Science.gov

Sample records for biomedical radiography

  1. A Repetitional Pulsed X-Ray Generator For Biomedical Radiography

    NASA Astrophysics Data System (ADS)

    Isobe, Hiroshi; Sato, Eiichi; Tamakawa, Yoshiharu; Yanagisawa, Toru

    1989-06-01

    A repetitional pulsed x-ray generator in conjunction with an image intensifier system for biomedical radiography is described. This generator consisted of the following components: a high-speed power supply, various capacities of pulse condensers, a turbo molecular pump, and an oil-cooled x-ray tube. The pulse condensers were charged to the optimum voltage of less than 100kV, and the electric charges were discharged repeatedly by using the flashover mechanism. The pulse width tended to decrease when the capacity and the anode-cathode(A-C) space were reduced, and their values were less than 200ns. The current of the power supply determined the repetitional rates for the pulses, which were limited by the charging resistor, the condenser capacity, the charging voltage, and the electric power of the power supply. The maximum value was less than 20Hz due to the ripples of the charging current of 50Hz. The x-ray quality primarily became hard by increasing the charging voltage, and inserting metal filters. The effective focal spot size primarily varied according to the diameter of anode tip, and its size was less than 3.0mm in diameter. Pulsed x-ray fluoro-scopy was performed by using an image intensifier system utilizing a CRT for medical use.

  2. Semi-Monochromatic Plasma Flash Radiography and Its Application to Biomedical Imaging Simulation

    NASA Astrophysics Data System (ADS)

    Takahashi, Kei; Sato, Eiichi; Sagae, Michiaki; Tsukahara, Yasuo

    1998-07-01

    A high-intensity plasma flash X-ray generator having a radiation tube with a rod-shaped target and its application to biomedical imaging simulations are described. Plasma flash radiography was performed with charged voltages of 40, 50, and 60 kV, and with filter of the same material as the target. In the present work, molybdenum target was employed. With filter of the half value layer in thickness for each target, nearly monochromatic radiography with only K-characteristic X-ray spectra could be achieved. Next, with real X-ray spectra data acquired from the present generator, we performed a computer-aided biomedical imaging simulation using the program SPECTRA. It was developed as an assisting tool for our fundamental research on optimum control of flash X-ray spectra. Qualitatively, the simulated biomedical phantom images agreed with those from the Computed Radiography.

  3. X-ray vector radiography imaging for biomedical applications

    NASA Astrophysics Data System (ADS)

    Potdevin, Guillaume; Malecki, Andreas; Biernath, Thomas; Bech, Martin; Pfeiffer, Franz

    2012-07-01

    The non-invasive estimation of fracture risk in osteoporosis remains a challenge in the clinical routine and is mainly based on an assessment of bone density by dual X-ray absorption (DXA) although bone micro-architecture is known to play an important role for bone fragility. Here we report on 'X-ray vector Radiography' measurements able to provide a direct bone microstructure diagnostics on human bone samples, which we compare qualitatively and quantitatively with numerical analysis of high resolution radiographs.

  4. X-ray vector radiography imaging for biomedical applications

    SciTech Connect

    Potdevin, Guillaume; Malecki, Andreas; Biernath, Thomas; Bech, Martin; Pfeiffer, Franz

    2012-07-31

    The non-invasive estimation of fracture risk in osteoporosis remains a challenge in the clinical routine and is mainly based on an assessment of bone density by dual X-ray absorption (DXA) although bone micro-architecture is known to play an important role for bone fragility. Here we report on 'X-ray vector Radiography' measurements able to provide a direct bone microstructure diagnostics on human bone samples, which we compare qualitatively and quantitatively with numerical analysis of high resolution radiographs.

  5. Radiography

    NASA Technical Reports Server (NTRS)

    Gardner, C. G.

    1973-01-01

    Radiography is discussed as a method for nondestructive evaluation of internal flaws of solids. Gamma ray and X-ray equipment are described along with radiographic film, radiograph interpretation, and neutron radiography.

  6. Fundamental Studies For The Triple-Flash X-Ray Generator For Biomedical Radiography

    NASA Astrophysics Data System (ADS)

    Sato, Eiichi; Kawasaki, Satoshi; Isobe, Hiroshi; Tamakawa, Yoshiharu; Yanagisawa, Toru

    1989-06-01

    The fundamental studies for the triple-flash x-ray generator having variable spectra for biomedical radiography are described. Two types of triple-flash x-ray generators consisted of the following components: a high-voltage generating unit, a voltage divider unit, three high-voltage pulsers, a triple-parallel impulse switching system utilizing air gap pulsers for the main gas gaps, a high-power gas diode having three terminals, a turbo molecular pump, and three x-ray tubes having cold cathodes. For the single-tube generator, the pulse condensers of the pulsers were charged to the same or different energies by using a voltage divider unit and were connected to the x-ray tube through a high-power gas diode. In contrast, the pulsers were connected directly to three tubes without a diode. The duration of each x-ray pulse was a few ps, and the minimum time interval between two pulses was about 100ps (single-tube type), the x-ray intensity was less than lx10-5C/kg at lm per pulse, and the effective focal spot size was determined by the diameter of the anode rod. The triple exposure of pulsed x-rays having variable spectra and time intervals was obtained.

  7. An Oil-Cooled Flash X-Ray Tube For Biomedical Radiography

    NASA Astrophysics Data System (ADS)

    Sato, Eiichi; Kawasaki, Satoshi; Isobe, Hiroshi; Yanagisawa, Toru; Takahashi, Jutaro; Yasuda, Yasuhisa

    1989-02-01

    The construction and the applications of an oil-cooled flash x-ray tube to biomedical radiography are described. Generally, this tube was used for the repetitional flash x-ray generator for producing soft x-rays and consisted of the following major parts: a vacuum vessel made of stainless steel with a diameter of 80mm, a ring cathode made of molybdenum of 0.2mm thickness, a rod-shaped anode tip made of tungsten with a diameter of less than 3.0mm for obtaining the high intensity x-rays, an anode rod made of beryllium-copper alloy utilizing cooling fins, an internal x-ray output made of copper having a cooling mechanism, and an air-cooled heat exchanger. The anode tip was mounted on the anode rod and could easily be changed, and the cathode was attached to the internal output mouth of x-rays. The anode-cathode plane space was adjusted from the outside of the x-ray tube by rotating the x-ray diaphragm. The operating voltage was less than 150kV, and the maximum tube current was more than lOkA. The effective focal spot size primarily varied according to the diameter of anode tip and it ranged from 0.5 to 3.0mm in diameter. This tube was connected to two types of high-voltage pulsers: (a) a high voltage repetitional pulser achieved with a frequency control system of less than 20Hz, and (b) a Cockcroft circuit with a high-frequen-cy DC-AC inverter. Various radiographs were obtained by using this tube in conjunction with these pulsers.

  8. Biomedical radiography: radiation protection and safety. January 1970-December 1987 (citations from the NTIS data base). Report for January 1970-December 1987

    SciTech Connect

    Not Available

    1987-12-01

    This bibliography contains citations concerning the safety of biomedical radiography. Radiation-protection methods and techniques are described, and safety techniques for specific radiology procedures are detailed. Radiation exposure of health workers and patients is discussed. Safety limits are defined. (Contains 166 citations fully indexed and including a title list.)

  9. Digital radiography.

    PubMed

    Mattoon, J S

    2006-01-01

    Digital radiography has been used in human medical imaging since the 1980s with recent and rapid acceptance into the veterinary profession. Using advanced image capture and computer technology, radiographic images are viewed on a computer monitor. This is advantageous because radiographic images can be adjusted using dedicated computer software to maximize diagnostic image quality. Digital images can be accessed at computer workstations throughout the hospital, instantly retrieved from computer archives, and transmitted via the internet for consultation or case referral. Digital radiographic data can also be incorporated into a hospital information system, making record keeping an entirely paperless process. Digital image acquisition is faster when compared to conventional screen-film radiography, improving workflow and patient throughput. Digital radiography greatly reduces the need for 'retake' radiographs because of wide latitude in exposure factors. Also eliminated are costs associated with radiographic film and x-ray film development. Computed radiography, charged coupled devices, and flat panel detectors are types of digital radiography systems currently available. PMID:16971994

  10. Skull Radiography

    MedlinePlus

    What you need to know about… Skull Radiography X-ray images of the skull are taken when it is necessary to see the cranium, facial bones or jaw bones. ... Among other things, x-ray exams of the skull can show fractures. Patient Preparation Before the examination, ...

  11. Endodontic radiography.

    PubMed

    Nixon, P P; Robinson, P B

    1997-05-01

    The ability to take radiographs of good diagnostic quality is an essential prerequisite for successful root canal therapy. However, the operator also has a responsibility to limit the radiation dose to the patient. This article reviews the radiography required for root canal treatment with these criteria in mind. PMID:9515363

  12. Digital Radiography

    NASA Technical Reports Server (NTRS)

    1986-01-01

    System One, a digital radiography system, incorporates a reusable image medium (RIM) which retains an image. No film is needed; the RIM is read with a laser scanner, and the information is used to produce a digital image on an image processor. The image is stored on an optical disc. System allows the radiologist to "dial away" unwanted images to compare views on three screens. It is compatible with existing equipment and cost efficient. It was commercialized by a Stanford researcher from energy selective technology developed under a NASA grant.

  13. Electron radiography

    SciTech Connect

    Merrill, Frank E.; Morris, Christopher

    2005-05-17

    A system capable of performing radiography using a beam of electrons. Diffuser means receive a beam of electrons and diffuse the electrons before they enter first matching quadrupoles where the diffused electrons are focused prior to the diffused electrons entering an object. First imaging quadrupoles receive the focused diffused electrons after the focused diffused electrons have been scattered by the object for focusing the scattered electrons. Collimator means receive the scattered electrons and remove scattered electrons that have scattered to large angles. Second imaging quadrupoles receive the collimated scattered electrons and refocus the collimated scattered electrons and map the focused collimated scattered electrons to transverse locations on an image plane representative of the electrons' positions in the object.

  14. INDUSTRIAL RADIOGRAPHY INSTRUCTOR'S GUIDE.

    ERIC Educational Resources Information Center

    Bureau of Adult, Vocational, and Technical Education (DHEW/OE), Washington, DC. Div. of Vocational and Technical Education.

    THIS LABORATORY GUIDE WAS DEVELOPED FOR AN 80-HOUR COURSE IN INDUSTRIAL RADIOGRAPHY FOR HIGH SCHOOL GRADUATES TRAINING TO BECOME BEGINNING RADIOGRAPHERS. IT IS USED IN CONJUNCTION WITH TWO OTHER VOLUMES--(1) INDUSTRIAL RADIOGRAPHY INSTRUCTOR'S GUIDE, AND (2) INUDSTRIAL RADIOGRAPHY MANUAL. THE PROGRAM WAS DEVELOPED BY A COMMITTEE OF REPRESENTATIVES…

  15. Biomedical research

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Biomedical problems encountered by man in space which have been identified as a result of previous experience in simulated or actual spaceflight include cardiovascular deconditioning, motion sickness, bone loss, muscle atrophy, red cell alterations, fluid and electrolyte loss, radiation effects, radiation protection, behavior, and performance. The investigations and the findings in each of these areas were reviewed. A description of how biomedical research is organized within NASA, how it is funded, and how it is being reoriented to meet the needs of future manned space missions is also provided.

  16. Trauma and Mobile Radiography

    SciTech Connect

    Drafke, M.W.

    1989-01-01

    Trauma and Mobile Radiography focuses on the radiography of trauma patients and of patients confined to bed. This book offers students a foundation in the skills they need to produce quality radiograms without causing additional injury or pain to the patient. Features of this new book include: coverage of the basics of radiography and patient care, including monitoring of heavily sedated, immobile, and accident patients. Information on the injuries associated with certain types of accidents, and methods for dealing with these problems. Detailed explanation of the positioning of each anatomical area. A Quick Reference Card with information on evaluating, monitoring and radiographing trauma patients.

  17. Biomedical Conferences

    NASA Technical Reports Server (NTRS)

    1976-01-01

    As a result of Biomedical Conferences, Vivo Metric Systems Co. has produced cardiac electrodes based on NASA technology. Frequently in science, one highly specialized discipline is unaware of relevant advances made in other areas. In an attempt to familiarize researchers in a variety of disciplines with medical problems and needs, NASA has sponsored conferences that bring together university scientists, practicing physicians and manufacturers of medical instruments.

  18. High energy neutron radiography

    SciTech Connect

    Gavron, A.; Morley, K.; Morris, C.; Seestrom, S.; Ullmann, J.; Yates, G.; Zumbro, J.

    1996-06-01

    High-energy spallation neutron sources are now being considered in the US and elsewhere as a replacement for neutron beams produced by reactors. High-energy and high intensity neutron beams, produced by unmoderated spallation sources, open potential new vistas of neutron radiography. The authors discuss the basic advantages and disadvantages of high-energy neutron radiography, and consider some experimental results obtained at the Weapons Neutron Research (WNR) facility at Los Alamos.

  19. 8. VIEW OF RADIOGRAPHY EQUIPMENT, TEST METHODS INCLUDED RADIOGRAPHY AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. VIEW OF RADIOGRAPHY EQUIPMENT, TEST METHODS INCLUDED RADIOGRAPHY AND BETA BACKSCATTERING. (7/13/56) - Rocky Flats Plant, Non-Nuclear Production Facility, South of Cottonwood Avenue, west of Seventh Avenue & east of Building 460, Golden, Jefferson County, CO

  20. The Neutron Radiography Reactor (NRAD)

    SciTech Connect

    Imel, G.R.; McClellan, G.C.; Pruett, D.P.

    1990-01-01

    The Neutron Radiography Reactor (NRAD) operated by Argonne National Laboratory is described in this paper. NRAD was designed to allow radiography of highly absorbing reactor fuel assemblies in the vertical position on the routine basis. 7 figs.

  1. Real-time radiography

    SciTech Connect

    Bossi, R.H.; Oien, C.T.

    1981-02-26

    Real-time radiography is used for imaging both dynamic events and static objects. Fluorescent screens play an important role in converting radiation to light, which is then observed directly or intensified and detected. The radiographic parameters for real-time radiography are similar to conventional film radiography with special emphasis on statistics and magnification. Direct-viewing fluoroscopy uses the human eye as a detector of fluorescent screen light or the light from an intensifier. Remote-viewing systems replace the human observer with a television camera. The remote-viewing systems have many advantages over the direct-viewing conditions such as safety, image enhancement, and the capability to produce permanent records. This report reviews real-time imaging system parameters and components.

  2. A benchmark for comparison of dental radiography analysis algorithms.

    PubMed

    Wang, Ching-Wei; Huang, Cheng-Ta; Lee, Jia-Hong; Li, Chung-Hsing; Chang, Sheng-Wei; Siao, Ming-Jhih; Lai, Tat-Ming; Ibragimov, Bulat; Vrtovec, Tomaž; Ronneberger, Olaf; Fischer, Philipp; Cootes, Tim F; Lindner, Claudia

    2016-07-01

    Dental radiography plays an important role in clinical diagnosis, treatment and surgery. In recent years, efforts have been made on developing computerized dental X-ray image analysis systems for clinical usages. A novel framework for objective evaluation of automatic dental radiography analysis algorithms has been established under the auspices of the IEEE International Symposium on Biomedical Imaging 2015 Bitewing Radiography Caries Detection Challenge and Cephalometric X-ray Image Analysis Challenge. In this article, we present the datasets, methods and results of the challenge and lay down the principles for future uses of this benchmark. The main contributions of the challenge include the creation of the dental anatomy data repository of bitewing radiographs, the creation of the anatomical abnormality classification data repository of cephalometric radiographs, and the definition of objective quantitative evaluation for comparison and ranking of the algorithms. With this benchmark, seven automatic methods for analysing cephalometric X-ray image and two automatic methods for detecting bitewing radiography caries have been compared, and detailed quantitative evaluation results are presented in this paper. Based on the quantitative evaluation results, we believe automatic dental radiography analysis is still a challenging and unsolved problem. The datasets and the evaluation software will be made available to the research community, further encouraging future developments in this field. (http://www-o.ntust.edu.tw/~cweiwang/ISBI2015/). PMID:26974042

  3. Biomedical ultrasonoscope

    NASA Technical Reports Server (NTRS)

    Lee, R. D. (Inventor)

    1979-01-01

    The combination of a "C" mode scan electronics in a portable, battery powered biomedical ultrasonoscope having "A" and "M" mode scan electronics, the latter including a clock generator for generating clock pulses, a cathode ray tube having X, Y and Z axis inputs, a sweep generator connected between the clock generator and the X axis input of the cathode ray tube for generating a cathode ray sweep signal synchronized by the clock pulses, and a receiver adapted to be connected to the Z axis input of the cathode ray tube. The "C" mode scan electronics comprises a plurality of transducer elements arranged in a row and adapted to be positioned on the skin of the patient's body for converting a pulsed electrical signal to a pulsed ultrasonic signal, radiating the ultrasonic signal into the patient's body, picking up the echoes reflected from interfaces in the patient's body and converting the echoes to electrical signals; a plurality of transmitters, each transmitter being coupled to a respective transducer for transmitting a pulsed electrical signal thereto and for transmitting the converted electrical echo signals directly to the receiver, a sequencer connected between the clock generator and the plurality of transmitters and responsive to the clock pulses for firing the transmitters in cyclic order; and a staircase voltage generator connected between the clock generator and the Y axis input of the cathode ray tube for generating a staircase voltage having steps synchronized by the clock pulses.

  4. Flash Proton Radiography

    NASA Astrophysics Data System (ADS)

    Merrill, Frank E.

    Protons were first investigated as radiographic probes as high energy proton accelerators became accessible to the scientific community in the 1960s. Like the initial use of X-rays in the 1800s, protons were shown to be a useful tool for studying the contents of opaque materials, but the electromagnetic charge of the protons opened up a new set of interaction processes which complicated their use. These complications in combination with the high expense of generating protons with energies high enough to penetrate typical objects resulted in proton radiography becoming a novelty, demonstrated at accelerator facilities, but not utilized to their full potential until the 1990s at Los Alamos. During this time Los Alamos National Laboratory was investigating a wide range of options, including X-rays and neutrons, as the next generation of probes to be used for thick object flash radiography. During this process it was realized that the charge nature of the protons, which was the source of the initial difficulty with this idea, could be used to recover this technique. By introducing a magnetic imaging lens downstream of the object to be radiographed, the blur resulting from scattering within the object could be focused out of the measurements, dramatically improving the resolution of proton radiography of thick systems. Imaging systems were quickly developed and combined with the temporal structure of a proton beam generated by a linear accelerator, providing a unique flash radiography capability for measurements at Los Alamos National Laboratory. This technique has now been employed at LANSCE for two decades and has been adopted around the world as the premier flash radiography technique for the study of dynamic material properties.

  5. Apparatus for proton radiography

    DOEpatents

    Martin, Ronald L.

    1976-01-01

    An apparatus for effecting diagnostic proton radiography of patients in hospitals comprises a source of negative hydrogen ions, a synchrotron for accelerating the negative hydrogen ions to a predetermined energy, a plurality of stations for stripping extraction of a radiography beam of protons, means for sweeping the extracted beam to cover a target, and means for measuring the residual range, residual energy, or percentage transmission of protons that pass through the target. The combination of information identifying the position of the beam with information about particles traversing the subject and the back absorber is performed with the aid of a computer to provide a proton radiograph of the subject. In an alternate embodiment of the invention, a back absorber comprises a plurality of scintillators which are coupled to detectors.

  6. Cosmic Ray Scattering Radiography

    NASA Astrophysics Data System (ADS)

    Morris, C. L.

    2015-12-01

    Cosmic ray muons are ubiquitous, are highly penetrating, and can be used to measure material densities by either measuring the stopping rate or by measuring the scattering of transmitted muons. The Los Alamos team has studied scattering radiography for a number of applications. Some results will be shown of scattering imaging for a range of practical applications, and estimates will be made of the utility of scattering radiography for nondestructive assessments of large structures and for geological surveying. Results of imaging the core of the Toshiba Nuclear Critical Assembly (NCA) Reactor in Kawasaki, Japan and simulations of imaging the damaged cores of the Fukushima nuclear reactors will be presented. Below is an image made using muons of a core configuration for the NCA reactor.

  7. Quantitative film radiography

    SciTech Connect

    Devine, G.; Dobie, D.; Fugina, J.; Hernandez, J.; Logan, C.; Mohr, P.; Moss, R.; Schumacher, B.; Updike, E.; Weirup, D.

    1991-02-26

    We have developed a system of quantitative radiography in order to produce quantitative images displaying homogeneity of parts. The materials that we characterize are synthetic composites and may contain important subtle density variations not discernible by examining a raw film x-radiograph. In order to quantitatively interpret film radiographs, it is necessary to digitize, interpret, and display the images. Our integrated system of quantitative radiography displays accurate, high-resolution pseudo-color images in units of density. We characterize approximately 10,000 parts per year in hundreds of different configurations and compositions with this system. This report discusses: the method; film processor monitoring and control; verifying film and processor performance; and correction of scatter effects.

  8. Digital radiography in space.

    PubMed

    Hart, Rob; Campbell, Mark R

    2002-06-01

    With the permanent habitation of the International Space Station, the planning of longer duration exploration missions, and the possibility of space tourism, it is likely that digital radiography will be needed in the future to support medical care in space. Ultrasound is currently the medical imaging modality of choice for spaceflight. Digital radiography in space is limited because of prohibitive launch costs (in the region of $20,000/kg) that severely restrict the volume, weight, and power requirements of medical care hardware. Technological increases in radiography, a predicted ten-fold decrease in future launch costs, and an increasing clinical need for definitive medical care in space will drive efforts to expand the ability to provide medical care in space including diagnostic imaging. Normal physiological responses to microgravity, in conjunction with the high-risk environment of spaceflight, increase the risk of injury and could imply an extended recovery period for common injuries. The advantages of gravity on Earth, such as the stabilization of patients undergoing radiography and the drainage of fluids, which provide radiographic contrast, are unavailable in space. This creates significant difficulties in patient immobilization and radiographic positioning. Gravity-dependent radiological signs, such as lipohemarthrosis in knee and shoulder trauma, air or fluid levels in pneumoperitoneum, pleural effusion, or bowel obstruction, and the apical pleural edge in pneumothorax become unavailable. Impaired healing processes such as delayed callus formation following fracture will have implications on imaging, and recovery time lines are unknown. The confined nature of spacecraft and the economic impossibility of launching lead-based personal protective equipment present significant challenges to crew radiation safety. A modified, free-floating radiographic C-arm device equipped with a digital detector and utilizing teleradiology support is proposed as a

  9. Particle Beam Radiography

    NASA Astrophysics Data System (ADS)

    Peach, Ken; Ekdahl, Carl

    2014-02-01

    Particle beam radiography, which uses a variety of particle probes (neutrons, protons, electrons, gammas and potentially other particles) to study the structure of materials and objects noninvasively, is reviewed, largely from an accelerator perspective, although the use of cosmic rays (mainly muons but potentially also high-energy neutrinos) is briefly reviewed. Tomography is a form of radiography which uses multiple views to reconstruct a three-dimensional density map of an object. There is a very wide range of applications of radiography and tomography, from medicine to engineering and security, and advances in instrumentation, specifically the development of electronic detectors, allow rapid analysis of the resultant radiographs. Flash radiography is a diagnostic technique for large high-explosive-driven hydrodynamic experiments that is used at many laboratories. The bremsstrahlung radiation pulse from an intense relativistic electron beam incident onto a high-Z target is the source of these radiographs. The challenge is to provide radiation sources intense enough to penetrate hundreds of g/cm2 of material, in pulses short enough to stop the motion of high-speed hydrodynamic shocks, and with source spots small enough to resolve fine details. The challenge has been met with a wide variety of accelerator technologies, including pulsed-power-driven diodes, air-core pulsed betatrons and high-current linear induction accelerators. Accelerator technology has also evolved to accommodate the experimenters' continuing quest for multiple images in time and space. Linear induction accelerators have had a major role in these advances, especially in providing multiple-time radiographs of the largest hydrodynamic experiments.

  10. Patient care in radiography

    SciTech Connect

    Ehrlich, R.A.; McCloskey, E.D.

    1989-01-01

    This book focuses on patient care procedures for radiographers. The authors focus on the role of the radiographer as a member of the health care team. The authors report on such topics as communication in patient care: safety, medico-legal considerations, transfer and positioning; physical needs; infection control; medication; CPR standards, acute situations; examination of the GI tract; contrast media; special imaging techniques and bedside radiography.

  11. Regulatory aspects of neutron radiography

    NASA Astrophysics Data System (ADS)

    Hammer, J.

    1999-11-01

    While full legislation for industrial radiography with gamma and X-rays already exists in many countries, the situation is different for neutron radiography. Therefore, the licensing for equipment and procedures in this field has to be based on basic principles of national and international rules. This contribution will explain how the regulatory body in Switzerland deals with neutron radiography installations in order to maintain national standards of health and safety.

  12. Grating-based X-ray phase contrast for biomedical imaging applications.

    PubMed

    Pfeiffer, Franz; Herzen, Julia; Willner, Marian; Chabior, Michael; Auweter, Sigrid; Reiser, Maximilian; Bamberg, Fabian

    2013-09-01

    In this review article we describe the development of grating-based X-ray phase-contrast imaging, with particular emphasis on potential biomedical applications of the technology. We review the basics of image formation in grating-based phase-contrast and dark-field radiography and present some exemplary multimodal radiography results obtained with laboratory X-ray sources. Furthermore, we discuss the theoretical concepts to extend grating-based multimodal radiography to quantitative transmission, phase-contrast, and dark-field scattering computed tomography. PMID:23453793

  13. Lower Gastrointestinal (GI) Tract X-Ray (Radiography)

    MedlinePlus

    ... Resources Professions Site Index A-Z X-ray (Radiography) - Lower GI Tract Lower gastrointestinal tract radiography or ... Radiography? What is Lower GI Tract X-ray Radiography (Barium Enema)? Lower gastrointestinal (GI) tract radiography, also ...

  14. Scatter in Cargo Radiography

    SciTech Connect

    Erin A. Miller; Joseph A. Caggiano; Robert C. Runkle; Timothy A. White; Aaron M. Bevill

    2011-03-01

    As a complement to passive detection systems, radiographic inspection of cargo is an increasingly important tool for homeland security because it has the potential to detect highly attenuating objects associated with special nuclear material or surrounding shielding, in addition to screening for items such as drugs or contraband. Radiographic detection of such threat objects relies on high image contrast between regions of different density and atomic number (Z). Threat detection is affected by scatter of the interrogating beamin the cargo, the radiographic system itself, and the surrounding environment, which degrades image contrast. Here, we estimate the extent to which scatter plays a role in radiographic imaging of cargo containers. Stochastic transport simulations were performed to determine the details of the radiography equipment and surrounding environment, which are important in reproducing measured data and to investigate scatter magnitudes for typical cargo. We find that scatter plays a stronger role in cargo radiography than in typicalmedical imaging scenarios, even for low-density cargo, with scatter-toprimary ratios ranging from 0.14 for very low density cargo, to between 0.20 and 0.40 for typical cargo, and higher yet for dense cargo.

