Science.gov

Sample records for biomedical vibrational spectroscopy

  1. Vibrational spectroscopy in biomedical science: bone

    NASA Astrophysics Data System (ADS)

    Gamsjäger, Sonja; Zoehrer, R.; Roschger, P.; Fratzl, P.; Klaushofer, K.; Mendelsohn, R.; Paschalis, E. P.

    2009-02-01

    Fourier transform infrared imaging (FTIR) and Raman Microspectroscopy are powerful tools for characterizing the distribution of different chemical moieties in heterogeneous materials. FTIR and Raman measurements have been adapted to assess the maturity of the mineral and the quality of the organic component (collagen and non-collagenous proteins) of the mineralized tissue in bone. Unique to the FTIRI analysis is the capability to provide the spatial distribution of two of the major collagen cross-links (pyridinoline, and dehydro-dihydroxylysinonorleucine) and through the study of normal and diseased bone, relate them to bone strength. These FTIR parameters have been validated based on analysis of model compounds. It is widely accepted that bone strength is determined by bone mass and bone quality. The latter is a multifactorial term encompassing the material and structural properties of bone, and one important aspect of the bone material properties is the organic matrix. The bone material properties can be defined by parameters of mineral and collagen, as determined by FTIR and Raman analysis. Considerably less attention has been directed at collagen, although there are several publications in the literature reporting altered collagen properties associated with fragile bone, in both animals and humans. Since bone is a heterogeneous tissue due to the remodeling process, microscopic areas may be carefully selected based on quantitative Backscattered Electron Imaging or histological staining, thus ensuring comparison of areas with similar metabolic activity and mineral content. In conclusion, FTIRI and Raman vibrational spectroscopy are proving to be powerful tools in bone-related medical research.

  2. 2008 Vibrational Spectroscopy

    SciTech Connect

    Philip J. Reid

    2009-09-21

    The conference focuses on using vibrational spectroscopy to probe structure and dynamics of molecules in gases, liquids, and interfaces. The goal is to bring together a collection of researchers who share common interests and who will gain from discussing work at the forefront of several connected areas. The intent is to emphasize the insights and understanding that studies of vibrations provide about a variety of systems.

  3. Translating vibrational spectroscopy into clinical applications - vision or reality?

    PubMed

    Petrich, Wolfgang

    2016-06-23

    The Faraday Discussion meeting "Advanced Vibrational Spectroscopy for Biomedical Applications" provided an excellent opportunity to share and discuss recent research and applications on a highly interdisciplinary level. Spectral pathology, single cell analysis, data handling, clinical spectroscopy, and the spectral analysis of biofluids were among the topics covered during the meeting. The focus on discussion rather than "merely" presentation was highly appreciated and fruitful discussions evolved around the interpretation of the amide-bands, optical resolution, the role of diffraction and data analysis procedure, to name a few. The meeting made clear that the spectroscopy of molecular vibrations in biomolecules has evolved from a purely academic research tool to a technology used in clinical practice in some cases. In this sense, biomedical vibrational spectroscopy has reached a pivotal point at which questions like diagnostic value, therapeutic consequence and financial viability are gaining more and more importance. PMID:27250100

  4. Vibrational spectroscopy of resveratrol

    NASA Astrophysics Data System (ADS)

    Billes, Ferenc; Mohammed-Ziegler, Ildikó; Mikosch, Hans; Tyihák, Ernő

    2007-11-01

    In this article the authors deal with the experimental and theoretical interpretation of the vibrational spectra of trans-resveratrol (3,5,4'-trihydroxy- trans-stilbene) of diverse beneficial biological activity. Infrared and Raman spectra of the compound were recorded; density functional calculations were carried out resulting in the optimized geometry and several properties of the molecule. Based on the calculated force constants, a normal coordinate analysis yielded the character of the vibrational modes and the assignment of the measured spectral bands.

  5. Infrared spectroscopy in biomedical diagnostics

    NASA Astrophysics Data System (ADS)

    Afanasyeva, Natalia I.; Kolyakov, Sergei F.; Letokhov, Vladilen S.; Artioushenko, Vjacheslav G.; Golovkina, Viktoriya N.

    1998-01-01

    Fiberoptic evanescent wave Fourier transform infrared (FEW- FTIR) spectroscopy using fiberoptic sensors operated in the attenuated total reflection (ATR) regime in the middle infrared (IR) region of the spectrum (850 - 1850 cm-1) has recently found application in the diagnostics of tissues. The method is suitable for noninvasive and rapid (seconds) direct measurements of the spectra of normal and pathological tissues in vitro, ex vivo and in vivo. The aim of our studies is the express testing of various tumor tissues at the early stages of their development. The method is expected to be further developed for endoscopic and biopsy applications. We measured in vivo the skin normal and malignant tissues on surface (directly on patients) in various cases of basaloma, melanoma and nevus. The experiments were performed in the operating room for measurements of skin in the depth (under/in the layers of epidermis), human breast, stomach, lung, kidney tissues. The breast and skin tissues at different stages of tumor or cancer were distinguished very clearly in spectra of amide, side cyclic and noncyclic hydrogen bonded fragments of amino acid residuals, phosphate groups and sugars. Computer monitoring is being developed for diagnostics.

  6. Biomedical applications of laser spectroscopy

    NASA Astrophysics Data System (ADS)

    Svanberg, Sune

    1999-07-01

    Very soon after the invention of the laser, the use of the thermal effects of the radiation was introduced. Such techniques have been refined and the laser is now routinely used for treatment in many specialities. Photodynamic therapy (PDT) is a non-thermal modality employing the combination of a tumor-seeking agent and activating laser light. During the last 15 years laser spectroscopic techniques have also been developed providing powerful means for non-intrusive medical diagnostics of tissue in real time. At the beginning only few groups were involved in exploratory work, but successively the field has developed now to occupy a large number of research teams, which meet at large specialized conferences. We will here consider three aspects of laser diagnostics: fluorescence, Raman and near-IR, and elastic scattering spectroscopy, and we will also briefly discuss PDT. The activity in the field is very extensive, and rather than trying to give a full overview, illustrations from work performed at the Lund University Medical Laser Center will be given.

  7. TIME-RESOLVED VIBRATIONAL SPECTROSCOPY

    SciTech Connect

    Andrei Tokmakoff, MIT; Paul Champion, Northeastern University; Edwin J. Heilweil, NIST; Keith A. Nelson, MIT; Larry Ziegler, Boston University

    2009-05-14

    This document contains the Proceedings from the 14th International Conference on Time-Resolved Vibrational Spectroscopy, which was held in Meredith, NH from May 9-14, 2009. The study of molecular dynamics in chemical reaction and biological processes using time-resolved spectroscopy plays an important role in our understanding of energy conversion, storage, and utilization problems. Fundamental studies of chemical reactivity, molecular rearrangements, and charge transport are broadly supported by the DOE’s Office of Science because of their role in the development of alternative energy sources, the understanding of biological energy conversion processes, the efficient utilization of existing energy resources, and the mitigation of reactive intermediates in radiation chemistry. In addition, time-resolved spectroscopy is central to all five of DOE’s grand challenges for fundamental energy science. The Time-Resolved Vibrational Spectroscopy conference is organized biennially to bring the leaders in this field from around the globe together with young scientists to discuss the most recent scientific and technological advances. The latest technology in ultrafast infrared, Raman, and terahertz spectroscopy and the scientific advances that these methods enable were covered. Particular emphasis was placed on new experimental methods used to probe molecular dynamics in liquids, solids, interfaces, nanostructured materials, and biomolecules.

  8. Soil chemical insights provided through vibrational spectroscopy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Vibrational spectroscopy techniques provide a powerful approach to study environmental materials and processes. These multifunctional analysis tools can be used to probe molecular vibrations of solid, liquid, and gaseous samples for characterizing materials, elucidating reaction mechanisms, and exam...

  9. Vibrational spectroscopy of photosystem I.

    PubMed

    Hastings, Gary

    2015-01-01

    to that used in time-resolved step-scan FTIR measurements. In this article the latest work that has been undertaken using both visible and infrared time resolved spectroscopies on the same sample will be described. Finally, vibrational spectroscopic data that has been obtained for phylloquinone in the A1 binding site in photosystem I is compared to corresponding data for ubiquinone in the QA binding site in purple bacterial reaction centers. This article is part of a Special Issue entitled: Vibrational spectroscopies and bioenergetic systems. PMID:25086273

  10. Vibrational spectroscopy of water interfaces

    SciTech Connect

    Du, Q.

    1994-12-01

    The second order nonlinear optical processes of second harmonic generation and sum frequency generation are powerful and versatile tools for studying all kinds of surfaces. They possess unusual surface sensitivity due to the symmetry properties of the second order nonlinear susceptibility. The technique of infrared-visible sum frequency generation (SFG) is particularly attractive because it offers a viable way to do vibrational spectroscopy on any surfaces accessible to light with submonolayer sensitivity. In this thesis, the author applies SFG to study a number of important water interfaces. At the air/water interface, hydrophobic solid/water and liquid/water interfaces, it was found that approximately 25% of surface water molecules have one of their hydrogen pointing away from the liquid water. The large number of unsatisfied hydrogen bonds contributes significantly to the large interfacial energy of the hydrophobic surfaces. At the hydrophilic fused quartz/water interface and a fatty acid monolayer covered water surface, the structure and orientation of surface water molecules are controlled by the hydrogen bonding of water molecules with the surface OH groups and the electrostatic interaction with the surface field from the ionization of surface groups. A change of pH value in the bulk water can significantly change the relative importance of the two interactions and cause a drastic change in orientation of the surface water molecules. SFG has also been applied to study the tribological response of some model lubricant films. Monolayers of Langmuir-Blodgett films were found to disorder orientationaly under mildly high pressure and recover promptly upon removal of the applied pressure.

  11. Probing vibrational anisotropy with nuclear resonance vibrational spectroscopy.

    SciTech Connect

    Pavlik, J. W.; Barabanschikov, A.; Oliver, A. G.; Alp, E. E.; Sturhahn, W.; Zhao, J.; Sage, J. T.; Scheidt, W. R.

    2010-06-14

    A NRVS single-crystal study (NRVS=nuclear resonance vibrational spectroscopy) has provided detailed information on the in-plane modes of nitrosyl iron porphyrinate [Fe(oep)(NO)] (see picture; oep=octaethylporphyrin). The axial nitrosyl ligand controls the direction of the in-plane iron motion.

  12. Vibrational spectroscopy of polar molecules with superradiance

    NASA Astrophysics Data System (ADS)

    Lin, Guin-Dar; Yelin, Susanne F.

    2013-07-01

    We investigate cooperative phenomena and superradiance for vibrational transitions in polar molecule spectroscopy of high optical-depth samples. Such cooperativity comes from the build-up of inter-particle coherence through dipole-dipole interactions and leads to speed-up of decay processes. We compare our calculation to recent work and find very good agreement, suggesting that superradiant effects need to be taken into account in a wide variety of ultracold molecule experiments, including vibrational and rotational states.

  13. Vibrational spectroscopy in high temperature dense fluids

    SciTech Connect

    Moore, D.S.; Schmidt, S.C.

    1992-01-01

    Coherent anti-Stokes Raman spectroscopy (CARS) in conjunction with a two-stage light-gas gun has been used to obtain vibrational spectra of shock-compressed liquid N{sub 2}, O{sub 2}, CO, and their mixtures, as well as liquid N{sub 2}O. The experimental spectra are compared to spectra calculated using a semiclassical model for CARS intensities to obtain vibrational frequencies, peak Raman susceptibilities, and linewidths. The derived spectroscopic parameters suggest thermal equilibrium of the vibrational populations is established in less than a few nanoseconds after shock passage. Vibrational temperatures obtained are compared to those derived from equation-of-state calculations. The variation of the vibrational frequency shift at pressure with species concentration in mixtures is investigated.

  14. Two-dimensional vibrational-electronic spectroscopy

    NASA Astrophysics Data System (ADS)

    Courtney, Trevor L.; Fox, Zachary W.; Slenkamp, Karla M.; Khalil, Munira

    2015-10-01

    Two-dimensional vibrational-electronic (2D VE) spectroscopy is a femtosecond Fourier transform (FT) third-order nonlinear technique that creates a link between existing 2D FT spectroscopies in the vibrational and electronic regions of the spectrum. 2D VE spectroscopy enables a direct measurement of infrared (IR) and electronic dipole moment cross terms by utilizing mid-IR pump and optical probe fields that are resonant with vibrational and electronic transitions, respectively, in a sample of interest. We detail this newly developed 2D VE spectroscopy experiment and outline the information contained in a 2D VE spectrum. We then use this technique and its single-pump counterpart (1D VE) to probe the vibrational-electronic couplings between high frequency cyanide stretching vibrations (νCN) and either a ligand-to-metal charge transfer transition ([FeIII(CN)6]3- dissolved in formamide) or a metal-to-metal charge transfer (MMCT) transition ([(CN)5FeIICNRuIII(NH3)5]- dissolved in formamide). The 2D VE spectra of both molecules reveal peaks resulting from coupled high- and low-frequency vibrational modes to the charge transfer transition. The time-evolving amplitudes and positions of the peaks in the 2D VE spectra report on coherent and incoherent vibrational energy transfer dynamics among the coupled vibrational modes and the charge transfer transition. The selectivity of 2D VE spectroscopy to vibronic processes is evidenced from the selective coupling of specific νCN modes to the MMCT transition in the mixed valence complex. The lineshapes in 2D VE spectra report on the correlation of the frequency fluctuations between the coupled vibrational and electronic frequencies in the mixed valence complex which has a time scale of 1 ps. The details and results of this study confirm the versatility of 2D VE spectroscopy and its applicability to probe how vibrations modulate charge and energy transfer in a wide range of complex molecular, material, and biological systems.

  15. Two-dimensional vibrational-electronic spectroscopy

    SciTech Connect

    Courtney, Trevor L.; Fox, Zachary W.; Slenkamp, Karla M.; Khalil, Munira

    2015-10-21

    Two-dimensional vibrational-electronic (2D VE) spectroscopy is a femtosecond Fourier transform (FT) third-order nonlinear technique that creates a link between existing 2D FT spectroscopies in the vibrational and electronic regions of the spectrum. 2D VE spectroscopy enables a direct measurement of infrared (IR) and electronic dipole moment cross terms by utilizing mid-IR pump and optical probe fields that are resonant with vibrational and electronic transitions, respectively, in a sample of interest. We detail this newly developed 2D VE spectroscopy experiment and outline the information contained in a 2D VE spectrum. We then use this technique and its single-pump counterpart (1D VE) to probe the vibrational-electronic couplings between high frequency cyanide stretching vibrations (ν{sub CN}) and either a ligand-to-metal charge transfer transition ([Fe{sup III}(CN){sub 6}]{sup 3−} dissolved in formamide) or a metal-to-metal charge transfer (MMCT) transition ([(CN){sub 5}Fe{sup II}CNRu{sup III}(NH{sub 3}){sub 5}]{sup −} dissolved in formamide). The 2D VE spectra of both molecules reveal peaks resulting from coupled high- and low-frequency vibrational modes to the charge transfer transition. The time-evolving amplitudes and positions of the peaks in the 2D VE spectra report on coherent and incoherent vibrational energy transfer dynamics among the coupled vibrational modes and the charge transfer transition. The selectivity of 2D VE spectroscopy to vibronic processes is evidenced from the selective coupling of specific ν{sub CN} modes to the MMCT transition in the mixed valence complex. The lineshapes in 2D VE spectra report on the correlation of the frequency fluctuations between the coupled vibrational and electronic frequencies in the mixed valence complex which has a time scale of 1 ps. The details and results of this study confirm the versatility of 2D VE spectroscopy and its applicability to probe how vibrations modulate charge and energy transfer in a

  16. Vibrational Spectroscopy of Chromatographic Interfaces

    SciTech Connect

    Jeanne E. Pemberton

    2011-03-10

    Chromatographic separations play a central role in DOE-supported fundamental research related to energy, biological systems, the environment, and nuclear science. The overall portfolio of research activities in the Separations and Analysis Program within the DOE Office of Basic Energy Sciences includes support for activities designed to develop a molecular-level understanding of the chemical processes that underlie separations for both large-scale and analytical-scale purposes. The research effort funded by this grant award was a continuation of DOE-supported research to develop vibrational spectroscopic methods to characterize the interfacial details of separations processes at a molecular level.

  17. Vibrational Spectroscopy on Trapped Cold Molecular Ions

    NASA Astrophysics Data System (ADS)

    Khanyile, Ncamiso B.; Brown, Kenneth R.

    2014-06-01

    We perform vibrational spectroscopy on the V0←10 overtone of a trapped and sympathetically cooled CaH+ molecular ion using a resonance enhanced two photon dissociation scheme. Our experiments are motivated by theoretical work that proposes comparing the vibrational overtones of CaH^+ with electronic transitions in atoms to detect possible time variation of in the mass ratio of the proton to electron. Due to the nonexistence of experimental data of the transition, we start the search with a broadband femtosecond Ti:Saph laser guided by theoretical calculations. Once the vibrational transition has been identified, we will move to CW lasers to perform rotationally resolved spectroscopy. M. Kajita and Y. Moriwaki, J. Phys. B. At. Mol. Opt.Phys., 42,154022(2009) Private communication

  18. Anharmonic Theoretical Vibrational Spectroscopy of Polypeptides.

    PubMed

    Panek, Paweł T; Jacob, Christoph R

    2016-08-18

    Because of the size of polypeptides and proteins, the quantum-chemical prediction of their vibrational spectra presents an exceptionally challenging task. Here, we address one of these challenges, namely, the inclusion of anharmonicities. By performing the expansion of the potential energy surface in localized-mode coordinates instead of the normal-mode coordinates, it becomes possible to calculate anharmonic vibrational spectra of polypeptides efficiently and reliably. We apply this approach to calculate the infrared, Raman, and Raman optical activity spectra of helical alanine polypeptides consisting of up to 20 amino acids. We find that while anharmonicities do not alter the band shapes, simple scaling procedures cannot account for the different shifts found for the individual bands. This closes an important gap in theoretical vibrational spectroscopy by making it possible to quantify the anharmonic contributions and opens the door to a first-principles calculation of multidimensional vibrational spectra. PMID:27472016

  19. Vibrational spectroscopy in shock-compressed liquids

    SciTech Connect

    Schmidt, S.C.; Moore, D.S.

    1992-01-01

    Coherent anti-Stokes Raman spectroscopy is being used to study the structure and energy transfer in simple molecular liquids at the high pressures and temperatures characteristic of explosive detonation. Dense fluids to several thousand degrees temperature and several hundred kilobars pressure are obtained using the shock-compression technique. Vibrational frequencies, third-order susceptibility ratios, and linewidths have been measured for N{sub 2}, O{sub 2}, CO, mixtures of N{sub 2}, O{sub 2}, and CO, and N{sub 2}O. Frequencies are found to increase with pressure. The transition intensity and line-width data suggest that thermal equilibrium of the vibrational levels is attained in less than a few nanoseconds at these high pressures and temperatures. Vibrational temperatures obtained are compared to those derived from equation-of-state calculations.

  20. Vibrational spectroscopy in shock-compressed liquids

    SciTech Connect

    Schmidt, S.C.; Moore, D.S.

    1992-03-01

    Coherent anti-Stokes Raman spectroscopy is being used to study the structure and energy transfer in simple molecular liquids at the high pressures and temperatures characteristic of explosive detonation. Dense fluids to several thousand degrees temperature and several hundred kilobars pressure are obtained using the shock-compression technique. Vibrational frequencies, third-order susceptibility ratios, and linewidths have been measured for N{sub 2}, O{sub 2}, CO, mixtures of N{sub 2}, O{sub 2}, and CO, and N{sub 2}O. Frequencies are found to increase with pressure. The transition intensity and line-width data suggest that thermal equilibrium of the vibrational levels is attained in less than a few nanoseconds at these high pressures and temperatures. Vibrational temperatures obtained are compared to those derived from equation-of-state calculations.

  1. Modeling, calculating, and analyzing multidimensional vibrational spectroscopies.

    PubMed

    Tanimura, Yoshitaka; Ishizaki, Akihito

    2009-09-15

    Spectral line shapes in a condensed phase contain information from various dynamic processes that modulate the transition energy, such as microscopic dynamics, inter- and intramolecular couplings, and solvent dynamics. Because nonlinear response functions are sensitive to the complex dynamics of chemical processes, multidimensional vibrational spectroscopies can separate these processes. In multidimensional vibrational spectroscopy, the nonlinear response functions of a molecular dipole or polarizability are measured using ultrashort pulses to monitor inter- and intramolecular vibrational motions. Because a complex profile of such signals depends on the many dynamic and structural aspects of a molecular system, researchers would like to have a theoretical understanding of these phenomena. In this Account, we explore and describe the roles of different physical phenomena that arise from the peculiarities of the system-bath coupling in multidimensional spectra. We also present simple analytical expressions for a weakly coupled multimode Brownian system, which we use to analyze the results obtained by the experiments and simulations. To calculate the nonlinear optical response, researchers commonly use a particular form of a system Hamiltonian fit to the experimental results. The optical responses of molecular vibrational motions have been studied in either an oscillator model or a vibration energy state model. In principle, both models should give the same results as long as the energy states are chosen to be the eigenstates of the oscillator model. The energy state model can provide a simple description of nonlinear optical processes because the diagrammatic Liouville space theory that developed in the electronically resonant spectroscopies can easily handle three or four energy states involved in high-frequency vibrations. However, the energy state model breaks down if we include the thermal excitation and relaxation processes in the dynamics to put the system in a

  2. Anharmonic Vibrational Spectroscopy on Metal Transition Complexes

    NASA Astrophysics Data System (ADS)

    Latouche, Camille; Bloino, Julien; Barone, Vincenzo

    2014-06-01

    Advances in hardware performance and the availability of efficient and reliable computational models have made possible the application of computational spectroscopy to ever larger molecular systems. The systematic interpretation of experimental data and the full characterization of complex molecules can then be facilitated. Focusing on vibrational spectroscopy, several approaches have been proposed to simulate spectra beyond the double harmonic approximation, so that more details become available. However, a routine use of such tools requires the preliminary definition of a valid protocol with the most appropriate combination of electronic structure and nuclear calculation models. Several benchmark of anharmonic calculations frequency have been realized on organic molecules. Nevertheless, benchmarks of organometallics or inorganic metal complexes at this level are strongly lacking despite the interest of these systems due to their strong emission and vibrational properties. Herein we report the benchmark study realized with anharmonic calculations on simple metal complexes, along with some pilot applications on systems of direct technological or biological interest.

  3. Vibrational Spectroscopy and Dynamics of Water.

    PubMed

    Perakis, Fivos; Marco, Luigi De; Shalit, Andrey; Tang, Fujie; Kann, Zachary R; Kühne, Thomas D; Torre, Renato; Bonn, Mischa; Nagata, Yuki

    2016-07-13

    We present an overview of recent static and time-resolved vibrational spectroscopic studies of liquid water from ambient conditions to the supercooled state, as well as of crystalline and amorphous ice forms. The structure and dynamics of the complex hydrogen-bond network formed by water molecules in the bulk and interphases are discussed, as well as the dissipation mechanism of vibrational energy throughout this network. A broad range of water investigations are addressed, from conventional infrared and Raman spectroscopy to femtosecond pump-probe, photon-echo, optical Kerr effect, sum-frequency generation, and two-dimensional infrared spectroscopic studies. Additionally, we discuss novel approaches, such as two-dimensional sum-frequency generation, three-dimensional infrared, and two-dimensional Raman terahertz spectroscopy. By comparison of the complementary aspects probed by various linear and nonlinear spectroscopic techniques, a coherent picture of water dynamics and energetics emerges. Furthermore, we outline future perspectives of vibrational spectroscopy for water researches. PMID:27096701

  4. Heterodyne-Detected Dispersed Vibrational Echo Spectroscopy

    NASA Astrophysics Data System (ADS)

    Jones, Kevin C.; Ganim, Ziad; Tokmakoff, Andrei

    2009-11-01

    We develop heterodyned dispersed vibrational echo spectroscopy (HDVE) and demonstrate the new capabilities in biophysical applications. HDVE is a robust ultrafast technique that provides a characterization of the real and imaginary components of third-order nonlinear signals with high sensitivity and single-laser-shot capability and can be used to extract dispersed pump-probe and dispersed vibrational echo spectra. Four methods for acquiring HDVE phase and amplitude spectra were compared: Fourier transform spectral interferometry, a new phase modulation spectral interferometry technique, and combination schemes. These extraction techniques were demonstrated in the context of protein amide I spectroscopy. Experimental HDVE and heterodyned free induction decay amide I spectra were explicitly compared to conventional dispersed pump-probe, dispersed vibrational echo, and absorption spectra. The new capabilities of HDVE were demonstrated by acquiring single-shot spectra and melting curves of ubiquitin and concentration-dependent spectra of insulin suitable for extracting the binding constant for dimerization. The introduced techniques will prove particularly useful in transient experiments, studying irreversible reactions, and micromolar concentration studies of small proteins.

  5. Threshold photoelectron spectroscopy of vibrationally excited nitrogen

    NASA Astrophysics Data System (ADS)

    Innocenti, Fabrizio; Eypper, Marie; Stranges, Stefano; West, John B.; King, George C.; Dyke, John M.

    2013-02-01

    Threshold photoelectron spectroscopy (TPES) has been used to study flowing nitrogen subjected to a microwave discharge. The first three photoelectron (PE) bands of nitrogen corresponding to the ionizations N2+ (X2Σ+g) v+ ← N2 (X1Σ+g) v″, N2+ (A2Πu) v+ ← N2 (X1Σ+g) v″ and N2 + (B2Σ+u) v+ ← N2 (X1Σ+g) v″ were investigated. An analysis of the vibrationally resolved threshold photoelectron (TPE) spectra shows evidence of population of the vibrational levels v″ = 0-5 in the N2 X1Σ+g neutral state. By a comparison with the PE spectrum recorded under the same conditions, use of computed Franck-Condon factors for each ionization and evidence from vacuum ultraviolet absorption spectroscopy, the relative intensities of vibrational components in a TPE band can be qualitatively explained using the Franck-Condon factors for each ionization as well as the gain in intensity from autoionization from Rydberg states that are degenerate with an ionization threshold or lie just above a threshold. The enhancement in intensity obtained in the TPE spectra, relative to the intensity in a PE spectrum recorded under the same conditions, was estimated as at least one order of magnitude. The first band of atomic nitrogen was also observed in the discharge-on TPE spectra. The experimental resolution was sufficiently good to allow the three ionizations N+(3P0,1,2) ← N(4S3/2) to be resolved and their relative component intensities were measured as 1: 0.95 ± 0.10: 0.70 ± 0.10. The complementary nature of the TPES and PES techniques has been outlined and the extra information obtained from studying a vibrationally excited small molecule such as N2 with these methods has been demonstrated.

  6. Theory of Linear and Nonlinear Surface-Enhanced Vibrational Spectroscopies.

    PubMed

    Chulhai, Dhabih V; Hu, Zhongwei; Moore, Justin E; Chen, Xing; Jensen, Lasse

    2016-05-27

    The vibrational spectroscopy of molecules adsorbed on metal nanoparticles can be enhanced by many orders of magnitude so that the detection and identification of single molecules are possible. The enhancement of most linear and nonlinear vibrational spectroscopies has been demonstrated. In this review, we discuss theoretical approaches to understanding linear and nonlinear surface-enhanced vibrational spectroscopies. A unified description of enhancement mechanisms classified as either electromagnetic or chemical in nature is presented. Emphasis is placed on understanding the spectral changes necessary for interpretation of linear and nonlinear surface-enhanced vibrational spectroscopies. PMID:27090843

  7. Theory of Linear and Nonlinear Surface-Enhanced Vibrational Spectroscopies

    NASA Astrophysics Data System (ADS)

    Chulhai, Dhabih V.; Hu, Zhongwei; Moore, Justin E.; Chen, Xing; Jensen, Lasse

    2016-05-01

    The vibrational spectroscopy of molecules adsorbed on metal nanoparticles can be enhanced by many orders of magnitude so that the detection and identification of single molecules are possible. The enhancement of most linear and nonlinear vibrational spectroscopies has been demonstrated. In this review, we discuss theoretical approaches to understanding linear and nonlinear surface-enhanced vibrational spectroscopies. A unified description of enhancement mechanisms classified as either electromagnetic or chemical in nature is presented. Emphasis is placed on understanding the spectral changes necessary for interpretation of linear and nonlinear surface-enhanced vibrational spectroscopies.

  8. Vibrational spectroscopy of water at interfaces.

    PubMed

    Skinner, J L; Pieniazek, P A; Gruenbaum, S M

    2012-01-17

    Understanding liquid water's behavior at the molecular level is essential to progress in fields as disparate as biology and atmospheric sciences. Moreover, the properties of water in bulk and water at interfaces can be very different, making the study of the hydrogen-bonding networks therein very important. With recent experimental advances in vibrational spectroscopy, such as ultrafast pulses and heterodyne detection, it is now possible to probe the structure and dynamics of bulk and interfacial water in unprecedented detail. We consider here three aqueous interfaces: the water liquid-vapor interface, the interface between water and the surfactant headgroups of reverse micelles, and the interface between water and the lipid headgroups of aligned multi-bilayers. In the first case, sum-frequency spectroscopy is used to probe the interface. In the second and third cases, the confined water pools are sufficiently small that techniques of bulk spectroscopy (such as FTIR, pump-probe, two-dimensional IR, and the like) can be used to probe the interfacial water. In this Account, we discuss our attempts to model these three systems and interpret the existing experiments. For the water liquid-vapor interface, we find that three-body interactions are essential for reproducing the experimental sum-frequency spectrum, and presumably for the structure of the interface as well. The observed spectrum is interpreted as arising from overlapping and canceling positive and negative contributions from molecules in different hydrogen-bonding environments. For the reverse micelles, our theoretical models confirm that the experimentally observed blue shift of the water OD stretch (for dilute HOD in H(2)O) arises from weaker hydrogen bonding to sulfonate oxygens. We interpret the observed slow-down in water rotational dynamics as arising from curvature-induced frustration. For the water confined between lipid bilayers, our theoretical models confirm that the experimentally observed red

  9. The many facets of Raman spectroscopy for biomedical analysis.

    PubMed

    Krafft, Christoph; Popp, Jürgen

    2015-01-01

    A critical review is presented on the use of linear and nonlinear Raman microspectroscopy in biomedical diagnostics of bacteria, cells, and tissues. This contribution is combined with an overview of the achievements of our research group. Linear Raman spectroscopy offers a wealth of chemical and molecular information. Its routine clinical application poses a challenge due to relatively weak signal intensities and confounding overlapping effects. Nonlinear variants of Raman spectroscopy such as coherent anti-Stokes Raman scattering (CARS) and stimulated Raman scattering (SRS) have been recognized as tools for rapid image acquisition. Imaging applications benefit from the fact that contrast is based on the chemical composition and molecular structures in a label-free and nondestructive manner. Although not label-free, surface enhanced Raman scattering (SERS) has also been recognized as a complementary biomedical tool to increase sensitivity. The current state of the art is evaluated, illustrative examples are given, future developments are pointed out, and important reviews and references from the current literature are selected. The topics are identification of bacteria and single cells, imaging of single cells, Raman activated cell sorting, diagnosis of tissue sections, fiber optic Raman spectroscopy, and progress in coherent Raman scattering in tissue diagnosis. The roles of networks-such as Raman4clinics and CLIRSPEC on a European level-and early adopters in the translation, dissemination, and validation of new methods are discussed. PMID:25428454

  10. Mössbauer spectroscopy in biomedical physics research

    NASA Astrophysics Data System (ADS)

    Zhang, Xiufang

    1994-12-01

    Several applications of Mössbauer spectroscopy (MS) as an analytical tool in research on biomedical physics are reviewed: (1) The evaluation of treatments for some diseases such as thalassemia, iron-overload disease, high altitude polycythemia. (2) Medical research on the effects of environmental factors on the human body, for example, the effects of electromagnetic radiation on human red blood cells (RBCs). Some advantages and weaknesses of MS, a new application of the Mössbauer effect, cancer therapy, and some possible applications such as monitoring the RBCs of the patients before, during, and after surgical operation, are discussed.

  11. Multidimensional Time-Resolved Spectroscopy of Vibrational Coherence in Biopolyenes

    NASA Astrophysics Data System (ADS)

    Buckup, Tiago; Motzkus, Marcus

    2014-04-01

    Multidimensional femtosecond time-resolved vibrational coherence spectroscopy allows one to investigate the evolution of vibrational coherence in electronic excited states. Methods such as pump-degenerate four-wave mixing and pump-impulsive vibrational spectroscopy combine an initial ultrashort laser pulse with a nonlinear probing sequence to reinduce vibrational coherence exclusively in the excited states. By carefully exploiting specific electronic resonances, one can detect vibrational coherence from 0 cm-1 to over 2,000 cm-1 and map its evolution. This review focuses on the observation and mapping of high-frequency vibrational coherence for all-trans biological polyenes such as β-carotene, lycopene, retinal, and retinal Schiff base. We discuss the role of molecular symmetry in vibrational coherence activity in the S1 electronic state and the interplay of coupling between electronic states and vibrational coherence.

  12. Surface-Bulk Vibrational Correlation Spectroscopy.

    PubMed

    Roy, Sandra; Covert, Paul A; Jarisz, Tasha A; Chan, Chantelle; Hore, Dennis K

    2016-05-01

    Homo- and heterospectral correlation analysis are powerful methods for investigating the effects of external influences on the spectra acquired using distinct and complementary techniques. Nonlinear vibrational spectroscopy is a selective and sensitive probe of surface structure changes, as bulk molecules are excluded on the basis of symmetry. However, as a result of this exquisite specificity, it is blind to changes that may be occurring in the solution. We demonstrate that correlation analysis between surface-specific techniques and bulk probes such as infrared absorption or Raman scattering may be used to reveal additional details of the adsorption process. Using the adsorption of water and ethanol binary mixtures as an example, we illustrate that this provides support for a competitive binding model and adds new insight into a dimer-to-bilayer transition proposed from previous experiments and simulations. PMID:27058265

  13. Vibrational spectroscopy in stem cell characterisation: is there a niche?

    PubMed

    Sulé-Suso, J; Forsyth, N R; Untereiner, V; Sockalingum, G D

    2014-05-01

    Vibrational spectroscopy using both infrared and Raman spectroscopies has been used in recent years with the aim to aid clinicians in disease diagnosis. More recently, these techniques have been applied to study stem cell differentiation and to determine stem cell presence in tissues. These studies have demonstrated the potential of these techniques in better characterising stem cell differentiation phenotypes with potential applications in tissue engineering strategies. However, before the translation of vibrational spectroscopy into clinical practice becomes a reality, several issues still need to be addressed. We describe here an overview of the work carried out so far and the problems that might be encountered when using vibrational spectroscopy. PMID:24703620

  14. Multireflection sum frequency generation vibrational spectroscopy.

    PubMed

    Zhang, Chi; Jasensky, Joshua; Chen, Zhan

    2015-08-18

    We developed a multireflection data collection method in order to improve the signal-to-noise ratio (SNR) and sensitivity of sum frequency generation (SFG) spectroscopy, which we refer to as multireflection SFG, or MRSFG for short. To achieve MRSFG, a collinear laser beam propagation geometry was adopted and trapezoidal Dove prisms were used as sample substrates. An in-depth discussion on the signal and SNR in MRSFG was performed. We showed experimentally, with "m" total internal reflections in a Dove prism, MRSFG signal is ∼m times that of conventional SFG; SNR of the SFG signal-to-background is improved by a factor of >m(1/2) and vibrational signals. Surface molecular structures of adsorbed ethanol molecules, polymer films, and a lipid monolayer were characterized using both MRSFG and conventional SFG. Molecular orientation information on lipid molecules with a 9% composition in a mixed monolayer was measured using MRSFG, which showed a good agreement with that derived from 100% lipid surface coverage using conventional SFG. MRSFG can both improve the spectral quality and detection limit of SFG spectroscopy and is expected to have important applications in surface science for studying structures of molecules with a low surface coverage or less ordered molecular moieties. PMID:26176565

  15. Chemometric Methods for Biomedical Raman Spectroscopy and Imaging

    NASA Astrophysics Data System (ADS)

    Reddy, Rohith K.; Bhargava, Rohit

    The vibrational spectrum is a quantitative measure of a sample's molecular composition. Hence, classical chemometric methods, especially regression-based, have focused on exact mapping between identity and sample composition. While this approach works well for molecular identifications and scientific investigations, problems of biomedical interest often involve complex mixtures of stochastically varying compositions and complex spatial distributions of molecules contributing to the recorded signals. Hence, the challenge often is not to predict the identity of materials but to determine chemical markers that help rapidly detect species (e.g. impurities, conformations, strains of bacteria) in large areas or indicate changes in function in complex tissue (e.g. cancer or tissue engineering). Hence, the rate of data analysis has to be rapid, has to be robust with respect to stochastic variance and the provided information is usually related to biomedical context and not to molecular compositions. The emergence of imaging techniques and clinical applications are spurring growth in this area. In this chapter, we discuss chemometric methods that are useful in this milieu. We first review methods for data pre-processing with a focus on the key challenges facing a spectroscopist. Next, we survey some of the well known, widely used pattern classification techniques under the framework of supervised and unsupervised classification. We discuss the applicability, advantages and drawbacks of each of these techniques and help the reader not only gain useful insights into the techniques themselves but also acquire an understating of the underlying ideas and principles. We conclude by providing examples of the coupled use of chemometric and statistical tools to develop robust classification protocols for prostate and breast tissue pathology. We specifically focus on the critical factors and pitfalls at each step in converting spectral data sets into hi-fidelity images useful for

  16. 2010 GRC VIBRATIONAL SPECTROSCOPY AUGUST 1 - AUGUST 6, 2010

    SciTech Connect

    Brooks Pate

    2010-08-06

    The Vibrational Spectroscopy conference focuses on using vibrational spectroscopy to probe structure and dynamics of molecules in gases, liquids, and at interfaces. The conference explores the wide range of state-of-the-art techniques based on vibrational motion. These techniques span the fields of time-domain, high-resolution frequency-domain, spatially-resolved, nonlinear and multidimensional spectroscopies. The conference highlights the application of these techniques in chemistry, materials, biology, and medicine. The theory of molecular vibrational motion and its connection to spectroscopic signatures and chemical reaction dynamics is the third major theme of the meeting. The goal is to bring together a collection of researchers who share common interests and who will gain from discussing work at the forefront of several connected areas. The intent is to emphasize the insights and understanding that studies of vibrations provide about a variety of molecular systems ranging from small polyatomic molecules to large biomolecules and nanomaterials.

  17. Thymine Dimer Formation probed by Time-Resolved Vibrational Spectroscopy

    NASA Astrophysics Data System (ADS)

    Schreier, Wolfgang J.; Schrader, Tobias E.; Roller, Florian O.; Gilch, Peter; Zinth, Wolfgang; Kohler, Bern

    Cyclobutane pyrimidine dimers are the major photoproducts formed when DNA is exposed to UV light. Femtosecond time-resolved vibrational spectroscopy reveals that thymine dimers are formed in thymidine oligonucleotides in an ultrafast photoreaction.

  18. Transient Two-Dimensional Infrared Spectroscopy in a Vibrational Ladder.

    PubMed

    Kemlin, Vincent; Bonvalet, Adeline; Daniault, Louis; Joffre, Manuel

    2016-09-01

    We report on transient 2D Fourier transform infrared spectroscopy (2DIR) after vibrational ladder climbing induced in the CO-moiety longitudinal stretch of carboxyhemoglobin. The population distribution, spreading up to seven vibrational levels, results in a nonequilibrium 2DIR spectrum evidencing a large number of peaks that can be easily attributed to individual transitions thanks to the anharmonicity of the vibrational potential. We discuss the physical origin of the observed peaks as well as the qualitative behavior of the subsequent dynamics governed by population relaxation in the vibrational ladder. PMID:27508408

  19. Vibrationally mediated photodissociation of t-butyl hydroperoxide: Vibrational overtone spectroscopy and photodissociation dynamics

    SciTech Connect

    Likar, M.D.; Baggott, J.E.; Crim, F.F.

    1989-06-01

    Vibrationally mediated photodissociation is a two-photon technique for studying the spectroscopy and photodissociation dynamics of highly vibrationally excited molecules. In these experiments, a highly vibrationally excited t-butyl hydroperoxide (t-BuOOH) molecule, prepared by excitation in the region of the third overtone of the O--H stretching vibration (4..nu../sub OH/), absorbs a second photon to dissociate to OH and t-butoxy fragments, and laser induced fluorescence determines the quantum state populations of the OH fragment. Vibrational overtone excitation spectra, obtained by varying the vibrational overtone excitation wavelength while monitoring a single OH rotational state, are nearly identical to photoacoustic spectra. We fit the coarse structure in the vibrational overtone excitation spectrum in the region of the 4..nu../sub OH/ transition and the photoacoustic spectra in the regions of the 5..nu../sub OH/ and 6..nu../sub OH/ transitions using a spectroscopic model of the interaction of the O--H bond stretching vibration with the torsional vibration about the O--O bond. This analysis determines the barrier to internal rotation of the O--H and t-butoxy groups through the trans configuration and its variation with vibrational excitation. The trans barrier in the ground vibrational state is 275 cm/sup -1/ and increases with vibrational excitation to 425, 575, and 680 cm/sup -1/ for t-BuOOH molecules with four, five, and six quanta of O--H stretching excitation, respectively.

  20. Spectroscopy and reactions of vibrationally excited transient molecules

    SciTech Connect

    Dai, H.L.

    1993-12-01

    Spectroscopy, energy transfer and reactions of vibrationally excited transient molecules are studied through a combination of laser-based excitation techniques and efficient detection of emission from the energized molecules with frequency and time resolution. Specifically, a Time-resolved Fourier Transform Emission Spectroscopy technique has been developed for detecting dispersed laser-induced fluorescence in the IR, visible and UV regions. The structure and spectroscopy of the excited vibrational levels in the electronic ground state, as well as energy relaxation and reactions induced by specific vibronic excitations of a transient molecule can be characterized from time-resolved dispersed fluorescence in the visible and UV region. IR emissions from highly vibrational excited levels, on the other hand, reveal the pathways and rates of collision induced vibrational energy transfer.

  1. Biomedical applications of laser-induced breakdown spectroscopy (LIBS)

    NASA Astrophysics Data System (ADS)

    Unnikrishnan, V. K.; Nayak, Rajesh; Bhat, Sujatha; Mathew, Stanley; Kartha, V. B.; Santhosh, C.

    2015-03-01

    LIBS has been proven to be a robust elemental analysis tool attracting interest because of the wide applications. LIBS can be used for analysis of any type of samples i.e. environmental/physiological, regardless of its state of matter. Conventional spectroscopy techniques are good in analytical performance, but their sample preparation method is mostly destructive and time consuming. Also, almost all these methods are incapable of analysing multi elements simaltaneously. On the other hand, LIBS has many potential advantages such as simplicity in the experimental setup, less sample preparation, less destructive analysis of sample etc. In this paper, we report some of the biomedical applications of LIBS. From the experiments carried out on clinical samples (calcified tissues or teeth and gall stones) for trace elemental mapping and detection, it was found that LIBS is a robust tool for such applications. It is seen that the presence and relative concentrations of major elements (calcium, phosphorus and magnesium) in human calcified tissue (tooth) can be easily determined using LIBS technique. The importance of this study comes in anthropology where tooth and bone are main samples from which reliable data can be easily retrieved. Similarly, elemental composition of bile juice and gall stone collected from the same subject using LIBS was found to be similar. The results show interesting prospects for LIBS to study cholelithiasis (the presence of stones in the gall bladder, is a common disease of the gastrointestinal tract) better.

  2. Vibrational Spectroscopy of Halogen Substituted Benzene Derivatives

    NASA Astrophysics Data System (ADS)

    Dwivedi, Y.; Rai, S. B.

    2008-11-01

    The absorption spectra of halogen substituted benzenes have been studied in its pure form in the 400-20000 cm-1 region. Large number of bands involving fundamental, C-H overtones and combination bands has been observed. Vibrational frequencies, anharmonicity constants and dissociation energies, for the C-H stretch vibrations have been determined using local mode model. The frequencies obtained are compared with the frequencies obtained theoretically using B3LYP/6-311G* method. Effect of hydrogen atom substitution by chlorine and bromine atoms has been studied by measuring changes in the vibrational frequency and bond length of the C-H bond. Frequency changes have been well correlated with the change in charge density on the carbon as well as chlorine atoms.

  3. Broadband infrared vibrational nano-spectroscopy using thermal blackbody radiation.

    PubMed

    O'Callahan, Brian T; Lewis, William E; Möbius, Silke; Stanley, Jared C; Muller, Eric A; Raschke, Markus B

    2015-12-14

    Infrared vibrational nano-spectroscopy based on scattering scanning near-field optical microscopy (s-SNOM) provides intrinsic chemical specificity with nanometer spatial resolution. Here we use incoherent infrared radiation from a 1400 K thermal blackbody emitter for broadband infrared (IR) nano-spectroscopy. With optimized interferometric heterodyne signal amplification we achieve few-monolayer sensitivity in phonon polariton spectroscopy and attomolar molecular vibrational spectroscopy. Near-field localization and nanoscale spatial resolution is demonstrated in imaging flakes of hexagonal boron nitride (hBN) and determination of its phonon polariton dispersion relation. The signal-to-noise ratio calculations and analysis for different samples and illumination sources provide a reference for irradiance requirements and the attainable near-field signal levels in s-SNOM in general. The use of a thermal emitter as an IR source thus opens s-SNOM for routine chemical FTIR nano-spectroscopy. PMID:26698997

  4. Seventh international conference on time-resolved vibrational spectroscopy

    SciTech Connect

    Dyer, R.B.; Martinez, M.A.D.; Shreve, A.; Woodruff, W.H.

