended on the surface morphology and time. In contrast with our expectations, samples with a higher roughness had a lower pull-out strength. We found a similar magnitude of bone damage for the different surface morphologies, but the type of damage was different, with bone compaction versus bone abrasion for low and high frictional surfaces, respectively. This explains a reduced sensitivity of fixation strength to bone mineral density in the latter group. In addition, a reduction in fixation strength after a waiting period only occurred for the low frictional specimens. Our study demonstrates that it is essential to evaluate the interplay between different factors and emphasizes the importance of testing in natural bone in order to optimize the initial stability of press-fit implants. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. [Therapeutic monitoring: analytic, pharmacokinetic and clinical aspects].

    PubMed

    Marquet, P

    1999-01-01

    This paper gives an overview of present aspects and future prospects of therapeutic drug monitoring (TDM). The main aims of TDM are to avoid therapeutic failures due to bad compliance or too low dose of a given drug, as well as adverse or toxic effects due to an excessive dose. The therapeutic drugs frequently monitored depend on the country, but are generally few. For some of these drugs or for others, only patients at risk or belonging to particular sub-populations for a given drug, need TDM. A pre-analytical management is necessary, comprising a correct information of the physician, concerning the nature of the sample to collect and the clinical data necessary to the interpretation, as well as their recording; the control of the sample routing and storing conditions. Nowadays, drug analyses are essentially performed using immunochemical techniques, rapid and easy to operate but limited to a small number of drugs, and chromatographic methods, more specific and adaptable to almost any therapeutic drug and financially and technically more and more accessible. The interpretation of analytical results is a most important part of TDM, which requires knowledge of clinical data, precise collection time, co-administered treatments, and to dispose of a previously defined therapeutic range or target concentration, adapted to the population to which the patient belongs; the limitations of the analytical technique used must also be considered. Clinical pharmacokinetics is a further step in the use of analytical results, allowing the prediction of an efficient dose and administration schedule in one step, using a limited number of blood samples and generally a Bayesian estimation algorithm, readily available through commercial software dedicated to a few drugs in different reference populations. The pharmacokinetic characteristics of different populations and the validation of bayesian estimation have also been published for a number of drugs, sometimes by pharmaceutical

  1. Biomechanics and mechanical signaling in the ovary: a systematic review.

    PubMed

    Shah, Jaimin S; Sabouni, Reem; Cayton Vaught, Kamaria C; Owen, Carter M; Albertini, David F; Segars, James H

    2018-04-24

    Mammalian oogenesis and folliculogenesis share a dynamic connection that is critical for gamete development. For maintenance of quiescence or follicular activation, follicles must respond to soluble signals (growth factors and hormones) and physical stresses, including mechanical forces and osmotic shifts. Likewise, mechanical processes are involved in cortical tension and cell polarity in oocytes. Our objective was to examine the contribution and influence of biomechanical signaling in female mammalian gametogenesis. We performed a systematic review to assess and summarize the effects of mechanical signaling and mechanotransduction in oocyte maturation and folliculogenesis and to explore possible clinical applications. The review identified 2568 publications of which 122 met the inclusion criteria. The integration of mechanical and cell signaling pathways in gametogenesis is complex. Follicular activation or quiescence are influenced by mechanical signaling through the Hippo and Akt pathways involving the yes-associated protein (YAP), transcriptional coactivator with PDZ-binding motif (TAZ), phosphatase and tensin homolog deleted from chromosome 10 (PTEN) gene, the mammalian target of rapamycin (mTOR), and forkhead box O3 (FOXO3) gene. There is overwhelming evidence that mechanical signaling plays a crucial role in development of the ovary, follicle, and oocyte throughout gametogenesis. Emerging data suggest the complexities of mechanotransduction and the biomechanics of oocytes and follicles are integral to understanding of primary ovarian insufficiency, ovarian aging, polycystic ovary syndrome, and applications of fertility preservation.

  2. Numerical reconstruction and injury biomechanism in a car-pedestrian crash accident.

    PubMed

    Zou, Dong-Hua; Li, Zheng-Dong; Shao, Yu; Feng, Hao; Chen, Jian-Guo; Liu, Ning-Guo; Huang, Ping; Chen, Yi-Jiu

    2012-12-01

    To reconstruct a car-pedestrian crash accident using numerical simulation technology and explore the injury biomechanism as forensic evidence for injury identification. An integration of multi-body dynamic, finite element (FE), and classical method was applied to a car-pedestrian crash accident. The location of the collision and the details of the traffic accident were determined by vehicle trace verification and autopsy. The accident reconstruction was performed by coupling the three-dimensional car behavior from PC-CRASH with a MADYMO dummy model. The collision FE models of head and leg, developed from CT scans of human remains, were loaded with calculated dummy collision parameters. The data of the impact biomechanical responses were extracted in terms of von Mises stress, relative displacement, strain and stress fringes. The accident reconstruction results were identical with the examined ones and the biomechanism of head and leg injuries, illustrated through the FE methods, were consistent with the classical injury theories. The numerical simulation technology is proved to be effective in identifying traffic accidents and exploring of injury biomechanism.

  3. Biomechanics of Sports-Induced Axial-Compression Injuries of the Neck

    PubMed Central

    Ivancic, Paul C.

    2012-01-01

    Context Head-first sports-induced impacts cause cervical fractures and dislocations and spinal cord lesions. In previous biomechanical studies, researchers have vertically dropped human cadavers, head-neck specimens, or surrogate models in inverted postures. Objective To develop a cadaveric neck model to simulate horizontally aligned, head-first impacts with a straightened neck and to use the model to investigate biomechanical responses and failure mechanisms. Design Descriptive laboratory study. Setting Biomechanics research laboratory. Patients or Other Participants Five human cadaveric cervical spine specimens. Intervention(s) The model consisted of the neck specimen mounted horizontally to a torso-equivalent mass on a sled and carrying a surrogate head. Head-first impacts were simulated at 4.1 m/s into a padded, deformable barrier. Main Outcome Measure(s) Time-history responses were determined for head and neck loads, accelerations, and motions. Average occurrence times of the compression force peaks at the impact barrier, occipital condyles, and neck were compared. Results The first local compression force peaks at the impact barrier (3070.0 ± 168.0 N at 18.8 milliseconds), occipital condyles (2868.1 ± 732.4 N at 19.6 milliseconds), and neck (2884.6 ± 910.7 N at 25.0 milliseconds) occurred earlier than all global compression peaks, which reached 7531.6 N in the neck at 46.6 milliseconds (P < .001). Average peak head motions relative to the torso were 6.0 cm in compression, 2.4 cm in posterior shear, and 6.4° in flexion. Neck compression fractures included occipital condyle, atlas, odontoid, and subaxial comminuted burst and facet fractures. Conclusions Neck injuries due to excessive axial compression occurred within 20 milliseconds of impact and were caused by abrupt deceleration of the head and continued forward torso momentum before simultaneous rebound of the head and torso. Improved understanding of neck injury mechanisms during sports-induced impacts

  4. Biomechanics of the elbow joint in tennis players and relation to pathology

    PubMed Central

    Eygendaal, Denise; Rahussen, F T G; Diercks, R L

    2007-01-01

    Elbow injuries constitute a sizeable percentage of tennis injuries. A basic understanding of biomechanics of tennis and analysis of the forces, loads and motions of the elbow during tennis will improve the understanding of the pathophysiology of these injuries. All different strokes in tennis have a different repetitive biomechanical nature that can result in tennis‐related injuries. In this article, a biomechanically‐based evaluation of tennis strokes is presented. This overview includes all tennis‐related pathologies of the elbow joint, whereby the possible relation of biomechanics to pathology is analysed, followed by treatment recommendations. PMID:17638843

  5. Teaching practices of the undergraduate introductory biomechanics faculty: a North American survey.

    PubMed

    Garceau, Luke R; Ebben, William P; Knudson, Duane V

    2012-11-01

    Instruction and assessment strategies of undergraduate introductory biomechanics instructors have yet to be comprehensively examined. The purpose of this study was to identify the current instruction and assessment practices of North American undergraduate introductory biomechanics instructors and equipment needed for effective instruction in lecture and laboratory sessions. One hundred and sixty-five respondents (age: 42.5 +/- 10.3 years) who currently teach or have taught an introductory biomechanics course in North America were recruited by electronic mail. Subjects completed a web-based survey, consisting of 60 open- and closed-ended questions. Pearson's correlation coefficients were used to assess relationships between instructor's familiarity with either the Biomechanics Concept Inventory or the NASPE Guidelines for Undergraduate Biomechanics, and instructor and course characteristics (number of years teaching, age, faculty rank, number of quizzes given, etc.) A number of variables were significantly (p < 0.05) correlated. Answers to open-ended questions were processed using content analysis, with results categorized in content areas including: instructor and course characteristics; lecture instruction; assessment and equipment; laboratory instruction; assessment and equipment; and instructor's perspectives. Many active learning strategies for lecture and laboratory instruction were identified by faculty. Limited student preparation and limited resources were noted as the instructor's most common challenges.

  6. Multiscale modeling methods in biomechanics.

    PubMed

    Bhattacharya, Pinaki; Viceconti, Marco

    2017-05-01

    More and more frequently, computational biomechanics deals with problems where the portion of physical reality to be modeled spans over such a large range of spatial and temporal dimensions, that it is impossible to represent it as a single space-time continuum. We are forced to consider multiple space-time continua, each representing the phenomenon of interest at a characteristic space-time scale. Multiscale models describe a complex process across multiple scales, and account for how quantities transform as we move from one scale to another. This review offers a set of definitions for this emerging field, and provides a brief summary of the most recent developments on multiscale modeling in biomechanics. Of all possible perspectives, we chose that of the modeling intent, which vastly affect the nature and the structure of each research activity. To the purpose we organized all papers reviewed in three categories: 'causal confirmation,' where multiscale models are used as materializations of the causation theories; 'predictive accuracy,' where multiscale modeling is aimed to improve the predictive accuracy; and 'determination of effect,' where multiscale modeling is used to model how a change at one scale manifests in an effect at another radically different space-time scale. Consistent with how the volume of computational biomechanics research is distributed across application targets, we extensively reviewed papers targeting the musculoskeletal and the cardiovascular systems, and covered only a few exemplary papers targeting other organ systems. The review shows a research subdomain still in its infancy, where causal confirmation papers remain the most common. WIREs Syst Biol Med 2017, 9:e1375. doi: 10.1002/wsbm.1375 For further resources related to this article, please visit the WIREs website. © 2017 The Authors. WIREs Systems Biology and Medicine published by Wiley Periodicals, Inc.

  7. Towards aspect-oriented functional--structural plant modelling.

    PubMed

    Cieslak, Mikolaj; Seleznyova, Alla N; Prusinkiewicz, Przemyslaw; Hanan, Jim

    2011-10-01

    Functional-structural plant models (FSPMs) are used to integrate knowledge and test hypotheses of plant behaviour, and to aid in the development of decision support systems. A significant amount of effort is being put into providing a sound methodology for building them. Standard techniques, such as procedural or object-oriented programming, are not suited for clearly separating aspects of plant function that criss-cross between different components of plant structure, which makes it difficult to reuse and share their implementations. The aim of this paper is to present an aspect-oriented programming approach that helps to overcome this difficulty. The L-system-based plant modelling language L+C was used to develop an aspect-oriented approach to plant modelling based on multi-modules. Each element of the plant structure was represented by a sequence of L-system modules (rather than a single module), with each module representing an aspect of the element's function. Separate sets of productions were used for modelling each aspect, with context-sensitive rules facilitated by local lists of modules to consider/ignore. Aspect weaving or communication between aspects was made possible through the use of pseudo-L-systems, where the strict-predecessor of a production rule was specified as a multi-module. The new approach was used to integrate previously modelled aspects of carbon dynamics, apical dominance and biomechanics with a model of a developing kiwifruit shoot. These aspects were specified independently and their implementation was based on source code provided by the original authors without major changes. This new aspect-oriented approach to plant modelling is well suited for studying complex phenomena in plant science, because it can be used to integrate separate models of individual aspects of plant development and function, both previously constructed and new, into clearly organized, comprehensive FSPMs. In a future work, this approach could be further

  8. Towards aspect-oriented functional–structural plant modelling

    PubMed Central

    Cieslak, Mikolaj; Seleznyova, Alla N.; Prusinkiewicz, Przemyslaw; Hanan, Jim

    2011-01-01

    Background and Aims Functional–structural plant models (FSPMs) are used to integrate knowledge and test hypotheses of plant behaviour, and to aid in the development of decision support systems. A significant amount of effort is being put into providing a sound methodology for building them. Standard techniques, such as procedural or object-oriented programming, are not suited for clearly separating aspects of plant function that criss-cross between different components of plant structure, which makes it difficult to reuse and share their implementations. The aim of this paper is to present an aspect-oriented programming approach that helps to overcome this difficulty. Methods The L-system-based plant modelling language L+C was used to develop an aspect-oriented approach to plant modelling based on multi-modules. Each element of the plant structure was represented by a sequence of L-system modules (rather than a single module), with each module representing an aspect of the element's function. Separate sets of productions were used for modelling each aspect, with context-sensitive rules facilitated by local lists of modules to consider/ignore. Aspect weaving or communication between aspects was made possible through the use of pseudo-L-systems, where the strict-predecessor of a production rule was specified as a multi-module. Key Results The new approach was used to integrate previously modelled aspects of carbon dynamics, apical dominance and biomechanics with a model of a developing kiwifruit shoot. These aspects were specified independently and their implementation was based on source code provided by the original authors without major changes. Conclusions This new aspect-oriented approach to plant modelling is well suited for studying complex phenomena in plant science, because it can be used to integrate separate models of individual aspects of plant development and function, both previously constructed and new, into clearly organized, comprehensive FSPMs. In

  9. ASB clinical biomechanics award winner 2006 prospective study of the biomechanical factors associated with iliotibial band syndrome.

    PubMed

    Noehren, Brian; Davis, Irene; Hamill, Joseph

    2007-11-01

    Iliotibial band syndrome is the leading cause of lateral knee pain in runners. Despite its high prevalence, little is known about the biomechanics that lead to this syndrome. The purpose of this study was to prospectively compare lower extremity kinematics and kinetics between a group of female runners who develop iliotibial band syndrome compared to healthy controls. It was hypothesized that runners who develop iliotibial band syndrome will exhibit greater peak hip adduction, knee internal rotation, rearfoot eversion and no difference in knee flexion at heel strike. Additionally, the iliotibial band syndrome group were expected to have greater hip abduction, knee external rotation, and rearfoot inversion moments. A group of healthy female recreational runners underwent an instrumented gait analysis and were then followed for two years. Eighteen runners developed iliotibial band syndrome. Their initial running mechanics were compared to a group of age and mileage matched controls with no history of knee or hip pain. Comparisons of peak hip, knee, rearfoot angles and moments were made during the stance phase of running. Variables of interest were averaged over the five running trials, and then averaged across groups. The iliotibial band syndrome group exhibited significantly greater hip adduction and knee internal rotation. However, rearfoot eversion and knee flexion were similar between groups. There were no differences in moments between groups. The development of iliotibial band syndrome appears to be related to increased peak hip adduction and knee internal rotation. These combined motions may increase iliotibial band strain causing it to compress against the lateral femoral condyle. These data suggest that treatment interventions should focus on controlling these secondary plane movements through strengthening, stretching and neuromuscular re-education.

  10. The Biomechanical and Histologic Effects of Platelet-Rich Plasma on Rat Rotator Cuff Repairs

    PubMed Central

    Beck, Jennifer; Evans, Douglas; Tonino, Pietro M.; Yong, Sherri; Callaci, John J.

    2013-01-01

    Background Rotator cuff tears are common injuries that are often treated with surgical repair. Because of the high concentration of growth factors within platelets, platelet-rich plasma (PRP) has the potential to enhance healing in rotator cuff repairs. Hypothesis Platelet-rich plasma would alter the biomechanical and histologic properties of rotator cuff repair during an acute injury response. Study Design Controlled laboratory study. Methods Platelet-rich plasma was produced from inbred donor rats. A tendon-from-bone supraspinatus tear was created surgically and an immediate transosseous repair performed. The control group underwent repair only. The PRP group underwent a repair with PRP augmentation. Rats in each group were sacrificed at 7, 14, and 21 days. The surgically repaired tendons underwent biomechanical testing, including failure load, stiffness, failure strain, and stress relaxation characteristics. Histological analysis evaluated the cellular characteristics of the repair tissue. Results At 7- and 21-day periods, augmentation with PRP showed statistically significant effects on the biomechanical properties of the repaired rat supraspinatus tear, but failure load was not increased at the 7-, 14-, or 21-day periods (P = .688, .209, and .477, respectively). The control group had significantly higher stiffness at 21 days (P = .006). The control group had higher failure strain at 7 days (P = .02), whereas the PRP group had higher failure strain at 21 days (P = .008). Histologically, the PRP group showed increased fibroblastic response and vascular proliferation at each time point. At 21 days, the collagen fibers in the PRP group were oriented in a more linear fashion toward the tendon footprint. Conclusion In this controlled, rat model study, PRP altered the tissue properties of the supraspinatus tendon without affecting the construct’s failure load. Clinical Relevance The decreased tendon tissue stiffness acutely and failure to enhance tendon

  11. Relationship between physical function and biomechanical gait patterns in boys with haemophilia.

    PubMed

    Stephensen, D; Taylor, S; Bladen, M; Drechsler, W I

    2016-11-01

    The World Federation of Haemophilia recommends joint and muscle health is evaluated using X-ray and magnetic resonance imaging, together with clinical examination scores. To date, inclusion of performance-based functional activities to monitor children with the condition has received little attention. To evaluate test-retest repeatability of physical function tests and quantify relationships between physical function, lower limb muscle strength and gait patterns in young boys with haemophilia. Timed 6-minute walk, timed up and down stairs, timed single leg stance, muscle strength of the knee extensors, ankle dorsi and plantar flexors, together with joint biomechanics during level walking were collected from 21 boys aged 6-12 years with severe haemophilia. Measures of physical function and recording of muscle strength with a hand-held myometer were repeatable (ICC > 0.78). Distances walked in six minutes, time taken to go up and down a flight of stairs and lower limb muscle strength correlated closely with ankle range of motion, together with peak knee flexion and ankle dorsi and plantarflexion moments during walking (P < 0.05). Alterations in gait patterns of boys with haemophilia appear to be associated with changes in performance of physical function and performance seems to depend on their muscle strength. Timed 6-minute walk test, timed up and down steps test and muscle strength of the knee extensors showed the strongest correlation with biomechanical joint function, and hence might serve as a basis for the clinical monitoring of physical function outcomes in children with haemophilia. © 2016 John Wiley & Sons Ltd.

  12. The Biomechanical Testing for the Assessment of Bone Quality in an Experimental Model of Chronic Kidney Disease.

    PubMed

    Oksztulska-Kolanek, Ewa; Znorko, Beata; Michałowska, Małgorzata; Pawlak, Krystyna

    2016-01-01

    Mineral metabolism disturbances are common in chronic kidney disease (CKD) and have been classified as a new clinical entity, also known as CKD-mineral and bone disorders (CKD-MBD). A decrease in the bone strength, whose clinical manifestation is a tendency for fracture, has been recognized as an important component of CKD-MBD. Because of ethical issues, measurements of the bone strength in the human body are usually limited to noninvasive techniques, such as radiography, dual-energy X-ray absorptiometry and the assays of bone turnover biomarkers. However, it has been postulated recently that the evidence concerning bone strength based solely on the determination of the bone quantity may be insufficient and that bone quality should also be examined. In this regard, an animal model of CKD can represent an experimental tool to test the effectiveness of new therapeutic strategies. Despite the many available methods that are used to diagnose metabolic bone disorders and predict fracture risk especially in small rodents with CKD, it turns out that the most appropriate are biomechanical tests, which can provide information about the structural and material properties of bone. The present review summarizes and discusses the principles for carrying out selected biomechanical tests (3-point bending test and compression test) and their application in clinical practice. © 2015 S. Karger AG, Basel.

  13. Efficacy of a biomechanically-based yoga exercise program in knee osteoarthritis: A randomized controlled trial.

    PubMed

    Kuntz, Alexander B; Chopp-Hurley, Jaclyn N; Brenneman, Elora C; Karampatos, Sarah; Wiebenga, Emily G; Adachi, Jonathan D; Noseworthy, Michael D; Maly, Monica R

    2018-01-01

    Certain exercises could overload the osteoarthritic knee. We developed an exercise program from yoga postures with a minimal knee adduction moment for knee osteoarthritis. The purpose was to compare the effectiveness of this biomechanically-based yoga exercise (YE), with traditional exercise (TE), and a no-exercise attention-equivalent control (NE) for improving pain, self-reported physical function and mobility performance in women with knee osteoarthritis. Single-blind, three-arm randomized controlled trial. Community in Southwestern Ontario, Canada. A convenience sample of 31 women with symptomatic knee osteoarthritis was recruited through rheumatology, orthopaedic and physiotherapy clinics, newspapers and word-of-mouth. Participants were stratified by disease severity and randomly allocated to one of three 12-week, supervised interventions. YE included biomechanically-based yoga exercises; TE included traditional leg strengthening on machines; and NE included meditation with no exercise. Participants were asked to attend three 1-hour group classes/sessions each week. Primary outcomes were pain, self-reported physical function and mobility performance. Secondary outcomes were knee strength, depression, and health-related quality of life. All were assessed by a blinded assessor at baseline and immediately following the intervention. The YE group demonstrated greater improvements in KOOS pain (mean difference of 22.9 [95% CI, 6.9 to 38.8; p = 0.003]), intermittent pain (mean difference of -19.6 [95% CI, -34.8 to -4.4; p = 0.009]) and self-reported physical function (mean difference of 17.2 [95% CI, 5.2 to 29.2; p = 0.003]) compared to NE. Improvements in these outcomes were similar between YE and TE. However, TE demonstrated a greater improvement in knee flexor strength compared to YE (mean difference of 0.1 [95% CI, 0.1 to 0.2]. Improvements from baseline to follow-up were present in quality of life score for YE and knee flexor strength for TE, while both also

  14. Corneal biomechanical parameters and intraocular pressure: the effect of topical anesthesia

    PubMed Central

    Ogbuehi, Kelechi C

    2012-01-01

    either session. Oxybuprocaine and tetracaine caused statistically significant (P < 0.05) reductions in IOPg in session 1, but only tetracaine had a significant (P < 0.05) effect in session 2. Tetracaine also caused a statistically significant (P < 0.05) reduction in IOPcc in session 1. Conclusion The statistically significant effect of topical anesthesia on IOPg varies with the anesthetic used, and while this effect was statistically significant in this study, the small effect is probably not clinically relevant. There was no effect on any of the biomechanical parameters of the cornea. PMID:22791966

  15. Corneal biomechanical parameters and intraocular pressure: the effect of topical anesthesia.

    PubMed

    Ogbuehi, Kelechi C

    2012-01-01

    . Oxybuprocaine and tetracaine caused statistically significant (P < 0.05) reductions in IOPg in session 1, but only tetracaine had a significant (P < 0.05) effect in session 2. Tetracaine also caused a statistically significant (P < 0.05) reduction in IOPcc in session 1. The statistically significant effect of topical anesthesia on IOPg varies with the anesthetic used, and while this effect was statistically significant in this study, the small effect is probably not clinically relevant. There was no effect on any of the biomechanical parameters of the cornea.

  16. Biomechanical versus inertial information: stable individual differences in perception of self-rotation.

    PubMed

    Bruggeman, Hugo; Piuneu, Vadzim S; Rieser, John J; Pick, Herbert L

    2009-10-01

    When turning without vision or audition, people tend to perceive their locomotion as a change in heading relative to objects in the remembered surroundings. Such perception of self-rotation depends on sensitivity to information for movement from biomechanical activity of the locomotor system or from inertial activation of the vestibular and postural systems. The authors report 3 experiments that investigated the relative contributions of biomechanical and inertial information to perceiving the speed of self-rotation. Using a circular treadmill, the proportions of the 2 sources of proprioceptive information were varied, creating walking conditions with a constant rate of biomechanical activity but with variable speeds of rotation relative to inertial space. The results reveal stable individual differences in sensitivity to information for the perception of locomotion. Just more than half of the participants based their perceived speed of self-rotation on biomechanical information, whereas the others based theirs on inertial information. PsycINFO Database Record (c) 2009 APA, all rights reserved.

  17. Supplementing biomechanical modeling with EMG analysis

    NASA Technical Reports Server (NTRS)

    Lewandowski, Beth; Jagodnik, Kathleen; Crentsil, Lawton; Humphreys, Bradley; Funk, Justin; Gallo, Christopher; Thompson, William; DeWitt, John; Perusek, Gail

    2016-01-01

    It is well established that astronauts experience musculoskeletal deconditioning when exposed to microgravity environments for long periods of time. Spaceflight exercise is used to counteract these effects, and the Advanced Resistive Exercise Device (ARED) on the International Space Station (ISS) has been effective in minimizing musculoskeletal losses. However, the exercise devices of the new exploration vehicles will have requirements of limited mass, power and volume. Because of these limitations, there is a concern that the exercise devices will not be as effective as ARED in maintaining astronaut performance. Therefore, biomechanical modeling is being performed to provide insight on whether the small Multi-Purpose Crew Vehicle (MPCV) device, which utilizes a single-strap design, will provide sufficient physiological loading to maintain musculoskeletal performance. Electromyography (EMG) data are used to supplement the biomechanical model results and to explore differences in muscle activation patterns during exercises using different loading configurations.

  18. MO-AB-BRA-09: Development and Evaluation of a Biomechanical Modeling-Assisted CBCT Reconstruction Technique (Bio-Recon)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Y; Nasehi Tehrani, J; Wang, J

    Purpose: To develop a Bio-recon technique by incorporating the biomechanical properties of anatomical structures into the deformation-based CBCT reconstruction process. Methods: Bio-recon reconstructs the CBCT by deforming a prior high-quality CT/CBCT using a deformation-vector-field (DVF). The DVF is solved through two alternating steps: 2D–3D deformation and finite-element-analysis based biomechanical modeling. 2D–3D deformation optimizes the DVF through an ‘intensity-driven’ approach, which updates the DVF to minimize intensity mismatches between the acquired projections and the simulated projections from the deformed CBCT. In contrast, biomechanical modeling optimizes the DVF through a ‘biomechanical-feature-driven’ approach, which updates the DVF based on the biophysical properties ofmore » anatomical structures. In general, Biorecon extracts the 2D–3D deformation-optimized DVF at high-contrast structure boundaries, and uses it as the boundary condition to drive biomechanical modeling to optimize the overall DVF, especially at low-contrast regions. The optimized DVF is fed back into the 2D–3D deformation for further optimization, which forms an iterative loop. The efficacy of Bio-recon was evaluated on 11 lung patient cases, each with a prior CT and a new CT. Cone-beam projections were generated from the new CTs to reconstruct CBCTs, which were compared with the original new CTs for evaluation. 872 anatomical landmarks were also manually identified by a clinician on both the prior and new CTs to track the lung motion, which was used to evaluate the DVF accuracy. Results: Using 10 projections for reconstruction, the average (± s.d.) relative errors of reconstructed CBCTs by the clinical FDK technique, the 2D–3D deformation-only technique and Bio-recon were 46.5±5.9%, 12.0±2.3% and 10.4±1.3%, respectively. The average residual errors of DVF-tracked landmark motion by the 2D–3D deformation-only technique and Bio-recon were 5.6±4.3mm and

  19. Biomechanics and biorheology of red blood cells in sickle cell anemia.

    PubMed

    Li, Xuejin; Dao, Ming; Lykotrafitis, George; Karniadakis, George Em

    2017-01-04

    Sickle cell anemia (SCA) is an inherited blood disorder that causes painful crises due to vaso-occlusion of small blood vessels. The primary cause of the clinical phenotype of SCA is the intracellular polymerization of sickle hemoglobin resulting in sickling of red blood cells (RBCs) in deoxygenated conditions. In this review, we discuss the biomechanical and biorheological characteristics of sickle RBCs and sickle blood as well as their implications toward a better understanding of the pathophysiology and pathogenesis of SCA. Additionally, we highlight the adhesive heterogeneity of RBCs in SCA and their specific contribution to vaso-occlusive crisis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Biomechanics Associated with Patellofemoral Pain and ACL Injuries in Sports.