  15. Optimisation in general radiography

    PubMed Central

    Martin, CJ

    2007-01-01

    Radiography using film has been an established method for imaging the internal organs of the body for over 100 years. Surveys carried out during the 1980s identified a wide range in patient doses showing that there was scope for dosage reduction in many hospitals. This paper discusses factors that need to be considered in optimising the performance of radiographic equipment. The most important factor is choice of the screen/film combination, and the preparation of automatic exposure control devices to suit its characteristics. Tube potential determines the photon energies in the X-ray beam, with the selection involving a compromise between image contrast and the dose to the patient. Allied to this is the choice of anti-scatter grid, as a high grid ratio effectively removes the larger component of scatter when using higher tube potentials. However, a high grid ratio attenuates the X-ray beam more heavily. Decisions about grids and use of low attenuation components are particularly important for paediatric radiography, which uses lower energy X-ray beams. Another factor which can reduce patient dose is the use of copper filtration to remove more low-energy X-rays. Regular surveys of patient dose and comparisons with diagnostic reference levels that provide a guide representing good practice enable units for which doses are higher to be identified. Causes can then be investigated and changes implemented to address any shortfalls. Application of these methods has led to a gradual reduction in doses in many countries. PMID:21614270

  16. Image Acquisition and Quality in Digital Radiography.

    PubMed

    Alexander, Shannon

    2016-09-01

    Medical imaging has undergone dramatic changes and technological breakthroughs since the introduction of digital radiography. This article presents information on the development of digital radiography and types of digital radiography systems. Aspects of image quality and radiation exposure control are highlighted as well. In addition, the article includes related workplace changes and medicolegal considerations in the digital radiography environment. PMID:27601691

  17. Digital radiography: an overview.

    PubMed

    Parks, Edwin T; Williamson, Gail F

    2002-11-15

    Since the discovery of X-rays in 1895, film has been the primary medium for capturing, displaying, and storing radiographic images. It is a technology that dental practitioners are the most familiar and comfortable with in terms of technique and interpretation. Digital radiography is the latest advancement in dental imaging and is slowly being adopted by the dental profession. Digital imaging incorporates computer technology in the capture, display, enhancement, and storage of direct radiographic images. Digital imaging offers some distinct advantages over film, but like any emerging technology, it presents new and different challenges for the practitioner to overcome. This article presents an overview of digital imaging including basic terminology and comparisons with film-based imaging. The principles of direct and indirect digital imaging modalities, intraoral and extraoral applications, image processing, and diagnostic efficacy will be discussed. In addition, the article will provide a list of questions dentists should consider prior to purchasing digital imaging systems for their practice. PMID:12444400

  18. Filters For Chest Radiography

    NASA Astrophysics Data System (ADS)

    Ramanathan, N.; Paron, J.

    1980-08-01

    The objective of low dose radiography is achieved by a judicious combination of proper kV selection, fast film-screen systems and beam filtration. A systematic study of filters was undertaken to evaluate the improvements that can be realized in terms of patient Entrance Skin Exposures (ESE) for chest radiographs. The Picker CD 135 Generator and the Automatic Chest Filmer with dynamic phototiming were used for the study. The kV dependence of ESE with various amounts of zinc and aluminum filtration is presented. The effect of filtration on image contrast is discussed. The variations of ESE with phantom thickness under different filtration conditions are also considered. It was found that the ESE can be reduced by as much as a factor of 1.8 ± .1 with no significant increase in tube loading.

  19. Multiple-image radiography

    NASA Astrophysics Data System (ADS)

    Wernick, Miles N.; Wirjadi, Oliver; Chapman, Dean; Zhong, Zhong; Galatsanos, Nikolas P.; Yang, Yongyi; Brankov, Jovan G.; Oltulu, Oral; Anastasio, Mark A.; Muehleman, Carol

    2003-12-01

    Conventional radiography produces a single image of an object by measuring the attenuation of an x-ray beam passing through it. When imaging weakly absorbing tissues, x-ray attenuation may be a suboptimal signature of disease-related information. In this paper we describe a new phase-sensitive imaging method, called multiple-image radiography (MIR), which is an improvement on a prior technique called diffraction-enhanced imaging (DEI). This paper elaborates on our initial presentation of the idea in Wernick et al (2002 Proc. Int. Symp. Biomed. Imaging pp 129-32). MIR simultaneously produces several images from a set of measurements made with a single x-ray beam. Specifically, MIR yields three images depicting separately the effects of refraction, ultra-small-angle scatter and attenuation by the object. All three images have good contrast, in part because they are virtually immune from degradation due to scatter at higher angles. MIR also yields a very comprehensive object description, consisting of the angular intensity spectrum of a transmitted x-ray beam at every image pixel, within a narrow angular range. Our experiments are based on data acquired using a synchrotron light source; however, in preparation for more practical implementations using conventional x-ray sources, we develop and evaluate algorithms designed for Poisson noise, which is characteristic of photon-limited imaging. The results suggest that MIR is capable of operating at low photon count levels, therefore the method shows promise for use with conventional x-ray sources. The results also show that, in addition to producing new types of object descriptions, MIR produces substantially more accurate images than its predecessor, DEI. MIR results are shown in the form of planar images of a phantom and a biological specimen. A preliminary demonstration of the use of MIR for computed tomography is also presented.

  20. Biomedical applications engineering tasks

    NASA Technical Reports Server (NTRS)

    Laenger, C. J., Sr.

    1976-01-01

    The engineering tasks performed in response to needs articulated by clinicians are described. Initial contacts were made with these clinician-technology requestors by the Southwest Research Institute NASA Biomedical Applications Team. The basic purpose of the program was to effectively transfer aerospace technology into functional hardware to solve real biomedical problems.

  1. Trends in Biomedical Education.

    ERIC Educational Resources Information Center

    Peppas, Nicholas A.; Mallinson, Richard G.

    1982-01-01

    An analysis of trends in biomedical education within chemical education is presented. Data used for the analysis included: type/level of course, subjects taught, and textbook preferences. Results among others of the 1980 survey indicate that 28 out of 79 schools responding offer at least one course in biomedical engineering. (JN)

  2. Upper Gastrointestinal (GI) Tract X-Ray (Radiography)

    MedlinePlus

    ... Resources Professions Site Index A-Z X-ray (Radiography) - Upper GI Tract Upper gastrointestinal tract radiography or ... X-ray? What is Upper Gastrointestinal (GI) Tract Radiography? Upper gastrointestinal tract radiography, also called an upper ...

  3. Angular signal radiography.

    PubMed

    Li, Panyun; Zhang, Kai; Bao, Yuan; Ren, Yuqi; Ju, Zaiqiang; Wang, Yan; He, Qili; Zhu, Zhongzhu; Huang, Wanxia; Yuan, Qingxi; Zhu, Peiping

    2016-03-21

    Microscopy techniques using visible photons, x-rays, neutrons, and electrons have made remarkable impact in many scientific disciplines. The microscopic data can often be expressed as the convolution of the spatial distribution of certain properties of the specimens and the inherent response function of the imaging system. The x-ray grating interferometer (XGI), which is sensitive to the deviation angle of the incoming x-rays, has attracted significant attention in the past years due to its capability in achieving x-ray phase contrast imaging with low brilliance source. However, the comprehensive and analytical theoretical framework is yet to be presented. Herein, we propose a theoretical framework termed angular signal radiography (ASR) to describe the imaging process of the XGI system in a classical, comprehensive and analytical manner. We demonstrated, by means of theoretical deduction and synchrotron based experiments, that the spatial distribution of specimens' physical properties, including absorption, refraction and scattering, can be extracted by ASR in XGI. Implementation of ASR in XGI offers advantages such as simplified phase retrieval algorithm, reduced overall radiation dose, and improved image acquisition speed. These advantages, as well as the limitations of the proposed method, are systematically investigated in this paper. PMID:27136780

  4. Dynamic radiography using a carbon-nanotube-based field-emission x-ray source

    SciTech Connect

    Cheng, Y.; Zhang, J.; Lee, Y.Z.; Gao, B.; Dike, S.; Lin, W.; Lu, J.P.; Zhou, O.

    2004-10-01

    We report a dynamic radiography system with a carbon nanotube based field-emission microfocus x-ray source. The system can readily generate x-ray radiation with continuous variation of temporal resolution as short as nanoseconds. Its potential applications for dynamic x-ray imaging are demonstrated. The performance characteristics of this compact and versatile system are promising for noninvasive imaging in biomedical research and industrial inspection.

  5. Fast and thermal neutron radiography

    NASA Astrophysics Data System (ADS)

    Cremer, Jay T.; Piestrup, Melvin A.; Wu, Xizeng

    2005-09-01

    There is a need for high brightness neutron sources that are portable, relatively inexpensive, and capable of neutron radiography in short imaging times. Fast and thermal neutron radiography is as an excellent method to penetrate high-density, high-Z objects, thick objects and image its interior contents, especially hydrogen-based materials. In this paper we model the expected imaging performance characteristics and limitations of fast and thermal radiography systems employing a Rose Model based transfer analysis. For fast neutron detection plastic fiber array scintllators or liquid scintillator filled capillary arrays are employed for fast neutron detection, and 6Li doped ZnS(Cu) phosphors are employed for thermal neutron detection. These simulations can provide guidance in the design, construction, and testing of neutron imaging systems. In particular we determined for a range of slab thickness, the range of thicknesses of embedded cracks (air-filled or filled with material such as water) which can be detected and imaged.

  6. Quality assurance in orthodontic radiography.

    PubMed

    Brown, J E

    1995-02-01

    The implementation of a Quality Assurance (QA) programme in orthodontic radiography is designed to improve the quality of the resultant radiographs and to reduce the number of repeat exposures. This is particularly desirable in orthodontic practice where the majority of patients are young and therefore more at risk from the detrimental effects of X-rays. A programme is described and QA tests are given that may be applied in the surgery. Particular emphasis is placed on QA measures for extraoral radiography, since this is frequently undertaken in the treatment of the orthodontic patient. PMID:7786872

  7. Topics in Biomedical Optics: Introduction

    NASA Astrophysics Data System (ADS)

    Hebden, Jeremy C.; Boas, David A.; George, John S.; Durkin, Anthony J.

    2003-06-01

    The field of biomedical optics is experiencing tremendous growth. Biomedical technologies contribute in the creation of devices used in healthcare of various specialties (ophthalmology, cardiology, anesthesiology, and immunology, etc.). Recent research in biomedical optics is discussed. Overviews of meetings held at the 2002 Optical Society of America Biomedical Topical Meetings are presented.

  8. Nanoparticles for biomedical imaging

    PubMed Central

    Nune, Satish K; Gunda, Padmaja; Thallapally, Praveen K; Lin, Ying-Ying; Forrest, M Laird; Berkland, Cory J

    2011-01-01

    Background Synthetic nanoparticles are emerging as versatile tools in biomedical applications, particularly in the area of biomedical imaging. Nanoparticles 1 – 100 nm in diameter have dimensions comparable to biological functional units. Diverse surface chemistries, unique magnetic properties, tunable absorption and emission properties, and recent advances in the synthesis and engineering of various nanoparticles suggest their potential as probes for early detection of diseases such as cancer. Surface functionalization has expanded further the potential of nanoparticles as probes for molecular imaging. Objective To summarize emerging research of nanoparticles for biomedical imaging with increased selectivity and reduced nonspecific uptake with increased spatial resolution containing stabilizers conjugated with targeting ligands. Methods This review summarizes recent technological advances in the synthesis of various nanoparticle probes, and surveys methods to improve the targeting of nanoparticles for their application in biomedical imaging. Conclusion Structural design of nanomaterials for biomedical imaging continues to expand and diversify. Synthetic methods have aimed to control the size and surface characteristics of nanoparticles to control distribution, half-life and elimination. Although molecular imaging applications using nanoparticles are advancing into clinical applications, challenges such as storage stability and long-term toxicology should continue to be addressed. PMID:19743894

  9. Proximal caries detection accuracy using intraoral bitewing radiography, extraoral bitewing radiography and panoramic radiography

    PubMed Central

    Kamburoğlu, K; Kolsuz, E; Murat, S; Yüksel, S; Özen, T

    2012-01-01

    Objective To compare proximal caries detection using intraoral bitewing, extraoral bitewing and panoramic radiography. Methods 80 extracted human premolar and molar teeth with and without proximal caries were used. Intraoral radiographs were taken with Kodak Insight film (Eastman Kodak Co., Rochester, NY) using the bitewing technique. Extraoral bitewing and panoramic images were obtained using a Planmeca Promax Digital Panoramic X-ray unit (Planmeca Inc., Helsinki, Finland). Images were evaluated by three observers twice. In total, 160 proximal surfaces were assessed. Intra- and interobserver kappa coefficients were calculated. Scores obtained from the three techniques were compared with the histological gold standard using receiver operating characteristic analysis. Az values for each image type, observer and reading were compared using z-tests, with a significance level of α = 0.05. Results Kappa coefficients ranged from 0.883 to 0.963 for the intraoral bitewing, from 0.715 to 0.893 for the extraoral bitewing, and from 0.659 to 0.884 for the panoramic radiography. Interobserver agreements for the first and second readings for the intraoral bitewing images were between 0.717 and 0.780, the extraoral bitewing readings were between 0.569 and 0.707, and the panoramic images were between 0.477 and 0.740. The Az values for both readings of all three observers were highest for the intraoral bitewing. Az values for the extraoral bitewing images were higher than those of the panoramic images without statistical significance (p > 0.05). Conclusion Intraoral bitewing radiography was superior to extraoral bitewing and panoramic radiography in diagnosing proximal caries of premolar and molar teeth ex vivo. Similar intra- and interobserver coefficients were calculated for extraoral bitewing and panoramic radiography. PMID:22868296

  10. Biomedical materials and devices

    SciTech Connect

    Hanker, J. S. ); Giammara, B. L. )

    1989-01-01

    This conference reports on how biomedical materials and devices are undergoing important changes that require interdisciplinary approaches, innovation expertise, and access to sophisticated preparative and analytical equipment and methodologies. The interaction of materials scientists with biomedical, biotechnological, bioengineering and clinical scientists in the last decade has resulted in major advances in therapy. New therapeutic modalities and bioengineering methods and devices for the continuous removal of toxins or pathologic products present in arthritis, atherosclerosis and malignancy are presented. Novel monitoring and controlled drug delivery systems and discussions of materials such as blood or plasma substitutes, artificial organs, and bone graft substitutes are discussed.

  11. Commercial Biomedical Experiments Payload

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Experiments to seek solutions for a range of biomedical issues are at the heart of several investigations that will be hosted by the Commercial Instrumentation Technology Associates (ITA), Inc. The biomedical experiments CIBX-2 payload is unique, encompassing more than 20 separate experiments including cancer research, commercial experiments, and student hands-on experiments from 10 schools as part of ITA's ongoing University Among the stars program. Here, Astronaut Story Musgrave activates the CMIX-5 (Commercial MDA ITA experiment) payload in the Space Shuttle mid deck during the STS-80 mission in 1996 which is similar to CIBX-2. The experiments are sponsored by NASA's Space Product Development Program (SPD).

  12. Commercial Biomedical Experiments

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Experiments to seek solutions for a range of biomedical issues are at the heart of several investigations that will be hosted by the Commercial Instrumentation Technology Associates (ITA), Inc. Biomedical Experiments (CIBX-2) payload. CIBX-2 is unique, encompassing more than 20 separate experiments including cancer research, commercial experiments, and student hands-on experiments from 10 schools as part of ITA's ongoing University Among the Stars program. Valerie Cassanto of ITA checks the Canadian Protein Crystallization Experiment (CAPE) carried by STS-86 to Mir in 1997. The experiments are sponsored by NASA's Space Product Development Program (SPD).

  13. Noninvasive biomedical sensor

    NASA Astrophysics Data System (ADS)

    Ling, Daniel; Bullock, Audra

    2003-07-01

    A non-invasive biomedical sensor for monitoring glucose levels is described. The sensor utilizes laser light to determine glucose levels in urine, but could also be used for drug screening and diagnosis of other medical conditions. The glucose measurement is based on modulation spectroscopy with harmonic analysis. Active signal processing and filtering are used to increase the signal-to-noise ratio and decreases the measurement time to allow for real time sample analysis. Preliminary data are given which show the concentration of glucose in a control sample. Future applications of this technology, for example, as a portable multipurpose bio-medical analysis tool, are explored.

  14. Elastomers for biomedical applications.

    PubMed

    Yoda, R

    1998-01-01

    Current topics in elastomers for biomedical applications are reviewed. Elastomeric biomaterials, such as silicones, thermoplastic elastomers, polyolefin and polydiene elastomers, poly(vinyl chloride), natural rubber, heparinized polymers, hydrogels, polypeptides elastomers and others are described. In addition biomedical applications, such as cardiovascular devices, prosthetic devices, general medical care products, transdermal therapeutic systems, orthodontics, and ophthalmology are reviewed as well. Elastomers will find increasing use in medical products, offering biocompatibility, durability, design flexibility, and favorable performance/cost ratios. Elastomers will play a key role in medical technology of the future. PMID:9659600

  15. Supporting undergraduate biomedical entrepreneurship.

    PubMed

    Patterson, P E

    2004-01-01

    As biomedical innovations become more sophisticated and expensive to bring to market, an approach is needed to ensure the survival of the best ideas. The tactic used by Iowa State University to provide entrepreneurship opportunities for undergraduate students in biomedical areas is a model that has proven to be both distinctive and effective. Iowa State supports and fosters undergraduate student entrepreneurship efforts through the Pappajohn Center for Entrepreneurship. This unique partnership encourages ISU faculty, researchers, and students to become involved in the world of entrepreneurship, while allowing Iowa's business communities to gain access to a wide array of available resources, skills, and information from Iowa State University. PMID:15134007

  16. Biomedical enhancements as justice.

    PubMed

    Nam, Jeesoo

    2015-02-01

    Biomedical enhancements, the applications of medical technology to make better those who are neither ill nor deficient, have made great strides in the past few decades. Using Amartya Sen's capability approach as my framework, I argue in this article that far from being simply permissible, we have a prima facie moral obligation to use these new developments for the end goal of promoting social justice. In terms of both range and magnitude, the use of biomedical enhancements will mark a radical advance in how we compensate the most disadvantaged members of society. PMID:24117708

  17. System for uncollimated digital radiography

    DOEpatents

    Wang, Han; Hall, James M.; McCarrick, James F.; Tang, Vincent

    2015-08-11

    The inversion algorithm based on the maximum entropy method (MEM) removes unwanted effects in high energy imaging resulting from an uncollimated source interacting with a finitely thick scintillator. The algorithm takes as input the image from the thick scintillator (TS) and the radiography setup geometry. The algorithm then outputs a restored image which appears as if taken with an infinitesimally thin scintillator (ITS). Inversion is accomplished by numerically generating a probabilistic model relating the ITS image to the TS image and then inverting this model on the TS image through MEM. This reconstruction technique can reduce the exposure time or the required source intensity without undesirable object blurring on the image by allowing the use of both thicker scintillators with higher efficiencies and closer source-to-detector distances to maximize incident radiation flux. The technique is applicable in radiographic applications including fast neutron, high-energy gamma and x-ray radiography using thick scintillators.

  18. Biomedical Engineering in Modern Society

    ERIC Educational Resources Information Center

    Attinger, E. O.

    1971-01-01

    Considers definition of biomedical engineering (BME) and how biomedical engineers should be trained. State of the art descriptions of BME and BME education are followed by a brief look at the future of BME. (TS)

  19. Anatomy for Biomedical Engineers

    ERIC Educational Resources Information Center

    Carmichael, Stephen W.; Robb, Richard A.

    2008-01-01

    There is a perceived need for anatomy instruction for graduate students enrolled in a biomedical engineering program. This appeared especially important for students interested in and using medical images. These students typically did not have a strong background in biology. The authors arranged for students to dissect regions of the body that…

  20. Biomedical applications in EELA.

    PubMed

    Cardenas, Miguel; Hernández, Vicente; Mayo, Rafael; Blanquer, Ignacio; Perez-Griffo, Javier; Isea, Raul; Nuñez, Luis; Mora, Henry Ricardo; Fernández, Manuel

    2006-01-01

    The current demand for Grid Infrastructures to bring collabarating groups between Latina America and Europe has created the EELA proyect. This e-infrastructure is used by Biomedical groups in Latina America and Europe for the studies of ocnological analisis, neglected diseases, sequence alignments and computation plygonetics. PMID:16823158

  1. What is biomedical informatics?

    PubMed Central

    Bernstam, Elmer V.; Smith, Jack W.; Johnson, Todd R.

    2009-01-01

    Biomedical informatics lacks a clear and theoretically grounded definition. Many proposed definitions focus on data, information, and knowledge, but do not provide an adequate definition of these terms. Leveraging insights from the philosophy of information, we define informatics as the science of information, where information is data plus meaning. Biomedical informatics is the science of information as applied to or studied in the context of biomedicine. Defining the object of study of informatics as data plus meaning clearly distinguishes the field from related fields, such as computer science, statistics and biomedicine, which have different objects of study. The emphasis on data plus meaning also suggests that biomedical informatics problems tend to be difficult when they deal with concepts that are hard to capture using formal, computational definitions. In other words, problems where meaning must be considered are more difficult than problems where manipulating data without regard for meaning is sufficient. Furthermore, the definition implies that informatics research, teaching, and service should focus on biomedical information as data plus meaning rather than only computer applications in biomedicine. PMID:19683067

  2. Biomedical Results of Apollo

    NASA Technical Reports Server (NTRS)

    Johnston, R. S. (Editor); Dietlein, L. F. (Editor); Berry, C. A. (Editor); Parker, James F. (Compiler); West, Vita (Compiler)

    1975-01-01

    The biomedical program developed for Apollo is described in detail. The findings are listed of those investigations which are conducted to assess the effects of space flight on man's physiological and functional capacities, and significant medical events in Apollo are documented. Topics discussed include crew health and inflight monitoring, preflight and postflight medical testing, inflight experiments, quarantine, and life support systems.

  3. Texture in Biomedical Images

    NASA Astrophysics Data System (ADS)

    Petrou, Maria

    An overview of texture analysis methods is given and the merits of each method for biomedical applications are discussed. Methods discussed include Markov random fields, Gibbs distributions, co-occurrence matrices, Gabor functions and wavelets, Karhunen-Loève basis images, and local symmetry and orientation from the monogenic signal. Some example applications of texture to medical image processing are reviewed.

  4. Holography In Biomedical Sciences

    NASA Astrophysics Data System (ADS)

    von Bally, G.

    1988-01-01

    Today not only physicists and engineers but also biological and medical scientists are exploring the potentials of holographic methods in their special field of work. Most of the underlying physical principles such as coherence, interference, diffraction and polarization as well as general features of holography e.g. storage and retrieval of amplitude and phase of a wavefront, 3-d-imaging, large field of depth, redundant storage of information, spatial filtering, high-resolving, non-contactive, 3-d form and motion analysis are explained in detail in other contributions to this book. Therefore, this article is confined to the applications of holography in biomedical sciences. Because of the great number of contributions and the variety of applications [1,2,3,4,5,6,7,8] in this review the investigations can only be mentioned briefly and the survey has to be confined to some examples. As in all fields of optics and laser metrology, a review of biomedical applications of holography would be incomplete if military developments and their utilization are not mentioned. As will be demonstrated by selected examples the increasing interlacing of science with the military does not stop at domains that traditionally are regarded as exclusively oriented to human welfare like biomedical research [9]. This fact is actually characterized and stressed by the expression "Star Wars Medicine", which becomes increasingly common as popular description for laser applications (including holography) in medicine [10]. Thus, the consequence - even in such highly specialized fields like biomedical applications of holography - have to be discussed.

  5. Implantable CMOS Biomedical Devices

    PubMed Central

    Ohta, Jun; Tokuda, Takashi; Sasagawa, Kiyotaka; Noda, Toshihiko

    2009-01-01

    The results of recent research on our implantable CMOS biomedical devices are reviewed. Topics include retinal prosthesis devices and deep-brain implantation devices for small animals. Fundamental device structures and characteristics as well as in vivo experiments are presented. PMID:22291554

  6. Principles of Biomedical Ethics

    PubMed Central

    Athar, Shahid

    2012-01-01

    In this presentation, I will discuss the principles of biomedical and Islamic medical ethics and an interfaith perspective on end-of-life issues. I will also discuss three cases to exemplify some of the conflicts in ethical decision-making. PMID:23610498

  7. Mobile accelerator neutron radiography system

    NASA Astrophysics Data System (ADS)

    Dance, W. E.; Carollo, S. F.; Bumgardner, H. M.

    1984-10-01

    The use of neutron radiography for the inspection and maintenance of large structures such as aircraft has been delayed by the absence of a mobile system particularly suited to the requirements of field use. This report describes the production, extensive field testing, evaluation and disposition of the first mobile neutron radiography system to satisfy the majority of requirements for field use. The system is based upon the concept of a mobile on-off neutron radiography system based on a sealed-tube ion accelerator as neutron source demonstrated earlier by the Vought Corporation. Primary features of the system are its self-propelled mobility, versatile positioning capability scaled to Army helicopter dimensions, an on-off beam capability, exposure capability measured in minutes, and suitability for AMMRC laboratory and field use. Included in the report are a description of all components of the system, an evaluation of the operation of the system, an evaluation of its radiographic capabilities, a description of installation elements for the AMMRC site, and recommendations for next-generation systems.

  8. Biomedical technology in Franconia.

    PubMed

    Efferth, T

    2000-01-01

    Medical instrumentation and biotechnology business is developing rapidly in Franconia. The universities of Bayreuth, Erlangen-Nürnberg, and Würzburg hold upper ranks in biomedical extramural funding research. They have a high competence in biomedical research, medical instrumentation, and biotechnology. The association "BioMedTec Franken e.V" has been founded at the beginning of 1999 both to foster the information exchange between universities, industry and politics and to facilitate the establishment of biomedical companies by means of science parks. In the IGZ (Innovation and Foundation Center Nürnberg-Fürth-Erlangen) 4,500 square meters of space are currently shared by 19 novel companies. Since 1985 60 companies in the IGZ had a total turnover of about 74 Mio Euro. The TGZ (Technologie- und Gründerzentrum) in Würzburg provides space for 11 companies. For the specific needs of biomedical technology companies further science parks will be set up in the near future. A science park for medical instrumentation will be founded in Erlangen (IZMP, Innovations- und Gründerzentrum für Medizintechnik und Pharma in der Region Nürnberg, Fürch, Erlangen). Furthermore, a Biomedical Technology Center and a Research Center for Bicompatible Materials are to be founded in Würzburg and Bayreuth, respectively. Several communication platforms (Bayern Innovativ, FORWISS, FTT, KIM, N-TEC-VISIT, TBU, WETTI etc.) allow the transfer of local academic research activities to industrial utilization and open new co-operation possibilities. International pharmaceutical companies (Novartis, Nürnberg; Pharmacia Upjohn, Erlangen) are located in Franconia. Central Franconia represents a national focus for medical instrumentation. The Erlangen settlement of the Medical Engineering Section of Siemens employs 4,500 people including approximately 1,000 employees in the Siemens research center. PMID:10683721

  9. Graphene for Biomedical Implants

    NASA Astrophysics Data System (ADS)

    Moore, Thomas; Podila, Ramakrishna; Alexis, Frank; Rao, Apparao; Clemson Bioengineering Team; Clemson Physics Team

    2013-03-01

    In this study, we used graphene, a one-atom thick sheet of carbon atoms, to modify the surfaces of existing implant materials to enhance both bio- and hemo-compatibility. This novel effort meets all functional criteria for a biomedical implant coating as it is chemically inert, atomically smooth and highly durable, with the potential for greatly enhancing the effectiveness of such implants. Specifically, graphene coatings on nitinol, a widely used implant and stent material, showed that graphene coated nitinol (Gr-NiTi) supports excellent smooth muscle and endothelial cell growth leading to better cell proliferation. We further determined that the serum albumin adsorption on Gr-NiTi is greater than that of fibrinogen, an important and well understood criterion for promoting a lower thrombosis rate. These hemo-and biocompatible properties and associated charge transfer mechanisms, along with high strength, chemical inertness and durability give graphene an edge over most antithrombogenic coatings for biomedical implants and devices.