    1997-04-01

    The International Conference on Time-Resolved Vibrational Spectroscopy (TRVS) is widely recognized as the major international forum for the discussion of advances in this rapidly growing field. The 1995 conference was the seventh in a series that began at Lake Placid, New York, 1982. Santa Fe, New Mexico, was the site of the Seventh International Conference on Time-Resolved Vibrational Spectroscopy, held from June 11 to 16, 1995. TRVS-7 was attended by 157 participants from 16 countries and 85 institutions, and research ranging across the full breadth of the field of time-resolved vibrational spectroscopy was presented. Advances in both experimental capabilities for time-resolved vibrational measurements and in theoretical descriptions of time-resolved vibrational methods continue to occur, and several sessions of the conference were devoted to discussion of these advances and the associated new directions in TRVS. Continuing the interdisciplinary tradition of the TRVS meetings, applications of time-resolved vibrational methods to problems in physics, biology, materials science, and chemistry comprised a large portion of the papers presented at the conference.

  5. Vibrational spectroscopy of shock-compressed liquid CO

    SciTech Connect

    Moore, D.S.; Schmidt, S.C.; Shaw, M.S.; Johnson, J.D.

    1991-01-01

    Single-pulse, multiplex, coherent anti-Stokes Raman spectroscopy (CARS) was used to observe the vibrational spectra of liquid CO shock compressed to several pressures and temperatures up to 9.9 GPa and 2010 K. The experimental spectra were compared to synthetic spectra calculated using a semiclassical model for CARS intensities and estimated vibrational frequencies, peak Raman susceptibilities and Raman line widths. A comparison of these data with result in the isoelectronic and materially very similar N{sub 2} show a significant difference in vibrational frequency shift with pressure. 21 refs., 2 figs.

  6. Vibrational spectroscopy used in milk products analysis: A review.

    PubMed

    Bunaciu, Andrei A; Aboul-Enein, Hassan Y; Hoang, Vu Dang

    2016-04-01

    Milk is a fluid containing several substances, and its composition depends on several factors. Vibrational spectroscopy is a powerful tool to determine the constituent concentrations and qualitative characteristics of dairy products. Vibrational spectrometry covers a series of well-established analytical methodologies suitable to be employed for both qualitative and quantitative purposes. In the first part of this review, theoretical aspects on vibrational techniques are presented; in the second part, the most important papers, published during the period 2009-2015, related to milk analysis are discussed. PMID:26593568

  7. Surface vibrational spectroscopy of pure liquids

    SciTech Connect

    Superfine, R.; Huang, J.Y.; Du, Q.; Shen, Y.R.

    1991-03-01

    We report the use of infrared visible sum frequency generation (SFG) to obtain the surface vibrational spectra of pure liquid methanol and water. These are the first surface vibrational spectra ever obtained for pure liquids. We have also deduced from the SFG results the absolute orientations of molecules at the pure liquid/vapor interface. The surface methanol molecules appear to have their CH{sub 3} groups projecting out of the liquid in agreement with the theoretical prediction. For the orientation of surface water molecules, however, different calculations have yielded very different predictions. Our SFG measurement provides clear evidence that the molecules are oriented with an unbonded hydrogen projecting out of the liquid. 9 refs., 3 figs.

  8. FT-IR and FT-NIR Raman spectroscopy in biomedical research

    NASA Astrophysics Data System (ADS)

    Naumann, D.

    1998-06-01

    FT-IR and FT-NIR Raman spectra of intact microbial, plant animal or human cells, tissues, and body fluids are highly specific, fingerprint-like signatures which can be used to discriminate between diverse microbial species and strains, characterize growth-dependent phenomena and cell-drug interactions, and differentiate between various disease states. The spectral information potentially useful for biomedical characterizations may be distributed over the entire infrared region of the electromagnetic spectrum, i.e. over the near-, mid-, and far-infrared. It is therefore a key problem how the characteristic vibrational spectroscopic information can be systematically extracted from the infrared spectra of complex biological samples. In this report these questions are addressed by applying factor and cluster analysis treating the classification problem of microbial infrared spectra as a model task. Particularly interesting applications arise by means of a light microscope coupled to the FT-IR spectrometer. FT-IR spectra of single microcolonies of less than 40 μm in diameter can be obtained from colony replica applying a stamping technique that transfers the different, spatially separated microcolonies from the culture plate to a special IR-sample holder. Using a computer controlled x,y-stage together with mapping and video techniques, the fundamental tasks of microbiological analysis, namely detection, enumeration, and differentiation of micro-organisms can be integrated in one single apparatus. Since high quality, essentially fluorescence free Raman spectra may now be obtained in relatively short time intervals on previously intractable biological specimens, FT-IR and NIR-FT-Raman spectroscopy can be used in tandem to characterize biological samples. This approach seems to open up new horizons for biomedical characterizations of complex biological systems.

  9. Examining surface and bulk structures using combined nonlinear vibrational spectroscopies.

    PubMed

    Zhang, Chi; Wang, Jie; Khmaladze, Alexander; Liu, Yuwei; Ding, Bei; Jasensky, Joshua; Chen, Zhan

    2011-06-15

    We combined sum-frequency generation (SFG) vibrational spectroscopy with coherent anti-Stokes Raman scattering (CARS) spectroscopy in one system to examine both surface and bulk structures of materials with the same geometry and without the need to move the sample. Poly(methyl methacrylate) (PMMA) and polystyrene (PS) thin films were tested before and after plasma treatment. The sensitivities of SFG and CARS were tested by varying polymer film thickness and using a lipid monolayer. PMID:21685990

  10. Vibrational photodetachment spectroscopy near the electron affinity of S2

    NASA Astrophysics Data System (ADS)

    Barrick, J. B.; Yukich, J. N.

    2016-02-01

    We have conducted laser photodetachment spectroscopy near the detachment threshold of the electron affinity of S2 in a 1.8-T field. The ions are prepared by dissociative electron attachment to carbonyl sulfide. The experiment is conducted in a Penning ion trap and with a narrow-band, tunable, Ti:sapphire laser. A hybrid model for photodetachment in an ion trap is fit to the data using the appropriate Franck-Condon factors. The observations reveal detachment from and to the first few vibrational levels of the anion and the neutral molecule, respectively. Evaporative cooling of the anion ensemble condenses the thermal distribution to the lowest initial vibrational states. The subsequent detachment spectroscopy yields results consistent with a vibrationally cooled anion population.

  11. Spectroscopy, reaction, and photodissociation in highly vibrationally excited molecules

    SciTech Connect

    Not Available

    1991-01-01

    Highly vibrationally excited molecules often control the course of chemical reactions in the atmosphere, combustion, plasmas, and many other environments. The research described in this Progress Report uses laser excitation and interrogation techniques to study and control the dynamics of highly vibrationally excited molecules. In particular, they show that it is possible to unravel the details and influence the course of photodissociation and bimolecular reaction. The experiments use laser excitation of overtone vibrations to prepare highly vibrationally excited molecules, frequently with single quantum state resolution, and laser spectroscopy to monitor the subsequent behavior of the excited molecule. We have studied the vibrationally mediated photodissociation and the bond- and state-selected bimolecular reaction of highly vibrationally excited molecules. In the first process, one photon creates a highly excited molecule, a second photon from another laser dissociates it, and light from a third laser detects the population of individual product quantum states. This approach allows us to explore otherwise inaccessible regions of the ground and excited state potential energy surface and, by exciting to the proper regions of the surface, to control the breaking of a selected chemical bond. In the second process, the highly vibrationally excited molecule reacts with an atom formed either in a microwave discharge or by photolysis and another laser interrogates the products. We have used this approach to demonstrate mode- and bond-selected bimolecular reactions in which the initial excitation controls the subsequent chemistry. 30 refs., 8 figs.

  12. Determining the static electronic and vibrational energy correlations via two-dimensional electronic-vibrational spectroscopy

    NASA Astrophysics Data System (ADS)

    Dong, Hui; Lewis, Nicholas H. C.; Oliver, Thomas A. A.; Fleming, Graham R.

    2015-05-01

    Changes in the electronic structure of pigments in protein environments and of polar molecules in solution inevitably induce a re-adaption of molecular nuclear structure. Both changes of electronic and vibrational energies can be probed with visible or infrared lasers, such as two-dimensional electronic spectroscopy or vibrational spectroscopy. The extent to which the two changes are correlated remains elusive. The recent demonstration of two-dimensional electronic-vibrational (2DEV) spectroscopy potentially enables a direct measurement of this correlation experimentally. However, it has hitherto been unclear how to characterize the correlation from the spectra. In this paper, we present a theoretical formalism to demonstrate the slope of the nodal line between the excited state absorption and ground state bleach peaks in the spectra as a characterization of the correlation between electronic and vibrational transition energies. We also show the dynamics of the nodal line slope is correlated to the vibrational spectral dynamics. Additionally, we demonstrate the fundamental 2DEV spectral line-shape of a monomer with newly developed response functions.

  13. Determining the static electronic and vibrational energy correlations via two-dimensional electronic-vibrational spectroscopy

    SciTech Connect

    Dong, Hui; Lewis, Nicholas H. C.; Oliver, Thomas A. A.; Fleming, Graham R.

    2015-05-07

    Changes in the electronic structure of pigments in protein environments and of polar molecules in solution inevitably induce a re-adaption of molecular nuclear structure. Both changes of electronic and vibrational energies can be probed with visible or infrared lasers, such as two-dimensional electronic spectroscopy or vibrational spectroscopy. The extent to which the two changes are correlated remains elusive. The recent demonstration of two-dimensional electronic-vibrational (2DEV) spectroscopy potentially enables a direct measurement of this correlation experimentally. However, it has hitherto been unclear how to characterize the correlation from the spectra. In this paper, we present a theoretical formalism to demonstrate the slope of the nodal line between the excited state absorption and ground state bleach peaks in the spectra as a characterization of the correlation between electronic and vibrational transition energies. We also show the dynamics of the nodal line slope is correlated to the vibrational spectral dynamics. Additionally, we demonstrate the fundamental 2DEV spectral line-shape of a monomer with newly developed response functions.

  14. Determining the static electronic and vibrational energy correlations via two-dimensional electronic-vibrational spectroscopy

    DOE PAGESBeta

    Dong, Hui; Lewis, Nicholas H. C.; Oliver, Thomas A. A.; Fleming, Graham R.

    2015-05-07

    Changes in the electronic structure of pigments in protein environments and of polar molecules in solution inevitably induce a re-adaption of molecular nuclear structure. Both changes of electronic and vibrational energies can be probed with visible or infrared lasers, such as two-dimensional electronic spectroscopy or vibrational spectroscopy. The extent to which the two changes are correlated remains elusive. The recent demonstration of two-dimensional electronic-vibrational (2DEV) spectroscopy potentially enables a direct measurement of this correlation experimentally. However, it has hitherto been unclear how to characterize the correlation from the spectra. In this report, we present a theoretical formalism to demonstrate themore » slope of the nodal line between the excited state absorption and ground state bleach peaks in the spectra as a characterization of the correlation between electronic and vibrational transition energies. In conclusion, we also show the dynamics of the nodal line slope is correlated to the vibrational spectral dynamics. Additionally, we demonstrate the fundamental 2DEV spectral line-shape of a monomer with newly developed response functions« less

  15. Determining the static electronic and vibrational energy correlations via two-dimensional electronic-vibrational spectroscopy

    SciTech Connect

    Dong, Hui; Lewis, Nicholas H. C.; Oliver, Thomas A. A.; Fleming, Graham R.

    2015-05-07

    Changes in the electronic structure of pigments in protein environments and of polar molecules in solution inevitably induce a re-adaption of molecular nuclear structure. Both changes of electronic and vibrational energies can be probed with visible or infrared lasers, such as two-dimensional electronic spectroscopy or vibrational spectroscopy. The extent to which the two changes are correlated remains elusive. The recent demonstration of two-dimensional electronic-vibrational (2DEV) spectroscopy potentially enables a direct measurement of this correlation experimentally. However, it has hitherto been unclear how to characterize the correlation from the spectra. In this report, we present a theoretical formalism to demonstrate the slope of the nodal line between the excited state absorption and ground state bleach peaks in the spectra as a characterization of the correlation between electronic and vibrational transition energies. In conclusion, we also show the dynamics of the nodal line slope is correlated to the vibrational spectral dynamics. Additionally, we demonstrate the fundamental 2DEV spectral line-shape of a monomer with newly developed response functions

  16. Vibration-rotation spectroscopy of molecules trapped inside C60.

    PubMed

    Cross, R James

    2008-08-01

    A simple model is developed to treat the energy levels and spectroscopy of diatomic molecules inside C 60. The C 60 cage is treated as spherically symmetric, and the coupling to the C 60 vibrations is ignored. The remaining six degrees of freedom correspond to the vibrations and rotations of the diatomic molecule and the rattling vibration of the molecule inside the cage. By using conservation of angular momentum, we can remove two of these motions and simplify the calculations. The resulting energy levels are simple and can be labeled by a set of quantum numbers. The IR and Raman spectra look like those of gas-phase diatomic molecules at low temperatures. At higher temperatures, hot bands due to the low-frequency rattling mode appear, and the spectrum becomes congested, looking like a solution spectrum. PMID:18598014

  17. Vibrational characterization of pheomelanin and trichochrome F by Raman spectroscopy.

    PubMed

    Galván, Ismael; Jorge, Alberto; Solano, Francisco; Wakamatsu, Kazumasa

    2013-06-01

    We characterize for the first time the vibrational state of natural pheomelanin using Raman spectroscopy and model pigment synthesized from 5-S-cysteinyldopa. The shape of the Raman spectrum was very different from that of eumelanin. Four Raman bands were visible in the 500-2000 cm(-1) wavenumber region about 500, 1150, 1490 and 2000 cm(-1), which we assigned to the out-of-plane deformation and the stretching vibration of the phenyl rings, to the stretching vibration of C-N bonds or the stretching and wagging vibration of CH2, and to overtone or combination bands. Interestingly, we also show that the Raman spectrum of synthetic trichochrome F, a pigment that may be produced along with pheomelanin during pheomelanogenesis, is different from that of pheomelanin and similar to the spectrum of eumelanin. We could detect Raman signal of both eumelanin and pheomelanin in feathers and hairs where both pigments simultaneously occur without the need of isolating the pigment. This indicates that Raman spectroscopy represents a non-invasive method to detect pheomelanin and distinguish it from other pigments. This may be especially relevant to detect pheomelanin in animal skin including humans, where it has been associated with animal appearance and classification, human phototypes, prevention of skin diseases and cancer risk. PMID:23563634

  18. Vibrational characterization of pheomelanin and trichochrome F by Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Galván, Ismael; Jorge, Alberto; Solano, Francisco; Wakamatsu, Kazumasa

    2013-06-01

    We characterize for the first time the vibrational state of natural pheomelanin using Raman spectroscopy and model pigment synthesized from 5-S-cysteinyldopa. The shape of the Raman spectrum was very different from that of eumelanin. Four Raman bands were visible in the 500-2000 cm-1 wavenumber region about 500, 1150, 1490 and 2000 cm-1, which we assigned to the out-of-plane deformation and the stretching vibration of the phenyl rings, to the stretching vibration of C-N bonds or the stretching and wagging vibration of CH2, and to overtone or combination bands. Interestingly, we also show that the Raman spectrum of synthetic trichochrome F, a pigment that may be produced along with pheomelanin during pheomelanogenesis, is different from that of pheomelanin and similar to the spectrum of eumelanin. We could detect Raman signal of both eumelanin and pheomelanin in feathers and hairs where both pigments simultaneously occur without the need of isolating the pigment. This indicates that Raman spectroscopy represents a non-invasive method to detect pheomelanin and distinguish it from other pigments. This may be especially relevant to detect pheomelanin in animal skin including humans, where it has been associated with animal appearance and classification, human phototypes, prevention of skin diseases and cancer risk.

  19. X-Ray Spectroscopy of Bromine Compounds and Biomedical Applications

    NASA Astrophysics Data System (ADS)

    Nahar, Sultana N.; Luo, Yi; Le, Linh; Pradhan, A. K.; Chowdhury, E.; Pitzer, R.; Montenegro, M.

    2010-06-01

    In conventional biomedical applications intense and broadband high energy X-rays are used in therapy and diagnostics (theranostics) to ensure sufficient tissue penetration for imaging or treatment. To avoid damages incurred by these, our proposed method, Resonant Theranosticsb,c, aims to find narrow energy regions that corresponds to resonant absorption or emission. We show that such energy bands lie below the K-shell ionization energy, contrary to the research focus on the K-shell ionization energy itself. Targeting these energy bands, Auger processes can be initiated to produce a number of photons and electrons from each atomic/molecular species via photon fluorescence and electron ejections. We will report our study on the bromine compound bromodeoxyuridyne (BUdR), widely used as radiological contrast agent in radiation imaging. The active system is Br^o-Br^+ combination, which can emit or absorb X-rays in the relative narrow energy range of 12 to 13.6 keV, through 1s-np transitions. We will present the oscillator strengths and transition probabilities for various Auger or K-shell 1s-np transitions. We will show that the corresponding cross sections and attenuation coefficients per unit mass, are orders of magnitude higher than the background and that at K-shell ionization energy. Employing these attenuation coefficients in the Monte Carlo simulation program Geant4, we study the intensities of photon and electron emission spectra. Acknowledgment: Partially support: Large Interdisciplinary Grant award of the Ohio State University and NASA (SNN). The computational work was carried out at the Ohio Supercomputer Center, Columbus Ohio. "Resonant X-Ray Enhancement of the Auger Effect in High-Z atoms, molecules, and Nanoparticles: Biomedical Applications", A. K. Pradhan, S. N. Nahar, M. Montenegro, Yan Yu, H. L. Zhang, C. Sur, M. Mrozik, R. M. Pitzer, J. of Phys. Chem. A, 113 (2009), 12356. "Monte Carlo Simulations and Atomic Calculations for Auger Processes in

  20. Enhanced Vibrational Spectroscopies as Tools for Small Molecule Biosensing

    PubMed Central

    Boujday, Souhir; Lamy de la Chapelle, Marc; Srajer, Johannes; Knoll, Wolfgang

    2015-01-01

    In this short summary we summarize some of the latest developments in vibrational spectroscopic tools applied for the sensing of (small) molecules and biomolecules in a label-free mode of operation. We first introduce various concepts for the enhancement of InfraRed spectroscopic techniques, including the principles of Attenuated Total Reflection InfraRed (ATR-IR), (phase-modulated) InfraRed Reflection Absorption Spectroscopy (IRRAS/PM-IRRAS), and Surface Enhanced Infrared Reflection Absorption Spectroscopy (SEIRAS). Particular attention is put on the use of novel nanostructured substrates that allow for the excitation of propagating and localized surface plasmon modes aimed at operating additional enhancement mechanisms. This is then be complemented by the description of the latest development in Surface- and Tip-Enhanced Raman Spectroscopies, again with an emphasis on the detection of small molecules or bioanalytes. PMID:26343666

  1. Enhanced Vibrational Spectroscopies as Tools for Small Molecule Biosensing.

    PubMed

    Boujday, Souhir; de la Chapelle, Marc Lamy; Srajer, Johannes; Knoll, Wolfgang

    2015-01-01

    In this short summary we summarize some of the latest developments in vibrational spectroscopic tools applied for the sensing of (small) molecules and biomolecules in a label-free mode of operation. We first introduce various concepts for the enhancement of InfraRed spectroscopic techniques, including the principles of Attenuated Total Reflection InfraRed (ATR-IR), (phase-modulated) InfraRed Reflection Absorption Spectroscopy (IRRAS/PM-IRRAS), and Surface Enhanced Infrared Reflection Absorption Spectroscopy (SEIRAS). Particular attention is put on the use of novel nanostructured substrates that allow for the excitation of propagating and localized surface plasmon modes aimed at operating additional enhancement mechanisms. This is then be complemented by the description of the latest development in Surface- and Tip-Enhanced Raman Spectroscopies, again with an emphasis on the detection of small molecules or bioanalytes. PMID:26343666

  2. Laser spectroscopy applied to environmental, ecological, food safety, and biomedical research.

    PubMed

    Svanberg, Sune; Zhao, Guangyu; Zhang, Hao; Huang, Jing; Lian, Ming; Li, Tianqi; Zhu, Shiming; Li, Yiyun; Duan, Zheng; Lin, Huiying; Svanberg, Katarina

    2016-03-21

    Laser spectroscopy provides many possibilities for multi-disciplinary applications in environmental monitoring, in the ecological field, for food safety investigations, and in biomedicine. The paper gives several examples of the power of multi-disciplinary applications of laser spectroscopy as pursued in our research group. The studies utilize mostly similar and widely applicable spectroscopic approaches. Air pollution and vegetation monitoring by lidar techniques, as well as agricultural pest insect monitoring and classification by elastic scattering and fluorescence spectroscopy are described. Biomedical aspects include food safety applications and medical diagnostics of sinusitis and otitis, with strong connection to the abatement of antibiotics resistance development. PMID:27136872

  3. Computational Vibrational Spectroscopy of HDO in Osmolyte-Water Solutions.

    PubMed

    Lee, Hochan; Choi, Jun-Ho; Verma, Pramod Kumar; Cho, Minhaeng

    2016-07-28

    The IR absorption and time-resolved IR spectroscopy of the OD stretch mode of HDO in water was successfully used to study osmolyte effects on water H-bonding network. Protecting osmolytes such as sorbitol and trimethylglycine (TMG) make the vibrational OD stretch band red-shifted, whereas urea affects the OD band marginally. Furthermore, we recently showed that, even though sorbitol and TMG cause a slow-down of HDO rotation in their aqueous solutions, urea does not induce any change in the rotational relaxation of HDO in aqueous urea solutions even at high concentrations. To clarify the underlying osmolyte effects on water H-bonding structure and dynamics, we performed molecular dynamics (MD) simulations of a variety of aqueous osmolyte solutions. Using the vibrational solvatochromism model for the OD stretch mode and taking into account the vibrational non-Condon and polarization effects on the OD transition dipole moment, we then calculated the IR absorption spectra and rotational anisotropy decay of the OD stretch mode of HDO for the sake of direct comparisons with our experimental results. The simulation results on the OD stretch IR absorption spectra and the rotational relaxation rate of HDO in osmolyte solutions are found to be in quantitative agreement with experimental data, which confirms the validity of the MD simulation and vibrational solvatochromism approaches. As a result, it becomes clear that the protecting osmolytes like sorbitol and TMG significantly modulate water H-bonding network structure, while urea perturbs water structure little. We anticipate that the computational approach discussed here will serve as an interpretive method with atomic-level chemical accuracy of current linear and nonlinear time-resolved IR spectroscopy of structure and dynamics of water near the surfaces of membranes and proteins under crowded environments. PMID:27341918

  4. Chemometrics applied to vibrational spectroscopy: overview, challenges and pitfalls

    SciTech Connect

    Haaland, D.M.

    1996-10-01

    Chemometric multivariate calibration methods are rapidly impacting quantitative infrared spectroscopy in many positive ways. The combination of vibrational spectroscopy and chemometrics has been used by industry for quality control and process monitoring. The growth of these methods has been phenomenal in the past decade. Yet, as with any new technology, there are growing pains. The methods are so powerful at finding correlations in the data, that when used without great care they can readily yield results that are not valid for the analysis of future unknown samples. In this paper, the power of the multivariate calibration methods is discussed while pointing out common pitfalls and some remaining challenges that may slow the implementation of chemometrics in research and industry.

  5. Vibrational Spectroscopy of HD{sup +} with 2-ppb Accuracy

    SciTech Connect

    Koelemeij, J. C. J.; Roth, B.; Wicht, A.; Ernsting, I.; Schiller, S.

    2007-04-27

    By measurement of the frequency of a vibrational overtone transition in the molecular hydrogen ion HD{sup +}, we demonstrate the first optical spectroscopy of trapped molecular ions with submegahertz accuracy. We use a diode laser, locked to a stable frequency comb, to perform resonance-enhanced multiphoton dissociation spectroscopy on sympathetically cooled HD{sup +} ions at 50 mK. The achieved 2-ppb relative accuracy is a factor of 150 higher than previous results for HD{sup +}, and the measured transition frequency agrees well with recent high-accuracy ab initio calculations, which include high-order quantum electrodynamic effects. We also show that our method bears potential for achieving considerably higher accuracy and may, if combined with slightly improved theoretical calculations, lead to a new and improved determination of the electron-proton mass ratio.

  6. Structural dynamics in complex liquids studied with multidimensional vibrational spectroscopy

    SciTech Connect

    Tokmakoff, Andrei

    2013-08-31

    The development of new sustainable energy sources is linked to our understanding of the molecular properties of water and aqueous solutions. Energy conversion, storage, and transduction processes, particularly those that occur in biology, fuel cells, and batteries, make use of water for the purpose of moving energy in the form of charges and mediating the redox chemistry that allows this energy to be stored as and released from chemical bonds. To build our fundamental knowledge in this area, this project supports work in the Tokmakoff group to investigate the molecular dynamics of water’s hydrogen bond network, and how these dynamics influence its solutes and the mechanism of proton transport in water. To reach the goals of this grant, we developed experiments to observe molecular dynamics in water as directly as possible, using ultrafast multidimensional vibrational spectroscopy. We excite and probe broad vibrational resonances of water, molecular solutes, and protons in water. By correlating how molecules evolve from an initial excitation frequency to a final frequency, we can describe the underlying molecular dynamics. Theoretical modeling of the data with the help of computational spectroscopy coupled with molecular dynamics simulations provided the atomistic insight in these studies.

  7. Vibrational Assignments of Six-Coordinate Ferrous Heme Nitrosyls: New Insight From Nuclear Resonance Vibrational Spectroscopy

    SciTech Connect

    Paulat, F.; Berto, T.C.; George, S.DeBeer; Goodrich, L.; Praneeth, V.K.K.; Sulok, C.D.; Lehnert, N.

    2009-05-21

    This Communication addresses a long-standing problem: the exact vibrational assignments of the low-energy modes of the Fe-N-O subunit in six-coordinate ferrous heme nitrosyl model complexes. This problem is addressed using nuclear resonance vibrational spectroscopy (NRVS) coupled to {sup 15}N{sup 18}O isotope labeling and detailed simulations of the obtained data. Two isotope-sensitive features are identified at 437 and 563 cm{sup -1}. Normal coordinate analysis shows that the 437 cm{sup -1} mode corresponds to the Fe-NO stretch, whereas the 563 cm{sup -1} band is identified with the Fe-N-O bend. The relative NRVS intensities of these features determine the degree of vibrational mixing between the stretch and the bend. The implications of these results are discussed with respect to the trans effect of imidazole on the bound NO. In addition, a comparison to myoglobin-NO (Mb-NO) is made to determine the effect of the Mb active site pocket on the bound NO.

  8. Neutron Vibrational Spectroscopy and modeling of polymer/dopant interactions

    NASA Astrophysics Data System (ADS)

    Moule, Adam; Harrelson, Thomas; Cheng, Yongqiang; Ramirez-Cuesta, Anibal; Faller, Roland; Huang, David

    Neutron vibrational spectroscopy (VISION and ORNL) is a powerful technique to determine the configurations of organic species in amorphous samples. We apply this technique to samples of the semiconducting polymer regio-regular P3HT to determine the molecular configurations outside of the crystalline domains, which have never been investigated. Application of density functional theory modeling using crystal field theory and for the single molecule approach yield a variety of configurations of the polymer backbone and side chains. These results demonstrate that only 1% of the volume corresponds to the assumed crystal structure solved using x-ray diffraction. In addition we investigate the configurations of P3HT doped with the molecular dopant F4TCNQ and determine that the charging of the polymer backbone leads to increased side chain stiffness. These results have significant implications for design of organic electronic devices based on thiophenes.

  9. Cryogenic Ion Vibrational Spectroscopy of - CH Activation Intermediates

    NASA Astrophysics Data System (ADS)

    Marsh, Brett; Garand, Etienne

    2013-06-01

    Despite the rather simple composition of alkanes the strength of their C-C and C-H bonds has made controlled, selective reaction of these compounds an unrealized goal of synthetic chemistry. The field was pioneered by Shilov and coworkers in 1969 when they observed the exchange of H and D in methane that was bubbled into an acidic solution of K_2PtCl_4. The Shilov reaction has since been extended to induce oxidation of methane selectively to methanol and has become the standard bearer of CH activation despite its limitations. The mechanism for the reaction, while inferred from kinetics studies, is still largely uncharacterized. Here, we present our work towards applying cryogenic ion vibrational spectroscopy (CIVS) to capture the intermediate species of this reaction with a focus on the σ-CH adduct formed between methane and Pt(II) complexes that is believed to be crucial to the selectivity and rate of this reaction.

  10. Vibrational Spectroscopy of Sympathetically Cooled CaH^+ Molecular Ions

    NASA Astrophysics Data System (ADS)

    Khanyile, Ncamiso B.; Goeders, James E.; Brown, Kenneth R.

    2013-06-01

    The search for time variation in the fundamental constants of nature such as the fine structure constant(α) and the proton/electron mass ratio(μ), is an area of active research. Comparing the vibrational overtones of CaH^+ with electronic transitions in atoms has been proposed as a means to detect possible time variation of μ Before these precision measurements can be realized, the survey spectroscopy needs to be performed. We describe our experiments using a Coulomb crystal of sympathetically cooled CaH^+ and laser-cooled Ca^+ ions to measure the vibrational overtones by resonance-enhanced multiphoton photo-dissociation (REMPD) in a linear Paul trap. The dissociation of CaH^+ is detected by observing the change in the crystal composition by monitoring the Ca^+ fluorescence. Future single ion experiments for the precision measurement are also discussed. J. Uzan, Rev. Mod. Phys. 75, 403 (2003). M. Kajita and Y. Moriwaki, J. Phys. B: At. Mol. Opt. Phys. 42, 154022(2009).

  11. Liquid Space Lubricants Examined by Vibrational Micro-Spectroscopy

    NASA Technical Reports Server (NTRS)

    Street, Kenneth W., Jr.

    2008-01-01

    Considerable effort has been expended to develop liquid lubricants for satellites and space exploration vehicles. These lubricants must often perform under a range of harsh conditions such as vacuum, radiation, and temperature extremes while in orbit or in transit and in extremely dusty environments at destinations such as the Moon and Mars. Historically, oil development was guided by terrestrial application, which did not provide adequate space lubricants. Novel fluids such as the perfluorinated polyethers provided some relief but are far from ideal. With each new fluid proposed to solve one problem, other problems have arisen. Much of the work performed at the National Aeronautics and Space Administration (NASA) Glenn Research Center (GRC) in elucidating the mechanisms by which chemical degradation of space oils occur has been done by vibrational micro-spectroscopic techniques such as infrared and Raman, which this review details. Presented are fundamental lubrication studies as well as actual case studies in which vibrational spectroscopy has led to millions of dollars in savings and potentially prevented loss of mission.

  12. Vibrationally resolved anion photoelectron spectroscopy of metal clusters

    NASA Astrophysics Data System (ADS)

    Miller, Stephen R.

    Vibrationally resolved anion photoelectron spectroscopy of metal clusters Vibrationally resolved anion photoelectron spectroscopy (APES) and density functional theory (DFT) are applied to the study of structure and reactivity in small metal containing molecules. The studies described fall into two general categories: the study of bare metal clusters and the study of metal/organic ligand reactions. The current lack of spectroscopic data for small, bare gas-phase metal compounds makes the experimental study of such compounds important for understanding structure and bonding in open-shell metallic species. The heteronuclear diatomic anions MCu- (M = Cr, Mo) were prepared in a flowing afterglow ion-molecule reactor, and studied experimentally with APES. Anion and neutral vibrational frequencies and MCu electron affinities were obtained for both systems. The experiments were supplemented by DFT calculations. The combined use of experiment and theory allows for the assignment of both photoelectron spectra, including a reassignment of the CrCu ground state reported in the literature. Similarly, DFT was used to assign the anionic/neutral electronic states observed in the photoelectron spectra of Al3- and Al3O-. The study of partially ligated organometallic complexes offers a means of examining the interactions between metal atoms and individual ligand molecules. DFT was used to assign electronic states observed in the photoelectron spectra of NbC2H2-, NbC4H4 -NbC6H6- and VC6H 6-. Comparison of the NbnHn - (n = 2, 4, 6) spectra (obtained through the reaction of C2 H4 and Nb) with DFT results provides the first direct spectroscopic evidence of the conversion of ethylene to benzene by a gas phase metal atom. Experiments were used to probe the reactivity of Y with C2H 4 in an effort to examine the generality of the metal induced C 2H4 dehydrogenation/cyclization reactions. Some of the key products in the Y reactions were YC2H-, YC 2H2-, and YC6H5 -. However, the results

  13. Observation of terahertz vibrations in Pyrococcus furiosus rubredoxin via impulsive coherent vibrational spectroscopy and nuclear resonance vibrational spectroscopy--interpretation by molecular mechanics.

    PubMed

    Tan, Ming-Liang; Bizzarri, Anna Rita; Xiao, Yuming; Cannistraro, Salvatore; Ichiye, Toshiko; Manzoni, Cristian; Cerullo, Giulio; Adams, Michael W W; Jenney, Francis E; Cramer, Stephen P

    2007-03-01

    We have used impulsive coherent vibrational spectroscopy (ICVS) to study the Fe(S-Cys)(4) site in oxidized rubredoxin (Rd) from Pyrococcus furiosus (Pf). In this experiment, a 15 fs visible laser pulse is used to coherently pump the sample to an excited electronic state, and a second <10 fs pulse is used to probe the change in transmission as a function of the time delay. PfRd was observed to relax to the ground state by a single exponential decay with time constants of approximately 255-275 fs. Superimposed on this relaxation are oscillations caused by coherent excitation of vibrational modes in both excited and ground electronic states. Fourier transformation reveals the frequencies of these modes. The strongest ICV mode with 570 nm excitation is the symmetric Fe-S stretching mode near 310 cm(-1), compared to 313 cm(-1) in the low temperature resonance Raman. If the rubredoxin is pumped at 520 nm, a set of strong bands occurs between 20 and 110 cm(-1). Finally, there is a mode at approximately 500 cm(-1) which is similar to features near 508 cm(-1) in blue Cu proteins that have been attributed to excited state vibrations. Normal mode analysis using 488 protein atoms and 558 waters gave calculated spectra that are in good agreement with previous nuclear resonance vibrational spectra (NRVS) results. The lowest frequency normal modes are identified as collective motions of the entire protein or large segments of polypeptide. Motion in these modes may affect the polar environment of the redox site and thus tune the electron transfer functions in rubredoxins. PMID:17204331

  14. Molecular vibrational dynamics in polyvinyl alcohol studied by femtosecond coherent anti-stokes Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Kozai, T.; Yamashita, S.; Hirochi, K.; Miyagawa, H.; Tsurumachi, N.; Koshiba, S.; Nakanishi, S.; Itoh, H.

    2012-11-01

    We have performed femtosecond time-resolved coherent anti-stokes Raman spectroscopy (CARS) to study the vibrational dynamics in polyvinyl alcohol (PVA) film. We observed femtosecond coherent vibrational relaxation and CARS signal beats in PVA at room temperature. We found that the coherent vibrational relaxation of anti-symmetric CH2 stretching modes in PVA is faster than that of symmetric modes, probably due to faster vibrational energy transfer. The coherent vibrational relaxation of OH stretching modes was observed to be slower than that of CH2 modes, because OH stretching modes have less resonant energy transfer rate compared to CH2 modes.

  15. Multidimensional vibrational spectroscopy for tunneling processes in a dissipative environment.

    PubMed

    Ishizaki, Akihito; Tanimura, Yoshitaka

    2005-07-01

    Simulating tunneling processes as well as their observation are challenging problems for many areas. In this study, we consider a double-well potential system coupled to a heat bath with a linear-linear (LL) and square-linear (SL) system-bath interactions. The LL interaction leads to longitudinal (T1) and transversal (T2) homogeneous relaxations, whereas the SL interaction leads to the inhomogeneous dephasing (T2*) relaxation in the white noise limit with a rotating wave approximation. We discuss the dynamics of the double-well system under infrared (IR) laser excitations from a Gaussian-Markovian quantum Fokker-Planck equation approach, which was developed by generalizing Kubo's stochastic Liouville equation. Analytical expression of the Green function is obtained for a case of two-state-jump modulation by performing the Fourier-Laplace transformation. We then calculate a two-dimensional infrared signal, which is defined by the four-body correlation function of optical dipole, for various noise correlation time, system-bath coupling parameters, and temperatures. It is shown that the bath-induced vibrational excitation and relaxation dynamics between the tunneling splitting levels can be detected as the isolated off-diagonal peaks in the third-order two-dimensional infrared (2D-IR) spectroscopy for a specific phase matching condition. Furthermore, this spectroscopy also allows us to directly evaluate the rate constants for tunneling reactions, which relates to the coherence between the splitting levels; it can be regarded as a novel technique for measuring chemical reaction rates. We depict the change of reaction rates as a function of system-bath coupling strength and a temperature through the 2D-IR signal. PMID:16035851

  16. Investigating buried polymer interfaces using sum frequency generation vibrational spectroscopy

    PubMed Central

    Chen, Zhan

    2010-01-01

    This paper reviews recent progress in the studies of buried polymer interfaces using sum frequency generation (SFG) vibrational spectroscopy. Both buried solid/liquid and solid/solid interfaces involving polymeric materials are discussed. SFG studies of polymer/water interfaces show that different polymers exhibit varied surface restructuring behavior in water, indicating the importance of probing polymer/water interfaces in situ. SFG has also been applied to the investigation of interfaces between polymers and other liquids. It has been found that molecular interactions at such polymer/liquid interfaces dictate interfacial polymer structures. The molecular structures of silane molecules, which are widely used as adhesion promoters, have been investigated using SFG at buried polymer/silane and polymer/polymer interfaces, providing molecular-level understanding of polymer adhesion promotion. The molecular structures of polymer/solid interfaces have been examined using SFG with several different experimental geometries. These results have provided molecular-level information about polymer friction, adhesion, interfacial chemical reactions, interfacial electronic properties, and the structure of layer-by-layer deposited polymers. Such research has demonstrated that SFG is a powerful tool to probe buried interfaces involving polymeric materials, which are difficult to study by conventional surface sensitive analytical techniques. PMID:21113334

  17. Spectroscopy, reaction, and photodissociation of highly vibrationally excited molecules

    SciTech Connect

    Crim, F.F.

    1990-01-01

    This research is designed to determine the nature of highly vibrationally excited molecules, probe unimolecular reactions at the level of individual quantum states, and study the dynamics of electronic photodissociation from highly vibrationally excited states. In our experiments, pulsed laser excitation of a vibrational overtone transition prepares a highly vibrationally excited molecule and time-resolved spectroscopic detection of products monitors their subsequent decomposition. We have used this scheme to follow unimolecular reactions of large and small molecules in both room temperature gases and supersonic expansions and to investigate the role that vibrational excitation plays in electronic photodissociation dynamics. Most recently we have used the localized nature of the highly vibrationally excited states we create to selectively break bonds in photodissociation and biomolecular reactions.

  18. Characterizing Anharmonic Vibrational Modes of Quinones with Two-Dimensional Infrared Spectroscopy.

    PubMed

    Cyran, Jenée D; Nite, Jacob M; Krummel, Amber T

    2015-07-23

    Two-dimensional infrared (2D IR) spectroscopy was used to study the vibrational modes of three quinones--benzoquinone, naphthoquinone, and anthraquinone. The vibrations of interest were in the spectral range of 1560-1710 cm(-1), corresponding to the in-plane carbonyl and ring stretching vibrations. Coupling between the vibrational modes is indicated by the cross peaks in the 2D IR spectra. The diagonal and off-diagonal anharmonicities range from 4.6 to 17.4 cm(-1) for the quinone series. In addition, there is significant vibrational coupling between the in-plane carbonyl and ring stretching vibrations. The diagonal anharmonicity, off-diagonal anharmonicity, and vibrational coupling constants are reported for benzoquinone, naphthoquinone, and anthraquinone. PMID:25697689

  19. Coherent multidimensional vibrational spectroscopy of representative N-alkanes.

    PubMed

    Mathew, Nathan A; Rickard, Mark A; Kornau, Kathryn M; Pakoulev, Andrei V; Block, Stephen B; Yurs, Lena A; Wright, John C

    2009-09-10

    Mixed frequency/time domain, two color triply vibrationally enhanced (TRIVE) four wave mixing (FWM) spectroscopy is used to study the methyl and methylene modes in octane and dotriacontane. The experiments involve scanning different combinations of the two excitation frequencies, the monochromator frequency, and the two time delays between the three excitation pulses while the remaining variables are fixed. Two dimensional spectra of the methyl and methylene stretching region have weak, asymmetrical diagonal- and cross-peaks when the excitation pulses are temporally overlapped. As the time delays change, the spectra change as new peaks appear and their peak intensity and position change. Combined two-dimensional scans of the excitation frequency and time delay show the changes are caused by relaxation of the initially excited populations to other states that are coupled to the methyl and methylene stretching modes. Two dimensional time delay scans show that the coherence dephasing rates are very fast so fully coherent TRIVE FWM pathways involving multiple quantum coherences are not possible without shorter excitation pulses. Similar experiments involving the methyl and methylene bend and stretching modes identify cross-peaks between these modes and population transfer processes that create cross-peaks. The asymmetric methylene stretch/Fermi resonance band is observed to contain unresolved states that couple differently with the symmetric methylene stretching and scissor modes as well as with lower lying quantum states that are fed by population transfer. The TRIVE FWM data show that the multidimensional spectra are dominated by rapid population transfer within the methyl and methylene stretching modes and to lower quantum states that are coupled to the stretching modes. PMID:19725584

  20. Localized surface plasmon resonances in nanostructures to enhance nonlinear vibrational spectroscopies: towards an astonishing molecular sensitivity

    PubMed Central

    2014-01-01

    Summary Vibrational transitions contain some of the richest fingerprints of molecules and materials, providing considerable physicochemical information. Vibrational transitions can be characterized by different spectroscopies, and alternatively by several imaging techniques enabling to reach sub-microscopic spatial resolution. In a quest to always push forward the detection limit and to lower the number of needed vibrational oscillators to get a reliable signal or imaging contrast, surface plasmon resonances (SPR) are extensively used to increase the local field close to the oscillators. Another approach is based on maximizing the collective response of the excited vibrational oscillators through molecular coherence. Both features are often naturally combined in vibrational nonlinear optical techniques. In this frame, this paper reviews the main achievements of the two most common vibrational nonlinear optical spectroscopies, namely surface-enhanced sum-frequency generation (SE-SFG) and surface-enhanced coherent anti-Stokes Raman scattering (SE-CARS). They can be considered as the nonlinear counterpart and/or combination of the linear surface-enhanced infrared absorption (SEIRA) and surface-enhanced Raman scattering (SERS) techniques, respectively, which are themselves a branching of the conventional IR and spontaneous Raman spectroscopies. Compared to their linear equivalent, those nonlinear vibrational spectroscopies have proved to reach higher sensitivity down to the single molecule level, opening the way to astonishing perspectives for molecular analysis. PMID:25551056

  1. Vibrational Cooling in A Cold Ion Trap: Vibrationally Resolved Photoelectron Spectroscopy of Cold C60- Anions

    SciTech Connect

    Wang, Xue B.; Woo, Hin-koon; Wang, Lai S.

    2005-08-01

    We demonstrate vibrational cooling of anions via collisions with a background gas in an ion trap attached to a cryogenically controlled cold head (10 ? 400 K). Photoelectron spectra of vibrationally cold C60- anions, produced by electrospray ionization and cooled in the cold ion trap, have been obtained. Relative to spectra taken at room temperature, vibrational hot bands are completely eliminated, yielding well resolved vibrational structures and a more accurate electron affinity for neutral C60. The electron affinity of C60 is measured to be 2.683 ? 0.008 eV. The cold spectra reveal complicated vibrational structures for the transition to the C60 ground state due to the Jahn-Teller effect in the ground state of C60-. Vibrational excitations in the two Ag modes and eight Hg modes are observed, providing ideal data to assess the vibronic couplings in C60-.

  2. Vibrational dynamics of aqueous hydroxide solutions probed using broadband 2DIR spectroscopy

    SciTech Connect

    Mandal, Aritra; Tokmakoff, Andrei

    2015-11-21

    We employed ultrafast transient absorption and broadband 2DIR spectroscopy to study the vibrational dynamics of aqueous hydroxide solutions by exciting the O–H stretch vibrations of the strongly hydrogen-bonded hydroxide solvation shell water and probing the continuum absorption of the solvated ion between 1500 and 3800 cm{sup −1}. We observe rapid vibrational relaxation processes on 150–250 fs time scales across the entire probed spectral region as well as slower vibrational dynamics on 1–2 ps time scales. Furthermore, the O–H stretch excitation loses its frequency memory in 180 fs, and vibrational energy exchange between bulk-like water vibrations and hydroxide-associated water vibrations occurs in ∼200 fs. The fast dynamics in this system originate in strong nonlinear coupling between intra- and intermolecular vibrations and are explained in terms of non-adiabatic vibrational relaxation. These measurements indicate that the vibrational dynamics of the aqueous hydroxide complex are faster than the time scales reported for long-range transport of protons in aqueous hydroxide solutions.