    PubMed

    Weiss, Kaitlyn; Whatman, Chris

    2015-09-01

    Knee injuries are prevalent among a variety of competitive sports and can impact an athlete's ability to continue to participate in their sport or, in the worst case, end an athlete's career. The aim was to evaluate biomechanics associated with both patellofemoral pain syndrome (PFPS) and anterior cruciate ligament (ACL) injuries (in sports involving landing, change in direction, or rapid deceleration) across the three time points frequently reported in the literature: pre-injury, at the time of injury, and following injury. A search of the literature was conducted for research evaluating biomechanics associated with ACL injury and PFPS. The Web of Science, SPORTDiscus, EBSCO, PubMed, and CINAHL databases, to March 2015, were searched, and journal articles focused on ACL injuries and PFPS in sports that met the inclusion criteria were reviewed. The search methodology was created with the intent of extracting case-control, case, and cohort studies of knee injury in athletic populations. The search strategy was restricted to only full-text articles published in English. These articles were included in the review if they met all of the required selection criteria. The following inclusion criteria were used: (1) The study must report lower extremity biomechanics in one of the following settings: (a) a comparison of currently injured and uninjured participants, (b) a prospective study evaluating risk factors for injury, or (c) a study reporting on the injury event itself. (2) The study must include only currently active participants who were similar at baseline (i.e. healthy, high school level basketball players currently in-season) and include biomechanical analysis of either landing, change in direction, or rapid deceleration. (3) The study must include currently injured participants. The studies were graded on the basis of quality, which served as an indication of risk of bias. An adapted version of the 'Strengthening the Reporting of Observational Studies in

  1. First delivery and ovariectomy affect biomechanical and structural properties of the vagina in the ovine model.

    PubMed

    Urbankova, Iva; Callewaert, Geertje; Blacher, Silvia; Deprest, Dries; Hympanova, Lucie; Feola, Andrew; De Landsheere, Laurent; Deprest, Jan

    2018-01-08

    Animal models are useful for investigating the genesis of pelvic floor dysfunction and for developing novel therapies for its treatment. There is a need for an alternative large-animal model to the nonhuman primate. Therefore we studied the effects of the first vaginal delivery, ovariectomy and systemic hormonal replacement therapy (HRT) on the biomechanical and structural properties of the ovine vagina. We examined the gross anatomical properties of nulliparous, primiparous, ovariectomized multiparous, and ovariectomized hormone-replaced multiparous sheep (six animals per group). We also harvested mid-vaginal and distal vaginal tissue to determine smooth muscle contractility and passive biomechanical properties, for morphometric assessment of the vaginal wall layers, to determine collagen and elastin content, and for immunostaining for α-smooth muscle actin and estrogen receptor-α. There were no regional differences in the nulliparous vagina. One year after the first vaginal delivery, stiffness and contractility of the distal vagina were decreased, whereas the elastin content increased. The mid-vagina of ovariectomized sheep was stiff, and its epithelium was thin and lacked glycogen. HRT decreased the stiffness of the mid-vagina by 45% but had no measurable effect on contractility or elastin content, and increased epithelial thickness and glycogen content. HRT also increased the epithelial thickness and glycogen content of the distal vagina. At this location, there were no changes in morphology or stiffness. In sheep, life events including delivery and ovariectomy affect the biomechanical properties of the vagina in a region-specific way. Vaginal delivery mainly affects the distal region by decreasing stiffness and contractility. HRT can reverse the increase in stiffness of the mid-vagina observed after surgical induction of menopause. These observations are in line with scanty biomechanical measurements in comparable clinical specimens.

  2. Current Biomechanical Concepts for Rotator Cuff Repair

    PubMed Central

    2013-01-01

    For the past few decades, the repair of rotator cuff tears has evolved significantly with advances in arthroscopy techniques, suture anchors and instrumentation. From the biomechanical perspective, the focus in arthroscopic repair has been on increasing fixation strength and restoration of the footprint contact characteristics to provide early rehabilitation and improve healing. To accomplish these objectives, various repair strategies and construct configurations have been developed for rotator cuff repair with the understanding that many factors contribute to the structural integrity of the repaired construct. These include repaired rotator cuff tendon-footprint motion, increased tendon-footprint contact area and pressure, and tissue quality of tendon and bone. In addition, the healing response may be compromised by intrinsic factors such as decreased vascularity, hypoxia, and fibrocartilaginous changes or aforementioned extrinsic compression factors. Furthermore, it is well documented that torn rotator cuff muscles have a tendency to atrophy and become subject to fatty infiltration which may affect the longevity of the repair. Despite all the aforementioned factors, initial fixation strength is an essential consideration in optimizing rotator cuff repair. Therefore, numerous biomechanical studies have focused on elucidating the strongest devices, knots, and repair configurations to improve contact characteristics for rotator cuff repair. In this review, the biomechanical concepts behind current rotator cuff repair techniques will be reviewed and discussed. PMID:23730471

  3. Ocular biomechanical measurements on post-keratoplasty corneas using a Scheimpflug-based noncontact device

    PubMed Central

    Modis, Laszlo; Hassan, Ziad; Szalai, Eszter; Flaskó, Zsuzsanna; Berta, Andras; Nemeth, Gabor

    2016-01-01

    AIM To analyse ocular biomechanical properties, central corneal thickness (CCT) and intraocular pressure (IOP) in post-keratoplasty eyes, as compared to normal subjects, with a new Scheimpflug-based technology. Moreover, biomechanical data were correlated with the size and age of the donor and recipient corneas. METHODS Measurements were conducted on 46 eyes of 46 healthy patients without any corneal pathology (age: 53.83±20.8y) and 30 eyes of 28 patients after penetrating keratoplasty (age: 49.43±21.34y). Ten biomechanical parameters, the CCT and IOP were recorded by corneal visualization scheimpflug technology (CorVis ST) using high-speed Scheimpflug imaging. Keratometry values were also recorded using Pentacam HR system. Scheimpflug measurements were performed after 43.41±40.17mo (range: 11-128mo) after the keratoplasty and after 7.64±2.34mo (range: 5-14mo) of suture removal. RESULTS Regarding the device-specific biomechanical parameters, the highest concavity time and radius values showed a significant decrease between these two groups (P=0.01 and P<0.001). None of other biomechanical parameters disclosed a significant difference. The CCT showed a significant difference between post-keratoplasty eyes as compared to normal subjects (P=0.003) using the CorVis ST device. The IOP was within the normal range in both groups (P=0.84). There were no significant relationships between the keratometric data, the size of the donor and recipient, age of the donor and recipient and biomechanical properties obtained by CorVis ST. CONCLUSION The ocular biomechanics remain stable after penetrating keratoplasty according to the CorVis ST measurements. Only two from the ten device-specific parameters have importance in the follow-up period after penetrating keratoplasty. PMID:26949641

  4. Transesophageal echocardiographic strain imaging predicts aortic biomechanics: Beyond diameter.

    PubMed

    Emmott, Alexander; Alzahrani, Haitham; Alreishidan, Mohammed; Therrien, Judith; Leask, Richard L; Lachapelle, Kevin

    2018-03-11

    Clinical guidelines recommend resection of ascending aortic aneurysms at diameters 5.5 cm or greater to prevent rupture or dissection. However, approximately 40% of all ascending aortic dissections occur below this threshold. We propose new transesophageal echocardiography strain-imaging moduli coupled with blood pressure measurements to predict aortic dysfunction below the surgical threshold. A total of 21 patients undergoing aortic resection were recruited to participate in this study. Transesophageal echocardiography imaging of the aortic short-axis and invasive radial blood pressure traces were taken for 3 cardiac cycles. By using EchoPAC (GE Healthcare, Madison, Wis) and postprocessing in MATLAB (MathWorks, Natick, Mass), circumferential stretch profiles were generated and combined with the blood pressure traces. From these data, 2 in vivo stiffness moduli were calculated: the Cardiac Cycle Pressure Modulus and Cardiac Cycle Stress Modulus. From the resected aortic ring, testing squares were isolated for ex vivo mechanical analysis and histopathology. Each square underwent equibiaxial tensile testing to generate stress-stretch profiles for each patient. Two ex vivo indices were calculated from these profiles (energy loss and incremental stiffness) for comparison with the Cardiac Cycle Pressure Modulus and Cardiac Cycle Stress Modulus. The echo-derived stiffness moduli demonstrate positive significant covariance with ex vivo tensile biomechanical indices: energy loss (vs Cardiac Cycle Pressure Modulus: R 2  = 0.5873, P < .0001; vs Cardiac Cycle Stress Modulus: R 2  = 0.6401, P < .0001) and apparent stiffness (vs Cardiac Cycle Pressure Modulus: R 2  = 0.2079, P = .0378; vs Cardiac Cycle Stress Modulus: R 2  = 0.3575, P = .0042). Likewise, these transesophageal echocardiography-derived moduli are highly predictive of the histopathologic composition of collagen and elastin (collagen/elastin ratio vs Cardiac Cycle Pressure Modulus: R 2  = 0

  5. 3-d finite element model development for biomechanics: a software demonstration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hollerbach, K.; Hollister, A.M.; Ashby, E.

    1997-03-01

    Finite element analysis is becoming an increasingly important part of biomechanics and orthopedic research, as computational resources become more powerful, and data handling algorithms become more sophisticated. Until recently, tools with sufficient power did not exist or were not accessible to adequately model complicated, three-dimensional, nonlinear biomechanical systems. In the past, finite element analyses in biomechanics have often been limited to two-dimensional approaches, linear analyses, or simulations of single tissue types. Today, we have the resources to model fully three-dimensional, nonlinear, multi-tissue, and even multi-joint systems. The authors will present the process of developing these kinds of finite element models,more » using human hand and knee examples, and will demonstrate their software tools.« less

  6. Changes in fatigue, multiplanar knee laxity, and landing biomechanics during intermittent exercise.

    PubMed

    Shultz, Sandra J; Schmitz, Randy J; Cone, John R; Henson, Robert A; Montgomery, Melissa M; Pye, Michele L; Tritsch, Amanda J

    2015-05-01

    Knee laxity increases during exercise. However, no one, to our knowledge, has examined whether these increases contribute to higher-risk landing biomechanics during prolonged, fatiguing exercise. To examine associations between changes in fatigue (measured as sprint time [SPTIME]), multiplanar knee laxity (anterior-posterior [APLAX], varus-valgus [VVLAX] knee laxity, and internal-external rotation [IERLAX]) knee laxity and landing biomechanics during prolonged, intermittent exercise. Descriptive laboratory study. Laboratory and gymnasium. A total of 30 male (age = 20.3 ± 2.0 years, height = 1.79 ± 0.05 m, mass = 75.2 ± 7.2 kg) and 29 female (age = 20.5 ± 2.3 years, height = 1.67 ± 0.08 m, mass = 61.8 ± 9.0 kg) competitive athletes. A 90-minute intermittent exercise protocol (IEP) designed to simulate the physiologic and biomechanical demands of a soccer match. We measured SPTIME, APLAX, and landing biomechanics before and after warm-up, every 15 minutes during the IEP, and every 15 minutes for 1 hour after the IEP. We measured VVLAX and IERLAX before and after the warm-up, at 45 and 90 minutes during the IEP, and at 30 minutes after the IEP. We used hierarchical linear modeling to examine associations between exercise-related changes in SPTIME and knee laxity with exercise-related changes in landing biomechanics while controlling for initial (before warm-up) knee laxity. We found that SPTIME had a more global effect on landing biomechanics in women than in men, resulting in a more upright landing and a reduction in landing forces and out-of-plane motions about the knee. As APLAX increased with exercise, women increased their knee internal-rotation motion (P = .02), and men increased their hip-flexion motion and energy-absorption (P = .006) and knee-extensor loads (P = .04). As VVLAX and IERLAX increased, women went through greater knee-valgus motion and dorsiflexion and absorbed more energy at the knee (P ≤ .05), whereas men were positioned in greater hip

  7. Changes in Fatigue, Multiplanar Knee Laxity, and Landing Biomechanics During Intermittent Exercise

    PubMed Central

    Shultz, Sandra J.; Schmitz, Randy J.; Cone, John R.; Henson, Robert A.; Montgomery, Melissa M.; Pye, Michele L.; Tritsch, Amanda J.

    2015-01-01

    Context: Knee laxity increases during exercise. However, no one, to our knowledge, has examined whether these increases contribute to higher-risk landing biomechanics during prolonged, fatiguing exercise. Objectives: To examine associations between changes in fatigue (measured as sprint time [SPTIME]), multiplanar knee laxity (anterior-posterior [APLAX], varus-valgus [VVLAX] knee laxity, and internal-external rotation [IERLAX]) knee laxity and landing biomechanics during prolonged, intermittent exercise. Design: Descriptive laboratory study. Setting: Laboratory and gymnasium. Patients or Other Participants: A total of 30 male (age = 20.3 ± 2.0 years, height = 1.79 ± 0.05 m, mass = 75.2 ± 7.2 kg) and 29 female (age = 20.5 ± 2.3 years, height = 1.67 ± 0.08 m, mass = 61.8 ± 9.0 kg) competitive athletes. Intervention(s): A 90-minute intermittent exercise protocol (IEP) designed to simulate the physiologic and biomechanical demands of a soccer match. Main Outcome Measure(s): We measured SPTIME, APLAX, and landing biomechanics before and after warm-up, every 15 minutes during the IEP, and every 15 minutes for 1 hour after the IEP. We measured VVLAX and IERLAX before and after the warm-up, at 45 and 90 minutes during the IEP, and at 30 minutes after the IEP. We used hierarchical linear modeling to examine associations between exercise-related changes in SPTIME and knee laxity with exercise-related changes in landing biomechanics while controlling for initial (before warm-up) knee laxity. Results: We found that SPTIME had a more global effect on landing biomechanics in women than in men, resulting in a more upright landing and a reduction in landing forces and out-of-plane motions about the knee. As APLAX increased with exercise, women increased their knee internal-rotation motion (P = .02), and men increased their hip-flexion motion and energy-absorption (P = .006) and knee-extensor loads (P = .04). As VVLAX and IERLAX increased, women went through greater knee

  8. Primordial dwarfism: overview of clinical and genetic aspects.

    PubMed

    Khetarpal, Preeti; Das, Satrupa; Panigrahi, Inusha; Munshi, Anjana

    2016-02-01

    Primordial dwarfism is a group of genetic disorders which include Seckel Syndrome, Silver-Russell Syndrome, Microcephalic Osteodysplastic Primordial Dwarfism types I/III, II and Meier-Gorlin Syndrome. This genetic disorder group is characterized by intra-uterine growth retardation and post-natal growth abnormalities which occur as a result of disorganized molecular and genomic changes in embryonic stage and, thus, it represents a unique area to study growth and developmental abnormalities. Lot of research has been carried out on different aspects; however, a consolidated review that discusses an overall spectrum of this disorder is not accessible. Recent research in this area points toward important molecular and cellular mechanisms in human body that regulate the complexity of growth process. Studies have emerged that have clearly associated with a number of abnormal chromosomal, genetic and epigenetic alterations that can predispose an embryo to develop PD-associated developmental defects. Finding and associating such fundamental changes to its subtypes will help in re-examination of alleged functions at both cellular and developmental levels and thus reveal the intrinsic mechanism that leads to a balanced growth. Although such findings have unraveled a subtle understanding of growth process, we further require active research in terms of identification of reliable biomarkers for different subtypes as an immediate requirement for clinical utilization. It is hoped that further study will advance the understanding of basic mechanisms regulating growth relevant to human health. Therefore, this review has been written with an aim to present an overview of chromosomal, molecular and epigenetic modifications reported to be associated with different subtypes of this heterogenous disorder. Further, latest findings with respect to clinical and molecular genetics research have been summarized to aid the medical fraternity in their clinical utility, for diagnosing disorders

  9. Influence of TRAIL gene on biomechanical properties of the human leukemic cell line Jurkat.

    PubMed

    Yao, Weijuan; Chen, Kai; Wang, Xinjuan; Xie, Lide; Wen, Zongyao; Yan, Zongyi; Chien, Shu

    2002-12-01

    We cloned the cDNA fragment of human TNF-related apoptosis inducing ligand (TRAIL) into RevTet-On, a Tet-regulated and high-level gene expression system. Making use of the TRAIL gene expression system in Jurkat as a cell model, we studied the influence of TRAIL gene on the biomechanics properties of Jurkat through measuring changes of cellular biomechanics properties before and after the TRAIL gene expression, which was induced by adding tetracycline derivative doxycycline (Dox). The results indicated that the TRAIL gene expression led to significant changes in cellular biomechanics properties. The osmotic fragility increased and the cell stiffness increased after the expression of TRAIL gene. Thus, the apoptosis-inducing TRAIL gene caused significant changes in the biomechanics properties of Jurkat cells.

  10. A GPU based high-resolution multilevel biomechanical head and neck model for validating deformable image registration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neylon, J., E-mail: jneylon@mednet.ucla.edu; Qi, X.; Sheng, K.

    that may be caused by the biomechanical deformation process. Accuracy and stability of the model response were validated using ground-truth simulations representing soft tissue behavior under local and global deformations. Numerical accuracy of the HN deformations was analyzed by applying nonrigid skeletal transformations acquired from interfraction kVCT images to the model’s skeletal structures and comparing the subsequent soft tissue deformations of the model with the clinical anatomy. Results: The GPU based framework enabled the model deformation to be performed at 60 frames/s, facilitating simulations of posture changes and physiological regressions at interactive speeds. The soft tissue response was accurate with a R{sup 2} value of >0.98 when compared to ground-truth global and local force deformation analysis. The deformation of the HN anatomy by the model agreed with the clinically observed deformations with an average correlation coefficient of 0.956. For a clinically relevant range of posture and physiological changes, the model deformations stabilized with an uncertainty of less than 0.01 mm. Conclusions: Documenting dose delivery for HN radiotherapy is essential accounting for posture and physiological changes. The biomechanical model discussed in this paper was able to deform in real-time, allowing interactive simulations and visualization of such changes. The model would allow patient specific validations of the DIR method and has the potential to be a significant aid in adaptive radiotherapy techniques.« less

  11. Tissue and cellular biomechanics during corneal wound injury and repair.

    PubMed

    Raghunathan, Vijay Krishna; Thomasy, Sara M; Strøm, Peter; Yañez-Soto, Bernardo; Garland, Shaun P; Sermeno, Jasmyne; Reilly, Christopher M; Murphy, Christopher J

    2017-08-01

    Corneal wound healing is an enormously complex process that requires the simultaneous cellular integration of multiple soluble biochemical cues, as well as cellular responses to the intrinsic chemistry and biophysical attributes associated with the matrix of the wound space. Here, we document how the biomechanics of the corneal stroma are altered through the course of wound repair following keratoablative procedures in rabbits. Further we documented the influence that substrate stiffness has on stromal cell mechanics. Following corneal epithelial debridement, New Zealand white rabbits underwent phototherapeutic keratectomy (PTK) on the right eye (OD). Wound healing was monitored using advanced imaging modalities. Rabbits were euthanized and corneas were harvested at various time points following PTK. Tissues were characterized for biomechanics with atomic force microscopy and with histology to assess inflammation and fibrosis. Factor analysis was performed to determine any discernable patterns in wound healing parameters. The matrix associated with the wound space was stiffest at 7days post PTK. The greatest number of inflammatory cells were observed 3days after wounding. The highest number of myofibroblasts and the greatest degree of fibrosis occurred 21days after wounding. While all clinical parameters returned to normal values 400days after wounding, the elastic modulus remained greater than pre-surgical values. Factor analysis demonstrated dynamic remodeling of stroma occurs between days 10 and 42 during corneal stromal wound repair. Elastic modulus of the anterior corneal stroma is dramatically altered following PTK and its changes coincide initially with the development of edema and inflammation, and later with formation of stromal haze and population of the wound space with myofibroblasts. Factor analysis demonstrates strongest correlation between elastic modulus, myofibroblasts, fibrosis and stromal haze thickness, and between edema and central corneal

  12. The effects of the arm swing on biomechanical and physiological aspects of roller ski skating.

    PubMed

    Hegge, Ann Magdalen; Ettema, Gertjan; de Koning, Jos J; Rognstad, Asgeir Bakken; Hoset, Martin; Sandbakk, Øyvind

    2014-08-01

    This study analyzed the biomechanical and physiological effects of the arm swing in roller ski skating, and compared leg-skating (i.e. ski skating without poles) using a pronounced arm swing (SWING) with leg-skating using locked arms (LOCKED). Sixteen elite male cross-country skiers performed submaximal stages at 10, 15 and 20kmh(-1) on a 2% inclined treadmill in the two techniques. SWING demonstrated higher peak push-off forces and a higher force impulse at all speeds, but a longer cycle length only at the highest speed (all P<.05), indicating a lower force effectiveness with SWING at the two lowest speeds. Additionally, the flexion-extension movement in the lower limbs was more pronounced for SWING. Oxygen uptake was higher for SWING at the two lowest speeds (both P<.05) without any differences in blood lactate. At the highest speed, oxygen uptake did not differ between SWING and LOCKED, but the RER, blood lactate and ventilation were lower with SWING (all P<.05). Taken together, these results demonstrate that utilizing the arm swing in roller ski skating increases the ski forces and aerobic energy cost at low and moderate speeds, whereas the greater forces at high speed lead to a longer cycle length and smaller anaerobic contribution. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. The Clinical Aspects of Mirror Therapy in Rehabilitation: A Systematic Review of the Literature

    ERIC Educational Resources Information Center

    Rothgangel, Andreas Stefan; Braun, Susy M.; Beurskens, Anna J.; Seitz, Rudiger J.; Wade, Derick T.

    2011-01-01

    The objective of this study was to evaluate the clinical aspects of mirror therapy (MT) interventions after stroke, phantom limb pain and complex regional pain syndrome. A systematic literature search of the Cochrane Database of controlled trials, PubMed/MEDLINE, CINAHL, EMBASE, PsycINFO, PEDro, RehabTrials and Rehadat, was made by two…

  14. Fiber Bragg grating applications in biomechanics

    NASA Astrophysics Data System (ADS)

    Kalinowski, Hypolito José

    2008-04-01

    Fibre Bragg gratings are promising sensors for medical and bioengineering applications, mainly because of their small dimensions and chemical inertness. Although few examples of such applications are published up to date, we present results that show the expected potential for FBG sensor applications in biomechanical engineering.

  15. Impact of Myopia on Corneal Biomechanics in Glaucoma and Nonglaucoma Patients.

    PubMed

    Chansangpetch, Sunee; Panpruk, Rawiphan; Manassakorn, Anita; Tantisevi, Visanee; Rojanapongpun, Prin; Hurst, Cameron P; Lin, Shan C

    2017-10-01

    We evaluated the impact of myopia on corneal biomechanical properties in primary open-angle glaucoma (POAG) and nonglaucoma patients, and the effect of modification of glaucoma on myopic eyes. This cross-sectional study included 66 POAG eyes (33 myopia, 33 nonmyopia) and 66 normal eyes (33 myopia, 33 nonmyopia). Seven corneal biomechanical parameters were measured by ultra-high-speed Scheimpflug imaging, including corneal deformation amplitude (CDA), inward/outward corneal applanation length (ICA, OCA), inward/outward corneal velocity (ICV, OCV), radius, and peak distance (PD). Mean age (SD) of the 65 male (49%) and 67 female (51%) patients was 59 (9.82) years. Myopia was associated with significantly higher CDA (adjusted effect = 0.104, P = 0.001) and lower OCV (adjusted effect = -0.105, P < 0.001) in the POAG group. Within the nonglaucoma group, myopic eyes had a significantly lower OCV (adjusted effect = -0.086, P < 0.001) and higher CDA (adjusted effect = 0.079, P = 0.001). All parameters except PD suggested that glaucoma modified the effect of myopia on corneal biomechanics. Percentage differences in the adjusted myopic effect between POAG and nonglaucoma patients was 31.65, 27.27, 31.65, 50.00, 22.09, and 60.49 for CDA, ICA, OCA, ICV, OCV, and radius, respectively. Myopia had a significant impact on corneal biomechanical properties in the POAG and nonglaucoma groups. The differences in corneal biomechanical parameters suggest that myopia is correlated with significantly lower ocular rigidity. POAG may enhance the effects of myopia on most of these parameters.

  16. Impact of Myopia on Corneal Biomechanics in Glaucoma and Nonglaucoma Patients

    PubMed Central

    Panpruk, Rawiphan; Manassakorn, Anita; Tantisevi, Visanee; Rojanapongpun, Prin; Hurst, Cameron P.; Lin, Shan C.

    2017-01-01

    Purpose We evaluated the impact of myopia on corneal biomechanical properties in primary open-angle glaucoma (POAG) and nonglaucoma patients, and the effect of modification of glaucoma on myopic eyes. Methods This cross-sectional study included 66 POAG eyes (33 myopia, 33 nonmyopia) and 66 normal eyes (33 myopia, 33 nonmyopia). Seven corneal biomechanical parameters were measured by ultra-high-speed Scheimpflug imaging, including corneal deformation amplitude (CDA), inward/outward corneal applanation length (ICA, OCA), inward/outward corneal velocity (ICV, OCV), radius, and peak distance (PD). Results Mean age (SD) of the 65 male (49%) and 67 female (51%) patients was 59 (9.82) years. Myopia was associated with significantly higher CDA (adjusted effect = 0.104, P = 0.001) and lower OCV (adjusted effect = −0.105, P < 0.001) in the POAG group. Within the nonglaucoma group, myopic eyes had a significantly lower OCV (adjusted effect = −0.086, P < 0.001) and higher CDA (adjusted effect = 0.079, P = 0.001). All parameters except PD suggested that glaucoma modified the effect of myopia on corneal biomechanics. Percentage differences in the adjusted myopic effect between POAG and nonglaucoma patients was 31.65, 27.27, 31.65, 50.00, 22.09, and 60.49 for CDA, ICA, OCA, ICV, OCV, and radius, respectively. Conclusions Myopia had a significant impact on corneal biomechanical properties in the POAG and nonglaucoma groups. The differences in corneal biomechanical parameters suggest that myopia is correlated with significantly lower ocular rigidity. POAG may enhance the effects of myopia on most of these parameters. PMID:28979996

  17. Biomechanical evaluation of bone screw fixation with a novel bone cement.

    PubMed

    Juvonen, Tiina; Nuutinen, Juha-Pekka; Koistinen, Arto P; Kröger, Heikki; Lappalainen, Reijo

    2015-07-30

    Bone cement augmentation is commonly used to improve the fixation stability of orthopaedic implants in osteoporotic bone. The aim of this study was to evaluate the effect of novel bone cements on the stability of bone screw fixation by biomechanical testing and to compare them with a conventional Simplex(®)P bone cement and requirements of the standards. Basic biomechanical properties were compared with standard tests. Adhesion of bone cements were tested with polished, glass blasted and corundum blasted stainless steel surfaces. Screw pullout testing with/without cement was carried out using a synthetic bone model and cancellous and cortical bone screws. All the tested bone cements fulfilled the requirements of the standard for biomechanical properties and improved the screw fixation stability. Even a threefold increase in shear and tensile strength was achieved with increasing surface roughness. The augmentation improved the screw pullout force compared to fixation without augmentation, 1.2-5.7 times depending on the cement and the screw type. The good biomechanical properties of novel bone cement for osteoporotic bone were confirmed by experimental testing. Medium viscosity of the bone cements allowed easy handling and well-controlled penetration of bone cement into osteoporotic bone. By proper parameters and procedures it is possible to achieve biomechanically stable fixation in osteoporotic bone. Based on this study, novel biostable bone cements are very potential biomaterials to enhance bone screw fixation in osteoporotic bone. Novel bone cement is easy to use without hand mixing using a dual syringe and thus makes it possibility to use it as required during the operation.

  18. Application of biomechanics to tendon transfers.

    PubMed

    Hoard, A S; Bell-Krotoski, J A; Mathews, R

    1995-01-01

    This article has focused on considerations important in the application of biomechanics to tendon transfers and has used an example protocol. Different surgeries require different protocols. What is most important is that specific protocols are used, and that they are both safe and effective. The communication among the therapist, surgeon, and patient is essential with the use of any protocol. As Brand has stated, "A hand is a very personal thing. It is the interface between the patient and his or her world. It is an emblem of strength, beauty, skill, sexuality, and sensibility. When it is damaged it becomes a symbol of the vulnerability of the whole person." For the patient who has damage from nerve palsy, paralysis, or injury resulting in a dysfunctional hand, a tendon transfer procedure may prove to be a viable option to restore balance and function, especially if the biomechanics of deformity and correction are considered.

  19. Biomechanically determined hand force limits protecting the low back during occupational pushing and pulling tasks.

    PubMed

    Weston, Eric B; Aurand, Alexander; Dufour, Jonathan S; Knapik, Gregory G; Marras, William S

    2018-06-01

    Though biomechanically determined guidelines exist for lifting, existing recommendations for pushing and pulling were developed using a psychophysical approach. The current study aimed to establish objective hand force limits based on the results of a biomechanical assessment of the forces on the lumbar spine during occupational pushing and pulling activities. Sixty-two subjects performed pushing and pulling tasks in a laboratory setting. An electromyography-assisted biomechanical model estimated spinal loads, while hand force and turning torque were measured via hand transducers. Mixed modelling techniques correlated spinal load with hand force or torque throughout a wide range of exposures in order to develop biomechanically determined hand force and torque limits. Exertion type, exertion direction, handle height and their interactions significantly influenced dependent measures of spinal load, hand force and turning torque. The biomechanically determined guidelines presented herein are up to 30% lower than comparable psychophysically derived limits and particularly more protective for straight pushing. Practitioner Summary: This study utilises a biomechanical model to develop objective biomechanically determined push/pull risk limits assessed via hand forces and turning torque. These limits can be up to 30% lower than existing psychophysically determined pushing and pulling recommendations. Practitioners should consider implementing these guidelines in both risk assessment and workplace design moving forward.