  10. Ethics and biomedical information.

    PubMed

    France, F H

    1998-03-01

    Ethical rules are similar for physicians in most countries that follow the Hippocratic oath. They have no formal legal force, but can be used as a reference to provide answers to solve individual cases. It appears erroneous to believe that privacy is about information. It is about relationship. In medicine, there is a contract between a patient and a physician, where health care personnel has to respect secrecy, while integrity and availability of information should be obtained for continuity of care. These somewhat contradictory objectives have to be applied very carefully to computerised biomedical information. Ethical principles have to be made clear to everyone, and society should take the necessary steps to organise their enforcement. Several examples are given in the delivery of health care, telediagnosis, patient follow-up. clinical research as well as possible breakthroughs that could jeopardise privacy, using biomedical information. PMID:9723809

  11. Biomedical Applications of Graphene

    PubMed Central

    Shen, He; Zhang, Liming; Liu, Min; Zhang, Zhijun

    2012-01-01

    Graphene exhibits unique 2-D structure and exceptional phyiscal and chemical properties that lead to many potential applications. Among various applications, biomedical applications of graphene have attracted ever-increasing interests over the last three years. In this review, we present an overview of current advances in applications of graphene in biomedicine with focus on drug delivery, cancer therapy and biological imaging, together with a brief discussion on the challenges and perspectives for future research in this field. PMID:22448195

  12. Biomedical accelerator mass spectrometry

    NASA Astrophysics Data System (ADS)

    Freeman, Stewart P. H. T.; Vogel, John S.

    1995-05-01

    Ultrasensitive SIMS with accelerator based spectrometers has recently begun to be applied to biomedical problems. Certain very long-lived radioisotopes of very low natural abundances can be used to trace metabolism at environmental dose levels ( [greater-or-equal, slanted] z mol in mg samples). 14C in particular can be employed to label a myriad of compounds. Competing technologies typically require super environmental doses that can perturb the system under investigation, followed by uncertain extrapolation to the low dose regime. 41Ca and 26Al are also used as elemental tracers. Given the sensitivity of the accelerator method, care must be taken to avoid contamination of the mass spectrometer and the apparatus employed in prior sample handling including chemical separation. This infant field comprises the efforts of a dozen accelerator laboratories. The Center for Accelerator Mass Spectrometry has been particularly active. In addition to collaborating with groups further afield, we are researching the kinematics and binding of genotoxins in-house, and we support innovative uses of our capability in the disciplines of chemistry, pharmacology, nutrition and physiology within the University of California. The field can be expected to grow further given the numerous potential applications and the efforts of several groups and companies to integrate more the accelerator technology into biomedical research programs; the development of miniaturized accelerator systems and ion sources capable of interfacing to conventional HPLC and GMC, etc. apparatus for complementary chemical analysis is anticipated for biomedical laboratories.

  13. Biomedical term mapping databases.

    PubMed

    Wren, Jonathan D; Chang, Jeffrey T; Pustejovsky, James; Adar, Eytan; Garner, Harold R; Altman, Russ B

    2005-01-01

    Longer words and phrases are frequently mapped onto a shorter form such as abbreviations or acronyms for efficiency of communication. These abbreviations are pervasive in all aspects of biology and medicine and as the amount of biomedical literature grows, so does the number of abbreviations and the average number of definitions per abbreviation. Even more confusing, different authors will often abbreviate the same word/phrase differently. This ambiguity impedes our ability to retrieve information, integrate databases and mine textual databases for content. Efforts to standardize nomenclature, especially those doing so retrospectively, need to be aware of different abbreviatory mappings and spelling variations. To address this problem, there have been several efforts to develop computer algorithms to identify the mapping of terms between short and long form within a large body of literature. To date, four such algorithms have been applied to create online databases that comprehensively map biomedical terms and abbreviations within MEDLINE: ARGH (http://lethargy.swmed.edu/ARGH/argh.asp), the Stanford Biomedical Abbreviation Server (http://bionlp.stanford.edu/abbreviation/), AcroMed (http://medstract.med.tufts.edu/acro1.1/index.htm) and SaRAD (http://www.hpl.hp.com/research/idl/projects/abbrev.html). In addition to serving as useful computational tools, these databases serve as valuable references that help biologists keep up with an ever-expanding vocabulary of terms. PMID:15608198

  14. INDUSTRIAL RADIOGRAPHY STUDENT GUIDE AND LABORATORY EXERCISES.

    ERIC Educational Resources Information Center

    Bureau of Adult, Vocational, and Technical Education (DHEW/OE), Washington, DC. Div. of Vocational and Technical Education.

    THIS INSTRUCTOR'S GUIDE TO AN 80-HOUR COURSE IN INDUSTRIAL RADIOGRAPHY IS COORDINATED WITH LESSONS IN THE STUDENT GUIDE AND LABORATORY EXERCISES AND IS BASED ON MATERIAL IN THE COURSE MANUAL, INDUSTRIAL RADIOGRAPHY. THE COURSE IS INTENDED TO TRAIN HIGH SCHOOL GRADUATES AS BEGINNING RADIOGRAPHERS WHO ARE EXPECTED TO BE ABLE TO EXTEND THEIR…

  15. PROTON RADIOGRAPHY FOR AN ADVANCED HYDROTEST FACILITY

    SciTech Connect

    C. MORRIS

    2000-11-01

    Analysis of data from BNL experiment 933 is presented. Results demonstrate that proton radiography can meet many of the requirements for an Advanced Hydrotest Facility (AHF). Results for background, position resolution, metrology, quantitative radiography, material identification, and edge resolution are presented.

  16. ARG portable neutron radiography. Final report

    SciTech Connect

    Barton, J.P.

    1995-04-01

    In this report all available neutron radiographic data, including results of tests run at LANL, McClellan AFB, and University of Virginia, will be combined to outline specific transportable neutron radiography systems that could achieve the desired results as a complement to x-radiography capabilities for the Accident Response Group (ARG).

  17. Radiography of Chaotically Moving Objects

    SciTech Connect

    Vavrik, Daniel; Jandejsek, Ivan; Dammer, Jiri; Holy, Tomas; Jakubek, Jan; Jakubek, Martin

    2007-11-26

    Radiography of moving objects is an advanced problem when the dynamic range of acquired radiograms is restricted by a limited exposition time. Exposition time has to be short to avoid image blurring due to object moving. It is possible to increase the dynamic range by summing short time radiograms set when the periodical object movement is presented as in the case of heart beating for instance. On the other hand a non periodical movement can be studied using tools of X-ray Digital Image Correlation technique. Short time radiograms are fitted into corresponding positions and consequently summed for higher data statistics as it is presented in this work.

  18. Lesion detectability in digital radiography

    NASA Astrophysics Data System (ADS)

    Gagne, Robert M.; Boswell, Jonathan S.; Myers, Kyle J.; Peter, Guillaume

    2001-06-01

    The usefulness of Fourier-based measures of imaging performance has come into question for the evaluation of digital imaging systems. Figures of merit such as detective quantum efficiency are relevant for linear, shift-invariant systems with stationary noise. However, no digital imaging system is shift invariant, and realistic images do not satisfy the stationarity condition. Our methods for task- based evaluation of imaging systems, based on lesion detectability, do not require such assumptions. We have computed the performance of Hotelling and nonprewhitening matched-filter observers for the task of lesion detection in digital radiography.

  19. Direct detector radiography versus dual reading computed radiography: feasibility of dose reduction in chest radiography.

    PubMed

    Gruber, Michael; Uffmann, Martin; Weber, Michael; Prokop, Mathias; Balassy, Csilla; Schaefer-Prokop, Cornelia

    2006-07-01

    The image quality of dual-reading computed radiography and dose-reduced direct radiography of the chest was compared in a clinical setting. The study group consisted of 50 patients that underwent three posteroanterior chest radiographs within minutes, one image obtained with a dual read-out computed radiography system (CR; Fuji 5501) at regular dose and two images with a flat panel direct detector unit (DR; Diagnost, Philips). The DR images were obtained with the same and with 50% of the dose used for the CR images. Images were evaluated in a blinded side-by-side comparison. Eight radiologists ranked the visually perceivable difference in image quality using a three-point scale. Then, three radiologists scored the visibility of anatomic landmarks in low and high attenuation areas and image noise. Statistical analysis was based on Friedman tests and Wilcoxon rank sum tests at a significance level of P<0.05. DR was judged superior to CR for the delineation of structures in high attenuation areas of the mediastinum even when obtained with 50% less dose (P<0.001). The visibility of most pulmonary structures was judged equivalent with both techniques, regardless of acquisition dose and speed level. Scores for image noise were lower for DR compared with CR, with the exception of DR obtained at a reduced dose. Thus, in this clinical preference study, DR was equivalent or even superior to the most modern dual read-out CR, even when obtained with 50% dose. A further dose reduction does not appear to be feasible for DR without significant loss of image quality. PMID:16404566

  20. NIH Funding for Biomedical Imaging

    NASA Astrophysics Data System (ADS)

    Conroy, Richard

    Biomedical imaging, and in particular MRI and CT, is often identified as among the top 10 most significant advances in healthcare in the 20th century. This presentation will describe some of the recent advances in medical physics and imaging being funded by NIH in this century and current funding opportunities. The presentation will also highlight the role of multidisciplinary research in bringing concepts from the physical sciences and applying them to challenges in biological and biomedical research.. NIH Funding for Biomedical Imaging.

  1. Biomedical systems analysis program

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Biomedical monitoring programs which were developed to provide a system analysis context for a unified hypothesis for adaptation to space flight are presented and discussed. A real-time system of data analysis and decision making to assure the greatest possible crew safety and mission success is described. Information about man's abilities, limitations, and characteristic reactions to weightless space flight was analyzed and simulation models were developed. The predictive capabilities of simulation models for fluid-electrolyte regulation, erythropoiesis regulation, and calcium regulation are discussed.

  2. Quantitative biomedical mass spectrometry

    NASA Astrophysics Data System (ADS)

    de Leenheer, Andrép; Thienpont, Linda M.

    1992-09-01

    The scope of this contribution is an illustration of the capabilities of isotope dilution mass spectrometry (IDMS) for quantification of target substances in the biomedical field. After a brief discussion of the general principles of quantitative MS in biological samples, special attention will be paid to new technological developments or trends in IDMS from selected examples from the literature. The final section will deal with the use of IDMS for accuracy assessment in clinical chemistry. Methodological aspects considered crucial for avoiding sources of error will be discussed.

  3. Nondestructive testing: Neutron radiography and neutron activation. (Latest citations from the INSPEC database). Published Search

    SciTech Connect

    1996-04-01

    The bibliography contains citations concerning the technology of neutron radiography and neutron activation for nondestructive testing of materials. The development and evaluation of neutron activation analysis and neutron diffraction examination of liquids and solids are presented. Citations also discuss nondestructive assay, verification, evaluation, and multielement analysis of biomedical, environmental, industrial, and geological materials. Nondestructive identification of chemical agents, explosives, weapons, and drugs in sealed containers are explored. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  4. Biomedical Interdisciplinary Curriculum Project: BIP (Biomedical Instrumentation Package) User's Manual.

    ERIC Educational Resources Information Center

    Biomedical Interdisciplinary Curriculum Project, Berkeley, CA.

    Described is the Biomedical Instrument Package (BIP) and its use. The BIP was developed for use in understanding colorimetry, sound, electricity, and bioelectric phenomena. It can also be used in a wide range of measurements such as current, voltage, resistance, temperature, and pH. Though it was developed primarily for use in biomedical science…

  5. New developments in flash radiography

    NASA Astrophysics Data System (ADS)

    Mattsson, Arne

    2007-01-01

    The paper will review some of the latest developments in flash radiography. A series of multi anode tubes has been developed. These are tubes with several x-ray sources within the same vacuum enclosure. The x-ray sources are closely spaced, to come as close as possible to a single source. The x-ray sources are sequentially pulsed, at times that can be independently chosen. Tubes for voltages in the range 150 - 500 kV, with up to eight x-ray sources, will be described. Combining a multi anode tube with an intensified CCD camera, will make it possible to generate short "x-ray movies". A new flash x-ray control system has been developed. The system is operated from a PC or Laptop. All parameters of a multi channel flash x-ray system can be remotely set and monitored. The system will automatically store important operation parameters.

  6. Metal thickness measurements using radiography

    NASA Astrophysics Data System (ADS)

    Achrekar, P. M.

    1986-04-01

    The present invention relates broadly to a radiographic inspection technique, and in particular to a metal thickness measurement method using radiography. The localized areas wherein the effective metal thickness is less than the minimum that is required for radiation shielding and which can render a shielding enclosure functionless, is readily determined. The invention comprises a process for assuring metal thickness in small regions. The actual metal thickness of small regions can be verified by comparing the optical densities of sections of the metal i.e., stepwedge. A comparator microphotometer, which compares optical densities of spectrum lines from spectrophotometers, compares the optical density of spectrum lines on an exposed spectrum plate (metal under test) with a standard plate (stepwedge).

  7. Professional Identification for Biomedical Engineers

    ERIC Educational Resources Information Center

    Long, Francis M.

    1973-01-01

    Discusses four methods of professional identification in biomedical engineering including registration, certification, accreditation, and possible membership qualification of the societies. Indicates that the destiny of the biomedical engineer may be under the control of a new profession, neither the medical nor the engineering. (CC)

  8. Biomedical Knowledge and Clinical Expertise.

    ERIC Educational Resources Information Center

    Boshuizen, Henny P. A.; Schmidt, Henk G.

    A study examined the application and availability of clinical and biomedical knowledge in the clinical reasoning of physicians as well as possible mechanisms responsible for changes in the organization of clinical and biomedical knowledge in the development from novice to expert. Subjects were 28 students (10 second year, 8 fourth year, and 10…

  9. Information extraction from muon radiography data

    SciTech Connect

    Borozdin, K. N.; Asaki, T. J.; Chartrand, R.; Hengartner, N. W.; Hogan, G. E.; Morris, C. L.; Priedhorsky, W. C.; Schirato, R.C.; Schultz, L. J.; Sottile, M. J.; Vixie, K. R.; Wohlberg, B. E.; Blanpied, G.

    2004-01-01

    Scattering muon radiography was proposed recently as a technique of detection and 3-d imaging for dense high-Z objects. High-energy cosmic ray muons are deflected in matter in the process of multiple Coulomb scattering. By measuring the deflection angles we are able to reconstruct the configuration of high-Z material in the object. We discuss the methods for information extraction from muon radiography data. Tomographic methods widely used in medical images have been applied to a specific muon radiography information source. Alternative simple technique based on the counting of high-scattered muons in the voxels seems to be efficient in many simulated scenes. SVM-based classifiers and clustering algorithms may allow detection of compact high-Z object without full image reconstruction. The efficiency of muon radiography can be increased using additional informational sources, such as momentum estimation, stopping power measurement, and detection of muonic atom emission.

  10. Biomedical informatics and translational medicine

    PubMed Central

    2010-01-01

    Biomedical informatics involves a core set of methodologies that can provide a foundation for crossing the "translational barriers" associated with translational medicine. To this end, the fundamental aspects of biomedical informatics (e.g., bioinformatics, imaging informatics, clinical informatics, and public health informatics) may be essential in helping improve the ability to bring basic research findings to the bedside, evaluate the efficacy of interventions across communities, and enable the assessment of the eventual impact of translational medicine innovations on health policies. Here, a brief description is provided for a selection of key biomedical informatics topics (Decision Support, Natural Language Processing, Standards, Information Retrieval, and Electronic Health Records) and their relevance to translational medicine. Based on contributions and advancements in each of these topic areas, the article proposes that biomedical informatics practitioners ("biomedical informaticians") can be essential members of translational medicine teams. PMID:20187952

  11. Biomedical applications of collagens.

    PubMed

    Ramshaw, John A M

    2016-05-01

    Collagen-based biomedical materials have developed into important, clinically effective materials used in a range of devices that have gained wide acceptance. These devices come with collagen in various formats, including those based on stabilized natural tissues, those that are based on extracted and purified collagens, and designed composite, biosynthetic materials. Further knowledge on the structure and function of collagens has led to on-going developments and improvements. Among these developments has been the production of recombinant collagen materials that are well defined and are disease free. Most recently, a group of bacterial, non-animal collagens has emerged that may provide an excellent, novel source of collagen for use in biomaterials and other applications. These newer collagens are discussed in detail. They can be modified to direct their function, and they can be fabricated into various formats, including films and sponges, while solutions can also be adapted for use in surface coating technologies. PMID:26448097

  12. Biomedical studies by PIXE

    NASA Astrophysics Data System (ADS)

    Afarideh, H.; Amirabadi, A.; Hadji-Saeid, S. M.; Mansourian, N.; Kaviani, K.; Zibafar, E.

    1996-04-01

    In the present biomedical research, PIXE a powerful technique for elemental analysis was employed to illustrate the importance of multi-elemental determination of serum trace elements in two cases of great medical interest. Those are evaluation of the desferroxamine drug (DPO), a widely used therapy for patient with β-thalassemia-Major (β-thal-M), and investigation of elemental variations in blood-serum in hyperbilirubinamia new-borns before and after blood transfusion (BT). The purpose of the work is to demonstrate the various aspects of PIXE analysis by some practical examples as well as to draw some general conclusions regarding the cure of those patients with the above mentioned disorders or diseases. To present in details each case, we divide the paper in two parts: part 1 and part 2 to consider the experimental procedure as well as the results individually.

  13. Corrosion Inhibitors as Penetrant Dyes for Radiography

    NASA Technical Reports Server (NTRS)

    Novak, Howard L.; Hall, Phillip B.

    2003-01-01

    Liquid/vapor-phase corrosion inhibitors (LVCIs) have been found to be additionally useful as penetrant dyes for neutron radiography (and perhaps also x-radiography). Enhancement of radiographic contrasts by use of LVCIs can reveal cracks, corrosion, and other defects that may be undetectable by ultrasonic inspection, that are hidden from direct optical inspection, and/or that are difficult or impossible to detect in radiographs made without dyes.

  14. Biomedical applications of nisin.

    PubMed

    Shin, J M; Gwak, J W; Kamarajan, P; Fenno, J C; Rickard, A H; Kapila, Y L

    2016-06-01

    Nisin is a bacteriocin produced by a group of Gram-positive bacteria that belongs to Lactococcus and Streptococcus species. Nisin is classified as a Type A (I) lantibiotic that is synthesized from mRNA and the translated peptide contains several unusual amino acids due to post-translational modifications. Over the past few decades, nisin has been used widely as a food biopreservative. Since then, many natural and genetically modified variants of nisin have been identified and studied for their unique antimicrobial properties. Nisin is FDA approved and generally regarded as a safe peptide with recognized potential for clinical use. Over the past two decades the application of nisin has been extended to biomedical fields. Studies have reported that nisin can prevent the growth of drug-resistant bacterial strains, such as methicillin-resistant Staphylococcus aureus, Streptococcus pneumoniae, Enterococci and Clostridium difficile. Nisin has now been shown to have antimicrobial activity against both Gram-positive and Gram-negative disease-associated pathogens. Nisin has been reported to have anti-biofilm properties and can work synergistically in combination with conventional therapeutic drugs. In addition, like host-defence peptides, nisin may activate the adaptive immune response and have an immunomodulatory role. Increasing evidence indicates that nisin can influence the growth of tumours and exhibit selective cytotoxicity towards cancer cells. Collectively, the application of nisin has advanced beyond its role as a food biopreservative. Thus, this review will describe and compare studies on nisin and provide insight into its future biomedical applications. PMID:26678028

  15. Securing quality of camera-based biomedical optics

    NASA Astrophysics Data System (ADS)

    Guse, Frank; Kasper, Axel; Zinter, Bob

    2009-02-01

    As sophisticated optical imaging technologies move into clinical applications, manufacturers need to guarantee their products meet required performance criteria over long lifetimes and in very different environmental conditions. A consistent quality management marks critical components features derived from end-users requirements in a top-down approach. Careful risk analysis in the design phase defines the sample sizes for production tests, whereas first article inspection assures the reliability of the production processes. We demonstrate the application of these basic quality principles to camera-based biomedical optics for a variety of examples including molecular diagnostics, dental imaging, ophthalmology and digital radiography, covering a wide range of CCD/CMOS chip sizes and resolutions. Novel concepts in fluorescence detection and structured illumination are also highlighted.

  16. Semantic Similarity in Biomedical Ontologies

    PubMed Central

    Pesquita, Catia; Faria, Daniel; Falcão, André O.; Lord, Phillip; Couto, Francisco M.

    2009-01-01

    In recent years, ontologies have become a mainstream topic in biomedical research. When biological entities are described using a common schema, such as an ontology, they can be compared by means of their annotations. This type of comparison is called semantic similarity, since it assesses the degree of relatedness between two entities by the similarity in meaning of their annotations. The application of semantic similarity to biomedical ontologies is recent; nevertheless, several studies have been published in the last few years describing and evaluating diverse approaches. Semantic similarity has become a valuable tool for validating the results drawn from biomedical studies such as gene clustering, gene expression data analysis, prediction and validation of molecular interactions, and disease gene prioritization. We review semantic similarity measures applied to biomedical ontologies and propose their classification according to the strategies they employ: node-based versus edge-based and pairwise versus groupwise. We also present comparative assessment studies and discuss the implications of their results. We survey the existing implementations of semantic similarity measures, and we describe examples of applications to biomedical research. This will clarify how biomedical researchers can benefit from semantic similarity measures and help them choose the approach most suitable for their studies. Biomedical ontologies are evolving toward increased coverage, formality, and integration, and their use for annotation is increasingly becoming a focus of both effort by biomedical experts and application of automated annotation procedures to create corpora of higher quality and completeness than are currently available. Given that semantic similarity measures are directly dependent on these evolutions, we can expect to see them gaining more relevance and even becoming as essential as sequence similarity is today in biomedical research. PMID:19649320

  17. National Space Biomedical Research Institute

    NASA Technical Reports Server (NTRS)

    2003-01-01

    In June 1996, NASA released a Cooperative Agreement Notice (CAN) inviting proposals to establish a National Space Biomedical Research Institute (9-CAN-96-01). This CAN stated that: The Mission of the Institute will be to lead a National effort for accomplishing the integrated, critical path, biomedical research necessary to support the long term human presence, development, and exploration of space and to enhance life on Earth by applying the resultant advances in human knowledge and technology acquired through living and working in space. The Institute will be the focal point of NASA sponsored space biomedical research. This statement has not been amended by NASA and remains the mission of the NSBRI.

  18. Thorium-uranium fission radiography

    NASA Technical Reports Server (NTRS)

    Haines, E. L.; Weiss, J. R.; Burnett, D. S.; Woolum, D. S.

    1976-01-01

    Results are described for studies designed to develop routine methods for in-situ measurement of the abundance of Th and U on a microscale in heterogeneous samples, especially rocks, using the secondary high-energy neutron flux developed when the 650 MeV proton beam of an accelerator is stopped in a 42 x 42 cm diam Cu cylinder. Irradiations were performed at three different locations in a rabbit tube in the beam stop area, and thick metal foils of Bi, Th, and natural U as well as polished silicate glasses of known U and Th contents were used as targets and were placed in contact with mica which served as a fission track detector. In many cases both bare and Cd-covered detectors were exposed. The exposed mica samples were etched in 48% HF and the fission tracks counted by conventional transmitted light microscopy. Relative fission cross sections are examined, along with absolute Th track production rates, interaction tracks, and a comparison of measured and calculated fission rates. The practicality of fast neutron radiography revealed by experiments to data is discussed primarily for Th/U measurements, and mixtures of other fissionable nuclei are briefly considered.

  19. Mobile real time radiography system

    SciTech Connect

    Vigil, J.; Taggart, D.; Betts, S.

    1997-11-01

    A 450-keV Mobile Real Time Radiography (RTR) System was delivered to Los Alamos National Laboratory (LANL) in January 1996. It was purchased to inspect containers of radioactive waste produced at (LANL). Since its delivery it has been used to radiograph more than 600 drums of radioactive waste at various LANL sites. It has the capability of inspecting waste containers of various sizes from <1-gal. buckets up to standard waste boxes (SWB, dimensions 54.5 in. x 71 in. x 37 in.). It has three independent x-ray acquisition formats. The primary system used is a 12- in. image intensifier, the second is a 36-in. linear diode array (LDA) and the last is an open system. It is fully self contained with on board generator, HVAC, and a fire suppression system. It is on a 53-ft long x 8-ft. wide x 14-ft. high trailer that can be moved over any highway requiring only an easily obtainable overweight permit because it weights {approximately}38 tons. It was built to conform to industry standards for a cabinet system which does not require an exclusion zone. The fact that this unit is mobile has allowed us to operate where the waste is stored, rather than having to move the waste to a fixed facility.

  20. Modified Bootstrap Sensitometry In Radiography

    NASA Astrophysics Data System (ADS)

    Bednarek, Daniel R.; Rudin, Stephen

    1981-04-01

    A new modified bootstrap approach to sensitometry is presented which provides H and D curves that show almost exact agreement with those obtained using conventional methods. Two bootstrap techniques are described; both involve a combination of inverse-square and stepped-wedge modulation of the radiation field and provide intensity-scale sensitometric curves as appropriate for medical radiography. H and D curves obtained with these modified techniques are compared with those obtained for screen-film combinations using inverse-square sensitometry as well as with those obtained for direct x-ray film using time-scale sensitometry. The stepped wedge of the Wisconsin X-Ray Test Cassette was used in the bootstrap approach since it provides sufficient exposure latitude to encompass the useful density range of medical x-ray film. This approach makes radiographic sensitometry quick and convenient, allowing accurate characteristic curves to be obtained for any screen-film cassette using standard diagnostic x-ray equipment.

  1. Time of flight fast neutron radiography

    NASA Astrophysics Data System (ADS)

    Loveman, R.; Bendahan, J.; Gozani, T.; Stevenson, J.

    1995-05-01

    Neutron radiography with fast or thermal neutrons is a standard technique for non-destructive testing (NDT). Here we report results for fast neutron radiography both as an adjunct to pulsed fast neutron analysis (PFNA) and as a stand-alone method for NDT. PFNA is a new technique for utilizing a collimated pulsed neutron beam to interrogate items and determine their elemental composition. By determining the time of flight for gamma-rays produced by (n,n' gamma X) reactions, a three dimensional image can be produced. Neutron radiography data taken with the same beam provides an important constraint for image reconstruction, and in particular is important in inferring the amount of hydrogen within the interrogated item. As a stand-alone device, the radiography measurement can be used to image items as large as cargo containers as long as their density is not too high. The use of a pulsed beam gives the further advantage of a time of flight measurement on the transmitted neutrons. By gating the radiography signal on the time of flight appropriate to the energy of the primary neutrons, most build-up from scattered neutrons can be eliminated. The pulsed beam also greatly improves the signal to background and extends the range of the neutron radiography. Simulation results will be presented which display the advantage of this constraint in particular for statistically limited data. Experimental results will be presented which show some of the limitations likely in a PFNA system utilizing neutron radiography data. Experimental and simulation results will demonstrate possible uses for this type of radiographic data in identifying contraband substances such as drugs.