  3. Vibrational dynamics of aqueous hydroxide solutions probed using broadband 2DIR spectroscopy.

    PubMed

    Mandal, Aritra; Tokmakoff, Andrei

    2015-11-21

    We employed ultrafast transient absorption and broadband 2DIR spectroscopy to study the vibrational dynamics of aqueous hydroxide solutions by exciting the O-H stretch vibrations of the strongly hydrogen-bonded hydroxide solvation shell water and probing the continuum absorption of the solvated ion between 1500 and 3800 cm(-1). We observe rapid vibrational relaxation processes on 150-250 fs time scales across the entire probed spectral region as well as slower vibrational dynamics on 1-2 ps time scales. Furthermore, the O-H stretch excitation loses its frequency memory in 180 fs, and vibrational energy exchange between bulk-like water vibrations and hydroxide-associated water vibrations occurs in ∼200 fs. The fast dynamics in this system originate in strong nonlinear coupling between intra- and intermolecular vibrations and are explained in terms of non-adiabatic vibrational relaxation. These measurements indicate that the vibrational dynamics of the aqueous hydroxide complex are faster than the time scales reported for long-range transport of protons in aqueous hydroxide solutions. PMID:26590536

  4. Vibrational dynamics of aqueous hydroxide solutions probed using broadband 2DIR spectroscopy

    NASA Astrophysics Data System (ADS)

    Mandal, Aritra; Tokmakoff, Andrei

    2015-11-01

    We employed ultrafast transient absorption and broadband 2DIR spectroscopy to study the vibrational dynamics of aqueous hydroxide solutions by exciting the O-H stretch vibrations of the strongly hydrogen-bonded hydroxide solvation shell water and probing the continuum absorption of the solvated ion between 1500 and 3800 cm-1. We observe rapid vibrational relaxation processes on 150-250 fs time scales across the entire probed spectral region as well as slower vibrational dynamics on 1-2 ps time scales. Furthermore, the O-H stretch excitation loses its frequency memory in 180 fs, and vibrational energy exchange between bulk-like water vibrations and hydroxide-associated water vibrations occurs in ˜200 fs. The fast dynamics in this system originate in strong nonlinear coupling between intra- and intermolecular vibrations and are explained in terms of non-adiabatic vibrational relaxation. These measurements indicate that the vibrational dynamics of the aqueous hydroxide complex are faster than the time scales reported for long-range transport of protons in aqueous hydroxide solutions.

  5. Raman spectroscopy of TiO2 thin films formed by hybrid treatment for biomedical applications.

    PubMed

    Lubas, M; Jasinski, J J; Sitarz, M; Kurpaska, L; Podsiad, P; Jasinski, J

    2014-12-10

    The paper presents the results of the investigations of the surface layer obtained after application of the combined hybrid method of oxidation in a fluidized bed (FB) and deposition of the oxide coating by PVD technique. The material used in the study was Ti Grade 2. The process of diffusive saturation was carried out in a fluidized-bed reactor at the temperature of 640°C for 8h in air while the top oxide layer was obtained through PVD method - magnetron sputtering using TiO2 target and argon atmosphere with the pressure of 3×10(-2)mbar and the distance between the substrate to the target of 60mm. In order to determine changes in the properties that occur as a result of modification of the Ti surface, the following examinations were carried out by SEM-EDX, X-ray diffraction methods, Raman spectroscopy, Glow Discharge Optical Spectroscopy (GDOS) and Secondary Ion Mass Spectrometry (SIMS). The coatings obtained were characterized by zonal structure comprising the solution zone of Tiα(O) and oxide zone of TiO2 with modifications of rutile and anatase, depending on the oxidation method. It was found that formation of oxide layers using the hybrid method (FB+PVD) leads to limitation of defects in the oxide layer after fluidized-bed thermal treatment and obtaining a uniform, tight coating with improved corrosion properties which are important from the biomedical standpoint. PMID:25037440

  6. Development of carbon-fluorine spectroscopy for pharmaceutical and biomedical applications.

    PubMed

    Menaa, Farid; Menaa, Bouzid; Sharts, Olga

    2011-01-01

    Carbon-Fluorine Spectroscopy (CFS(TM)), also known as Fluoro-Raman Spectroscopy (FRS(TM)), is a relatively new patented platform technology using a family of various methods and cost-effective devices called PLIRFATM (Pulsed Laser Isochronic Raman and Fluorescence Apparatus) developed by Fluorotronics, Inc. The key feature of this progressive and non-destructive technology is based on the discovery of a characteristic optical signature of carbon-fluorine bond(s) in the fingerprint spectral area of 500-800 cm(-1) allowing rapid, ultra-specific and sensitive detection, characterization, imaging, and measurement of any fluoroorganics. Interestingly, the C-F bond is unique in its character and so it can be used as a molecular label. Furthermore, the C-F label is efficient, soluble, cheaper, smaller, more stable and less toxic than fluorescent dyes, nanoparticles or quantum dot materials. Thereby, C-F bonds are often incorporated into pharmaceutical, agrochemical and biological molecules in addition to polymers and nano-materials to achieve special properties (e.g. molecular stability, molecular tracing). In this paper, we present some of our data obtained from FRS(TM) applied to pharmaceuticals and biologics, and provide perspectives of FRS applications for the pharmaceutical and biomedical fields. PMID:21413185

  7. 2012 VIBRATIONAL SPECTROSCOPY GORDON RESEARCH CONFERENCE, AUGUST 5-10, 2012

    SciTech Connect

    Geiger, Franz

    2012-08-10

    The Vibrational Spectroscopy conference brings together experimentalists and theoreticians working at the frontiers of modern vibrational spectroscopy, with a special emphasis on spectroscopies that probe the structure and dynamics of molecules in gases, liquids, and at interfaces. The conference explores the wide range of state-of-the-art techniques based on vibrational motion. These techniques span the fields of time-domain, high-resolution frequency-domain, spatially-resolved, nonlinear, and multidimensional spectroscopies. The conference highlights both the application of these techniques in chemistry, materials, biology, the environment, and medicine as well as the development of theoretical models that enable one to connect spectroscopic signatures to underlying molecular motions including chemical reaction dynamics. The conference goal is to advance the field of vibrational spectroscopy by bringing together a collection of researchers who share common interests and who will gain from discussing work at the forefront of several connected areas. The intent is to emphasize the insights and understanding that studies of vibrations provide about a variety of molecular systems ranging from small polyatomic molecules to large biomolecules, nanomaterials, and environmental systems.

  8. Measuring correlated electronic and vibrational spectral dynamics using line shapes in two-dimensional electronic-vibrational spectroscopy

    NASA Astrophysics Data System (ADS)

    Lewis, Nicholas H. C.; Dong, Hui; Oliver, Thomas A. A.; Fleming, Graham R.

    2015-05-01

    Two-dimensional electronic-vibrational (2DEV) spectroscopy is an experimental technique that shows great promise in its ability to provide detailed information concerning the interactions between the electronic and vibrational degrees of freedom in molecular systems. The physical quantities 2DEV is particularly suited for measuring have not yet been fully determined, nor how these effects manifest in the spectra. In this work, we investigate the use of the center line slope of a peak in a 2DEV spectrum as a measure of both the dynamic and static correlations between the electronic and vibrational states of a dye molecule in solution. We show how this center line slope is directly related to the solvation correlation function for the vibrational degrees of freedom. We also demonstrate how the strength with which the vibration on the electronic excited state couples to its bath can be extracted from a set of 2DEV spectra. These analytical techniques are then applied to experimental data from the laser dye 3,3'-diethylthiatricarbocyanine iodide in deuterated chloroform, where we determine the lifetime of the correlation between the electronic transition frequency and the transition frequency for the backbone C = C stretch mode to be ˜1.7 ps. Furthermore, we find that on the electronic excited state, this mode couples to the bath ˜1.5 times more strongly than on the electronic ground state.

  9. Measuring correlated electronic and vibrational spectral dynamics using line shapes in two-dimensional electronic-vibrational spectroscopy

    SciTech Connect

    Lewis, Nicholas H. C.; Dong, Hui; Oliver, Thomas A. A.; Fleming, Graham R.

    2015-05-07

    Two-dimensional electronic-vibrational (2DEV) spectroscopy is an experimental technique that shows great promise in its ability to provide detailed information concerning the interactions between the electronic and vibrational degrees of freedom in molecular systems. The physical quantities 2DEV is particularly suited for measuring have not yet been fully determined, nor how these effects manifest in the spectra. In this work, we investigate the use of the center line slope of a peak in a 2DEV spectrum as a measure of both the dynamic and static correlations between the electronic and vibrational states of a dye molecule in solution. We show how this center line slope is directly related to the solvation correlation function for the vibrational degrees of freedom. We also demonstrate how the strength with which the vibration on the electronic excited state couples to its bath can be extracted from a set of 2DEV spectra. These analytical techniques are then applied to experimental data from the laser dye 3,3′-diethylthiatricarbocyanine iodide in deuterated chloroform, where we determine the lifetime of the correlation between the electronic transition frequency and the transition frequency for the backbone C = C stretch mode to be ∼1.7 ps. Furthermore, we find that on the electronic excited state, this mode couples to the bath ∼1.5 times more strongly than on the electronic ground state.

  10. Measuring correlated electronic and vibrational spectral dynamics using line shapes in two-dimensional electronic-vibrational spectroscopy.

    PubMed

    Lewis, Nicholas H C; Dong, Hui; Oliver, Thomas A A; Fleming, Graham R

    2015-05-01

    Two-dimensional electronic-vibrational (2DEV) spectroscopy is an experimental technique that shows great promise in its ability to provide detailed information concerning the interactions between the electronic and vibrational degrees of freedom in molecular systems. The physical quantities 2DEV is particularly suited for measuring have not yet been fully determined, nor how these effects manifest in the spectra. In this work, we investigate the use of the center line slope of a peak in a 2DEV spectrum as a measure of both the dynamic and static correlations between the electronic and vibrational states of a dye molecule in solution. We show how this center line slope is directly related to the solvation correlation function for the vibrational degrees of freedom. We also demonstrate how the strength with which the vibration on the electronic excited state couples to its bath can be extracted from a set of 2DEV spectra. These analytical techniques are then applied to experimental data from the laser dye 3,3'-diethylthiatricarbocyanine iodide in deuterated chloroform, where we determine the lifetime of the correlation between the electronic transition frequency and the transition frequency for the backbone C = C stretch mode to be ∼1.7 ps. Furthermore, we find that on the electronic excited state, this mode couples to the bath ∼1.5 times more strongly than on the electronic ground state. PMID:25956093

  11. ULTRAFAST CHEMISTRY: Using Time-Resolved Vibrational Spectroscopy for Interrogation of Structural Dynamics

    NASA Astrophysics Data System (ADS)

    Nibbering, Erik T. J.; Fidder, Henk; Pines, Ehud

    2005-05-01

    Time-resolved infrared (IR) and Raman spectroscopy elucidates molecular structure evolution during ultrafast chemical reactions. Following vibrational marker modes in real time provides direct insight into the structural dynamics, as is evidenced in studies on intramolecular hydrogen transfer, bimolecular proton transfer, electron transfer, hydrogen bonding during solvation dynamics, bond fission in organometallic compounds and heme proteins, cis-trans isomerization in retinal proteins, and transformations in photochromic switch pairs. Femtosecond IR spectroscopy monitors the site-specific interactions in hydrogen bonds. Conversion between excited electronic states can be followed for intramolecular electron transfer by inspection of the fingerprint IR- or Raman-active vibrations in conjunction with quantum chemical calculations. Excess internal vibrational energy, generated either by optical excitation or by internal conversion from the electronic excited state to the ground state, is observable through transient frequency shifts of IR-active vibrations and through nonequilibrium populations as deduced by Raman resonances.

  12. A Practical Guide for Nuclear Resonance Vibrational Spectroscopy (NRVS) of Biochemical Samples and Model Compounds

    PubMed Central

    Wang, Hongxin; Alp, Ercan; Yoda, Yoshitaka; Cramer, Stephen P.

    2016-01-01

    Summary Nuclear resonance vibrational spectroscopy (NRVS) has been used by physicists for many years. However, it is still a relatively new technique for bioinorganic users. This technique yields a vibrational spectrum for a specific element, which can be easily interpreted. Furthermore, isotopic labeling allows for site-specific experiments. In this chapter we discuss how to access specific beamlines, what kind of equipment is used in NRVS and how the sample should be prepared and the data collected and analyzed. PMID:24639257

  13. Vibrational spectroscopy and theoretical studies on 2,4-dinitrophenylhydrazine

    NASA Astrophysics Data System (ADS)

    Chiş, V.; Filip, S.; Miclăuş, V.; Pîrnău, A.; Tănăselia, C.; Almăşan, V.; Vasilescu, M.

    2005-06-01

    In this work, we will report a combined experimental and theoretical study on molecular and vibrational structure of 2,4-dinitrophenylhydrazine. FT-IR, FT-IR/ATR and Raman spectra of normal and deuterated DNPH have been recorded and analyzed in order to get new insights into molecular structure and properties of this molecule, with particular emphasize on its intra- and intermolecular hydrogen bonds (HB's). For computational purposes we used density functional theory (DFT) methods, with B3LYP and BLYP exchange-correlation functionals, in conjunction with 6-31G(d) basis set. All experimental vibrational bands have been discussed and assigned to normal modes on the basis of DFT calculations and isotopic shifts and by comparison to other dinitro- substituted compounds [V. Chiş, Chem. Phys., 300 (2004) 1]. To aid in mode assignments, we based on the direct comparison between experimental and calculated spectra by considering both the frequency sequence and the intensity pattern of the experimental and computed vibrational bands. It is also shown that semiempirical AM1 method predicts geometrical parameters and vibrational frequencies related to the HB in a pleasant agreement with experiment, being surprisingly accurate from this perspective.

  14. Inversion vibration of PH3+(X~ 2A2'') studied by zero kinetic energy photoelectron spectroscopy

    NASA Astrophysics Data System (ADS)

    Yang, Jie; Li, Juan; Hao, Yusong; Zhou, Chang; Mo, Yuxiang

    2006-08-01

    We report the first rotationally resolved spectroscopic studies on PH3+(X˜A2″2) using zero kinetic energy photoelectron spectroscopy and coherent VUV radiation. The spectra about 8000cm-1 above the ground vibrational state of PH3+(X˜A2″2) have been recorded. We observed the vibrational energy level splittings of PH3+(X˜A2″2) due to the tunneling effect in the inversion (symmetric bending) vibration (ν2+). The energy splitting for the first inversion vibrational state (0+/0-) is 5.8cm-1. The inversion vibrational energy levels, rotational constants, and adiabatic ionization energies (IEs) for ν2+=0-16 have been determined. The bond angles between the neighboring P-H bonds and the P-H bond lengths are also obtained using the experimentally determined rotational constants. With the increasing of the inversion vibrational excitations (ν2+), the bond lengths (P-H) increase a little and the bond angles (H-P-H) decrease a lot. The inversion vibrational energy levels have also been calculated by using one dimensional potential model and the results are in good agreement with the experimental data for the first several vibrational levels. In addition to inversion vibration, we also observed firstly the other two vibrational modes: the symmetric P-H stretching vibration (ν1+) and the degenerate bending vibration (ν4+). The fundamental frequencies for ν1+ and ν4+ are 2461.6 (±2) and 1043.9 (±2)cm-1, respectively. The first IE for PH3 was determined as 79670.9 (±1)cm-1.

  15. Separation of overlapping vibrational peaks in terahertz spectra using two-dimensional correlation spectroscopy

    NASA Astrophysics Data System (ADS)

    Hoshina, Hiromichi; Ishii, Shinya; Otani, Chiko

    2014-07-01

    In this study, the terahertz (THz) absorption spectra of poly(3-hydroxybutyrate) (PHB) were measured during isothermal crystallization at 90-120 °C. The temporal changes in the absorption spectra were analyzed using two-dimensional correlation spectroscopy (2DCOS). In the asynchronous plot, cross peaks were observed around 2.4 THz, suggesting that two vibrational modes overlap in the raw spectrum. By comparing this to the peak at 2.9 THz corresponding to the stretching mode of the helical structure of PHB and the assignment obtained using polarization spectroscopy, we concluded that the high-frequency band could be attributed to the vibration of the helical structure and the low-frequency band to the vibration between the helical structures. The exact frequencies of the overlapping vibrational bands and their assignments provide a new means to inspect the thermal behavior of the intermolecular vibrational modes. The large red-shift of the interhelix vibrational mode suggests a large anharmonicity in the vibrational potential.

  16. Quantitative Sum-Frequency Generation Vibrational Spectroscopy of Molecular Surfaces and Interfaces: Lineshape, Polarization and Orientation

    SciTech Connect

    Wang, Hongfei; Velarde, Luis; Gan, Wei; Fu, Li

    2015-04-01

    Sum-frequency generation vibrational spectroscopy (SFG) can provide detailed information and understanding of molecular vibrational spectroscopy, orientational and conformational structure, and interactions of molecular surfaces and interfaces, through quantitative measurement and analysis. In this review, we present the current status and discuss the main developments on the measurement of intrinsic SFG spectral lineshape, formulations for polarization measurement and orientation analysis of the SFG-VS spectra. The main focus is to present a coherent formulation and discuss the main concepts or issues that can help to make SFG-VS a quantitative analytical and research tool in revealing the chemistry and physics of complex molecular surface and interface.

  17. Multidimensional infrared spectroscopy reveals the vibrational and solvation dynamics of isoniazid

    NASA Astrophysics Data System (ADS)

    Shaw, Daniel J.; Adamczyk, Katrin; Frederix, Pim W. J. M.; Simpson, Niall; Robb, Kirsty; Greetham, Gregory M.; Towrie, Michael; Parker, Anthony W.; Hoskisson, Paul A.; Hunt, Neil T.

    2015-06-01

    The results of infrared spectroscopic investigations into the band assignments, vibrational relaxation, and solvation dynamics of the common anti-tuberculosis treatment Isoniazid (INH) are reported. INH is known to inhibit InhA, a 2-trans-enoyl-acyl carrier protein reductase enzyme responsible for the maintenance of cell walls in Mycobacterium tuberculosis but as new drug-resistant strains of the bacterium appear, next-generation therapeutics will be essential to combat the rise of the disease. Small molecules such as INH offer the potential for use as a biomolecular marker through which ultrafast multidimensional spectroscopies can probe drug binding and so inform design strategies but a complete characterization of the spectroscopy and dynamics of INH in solution is required to inform such activity. Infrared absorption spectroscopy, in combination with density functional theory calculations, is used to assign the vibrational modes of INH in the 1400-1700 cm-1 region of the infrared spectrum while ultrafast multidimensional spectroscopy measurements determine the vibrational relaxation dynamics and the effects of solvation via spectral diffusion of the carbonyl stretching vibrational mode. These results are discussed in the context of previous linear spectroscopy studies on solid-phase INH and its usefulness as a biomolecular probe.

  18. Multidimensional infrared spectroscopy reveals the vibrational and solvation dynamics of isoniazid.

    PubMed

    Shaw, Daniel J; Adamczyk, Katrin; Frederix, Pim W J M; Simpson, Niall; Robb, Kirsty; Greetham, Gregory M; Towrie, Michael; Parker, Anthony W; Hoskisson, Paul A; Hunt, Neil T

    2015-06-01

    The results of infrared spectroscopic investigations into the band assignments, vibrational relaxation, and solvation dynamics of the common anti-tuberculosis treatment Isoniazid (INH) are reported. INH is known to inhibit InhA, a 2-trans-enoyl-acyl carrier protein reductase enzyme responsible for the maintenance of cell walls in Mycobacterium tuberculosis but as new drug-resistant strains of the bacterium appear, next-generation therapeutics will be essential to combat the rise of the disease. Small molecules such as INH offer the potential for use as a biomolecular marker through which ultrafast multidimensional spectroscopies can probe drug binding and so inform design strategies but a complete characterization of the spectroscopy and dynamics of INH in solution is required to inform such activity. Infrared absorption spectroscopy, in combination with density functional theory calculations, is used to assign the vibrational modes of INH in the 1400-1700 cm(-1) region of the infrared spectrum while ultrafast multidimensional spectroscopy measurements determine the vibrational relaxation dynamics and the effects of solvation via spectral diffusion of the carbonyl stretching vibrational mode. These results are discussed in the context of previous linear spectroscopy studies on solid-phase INH and its usefulness as a biomolecular probe. PMID:26049421

  19. Broadband spectroscopy of the electromagnetic properties of aqueous ferrofluids for biomedical applications

    NASA Astrophysics Data System (ADS)

    Bellizzi, G.; Bucci, O. M.; Capozzoli, A.

    2010-10-01

    This paper presents the results of a broadband spectroscopy study, over the frequency range 1 MHz-2 GHz, of the electromagnetic properties of a ferrofluid consisting of magnetite nanoparticles, with a mean magnetic size of 10 nm, dispersed in water. An innovative measurement approach and apparatus, allowing an accurate determination of the permeability, even in presence of a large permittivity, have been developed to characterize the suspension. The results obtained show a significant magnetic response over the whole analyzed frequency range, with a good agreement with the theoretical models describing the magnetization dynamics of these systems. Moreover, a strong dielectric response has been detected, which is in satisfactory agreement with the models developed to describe the dielectric behavior of charged nanoparticles suspended in aqueous solution. This result implies that measurement techniques able to determine both the permittivity and permeability become mandatory for a reliable determination of the magnetic properties of aqueous ferrofluids. The accuracy of the determined permeability spectrum is estimated to be of the order of few percent, so these results provide a reliable experimental basis to estimate how fruitful the use of magnetic nanoparticles can be in relevant biomedical applications.

  20. Analysis of biomedical signals by flicker-noise spectroscopy: Identification of photosensitive epilepsy using magnetoencephalograms

    NASA Astrophysics Data System (ADS)

    Timashev, S. F.; Polyakov, Yu. S.; Yulmetyev, R. M.; Demin, S. A.; Panischev, O. Yu.; Shimojo, S.; Bhattacharya, J.

    2009-04-01

    The flicker-noise spectroscopy (FNS) approach is used to determine the dynamic characteristics of neuromagnetic responses by analyzing the magnetoencephalographic (MEG) signals recorded as the response of a group of control human subjects and a patient with photosensitive epilepsy (PSE) to equiluminant flickering stimuli of different color combinations. Parameters characterizing the analyzed stochastic biomedical signals for different frequency bands are identified. It is shown that the classification of the parameters of analyzed MEG responses with respect to different frequency bands makes it possible to separate the contribution of the chaotic component from the overall complex dynamics of the signals. It is demonstrated that the chaotic component can be adequately described by the anomalous diffusion approximation in the case of control subjects. On the other hand, the chaotic component for the patient is characterized by a large number of high-frequency resonances. This implies that healthy organisms can suppress the perturbations brought about by the flickering stimuli and reorganize themselves. The organisms affected by photosensitive epilepsy no longer have this ability. This result also gives a way to simulate the separate stages of the brain cortex activity in vivo. The examples illustrating the use of the “FNS device” for identifying even the slightest individual differences in the activity of human brains using their responses to external standard stimuli show a unique possibility to develop the “individual medicine” of the future.

  1. Microwave spectroscopy of furfural in vibrationally excited states

    NASA Astrophysics Data System (ADS)

    Motiyenko, R. A.; Alekseev, E. A.; Dyubko, S. F.

    2007-07-01

    The results of microwave spectrum investigation of the excited vibrational states of furfural in the frequency range between 49 and 149 GHz are reported. In total 15 excited vibrational states (9 for trans-furfural and 6 for cis-furfural) were assigned and analyzed. Six of the 15 investigated states were assigned for the first time. Accurate values of rigid rotor and quartic centrifugal distortion constants of asymmetric top Hamiltonian have been determined for 13 excited states. Also for some states several sextic and octic level constants were needed in order to fit the data within experimental accuracy. The vt = 3 and vs = 1, va = 1 states of trans-furfural were found to be strongly perturbed and only rotational transitions with low Ka values can be reliably identified in this study.

  2. Vibrational energy flow in photoactive yellow protein revealed by infrared pump-visible probe spectroscopy.

    PubMed

    Nakamura, Ryosuke; Hamada, Norio

    2015-05-14

    Vibrational energy flow in the electronic ground state of photoactive yellow protein (PYP) is studied by ultrafast infrared (IR) pump-visible probe spectroscopy. Vibrational modes of the chromophore and the surrounding protein are excited with a femtosecond IR pump pulse, and the subsequent vibrational dynamics in the chromophore are selectively probed with a visible probe pulse through changes in the absorption spectrum of the chromophore. We thus obtain the vibrational energy flow with four characteristic time constants. The vibrational excitation with an IR pulse at 1340, 1420, 1500, or 1670 cm(-1) results in ultrafast intramolecular vibrational redistribution (IVR) with a time constant of 0.2 ps. The vibrational modes excited through the IVR process relax to the initial ground state with a time constant of 6-8 ps in parallel with vibrational cooling with a time constant of 14 ps. In addition, upon excitation with an IR pulse at 1670 cm(-1), we observe the energy flow from the protein backbone to the chromophore that occurs with a time constant of 4.2 ps. PMID:25896223

  3. A vibrational spectroscopy study on anserine and its aqueous solutions.

    PubMed

    Akkaya, Y; Balci, K; Goren, Y; Akyuz, S; Stricker, M C; Stover, D D; Ritzhaupt, G; Collier, W B

    2015-10-01

    In this study based on vibrational spectroscopic measurements and Density Functional Theory (DFT), we aimed for a reliable interpretation of the IR and Raman spectra recorded for anserine in the solid phase and water (H2O) and heavy water (D2O) solutions. Initial DFT calculations at the B3LYP/6-31G(d) searched possible conformers of the anserine zwitterion using a systematic conformational search. The corresponding equilibrium geometrical parameters and vibrational spectral data were determined for each of the stable conformers (in water) by the geometry optimization and hessian calculations performed at the same level of theory using the polarized continuum model (PCM). The same calculations were repeated to determine the most energetically preferred dimer structure for the molecule and the associated geometry, force field and vibrational spectral data. The harmonic force constants obtained from these calculations were scaled by the Scaled Quantum Mechanical Force Field (SQM) method and then used in the calculation of the refined wavenumbers, potential energy distributions, IR and Raman intensities. These refined theoretical data, which confirm the zwitterion structure for anserine in the solid phase or aqueous solvents, revealed the remarkable effects of intermolecular hydrogen bonding on the structural properties and observed IR and Raman spectra of this molecule. PMID:25997178

  4. Vibrational Spectroscopy of the CCl[subscript 4] v[subscript 1] Mode: Theoretical Prediction of Isotopic Effects

    ERIC Educational Resources Information Center

    Gaynor, James D.; Wetterer, Anna M.; Cochran, Rea M.; Valente, Edward J.; Mayer, Steven G.

    2015-01-01

    Raman spectroscopy is a powerful experimental technique, yet it is often missing from the undergraduate physical chemistry laboratory curriculum. Tetrachloromethane (CCl[subscript 4]) is the ideal molecule for an introductory vibrational spectroscopy experiment and the symmetric stretch vibration contains fine structure due to isotopic variations…

  5. Far-red to near infrared emission and scattering spectroscopy for biomedical applications

    NASA Astrophysics Data System (ADS)

    Zhang, Gang

    2001-06-01

    The thesis investigates the far-red and near infrared (NIR) spectral region from biomedical tissue samples for monitoring the state of tissues. The NIR emission wing intensity is weak in comparison to the emission in the visible spectral region. The wing emission from biomedical samples has revealed meaningful information about the state of the tissues. A model is presented to explain the shape of the spectral wing based on a continuum of energy levels. The wing can be used to classify different kinds of tissues; especially it can be used to differentiate cancer part from normal human breast tissues. The research work of the far-red emission from thermal damaged tissue samples shows that the emission intensity in this spectral region is proportional to the extent of the thermal damage of the tissue. Near infrared spectral absorption method is used to investigate blood hemodynamics (perfusion and oxygenation) in brain during sleep-wake transition. The result of the research demonstrates that the continuous wave (CW) type near infrared spectroscopy (NIRS) device can be used to investigate brain blood perfusion and oxygenation with a similar precision with frequency domain (FD) type device. The human subject sleep and wake transition, has been monitored by CW type NIRS instrument with traditional electroencephalograph (EEG) method. Parallel change in oxy-Hb and deoxy-Hb is a discrete event that occurs in the transition from both sleep to wakefulness and wakefulness to sleep. These hemodynamic switches are generally about few seconds delayed from the human decided transition point between sleep and wake on the polygraph EEG recording paper. The combination of NIRS and EEG methods monitor the brain activity, gives more information about the brain activity. The sleep apnea investigation was associated with recurrent apneas, insufficient nasal continuous positive airway pressure (CPAP) and the different response of the peripheral and central compartments to breathing

  6. Damage-free vibrational spectroscopy of biological materials in the electron microscope

    PubMed Central

    Rez, Peter; Aoki, Toshihiro; March, Katia; Gur, Dvir; Krivanek, Ondrej L.; Dellby, Niklas; Lovejoy, Tracy C.; Wolf, Sharon G.; Cohen, Hagai

    2016-01-01

    Vibrational spectroscopy in the electron microscope would be transformative in the study of biological samples, provided that radiation damage could be prevented. However, electron beams typically create high-energy excitations that severely accelerate sample degradation. Here this major difficulty is overcome using an ‘aloof' electron beam, positioned tens of nanometres away from the sample: high-energy excitations are suppressed, while vibrational modes of energies <1 eV can be ‘safely' investigated. To demonstrate the potential of aloof spectroscopy, we record electron energy loss spectra from biogenic guanine crystals in their native state, resolving their characteristic C–H, N–H and C=O vibrational signatures with no observable radiation damage. The technique opens up the possibility of non-damaging compositional analyses of organic functional groups, including non-crystalline biological materials, at a spatial resolution of ∼10 nm, simultaneously combined with imaging in the electron microscope. PMID:26961578

  7. Damage-free vibrational spectroscopy of biological materials in the electron microscope

    NASA Astrophysics Data System (ADS)

    Rez, Peter; Aoki, Toshihiro; March, Katia; Gur, Dvir; Krivanek, Ondrej L.; Dellby, Niklas; Lovejoy, Tracy C.; Wolf, Sharon G.; Cohen, Hagai

    2016-03-01

    Vibrational spectroscopy in the electron microscope would be transformative in the study of biological samples, provided that radiation damage could be prevented. However, electron beams typically create high-energy excitations that severely accelerate sample degradation. Here this major difficulty is overcome using an `aloof' electron beam, positioned tens of nanometres away from the sample: high-energy excitations are suppressed, while vibrational modes of energies <1 eV can be `safely' investigated. To demonstrate the potential of aloof spectroscopy, we record electron energy loss spectra from biogenic guanine crystals in their native state, resolving their characteristic C-H, N-H and C=O vibrational signatures with no observable radiation damage. The technique opens up the possibility of non-damaging compositional analyses of organic functional groups, including non-crystalline biological materials, at a spatial resolution of ~10 nm, simultaneously combined with imaging in the electron microscope.

  8. Expanded Choices for Vibration-Rotation Spectroscopy in the Physical Chemistry Teaching Laboratory

    NASA Astrophysics Data System (ADS)

    Schmitz, Joel R.; Dolson, David A.

    2015-06-01

    Many third-year physical chemistry laboratory students in the US analyze the vibration-rotation spectrum of HCl in support of lecture concepts in quantum theory and molecular spectroscopy. Contemporary students in physical chemistry teaching laboratories increasingly have access to FTIR spectrometers with 1/8th wn resolution, which allows for expanded choices of molecules for vibration-rotation spectroscopy. Here we present the case for choosing HBr/DBr for such a study, where the 1/8th wn resolution enables the bromine isotopic lines to be resolved. Vibration-rotation lines from the fundamental and first-overtone bands of four hydrogen bromide isotopomers are combined in a global analysis to determine molecular spectroscopic constants. Sample production, spectral appearance, analysis and results will be presented for various resolutions commonly available in teaching laboratories.

  9. Molecular vibrational dynamics in water studied by femtosecond coherent anti-Stokes Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhao, Yang; Zhang, Sheng; Zhou, Boyang; Dong, Zhiwei; Chen, Deying; Zhang, Zhonghua; Xia, Yuanqin

    2014-10-01

    We utilized femtosecond time-resolved coherent anti-Stokes Raman spectroscopy (CARS) to study the ultrafast vibrational dynamics in distilled water at room temperature. The CARS signals from the broad OH-stretching modes between 3100 cm-1 and 3700 cm-1 were obtained and analyzed. The dephasing times of four Raman modes in water were detected and compared.

  10. Chiral Vibrational Structures of Proteins at Interfaces Probed by Sum Frequency Generation Spectroscopy

    PubMed Central

    Fu, Li; Wang, Zhuguang; Yan, Elsa C.Y.

    2011-01-01

    We review the recent development of chiral sum frequency generation (SFG) spectroscopy and its applications to study chiral vibrational structures at interfaces. This review summarizes observations of chiral SFG signals from various molecular systems and describes the molecular origins of chiral SFG response. It focuses on the chiral vibrational structures of proteins and presents the chiral SFG spectra of proteins at interfaces in the C-H stretch, amide I, and N-H stretch regions. In particular, a combination of chiral amide I and N-H stretches of the peptide backbone provides highly characteristic vibrational signatures, unique to various secondary structures, which demonstrate the capacity of chiral SFG spectroscopy to distinguish protein secondary structures at interfaces. On the basis of these recent developments, we further discuss the advantages of chiral SFG spectroscopy and its potential application in various fields of science and technology. We conclude that chiral SFG spectroscopy can be a new approach to probe chiral vibrational structures of protein at interfaces, providing structural and dynamic information to study in situ and in real time protein structures and dynamics at interfaces. PMID:22272140

  11. Coherent Multidimensional Vibrational Spectroscopy of Biomolecules; Concepts, Simulations and Challenges

    PubMed Central

    Zhuang, Wei; Hayashi, Tomoyuki; Mukamel, Shaul

    2009-01-01

    The response of complex molecules to sequences of femtosecond infrared pulses provides a unique window into their structure, dynamics and fluctuating environments, as projected into the vibrational degrees of freedom. In this review we survey the basic principles of these novel two dimensional infrared (2DIR) analogues of multidimensional NMR. The perturbative approach for computing the nonlinear optical response of coupled localized chromophores is introduced and applied to the amide backbone transitions of protein, liquid water, membrane lipids, and amyloid fibrils. The signals are analyzed using classical MD simulations combined with an effective fluctuating Hamiltonian for coupled localized anharmonic vibrations whose dependence on the local electrostatic environment is parameterized by an ab initio map. Several simulation protocols. Including the Cumulant expansion of Gaussian Fluctuation (CGF), a quasiparticle scattering approach (NEE), the Stochastic Liouville Equations (SLE), and Direct Numerical Propagation are surveyed. These are implemented in a code SPECTRON that interfaces with standard electronic structure and molecular mechanisms MD codes. Chirality-induced techniques which dramatically enhance the resolution are demonstrated. Signatures of conformational and hydrogen bonding fluctuations, protein folding, and chemical exchange processes are discussed. PMID:19415637

  12. Spectroscopy, reaction, and photodissociation in highly vibrationally excited molecules. Technical progress report

    SciTech Connect

    Not Available

    1991-12-31

    Highly vibrationally excited molecules often control the course of chemical reactions in the atmosphere, combustion, plasmas, and many other environments. The research described in this Progress Report uses laser excitation and interrogation techniques to study and control the dynamics of highly vibrationally excited molecules. In particular, they show that it is possible to unravel the details and influence the course of photodissociation and bimolecular reaction. The experiments use laser excitation of overtone vibrations to prepare highly vibrationally excited molecules, frequently with single quantum state resolution, and laser spectroscopy to monitor the subsequent behavior of the excited molecule. We have studied the vibrationally mediated photodissociation and the bond- and state-selected bimolecular reaction of highly vibrationally excited molecules. In the first process, one photon creates a highly excited molecule, a second photon from another laser dissociates it, and light from a third laser detects the population of individual product quantum states. This approach allows us to explore otherwise inaccessible regions of the ground and excited state potential energy surface and, by exciting to the proper regions of the surface, to control the breaking of a selected chemical bond. In the second process, the highly vibrationally excited molecule reacts with an atom formed either in a microwave discharge or by photolysis and another laser interrogates the products. We have used this approach to demonstrate mode- and bond-selected bimolecular reactions in which the initial excitation controls the subsequent chemistry. 30 refs., 8 figs.

  13. Vibrational spectroscopy and intramolecular energy transfer in isocyanic acid (HNCO)

    SciTech Connect

    Coffey, M.J.; Berghout, H.L.; Woods, E. III; Crim, F.F.

    1999-06-01

    Room temperature photoacoustic spectra in the region of the first through the fourth overtones (2{nu}{sub 1} to 5{nu}{sub 1}) and free-jet action spectra of the second through the fourth overtones (3{nu}{sub 1} to 5{nu}{sub 1}) of the N{endash}H stretching vibration permit analysis of the vibrational and rotational structure of HNCO. The analysis identifies the strong intramolecular couplings that control the early stages of intramolecular vibrational energy redistribution (IVR) and gives the interaction matrix elements between the zero-order N{endash}H stretching states and the other zero-order states with which they interact. The experimentally determined couplings and zero-order state separations are consistent with {ital ab initio} calculations of East, Johnson, and Allen [J. Chem. Phys. {bold 98}, 1299 (1993)], and comparison with the calculation identifies the coupled states and likely interactions. The states most strongly coupled to the pure N{endash}H stretching zero-order states are ones with a quantum of N{endash}H stretching excitation ({nu}{sub 1}) replaced by different combinations of N{endash}C{endash}O asymmetric or symmetric stretching excitation ({nu}{sub 2} or {nu}{sub 3}) and {ital trans}-bending excitation ({nu}{sub 4}). The two strongest couplings of the n{nu}{sub 1} state are to the states (n{minus}1){nu}{sub 1}+{nu}{sub 2}+{nu}{sub 4} and (n{minus}1){nu}{sub 1}+{nu}{sub 3}+2{nu}{sub 4}, and sequential couplings through a series of low order resonances potentially play a role. The analysis shows that if the pure N{endash}H stretch zero-order state were excited, energy would initially flow out of that mode into the strongly coupled mode in 100 fs to 700 fs, depending on the level of initial excitation. {copyright} {ital 1999 American Institute of Physics.}

  14. Vibrational spectroscopy of the sulphate mineral sturmanite from Kuruman manganese deposits, South Africa.

    PubMed

    Frost, Ray L; Scholz, Ricardo; López, Andrés; Xi, Yunfei; Lana, Cristiano

    2014-12-10

    The mineral sturmanite is a hydrated calcium iron aluminium manganese sulphate tetrahydroxoborate hydroxide of formula Ca6(Fe, Al, Mn)2(SO4)2(B(OH)4)(OH)12·26H2O. We have studied the mineral sturmanite using a number of techniques, including SEM with EPMA and vibrational spectroscopy. Chemical analysis shows a homogeneous phase, composed by Ca, Fe, Mn, S, Al and Si. B is not determined in this EPMA technique. An intense Raman band at 990cm(-1) is assigned to the SO4(2-) symmetric stretching mode. Raman spectroscopy identifies multiple sulphate symmetric stretching modes in line with the three sulphate crystallographically different sites. Raman spectroscopy also identifies a band at 1069cm(-1) which may be attributed to a carbonate symmetric stretching mode, indicating the presence of thaumasite. Infrared spectra display two bands at 1080 and 1107cm(-1) assigned to the SO4(2-) antisymmetric stretching modes. The observation of multiple bands in this ν4 spectral region offers evidence for the reduction in symmetry of the sulphate anion from Td to C2v or even lower symmetry. The Raman band at 3622cm(-1) is assigned to the OH unit stretching vibration and the broad feature at around 3479cm(-1) to water stretching bands. Infrared spectroscopy shows a set of broad overlapping bands in the OH stretching region. Vibrational spectroscopy enables an assessment of the molecular structure of sturmanite to be made. PMID:24929311

  15. Vibrational spectroscopy of the sulphate mineral sturmanite from Kuruman manganese deposits, South Africa

    NASA Astrophysics Data System (ADS)

    Frost, Ray L.; Scholz, Ricardo; López, Andrés; Xi, Yunfei; Lana, Cristiano

    2014-12-01

    The mineral sturmanite is a hydrated calcium iron aluminium manganese sulphate tetrahydroxoborate hydroxide of formula Ca6(Fe, Al, Mn)2(SO4)2(B(OH)4)(OH)12·26H2O. We have studied the mineral sturmanite using a number of techniques, including SEM with EPMA and vibrational spectroscopy. Chemical analysis shows a homogeneous phase, composed by Ca, Fe, Mn, S, Al and Si. B is not determined in this EPMA technique. An intense Raman band at 990 cm-1 is assigned to the SO42- symmetric stretching mode. Raman spectroscopy identifies multiple sulphate symmetric stretching modes in line with the three sulphate crystallographically different sites. Raman spectroscopy also identifies a band at 1069 cm-1 which may be attributed to a carbonate symmetric stretching mode, indicating the presence of thaumasite. Infrared spectra display two bands at 1080 and 1107 cm-1 assigned to the SO42- antisymmetric stretching modes. The observation of multiple bands in this ν4 spectral region offers evidence for the reduction in symmetry of the sulphate anion from Td to C2v or even lower symmetry. The Raman band at 3622 cm-1 is assigned to the OH unit stretching vibration and the broad feature at around 3479 cm-1 to water stretching bands. Infrared spectroscopy shows a set of broad overlapping bands in the OH stretching region. Vibrational spectroscopy enables an assessment of the molecular structure of sturmanite to be made.

  16. Cation Far Infrared Vibrational Spectroscopy of Polycyclic Aromatic Hydrocarbons

    NASA Astrophysics Data System (ADS)

    Kong, W.; Zhang, J.; Han, F.

    2009-06-01

    The far infrared (FIR) region is crucial for spectroscopic investigations because of the existence of skeletal modes of moderately sized molecules. However, our knowledge of FIR modes is significantly lacking, largely due to the limited availability of light sources and detectors in this spectral region. The technique "pulsed field ionization zero kinetic energy electron spectroscopy" (PFI-ZEKE) is ideal for studies of FIR spectroscopy. This is because the low internal energy of the cation associated with the skeletal modes is particularly beneficial for the stability of the corresponding Rydberg states. In this work, we report our effort in studies of FIR spectroscopy of cationic polycyclic aromatic hydrocarbons (PAH). Using laser desorption, we can vaporize the non-volatile PAH for gas phase spectroscopy. To ensure the particle density and therefore the critical ion density in prolonging the lifetime of Rydberg electrons, we have used a "chamber-in-a-chamber" design and significantly shortened the distance between the desorption region and the detection region. From our studies of catacondensed PAHs, we have observed the emergence of the flexible waving modes with the increasing length of the molecular ribbon. Pericondensed PAHs, on the other hand, have shown significant out of plane IR active transitions. The planarity of the molecular frame is therefore a question of debate. The FIR modes are also interesting for another reason: they are also telltales of the precision of modern computational packages. The combination of experimental and theoretical studies will help with the identification of the chemical composition of the interstellar medium. This effort therefore directly serves the missions of the Spitzer Space Observatory and more importantly, the missions of the Herschel Space Observatory.

  17. Bilayer Charge Reversal and Modification of Lipid Organization by Dendrimers as Observed by Sum-Frequency Vibrational Spectroscopy.

    PubMed

    Keszthelyi, Tamás; Holló, Gábor; Nyitrai, Gabriella; Kardos, Julianna; Héja, László

    2015-07-21

    Polyamidoamine (PAMAM) dendrimers are hyperbranched, nanosized polymers with promising biomedical applications as nanocarriers in targeted drug delivery and gene therapy. For the development of safe dendrimer-based biomedical applications it is necessary to gain an understanding of the detailed mechanism of the interactions of both cationic and anionic dendrimers with cell membranes. To characterize dendrimer-membrane interactions we applied solid-supported lipid bilayers as biomembrane models and utilized infrared-visible sum-frequency vibrational spectroscopy to independently probe the interactions of cationic G5-NH2 and anionic G4.5-COONa dendrimers with the two leaflets of the lipid bilayers. Interaction with both dendrimers led to changes in the interfacial water structure and charge density as evidenced by the changes in the OH band intensities in the sum-frequency spectra of the bilayers. Interaction with the G5-NH2 dendrimer also led to a unique inversion of the sign of the OH-stretch amplitudes, in addition to a decrease in their absolute values. We suggest that the positively charged amino groups on the G5-NH2 dendrimer surface bind to the negatively charged bilayer, while uncompensated positive charges not involved in the binding cause a reversal of the electric field and thus an opposite orientation of the interfacial water molecules. More subtle but nonetheless significant changes were seen in the relative magnitudes of the CH amplitudes. The methyl antisymmetric to symmetric stretch amplitude ratios are altered, implying changes in the tilt angles of the phospholipid alkyl chains. The conformational order of the phospholipid alkyl chains of both leaflets is also influenced by the G5-NH2 dendrimer while G4.5-COONa has no effect on the alkyl chain conformation. PMID:26099064

  18. Correlating the motion of electrons and nuclei with two-dimensional electronic–vibrational spectroscopy

    PubMed Central

    Oliver, Thomas A. A.; Lewis, Nicholas H. C.; Fleming, Graham R.