  20. Biomechanical, anthropometric, and psychological determinants of barbell back squat strength.

    PubMed

    Vigotsky, Andrew D; Bryanton, Megan A; Nuckols, Greg; Beardsley, Chris; Contreras, Bret; Evans, Jessica; Schoenfeld, Brad J

    2018-02-27

    Previous investigations of strength have only focused on biomechanical or psychological determinants, while ignoring the potential interplay and relative contributions of these variables. The purpose of this study was to investigate the relative contributions of biomechanical, anthropometric, and psychological variables to the prediction of maximum parallel barbell back squat strength. Twenty-one college-aged participants (male = 14; female = 7; age = 23 ± 3 years) reported to the laboratory for two visits. The first visit consisted of anthropometric, psychometric, and parallel barbell back squat one-repetition maximum (1RM) testing. On the second visit, participants performed isometric dynamometry testing for the knee, hip, and spinal extensors in a sticking point position-specific manner. Multiple linear regression and correlations were used to investigate the combined and individual relationships between biomechanical, anthropometric, and psychological variables and squat 1RM. Multiple regression revealed only one statistically predictive determinant: fat free mass normalized to height (standardized estimate ± SE = 0.6 ± 0.3; t(16) = 2.28; p = 0.037). Correlation coefficients for individual variables and squat 1RM ranged from r = -0.79-0.83, with biomechanical, anthropometric, experiential, and sex predictors showing the strongest relationships, and psychological variables displaying the weakest relationships. These data suggest that back squat strength in a heterogeneous population is multifactorial and more related to physical rather than psychological variables.

  1. Phase reversal of biomechanical functions and muscle activity in backward pedaling.

    PubMed

    Ting, L H; Kautz, S A; Brown, D A; Zajac, F E

    1999-02-01

    Computer simulations of pedaling have shown that a wide range of pedaling tasks can be performed if each limb has the capability of executing six biomechanical functions, which are arranged into three pairs of alternating antagonistic functions. An Ext/Flex pair accelerates the limb into extension or flexion, a Plant/Dorsi pair accelerates the foot into plantarflexion or dorsiflexion, and an Ant/Post pair accelerates the foot anteriorly or posteriorly relative to the pelvis. Because each biomechanical function (i.e., Ext, Flex, Plant, Dorsi, Ant, or Post) contributes to crank propulsion during a specific region in the cycle, phasing of a muscle is hypothesized to be a consequence of its ability to contribute to one or more of the biomechanical functions. Analysis of electromyogram (EMG) patterns has shown that this biomechanical framework assists in the interpretation of muscle activity in healthy and hemiparetic subjects during forward pedaling. Simulations show that backward pedaling can be produced with a phase shift of 180 degrees in the Ant/Post pair. No phase shifts in the Ext/Flex and Plant/Dorsi pairs are then necessary. To further test whether this simple yet biomechanically viable strategy may be used by the nervous system, EMGs from 7 muscles in 16 subjects were measured during backward as well as forward pedaling. As predicted, phasing in vastus medialis (VM), tibialis anterior (TA), medial gastrocnemius (MG), and soleus (SL) were unaffected by pedaling direction, with VM and SL contributing to Ext, MG to Plant, and TA to Dorsi. In contrast, phasing in biceps femoris (BF) and semimembranosus (SM) were affected by pedaling direction, as predicted, compatible with their contribution to the directionally sensitive Post function. Phasing of rectus femoris (RF) was also affected by pedaling direction; however, its ability to contribute to the directionally sensitive Ant function may only be expressed in forward pedaling. RF also contributed significantly to

  2. Simulated parallel annealing within a neighborhood for optimization of biomechanical systems.

    PubMed

    Higginson, J S; Neptune, R R; Anderson, F C

    2005-09-01

    Optimization problems for biomechanical systems have become extremely complex. Simulated annealing (SA) algorithms have performed well in a variety of test problems and biomechanical applications; however, despite advances in computer speed, convergence to optimal solutions for systems of even moderate complexity has remained prohibitive. The objective of this study was to develop a portable parallel version of a SA algorithm for solving optimization problems in biomechanics. The algorithm for simulated parallel annealing within a neighborhood (SPAN) was designed to minimize interprocessor communication time and closely retain the heuristics of the serial SA algorithm. The computational speed of the SPAN algorithm scaled linearly with the number of processors on different computer platforms for a simple quadratic test problem and for a more complex forward dynamic simulation of human pedaling.

  3. Biomechanical consequences of subtalar joint arthroereisis in treating posterior tibial tendon dysfunction: a theoretical analysis using finite element analysis.

    PubMed

    Wong, Duo Wai-Chi; Wang, Yan; Chen, Tony Lin-Wei; Leung, Aaron Kam-Lun; Zhang, Ming

    2017-11-01

    Subtalar joint arthroereisis (SJA) has been introduced to control the hyperpronation in cases of flatfoot. The objective of this study is to evaluate the biomechanical consequence of SJA to restore the internal stress and load transfer to the intact state from the attenuated biomechanical condition induced by posterior tibial tendon dysfunction (PTTD). A three-dimensional finite element model of the foot and ankle complex was constructed based on clinical images of a healthy female (age 28 years, height 165 cm, body mass 54 kg). The boundary and loading condition during walking was acquired from the gait experiment of the model subject. Five sets of simulations (conditions) were completed: intact condition, mild PTTD, severe PTTD, mild PTTD with SJA, severe PTTD with SJA. The maximum von Mises stress of the metatarsal shafts and the load transfer along the midfoot during stance were analyzed. Generally, SJA deteriorated the joint force of the medial cuneonavicular and calcaneocuboid joints during late stance, while that of the metatarsocuneiform joints during early stance were over-corrected. Only the calcaneocuboid joint force at 45% stance demonstrated a trend of improvement. Besides, SJA exaggerated the increased stress of the metatarsals compared to the PTTD conditions, except that of the first metatarsal. Our study did not support the hypothesis that SJA can restore the internal load transfer and midfoot stress. SJA cannot compensate the salvage of midfoot stability attributed by PTTD and could be biomechanically insufficient to restore the biomechanical environment. Additional procedures such as orthotic intervention may be necessary.

  4. Biomechanical Changes in the Sclera of Monkey Eyes Exposed to Chronic IOP Elevations

    PubMed Central

    Girard, Michaël J. A.; Suh, J.-K. Francis; Bottlang, Michael; Burgoyne, Claude F.

    2011-01-01

    Purpose. To characterize scleral biomechanics in both eyes of eight monkeys in which chronic intraocular pressure (IOP) elevation was induced in one eye. Methods. Each posterior sclera was mounted on a pressurization apparatus, IOP was elevated from 5 to 45 mm Hg while the 3D displacements of the scleral surface were measured by speckle interferometry. Finite element (FE) models of each scleral shell were constructed that incorporated stretch-induced stiffening and multidirectionality of the collagen fibers. FE model predictions were then iteratively matched to experimental displacements to extract unique sets of scleral biomechanical properties. Results. For all eyes, the posterior sclera exhibited inhomogeneous, anisotropic, nonlinear biomechanical behavior. Biomechanical changes caused by chronic IOP elevation were complex and specific to each subject. Specifically: (1) Glaucomatous eyes in which the contralateral normal eyes displayed large modulus or thickness were less prone to biomechanical changes; (2) glaucomatous scleral modulus associated with an IOP of 10 mm Hg decreased (when compared with that of the contralateral normal) after minimal chronic IOP elevation; (3) glaucomatous scleral modulus associated with IOPs of 30 and 45 mm Hg increased (when compared with that of the contralateral normal) after moderate IOP elevation; and (4) FE-based estimates of collagen fiber orientation demonstrated no change in the glaucomatous eyes. Conclusions. Significant stiffening of the sclera follows exposure to moderate IOP elevations in most eyes. Scleral hypercompliance may precede stiffening or be a unique response to minimal chronic IOP elevation in some eyes. These biomechanical changes are likely to be the result of scleral extracellular matrix remodeling. PMID:21519033

  5. New Directions in Assessment: Biomechanical Development.

    ERIC Educational Resources Information Center

    Fortney, Virginia

    Biomechanical analysis of human movement seeks to relate observable motions or configurations of the body to the forces that act to produce those motions or maintain those configurations. These are identified as force-motion relationships. In assessing force-motion relationships in children's movement, the process type assessment, Ohio State…

  6. Methodological aspects of clinical trials in tinnitus: A proposal for an international standard

    PubMed Central

    Landgrebe, Michael; Azevedo, Andréia; Baguley, David; Bauer, Carol; Cacace, Anthony; Coelho, Claudia; Dornhoffer, John; Figueiredo, Ricardo; Flor, Herta; Hajak, Goeran; van de Heyning, Paul; Hiller, Wolfgang; Khedr, Eman; Kleinjung, Tobias; Koller, Michael; Lainez, Jose Miguel; Londero, Alain; Martin, William H.; Mennemeier, Mark; Piccirillo, Jay; De Ridder, Dirk; Rupprecht, Rainer; Searchfield, Grant; Vanneste, Sven; Zeman, Florian; Langguth, Berthold

    2013-01-01

    Chronic tinnitus is a common condition with a high burden of disease. While many different treatments are used in clinical practice, the evidence for the efficacy of these treatments is low and the variance of treatment response between individuals is high. This is most likely due to the great heterogeneity of tinnitus with respect to clinical features as well as underlying pathophysiological mechanisms. There is a clear need to find effective treatment options in tinnitus, however, clinical trials differ substantially with respect to methodological quality and design. Consequently, the conclusions that can be derived from these studies are limited and jeopardize comparison between studies. Here, we discuss our view of the most important aspects of trial design in clinical studies in tinnitus and make suggestions for an international methodological standard in tinnitus trials. We hope that the proposed methodological standard will stimulate scientific discussion and will help to improve the quality of trials in tinnitus. PMID:22789414

  7. Optical spectroscopic characterization of human meniscus biomechanical properties

    NASA Astrophysics Data System (ADS)

    Ala-Myllymäki, Juho; Danso, Elvis K.; Honkanen, Juuso T. J.; Korhonen, Rami K.; Töyräs, Juha; Afara, Isaac O.

    2017-12-01

    This study investigates the capacity of optical spectroscopy in the visible (VIS) and near-infrared (NIR) spectral ranges for estimating the biomechanical properties of human meniscus. Seventy-two samples obtained from the anterior, central, and posterior locations of the medial and lateral menisci of 12 human cadaver joints were used. The samples were subjected to mechanical indentation, then traditional biomechanical parameters (equilibrium and dynamic moduli) were calculated. In addition, strain-dependent fibril network modulus and permeability strain-dependency coefficient were determined via finite-element modeling. Subsequently, absorption spectra were acquired from each location in the VIS (400 to 750 nm) and NIR (750 to 1100 nm) spectral ranges. Partial least squares regression, combined with spectral preprocessing and transformation, was then used to investigate the relationship between the biomechanical properties and spectral response. The NIR spectral region was observed to be optimal for model development (83.0%≤R2≤90.8%). The percentage error of the models are: Eeq (7.1%), Edyn (9.6%), Eɛ (8.4%), and Mk (8.9%). Thus, we conclude that optical spectroscopy in the NIR range is a potential method for rapid and nondestructive evaluation of human meniscus functional integrity and health in real time during arthroscopic surgery.

  8. Biomechanics of the press-fit phenomenon in dental implantology: an image-based finite element analysis.

    PubMed

    Frisardi, Gianni; Barone, Sandro; Razionale, Armando V; Paoli, Alessandro; Frisardi, Flavio; Tullio, Antonio; Lumbau, Aurea; Chessa, Giacomo

    2012-05-29

    A fundamental pre-requisite for the clinical success in dental implant surgery is the fast and stable implant osseointegration. The press-fit phenomenon occurring at implant insertion induces biomechanical effects in the bone tissues, which ensure implant primary stability. In the field of dental surgery, the understanding of the key factors governing the osseointegration process still remains of utmost importance. A thorough analysis of the biomechanics of dental implantology requires a detailed knowledge of bone mechanical properties as well as an accurate definition of the jaw bone geometry. In this work, a CT image-based approach, combined with the Finite Element Method (FEM), has been used to investigate the effect of the drill size on the biomechanics of the dental implant technique. A very accurate model of the human mandible bone segment has been created by processing high resolution micro-CT image data. The press-fit phenomenon has been simulated by FE analyses for different common drill diameters (DA=2.8 mm, DB=3.3 mm, and DC=3.8 mm) with depth L=12 mm. A virtual implant model has been assumed with a cylindrical geometry having height L=11 mm and diameter D=4 mm. The maximum stresses calculated for drill diameters DA, DB and DC have been 12.31 GPa, 7.74 GPa and 4.52 GPa, respectively. High strain values have been measured in the cortical area for the models of diameters DA and DB, while a uniform distribution has been observed for the model of diameter DC . The maximum logarithmic strains, calculated in nonlinear analyses, have been ϵ=2.46, 0.51 and 0.49 for the three models, respectively. This study introduces a very powerful, accurate and non-destructive methodology for investigating the effect of the drill size on the biomechanics of the dental implant technique.Further studies could aim at understanding how different drill shapes can determine the optimal press-fit condition with an equally distributed preload on both the cortical

  9. Biomechanical pulping : a mill-scale evaluation

    Treesearch

    Masood Akhtar; Gary M. Scott; Ross E. Swaney; Mike J. Lentz; Eric G. Horn; Marguerite S. Sykes; Gary C. Myers

    1999-01-01

    Mechanical pulping process is electrical energy intensive and results in low paper strength. Biomechanical pulping, defined as the fungal treatment of lignocellulosic materials prior to mechanical pulping, has shown at least 30% savings in electrical energy consumption, and significant improvements in paper strength properties compared to the control at a laboratory...

  10. Scapholunate Interosseous Ligament Anatomy and Biomechanics.

    PubMed

    Rajan, Prashant V; Day, Charles S

    2015-08-01

    Injury to the scapholunate interosseous ligament is one of the most common causes of carpal instability and can impart considerable compromise to the patient's hand function. However, the management of scapholunate ligament injuries remains a dynamic concept, especially with regard to the multitude of options and techniques that exist for its surgical treatment. We present a thorough review of scapholunate anatomy and morphology, and the role of the scapholunate articulations in the kinetics and pathomechanics of wrist instability. We also review the current literature on the biomechanical properties of the scapholunate ligament and its subcomponents. A sound understanding of the anatomy and biomechanics of the scapholunate ligament can clarify its instability and may better orient current reconstructive procedures or pioneer better future techniques. Copyright © 2015 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.

  11. Medical and Scientific Aspects of Cycling.

    ERIC Educational Resources Information Center

    Burke, Edmund R., Ed.; Newsom, Mary M., Ed.

    The 24 contributions to this volume were written by coaches, sport scientists, and medical authorities who surveyed recent research on biomechanics, physiology, psychology, nutrition, treatment of injuries, and training techniques for cyclists. There are four sections: (1) biomechanics and physiology; (2) research: techniques and results; (3)…

  12. Biomechanical reposition techniques in anterior shoulder dislocation: a randomised multicentre clinical trial— the BRASD-trial protocol

    PubMed Central

    Roetman, Martijn H; Boeije, Tom; Roodheuvel, Floris; Mullaart-Jansen, Nieke; Peeters, Suzanne; Burg, Mike D

    2017-01-01

    Introduction Glenohumeral (shoulder) dislocations are the most common large joint dislocations seen in the emergency department (ED). They cause pain, often severe, and require timely interventions to minimise discomfort and tissue damage. Commonly used reposition or relocation techniques often involve traction and/or leverage. These techniques have high success rates but may be painful and time consuming. They may also cause complications. Recently, other techniques—the biomechanical reposition techniques (BRTs)—have become more popular since they may cause less pain, require less time and cause fewer complications. To our knowledge, no research exists comparing the various BRTs. Our objective is to establish which BRT or BRT combination is fastest, least painful and associated with the lowest complication rate for adult ED patients with anterior glenohumeral dislocations (AGDs). Methods and analysis Adults presenting to the participating EDs with isolated AGDs, as determined by radiographs, will be randomised to one of three BRTs: Cunningham, modified Milch or scapular manipulation. Main study parameters/endpoints are ED length of stay and patients’ self-report of pain. Secondary study parameters/endpoints are procedure times, need for analgesic and/or sedative medications, iatrogenic complications and rates of successful reduction. Ethics and dissemination Non-biomechanical AGD repositioning techniques based on traction and/or leverage are inherently painful and potentially harmful. We believe that the three BRTs used in this study are more physiological, more patient friendly, less likely to cause pain, more time efficient and less likely to produce complications. By comparing these three techniques, we hope to improve the care provided to adults with acute AGDs by reducing their ED length of stay and minimising pain and procedure-related complications. We also hope to define which of the three BRTs is quickest, most likely to be successful and least

  13. Are Cranial Biomechanical Simulation Data Linked to Known Diets in Extant Taxa? A Method for Applying Diet-Biomechanics Linkage Models to Infer Feeding Capability of Extinct Species

    PubMed Central

    Tseng, Zhijie Jack; Flynn, John J.

    2015-01-01

    Performance of the masticatory system directly influences feeding and survival, so adaptive hypotheses often are proposed to explain craniodental evolution via functional morphology changes. However, the prevalence of “many-to-one” association of cranial forms and functions in vertebrates suggests a complex interplay of ecological and evolutionary histories, resulting in redundant morphology-diet linkages. Here we examine the link between cranial biomechanical properties for taxa with different dietary preferences in crown clade Carnivora, the most diverse clade of carnivorous mammals. We test whether hypercarnivores and generalists can be distinguished based on cranial mechanical simulation models, and how such diet-biomechanics linkages relate to morphology. Comparative finite element and geometric morphometrics analyses document that predicted bite force is positively allometric relative to skull strain energy; this is achieved in part by increased stiffness in larger skull models and shape changes that resist deformation and displacement. Size-standardized strain energy levels do not reflect feeding preferences; instead, caniform models have higher strain energy than feliform models. This caniform-feliform split is reinforced by a sensitivity analysis using published models for six additional taxa. Nevertheless, combined bite force-strain energy curves distinguish hypercarnivorous versus generalist feeders. These findings indicate that the link between cranial biomechanical properties and carnivoran feeding preference can be clearly defined and characterized, despite phylogenetic and allometric effects. Application of this diet-biomechanics linkage model to an analysis of an extinct stem carnivoramorphan and an outgroup creodont species provides biomechanical evidence for the evolution of taxa into distinct hypercarnivorous and generalist feeding styles prior to the appearance of crown carnivoran clades with similar feeding preferences. PMID:25923776

  14. Leprosy: review of the epidemiological, clinical, and etiopathogenic aspects - Part 1*

    PubMed Central

    Lastória, Joel Carlos; de Abreu, Marilda Aparecida Milanez Morgado

    2014-01-01

    Leprosy is caused by Mycobacterium leprae and has been known since biblical times. It is still endemic in many regions of the world and a public health problem in Brazil. The prevalence rate in 2011 reached 1.54 cases per 10,000 inhabitants in Brazil. The mechanism of transmission of leprosy consists of prolonged close contact between susceptible and genetically predisposed individuals and untreated multibacillary patients. Transmission occurs through inhalation of bacilli present in upper airway secretion. The nasal mucosa is the main entry or exit route of M. leprae. The deeper understanding of the structural and biological characteristics of M. leprae, the sequencing of its genome, along with the advances in understanding the mechanisms of host immune response against the bacilli, dependent on genetic susceptibility, have contributed to the understanding of the pathogenesis, variations in the clinical characteristics, and progression of the disease. This article aims to update dermatologist on epidemiological, clinical, and etiopathogenic leprosy aspects. PMID:24770495

  15. Hip Biomechanics Are Altered in Male Runners with Achilles Tendinopathy.

    PubMed

    Creaby, Mark W; Honeywill, Conor; Franettovich Smith, Melinda M; Schache, Anthony G; Crossley, Kay M

    2017-03-01

    Achilles tendinopathy (AT) is a prevalent injury in running sports. Understanding the biomechanical factors associated with AT will assist in its management and prevention. The purpose of this study was to compare hip and ankle kinematics and kinetics in runners with and without AT. Fourteen male runners with AT and 11 healthy male runners (CTRL) ran over ground while lower-limb joint motion and ground reaction force data were synchronously captured. Hip and ankle joint angles, moments, and impulses in all three planes (sagittal, transverse, and frontal) were extracted for analysis. Independent t-tests were used to compare the differences between the AT and the CTRL groups for the biomechanical variables of interest. After Bonferroni adjustment, an alpha level of 0.0026 was set for all analyses. The AT group exhibited an increased peak hip external rotation moment (P = 0.001), hip external rotation impulse (P < 0.001), and hip adduction impulse (P < 0.001) compared with the CTRL group. No significant differences in ankle biomechanics were observed. This study presents preliminary evidence indicating that male runners with AT display altered hip biomechanics with respect to their healthy counterparts. Because of the retrospective design of the study, it is unknown whether these alterations are a predisposing factor for the disorder, a result of the condition, or a combination of both. The results of this study suggest that optimizing hip joint function should be considered in the rehabilitation of runners with AT.

  16. Biomechanical Properties of a Novel Biodegradable Magnesium-Based Interference Screw

    PubMed Central

    Ezechieli, Marco; Meyer, Hanna; Lucas, Arne; Helmecke, Patrick; Becher, Christoph; Calliess, Tilman; Windhagen, Henning; Ettinger, Max

    2016-01-01

    Magnesium-based interference screws may be an alternative in anterior/posterior cruciate ligament reconstruction. The well-known osteoconductive effects of biodegradable magnesium alloys may be useful. It was the purpose of this study to evaluate the biomechanical properties of a magnesium based interference screw and compare it to a standard implant. A MgYREZr-alloy interference screw and a standard implant (Milagro®; De Puy Mitek, Raynham, MA, USA) were used for graft fixation. Specimens were placed into a tensile loading fixation of a servohydraulic testing machine. Biomechanical analysis included pretensioning of the constructs at 20 N for 1 min following cyclic pretensioning of 20 cycles between 20 and 60 N. Biomechanical elongation was evaluated with cyclic loading of 1000 cycles between 50 and 200 N at 0.5 Hz. Maximum load to failure was 511.3±66.5 N for the Milagro® screw and 529.0±63.3 N for magnesium-based screw (ns, P=0.57). Elongations after preload, during cyclical loading and during failure load were not different between the groups (ns, P>0.05). Stiffness was 121.1±13.8 N/mm for the magnesium-based screw and 144.1±18.4 for the Milagro® screw (ns, P=0.32). MgYREZr alloy interference screws show comparable results in biomechanical testing to standard implants and may be an alternative for anterior cruciate reconstruction in the future. PMID:27433303

  17. Walking on water: the biomechanics of Michael A. MacConaill (1902-1987).

    PubMed

    Prendergast, P J; Lee, T C

    2006-01-01

    Biomechanics is a subject that draws on knowledge from many disciplines. One of its great practitioners in the last century was the Irish anatomist M.A. MacConaill. In this paper, we review some of MacConaill's fundamental contributions to biomechanics, namely: the hydrodynamic theory of synovial joint lubrication, the kinematics of joint motion and conjunct rotations; and the theory of spurt and shunt muscles. The aim is to revisit these topics in the light of current research, and to draw some conclusions about the import of his research in the context of recent developments in the field. The paper concludes with a discussion of science in Ireland, the development of the field of biomechanics since MacConaill's time, and some other matters.

  18. Single-row versus double-row repair of the distal Achilles tendon: a biomechanical comparison.

    PubMed

    Pilson, Holly; Brown, Philip; Stitzel, Joel; Scott, Aaron

    2012-01-01

    Surgery for recalcitrant insertional Achilles tendinopathy often consists of partial or total release of the insertion site, debridement of the diseased portion of the tendon, calcaneal ostectomy, and reattachment of the Achilles to the calcaneus. Although single-row and double-row techniques exist for repair of the detached Achilles tendon, biomechanical data are lacking to support one technique over the other. Based on data extrapolated from the study of rotator cuff repairs, we hypothesized that a double-row construct would provide superior fixation strength over a single-row repair. Eighteen human cadaveric Achilles tendons (9 matched pairs) with attached calcanei were repaired with single-row or double-row techniques. Specimens were mounted in a servohydraulic materials testing machine, subjected to a preconditioning cycle, and loaded to failure. Failure was defined as suture breakage or pullout, midsubstance tendon rupture, or anchor pullout. Among the failures were 12 suture failures, 5 proximal-row anchor failures, and 1 distal-row anchor failure. No midsubstance tendon ruptures or testing apparatus failures were observed. There were no statistically significant differences in the peak load to failure between the single-row and double-row repairs (p = .46). Similarly, no significant differences were observed with regards to mean energy expenditure to failure (p = .069). The present study demonstrated no biomechanical advantages of the double-row repair over a single-row repair. Despite the lack of a clear biomechanical advantage, there may exist clinical advantages of a double-row repair, such as reduction in knot prominence and restoration of the Achilles footprint. Copyright © 2012 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.

  19. Biomechanics of the Sensor–Tissue Interface—Effects of Motion, Pressure, and Design on Sensor Performance and Foreign Body Response—Part II: Examples and Application

    PubMed Central

    Helton, Kristen L; Ratner, Buddy D; Wisniewski, Natalie A

    2011-01-01

    This article is the second part of a two-part review in which we explore the biomechanics of the sensor–tissue interface as an important aspect of continuous glucose sensor biocompatibility. Part I, featured in this issue of Journal of Diabetes Science and Technology, describes a theoretical framework of how biomechanical factors such as motion and pressure (typically micromotion and micropressure) affect tissue physiology around a sensor and in turn, impact sensor performance. Here in Part II, a literature review is presented that summarizes examples of motion or pressure affecting sensor performance. Data are presented that show how both acute and chronic forces can impact continuous glucose monitor signals. Also presented are potential strategies for countering the ill effects of motion and pressure on glucose sensors. Improved engineering and optimized chemical biocompatibility have advanced sensor design and function, but we believe that mechanical biocompatibility, a rarely considered factor, must also be optimized in order to achieve an accurate, long-term, implantable sensor. PMID:21722579

  20. Biomechanical analysis on stent materials used as cardiovascular implants

    NASA Astrophysics Data System (ADS)

    Kumar, Vasantha; Ramesha, C. M.; Sajjan, Sudheer S.

    2018-04-01

    Atherosclerosis is the most common cause of death in the world, accounting for 48% of all deaths in the world. Atherosclerosis, also known as coronary artery disease occurs when excess cholesterol attaches itself to the walls of blood vessels. Coronary stent implantation is one of the most important procedures to treating coronary artery disease such atherosclerosis. Due to its efficiency, flexibility and simplicity, the use of coronary stents procedures has increased rapidly. In order to have better output of stent implantation, it is needed to study and analyze the biomechanical behavior of this device before manufacturing and put into use. Biomaterials are commonly used for medical application in cardiovascular stent implantation. A biomaterial is a non-viable material used as medical implant, so it is intended to interact with biological system. In this paper, an explicit dynamic analysis is used for analyzing the biomechanical behavior of cardiovascular stent by using finite element analysis tool, ABAQUS 6.10. Results showed that a best suitable biomaterial for cardiovascular stent implants, which exhibits an outstanding biocompatibility and biomechanical characteristics will be aimed at which will be quite useful to the human beings worldwide.

  1. Cell biomechanics and its applications in human disease diagnosis

    NASA Astrophysics Data System (ADS)

    Nematbakhsh, Yasaman; Lim, Chwee Teck

    2015-04-01

    Certain diseases are known to cause changes in the physical and biomechanical properties of cells. These include cancer, malaria, and sickle cell anemia among others. Typically, such physical property changes can result in several fold increases or decreases in cell stiffness, which are significant and can result in severe pathology and eventual catastrophic breakdown of the bodily functions. While there are developed biochemical and biological assays to detect the onset or presence of diseases, there is always a need to develop more rapid, precise, and sensitive methods to detect and diagnose diseases. Biomechanical property changes can play a significant role in this regard. As such, research into disease biomechanics can not only give us an in-depth knowledge of the mechanisms underlying disease progression, but can also serve as a powerful tool for detection and diagnosis. This article provides some insights into opportunities for how significant changes in cellular mechanical properties during onset or progression of a disease can be utilized as useful means for detection and diagnosis. We will also showcase several technologies that have already been developed to perform such detection and diagnosis.