  2. Nanocontrollers for biomedical applications.

    PubMed

    Frenger, P

    1996-01-01

    Several semiconductor companies now manufacture low cost single-chip microcontrollers in dual inline packages having twenty or fewer pins. The controllers are field programmable by means of inexpensive development boards linked to personal computers. These processors were designed with a minimalist philosophy which provide them with only a few dozen bytes of on-chip RAM, hundreds of bytes of PROM, a parallel port, a counter/timer, and reduced instruction sets. The better-equipped members of this class may have special on-chip hardware, such as analog-to-digital input, pulse-width modulation output and a serial port. Most must be programmed in assembler, although some support BASIC, "C" or other languages. Their tiny size, design simplicity and operational single-mindedness earn them the nickname "nanocontrollers". Despite meager resources, these controllers can be successfully employed in a variety of biomedical applications. Such uses include: consolidation of multi-chip "glue logic" circuitry; functioning as subsystem elements in complex designs; serving as device drivers or protocol converters; and forming the building blocks of hypercube processor arrays or artificial neural networks. This paper describes the general capabilities, special features, and some application examples of "nanocontroller" technology. PMID:8672686

  3. New Directions for Biomedical Engineering

    ERIC Educational Resources Information Center

    Plonsey, Robert

    1973-01-01

    Discusses the definition of "biomedical engineering" and the development of educational programs in the field. Includes detailed descriptions of the roles of bioengineers, medical engineers, and chemical engineers. (CC)

  4. Biomedical research publications, 1982 - 1983

    NASA Technical Reports Server (NTRS)

    Bolcik, C.; Pleasant, L. G.

    1983-01-01

    Cardiovascular deconditioning, motion sickness, bone alterations, muscle atrophy, blood cell alterations, fluid and electrolyte changes, radiation effects and protection, behavior and performance, and general biomedical research are covered in a bibliography of 444 items.

  5. Functionalized carbon nanotubes: biomedical applications

    PubMed Central

    Vardharajula, Sandhya; Ali, Sk Z; Tiwari, Pooja M; Eroğlu, Erdal; Vig, Komal; Dennis, Vida A; Singh, Shree R

    2012-01-01

    Carbon nanotubes (CNTs) are emerging as novel nanomaterials for various biomedical applications. CNTs can be used to deliver a variety of therapeutic agents, including biomolecules, to the target disease sites. In addition, their unparalleled optical and electrical properties make them excellent candidates for bioimaging and other biomedical applications. However, the high cytotoxicity of CNTs limits their use in humans and many biological systems. The biocompatibility and low cytotoxicity of CNTs are attributed to size, dose, duration, testing systems, and surface functionalization. The functionalization of CNTs improves their solubility and biocompatibility and alters their cellular interaction pathways, resulting in much-reduced cytotoxic effects. Functionalized CNTs are promising novel materials for a variety of biomedical applications. These potential applications are particularly enhanced by their ability to penetrate biological membranes with relatively low cytotoxicity. This review is directed towards the overview of CNTs and their functionalization for biomedical applications with minimal cytotoxicity. PMID:23091380

  6. John Glenn Biomedical Engineering Consortium

    NASA Technical Reports Server (NTRS)

    Nall, Marsha

    2004-01-01

    The John Glenn Biomedical Engineering Consortium is an inter-institutional research and technology development, beginning with ten projects in FY02 that are aimed at applying GRC expertise in fluid physics and sensor development with local biomedical expertise to mitigate the risks of space flight on the health, safety, and performance of astronauts. It is anticipated that several new technologies will be developed that are applicable to both medical needs in space and on earth.

  7. Muon radiography for exploration of Mars geology

    NASA Astrophysics Data System (ADS)

    Kedar, S.; Tanaka, H. K. M.; Naudet, C. J.; Jones, C. E.; Plaut, J. P.; Webb, F. H.

    2013-06-01

    Muon radiography is a technique that uses naturally occurring showers of muons (penetrating particles generated by cosmic rays) to image the interior of large-scale geological structures in much the same way as standard X-ray radiography is used to image the interior of smaller objects. Recent developments and application of the technique to terrestrial volcanoes have demonstrated that a low-power, passive muon detector can peer deep into geological structures up to several kilometers in size, and provide crisp density profile images of their interior at ten meter scale resolution. Preliminary estimates of muon production on Mars indicate that the near horizontal Martian muon flux, which could be used for muon radiography, is as strong or stronger than that on Earth, making the technique suitable for exploration of numerous high priority geological targets on Mars. The high spatial resolution of muon radiography also makes the technique particularly suited for the discovery and delineation of Martian caverns, the most likely planetary environment for biological activity. As a passive imaging technique, muon radiography uses the perpetually present background cosmic ray radiation as the energy source for probing the interior of structures from the surface of the planet. The passive nature of the measurements provides an opportunity for a low power and low data rate instrument for planetary exploration that could operate as a scientifically valuable primary or secondary instrument in a variety of settings, with minimal impact on the mission's other instruments and operation.

  8. National Space Biomedical Research Institute

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The National Space Biomedical Research Institute (NSBRI) sponsors and performs fundamental and applied space biomedical research with the mission of leading a world-class, national effort in integrated, critical path space biomedical research that supports NASA's Human Exploration and Development of Space (HEDS) Strategic Plan. It focuses on the enabling of long-term human presence in, development of, and exploration of space. This will be accomplished by: designing, implementing, and validating effective countermeasures to address the biological and environmental impediments to long-term human space flight; defining the molecular, cellular, organ-level, integrated responses and mechanistic relationships that ultimately determine these impediments, where such activity fosters the development of novel countermeasures; establishing biomedical support technologies to maximize human performance in space, reduce biomedical hazards to an acceptable level, and deliver quality medical care; transferring and disseminating the biomedical advances in knowledge and technology acquired through living and working in space to the benefit of mankind in space and on Earth, including the treatment of patients suffering from gravity- and radiation-related conditions on Earth; and ensuring open involvement of the scientific community, industry, and the public at large in the Institute's activities and fostering a robust collaboration with NASA, particularly through Johnson Space Center.

  9. Weakly ionized cerium plasma radiography

    NASA Astrophysics Data System (ADS)

    Sato, Eiichi; Hayasi, Yasuomi; Germer, Rudolf; Koorikawa, Yoshitake; Murakami, Kazunori; Tanaka, Etsuro; Mori, Hidezo; Kawai, Toshiaki; Ichimaru, Toshio; Obata, Fumiko; Takahashi, Kiyomi; Sato, Sigehiro; Takayama, Kazuyoshi; Ido, Hideaki

    2004-02-01

    In the plasma flash x-ray generator, high-voltage main condenser of about 200 nF is charged up to 55 kV by a power supply, and electric charges in the condenser are discharged to an x-ray tube after triggering the cathode electrode. The flash x-rays are then produced. The x-ray tube is of a demountable triode that is connected to a turbo molecular pump with a pressure of approximately 1 mPa. As electron flows from the cathode electrode are roughly converged to a rod cerium target of 3.0 mm in diameter by electric field in the x-ray tube, the weakly ionized linear plasma, which consists of cerium ions and electrons, forms by target evaporating. At a charging voltage of 55 kV, the maximum tube voltage was almost equal to the charging voltage of the main condenser, and the peak current was about 20 kA. When the charging voltage was increased, weakly ionized cerium plasma formed, and the K-series characteristic x-ray intensities increased. The x-ray pulse widths were about 500 ns, and the time-integrated x-ray intensity had a value of about 40 μC/kg at 1.0 m from x-ray source with a charging voltage of 55 kV. In the angiography, we employed a film-less computed radiography (CR) system and iodine-based microspheres. Because K-series characteristic x-rays are absorbed easily by the microspheres, high-contrast angiography has been performed.

  10. Biomedical photoacoustic imaging

    PubMed Central

    Beard, Paul

    2011-01-01

    Photoacoustic (PA) imaging, also called optoacoustic imaging, is a new biomedical imaging modality based on the use of laser-generated ultrasound that has emerged over the last decade. It is a hybrid modality, combining the high-contrast and spectroscopic-based specificity of optical imaging with the high spatial resolution of ultrasound imaging. In essence, a PA image can be regarded as an ultrasound image in which the contrast depends not on the mechanical and elastic properties of the tissue, but its optical properties, specifically optical absorption. As a consequence, it offers greater specificity than conventional ultrasound imaging with the ability to detect haemoglobin, lipids, water and other light-absorbing chomophores, but with greater penetration depth than purely optical imaging modalities that rely on ballistic photons. As well as visualizing anatomical structures such as the microvasculature, it can also provide functional information in the form of blood oxygenation, blood flow and temperature. All of this can be achieved over a wide range of length scales from micrometres to centimetres with scalable spatial resolution. These attributes lend PA imaging to a wide variety of applications in clinical medicine, preclinical research and basic biology for studying cancer, cardiovascular disease, abnormalities of the microcirculation and other conditions. With the emergence of a variety of truly compelling in vivo images obtained by a number of groups around the world in the last 2–3 years, the technique has come of age and the promise of PA imaging is now beginning to be realized. Recent highlights include the demonstration of whole-body small-animal imaging, the first demonstrations of molecular imaging, the introduction of new microscopy modes and the first steps towards clinical breast imaging being taken as well as a myriad of in vivo preclinical imaging studies. In this article, the underlying physical principles of the technique, its practical

  11. Biomedical photoacoustic imaging.

    PubMed

    Beard, Paul

    2011-08-01

    Photoacoustic (PA) imaging, also called optoacoustic imaging, is a new biomedical imaging modality based on the use of laser-generated ultrasound that has emerged over the last decade. It is a hybrid modality, combining the high-contrast and spectroscopic-based specificity of optical imaging with the high spatial resolution of ultrasound imaging. In essence, a PA image can be regarded as an ultrasound image in which the contrast depends not on the mechanical and elastic properties of the tissue, but its optical properties, specifically optical absorption. As a consequence, it offers greater specificity than conventional ultrasound imaging with the ability to detect haemoglobin, lipids, water and other light-absorbing chomophores, but with greater penetration depth than purely optical imaging modalities that rely on ballistic photons. As well as visualizing anatomical structures such as the microvasculature, it can also provide functional information in the form of blood oxygenation, blood flow and temperature. All of this can be achieved over a wide range of length scales from micrometres to centimetres with scalable spatial resolution. These attributes lend PA imaging to a wide variety of applications in clinical medicine, preclinical research and basic biology for studying cancer, cardiovascular disease, abnormalities of the microcirculation and other conditions. With the emergence of a variety of truly compelling in vivo images obtained by a number of groups around the world in the last 2-3 years, the technique has come of age and the promise of PA imaging is now beginning to be realized. Recent highlights include the demonstration of whole-body small-animal imaging, the first demonstrations of molecular imaging, the introduction of new microscopy modes and the first steps towards clinical breast imaging being taken as well as a myriad of in vivo preclinical imaging studies. In this article, the underlying physical principles of the technique, its practical

  12. NASA's Biomedical Research Program

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The biomedical research program has been established to investigate the major physiological and psychological problems encountered by man when he undertakes spaceflight. The program seeks to obtain a better definition of each problem, an understanding of its underlying mechanism, and ultimately a means of prevention. In pursuing these goals the program also includes a major effort to develop the research tools and procedures it needs where these are not being developed elsewhere. After almost twenty years of manned spaceflight activities and after a much longer period of space related ground-based research, the program now recognizes two characteristics of spaceflight which are truly unique to space. These are weightlessness and one specific form of radiation. In its present stage of maturity much of the research focuses on mechanisms underlying the basic responses of man and animals to weightlessness. The program consists of nine elements. Eight of these are referable to specific physiological problems that have either been encountered in previous manned spaceflight or which are anticipated to occur as spaceflights last longer, traverse steeper orbital inclinations, or are otherwise different from previous missions. The ninth addresses problems that have neither arisen nor can be reasonably predicted but are suspected on the basis of theoretical models, ground-based animal research, or for other reasons. The program's current emphasis is directed toward the motion sickness problem because of its relevance to Space Shuttle operations. Increased awareness and understanding of the radiation hazard has resulted in more emphasis being placed on the biological effects of high energy, high mass number particulate radiation and upon radiation protection . Cardiovascular and musculoskeleta1 studies are pursued in recognition of the considerable fundamental knowledge that must be acquired in these areas before effective countermeasures to the effects of repetitive or long

  13. Problems associated with veterinary dental radiography.

    PubMed

    Eisner, E R

    1990-03-01

    Veterinarians have been radiographing animal skulls for many years, but sophisticated dentistry was not widely used until the 1970s. Elevated awareness of veterinary dental techniques has led to the need for producing accurate radiographic images of the teeth and periodontal structures. Many problems arise for the clinician who treats small animals who has, before this time, radiographed the skull of dogs and cats solely for the purpose of assessing neoplastic, infectious, or traumatic disease of the mandible, maxilla, or calvarium and now desires to perform dental radiography. This chapter will describe the advantages and disadvantages of some of the more common types of radiographic equipment and supplies, discuss extraoral and intraoral radiographic positioning and technique, identify anatomic landmarks and diagnostic features of intraoral radiography, and offer suggestions concerning the art of using dental radiography in veterinary practice. PMID:2134590

  14. Thyroid dose distribution in dental radiography

    SciTech Connect

    Bristow, R.G.; Wood, R.E.; Clark, G.M. )

    1989-10-01

    The anatomic position and proven radiosensitivity of the thyroid gland make it an organ of concern in dental radiography. A calibrated thermoluminescent dosimetry system was used to investigate the absorbed dose (microGy) to the thyroid gland resultant from a minimum irradiated volume, intraoral full-mouth radiography technique with the use of rectangular collimation with a lead-backed image receptor, and conventional panoramic radiography performed with front and rear lead aprons. Use of the minimum irradiated volume technique resulted in a significantly decreased absorbed dose over the entire thyroid region ranging from 100% to 350% (p less than 0.05). Because this intraoral technique results in radiographs with greater image quality and also exposes the thyroid gland to less radiation than the panoramic, this technique may be an alternative to the panoramic procedure.

  15. Neutron radiography at the NRAD facility

    SciTech Connect

    McClellan, G.C.; Richards, W.J.

    1984-01-01

    The NRAD facility uses a 150 kW TRIGA reactor as a source of neutrons and is integrated with a hot cell such that highly radioactive specimens can be radiographed without removing them from the hot cell environment. A second beam tube is located in a separate shielded addition to HFEF and permits neutron radiography of irradiated or unirradiated specimens without subjecting them to the alpha-contaminated hot cell environment. Both beams are optimized for neutron radiography of highly radioactive nuclear fuels. Techniques for using these facilities are described. Advantages include: the ability to perform thermal and epithermal neutron radiography on specimens either inside or outside the hot cell, lack of competition for the use of the reactor, versatility of facility design, and the addition of neutron tomography. (LEW)

  16. Digital radiography. A comparison with modern conventional imaging

    PubMed Central

    Bansal, G J

    2006-01-01

    The development of computed radiography over the past two decades has transformed radiological imaging. The radiology departments in the 21st century will look very different from those in the preceding period. In this review, the development of digital radiography is presented with a description of its various forms and a comparison with screen film radiography. PMID:16822918

  17. Proton Radiography: Its uses and Resolution Scaling

    SciTech Connect

    Mariam, Fesseha G.

    2012-08-09

    Los Alamos National Laboratory has used high energy protons as a probe in flash radiography for over a decade. In this time the proton radiography project has used 800 MeV protons, provided by the LANSCE accelerator facility at LANL, to diagnose over five-hundred dynamic experiments in support of stockpile stewardship programs as well as basic materials science. Through this effort significant experience has been gained in using charged particles as direct radiographic probes to diagnose transient systems. The results of this experience will be discussed through the presentation of data from experiments recently performed at the LANL pRad.

  18. [Conventional dental radiography and future prospectives].

    PubMed

    Youssefzadeh, S; Gahleitner, A; Bernhart, D; Bernhart, T

    1999-12-01

    Until recently, conventional dental radiology was performed by dentists and orofacial surgeons. Due to the rapid development of radiological technique, the demand of radiological advice is increasing. The radiologists see more and more dental patients in their daily routine. The aim of this article is to give an overview on established dental radiology and a glimpse into the future. Conventional dental radiology and digital radiography are presently in use. Intraoral technique comprises dental films, bite-wing views and occlusal radiographs. Panoramic views and cephalometric radiographs are done with extraoral technique. Digital radiography lacks all processes in behalf of film development. It leads to dose reduction and enables image manipulation. PMID:10643025

  19. New developments in proton radiography at LANSCE

    NASA Astrophysics Data System (ADS)

    Morris, Christopher; Proton Radiography Team

    2014-09-01

    In a new application of nuclear physics, a facility for using proton for flash radiography has been developed at the Los Alamos Neutron Science Center (LANSCE). Protons have proven far superior to high energy x-rays for flash radiography. Although this facility is primarily used for studying very fast phenomena such as high explosive driven experiments, it is finding increasing application to other fields, such as tomography of static objects, phase changes in materials, and the dynamics of chemical reactions. The advantages of protons will be discussed and data from some of the recent experiments will be presented.

  20. Lithium batteries: Application of neutron radiography

    NASA Astrophysics Data System (ADS)

    Kamata, Masahiro; Esaka, Takao; Fujine, Shigenori; Yoneda, Kenji; Kanda, Keiji

    Several kinds of primary and secondary commercial lithium batteries, such as CR1/3 · 1H (Fujitsu), CR1220 and BR435 (Panasonic), ML1220 (Sanyo Excel) were investigated using neutron radiography; the variation of the lithium distribution inside these batteries upon discharging (and charging) were clarified by analyzing their visualized images. It was demonstrated that neutron radiography is a potential and useful method, especially in evaluating the reversibility of rechargeable batteries, which have been used under different discharging/charging conditions.

  1. Spintronic platforms for biomedical applications.

    PubMed

    Freitas, P P; Cardoso, F A; Martins, V C; Martins, S A M; Loureiro, J; Amaral, J; Chaves, R C; Cardoso, S; Fonseca, L P; Sebastião, A M; Pannetier-Lecoeur, M; Fermon, C

    2012-02-01

    Since the fundamental discovery of the giant magnetoresistance many spintronic devices have been developed and implemented in our daily life (e.g. information storage and automotive industry). Lately, advances in the sensors technology (higher sensitivity, smaller size) have potentiated other applications, namely in the biological area, leading to the emergence of novel biomedical platforms. In particular the investigation of spintronics and its application to the development of magnetoresistive (MR) biomolecular and biomedical platforms are giving rise to a new class of biomedical diagnostic devices, suitable for bench top bioassays as well as point-of-care and point-of-use devices. Herein, integrated spintronic biochip platforms for diagnostic and cytometric applications, hybrid systems incorporating magnetoresistive sensors applied to neuroelectronic studies and biomedical imaging, namely magneto-encephalography and magneto-cardiography, are reviewed. Also lab-on-a-chip MR-based platforms to perform biological studies at the single molecule level are discussed. Overall the potential and main characteristics of such MR-based biomedical devices, comparing to the existing technologies while giving particular examples of targeted applications, are addressed. PMID:22146898

  2. INDUSTRIAL RADIOGRAPHY COURSE, INSTRUCTORS' GUIDE. VOLUME 2.

    ERIC Educational Resources Information Center

    Texas A and M Univ., College Station. Engineering Extension Service.

    INFORMATION RELATIVE TO THE LESSON PLANS IN "INDUSTRIAL RADIOGRAPHY COURSE, INSTRUCTOR'S GUIDE, VOLUME I" (VT 003 565) IS PRESENTED ON 52 INFORMATION SHEETS INCLUDING THE SUBJECTS SHIELDING EQUATIONS AND LOGARITHMS, METAL PROPERTIES, FIELD TRIP INSTRUCTIONS FOR STUDENTS, WELDING SYMBOLS AND SIZES, SAMPLE REPORT FORMS, AND TYPICAL SHIPPING…

  3. Infection control practices for dental radiography.

    PubMed

    Palenik, Charles John

    2004-06-01

    Infection control for dental radiography employs the same materials, processes, and techniques used in the operatory, yet unless proper procedures are established and followed, there is a definite potential for cross-contamination to clinical area surfaces and DHCP. In general, the aseptic practices used are relatively simple and inexpensive, yet they require complete application in every situation. PMID:15218669

  4. Safety Testing of Industrial Radiography Devices

    SciTech Connect

    Trapp, D.J.

    1999-09-29

    The Nuclear Regulatory Commission contracted the Savannah River Technology Center to verify the relevancy of the 10 CFR Part 34 requirements for the normal use of portable gamma radiography systems and to propose recommendations for changes or modifications to the requirements.

  5. Implantable biomedical devices on bioresorbable substrates

    DOEpatents

    Rogers, John A; Kim, Dae-Hyeong; Omenetto, Fiorenzo; Kaplan, David L; Litt, Brian; Viventi, Jonathan; Huang, Yonggang; Amsden, Jason

    2014-03-04

    Provided herein are implantable biomedical devices, methods of administering implantable biomedical devices, methods of making implantable biomedical devices, and methods of using implantable biomedical devices to actuate a target tissue or sense a parameter associated with the target tissue in a biological environment. Each implantable biomedical device comprises a bioresorbable substrate, an electronic device having a plurality of inorganic semiconductor components supported by the bioresorbable substrate, and a barrier layer encapsulating at least a portion of the inorganic semiconductor components. Upon contact with a biological environment the bioresorbable substrate is at least partially resorbed, thereby establishing conformal contact between the implantable biomedical device and the target tissue in the biological environment.

  6. Alginate: properties and biomedical applications

    PubMed Central

    Lee, Kuen Yong; Mooney, David J.

    2011-01-01

    Alginate is a biomaterial that has found numerous applications in biomedical science and engineering due to its favorable properties, including biocompatibility and ease of gelation. Alginate hydrogels have been particularly attractive in wound healing, drug delivery, and tissue engineering applications to date, as these gels retain structural similarity to the extracellular matrices in tissues and can be manipulated to play several critical roles. This review will provide a comprehensive overview of general properties of alginate and its hydrogels, their biomedical applications, and suggest new perspectives for future studies with these polymers. PMID:22125349

  7. Biomedical Polar Research Workshop Minutes

    NASA Technical Reports Server (NTRS)

    1990-01-01

    This workshop was conducted to provide a background of NASA and National Science Foundation goals, an overview of previous and current biomedical research, and a discussion about areas of potential future joint activities. The objectives of the joint research were: (1) to develop an understanding of the physiological, psychological, and behavioral alterations and adaptations to extreme environments of the polar regions; (2) to ensure the health, well-being, and performance of humans in these environments; and (3) to promote the application of biomedical research to improve the quality of life in all environments.

  8. Flexible sensors for biomedical technology.

    PubMed

    Vilela, Diana; Romeo, Agostino; Sánchez, Samuel

    2016-02-01

    Flexible sensing devices have gained a great deal of attention among the scientific community in recent years. The application of flexible sensors spans over several fields, including medicine, industrial automation, robotics, security, and human-machine interfacing. In particular, non-invasive health-monitoring devices are expected to play a key role in the improvement of patient life and in reducing costs associated with clinical and biomedical diagnostic procedures. Here, we focus on recent advances achieved in flexible devices applied on the human skin for biomedical and healthcare purposes. PMID:26675174

  9. Boosting production yield of biomedical peptides

    NASA Technical Reports Server (NTRS)

    Manatt, S. L.

    1978-01-01

    Nuclear magnetic resonance (NMR) technique is employed to monitor synthesis of biomedical peptides. Application of NMR technique may improve production yields of insulin, ACTH, and growth hormones, as well as other synthesized biomedical peptides.

  10. Biomedical Engineering Education in Perspective

    ERIC Educational Resources Information Center

    Gowen, Richard J.

    1973-01-01

    Discusses recent developments in the health care industry and their impact on the future of biomedical engineering education. Indicates that a more thorough understanding of the complex functions of the living organism can be acquired through the application of engineering techniques to problems of life sciences. (CC)

  11. Biomedical research publications: 1980 - 1982

    NASA Technical Reports Server (NTRS)

    Pleasant, L. G.; Limbach, L.

    1982-01-01

    Publications concerning the major physiological and psychological problems encountered by man when he undertakes space flight are listed. Nine research areas are included: cardiovascular deconditioning, motion sickness, bone alterations, muscle atrophy, blood cell alterations, fluid and eletrolyte changes, radiation effects and protection, behavior and performance, and general biomedical research.

  12. The Politics of Biomedical Technology.

    ERIC Educational Resources Information Center

    Blank, Robert H.

    1981-01-01

    Describes a college course designed to explicate the political dimensions of biomedical issues now emerging in American society. The course combines a rigorous overview of the technologies and the accompanying value changes which are producing these issues with a discussion of the problems being raised. (RM)

  13. National Space Biomedical Research Institute

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This report outlines the National Space Biomedical Research Institute's (NSBRI) activities during FY 2004, the Institute's seventh year. It is prepared in accordance with Cooperative Agreement NCC 9-58 between NASA's Lyndon B. Johnson Space Center (JSC) and the Institute's lead institution, Baylor College of Medicine.

  14. The SWAN biomedical discourse ontology.

    PubMed

    Ciccarese, Paolo; Wu, Elizabeth; Wong, Gwen; Ocana, Marco; Kinoshita, June; Ruttenberg, Alan; Clark, Tim

    2008-10-01

    Developing cures for highly complex diseases, such as neurodegenerative disorders, requires extensive interdisciplinary collaboration and exchange of biomedical information in context. Our ability to exchange such information across sub-specialties today is limited by the current scientific knowledge ecosystem's inability to properly contextualize and integrate data and discourse in machine-interpretable form. This inherently limits the productivity of research and the progress toward cures for devastating diseases such as Alzheimer's and Parkinson's. SWAN (Semantic Web Applications in Neuromedicine) is an interdisciplinary project to develop a practical, common, semantically structured, framework for biomedical discourse initially applied, but not limited, to significant problems in Alzheimer Disease (AD) research. The SWAN ontology has been developed in the context of building a series of applications for biomedical researchers, as well as in extensive discussions and collaborations with the larger bio-ontologies community. In this paper, we present and discuss the SWAN ontology of biomedical discourse. We ground its development theoretically, present its design approach, explain its main classes and their application, and show its relationship to other ongoing activities in biomedicine and bio-ontologies. PMID:18583197

  15. National Space Biomedical Research Institute

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This report outlines National Space Biomedical Research Institute (NSBRI) activities during FY 2001, the fourth year of the NSBRI's programs. It is prepared in accordance with Cooperative Agreement NCC 9-58 between NASA's Lyndon B. Johnson Space Center and Baylor College of Medicine (NSBRI).

  16. National Space Biomedical Research Institute

    NASA Technical Reports Server (NTRS)

    2003-01-01

    This report outlines the activities of the National Space Biomedical Research Institute (NSBRI) during FY 2003, the sixth year of the NSBRI's programs. It is prepared in accordance with Cooperative Agreement NCC 9-58 between NASA's Lyndon B. Johnson Space Center (JSC) and the Institute's lead institution, Baylor College of Medicine.