    2014-01-01

    Multidimensional nonlinear spectroscopy, in the electronic and vibrational regimes, has reached maturity. To date, no experimental technique has combined the advantages of 2D electronic spectroscopy and 2D infrared spectroscopy, monitoring the evolution of the electronic and nuclear degrees of freedom simultaneously. The interplay and coupling between the electronic state and vibrational manifold is fundamental to understanding ensuing nonradiative pathways, especially those that involve conical intersections. We have developed a new experimental technique that is capable of correlating the electronic and vibrational degrees of freedom: 2D electronic–vibrational spectroscopy (2D-EV). We apply this new technique to the study of the 4-(di-cyanomethylene)-2-methyl-6-p-(dimethylamino)styryl-4H-pyran (DCM) laser dye in deuterated dimethyl sulfoxide and its excited state relaxation pathways. From 2D-EV spectra, we elucidate a ballistic mechanism on the excited state potential energy surface whereby molecules are almost instantaneously projected uphill in energy toward a transition state between locally excited and charge-transfer states, as evidenced by a rapid blue shift on the electronic axis of our 2D-EV spectra. The change in minimum energy structure in this excited state nonradiative crossing is evident as the central frequency of a specific vibrational mode changes on a many-picoseconds timescale. The underlying electronic dynamics, which occur on the hundreds of femtoseconds timescale, drive the far slower ensuing nuclear motions on the excited state potential surface, and serve as a excellent illustration for the unprecedented detail that 2D-EV will afford to photochemical reaction dynamics. PMID:24927586

  19. Correlating the motion of electrons and nuclei with two-dimensional electronic-vibrational spectroscopy.

    PubMed

    Oliver, Thomas A A; Lewis, Nicholas H C; Fleming, Graham R

    2014-07-15

    Multidimensional nonlinear spectroscopy, in the electronic and vibrational regimes, has reached maturity. To date, no experimental technique has combined the advantages of 2D electronic spectroscopy and 2D infrared spectroscopy, monitoring the evolution of the electronic and nuclear degrees of freedom simultaneously. The interplay and coupling between the electronic state and vibrational manifold is fundamental to understanding ensuing nonradiative pathways, especially those that involve conical intersections. We have developed a new experimental technique that is capable of correlating the electronic and vibrational degrees of freedom: 2D electronic-vibrational spectroscopy (2D-EV). We apply this new technique to the study of the 4-(di-cyanomethylene)-2-methyl-6-p-(dimethylamino)styryl-4H-pyran (DCM) laser dye in deuterated dimethyl sulfoxide and its excited state relaxation pathways. From 2D-EV spectra, we elucidate a ballistic mechanism on the excited state potential energy surface whereby molecules are almost instantaneously projected uphill in energy toward a transition state between locally excited and charge-transfer states, as evidenced by a rapid blue shift on the electronic axis of our 2D-EV spectra. The change in minimum energy structure in this excited state nonradiative crossing is evident as the central frequency of a specific vibrational mode changes on a many-picoseconds timescale. The underlying electronic dynamics, which occur on the hundreds of femtoseconds timescale, drive the far slower ensuing nuclear motions on the excited state potential surface, and serve as a excellent illustration for the unprecedented detail that 2D-EV will afford to photochemical reaction dynamics. PMID:24927586

  20. Gas Phase Spectra and Structural Determination of Glucose 6 Phosphate Using Cryogenic Ion Vibrational Spectroscopy

    NASA Astrophysics Data System (ADS)

    Kregel, Steven J.; Voss, Jonathan; Marsh, Brett; Garand, Etienne

    2014-06-01

    Glucose-6-Phosphate (G6P) is one member of a class of simple phosphorylated sugars that are relevant in biological processes. We have acquired a gas phase infrared spectrum of G6P- using cryogenic ion vibrational spectroscopy (CIVS) in a home-built spectrometer. The experimental spectrum was compared with calculated vibrational spectra from a systematic conformer search. For both of the α and β anomers, results show that only the lowest energy conformers are present in the gas phase. If spectral signatures for similar sugars could be cataloged, it would allow for conformer-specific determination of mixture composition, for example, for glycolyzation processes.

  1. Edge chlorination of hexa-peri-hexabenzocoronene investigated by density functional theory and vibrational spectroscopy.

    PubMed

    Maghsoumi, Ali; Narita, Akimitsu; Dong, Renhao; Feng, Xinliang; Castiglioni, Chiara; Müllen, Klaus; Tommasini, Matteo

    2016-04-28

    We investigate the molecular structure and vibrational properties of perchlorinated hexa-peri-hexabenzocoronene (HBC-Cl) by density functional theory (DFT) calculations and IR and Raman spectroscopy, in comparison to the parent HBC. The theoretical and experimental IR and Raman spectra demonstrated very good agreement, elucidating a number of vibrational modes corresponding to the observed peaks. Compared with the parent HBC, the edge chlorination significantly alters the planarity of the molecule. Nevertheless, the results indicated that such structural distortion does not significantly impair the π-conjugation of such polycyclic aromatic hydrocarbons. PMID:26912311

  2. Vibrational neutron spectroscopy of collagen and model polypeptides.

    PubMed Central

    Middendorf, H D; Hayward, R L; Parker, S F; Bradshaw, J; Miller, A

    1995-01-01

    A pulsed source neutron spectrometer has been used to measure vibrational spectra (20-4000 cm-1) of dry and hydrated type I collagen fibers, and of two model polypeptides, polyproline II and (prolyl-prolyl-glycine)10, at temperatures of 30 and 120 K. the collagen spectra provide the first high resolution neutron views of the proton-dominated modes of a protein over a wide energy range from the low frequency phonon region to the rich spectrum of localized high frequency modes. Several bands show a level of fine structure approaching that of optical data. The principal features of the spectra are assigned. A difference spectrum is obtained for protein associated water, which displays an acoustic peak similar to pure ice and a librational band shifted to lower frequency by the influence of the protein. Hydrogen-weighted densities of states are extracted for collagen and the model polypeptides, and compared with published calculations. Proton mean-square displacements are calculated from Debye-Waller factors measured in parallel quasi-elastic neutron-scattering experiments. Combined with the collagen density of states function, these yield an effective mass of 14.5 a.m.u. for the low frequency harmonic oscillators, indicating that the extended atom approximation, which simplifies analyses of low frequency protein dynamics, is appropriate. PMID:8527680

  3. Thermochromism in polyalkylthiophenes: Molecular aspects from vibrational spectroscopy

    NASA Astrophysics Data System (ADS)

    Zerbi, G.; Chierichetti, B.; Ingänas, O.

    1991-03-01

    It is known that polyalkylthiophenes show reversible thermochromism within a well-defined temperature range. The vibrational infrared and Raman spectra are used as structural probes for understanding the structures of polyhexyl and polyoctyl thiophenes at room temperature and their evolution with temperature during the thermochromic process. The seemingly sample IR and Raman spectra of these materials are explained in terms of the theory of the effective conjugation coordinate which also accounts for the observed ``dispersion'' of the Raman spectrum with exciting wavelength or from solid to solution states in terms of changes of effective conjugation length. A detailed description of the structure of the system is reached. At room T the sample consists mainly of two phases: (i) an ordered phase with the alkyl side chains in the transplanar structure and the main chain in a quasicoplanar or coplanar conformation and (ii) a disordered phase with the alkyl residue fully conformationally coiled and the main chain conformationally twisted with the torsional angle of ˜ 30°. Upon heating, the relative concentration of the disordered phase increases. The temperature dependence of the side chain and the main chain conformations are similar, thus showing that the coiling of the side chain drives the twisting of the main chain. The thermochromism is thus accounted for.

  4. Vibrational spectroscopy for online monitoring of extraction solvent degradation products

    SciTech Connect

    Peterson, J.; Robinson, T.; Bryan, S.A.; Levitskaia, T.G.

    2013-07-01

    In our research, we are exploring the potential of online monitoring of the organic solvents for the flowsheets relevant to the used nuclear fuel reprocessing and tributyl phosphate (TBP)- based extraction processes in particular. Utilization of vibrational spectroscopic techniques permits the discrimination of the degradation products from the primary constituents of the loaded extraction solvent. Multivariate analysis of the spectral data facilitates development of the regression models for their quantification in real time and potentially enables online implementation of a monitoring system. Raman and FTIR spectral databases were created and used to develop the regression partial least squares (PLS) chemometric models for the quantitative prediction of HDBP (dibutyl phosphoric acid) degradation product, TBP, and UO{sub 2}{sup 2+} extraction organic product phase. It was demonstrated that both these spectroscopic techniques are suitable for the quantification of the Purex solvent components in the presence of UO{sub 2}(NO{sub 3}){sub 2}. Developed PLS models successfully predicted HDBP and TBP organic concentrations in simulated Purex solutions.

  5. Clathrate hydrates studied by diffraction and vibrational spectroscopy.

    NASA Astrophysics Data System (ADS)

    Jenkins, Timothy; Hemley, Russell; Mao, Wendy; Mao, Ho-Kwang; Militzer, Burkhard; Struzhkin, Viktor

    2007-03-01

    Clathrate hydrate structures are a potentially viable method for hydrogen storage (Mao and Mao 2004). For simple hydrogen-water clathrates, low temperatures (<150 K) or high pressures (>2 kbar) are needed for stability. We investigated, using inelastic neutron spectroscopy, the hydrogen storage character of a clathrate of hydrogen with the addition of tetrahydrofuran as a promoter molecule. The addition of tetrahydrofuran allows the formation of the clathrate structure at elevated temperature and decreased pressure as compared to the hydrogen clathrate (Lee, et al. 2005). In addition we have examined the higher pressure clathrate forms at lower temperatures. High pressure diamond anvil work has allowed Raman and x-ray spectroscopy on novel clathrate environments. Analysis these model compounds will assist in future investigations to additional clathrate compounds. Lee, Huen, et al. ``Tuning Clathrate Hydrates for Hydrogen Storage.'' Nature 434 (April 2005): 743-746. Mao, Wendy, and Ho-kwang Mao. ``Hydrogen Storage in Molecular Compounds.'' Proceedings of the National Academy of Sciences 101, no. 3 (2004): 708-710.

  6. Two-photon vibrational spectroscopy for biosciences based on surface-enhanced hyper-Raman scattering

    PubMed Central

    Kneipp, Janina; Kneipp, Harald; Kneipp, Katrin

    2006-01-01

    Two-photon excitation is gaining rapidly in interest and significance in spectroscopy and microscopy. Here we introduce a new approach that suggests versatile optical labels suitable for both one- and two-photon excitation and also two-photon-excited ultrasensitive, nondestructive chemical probing. The underlying spectroscopic effect is the incoherent inelastic scattering of two photons on the vibrational quantum states called hyper-Raman scattering (HRS). The rather weak effect can be strengthened greatly if HRS takes place in the local optical fields of gold and silver nanostructures. This so-called surface-enhanced HRS (SEHRS) is the two-photon analogue to surface-enhanced Raman scattering (SERS). SEHRS provides structurally sensitive vibrational information complementary to those obtained by SERS. SEHRS combines the advantages of two-photon spectroscopy with the structural information of vibrational spectroscopy and the high-sensitivity and nanometer-scale local confinement of plasmonics-based spectroscopy. We infer effective two-photon cross-sections for SEHRS on the order of 10−46 to 10−45 cm4·s, similar to or higher than the best “action” cross-sections (product of the two-photon absorption cross-section and fluorescence quantum yield) for two-photon fluorescence, and we demonstrate HRS on biological structures such as single cells after incubation with gold nanoparticles. PMID:17088534

  7. Time-Resolved Light Scattering and Fluorescence Spectroscopy in Biomedical and Model Random Media

    NASA Astrophysics Data System (ADS)

    Das, Bidyut Baran

    Optical spectroscopy, light scattering and ultrafast time-gated imaging have been shown to offer novel approaches to study the optical characteristics of various biomedical and other random media. Fluorescence spectra from human malignant and nonmalignant breast tissues were measured at 300 nm excitation and a significant spectral difference was found between the two tissue types by using the ratio of fluorescence intensities at 340 and 440 nm. Optical density measurements on thin breast tissues show that the scattering cross-sections of breast tissues are relatively constant over the visible and the uv region. Transport mean free paths and the absorption lengths for various tissues and model random media were measured using time-resolved transmission. The scattering coefficients for human breast and chicken tissues were found to remain relatively constant in 570-630 nm wavelength region while they change significantly at 1064 nm. Chicken breast and fat tissues were found to be good models for human breast tissues as the values of the optical parameters of the two tissue types are about the same. The less scattering observed at 1064 nm makes tissues more transparent in the NIR region making it easier to image in thick tissues. Time-resolved backscattering measurements show that the scattering and the absorption parameters of a random medium can be obtained accurately in a two-fiber configuration as long as the radial distance is more than about seven times the transport mean free path of the sample. The single point source-detection configuration provides a tool to diagnose breast malignancy though it fails to give accurate values of the optical parameters of tissues. This failure is attributed to the invalidity of the diffusion approximation in this experimental configuration. A 2.5 mm thin chicken fat strip was imaged inside a 40 mm thick chicken breast tissue using snake photons at 625 nm with ultrafast time-gated detection. A simple model to describe the effect

  8. Excitonic and vibrational coherence in artificial photosynthetic systems studied by negative-time ultrafast laser spectroscopy.

    PubMed

    Han, Dongjia; Xue, Bing; Du, Juan; Kobayashi, Takayoshi; Miyatake, Tomohiro; Tamiaki, Hitoshi; Xing, Xin; Yuan, Wei; Li, Yanyan; Leng, Yuxin

    2016-09-21

    Quantum coherences between excitonic states are believed to have a substantial impact on excitation energy transfer in photosynthetic systems. Here, the excitonic and vibrational coherence relaxation dynamics of artificially synthetic chlorosomes are studied by a sub 7 fs negative-time-delay laser spectroscopy at room temperature. The results provide direct evidence for the quantum coherence of the excitonic dephasing time of 23 ± 1 fs at physiologically relevant temperatures, which is significant in the initial step of energy transfer in chlorosome or chlorosome-like photosynthetic systems. Meanwhile, coherent molecular vibrations in the excited state are also detected without the effect of wave-packet motion in the ground state, which shows that the excited state wave-packet motion contributes greatly to the vibrational modes of ∼150 and ∼1340 cm(-1) in artificial chlorosome systems. PMID:27531576

  9. Communication: Vibrational and vibronic coherences in the two dimensional spectroscopy of coupled electron-nuclear motion

    NASA Astrophysics Data System (ADS)

    Albert, Julian; Falge, Mirjam; Gomez, Sandra; Sola, Ignacio R.; Hildenbrand, Heiko; Engel, Volker

    2015-07-01

    We theoretically investigate the photon-echo spectroscopy of coupled electron-nuclear quantum dynamics. Two situations are treated. In the first case, the Born-Oppenheimer (adiabatic) approximation holds. It is then possible to interpret the two-dimensional (2D) spectra in terms of vibrational motion taking place in different electronic states. In particular, pure vibrational coherences which are related to oscillations in the time-dependent third-order polarization can be identified. This concept fails in the second case, where strong non-adiabatic coupling leads to the breakdown of the Born-Oppenheimer-approximation. Then, the 2D-spectra reveal a complicated vibronic structure and vibrational coherences cannot be disentangled from the electronic motion.

  10. Communication: Vibrational and vibronic coherences in the two dimensional spectroscopy of coupled electron-nuclear motion

    SciTech Connect

    Albert, Julian; Falge, Mirjam; Hildenbrand, Heiko; Engel, Volker; Gomez, Sandra; Sola, Ignacio R.

    2015-07-28

    We theoretically investigate the photon-echo spectroscopy of coupled electron-nuclear quantum dynamics. Two situations are treated. In the first case, the Born-Oppenheimer (adiabatic) approximation holds. It is then possible to interpret the two-dimensional (2D) spectra in terms of vibrational motion taking place in different electronic states. In particular, pure vibrational coherences which are related to oscillations in the time-dependent third-order polarization can be identified. This concept fails in the second case, where strong non-adiabatic coupling leads to the breakdown of the Born-Oppenheimer-approximation. Then, the 2D-spectra reveal a complicated vibronic structure and vibrational coherences cannot be disentangled from the electronic motion.

  11. Microwave Spectroscopy of the Excited Vibrational States of Methanol

    NASA Astrophysics Data System (ADS)

    Pearson, John; Daly, Adam M.; Bermúdez, Celina

    2015-06-01

    Methanol is the simplest molecule with a three-fold internal rotation and the observation of its νb{8} band served the primary catalyst for the development of internal rotation theory(a,b). The 75 subsequent years of investigation into the νb{8} band region have yielded a large number assignments, numerous high precision energy levels and a great deal of insight into the coupling of νb{t}=3 & 4 with νb{8}, νb{7}, νb{11} and other nearby states(c). In spite of this progress numerous assignment mysteries persist, the origin of almost half the far infrared laser lines remain unknown and all attempts to model the region quantum mechanically have had very limited success. The C3V internal rotation Hamiltonian has successfully modeled the νb{t}=0,1 & 2 states of methanol and other internal rotors(d). However, successful modeling of the coupling between torsional bath states and excited small amplitude motion remains problematic and coupling of multiple interacting excited small amplitude vibrations featuring large amplitude motions remains almost completely unexplored. Before such modeling can be attempted, identifying the remaining low lying levels of νb{7} and νb{11} is necessary. We present an investigation into the microwave spectrum of νb{7}, νb{8} and νb{11} along with the underlying torsional bath states in νb{t}=3 and νb{t}= 4. (a) A. Borden, E.F. Barker J. Chem. Phys., 6, 553 (1938). (b) J. S. Koehler and D. M. Dennison, Phys. Rev. 57, 1006 (1940). (c) R. M. Lees, Li-Hong Xu, J. W. C. Johns, B. P. Winnewisser, and M. Lock, J. Mol. Spectrosc. 243, 168 (2007). (d) L.-H. Xu, J. Fisher, R.M. Lees, H.Y. Shi, J.T. Hougen, J.C. Pearson, B.J. Drouin, G.A. Blake, R. Braakman J. Mol. Spectrosc., 251, 305 (2008).

  12. Vibrational Spectroscopy of Transient Dipolar Radicals via Autodetachment of Dipole-Bound States of Cold Anions

    NASA Astrophysics Data System (ADS)

    Huang, Dao-Ling; Liu, Hong-Tao; Dau, Phuong Diem; Wang, Lai-Sheng

    2014-06-01

    High-resolution vibrational spectroscopy of transient species is important for determining their molecular structures and understanding their chemical reactivity. However, the low abundance and high reactivity of molecular radicals pose major challenges to conventional absorption spectroscopic methods. The observation of dipole-bound states (DBS) in anions extend autodetachment spectroscopy to molecular anions whose corresponding neutral radicals possess a large enough dipole moment (>2.5 D).1,2 However, due to the difficulty of assigning the congested spectra at room temperature, there have been only a limited number of autodetachment spectra via DBS reported. Recently, we have built an improved version of a cold trap3 coupled with high-resolution photoelectron imaging.4 The first observation of mode-specific auotodetachment of DBS of cold phenoxide have shown that not only vibrational hot bands were completely suppressed, but also rotational profile was observed.5 The vibrational frequencies of the DBS were found to be the same as those of the neutral radical, suggesting that vibrational structures of dipolar radicals can be probed via DBS.5 More significantly, the DBS resonances allowed a number of vibrational modes with very weak Frank-Condon factors to be "lightened" up via vibrational autodetachment.5 Recently, our first high-resolution vibrational spectroscopy of the dehydrogenated uracil radical, with partial rotational resolution, via autodetachment from DBS of cold deprotonated uracil anions have been reported.6 Rich vibrational information is obtained for this important radical species. The resolved rotational profiles also allow us to characterize the rotational temperature of the trapped anions for the first time.6 1 K. R. Lykke, D. M. Neumark, T. Andersen, V. J. Trapa, and W. C. Lineberger, J. Chem. Phys. 87, 6842 (1987). 2 D. M. Wetzel, and J. I. Brauman, J. Chem. Phys. 90, 68 (1989). 3 P. D. Dau, H. T. Liu, D. L. Huang, and L. S. Wang, J. Chem. Phys

  13. Computational vibrational spectroscopy of peptides and proteins in one and two dimensions.

    PubMed

    Jeon, Jonggu; Yang, Seongeun; Choi, Jun-Ho; Cho, Minhaeng

    2009-09-15

    Vibrational spectroscopy provides direct information on molecular environment and motions but, its interpretation is often hampered by band broadening. Over the past decade, two-dimensional (2D) vibrational spectroscopy has emerged as a promising technique to overcome a number of difficulties associated with linear spectroscopy and provided significantly detailed information on the structure and dynamics of complex molecules in condensed phases. This Account reviews recently developed computational methods used to simulate 1D and 2D vibrational spectra. The central quantity to calculate in computational spectroscopy is the spectroscopic response function, which is the product of many contributing factors such as vibrational transition energies, transition moments, and their modulations by fluctuating local environment around a solute. Accurate calculations of such linear and nonlinear responses thus require a concerted effort employing a wide range of methods including electronic structure calculation (ESC) and molecular dynamics (MD) simulation. The electronic structure calculation can provide fundamental quantities such as normal-mode frequencies and transition multipole strengths. However, since the treatable system size is limited with this method, classical MD simulation has also been used to account for the dynamics of the solvent environment. To achieve chemical accuracy, these two results are combined to generate time series of fluctuating transition frequencies and transition moments with the distributed multipole analysis, and this particular approach has been known as the hybrid ESC/MD method. For coupled multichromophore systems, vibrational properties of each chromophore such as a peptide are individually calculated by electronic structure methods and the Hessian matrix reconstruction scheme was used to obtain local mode frequencies and couplings of constituting anharmonic oscillators. The spectra thus obtained, especially for biomolecules including

  14. Nuclear resonance vibrational spectroscopy (NRVS) of rubredoxin and MoFe protein crystals

    PubMed Central

    Guo, Yisong; Brecht, Eric; Aznavour, Kristen; Nix, Jay C.; Xiao, Yuming; Wang, Hongxin; George, Simon J.; Bau, Robert; Keable, Stephen; Peters, John W.; Adams, Michael W.W.; Jenney, Francis; Sturhahn, Wolfgang; Alp, Ercan E.; Zhao, Jiyong; Yoda, Yoshitaka; Cramer, Stephen P.

    2014-01-01

    We have applied 57Fe nuclear resonance vibrational spectroscopy (NRVS) for the first time to study the dynamics of Fe centers in Fe-S protein crystals, including oxidized wild type rubredoxin crystals from Pyrococcus furiosus, and the MoFe protein of nitrogenase from Azotobacter vinelandii. Thanks to the NRVS selection rule, selectively probed vibrational modes have been observed in both oriented rubredoxin and MoFe protein crystals. The NRVS work was complemented by extended X-ray absorption fine structure spectroscopy (EXAFS) measurements on oxidized wild type rubredoxin crystals from Pyrococcus furiosus. The EXAFS spectra revealed the Fe-S bond length difference in oxidized Pf Rd protein, which is qualitatively consistent with the X-ray crystal structure. PMID:26052177

  15. Nuclear resonance vibrational spectroscopy (NRVS) of rubredoxin and MoFe protein crystals

    NASA Astrophysics Data System (ADS)

    Guo, Yisong; Brecht, Eric; Aznavour, Kristen; Nix, Jay C.; Xiao, Yuming; Wang, Hongxin; George, Simon J.; Bau, Robert; Keable, Stephen; Peters, John W.; Adams, Michael W. W.; , Francis E. Jenney, Jr.; Sturhahn, Wolfgang; Alp, Ercan E.; Zhao, Jiyong; Yoda, Yoshitaka; Cramer, Stephen P.

    2013-12-01

    We have applied 57Fe nuclear resonance vibrational spectroscopy (NRVS) for the first time to study the dynamics of Fe centers in Iron-sulfur protein crystals, including oxidized wild type rubredoxin crystals from Pyrococcus furiosus, and the MoFe protein of nitrogenase from Azotobacter vinelandii. Thanks to the NRVS selection rule, selectively probed vibrational modes have been observed in both oriented rubredoxin and MoFe protein crystals. The NRVS work was complemented by extended X-ray absorption fine structure spectroscopy (EXAFS) measurements on oxidized wild type rubredoxin crystals from Pyrococcus furiosus. The EXAFS spectra revealed the Fe-S bond length difference in oxidized Pf Rd protein, which is qualitatively consistent with the crystal structure.

  16. Vibrational spectroscopy of the borate mineral kotoite Mg₃(BO₃)₂.

    PubMed

    Frost, Ray L; Xi, Yunfei

    2013-02-15

    Vibrational spectroscopy has been used to assess the structure of kotoite a borate mineral of magnesium which is isostructural with jimboite. The mineral is orthorhombic with point group: 2/m 2/m 2/m. The mineral has the potential as a new memory insulator material. The mineral has been characterised by a combination of Raman and infrared spectroscopy. The Raman spectrum is dominated by a very intense band at 835 cm(-1), assigned to the symmetric stretching mode of tetrahedral boron. Raman bands at 919, 985 and 1015 cm(-1) are attributed to the antisymmetric stretching modes of tetrahedral boron. Kotoite is strictly an hydrous borate mineral. An intense Raman band observed at 3559 cm(-1) is attributed to the stretching vibration of hydroxyl units, more likely to be associated with the borate mineral hydroxyborate. The lack of observation of water bending modes proves the absence of water in the kotoite structure. PMID:23257343

  17. Phthalocyanine adsorption to graphene on Ir(111): Evidence for decoupling from vibrational spectroscopy

    SciTech Connect

    Endlich, M. Gozdzik, S.; Néel, N.; Kröger, J.; Rosa, A. L. da; Frauenheim, T.; Wehling, T. O.

    2014-11-14

    Phthalocyanine molecules have been adsorbed to Ir(111) and to graphene on Ir(111). From a comparison of scanning tunneling microscopy images of individual molecules adsorbed to the different surfaces alone it is difficult to discern potential differences in the molecular adsorption geometry. In contrast, vibrational spectroscopy using inelastic electron scattering unequivocally hints at strong molecule deformations on Ir(111) and at a planar adsorption geometry on graphene. The spectroscopic evidence for the different adsorption configurations is supported by density functional calculations.

  18. Vibrational spectral signatures of crystalline cellulose using high resolution broadband sum frequency generation vibrational spectroscopy (HR-BB-SFG-VS)

    SciTech Connect

    Zhang, Libing; Lu, Zhou; Velarde, Luis; Fu, Li; Pu, Yunqiao; Ding, Shi-You; Ragauskas, Arthur; Wang, Hong-Fei; Yang, Bin

    2015-03-03

    Both the C–H and O–H region spectra of crystalline cellulose were studied using the sub-wavenumber high-resolution broadband sum frequency generation vibrational spectroscopy (HR-BB-SFG-VS) for the first time. The resolution of HR-BB-SFG-VS is about 10-times better than conventional scanning SFG-VS and has the capability of measuring the intrinsic spectral lineshape and revealing many more spectral details. With HR-BB-SFG-VS, we found that in cellulose samples from different sources, including Avicel and cellulose crystals isolated from algae Valonia (Iα) and tunicates (Iβ), the spectral signatures in the O–H region were unique for the two allomorphs, i.e. Iα and Iβ, while the spectral signatures in the C–H regions varied in all samples examined. Even though the origin of the different spectral signatures of the crystalline cellulose in the O–H and C–H vibrational frequency regions are yet to be correlated to the structure of cellulose, these results lead to new spectroscopic methods and opportunities to classify and to understand the basic crystalline structures, as well as variations in polymorphism of the crystalline cellulose.

  19. Vibrational spectral signatures of crystalline cellulose using high resolution broadband sum frequency generation vibrational spectroscopy (HR-BB-SFG-VS)

    DOE PAGESBeta

    Zhang, Libing; Lu, Zhou; Velarde, Luis; Fu, Li; Pu, Yunqiao; Ding, Shi-You; Ragauskas, Arthur; Wang, Hong-Fei; Yang, Bin

    2015-03-03

    Both the C–H and O–H region spectra of crystalline cellulose were studied using the sub-wavenumber high-resolution broadband sum frequency generation vibrational spectroscopy (HR-BB-SFG-VS) for the first time. The resolution of HR-BB-SFG-VS is about 10-times better than conventional scanning SFG-VS and has the capability of measuring the intrinsic spectral lineshape and revealing many more spectral details. With HR-BB-SFG-VS, we found that in cellulose samples from different sources, including Avicel and cellulose crystals isolated from algae Valonia (Iα) and tunicates (Iβ), the spectral signatures in the O–H region were unique for the two allomorphs, i.e. Iα and Iβ, while the spectral signaturesmore » in the C–H regions varied in all samples examined. Even though the origin of the different spectral signatures of the crystalline cellulose in the O–H and C–H vibrational frequency regions are yet to be correlated to the structure of cellulose, these results lead to new spectroscopic methods and opportunities to classify and to understand the basic crystalline structures, as well as variations in polymorphism of the crystalline cellulose.« less

  20. Vibrational Spectral Signatures of Crystalline Cellulose Using High Resolution Broadband Sum Frequency Generation Vibrational Spectroscopy (HR-BB-SFG-VS)

    SciTech Connect

    Zhang, Libing; Lu, Zhou; Velarde Ruiz Esparza, Luis A.; Fu, Li; Pu, Yunqiao; Ding, Shi-You; Ragauskas, Art J.; Wang, Hongfei; Yang, Bin

    2015-03-03

    Here we reported the first sub-wavenumber high-resolution broadband sum frequency generation vibrational spectroscopy (HR-BB-SFG-VS) study on both the C-H and O-H region spectra of crystalline cellulose. HR-BB-SFG-VS has about 10 times better resolution than the conventional scanning SFG-VS and is known to be able to measure the intrinsic spectral lineshape and to resolve much more spectral details. With HR-BB-SFG-VS, we found that in cellulose from different sources, including Avicel and cellulose crystals isolated from algae Valonia (Iα) and tunicates (Iβ), the spectral signatures in the OH regions were unique for different allomorphs, i.e. Iα and Iβ, while the spectral signatures in the C-H regions varied in all samples examined. Even though the origin of the different behaviors of the crystalline cellulose in the O-H and C-H vibrational frequency regions is yet to be correlated to the structure of cellulose, these results provided new spectroscopic methods and opportunities to classify and understand the basic crystalline structure, as well as variations, in polymorphism of the crystalline cellulose structure.

  1. Exciton-vibrational coupling in the dynamics and spectroscopy of Frenkel excitons in molecular aggregates

    NASA Astrophysics Data System (ADS)

    Schröter, M.; Ivanov, S. D.; Schulze, J.; Polyutov, S. P.; Yan, Y.; Pullerits, T.; Kühn, O.

    2015-03-01

    The influence of exciton-vibrational coupling on the optical and transport properties of molecular aggregates is an old problem that gained renewed interest in recent years. On the experimental side, various nonlinear spectroscopic techniques gave insight into the dynamics of systems as complex as photosynthetic antennae. Striking evidence was gathered that in these protein-pigment complexes quantum coherence is operative even at room temperature conditions. Investigations were triggered to understand the role of vibrational degrees of freedom, beyond that of a heat bath characterized by thermal fluctuations. This development was paralleled by theory, where efficient methods emerged, which could provide the proper frame to perform non-Markovian and non-perturbative simulations of exciton-vibrational dynamics and spectroscopy. This review summarizes the state of affairs of the theory of exciton-vibrational interaction in molecular aggregates and photosynthetic antenna complexes. The focus is put on the discussion of basic effects of exciton-vibrational interaction from the stationary and dynamics points of view. Here, the molecular dimer plays a prominent role as it permits a systematic investigation of absorption and emission spectra by numerical diagonalization of the exciton-vibrational Hamiltonian in a truncated Hilbert space. An extension to larger aggregates, having many coupled nuclear degrees of freedom, becomes possible with the Multi-Layer Multi-Configuration Time-Dependent Hartree (ML-MCTDH) method for wave packet propagation. In fact it will be shown that this method allows one to approach the limit of almost continuous spectral densities, which is usually the realm of density matrix theory. Real system-bath situations are introduced for two models, which differ in the way strongly coupled nuclear coordinates are treated, as a part of the relevant system or the bath. A rather detailed exposition of the Hierarchy Equations Of Motion (HEOM) method will be

  2. 2D-IR spectroscopy of hydrogen-bond-mediated vibrational excitation transfer.

    PubMed

    Chuntonov, Lev

    2016-05-18

    Vibrational excitation transfer along the hydrogen-bond-mediated pathways in the complex of methyl acetate (MA) and 4-cyanophenol (4CP) was studied by dual-frequency femtosecond two-dimensional infrared spectroscopy. We excited the energy-donating ester carbonyl stretching vibrational mode and followed the transfer to the energy-accepting benzene ring and cyano stretching vibrations. The complexes with no, one, and two hydrogen-bonded 4CP molecules were studied. Vibrational relaxation of the carbonyl mode is more efficient in both hydrogen-bonded complexes as compared with free MA molecules. The inter-molecular transport in a hydrogen-bonded complex involving a single 4CP molecule is slower than that in a complex with two 4CP molecules. In the former, vibrational relaxation leads to local heating, as shown by the spectroscopy of the carbonyl mode, whereas the local heating is suppressed in the latter because the excitation redistribution is more efficient. At early times, the transfer to the benzene ring is governed by its direct coupling with the energy-donating carbonyl mode, whereas at later times intermediate states are involved. The transfer to a more distant site of the cyano group in 4CP involves intermediate states at all times, since no direct coupling between the energy-donating and accepting modes was observed. We anticipate that our findings will be of importance for spectroscopic studies of bio-molecular structures and dynamics, and inter- and intra-molecular signaling pathways, and for developing molecular networking applications. PMID:27145861

  3. Investigation of organometallic reaction mechanisms with one and two dimensional vibrational spectroscopy

    SciTech Connect

    Cahoon, James Francis

    2008-12-01

    One and two dimensional time-resolved vibrational spectroscopy has been used to investigate the elementary reactions of several prototypical organometallic complexes in room temperature solution. The electron transfer and ligand substitution reactions of photogenerated 17-electron organometallic radicals CpW(CO)3 and CpFe(CO)2 have been examined with one dimensional spectroscopy on the picosecond through microsecond time-scales, revealing the importance of caging effects and odd-electron intermediates in these reactions. Similarly, an investigation of the photophysics of the simple Fischer carbene complex Cr(CO)5[CMe(OMe)] showed that this class of molecule undergoes an unusual molecular rearrangement on the picosecond time-scale, briefly forming a metal-ketene complex. Although time-resolved spectroscopy has long been used for these types of photoinitiated reactions, the advent of two dimensional vibrational spectroscopy (2D-IR) opens the possibility to examine the ultrafast dynamics of molecules under thermal equilibrium conditions. Using this method, the picosecond fluxional rearrangements of the model metal carbonyl Fe(CO)5 have been examined, revealing the mechanism, time-scale, and transition state of the fluxional reaction. The success of this experiment demonstrates that 2D-IR is a powerful technique to examine the thermally-driven, ultrafast rearrangements of organometallic molecules in solution.

  4. Double resonant absorption measurement of acetylene symmetric vibrational states probed with cavity ring down spectroscopy

    NASA Astrophysics Data System (ADS)

    Karhu, J.; Nauta, J.; Vainio, M.; Metsälä, M.; Hoekstra, S.; Halonen, L.

    2016-06-01

    A novel mid-infrared/near-infrared double resonant absorption setup for studying infrared-inactive vibrational states is presented. A strong vibrational transition in the mid-infrared region is excited using an idler beam from a singly resonant continuous-wave optical parametric oscillator, to populate an intermediate vibrational state. High output power of the optical parametric oscillator and the strength of the mid-infrared transition result in efficient population transfer to the intermediate state, which allows measuring secondary transitions from this state with a high signal-to-noise ratio. A secondary, near-infrared transition from the intermediate state is probed using cavity ring-down spectroscopy, which provides high sensitivity in this wavelength region. Due to the narrow linewidths of the excitation sources, the rovibrational lines of the secondary transition are measured with sub-Doppler resolution. The setup is used to access a previously unreported symmetric vibrational state of acetylene, ν 1 + ν 2 + ν 3 + ν4 1 + ν5 - 1 in the normal mode notation. Single-photon transitions to this state from the vibrational ground state are forbidden. Ten lines of the newly measured state are observed and fitted with the linear least-squares method to extract the band parameters. The vibrational term value was measured to be at 9775.0018(45) cm-1, the rotational parameter B was 1.162 222(37) cm-1, and the quartic centrifugal distortion parameter D was 3.998(62) × 10-6 cm-1, where the numbers in the parenthesis are one-standard errors in the least significant digits.

  5. Double resonant absorption measurement of acetylene symmetric vibrational states probed with cavity ring down spectroscopy.

    PubMed

    Karhu, J; Nauta, J; Vainio, M; Metsälä, M; Hoekstra, S; Halonen, L

    2016-06-28

    A novel mid-infrared/near-infrared double resonant absorption setup for studying infrared-inactive vibrational states is presented. A strong vibrational transition in the mid-infrared region is excited using an idler beam from a singly resonant continuous-wave optical parametric oscillator, to populate an intermediate vibrational state. High output power of the optical parametric oscillator and the strength of the mid-infrared transition result in efficient population transfer to the intermediate state, which allows measuring secondary transitions from this state with a high signal-to-noise ratio. A secondary, near-infrared transition from the intermediate state is probed using cavity ring-down spectroscopy, which provides high sensitivity in this wavelength region. Due to the narrow linewidths of the excitation sources, the rovibrational lines of the secondary transition are measured with sub-Doppler resolution. The setup is used to access a previously unreported symmetric vibrational state of acetylene, ν1+ν2+ν3+ν4 (1)+ν5 (-1) in the normal mode notation. Single-photon transitions to this state from the vibrational ground state are forbidden. Ten lines of the newly measured state are observed and fitted with the linear least-squares method to extract the band parameters. The vibrational term value was measured to be at 9775.0018(45) cm(-1), the rotational parameter B was 1.162 222(37) cm(-1), and the quartic centrifugal distortion parameter D was 3.998(62) × 10(-6) cm(-1), where the numbers in the parenthesis are one-standard errors in the least significant digits. PMID:27369508

  6. Protein Dynamics Studied with Ultrafast 2D IR Vibrational Echo Spectroscopy

    PubMed Central

    THIELGES, MEGAN C.; FAYER, MICHAEL D.

    2012-01-01

    CONSPECTUS Proteins, enzymes, and other biological molecules undergo structural dynamics as an intrinsic part of their biological functions. While many biological processes occur on the millisecond, second, and even longer time scales, the fundamental structural dynamics that eventually give rise to such processes occur on much faster time scales. Many decades ago, chemical kineticists focused on the inverse of the reaction rate constant as the important time scale for a chemical reaction. However, through transition state theory and a vast amount of experimental evidence, we now know that the key events in a chemical reaction can involve structural fluctuations that take a system of reactants to its transitions state, the crossing of a barrier, and the eventual relaxation to product states. Such dynamics occur on very fast time scales. Today researchers would like to investigate the fast structural fluctuations of biological molecules to gain an understanding of how biological processes proceed from simple structural changes in biomolecules to the final, complex biological function. The study of the fast structural dynamics of biological molecules requires experiments that operate on the appropriate time scales, and in this Account, we discuss the application of ultrafast two-dimensional infrared (2D IR) vibrational echo spectroscopy to the study of dynamics. The 2D IR vibrational echo experiment is akin to 2D NMR, but it operates on time scales many orders of magnitude faster. In the experiments, a particular vibrational oscillator serves as a vibrational dynamics probe. As the structure of the protein evolves in time, the structural changes are manifested as time dependent changes in the frequency of the vibrational dynamics probe. The 2D IR vibrational echo experiments can track the vibrational frequency evolution, which we then relate to the time evolution of the protein structure. In particular, we measured protein substate interconversion for mutants of

  7. Damage-free vibrational spectroscopy of biological materials in the electron microscope

    DOE PAGESBeta

    Rez, Peter; Aoki, Toshihiro; March, Katia; Gur, Dvir; Krivanek, Ondrej L.; Dellby, Niklas; Lovejoy, Tracy C.; Wolf, Sharon G.; Cohen, Hagai

    2016-03-10

    Vibrational spectroscopy in the electron microscope would be transformative in the study of biological samples, provided that radiation damage could be prevented. However, electron beams typically create high-energy excitations that severely accelerate sample degradation. Here this major difficulty is overcome using an ‘aloof’ electron beam, positioned tens of nanometres away from the sample: high-energy excitations are suppressed, while vibrational modes of energies o1 eV can be ‘safely’ investigated. To demonstrate the potential of aloof spectroscopy, we record electron energy loss spectra from biogenic guanine crystals in their native state, resolving their characteristic C–H, N–H and C=O vibrational signatures with nomore » observable radiation damage. Furthermore, the technique opens up the possibility of non-damaging compositional analyses of organic functional groups, including non-crystalline biological materials, at a spatial resolution of ~10nm, simultaneously combined with imaging in the electron microscope.« less

  8. Femtosecond Broadband Stimulated Raman: A New Approach for High-Performance Vibrational Spectroscopy

    PubMed Central

    McCAMANT, DAVID W.; KUKURA, PHILIPP; MATHIES, RICHARD A.

    2005-01-01

    Femtosecond stimulated Raman spectroscopy (FSRS) is a new technique that produces high-quality vibrational spectra free from background fluorescence. FSRS combines a narrow-bandwidth picosecond Raman pump pulse with an ∼80 fs continuum probe pulse to produce stimulated Raman spectra from the pump-induced gain in the probe spectrum. The high intensity of the Raman pump combined with the broad bandwidth of the probe produces high signal-to-noise vibrational spectra with very short data acquisition times. FSRS spectra of standard solutions and solvents such as aqueous Na2SO4, aqueous KNO3, methanol, isopropanol, and cyclohexane are collected in seconds. Furthermore, stimulated Raman spectra can be obtained using just a single pump–probe pulse pair that illuminates the sample for only ∼1 ps. Fluorescence rejection is demonstrated by collecting FSRS spectra of dyes (rhodamine 6G, chlorophyll a, and DTTCI) with varying degrees of fluorescence background and resonance enhancement. The high signal-to-noise, short data acquisition time, fluorescence rejection, and high spectral and temporal resolution of femtosecond stimulated Raman spectroscopy make it a valuable new vibrational spectroscopic technique. PMID:14658143

  9. A theoretical study of the sum frequency vibrational spectroscopy of the carbon tetrachloride/water interface

    NASA Astrophysics Data System (ADS)

    Green, Anthony J.; Perry, Angela; Moore, Preston B.; Space, Brian

    2012-03-01

    Theoretical approximations to the sum frequency vibrational spectroscopy (SFVS) of the carbon tetrachloride/water interface are constructed using the quantum-corrected time correlation functions (TCF) to aid in interpretation of experimental data and to predict novel vibrational modes. Instantaneous normal mode (INM) methods are used to characterize the observed modes leading to the TCF signal, thus providing molecular resolution of the vibrational lineshapes. Detailed comparisons of the theoretical signals are made with those obtained experimentally and show excellent agreement for the spectral peaks in the O-H stretching region of water. An intermolecular mode, unique to the interface, at 848 cm-1 is also identifiable, similar to the one seen for the water/vapor interface. INM analysis reveals the resonance is due to a wagging mode (hindered rotation) that was previously identified (Perry et al 2005 J. Chem. Phys. 123 144705) as localized on a single water molecule with both hydrogens displaced normal to the interface—generally it is found that the symmetry breaking at the interface leads to hindered translations and rotations at hydrophilic/hydrophobic interfaces that assume finite vibrational frequencies due to anchoring at the aqueous interface. Additionally, examination of the real and imaginary parts of the theoretical SFVS spectra reveal the spectroscopic species attributed the resonances and possible subspecies in the O-H region; these results are consistent with extant experimental data and associated analysis.

  10. Modeling vibrational dephasing and energy relaxation of intramolecular anharmonic modes for multidimensional infrared spectroscopies.

    PubMed

    Ishizaki, Akihito; Tanimura, Yoshitaka

    2006-08-28

    Starting from a system-bath Hamiltonian in a molecular coordinate representation, we examine an applicability of a stochastic multilevel model for vibrational dephasing and energy relaxation in multidimensional infrared spectroscopy. We consider an intramolecular anharmonic mode nonlinearly coupled to a colored noise bath at finite temperature. The system-bath interaction is assumed linear plus square in the system coordinate, but linear in the bath coordinates. The square-linear system-bath interaction leads to dephasing due to the frequency fluctuation of system vibration, while the linear-linear interaction contributes to energy relaxation and a part of dephasing arises from anharmonicity. To clarify the role and origin of vibrational dephasing and energy relaxation in the stochastic model, the system part is then transformed into an energy eigenstate representation without using the rotating wave approximation. Two-dimensional (2D) infrared spectra are then calculated by solving a low-temperature corrected quantum Fokker-Planck (LTC-QFP) equation for a colored noise bath and by the stochastic theory. In motional narrowing regime, the spectra from the stochastic model are quite different from those from the LTC-QFP. In spectral diffusion regime, however, the 2D line shapes from the stochastic model resemble those from the LTC-QFP besides the blueshifts caused by the dissipation from the colored noise bath. The preconditions for validity of the stochastic theory for molecular vibrational motion are also discussed. PMID:16965023

  11. Experimental and theoretical investigation on the vibrational spectroscopy of L-theanine

    NASA Astrophysics Data System (ADS)

    Chen, Yongjian; Xi, Gangqin; Chen, Rong; Li, Yongzeng; Feng, Shangyuan; Lei, Jinping; Lin, Hongxing

    2011-12-01

    In this work, experimental and theoretical investigations on vibrational spectroscopy of L-theanine were presented. FT-IR and Raman spectra of L-theanine powder sample were recorded and corresponding theoretical calculations were performed based on Density Functional Theory (DFT) at B3LYP level using 6-31++G(d,p) and 6-311++G(d,p) basis sets combined with the Polarized Continuum Model (PCM) with water as the solvent. The experimental vibrational bands were assigned based on the basis of calculations while the predicted geometric parameters were compared with those obtained in experiment, most of the bands measured were well reproduced in the calculations while the discrepancies are significant for the bands mainly related to the vibrations of protonated amino group ( NH3+) and ionized carboxyl group (COO -), which are affected by the intramolecular hydrogen bond interaction. Good agreements between the theoretical and experimental results confirm the feasibility of the DFT method combined with PCM in the study of the molecular structure and vibrational spectra of L-theanine.