  2. High-performance spider webs: integrating biomechanics, ecology and behaviour

    PubMed Central

    Harmer, Aaron M. T.; Blackledge, Todd A.; Madin, Joshua S.; Herberstein, Marie E.

    2011-01-01

    Spider silks exhibit remarkable properties, surpassing most natural and synthetic materials in both strength and toughness. Orb-web spider dragline silk is the focus of intense research by material scientists attempting to mimic these naturally produced fibres. However, biomechanical research on spider silks is often removed from the context of web ecology and spider foraging behaviour. Similarly, evolutionary and ecological research on spiders rarely considers the significance of silk properties. Here, we highlight the critical need to integrate biomechanical and ecological perspectives on spider silks to generate a better understanding of (i) how silk biomechanics and web architectures interacted to influence spider web evolution along different structural pathways, and (ii) how silks function in an ecological context, which may identify novel silk applications. An integrative, mechanistic approach to understanding silk and web function, as well as the selective pressures driving their evolution, will help uncover the potential impacts of environmental change and species invasions (of both spiders and prey) on spider success. Integrating these fields will also allow us to take advantage of the remarkable properties of spider silks, expanding the range of possible silk applications from single threads to two- and three-dimensional thread networks. PMID:21036911

  3. Efficacy of a biomechanically-based yoga exercise program in knee osteoarthritis: A randomized controlled trial

    PubMed Central

    Kuntz, Alexander B.; Chopp-Hurley, Jaclyn N.; Brenneman, Elora C.; Karampatos, Sarah; Wiebenga, Emily G.; Adachi, Jonathan D.; Noseworthy, Michael D.

    2018-01-01

    Objective Certain exercises could overload the osteoarthritic knee. We developed an exercise program from yoga postures with a minimal knee adduction moment for knee osteoarthritis. The purpose was to compare the effectiveness of this biomechanically-based yoga exercise (YE), with traditional exercise (TE), and a no-exercise attention-equivalent control (NE) for improving pain, self-reported physical function and mobility performance in women with knee osteoarthritis. Design Single-blind, three-arm randomized controlled trial. Setting Community in Southwestern Ontario, Canada. Participants A convenience sample of 31 women with symptomatic knee osteoarthritis was recruited through rheumatology, orthopaedic and physiotherapy clinics, newspapers and word-of-mouth. Interventions Participants were stratified by disease severity and randomly allocated to one of three 12-week, supervised interventions. YE included biomechanically-based yoga exercises; TE included traditional leg strengthening on machines; and NE included meditation with no exercise. Participants were asked to attend three 1-hour group classes/sessions each week. Measurements Primary outcomes were pain, self-reported physical function and mobility performance. Secondary outcomes were knee strength, depression, and health-related quality of life. All were assessed by a blinded assessor at baseline and immediately following the intervention. Results The YE group demonstrated greater improvements in KOOS pain (mean difference of 22.9 [95% CI, 6.9 to 38.8; p = 0.003]), intermittent pain (mean difference of -19.6 [95% CI, -34.8 to -4.4; p = 0.009]) and self-reported physical function (mean difference of 17.2 [95% CI, 5.2 to 29.2; p = 0.003]) compared to NE. Improvements in these outcomes were similar between YE and TE. However, TE demonstrated a greater improvement in knee flexor strength compared to YE (mean difference of 0.1 [95% CI, 0.1 to 0.2]. Improvements from baseline to follow-up were present in quality

  4. Kinematic and fatigue biomechanics of an interpositional facet arthroplasty device.

    PubMed

    Dahl, Michael C; Freeman, Andrew L

    2016-04-01

    Although approximately 30% of chronic lumbar pain can be attributed to the facets, limited surgical options exist for patients. Interpositional facet arthroplasty (IFA) is a novel treatment for lumbar facetogenic pain designed to provide patients who gain insufficient relief from medical interventional treatment options with long-term relief, filling a void in the facet pain treatment continuum. This study aimed to quantify the effect of IFA on segmental range of motion (ROM) compared with the intact state, and to observe device position and condition after 10,000 cycles of worst-case loading. In situ biomechanical analysis of the lumbar spine following implantation of a novel IFA device was carried out. Twelve cadaveric functional spinal units (L2-L3 and L5-S1) were tested in 7.5 Nm flexion-extension, lateral bending, and torsion while intact and following device implantation. Additionally, specimens underwent 10,000 cycles of worst-case complex loading and were testing in ROM again. Load-displacement and fluoroscopic data were analyzed to determine ROM and to evaluate device position during cyclic testing. Devices and facets were evaluated post testing. Institutional support for implant evaluation was received by Zyga Technology. Range of motion post implantation decreased versus intact, and then was restored post cyclic-testing. Of the tested devices, 6.5% displayed slight movement (0.5-2 mm), all from tight L2-L3 facet joints with misplaced devices or insufficient cartilage. No damage was observed on the devices, and wear patterns were primarily linear. The results from this in situ cadaveric biomechanics and cyclic fatigue study demonstrate that a low-profile, conformable IFA device can maintain position and facet functionality post implantation and through 10,000 complex loading cycles. In vivo conditions were not accounted for in this model, which may affect implant behavior not predictable via a biomechanical study. However, these data along with

  5. Tape Versus Suture in Arthroscopic Rotator Cuff Repair: Biomechanical Analysis and Assessment of Failure Rates at 6 Months

    PubMed Central

    Liu, Rui Wen; Lam, Patrick Hong; Shepherd, Henry M.; Murrell, George A. C.

    2017-01-01

    Background: Rotator cuff retears after surgical repair are associated with poorer subjective and objectives clinical outcomes than intact repairs. Purpose: The aims of this study were to (1) examine the biomechanical differences between rotator cuff repair using No. 2 suture and tape in an ovine model and (2) compare early clinical outcomes between patients who had rotator cuff repair with tape and patients who had repair with No. 2 suture. Study Design: Controlled laboratory study and cohort study; Level of evidence, 3. Methods: Biomechanical testing of footprint contact pressure and load to failure were conducted with 16 ovine shoulders using a tension band repair technique with 2 different types of sutures (No. 2 suture [FiberWire; Arthrex] and tape [FiberTape; Arthrex]) with the same knotless anchor system. A retrospective study of 150 consecutive patients (tape, n = 50; suture, n = 100) who underwent arthroscopic rotator cuff repair by a single surgeon with tear size larger than 1.5 × 1 cm was conducted. Ultrasound was used to evaluate the repair integrity at 6 months postsurgery. Results: Rotator cuff repair using tape had greater footprint contact pressure (mean ± standard error of the mean, 0.33 ± 0.03 vs 0.11 ± 0.3 MPa; P < .0001) compared with repair using No. 2 sutures at 0° abduction with a 30-N load applied across the repaired tendon. The ultimate failure load of the tape repair was greater than that for suture repair (217 ± 28 vs 144 ± 14 N; P < .05). The retear rate was similar between the tape (16%; 8/50) and suture groups (17%; 17/100). Conclusion: Rotator cuff repair with the wider tape compared with No. 2 suture did not affect the retear rate at 6 months postsurgery, despite having superior biomechanical properties. PMID:28451619

  6. Analysis of occupational stress in a high fashion clothing factory with upper limb biomechanical overload.

    PubMed

    Forcella, Laura; Bonfiglioli, Roberta; Cutilli, Piero; Siciliano, Eugenio; Di Donato, Angela; Di Nicola, Marta; Antonucci, Andrea; Di Giampaolo, Luca; Boscolo, Paolo; Violante, Francesco Saverio

    2012-07-01

    To study job stress and upper limb biomechanical overload due to repetitive and forceful manual activities in a factory producing high fashion clothing. A total of 518 workers (433 women and 85 men) were investigated to determine anxiety, occupational stress (using the Italian version of the Karasek Job Content Questionnaire) and perception of symptoms (using the Italian version of the Somatization scale of Symptom Checklist SCL-90). Biomechanical overload was analyzed using the OCRA Check list. Biomechanical assessment did not reveal high-risk jobs, except for cutting. Although the perception of anxiety and job insecurity was within the normal range, all the workers showed a high level of job strain (correlated with the perception of symptoms) due to very low decision latitude. Occupational stress resulted partially in line with biomechanical risk factors; however, the perception of low decision latitude seems to play a major role in determining job strain. Interactions between physical and psychological factors cannot be demonstrated. Anyway, simultaneous long-term monitoring of occupational stress features and biomechanical overload could guide workplace interventions aimed at reducing the risk of adverse health effects.

  7. Methodological factors affecting joint moments estimation in clinical gait analysis: a systematic review.

    PubMed

    Camomilla, Valentina; Cereatti, Andrea; Cutti, Andrea Giovanni; Fantozzi, Silvia; Stagni, Rita; Vannozzi, Giuseppe

    2017-08-18

    Quantitative gait analysis can provide a description of joint kinematics and dynamics, and it is recognized as a clinically useful tool for functional assessment, diagnosis and intervention planning. Clinically interpretable parameters are estimated from quantitative measures (i.e. ground reaction forces, skin marker trajectories, etc.) through biomechanical modelling. In particular, the estimation of joint moments during motion is grounded on several modelling assumptions: (1) body segmental and joint kinematics is derived from the trajectories of markers and by modelling the human body as a kinematic chain; (2) joint resultant (net) loads are, usually, derived from force plate measurements through a model of segmental dynamics. Therefore, both measurement errors and modelling assumptions can affect the results, to an extent that also depends on the characteristics of the motor task analysed (i.e. gait speed). Errors affecting the trajectories of joint centres, the orientation of joint functional axes, the joint angular velocities, the accuracy of inertial parameters and force measurements (concurring to the definition of the dynamic model), can weigh differently in the estimation of clinically interpretable joint moments. Numerous studies addressed all these methodological aspects separately, but a critical analysis of how these aspects may affect the clinical interpretation of joint dynamics is still missing. This article aims at filling this gap through a systematic review of the literature, conducted on Web of Science, Scopus and PubMed. The final objective is hence to provide clear take-home messages to guide laboratories in the estimation of joint moments for the clinical practice.

  8. Proximal Hamstring Tendinopathy: Clinical Aspects of Assessment and Management.

    PubMed

    Goom, Thomas S H; Malliaras, Peter; Reiman, Michael P; Purdam, Craig R

    2016-06-01

    Synopsis Proximal hamstring tendinopathy (PHT) typically manifests as deep buttock pain at the hamstring common origin. Both athletic and nonathletic populations are affected by PHT. Pain and dysfunction are often long-standing and limit sporting and daily functions. There is limited evidence regarding diagnosis, assessment, and management; for example, there are no randomized controlled trials investigating rehabilitation of PHT. Some of the principles of management established in, for example, Achilles and patellar tendinopathy would appear to apply to PHT but are not as well documented. This narrative review and commentary will highlight clinical aspects of assessment and management of PHT, drawing on the available evidence and current principles of managing painful tendinopathy. The management outline presented aims to guide clinicians as well as future research. J Orthop Sports Phys Ther 2016;46(6):483-493. Epub 15 Apr 2016. doi:10.2519/jospt.2016.5986.

  9. Biomechanical Concepts for the Physical Educator

    ERIC Educational Resources Information Center

    Strohmeyer, H. Scott

    2004-01-01

    The concepts and principles of biomechanics are familiar to the teacher of physical science as well as to the physical educator. The difference between the two instructors, however, is that one knows the language of science and the other provides an experientially rich environment to support acquisition of these concepts and principles. Use of…

  10. Biomechanics and strain mapping in bone as related to immediately-loaded dental implants

    PubMed Central

    Du, Jing; Lee, Jihyun; Jang, Andrew; Gu, Allen; Hossaini-Zadeh, Mehran; Prevost, Richard; Curtis, Don; Ho, Sunita

    2015-01-01

    The effects of alveolar bone socket geometry and bone-implant contact on implant biomechanics, and resulting strain distributions in bone were investigated. Following extraction of lateral incisors on a cadaver mandible, immediate implants were placed and bone-implant contact area, stability and bone strain were measured. In situ biomechanical testing coupled with micro X-ray microscope (μ-XRM) illustrated less stiff bone-implant complexes (701-822 N/mm) compared with bone-periodontal ligament (PDL)-tooth complexes (791-913 N/mm). X-ray tomograms illustrated that the cause of reduced stiffness was due to reduced and limited bone-implant contact. Heterogeneous elemental composition of bone was identified by using energy dispersive X-ray spectroscopy (EDS). The novel aspect of this study was the application of a new experimental mechanics method, that is, digital volume correlation, which allowed mapping of strains in volumes of alveolar bone in contact with a loaded implant. The identified surface and subsurface strain concentrations were a manifestation of load transferred to bone through bone-implant contact based on bone-implant geometry, quality of bone, implant placement, and implant design. 3D strain mapping indicated that strain concentrations are not exclusive to the bone-implant contact regions, but also extend into bone not directly in contact with the implant. The implications of the observed strain concentrations are discussed in the context of mechanobiology. Although a plausible explanation of surgical complications for immediate implant treatment is provided, extrapolation of results is only warranted by future systematic studies on more cadaver specimens and/or in vivo small scale animal models. PMID:26162549

  11. Standards for Clinical Trials in Male and Female Sexual Dysfunction: III. Unique Aspects of Clinical Trials in Male Sexual Dysfunction.

    PubMed

    Fisher, William A; Gruenwald, Ilan; Jannini, Emmanuele A; Lev-Sagie, Ahinoam; Lowenstein, Lior; Pyke, Robert E; Reisman, Yakov; Revicki, Dennis A; Rubio-Aurioles, Eusebio

    2017-01-01

    This series of articles, Standards for Clinical Trials in Male and Female Sexual Dysfunction, began with the discussion of a common expected standard for clinical trial design in male and female sexual dysfunction, a common rationale for the design of phase I to IV clinical trials, and common considerations for the selection of study population and study duration in male and female sexual dysfunction. The second article in this series discussed fundamental principles in development, validation, and selection of patient- (and partner-) reported outcome assessment. The third and present article in this series discusses selected aspects of sexual dysfunction that are that are unique to male sexual dysfunctions and relevant to the conduct of clinical trials of candidate treatments for men. Copyright © 2016 International Society for Sexual Medicine. Published by Elsevier Inc. All rights reserved.

  12. Immediate Biomechanical Implications of Transfer Component Skills Training on Independent Wheelchair Transfers.

    PubMed

    Tsai, Chung-Ying; Boninger, Michael L; Hastings, Jennifer; Cooper, Rory A; Rice, Laura; Koontz, Alicia M

    2016-10-01

    To evaluate the immediate effects of transfer training based on the Transfer Assessment Instrument (TAI) on the upper limb biomechanics during transfers. Pre-post intervention. Biomechanics laboratory. Full-time manual wheelchair users (N=24) performed 5 transfers to a level height bench, while their natural transfer skills were scored using the TAI, and their biomechanical data were recorded. Participants with 2 or more component skill deficits were invited to return to receive personalized transfer training. TAI part 1 summary scores and biomechanical variables calculated at the shoulder, elbow, and wrist joints were compared before and immediately after transfer training. Sixteen of the 24 manual wheelchair users met the criteria for training, and 11 manual wheelchair users came back for the revisit. Their TAI part 1 summary scores improved from 6.31±.98 to 9.92±.25. They had significantly smaller elbow range of motion, shoulder resultant moment, and rates of rise of elbow and wrist resultant forces on their trailing side during transfers after training (P<.05). On the leading side, shoulder maximum internal rotation and elevation angles, and shoulder resultant moments and rates of rise of shoulder resultant force and moment decreased after training (P<.04). The TAI-based training showed short-term beneficial biomechanical effects on wheelchair users' upper limbs, such as better shoulder positioning and lower joint loadings. If the skills are practiced longer-term, they may help protect the upper limbs from developing pain and injuries. Copyright © 2016 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  13. Biomechanical and clinical factors related to stage I posterior tibial tendon dysfunction.

    PubMed

    Rabbito, Melissa; Pohl, Michael B; Humble, Neil; Ferber, Reed

    2011-10-01

    Case control. To investigate differences in arch height, ankle muscle strength, and biomechanical factors in individuals with stage I posterior tibial tendon dysfunction (PTTD) in comparison to healthy individuals. PTTD is a progressive condition, so early recognition and treatment are essential to help delay or reverse the progression. However, no previous studies have investigated stage I PTTD, and no single study has measured static anatomical structure, muscle strength, and gait mechanics in this population. Twelve individuals with stage I PTTD and 12 healthy, age- and gender-matched control subjects, who were engaged in running-related activities, participated in this study. Measurements of arch height index, maximum voluntary ankle invertor muscle strength, and 3-dimensional rearfoot and medial longitudinal arch kinematics during walking were obtained. The runners with PTTD demonstrated significantly lower seated arch height index (P = .02) and greater (P = .03) and prolonged (P = .05) peak rearfoot eversion angle during gait, compared to the healthy runners. No differences were found in standing arch height index values (P = .28), arch rigidity index (P = .06), ankle invertor strength (P = .49), or peak medial longitudinal arch values (P = .49) between groups. The increased foot pronation is hypothesized to place greater strain on the posterior tibialis muscle, which may partially explain the progressive nature of this condition.

  14. The biomechanical analysis of three-dimensional distal radius fracture model with different fixed splints.

    PubMed

    Hua, Zhen; Wang, Jian-Wei; Lu, Zhen-Fei; Ma, Jian-Wei; Yin, Heng

    2018-01-01

    The distal radius fracture is one of the common clinical fractures. At present, there are no reports regarding application of the finite element method in studying the mechanism of Colles fracture and the biomechanical behavior when using splint fixation. To explore the mechanism of Colles fracture and the biomechanical behavior when using different fixed splints. Based on the CT scanning images of forearm for a young female volunteer, by using model construction technology combined with RPOE and ANSYS software, a 3-D distal radius fracture forearm finite element model with a real shape and bioactive materials is built. The material tests are performed to obtain the mechanical properties of the paper-based splint, the willow splint and the anatomical splint. The numerical results are compared with the experimental results to verify the correctness of the presented model. Based on the verified model, the stress distribution of different tissues are analyzed. Finally, the clinical tests are performed to observe and verify that the anatomical splint is the best fit for human body. Using the three kinds of splints, the transferred bone stress focus on the distal radius and ulna, which is helpful to maintain the stability of fracture. Also the stress is accumulated in the distal radius which may be attributed to flexion position. Such stress distribution may be helpful to maintain the ulnar declination. By comparing the simulation results with the experimental observations, the anatomical splint has the best fitting to the limb, which can effectively avoid the local compression. The anatomical splint is the most effective for fixing and curing the fracture. The presented model can provide theoretical basis and technical guide for further investigating mechanism of distal radius fracture and clinical application of anatomical splint.

  15. Quadriceps Strength Asymmetry Following ACL Reconstruction Alters Knee Joint Biomechanics and Functional Performance at Time of Return to Activity

    PubMed Central

    Palmieri-Smith, RM; Lepley, LK

    2016-01-01

    Background Quadriceps strength deficits are observed clinically following anterior cruciate injury and reconstruction and are often not overcome despite rehabilitation. Given that quadriceps strength may be important for achieving symmetrical joint biomechanics and promoting long-term joint health, determining the magnitude of strength deficits that lead to altered mechanics is critical. Purpose To determine if the magnitude of quadriceps strength asymmetry alters knee and hip biomechanical symmetry, as well as functional performance and self-reported function. Study Design Cross-Sectional study. Methods Seventy-three patients were tested at the time they were cleared for return to activity following ACL reconstruction. Quadriceps strength and activation, scores on the International Knee Documentation Committee form, the hop for distance test, and sagittal plane lower extremity biomechanics were recorded while patients completed a single-legged hop. Results Patients with high and moderate quadriceps strength symmetry had larger central activation ratios as well as greater limb symmetry indices on the hop for distance compared to patients with low quadriceps strength symmetry (P<0.05). Similarly, knee flexion angle and external moment symmetry was higher in the patients with high and moderate quadriceps symmetry compared to those with low symmetry (P<0.05). Quadriceps strength was found to be associated with sagittal plane knee angle and moment symmetry (P<0.05). Conclusion Patients with low quadriceps strength displayed greater movement asymmetries at the knee in the sagittal plane. Quadriceps strength was related to movement asymmetries and functional performance. Rehabilitation following ACL reconstruction needs to focus on maximizing quadriceps strength, which likely will lead to more symmetrical knee biomechanics. PMID:25883169

  16. Biomechanics of an orthosis-managed cranial cruciate ligament-deficient canine stifle joint predicted by use of a computer model.

    PubMed

    Bertocci, Gina E; Brown, Nathan P; Mich, Patrice M

    2017-01-01

    OBJECTIVE To evaluate effects of an orthosis on biomechanics of a cranial cruciate ligament (CrCL)-deficient canine stifle joint by use of a 3-D quasistatic rigid-body pelvic limb computer model simulating the stance phase of gait and to investigate influences of orthosis hinge stiffness (durometer). SAMPLE A previously developed computer simulation model for a healthy 33-kg 5-year-old neutered Golden Retriever. PROCEDURES A custom stifle joint orthosis was implemented in the CrCL-deficient pelvic limb computer simulation model. Ligament loads, relative tibial translation, and relative tibial rotation in the orthosis-stabilized stifle joint (baseline scenario; high-durometer hinge]) were determined and compared with values for CrCL-intact and CrCL-deficient stifle joints. Sensitivity analysis was conducted to evaluate the influence of orthosis hinge stiffness on model outcome measures. RESULTS The orthosis decreased loads placed on the caudal cruciate and lateral collateral ligaments and increased load placed on the medial collateral ligament, compared with loads for the CrCL-intact stifle joint. Ligament loads were decreased in the orthosis-managed CrCL-deficient stifle joint, compared with loads for the CrCL-deficient stifle joint. Relative tibial translation and rotation decreased but were not eliminated after orthosis management. Increased orthosis hinge stiffness reduced tibial translation and rotation, whereas decreased hinge stiffness increased internal tibial rotation, compared with values for the baseline scenario. CONCLUSIONS AND CLINICAL RELEVANCE Stifle joint biomechanics were improved following orthosis implementation, compared with biomechanics of the CrCL-deficient stifle joint. Orthosis hinge stiffness influenced stifle joint biomechanics. An orthosis may be a viable option to stabilize a CrCL-deficient canine stifle joint.

  17. Assessment of a novel biomechanical fracture model for distal radius fractures

    PubMed Central

    2012-01-01

    Background Distal radius fractures (DRF) are one of the most common fractures and often need surgical treatment, which has been validated through biomechanical tests. Currently a number of different fracture models are used, none of which resemble the in vivo fracture location. The aim of the study was to develop a new standardized fracture model for DRF (AO-23.A3) and compare its biomechanical behavior to the current gold standard. Methods Variable angle locking volar plates (ADAPTIVE, Medartis) were mounted on 10 pairs of fresh-frozen radii. The osteotomy location was alternated within each pair (New: 10 mm wedge 8 mm / 12 mm proximal to the dorsal / volar apex of the articular surface; Gold standard: 10 mm wedge 20 mm proximal to the articular surface). Each specimen was tested in cyclic axial compression (increasing load by 100 N per cycle) until failure or −3 mm displacement. Parameters assessed were stiffness, displacement and dissipated work calculated for each cycle and ultimate load. Significance was tested using a linear mixed model and Wald test as well as t-tests. Results 7 female and 3 male pairs of radii aged 74 ± 9 years were tested. In most cases (7/10), the two groups showed similar mechanical behavior at low loads with increasing differences at increasing loads. Overall the novel fracture model showed a significant different biomechanical behavior than the gold standard model (p < 0,001). The average final loads resisted were significantly lower in the novel model (860 N ± 232 N vs. 1250 N ± 341 N; p = 0.001). Conclusion The novel biomechanical fracture model for DRF more closely mimics the in vivo fracture site and shows a significantly different biomechanical behavior with increasing loads when compared to the current gold standard. PMID:23244634

  18. Corneal biomechanical properties in thyroid eye disease.

    PubMed

    Karabulut, Gamze Ozturk; Kaynak, Pelin; Altan, Cıgdem; Ozturker, Can; Aksoy, Ebru Funda; Demirok, Ahmet; Yılmaz, Omer Faruk

    2014-06-01

    The purpose of this study is to investigate the effect of thyroid eye disease (TED) on the measurement of corneal biomechanical properties and the relationship between these parameters and disease manifestations. A total of 54 eyes of 27 individuals with TED and 52 eyes of 30 healthy control participants were enrolled. Thyroid ophthalmopathy activity was defined using the VISA (vision, inflammation, strabismus, and appearance/exposure) classification for TED. The intraocular pressure (IOP) measurement with Goldmann applanation tonometer (GAT), axial length (AL), keratometry, and central corneal thickness (CCT) measurements were taken from each patient. Corneal biomechanical properties, including corneal hysteresis (CH) and corneal resistance factor (CRF) and noncontact IOP measurements, Goldmann-correlated IOP (IOPg) and corneal-compensated IOP (IOPcc) were measured with the Ocular Response Analyzer (ORA) using the standard technique. Parameters such as best corrected visual acuity, axial length, central corneal thickness, and corneal curvature were not statistically significant between the two groups (p > 0.05). IOP measured with GAT was higher in participants with TED (p < 0.001). The CH of TED patients was significantly lower than that of the control group. There was no significant difference in the corneal resistance factor between groups. However, IOPg and IOPcc were significantly higher in TED patients. CH and VISA grading of TED patients showed a negative correlation (p = 0.007). In conclusion, TED affects the corneal biomechanical properties by decreasing CH. IOP with GAT and IOPg is found to be increased in these patients. As the severity of TED increases, CH decreases in these patients. Copyright © 2014. Published by Elsevier B.V.

  19. [Cement augmentation on the spine : Biomechanical considerations].

    PubMed

    Kolb, J P; Weiser, L; Kueny, R A; Huber, G; Rueger, J M; Lehmann, W

    2015-09-01

    Vertebral compression fractures are the most common osteoporotic fractures. Since the introduction of vertebroplasty and screw augmentation, the management of osteoporotic fractures has changed significantly. The biomechanical characteristics of the risk of adjacent fractures and novel treatment modalities for osteoporotic vertebral fractures, including pure cement augmentation by vertebroplasty, and cement augmentation of screws for posterior instrumentation, are explored. Eighteen human osteoporotic lumbar spines (L1-5) adjacent to vertebral bodies after vertebroplasty were tested in a servo-hydraulic machine. As augmentation compounds we used standard cement and a modified low-strength cement. Different anchoring pedicle screws were tested with and without cement augmentation in another cohort of human specimens with a simple pull-out test and a fatigue test that better reflects physiological conditions. Cement augmentation in the osteoporotic spine leads to greater biomechanical stability. However, change in vertebral stiffness resulted in alterations with the risk of adjacent fractures. By using a less firm cement compound, the risk of adjacent fractures is significantly reduced. Both screw augmentation techniques resulted in a significant increase in the withdrawal force compared with the group without cement. Augmentation using perforated screws showed the highest stability in the fatigue test. The augmentation of cement leads to a significant change in the biomechanical properties. Differences in the stability of adjacent vertebral bodies increase the risk of adjacent fractures, which could be mitigated by a modified cement compound with reduced strength. Screws that were specifically designed for cement application displayed greatest stability in the fatigue test.