  17. Advanced Biomedical Computing Center (ABCC) | DSITP

    Cancer.gov

    The Advanced Biomedical Computing Center (ABCC), located in Frederick Maryland (MD), provides HPC resources for both NIH/NCI intramural scientists and the extramural biomedical research community. Its mission is to provide HPC support, to provide collaborative research, and to conduct in-house research in various areas of computational biology and biomedical research.

  18. Point projection radiography with the FXI

    SciTech Connect

    Budil, K.; Perry, T.S.; Alvarez, S.A.

    1996-05-06

    Radiography techniques utilizing large area x-ray sources (typically {<=} 7 keV) and pinhole-imaging gated x-ray diagnostics have long been used at the Nova laser facility. However, for targets requiring higher energy x-ray backlighters (> 9 keV), low conversion efficiencies and pinhole losses combine to make this scheme unworkable. The technique of point projection radiography has been improved upon to make imaging at high x-ray energies feasible. In this scheme a {open_quotes}point{close_quotes} source of x-rays, usually a small diameter ({<=}25 {mu}m) fiber, is illuminated with a single, 100 ps pulse from the Nova laser. A gated x-ray imager with a 500 ps electronic gate width is used to record the projected image. The experimental challenges this technique presents and experimental results will be discussed.

  19. Characterizing flash-radiography source spots.

    PubMed

    Ekdahl, Carl

    2011-12-01

    Flash radiography of large hydrodynamic experiments driven by high explosives is a venerable diagnostic technique in use at many laboratories. The size of the radiographic source spot is often quoted as an indication of the resolving power of a particular flash-radiography machine. A variety of techniques for measuring spot size have evolved at the different laboratories, as well as different definitions of spot size. Some definitions are highly dependent on the source spot intensity distributions, and not necessarily well correlated with resolution. The concept of limiting resolution based on bar target measurements is introduced, and shown to be equivalent to the spatial wavenumber at a modulation transfer function value of 5%. This resolution is shown to be better correlated with the full width at half-maximum of the spot intensity distribution than it is with other definitions of spot size. PMID:22193263

  20. Digital radiography: a focus on clinical utility

    SciTech Connect

    Price, R.R.; Rollo, F.D.; Monahan, W.G.; James, A.E. Jr.

    1982-01-01

    This book is interesting and timely in that it covers the new and exciting area of digital radiography. The book begins with chapters on the physics, instrumentation, and terminology of digital radiography. Then cost-benefit ratios, legal implication, and outpatient vs. inpatient studies are discussed. The clinical chapters follow. These are applicable to the head and neck, heart, lungs, kidneys, peripheral arteries, and pediatric population. Discussion then centers on intraarterial digital subtraction, clinical experience at Wisconsin, nonangiography application of digital radiology in children, and analog film-screen subtraction intravenous angiography. The book ends by briefly discussing microwave imaging, nuclear magnetic resonance, emission tomography, real-time and Doppler sonography, analog tomography, and the future photoelectric radiology department.

  1. A system for fast neutron radiography

    SciTech Connect

    Klann, R.T.

    1996-05-01

    A system has been designed and a neutron generator installed to perform fast neutron radiography. With this sytem, objects as small as a coin or as large as a waste drum can be radiographed. The neutron source is an MF Physics A-711 neutron generator which produces 3x10{sup 10} neutrons/second with an average energy of 14.5 MeV. The radiography system uses x-ray scintillation screens and film in commercially available cassettes. The cassettes have been modified to include a thin sheet of plastic to convert neutrons to protons through elastic scattering from hydrogen and other low Z materials in the plastic. For film densities from 1.8 to 3.0, exposures range from 1.9x10{sup 7} to 3.8x10{sup 8} n/cm{sup 2} depending on the type of screen and film.

  2. Deflection evaluation using time-resolved radiography

    SciTech Connect

    Fry, D.A.; Lucero, J.P.

    1990-01-01

    Time-resolved radiography is the creation of an x-ray image for which both the start-exposure and stop-exposure times are known with respect to the event under study. The combination of image and timing are used to derive information about the event. We have applied time-resolved radiography to evaluate motions of explosive-driven events. In the particular application discussed here, our intent is to measure maximum deflections of the components involved. Exposures are made during the time just before to just after the event of interest occurs. A smear or blur of motion out to its furthest extent is recorded on the image. Comparison of the dynamic images with static images allows deflection measurements to be made. 2 figs.

  3. Wizardry and radiography: a clinical case.

    PubMed

    Desrentes, M

    1990-10-01

    The author encountered a patient who had undergone various sorcery and wizardry practices. At radiography performed because of lower back pain, 100 sharp metal foreign bodies (such as needles and sharpened paper clips) were found scattered between his neck and pelvis. The patient evidently swallowed some of the objects to gain protection against aggression from humans or spiritual beings. However, the means of introduction of some of the objects (eg, the needles in the neck) cannot be determined. PMID:2399308

  4. Digital radiography: Present detectors and future developments

    SciTech Connect

    Perez-Mendez, V.

    1990-08-01

    Present detectors for digital radiography are of two classes: real time detectors and storage (non real time) types. Present real time detectors consist of image intensifier tubes with an internal cesium iodide layer x-ray converter. Non real time detectors involve linear sweep arrays or storage detectors such as film. Future detectors discussed here can be of both types utilizing new technologies such as hydrogenated amorphous silicon photodiode arrays coupled to thin film transistor arrays. 17 refs., 10 figs.

  5. Progress in thermal neutron radiography at LENS

    NASA Astrophysics Data System (ADS)

    Jenkins, Jack; Low Energy Neutron Source (LENS) at Indiana University Collaboration

    2014-09-01

    An end station for thermal neutron radiography and tomography is in operation at the Indiana University LENS facility. Neutrons from proton-induced nuclear reactions in Beryllium are moderated and collimated into a beam which is attenuated by a scanned object on a remotely-controlled rotating table. Neutron signal is then converted to a light signal with a ZnS scintillating screen and recorded in a cooled CCD. The author has performed diagnostics on the radiography hardware and software and has tested the system's capabilities by imaging a stack of high density polyethylene cubes with diverse inlet holes and grooves on an 80/20 aluminum base. The resolution of the radiographs are seen to be less than 1mm and 3D rending software is capable of reconstructing the internal structure of the aluminum. An end station for thermal neutron radiography and tomography is in operation at the Indiana University LENS facility. Neutrons from proton-induced nuclear reactions in Beryllium are moderated and collimated into a beam which is attenuated by a scanned object on a remotely-controlled rotating table. Neutron signal is then converted to a light signal with a ZnS scintillating screen and recorded in a cooled CCD. The author has performed diagnostics on the radiography hardware and software and has tested the system's capabilities by imaging a stack of high density polyethylene cubes with diverse inlet holes and grooves on an 80/20 aluminum base. The resolution of the radiographs are seen to be less than 1mm and 3D rending software is capable of reconstructing the internal structure of the aluminum. NSF.

  6. Proton Radiography Peers into Metal Solidification

    DOE PAGESBeta

    Clarke, Amy J.; Imhoff, Seth D.; Gibbs, Paul J.; Cooley, Jason C.; Morris, Christopher; Merrill, Frank E.; Hollander, Brian J.; Mariam, Fesseha G.; Ott, Thomas J.; Barker, Martha R.; et al

    2013-06-19

    Historically, metals are cut up and polished to see the structure and to infer how processing influences the evolution. We can now peer into a metal during processing without destroying it using proton radiography. Understanding the link between processing and structure is important because structure profoundly affects the properties of engineering materials. Synchrotron x-ray radiography has enabled real-time glimpses into metal solidification. However, x-ray energies favor the examination of small volumes and low density metals. In this study, we use high energy proton radiography for the first time to image a large metal volume (>10,000 mm3) during melting and solidification.more » We also show complementary x-ray results from a small volume (<1mm3), bridging four orders of magnitude. In conclusion, real-time imaging will enable efficient process development and the control of the structure evolution to make materials with intended properties; it will also permit the development of experimentally informed, predictive structure and process models.« less

  7. Proton Radiography Peers into Metal Solidification

    PubMed Central

    Clarke, Amy; Imhoff, Seth; Gibbs, Paul; Cooley, Jason; Morris, Christopher; Merrill, Frank; Hollander, Brian; Mariam, Fesseha; Ott, Thomas; Barker, Martha; Tucker, Tim; Lee, Wah-Keat; Fezzaa, Kamel; Deriy, Alex; Patterson, Brian; Clarke, Kester; Montalvo, Joel; Field, Robert; Thoma, Dan; Smith, James; Teter, David

    2013-01-01

    Historically, metals are cut up and polished to see the structure and to infer how processing influences the evolution. We can now peer into a metal during processing without destroying it using proton radiography. Understanding the link between processing and structure is important because structure profoundly affects the properties of engineering materials. Synchrotron x-ray radiography has enabled real-time glimpses into metal solidification. However, x-ray energies favor the examination of small volumes and low density metals. Here we use high energy proton radiography for the first time to image a large metal volume (>10,000 mm3) during melting and solidification. We also show complementary x-ray results from a small volume (<1 mm3), bridging four orders of magnitude. Real-time imaging will enable efficient process development and the control of structure evolution to make materials with intended properties; it will also permit the development of experimentally informed, predictive structure and process models. PMID:23779063

  8. Novel embossed radiography system utilizing energy subtraction

    NASA Astrophysics Data System (ADS)

    Osawa, Akihiro; Sato, Eiichi; Matsukiyo, Hiroshi; Enomoto, Toshiyuki; Watanabe, Manabu; Nagao, Jiro; Abderyim, Purkhet; Tanaka, Etsuro; Izumisawa, Mitsuru; Ogawa, Akira; Sato, Shigehiro

    2008-08-01

    Digital subtraction is useful for carrying out embossed radiography by shifting an x-ray source, and energy subtraction is an important technique for imaging target region by deleting unnecessary region in vivo. X-ray generator had a 100-μm-focus tube, energy subtraction was performed at tube voltages of 40 and 60 kV, and a 3.0-mm-thick aluminum filter was used to absorb low-photon-energy bremsstrahlung x-rays. Embossed radiography was achieved with cohesion imaging using a flat panel detector (FPD) with pixel sizes of 48×48 μm, and the shifting distance of the x-ray source in horizontal direction and the distance between the x-ray source and the FPD face were 5.0 mm and 1.0 m, respectively. At a tube voltage of 60 kV and a tube current of 0.50 mA, x-ray intensities without filtering and with filtering were 307 and 28.4 μGy/s, respectively, at 1.0 m from the source. In embossed radiography of non-living animals, the spatial resolution measured using a lead test chart was approximately 70 μm, and we observed embossed images of fine bones, soft tissues, and coronary arteries of approximately 100 μm.

  9. Proton Radiography Peers into Metal Solidification

    SciTech Connect

    Clarke, Amy J.; Imhoff, Seth D.; Gibbs, Paul J.; Cooley, Jason C.; Morris, Christopher; Merrill, Frank E.; Hollander, Brian J.; Mariam, Fesseha G.; Ott, Thomas J.; Barker, Martha R.; Tucker, Tim J.; Lee, Wah-Keat; Fezzaa, Kamel; Deriy, Alex; Patterson, Brian M.; Clarke, Kester D.; Montalvo, Joel D.; Field, Robert D.; Thoma, Dan J.; Smith, James L.; Teter, David F.

    2013-06-19

    Historically, metals are cut up and polished to see the structure and to infer how processing influences the evolution. We can now peer into a metal during processing without destroying it using proton radiography. Understanding the link between processing and structure is important because structure profoundly affects the properties of engineering materials. Synchrotron x-ray radiography has enabled real-time glimpses into metal solidification. However, x-ray energies favor the examination of small volumes and low density metals. In this study, we use high energy proton radiography for the first time to image a large metal volume (>10,000 mm3) during melting and solidification. We also show complementary x-ray results from a small volume (<1mm3), bridging four orders of magnitude. In conclusion, real-time imaging will enable efficient process development and the control of the structure evolution to make materials with intended properties; it will also permit the development of experimentally informed, predictive structure and process models.

  10. Alteration of computer dental radiography images.

    PubMed

    Bruder, G A; Casale, J; Goren, A; Friedman, S

    1999-04-01

    This study was designed to determine if digital images stored on the hard drive of a Schick computer dental radiography system could be exported, altered, and then restored to the drive without any visible signs of alteration. Digital images were downloaded from the computer dental radiography system using an I-Omega Zip Drive, 100-MB capacity, and then opened in Corel Photo Paint where images were altered and manufacturer export symbols were edited. The resulting images were printed to a default printer (Fargo Foto Fun). The ease of manipulation of the exported digital images reflects the need for the manufacturer to implement safeguards so that the integrity of digital imaging cannot be compromised. Computer dental radiography has many advantages: conservation of time (instant radiographs), less radiation (50 to 60%), no chemical waste, and many viewing options. However, questions that might be raised regarding the ability of persons with minimal computer expertise, using a commercially available program to alter images should be addressed. PMID:10425956

  11. X-ray phase radiography and tomography with grating interferometry and the reverse projection technique

    NASA Astrophysics Data System (ADS)

    Wang, Zhili; Gao, Kun; Ge, Xin; Wu, Zhao; Chen, Heng; Wang, Shenghao; Zhu, Peiping; Yuan, Qingxi; Huang, Wanxia; Zhang, Kai; Wu, Ziyu

    2013-12-01

    X-ray grating interferometry provides substantially increased contrast over conventional absorption-based imaging methods, and therefore new and complementary information. Compared with other phase-contrast imaging techniques, x-ray grating interferometry can overcome some of the problems that have impaired the applications of x-ray phase-contrast radiography and phase tomography. Recently, special attention has been paid to the development of quantitative phase retrieval methods, which is mandatory to perform x-ray phase tomography, to achieve material identification, to differentiate distinct tissues, etc. Typically, the phase-stepping approach has been utilized for phase retrieval in grating interferometry. This method requires a grating scanning and acquisition of multiple radiographic projections, and therefore is disadvantageous in terms of imaging speed and radiation damage. Here we present an innovative, highly sensitive approach, dubbed ‘reverse projection’ (RP), for quantitative phase retrieval. Compared with the phase-stepping approach, the present RP method abandons grating scanning completely, and thus is advantageous due to its much higher efficiency and the reduced radiation dose, without the degradation of reconstruction quality. This review presents a detailed explanation of the principle of the RP method. Both radiography and phase tomography experiments are performed to validate the RP method. We believe that this new technique will find widespread applications in biomedical imaging and in vivo studies.

  12. Emergency skull radiography: the effect of restrictive criteria on skull radiography and CT use

    SciTech Connect

    Baker, S.R.; Gaylord, G.M.; Lantos, G.; Tabaddor, K.; Gallagher, E.J.

    1985-08-01

    A prospective study was performed to determine the effect of restrictive criteria on the use of emergency skull radiography and computed tomography (CT) of the head. Emergency skull radiography required the completion of a special requisition form. Emergency CT of the head was done at the request of senior consultants and was available on a full-time basis. Over 1 year, 2758 skull studies were performed, a decrease of 39.1% when compared with the year before restrictive criteria were instituted, during which 4587 skull examinations were done. In the same period, the number of emergency CT scans of the head increased by 45.7%, from 471 in the control year to 686 in the experimental year. With the use of restrictive criteria, a net savings of $164,000 was achieved. Our results suggest that the use of restrictive criteria is a cost-effective means of limiting skull radiography when CT of the head is readily available.

  13. On-Chip Biomedical Imaging

    PubMed Central

    Göröcs, Zoltán; Ozcan, Aydogan

    2012-01-01

    Lab-on-a-chip systems have been rapidly emerging to pave the way toward ultra-compact, efficient, mass producible and cost-effective biomedical research and diagnostic tools. Although such microfluidic and micro electromechanical systems achieved high levels of integration, and are capable of performing various important tasks on the same chip, such as cell culturing, sorting and staining, they still rely on conventional microscopes for their imaging needs. Recently several alternative on-chip optical imaging techniques have been introduced, which have the potential to substitute conventional microscopes for various lab-on-a-chip applications. Here we present a critical review of these recently emerging on-chip biomedical imaging modalities, including contact shadow imaging, lensfree holographic microscopy, fluorescent on-chip microscopy and lensfree optical tomography. PMID:23558399

  14. Nanocomposite hydrogels for biomedical applications

    PubMed Central

    Gaharwar, Akhilesh K.

    2014-01-01

    Hydrogels mimic native tissue microenvironment due to their porous and hydrated molecular structure. An emerging approach to reinforce polymeric hydrogels and to include multiple functionalities focuses on incorporating nanoparticles within the hydrogel network. A wide range of nanoparticles, such as carbon-based, polymeric, ceramic, and metallic nanomaterials can be integrated within the hydrogel networks to obtain nanocomposites with superior properties and tailored functionality. Nanocomposite hydrogels can be engineered to possess superior physical, chemical, electrical, and biological properties. This review focuses on the most recent developments in the field of nanocomposite hydrogels with emphasis on biomedical and pharmaceutical applications. In particular, we discuss synthesis and fabrication of nanocomposite hydrogels, examine their current limitations and conclude with future directions in designing more advanced nanocomposite hydrogels for biomedical and biotechnological applications. PMID:24264728

  15. New biomedical applications of radiocarbon

    SciTech Connect

    Davis, J.C.

    1990-12-01

    The potential of accelerator mass spectrometry (AMS) and radiocarbon in biomedical applications is being investigated by Lawrence Livermore National Laboratory (LLNL). A measurement of the dose-response curve for DNA damage caused by a carcinogen in mouse liver cells was an initial experiment. This demonstrated the sensitivity and utility of AMS for detecting radiocarbon tags and led to numerous follow-on experiments. The initial experiment and follow-on experiments are discussed in this report. 12 refs., 4 figs. (SM)

  16. The Ontology for Biomedical Investigations

    PubMed Central

    Bandrowski, Anita; Brinkman, Ryan; Brochhausen, Mathias; Brush, Matthew H.; Chibucos, Marcus C.; Clancy, Kevin; Courtot, Mélanie; Derom, Dirk; Dumontier, Michel; Fan, Liju; Fostel, Jennifer; Fragoso, Gilberto; Gibson, Frank; Gonzalez-Beltran, Alejandra; Haendel, Melissa A.; He, Yongqun; Heiskanen, Mervi; Hernandez-Boussard, Tina; Jensen, Mark; Lin, Yu; Lister, Allyson L.; Lord, Phillip; Malone, James; Manduchi, Elisabetta; McGee, Monnie; Morrison, Norman; Overton, James A.; Parkinson, Helen; Peters, Bjoern; Rocca-Serra, Philippe; Ruttenberg, Alan; Sansone, Susanna-Assunta; Scheuermann, Richard H.; Schober, Daniel; Smith, Barry; Soldatova, Larisa N.; Stoeckert, Christian J.; Taylor, Chris F.; Torniai, Carlo; Turner, Jessica A.; Vita, Randi; Whetzel, Patricia L.; Zheng, Jie

    2016-01-01

    The Ontology for Biomedical Investigations (OBI) is an ontology that provides terms with precisely defined meanings to describe all aspects of how investigations in the biological and medical domains are conducted. OBI re-uses ontologies that provide a representation of biomedical knowledge from the Open Biological and Biomedical Ontologies (OBO) project and adds the ability to describe how this knowledge was derived. We here describe the state of OBI and several applications that are using it, such as adding semantic expressivity to existing databases, building data entry forms, and enabling interoperability between knowledge resources. OBI covers all phases of the investigation process, such as planning, execution and reporting. It represents information and material entities that participate in these processes, as well as roles and functions. Prior to OBI, it was not possible to use a single internally consistent resource that could be applied to multiple types of experiments for these applications. OBI has made this possible by creating terms for entities involved in biological and medical investigations and by importing parts of other biomedical ontologies such as GO, Chemical Entities of Biological Interest (ChEBI) and Phenotype Attribute and Trait Ontology (PATO) without altering their meaning. OBI is being used in a wide range of projects covering genomics, multi-omics, immunology, and catalogs of services. OBI has also spawned other ontologies (Information Artifact Ontology) and methods for importing parts of ontologies (Minimum information to reference an external ontology term (MIREOT)). The OBI project is an open cross-disciplinary collaborative effort, encompassing multiple research communities from around the globe. To date, OBI has created 2366 classes and 40 relations along with textual and formal definitions. The OBI Consortium maintains a web resource (http://obi-ontology.org) providing details on the people, policies, and issues being addressed

  17. [Cluster analysis in biomedical researches].

    PubMed

    Akopov, A S; Moskovtsev, A A; Dolenko, S A; Savina, G D

    2013-01-01

    Cluster analysis is one of the most popular methods for the analysis of multi-parameter data. The cluster analysis reveals the internal structure of the data, group the separate observations on the degree of their similarity. The review provides a definition of the basic concepts of cluster analysis, and discusses the most popular clustering algorithms: k-means, hierarchical algorithms, Kohonen networks algorithms. Examples are the use of these algorithms in biomedical research. PMID:24640781

  18. The Ontology for Biomedical Investigations.

    PubMed

    Bandrowski, Anita; Brinkman, Ryan; Brochhausen, Mathias; Brush, Matthew H; Bug, Bill; Chibucos, Marcus C; Clancy, Kevin; Courtot, Mélanie; Derom, Dirk; Dumontier, Michel; Fan, Liju; Fostel, Jennifer; Fragoso, Gilberto; Gibson, Frank; Gonzalez-Beltran, Alejandra; Haendel, Melissa A; He, Yongqun; Heiskanen, Mervi; Hernandez-Boussard, Tina; Jensen, Mark; Lin, Yu; Lister, Allyson L; Lord, Phillip; Malone, James; Manduchi, Elisabetta; McGee, Monnie; Morrison, Norman; Overton, James A; Parkinson, Helen; Peters, Bjoern; Rocca-Serra, Philippe; Ruttenberg, Alan; Sansone, Susanna-Assunta; Scheuermann, Richard H; Schober, Daniel; Smith, Barry; Soldatova, Larisa N; Stoeckert, Christian J; Taylor, Chris F; Torniai, Carlo; Turner, Jessica A; Vita, Randi; Whetzel, Patricia L; Zheng, Jie

    2016-01-01

    The Ontology for Biomedical Investigations (OBI) is an ontology that provides terms with precisely defined meanings to describe all aspects of how investigations in the biological and medical domains are conducted. OBI re-uses ontologies that provide a representation of biomedical knowledge from the Open Biological and Biomedical Ontologies (OBO) project and adds the ability to describe how this knowledge was derived. We here describe the state of OBI and several applications that are using it, such as adding semantic expressivity to existing databases, building data entry forms, and enabling interoperability between knowledge resources. OBI covers all phases of the investigation process, such as planning, execution and reporting. It represents information and material entities that participate in these processes, as well as roles and functions. Prior to OBI, it was not possible to use a single internally consistent resource that could be applied to multiple types of experiments for these applications. OBI has made this possible by creating terms for entities involved in biological and medical investigations and by importing parts of other biomedical ontologies such as GO, Chemical Entities of Biological Interest (ChEBI) and Phenotype Attribute and Trait Ontology (PATO) without altering their meaning. OBI is being used in a wide range of projects covering genomics, multi-omics, immunology, and catalogs of services. OBI has also spawned other ontologies (Information Artifact Ontology) and methods for importing parts of ontologies (Minimum information to reference an external ontology term (MIREOT)). The OBI project is an open cross-disciplinary collaborative effort, encompassing multiple research communities from around the globe. To date, OBI has created 2366 classes and 40 relations along with textual and formal definitions. The OBI Consortium maintains a web resource (http://obi-ontology.org) providing details on the people, policies, and issues being addressed

  19. Radiography and fluoroscopy, 1920 to the present.

    PubMed

    Krohmer, J S

    1989-11-01

    A survey of radiological procedures carried out in 1980 by J. L. Johnson and D. L. Abernathy indicated that of the 181 million procedures performed in that year, there were 77.5% plain radiographic studies, 12.7% contrast studies, 4.0% sonographic studies, 3.2% nuclear medicine studies, 1.8% CT studies and 0.8% special vascular procedures and cardiac catheterizations. Note that over 90% of all the studies were of the "conventional" type and that fewer than 2% were CT studies. In the early 70's when CT was introduced, it was predicted that it would soon take over most of radiography; some 7 or 8 years later, it was obvious that this would not take place. According to Tanako of the Fuji Photo Film Co. Ltd., conventional radiography has resisted being pushed aside because of its very high information content: 4-6 megabytes per image. A CT image contains about 0.5 megabytes. If a system is to take over from conventional radiography, it will have to overcome this large difference in information content. Digital or computed radiography seems capable of this, but probably not for some time (perhaps, 10 or 20 years). It seems unlikely that there will be much change, except for refinement, in the image intensified fluoroscopy equipment used for observing dynamic processes, and it will probably not be replaced. Another situation which will preclude the rapid demise of conventional radiography is financial inertia: There is between 5 and 10 billion dollars worth of diagnostic equipment in hospitals in this country and significant amount more in private offices and clinics. It is true that the amount has diminished in recent years, but this has been more because of DRG's than because of "takeover" by new modes of imaging. It is not likely that this investment will be given up quickly or easily. One must also keep in mind that the film digitization and the photostimulable phosphor digital systems, described above, do use existing radiographic equipment, and the image

  20. Wavelength tunable device for neutron radiography and tomography

    SciTech Connect

    Treimer, W.; Strobl, M.; Kardjilov, N.; Hilger, A.; Manke, I.

    2006-11-13

    A special double monochromator system was tested for a conventional operating tomography setup in order to use a broad wavelength band of monochromatic neutrons for radiography and tomography. Scanning through the wavelength region of Bragg edges, it is possible to make series of radiographs and tomographs at different wavelengths from 2.0 until 6.5 A. So no beam hardening influences the measurements and is not to be corrected. With this instrument for cold neutron radiography and tomography, energy selecting quantitative radiography, stress and strain mapping, and phase radiography were performed.

  1. Biomedical applications of gold nanoparticles.

    PubMed

    Cabuzu, Daniela; Cirja, Andreea; Puiu, Rebecca; Grumezescu, Alexandru Mihai

    2015-01-01

    Gold nanoparticles may be used in different domains, one of most important being the biomedical field. They have suitable properties for controlled drug delivery, cancer treatment, biomedical imaging, diagnosis and many others, due to their excellent compatibility with the human organism, low toxicity and tunable stability, small dimensions, and possibility to interact with a variety of substances. They also have optical properties, being able to absorb infrared light. Moreover, due to their large surface and the ability of being coated with a variety of therapeutic agents, gold nanoparticles have been showed a great potential to be used as drug delivery systems. Gold nanoparticles are intensively studied in biomedicine, and recent studies revealed the fact that they can cross the blood-brain barrier, may interact with the DNA and produce genotoxic effects. Because of their ability of producing heat, they can target and kill the tumors, being used very often in photodynamic therapy. Gold nanoparticles can be synthesized in many ways, but the most common are the biological and chemical methods, however the chemical method offers the advantage of better controlling the size and shape of the nanoparticles. In this review, we present the principal applications of gold nanoparticles in the biomedical field, like cancer treatment, amyloid-like fibrillogenesis inhibitors, transplacental treatment, the development of specific scaffolds and drug delivery systems. PMID:25877087

  2. National Space Biomedical Research Institute

    NASA Technical Reports Server (NTRS)

    2005-01-01

    NSBRI partners with NASA to develop countermeasures against the deleterious effects of long duration space flight. NSBRI's science and technology projects are directed toward this goal, which is accomplished by: 1. Designing, testing and validating effective countermeasures to address the biological and environmental impediments to long-term human space flight. 2. Defining the molecular, cellular, organ-level, integrated responses and mechanistic relationships that ultimately determine these impediments, where such activity fosters the development of novel countermeasures. 3. Establishing biomedical support technologies to maximize human performance in space, reduce biomedical hazards to an acceptable level and deliver quality medical care. 4. Transferring and disseminating the biomedical advances in knowledge and technology acquired through living and working in space to the general benefit of humankind; including the treatment of patients suffering from gravity- and radiation-related conditions on Earth. and 5. ensuring open involvement of the scientific community,industry and the public in the Institute's activities and fostering a robust collaboration with NASA, particularly through JSC.