  12. Accurate Lineshapes from Sub-1 cm-1 Resolution Sum Frequency Generation Vibrational Spectroscopy of α-Pinene at Room Temperature

    SciTech Connect

    Mifflin, Amanda L.; Velarde Ruiz Esparza, Luis A.; Ho, Junming; Psciuk, Brian; Negre, Christian; Ebben, Carlena J.; Upshur, Mary Alice; Lu, Zhou; Strick, Benjamin; Thomson, Regan; Batista, Victor; Wang, Hongfei; Geiger, Franz M.

    2015-02-26

    Room temperature sub-wavenumber high-resolution broadband sum frequency generation (HR-BB-SFG) spectra of the common terpene (+)-α-pinene reveal ten peaks in the C–H stretching region. The spectral resolution exceeds that of Fourier transform infrared, femtosecond stimulated Raman, and traditional BB-SFG and scanning SFG spectroscopy of the same molecule. Experiment and simulation show the spectral lineshapes to be accurate. Homogeneous vibrational decoherence lifetimes of up to 1.7 psec are assigned to specific oscillators and compare favorably to lifetimes computed from density functional tight binding molecular dynamics calculations, while phase-resolved spectra yield orientation information for them. We propose the new spectroscopy as an attractive alternative to time-resolved vibrational spectroscopy or heterodyne-detection schemes for studying vibrational energy relaxation and vibrational coherences in molecules.

  13. Dynamics of Functionalized Surface Molecular Monolayers Studied with Ultrafast Infrared Vibrational Spectroscopy

    PubMed Central

    Rosenfeld, Daniel E.; Nishida, Jun; Yan, Chang; Gengeliczki, Zsolt; Smith, Brian J.; Fayer, Michael D.

    2012-01-01

    The structural dynamics of thin films consisting of tricarbonyl (1,10-phenanthroline)rhenium chloride (RePhen(CO)3Cl) linked to an alkyl silane monolayer through a triazole linker synthesized on silica-on-calcium-fluoride substrates are investigated using ultrafast infrared (IR) techniques. Ultrafast 2D IR vibrational echo experiments and polarization selective heterodyne detected transient grating (HDTG) measurements, as well as polarization dependent FT-IR and AFM experiments are employed to study the samples. The vibrational echo experiments measure spectral diffusion, while the HDTG experiments measure the vibrational excited state population relaxation and investigate the vibrational transition dipole orientational anisotropy decay. To investigate the anticipated impact of vibrational excitation transfer, which can be caused by the high concentration of RePhen(CO)3Cl in the monolayer, a concentration dependence of the spectral diffusion is measured. To generate a range of concentrations, mixed monolayers consisting of both hydrogen terminated and triazole/RePhen(CO)3Cl terminated alkyl silanes are synthesized. It is found that the measured rate of spectral diffusion is independent of concentration, with all samples showing spectral diffusion of 37 ± 6 ps. To definitively test for vibrational excitation transfer, polarization selective HDTG experiments are conducted. Excitation transfer will cause anisotropy decay. Polarization resolved heterodyne detected transient grating spectroscopy is sensitive to anisotropy decay (depolarization) caused by excitation transfer and molecular reorientation. The HDTG experiments show no evidence of anisotropy decay on the appropriate time scale, demonstrating the absence of excitation transfer the RePhen(CO)3Cl. Therefore the influence of excitation transfer on spectral diffusion is inconsequential in these samples, and the vibrational echo measurements of spectral diffusion report solely on structural dynamics. A small

  14. Vibrational Spectra of Cryogenic Peptide Ions Using H_2 Predissociation Spectroscopy

    NASA Astrophysics Data System (ADS)

    Leavitt, Christopher M.; Wolk, Arron B.; Kamrath, Michael Z.; Garand, Etienne; Johnson, Mark A.; Stipdonk, Michael J. Van

    2011-06-01

    H_2 predissociation spectroscopy was used to collect the vibrational spectra of the model protonated peptides, GlyGly, GlySar, SarGly and SarSar (Gly=glycine and Sar=sarcosine). H_2 molecules were condensed onto protonated peptide ions in a quadrupole ion trap cooled to approximately 10 K. The resulting spectra yielded clearly resolved vibrational transitions throughout the mid IR region, 600-4200 Cm-1, with linewidths of approximately 6 Cm-1. Protonation nominally occurred on the amino terminus giving rise to an intramolecular H-bond between the protonated amine and the neighboring amide oxygen. The sarcosine containing peptides incorporate a methyl group onto either the amino group or the amide nitrogen causing the peptide backbone to adopt a different structure, resulting in the shifts in the amide I and II bands and the N-H stretches.

  15. Detection of simulants and degradation products of chemical warfare agents by vibrational spectroscopy

    NASA Astrophysics Data System (ADS)

    Ruiz-Pesante, Orlando; Pacheco-Londoño, Leonardo C.; Primera-Pedrozo, Oliva M.; Ortiz, William; Soto-Feliciano, Yadira M.; Nieves, Deborah E.; Ramirez, Michael L.; Hernández-Rivera, Samuel P.

    2007-04-01

    This work was focused in the measurement of spectroscopic signatures of Chemical Warfare Agent Simulants (CWAS) and degradation products of chemical agents using vibrational spectroscopy for the generation of spectroscopic libraries. The chemicals studied were: DMMP, DIMP, 2-CEES, 2-BAET, 1,4-thioxane, thiodiglycol sulfoxide, dihexylamine, cyclohexylamine, among others. Raman microscopy experiments were performed at different excitation wavelengths that spanned from NIR at 1064 and 785 nm to the VIS at 532, 514.5 and 488 nm and even the deep ultraviolet region at 244 nm. For the compounds studied the optimum excitation lines were 488 nm and 532 nm with a laser power of 25 mW. Among the most prominent bands were at these incident wavelengths were located ca. 652 and 1444 cm-1. Fourier Transform Infrared Spectroscopy in liquid and gas phase and Fiber Optics Coupled-Grazing Angle Probe-FTIR (FOCGAP- FTIR) were used to characterize the spectroscopic signature of target threat agents. The surface experiments were performed at detection levels of about 1 μg/cm2 suggest that limits of detection (LOD) achievable could be as low as nanograms/cm2. Remote sensing experiments were performed using a telescope coupled with a Raman spectrophotometer as a function of power and acquisition time. Characterization of compounds by vibrational spectroscopy and the early stages of the transition from the lab based experiments to remote detection experiments will be presented.

  16. Vibrational spectroscopy: a tool being developed for the noninvasive monitoring of wound healing

    NASA Astrophysics Data System (ADS)

    Crane, Nicole J.; Elster, Eric A.

    2012-01-01

    Wound care and management accounted for over 1.8 million hospital discharges in 2009. The complex nature of wound physiology involves hundreds of overlapping processes that we have only begun to understand over the past three decades. The management of wounds remains a significant challenge for inexperienced clinicians. The ensuing inflammatory response ultimately dictates the pace of wound healing and tissue regeneration. Consequently, the eventual timing of wound closure or definitive coverage is often subjective. Some wounds fail to close, or dehisce, despite the use and application of novel wound-specific treatment modalities. An understanding of the molecular environment of acute and chronic wounds throughout the wound-healing process can provide valuable insight into the mechanisms associated with the patient's outcome. Pathologic alterations of wounds are accompanied by fundamental changes in the molecular environment that can be analyzed by vibrational spectroscopy. Vibrational spectroscopy, specifically Raman and Fourier transform infrared spectroscopy, offers the capability to accurately detect and identify the various molecules that compose the extracellular matrix during wound healing in their native state. The identified changes might provide the objective markers of wound healing, which can then be integrated with clinical characteristics to guide the management of wounds.

  17. Ion aggregation in high salt solutions. III. Computational vibrational spectroscopy of HDO in aqueous salt solutions.

    PubMed

    Choi, Jun-Ho; Kim, Heejae; Kim, Seongheun; Lim, Sohee; Chon, Bonghwan; Cho, Minhaeng

    2015-05-28

    The vibrational frequency, frequency fluctuation dynamics, and transition dipole moment of the O-D stretch mode of HDO molecule in aqueous solutions are strongly dependent on its local electrostatic environment and hydrogen-bond network structure. Therefore, the time-resolved vibrational spectroscopy the O-D stretch mode has been particularly used to investigate specific ion effects on water structure. Despite prolonged efforts to understand the interplay of O-D vibrational dynamics with local water hydrogen-bond network and ion aggregate structures in high salt solutions, still there exists a gap between theory and experiment due to a lack of quantitative model for accurately describing O-D stretch frequency in high salt solutions. To fill this gap, we have performed numerical simulations of Raman scattering and IR absorption spectra of the O-D stretch mode of HDO in highly concentrated NaCl and KSCN solutions and compared them with experimental results. Carrying out extensive quantum chemistry calculations on not only water clusters but also ion-water clusters, we first developed a distributed vibrational solvatochromic charge model for the O-D stretch mode in aqueous salt solutions. Furthermore, the non-Condon effect on the vibrational transition dipole moment of the O-D stretch mode was fully taken into consideration with the charge response kernel that is non-local polarizability density. From the fluctuating O-D stretch mode frequencies and transition dipole vectors obtained from the molecular dynamics simulations, the O-D stretch Raman scattering and IR absorption spectra of HDO in salt solutions could be calculated. The polarization effect on the transition dipole vector of the O-D stretch mode is shown to be important and the asymmetric line shapes of the O-D stretch Raman scattering and IR absorption spectra of HDO especially in highly concentrated NaCl and KSCN solutions are in quantitative agreement with experimental results. We anticipate that this

  18. Ion aggregation in high salt solutions. III. Computational vibrational spectroscopy of HDO in aqueous salt solutions

    SciTech Connect

    Choi, Jun-Ho; Lim, Sohee; Chon, Bonghwan; Cho, Minhaeng; Kim, Heejae; Kim, Seongheun

    2015-05-28

    The vibrational frequency, frequency fluctuation dynamics, and transition dipole moment of the O—D stretch mode of HDO molecule in aqueous solutions are strongly dependent on its local electrostatic environment and hydrogen-bond network structure. Therefore, the time-resolved vibrational spectroscopy the O—D stretch mode has been particularly used to investigate specific ion effects on water structure. Despite prolonged efforts to understand the interplay of O—D vibrational dynamics with local water hydrogen-bond network and ion aggregate structures in high salt solutions, still there exists a gap between theory and experiment due to a lack of quantitative model for accurately describing O—D stretch frequency in high salt solutions. To fill this gap, we have performed numerical simulations of Raman scattering and IR absorption spectra of the O—D stretch mode of HDO in highly concentrated NaCl and KSCN solutions and compared them with experimental results. Carrying out extensive quantum chemistry calculations on not only water clusters but also ion-water clusters, we first developed a distributed vibrational solvatochromic charge model for the O—D stretch mode in aqueous salt solutions. Furthermore, the non-Condon effect on the vibrational transition dipole moment of the O—D stretch mode was fully taken into consideration with the charge response kernel that is non-local polarizability density. From the fluctuating O—D stretch mode frequencies and transition dipole vectors obtained from the molecular dynamics simulations, the O—D stretch Raman scattering and IR absorption spectra of HDO in salt solutions could be calculated. The polarization effect on the transition dipole vector of the O—D stretch mode is shown to be important and the asymmetric line shapes of the O—D stretch Raman scattering and IR absorption spectra of HDO especially in highly concentrated NaCl and KSCN solutions are in quantitative agreement with experimental results. We

  19. Investigations of the Low Frequency Modes of Ferric Cytochrome c Using Vibrational Coherence Spectroscopy

    PubMed Central

    2015-01-01

    Femtosecond vibrational coherence spectroscopy is used to investigate the low frequency vibrational dynamics of the electron transfer heme protein, cytochrome c (cyt c). The vibrational coherence spectra of ferric cyt c have been measured as a function of excitation wavelength within the Soret band. Vibrational coherence spectra obtained with excitation between 412 and 421 nm display a strong mode at ∼44 cm–1 that has been assigned to have a significant contribution from heme ruffling motion in the electronic ground state. This assignment is based partially on the presence of a large heme ruffling distortion in the normal coordinate structural decomposition (NSD) analysis of the X-ray crystal structures. When the excitation wavelength is moved into the ∼421–435 nm region, the transient absorption increases along with the relative intensity of two modes near ∼55 and 30 cm–1. The intensity of the mode near 44 cm–1 appears to minimize in this region and then recover (but with an opposite phase compared to the blue excitation) when the laser is tuned to 443 nm. These observations are consistent with the superposition of both ground and excited state coherence in the 421–435 nm region due to the excitation of a weak porphyrin-to-iron charge transfer (CT) state, which has a lifetime long enough to observe vibrational coherence. The mode near 55 cm–1 is suggested to arise from ruffling in a transient CT state that has a less ruffled heme due to its iron d6 configuration. PMID:24823442

  20. Vibrational frequencies of anti-diabetic drug studied by terahertz time-domain spectroscopy

    NASA Astrophysics Data System (ADS)

    Du, S. Q.; Li, H.; Xie, L.; Chen, L.; Peng, Y.; Zhu, Y. M.; Li, H.; Dong, P.; Wang, J. T.

    2012-04-01

    By using terahertz time-domain spectroscopy, the absorption spectra of seven anti-diabetic pills have been investigated. For gliquidone, glipizide, gliclazide, and glimepiride, an obvious resonance peak is found at 1.37 THz. Furthermore, to overcome the limit of density functional theory that can analyze the normal mode frequencies of the ground state of organic material, we also present a method that relies on pharmacophore recognition, from which we can obtain the resonance peak at 1.37 THz can be attributed to the vibration of sulfonylurea group. The results indicate that the veracity of density functional theory can be increased by combining pharmacophore recognition.

  1. Unveiling Microscopic Structures of Charged Water Interfaces by Surface-Specific Vibrational Spectroscopy.

    PubMed

    Wen, Yu-Chieh; Zha, Shuai; Liu, Xing; Yang, Shanshan; Guo, Pan; Shi, Guosheng; Fang, Haiping; Shen, Y Ron; Tian, Chuanshan

    2016-01-01

    A sum-frequency spectroscopy scheme is developed that allows the measurement of vibrational spectra of the interfacial molecular structure of charged water interfaces. The application of this scheme to a prototype lipid-aqueous interface as a demonstration reveals an interfacial hydrogen-bonding water layer structure that responds sensitively to the charge state of the lipid headgroup and its interaction with specific ions. This novel technique provides unique opportunities to search for better understanding of electrochemistry and biological aqueous interfaces at a deeper molecular level. PMID:26799031

  2. Biomolecular interactions in HCV nucleocapsid-like particles as revealed by vibrational spectroscopy

    NASA Astrophysics Data System (ADS)

    Rodríguez-Casado, Arantxa; Molina, Marina; Carmona, Pedro

    2007-05-01

    Hepatitis C virus (HCV) occurs in the form of 55-65 nm spherical particles, but the structure of the virion remains to be clarified. Structural studies of HCV have been hampered by the lack of an appropriate cell culture system. However, structural analyses of HCV components can provide an essential framework for understanding of the molecular mechanism of virion assembly. This article reviews the potential of vibrational spectroscopy aimed at the knowledge of HCV structural biology, particularly regarding biomolecular interactions in nucleocapsid-like particles obtained in vitro.

  3. Vibrational spectroscopy in the monitoring of chilling injury in fruits and vegetables

    NASA Astrophysics Data System (ADS)

    Bertoluzza, Alessandro; Bottura, G.; Filippetti, P.; Tosi, M. R.; Vasina, M.

    1993-06-01

    Vegetable marrows (cv. Seme Bolognese) and peach fruits (cv. Suncrest) were stored at different chilling temperatures in order to evaluate, by vibrational spectroscopy, the unsaturation degree of the total lipidic component and other possible markers of chilling injuries. Capillary Gas Chromatography also has been applied to evaluate the unsaturation degree of the esterified fatty acids. Both methodologies indicate a general increase of the unsaturation degrees with storage time. This can be interpreted as a better adaptation capability of the fruits to low temperatures. Moreover, the FTIR-ATR methodology points out the onset of a hydrolysis reaction of the esteric phosphate group of phospholipids during storage.

  4. Unveiling Microscopic Structures of Charged Water Interfaces by Surface-Specific Vibrational Spectroscopy

    NASA Astrophysics Data System (ADS)

    Wen, Yu-Chieh; Zha, Shuai; Liu, Xing; Yang, Shanshan; Guo, Pan; Shi, Guosheng; Fang, Haiping; Shen, Y. Ron; Tian, Chuanshan

    2016-01-01

    A sum-frequency spectroscopy scheme is developed that allows the measurement of vibrational spectra of the interfacial molecular structure of charged water interfaces. The application of this scheme to a prototype lipid-aqueous interface as a demonstration reveals an interfacial hydrogen-bonding water layer structure that responds sensitively to the charge state of the lipid headgroup and its interaction with specific ions. This novel technique provides unique opportunities to search for better understanding of electrochemistry and biological aqueous interfaces at a deeper molecular level.

  5. Orientation Determination of Protein Helical Secondary Structure Using Linear and Nonlinear Vibrational Spectroscopy

    PubMed Central

    Nguyen, Khoi Tan; Le Clair, Stéphanie V.; Ye, Shuji; Chen, Zhan

    2009-01-01

    In this paper, we systematically presented the orientation determination of protein helical secondary structures using vibrational spectroscopic methods, particularly the nonlinear Sum Frequency Generation (SFG) vibrational spectroscopy, along with linear vibrational spectroscopic techniques such as infrared spectroscopy and Raman scattering. SFG amide I signals can be collected using different polarization combinations of the input laser beams and output signal beam to measure the second order nonlinear optical susceptibility components of the helical amide I modes, which are related to their molecular hyperpolarizability elements through the orientation distribution of these helices. The molecular hyperpolarizability elements of amide I modes of a helix can be calculated based on the infrared transition dipole moment and Raman polarizability tensor of the helix; these quantities are determined by using the bond additivity model to sum over the individual infrared dipole transition moments and Raman polarizability tensors, respectively, of the peptide units (or the amino acid residues). The computed overall infrared transition dipole moment and Raman polarizability tensor of a helix can be validated by experimental data using polarized infrared and polarized Raman spectroscopy on samples with well-aligned helical structures. From the deduced SFG hyperpolarizability elements and measured SFG second order nonlinear susceptibility components, orientation information regarding helical structures can be determined. Even though such orientation information can also be measured using polarized infrared or polarized Raman amide I signals, SFG has a much lower detection limit, which can be used to study the orientation of a helix when its surface coverage is much lower than a monolayer. In addition, the combination of different vibrational spectroscopic techniques, e.g., SFG and Attenuated Total Reflectance – Fourier Transform Infrared spectroscopy, provides more

  6. Low-energy vibrational modes in phenylene oligomers studied by THz time-domain spectroscopy

    NASA Astrophysics Data System (ADS)

    Johnston, M. B.; Herz, L. M.; Khan, A. L. T.; Köhler, A.; Davies, A. G.; Linfield, E. H.

    2003-08-01

    Low-energy vibrational modes have been investigated in polycrystalline biphenyl, para-terphenyl, para-quaterphenyl and para-sexiphenyl using THz time-domain spectroscopy (THz-TDS). A number of both internal and external infrared-active modes were observed for wavenumbers ranging between 20 and 80 cm -1. The temperature dependence of these modes is consistent with structural phase transitions occurring in the molecular crystal, indicating that THz-TDS is a sensitive probe of the conformation of conjugated molecular systems.

  7. Biomedical Probes Based on Inorganic Nanoparticles for Electrochemical and Optical Spectroscopy Applications

    PubMed Central

    Yakoh, Abdulhadee; Pinyorospathum, Chanika; Siangproh, Weena; Chailapakul, Orawon

    2015-01-01

    Inorganic nanoparticles usually provide novel and unique physical properties as their size approaches nanometer scale dimensions. The unique physical and optical properties of nanoparticles may lead to applications in a variety of areas, including biomedical detection. Therefore, current research is now increasingly focused on the use of the high surface-to-volume ratios of nanoparticles to fabricate superb chemical- or biosensors for various detection applications. This article highlights various kinds of inorganic nanoparticles, including metal nanoparticles, magnetic nanoparticles, nanocomposites, and semiconductor nanoparticles that can be perceived as useful materials for biomedical probes and points to the outstanding results arising from their use in such probes. The progress in the use of inorganic nanoparticle-based electrochemical, colorimetric and spectrophotometric detection in recent applications, especially bioanalysis, and the main functions of inorganic nanoparticles in detection are reviewed. The article begins with a conceptual discussion of nanoparticles according to types, followed by numerous applications to analytes including biomolecules, disease markers, and pharmaceutical substances. Most of the references cited herein, dating from 2010 to 2015, generally mention one or more of the following characteristics: a low detection limit, good signal amplification and simultaneous detection capabilities. PMID:26343676

  8. Biomedical Probes Based on Inorganic Nanoparticles for Electrochemical and Optical Spectroscopy Applications.

    PubMed

    Yakoh, Abdulhadee; Pinyorospathum, Chanika; Siangproh, Weena; Chailapakul, Orawon

    2015-01-01

    Inorganic nanoparticles usually provide novel and unique physical properties as their size approaches nanometer scale dimensions. The unique physical and optical properties of nanoparticles may lead to applications in a variety of areas, including biomedical detection. Therefore, current research is now increasingly focused on the use of the high surface-to-volume ratios of nanoparticles to fabricate superb chemical- or biosensors for various detection applications. This article highlights various kinds of inorganic nanoparticles, including metal nanoparticles, magnetic nanoparticles, nanocomposites, and semiconductor nanoparticles that can be perceived as useful materials for biomedical probes and points to the outstanding results arising from their use in such probes. The progress in the use of inorganic nanoparticle-based electrochemical, colorimetric and spectrophotometric detection in recent applications, especially bioanalysis, and the main functions of inorganic nanoparticles in detection are reviewed. The article begins with a conceptual discussion of nanoparticles according to types, followed by numerous applications to analytes including biomolecules, disease markers, and pharmaceutical substances. Most of the references cited herein, dating from 2010 to 2015, generally mention one or more of the following characteristics: a low detection limit, good signal amplification and simultaneous detection capabilities. PMID:26343676

  9. Vibrational ladder-climbing in surface-enhanced, ultrafast infrared spectroscopy.

    PubMed

    Kraack, Jan Philip; Hamm, Peter

    2016-06-28

    In a recent work (J. Phys. Chem. C 2016, 120, 3350-3359), we have introduced the concept of surface-enhanced, two-dimensional attenuated total reflectance (2D ATR IR) spectroscopy with modest enhancement factors (<50) using small plasmonic noble metal nanoparticles at solid-liquid interfaces. Here, we show that employment of almost continuous noble metal layers results in significantly stronger enhancement factors in 2D ATR IR signals (>450), which allows for multi-quantum IR excitation of adsorbed molecules, a process known as "vibrational ladder-climbing", even for weakly absorbing (ε < 200 M(-1) cm(-1)) nitrile IR labels. We show that it is possible to deposit up to four quanta of vibrational energy in the respective functional group. Based on these results, optical near-fields of plasmonic nanostructures may pave the way for future investigations involving ultrafast dynamics of highly excited vibrational states or surface-sensitive coherent control experiments of ground-state reactions at solid-liquid interfaces. PMID:27265518

  10. Vibrational spectroscopy of synthetic analogues of ankoleite, chernikovite and intermediate solid solution

    NASA Astrophysics Data System (ADS)

    Clavier, N.; Crétaz, F.; Szenknect, S.; Mesbah, A.; Poinssot, C.; Descostes, M.; Dacheux, N.

    2016-03-01

    Ankoleite (K(UO2)PO4·nH2O), chernikovite (H3O(UO2)PO4·nH2O) and intermediate solid solutions are frequently encountered in the uranium ores that result from the alteration of uranium primary minerals. This paper reports a thorough FTIR and Raman study related to synthetic analogues for these minerals. First, the vibration bands associated to the UO22 + uranyl ion were used to calculate the U = O bond length which appeared in good agreement with the data coming from PXRD. Then, the examination of the phosphate vibration modes in both sets of spectra confirmed the general formulation of the samples and ruled out the presence of hydrogenphosphate groups. Finally, the presence of H2O as well as protonated H3O+ and/or H5O2+ species was also pointed out, and could be used to clearly differentiate the various phases prepared. Vibrational spectroscopy then appeared as an efficient method for the investigation of such analogues of natural samples. It should be particularly relevant when identifying these phases in mineral ores or assemblies.

  11. Excited-State Vibrational Coherence in Perylene Bisimide Probed by Femtosecond Broadband Pump-Probe Spectroscopy.

    PubMed

    Son, Minjung; Park, Kyu Hyung; Yoon, Min-Chul; Kim, Pyosang; Kim, Dongho

    2015-06-18

    Broadband laser pulses with ultrashort duration are capable of triggering impulsive excitation of the superposition of vibrational eigenstates, giving rise to quantum beating signals originating from coherent wave packet motions along the potential energy surface. In this work, coherent vibrational wave packet dynamics of an N,N'-bis(2,6-dimethylphenyl)perylene bisimide (DMP-PBI) were investigated by femtosecond broadband pump-probe spectroscopy which features fast and balanced data acquisition with a wide spectral coverage of >200 nm. Clear modulations were observed in the envelope of the stimulated emission decay profiles of DMP-PBI with the oscillation frequencies of 140 and 275 cm(-1). Fast Fourier transform analysis of each oscillatory mode revealed characteristic phase jumps near the maxima of the steady-state fluorescence, indicating that the observed vibrational coherence originates from an excited-state wave packet motion. Quantum calculations of the normal modes at the low-frequency region suggest that low-frequency C-C (C═C) stretching motions accompanied by deformation of the dimethylphenyl substituents are responsible for the manifestation of such coherent wave packet dynamics. PMID:25992707

  12. Metamaterial-enhanced vibrational absorption spectroscopy for the detection of protein molecules.

    PubMed

    Bui, Tung S; Dao, Thang D; Dang, Luu H; Vu, Lam D; Ohi, Akihiko; Nabatame, Toshihide; Lee, YoungPak; Nagao, Tadaaki; Hoang, Chung V

    2016-01-01

    From visible to mid-infrared frequencies, molecular sensing has been a major successful application of plasmonics because of the enormous enhancement of the surface electromagnetic nearfield associated with the induced collective motion of surface free carriers excited by the probe light. However, in the lower-energy terahertz (THz) region, sensing by detecting molecular vibrations is still challenging because of low sensitivity, complicated spectral features, and relatively little accumulated knowledge of molecules. Here, we report the use of a micron-scale thin-slab metamaterial (MM) architecture, which functions as an amplifier for enhancing the absorption signal of the THz vibration of an ultrathin adsorbed layer of large organic molecules. We examined bovine serum albumin (BSA) as a prototype large protein molecule and Rhodamine 6G (Rh6G) and 3,3'-diethylthiatricarbocyanine iodide (DTTCI) as examples of small molecules. Among them, our MM significantly magnified only the signal strength of bulky BSA. On the other hand, DTTCI and Rh6G are inactive, as they lack low-frequency vibrational modes in this frequency region. The results obtained here clearly demonstrate the promise of MM-enhanced absorption spectroscopy in the THz region for detection and structural monitoring of large biomolecules such as proteins or pathogenic enzymes. PMID:27555217

  13. Metamaterial-enhanced vibrational absorption spectroscopy for the detection of protein molecules

    PubMed Central

    Bui, Tung S.; Dao, Thang D.; Dang, Luu H.; Vu, Lam D.; Ohi, Akihiko; Nabatame, Toshihide; Lee, YoungPak; Nagao, Tadaaki; Hoang, Chung V.

    2016-01-01

    From visible to mid-infrared frequencies, molecular sensing has been a major successful application of plasmonics because of the enormous enhancement of the surface electromagnetic nearfield associated with the induced collective motion of surface free carriers excited by the probe light. However, in the lower-energy terahertz (THz) region, sensing by detecting molecular vibrations is still challenging because of low sensitivity, complicated spectral features, and relatively little accumulated knowledge of molecules. Here, we report the use of a micron-scale thin-slab metamaterial (MM) architecture, which functions as an amplifier for enhancing the absorption signal of the THz vibration of an ultrathin adsorbed layer of large organic molecules. We examined bovine serum albumin (BSA) as a prototype large protein molecule and Rhodamine 6G (Rh6G) and 3,3′-diethylthiatricarbocyanine iodide (DTTCI) as examples of small molecules. Among them, our MM significantly magnified only the signal strength of bulky BSA. On the other hand, DTTCI and Rh6G are inactive, as they lack low-frequency vibrational modes in this frequency region. The results obtained here clearly demonstrate the promise of MM-enhanced absorption spectroscopy in the THz region for detection and structural monitoring of large biomolecules such as proteins or pathogenic enzymes. PMID:27555217

  14. SEM, EDX and vibrational spectroscopy of the phosphate mineral vauxite from Llallagua, Bolívia.

    PubMed

    Scholz, Ricardo; Frost, Ray L; Frota, Laura; Belotti, Fernanda Maria; López, Andrés

    2015-12-01

    We have undertaken a vibrational spectroscopic study of vauxite from Llallagua, Bolívia. This source is important source for rare and unusual secondary phosphate minerals and is the type locality for a number of rare phosphates such as vauxite, sigloite, metavauxite and for jeanbandyite. The chemical formula was determined as (Fe0.98 Mn0.01)∑0.99(Al2.00)(PO4)∑2.03(OH)1.98·5.95(H2O). The Raman spectrum is dominated by intense Raman bands at 978, 1000, 1009, 1027 cm(-1) assigned to the PO4(3-) and HPO4(2-) stretching modes. Low intensity Raman bands are found at 1046, 1059, 1070, 1105, 1122, 1134 and 1150 cm(-1) and are assigned to the PO4(3-) ν3 antisymmetric stretching vibrations. Raman bands of at 498, 502, 517, 523 and 535 cm(-1) are assigned to the ν4 PO4(3-) bending modes while the Raman bands at 418, 451, 461 and 470 cm(-1) are due to the ν2 PO4(3-) bending modes. The Raman spectral profile of vauxite in the hydroxyl stretching region is broad with component bands resolved at 2918, 3103, 3328, 3402, 3555 and 3648 cm(-1). Vibrational spectroscopy enables the assessment of the molecular structure of vauxite to be undertaken. PMID:26135535

  15. Vibrational spectroscopy of synthetic analogues of ankoleite, chernikovite and intermediate solid solution.

    PubMed

    Clavier, N; Crétaz, F; Szenknect, S; Mesbah, A; Poinssot, C; Descostes, M; Dacheux, N

    2016-03-01

    Ankoleite (K(UO2)PO4·nH2O), chernikovite (H3O(UO2)PO4·nH2O) and intermediate solid solutions are frequently encountered in the uranium ores that result from the alteration of uranium primary minerals. This paper reports a thorough FTIR and Raman study related to synthetic analogues for these minerals. First, the vibration bands associated to the UO2(2 +) uranyl ion were used to calculate the U = O bond length which appeared in good agreement with the data coming from PXRD. Then, the examination of the phosphate vibration modes in both sets of spectra confirmed the general formulation of the samples and ruled out the presence of hydrogenphosphate groups. Finally, the presence of H2O as well as protonated H3O(+) and/or H5O2(+) species was also pointed out, and could be used to clearly differentiate the various phases prepared. Vibrational spectroscopy then appeared as an efficient method for the investigation of such analogues of natural samples. It should be particularly relevant when identifying these phases in mineral ores or assemblies. PMID:26688205

  16. Photo-vibrational spectroscopy of solid and liquid chemicals using laser Doppler vibrometer.

    PubMed

    Hu, Qi; Lim, Jacob Song Kiat; Liu, Huan; Fu, Yu

    2016-08-22

    Photoacoustic/photothermal spectroscopy is an established technique for trace detection of chemicals and explosives. However, prior sample preparation is required and the analysis is conducted in a sealed space with a high-sensitivity microphone or a piezo sensor coupled with a lock-in amplifier, limiting the technique to applications in a laboratory environment. Due to the aforementioned requirements, traditionally this technique may not be suitable for defense and security applications where the detection of explosives or hazardous chemicals is required in an open environment at a safe standoff distance. In this study, chemicals in various forms (membrane, powder and liquid) were excited by an intensity-modulated quantum cascade laser (QCL), while a laser Doppler vibrometer (LDV) based on the Mach-Zehnder interferometer was applied to detect the vibration signal resulting from the photocoustic/photothermal effect. The photo-vibrational spectrum obtained by scanning the QCL's wavelength in MIR range, coincides well with the corresponding spectrum obtained using typical FTIR equipment. The experiment demonstrated that the LDV is a capable sensor for applications in photoacoustic/photothermal spectroscopy, with potential to enable the detection of chemicals in open environment at safe standoff distance. PMID:27557194

  17. Vibrational Sum Frequency Generation Spectroscopy Study of Hydrous Species in Soda Lime Silica Float Glass.

    PubMed

    Luo, Jiawei; Banerjee, Joy; Pantano, Carlo G; Kim, Seong H

    2016-06-21

    It is generally accepted that the mechanical properties of soda lime silica (SLS) glass can be affected by the interaction between sodium ions and hydrous species (silanol groups and water molecules) in its surface region. While the amount of these hydrous species can be estimated from hydrogen profiles and infrared spectroscopy, their chemical environment in the glass network is still not well understood. This work employed vibrational sum frequency generation (SFG) spectroscopy to investigate the chemical environment of hydrous species in the surface region of SLS float glass. SLS float glass shows sharp peaks in the OH stretching vibration region in SFG spectra, while the OH stretch peaks of glasses that do not have leachable sodium ions and the OH peaks of water molecules in condensed phases are normally broad due to fast hydrogen bonding dynamics. The hydrous species responsible for the sharp SFG peaks for the SLS float glass were found to be thermodynamically more stable than physisorbed water molecules, did not exchange with D2O, and were associated with the sodium concentration gradient in the dealkalized subsurface region. These results suggested that the hydrous species reside in static solvation shells defined by the silicate network with relatively slow hydrogen bonding dynamics, compared to physisorbed water layers on top of the glass surface. A putative radial distribution of the hydrous species within the SLS glass network was estimated based on the OH SFG spectral features, which could be compared with theoretical distributions calculated from computational simulations. PMID:27254814

  18. Far-field nanoscale infrared spectroscopy of vibrational fingerprints of molecules with graphene plasmons

    PubMed Central

    Hu, Hai; Yang, Xiaoxia; Zhai, Feng; Hu, Debo; Liu, Ruina; Liu, Kaihui; Sun, Zhipei; Dai, Qing

    2016-01-01

    Infrared spectroscopy, especially for molecular vibrations in the fingerprint region between 600 and 1,500 cm−1, is a powerful characterization method for bulk materials. However, molecular fingerprinting at the nanoscale level still remains a significant challenge, due to weak light–matter interaction between micron-wavelengthed infrared light and nano-sized molecules. Here we demonstrate molecular fingerprinting at the nanoscale level using our specially designed graphene plasmonic structure on CaF2 nanofilm. This structure not only avoids the plasmon–phonon hybridization, but also provides in situ electrically-tunable graphene plasmon covering the entire molecular fingerprint region, which was previously unattainable. In addition, undisturbed and highly confined graphene plasmon offers simultaneous detection of in-plane and out-of-plane vibrational modes with ultrahigh detection sensitivity down to the sub-monolayer level, significantly pushing the current detection limit of far-field mid-infrared spectroscopies. Our results provide a platform, fulfilling the long-awaited expectation of high sensitivity and selectivity far-field fingerprint detection of nano-scale molecules for numerous applications. PMID:27460765

  19. Far-field nanoscale infrared spectroscopy of vibrational fingerprints of molecules with graphene plasmons

    NASA Astrophysics Data System (ADS)

    Hu, Hai; Yang, Xiaoxia; Zhai, Feng; Hu, Debo; Liu, Ruina; Liu, Kaihui; Sun, Zhipei; Dai, Qing

    2016-07-01

    Infrared spectroscopy, especially for molecular vibrations in the fingerprint region between 600 and 1,500 cm-1, is a powerful characterization method for bulk materials. However, molecular fingerprinting at the nanoscale level still remains a significant challenge, due to weak light-matter interaction between micron-wavelengthed infrared light and nano-sized molecules. Here we demonstrate molecular fingerprinting at the nanoscale level using our specially designed graphene plasmonic structure on CaF2 nanofilm. This structure not only avoids the plasmon-phonon hybridization, but also provides in situ electrically-tunable graphene plasmon covering the entire molecular fingerprint region, which was previously unattainable. In addition, undisturbed and highly confined graphene plasmon offers simultaneous detection of in-plane and out-of-plane vibrational modes with ultrahigh detection sensitivity down to the sub-monolayer level, significantly pushing the current detection limit of far-field mid-infrared spectroscopies. Our results provide a platform, fulfilling the long-awaited expectation of high sensitivity and selectivity far-field fingerprint detection of nano-scale molecules for numerous applications.

  20. Dye aggregation identified by vibrational coupling using 2D IR spectroscopy

    SciTech Connect

    Oudenhoven, Tracey A.; Laaser, Jennifer E.; Zanni, Martin T.; Joo, Yongho; Gopalan, Padma

    2015-06-07

    We report that a model dye, Re(CO){sub 3}(bypy)CO{sub 2}H, aggregates into clusters on TiO{sub 2} nanoparticles regardless of our preparation conditions. Using two-dimensional infrared (2D IR) spectroscopy, we have identified characteristic frequencies of monomers, dimers, and trimers. A comparison of 2D IR spectra in solution versus those deposited on TiO{sub 2} shows that the propensity to dimerize in solution leads to higher dimer formation on TiO{sub 2}, but that dimers are formed even if there are only monomers in solution. Aggregates cannot be washed off with standard protocols and are present even at submonolayer coverages. We observe cross peaks between aggregates of different sizes, primarily dimers and trimers, indicating that clusters consist of microdomains in close proximity. 2D IR spectroscopy is used to draw these conclusions from measurements of vibrational couplings, but if molecules are close enough to be vibrationally coupled, then they are also likely to be electronically coupled, which could alter charge transfer.

  1. Far-field nanoscale infrared spectroscopy of vibrational fingerprints of molecules with graphene plasmons.

    PubMed

    Hu, Hai; Yang, Xiaoxia; Zhai, Feng; Hu, Debo; Liu, Ruina; Liu, Kaihui; Sun, Zhipei; Dai, Qing

    2016-01-01

    Infrared spectroscopy, especially for molecular vibrations in the fingerprint region between 600 and 1,500 cm(-1), is a powerful characterization method for bulk materials. However, molecular fingerprinting at the nanoscale level still remains a significant challenge, due to weak light-matter interaction between micron-wavelengthed infrared light and nano-sized molecules. Here we demonstrate molecular fingerprinting at the nanoscale level using our specially designed graphene plasmonic structure on CaF2 nanofilm. This structure not only avoids the plasmon-phonon hybridization, but also provides in situ electrically-tunable graphene plasmon covering the entire molecular fingerprint region, which was previously unattainable. In addition, undisturbed and highly confined graphene plasmon offers simultaneous detection of in-plane and out-of-plane vibrational modes with ultrahigh detection sensitivity down to the sub-monolayer level, significantly pushing the current detection limit of far-field mid-infrared spectroscopies. Our results provide a platform, fulfilling the long-awaited expectation of high sensitivity and selectivity far-field fingerprint detection of nano-scale molecules for numerous applications. PMID:27460765

  2. The dynamics of rotational isomerism in crystals as studied by vibrational spectroscopy

    NASA Astrophysics Data System (ADS)

    Strauss, Herbert L.

    1985-01-01

    Vibrational spectroscopy is uniquely capable of determining the structure and dynamics arising from the rotational degrees of freedom in molecular solids. Vibrational spectroscopy is sensitive to phenomena occurring on a time scale between the slow scale of magnetic, resonance methods and fast scale of diffraction methods; a time scale appropriate for both internal and overall rotation. Rotational motion of molecules in crystals provide examples of very simple reactions. Our understanding of the spectra of reacting molecules can thus be tested on these systems, and we conclude that Redfield equations can describe such spectra. A rich variety of motional effects are described: (1) The libration of the water of hydration in sodium perchlorate which illustrates a simple reacting system. (2) The libration of the adamantane molecule in both its ordered and disordered crystal phases which illustrates intermolecular interactions in organic crystals and the consequences of disorder. (3) The libration of the ammonium ion in crystals of ammonium salts which illustrated both change of orientational position by tunneling and the subtle orientating effects of isotopic substitution. (4) The internal rotation in n-alkane crystals which illustrates the ability to determine conformers and the relationship between the occurrence of disordered conformers and the occurrence of phase transitions.

  3. Vibrational dynamics of azide-derivatized amino acids studied by nonlinear infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Okuda, Masaki; Ohta, Kaoru; Tominaga, Keisuke

    2015-06-01

    Recently, biomolecules which are labeled by azide or thiocyanate groups in solutions and proteins have been studied to examine microscopic environment around a solute by nonlinear infrared (IR) spectroscopy. In this study, we have performed two-dimensional infrared (2D-IR) spectroscopy to investigate the vibrational frequency fluctuations of two different azide-derivatized amino acids, Ala (N3-Ala) and Pro (N3-Pro), and N3- in water. From the 2D-IR experiments, it was found that the frequency-frequency time correlation function (FFTCF) of solute can be modeled by a delta function plus an exponential function and constant. FFTCF for each probe molecule has a decay component of about 1 ps, and this result suggests that the stretching mode of the covalently bonded azide group is sensitive to the fluctuations of hydrogen bond network system, as found in previous studies of N3- in water. In contrast to FFTCF of N3-, FFTCF of the azide-derivatized amino acids contains static component. This static component may reflect dynamics of water affected by the solutes or the structural fluctuations of the solute itself. We also performed the IR pump-probe measurements for the probe molecules in water in order to investigate vibrational energy relaxation (VER) and reorientational relaxation. It was revealed that the charge fluctuations in the azide group are significant for the VER of this mode in water, reflecting that the VER rate of N3- is faster than those of the azide-derivatized amino acids. While the behaviors of the anisotropy decay of N3-Ala and N3- are similar to each other, the anisotropy decay of N3-Pro contains much slower decaying component. By considering the structural difference around the vibrational probe between N3-Ala and N3-Pro, it is suggested that the structural freedom of the probe molecules can affect the reorientational processes.

  4. Vibrational spectroscopy and relaxation of an anharmonic oscillator coupled to harmonic bath.

    PubMed

    Joutsuka, Tatsuya; Ando, Koji

    2011-05-28

    The vibrational spectroscopy and relaxation of an anharmonic oscillator coupled to a harmonic bath are examined to assess the applicability of the time correlation function (TCF), the response function, and the semiclassical frequency modulation (SFM) model to the calculation of infrared (IR) spectra. These three approaches are often used in connection with the molecular dynamics simulations but have not been compared in detail. We also analyze the vibrational energy relaxation (VER), which determines the line shape and is itself a pivotal process in energy transport. The IR spectra and VER are calculated using the generalized Langevin equation (GLE), the Gaussian wavepacket (GWP) method, and the quantum master equation (QME). By calculating the vibrational frequency TCF, a detailed analysis of the frequency fluctuation and correlation time of the model is provided. The peak amplitude and width in the IR spectra calculated by the GLE with the harmonic quantum correction are shown to agree well with those by the QME though the vibrational frequency is generally overestimated. The GWP method improves the peak position by considering the zero-point energy and the anharmonicity although the red-shift slightly overshoots the QME reference. The GWP also yields an extra peak in the higher-frequency region than the fundamental transition arising from the difference frequency of the center and width oscillations of a wavepacket. The SFM approach underestimates the peak amplitude of the IR spectra but well reproduces the peak width. Further, the dependence of the VER rate on the strength of an excitation pulse is discussed. PMID:21639460

  5. Coherent Vibrational Dynamics and High-Resolution Nonlinear Spectroscopy: A Comparison with the Air/DMSO Liquid Interface

    SciTech Connect

    Velarde Ruiz Esparza, Luis A.; Lu, Zhou; Wang, Hongfei

    2013-12-27

    In this report we present a comparative study on the C-H stretching vibrations at air/DMSO (dimethyl sulfoxide) interface with both the free-induction decay (FID) coherent vibrational dynamics and sub-wavenumber high resolution sum-frequency generation vibrational spectroscopy measurements. In principle the frequency-domain and time-domain spectroscopic measurements should generate identical information for a given molecular system. However, when the molecular systems are with several coupled or overlapping vibrational modes, to obtain detailed spectroscopic and coherent dynamics information is not as straightforward and rather difficult from either the time-domain or the frequency domain measurements. For the case of air/DMSO interface that is with moderately complex vibrational spectra, we show that the frequency-domain measurement with sub-wavenumber high-resolution SFGVS is probably more advantageous than the time-domain measurement in obtaining quantitative understanding of the structure and coherent dynamics of the molecular interface.