  20. The biomechanics of the long jump.

    PubMed

    Hay, J G

    1986-01-01

    The preceding review has been based on over 200 publications in Czech, English, French, German, Japanese, Polish, and Russian. Even a cursory perusal of these materials is sufficient to show that much has been done to try and obtain a scientific understanding of long jump techniques. It is clear, too, that still more remains to be done. Much of the work to date has been focused on just a few aspects of long jump technique. Other important aspects have received relatively little attention. The latter include the accuracy of the approach, the techniques used during the final strides of the approach, the role of elastic energy in the takeoff, the initiation and control of the jumper's angular momentum, and the techniques used in the landing. Future research efforts might well be directed towards resolving major issues concerning these aspects of long jump technique. The methods used to gather data in the studies reviewed have been rather unimaginative. Two-dimensional cinematography has been used in the vast majority of the studies and force platforms in a few. Other data-gathering procedures like three-dimensional cinematography, electromyography and accelerometry have rarely, if ever, been used. In only one or two studies was anything remotely approaching experimental or technological innovation in evidence. The methods used to analyze data have also been very limited. With the notable exception of a study by Ballreich, few papers have involved anything more sophisticated than means, standard deviations, correlation coefficients and an occasional multiple regression equation. Given these facts, it is hard to avoid the conclusion that our knowledge of long jump techniques might be greatly improved if the full range of available and appropriate procedures were turned to the purpose. Finally, no review of the literature on long jump techniques would be complete without reference to the level of scholarship displayed in the works under consideration. With only a few

  1. Soreness-related changes in three-dimensional running biomechanics following eccentric knee extensor exercise.

    PubMed

    Paquette, Max R; Peel, Shelby A; Schilling, Brian K; Melcher, Dan A; Bloomer, Richard J

    2017-06-01

    Runners often experience delayed onset muscle soreness (DOMS), especially of the knee extensors, following prolonged running. Sagittal knee joint biomechanics are altered in the presence of knee extensor DOMS but it is unclear how muscle soreness affects lower limb biomechanics in other planes of motion. The purpose of this study was to assess the effects of knee extensor DOMS on three-dimensional (3D) lower limb biomechanics during running. Thirty-three healthy men (25.8 ± 6.8 years; 84.1 ± 9.2 kg; 1.77 ± 0.07 m) completed an isolated eccentric knee extensor damaging protocol to elicit DOMS. Biomechanics of over-ground running at a set speed of 3.35 m s -1 ±5% were measured before eccentric exercise (baseline) and, 24 h and 48 h following exercise in the presence of knee extensor DOMS. Knee flexion ROM was reduced at 48 h (P = 0.01; d = 0.26), and peak knee extensor moment was reduced at 24 h (P = 0.001; d = 0.49) and 48 h (P < 0.001; d = 0.68) compared to baseline. Frontal and transverse plane biomechanics were unaffected by the presence of DOMS (P > 0.05). Peak positive ankle and knee joint powers and, peak negative knee joint power were all reduced from baseline to 24 h and 48 h (P < 0.05). These findings suggest that knee extensor DOMS greatly influences sagittal knee joint angular kinetics and, reduces sagittal power production at the ankle joint. However, knee extensor DOMS does not affect frontal and transverse plane lower limb joint biomechanics during running.

  2. A knee-mounted biomechanical energy harvester with enhanced efficiency and safety

    NASA Astrophysics Data System (ADS)

    Chen, Chao; Chau, Li Yin; Liao, Wei-Hsin

    2017-06-01

    Energy harvesting is becoming a major limiting issue for many portable devices. When undertaking any activity, the human body generates a significant amount of biomechanical energy, which can be collected by means of a portable energy harvester. This energy provides a method of powering portable devices such as prosthetic limbs. In this paper, a knee-mounted energy harvester with enhanced efficiency and safety is proposed and developed to convert mechanical energy into electricity during human motion. This device can change the bi-directional knee input into uni-directional rotation for an electromagnetic generator using a specially designed transmission system. Without the constraint of induced impact on the human body, this device can harvest biomechanical energy from both knee flexion and extension, improving the harvesting efficiency over previous single-direction energy harvesters. It can also provide protection from device malfunction, and increase the safety of current biomechanical energy harvesters. A highly compact and light prototype is developed taking into account human kinematics. The biomechanical energy harvesting system is also modeled and analyzed. The prototype is tested under different conditions including walking, running and climbing stairs, to evaluate the energy harvesting performance and effect on the human gait. The experimental results show that the prototype can harvest an average power of 3.6 W at 1.5 m s-1 walking speed, which is promising for portable electronic devices.

  3. The application of 3D-printed transparent facemask for facial scar management and its biomechanical rationale.

    PubMed

    Wei, Yating; Wang, Yan; Zhang, Ming; Yan, Gang; Wu, Shixue; Liu, Wenjun; Ji, Gang; Li-Tsang, Cecilia W P

    2018-03-01

    Deep facial burns leave conspicuous scar to the patients and affect their quality of life. Transparent facemask has been adopted for the prevention and treatment of facial hypertrophic scars for decades. Recently, with the advancement of 3D printing, the transparent facemask could facilitate the fitting of the facial contour. However, the effectiveness of the device and its biomechanical characteristics on pressure management of hypertrophic scar would need more objective evaluation. A biomechanical model of the transparent 3D-printed facemask was established through finite element analysis. Ten patients with extensive deep facial burns within 6 months were recruited for clinical study using 3D-printed facemask designed according to biomechanical model, and the interface pressure was measured on each patient. The patients in the treatment group (n=5) was provided with the 3D-printed transparent face mask soon after initial scar assessment, while the delayed treatment group (n=5) began the treatment one month after the initial scar assessment. The scar assessment was performed one month post intervention for both groups. The biomechanical modeling showed that the 3D, computer-generated facemask resulted in unbalanced pressure if design modifications were not incorporated to address these issues. The interface pressure between the facemask and patient's face was optimized through individualized design adjustments and the addition of silicone lining. After optimization of pressure through additional lining, the mean thickness and hardness of the scars of all 10 patients were decreased significantly after 1-month of intervention. In the delayed treatment group, the mean thickness of the scars was increased within the month without intervention, but it was also decreased after intervention. Facemask design and the silicone lining are important to ensure adequate compression pressure of 3D-printed transparent facemask. The intervention using the 3D-printed facemask

  4. Migraine and epilepsy: a focus on overlapping clinical, pathophysiological, molecular, and therapeutic aspects.

    PubMed

    Bianchin, Marino Muxfeldt; Londero, Renata Gomes; Lima, José Eduardo; Bigal, Marcelo Eduardo

    2010-08-01

    The association of epilepsy and migraine has been long recognized. Migraine and epilepsy are both chronic disorders with episodic attacks. Furthermore, headache may be a premonitory or postdromic symptom of seizures, and migraine headaches may cause seizures per se (migralepsy). Migraine and epilepsy are comorbid, sharing pathophysiological mechanisms and common clinical features. Several recent studies identified common genetic and molecular substrates for migraine and epilepsy, including phenotypic-genotypic correlations with mutations in the CACNA1A, ATP1A2, and SCN1A genes, as well as in syndromes due to mutations in the SLC1A3, POLG, and C10orF2 genes. Herein, we review the relationship between migraine and epilepsy, focusing on clinical aspects and some recent pathophysiological and molecular studies.

  5. Addressing Weight Loss Recidivism: A Clinical Focus on Metabolic Rate and the Psychological Aspects of Obesity

    PubMed Central

    Grattan, Bruce J.; Connolly-Schoonen, Josephine

    2012-01-01

    Obesity in the United States has reached epidemic proportions and has become an unprecedented public health burden. This paper returns to the evidence for metabolic rate set points and emphasizes the clinical importance of addressing changes in metabolic rate throughout the weight loss process. In addition to the importance of clinically attending to the modulation of metabolic rate, the psychological aspects of obesity are addressed as part of the need to holistically treat obesity. PMID:24527265

  6. Tree Branching: Leonardo da Vinci's Rule versus Biomechanical Models

    PubMed Central

    Minamino, Ryoko; Tateno, Masaki

    2014-01-01

    This study examined Leonardo da Vinci's rule (i.e., the sum of the cross-sectional area of all tree branches above a branching point at any height is equal to the cross-sectional area of the trunk or the branch immediately below the branching point) using simulations based on two biomechanical models: the uniform stress and elastic similarity models. Model calculations of the daughter/mother ratio (i.e., the ratio of the total cross-sectional area of the daughter branches to the cross-sectional area of the mother branch at the branching point) showed that both biomechanical models agreed with da Vinci's rule when the branching angles of daughter branches and the weights of lateral daughter branches were small; however, the models deviated from da Vinci's rule as the weights and/or the branching angles of lateral daughter branches increased. The calculated values of the two models were largely similar but differed in some ways. Field measurements of Fagus crenata and Abies homolepis also fit this trend, wherein models deviated from da Vinci's rule with increasing relative weights of lateral daughter branches. However, this deviation was small for a branching pattern in nature, where empirical measurements were taken under realistic measurement conditions; thus, da Vinci's rule did not critically contradict the biomechanical models in the case of real branching patterns, though the model calculations described the contradiction between da Vinci's rule and the biomechanical models. The field data for Fagus crenata fit the uniform stress model best, indicating that stress uniformity is the key constraint of branch morphology in Fagus crenata rather than elastic similarity or da Vinci's rule. On the other hand, mechanical constraints are not necessarily significant in the morphology of Abies homolepis branches, depending on the number of daughter branches. Rather, these branches were often in agreement with da Vinci's rule. PMID:24714065

  7. Tree branching: Leonardo da Vinci's rule versus biomechanical models.

    PubMed

    Minamino, Ryoko; Tateno, Masaki

    2014-01-01

    This study examined Leonardo da Vinci's rule (i.e., the sum of the cross-sectional area of all tree branches above a branching point at any height is equal to the cross-sectional area of the trunk or the branch immediately below the branching point) using simulations based on two biomechanical models: the uniform stress and elastic similarity models. Model calculations of the daughter/mother ratio (i.e., the ratio of the total cross-sectional area of the daughter branches to the cross-sectional area of the mother branch at the branching point) showed that both biomechanical models agreed with da Vinci's rule when the branching angles of daughter branches and the weights of lateral daughter branches were small; however, the models deviated from da Vinci's rule as the weights and/or the branching angles of lateral daughter branches increased. The calculated values of the two models were largely similar but differed in some ways. Field measurements of Fagus crenata and Abies homolepis also fit this trend, wherein models deviated from da Vinci's rule with increasing relative weights of lateral daughter branches. However, this deviation was small for a branching pattern in nature, where empirical measurements were taken under realistic measurement conditions; thus, da Vinci's rule did not critically contradict the biomechanical models in the case of real branching patterns, though the model calculations described the contradiction between da Vinci's rule and the biomechanical models. The field data for Fagus crenata fit the uniform stress model best, indicating that stress uniformity is the key constraint of branch morphology in Fagus crenata rather than elastic similarity or da Vinci's rule. On the other hand, mechanical constraints are not necessarily significant in the morphology of Abies homolepis branches, depending on the number of daughter branches. Rather, these branches were often in agreement with da Vinci's rule.

  8. Adaptations in single-leg hop biomechanics following anterior cruciate ligament reconstruction.

    PubMed

    Orishimo, Karl F; Kremenic, Ian J; Mullaney, Michael J; McHugh, Malachy P; Nicholas, Stephen J

    2010-11-01

    When a patient performs a clinically normal hop test based on distance, it cannot be assumed that the biomechanics are similar between limbs. The objective was to compare takeoff and landing biomechanics between legs in patients who have undergone anterior cruciate ligament reconstruction. Kinematics and ground reaction forces were recorded as 13 patients performed the single-leg hop on each leg. Distance hopped, joint range of motion, peak joint kinetics and the peak total extensor moment were compared between legs during both takeoff and landing. Average hop distance ratio (involved/noninvolved) was 93 ± 4%. Compared to the noninvolved side, knee motion during takeoff on the involved side was significantly reduced (P = 0.008). Peak moments and powers on the involved side were lower at the knee and higher at the ankle and hip compared with the noninvolved side (Side by Joint P = 0.011; P = 0.003, respectively). The peak total extensor moment was not different between legs (P = 0.305) despite a decrease in knee moment and increases in ankle and hip moments (Side by Joint P = 0.015). During landing, knee motion was reduced (P = 0.043), and peak power absorbed was decreased at the knee and hip and increased at the ankle on the involved side compared to the noninvolved side (P = 0.003). The compensations by other joints may indicate protective adaptations to avoid overloading the reconstructed knee.

  9. Diagnostic Assessment of Preparedness of Level One Sports Science Students for Biomechanics Modules

    ERIC Educational Resources Information Center

    Dixon, Sharon J.

    2005-01-01

    The primary objective of this study was to investigate the use of a diagnostic test to assess the preparedness of level one students for a sports biomechanics module. During their first week at university, a cohort of 108 students completed a diagnostic test at the end of their first lecture in sports biomechanics, with no prior notice. Upon…

  10. The Quantal Larynx: The Stable Regions of Laryngeal Biomechanics and Implications for Speech Production.

    PubMed

    Moisik, Scott Reid; Gick, Bryan

    2017-03-01

    Recent proposals suggest that (a) the high dimensionality of speech motor control may be reduced via modular neuromuscular organization that takes advantage of intrinsic biomechanical regions of stability and (b) computational modeling provides a means to study whether and how such modularization works. In this study, the focus is on the larynx, a structure that is fundamental to speech production because of its role in phonation and numerous articulatory functions. A 3-dimensional model of the larynx was created using the ArtiSynth platform (http://www.artisynth.org). This model was used to simulate laryngeal articulatory states, including inspiration, glottal fricative, modal prephonation, plain glottal stop, vocal-ventricular stop, and aryepiglotto-epiglottal stop and fricative. Speech-relevant laryngeal biomechanics is rich with "quantal" or highly stable regions within muscle activation space. Quantal laryngeal biomechanics complement a modular view of speech control and have implications for the articulatory-biomechanical grounding of numerous phonetic and phonological phenomena.

  11. The Value of Biomechanical Research in Dance.

    ERIC Educational Resources Information Center

    Ranney, D. A.

    Simple observation of dance movement, while very useful, can lead to misconceptions, about the physical realities of dance movement, that make learning difficult. This gap between reality and understanding can be reduced by the application of biomechanical techniques such as cinematography, electromyography, and force-plate analysis. Biomechanical…

  12. A Comparative Biomechanical Analysis of 2 Double-Row, Distal Triceps Tendon Repairs

    PubMed Central

    Dorweiler, Matthew A.; Van Dyke, Rufus O.; Siska, Robert C.; Boin, Michael A.; DiPaola, Mathew J.

    2017-01-01

    Background: Triceps tendon ruptures are rare orthopaedic injuries that almost always require surgical repair. This study tests the biomechanical properties of an original anchorless double-row triceps repair against a previously reported knotless double-row repair. Hypothesis: The anchorless double-row triceps repair technique will yield similar biomechanical properties when compared with the knotless double-row repair technique. Study Design: Controlled laboratory study. Methods: Eighteen cadaver arms were randomized into 2 groups. One group received the anchorless repair and the other received the knotless anchor repair. A materials testing system (MTS) machine was used to cycle the repaired arms from 0° to 90° with a 2.5-pound weight for 1500 cycles at 0.25 Hz. Real-time displacement of the tendon was measured during cycling using a probe. Load to failure was performed after completion of cyclic loading. Results: The mean displacement with the anchorless technique was 0.77 mm (SD, 0.25 mm) at 0° (full elbow extension) and 0.76 mm (SD, 0.38 mm) at 90° (elbow flexion). The mean displacement with the anchored technique was 0.83 mm (SD, 0.57 mm) at 0° and 1.01 mm (SD, 0.62 mm) at 90°. There was no statistically significant difference for tendon displacement at 0º (P = .75) or 90º (P = .31). The mean load to failure with the anchorless technique was 618.9 N (SD, 185.6 N), while it was 560.5 N (SD, 154.1 N) with the anchored technique, again with no statistically significant difference (P = .28). Conclusion: Our anchorless double-row triceps repair technique yields comparable biomechanical properties to previously described double-row triceps tendon repair techniques, with the added benefit of avoiding the cost of suture anchors. Clinical Relevance: This anchorless double-row triceps tendon repair can be considered as an acceptable alternative to a knotless anchor repair for triceps tendon ruptures. PMID:28607942

  13. Biomechanics-machine learning system for surgical gesture analysis and development of technologies for minimal access surgery.

    PubMed

    Cavallo, Filippo; Sinigaglia, Stefano; Megali, Giuseppe; Pietrabissa, Andrea; Dario, Paolo; Mosca, Franco; Cuschieri, Alfred

    2014-10-01

    The uptake of minimal access surgery (MAS) has by virtue of its clinical benefits become widespread across the surgical specialties. However, despite its advantages in reducing traumatic insult to the patient, it imposes significant ergonomic restriction on the operating surgeons who require training for the safe execution. Recent progress in manipulator technologies (robotic or mechanical) have certainly reduced the level of difficulty, however it requires information for a complete gesture analysis of surgical performance. This article reports on the development and evaluation of such a system capable of full biomechanical and machine learning. The system for gesture analysis comprises 5 principal modules, which permit synchronous acquisition of multimodal surgical gesture signals from different sources and settings. The acquired signals are used to perform a biomechanical analysis for investigation of kinematics, dynamics, and muscle parameters of surgical gestures and a machine learning model for segmentation and recognition of principal phases of surgical gesture. The biomechanical system is able to estimate the level of expertise of subjects and the ergonomics in using different instruments. The machine learning approach is able to ascertain the level of expertise of subjects and has the potential for automatic recognition of surgical gesture for surgeon-robot interactions. Preliminary tests have confirmed the efficacy of the system for surgical gesture analysis, providing an objective evaluation of progress during training of surgeons in their acquisition of proficiency in MAS approach and highlighting useful information for the design and evaluation of master-slave manipulator systems. © The Author(s) 2013.

  14. Biological and Clinical Aspects of Lanthanide Coordination Compounds

    PubMed Central

    Misra, Sudhindra N.; M., Indira Devi; Shukla, Ram S.

    2004-01-01

    The coordinating chemistry of lanthanides, relevant to the biological, biochemical and medical aspects, makes a significant contribution to understanding the basis of application of lanthanides, particularly in biological and medical systems. The importance of the applications of lanthanides, as an excellent diagnostic and prognostic probe in clinical diagnostics, and an anticancer material, is remarkably increasing. Lanthanide complexes based X-ray contrast imaging and lanthanide chelates based contrast enhancing agents for magnetic resonance imaging (MRI) are being excessively used in radiological analysis in our body systems. The most important property of the chelating agents, in lanthanide chelate complex, is its ability to alter the behaviour of lanthanide ion with which it binds in biological systems, and the chelation markedly modifies the biodistribution and excretion profile of the lanthanide ions. The chelating agents, especially aminopoly carboxylic acids, being hydrophilic, increase the proportion of their complex excreted from complexed lanthanide ion form biological systems. Lanthanide polyamino carboxylate-chelate complexes are used as contrast enhancing agents for Magnetic Resonance Imaging. Conjugation of antibodies and other tissue specific molecules to lanthanide chelates has led to a new type of specific MRI contrast agents and their conjugated MRI contrast agents with improved relaxivity, functioning in the body similar to drugs. Many specific features of contrast agent assisted MRI make it particularly effective for musculoskeletal and cerebrospinal imaging. Lanthanide-chelate contrast agents are effectively used in clinical diagnostic investigations involving cerebrospinal diseases and in evaluation of central nervous system. Chelated lanthanide complexes shift reagent aided 23Na NMR spectroscopic analysis is used in cellular, tissue and whole organ systems. PMID:18365075

  15. The Korsakoff syndrome: clinical aspects, psychology and treatment.

    PubMed

    Kopelman, Michael D; Thomson, Allan D; Guerrini, Irene; Marshall, E Jane

    2009-01-01

    The Korsakoff syndrome is a preventable memory disorder that usually emerges (although not always) in the aftermath of an episode of Wernicke's encephalopathy. The present paper reviews the clinical and scientific literature on this disorder. A systematic review of the clinical and scientific literature on Wernicke's encephalopathy and the alcoholic Korsakoff syndrome. The Korsakoff syndrome is most commonly associated with chronic alcohol misuse, and some heavy drinkers may have a genetic predisposition to developing the syndrome. The characteristic neuropathology includes neuronal loss, micro-haemorrhages and gliosis in the paraventricular and peri-aqueductal grey matter. Lesions in the mammillary bodies, the mammillo-thalamic tract and the anterior thalamus may be more important to memory dysfunction than lesions in the medial dorsal nucleus of the thalamus. Episodic memory is severely affected in the Korsakoff syndrome, and the learning of new semantic memories is variably affected. 'Implicit' aspects of memory are preserved. These patients are often first encountered in general hospital settings where they can occupy acute medical beds for lengthy periods. Abstinence is the cornerstone of any rehabilitation programme. Korsakoff patients are capable of new learning, particularly if they live in a calm and well-structured environment and if new information is cued. There are few long-term follow-up studies, but these patients are reported to have a normal life expectancy if they remain abstinent from alcohol. Although we now have substantial knowledge about the nature of this disorder, scientific questions (e.g. regarding the underlying genetics) remain. More particularly, there is a dearth of appropriate long-term care facilities for these patients, given that empirical research has shown that good practice has beneficial effects.

  16. Modelling catheter-vein biomechanical interactions during an intravenous procedure.

    PubMed

    Weiss, Dar; Gefen, Amit; Einav, Shmuel

    2016-02-01

    A reliable intravenous (IV) access into the upper extremity veins requires the insertion of a temporary short peripheral catheter (SPC). This so common procedure is, however, associated with a risk of developing short peripheral catheter thrombophlebitis (SPCT) which causes distress and potentially prolongs patient hospitalization. We have developed and studied a biomechanical SPC-vein computational model during an IV procedure, and explored the biomechanical effects of repeated IV episodes on onset and reoccurrences of SPCT. The model was used to determine the effects of different insertion techniques as well as inter-patient biological variability on the catheter-vein wall contact pressures and wall deformations. We found that the maximal pressure exerted upon the vein wall was inhomogeneously distributed, and that the bending region was exposed to significantly greater pressures and deformations. The maximal exerted contact pressure on the inner vein's wall was 2938 Pa. The maximal extent of the SPC penetration into the vein wall reached 3.6 μm, which corresponds to approximately 100% of the average height of the inner layer, suggesting local squashing of endothelial cells at the contact site. The modelling describes a potential biomechanical damage pathway that can explain the reoccurrence of SPCT.

  17. Biomechanical analysis of posteromedial tibial plateau split fracture fixation.

    PubMed

    Zeng, Zhi-Min; Luo, Cong-Feng; Putnis, Sven; Zeng, Bing-Fang

    2011-01-01

    The purpose of this study was to compare the biomechanical strength of four different fixation methods for a posteromedial tibial plateau split fracture. Twenty-eight tibial plateau fractures were simulated using right-sided synthetic tibiae models. Each fracture model was randomly instrumented with one of the four following constructs, anteroposterior lag-screws, an anteromedial limited contact dynamic compression plate (LC-DCP), a lateral locking plate, or a posterior T-shaped buttress plate. Vertical subsidence of the posteromedial fragment was measured from 500 N to 1500 N during biomechanical testing, the maximum load to failure was also determined. It was found that the posterior T-shaped buttress plate allowed the least subsidence of the posteromedial fragment and produced the highest mean failure load than each of the other three constructs (P=0.00). There was no statistical significant difference between using lag screws or an anteromedial LC-DCP construct for the vertical subsidence at a 1500 N load and the load to failure (P>0.05). This study showed that a posterior-based buttress technique is biomechanically the most stable in-vitro fixation method for posteromedial split tibial plateau fractures, with AP screws and anteromedial-based LC-DCP are not as stable for this type of fracture. Copyright © 2010 Elsevier B.V. All rights reserved.

  18. Computational biomechanics changes our view on insect head evolution.

    PubMed

    Blanke, Alexander; Watson, Peter J; Holbrey, Richard; Fagan, Michael J

    2017-02-08

    Despite large-scale molecular attempts, the relationships of the basal winged insect lineages dragonflies, mayflies and neopterans, are still unresolved. Other data sources, such as morphology, suffer from unclear functional dependencies of the structures considered, which might mislead phylogenetic inference. Here, we assess this problem by combining for the first time biomechanics with phylogenetics using two advanced engineering techniques, multibody dynamics analysis and finite-element analysis, to objectively identify functional linkages in insect head structures which have been used traditionally to argue basal winged insect relationships. With a biomechanical model of unprecedented detail, we are able to investigate the mechanics of morphological characters under biologically realistic load, i.e. biting. We show that a range of head characters, mainly ridges, endoskeletal elements and joints, are indeed mechanically linked to each other. An analysis of character state correlation in a morphological data matrix focused on head characters shows highly significant correlation of these mechanically linked structures. Phylogenetic tree reconstruction under different data exclusion schemes based on the correlation analysis unambiguously supports a sistergroup relationship of dragonflies and mayflies. The combination of biomechanics and phylogenetics as it is proposed here could be a promising approach to assess functional dependencies in many organisms to increase our understanding of phenotypic evolution. © 2017 The Author(s).

  19. Biomechanical Analysis of the Proximal Adjacent Segment after Multilevel Instrumentation of the Thoracic Spine: Do Hooks Ease the Transition?

    PubMed Central

    Metzger, Melodie F.; Robinson, Samuel T.; Svet, Mark T.; Liu, John C.; Acosta, Frank L.

    2015-01-01

    Study Design Biomechanical cadaveric study. Objective Clinical studies indicate that using less-rigid fixation techniques in place of the standard all-pedicle screw construct when correcting for scoliosis may reduce the incidence of proximal junctional kyphosis and improve patient outcomes. The purpose of this study is to investigate whether there is a biomechanical advantage to using supralaminar hooks in place of pedicle screws at the upper-instrumented vertebrae in a multilevel thoracic construct. Methods T7–T12 spines were biomechanically tested: (1) intact; (2) following a two-level pedicles screw fusion from T9 to T11; and after proximal extension of the fusion to T8–T9 with (3) bilateral supra-laminar hooks, (4) a unilateral hook + unilateral screw hybrid, or (5) bilateral pedicle screws. Specimens were nondestructively loaded while three-dimensional kinematics and intradiscal pressure at the supra-adjacent level were recorded. Results Supra-adjacent hypermobility was reduced when bilateral hooks were used in place of pedicle screws at the upper-instrumented level, with statistically significant differences in lateral bending and torsion (p < 0.05 and p < 0.001, respectively). Disk pressures in the supra-adjacent segment were not statistically different among top-off techniques. Conclusions The use of supralaminar hooks at the top of a multilevel posterior fusion construct reduces the stress at the proximal uninstrumented motion segment. Although further data is needed to provide a definitive link to the clinical occurrence of PJK, this in vitro study demonstrates the potential benefit of “easing” the transition between the stiff instrumented spine and the flexible native spine and is the first to demonstrate these results with laminar hooks. PMID:27190735

  20. The effect of a daily quiz (TOPday) on self-confidence, enthusiasm, and test results for biomechanics.

    PubMed

    Tanck, Esther; Maessen, Martijn F H; Hannink, Gerjon; van Kuppeveld, Sascha M H F; Bolhuis, Sanneke; Kooloos, Jan G M

    2014-01-01

    Many students in Biomedical Sciences have difficulty understanding biomechanics. In a second-year course, biomechanics is taught in the first week and examined at the end of the fourth week. Knowledge is retained longer if the subject material is repeated. However, how does one encourage students to repeat the subject matter? For this study, we developed 'two opportunities to practice per day (TOPday)', consisting of multiple-choice questions on biomechanics with immediate feedback, which were sent via e-mail. We investigated the effect of TOPday on self-confidence, enthusiasm, and test results for biomechanics. All second-year students (n = 95) received a TOPday of biomechanics on every regular course day with increasing difficulty during the course. At the end of the course, a non-anonymous questionnaire was conducted. The students were asked how many TOPday questions they completed (0-6 questions [group A]; 7-18 questions [group B]; 19-24 questions [group C]). Other questions included the appreciation for TOPday, and increase (no/yes) in self-confidence and enthusiasm for biomechanics. Seventy-eight students participated in the examination and completed the questionnaire. The appreciation for TOPday in group A (n = 14), B (n = 23) and C (n = 41) was 7.0 (95 % CI 6.5-7.5), 7.4 (95 % CI 7.0-7.8), and 7.9 (95 % CI 7.6-8.1), respectively (p < 0.01 between A and C). Of the students who actively participated (B and C), 91 and 80 % reported an increase in their self-confidence and enthusiasm, respectively, for biomechanics due to TOPday. In addition, they had a higher test result for biomechanics (p < 0.01) compared with those who did not actively participate (A). In conclusion, the teaching method 'TOPday' seems an effective way to encourage students to repeat the subject material, with the extra advantage that students are stimulated to keep on practising for the examination. The appreciation was high and there was a positive association between

  1. [Clinical aspects, imaging and neuropathology of Kii ALS/PDC].

    PubMed

    Kokubo, Yasumasa

    2007-11-01

    During 1996 and 2006, we examined clinically 37 patients and neuropathologically 13 autopsy cases with amyotrophic lateral sclerosis/parkinsonism-dementia complex of the Kii peninsula (Kii ALS/PDC). The ages of onset were between 52 years and 74 years (mean age: 65.3 years). The male to female ratio was 1:1.85. The ratio of positive family history where ALS or PDC occurred within the fourth degree of the relatives was 78.4% in the patients with Kii ALS/PDC. The average duration of the illness was 6.47 years. Kii ALS/PDC was divided into five clinical subtypes, pure ALS form, ALS with dementia form, PDC with parkinsonism predominant form, PDC with dementia predominant form (that is called late-life dementia in Guam) and PDC with ALS features form. Unique pigmentary retinopathy was found in 33.3% of the patients with Kii ALS/PDC. CT/MRI images showed atrophy of the frontal and temporal lobes and SPECT images showed a decrease in the blood flow of the frontal and temporal lobes. The cardiac 123I-MIBG uptake was decreased in 4 out of 8 patients with ALS/PDC and the decrease in uptake correlated with the modified Hoehn-Yahr staging. The cardinal neuropathological features of Kii ALS/PDC were abundant neurofibrillary tangles (NFTs) associated with loss of nerve cells in the cerebral cortex and the brain stem, and findings of ALS neuropathology. Ultrastructurally, NFTs consisted of paired helical filaments. Tau protein, a main component of NFTs, was consisted of 3R and 4R tau isoforms, and phosphoryrated at 18 sites of tau phosphoryrated sites. The neurons of dentate gyrus of hippocampus and anterior horn cells were stained with anti-TDP-43 antibody. The clinical and neuropathological aspects of Kii ALS/PDC are regarded as being identical with those of Guam ALS/PDC.