  3. Threshold perception performance with computed and screen-film radiography: implications for chest radiography.

    PubMed

    Dobbins, J T; Rice, J J; Beam, C A; Ravin, C E

    1992-04-01

    Images of a phantom obtained with computed radiography and standard screen-film imaging were compared to evaluate observer threshold perception performance with a modified contrast-detail technique. Optimum exposure necessary for performance with the imaging plate technique to match that with screen-film techniques was determined, as was comparative performance with variation in kilovoltages, plate type, spatial enhancement, and hard-copy interpolation method. It was found that computed radiography necessitates about 75%-100% more exposure than screen-film radiography to optimally match performance with Ortho-C film with Lanex regular or medium screens (Eastman Kodak, Rochester, NY) for detection of objects 0.05-2.0 cm in diameter. However, only minimal loss of detection performance (approximately 10% overall) was experienced if standard screen-film exposures were used with computed radiography. Little change in observer performance was found with variation in plate type, spatial enhancement, or method of hard-copy interpolation. However, perception performance with computed radiographic images was better at lower kilovoltages. PMID:1549669

  4. Developing a new perspective for biomedical Communications.

    PubMed

    Rupnow, D E

    1979-07-01

    A three-dimensional model is utilized in an attempt to develop a complete picture of the many facets of biomedical communications. This model provides a suitable visual structure from which to explore the complex interactions of individuals, institutions, and activities in defining the field of biomedical communications. The first dimension of the model was developed through a historical overview of the environment of the biomedical communicator and suggests that changing organization goals, client needs, technology, and resources have influenced the evolution of different types of biomedical communicators. The second dimension of the model identifies five major work roles that may be performed by the biomedical communicator of today. The final dimension of the model is developed by a consideration of the major communication methods (illustration, photography, cinematography, television, audiovisual, and computer) of the biomedical communicator. PMID:88444

  5. Text mining patents for biomedical knowledge.

    PubMed

    Rodriguez-Esteban, Raul; Bundschus, Markus

    2016-06-01

    Biomedical text mining of scientific knowledge bases, such as Medline, has received much attention in recent years. Given that text mining is able to automatically extract biomedical facts that revolve around entities such as genes, proteins, and drugs, from unstructured text sources, it is seen as a major enabler to foster biomedical research and drug discovery. In contrast to the biomedical literature, research into the mining of biomedical patents has not reached the same level of maturity. Here, we review existing work and highlight the associated technical challenges that emerge from automatically extracting facts from patents. We conclude by outlining potential future directions in this domain that could help drive biomedical research and drug discovery. PMID:27179985

  6. Computed radiography in an emergency department setting

    NASA Astrophysics Data System (ADS)

    Andriole, Katherine P.; Gould, Robert G.; Arenson, Ronald L.

    1997-05-01

    Evaluation of radiologist and non-radiologist physician acceptance of computed radiography (CR) as an alternative to film-based radiography in an emergency department (ED) is performed. All emergency department radiographs are performed using photostimulable phosphor plates and rad by a computed radiography laser reader placed in the former emergency department darkroom. Soft copy images are simultaneously transmitted to high- and medium-resolution dual-monitor display stations located in radiology and ED reading rooms respectively. The on-call radiologist is automatically paged by the Radiology Information System (RIS) upon exam completion, to read the new ED imaging study. Patient demographic information including relevant clinical history is conveyed to the radiologist via the RIS. A 'wet read' preliminary radiology report is immediately transmitted back to the ED. Radiology and ED physicians are surveyed to ascertain preferences for CR or traditional screen-film, based on system implementation, image viewing and clinical impact issues. Preliminary results indicate a preference for filmless CR among the ED physicians if digital reliability and speed issues are met. This preference appears to be independent of physician level of experience. Inexperienced radiologists-in-training appear to have less comfort with softcopy reading for primary diagnosis. However, additional training in softcopy reading techniques can improve confidences. Image quality issues are most important tot he radiologist, while speed and reliability are the major issues for ED physicians. Reasons for CR preference include immediate access to images on display stations, near-zero exam retake rates, and improved response time and communication between radiology and the emergency department clinician.

  7. Chapter 1: Biomedical knowledge integration.

    PubMed

    Payne, Philip R O

    2012-01-01

    The modern biomedical research and healthcare delivery domains have seen an unparalleled increase in the rate of innovation and novel technologies over the past several decades. Catalyzed by paradigm-shifting public and private programs focusing upon the formation and delivery of genomic and personalized medicine, the need for high-throughput and integrative approaches to the collection, management, and analysis of heterogeneous data sets has become imperative. This need is particularly pressing in the translational bioinformatics domain, where many fundamental research questions require the integration of large scale, multi-dimensional clinical phenotype and bio-molecular data sets. Modern biomedical informatics theory and practice has demonstrated the distinct benefits associated with the use of knowledge-based systems in such contexts. A knowledge-based system can be defined as an intelligent agent that employs a computationally tractable knowledge base or repository in order to reason upon data in a targeted domain and reproduce expert performance relative to such reasoning operations. The ultimate goal of the design and use of such agents is to increase the reproducibility, scalability, and accessibility of complex reasoning tasks. Examples of the application of knowledge-based systems in biomedicine span a broad spectrum, from the execution of clinical decision support, to epidemiologic surveillance of public data sets for the purposes of detecting emerging infectious diseases, to the discovery of novel hypotheses in large-scale research data sets. In this chapter, we will review the basic theoretical frameworks that define core knowledge types and reasoning operations with particular emphasis on the applicability of such conceptual models within the biomedical domain, and then go on to introduce a number of prototypical data integration requirements and patterns relevant to the conduct of translational bioinformatics that can be addressed via the design and

  8. Chapter 1: Biomedical Knowledge Integration

    PubMed Central

    Payne, Philip R. O.

    2012-01-01

    The modern biomedical research and healthcare delivery domains have seen an unparalleled increase in the rate of innovation and novel technologies over the past several decades. Catalyzed by paradigm-shifting public and private programs focusing upon the formation and delivery of genomic and personalized medicine, the need for high-throughput and integrative approaches to the collection, management, and analysis of heterogeneous data sets has become imperative. This need is particularly pressing in the translational bioinformatics domain, where many fundamental research questions require the integration of large scale, multi-dimensional clinical phenotype and bio-molecular data sets. Modern biomedical informatics theory and practice has demonstrated the distinct benefits associated with the use of knowledge-based systems in such contexts. A knowledge-based system can be defined as an intelligent agent that employs a computationally tractable knowledge base or repository in order to reason upon data in a targeted domain and reproduce expert performance relative to such reasoning operations. The ultimate goal of the design and use of such agents is to increase the reproducibility, scalability, and accessibility of complex reasoning tasks. Examples of the application of knowledge-based systems in biomedicine span a broad spectrum, from the execution of clinical decision support, to epidemiologic surveillance of public data sets for the purposes of detecting emerging infectious diseases, to the discovery of novel hypotheses in large-scale research data sets. In this chapter, we will review the basic theoretical frameworks that define core knowledge types and reasoning operations with particular emphasis on the applicability of such conceptual models within the biomedical domain, and then go on to introduce a number of prototypical data integration requirements and patterns relevant to the conduct of translational bioinformatics that can be addressed via the design and

  9. Computed radiography imaging plates and associated methods of manufacture

    DOEpatents

    Henry, Nathaniel F.; Moses, Alex K.

    2015-08-18

    Computed radiography imaging plates incorporating an intensifying material that is coupled to or intermixed with the phosphor layer, allowing electrons and/or low energy x-rays to impart their energy on the phosphor layer, while decreasing internal scattering and increasing resolution. The radiation needed to perform radiography can also be reduced as a result.

  10. 10 CFR 34.13 - Specific license for industrial radiography.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 1 2012-01-01 2012-01-01 false Specific license for industrial radiography. 34.13 Section 34.13 Energy NUCLEAR REGULATORY COMMISSION LICENSES FOR INDUSTRIAL RADIOGRAPHY AND RADIATION SAFETY REQUIREMENTS FOR INDUSTRIAL RADIOGRAPHIC OPERATIONS Specific Licensing Provisions § 34.13 Specific license...

  11. 10 CFR 34.13 - Specific license for industrial radiography.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Specific license for industrial radiography. 34.13 Section 34.13 Energy NUCLEAR REGULATORY COMMISSION LICENSES FOR INDUSTRIAL RADIOGRAPHY AND RADIATION SAFETY REQUIREMENTS FOR INDUSTRIAL RADIOGRAPHIC OPERATIONS Specific Licensing Provisions § 34.13 Specific license...

  12. 10 CFR 34.13 - Specific license for industrial radiography.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 1 2013-01-01 2013-01-01 false Specific license for industrial radiography. 34.13 Section 34.13 Energy NUCLEAR REGULATORY COMMISSION LICENSES FOR INDUSTRIAL RADIOGRAPHY AND RADIATION SAFETY REQUIREMENTS FOR INDUSTRIAL RADIOGRAPHIC OPERATIONS Specific Licensing Provisions § 34.13 Specific license...

  13. 10 CFR 34.13 - Specific license for industrial radiography.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Specific license for industrial radiography. 34.13 Section 34.13 Energy NUCLEAR REGULATORY COMMISSION LICENSES FOR INDUSTRIAL RADIOGRAPHY AND RADIATION SAFETY REQUIREMENTS FOR INDUSTRIAL RADIOGRAPHIC OPERATIONS Specific Licensing Provisions § 34.13 Specific license...

  14. 10 CFR 34.13 - Specific license for industrial radiography.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 1 2014-01-01 2014-01-01 false Specific license for industrial radiography. 34.13 Section 34.13 Energy NUCLEAR REGULATORY COMMISSION LICENSES FOR INDUSTRIAL RADIOGRAPHY AND RADIATION SAFETY REQUIREMENTS FOR INDUSTRIAL RADIOGRAPHIC OPERATIONS Specific Licensing Provisions § 34.13 Specific license...

  15. [Digital radiography in tomography of the facial bones].

    PubMed

    Ibing, H P; Vogel, H; Biebesheimer, V

    1988-09-01

    In 14 patients the x-ray findings of dental, mandibular and maxillary roentgen diagnosis were compared with conventional tomography and tomography by digital radiography. All details important for diagnosis were shown by both techniques. Tomography by digital radiography offered a more convenient approach and pictures easier to be interpreted than pictures by conventional tomography. PMID:3175474

  16. Diagnostics of coated fuel particles by neutron and synchrotron radiography

    SciTech Connect

    Momot, G. V.; Podurets, K. M.; Pogorelyi, D. K.; Somenkov, V. A.; Yakovenko, E. V.

    2011-12-15

    The nondestructive monitoring of coated fuel particles has been performed using contact neutron radiography and refraction radiography based on synchrotron radiation. It is shown that these methods supplement each other and have a high potential for determining the sizes, densities, and isotopic composition of the particle components.

  17. Learning Styles of Radiography Students during Clinical Practice

    ERIC Educational Resources Information Center

    Ward, L. Patrice

    2009-01-01

    The purpose of this study was to identify and describe the common learning styles of radiography students during clinical practice. Quantitative, descriptive research methodology identified the learning styles of radiography students. A single self-report questionnaire, developed to assess learning styles in clinical practice, was administered…

  18. Neutron beam characterization at the Neutron Radiography Reactor (NRAD)

    SciTech Connect

    Imel, G.R.; Urbatsch, T.; Pruett, D.P.; Ross, J.R.

    1990-01-01

    The Neutron Radiography Reactor (NRAD) is a 250-kW TRIGA Reactor operated by Argonne National Laboratory and is located near Idaho Falls, Idaho. The reactor and its facilities regarding radiography are detailed in another paper at this conference; this paper summarizes neutron flux measurements and calculations that have been performed to better understand and potentially improve the neutronics characteristics of the reactor.

  19. Digital Radiography Qualification of Tube Welding

    NASA Technical Reports Server (NTRS)

    Carl, Chad

    2012-01-01

    The Orion Project will be directing Lockheed Martin to perform orbital arc welding on commodities metallic tubing as part of the Multi Purpose Crew Vehicle assembly and integration process in the Operations and Checkout High bay at Kennedy Space Center. The current method of nondestructive evaluation is utilizing traditional film based x-rays. Due to the high number of welds that are necessary to join the commodities tubing (approx 470), a more efficient and expeditious method of nondestructive evaluation is desired. Digital radiography will be qualified as part of a broader NNWG project scope.

  20. Axial Tomography from Digitized Real Time Radiography

    DOE R&D Accomplishments Database

    Zolnay, A. S.; McDonald, W. M.; Doupont, P. A.; McKinney, R. L.; Lee, M. M.

    1985-01-18

    Axial tomography from digitized real time radiographs provides a useful tool for industrial radiography and tomography. The components of this system are: x-ray source, image intensifier, video camera, video line extractor and digitizer, data storage and reconstruction computers. With this system it is possible to view a two dimensional x-ray image in real time at each angle of rotation and select the tomography plane of interest by choosing which video line to digitize. The digitization of a video line requires less than a second making data acquisition relatively short. Further improvements on this system are planned and initial results are reported.

  1. Hot Fuel Examination Facility's neutron radiography reactor

    SciTech Connect

    Pruett, D.P.; Richards, W.J.; Heidel, C.C.

    1983-01-01

    Argonne National Laboratory-West is located near Idaho Falls, Idaho, and is operated by the University of Chicago for the United States Department of Energy in support of the Liquid Metal Fast Breeder Reactor Program, LMFBR. The Hot Fuel Examination Facility, HFEF, is one of several facilities located at the Argonne Site. HFEF comprises a large hot cell where both nondestructive and destructive examination of highly-irradiated reactor fuels are conducted in support of the LMFBR program. One of the nondestructive examination techniques utilized at HFEF is neutron radiography, which is provided by the NRAD reactor facility (a TRIGA type reactor) below the HFEF hot cell.

  2. Technique for chest radiography for pneumoconiosis

    SciTech Connect

    Sargent, E.N.

    1982-01-01

    Routine radiographic chest examinations have been performed using a variety of techniques. Although chest radiography is one of the most commonly performed radiographic examinations, it is often difficult to obtain consistently good quality roentgenograms. This publication provides a simple guide and relatively easy solution to the many problems that radiologic technologists might encounter. The language is purposely relatively simple and care has been taken to avoid difficult mathematical and physical explanations. The intent is to provide an easily referrable text for those who may encounter difficulties in producing acceptable chest radiographs.

  3. Some problems encountered in endodontic radiography.

    PubMed

    Lim, K C; Teo, C S

    1986-07-01

    This retrospective survey highlights some of the problems faced by undergraduate students using the bisecting angle technique in endodontic radiography. The radiographs of maxillary incisors and premolars were observed to suffer from a greater amount of distortion than radiographs of the corresponding mandibular teeth. Further, the presence of rubber dam equipment affected the accuracy of the radiographs, and this was more apparent on the radiographs of the maxillary incisors and premolars compared to the mandibular incisors and premolars. Other problems identified included superimposition, indistinct and missed root apices. Methods to overcome these problems are suggested. PMID:3777839

  4. Biomedical Compounds from Marine organisms

    PubMed Central

    Jha, Rajeev Kumar; Zi-rong, Xu

    2004-01-01

    The Ocean, which is called the ‘mother of origin of life’, is also the source of structurally unique natural products that are mainly accumulated in living organisms. Several of these compounds show pharmacological activities and are helpful for the invention and discovery of bioactive compounds, primarily for deadly diseases like cancer, acquired immuno-deficiency syndrome (AIDS), arthritis, etc., while other compounds have been developed as analgesics or to treat inflammation, etc. The life-saving drugs are mainly found abundantly in microorganisms, algae and invertebrates, while they are scarce in vertebrates. Modern technologies have opened vast areas of research for the extraction of biomedical compounds from oceans and seas.

  5. National Space Biomedical Research Institute

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This report summarizes the activities of the National Space Biomedical Research Institute (NSBRI) during FY 1999, the second full year of existence of the NSBRI's research program, and is prepared in accordance with Cooperative Agreement NCC9-58 between NASA's Lyndon B. Johnson Space Center and Baylor College of Medicine (NSBRI). The report consists of progress reports on projects related to the effects of microgravity and space on physiology. The research is broken up in nine areas: (1) Bone loss, (2) Cardiovascular alterations, (3) human performance, (3) immunology, infection and hematology, (4) muscle alterations and atrophy,(5) Neurovestibular adaptation, radiation effects, (6) technology development, and (7) synergy projects.

  6. GPU programming for biomedical imaging

    NASA Astrophysics Data System (ADS)

    Caucci, Luca; Furenlid, Lars R.

    2015-08-01

    Scientific computing is rapidly advancing due to the introduction of powerful new computing hardware, such as graphics processing units (GPUs). Affordable thanks to mass production, GPU processors enable the transition to efficient parallel computing by bringing the performance of a supercomputer to a workstation. We elaborate on some of the capabilities and benefits that GPU technology offers to the field of biomedical imaging. As practical examples, we consider a GPU algorithm for the estimation of position of interaction from photomultiplier (PMT) tube data, as well as a GPU implementation of the MLEM algorithm for iterative image reconstruction.

  7. Telemedicine optoelectronic biomedical data processing system

    NASA Astrophysics Data System (ADS)

    Prosolovska, Vita V.

    2010-08-01

    The telemedicine optoelectronic biomedical data processing system is created to share medical information for the control of health rights and timely and rapid response to crisis. The system includes the main blocks: bioprocessor, analog-digital converter biomedical images, optoelectronic module for image processing, optoelectronic module for parallel recording and storage of biomedical imaging and matrix screen display of biomedical images. Rated temporal characteristics of the blocks defined by a particular triggering optoelectronic couple in analog-digital converters and time imaging for matrix screen. The element base for hardware implementation of the developed matrix screen is integrated optoelectronic couples produced by selective epitaxy.

  8. Simulation of computed radiography with imaging plate detectors

    SciTech Connect

    Tisseur, D.; Costin, M.; Mathy, F.; Schumm, A.

    2014-02-18

    Computed radiography (CR) using phosphor imaging plate detectors is taking an increasing place in Radiography Testing. CR uses similar equipment as conventional radiography except that the classical X-ray film is replaced by a numerical detector, called image plate (IP), which is made of a photostimulable layer and which is read by a scanning device through photostimulated luminescence. Such digital radiography has already demonstrated important benefits in terms of exposure time, decrease of source energies and thus reduction of radioprotection area besides being a solution without effluents. This paper presents a model for the simulation of radiography with image plate detectors in CIVA together with examples of validation of the model. The study consists in a cross comparison between experimental and simulation results obtained on a step wedge with a classical X-ray tube. Results are proposed in particular with wire Image quality Indicator (IQI) and duplex IQI.

  9. Neutron radiography of irradiated nuclear fuel at Idaho National Laboratory

    DOE PAGESBeta

    Craft, Aaron E.; Wachs, Daniel M.; Okuniewski, Maria A.; Chichester, David L.; Williams, Walter J.; Papaioannou, Glen C.; Smolinski, Andrew T.

    2015-09-10

    Neutron radiography of irradiated nuclear fuel provides more comprehensive information about the internal condition of irradiated nuclear fuel than any other non-destructive technique to date. Idaho National Laboratory (INL) has multiple nuclear fuels research and development programs that routinely evaluate irradiated fuels using neutron radiography. The Neutron Radiography reactor (NRAD) sits beneath a shielded hot cell facility where neutron radiography and other evaluation techniques are performed on these highly radioactive objects. The NRAD currently uses the foil-film transfer technique for imaging fuel that is time consuming but provides high spatial resolution. This study describes the NRAD and hot cell facilities,more » the current neutron radiography capabilities available at INL, planned upgrades to the neutron imaging systems, and new facilities being brought online at INL related to neutron imaging.« less

  10. Neutron Radiography of Irradiated Nuclear Fuel at Idaho National Laboratory

    NASA Astrophysics Data System (ADS)

    Craft, Aaron E.; Wachs, Daniel M.; Okuniewski, Maria A.; Chichester, David L.; Williams, Walter J.; Papaioannou, Glen C.; Smolinski, Andrew T.

    Neutron radiography of irradiated nuclear fuel provides more comprehensive information about the internal condition of irradiated nuclear fuel than any other non-destructive technique to date. Idaho National Laboratory (INL) has multiple nuclear fuels research and development programs that routinely evaluate irradiated fuels using neutron radiography. The Neutron Radiography reactor (NRAD) sits beneath a shielded hot cell facility where neutron radiography and other evaluation techniques are performed on these highly radioactive objects. The NRAD currently uses the foil-film transfer technique for imaging fuel that is time consuming but provides high spatial resolution. This paper describes the NRAD and hot cell facilities, the current neutron radiography capabilities available at INL, planned upgrades to the neutron imaging systems, and new facilities being brought online at INL related to neutron imaging.

  11. Neutron radiography of irradiated nuclear fuel at Idaho National Laboratory

    SciTech Connect

    Craft, Aaron E.; Wachs, Daniel M.; Okuniewski, Maria A.; Chichester, David L.; Williams, Walter J.; Papaioannou, Glen C.; Smolinski, Andrew T.

    2015-09-10

    Neutron radiography of irradiated nuclear fuel provides more comprehensive information about the internal condition of irradiated nuclear fuel than any other non-destructive technique to date. Idaho National Laboratory (INL) has multiple nuclear fuels research and development programs that routinely evaluate irradiated fuels using neutron radiography. The Neutron Radiography reactor (NRAD) sits beneath a shielded hot cell facility where neutron radiography and other evaluation techniques are performed on these highly radioactive objects. The NRAD currently uses the foil-film transfer technique for imaging fuel that is time consuming but provides high spatial resolution. This study describes the NRAD and hot cell facilities, the current neutron radiography capabilities available at INL, planned upgrades to the neutron imaging systems, and new facilities being brought online at INL related to neutron imaging.

  12. Biomedical information retrieval across languages.

    PubMed

    Daumke, Philipp; Markü, Kornél; Poprat, Michael; Schulz, Stefan; Klar, Rüdiger

    2007-06-01

    This work presents a new dictionary-based approach to biomedical cross-language information retrieval (CLIR) that addresses many of the general and domain-specific challenges in current CLIR research. Our method is based on a multilingual lexicon that was generated partly manually and partly automatically, and currently covers six European languages. It contains morphologically meaningful word fragments, termed subwords. Using subwords instead of entire words significantly reduces the number of lexical entries necessary to sufficiently cover a specific language and domain. Mediation between queries and documents is based on these subwords as well as on lists of word-n-grams that are generated from large monolingual corpora and constitute possible translation units. The translations are then sent to a standard Internet search engine. This process makes our approach an effective tool for searching the biomedical content of the World Wide Web in different languages. We evaluate this approach using the OHSUMED corpus, a large medical document collection, within a cross-language retrieval setting. PMID:17541863

  13. Superhydrophobic materials for biomedical applications.

    PubMed

    Falde, Eric J; Yohe, Stefan T; Colson, Yolonda L; Grinstaff, Mark W

    2016-10-01

    Superhydrophobic surfaces are actively studied across a wide range of applications and industries, and are now finding increased use in the biomedical arena as substrates to control protein adsorption, cellular interaction, and bacterial growth, as well as platforms for drug delivery devices and for diagnostic tools. The commonality in the design of these materials is to create a stable or metastable air layer at the material surface, which lends itself to a number of unique properties. These activities are catalyzing the development of new materials, applications, and fabrication techniques, as well as collaborations across material science, chemistry, engineering, and medicine given the interdisciplinary nature of this work. The review begins with a discussion of superhydrophobicity, and then explores biomedical applications that are utilizing superhydrophobicity in depth including material selection characteristics, in vitro performance, and in vivo performance. General trends are offered for each application in addition to discussion of conflicting data in the literature, and the review concludes with the authors' future perspectives on the utility of superhydrophobic biomaterials for medical applications. PMID:27449946

  14. Monitoring of Biomedical License Agreements

    PubMed Central

    Keller, George H.; Ferguson, Steven M.; Pan, Percy

    2009-01-01

    Because technology licensed from research organizations can play a significant role in drug innovation and the generation of novel biomedical products, licensee performance under such agreements must be effectively monitored. This is necessary so that resultant benefits, including public health improvement, may be returned to the innovator(s) as well as society at large. The tasks that comprise monitoring are varied, but all come under the general heading of ‘enforcement of license provisions’. Since 1996, the license monitoring and enforcement program established by the US National Institutes of Health (NIH) Group has collected about $US17 million in unpaid and underpaid license royalties through formal financial audits and other investigative activities. During the same period, the Office of Technology Transfer (OTT) settled more than 60 cases of suspected patent infringement, generating around 60 new licenses and collected both back and ongoing royalties. As these numbers show, an active and effective monitoring program is an essential part of any technology transfer or biomedical licensing program. PMID:19960074

  15. Optimization and quality control of computed radiography

    NASA Astrophysics Data System (ADS)

    Willis, Charles E.; Weiser, John C.; Leckie, Robert G.; Romlein, John R.; Norton, Gary S.

    1994-05-01

    Computed radiography (CR) is a relatively new technique for projection radiography. Few hospitals have CR devices in routine service and only a handful have more than one CR unit. As such, the clinical knowledge base does not yet exist to establish quality control (QC) procedures for CR devices. Without assurance that CR systems are operating within nominal limits, efforts to optimize CR performance are limited in value. A complete CR system includes detector plates that vary in response, cassettes, an electro-optical system for developing the image, computer algorithms for processing the raw image, and a hard copy output device. All of these subsystems are subject to variations in performance that can degrade image quality. Using CR manufacturer documentation, we have defined acceptance protocols for two different Fuji CR devices, the FCR 7000 and the AC1+, and have applied these tests to ten individual machines. We have begun to establish baseline performance measures and to determine measurement frequencies. CR QC is only one component of the overall quality control for totally digital radiology departments.