  6. Conformational Heterogeneity in the Michaelis Complex of Lactate Dehydrogenase: An Analysis of Vibrational Spectroscopy Using Markov and Hidden Markov Models.

    PubMed

    Pan, Xiaoliang; Schwartz, Steven D

    2016-07-14

    Lactate dehydrogenase (LDH) catalyzes the interconversion of pyruvate and lactate. Recent isotope-edited IR spectroscopy suggests that conformational heterogeneity exists within the Michaelis complex of LDH, and this heterogeneity affects the propensity toward the on-enzyme chemical step for each Michaelis substate. By combining molecular dynamics simulations with Markov and hidden Markov models, we obtained a detailed kinetic network of the substates of the Michaelis complex of LDH. The ensemble-average electric fields exerted onto the vibrational probe were calculated to provide a direct comparison with the vibrational spectroscopy. Structural features of the Michaelis substates were also analyzed on atomistic scales. Our work not only clearly demonstrates the conformational heterogeneity in the Michaelis complex of LDH and its coupling to the reactivities of the substates, but it also suggests a methodology to simultaneously resolve kinetics and structures on atomistic scales, which can be directly compared with the vibrational spectroscopy. PMID:27347759

  7. Vibrational structure of the S 2 (1B u) excited state of diphenyloctatetraene observed by femtosecond stimulated Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Kukura, Philipp; McCamant, David W.; Davis, Paul H.; Mathies, Richard A.

    2003-11-01

    Femtosecond time-resolved stimulated Raman spectroscopy (FSRS) is used to study the vibrational structure and dynamics of the S 2 state of diphenyloctatetraene. Strong vibrational features at 1184, 1259 and 1578 cm -1 whose linewidths are determined by the S 2 electronic lifetime are observed at early times after photoexcitation at 397 nm. Kinetic analysis of the integrated Raman intensities as well as the transient absorption reveals an exponential decay of the S 2 state on the order of 100 fs. These results demonstrate the ability of FSRS to study the vibrational structure of excited state and chemical reaction dynamics on the femtosecond timescale.

  8. The Application of Vibrational Spectroscopy Techniques in the Qualitative Assessment of Material Traded as Ginseng.

    PubMed

    Sandasi, Maxleene; Vermaak, Ilze; Chen, Weiyang; Viljoen, Alvaro

    2016-01-01

    The name "ginseng" is collectively used to describe several plant species, including Panax ginseng (Asian/Oriental ginseng), P. quinquefolius (American ginseng), P. pseudoginseng (Pseudoginseng) and Eleutherococcus senticosus (Siberian ginseng), each with different applications in traditional medicine practices. The use of a generic name may lead to the interchangeable use or substitution of raw materials which poses quality control challenges. Quality control methods such as vibrational spectroscopy-based techniques are here proposed as fast, non-destructive methods for the distinction of four ginseng species and the identification of raw materials in commercial ginseng products. Certified ginseng reference material and commercial products were analysed using hyperspectral imaging (HSI), mid-infrared (MIR) and near-infrared (NIR) spectroscopy. Principal component analysis (PCA) and (orthogonal) partial least squares discriminant analysis models (OPLS-DA) were developed using multivariate analysis software. UHPLC-MS was used to analyse methanol extracts of the reference raw materials and commercial products. The holistic analysis of ginseng raw materials revealed distinct chemical differences using HSI, MIR and NIR. For all methods, Eleutherococcus senticosus displayed the greatest variation from the three Panax species that displayed closer chemical similarity. Good discrimination models with high R²X and Q² cum vales were developed. These models predicted that the majority of products contained either /P. ginseng or P. quinquefolius. Vibrational spectroscopy and HSI techniques in tandem with multivariate data analysis tools provide useful alternative methods in the authentication of ginseng raw materials and commercial products in a fast, easy, cost-effective and non-destructive manner. PMID:27077839

  9. Early identification of cervical neoplasia with Raman spectroscopy and advanced methods for biomedical applications

    NASA Astrophysics Data System (ADS)

    Jess, Phillip R. T.; Smith, Daniel D. W.; Mazilu, Michael; Cormack, Iain; Riches, Andrew C.; Herrington, C. Simon; Dholakia, Kishan

    2008-02-01

    Early detection of malignant tumours, or their precursor lesions, can dramatically improve patient outcome. High risk human Papillomavirus (HPV), particularly HPV16, infection can lead to the initiation and development of uterine cervical neoplasia. Bearing this in mind the identification of the effects of HPV infection may have clinical value. In this manuscript we investigate the application of Raman microspectroscopy to detect the presence of HPV in cultured cells when compared with normal cells. We also investigate the effect of sample fixation, which is a common clinical practice, on the ability of Raman spectroscopy to detect the presence of HPV. Raman spectra were acquired from Primary Human Keratinocytes (PHK), PHK expressing the E7 gene of HPV 16 (PHK E7) and CaSki cells, an HPV16 containing cervical carcinoma derived cell line. The average Raman spectra display variations, mostly in peaks relating to DNA and proteins, consistent with HPV gene expression and the onset of neoplasia in both live and fixed samples. Principle component analysis was used to objectively discriminate between the cells types giving sensitivities up to 100% for the comparison between PHK and CaSki. These results show that Raman spectroscopy can discriminate between cell lines representing different stages of cervical neoplasia. Furthermore Raman spectroscopy was able to identify cells expressing the HPV 16 E7 gene suggesting the approach may be of value in clinical practice. Finally this technique was also able to detect the effects of the virus in fixed samples demonstrating the compatibility of this technique with current cervical screening methods. However if Raman spectroscopy is to make a significant impact in clinical practice the long acquisition times must be addressed. In this report we examine the potential for beam shaping and advanced to improve the signal to noise ration hence subsequently facilitating a reduction in acquisition time.

  10. Biomedical Tissue Phantoms with Controlled Geometric and Optical Properties for Raman Spectroscopy and Tomography

    PubMed Central

    Esmonde-White, Francis W.L.; Esmonde-White, Karen A.; Kole, Matthew R.; Goldstein, Steven A.; Roessler, Blake J.; Morris, Michael D.

    2012-01-01

    To support the translation of Raman spectroscopy into clinical applications, synthetic models are needed to accurately test, optimize and validate prototype fiber optic instrumentation. Synthetic models (also called tissue phantoms) are widely used for developing and testing optical instrumentation for diffuse reflectance, fluorescence, and Raman spectroscopies. While existing tissue phantoms accurately model tissue optical scattering and absorption, they do not typically model the anatomic shapes and chemical composition of tissue. Because Raman spectroscopy is sensitive to molecular composition, Raman tissue phantoms should also approximate the bulk tissue composition. We describe the fabrication and characterization of tissue phantoms for Raman tomography and spectroscopy. These phantoms have controlled chemical and optical properties, and also multilayer morphologies which approximate the appropriate anatomic shapes. Tissue phantoms were fabricated to support on-going Raman studies by simulating human wrist and rat leg. Surface meshes (triangle patch models) were generated from computed tomography (CT) images of a human arm and rat leg. Rapid prototyping was used to print mold templates with complex geometric patterns. Plastic casting techniques used for movie special effects were adapted to fabricate molds from the rapid prototypes, and finally to cast multilayer gelatin tissue phantoms. The gelatin base was enriched with additives to model the approximate chemistry and optical properties of individual tissue layers. Additional studies were performed to determine optimal casting conditions, phantom stability, layer delamination and chemical diffusion between layers. Recovery of diffuse reflectance and Raman spectra in tissue phantoms varied with probe placement. These phantoms enable optimization of probe placement for human or rat studies. These multilayer tissue phantoms with complex geometries are shown to be stable, with minimal layer delamination and

  11. Two-dimensional vibrational spectroscopy of the amide I band of crystalline acetanilide: Fermi resonance, conformational substates, or vibrational self-trapping?

    NASA Astrophysics Data System (ADS)

    Edler, J.; Hamm, P.

    2003-08-01

    Two-dimensional infrared (2D-IR) spectroscopy is applied to investigate acetanilide, a molecular crystal consisting of quasi-one-dimensional hydrogen bonded peptide units. The amide-I band exhibits a double peak structure, which has been attributed to different mechanisms including vibrational self-trapping, a Fermi resonance, or the existence of two conformational substates. The 2D-IR spectrum of crystalline acetanilide is compared with that of two different molecular systems: (i) benzoylchloride, which exhibits a strong symmetric Fermi resonance and (ii) N-methylacetamide dissolved in methanol which occurs in two spectroscopically distinguishable conformations. Both 2D-IR spectra differ significantly from that of crystalline acetanilide, proving that these two alternative mechanisms cannot account for the anomalous spectroscopy of crystalline acetanilide. On the other hand, vibrational self-trapping of the amide-I band can naturally explain the 2D-IR response.

  12. Vibrational dynamics in dendridic oligoarylamines by Raman spectroscopy and incoherent inelastic neutron scattering.

    PubMed

    Kulszewicz-Bajer, Irena; Louarn, Guy; Djurado, David; Skorka, Lukasz; Szymanski, Marek; Mevellec, Jean Yves; Rols, Stephane; Pron, Adam

    2014-05-15

    Vibrational dynamics in triarylamine dendrimers was studied in a complementary way by Raman and infrared (IR) spectroscopies and incoherent inelastic neutron scattering (IINS). Three molecules were investigated, namely, unsubstituted triarylamine dendrimer of the first generation and two dendrimers of the first and second generation, substituted in the crown with butyl groups. To facilitate the assignment of the observed IR and Raman modes as well as the IINS peaks, vibrational models, based on the general valence force field method (GVFF), were calculated for all three compounds studied. A perfect consistency between the calculated and experimental results was found. Moreover, an important complementarity of the vibrational spectroscopies and IINS was established for the investigated dendrimers. The IINS peaks originating mainly from the C-H motions were not restricted by particular selection rules and only dependent on the IINS cross section. To the contrary, Raman and IR bands were imposed by the selection rules and the local geometry of the dendrimers yielding mainly C-C and C-N deformation modes with those of C-H nature of much lower intensity. Raman spectroscopy was also applied to the studies of the oxidation of dendrimers to their cationic forms. A strong Raman resonance effect was observed, since the spectra of the studied compounds, registered at different levels of their oxidation, strongly depended on the position of the excitation line with respect to their electronic spectrum. In particular, the blue (458 nm) excitation line turned out to be insensitive toward the cationic forms yielding very limited spectral information. To the contrary, the use of the red (647 nm) and infrared (1064 nm) excitation lines allowed for an unambiguous monitoring of the spectral changes in dendrimers oxidized to nominally monocationic and tricationic states. The analysis of oxidation-induced spectral changes in the tricationic state indicated that the charge storage

  13. Sample presentation, sources of error and future perspectives on the application of vibrational spectroscopy in the wine industry.

    PubMed

    Cozzolino, Daniel

    2015-03-30

    Vibrational spectroscopy encompasses a number of techniques and methods including ultra-violet, visible, Fourier transform infrared or mid infrared, near infrared and Raman spectroscopy. The use and application of spectroscopy generates spectra containing hundreds of variables (absorbances at each wavenumbers or wavelengths), resulting in the production of large data sets representing the chemical and biochemical wine fingerprint. Multivariate data analysis techniques are then required to handle the large amount of data generated in order to interpret the spectra in a meaningful way in order to develop a specific application. This paper focuses on the developments of sample presentation and main sources of error when vibrational spectroscopy methods are applied in wine analysis. Recent and novel applications will be discussed as examples of these developments. PMID:24816857

  14. Multiresonant coherent multidimensional vibrational spectroscopy of aromatic systems: pyridine, a model system.

    PubMed

    Kornau, Kathryn M; Rickard, Mark A; Mathew, Nathan A; Pakoulev, Andrei V; Wright, John C

    2011-04-28

    Multiresonant four wave mixing has been used to measure the coherent multidimensional spectroscopy (CMDS) of representative aromatic ring modes using pyridine as a model system. This work identifies the cross-peaks that appear between several modes and measures their coherent and incoherent dynamics. The work also explores the consequences of using multiresonant CMDS for molecules with transition moments that are typical of most vibrational modes. Typically, CMDS experiments rely on using transitions with exceptionally large transition moments. To observe cross-peaks, the pyridine concentration was raised until absorption effects became very important. These effects interfere with the parametric CMDS coherence pathways, but they do not make important contributions to the nonparametric pathways. PMID:21434678

  15. Polymer Adsorption on Graphite and CVD Graphene Surfaces Studied by Surface-Specific Vibrational Spectroscopy.

    PubMed

    Su, Yudan; Han, Hui-Ling; Cai, Qun; Wu, Qiong; Xie, Mingxiu; Chen, Daoyong; Geng, Baisong; Zhang, Yuanbo; Wang, Feng; Shen, Y R; Tian, Chuanshan

    2015-10-14

    Sum-frequency vibrational spectroscopy was employed to probe polymer contaminants on chemical vapor deposition (CVD) graphene and to study alkane and polyethylene (PE) adsorption on graphite. In comparing the spectra from the two surfaces, it was found that the contaminants on CVD graphene must be long-chain alkane or PE-like molecules. PE adsorption from solution on the honeycomb surface results in a self-assembled ordered monolayer with the C-C skeleton plane perpendicular to the surface and an adsorption free energy of ∼42 kJ/mol for PE(H(CH2CH2)nH) with n ≈ 60. Such large adsorption energy is responsible for the easy contamination of CVD graphene by impurity in the polymer during standard transfer processes. Contamination can be minimized with the use of purified polymers free of PE-like impurities. PMID:26367247

  16. Theoretical study of sum-frequency vibrational spectroscopy on limonene surface

    SciTech Connect

    Zheng, Ren-Hui Liu, Hao; Jing, Yuan-Yuan; Wang, Bo-Yang; Shi, Qiang; Wei, Wen-Mei

    2014-03-14

    By combining molecule dynamics (MD) simulation and quantum chemistry computation, we calculate the surface sum-frequency vibrational spectroscopy (SFVS) of R-limonene molecules at the gas-liquid interface for SSP, PPP, and SPS polarization combinations. The distributions of the Euler angles are obtained using MD simulation, the ψ-distribution is between isotropic and Gaussian. Instead of the MD distributions, different analytical distributions such as the δ-function, Gaussian and isotropic distributions are applied to simulate surface SFVS. We find that different distributions significantly affect the absolute SFVS intensity and also influence on relative SFVS intensity, and the δ-function distribution should be used with caution when the orientation distribution is broad. Furthermore, the reason that the SPS signal is weak in reflected arrangement is discussed.

  17. Theoretical study of sum-frequency vibrational spectroscopy on limonene surface

    NASA Astrophysics Data System (ADS)

    Zheng, Ren-Hui; Wei, Wen-Mei; Liu, Hao; Jing, Yuan-Yuan; Wang, Bo-Yang; Shi, Qiang

    2014-03-01

    By combining molecule dynamics (MD) simulation and quantum chemistry computation, we calculate the surface sum-frequency vibrational spectroscopy (SFVS) of R-limonene molecules at the gas-liquid interface for SSP, PPP, and SPS polarization combinations. The distributions of the Euler angles are obtained using MD simulation, the ψ-distribution is between isotropic and Gaussian. Instead of the MD distributions, different analytical distributions such as the δ-function, Gaussian and isotropic distributions are applied to simulate surface SFVS. We find that different distributions significantly affect the absolute SFVS intensity and also influence on relative SFVS intensity, and the δ-function distribution should be used with caution when the orientation distribution is broad. Furthermore, the reason that the SPS signal is weak in reflected arrangement is discussed.

  18. Vibrational properties of epitaxial Bi4Te3 films as studied by Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Xu, Hao; Song, Yuxin; Pan, Wenwu; Chen, Qimiao; Wu, Xiaoyan; Lu, Pengfei; Gong, Qian; Wang, Shumin

    2015-08-01

    Bi4Te3, as one of the phases of the binary Bi-Te system, shares many similarities with Bi2Te3, which is known as a topological insulator and thermoelectric material. We report the micro-Raman spectroscopy study of 50 nm Bi4Te3 films on Si substrates prepared by molecular beam epitaxy. Raman spectra of Bi4Te3 films completely resolve the six predicted Raman-active phonon modes for the first time. Structural features and Raman tensors of Bi4Te3 films are introduced. According to the wavenumbers and assignments of the six eigenpeaks in the Raman spectra of Bi4Te3 films, it is found that the Raman-active phonon oscillations in Bi4Te3 films exhibit the vibrational properties of those in both Bi and Bi2Te3 films.

  19. Two-dimensional ultrafast vibrational spectroscopy of azides in ionic liquids reveals solute-specific solvation.

    PubMed

    Dutta, Samrat; Ren, Zhe; Brinzer, Thomas; Garrett-Roe, Sean

    2015-10-28

    The stereochemistry and the reaction rates of bimolecular nucleophilic substitution reactions involving azides in ionic liquids are governed by solute-solvent interactions. Two-dimensional ultrafast vibrational spectroscopy (2D-IR) shows that the picosecond dynamics of inorganic azides are substantially slower than organic azides in a series of homologous imidazolium ionic liquids. In water, both organic and inorganic azides spectrally diffuse with a ∼2 ps time constant. In the aprotic solvent tetrahydrofuran, both kinds of azides spectrally diffuse on a timescale >5 ps. In ionic liquids, like 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIM][BF4]), organic azides spectrally diffuse with a 2-4 ps time constant, and inorganic azides spectrally diffuse with a >40 ps time constant. Such a striking difference suggests that neutral (organic) and charged (inorganic) azides are incorporated in the ionic liquids with different solvation structures. PMID:26193916

  20. Detection of water and its derivatives on individual nanoparticles using vibrational electron energy-loss spectroscopy.

    PubMed

    Crozier, Peter A; Aoki, Toshihiro; Liu, Qianlang

    2016-10-01

    Understanding the role of water, hydrate and hydroxyl species on nanoparticle surfaces and interfaces is very important in both physical and life sciences. Detecting the presence of oxygen-hydrogen species with nanometer resolution is extremely challenging at present. Here we show that the recently developed vibrational electron energy-loss spectroscopy using subnanometer focused electron beams can be employed to spectroscopically identify the local presence and variation of OH species on nanoscale surfaces. The hydrogen-oxygen fingerprint can be correlated with highly localized structural and morphological information obtained from electron imaging. Moreover, the current approach exploits the aloof beam mode of spectral acquisition which does not require direct electron irradiation of the sample thus greatly reducing beam damage to the OH bond. These findings open the door for using electron microscopy to probe local hydroxyl and hydrate species on nanoscale organic and inorganic structures. PMID:27423795

  1. Sum Frequency Generation Vibrational Spectroscopy of Pyridine Hydrogenation on Platinum Nanoparticles

    SciTech Connect

    Bratlie, Kaitlin M.; Komvopoulos, Kyriakos; Somorjai, Gabor A.

    2008-02-22

    Pyridine hydrogenation in the presence of a surface monolayer consisting of cubic Pt nanoparticles stabilized by tetradecyltrimethylammonium bromide (TTAB) was investigated by sum frequency generation (SFG) vibrational spectroscopy using total internal reflection (TIR) geometry. TIR-SFG spectra analysis revealed that a pyridinium cation (C{sub 5}H{sub 5}NH{sup +}) forms during pyridine hydrogenation on the Pt nanoparticle surface, and the NH group in the C{sub 5}H{sub 5}NH{sup +} cation becomes more hydrogen bound with the increase of the temperature. In addition, the surface coverage of the cation decreases with the increase of the temperature. An important contribution of this study is the in situ identification of reaction intermediates adsorbed on the Pt nanoparticle monolayer during pyridine hydrogenation.

  2. Vibrational Sum Frequency Spectroscopy on Polyelectrolyte Multilayers: Effect of Molecular Surface Structure on Macroscopic Wetting Properties.

    PubMed

    Gustafsson, Emil; Hedberg, Jonas; Larsson, Per A; Wågberg, Lars; Johnson, C Magnus

    2015-04-21

    Adsorption of a single layer of molecules on a surface, or even a reorientation of already present molecules, can significantly affect the surface properties of a material. In this study, vibrational sum frequency spectroscopy (VSFS) has been used to study the change in molecular structure at the solid-air interface following thermal curing of polyelectrolyte multilayers of poly(allylamine hydrochloride) and poly(acrylic acid). Significant changes in the VSF spectra were observed after curing. These changes were accompanied by a distinct increase in the static water contact angle, showing how the properties of the layer-by-layer molecular structure are controlled not just by the polyelectrolyte in the outermost layer but ultimately by the orientation of the chemical constituents in the outermost layers. PMID:25859709

  3. Rotational-Vibrational Raman Spectroscopy for the Measurement of Thermochemistry in Nonisobaric Flames

    NASA Astrophysics Data System (ADS)

    Bayeh, Alexander; Cosse, Julia; Karpetis, Adonios

    2008-11-01

    The present work examines the feasibility of Raman line imaging spectroscopy for multiscalar measurements of thermochemistry in reacting flows under varying pressure. Line imaging of the rotational and vibrational Raman scattering was combined onto a single detector, thus allowing for a single-shot measurement of major species, pressure, and temperature in turbulent nonisobaric conditions. The diagnostic technique also allows for the calculation of two important derived quantities of interest, namely a conserved scalar and its dissipation rate. Additionally the present work introduces ``canonical'' flows that are optically accessible and involve high-speed, supersonic combustion with pressure variation. Small-scale, nonreacting supersonic underexpanded jets have been studied experimentally, using both a Schlieren system and the Raman line imaging technique, and computationally, using a method of characteristics approach.

  4. Laser-induced breakdown spectroscopy with laser irradiation resonant with vibrational transitions

    SciTech Connect

    Khachatrian, Ani; Dagdigian, Paul J.

    2010-05-01

    An investigation of laser-induced breakdown spectroscopy (LIBS) of polymers, both in bulk form and spin coated on Si wafers, with laser irradiation in the mid-infrared spectral region is presented. Of particular interest is whether the LIBS signals are enhanced when the laser wavelength is resonant with a fundamental vibrational transition of the polymer. Significant increases in the LIBS signals were observed for irradiation on hydride stretch fundamental transitions, and the magnitude of the enhancement showed a strong dependence on the mode excited. The role of the substrate was investigated by comparison of results for bulk and spin-coated samples. The polymers investigated were Nylon 12 and poly(vinyl alcohol-co-ethylene).

  5. Microsecond kinetics of photocatalytic oxidation on Pt/TiO 2 traced by vibrational spectroscopy

    NASA Astrophysics Data System (ADS)

    Yamakata, Akira; Ishibashi, Taka-aki; Onishi, Hiroshi

    2003-07-01

    2-Propanol oxidation to acetone was examined by time-resolved infrared spectroscopy on a Pt/TiO 2 photocatalyst in an aqueous solution. Holes generated by the band-gap excitation were found to attach to the adsorbed reactant within the first 0.5 μs. Subsequent rearrangement of atoms in the hole-attached reactant was observed on a series of time-resolved vibrational spectra. The CO stretching band of a reaction intermediate to be converted to acetone appeared at time delays of 0-20 μs. The observed wavenumber of the intermediate, 1640 cm -1, was compared with theoretically predicted CO stretching frequencies of possible species. An acceptable agreement was obtained with the anion radical of acetone adsorbed on the catalyst.

  6. Metal-Catalyzed Chemical Reaction of Single Molecules Directly Probed by Vibrational Spectroscopy.

    PubMed

    Choi, Han-Kyu; Park, Won-Hwa; Park, Chan-Gyu; Shin, Hyun-Hang; Lee, Kang Sup; Kim, Zee Hwan

    2016-04-01

    The study of heterogeneous catalytic reactions remains a major challenge because it involves a complex network of reaction steps with various intermediates. If the vibrational spectra of individual molecules could be monitored in real time, one could characterize the structures of the intermediates and the time scales of reaction steps without ensemble averaging. Surface-enhanced Raman scattering (SERS) spectroscopy does provide vibrational spectra with single-molecule sensitivity, but typical single-molecule SERS signals exhibit spatial heterogeneities and temporal fluctuations, making them difficult to be used in single-molecule kinetics studies. Here we show that SERS can monitor the single-molecule catalytic reactions in real time. The surface-immobilized reactants placed at the junctions of well-defined nanoparticle-thin film structures produce time-resolved SERS spectra with discrete, step-transitions of photoproducts. We interpret that such SERS-steps correspond to the reaction events of individual molecules occurring at the SERS hotspot. The analyses of the yield, dynamics, and the magnitude of such SERS steps, along with the associated spectral characteristics, fully support our claim. In addition, a model that is based on plasmonic field enhancement and surface photochemistry reproduces the key features of experimental observation. Overall, the result demonstrates that it is possible, under well-controlled conditions, to differentiate the chemical and physical processes contributing to the single-molecule SERS signals, and thus shows the use of single-molecule SERS as a tool for studying the metal-catalyzed organic reactions. PMID:26964567

  7. A new aromatic probe - The ring stretching vibration Raman spectroscopy frequency.

    PubMed

    Guo, Yan-Bo; Liu, Zi-Zhong; Liu, Hong-Xia; Zhang, Feng-Ying; Yin, Jun-Qing

    2016-07-01

    A new aromatic criterion is presented to determine the aromatic degree of the high symmetric molecules. Group theory is used to explain the correlation between the aromatic degree and the value of Ring Stretching Vibration Raman Spectroscopic Frequency (RSVRSF). The calculations of the geometrical optimization, nucleus-independent chemical shifts (NICS) and values of the Raman Spectroscopy for the aromatic molecules-LnHn (L=C, Si, Ge, n=3, 5-8) were performed using the Density Functional Theory (DFT) Method, as well as the correlations between the values of their RSVRSF and NICS values by Statistic Package for Social Science (SPSS17.0). There are high positive correlations between the theoretical calculated the NICS values and the value of the RSVRSF (A1g/A1') of the LnHn (L=C, Si, Ge, n=3, 5-8). The bigger the aromatic degree, the bigger the RSVRSF is. The value of the RSVRSF is a new probe of aromaticity. Expectedly, it is predicted that the experimental determination of the aromatic degree can be achieved by the determination of the ring stretching vibration (A1g/A1') Raman spectrum frequencies for the aromatic target molecules. PMID:27085169

  8. Vibrational spectroscopy and principal component analysis for conformational study of virus nucleic acids

    NASA Astrophysics Data System (ADS)

    Dovbeshko, G. I.; Repnytska, O. P.; Pererva, T.; Miruta, A.; Kosenkov, D.

    2004-07-01

    Conformation analysis of mutated DNA-bacteriophages (PLys-23, P23-2, P47- the numbers have been assigned by T. Pererva) induced by MS2 virus incorporated in Ecoli AB 259 Hfr 3000 has been done. Surface enhanced infrared absorption (SEIRA) spectroscopy and principal component analysis has been applied for solving this problem. The nucleic acids isolated from the mutated phages had a form of double stranded DNA with different modifications. The nucleic acid from phage P47 was undergone the structural rearrangement in the most degree. The shape and position ofthe fine structure of the Phosphate asymmetrical band at 1071cm-1 as well as the stretching OH vibration at 3370-3390 cm-1 has indicated to the appearance ofadditional OH-groups. The Z-form feature has been found in the base vibration region (1694 cm-1) and the sugar region (932 cm-1). A supposition about modification of structure of DNA by Z-fragments for P47 phage has been proposed. The P23-2 and PLys-23 phages have showed the numerous minor structural changes also. On the basis of SEIRA spectra we have determined the characteristic parameters of the marker bands of nucleic acid used for construction of principal components. Contribution of different spectral parameters of nucleic acids to principal components has been estimated.

  9. A new aromatic probe - The ring stretching vibration Raman spectroscopy frequency

    NASA Astrophysics Data System (ADS)

    Guo, Yan-bo; Liu, Zi-zhong; Liu, Hong-xia; Zhang, Feng-ying; Yin, Jun-qing

    2016-07-01

    A new aromatic criterion is presented to determine the aromatic degree of the high symmetric molecules. Group theory is used to explain the correlation between the aromatic degree and the value of Ring Stretching Vibration Raman Spectroscopic Frequency (RSVRSF). The calculations of the geometrical optimization, nucleus-independent chemical shifts (NICS) and values of the Raman Spectroscopy for the aromatic molecules-LnHn (L = C, Si, Ge, n = 3, 5-8) were performed using the Density Functional Theory (DFT) Method, as well as the correlations between the values of their RSVRSF and NICS values by Statistic Package for Social Science (SPSS17.0). There are high positive correlations between the theoretical calculated the NICS values and the value of the RSVRSF (A1g/A1‧) of the LnHn (L = C, Si, Ge, n = 3, 5-8). The bigger the aromatic degree, the bigger the RSVRSF is. The value of the RSVRSF is a new probe of aromaticity. Expectedly, it is predicted that the experimental determination of the aromatic degree can be achieved by the determination of the ring stretching vibration (A1g/A1‧) Raman spectrum frequencies for the aromatic target molecules.

  10. Compact ultrahigh vacuum/high-pressure system for broadband infrared sum frequency generation vibrational spectroscopy studies

    NASA Astrophysics Data System (ADS)

    Liu, Shuo; Liu, An-an; Zhang, Ruidan; Ren, Zefeng

    2016-04-01

    We have designed a compact ultrahigh vacuum/high-pressure system for in situ broadband infrared (IR) sum frequency generation vibrational spectroscopy (SFG-VS) studies. In this system, we have achieved a significant reduction in the distance between the sample and the optical window (<5 mm), which in turn considerably reduces the IR absorption from the gas phase under high pressure conditions. Moreover, with this new system, the IR transmission under high pressure conditions can be measured in situ for calibrating the SFG spectra. Therefore, this modified technique can allow us to study the vibrational spectra of adsorbates on single crystals or polycrystalline foils under high pressure. The preliminary results from SFG measurements of a model CH3OH/TiO2(110) system under both ultrahigh vacuum and high pressure conditions are reported here. These results suggest that this newly developed system is potentially a powerful tool for investigating adsorbate structures and surface reactions under both ultrahigh vacuum and real conditions.

  11. Compact ultrahigh vacuum/high-pressure system for broadband infrared sum frequency generation vibrational spectroscopy studies.

    PubMed

    Liu, Shuo; Liu, An-An; Zhang, Ruidan; Ren, Zefeng

    2016-04-01

    We have designed a compact ultrahigh vacuum/high-pressure system for in situ broadband infrared (IR) sum frequency generation vibrational spectroscopy (SFG-VS) studies. In this system, we have achieved a significant reduction in the distance between the sample and the optical window (<5 mm), which in turn considerably reduces the IR absorption from the gas phase under high pressure conditions. Moreover, with this new system, the IR transmission under high pressure conditions can be measured in situ for calibrating the SFG spectra. Therefore, this modified technique can allow us to study the vibrational spectra of adsorbates on single crystals or polycrystalline foils under high pressure. The preliminary results from SFG measurements of a model CH3OH/TiO2(110) system under both ultrahigh vacuum and high pressure conditions are reported here. These results suggest that this newly developed system is potentially a powerful tool for investigating adsorbate structures and surface reactions under both ultrahigh vacuum and real conditions. PMID:27131685

  12. Vibrational spectroscopy for the evaluation of molecular perturbations induced in fruit lipids by cold storage

    NASA Astrophysics Data System (ADS)

    Bertoluzza, A.; Bottura, G.; Filippetti, P.; Tosi, M. R.; Vasina, M.; Pratella, G. C.; Folchi, A.; Gallerani, G.

    1994-07-01

    Vibrational spectroscopy (Raman, FT-IR-ATR) has been applied for the first time to the study of the mechanism of chilling stress and the monitoring of the best operative conditions for cold storage of fruit. In particular, this work deals with some results of the application of vibrational spectroscopy to the molecular characterization of lipidic extracts of fruits (apples and pears, pulp and peel) stored at low temperatures. The results have been obtained in a cooperative interdisciplinary research project performing experiments on fruits for one year cycles under different storage conditions of temperature (0°C, 8°C) and atmosphere (normal, controlled). The Raman spectra, useful for the evaluation of the transition temperature and the cooperative effect in the fruit membrane lipids, were masked by the strong resonance spectrum of carotenoids. The lipid unsaturation, the natural response to cold storage, was evaluated in the FT-IR-ATR spectra and expressed as the "total" unsaturation degree R = I{3012 cm -1}/{2858 cm -1}. The results on pulp and peel lipids have shown that the R value, higher in the pulps than peels, is dependent on the storage temperature and time. The increase in R is correlated with the higher fruit resistance to the chilling stress. Furthermore, the FT-IR spectra of the outer part of the fruits stored at 8°C show modifications of the carbonylic band at 1738 cm -1 (esteric group) such as the appearance of two other bands at 1715 and 1700 cm -1 increasing in intensity with storage time. These new components can be considered as molecular markers of the onset of a hydrolysis reaction and also of a partial peroxidation of the acylic unsaturated chains.

  13. Modeling Stretching Modes of Common Organic Molecules with the Quantum Mechanical Harmonic Oscillator: An Undergraduate Vibrational Spectroscopy Laboratory Exercise

    ERIC Educational Resources Information Center

    Parnis, J. Mark; Thompson, Matthew G. K.

    2004-01-01

    An introductory undergraduate physical organic chemistry exercise that introduces the harmonic oscillator's use in vibrational spectroscopy is developed. The analysis and modeling exercise begins with the students calculating the stretching modes of common organic molecules with the help of the quantum mechanical harmonic oscillator (QMHO) model.

  14. Biomedical magnetic resonance imaging and spectroscopy with laser polarized noble gases

    SciTech Connect

    Welsh, R.C.; Rosen, M.S.; Coulter, K.P.; Chupp, T.E.; Swanson, S.D.; Agranoff, B.W.; Prince, M.R.

    1996-05-01

    In the past year, a great deal of attention has been drawn to the use of laser polarized noble gases to produce magnetic resonance images of rodent and human lungs. Initial demonstrations proved the principle that air space images can be produced with noble gases polarized to several percent. (The noble gas density is thousands of times greater than the proton polarization of order 10{sup {minus}5} at 2 Tesla.) The manifold motivations include improvement of pulmonary and circulatory diagnostic radiology techniques as well as study of physiological function including neurological response. The authors have undertaken a program of development and application of MR imaging and spectroscopy using laser polarized gases with several goals including development of techniques and technologies to facilitate research and eventual medical applications. This talk will describe this multi-disciplinary program combining laser and optical physics, magnetic resonance tomography, neurophysiology and medical science.

  15. Gas Phase Vibrational Spectroscopy of Weakly Volatil Safe Taggants Using a Synchrotron Source

    NASA Astrophysics Data System (ADS)

    Cuisset, Arnaud; Hindle, Francis; Mouret, Gael; Gruet, Sebastien; Pirali, Olivier; Roy, Pascale

    2013-06-01

    The high performances of the AILES beamline of SOLEIL allow to study at medium resolution (0.5 cm^{-1}) the gas phase THz vibrational spectra of weakly volatil compounds. Between 2008 and 2010 we recorded and analyzed the THz/Far-IR spectra of phosphorous based nerve agents thanks to sufficient vapour pressures from liquid samples at room temperature. Recently, we extended these experiments towards the vibrational spectroscopy of vapour pressures from solid samples. This project is quite challenging since we target lower volatile compounds, and so requires very high sensitive spectrometers. Moreover a specially designed heated multipass-cell have been developped for the gas phase study of very weak vapor pressures. Thanks to skills acquired during initial studies and recent experiments performed on AILES with solid PAHs, we have recorded and assigned the gas phase vibrational fingerprints from the THz to the NIR spectral domain (10-4000 cm-1) of a set of targeted nitro-derivatives. The study was focused onto the para, ortho-mononitrotoluene (p-NT, o-NT), the 1,4 Dinitrobenzene (1,4 DNB), the 2,3-dimethyl-2,3-dinitrobutane (DMNB), and 2,4 and 2,6-dinitrotoluene (2,4-2,6 DNT), which are safe taggants widely used for the detection of commercial explosives. These taggants are usually added to plastic explosives in order to facilitate their vapour detection. Therefore, there is a continuous interest for their detection and identification in realistic conditions via optical methods. A first step consists in the recording of their gas phase vibrational spectra. These expected spectra focused onto molecules involved into defence and security domains are not yet available to date and will be very useful for the scientific community. This work is supported by the contract ANR-11-ASTR-035-01. A. Cuisset, G. Mouret, O. Pirali, P. Roy, F. Cazier, H. Nouali, J. Demaison, J. Phys. Chem. B, 2008, 112:, 12516-12525 I. Smirnova, A. Cuisset, R. Bocquet, F. Hindle, G. Mouret, O

  16. Spectroscopy of isolated PTCDA molecules on the KCl(100) surface: Vibrational spectra and azimuthal orientation

    NASA Astrophysics Data System (ADS)

    Müller, Mathias; Paulheim, Alexander; Marquardt, Christian; Sokolowski, Moritz

    2013-02-01

    Small amounts of the model molecule perylene-3,4,9,10-tetracarboxylic acid dianhydride (PTCDA) were vacuum deposited on epitaxial KCl films on Ag(100). The use of a low substrate temperature (20 K) during deposition hampered molecular diffusion resulting in isolated monomers on the surface. Fluorescence and fluorescence excitation spectroscopy performed on these monomers yielded highly resolved spectra with narrow lines corresponding to individual vibronic modes. This high resolution in our spectra is caused by a very small inhomogeneous broadening due to well-defined adsorption sites of the molecule on the substrate. Indeed, by polarization dependent fluorescence spectroscopy we show that the flat-lying molecules exhibit a preferred azimuthal orientation on the surface, the long molecular axis being oriented along the [011] or the equivalent [0bar{1}1] direction of the substrate. Furthermore, the high resolution in the spectra allowed a detailed analysis of the vibronic modes. The vibrational modes of the adsorbed molecule are very similar to those of the free PTCDA molecule, but due to the presence of the substrate additional low energy modes which are relevant for the full understanding of the spectra couple to the transition.

  17. Spectroscopy of isolated PTCDA molecules on the KCl(100) surface: vibrational spectra and azimuthal orientation.

    PubMed

    Müller, Mathias; Paulheim, Alexander; Marquardt, Christian; Sokolowski, Moritz

    2013-02-14

    Small amounts of the model molecule perylene-3,4,9,10-tetracarboxylic acid dianhydride (PTCDA) were vacuum deposited on epitaxial KCl films on Ag(100). The use of a low substrate temperature (20 K) during deposition hampered molecular diffusion resulting in isolated monomers on the surface. Fluorescence and fluorescence excitation spectroscopy performed on these monomers yielded highly resolved spectra with narrow lines corresponding to individual vibronic modes. This high resolution in our spectra is caused by a very small inhomogeneous broadening due to well-defined adsorption sites of the molecule on the substrate. Indeed, by polarization dependent fluorescence spectroscopy we show that the flat-lying molecules exhibit a preferred azimuthal orientation on the surface, the long molecular axis being oriented along the [011] or the equivalent [011] direction of the substrate. Furthermore, the high resolution in the spectra allowed a detailed analysis of the vibronic modes. The vibrational modes of the adsorbed molecule are very similar to those of the free PTCDA molecule, but due to the presence of the substrate additional low energy modes which are relevant for the full understanding of the spectra couple to the transition. PMID:23425484

  18. Vibrational Spectroscopy of Sodium Halide and Hydrogen Halide Aqueous Solutions: Application to Atmospheric Aerosol Chemistry

    NASA Astrophysics Data System (ADS)

    Levering, L. M.; Liu, D.; Allen, H. C.

    2003-12-01

    Heterogeneous reactions on the surfaces of atmospheric aerosols play an important role in atmospheric chemistry. These reactions are capable of converting alkyl and hydrogen halides (common constituents of marine boundary aerosols) into active halogen compounds. Fundamental questions still remain concerning surface species and reaction mechanisms pertaining to marine boundary aerosols. The first step in beginning to understand these heterogeneous reactions is to determine how ions in solution affect the structure of water at the interface. Vibrational sum frequency generation spectroscopy is used to examine the air-liquid interface of sodium halide and hydrogen halide (i.e. strong acid) solutions. In addition, comparison of the bulk water structure to that of the interface is accomplished using Raman spectroscopy. The hydrogen-bonding environment at the surface of NaCl is found to be similar to that of the air-water interface. In contrast, the interfacial water structure of NaBr, HCl, and HBr solutions is significantly altered from that of neat water. In the bulk, NaCl, NaBr, HCl, and HBr solutions disturb the hydrogen-bonding network of neat water. A comparison between the corresponding salts and acids show that the salts produce greater disorder (i.e. less coupling of the water symmetric stretching modes) in the bulk water structure.

  19. Characterization of starch polymorphic structures using vibrational sum frequency generation spectroscopy.

    PubMed

    Kong, Lingyan; Lee, Christopher; Kim, Seong H; Ziegler, Gregory R

    2014-02-20

    The polymorphic structures of starch were characterized with vibrational sum frequency generation (SFG) spectroscopy. The noncentrosymmetry requirement of SFG spectroscopy allows for the detection of the ordered domains without spectral interferences from the amorphous phase and also the distinction of the symmetric elements among crystalline polymorphs. The V-type amylose was SFG-inactive due to the antiparallel packing of single helices in crystal unit cells, whereas the A- and B-type starches showed strong SFG peaks at 2904 cm(-1) and 2952-2968 cm(-1), which were assigned to CH stretching of the axial methine group in the ring and CH2 stretching of the exocyclic CH2OH side group, respectively. The CH2/CH intensity ratios of the A- and B-type starches are significantly different, indicating that the conformation of hydroxymethyl groups in these two polymorphs may be different. Cyclodextrin inclusion complexes were also analyzed as a comparison to the V-type amylose and showed that the head-to-tail and head-to-head stacking patterns of cyclodextrin molecules govern their SFG signals and peak positions. Although the molecular packing is different between V-type amylose and cyclodextrin inclusion complexes, both crystals show the annihilation of SFG signals when the functional group dipoles are arranged pointing in opposite directions. PMID:24432980

  20. Direct monitoring of photo-induced reactions on well-defined metal oxide surfaces using vibrational spectroscopy

    NASA Astrophysics Data System (ADS)

    Rohmann, Christoph; Wang, Yuemin; Muhler, Martin; Metson, James; Idriss, Hicham; Wöll, Christof

    2008-07-01

    Reflection-absorption infra red spectroscopy (RAIRS) has been successfully used to study a prototype photochemical reaction: the photooxidation of CO over rutile TiO 2(1 1 0) single crystal surfaces. RAIRS-results revealed the presence of irreversibly adsorbed CO on top of the five fold coordinated surface Ti atoms with a vibration frequency of 2190 cm -1 at 110 K. Because fundamental problems have so far prohibited the detection of CO on metal oxide single crystals with IR-spectroscopy (in contrast to the situation for powders), high resolution electron energy loss spectroscopy (HREELS) was also employed for further confirmation.

  1. Biomedical spectroscopy in clinical applications and implications of liquid crystal filter technologies

    NASA Astrophysics Data System (ADS)

    McMurdy, John W.

    This dissertation discusses two related clinical applications of visible regime diffuse reflectance spectroscopy as well as two new configurations of liquid crystal microspectrometer suitable in these applications. Total hemoglobin concentration can be determined, and thus anemia diagnosed, using diffuse reflectance signals from the inner lining of the eyelid, the palpebral conjunctiva. Alternative technologies for anemia detection are explored, a theoretical model for light diffusion through the conjunctiva is presented, and predictive models are established relating spectral signatures to hemoglobin concentration. Two separate clinical trials were conducted showing accuracy of hemoglobin determination with respect to invasive determination of 5% and 8% of mean hemoglobin concentration, respectively. Local hemoglobin concentration can also be determined in vivo at individual vessels using a single fiber which is directly applicable in endoscopic and laparoscopic surgery. Clinical trials showed signal differentiation of different hemoglobin levels in laparoscopic cases when pressing the single fiber against an individual vessel, and donor/recipient differentiation in fetal endoscopy cases of twin to twin transfusion syndrome. Liquid crystal technologies can be used to create integrated chip-scale microspectrometers. In one configuration, analog tunable ferroelectric liquid crystals are applied to create a tunable filter spectrometer with resolution from 15-30 nm. In a second configuration, stressed liquid crystal polymer composites are used to create large phase modulators, subsequently applied as single panel Fourier transform spectrometers. Proof of concept studies show a 100 microm stressed liquid crystal polymer in double pass mode is capable of 60 nm resolving power.

  2. Automatic and robust calibration of optical detector arrays for biomedical diffuse optical spectroscopy

    PubMed Central

    Mastanduno, Michael A.; Jiang, Shudong; DiFlorio-Alexander, Roberta; Pogue, Brian W.; Paulsen, Keith D.