  2. Effects of Taping and Orthoses on Foot Biomechanics in Adults with Flat-Arched Feet.

    PubMed

    Bishop, Christopher; Arnold, John B; May, Thomas

    2016-04-01

    There is a paucity of evidence on the biomechanical effects of foot taping and foot orthoses in realistic conditions. This study aimed to determine the immediate effect and relationships between changes in multisegment foot biomechanics with foot taping and customized foot orthoses in adults with flat-arched feet. Multisegment foot biomechanics were measured in 18 adults with flat-arched feet (age 25.1 ± 2.8 yr; height 1.73 ± .13 m, body mass 70.3 ± 15.7 kg) during walking in four conditions in random order: neutral athletic shoe, neutral shoe with tape (low-Dye method and modified method) and neutral shoe with customized foot orthoses. In-shoe foot biomechanics were compared between conditions using a purpose developed foot model with three-dimensional kinematic analysis and inverse dynamics. Foot orthoses significantly delayed peak eversion compared to the neutral shoe (44% stance vs 39%, P = 0.002). Deformation across the midfoot and medial longitudinal arch was reduced with both the low-Dye taping (2.4°, P < 0.001) and modified taping technique (5.5°, P < 0.001). All interventions increased peak dorsiflexion of the first metatarsophalangeal joint (1.4°-3.2°, P < 0.001-0.023). Biomechanical responses to taping significantly predicted corresponding changes to foot orthoses (R2 = 0.08-0.52, P = 0.006 to <0.001). Foot orthoses more effectively altered timing of hindfoot motion whereas taping was superior in supporting the midfoot and medial longitudinal arch. The biomechanical response to taping was significantly related to the subsequent change observed with the use of foot orthoses.

  3. Ultrasound Elasticity Imaging System with Chirp-Coded Excitation for Assessing Biomechanical Properties of Elasticity Phantom

    PubMed Central

    Chun, Guan-Chun; Chiang, Hsing-Jung; Lin, Kuan-Hung; Li, Chien-Ming; Chen, Pei-Jarn; Chen, Tainsong

    2015-01-01

    The biomechanical properties of soft tissues vary with pathological phenomenon. Ultrasound elasticity imaging is a noninvasive method used to analyze the local biomechanical properties of soft tissues in clinical diagnosis. However, the echo signal-to-noise ratio (eSNR) is diminished because of the attenuation of ultrasonic energy by soft tissues. Therefore, to improve the quality of elastography, the eSNR and depth of ultrasound penetration must be increased using chirp-coded excitation. Moreover, the low axial resolution of ultrasound images generated by a chirp-coded pulse must be increased using an appropriate compression filter. The main aim of this study is to develop an ultrasound elasticity imaging system with chirp-coded excitation using a Tukey window for assessing the biomechanical properties of soft tissues. In this study, we propose an ultrasound elasticity imaging system equipped with a 7.5-MHz single-element transducer and polymethylpentene compression plate to measure strains in soft tissues. Soft tissue strains were analyzed using cross correlation (CC) and absolution difference (AD) algorithms. The optimal parameters of CC and AD algorithms used for the ultrasound elasticity imaging system with chirp-coded excitation were determined by measuring the elastographic signal-to-noise ratio (SNRe) of a homogeneous phantom. Moreover, chirp-coded excitation and short pulse excitation were used to measure the elasticity properties of the phantom. The elastographic qualities of the tissue-mimicking phantom were assessed in terms of Young’s modulus and elastographic contrast-to-noise ratio (CNRe). The results show that the developed ultrasound elasticity imaging system with chirp-coded excitation modulated by a Tukey window can acquire accurate, high-quality elastography images. PMID:28793718

  4. Concurrent validation of an inertial measurement system to quantify kicking biomechanics in four football codes.

    PubMed

    Blair, Stephanie; Duthie, Grant; Robertson, Sam; Hopkins, William; Ball, Kevin

    2018-05-17

    Wearable inertial measurement systems (IMS) allow for three-dimensional analysis of human movements in a sport-specific setting. This study examined the concurrent validity of a IMS (Xsens MVN system) for measuring lower extremity and pelvis kinematics in comparison to a Vicon motion analysis system (MAS) during kicking. Thirty footballers from Australian football (n = 10), soccer (n = 10), rugby league and rugby union (n = 10) clubs completed 20 kicks across four conditions. Concurrent validity was assessed using a linear mixed-modelling approach, which allowed the partition of between and within-subject variance from the device measurement error. Results were expressed in raw and standardised units for assessments of differences in means and measurement error, and interpreted via non-clinical magnitude-based inferences. Trivial to small differences were found in linear velocities (foot and pelvis), angular velocities (knee, shank and thigh), sagittal joint (knee and hip) and segment angle (shank and pelvis) means (mean difference: 0.2-5.8%) between the IMS and MAS in Australian football, soccer and the rugby codes. Trivial to small measurement errors (from 0.1 to 5.8%) were found between the IMS and MAS in all kinematic parameters. The IMS demonstrated acceptable levels of concurrent validity compared to a MAS when measuring kicking biomechanics across the four football codes. Wearable IMS offers various benefits over MAS, such as, out-of-laboratory testing, larger measurement range and quick data output, to help improve the ecological validity of biomechanical testing and the timing of feedback. The results advocate the use of IMS to quantify biomechanics of high-velocity movements in sport-specific settings. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Hepatic echinococcosis: Clinical and therapeutic aspects

    PubMed Central

    Nunnari, Giuseppe; Pinzone, Marilia R; Gruttadauria, Salvatore; Celesia, Benedetto M; Madeddu, Giordano; Malaguarnera, Giulia; Pavone, Piero; Cappellani, Alessandro; Cacopardo, Bruno

    2012-01-01

    Echinococcosis or hydatid disease (HD) is a zoonosis caused by the larval stages of taeniid cestodes belonging to the genus Echinococcus. Hepatic echinococcosis is a life-threatening disease, mainly differentiated into alveolar and cystic forms, associated with Echinoccus multilocularis (E. multilocularis) and Echinococcus granulosus (E. granulosus) infection, respectively. Cystic echinococcosis (CE) has a worldwide distribution, while hepatic alveolar echinococcosis (AE) is endemic in the Northern hemisphere, including North America and several Asian and European countries, like France, Germany and Austria. E. granulosus young cysts are spherical, unilocular vesicles, consisting of an internal germinal layer and an outer acellular layer. Cyst expansion is associated with a host immune reaction and the subsequent development of a fibrous layer, called the pericyst; old cysts typically present internal septations and daughter cysts. E. multilocularis has a tumor-like, infiltrative behavior, which is responsible for tissue destruction and finally for liver failure. The liver is the main site of HD involvement, for both alveolar and cystic hydatidosis. HD is usually asymptomatic for a long period of time, because cyst growth is commonly slow; the most frequent symptoms are fatigue and abdominal pain. Patients may also present jaundice, hepatomegaly or anaphylaxis, due to cyst leakage or rupture. HD diagnosis is usually accomplished with the combined use of ultrasonography and immunodiagnosis; furthermore, the improvement of surgical techniques, the introduction of minimally invasive treatments [such as puncture, aspiration, injection, re-aspiration (PAIR)] and more effective drugs (such as benzoimidazoles) have deeply changed life expectancy and quality of life of patients with HD. The aim of this article is to provide an up-to-date review of biological, diagnostic, clinical and therapeutic aspects of hepatic echinococcosis. PMID:22509076

  6. Prader-Willi Syndrome: Clinical Genetics and Diagnostic Aspects with Treatment Approaches.

    PubMed

    Butler, Merlin G; Manzardo, Ann M; Forster, Janice L

    2016-01-01

    Prader-Willi syndrome (PWS) is a neuro-developmental genetic disorder due to lack of expression of genes inherited from the paternal chromosome 15q11-q13 region with three main genetic subtypes. These include paternal 15q11-q13 deletion (about 70% of cases), maternal uniparental disomy 15 or both 15s from the mother (20-30% of cases), and defects in the imprinting center (1-3%) which controls the expression of imprinted genes in this chromosome region. Clinical manifestations include infantile hypotonia with a poor suck resulting in failure to thrive, short stature, small hands/feet and hypogonadism/hypogenitalism due to growth and other hormone deficiencies, hyperphagia and excessive weight gain with obesity and cognitive and behavioral problems including obsessive compulsions, tantrums and self-injury. The phenotype is likely related to hypothalamic dysfunction. Hyperphagia and obesity with related complications are major causes of morbidity and mortality in PWS requiring accurate diagnosis, appropriate medical management and treatment; the major objective of our report. An extensive review of the literature was undertaken including genetics, clinical and behavioral aspects, and updated health-related information addressing the importance of early diagnosis and treatment of individuals with Prader-Willi syndrome. A searchable, bulleted and formatted list of topics related to this obesity syndrome was provided utilizing a Table of Contents approach for the clinical practitioner. Physicians and other health care providers can use this review with clinical, genetic and treatment summaries divided into sections that are pertinent in the context of clinical practice. Finally, frequently asked questions by clinicians, families and other interested participants will be addressed.

  7. [Clinical and epidemiological aspects of neurocysticercosis in Brazil: a critical approach].

    PubMed

    Agapejev, Svetlana

    2003-09-01

    With the objective to show the characteristics of neurocysticercosis (NCC) in Brazil, was performed a critical analysis of national literature which showed a frequency of 1.5% in autopsies and 3.0% in clinical studies, corresponding to 0.3% of all admissions in general hospitals. In seroepidemiological studies the positivity of specific reactions was 2.3%. Brazilian patient with NCC presents a general clinical-epidemilogical profile (31-50 years old man, rural origin, complex partial epileptic crisis, increased protein levels or normal CSF, CT showing calcifications, constituting the inactive form of NCC), and a profile of severity (21-40 years old woman, urban origin, vascular headache and intracranial hypertension, typical CSF syndrome of NCC or alteration of two or more CSF parameters, CT showing vesicles and/or calcifications, constituting the active form of NCC). Although two localities from the state of S o Paulo have 72:100000 and 96:100000/habitants as prevalence coefficients, regional and national prevalences are very underestimated. Some aspects related to underestimation of NCC prevalence in Brazil are discussed.

  8. Molecular and clinical aspects of GHRH receptor mutations.

    PubMed

    Corazzini, Valentina; Salvatori, Roberto

    2013-01-01

    The growth hormone (GH)-releasing hormone (GHRH) receptor (GHRHR) belongs to the G protein-coupled receptor family. It binds GHRH resulting in somatotroph cell proliferation and stimulation of GH secretion. Mutations in the gene encoding for GHRHR (GHRHR, OMIM No. 139191) are being reported with increasing frequency in familial isolated GH deficiency. To date, the reported GHRHR mutations include eight missense, seven splice, three microdeletions, and two non-sense mutations. One promoter mutation has also been reported. Most of these mutations show a recessive mode of inheritance. The phenotype includes reduced but not absent serum GH, with abnormal response to a variety of stimuli, and low serum insulin-like growth factor-1 levels, resulting in proportionate growth failure which becomes evident in the first year of life. These patients respond well to GH replacement therapy. Phenotypical observations coming from some unusually large kindreds with untreated GH deficiency due to homozygous GHRHR mutations have allowed the study of the consequences of lifetime lack of GH. This chapter reviews the structure and the role of the GHRHR together with the clinical aspects associated with its mutations. Copyright © 2013 S. Karger AG, Basel.

  9. A Novel Fixation System for Acetabular Quadrilateral Plate Fracture: A Comparative Biomechanical Study

    PubMed Central

    Zha, Guo-Chun; Sun, Jun-Ying; Dong, Sheng-Jie; Zhang, Wen; Luo, Zong-Ping

    2015-01-01

    This study aims to assess the biomechanical properties of a novel fixation system (named AFRIF) and to compare it with other five different fixation techniques for quadrilateral plate fractures. This in vitro biomechanical experiment has shown that the multidirectional titanium fixation (MTF) and pelvic brim long screws fixation (PBSF) provided the strongest fixation for quadrilateral plate fracture; the better biomechanical performance of the AFRIF compared with the T-shaped plate fixation (TPF), L-shaped plate fixation (LPF), and H-shaped plate fixation (HPF); AFRIF gives reasonable stability of treatment for quadrilateral plate fracture and may offer a better solution for comminuted quadrilateral plate fractures or free floating medial wall fracture and be reliable in preventing protrusion of femoral head. PMID:25802849

  10. Scleral Biomechanics in the Aging Monkey Eye

    PubMed Central

    Girard, Michaël J. A.; Suh, J-K. Francis; Bottlang, Michael; Burgoyne, Claude F.; Downs, J. Crawford

    2010-01-01

    Purpose To investigate the age-related differences in the inhomogeneous, anisotropic, nonlinear biomechanical properties of posterior sclera from old (22.9 ± 5.3 years) and young (1.5 ± 0.7 years) rhesus monkeys. Methods The posterior scleral shell of each eye was mounted on a custom-built pressurization apparatus, then intraocular pressure (IOP) was elevated from 5 to 45 mmHg while the 3D displacements of the scleral surface were measured using speckle interferometry. Each scleral shell geometry was digitally reconstructed from data generated by a 3D digitizer (topography) and 20 MHz ultrasounds (thickness). An inverse finite element (FE) method incorporating a fiber-reinforced constitutive model was used to extract a unique set of biomechanical properties for each eye. Displacements, thickness, stress, strain, tangent modulus, structural stiffness, and preferred collagen fiber orientation were mapped for each posterior sclera. Results The model yielded 3-D deformations of posterior sclera that matched well with those observed experimentally. The posterior sclera exhibited inhomogeneous, anisotropic, nonlinear mechanical behavior. The sclera was significantly thinner (p = 0.038), and tangent modulus and structural stiffness were significantly higher in old monkeys (p < 0.0001). On average, scleral collagen fibers were circumferentially oriented around the optic nerve head (ONH). We found no difference in the preferred collagen fiber orientation and fiber concentration factor between age groups. Conclusions Posterior sclera from old monkeys is significantly stiffer than that from young monkeys and is therefore subject to higher stresses but lower strains at all levels of IOP. Age-related stiffening of the sclera may significantly influence ONH biomechanics, and potentially contribute to age-related susceptibility to glaucomatous vision loss. PMID:19494203

  11. Biomechanical and biological aspects of defect treatment in fractures using helical plates.

    PubMed

    Perren, S M; Regazzoni, P; Fernandez, A A D

    2014-01-01

    The clinical case of figure 1 through figure 11 shows a series of impressive failures of plate fixation. The plates were repeatedly applied bridging a comminuted bone segment in a heavy patient. The biomechanical analysis elaborates why this happened and proposes an unconventional procedure to prevent this failure with a minimally invasive procedure. A plate bridging an open gap or a defect in a long bone diaphysis is exposed to full functional load. According to clinical observations such plate application often fails even without external load such as weight bearing. The plate risks to break through fatigue when exposed during a long time to cyclic loading. This type of failure has been observed even with broad plates as well in femoral as in tibiae. The first option to avoid such failure consists in protecting the plate by installing load sharing between plate and either bone or an additional implant. This reduces the load carried by the plate to a safe level. Load sharing with bone may be installed at surgery by establishing solid mechanical bridge between the two main fragments of the fractured bone. The optimal load sharing relies on a solid compressed contact between the main fragments. It can be established because the bone is able to take a large load which results in optimal protection of the plate. In the case of an extended comminuted bone segment it may be very difficult, traumatizing and inefficient to reconstruct the bone. In the present case it was impossible to establish load sharing through the bone. The second option protecting the plate is provided by callus bridging of the gap or defect. The formation of a solid callus bridge takes time but the fatigue failure of the plate also takes time. Therefore, the callus bridge may prevent a late fatigue failure. The surgeon may select one of several options: - Replacing the lack of bone support using a second plate which immediately alleviates plate loading. The drawback of application of a second

  12. [Biomechanical condition of the cornea as a new indicator for pathological and structural changes].

    PubMed

    Spörl, E; Terai, N; Haustein, M; Böhm, A G; Raiskup-Wolf, F; Pillunat, L E

    2009-06-01

    Several methods permit the measurement of geometric parameters of the cornea, but until now biomechanical conditions of the cornea have been ignored (e.g. in refractive corneal surgery). Besides the geometric condition, biomechanical properties of the cornea have been shown to influence applanation measurement of intra-ocular pressure (IOP) and epidemiological studies have identified corneal thickness as an independent risk factor for the development and progression of glaucoma. The aim of this investigation was to characterize the biomechanical properties of the cornea using the ocular response analyzer (ORA). The ocular response analyzer (ORA) is a new method available for non-contact measurement of the biomechanical properties of the cornea. We evaluated the reproducibility of measurements, the difference between static and dynamic factors and the impact of independent factors (e.g. IOP, age, CCT, swelling of the cornea) on 2,500 measurements of corneal hysteresis (CH) and corneal resistance factor (CRF). In a large sample size we observed changes in CH and CRF after refractive surgery procedures (LASIK, UV-A cross-linking, keratoplasty) and in other corneal disorders (keratoconus, corneal dystrophies). CRF and CH changes may reflect structural changes of the cornea. Thus, the ORA provides valuable information for a better understanding and characterization of the biomechanical condition of the cornea, especially with regard to diseases such as keratoconus and glaucoma.

  13. Double-row vs single-row rotator cuff repair: a review of the biomechanical evidence.

    PubMed

    Wall, Lindley B; Keener, Jay D; Brophy, Robert H

    2009-01-01

    A review of the current literature will show a difference between the biomechanical properties of double-row and single-row rotator cuff repairs. Rotator cuff tears commonly necessitate surgical repair; however, the optimal technique for repair continues to be investigated. Recently, double-row repairs have been considered an alternative to single-row repair, allowing a greater coverage area for healing and a possibly stronger repair. We reviewed the literature of all biomechanical studies comparing double-row vs single-row repair techniques. Inclusion criteria included studies using cadaveric, animal, or human models that directly compared double-row vs single-row repair techniques, written in the English language, and published in peer reviewed journals. Identified articles were reviewed to provide a comprehensive conclusion of the biomechanical strength and integrity of the repair techniques. Fifteen studies were identified and reviewed. Nine studies showed a statistically significant advantage to a double-row repair with regards to biomechanical strength, failure, and gap formation. Three studies produced results that did not show any statistical advantage. Five studies that directly compared footprint reconstruction all demonstrated that the double-row repair was superior to a single-row repair in restoring anatomy. The current literature reveals that the biomechanical properties of a double-row rotator cuff repair are superior to a single-row repair. Basic Science Study, SRH = Single vs. Double Row RCR.

  14. Biomechanical and psychosocial work exposures and musculoskeletal symptoms among vineyard workers.

    PubMed

    Bernard, Christophe; Courouve, Laurène; Bouée, Stéphane; Adjémian, Annie; Chrétien, Jean-Claude; Niedhammer, Isabelle

    2011-01-01

    This study explored the associations between biomechanical and psychosocial work factors and musculoskeletal symptoms in vineyard workers. This cross-sectional study was based on a random sample of 2,824 male and 1,123 female vineyard workers in France. Data were collected using a self-administered questionnaire. Neck/shoulder, back and upper and lower extremity symptoms were evaluated using the Nordic questionnaire. Biomechanical exposures included 15 tasks related to vineyard activities. Psychosocial work factors included effort-reward imbalance and overcommitment, measured using the effort-reward imbalance model, and low job control and insufficient material means. Statistical analysis was performed using logistic regression analysis, and the results were adjusted for age, body mass index, educational level, work status and years in vineyard. Pruning-related factors increased the risk of upper extremity pain for both genders, of back pain for men and of neck/shoulder and lower extremity pain for women. Driving increased the risk of neck/shoulder and back pain among men. Psychosocial work factors, which were insufficient material means, overcommitment (both genders), effort-reward imbalance (men) and low job control (women), were associated with musculoskeletal symptoms, back and upper extremity pain for both genders and neck/shoulder and lower extremity pain for men. These results underlined that both biomechanical and psychosocial work factors may play a role in musculoskeletal pain among vineyard workers. Prevention policies focusing on both biomechanical and psychosocial work exposures may be useful to prevent musculoskeletal symptoms.

  15. Biomechanics of phalangeal curvature.

    PubMed

    Richmond, Brian G

    2007-12-01

    Phalangeal curvature has been widely cited in primate functional morphology and is one of the key traits in the ongoing debate about whether the locomotion of early hominins included a significant degree of arboreality. This study examines the biomechanics of phalangeal curvature using data on hand posture, muscle recruitment, and anatomical moment arms to develop a finite element (FE) model of a siamang manual proximal phalanx during suspensory grasping. Strain patterns from experiments on intact cadaver forelimbs validated the model. The strain distribution in the curved siamang phalanx FE model was compared to that in a mathematically straight rendition in order to test the hypotheses that curvature: 1) reduces strain and 2) results in lower bending strains but relatively higher compression. In the suspensory posture, joint reaction forces load the articular ends of the phalanx in compression and dorsally, while muscle forces acting through the flexor sheath pull the mid-shaft palmarly. These forces compress the phalanx dorsally and tense it palmarly, effectively bending it 'open.' Strains in the curved model were roughly half that of the straight model despite equivalent lengths, areas, mechanical properties, and loading conditions in the two models. The curved model also experienced a higher ratio of compressive to tensile strains. Curvature reduces strains during grasping hand postures because the curved bone is more closely aligned with the joint reaction forces. Therefore, phalangeal curvature reduces the strains associated with arboreal, and especially suspensory, activity involving flexed digits. These results offer a biomechanical explanation for the observed association between phalangeal curvature and arboreality.

  16. Clinical evolutional aspects of chronic subdural haematomas – literature review

    PubMed Central

    Iliescu, IA; Constantinescu, AI

    2015-01-01

    Apparently trivial, one of the most frequent pathologies in neurosurgical practice, chronic subdural haematoma, continues to be a challenge for the neurosurgeons both from the therapeutic and postoperatory complications point of view, taking into account that it is frequently met in elders, who usually present a complex pathology. The fact that, by definition, there is a latent period between the moment the brain injury, usually minor, occurs and the appearance of clinical symptomatology, frequently makes the trauma be ignored, this complicating the diagnosis and most of the times delaying the application of the adequate treatment. Developing slowly in time, in weeks or months, the aspect that chronic subdural haematoma usually occurs in elders should not be neglected, its clinical symptomatology often debuting with memory and attention disorders, so that the patient is usually referred to psychiatrists or neurologists, only a paraclinical investigation (CT scan or MRI) being able to establish the diagnosis. Even the appearance of the lateral signs is subjected to many diagnosis confusions because patients deny the existence of a trauma in over 50% of the cases. Abbreviations: CT = computed tomography, MRI = magnetic resonance imaging, CSDH = chronic subdural haematoma, HMW = high molecular weight, F = frontal, T = temporal, P = parietal PMID:26361507

  17. Biomechanics of the Ankle-Foot System during Stair Ambulation: Implications for Design of Advanced Ankle-Foot Prostheses

    DTIC Science & Technology

    2011-12-15

    Biomechanics of the ankle–foot system during stair ambulation: Implications for design of advanced ankle–foot prostheses$ Emily H. Sinitski a, Andrew...Wilken). Please cite this article as: Sinitski, E.H., et al., Biomechanics of the ankle–foot system during stair ambulation: Implications for design of...REPORT TYPE 3. DATES COVERED 00-00-2011 to 00-00-2011 4. TITLE AND SUBTITLE Biomechanics Of The Ankle-Foot System During Stair Ambulation

  18. A biomechanical comparison of the Rogers interspinous and the Lovely-Carl tension band wiring techniques for fixation of the cervical spine.

    PubMed

    Brasil, A V; Coehlo, D G; Filho, T E; Braga, F M

    2000-07-01

    The authors conducted a biomechanical study in which they compared the uses of the Rogers interspinous and the Lovely-Carl tension band wiring techniques for internal fixation of the cervical spine. An extensive biomechanical evaluation (stiffness in positive and negative rotations around the x, y, and z axes; range of motion in flexion-extension, bilateral axial rotation, and bilateral bending; and neutral zone in flexion-extension, bilateral axial rotation, and lateral bending to the right and to the left) was performed in two groups of intact calf cervical spines. After these initial tests, all specimens were subjected to a distractive flexion Stage 3 ligamentous lesion. Group 1 specimens then underwent surgical fixation by the Rogers technique, and Group 2 specimens underwent surgery by using the Lovely-Carl technique. After fixation, specimens were again submitted to the same biomechanical evaluation. The percentage increase or decrease between the pre- and postoperative parameters was calculated. These values were considered quantitative indicators of the efficacy of the techniques, and the efficacy of the two techniques was compared. Analysis of the findings demonstrated that in the spines treated with the Lovely-Carl technique less restriction of movement was produced without affecting stiffness, compared with those treated with the Rogers technique, thus making the Lovely-Carl technique clinically less useful.

  19. Biomechanical reposition techniques in anterior shoulder dislocation: a randomised multicentre clinical trial- the BRASD-trial protocol.