  16. Patient dose management in digital radiography

    PubMed Central

    Vano, E; Fernandez Soto, JM

    2007-01-01

    Purpose: To present the experience in patient dose management and the development of an online audit tool for digital radiography. Materials and methods: Several tools have been developed to extract the information contained in the DICOM header of digital images, collect radiographic parameters, calculate patient entrance doses and other related parameters, and audit image quality. Results: The tool has been used for mammography, and includes images from over 25,000 patients, over 75,000 chest images, 100,000 computed radiography procedures and more than 1,000 interventional radiology procedures. Examples of calculation of skin dose distribution in interventional cardiology based upon information of DICOM header and the results of dosimetric parameters for cardiology procedures in 2006 are presented. Conclusion: Digital radiology has great advantages for imaging and patient dose management. Dose reports, QCONLINE systems and the MPPS DICOM service are good tools to optimise procedures and to manage patient dosimetry data. The implementation of the ongoing IEC-DICOM standard for patient dose structured reports will improve dose management in digital radiology. PMID:21614273

  17. Neutron Radiography Reactor Reactivity -- Focused Lessons Learned

    SciTech Connect

    Eric Woolstenhulme; Randal Damiana; Kenneth Schreck; Ann Marie Phillips; Dana Hewit

    2010-11-01

    As part of the Global Threat Reduction Initiative, the Neutron Radiography Reactor (NRAD) at the Idaho National Laboratory (INL) was converted from using highly enriched uranium (HEU) to low enriched uranium (LEU) fuel. After the conversion, NRAD resumed operations and is meeting operational requirements. Radiography image quality and the number of images that can be produced in a given time frame match pre-conversion capabilities. However, following the conversion, NRAD’s excess reactivity with the LEU fuel was less than it had been with the HEU fuel. Although some differences between model predictions and actual performance are to be expected, the lack of flexibility in NRAD’s safety documentation prevented adjusting the reactivity by adding more fuel, until the safety documentation could be modified. To aid future reactor conversions, a reactivity-focused Lessons Learned meeting was held. This report summarizes the findings of the lessons learned meeting and addresses specific questions posed by DOE regarding NRAD’s conversion and reactivity.

  18. Conical Rotating Aperture Geometries In Digital Radiography

    NASA Astrophysics Data System (ADS)

    Rudin, Stephen; Bednarek, Daniel R.; Wong, Roland

    1981-11-01

    Applications of conical rotating aperture (RA) geometries to digital radiography are described. Two kinds of conical RA imaging systems are the conical scanning beam and the conical scanning grid assemblies. These assemblies comprise coaxial conical surface(s) the axis of which is collinear with the x-ray focal spot. This geometry allows accurate alignment and continuous focusing of the slits or the grid lines. Image receptors which use solid state photodiode arrays are described for each type of conical RA system: multiple linear arrays for the conical scanning beam assembly and multiple area arrays for the conical scanning grid assembly. The digital rotating-aperture systems combine the wide dynamic range characteristics of solid state detectors with the superior scatter-rejection advantages of scanned beam approaches. The high scanning-beam velocities attainable by the use of rotating apertures should make it possible to obtain digital images for those procedures such as chest radiography which require large fields of view and short exposure times.

  19. Beam characterization at the Neutron Radiography Reactor

    SciTech Connect

    Sarah W. Morgan; Jeffrey C. King; Chad L. Pope

    2013-12-01

    The quality of a neutron-imaging beam directly impacts the quality of radiographic images produced using that beam. Fully characterizing a neutron beam, including determination of the beam's effective length-to-diameter ratio, neutron flux profile, energy spectrum, potential image quality, and beam divergence, is vital for producing quality radiographic images. This paper provides a characterization of the east neutron imaging beamline at the Idaho National Laboratory Neutron Radiography Reactor (NRAD). The experiments which measured the beam's effective length-to-diameter ratio and potential image quality are based on American Society for Testing and Materials (ASTM) standards. An analysis of the image produced by a calibrated phantom measured the beam divergence. The energy spectrum measurements consist of a series of foil irradiations using a selection of activation foils, compared to the results produced by a Monte Carlo n-Particle (MCNP) model of the beamline. The NRAD has an effective collimation ratio greater than 125, a beam divergence of 0.3 +_ 0.1 degrees, and a gold foil cadmium ratio of 2.7. The flux profile has been quantified and the facility is an ASTM Category 1 radiographic facility. Based on bare and cadmium covered foil activation results, the neutron energy spectrum used in the current MCNP model of the radiography beamline over-samples the thermal region of the neutron energy spectrum.

  20. A system for fast neutron radiography

    SciTech Connect

    Klann, R.T.

    1997-04-01

    A system has been designed and a neutron generator installed to perform fast neutron radiography. With this system, objects as small as a coin and as large as a 19 liter container have been radiographed. The neutron source is an MF Physics A-711 neutron generator which produces 3 x 10[sup 10] neutrons/second with an average energy of 14. 5 MeV. The radiography system uses x-ray scintillation screens and film in commercially available light-tight cassettes. The cassettes have been modified to include a thin sheet of plastic to produce protons from the neutron beam through elastic scattering from hydrogen and other low Z materials in the plastic. For film densities from 1.8 to 3.0, exposures range from 1.9 x 10[sup 7] n/cm[sup 2] to 3.8 x 10[sup 8] n/cm[sup 2] depending on the type of screen and film. The optimum source-to-film distance was found to be 150 cm. At this distance, the geometric unsharpness was determined to be approximately 2.2-2.3 mm and the smallest hole that could be resolved in a 1.25 cm thick sample had a diameter of 0.079 cm.

  1. Imaging properties of digital magnification radiography.

    PubMed

    Boyce, Sarah J; Samei, Ehsan

    2006-04-01

    Flat panel detectors exhibit improved signal-to-noise ratio (SNR) and display capabilities compared to film. This improvement necessitates a new evaluation of optimal geometry for conventional projection imaging applications such as digital projection mammography as well as for advanced x-ray imaging applications including cone-beam computed tomography (CT), tomosynthesis, and mammotomography. Such an evaluation was undertaken in this study to examine the effects of x-ray source distribution, inherent detector resolution, magnification, scatter rejection, and noise characteristics including noise aliasing. A model for x-ray image acquisition was used to develop generic results applicable to flat panel detectors with similar x-ray absorption characteristics. The model assumed a Gaussian distribution for the focal spot and a rectangular distribution for a pixel. A generic model for the modulated transfer function (MTF) of indirect flat panel detectors was derived by a nonlinear fit of empirical receptor data to the Burgess model for phosphor MTFs. Noise characteristics were investigated using a generic noise power spectrum (NPS) model for indirect phosphor-based detectors. The detective quantum efficiency (DQE) was then calculated from the MTF and NPS models. The results were examined as a function of focal spot size (0.1, 0.3, and 0.6 mm) and pixel size (50, 100, 150, and 200 microm) for magnification ranges 1 to 3. Mammography, general radiography (also applicable to mammotomography), and chest radiography applications were explored using x-ray energies of 28, 74, and 120 kVp, respectively. Nodule detection was examined using the effective point source scatter model, effective DQE, and the Hotelling SNR2 efficiency. Results indicate that magnification can potentially improve the signal and noise performance of digital images. Results also show that a cross over point occurs in the spatial frequency above and below which the effects of magnification differ

  2. Imaging properties of digital magnification radiography

    SciTech Connect

    Boyce, Sarah J.; Samei, Ehsan

    2006-04-15

    Flat panel detectors exhibit improved signal-to-noise ratio (SNR) and display capabilities compared to film. This improvement necessitates a new evaluation of optimal geometry for conventional projection imaging applications such as digital projection mammography as well as for advanced x-ray imaging applications including cone-beam computed tomography (CT), tomosynthesis, and mammotomography. Such an evaluation was undertaken in this study to examine the effects of x-ray source distribution, inherent detector resolution, magnification, scatter rejection, and noise characteristics including noise aliasing. A model for x-ray image acquisition was used to develop generic results applicable to flat panel detectors with similar x-ray absorption characteristics. The model assumed a Gaussian distribution for the focal spot and a rectangular distribution for a pixel. A generic model for the modulated transfer function (MTF) of indirect flat panel detectors was derived by a nonlinear fit of empirical receptor data to the Burgess model for phosphor MTFs. Noise characteristics were investigated using a generic noise power spectrum (NPS) model for indirect phosphor-based detectors. The detective quantum efficiency (DQE) was then calculated from the MTF and NPS models. The results were examined as a function of focal spot size (0.1, 0.3, and 0.6 mm) and pixel size (50, 100, 150, and 200 {mu}m) for magnification ranges 1 to 3. Mammography, general radiography (also applicable to mammotomography), and chest radiography applications were explored using x-ray energies of 28, 74, and 120 kVp, respectively. Nodule detection was examined using the effective point source scatter model, effective DQE, and the Hotelling SNR{sup 2} efficiency. Results indicate that magnification can potentially improve the signal and noise performance of digital images. Results also show that a cross over point occurs in the spatial frequency above and below which the effects of magnification differ

  3. High Brightness Neutron Source for Radiography

    SciTech Connect

    Cremer, J. T.; Piestrup, Melvin, A.; Gary, Charles, K.; Harris, Jack, L. Williams, David, J.; Jones, Glenn, E.; Vainionpaa, J. , H.; Fuller, Michael, J.; Rothbart, George, H.; Kwan, J., W.; Ludewigt, B., A.; Gough, R.., A..; Reijonen, Jani; Leung, Ka-Ngo

    2008-12-08

    This research and development program was designed to improve nondestructive evaluation of large mechanical objects by providing both fast and thermal neutron sources for radiography. Neutron radiography permits inspection inside objects that x-rays cannot penetrate and permits imaging of corrosion and cracks in low-density materials. Discovering of fatigue cracks and corrosion in piping without the necessity of insulation removal is possible. Neutron radiography sources can provide for the nondestructive testing interests of commercial and military aircraft, public utilities and petrochemical organizations. Three neutron prototype neutron generators were designed and fabricated based on original research done at the Lawrence Berkeley National Laboratory (LBNL). The research and development of these generators was successfully continued by LBNL and Adelphi Technology Inc. under this STTR. The original design goals of high neutron yield and generator robustness have been achieved, using new technology developed under this grant. In one prototype generator, the fast neutron yield and brightness was roughly 10 times larger than previously marketed neutron generators using the same deuterium-deuterium reaction. In another generator, we integrate a moderator with a fast neutron source, resulting in a high brightness thermal neutron generator. The moderator acts as both conventional moderator and mechanical and electrical support structure for the generator and effectively mimics a nuclear reactor. In addition to the new prototype generators, an entirely new plasma ion source for neutron production was developed. First developed by LBNL, this source uses a spiral antenna to more efficiently couple the RF radiation into the plasma, reducing the required gas pressure so that the generator head can be completely sealed, permitting the possible use of tritium gas. This also permits the generator to use the deuterium-tritium reaction to produce 14-MeV neutrons with increases

  4. Biomedical Communication Skills for Minority Students.

    ERIC Educational Resources Information Center

    Dubois, Betty Lou

    A course in communications skills for the biomedical sciences is a component unique to the New Mexico State University MARC Honors Undergraduate Program. The program seeks to identify and assist minority students who show evidence of having clear potential to perform at a high level in the biomedical sciences and who show a determination to enter…

  5. Changing Postdoctoral Career Patterns for Biomedical Scientists.

    ERIC Educational Resources Information Center

    Coggeshall, Porter E.; And Others

    1978-01-01

    Examines the postdoctoral buildup between 1973 and 1977 and its implications for the Ph.D. candidate planning a career in a biomedical field. The effect of the continued growth in postdoctorals on biomedical research, research training and employment opportunities is also investigated. (HM)

  6. Comparison of conventional radiography and MDCT in suspected scaphoid fractures

    PubMed Central

    Behzadi, Cyrus; Karul, Murat; Henes, Frank Oliver; Laqmani, Azien; Catala-Lehnen, Philipp; Lehmann, Wolfgang; Nagel, Hans-Dieter; Adam, Gerhard; Regier, Marc

    2015-01-01

    AIM: To determine the diagnostic accuracy and radiation dose of conventional radiography and multidetector computed tomography (MDCT) in suspected scaphoid fractures. METHODS: One hundred twenty-four consecutive patients were enrolled in our study who had suffered from a wrist trauma and showed typical clinical symptoms suspicious of an acute scaphoid fracture. All patients had initially undergone conventional radiography. Subsequent MDCT was performed within 10 d because of persisting clinical symptoms. Using the MDCT data as the reference standard, a fourfold table was used to classify the test results. The effective dose and impaired energy were assessed in order to compare the radiation burden of the two techniques. The Wilcoxon test was performed to compare the two diagnostic modalities. RESULTS: Conventional radiography showed 34 acute fractures of the scaphoid in 124 patients (42.2%). Subsequent MDCT revealed a total of 42 scaphoid fractures. The sensitivity of conventional radiography for scaphoid fracture detection was 42.8% and its specificity was 80% resulting in an overall accuracy of 59.6%. Conventional radiography was significantly inferior to MDCT (P < 0.01) concerning scaphoid fracture detection. The mean effective dose of MDCT was 0.1 mSv compared to 0.002 mSv of conventional radiography. CONCLUSION: Conventional radiography is insufficient for accurate scaphoid fracture detection. Regarding the almost negligible effective dose, MDCT should serve as the first imaging modality in wrist trauma. PMID:25628802

  7. Publishing priorities of biomedical research funders

    PubMed Central

    Collins, Ellen

    2013-01-01

    Objectives To understand the publishing priorities, especially in relation to open access, of 10 UK biomedical research funders. Design Semistructured interviews. Setting 10 UK biomedical research funders. Participants 12 employees with responsibility for research management at 10 UK biomedical research funders; a purposive sample to represent a range of backgrounds and organisation types. Conclusions Publicly funded and large biomedical research funders are committed to open access publishing and are pleased with recent developments which have stimulated growth in this area. Smaller charitable funders are supportive of the aims of open access, but are concerned about the practical implications for their budgets and their funded researchers. Across the board, biomedical research funders are turning their attention to other priorities for sharing research outputs, including data, protocols and negative results. Further work is required to understand how smaller funders, including charitable funders, can support open access. PMID:24154520

  8. Biomedical Wireless Ambulatory Crew Monitor

    NASA Technical Reports Server (NTRS)

    Chmiel, Alan; Humphreys, Brad

    2009-01-01

    A compact, ambulatory biometric data acquisition system has been developed for space and commercial terrestrial use. BioWATCH (Bio medical Wireless and Ambulatory Telemetry for Crew Health) acquires signals from biomedical sensors using acquisition modules attached to a common data and power bus. Several slots allow the user to configure the unit by inserting sensor-specific modules. The data are then sent real-time from the unit over any commercially implemented wireless network including 802.11b/g, WCDMA, 3G. This system has a distributed computing hierarchy and has a common data controller on each sensor module. This allows for the modularity of the device along with the tailored ability to control the cards using a relatively small master processor. The distributed nature of this system affords the modularity, size, and power consumption that betters the current state of the art in medical ambulatory data acquisition. A new company was created to market this technology.

  9. Biomedical Applications of Biodegradable Polymers

    PubMed Central

    Ulery, Bret D.; Nair, Lakshmi S.; Laurencin, Cato T.

    2011-01-01

    Utilization of polymers as biomaterials has greatly impacted the advancement of modern medicine. Specifically, polymeric biomaterials that are biodegradable provide the significant advantage of being able to be broken down and removed after they have served their function. Applications are wide ranging with degradable polymers being used clinically as surgical sutures and implants. In order to fit functional demand, materials with desired physical, chemical, biological, biomechanical and degradation properties must be selected. Fortunately, a wide range of natural and synthetic degradable polymers has been investigated for biomedical applications with novel materials constantly being developed to meet new challenges. This review summarizes the most recent advances in the field over the past 4 years, specifically highlighting new and interesting discoveries in tissue engineering and drug delivery applications. PMID:21769165

  10. Peptide nanostructures in biomedical technology.

    PubMed

    Feyzizarnagh, Hamid; Yoon, Do-Young; Goltz, Mark; Kim, Dong-Shik

    2016-09-01

    Nanostructures of peptides have been investigated for biomedical applications due to their unique mechanical and electrical properties in addition to their excellent biocompatibility. Peptides may form fibrils, spheres and tubes in nanoscale depending on the formation conditions. These peptide nanostructures can be used in electrical, medical, dental, and environmental applications. Applications of these nanostructures include, but are not limited to, electronic devices, biosensing, medical imaging and diagnosis, drug delivery, tissue engineering and stem cell research. This review offers a discussion of basic synthesis methods, properties and application of these nanomaterials. The review concludes with recommendations and future directions for peptide nanostructures. WIREs Nanomed Nanobiotechnol 2016, 8:730-743. doi: 10.1002/wnan.1393 For further resources related to this article, please visit the WIREs website. PMID:26846352

  11. Biomedical wellness challenges and opportunities

    NASA Astrophysics Data System (ADS)

    Tangney, John F.

    2012-06-01

    The mission of ONR's Human and Bioengineered Systems Division is to direct, plan, foster, and encourage Science and Technology in cognitive science, computational neuroscience, bioscience and bio-mimetic technology, social/organizational science, training, human factors, and decision making as related to future Naval needs. This paper highlights current programs that contribute to future biomedical wellness needs in context of humanitarian assistance and disaster relief. ONR supports fundamental research and related technology demonstrations in several related areas, including biometrics and human activity recognition; cognitive sciences; computational neurosciences and bio-robotics; human factors, organizational design and decision research; social, cultural and behavioral modeling; and training, education and human performance. In context of a possible future with automated casualty evacuation, elements of current science and technology programs are illustrated.

  12. Animals in biomedical space research

    NASA Astrophysics Data System (ADS)

    Phillips, Robert W.

    The use of experimental animals has been a major component of biomedical research progress. Using animals in space presents special problems, but also provides special opportunities. Rat and squirrel monkeys experiments have been planned in concert with human experiments to help answer fundamental questions concerning the effect of weightlessness on mammalian function. For the most part, these experiments focus on identified changes noted in humans during space flight. Utilizing space laboratory facilities, manipulative experiments can be completed while animals are still in orbit. Other experiments are designed to study changes in gravity receptor structure and function and the effect of weightlessness on early vertebrate development. Following these preliminary animals experiments on Spacelab Shuttle flights, longer term programs of animal investigation will be conducted on Space Station.

  13. Titanium nanostructures for biomedical applications.

    PubMed

    Kulkarni, M; Mazare, A; Gongadze, E; Perutkova, Š; Kralj-Iglič, V; Milošev, I; Schmuki, P; A Iglič; Mozetič, M

    2015-02-13

    Titanium and titanium alloys exhibit a unique combination of strength and biocompatibility, which enables their use in medical applications and accounts for their extensive use as implant materials in the last 50 years. Currently, a large amount of research is being carried out in order to determine the optimal surface topography for use in bioapplications, and thus the emphasis is on nanotechnology for biomedical applications. It was recently shown that titanium implants with rough surface topography and free energy increase osteoblast adhesion, maturation and subsequent bone formation. Furthermore, the adhesion of different cell lines to the surface of titanium implants is influenced by the surface characteristics of titanium; namely topography, charge distribution and chemistry. The present review article focuses on the specific nanotopography of titanium, i.e. titanium dioxide (TiO2) nanotubes, using a simple electrochemical anodisation method of the metallic substrate and other processes such as the hydrothermal or sol-gel template. One key advantage of using TiO2 nanotubes in cell interactions is based on the fact that TiO2 nanotube morphology is correlated with cell adhesion, spreading, growth and differentiation of mesenchymal stem cells, which were shown to be maximally induced on smaller diameter nanotubes (15 nm), but hindered on larger diameter (100 nm) tubes, leading to cell death and apoptosis. Research has supported the significance of nanotopography (TiO2 nanotube diameter) in cell adhesion and cell growth, and suggests that the mechanics of focal adhesion formation are similar among different cell types. As such, the present review will focus on perhaps the most spectacular and surprising one-dimensional structures and their unique biomedical applications for increased osseointegration, protein interaction and antibacterial properties. PMID:25611515

  14. Titanium nanostructures for biomedical applications

    NASA Astrophysics Data System (ADS)

    Kulkarni, M.; Mazare, A.; Gongadze, E.; Perutkova, Š.; Kralj-Iglič, V.; Milošev, I.; Schmuki, P.; Iglič, A.; Mozetič, M.

    2015-02-01

    Titanium and titanium alloys exhibit a unique combination of strength and biocompatibility, which enables their use in medical applications and accounts for their extensive use as implant materials in the last 50 years. Currently, a large amount of research is being carried out in order to determine the optimal surface topography for use in bioapplications, and thus the emphasis is on nanotechnology for biomedical applications. It was recently shown that titanium implants with rough surface topography and free energy increase osteoblast adhesion, maturation and subsequent bone formation. Furthermore, the adhesion of different cell lines to the surface of titanium implants is influenced by the surface characteristics of titanium; namely topography, charge distribution and chemistry. The present review article focuses on the specific nanotopography of titanium, i.e. titanium dioxide (TiO2) nanotubes, using a simple electrochemical anodisation method of the metallic substrate and other processes such as the hydrothermal or sol-gel template. One key advantage of using TiO2 nanotubes in cell interactions is based on the fact that TiO2 nanotube morphology is correlated with cell adhesion, spreading, growth and differentiation of mesenchymal stem cells, which were shown to be maximally induced on smaller diameter nanotubes (15 nm), but hindered on larger diameter (100 nm) tubes, leading to cell death and apoptosis. Research has supported the significance of nanotopography (TiO2 nanotube diameter) in cell adhesion and cell growth, and suggests that the mechanics of focal adhesion formation are similar among different cell types. As such, the present review will focus on perhaps the most spectacular and surprising one-dimensional structures and their unique biomedical applications for increased osseointegration, protein interaction and antibacterial properties.

  15. X-ray sources for radiography of warm dense matter

    NASA Astrophysics Data System (ADS)

    Benuzzi-Mounaix, Alessandra; Brambrink, Erik; Barbrel, Benjamin; Koenig, Michel; Gregory, Chris; Loupias, Bérénice; Ravasio, Alessandra; Rabec Le Gloahec, Marc; Vinci, Tommaso; Boehly, Tom; Endo, Takashi; Kimura, Tomoaki; Ozaki, Norimasa; Wei, Huigang; Aglitskiy, Yefim; Faenov, Anatoly; Pikuz, Tatiana

    2008-11-01

    The knowledge of Warm Dense Matter is important in different domains such as inertial confinement fusion, astrophysics and geophysics. The development of techniques for direct probing of this type of matter is of great interest. X-ray radiography is one of the most promising diagnostic to measure density directly. Here we present some results of low-Z material radiography and an experiment devoted to characterize a short pulse laser driven hard x-ray source for the radiography of medium and high Z matter. Experiments have been performed on LULI2000 and TW facilities at the Ecole Polytechnique.

  16. Medical radiography examinations and carcinogenic effects.

    PubMed

    Domina, E A

    2014-09-01

    The purpose of the review was the synthesis of the literature data and the results of our radiobiological (biodosimetric) research on the development of radiation-associated tumors as a result of medical radiography (X-ray) diagnostic. Medical X-ray examinations contribute the most to the excess of radiation exposure of the population, much of which is subject to examination to diagnose the underlying disease, the dynamic observation of the patient during treatment, the research of related deseases, and preventative examinations. The review provides arguments for the necessity of developing a more balanced indication for preventative radiological examination of the population in the aftermath of radio-ecological crisis caused by the Chornobyl accident, taking into account the likelihood of radiation carcinogenesis. The problems and tasks of biological (cytogenetic) dosimetry in radiology are formulated. PMID:25536546

  17. Digital radiography exposure indices: A review

    PubMed Central

    Mothiram, Ursula; Brennan, Patrick C; Lewis, Sarah J; Moran, Bernadette; Robinson, John

    2014-01-01

    Digital radiography (DR) technologies have the advantage of a wide dynamic range compared to their film-screen predecessors, however, this poses a potential for increased patient exposure if left unchecked. Manufacturers have developed the exposure index (EI) to counter this, which provides radiographers with feedback on the exposure reaching the detector. As these EIs were manufacturer-specific, a wide variety of EIs existed. To offset this, the international standardised EI has been developed by the International Electrotechnical Commission (IEC) and the American Association of Physicists in Medicine (AAPM). The purpose of this article is to explore the current literature relating to EIs, beginning with the historical development of the EI, the development of the standardised EI and an exploration of common themes and studies as evidenced in the research literature. It is anticipated that this review will provide radiographers with a useful guide to understanding EIs, their application in clinical practice, limitations and suggestions for further research. PMID:26229645

  18. Recent developments in digital radiography detectors

    NASA Astrophysics Data System (ADS)

    Yorkston, John

    2007-10-01

    Medical projection radiography is currently undergoing a major transformation into the digital age. New digital X-ray detectors are providing improved image quality as well as increased functionality. These advances promise to significantly change the practice of radiology in the coming years. This review paper will describe some of the issues associated with the new digital detectors, their design, capabilities and limitations as well as a few of the promising new clinical applications being enabled by their introduction. The review will focus mainly on the new amorphous silicon flat-panel detectors but will also touch on other technologies and promising new developments that may be introduced into the clinical environment in the not too distant future.

  19. Linear induction accelerator approach for advanced radiography

    SciTech Connect

    Caporaso, G.J.

    1997-05-01

    Recent advances in induction accelerator technology make it possible to envision a single accelerator that can serve as an intense, precision multiple pulse x-ray source for advanced radiography. Through the use of solid-state modulator technology repetition rates on the order of 1 MHz can be achieved with beam pulse lengths ranging from 200 ns to 2 {micro}secs. By using fast kickers, these pulses may be sectioned into pieces which are directed to different beam lines so as to interrogate the object under study from multiple lines of sight. The ultimate aim is to do a time dependent tomographic reconstruction of a dynamic object. The technology to accomplish these objectives along with a brief discussion of the experimental plans to verify it will be presented.

  20. Digital radiography exposure indices: A review

    SciTech Connect

    Mothiram, Ursula; Brennan, Patrick C; Lewis, Sarah J; Moran, Bernadette; Robinson, John

    2014-06-15

    Digital radiography (DR) technologies have the advantage of a wide dynamic range compared to their film-screen predecessors, however, this poses a potential for increased patient exposure if left unchecked. Manufacturers have developed the exposure index (EI) to counter this, which provides radiographers with feedback on the exposure reaching the detector. As these EIs were manufacturer-specific, a wide variety of EIs existed. To offset this, the international standardised EI has been developed by the International Electrotechnical Commission (IEC) and the American Association of Physicists in Medicine (AAPM). The purpose of this article is to explore the current literature relating to EIs, beginning with the historical development of the EI, the development of the standardised EI and an exploration of common themes and studies as evidenced in the research literature. It is anticipated that this review will provide radiographers with a useful guide to understanding EIs, their application in clinical practice, limitations and suggestions for further research.

  1. Measuring microfocus focal spots using digital radiography

    SciTech Connect

    Fry, David A

    2009-01-01

    Measurement of microfocus spot size can be important for several reasons: (1) Quality assurance during manufacture of microfocus tubes; (2) Tracking performance and stability of microfocus tubes; (3) Determining magnification (especially important for digital radiography where the native spatial resolution of the digital system is not adequate for the application); (4) Knowledge of unsharpness from the focal spot alone. The European Standard EN 12543-5 is based on a simple geometrical method of calculating focal spot size from unsharpness of high magnification film radiographs. When determining microfocus focal spot dimensions using unsharpness measurements both signal-to-noise (SNR) and magnification can be important. There is a maximum accuracy that is a function of SNR and therefore an optimal magnification. Greater than optimal magnification can be used but it will not increase accuracy.

  2. Direct magnification radiography of the newborn infant

    SciTech Connect

    Brasch, R.C.; Gould, R.G.