    2012-01-01

    The design and testing of a new, fully automated, calibration approach is described. The process was used to calibrate an image-guided diffuse optical spectroscopy system with 16 photomultiplier tubes (PMTs), but can be extended to any large array of optical detectors and associated imaging geometry. The design goals were accomplished by developing a routine for robust automated calibration of the multi-detector array within 45 minutes. Our process was able to characterize individual detectors to a median norm of the residuals of 0.03 V for amplitude and 4.4 degrees in phase and achieved less than 5% variation between all the detectors at the 95% confidence interval for equivalent measurements. Repeatability of the calibrated data from the imaging system was found to be within 0.05 V for amplitude and 0.2 degrees for phase, and was used to evaluate tissue-simulating phantoms in two separate imaging geometries. Spectroscopic imaging of total hemoglobin concentration was recovered to within 5% of the true value in both cases. Future work will focus on streamlining the technology for use in a clinical setting with expectations of achieving accurate quantification of suspicious lesions in the breast. PMID:23082277

  3. Automatic and robust calibration of optical detector arrays for biomedical diffuse optical spectroscopy.

    PubMed

    Mastanduno, Michael A; Jiang, Shudong; Diflorio-Alexander, Roberta; Pogue, Brian W; Paulsen, Keith D

    2012-10-01

    The design and testing of a new, fully automated, calibration approach is described. The process was used to calibrate an image-guided diffuse optical spectroscopy system with 16 photomultiplier tubes (PMTs), but can be extended to any large array of optical detectors and associated imaging geometry. The design goals were accomplished by developing a routine for robust automated calibration of the multi-detector array within 45 minutes. Our process was able to characterize individual detectors to a median norm of the residuals of 0.03 V for amplitude and 4.4 degrees in phase and achieved less than 5% variation between all the detectors at the 95% confidence interval for equivalent measurements. Repeatability of the calibrated data from the imaging system was found to be within 0.05 V for amplitude and 0.2 degrees for phase, and was used to evaluate tissue-simulating phantoms in two separate imaging geometries. Spectroscopic imaging of total hemoglobin concentration was recovered to within 5% of the true value in both cases. Future work will focus on streamlining the technology for use in a clinical setting with expectations of achieving accurate quantification of suspicious lesions in the breast. PMID:23082277

  4. A new resonance-frequency based electrical impedance spectroscopy and its application in biomedical engineering

    NASA Astrophysics Data System (ADS)

    Dhurjaty, Sreeram; Qiu, Yuchen; Tan, Maxine; Zheng, Bin

    2014-03-01

    Electrical Impedance Spectroscopy (EIS) has shown promising results for differentiating between malignant and benign tumors, which exhibit different dielectric properties. However, the performance of current EIS systems has been inadequate and unacceptable in clinical practice. In the last several years, we have been developing and testing a new EIS approach using resonance frequencies for detection and classification of suspicious tumors. From this experience, we identified several limitations of current technologies and designed a new EIS system with a number of new characteristics that include (1) an increased A/D (analog-to-digital) sampling frequency, 24 bits, and a frequency resolution of 100 Hz, to increase detection sensitivity (2) automated calibration to monitor and correct variations in electronic components within the system, (3) temperature sensing and compensation algorithms to minimize impact of environmental change during testing, and (4) multiple inductor-switching to select optimum resonance frequencies. We performed a theoretical simulation to analyze the impact of adding these new functions for improving performance of the system. This system was also tested using phantoms filled with variety of liquids. The theoretical and experimental test results are consistent with each other. The experimental results demonstrated that this new EIS device possesses the improved sensitivity and/or signal detection resolution for detecting small impedance or capacitance variations. This provides the potential of applying this new EIS technology to different cancer detection and diagnosis tasks in the future.

  5. Characterizing interstate vibrational coherent dynamics of surface adsorbed catalysts by fourth-order 3D SFG spectroscopy

    NASA Astrophysics Data System (ADS)

    Li, Yingmin; Wang, Jiaxi; Clark, Melissa L.; Kubiak, Clifford P.; Xiong, Wei

    2016-04-01

    We report the first fourth-order 3D SFG spectroscopy of a monolayer of the catalyst Re(diCN-bpy)(CO)3Cl on a gold surface. Besides measuring the vibrational coherences of single vibrational modes, the fourth-order 3D SFG spectrum also measures the dynamics of interstate coherences and vibrational coherences states between two vibrational modes. By comparing the 3D SFG to the corresponding 2D and third-order 3D IR spectroscopy of the same molecules in solution, we found that the interstate coherences exist in both liquid and surface systems, suggesting that the interstate coherence is not disrupted by surface interactions. However, by analyzing the 3D spectral lineshape, we found that the interstate coherences also experience non-negligible homogenous dephasing dynamics that originate from surface interactions. This unique ability of determining interstate vibrational coherence dynamics of the molecular monolayer can help in understanding of how energy flows within surface catalysts and other molecular monolayers.

  6. Vibrational spectroscopy of the phosphate mineral kovdorskite-Mg2PO4(OH)·3H2O.

    PubMed

    Frost, Ray L; López, Andrés; Xi, Yunfei; Granja, Amanda; Scholz, Ricardo; Lima, Rosa Malena Fernandes

    2013-10-01

    The mineral kovdorskite Mg2PO4(OH)·3H2O was studied by electron microscopy, thermal analysis and vibrational spectroscopy. A comparison of the vibrational spectroscopy of kovdorskite is made with other magnesium bearing phosphate minerals and compounds. Electron probe analysis proves the mineral is very pure. The Raman spectrum is characterized by a band at 965 cm(-1) attributed to the PO4(3-) ν1 symmetric stretching mode. Raman bands at 1057 and 1089 cm(-1) are attributed to the PO4(3-) ν3 antisymmetric stretching modes. Raman bands at 412, 454 and 485 cm(-1) are assigned to the PO4(3-) ν2 bending modes. Raman bands at 536, 546 and 574 cm(-1) are assigned to the PO4(3-) ν4 bending modes. The Raman spectrum in the OH stretching region is dominated by a very sharp intense band at 3681 cm(-1) assigned to the stretching vibration of OH units. Infrared bands observed at 2762, 2977, 3204, 3275 and 3394 cm(-1) are attributed to water stretching bands. Vibrational spectroscopy shows that no carbonate bands are observed in the spectra; thus confirming the formula of the mineral as Mg2PO4(OH)·3H2O. PMID:23778171

  7. Vibrational spectroscopy of the phosphate mineral kovdorskite - Mg2PO4(OH)ṡ3H2O

    NASA Astrophysics Data System (ADS)

    Frost, Ray L.; López, Andrés; Xi, Yunfei; Granja, Amanda; Scholz, Ricardo; Lima, Rosa Malena Fernandes

    2013-10-01

    The mineral kovdorskite Mg2PO4(OH)ṡ3H2O was studied by electron microscopy, thermal analysis and vibrational spectroscopy. A comparison of the vibrational spectroscopy of kovdorskite is made with other magnesium bearing phosphate minerals and compounds. Electron probe analysis proves the mineral is very pure. The Raman spectrum is characterized by a band at 965 cm-1 attributed to the PO43- ν1 symmetric stretching mode. Raman bands at 1057 and 1089 cm-1 are attributed to the PO43- ν3 antisymmetric stretching modes. Raman bands at 412, 454 and 485 cm-1 are assigned to the PO43- ν2 bending modes. Raman bands at 536, 546 and 574 cm-1 are assigned to the PO43- ν4 bending modes. The Raman spectrum in the OH stretching region is dominated by a very sharp intense band at 3681 cm-1 assigned to the stretching vibration of OH units. Infrared bands observed at 2762, 2977, 3204, 3275 and 3394 cm-1 are attributed to water stretching bands. Vibrational spectroscopy shows that no carbonate bands are observed in the spectra; thus confirming the formula of the mineral as Mg2PO4(OH)ṡ3H2O.

  8. Raman and surface-enhanced Raman spectroscopy of amino acids and nucleotide bases for target bacterial vibrational mode identification

    NASA Astrophysics Data System (ADS)

    Guicheteau, Jason; Argue, Leanne; Hyre, Aaron; Jacobson, Michele; Christesen, Steven D.

    2006-05-01

    Raman and surface-enhanced Raman spectroscopy (SERS) studies of bacteria have reported a wide range of vibrational mode assignments associated with biological material. We present Raman and SER spectra of the amino acids phenylalanine, tyrosine, tryptophan, glutamine, cysteine, alanine, proline, methionine, asparagine, threonine, valine, glycine, serine, leucine, isoleucine, aspartic acid and glutamic acid and the nucleic acid bases adenosine, guanosine, thymidine, and uridine to better characterize biological vibrational mode assignments for bacterial target identification. We also report spectra of the bacteria Bacillus globigii, Pantoea agglomerans, and Yersinia rhodei along with band assignments determined from the reference spectra obtained.

  9. Nature of Asymmetry in the Vibrational Line Shape of Single-Molecule Inelastic Electron Tunneling Spectroscopy with the STM

    NASA Astrophysics Data System (ADS)

    Xu, Chen; Chiang, Chi-lun; Han, Zhumin; Ho, W.

    2016-04-01

    Single molecule vibrational spectroscopy and microscopy was demonstrated in 1998 by inelastic electron tunneling with the scanning tunneling microscope. To date, the discussion of its application has mainly focused on the spatial resolution and the spectral energy and intensity. Here we report on the vibrational line shape for a single carbon monoxide molecule that qualitatively exhibits inversion symmetry when it is transferred from the surface to the tip. The dependence of the line shape on the molecule's asymmetric couplings in the tunnel junction can be understood from theoretical simulation and further validates the mechanisms of inelastic electron tunneling.

  10. Nature of Asymmetry in the Vibrational Line Shape of Single-Molecule Inelastic Electron Tunneling Spectroscopy with the STM.

    PubMed

    Xu, Chen; Chiang, Chi-Lun; Han, Zhumin; Ho, W

    2016-04-22

    Single molecule vibrational spectroscopy and microscopy was demonstrated in 1998 by inelastic electron tunneling with the scanning tunneling microscope. To date, the discussion of its application has mainly focused on the spatial resolution and the spectral energy and intensity. Here we report on the vibrational line shape for a single carbon monoxide molecule that qualitatively exhibits inversion symmetry when it is transferred from the surface to the tip. The dependence of the line shape on the molecule's asymmetric couplings in the tunnel junction can be understood from theoretical simulation and further validates the mechanisms of inelastic electron tunneling. PMID:27152811

  11. A study of the eigenvectors of the low-frequency vibrational modes in crystalline adenosine via high pressure Raman spectroscopy.

    PubMed

    Lee, Scott A; Pinnick, David A; Anderson, A

    2014-12-01

    High-pressure Raman spectroscopy has been used to study the eigenvectors and eigenvalues of the vibrational modes of crystalline adenosine at 295 K by evaluating the logarithmic derivative of the vibrational frequency with respect to pressure: [Formula: see text]. Crystalline samples of molecular materials such as adenosine will have vibrational modes that are localized within a molecular unit ("internal" modes) as well as modes in which the molecular units vibrate against each other ("external" modes). The value of the logarithmic derivative is found to be a diagnostic probe of the nature of the eigenvector of the vibrational modes. Stretching modes which are predominantly internal to the molecule have low logarithmic derivatives while external modes have higher logarithmic derivatives. Particular interest is paid to the low-frequency (≤150 cm(-1)) modes. Based on the pressure dependence of its logarithmic derivative, a mode near 49 cm(-1) is identified as internal mode. The other modes below 400 cm(-1) have pressure dependences of their logarithmic derivatives consistent with being either (1) modes which are mainly external, meaning that the molecules of the unit cell vibrate against each other in translational or librational motions (or linear combinations thereof), or (2) torsional or bending modes involving a large number of atoms, mainly within a molecule. The modes above 400 cm(-1) all have pressure dependences of their logarithmic derivatives consistent with being mainly internal modes. PMID:24127792

  12. Time-Resolved Resonance Raman Spectroscopy of Vibrational Populations Monitored after Electronic and Infrared Excitation

    SciTech Connect

    Werncke, W.; Kozich, V.; Dreyer, J.

    2008-11-14

    Pathways of vibrational energy flow in molecules with an intramolecular hydrogen bond are studied after intramolecular proton transfer reactions as well as after infrared excitation of the O-H stretching vibration which is coupled to this hydrogen bond.

  13. Antifouling and antimicrobial mechanism of tethered quaternary ammonium salts in a cross-linked poly(dimethylsiloxane) matrix studied using sum frequency generation vibrational spectroscopy.

    PubMed

    Ye, Shuji; Majumdar, Partha; Chisholm, Bret; Stafslien, Shane; Chen, Zhan

    2010-11-01

    Poly(dimethylsiloxane) (PDMS) materials containing chemically bound (''tethered'') quaternary ammonium salt (QAS) moieties are being developed as new contact-active antimicrobial coatings. Such coatings are designed to inhibit the growth of microorganisms on surfaces for a variety of applications which include ship hulls and biomedical devices. The antimicrobial activity of these coatings is a function of the molecular surface structure generated during film formation. Sum frequency generation (SFG) vibrational spectroscopy has been demonstrated to be a powerful technique to study polymer surface structures at the molecular level in different chemical environments. SFG was successfully used to characterize the surface structures of PDMS coatings containing tethered QAS moieties that possess systematic variations in QAS chemical composition in air, in water, and in a nutrient growth medium. The results indicated that the surface structure was largely dependent on the length of the alkyl chain attached to the nitrogen atom of the QAS moiety as well as the length of alkyl chain spanning between the nitrogen atom and silicon atom of the QAS moiety. The SFG results correlated well with the antimicrobial activity, providing a molecular interpretation of the activity. This research showed that SFG can be effectively used to aid in the development of new antimicrobial coating technologies by correlating the chemical structure of a coating surface to its antimicrobial activity. PMID:20345165

  14. Enhanced vibrational spectroscopy, intracellular refractive indexing for label-free biosensing and bioimaging by multiband plasmonic-antenna array.

    PubMed

    Chen, Cheng-Kuang; Chang, Ming-Hsuan; Wu, Hsieh-Ting; Lee, Yao-Chang; Yen, Ta-Jen

    2014-10-15

    In this study, we report a multiband plasmonic-antenna array that bridges optical biosensing and intracellular bioimaging without requiring a labeling process or coupler. First, a compact plasmonic-antenna array is designed exhibiting a bandwidth of several octaves for use in both multi-band plasmonic resonance-enhanced vibrational spectroscopy and refractive index probing. Second, a single-element plasmonic antenna can be used as a multifunctional sensing pixel that enables mapping the distribution of targets in thin films and biological specimens by enhancing the signals of vibrational signatures and sensing the refractive index contrast. Finally, using the fabricated plasmonic-antenna array yielded reliable intracellular observation was demonstrated from the vibrational signatures and intracellular refractive index contrast requiring neither labeling nor a coupler. These unique features enable the plasmonic-antenna array to function in a label-free manner, facilitating bio-sensing and imaging development. PMID:24836017

  15. Theoretical study of molecular vibrations in electron momentum spectroscopy experiments on furan: An analytical versus a molecular dynamical approach

    SciTech Connect

    Morini, Filippo; Deleuze, Michael S.; Watanabe, Noboru; Takahashi, Masahiko

    2015-03-07

    The influence of thermally induced nuclear dynamics (molecular vibrations) in the initial electronic ground state on the valence orbital momentum profiles of furan has been theoretically investigated using two different approaches. The first of these approaches employs the principles of Born-Oppenheimer molecular dynamics, whereas the so-called harmonic analytical quantum mechanical approach resorts to an analytical decomposition of contributions arising from quantized harmonic vibrational eigenstates. In spite of their intrinsic differences, the two approaches enable consistent insights into the electron momentum distributions inferred from new measurements employing electron momentum spectroscopy and an electron impact energy of 1.2 keV. Both approaches point out in particular an appreciable influence of a few specific molecular vibrations of A{sub 1} symmetry on the 9a{sub 1} momentum profile, which can be unravelled from considerations on the symmetry characteristics of orbitals and their energy spacing.

  16. Hydride bridge in [NiFe]-hydrogenase observed by nuclear resonance vibrational spectroscopy.

    PubMed

    Ogata, Hideaki; Krämer, Tobias; Wang, Hongxin; Schilter, David; Pelmenschikov, Vladimir; van Gastel, Maurice; Neese, Frank; Rauchfuss, Thomas B; Gee, Leland B; Scott, Aubrey D; Yoda, Yoshitaka; Tanaka, Yoshihito; Lubitz, Wolfgang; Cramer, Stephen P

    2015-01-01

    The metabolism of many anaerobes relies on [NiFe]-hydrogenases, whose characterization when bound to substrates has proven non-trivial. Presented here is direct evidence for a hydride bridge in the active site of the (57)Fe-labelled fully reduced Ni-R form of Desulfovibrio vulgaris Miyazaki F [NiFe]-hydrogenase. A unique 'wagging' mode involving H(-) motion perpendicular to the Ni(μ-H)(57)Fe plane was studied using (57)Fe-specific nuclear resonance vibrational spectroscopy and density functional theory (DFT) calculations. On Ni(μ-D)(57)Fe deuteride substitution, this wagging causes a characteristic perturbation of Fe-CO/CN bands. Spectra have been interpreted by comparison with Ni(μ-H/D)(57)Fe enzyme mimics [(dppe)Ni(μ-pdt)(μ-H/D)(57)Fe(CO)3](+) and DFT calculations, which collectively indicate a low-spin Ni(II)(μ-H)Fe(II) core for Ni-R, with H(-) binding Ni more tightly than Fe. The present methodology is also relevant to characterizing Fe-H moieties in other important natural and synthetic catalysts. PMID:26259066

  17. Theoretical vibrational sum-frequency generation spectroscopy of water near lipid and surfactant monolayer interfaces

    SciTech Connect

    Roy, S.; Gruenbaum, S. M.; Skinner, J. L.

    2014-11-14

    Understanding the structure of water near cell membranes is crucial for characterizing water-mediated events such as molecular transport. To obtain structural information of water near a membrane, it is useful to have a surface-selective technique that can probe only interfacial water molecules. One such technique is vibrational sum-frequency generation (VSFG) spectroscopy. As model systems for studying membrane headgroup/water interactions, in this paper we consider lipid and surfactant monolayers on water. We adopt a theoretical approach combining molecular dynamics simulations and phase-sensitive VSFG to investigate water structure near these interfaces. Our simulated spectra are in qualitative agreement with experiments and reveal orientational ordering of interfacial water molecules near cationic, anionic, and zwitterionic interfaces. OH bonds of water molecules point toward an anionic interface leading to a positive VSFG peak, whereas the water hydrogen atoms point away from a cationic interface leading to a negative VSFG peak. Coexistence of these two interfacial water species is observed near interfaces between water and mixtures of cationic and anionic lipids, as indicated by the presence of both negative and positive peaks in their VSFG spectra. In the case of a zwitterionic interface, OH orientation is toward the interface on the average, resulting in a positive VSFG peak.

  18. Energy calibration issues in nuclear resonant vibrational spectroscopy: observing small spectral shifts and making fast calibrations.

    PubMed

    Wang, Hongxin; Yoda, Yoshitaka; Dong, Weibing; Huang, Songping D

    2013-09-01

    The conventional energy calibration for nuclear resonant vibrational spectroscopy (NRVS) is usually long. Meanwhile, taking NRVS samples out of the cryostat increases the chance of sample damage, which makes it impossible to carry out an energy calibration during one NRVS measurement. In this study, by manipulating the 14.4 keV beam through the main measurement chamber without moving out the NRVS sample, two alternative calibration procedures have been proposed and established: (i) an in situ calibration procedure, which measures the main NRVS sample at stage A and the calibration sample at stage B simultaneously, and calibrates the energies for observing extremely small spectral shifts; for example, the 0.3 meV energy shift between the 100%-(57)Fe-enriched [Fe4S4Cl4](=) and 10%-(57)Fe and 90%-(54)Fe labeled [Fe4S4Cl4](=) has been well resolved; (ii) a quick-switching energy calibration procedure, which reduces each calibration time from 3-4 h to about 30 min. Although the quick-switching calibration is not in situ, it is suitable for normal NRVS measurements. PMID:23955030

  19. Probing Molecular Recognition at the Solid-Gas Interface by Sum-Frequency Vibrational Spectroscopy.

    PubMed

    Aprile, Arianna; Ciuchi, Federica; Pinalli, Roberta; Dalcanale, Enrico; Pagliusi, Pasquale

    2016-08-01

    Molecular recognition is among the most important chemical events in living systems and has been emulated in supramolecular chemistry, driven by chemical and biochemical sensing potential. Identifying host-guest association in situ at the interface, between the substrate-bound receptors and the analyte-containing media, is essential to predict complexation performances in term of the receptor conformation, orientation and organization. Herein, we report the first sum-frequency vibrational spectroscopy study of molecular recognition at the solid-gas interface. The binding capability of tetraquinoxaline cavitands toward volatile aromatic and aliphatic compounds, namely benzonitrile and acetonitrile, is investigated as test system. We prove the selective complexation of the receptors, organized in a solid-supported hybrid bilayer, toward aromatic compounds. Quantitative analysis allows to correlate the average orientations of the guest molecules and the host binding pockets, establishing "on-axis" complexation of benzonitrile within the cavitand cavity. The study is readily applicable to other receptors, molecular architectures, interfaces and analytes. PMID:27438350

  20. Hydride bridge in [NiFe]-hydrogenase observed by nuclear resonance vibrational spectroscopy

    NASA Astrophysics Data System (ADS)

    Ogata, Hideaki; Krämer, Tobias; Wang, Hongxin; Schilter, David; Pelmenschikov, Vladimir; van Gastel, Maurice; Neese, Frank; Rauchfuss, Thomas B.; Gee, Leland B.; Scott, Aubrey D.; Yoda, Yoshitaka; Tanaka, Yoshihito; Lubitz, Wolfgang; Cramer, Stephen P.

    2015-08-01

    The metabolism of many anaerobes relies on [NiFe]-hydrogenases, whose characterization when bound to substrates has proven non-trivial. Presented here is direct evidence for a hydride bridge in the active site of the 57Fe-labelled fully reduced Ni-R form of Desulfovibrio vulgaris Miyazaki F [NiFe]-hydrogenase. A unique `wagging' mode involving H- motion perpendicular to the Ni(μ-H)57Fe plane was studied using 57Fe-specific nuclear resonance vibrational spectroscopy and density functional theory (DFT) calculations. On Ni(μ-D)57Fe deuteride substitution, this wagging causes a characteristic perturbation of Fe-CO/CN bands. Spectra have been interpreted by comparison with Ni(μ-H/D)57Fe enzyme mimics [(dppe)Ni(μ-pdt)(μ-H/D)57Fe(CO)3]+ and DFT calculations, which collectively indicate a low-spin Ni(II)(μ-H)Fe(II) core for Ni-R, with H- binding Ni more tightly than Fe. The present methodology is also relevant to characterizing Fe-H moieties in other important natural and synthetic catalysts.

  1. Hydride bridge in [NiFe]-hydrogenase observed by nuclear resonance vibrational spectroscopy

    SciTech Connect

    Ogata, Hideaki; Krämer, Tobias; Wang, Hongxin; Schilter, David; Pelmenschikov, Vladimir; van Gastel, Maurice; Neese, Frank; Rauchfuss, Thomas B.; Gee, Leland B.; Scott, Aubrey D.; Yoda, Yoshitaka; Lubitz, Wolfgang; Cramer, Stephen P.

    2015-08-10

    The metabolism of many anaerobes relies on [NiFe]-hydrogenases, whose characterization when bound to substrates has proven non-trivial. Presented here is direct evidence for a hydride bridge in the active site of the 57Fe-labelled fully reduced Ni-R form of Desulfovibrio vulgaris Miyazaki F [NiFe]-hydrogenase. A unique ‘wagging’ mode involving H- motion perpendicular to the Ni(μ-H)57Fe plane was studied using 57Fe-specific nuclear resonance vibrational spectroscopy and density functional theory (DFT) calculations. On Ni(μ-D)57Fe deuteride substitution, this wagging causes a characteristic perturbation of Fe–CO/CN bands. Spectra have been interpreted by comparison with Ni(μ-H/D)57Fe enzyme mimics [(dppe)Ni(μ-pdt)(μ-H/D)57Fe(CO)3]+ and DFT calculations, which collectively indicate a low-spin Ni(II)(μ-H)Fe(II) core for Ni-R, with H- binding Ni more tightly than Fe. Lastly, the present methodology is also relevant to characterizing Fe–H moieties in other important natural and synthetic catalysts.

  2. Chemometrics and vibrational spectroscopy as green tools for mine phytoremediation strategies

    NASA Astrophysics Data System (ADS)

    Mokgalaka-Matlala, N. S.; Regnier, T.; Combrinck, S.; Kouekam, C. R.; Weiersbye, I. M.

    This study describes the use of near infrared (NIR) spectroscopy in combination with chemometrics to characterise Combretum erythrophyllum plant material to determine differences in the chemical profiles of samples harvested from mine contaminated areas and those of natural populations. The chemometric computation of near infrared vibrational spectra was used to generate principal component analysis and partial least squares models. These models were used to determine seasonal differences in the chemical matrices of samples harvested from the mine sites with different levels of contamination. Principal component analysis scatter plots illustrated clustering of phenolic profiles of samples depending on whether they originated from contaminated or uncontaminated soils. A partial least squares model was developed to link the variations in the chemical composition and levels of contamination in all samples collected in the same season (autumn). The levels of total soluble phenolic compounds in leaf extracts of C. erythrophyllum were measured using the Folin-Ciocalteau assay. Data analysis of the samples revealed that plants harvested from mine sites, particularly in summer, produced a higher level of phenolic compounds than those of the natural population, thereby displaying a good correlation with the chemometric models.

  3. Quantitative Surface Chirality Detection with Sum Frequency Generation Vibrational Spectroscopy: Twin Polarization Angle Approach

    SciTech Connect

    Wei, Feng; Xu, Yanyan; Guo, Yuan; Liu, Shi-lin; Wang, Hongfei

    2009-12-27

    Here we report a novel twin polarization angle (TPA) approach in the quantitative chirality detection with the surface sum-frequency generation vibrational spectroscopy (SFG-VS). Generally, the achiral contribution dominates the surface SFG-VS signal, and the pure chiral signal is usually two or three orders of magnitude smaller. Therefore, it has been difficult to make quantitative detection and analysis of the chiral contributions to the surface SFG- VS signal. In the TPA method, by varying together the polarization angles of the incoming visible light and the sum frequency signal at fixed s or p polarization of the incoming infrared beam, the polarization dependent SFG signal can give not only direct signature of the chiral contribution in the total SFG-VS signal, but also the accurate measurement of the chiral and achiral components in the surface SFG signal. The general description of the TPA method is presented and the experiment test of the TPA approach is also presented for the SFG-VS from the S- and R-limonene chiral liquid surfaces. The most accurate degree of chiral excess values thus obtained for the 2878 cm⁻¹ spectral peak of the S- and R-limonene liquid surfaces are (23.7±0.4)% and ({25.4±1.3)%, respectively.

  4. Development of multipoint vibrational coherent anti-Stokes Raman spectroscopy for flame applications.

    PubMed

    Afzelius, Mikael; Bengtsson, Per-Erik; Bood, Joakim; Brackmann, Christian; Kurtz, Alfred

    2006-02-20

    A novel technique for coherent anti-Stokes Raman spectroscopy (CARS) measurements in multiple points is presented. In a multipass cavity the pump and Stokes laser beams are multiply reflected and refocused into a measurement volume with an adjustable number of separated points along a line. This optical arrangement was used in a vibrational CARS setup with planar BOXCARS phase-matching configuration. The CARS spectra from spatially separated points were recorded at different heights on a CCD camera. Measurements of temperature profiles were carried out in the burned gas zone of a premixed one-dimensional flame to demonstrate the applicability of this method for temperature measurements in high-temperature regions. The ability to measure in flames with strong density gradients was demonstrated by simultaneous measurements of Q-branch spectra of N2 and CO in a Wolfhard-Parker burner flame. Interference phenomena found in multipoint spectra are discussed, and possible solutions are proposed. Merits and limitations of the technique are discussed. PMID:16523780

  5. Structural Transition of Bombyx mori Liquid Silk Studied with Vibrational Circular Dichroism Spectroscopy.

    PubMed

    Morisaku, Toshinori; Arai, Sho; Konno, Kohzo; Suzuki, Yu; Asakura, Tetsuo; Yui, Hiroharu

    2015-01-01

    We investigated the structural transition from liquid silk to silk fibers with vibrational circular dichroism spectroscopy. Liquid silk showed a major right-handed optically active band at around 1650 cm(-1) and a minor one at around 1680 cm(-1). The former disappeared over time, while the intensity in the latter increased. With the former wavenumber, liquid silk mainly adopted a random-coil structure. In contrast, the latter may reflect an intermediate structure in the transition. Furthermore, two right-handed bands at around 1630 and 1660 cm(-1) appeared with the disappearance of the major band, and then the wavenumber of the former shifted to around 1620 cm(-1). The shift results from the decrease in the frequency of the CO stretching mode due to the stacking of the β-sheet that comprises fibers. The band at 1660 cm(-1) may reflect another intermediate structure due to its strong correlation with that at 1620 cm(-1) in terms of their temporal change in intensity. PMID:26256598

  6. Structural Origins of Cholesterol Accelerated Lipid Flip-Flop Studied by Sum-Frequency Vibrational Spectroscopy.

    PubMed

    Allhusen, John S; Kimball, Dylan R; Conboy, John C

    2016-03-31

    The unique structure of cholesterol and its role in modulating lipid translocation (flip-flop) were examined using sum-frequency vibrational spectroscopy (SFVS). Two structural analogues of cholesterol--cholestanol and cholestene--were examined to explore the influence of ring rigidity and amphiphilicity on controlling distearoylphosphocholine (DSPC) flip-flop. Kinetic rates for DSPC flip-flop were determined as a function of sterol concentration and temperature. All three sterols increased the rate of DSPC flip-flop in a concentration-dependent manner following the order cholestene > cholestanol > cholesterol. Rates of DSPC flip-flop were used to calculate the thermodynamic activation free energy barrier (ΔG(‡)) in the presence of cholesterol, cholestanol, and cholestene. The acyl chain gauche content of DSPC, mean lipid area, and membrane compressibility were correlated to observed trends in ΔG(‡). ΔG(‡) for DSPC flip-flop showed a strong positive correlation with the molar compression modulus (K*) of the membrane, influenced by the type and concentration of the sterol added. Interestingly, cholesterol is distinctive in maintaining invariant membrane compressibility over the range of 2-10 mol %. The results in this study demonstrate that the compression modulus of a membrane plays a significant role in moderating ΔG(‡) and the kinetics of native, protein-free, lipid translocation in membranes. PMID:26978577

  7. Monitoring the Coherent Vibrational Control of Electronic Excitation Transfer Using Ultrafast Pump-Probe Polarization Spectroscopy

    NASA Astrophysics Data System (ADS)

    Biggs, Jason; Cina, Jeffrey

    2010-03-01

    The interplay between nuclear and electronic degrees of freedom in molecular energy-transfer complexes is a subject of current interest. We have proposed a method to use coherent nuclear motion to control the transfer of electronic excitation energy between donor and acceptor moieties in electronically coupled dimers. The underlying electronic and nuclear motion at the level of quantum mechanical amplitudes can be observed using nonlinear wave-packet interferometry(nl-WPI), a form of fluorescence-detected multidimensional electronic spectroscopy. In our control scheme, coherent nuclear motion is induced in the acceptor chromophore prior to direct electronic excitation of the donor. This nuclear motion affects the instantaneous resonance conditions between donor and acceptor moieties and thus affects subsequent energy transfer dynamics. We have developed the framework to simulate four-pulse nl-WPI experiments, and the pump-probe limit thereof, on energy-transfer systems after interaction with a control pulse that induces nuclear motion. We present simulations in the pump-probe limit from model energy-transfer systems subjected to prior impulsive vibrational excitation, and show how pulse polarization can be used to infer electronic dynamics from isotropically oriented dimers.

  8. Hydride bridge in [NiFe]-hydrogenase observed by nuclear resonance vibrational spectroscopy

    DOE PAGESBeta

    Ogata, Hideaki; Krämer, Tobias; Wang, Hongxin; Schilter, David; Pelmenschikov, Vladimir; van Gastel, Maurice; Neese, Frank; Rauchfuss, Thomas B.; Gee, Leland B.; Scott, Aubrey D.; et al

    2015-08-10

    The metabolism of many anaerobes relies on [NiFe]-hydrogenases, whose characterization when bound to substrates has proven non-trivial. Presented here is direct evidence for a hydride bridge in the active site of the 57Fe-labelled fully reduced Ni-R form of Desulfovibrio vulgaris Miyazaki F [NiFe]-hydrogenase. A unique ‘wagging’ mode involving H- motion perpendicular to the Ni(μ-H)57Fe plane was studied using 57Fe-specific nuclear resonance vibrational spectroscopy and density functional theory (DFT) calculations. On Ni(μ-D)57Fe deuteride substitution, this wagging causes a characteristic perturbation of Fe–CO/CN bands. Spectra have been interpreted by comparison with Ni(μ-H/D)57Fe enzyme mimics [(dppe)Ni(μ-pdt)(μ-H/D)57Fe(CO)3]+ and DFT calculations, which collectively indicate amore » low-spin Ni(II)(μ-H)Fe(II) core for Ni-R, with H- binding Ni more tightly than Fe. Lastly, the present methodology is also relevant to characterizing Fe–H moieties in other important natural and synthetic catalysts.« less

  9. Vibrational spectroscopy and microspectroscopy analyzing qualitatively and quantitatively pharmaceutical hot melt extrudates.

    PubMed

    Netchacovitch, L; Thiry, J; De Bleye, C; Chavez, P-F; Krier, F; Sacré, P-Y; Evrard, B; Hubert, Ph; Ziemons, E

    2015-09-10

    Since the last decade, more and more Active Pharmaceutical Ingredient (API) candidates have poor water solubility inducing low bioavailability. These molecules belong to the Biopharmaceutical Classification System (BCS) classes II and IV. Thanks to Hot-Melt Extrusion (HME), it is possible to incorporate these candidates in pharmaceutical solid forms. Indeed, HME increases the solubility and the bioavailability of these drugs by encompassing them in a polymeric carrier and by forming solid dispersions. Moreover, in 2004, the FDA's guidance initiative promoted the usefulness of Process Analytical Technology (PAT) tools when developing a manufacturing process. Indeed, the main objective when developing a new pharmaceutical process is the product quality throughout the production chain. The trend is to follow this parameter in real-time in order to react immediately when there is a bias. Vibrational spectroscopic techniques, NIR and Raman, are useful to analyze processes in-line. Moreover, off-line Raman microspectroscopy is more and more used when developing new pharmaceutical processes or when analyzing optimized ones by combining the advantages of Raman spectroscopy and imaging. It is an interesting tool for homogeneity and spatial distribution studies. This review treats about spectroscopic techniques analyzing a HME process, as well off-line as in-line, presenting their advantages and their complementarities. PMID:25704954

  10. Hydride bridge in [NiFe]-hydrogenase observed by nuclear resonance vibrational spectroscopy

    PubMed Central

    Ogata, Hideaki; Krämer, Tobias; Wang, Hongxin; Schilter, David; Pelmenschikov, Vladimir; van Gastel, Maurice; Neese, Frank; Rauchfuss, Thomas B.; Gee, Leland B.; Scott, Aubrey D.; Yoda, Yoshitaka; Tanaka, Yoshihito; Lubitz, Wolfgang; Cramer, Stephen P.

    2015-01-01

    The metabolism of many anaerobes relies on [NiFe]-hydrogenases, whose characterization when bound to substrates has proven non-trivial. Presented here is direct evidence for a hydride bridge in the active site of the 57Fe-labelled fully reduced Ni-R form of Desulfovibrio vulgaris Miyazaki F [NiFe]-hydrogenase. A unique ‘wagging' mode involving H− motion perpendicular to the Ni(μ-H)57Fe plane was studied using 57Fe-specific nuclear resonance vibrational spectroscopy and density functional theory (DFT) calculations. On Ni(μ-D)57Fe deuteride substitution, this wagging causes a characteristic perturbation of Fe–CO/CN bands. Spectra have been interpreted by comparison with Ni(μ-H/D)57Fe enzyme mimics [(dppe)Ni(μ-pdt)(μ-H/D)57Fe(CO)3]+ and DFT calculations, which collectively indicate a low-spin Ni(II)(μ-H)Fe(II) core for Ni-R, with H− binding Ni more tightly than Fe. The present methodology is also relevant to characterizing Fe–H moieties in other important natural and synthetic catalysts. PMID:26259066

  11. Spatially resolved localized vibrational mode spectroscopy of carbon in liquid encapsulated Czochralski grown gallium arsenide wafers

    SciTech Connect

    Yau, Waifan.

    1988-04-01

    Substitutional carbon on an arsenic lattice site is the shallowest and one of the most dominant acceptors in semi-insulating Liquid Encapsulated Czochralski (LEC) GaAs. However, the role of this acceptor in determining the well known W'' shape spatial variation of neutral EL2 concentration along the diameter of a LEC wafer is not known. In this thesis, we attempt to clarify the issue of the carbon acceptor's effect on this W'' shaped variation by measuring spatial profiles of this acceptor along the radius of three different as-grown LEC GaAs wafers. With localized vibrational mode absorption spectroscopy, we find that the profile of the carbon acceptor is relatively constant along the radius of each wafer. Average values of concentration are 8 {times} 10E15 cm{sup -3}, 1.1 {times} 10E15 cm{sup -3}, and 2.2 {times} 10E15 cm{sup -3}, respectively. In addition, these carbon acceptor LVM measurements indicate that a residual donor with concentration comparable to carbon exists in these wafers and it is a good candidate for the observed neutral EL2 concentration variation. 22 refs., 39 figs.

  12. Vibrational sum-frequency spectroscopy for trace chemical detection on surfaces at stand-off distances.

    PubMed

    Asher, William E; Willard-Schmoe, Ella

    2013-03-01

    Vibrational sum-frequency spectroscopy (VSFS) has been used for some time as a laboratory-based surface chemical analytical tool. Here, theoretical considerations in applying the method as a remote-sensing probe for detecting trace levels of chemicals adsorbed on surfaces are presented. Additionally, a VSFS instrument is configured to operate at a stand-off distance of 2.2 m using near-nadir incidence angles. This system was used to measure VSFS spectra for films of pure 1-amino-4-nitrobenzene (p-nitroaniline, PNA) and pure 2-hydroxy-1,3,5-trinitrobenzene (picric acid, PA) adsorbed on polished T-6061 aluminum alloy. These spectra are used to investigate the effect of optical polarization on the sum-frequency response of these compounds at nadir optical geometries. Detection limits for each compound are also estimated and found to be 0.51 μg cm(2) for PNA and 0.89 μg cm(2) for PA. The implications of these results regarding remote sensing applications of VSFS are discussed. PMID:23452488

  13. Application of Reed-Vibration Mechanical Spectroscopy for Liquids in Studying Liquid Crystallization

    NASA Astrophysics Data System (ADS)

    Zhou, Heng-Wei; Wang, Li-Na; Zhang, Li-Li; Huang, Yi-Neng

    2013-08-01

    By using the reed-vibration mechanical spectroscopy for liquids (RMS-L), we measured the complex Young's modulus of dimethyl phthalate (DP) during a cooling and heating circulation starting from room temperature at about 2 KHz. The results show that there is no crystallization in the cooling supercooled liquid (CSL) of DP, but a crystallization process in the heating supercooled liquid (HSL) after the reverse glass transition. Based on the measured modulus, crystal volume fraction (v) during the HSL crystallization was calculated. Moreover, the Avrami exponent (n) was obtained according to the JJMA equation and v data. In view of n versus temperature and v, the nucleation dynamics was analyzed, and especially, there has already existed saturate nuclei in DP HSL before the crystallization. Furthermore, the authors inferred that the nuclei are induced by the random frozen stress in the glass, but there is no nucleus in CSL. The above results indicated that RMS-L might provide a new way to measure and analyze the crystallization of liquids.

  14. Environmental Chemistry at Vapor/Water Interfaces: Insights from Vibrational Sum Frequency Generation Spectroscopy

    NASA Astrophysics Data System (ADS)

    Jubb, Aaron M.; Hua, Wei; Allen, Heather C.

    2012-05-01

    The chemistry that occurs at surfaces has been an intense area of study for many years owing to its complexity and importance in describing a wide range of physical phenomena. The vapor/water interface is particularly interesting from an environmental chemistry perspective as this surface plays host to a wide range of chemistries that influence atmospheric and geochemical interactions. The application of vibrational sum frequency generation (VSFG), an inherently surface-specific, even-order nonlinear optical spectroscopy, enables the direct interrogation of various vapor/aqueous interfaces to elucidate the behavior and reaction of chemical species within the surface regime. In this review we discuss the application of VSFG to the study of a variety of atmospherically important systems at the vapor/aqueous interface. Chemical systems presented include inorganic ionic solutions prevalent in aqueous marine aerosols, small molecular solutes, and long-chain fatty acids relevant to fat-coated aerosols. The ability of VSFG to probe both the organization and reactions that may occur for these systems is highlighted. A future perspective toward the application of VSFG to the study of environmental interfaces is also provided.

  15. Probing QED and fundamental constants through laser spectroscopy of vibrational transitions in HD(.).

    PubMed

    Biesheuvel, J; Karr, J-Ph; Hilico, L; Eikema, K S E; Ubachs, W; Koelemeij, J C J

    2016-01-01

    The simplest molecules in nature, molecular hydrogen ions in the form of H2(+) and HD(+), provide an important benchmark system for tests of quantum electrodynamics in complex forms of matter. Here, we report on such a test based on a frequency measurement of a vibrational overtone transition in HD(+) by laser spectroscopy. We find that the theoretical and experimental frequencies are equal to within 0.6(1.1) parts per billion, which represents the most stringent test of molecular theory so far. Our measurement not only confirms the validity of high-order quantum electrodynamics in molecules, but also enables the long predicted determination of the proton-to-electron mass ratio from a molecular system, as well as improved constraints on hypothetical fifth forces and compactified higher dimensions at the molecular scale. With the perspective of comparisons between theory and experiment at the 0.01 part-per-billion level, our work demonstrates the potential of molecular hydrogen ions as a probe of fundamental physical constants and laws. PMID:26815886

  16. Probing QED and fundamental constants through laser spectroscopy of vibrational transitions in HD+

    PubMed Central

    Biesheuvel, J.; Karr, J.-Ph.; Hilico, L.; Eikema, K. S. E.; Ubachs, W.; Koelemeij, J. C. J.

    2016-01-01

    The simplest molecules in nature, molecular hydrogen ions in the form of H2+ and HD+, provide an important benchmark system for tests of quantum electrodynamics in complex forms of matter. Here, we report on such a test based on a frequency measurement of a vibrational overtone transition in HD+ by laser spectroscopy. We find that the theoretical and experimental frequencies are equal to within 0.6(1.1) parts per billion, which represents the most stringent test of molecular theory so far. Our measurement not only confirms the validity of high-order quantum electrodynamics in molecules, but also enables the long predicted determination of the proton-to-electron mass ratio from a molecular system, as well as improved constraints on hypothetical fifth forces and compactified higher dimensions at the molecular scale. With the perspective of comparisons between theory and experiment at the 0.01 part-per-billion level, our work demonstrates the potential of molecular hydrogen ions as a probe of fundamental physical constants and laws. PMID:26815886

  17. Vibrational spectroscopy and imaging for concurrent cellular trafficking of co-localized doxorubicin and deuterated phospholipid vesicles

    NASA Astrophysics Data System (ADS)

    Misra, S. K.; Mukherjee, P.; Ohoka, A.; Schwartz-Duval, A. S.; Tiwari, S.; Bhargava, R.; Pan, D.