    PubMed

    Baden, David N; Roetman, Martijn H; Boeije, Tom; Roodheuvel, Floris; Mullaart-Jansen, Nieke; Peeters, Suzanne; Burg, Mike D

    2017-07-20

    Glenohumeral (shoulder) dislocations are the most common large joint dislocations seen in the emergency department (ED). They cause pain, often severe, and require timely interventions to minimise discomfort and tissue damage. Commonly used reposition or relocation techniques often involve traction and/or leverage. These techniques have high success rates but may be painful and time consuming. They may also cause complications. Recently, other techniques-the biomechanical reposition techniques (BRTs)-have become more popular since they may cause less pain, require less time and cause fewer complications. To our knowledge, no research exists comparing the various BRTs. Our objective is to establish which BRT or BRT combination is fastest, least painful and associated with the lowest complication rate for adult ED patients with anterior glenohumeral dislocations (AGDs). Adults presenting to the participating EDs with isolated AGDs, as determined by radiographs, will be randomised to one of three BRTs: Cunningham, modified Milch or scapular manipulation. Main study parameters/endpoints are ED length of stay and patients' self-report of pain. Secondary study parameters/endpoints are procedure times, need for analgesic and/or sedative medications, iatrogenic complications and rates of successful reduction. Non-biomechanical AGD repositioning techniques based on traction and/or leverage are inherently painful and potentially harmful. We believe that the three BRTs used in this study are more physiological, more patient friendly, less likely to cause pain, more time efficient and less likely to produce complications. By comparing these three techniques, we hope to improve the care provided to adults with acute AGDs by reducing their ED length of stay and minimising pain and procedure-related complications. We also hope to define which of the three BRTs is quickest, most likely to be successful and least likely to require sedative or analgesic medications to achieve

  20. Expose Mechanical Engineering Students to Biomechanics Topics

    ERIC Educational Resources Information Center

    Shen, Hui

    2011-01-01

    To adapt the focus of engineering education to emerging new industries and technologies nationwide and in the local area, a biomechanics module has been developed and incorporated into a mechanical engineering technical elective course to expose mechanical engineering students at ONU (Ohio Northern University) to the biomedical engineering topics.…

  1. Biomechanics of the press-fit phenomenon in dental implantology: an image-based finite element analysis

    PubMed Central

    2012-01-01

    Background A fundamental pre-requisite for the clinical success in dental implant surgery is the fast and stable implant osseointegration. The press-fit phenomenon occurring at implant insertion induces biomechanical effects in the bone tissues, which ensure implant primary stability. In the field of dental surgery, the understanding of the key factors governing the osseointegration process still remains of utmost importance. A thorough analysis of the biomechanics of dental implantology requires a detailed knowledge of bone mechanical properties as well as an accurate definition of the jaw bone geometry. Methods In this work, a CT image-based approach, combined with the Finite Element Method (FEM), has been used to investigate the effect of the drill size on the biomechanics of the dental implant technique. A very accurate model of the human mandible bone segment has been created by processing high resolution micro-CT image data. The press-fit phenomenon has been simulated by FE analyses for different common drill diameters (DA = 2.8 mm, DB = 3.3 mm, and DC = 3.8 mm) with depth L = 12 mm. A virtual implant model has been assumed with a cylindrical geometry having height L = 11 mm and diameter D = 4 mm. Results The maximum stresses calculated for drill diameters DA, DB and DC have been 12.31 GPa, 7.74 GPa and 4.52 GPa, respectively. High strain values have been measured in the cortical area for the models of diameters DA and DB, while a uniform distribution has been observed for the model of diameter DC . The maximum logarithmic strains, calculated in nonlinear analyses, have been ϵ = 2.46, 0.51 and 0.49 for the three models, respectively. Conclusions This study introduces a very powerful, accurate and non-destructive methodology for investigating the effect of the drill size on the biomechanics of the dental implant technique. Further studies could aim at understanding how different drill shapes can determine the

  2. Acute herpes zoster neuralgia: retrospective analysis of clinical aspects and therapeutic responsiveness.

    PubMed

    Haas, N; Holle, E; Hermes, B; Henz, B M

    2001-01-01

    Although the efficacy of modern antiviral agents for the treatment of herpes zoster is unquestioned, their ability to affect the associated pain remains controversial. We have therefore evaluated the inpatient hospital records of 550 patients with herpes zoster with regard to pain-related clinical aspects and therapeutic responsiveness. Intensity of pain was quantified by calculating a daily pain equivalence index (PEI) on the basis of different classes of pain medication and the number of tablets used in each category. The mean age of patients was 66.7 years, cranial segments were predominantly involved (55%), 64% of patients suffered from associated diseases and 77% experienced herpes-related pain. The PEI was 0.90 in the entire patient population, with significantly higher values in women and in patients with 3 or more associated diseases. It was lower in sacral and cranial nerve involvement, and it decreased rapidly in patients prior to discharge from hospital. Although there were significant differences in hospital stay between patients who received aciclovir and those who did not (mean 20.3 vs. 23.8 days), and for high- versus low-dose oral or intravenous administration, no significant differences were noted between the two groups for initial PEI values and during the course of observation, irrespective of the route of administration or the dose of aciclovir and the individual patient's PEI value. The groups were otherwise closely similar with regard to basic demographic and clinical data. 23.3% predominantly aged female patients with more associated diseases than the total patient population had a persistently elevated PEI and stayed in hospital beyond 21 days (mean 35.1 days), representing patients who went on to postherpetic neuralgia. These data further delineate clinical aspects of acute herpes zoster neuralgia, underline the unsolved therapeutic problems associated with this condition despite otherwise effective antiviral treatment, and characterise a

  3. The Effect of Pterygium and Pterygium Surgery on Corneal Biomechanics.

    PubMed

    Koç, Mustafa; Yavrum, Fuat; Uzel, Mehmet Murat; Aydemir, Emre; Özülken, Kemal; Yılmazbaş, Pelin

    2018-01-01

    To evaluate the effect of pterygium and pterygium surgery on corneal biomechanics by ocular response analyzer (ORA, Reichert, USA). This study considered 68 eyes (from 34 patients with a mean age of 21.2±7.1 years) with unilateral nasal, primary pterygium (horizontal length <4 mm), and having undergone pterygium excision and conjunctival autografting. Pterygium length and area were measured from a photograph of the anterior segment using Image J program. ORA measurements were obtained before surgery and after the first month of the surgery. The measurements of the eyes with pterygium and healthy eyes were compared to evaluate the effect of pterygium. Similarly, measurements obtained before and after surgery were compared to evaluate the effect of pterygium surgery on corneal biomechanics. The correlation of the ORA measurements with the pterygium area was evaluated. Mean pterygium horizontal length and area were 3.31±1.43 mm and 6.82±2.17 mm 2 , respectively. There was no statistically significant difference between the eyes with and without pterygium in corneal hysteresis (CH, p=0.442), corneal resistance factor (CRF, p=0.554), corneal-compensated intraocular pressure (IOP cc , p=0.906), and Goldmann-correlated IOP (IOP g , p=0.836). All preoperative parameters decreased after surgery; however, none of them were statistically significant (CH, p=0.688; CRF, p=0.197; IOP cc , p=0.503; IOP g , p=0.231). There were no correlations between pterygium area and ORA measurements (p>0.05). Pterygium <4 mm and its surgical excision did not affect corneal biomechanics. These results may be taken into account when cornea biomechanics, mainly intraocular pressure measurements, are important.

  4. Biomechanical bases of rehabilitation of children with cerebral palsy

    NASA Astrophysics Data System (ADS)

    Davlet'yarova, K. V.; Korshunov, S. D.; Kapilevich, L. V.

    2015-11-01

    Biomechanical analysis and the study results of children's with cerebral palsy (CP) muscles bioelectrical activity while walking on a flat surface are represented. Increased flexion in the hip and shoulder joints and extension in the elbow joint in children with cerebral palsy were observed, with the movement of the lower limbs had less smooth character in comparison with the control group. Herewith, the oscillation amplitude was significantly increased, and the frequency in the m. gastrocnemius and m. lateralis was decreased. It was shown, that the dynamic stereotype of walking in children with cerebral palsy was characterized by excessive involvement of m. gastrocnemius and m.latissimus dorsi in locomotion. Thus, resulting biomechanical and bioelectrical parameters of walking should be considered in the rehabilitation programs development.

  5. A 6-week warm-up injury prevention programme results in minimal biomechanical changes during jump landings: a randomized controlled trial.

    PubMed

    Taylor, Jeffrey B; Ford, Kevin R; Schmitz, Randy J; Ross, Scott E; Ackerman, Terry A; Shultz, Sandra J

    2018-01-16

    To examine the extent to which an ACL injury prevention programme modifies lower extremity biomechanics during single- and double-leg landing tasks in both the sagittal and frontal plane. It was hypothesized that the training programme would elicit improvements in lower extremity biomechanics, but that these improvements would be greater during a double-leg sagittal plane landing task than tasks performed on a single leg or in the frontal plane. Ninety-seven competitive multi-directional sport athletes that competed at the middle- or high-school level were cluster randomized into intervention (n = 48, age = 15.4 ± 1.0 years, height = 1.7 ± 0.07 m, mass = 59.9 ± 11.0 kg) and control (n = 49, age = 15.7 ± 1.6 years, height = 1.7 ± 0.06 m, mass = 60.4 ± 7.7 kg) groups. The intervention group participated in an established 6-week warm-up-based ACL injury prevention programme. Three-dimensional biomechanical analyses of a double- (SAG-DL) and single-leg (SAG-SL) sagittal, and double- (FRONT-DL) and single-leg (FRONT-SL) frontal plane jump landing tasks were tested before and after the intervention. Peak angles, excursions, and external joint moments were analysed for group differences using 2 (group) × 4 (task) repeated measures MANOVA models of delta scores (post-pre-test value) (α < 0.05). Relative to the control group, no significant biomechanical changes were identified in the intervention group for any of the tasks (n.s.). However, a group by task interaction was identified for knee abduction (λ = 0.80, p = 0.02), such that participants in the intervention group showed relative decreases in knee abduction moments during the SAG-DL compared to the SAG-SL (p = 0.005; d = 0.45, CI = 0.04-0.85) task. A 6-week warm-up-based ACL injury prevention programme resulted in no significant biomechanical changes during a variety of multi-directional jump landings. Clinically

  6. Instrumentation Strategies to Reduce the Risks of Proximal Junctional Kyphosis in Adult Scoliosis: A Detailed Biomechanical Analysis.

    PubMed

    Aubin, Carl-Eric; Cammarata, Marco; Wang, Xiaoyu; Mac-Thiong, Jean-Marc

    2015-05-01

    Biomechanical analysis of proximal junctional kyphosis (PJK) through numerical simulations. Assessment of the effect of sagittal alignment, the upper instrumented vertebral level (UIV), and 4 other surgical variables on biomechanical indices related to the PJK risks. Despite retrospective clinical studies, biomechanical analysis of individual parameters associated with PJK is lacking to support instrumentation strategies to reduce the PJK risks. Instrumentations of 6 adult scoliosis cases with different operative strategies were simulated (1,152 simulations). Proximal junctional (PJ) angle and flexion loads were evaluated against the sagittal alignment and the proximal instrumentation level. Instrumenting 1 more proximal vertebra allowed the PJ angle, proximal moment, and force to be reduced by 18%, 25%, and 16%, respectively. Shifting sagittal alignment by 20 mm posteriorly increased the PJ angle and proximal moment by 16% and 22%, and increased the equivalent posterior extensor force by 37%. Bilateral complete facetectomy, posterior ligaments resection, and the combination of the 2 resulted in an increase of the PJ angle (by 10%, 28%, and 53%, respectively), flexion forces (by 4%, 12%, and 22%, respectively), and proximal moments (by 16%, 44%, and 83%, respectively). Transverse process hooks at UIV compared with pedicle screws allowed 26% lower PJ angle and flexion loads. The use of proximal transition rods with proximal diameter reduced from 5.5 to 4 mm slightly reduced PJ angle, flexion force, and moment (less than 8%). The increase in sagittal rod curvature from 10° to 40° increased the PJ angle (from 6% to 19%), flexion force (from 3% to 10%), and moment (from 9% to 27%). Simulated posteriorly shifted sagittal alignment was associated with higher PJK risks, whereas extending instrumentation proximally allowed a lower mechanical risk of PJK. Preserving PJ intervertebral elements and using a more flexible anchorage at UIV help reduce the biomechanical risks

  7. [Epidemiological, clinical and judicial aspects of sexual assault in Bamako (Mali)].

    PubMed

    Théra, Japhet Pobanou; Soumah, Mohamed; Traoré, Ténin; Touré, Moustapha; Traoré, Matthieu; Sow, Mamadou Lamine

    2014-01-01

    Sexual assault rates are underestimated in Mali. This study was designed to assess the epidemiological, clinical and judicial aspects of sexual assault. A retrospective study was conducted from 1st July 2007 to 30 April 2010 in the health care centre of the 4th Commune of Bamako. The study included 37 sexual assault victims selected from the medical records and sexual assault certificates from a total of 1,810 patients attending the gynaecology clinic during the study period. The frequency of sexual assault was therefore 2%. 78.4% of the victims took legal action against the alleged perpetrator. Victims admitted at the request of Police officers accounted for 43.25%; 59.5% of victims attended the clinic within 24 hours following the assault. The age ranged from 2 to 40 years with a mean of 21 years; 37.9% were single and 48.6% were students. The assault was perpetrated by one person in 89.2%, a relative was involved in 5.4%; rape consisted of genito-genital intercourse in 64.9%; 32.4% of the victims had perineal and/or vulval injuries. Sexual assault is relatively frequent in Mali, particularly among students and housewives. It represents a real tragedy, which must be prevented by increasing the awareness of the population, judicial assistance to victims and prosecution of perpetrators.

  8. Anatomy and Biomechanics of the Finger Proximal Interphalangeal Joint.

    PubMed

    Pang, Eric Quan; Yao, Jeffrey

    2018-05-01

    A complete understanding of the normal anatomy and biomechanics of the proximal interphalangeal joint is critical when treating pathology of the joint as well as in the design of new reconstructive treatments. The osseous anatomy dictates the principles of motion at the proximal interphalangeal joint. Subsequently, the joint is stabilized throughout its motion by the surrounding proximal collateral ligament, accessory collateral ligament, and volar plate. The goal of this article is to review the normal anatomy and biomechanics of the proximal interphalangeal joint and its associated structures, most importantly the proper collateral ligament, accessory collateral ligament, and volar plate. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. A Biomechanical Paradigm for Axonal Insult Within the Optic Nerve Head

    PubMed Central

    Burgoyne, Claude F.

    2010-01-01

    Rosario Hernandez This article is dedicated to Rosario Hernandez for her warm support of my own work and her genuine enthusiasm for the work of her colleagues throughout her career. I first met Rosario as a research fellow in Harry Quigley’s laboratory between 1991 and 1993. Along with Harry, John Morrison, Elaine Johnson, Abe Clark, Colm O’Brien and many others, Rosario’s work has provided lamina cribrosa astrocyte cellular mechanisms that are biomechanically plausible and in so doing provided credibility to early notions of the optic nerve head (ONH) as a biomechanical structure. We owe a large intellectual debt to Rosario for her dogged persistence in the characterization of the ONH astrocyte and lamina cribrosacyte in age and disease. Two questions run through her work and remain of central importance today. First, how do astrocytes respond to and alter the biomechanical environment of the ONH and the physiologic stresses created therein? Second, how do these physiologic demands on the astrocyte influence their ability to deliver the support to retinal ganglion cell axon transport and flow against the translaminar pressure gradient? The purpose of this article is to summarize what is known about the biomechanical determinants of retinal ganglion cell axon physiology within the ONH in the optic neuropathy of aging and Glaucoma. My goal is to provide a biomechanical framework for this discussion. This framework assumes that the ONH astrocytes and glia fundamentally support and influence both the lamina cribrosa extracellular matrix and retinal ganglion cell axon physiology. Rosario Hernandez was one of the first investigators to recognize the implications of this unique circumstance. Many of the ideas contained herein have been initially presented within or derived from her work (Hernandez, M.R., 2000. The optic nerve head in glaucoma: role of astrocytes in tissue remodeling. Prog Retin Eye Res. 19, 297–321.; Hernandez, M.R., Pena, J.D., 1997. The optic

  10. Paralympic sport: an emerging area for research and consultancy in sports biomechanics.

    PubMed

    Keogh, Justin W L

    2011-09-01

    The Paralympic Games are the pinnacle of sport for many athletes with a disability. The overall purpose of this paper is to highlight the role that the field of sports biomechanics specifically (and sports science in general) may play in improving performance in various summer Paralympic sports through research and consultancy. To achieve this broad aim, this review provides some history and background on the Summer Paralympic Games, discusses the eligibility and classification rules, describes the potential for the constraints-led approach of dynamical systems theory to inform practice and research in this area, and reviews selected studies examining the biomechanics of the primary forms of Paralympic locomotion. Some recommendations on how sports biomechanics can help facilitate improvements in Paralympic athletic performance through applied research and consultancy are provided, along with commentary on what may be some of the most important issues addressing Paralympic sport.

  11. Biomechanical paradigm and interpretation of female pelvic floor conditions before a treatment

    PubMed Central

    Lucente, Vincent; van Raalte, Heather; Murphy, Miles; Egorov, Vladimir

    2017-01-01

    Background Further progress in restoring a woman’s health may be possible if a patient with a damaged pelvic floor could undergo medical imaging and biomechanical diagnostic tests. The results of such tests could contribute to the analysis of multiple treatment options and suggest the optimal one for that patient. Aim To develop a new approach for the biomechanical characterization of vaginal conditions, muscles, and connective tissues in the female pelvic floor. Methods Vaginal tactile imaging (VTI) allows biomechanical assessment of the soft tissue along the entire length of the anterior, posterior, and lateral vaginal walls at rest, with manually applied deflection pressures and with muscle contraction, muscle relaxation, and Valsalva maneuver. VTI allows a large body of measurements to evaluate individual variations in tissue elasticity, support defects, as well as pelvic muscle function. Presuming that 1) the female pelvic floor organs are suspended by ligaments against which muscles contract to open or close the outlets and 2) damaged ligaments weaken the support and may reduce the force of muscle contraction, we made an attempt to characterize multiple pelvic floor structures from VTI data. Results All of the 138 women enrolled in the study were successfully examined with the VTI. The study subjects have had normal pelvic support or pelvic organ prolapse (stages I–IV). The average age of this group of subjects was 60±15 years. We transposed a set of 31 VTI parameters into a quantitative characterization of pelvic muscles and ligamentous structures. Interpretation of the acquired VTI data for normal pelvic floor support and prolapse conditions is proposed based on biomechanical assessment of the functional anatomy. Conclusion Vaginal tactile imaging allows biomechanical characterization of female pelvic floor structures and tissues in vivo, which may help to optimize treatment of the diseased conditions such as prolapse, incontinence, atrophy, and some

  12. Biomechanical and organisational stressors and associations with employment withdrawal among pregnant workers: evidence and implications.

    PubMed

    Guendelman, Sylvia; Gemmill, Alison; MacDonald, Leslie A

    2016-12-01

    The distribution of exposure to biomechanical and organisational job stressors (BOJS) and associations with employment withdrawal (antenatal leave, unemployment) was examined in a case-control study of 1114 pregnant workers in California. We performed descriptive and multivariate logistic and multinomial regression analyses. At pregnancy onset, 57% were exposed to one or more biomechanical stressors, including frequent bending, heavy lifting and prolonged standing. One-third were simultaneously exposed to BOJS. Exposure to biomechanical stressors declined as pregnancy progressed and cessation often (41%) coincided with employment withdrawal (antenatal leave and unemployment). In multivariate modelling, whether we adjusted for or considered organisational stressors as coincident exposures, results showed that pregnant workers exposed to biomechanical stressors had increased employment withdrawal compared to the unexposed. Work schedule accommodations moderate this association. Paid antenatal leave, available to few US women, was an important strategy for mitigating exposure to BOJS. Implications for science and policy are discussed. Practitioner Summary: This case-control study showed that exposure to biomechanical stressors decline throughout pregnancy. Antenatal leave was an important strategy used for mitigating exposure among sampled California women with access to paid benefits. Employment withdrawal among workers exposed to BJOS may be reduced by proactive administrative and engineering efforts applied early in pregnancy.

  13. Conceptual framework on the application of biomechanical measurement methods in driving behavior study

    NASA Astrophysics Data System (ADS)

    Sanjaya, Kadek Heri; Sya'bana, Yukhi Mustaqim Kusuma

    2017-01-01

    Research on eco-friendly vehicle development in Indonesia has largely neglected ergonomic study, despite the fact that traffic accidents have resulted in greater economic cost than fuel subsidy. We have performed a biomechanical experiment on human locomotion earlier. In this article, we describe the importance of implementing the biomechanical measurement methods in transportation ergonomic study. The instruments such as electromyogram (EMG), load cell, pressure sensor, and motion analysis methods as well as cross-correlation function analysis were explained, then the possibility of their application in driving behavior study is described. We describe the potentials and challenges of the biomechanical methods concerning the future vehicle development. The methods provide greater advantages in objective and accurate measurement not only in human task performance but also its correlation with vehicle performance.

  14. Effect of dermal thickness, tissue composition, and body site on skin biomechanical properties.

    PubMed

    Smalls, Lola K; Randall Wickett, R; Visscher, Marty O

    2006-02-01

    Quantitative measurement of skin biomechanical properties has been used effectively in the investigation of physiological changes in tissue structure and function and to determine treatment efficacy. As the methods are applied to new questions, tissue characteristics that may influence the resultant biomechanical properties are important considerations in the research design. For certain applications, variables such as dermal thickness and subdermal tissue composition, as well as age and/or solar exposure, may influence the skin biomechanics. We determined the influence of dermal thickness, tissue composition, and age on the skin biomechanical properties at the shoulder, thigh, and calf among 30 healthy females. We compared two devices, the Biomechanical Tissue Characterization System and the Cutometer SEM 575 Skin Elasticity Meter , to determine the effect of tissue sampling size. Dermal thickness was measured with 20 MHz ultrasound (Dermascan C) and tissue composition was inferred from anthropomorphic data. Skin thickness was significantly correlated with stiffness, energy absorption, and U(r)/U(f) for the shoulder. Body mass index (BMI) was significantly correlated with stiffness (negative correlation), energy absorption (positive), and skin thickness (negative) for the shoulder. Significant differences across body sites were observed. The calf was significantly different from the thigh and shoulders for all parameters (P<0.05, one-way anova). The calf had significantly lower laxity, laxity%, elastic deformation, energy absorption, elasticity, elasticity %, U(r), U(f), and U(r)/U(f) and significantly higher stiffness compared with the thighs and shoulders. sites. The thigh and shoulder sites were significantly different for all parameters except U(r)/U(f), elasticity %, laxity%, and stiffness. The dominant and non-dominant sides were significantly different. The dominant side (right for 90% of the subjects) had increased stiffness and decreased energy absorption

  15. Measurement of the Biomechanical Function and Structure of Ex Vivo Drying Skin Using Raman Spectral Analysis and its Modulation with Emollient Mixtures.

    PubMed

    Biniek, Krysta; Tfayli, Ali; Vyumvuhore, Raoul; Quatela, Alessia; Galliano, Marie-Florence; Delalleau, Alexandre; Baillet-Guffroy, Arlette; Dauskardt, Reinhold H; Duplan, Helene

    2018-06-22

    An important aspect of the biomechanical behavior of the stratum corneum (SC) is the drying stresses that develop with water loss. These stresses act as a driving force for damage in the form of chapping and cracking. Betasitosterol is a plant sterol with a structure similar to cholesterol, a key component in the intercellular lipids of the outermost layer of human skin, the SC. Cholesterol plays an important role in stabilizing the SC lipid structure, and altered levels of cholesterol have been linked with SC barrier abnormalities. Betasitosterol is currently applied topically to skin for treatment of wounds and burns. However, it is unknown what effect betasitosterol has on the biomechanical barrier function of skin. Here, by analyzing the drying stress profile of SC generated during a kinetics of dehydration, we show that betasitosterol, in combination with two emollient molecules, isocetyl stearoyl stearate (ISS) and glyceryl tri-2-ethylhexanoate (GTEH), causes a significant modulation of the drying stress behavior of the SC by reducing both the maximal peak stress height and average plateau of the drying stress profile. Raman spectra analyses demonstrate that the combination of betasitosterol with the two emollients, ISS and GTEH, allows a high water retention capacity within the SC, while the lipid conformational order by increasing the amount of trans conformers. Our study highlights the advantage of combining a biomechanical approach together with Raman spectroscopy in engineering a suitable combination of molecules for alleviating dryness and dry skin damage. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  16. First Reported Cases of Biomechanically Adaptive Bone Modeling in Non-Avian Dinosaurs.

    PubMed

    Cubo, Jorge; Woodward, Holly; Wolff, Ewan; Horner, John R

    2015-01-01

    Predator confrontation or predator evasion frequently produces bone fractures in potential prey in the wild. Although there are reports of healed bone injuries and pathologies in non-avian dinosaurs, no previously published instances of biomechanically adaptive bone modeling exist. Two tibiae from an ontogenetic sample of fifty specimens of the herbivorous dinosaur Maiasaura peeblesorum (Ornithopoda: Hadrosaurinae) exhibit exostoses. We show that these outgrowths are cases of biomechanically adaptive periosteal bone modeling resulting from overstrain on the tibia after a fibula fracture. Histological and biomechanical results are congruent with predictions derived from this hypothesis. Histologically, the outgrowths are constituted by radial fibrolamellar periosteal bone tissue formed at very high growth rates, as expected in a process of rapid strain equilibration response. These outgrowths show greater compactness at the periphery, where tensile and compressive biomechanical constraints are higher. Moreover, these outgrowths increase the maximum bending strength in the direction of the stresses derived from locomotion. They are located on the antero-lateral side of the tibia, as expected in a presumably bipedal one year old individual, and in the posterior position of the tibia, as expected in a presumably quadrupedal individual at least four years of age. These results reinforce myological evidence suggesting that Maiasaura underwent an ontogenetic shift from the primitive ornithischian bipedal condition when young to a derived quadrupedal posture when older.

  17. First Reported Cases of Biomechanically Adaptive Bone Modeling in Non-Avian Dinosaurs

    PubMed Central

    Cubo, Jorge; Woodward, Holly; Wolff, Ewan; Horner, John R.

    2015-01-01

    Predator confrontation or predator evasion frequently produces bone fractures in potential prey in the wild. Although there are reports of healed bone injuries and pathologies in non-avian dinosaurs, no previously published instances of biomechanically adaptive bone modeling exist. Two tibiae from an ontogenetic sample of fifty specimens of the herbivorous dinosaur Maiasaura peeblesorum (Ornithopoda: Hadrosaurinae) exhibit exostoses. We show that these outgrowths are cases of biomechanically adaptive periosteal bone modeling resulting from overstrain on the tibia after a fibula fracture. Histological and biomechanical results are congruent with predictions derived from this hypothesis. Histologically, the outgrowths are constituted by radial fibrolamellar periosteal bone tissue formed at very high growth rates, as expected in a process of rapid strain equilibration response. These outgrowths show greater compactness at the periphery, where tensile and compressive biomechanical constraints are higher. Moreover, these outgrowths increase the maximum bending strength in the direction of the stresses derived from locomotion. They are located on the antero-lateral side of the tibia, as expected in a presumably bipedal one year old individual, and in the posterior position of the tibia, as expected in a presumably quadrupedal individual at least four years of age. These results reinforce myological evidence suggesting that Maiasaura underwent an ontogenetic shift from the primitive ornithischian bipedal condition when young to a derived quadrupedal posture when older. PMID:26153689

  18. Male and Female Cervical Spine Biomechanics and Anatomy: Implication for Scaling Injury Criteria.

    PubMed

    Yoganandan, Narayan; Bass, Cameron R; Voo, Liming; Pintar, Frank A

    2017-05-01

    There is an increased need to develop female-specific injury criteria and anthropomorphic test devices (dummies) for military and automotive environments, especially as women take occupational roles traditionally reserved for men. Although some exhaustive reviews on the biomechanics and injuries of the human spine have appeared in clinical and bioengineering literatures, focus has been largely ignored on the difference between male and female cervical spine responses and characteristics. Current neck injury criteria for automotive dummies for assessing crashworthiness and occupant safety are obtained from animal and human cadaver experiments, computational modeling, and human volunteer studies. They are also used in the military. Since the average human female spines are smaller than average male spines, metrics specific to the female population may be derived using simple geometric scaling, based on the assumption that male and female spines are geometrically scalable. However, as described in this technical brief, studies have shown that the biomechanical responses between males and females do not obey strict geometric similitude. Anatomical differences in terms of the structural component geometry are also different between the two cervical spines. Postural, physiological, and motion responses under automotive scenarios are also different. This technical brief, focused on such nonuniform differences, underscores the need to conduct female spine-specific evaluations/experiments to derive injury criteria for this important group of the population.

  19. Corneal biomechanical changes in diabetes mellitus and their influence on intraocular pressure measurements.

    PubMed

    Sahin, Afsun; Bayer, Atilla; Ozge, Gökhan; Mumcuoğlu, Tarkan

    2009-10-01

    To investigate possible corneal biomechanical changes in patients with diabetes mellitus and understand the influence of such changes on intraocular pressure measurements. The study group was composed of 120 eyes from 61 healthy control subjects and 81 eyes from 43 diabetic subjects. IOP was measured first with an ocular response analyzer (ORA) and subsequently with a Goldmann applanation tonometer (GAT). Central corneal thickness (CCT) was measured with an ultrasonic pachymeter attached to the ORA. Axial length (AL), anterior chamber depth (ACD), and keratometry readings were acquired with partial coherence laser interferometry during the same visit before all IOP and CCT determinations were made. Corneal hysteresis (CH) was found to be significantly lower in diabetic patients when compared with healthy control subjects (9.51 +/- 1.82 mm Hg vs. 10.41 +/- 1.66 mm Hg, P < 0.0001). There was no significant difference in terms of corneal resistance factor (CRF; P = 0.8). Mean CCT, GAT IOP, Goldmann-correlated IOP (IOPg), and corneal-compensated IOP (IOPcc) were significantly higher in diabetic patients than in healthy control subjects (P = 0.01 for CCT, P < 0.0001 for GAT IOP, IOPg, and IOPcc). Diabetes affects corneal biomechanics and results in lower CH values than those in healthy control subjects, which may cause clinically relevant high IOP measurements independent of CCT.

  20. Hand rim wheelchair propulsion training using biomechanical real-time visual feedback based on motor learning theory principles.

    PubMed

    Rice, Ian; Gagnon, Dany; Gallagher, Jere; Boninger, Michael

    2010-01-01

    As considerable progress has been made in laboratory-based assessment of manual wheelchair propulsion biomechanics, the necessity to translate this knowledge into new clinical tools and treatment programs becomes imperative. The objective of this study was to describe the development of a manual wheelchair propulsion training program aimed to promote the development of an efficient propulsion technique among long-term manual wheelchair users. Motor learning theory principles were applied to the design of biomechanical feedback-based learning software, which allows for random discontinuous real-time visual presentation of key spatiotemporal and kinetic parameters. This software was used to train a long-term wheelchair user on a dynamometer during 3 low-intensity wheelchair propulsion training sessions over a 3-week period. Biomechanical measures were recorded with a SmartWheel during over ground propulsion on a 50-m level tile surface at baseline and 3 months after baseline. Training software was refined and administered to a participant who was able to improve his propulsion technique by increasing contact angle while simultaneously reducing stroke cadence, mean resultant force, peak and mean moment out of plane, and peak rate of rise of force applied to the pushrim after training. The proposed propulsion training protocol may lead to favorable changes in manual wheelchair propulsion technique. These changes could limit or prevent upper limb injuries among manual wheelchair users. In addition, many of the motor learning theory-based techniques examined in this study could be applied to training individuals in various stages of rehabilitation to optimize propulsion early on.