    1982-03-01

    Recent advances in technology have made direct radiographic magnification of the newborn infant clinically feasible. A microfocus radiographic tube and a rare-earth, high-speed recording system were combined to obtain more than 2,000 radiographs at magnifications of 2 to 2.5. Special positioning devices permitted imaging of even those infants confined to incubators and connected to life-supporting systems. When quantitatively compared with three conventional contact radiographic systems with respect to resolution, contrast, and noise, magnification radiography showed overall superiority of image characteristics. Definition of subtle abnormalities and anatomically small structures permitted diagnoses which could not be made from conventional images. Furthermore, infant radiation exposure was markedly less (15 mR (3.9 mC/kg) maximum skin exposure) as compared with conventional contact radiographic systems (24 mR(6.1 mC/kg) to 45 mR (11.6 mC/kg)).

  3. Direct magnification radiography of the newborn infant

    SciTech Connect

    Brasch, R.C.; Gould, R.G.

    1982-03-01

    Recent advances in technology have made direct radiographic magnification of the newborn infant clinically feasible. A microfocus radiographic tube and a rare-earth, high-speed recording system were combined to obtain more than 2,000 radiographs at magnifications of 2-2.5. Special positioning devices permitted imaging of even those infants confined to incubators and connected to life-supporting systems. When quantitatively compared with three conventional contact radiographic systems with respect to resolution, contrast, and noise, magnification radiography showed overall superiority of image characteristics. Definition of subtle abnormalities and anatomically small structures permitted diagnoses which could not be made from conventional images. Furthermore, infant radiation exposure was markedly less (15 mR (3.9 mC/kg) maximum skin exposure) as compared with conventional contact radiographic systems (24 mR (6.1 mC/kg) to 45 mR (11.6 mC/kg)).

  4. NBS work on neutron resonance radiography

    SciTech Connect

    Schrack, R.A.

    1987-01-01

    NBS has been engaged in a wide-ranging program in Neutron Resonance Radiography utilizing both one- and two-dimensional position-sensitive neutron detectors. The ability to perform a position-sensitive assay of up to 16 isotopes in a complex matrix has been demonstrated for a wide variety of sample types, including those with high gamma activity. A major part of the program has been the development and application of the microchannel-plate-based position-sensitive neutron detector. This detector system has high resolution and sensitivity, together with adequate speed of response to be used with neutron time-of-flight techniques. This system has demonstrated the ability to simultaneously image three isotopes in a sample with no interference.

  5. Estimated radiation risks associated with endodontic radiography.

    PubMed

    Danforth, R A; Torabinejad, M

    1990-02-01

    Endodontic patients are sometimes concerned about the risks of tumors or cataracts from radiation exposure during root canal therapy. By using established dose and risk information, we calculated the extent of these risks. The chance of getting leukemia from an endodontic x-ray survey using 90 kVp was found to be 1 in 7.69 million, the same as the risk of dying from cancer from smoking 0.94 cigarettes or from an auto accident when driving 3.7 km. Risk of thyroid gland neoplasia was 1 in 667,000 (smoking 11.6 cigarettes, driving 45 km) and risk of salivary gland neoplasia 1 in 1.35 million (smoking 5.4 cigarettes, driving 21.1 km). Use of 70 kVp radiography reduced these risks only slightly. To receive the threshold dose to eyes to produce cataract changes, a patient would have to undergo 10,900 endodontic surveys. PMID:2390963

  6. Muscle parameters estimation based on biplanar radiography.

    PubMed

    Dubois, G; Rouch, P; Bonneau, D; Gennisson, J L; Skalli, W

    2016-11-01

    The evaluation of muscle and joint forces in vivo is still a challenge. Musculo-Skeletal (musculo-skeletal) models are used to compute forces based on movement analysis. Most of them are built from a scaled-generic model based on cadaver measurements, which provides a low level of personalization, or from Magnetic Resonance Images, which provide a personalized model in lying position. This study proposed an original two steps method to access a subject-specific musculo-skeletal model in 30 min, which is based solely on biplanar X-Rays. First, the subject-specific 3D geometry of bones and skin envelopes were reconstructed from biplanar X-Rays radiography. Then, 2200 corresponding control points were identified between a reference model and the subject-specific X-Rays model. Finally, the shape of 21 lower limb muscles was estimated using a non-linear transformation between the control points in order to fit the muscle shape of the reference model to the X-Rays model. Twelfth musculo-skeletal models were reconstructed and compared to their reference. The muscle volume was not accurately estimated with a standard deviation (SD) ranging from 10 to 68%. However, this method provided an accurate estimation the muscle line of action with a SD of the length difference lower than 2% and a positioning error lower than 20 mm. The moment arm was also well estimated with SD lower than 15% for most muscle, which was significantly better than scaled-generic model for most muscle. This method open the way to a quick modeling method for gait analysis based on biplanar radiography. PMID:27082150

  7. Image rejects in general direct digital radiography

    PubMed Central

    Rosanowsky, Tine Blomberg; Jensen, Camilla; Wah, Kenneth Hong Ching

    2015-01-01

    Background The number of rejected images is an indicator of image quality and unnecessary imaging at a radiology department. Image reject analysis was frequent in the film era, but comparably few and small studies have been published after converting to digital radiography. One reason may be a belief that rejects have been eliminated with digitalization. Purpose To measure the extension of deleted images in direct digital radiography (DR), in order to assess the rates of rejects and unnecessary imaging and to analyze reasons for deletions, in order to improve the radiological services. Material and Methods All exposed images at two direct digital laboratories at a hospital in Norway were reviewed in January 2014. Type of examination, number of exposed images, and number of deleted images were registered. Each deleted image was analyzed separately and the reason for deleting the image was recorded. Results Out of 5417 exposed images, 596 were deleted, giving a deletion rate of 11%. A total of 51.3% were deleted due to positioning errors and 31.0% due to error in centering. The examinations with the highest percentage of deleted images were the knee, hip, and ankle, 20.6%, 18.5%, and 13.8% respectively. Conclusion The reject rate is at least as high as the deletion rate and is comparable with previous film-based imaging systems. The reasons for rejection are quite different in digital systems. This falsifies the hypothesis that digitalization would eliminates rejects. A deleted image does not contribute to diagnostics, and therefore is an unnecessary image. Hence, the high rates of deleted images have implications for management, training, education, as well as for quality. PMID:26500784

  8. Education of biomedical engineering in Taiwan.

    PubMed

    Lin, Kang-Ping; Kao, Tsair; Wang, Jia-Jung; Chen, Mei-Jung; Su, Fong-Chin

    2014-01-01

    Biomedical Engineers (BME) play an important role in medical and healthcare society. Well educational programs are important to support the healthcare systems including hospitals, long term care organizations, manufacture industries of medical devices/instrumentations/systems, and sales/services companies of medical devices/instrumentations/system. In past 30 more years, biomedical engineering society has accumulated thousands people hold a biomedical engineering degree, and work as a biomedical engineer in Taiwan. Most of BME students can be trained in biomedical engineering departments with at least one of specialties in bioelectronics, bio-information, biomaterials or biomechanics. Students are required to have internship trainings in related institutions out of campus for 320 hours before graduating. Almost all the biomedical engineering departments are certified by IEET (Institute of Engineering Education Taiwan), and met the IEET requirement in which required mathematics and fundamental engineering courses. For BMEs after graduation, Taiwanese Society of Biomedical Engineering (TSBME) provides many continue-learning programs and certificates for all members who expect to hold the certification as a professional credit in his working place. In current status, many engineering departments in university are continuously asked to provide joint programs with BME department to train much better quality students. BME is one of growing fields in Taiwan. PMID:25571153

  9. EXACT2: the semantics of biomedical protocols

    PubMed Central

    2014-01-01

    Background The reliability and reproducibility of experimental procedures is a cornerstone of scientific practice. There is a pressing technological need for the better representation of biomedical protocols to enable other agents (human or machine) to better reproduce results. A framework that ensures that all information required for the replication of experimental protocols is essential to achieve reproducibility. Methods We have developed the ontology EXACT2 (EXperimental ACTions) that is designed to capture the full semantics of biomedical protocols required for their reproducibility. To construct EXACT2 we manually inspected hundreds of published and commercial biomedical protocols from several areas of biomedicine. After establishing a clear pattern for extracting the required information we utilized text-mining tools to translate the protocols into a machine amenable format. We have verified the utility of EXACT2 through the successful processing of previously 'unseen' (not used for the construction of EXACT2) protocols. Results The paper reports on a fundamentally new version EXACT2 that supports the semantically-defined representation of biomedical protocols. The ability of EXACT2 to capture the semantics of biomedical procedures was verified through a text mining use case. In this EXACT2 is used as a reference model for text mining tools to identify terms pertinent to experimental actions, and their properties, in biomedical protocols expressed in natural language. An EXACT2-based framework for the translation of biomedical protocols to a machine amenable format is proposed. Conclusions The EXACT2 ontology is sufficient to record, in a machine processable form, the essential information about biomedical protocols. EXACT2 defines explicit semantics of experimental actions, and can be used by various computer applications. It can serve as a reference model for for the translation of biomedical protocols in natural language into a semantically

  10. 5. INTERIOR VIEW, SHOWING A CONTROL ROOM INSIDE THE RADIOGRAPHY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. INTERIOR VIEW, SHOWING A CONTROL ROOM INSIDE THE RADIOGRAPHY ROOM; PASS-THROUGH FOR EXPOSED FILM ON RIGHT - Fort McCoy, Building No. T-1031, North side of South Tenth Avenue, Block 10, Sparta, Monroe County, WI

  11. Shape-Memory Polymers for Biomedical Applications

    NASA Astrophysics Data System (ADS)

    Yakacki, Christopher M.; Gall, Ken

    Shape-memory polymers (SMPs) are a class of mechanically functional "smart" materials that have generated substantial interest for biomedical applications. SMPs offer the ability to promote minimally invasive surgery, provide structural support, exert stabilizing forces, elute therapeutic agents, and biodegrade. This review focuses on several areas of biomedicine including vascular, orthopedic, and neuronal applications with respect to the progress and potential for SMPs to improve the standard of treatment in these areas. Fundamental studies on proposed biomedical SMP systems are discussed with regards to biodegradability, tailorability, sterilization, and biocompatibility. Lastly, a proposed research and development pathway for SMP-based biomedical devices is proposed based on trends in the recent literature.

  12. Biomedical Monitoring and Countermeasures Facility

    NASA Technical Reports Server (NTRS)

    Stewart, Donald F.

    1992-01-01

    The Space Station Freedom Program (SSFP) represents the transition within the US Space program from the 'heroic' era of space flight (characterized most vividly by the Mercury and Apollo programs) to an epoch characterized by routine access to the space environment. In this new era, the unique characteristics of the microgravity environment will enable new types of research activities, primarily in the life sciences, materials science, and biotechnology fields. In addition to its role as a'microgravity science laboratory,' Space Station Freedom (SSF) constitutes the operational platform on which the knowledge and skills needed to continue our exploration of space will be acquired. In the area of spacecraft operations, these skills include the ability to assemble, operate, and maintain large structures in space. In the area of crew operations, the potentially harmful effects of extended exposure to microgravity must be understood in order to keep the crew mission capable. To achieve this goal, the complex process of physiological deconditioning must be monitored, and countermeasures utilized as needed to keep the individual crew members within acceptable physiological limits. The countermeasures program under development for the SSF Program is titled the Biomedical Monitoring and Countermeasures (BMAC) program. As implied by the name, this activity has two primary products, a biomedical monitoring element and a countermeasures development effort. The program is a critical path element in the overall SSF Program, and should be considered an essential element of operations on board the space station. It is readily apparent that the capability to both protect and optimize the health and performance of the human operators on board SSF will be a critical element in the overall success of the SSFP. Previous experience within the Russian space program has demonstrated that the time required for countermeasures on extended missions can become a monumental operational burden

  13. Biomedical Applications of Tetrazine Cycloadditions

    PubMed Central

    Devaraj, Neal K.; Weissleder, Ralph

    2011-01-01

    Conspectus Disease mechanisms are increasingly being resolved at the molecular level. Biomedical success at this scale creates synthetic opportunities for combining specifically designed orthogonal reactions in applications such as imaging, diagnostics, and therapy. For practical reasons, it would be helpful if bioorthogonal coupling reactions proceeded with extremely rapid kinetics (k > 103 M−1 sec−1) and high specificity. Improving kinetics would minimize both the time and amount of labeling agent required to maintain high coupling yields. In this Account, we discuss our recent efforts to design extremely rapid bioorthogonal coupling reactions between tetrazines and strained alkenes. These selective reactions were first used to covalently couple conjugated tetrazine near-infrared-emitting fluorophores to dienophile-modifed extracellular proteins on living cancer cells. Confocal fluorescence microscopy demonstrated efficient and selective labeling, and control experiments showed minimal background fluorescence. Multistep techniques were optimized to work with nanomolar concentrations of labeling agent over a timescale of minutes: the result was successful real-time imaging of covalent modification. We subsequently discovered fluorogenic probes that increase in fluorescence intensity after the chemical reaction, leading to an improved signal-to-background ratio. Fluorogenic probes were used for intracellular imaging of dienophiles. We further developed strategies to react and image chemotherapeutics, such as trans-cyclooctene taxol analogs, inside living cells. Because the coupling partners are small molecules (<300 daltons), they offer unique steric advantages in multistep amplification. We also describe recent success in using tetrazine reactions to label biomarkers on cells with magneto-fluorescent nanoparticles. Two-step protocols that use bioorthogonal chemistry can significantly amplify signals over both one-step labeling procedures as well as two

  14. Simple methods to reduce patient exposure during scoliosis radiography

    SciTech Connect

    Butler, P.F.; Thomas, A.W.; Thompson, W.E.; Wollerton, M.A.; Rachlin, J.A.

    1986-05-01

    Radiation exposure to the breasts of adolescent females can be reduced significantly through the use of one or all of the following methods: fast, rare-earth screen-film combinations; specially designed compensating filters; and breast shielding. The importance of exposure reduction during scoliosis radiography as well as further details on the above described methods are discussed. In addition, the early results of a Center for Devices and Radiological Health study, which recorded exposure and technique data for scoliosis radiography, is presented.

  15. Educating about biomedical research ethics.

    PubMed

    Stankovic, Bratislav; Stankovic, Mirjana

    2014-11-01

    This article examines the global and worsening problem of research misconduct as it relates to bio-medico-legal education. While research misconduct has serious legal implications, few adequate legal remedies exist to deal with it. With respect to teaching, research ethics education should be mandatory for biomedical students and physicians. Although teaching alone will not prevent misconduct, it promotes integrity, accountability, and responsibility in research. Policies and law enforcement should send a clear message that researchers should adhere to the highest standards of ethics in research. It is vital that researchers and physicians understand basic aspects of law and the legal system in order to develop understanding of the medico-legal issues not just in the legal context, but with a sound grounding in ethics, social and theoretical contexts so that they can practice good medicine. Routine and holistic research ethics education across the curriculum for medical students and resident physicians, and continuing medical education for practicing doctors, are probably the best ways to accomplish this goal. PMID:24752379

  16. Nanoporous materials for biomedical devices.

    SciTech Connect

    Adiga, S. P.; Curtiss, L. A.; Elam, J. W.; Pellin, M. J.; Shih, C.-C.; Shin, C.-M.; Lin, S.-J.; Su, Y.-Y.; Gittard, S. D.; Zhang, J.; Narayan, R. J.; National Yang-Ming Univ.; Taipei Medical Univ.; Univ. of North Carolina at Chapel Hill

    2008-01-01

    Nanoporous materials are currently being developed for use in implantable drug delivery systems, bioartificial organs, and other novel medical devices. Advances in nanofabrication have made it possible to precisely control the pore size, pore distribution, porosity, and chemical properties of pores in nanoporous materials. As a result, these materials are attractive for regulating and sensing transport at the molecular level. In this work, the use of nanoporous membranes for biomedical applications is reviewed. The basic concepts underlying membrane transport are presented in the context of design considerations for efficient size sorting. Desirable properties of nanoporous membranes used in implantable devices, including biocompatibility and antibiofouling behavior, are also discussed. In addition, the use of surface modification techniques to improve the function of nanoporous membranes is reviewed. An intriguing possibility involves functionalizing nanoporous materials with smart polymers in order to modulate biomolecular transport in response to pH, temperature, ionic concentration, or other stimuli. These efforts open up avenues to develop smart medical devices that respond to specific physiological conditions.

  17. Status of marine biomedical research.

    PubMed Central

    Bessey, O

    1976-01-01

    A meeting on Marine Biomedical Research, sponsored by the National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health and the Smithsonian Institution Museum of Natural History, was attended by approximately 125 scientists, directors and representatives from many of the country's marine biological laboratories, and government agencies whose interests and responsibilites are in the marine biology and health areas. The purpose of the meeting was to explore the undeveloped research opportunities in the area of marine biology for the advancement of our understanding of human health problems and to provide information on the current status of marine biology laboratories. The meeting was devoted to presentations and discussions in four general areas: (1)Marine Species as Models for Human Disease; (2)Environmental Carcinogenesis and Mutagenesis; (3)Human Health and the Marine Environment--infectious agents and naturally occurring and foreign toxins; and (4)Drugs from the seas. Representatives from twelve of the country's approximatley 40 marine laboratories discussed their organization, developmental history, scientific programs, facilities, and present status of their support. The presentations served as a background and stimulated very lively analytical and constructive discussions of the undeveloped research and education potential residing in the marine environment and biological laboratories for a better understanding of many human health problems; some scientific areas that should be developed to realize this potential; and the needs and problems of marine laboratories that require attention and support if they are to survive and realize their possibilities. PMID:944630

  18. Biomedical Use of Isothermal Microcalorimeters

    PubMed Central

    Braissant, Olivier; Wirz, Dieter; Göpfert, Beat; Daniels, A.U.

    2010-01-01

    Isothermal microcalorimetry is becoming widely used for monitoring biological activities in vitro. Microcalorimeters are now able to measure heat production rates of less than a microwatt. As a result, metabolism and growth of relatively small numbers of cultured bacteria, protozoans, human cells and even small animals can be monitored continuously and extremely accurately at any chosen temperature. Dynamic effects on these organisms of changes in the culture environment—or of additions to it—are easily assessed over periods from hours to days. In addition microcalorimetry is a non-destructive method that does not require much sample preparation. It is also completely passive and thus allows subsequent evaluations of any kind on the undisturbed sample. In this review, we present a basic description of current microcalorimetry instruments and an overview of their use for various biomedical applications. These include detecting infections, evaluating effects of pharmaceutical or antimicrobial agents on cells, monitoring growth of cells harvested for tissue eingineering, and assessing medical and surgical device material physico-chemical stability and cellular biocompatibility. PMID:22163413

  19. Zirconium: biomedical and nephrological applications.

    PubMed

    Lee, David B N; Roberts, Martin; Bluchel, Christian G; Odell, Ross A

    2010-01-01

    Recent years have witnessed a rapid increase in the use of zirconium (Zr)-containing compounds in artificial internal organs. Examples include dental implants and other restorative practices, total knee and hip replacement, and middle-ear ossicular chain reconstruction. In nephrological practice, Zr-containing sorbents have been used in hemofiltration, hemodialysis, peritoneal dialysis, and in the design and construction of wearable artificial kidneys. Zr compounds continue to be widely and extensively used in deodorant and antiperspirant preparations. In the public health arena, Zr compounds have been studied or used in controlling phosphorus pollution and in the reclamation of poison and bacteria-contaminated water. Experimental and clinical studies support the general consensus that Zr compounds are biocompatible and exhibit low toxicity. Reports on possible Zr-associated adverse reactions are rare and, in general, have not rigorously established a cause-and-effect relationship. Although publications on the use of Zr compounds have continued to increase in recent years, reports on Zr toxicity have virtually disappeared from the medical literature. Nevertheless, familiarity with, and continued vigilant monitoring of, the use of these compounds are warranted. This article provides an updated review on the biomedical use of Zr compounds. PMID:21245802

  20. Holographic lithography for biomedical applications

    NASA Astrophysics Data System (ADS)

    Stankevicius, E.; Balciunas, E.; Malinauskas, M.; Raciukaitis, G.; Baltriukiene, D.; Bukelskiene, V.

    2012-06-01

    Fabrication of scaffolds for cell growth with appropriate mechanical characteristics is top-most important for successful creation of tissue. Due to ability of fast fabrication of periodic structures with a different period, the holographic lithography technique is a suitable tool for scaffolds fabrication. The scaffolds fabricated by holographic lithography can be used in various biomedical investigations such as the cellular adhesion, proliferation and viability. These investigations allow selection of the suitable material and geometry of scaffolds which can be used in creation of tissue. Scaffolds fabricated from di-acrylated poly(ethylene glycol) (PEG-DA-258) over a large area by holographic lithography technique are presented in this paper. The PEG-DA scaffolds fabricated by holographic lithography showed good cytocompatibility for rabbit myogenic stem cells. It was observed that adult rabbit muscle-derived myogenic stem cells grew onto PEG-DA scaffolds. They were attached to the pillars and formed cell-cell interactions. It demonstrates that the fabricated structures have potential to be an interconnection channel network for cell-to-cell interactions, flow transport of nutrients and metabolic waste as well as vascular capillary ingrowth. These results are encouraging for further development of holographic lithography by improving its efficiency for microstructuring three-dimensional scaffolds out of biodegradable hydrogels

  1. Understanding Metabolomics in Biomedical Research

    PubMed Central

    Kim, Su Jung; Kim, Su Hee; Kim, Ji Hyun; Hwang, Shin

    2016-01-01

    The term "omics" refers to any type of specific study that provides collective information on a biological system. Representative omics includes genomics, proteomics, and metabolomics, and new omics is constantly being added, such as lipidomics or glycomics. Each omics technique is crucial to the understanding of various biological systems and complements the information provided by the other approaches. The main strengths of metabolomics are that metabolites are closely related to the phenotypes of living organisms and provide information on biochemical activities by reflecting the substrates and products of cellular metabolism. The transcriptome does not always correlate with the proteome, and the translated proteome might not be functionally active. Therefore, their changes do not always result in phenotypic alterations. Unlike the genome or proteome, the metabolome is often called the molecular phenotype of living organisms and is easily translated into biological conditions and disease states. Here, we review the general strategies of mass spectrometry-based metabolomics. Targeted metabolome or lipidome analysis is discussed, as well as nontargeted approaches, with a brief explanation of the advantages and disadvantages of each platform. Biomedical applications that use mass spectrometry-based metabolomics are briefly introduced. PMID:26676338

  2. Ceramide synthases in biomedical research.

    PubMed

    Cingolani, Francesca; Futerman, Anthony H; Casas, Josefina

    2016-05-01

    Sphingolipid metabolism consists of multiple metabolic pathways that converge upon ceramide, one of the key molecules among sphingolipids (SLs). In mammals, ceramide synthesis occurs via N-acylation of sphingoid backbones, dihydrosphingosine (dhSo) or sphingosine (So). The reaction is catalyzed by ceramide synthases (CerS), a family of enzymes with six different isoforms, with each one showing specificity towards a restricted group of acyl-CoAs, thus producing ceramides (Cer) and dihydroceramides (dhCer) with different fatty acid chain lengths. A large body of evidence documents the role of both So and dhSo as bioactive molecules, as well as the involvement of dhCer and Cer in physiological and pathological processes. In particular, the fatty acid composition of Cer has different effects in cell biology and in the onset and progression of different diseases. Therefore, modulation of CerS activity represents an attractive target in biomedical research and in finding new treatment modalities. In this review, we discuss functional, structural and biochemical features of CerS and examine CerS inhibitors that are currently available. PMID:26248326

  3. A Program on Biochemical and Biomedical Engineering.

    ERIC Educational Resources Information Center

    San, Ka-Yiu; McIntire, Larry V.

    1989-01-01

    Presents an introduction to the Biochemical and Biomedical Engineering program at Rice University. Describes the development of the academic and enhancement programs, including organizational structure and research project titles. (YP)

  4. NIH/NSF accelerate biomedical research innovations

    Cancer.gov

    A collaboration between the National Science Foundation and the National Institutes of Health will give NIH-funded researchers training to help them evaluate their scientific discoveries for commercial potential, with the aim of accelerating biomedical in

  5. National Institute of Biomedical Imaging and Bioengineering

    MedlinePlus

    ... is Olympics for advanced-assistive devices FUNDING OPPORTUNITIES Big Data to Knowledge (BD2K) Enhancing the Efficiency and Effectiveness of Digital Curation for Biomedical Big Data (U01) BRAIN Initiative: Non-Invasive Neuromodulation - New Tools ...

  6. The Obligation to Participate in Biomedical Research

    PubMed Central

    Schaefer, G. Owen; Emanuel, Ezekiel J.; Wertheimer, Alan

    2009-01-01

    The prevailing view is that participation in biomedical research is above and beyond the call of duty. While some commentators have offered reasons against this, we propose a novel public goods argument for an obligation to participate in biomedical research. Biomedical knowledge is a public good, available to any individual even if that individual does not contribute to it. Participation in research is a critical way to support that important public good. Consequently, we all have a duty to participate. The current social norm is that people participate only if they have a good reason to do so. The public goods argument implies that people should participate unless they have a good reason not to. Such a shift would be of great aid to the progress of biomedical research, eventually making our society significantly healthier and longer-lived. PMID:19567441

  7. Photonic crystal fibres in biomedical investigations

    SciTech Connect

    Skibina, Yu S; Tuchin, Valerii V; Beloglazov, V I; Shteinmaeer, G; Betge, I L; Wedell, R; Langhoff, N

    2011-04-30

    The state of the art in the field of design and study of photonic crystal fibres for biomedical applications is considered and some original results recently obtained by the authors are presented. Optical properties of the fibres that offer prospects of their wide application as biological sensors, 'labs-on-a-chip', and facilities of electromagnetic radiation control in a wide range of wavelengths aimed at designing novel biomedical instrumentation are considered (optical technologies in biophysics and medicine)

  8. Teaching biomedical applications to secondary students.

    PubMed

    Openshaw, S; Fleisher, A; Ljunggren, C

    1999-01-01

    Certain aspects of biomedical engineering applications lend themselves well to experimentation that can be done by high school students. This paper describes two experiments done during a six-week summer internship program in which two high school students used electrodes, circuit boards, and computers to mimic a sophisticated heart monitor and also to control a robotic car. Our experience suggests that simple illustrations of complex instrumentation can be effective in introducing adolescents to the biomedical engineering field. PMID:11143394

  9. European virtual campus for biomedical engineering EVICAB.

    PubMed

    Malmivuo, Jaakko A; Nousiainen, Juha O; Lindroos, Kari V

    2007-01-01

    European Commission has funded building a curriculum on Biomedical Engineering to the Internet for European universities under the project EVICAB. EVICAB forms a curriculum which will be free access and available free of charge. Therefore, in addition to the European universities, it will be available worldwide. EVICAB will make high quality education available for everyone, not only for the university students, and facilitate the development of the discipline of Biomedical Engineering. PMID:18002654

  10. Is biomedical research a good investment?

    PubMed Central

    Augustine, Norman R.

    2014-01-01

    As the US addresses its budget dilemma, the easiest items to cut are those with the longest-term payoff. Research stands out among this group. Biomedical research has already been markedly reduced, and further reductions appear to be in store. As a frequent witness in Congressional hearings on such matters, here I discuss the challenge of assessing the value of investments in biomedical research. PMID:25438057