  1. Hand Rim Wheelchair Propulsion Training Using Biomechanical Real-Time Visual Feedback Based on Motor Learning Theory Principles

    PubMed Central

    Rice, Ian; Gagnon, Dany; Gallagher, Jere; Boninger, Michael

    2010-01-01

    Background/Objective: As considerable progress has been made in laboratory-based assessment of manual wheelchair propulsion biomechanics, the necessity to translate this knowledge into new clinical tools and treatment programs becomes imperative. The objective of this study was to describe the development of a manual wheelchair propulsion training program aimed to promote the development of an efficient propulsion technique among long-term manual wheelchair users. Methods: Motor learning theory principles were applied to the design of biomechanical feedback-based learning software, which allows for random discontinuous real-time visual presentation of key spatio-temporal and kinetic parameters. This software was used to train a long-term wheelchair user on a dynamometer during 3 low-intensity wheelchair propulsion training sessions over a 3-week period. Biomechanical measures were recorded with a SmartWheel during over ground propulsion on a 50-m level tile surface at baseline and 3 months after baseline. Results: Training software was refined and administered to a participant who was able to improve his propulsion technique by increasing contact angle while simultaneously reducing stroke cadence, mean resultant force, peak and mean moment out of plane, and peak rate of rise of force applied to the pushrim after training. Conclusions: The proposed propulsion training protocol may lead to favorable changes in manual wheelchair propulsion technique. These changes could limit or prevent upper limb injuries among manual wheelchair users. In addition, many of the motor learning theory–based techniques examined in this study could be applied to training individuals in various stages of rehabilitation to optimize propulsion early on. PMID:20397442

  2. Perception of biomechanical motions by infants: implementation of various processing constraints.

    PubMed

    Bertenthal, B I; Proffitt, D R; Kramer, S J

    1987-11-01

    Geometry informs us that there exist a large number of possible connectivity patterns consistent with a point-light display of a person walking. Yet there is only one pattern consistent with a "stick figure" representation of the human form, and that pattern is uniquely specified by those pairwise connections that remain locally rigid. In this study, sensitivity to local rigidity in biomechanical displays was investigated in 3- and 5-month-old infants. The results of Experiment 1 revealed that by 5 months of age, infants discriminate a locally rigid point-light walker display from one in which local rigidity is perturbed. In Experiment 2 we tested infants' sensitivity to the same stimuli when those stimuli were inverted. Contrary to the preceding experiment, the results revealed no evidence of discrimination. Taken together, these findings suggest that infants are sensitive to local rigidity in biomechanical displays but that this sensitivity is orientation specific. Possible mechanisms for this specificity are discussed in the context of additional constraints on the processing of biomechanical displays.

  3. A novel biomechanical model assessing continuous orthodontic archwire activation

    PubMed Central

    Canales, Christopher; Larson, Matthew; Grauer, Dan; Sheats, Rose; Stevens, Clarke; Ko, Ching-Chang

    2013-01-01

    Objective The biomechanics of a continuous archwire inserted into multiple orthodontic brackets is poorly understood. The purpose of this research was to apply the birth-death technique to simulate insertion of an orthodontic wire and consequent transfer of forces to the dentition in an anatomically accurate model. Methods A digital model containing the maxillary dentition, periodontal ligament (PDL), and surrounding bone was constructed from human computerized tomography data. Virtual brackets were placed on four teeth (central and lateral incisors, canine and first premolar), and a steel archwire (0.019″ × 0.025″) with a 0.5 mm step bend to intrude the lateral incisor was virtually inserted into the bracket slots. Forces applied to the dentition and surrounding structures were simulated utilizing the birth-death technique. Results The goal of simulating a complete bracket-wire system on accurate anatomy including multiple teeth was achieved. Orthodontic force delivered by the wire-bracket interaction was: central incisor 19.1 N, lateral incisor 21.9 N, and canine 19.9 N. Loading the model with equivalent point forces showed a different stress distribution in the PDL. Conclusions The birth-death technique proved to be a useful biomechanical simulation method for placement of a continuous archwire in orthodontic brackets. The ability to view the stress distribution throughout proper anatomy and appliances advances understanding of orthodontic biomechanics. PMID:23374936

  4. Intraarticular arthrofibrosis of the knee alters patellofemoral contact biomechanics.

    PubMed

    Mikula, Jacob D; Slette, Erik L; Dahl, Kimi D; Montgomery, Scott R; Dornan, Grant J; O'Brien, Luke; Turnbull, Travis Lee; Hackett, Thomas R

    2017-12-19

    Arthrofibrosis in the suprapatellar pouch and anterior interval can develop after knee injury or surgery, resulting in anterior knee pain. These adhesions have not been biomechanically characterized. The biomechanical effects of adhesions in the suprapatellar pouch and anterior interval during simulated quadriceps muscle contraction from 0 to 90° of knee flexion were assessed. Adhesions of the suprapatellar pouch and anterior interval were hypothesized to alter the patellofemoral contact biomechanics and increase the patellofemoral contact force compared to no adhesions. Across all flexion angles, suprapatellar adhesions increased the patellofemoral contact force compared to no adhesions by a mean of 80 N. Similarly, anterior interval adhesions increased the contact force by a mean of 36 N. Combined suprapatellar and anterior interval adhesions increased the mean patellofemoral contact force by 120 N. Suprapatellar adhesions resulted in a proximally translated patella from 0 to 60°, and anterior interval adhesions resulted in a distally translated patella at all flexion angles other than 15° (p < 0.05). The most important finding in this study was that patellofemoral contact forces were significantly increased by simulated adhesions in the suprapatellar pouch and anterior interval. Anterior knee pain and osteoarthritis may result from an increase in patellofemoral contact force due to patellar and quadriceps tendon adhesions. For these patients, arthroscopic lysis of adhesions may be beneficial.

  5. In vivo biomechanical evaluation of a novel angle-stable interlocking nail design in a canine tibial fracture model.

    PubMed

    Déjardin, Loïc M; Cabassu, Julien B; Guillou, Reunan P; Villwock, Mark; Guiot, Laurent P; Haut, Roger C

    2014-03-01

    To compare clinical outcome and callus biomechanical properties of a novel angle stable interlocking nail (AS-ILN) and a 6 mm bolted standard ILN (ILN6b) in a canine tibial fracture model. Experimental in vivo study. Purpose-bred hounds (n = 11). A 5 mm mid-diaphyseal tibial ostectomy was stabilized with an AS-ILN (n = 6) or an ILN6b (n = 5). Orthopedic examinations and radiographs were performed every other week until clinical union (18 weeks). Paired tibiae were tested in torsion until failure. Callus torsional strength and toughness were statistically compared and failure mode described. Total and cortical callus volumes were computed and statistically compared from CT slices of the original ostectomy gap. Statistical significance was set at P < .05 RESULTS: From 4 to 8 weeks, lameness was less pronounced in AS-ILN than ILN6b dogs (P < .05). Clinical union was reached in all AS-ILN dogs by 10 weeks and in 3/5 ILN6b dogs at 18 weeks. Callus mechanical properties were significantly greater in AS-ILN than ILN6b specimens by 77% (failure torque) and 166% (toughness). Failure occurred by acute spiral (control and AS-ILN) or progressive transverse fractures (ILN6b). Cortical callus volume was 111% greater in AS-ILN than ILN6b specimens (P < .05). Earlier functional recovery, callus strength and remodeling suggest that the AS-ILN provides a postoperative biomechanical environment more conducive to bone healing than a comparable standard ILN. © Copyright 2014 by The American College of Veterinary Surgeons.

  6. Finite element analysis on the biomechanical stability of open porous titanium scaffolds for large segmental bone defects under physiological load conditions.

    PubMed

    Wieding, Jan; Souffrant, Robert; Mittelmeier, Wolfram; Bader, Rainer

    2013-04-01

    Repairing large segmental defects in long bones caused by fracture, tumour or infection is still a challenging problem in orthopaedic surgery. Artificial materials, i.e. titanium and its alloys performed well in clinical applications, are plenary available, and can be manufactured in a wide range of scaffold designs. Although the mechanical properties are determined, studies about the biomechanical behaviour under physiological loading conditions are rare. The goal of our numerical study was to determine the suitability of open-porous titanium scaffolds to act as bone scaffolds. Hence, the mechanical stability of fourteen different scaffold designs was characterized under both axial compression and biomechanical loading within a large segmental distal femoral defect of 30mm. This defect was stabilized with an osteosynthesis plate and physiological hip reaction forces as well as additional muscle forces were implemented to the femoral bone. Material properties of titanium scaffolds were evaluated from experimental testing. Scaffold porosity was varied between 64 and 80%. Furthermore, the amount of material was reduced up to 50%. Uniaxial compression testing revealed a structural modulus for the scaffolds between 3.5GPa and 19.1GPa depending on porosity and material consumption. The biomechanical testing showed defect gap alterations between 0.03mm and 0.22mm for the applied scaffolds and 0.09mm for the intact bone. Our results revealed that minimizing the amount of material of the inner core has a smaller influence than increasing the porosity when the scaffolds are loaded under biomechanical loading. Furthermore, an advanced scaffold design was found acting similar as the intact bone. Copyright © 2012 IPEM. Published by Elsevier Ltd. All rights reserved.

  7. Quadriceps Strength Asymmetry After Anterior Cruciate Ligament Reconstruction Alters Knee Joint Biomechanics and Functional Performance at Time of Return to Activity.

    PubMed

    Palmieri-Smith, Riann M; Lepley, Lindsey K

    2015-07-01

    Quadriceps strength deficits are observed clinically after anterior cruciate ligament (ACL) injury and reconstruction and are often not overcome despite rehabilitation. Given that quadriceps strength may be important for achieving symmetrical joint biomechanics and promoting long-term joint health, determining the magnitude of strength deficits that lead to altered mechanics is critical. To determine if the magnitude of quadriceps strength asymmetry alters knee and hip biomechanical symmetry as well as functional performance and self-reported function. Cross-sectional study; Level of evidence, 3. A total of 73 patients were tested at the time they were cleared for return to activity after ACL reconstruction. Quadriceps strength and activation, scores on the International Knee Documentation Committee form, the hop for distance test, and sagittal plane lower extremity biomechanics were recorded while patients completed a single-legged hop. Patients with high and moderate quadriceps strength symmetry had larger central activation ratios as well as greater limb symmetry indices on the hop for distance compared with patients with low quadriceps strength symmetry (P < .05). Similarly, knee flexion angle and external moment symmetry were higher in the patients with high and moderate quadriceps symmetry compared with those with low symmetry (P < .05). Quadriceps strength was found to be associated with sagittal plane knee angle and moment symmetry (P < .05). Patients with low quadriceps strength displayed greater movement asymmetries at the knee in the sagittal plane. Quadriceps strength was related to movement asymmetries and functional performance. Rehabilitation after ACL reconstruction needs to focus on maximizing quadriceps strength, which likely will lead to more symmetrical knee biomechanics. © 2015 The Author(s).

  8. Evaluation of corneal biomechanics in patients with keratectasia following LASIK using dynamic Scheimpflug analyzer.

    PubMed

    Ueki, Ryotaro; Maeda, Naoyuki; Fuchihata, Mutsumi; Asai, Tomoko; Koh, Shizuka; Fujimoto, Hisataka; Uematsu, Masafumi; Nishida, Kohji

    2018-04-26

    To investigate the corneal biomechanics in eyes with keratectasia following LASIK using a dynamic Scheimpflug analyzer. Case-Control study. The subjects in the study included 12 eyes with keratectasia after LASIK (KE), 24 eyes with keratoconus (KC), 17 eyes without keratectasia after LASIK (LASIK), and 34 eyes with normal corneas (Normal). Corneal biomechanics of the four groups were evaluated using a dynamic Scheimpflug analyzer. Compared with Normal (7.06 ± 0.54), the radius at the highest concavity (radius, mm) of LASIK (5.96 ± 0.76), KE (4.93 ± 0.61) and KC (5.39 ± 1.02) were significantly small. The Deflection Amplitude (HCDLA, mm) of Normal (0.94 ± 0.07) was significantly lower than those of KE (1.11 ± 0.10) and KC (1.06 ± 0.16), and was not significantly different from that of LASIK (0.98 ± 0.07). There were significant differences between LASIK and KE in radius and HCDLA (P < 0.05), whereas KE and KC had no differences in these parameters. Corneal biomechanical features evaluated using the dynamic Scheimpflug analyzer suggest that biomechanical properties in eyes with keratectasia, keratoconus, and LASIK are different from those of normal eyes. Although the biomechanics in eyes with keratectasia differs from that in eyes with LASIK, it is similar to that in eyes with keratoconus.

  9. Head Impact Biomechanics in Women's College Soccer.

    PubMed

    Lynall, Robert C; Clark, Michael D; Grand, Erin E; Stucker, Jaclyn C; Littleton, Ashley C; Aguilar, Alain J; Petschauer, Meredith A; Teel, Elizabeth F; Mihalik, Jason P

    2016-09-01

    There are limited nonlaboratory soccer head impact biomechanics data. This is surprising given soccer's global popularity. Epidemiological data suggest that female college soccer players are at a greater concussion injury risk than their male counterparts. Therefore, the purposes of our study were to quantify head impact frequency and magnitude during women's soccer practices and games in the National Collegiate Athletic Association and to characterize these data across event type, playing position, year on the team, and segment of game (first and second halves). Head impact biomechanics were collected from female college soccer players (n = 22; mean ± SD age = 19.1 ± 0.1 yr, height = 168.0 ± 3.5 cm, mass = 63.7 ± 6.0 kg). We employed a helmetless head impact measurement device (X2 Biosystems xPatch) before each competition and practice across a single season. Peak linear and rotational accelerations were categorized based on impact magnitude and subsequently analyzed using appropriate nonparametric analyses. Overall, women's college soccer players experience approximately seven impacts per 90 min of game play. The overwhelming majority (~90%) of all head impacts were categorized into our mildest linear acceleration impact classification (10g-20g). Interestingly, a higher percentage of practice impacts in the 20g-40g range compared with games (11% vs 7%) was observed. Head impact biomechanics studies have provided valuable insights into understanding collision sports and for informing evidence-based rule and policy changes. These have included changing the football kickoff, ice hockey body checking ages, and head-to-head hits in both sports. Given soccer's global popularity, and the growing public concern for the potential long-term neurological implications of collision and contact sports, studying soccer has the potential to impact many athletes and the sports medicine professionals caring for them.

  10. Biomechanical mechanism of lateral trunk lean gait for knee osteoarthritis patients.

    PubMed

    Tokuda, Kazuki; Anan, Masaya; Takahashi, Makoto; Sawada, Tomonori; Tanimoto, Kenji; Kito, Nobuhiro; Shinkoda, Koichi

    2018-01-03

    The biomechanical mechanism of lateral trunk lean gait employed to reduce external knee adduction moment (KAM) for knee osteoarthritis (OA) patients is not well known. This mechanism may relate to the center of mass (COM) motion. Moreover, lateral trunk lean gait may affect motor control of the COM displacement. Uncontrolled manifold (UCM) analysis is an evaluation index used to understand motor control and variability of the motor task. Here we aimed to clarify the biomechanical mechanism to reduce KAM during lateral trunk lean gait and how motor variability controls the COM displacement. Twenty knee OA patients walked under two conditions: normal and lateral trunk lean gait conditions. UCM analysis was performed with respect to the COM displacement in the frontal plane. We also determined how the variability is structured with regards to the COM displacement as a performance variable. The peak KAM under lateral trunk lean gait was lower than that under normal gait. The reduced peak KAM observed was accompanied by medially shifted knee joint center, shortened distance of the center of pressure to knee joint center, and shortened distance of the knee-ground reaction force lever arm during the stance phase. Knee OA patients with lateral trunk lean gait could maintain kinematic synergy by utilizing greater segmental configuration variance to the performance variable. However, the COM displacement variability of lateral trunk lean gait was larger than that of normal gait. Our findings may provide clinical insights to effectively evaluate and prescribe gait modification training for knee OA patients. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. How Can Sport Biomechanics Contribute to the Advance of World Record and Best Athletic Performance?

    ERIC Educational Resources Information Center

    Li, Li

    2012-01-01

    Modern history has evidence that sport biomechanics provide valuable contribution in the pursuit of "faster, higher, and stronger." In this article, the contribution of sport biomechanics to the Olympic Games has been divided into three different categories: improve the physical capacity of the athletes, develop innovative techniques in…

  12. Comparison of completely knotless and hybrid double-row fixation systems: a biomechanical study.

    PubMed

    Chu, Thomas; McDonald, Erik; Tufaga, Michael; Kandemir, Utku; Buckley, Jenni; Ma, C Benjamin

    2011-04-01

    The purpose of this study was to compare the biomechanical performance of a completely knotless double-row repair system (SutureCross Knotless Anatomic Fixation System; KFx Medical, Carlsbad, CA) with 2 commonly used hybrid double-row repair (medial knot-tying, lateral knotless) systems (Bio-Corkscrew/PushLock [Arthrex, Naples, FL] and Spiralok/Versalok [DePuy Mitek, Raynham, MA]). Fourteen pairs of fresh-frozen cadaveric shoulders were harvested, the supraspinatus tendons were isolated, and full-thickness supraspinatus tears were created. One of each pair was repaired with the completely knotless system, and the contralateral side was repaired with either of the hybrid systems. The repairs were then subjected to cyclic loading followed by load to failure. Conditioning elongation, peak-to-peak elongation, ultimate load, and mechanism of failure were recorded and compared by use of paired t tests. Seven additional shoulders were tested to determine the effect of refrigeration storage on the completely knotless system by use of the same mechanical testing protocol. For the completely knotless repair group, 11 of 14 paired specimens failed during the cyclic loading period. Only 1 of 14 hybrid repair systems had failures during cyclic loading, and both hybrid repair systems had statistically lower conditioning elongation than the completely knotless repair group. The mean ultimate load of the SutureCross group was 166 ± 87 N, which was significantly lower than that in the Corkscrew/PushLock (310 ± 82 N) and Spiralok/Versalok (337 ± 44 N) groups. There was an effect of refrigeration storage on the peak-to-peak elongation and stiffness of the SutureCross group; however, there was no difference in ultimate tensile load or conditioning elongation. The completely knotless repair system has lower time-zero biomechanical properties than the other 2 hybrid systems. The SutureCross system has lower time-zero biomechanical properties when compared with other hybrid repair

  13. In vivo ocular biomechanical compliance in thyroid eye disease.

    PubMed

    Vellara, Hans R; Hart, Richard; Gokul, Akilesh; McGhee, Charles N J; Patel, Dipika V

    2017-08-01

    To compare the ocular biomechanical properties in patients with thyroid eye disease (TED) and healthy participants using a non-contact Scheimpflug-based tonometer (CorVis ST). All eyes were examined by slit lamp biomicroscopy, corneal tomography and the CorVis ST (CST). Patients with TED were examined by a fellowship trained oculoplastics specialist to determine status and assess severity. The outputs from CST and additionally derived parameters, including maximum orbital deformation (MOD), were compared between healthy participants and patients with TED using Student's t-test. Furthermore, a multiple linear regression analysis was used to control for various factors known to influence ocular biomechanical responses to an air pulse. This study included 20 patients with TED and compared them with a cohort of 152 healthy participants. The mean age of patients with TED was 46.7±19.0 years and the mean age of healthy participants was 35.9±13.8 years (p=0.03). There were no statistically significant differences in gender distributions between both groups (p>0.05). Several CST parameters were significantly different between groups (p<0.05). Of note, however, MOD was significantly lower in patients with TED (0.16±0.04 mm) compared with the healthy participants (0.25±0.05 mm, p<0.001). This dissimilarity remained even after controlling for the various cofactors. Receiver-operating characteristic analysis revealed an area under the curve of 0.91±0.04 (95% CI 0.84 to 0.98, p<0.001) for MOD. The in vivo ocular biomechanics as measured by the CST reflects a reduced orbital compliance. This method of ocular biomechanical assessment may aid in the categorisation of TED severity and assist in monitoring and/or diagnosing TED. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  14. Biomechanical characteristics of fixation methods for floating pubic symphysis.

    PubMed

    Song, Wenhao; Zhou, Dongsheng; He, Yu

    2017-03-07

    Floating pubic symphysis (FPS) is a relatively rare injury caused by high-energy mechanisms. There are several fixation methods used to treat FPS, including external fixation, subcutaneous fixation, internal fixation, and percutaneous cannulated screw fixation. To choose the appropriate fixation, it is necessary to study the biomechanical performance of these different methods. The goal of this study was to compare the biomechanical characteristics of six methods by finite element analysis. A three-dimensional finite element model of FPS was simulated. Six methods were used in the FPS model, including external fixation (Ext), subcutaneous rod fixation (Sub-rod), subcutaneous plate fixation (Sub-plate), superior pectineal plate fixation (Int-sup), infrapectineal plate fixation (Int-ifa), and cannulated screw fixation (Int-scr). Compressive and rotational loads were then applied in all models. Biomechanical characteristics that were recorded and analyzed included construct stiffness, micromotion of the fracture gaps, von Mises stress, and stress distribution. The construct stiffness of the anterior pelvic ring was decreased dramatically when FPS occurred. Compressive stiffness was restored by the three internal fixation and Sub-rod methods. Unfortunately, rotational stiffness was not restored satisfactorily by the six methods. For micromotion of the fracture gaps, the displacement was reduced significantly by the Int-sup and Int-ifa methods under compression. The internal fixation methods and Sub-plate method performed well under rotation. The maximum von Mises stress of the implants was not large. For the plate-screw system, the maximum von Mises stress occurred over the region of the fracture and plate-screw joints. The maximum von Mises stress appeared on the rod-screw and screw-bone interfaces for the rod-screw system. The present study showed the biomechanical advantages of internal fixation methods for FPS from a finite element view. Superior stabilization of

  15. Effects of antibacterial nanostructured composite films on vascular stents: hemodynamic behaviors, microstructural characteristics, and biomechanical properties.

    PubMed

    Cheng, Han-Yi; Hsiao, Wen-Tien; Lin, Li-Hsiang; Hsu, Ya-Ju; Sinrang, Andi Wardihan; Ou, Keng-Liang

    2015-01-01

    The purpose of this research was to investigate stresses resulting from different thicknesses and compositions of hydrogenated Cu-incorporated diamond-like carbon (a-C:H/Cu) films at the interface between vascular stent and the artery using three-dimensional reversed finite element models (FEMs). Blood flow velocity variation in vessels with plaques was examined by angiography, and the a-C:H/Cu films were characterized by transmission electron microscopy to analyze surface morphology. FEMs were constructed using a computer-aided reverse design system, and the effects of antibacterial nanostructured composite films in the stress field were investigated. The maximum stress in the vascular stent occurred at the intersections of net-like structures. Data analysis indicated that the stress decreased by 15% in vascular stents with antibacterial nanostructured composite films compared to the control group, and the stress decreased with increasing film thickness. The present results confirmed that antibacterial nanostructured composite films improve the biomechanical properties of vascular stents and release abnormal stress to prevent restenosis. The results of the present study offer the clinical benefit of inducing superior biomechanical behavior in vascular stents. © 2014 Wiley Periodicals, Inc.

  16. Kinetic chains: a review of the concept and its clinical applications.

    PubMed

    Karandikar, Ninad; Vargas, Oscar O Ortiz

    2011-08-01

    During the past decade, our understanding of biomechanics and its importance in rehabilitation has advanced significantly. The kinetic chain, a concept borrowed from engineering, has helped us better understand the underlying physiology of human movement. This understanding, in turn, has facilitated the development of new and more rational rehabilitation strategies. The kinetic chain concept has application in a wide spectrum of clinical conditions, including musculoskeletal medicine, sports medicine, and neurorehabilitation, as well as prosthetics and orthotics. The purpose of this review is to provide insights into the biomechanics related to the concept of kinetic chains, with a specific focus on closed kinetic chains and its clinical applications in rehabilitation. Copyright © 2011 American Academy of Physical Medicine and Rehabilitation. Published by Elsevier Inc. All rights reserved.

  17. [The clinical history in surgical processes. Bioethical aspects and basic professional ethics].

    PubMed

    Collazo Chao, Eliseo

    2008-11-01

    Surgeons are increasingly facing multiple civil liability claims from their patients. Against this background and taking any eventual liability claims into account, surgeons must be increasingly aware of the importance of maintaining patient medical histories, which raises numerous questions on the length of time and form of keeping them. Ethical and legal obligations need to be taken into account in order to identify the controversial aspects related to patients and their environment, as well as shedding light on the most appropriate behaviour in each case. We must never forget the case history is a clinical document, subjected to the medical art and medical ethics which regulate it.

  18. Biomechanical Factors in Tibial Stress Fracture

    DTIC Science & Technology

    2001-08-01

    Relationship between Loading Rates and Tibial Accelerometry in Forefoot Strike Runners. Presented at the Annual American Society of Biomechanics Mtg...of the APTA, Seattle, WA, 2/99. McClay, IS, Williams, DS, and Manal, KT. Lower Extremity Mechanics of Runners with a Converted Forefoot Strike ...Management, Inc, 1998-1999 The Effect of Different Orthotic Devices on Lower Extremity Mechanics of Rearfoot and Forefoot Strikers, $3,500. Foot Management

  19. Pediatric short-distance household falls: biomechanics and associated injury severity.

    PubMed

    Thompson, Angela K; Bertocci, Gina; Rice, Wayne; Pierce, Mary C

    2011-01-01

    Short-distance household falls are a common occurrence in young children, but are also a common false history given by caretakers to conceal abusive trauma. The purpose of this study was to determine the severity of injuries that result from accidental short-distance household falls in children, and to investigate the association of fall environment and biomechanical measures with injury outcomes. Children aged 0-4 years who presented to the Emergency Department with a history of a short furniture fall were included in the study. Detailed case-based biomechanical assessments were performed using data collected through medical records, interviews, and fall scene investigations. Injuries were rated using the Abbreviated Injury Scale (AIS). Each case was reviewed by a child abuse expert; cases with a vague or inconsistent history and cases being actively investigated for child abuse were excluded. 79 subjects were enrolled in the study; 15 had no injuries, 45 had minor (AIS 1) injuries, 17 had moderate (AIS 2) injuries, and 2 had serious (AIS 3) injuries. No subjects had injuries classified as AIS 4 or higher, and there were no fatalities. Children with moderate or serious injuries resulting from a short-distance household fall tended to have fallen from greater heights, have greater impact velocities, and have a lower body mass index than those with minor or no injuries. Children aged 0-4 years involved in a short-distance household fall did not sustain severe or life-threatening injuries, and no children in this study had moderate or serious injuries to multiple body regions. Biomechanical measures were found to be associated with injury severity outcomes in short-distance household falls. Knowledge of relationships between biomechanical measures and injury outcomes can aid clinicians when assessing whether a child's injuries were the result of a short-distance fall or some other cause. Copyright © 2010 Elsevier Ltd. All rights reserved.

  20. CT-derived Biomechanical Metrics Improve Agreement Between Spirometry and Emphysema

    PubMed Central

    Bhatt, Surya P.; Bodduluri, Sandeep; Newell, John D.; Hoffman, Eric A.; Sieren, Jessica C.; Han, Meilan K.; Dransfield, Mark T.; Reinhardt, Joseph M.

    2016-01-01

    Rationale and Objectives Many COPD patients have marked discordance between FEV1 and degree of emphysema on CT. Biomechanical differences between these patients have not been studied. We aimed to identify reasons for the discordance between CT and spirometry in some patients with COPD. Materials and Methods Subjects with GOLD stage I–IV from a large multicenter study (COPDGene) were arranged by percentiles of %predicted FEV1 and emphysema on CT. Three categories were created using differences in percentiles: Catspir with predominant airflow obstruction/minimal emphysema, CatCT with predominant emphysema/minimal airflow obstruction, and Catmatched with matched FEV1 and emphysema. Image registration was used to derive Jacobian determinants, a measure of lung elasticity, anisotropy and strain tensors, to assess biomechanical differences between groups. Regression models were created with the above categories as outcome variable, adjusting for demographics, scanner type, quantitative CT-derived emphysema, gas trapping, and airway thickness (Model 1), and after adding biomechanical CT metrics (Model 2). Results Jacobian determinants, anisotropy and strain tensors were strongly associated with FEV1. With Catmatched as control, Model 2 predicted Catspir and CatCT better than Model 1 (Akaike Information Criterion, AIC 255.8 vs. 320.8). In addition to demographics, the strongest independent predictors of FEV1 were Jacobian mean (β= 1.60,95%CI = 1.16 to 1.98; p<0.001), coefficient of variation (CV) of Jacobian (β= 1.45,95%CI = 0.86 to 2.03; p<0.001) and CV strain (β= 1.82,95%CI = 0.68 to 2.95; p = 0.001). CVs of Jacobian and strain are both potential markers of biomechanical lung heterogeneity. Conclusions CT-derived measures of lung mechanics improve the link between quantitative CT and spirometry, offering the potential for new insights into the linkage between regional parenchymal destruction and global decrement in lung function in COPD patients. PMID:27055745