    2016-01-01

    Simultaneous tracking of nanoparticles and encapsulated payload is of great importance and visualizing their activity is arduous. Here we use vibrational spectroscopy to study the in vitro tracking of co-localized lipid nanoparticles and encapsulated drug employing a model system derived from doxorubicin-encapsulated deuterated phospholipid (dodecyl phosphocholine-d38) single tailed phospholipid vesicles.Simultaneous tracking of nanoparticles and encapsulated payload is of great importance and visualizing their activity is arduous. Here we use vibrational spectroscopy to study the in vitro tracking of co-localized lipid nanoparticles and encapsulated drug employing a model system derived from doxorubicin-encapsulated deuterated phospholipid (dodecyl phosphocholine-d38) single tailed phospholipid vesicles. Electronic supplementary information (ESI) available: Raman and confocal images of the Deuto-DOX-NPs in cells, materials and details of methods. See DOI: 10.1039/c5nr07975f

  18. Study of calcification formation and disease diagnostics utilising advanced vibrational spectroscopy

    NASA Astrophysics Data System (ADS)

    Kerssens, Marleen Maartje

    The accurate and safe diagnosis of breast cancer is a significant societal issue, with annual disease incidence of 48,000 women and around 370 men in the UK. Early diagnosis of the disease allows more conservative treatments and better patient outcomes. Microcalcifications in breast tissue are an important indicator for breast cancers, and often the only sign of their presence. Several studies have suggested that the type of calcification formed may act as a marker for malignancy and its presence may be of biological significance. In this work, breast calcifications are studied with FTIR, synchrotron FTIR, ATR FTIR, and Raman mapping to explore their disease specific composition. From a comparison between vibrational spectroscopy and routine staining procedures it becomes clear that calcium builds up prior to calcification formation. Raman and FTIR indicate the same size for calcifications and are in agreement with routine staining techniques. From the synchrotron FTIR measurements it can be proven that amide is present in the centre of the calcifications and the intensity of the bands depends on the pathology. Special attention is paid to the type of carbonate substitution in the calcifications relating to different pathology grades. In contrast to mammography, Raman spectroscopy has the capability to distinguish calcifications based on their chemical composition. The ultimate goal is to turn the acquired knowledge from the mapping studies into a clinical tool based on deep Raman spectroscopy. Deep Raman techniques have a considerable potential to reduce large numbers of normal biopsies, reduce the time delay between screening and diagnosis and therefore diminish patient anxiety. In order to achieve this, a deep Raman system is designed and after evaluation of its performance tested on buried calcification standards in porcine soft tissue and human mammary tissue. It is shown that, when the calcification is probed through tissue, the strong 960 cm-1 phosphate band

  19. Communication: Vibrationally resolved photoelectron spectroscopy of the tetracyanoquinodimethane (TCNQ) anion and accurate determination of the electron affinity of TCNQ

    NASA Astrophysics Data System (ADS)

    Zhu, Guo-Zhu; Wang, Lai-Sheng

    2015-12-01

    Tetracyanoquinodimethane (TCNQ) is widely used as an electron acceptor to form highly conducting organic charge-transfer solids. Surprisingly, the electron affinity (EA) of TCNQ is not well known and has never been directly measured. Here, we report vibrationally resolved photoelectron spectroscopy (PES) of the TCNQ- anion produced using electrospray and cooled in a cryogenic ion trap. Photoelectron spectrum taken at 354.7 nm represents the detachment transition from the ground state of TCNQ- to that of neutral TCNQ with a short vibrational progression. The EA of TCNQ is measured accurately to be 3.383 ± 0.001 eV (27 289 ± 8 cm-1), compared to the 2.8 ± 0.1 eV value known in the literature and measured previously using collisional ionization technique. In addition, six vibrational peaks are observed in the photoelectron spectrum, yielding vibrational frequencies for three totally symmetric modes of TCNQ. Two-photon PES via a bound electronic excited state of TCNQ- at 3.100 eV yields a broad low kinetic energy peak due to fast internal conversion to vibrationally excited levels of the anion ground electronic state. The high EA measured for TCNQ underlies its ability as a good electron acceptor.

  20. Communication: Vibrationally resolved photoelectron spectroscopy of the tetracyanoquinodimethane (TCNQ) anion and accurate determination of the electron affinity of TCNQ

    SciTech Connect

    Zhu, Guo-Zhu; Wang, Lai-Sheng

    2015-12-14

    Tetracyanoquinodimethane (TCNQ) is widely used as an electron acceptor to form highly conducting organic charge-transfer solids. Surprisingly, the electron affinity (EA) of TCNQ is not well known and has never been directly measured. Here, we report vibrationally resolved photoelectron spectroscopy (PES) of the TCNQ{sup −} anion produced using electrospray and cooled in a cryogenic ion trap. Photoelectron spectrum taken at 354.7 nm represents the detachment transition from the ground state of TCNQ{sup −} to that of neutral TCNQ with a short vibrational progression. The EA of TCNQ is measured accurately to be 3.383 ± 0.001 eV (27 289 ± 8 cm{sup −1}), compared to the 2.8 ± 0.1 eV value known in the literature and measured previously using collisional ionization technique. In addition, six vibrational peaks are observed in the photoelectron spectrum, yielding vibrational frequencies for three totally symmetric modes of TCNQ. Two-photon PES via a bound electronic excited state of TCNQ{sup −} at 3.100 eV yields a broad low kinetic energy peak due to fast internal conversion to vibrationally excited levels of the anion ground electronic state. The high EA measured for TCNQ underlies its ability as a good electron acceptor.

  1. Vibrational spectroscopy and solubility study of the mineral stringhamite CaCuSiO4·H2O

    NASA Astrophysics Data System (ADS)

    Frost, Ray L.; Xi, Yunfei

    2012-06-01

    Stringhamite CaCuSiO4·H2O is a hydrated calcium copper silicate and is commonly known as a significant 'healing' mineral and is potentially a semi-precious jewel. Stringhamite is a neosilicate with Cu2+ in square planar coordination. Vibrational spectroscopy has been used to characterise the molecular structure of stringhamite. The intense sharp Raman band at 956 cm-1 is assigned to the ν1 (A1g) symmetric stretching vibration. Raman bands at 980, 997, 1061 cm-1 are assigned to the ν3 (A2u, B1g) antisymmetric stretching vibrations. Splitting of the ν3 vibrational mode supports the concept that the stringhamite SiO4 tetrahedron is strongly distorted. The intense bands at 505 and 519 cm-1 and at 570 cm-1 are assigned to the ν2 and ν4 vibrational modes. The question arises as to whether the mineral stringhamite can actually function as a healing mineral. An estimation of the solubility product at pH < 5 shows that the cupric ion can be released. The copper ion is a very powerful antibiological agent and thus the mineral stringhamite may well function as a healing mineral.

  2. Effects of Plant Cell Wall Matrix Polysaccharides on Bacterial Cellulose Structure Studied with Vibrational Sum Frequency Generation Spectroscopy and X-ray Diffraction

    SciTech Connect

    Park, Yong Bum; Lee, Christopher M; Kafle, Kabindra; Park, Sunkyu; Cosgrove, Daniel; Kim, Seong H

    2014-07-14

    The crystallinity, allomorph content, and mesoscale ordering of cellulose produced by Gluconacetobacter xylinus cultured with different plant cell wall matrix polysaccharides were studied with vibrational sum frequency generation (SFG) spectroscopy and X-ray diffraction (XRD).

  3. Two-dimensional infrared spectroscopy of vibrational polaritons of molecules in an optical cavity

    NASA Astrophysics Data System (ADS)

    Saurabh, Prasoon; Mukamel, Shaul

    2016-03-01

    Strong coupling of molecular vibrations to an infrared cavity mode affects their nature by creating dressed polariton states. We show how the single and double vibrational polariton manifolds may be controlled by varying the cavity coupling strength and probed by a time domain two-dimensional infrared (2DIR) technique, double quantum coherence. Applications are made to the amide-I (CO) and amide-II (CN) bond vibrations of N-methylacetamide.

  4. Two-dimensional infrared spectroscopy of vibrational polaritons of molecules in an optical cavity.

    PubMed

    Saurabh, Prasoon; Mukamel, Shaul

    2016-03-28

    Strong coupling of molecular vibrations to an infrared cavity mode affects their nature by creating dressed polariton states. We show how the single and double vibrational polariton manifolds may be controlled by varying the cavity coupling strength and probed by a time domain two-dimensional infrared (2DIR) technique, double quantum coherence. Applications are made to the amide-I (CO) and amide-II (CN) bond vibrations of N-methylacetamide. PMID:27036435

  5. Water dynamics in salt solutions studied with ultrafast two-dimensional infrared (2D IR) vibrational echo spectroscopy.

    PubMed

    Fayer, Michael D; Moilanen, David E; Wong, Daryl; Rosenfeld, Daniel E; Fenn, Emily E; Park, Sungnam

    2009-09-15

    Water is ubiquitous in nature, but it exists as pure water infrequently. From the ocean to biology, water molecules interact with a wide variety of dissolved species. Many of these species are charged. In the ocean, water interacts with dissolved salts. In biological systems, water interacts with dissolved salts as well as charged amino acids, the zwitterionic head groups of membranes, and other biological groups that carry charges. Water plays a central role in a vast number of chemical processes because of its dynamic hydrogen-bond network. A water molecule can form up to four hydrogen bonds in an approximately tetrahedral arrangement. These hydrogen bonds are continually being broken, and new bonds are being formed on a picosecond time scale. The ability of the hydrogen-bond network of water to rapidly reconfigure enables water to accommodate and facilitate chemical processes. Therefore, the influence of charged species on water hydrogen-bond dynamics is important. Recent advances in ultrafast coherent infrared spectroscopy have greatly expanded our understanding of water dynamics. Two-dimensional infrared (2D IR) vibrational echo spectroscopy is providing new observables that yield direct information on the fast dynamics of molecules in their ground electronic state under thermal equilibrium conditions. The 2D IR vibrational echoes are akin to 2D nuclear magnetic resonance (NMR) but operate on time scales that are many orders of magnitude shorter. In a 2D IR vibrational echo experiment (see the Conspectus figure), three IR pulses are tuned to the vibrational frequency of interest, which in this case is the frequency of the hydroxyl stretching mode of water. The first two pulses "label" the initial molecular structures by their vibrational frequencies. The system evolves between pulses two and three, and the third pulse stimulates the emission of the vibrational echo pulse, which is the signal. The vibrational echo pulse is heterodyne, detected by combining it

  6. Development of a biologically relevant calcium phosphate substrate for sum frequency generation vibrational spectroscopy.

    PubMed

    McGall, Sarah J; Davies, Paul B; Neivandt, David J

    2005-10-01

    A novel biologically relevant composite substrate has been prepared consisting of a calcium phosphate (CaP) layer formed by magnetron sputter-coating from a hydroxyapatite (HA) target onto a gold-coated silicon substrate. The CaP layer is intended to mimic tooth and bone surfaces and allows polymers used in oral care to be deposited in a procedure analogous to that used for dental surfaces. The polymer cetyl dimethicone copolyol (CDC) was deposited onto the CaP surface of the substrate by Langmuir Blodgett deposition, and the structure of the adsorbed layer was investigated by the surface specific technique of sum frequency generation (SFG) vibrational spectroscopy. The gold sublayer provides enhancement of the SFG signal arising from the polymer but plays no part in the adsorption of the polymer. The surface morphology of the substrate was investigated using SEM and AFM. The surface roughness was commensurate with that of the thermally evaporated gold sublayer and uniform over areas of at least 36 mum(2). The chemical composition of the CaP-coated surface was determined by FTIR and TOF-SIMS. It was concluded that the surface is primarily calcium phosphate present as a mixture of amorphous, non-hydroxylated phases rather than solely stoichiometric hydroxyapatite. The SFG spectra from CDC on CaP were closely similar, both in resonance wavenumbers and in their relative intensities, with spectra of thin films of CDC recorded directly on gold. Application of previous analysis of the spectra of CDC on gold therefore enabled interpretation of the polymer orientation and conformation on the CaP substrate. PMID:16834276

  7. Phase reference in phase-sensitive sum-frequency vibrational spectroscopy

    NASA Astrophysics Data System (ADS)

    Sun, Shumei; Liang, Rongda; Xu, Xiaofan; Zhu, Heyuan; Shen, Y. Ron; Tian, Chuanshan

    2016-06-01

    Phase-sensitive sum-frequency vibrational spectroscopy (PS-SFVS) has been established as a powerful technique for surface characterization, but for it to generate a reliable spectrum, accurate phase measurement with a well-defined phase reference is most important. Incorrect phase measurement can lead to significant distortion of a spectrum, as recently seen in the case for the air/water interface. In this work, we show theoretically and experimentally that a transparent, highly nonlinear crystal, such as quartz and barium borate, can be a good phase reference if the surface is clean and unstrained and the crystal is properly oriented to yield a strong SF output. In such cases, the reflected SF signal is dominated by the bulk electric dipole contribution and its phase is either +90° or -90°. On the other hand, materials with inversion symmetry, such as water, fused quartz, and CaF2 are not good phase references due to the quadrupole contribution and phase dispersion at the interface. Using a proper phase reference in PS-SFVS, we have found the most reliable OH stretching spectrum for the air/water interface. The positive band at low frequencies in the imaginary component of the spectrum, which has garnered much interest and been interpreted by many to be due to strongly hydrogen-bonded water species, is no longer present. A weak positive feature however still exists. Its magnitude approximately equals to that of air/D2O away from resonances, suggesting that this positive feature is unrelated to surface resonance of water.

  8. Phase reference in phase-sensitive sum-frequency vibrational spectroscopy.

    PubMed

    Sun, Shumei; Liang, Rongda; Xu, Xiaofan; Zhu, Heyuan; Shen, Y Ron; Tian, Chuanshan

    2016-06-28

    Phase-sensitive sum-frequency vibrational spectroscopy (PS-SFVS) has been established as a powerful technique for surface characterization, but for it to generate a reliable spectrum, accurate phase measurement with a well-defined phase reference is most important. Incorrect phase measurement can lead to significant distortion of a spectrum, as recently seen in the case for the air/water interface. In this work, we show theoretically and experimentally that a transparent, highly nonlinear crystal, such as quartz and barium borate, can be a good phase reference if the surface is clean and unstrained and the crystal is properly oriented to yield a strong SF output. In such cases, the reflected SF signal is dominated by the bulk electric dipole contribution and its phase is either +90° or -90°. On the other hand, materials with inversion symmetry, such as water, fused quartz, and CaF2 are not good phase references due to the quadrupole contribution and phase dispersion at the interface. Using a proper phase reference in PS-SFVS, we have found the most reliable OH stretching spectrum for the air/water interface. The positive band at low frequencies in the imaginary component of the spectrum, which has garnered much interest and been interpreted by many to be due to strongly hydrogen-bonded water species, is no longer present. A weak positive feature however still exists. Its magnitude approximately equals to that of air/D2O away from resonances, suggesting that this positive feature is unrelated to surface resonance of water. PMID:27369537

  9. Collective vibrations of water-solvated hydroxide ions investigated with broadband 2DIR spectroscopy

    NASA Astrophysics Data System (ADS)

    Mandal, Aritra; Ramasesha, Krupa; De Marco, Luigi; Tokmakoff, Andrei

    2014-05-01

    The infrared spectra of aqueous solutions of NaOH and other strong bases exhibit a broad continuum absorption for frequencies between 800 and 3500 cm-1, which is attributed to the strong interactions of the OH- ion with its solvating water molecules. To provide molecular insight into the origin of the broad continuum absorption feature, we have performed ultrafast transient absorption and 2DIR experiments on aqueous NaOH by exciting the O-H stretch vibrations and probing the response from 1350 to 3800 cm-1 using a newly developed sub-70 fs broadband mid-infrared source. These experiments, in conjunction with harmonic vibrational analysis of OH-(H2O)n (n = 17) clusters, reveal that O-H stretch vibrations of aqueous hydroxides arise from coupled vibrations of multiple water molecules solvating the ion. We classify the vibrations of the hydroxide complex by symmetry defined by the relative phase of vibrations of the O-H bonds hydrogen bonded to the ion. Although broad and overlapping spectral features are observed for 3- and 4-coordinate ion complexes, we find a resolvable splitting between asymmetric and symmetric stretch vibrations, and assign the 2850 cm-1 peak infrared spectra of aqueous hydroxides to asymmetric stretch vibrations.

  10. Collective Vibrations of Water-Solvated Hydroxide Ions Investigated with Broadband 2DIR Spectroscopy

    NASA Astrophysics Data System (ADS)

    Mandal, Aritra; Ramasesha, Krupa; De Marco, Luigi; Thämer, Martin; Tokmakoff, Andrei

    2014-06-01

    The infrared spectra of aqueous solutions of NaOH and other strong bases exhibit a broad continuum absorption for frequencies between 800-3500 cm-1, which is attributed to the strong interactions of the hydroxide ion with its solvating water molecules. To provide molecular insight into the origin of the broad continuum absorption feature, we have performed ultrafast pump-probe and 2DIR experiments on aqueous NaOH by exciting the O—H stretch vibrations and probing the response from 1350-3800 cm-1 using a newly developed sub-70 fs broadband mid-infrared source. These experiments, in conjunction with harmonic vibrational analysis of OH-(H2O)n clusters, reveal that O—H stretch vibrations of aqueous hydroxides arise from coupled vibrations of multiple water molecules solvating the ion. We classify the vibrations of the hydroxide complex by symmetry defined by the relative phase of vibrations of the O—H bonds hydrogen bonded to the ion. Although spectral broadening does not allow us to distinguish 3- and 4-coordinate ion complexes, we find a resolvable splitting between asymmetric and symmetric stretch vibrations, and assign the 2850 cm-1 peak infrared spectra of aqueous hydroxides to asymmetric stretch vibrations.

  11. Assignment of the Internal Vibrational Modes of C70 by Inelastic Neutron Scattering Spectroscopy and Periodic-DFT

    PubMed Central

    Refson, Keith; Parker, Stewart F

    2015-01-01

    The fullerene C70 may be considered as the shortest possible nanotube capped by a hemisphere of C60 at each end. Vibrational spectroscopy is a key tool in characterising fullerenes, and C70 has been studied several times and spectral assignments proposed. Unfortunately, many of the modes are either forbidden or have very low infrared or Raman intensity, even if allowed. Inelastic neutron scattering (INS) spectroscopy is not subject to selection rules, and all the modes are allowed. We have obtained a new INS spectrum from a large sample recorded at the highest resolution available. An advantage of INS spectroscopy is that it is straightforward to calculate the spectral intensity from a model. We demonstrate that all previous assignments are incorrect in at least some respects and propose a new assignment based on periodic density functional theory (DFT) that successfully reproduces the INS, infrared, and Raman spectra. PMID:26491642

  12. Assignment of the Internal Vibrational Modes of C70 by Inelastic Neutron Scattering Spectroscopy and Periodic-DFT.

    PubMed

    Refson, Keith; Parker, Stewart F

    2015-10-01

    The fullerene C70 may be considered as the shortest possible nanotube capped by a hemisphere of C60 at each end. Vibrational spectroscopy is a key tool in characterising fullerenes, and C70 has been studied several times and spectral assignments proposed. Unfortunately, many of the modes are either forbidden or have very low infrared or Raman intensity, even if allowed. Inelastic neutron scattering (INS) spectroscopy is not subject to selection rules, and all the modes are allowed. We have obtained a new INS spectrum from a large sample recorded at the highest resolution available. An advantage of INS spectroscopy is that it is straightforward to calculate the spectral intensity from a model. We demonstrate that all previous assignments are incorrect in at least some respects and propose a new assignment based on periodic density functional theory (DFT) that successfully reproduces the INS, infrared, and Raman spectra. PMID:26491642

  13. Identification of vibrational signatures from short chains of interlinked molecule-nanoparticle junctions obtained by inelastic electron tunnelling spectroscopy

    NASA Astrophysics Data System (ADS)

    Jafri, S. H. M.; Löfås, H.; Fransson, J.; Blom, T.; Grigoriev, A.; Wallner, A.; Ahuja, R.; Ottosson, H.; Leifer, K.

    2013-05-01

    Short chains containing a series of metal-molecule-nanoparticle nanojunctions are a nano-material system with the potential to give electrical signatures close to those from single molecule experiments while enabling us to build portable devices on a chip. Inelastic electron tunnelling spectroscopy (IETS) measurements provide one of the most characteristic electrical signals of single and few molecules. In interlinked molecule-nanoparticle (NP) chains containing typically 5-7 molecules in a chain, the spectrum is expected to be a superposition of the vibrational signatures of individual molecules. We have established a stable and reproducible molecule-AuNP multi-junction by placing a few 1,8-octanedithiol (ODT) molecules onto a versatile and portable nanoparticle-nanoelectrode platform and measured for the first time vibrational molecular signatures at complex and coupled few-molecule-NP junctions. From quantum transport calculations, we model the IETS spectra and identify vibrational modes as well as the number of molecules contributing to the electron transport in the measured spectra.Short chains containing a series of metal-molecule-nanoparticle nanojunctions are a nano-material system with the potential to give electrical signatures close to those from single molecule experiments while enabling us to build portable devices on a chip. Inelastic electron tunnelling spectroscopy (IETS) measurements provide one of the most characteristic electrical signals of single and few molecules. In interlinked molecule-nanoparticle (NP) chains containing typically 5-7 molecules in a chain, the spectrum is expected to be a superposition of the vibrational signatures of individual molecules. We have established a stable and reproducible molecule-AuNP multi-junction by placing a few 1,8-octanedithiol (ODT) molecules onto a versatile and portable nanoparticle-nanoelectrode platform and measured for the first time vibrational molecular signatures at complex and coupled few

  14. Pushing The Sample-Size Limit Of Infrared Vibrational Nano-Spectroscopy: From Monolayer Towards Single molecule sensitivity

    SciTech Connect

    Xu, Xiaoji G.; Rang, Matthias; Craig, Ian M.; Rashcke, Markus B.

    2012-06-18

    While scattering-scanning near-field optical microscopy (s-SNOM) has demonstrated its potential to extend infrared (IR) spectroscopy into the nanometer scale, it has not yet reached its full potential in terms of spectroscopic sensitivity. We combine broadband femtosecond mid-IR excitation with an optimized spectral irradiance of 2 W/cm2/ cm–1 (power/area/bandwidth) and a combination of tip- and substrate enhancement to demonstrate single-monolayer sensitivity with exceptional signal-to-noise ratio. Using interferometric time domain detection, the near-field IR s-SNOM spectral phase directly reflects the molecular vibrational resonances and their intrinsic line shapes. We probe the stretching resonance of 1000 carbonyl groups at 1700 cm–1 in a self-assembled monolayer of 16-mercaptohexadecanoic acid (MHDA) on an evaporated gold substrate with spectroscopic contrast and sensitivity of 100 vibrational oscillators. From these results we provide a roadmap for achieving true single-molecule IR vibrational spectroscopy in s-SNOM by implementing optical antenna resonant enhancement, increased spectral pump power, and improved detection schemes.

  15. Vibrational spectroscopy of an algal Phot-LOV1 domain probes the molecular changes associated with blue-light reception.

    PubMed

    Ataka, K; Hegemann, P; Heberle, J

    2003-01-01

    The LOV1 domain of the blue light Phot1-receptor (phototropin homolog) from Chlamydomonas reinhardtii has been studied by vibrational spectroscopy. The FMN modes of the dark state of LOV1 were identified by preresonance Raman spectroscopy and assigned to molecular vibrations. By comparing the blue-light-induced FTIR difference spectrum with the preresonance Raman spectrum, most of the differences are due to FMN modes. Thus, we exclude large backbone changes of the protein that might occur during the phototransformation of the dark state LOV1-447 into the putative signaling state LOV1-390. Still, the presence of smaller amide difference bands cannot be excluded but may be masked by overlapping FMN modes. The band at 2567 cm(-1) is assigned to the S-H stretching vibration of C57, the residue that forms the transient thio-adduct with the chromophore FMN. The occurrence of this band is evidence that C57 is protonated in the dark state of LOV1. This result challenges conclusions from the homologous LOV2 domain from oat that the thiolate of the corresponding cysteine is the reactive species. PMID:12524299

  16. Binding of Na+ and K+ to the Headgroup of Palmitic Acid Monolayers Studied by Vibrational Sum Frequency Generation Spectroscopy

    NASA Astrophysics Data System (ADS)

    Huang, Zishuai; Allen, Heather C.

    2012-06-01

    Alkali cations are critical in biological systems due to their electrical interaction with cell membranes. While Na+ and K+ share similar chemical and physical properties, they can exhibit differences when interacting with biological membranes. These phenomena may be modeled using a Langmuir monolayer of surfactant on alkali chloride solutions. Vibrational sum frequency generation (VSFG) spectroscopy is an interface specific technique that is widely employed to study molecular organization at surfaces and interfaces. VSFG spectroscopy was used to probe the CO2- vibrational mode for the carboxylic acid headgroup of palmitic acid (PA) spread on the surface of NaCl and KCl solutions in the vibrational region between 1400 and 1500 cm-1. The ability of Na+ and K+ to bind with the carboxylic headgroup of PA is revealed by observing peak positions (˜1410 cm-1 and ˜1470 cm-1) and relative intensity for the CO2- peaks. These results are compared and discussed with perspective toward elucidating interfacial PA headgroup organization. The time evolution for the PA CO2- peaks is also monitored after monolayer spreading via VSFG and these results are presented as well.

  17. Molecular structure and vibrational study of diprotonated guanazolium using DFT calculations and FT-IR and FT-Raman spectroscopies

    NASA Astrophysics Data System (ADS)

    Guennoun, L.; Zaydoun, S.; El jastimi, J.; Marakchi, K.; Komiha, N.; Kabbaj, O. K.; El Hajji, A.; Guédira, F.

    2012-11-01

    The purpose of this manuscript is to discuss our investigations of diprotonated guanazolium chloride using vibrational spectroscopy and quantum chemical methods. The solid phase FT-IR and FT-Raman spectra were recorded in the regions 4000-400 cm-1 and 3600-50 cm-1 respectively, and the band assignments were supported by deuteration effects. Different sites of diprotonation have been theoretically examined at the B3LYP/6-31G∗ level. The results of energy calculations show that the diprotonation process occurs with the two pyridine-like nitrogen N2 and N4 of the triazole ring. The molecular structure, harmonic vibrational wave numbers, infrared intensities and Raman activities were calculated for this form by DFT/B3LYP methods, using a 6-31G∗ basis set. Both the optimized geometries and the theoretical and experimental spectra for diprotonated guanazolium under a stable form are compared with theoretical and experimental data of the neutral molecule reported in our previous work. This comparison reveals that the diprotonation occurs on the triazolic nucleus, and provide information about the hydrogen bonding in the crystal. The scaled vibrational wave number values of the diprotonated form are in close agreement with the experimental data. The normal vibrations were characterized in terms of potential energy distribution (PED) using the VEDA 4 program.

  18. Two-dimensional Raman and infrared vibrational spectroscopy for a harmonic oscillator system nonlinearly coupled with a colored noise bath

    NASA Astrophysics Data System (ADS)

    Kato, Tsuyoshi; Tanimura, Yoshitaka

    2004-01-01

    Multidimensional vibrational response functions of a harmonic oscillator are reconsidered by assuming nonlinear system-bath couplings. In addition to a standard linear-linear (LL) system-bath interaction, we consider a square-linear (SL) interaction. The LL interaction causes the vibrational energy relaxation, while the SL interaction is mainly responsible for the vibrational phase relaxation. The dynamics of the relevant system are investigated by the numerical integration of the Gaussian-Markovian Fokker-Planck equation under the condition of strong couplings with a colored noise bath, where the conventional perturbative approach cannot be applied. The response functions for the fifth-order nonresonant Raman and the third-order infrared (or equivalently the second-order infrared and the seventh-order nonresonant Raman) spectra are calculated under the various combinations of the LL and the SL coupling strengths. Calculated two-dimensional response functions demonstrate that those spectroscopic techniques are very sensitive to the mechanism of the system-bath couplings and the correlation time of the bath fluctuation. We discuss the primary optical transition pathways involved to elucidate the corresponding spectroscopic features and to relate them to the microscopic sources of the vibrational nonlinearity induced by the system-bath interactions. Optical pathways for the fifth-order Raman spectroscopies from an "anisotropic" medium were newly found in this study, which were not predicted by the weak system-bath coupling theory or the standard Brownian harmonic oscillator model.

  19. Two-dimensional Raman and infrared vibrational spectroscopy for a harmonic oscillator system nonlinearly coupled with a colored noise bath.

    PubMed

    Kato, Tsuyoshi; Tanimura, Yoshitaka

    2004-01-01

    Multidimensional vibrational response functions of a harmonic oscillator are reconsidered by assuming nonlinear system-bath couplings. In addition to a standard linear-linear (LL) system-bath interaction, we consider a square-linear (SL) interaction. The LL interaction causes the vibrational energy relaxation, while the SL interaction is mainly responsible for the vibrational phase relaxation. The dynamics of the relevant system are investigated by the numerical integration of the Gaussian-Markovian Fokker-Planck equation under the condition of strong couplings with a colored noise bath, where the conventional perturbative approach cannot be applied. The response functions for the fifth-order nonresonant Raman and the third-order infrared (or equivalently the second-order infrared and the seventh-order nonresonant Raman) spectra are calculated under the various combinations of the LL and the SL coupling strengths. Calculated two-dimensional response functions demonstrate that those spectroscopic techniques are very sensitive to the mechanism of the system-bath couplings and the correlation time of the bath fluctuation. We discuss the primary optical transition pathways involved to elucidate the corresponding spectroscopic features and to relate them to the microscopic sources of the vibrational nonlinearity induced by the system-bath interactions. Optical pathways for the fifth-order Raman spectroscopies from an "anisotropic" medium were newly found in this study, which were not predicted by the weak system-bath coupling theory or the standard Brownian harmonic oscillator model. PMID:15267286

  20. Semi-quantitative prediction of a multiple API solid dosage form with a combination of vibrational spectroscopy methods.

    PubMed

    Hertrampf, A; Sousa, R M; Menezes, J C; Herdling, T

    2016-05-30

    Quality control (QC) in the pharmaceutical industry is a key activity in ensuring medicines have the required quality, safety and efficacy for their intended use. QC departments at pharmaceutical companies are responsible for all release testing of final products but also all incoming raw materials. Near-infrared spectroscopy (NIRS) and Raman spectroscopy are important techniques for fast and accurate identification and qualification of pharmaceutical samples. Tablets containing two different active pharmaceutical ingredients (API) [bisoprolol, hydrochlorothiazide] in different commercially available dosages were analysed using Raman- and NIR Spectroscopy. The goal was to define multivariate models based on each vibrational spectroscopy to discriminate between different dosages (identity) and predict their dosage (semi-quantitative). Furthermore the combination of spectroscopic techniques was investigated. Therefore, two different multiblock techniques based on PLS have been applied: multiblock PLS (MB-PLS) and sequential-orthogonalised PLS (SO-PLS). NIRS showed better results compared to Raman spectroscopy for both identification and quantitation. The multiblock techniques investigated showed that each spectroscopy contains information not present or captured with the other spectroscopic technique, thus demonstrating that there is a potential benefit in their combined use for both identification and quantitation purposes. PMID:26970593

  1. Computational IR spectroscopy of water: OH stretch frequencies, transition dipoles, and intermolecular vibrational coupling constants

    NASA Astrophysics Data System (ADS)

    Choi, Jun-Ho; Cho, Minhaeng

    2013-05-01

    The Hessian matrix reconstruction method initially developed to extract the basis mode frequencies, vibrational coupling constants, and transition dipoles of the delocalized amide I, II, and III vibrations of polypeptides and proteins from quantum chemistry calculation results is used to obtain those properties of delocalized O-H stretch modes in liquid water. Considering the water symmetric and asymmetric O-H stretch modes as basis modes, we here develop theoretical models relating vibrational frequencies, transition dipoles, and coupling constants of basis modes to local water configuration and solvent electric potential. Molecular dynamics simulation was performed to generate an ensemble of water configurations that was in turn used to construct vibrational Hamiltonian matrices. Obtaining the eigenvalues and eigenvectors of the matrices and using the time-averaging approximation method, which was developed by the Skinner group, to calculating the vibrational spectra of coupled oscillator systems, we could numerically simulate the O-H stretch IR spectrum of liquid water. The asymmetric line shape and weak shoulder bands were quantitatively reproduced by the present computational procedure based on vibrational exciton model, where the polarization effects on basis mode transition dipoles and inter-mode coupling constants were found to be crucial in quantitatively simulating the vibrational spectra of hydrogen-bond networking liquid water.

  2. Surface Structure of Protonated R-Sapphire (1$\\bar{1}$02) Studied by Sum-Frequency Vibrational Spectroscopy

    SciTech Connect

    Sung, Jaeho; Zhang, Luning; Tian, Chuanshan; Waychunas, Glenn A.; Shen, Y. Ron

    2011-03-23

    Sum frequency vibrational spectroscopy was used to study the protonated R-plane (1$\\bar{1}$02 ) sapphire surface. The OH stretch vibrational spectra show that the surface is terminated with three hydroxyl moieties, two from AlOH2 and one from Al2OH functional groups. The observed polarization dependence allows determination of the orientations of the three OH species. The results suggest that the protonated sapphire (1$\\bar{1}$02 ) surface differs from an ideal stoichimetric termination in a manner consistent with previous X-ray surface diffraction (crystal truncation rod) studies. However, in order to best explain the observed hydrogenbonding arrangement, surface oxygen spacing determined from the X-ray diffraction study requires modification.

  3. Application of vibrational spectroscopy in the in vitro studies of carbon fiber-polylactic acid composite degradation.

    NASA Astrophysics Data System (ADS)

    Blazewicz, Marta; Gajewska, Maria Chomyszyn; Paluszkiewicz, Czeslawa

    1999-05-01

    Vibrational spectroscopy was used for assessment of new material for stomatology, for guided tissue regeneration (GTR) techniqe.Implants applied in the healing of periodontal defects using GTR technique have to meet stringent requirements concerning their chemical as well physical properties.At present the implants prepared from two layers membranes differing in porosity in their outer and inner layers are studied clinically. Composite plates prepared by us consist of three layers: polylactic acid film, carbon fibres coated with polylactic acid and carbon fabric.Vibrational spectroscopic studies of the material; polylactic acid- carbon fiber have made it possible to analyse chemical reactions occurring between the polymer and carbon surface. Analysis of the IR spectra of samples treated in Ringer solution allowed to describe the phenomena resulting from the composite degradation. It was shown that material biostability is related to the presence of carbon fibers.

  4. Selective Detection of Crystalline Cellulose in Plant Cell Walls with Sum-Frequency-Generation (SFG) Vibration Spectroscopy

    SciTech Connect

    Barnette, Anna L.; Bradley, Laura C.; Veres, Brandon D.; Schreiner, Edward P.; Park, Yong Bum; Park, Junyeong; Park, Sunkyu; Kim, Seong H.

    2011-07-11

    The selective detection of crystalline cellulose in biomass was demonstrated with sum-frequency-generation (SFG) vibration spectroscopy. SFG is a second-order nonlinear optical response from a system where the optical centrosymmetry is broken. In secondary plant cell walls that contain mostly cellulose, hemicellulose, and lignin with varying concentrations, only certain vibration modes in the crystalline cellulose structure can meet the noninversion symmetry requirements. Thus, SFG can be used to detect and analyze crystalline cellulose selectively in lignocellulosic biomass without extraction of noncellulosic species from biomass or deconvolution of amorphous spectra. The selective detection of crystalline cellulose in lignocellulosic biomass is not readily achievable with other techniques such as XRD, solid-state NMR, IR, and Raman analyses. Therefore, the SFG analysis presents a unique opportunity to reveal the cellulose crystalline structure in lignocellulosic biomass.

  5. Linear and third- and fifth-order nonlinear spectroscopies of a charge transfer system coupled to an underdamped vibration

    SciTech Connect

    Dijkstra, Arend G. E-mail: tanimura@kuchem.kyoto-u.ac.jp; Tanimura, Yoshitaka E-mail: tanimura@kuchem.kyoto-u.ac.jp

    2015-06-07

    We study hole, electron, and exciton transports in a charge transfer system in the presence of underdamped vibrational motion. We analyze the signature of these processes in the linear and third-, and fifth-order nonlinear electronic spectra. Calculations are performed with a numerically exact hierarchical equations of motion method for an underdamped Brownian oscillator spectral density. We find that combining electron, hole, and exciton transfers can lead to non-trivial spectra with more structure than with excitonic coupling alone. Traces taken during the waiting time of a two-dimensional (2D) spectrum are dominated by vibrational motion and do not reflect the electron, hole, and exciton dynamics directly. We find that the fifth-order nonlinear response is particularly sensitive to the charge transfer process. While third-order 2D spectroscopy detects the correlation between two coherences, fifth-order 2D spectroscopy (2D population spectroscopy) is here designed to detect correlations between the excited states during two different time periods.

  6. Investigating vibrational anharmonic couplings in cyanide-bridged transition metal mixed valence complexes using two-dimensional infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Slenkamp, Karla M.; Lynch, Michael S.; Van Kuiken, Benjamin E.; Brookes, Jennifer F.; Bannan, Caitlin C.; Daifuku, Stephanie L.; Khalil, Munira

    2014-02-01

    Using polarization-selective two-dimensional infrared (2D IR) spectroscopy, we measure anharmonic couplings and angles between the transition dipole moments of the four cyanide stretching (νCN) vibrations found in [(NH3)5RuIIINCFeII(CN)5]- (FeRu) dissolved in D2O and formamide and [(NC)5FeIICNPtIV(NH3)4NCFeII(CN)5]4- (FePtFe) dissolved in D2O. These cyanide-bridged transition metal complexes serve as model systems for studying the role of high frequency vibrational modes in ultrafast photoinduced charge transfer reactions. Here, we focus on the spectroscopy of the νCN modes in the electronic ground state. The FTIR spectra of the νCN modes of the bimetallic and trimetallic systems are strikingly different in terms of frequencies, amplitudes, and lineshapes. The experimental 2D IR spectra of FeRu and FePtFe and their fits reveal a set of weakly coupled anharmonic νCN modes. The vibrational mode anharmonicities of the individual νCN modes range from 14 to 28 cm-1. The mixed-mode anharmonicities range from 2 to 14 cm-1. In general, the bridging νCN mode is most weakly coupled to the radial νCN mode, which involves the terminal CN ligands. Measurement of the relative transition dipole moments of the four νCN modes reveal that the FeRu molecule is almost linear in solution when dissolved in formamide, but it assumes a bent geometry when dissolved in D2O. The νCN modes are modelled as bilinearly coupled anharmonic oscillators with an average coupling constant of 6 cm-1. This study elucidates the role of the solvent in modulating the molecular geometry and the anharmonic vibrational couplings between the νCN modes in cyanide-bridged transition metal mixed valence complexes.

  7. Electron-vibration entanglement in the Born-Oppenheimer description of chemical reactions and spectroscopy.

    PubMed

    McKemmish, Laura K; McKenzie, Ross H; Hush, Noel S; Reimers, Jeffrey R

    2015-10-14

    Entanglement is sometimes regarded as the quintessential measure of the quantum nature of a system and its significance for the understanding of coupled electronic and vibrational motions in molecules has been conjectured. Previously, we considered the entanglement developed in a spatially localized diabatic basis representation of the electronic states, considering design rules for qubits in a low-temperature chemical quantum computer. We extend this to consider the entanglement developed during high-energy processes. We also consider the entanglement developed using adiabatic electronic basis, providing a novel way for interpreting effects of the breakdown of the Born-Oppenheimer (BO) approximation. We consider: (i) BO entanglement in the ground-state wavefunction relevant to equilibrium thermodynamics, (ii) BO entanglement associated with low-energy wavefunctions relevant to infrared and tunneling spectroscopies, (iii) BO entanglement in high-energy eigenfunctions relevant to chemical reaction processes, and (iv) BO entanglement developed during reactive wavepacket dynamics. A two-state single-mode diabatic model descriptive of a wide range of chemical phenomena is used for this purpose. The entanglement developed by BO breakdown correlates simply with the diameter of the cusp introduced by the BO approximation, and a hierarchy appears between the various BO-breakdown correction terms, with the first-derivative correction being more important than the second-derivative correction which is more important than the diagonal correction. This simplicity is in contrast to the complexity of BO-breakdown effects on thermodynamic, spectroscopic, and kinetic properties. Further, processes poorly treated at the BO level that appear adequately treated using the Born-Huang adiabatic approximation are found to have properties that can only be described using a non-adiabatic description. For the entanglement developed between diabatic electronic states and the nuclear motion

  8. Structural and vibrational spectroscopy investigation of the 5-[(diphenyl) amino] isophthalic acid molecule

    NASA Astrophysics Data System (ADS)

    Kurt, M.; Şaş, E. Babur; Can, M.; Okur, S.; Icli, S.; Demic, S.

    2014-10-01

    The molecular structure and vibrations of 5-(diphenyl) amino] isophthalic acid (DPIFA) were investigated by different spectroscopic techniques (such as infrared and Raman). FT-IR, FT-Raman and dispersive Raman spectra were recorded in the solid phase. HOMO-LUMO analyses were performed. The theoretical calculations for the molecular structure and spectroscopic studies were performed with DFT (B3LYP) and 6-311G(d,p) basis set calculations using the Gaussian 09 program. After optimizing the geometry of the molecule, vibration wavenumbers and fundamental vibrations wavenumbers were assigned on the basis of the potential energy distribution (PED) of the vibrational modes calculated with VEDA 4 program. The results of theoretical calculations for the spectra of the title compound were compared with the observed spectra.

  9. Vibrational spectroscopy in sensing radiobiological effects: analyses of targeted and non-targeted effects in human keratinocytes.

    PubMed

    Meade, Aidan D; Howe, Orla; Unterreiner, Valérie; Sockalingum, Ganesh D; Byrne, Hugh J; Lyng, Fiona M

    2016-06-23

    Modern models of radiobiological effects include mechanisms of damage initiation, sensing and repair, for those cells that directly absorb ionizing radiation as well as those that experience molecular signals from directly irradiated cells. In the former case, the effects are termed targeted effects while, in the latter, non-targeted effects. It has emerged that phenomena occur at low doses below 1 Gy in directly irradiated cells that are associated with cell-cycle-dependent mechanisms of DNA damage sensing and repair. Likewise in non-targeted bystander-irradiated cells the effect saturates at 0.5 Gy. Both effects at these doses challenge the limits of detection of vibrational spectroscopy. In this paper, a study of the sensing of both targeted and non-targeted effects in HaCaT human keratinocytes irradiated with gamma ray photons is conducted with vibrational spectroscopy. In the case of directly irradiated cells, it is shown that the HaCaT cell line does exhibit both hyperradiosensitivity and increased radioresistance at low doses, a transition between the two effects occurring at a dose of 200 mGy, and that cell survival and other physiological effects as a function of dose follow the induced repair model. Both Raman and FTIR signatures are shown to follow a similar model, suggesting that the spectra include signatures of DNA damage sensing and repair. In bystander-irradiated cells, pro- and anti-apoptotic signalling and mechanisms of ROS damage were inhibited in the mitogen-activated protein kinase (MAPK) transduction pathway. It is shown that Raman spectral profiles of bystander-irradiated cells are correlated with markers of bystander signalling and molecular transduction. This work demonstrates for the first time that both targeted and non-targeted effects of ionizing radiation damage are detected by vibrational spectroscopy in vitro. PMID:27043923

  10. Nuclear Resonance Vibrational Spectroscopy applied to [Fe(OEP)(NO)]: The Vibrational Assignments of Five-Coordinate Ferrous Heme Nitrosyls and Implications for Electronic Structure

    PubMed Central

    Lehnert, Nicolai; Galinato, Mary Grace I.; Paulat, Florian; Richter-Addo, George B.; Sturhahn, Wolfgang; Xu, Nan; Zhao, Jiyong

    2010-01-01

    This study presents Nuclear Resonance Vibrational Spectroscopy (NRVS) data on the five-coordinate (5C) ferrous heme nitrosyl complex [Fe(OEP)(NO)] (1, OEP2− = octaethylporphyrinato dianion) and the corresponding 15N18O labeled complex. The obtained spectra identify two isotope sensitive features at 522 and 388 cm−1, which shift to 508 and 381 cm−1, respectively, upon isotope labeling. These features are assigned to the Fe-NO stretch ν(Fe-NO) and the in-plane Fe-N-O bending mode δip(Fe-N-O), the latter has been unambiguously assigned for the first time for 1. The obtained NRVS data were simulated using our quantum chemistry centered normal coordinate analysis (QCC-NCA). Since complex 1 can potentially exist in 12 different conformations involving the FeNO and peripheral ethyl orientations, extended DFT calculations and QCC-NCA simulations were performed to determine how these conformations affect the NRVS properties of [Fe(OEP)NO]. These results show that the properties and force constants of the FeNO unit are hardly affected by the conformational changes involving the ethyl substituents. On the other hand, the NRVS-active porphyrin-based vibrations around 340 – 360, 300 –320, and 250 – 270 cm−1 are sensitive to the conformational changes. The spectroscopic changes observed in these regions are due to selective mechanical couplings of one component of Eu-type (in ideal D4h symmetry) porphyrin-based vibrations with the in-plane Fe-N-O bending mode. This leads to the observed variations in Fe(OEP) core mode energies and NRVS intensities without affecting the properties of the FeNO unit. The QCC-NCA simulated NRVS spectra of 1 show excellent agreement with experiment, and indicate that conformer F is likely present in the samples of this complex investigated here. The observed porphyrin-based vibrations in the NRVS spectra of 1 are also assigned based on the QCC-NCA results. The obtained force constants of the Fe-NO and N-O bonds are 2.83 – 2

  11. Femtosecond stimulated Raman spectroscopy as a tool to detect molecular vibrations in ground and excited electronic states

    NASA Astrophysics Data System (ADS)

    Gelin, Maxim F.; Domcke, Wolfgang; Rao, B. Jayachander

    2016-05-01

    We give a detailed theoretical analysis of the simplest variant of femtosecond stimulated Raman spectroscopy, where a picosecond Raman pump pulse and a femtosecond Raman probe pulse are applied resonantly to a chromophore in thermal equilibrium in the ground electronic state. We demonstrate that this technique is capable of the detection of dephasing-free Raman-like lines revealing vibrational modes not only in the electronic ground state but also in the excited electronic state of the chromophore. The analytical results obtained with simplifying assumptions for the shape of the laser pulses are substantiated by numerical simulations with realistic laser pulses, employing the equation-of-motion phase-matching approach.

  12. Fourier transform two-dimensional electronic-vibrational spectroscopy using an octave-spanning mid-IR probe.

    PubMed

    Gaynor, James D; Courtney, Trevor L; Balasubramanian, Madhumitha; Khalil, Munira

    2016-06-15

    The development of coherent Fourier transform two-dimensional electronic-vibrational (2D EV) spectroscopy with acousto-optic pulse-shaper-generated near-UV pump pulses and an octave-spanning broadband mid-IR probe pulse is detailed. A 2D EV spectrum of a silicon wafer demonstrates the full experimental capability of this experiment, and a 2D EV spectrum of dissolved hexacyanoferrate establishes the viability of our 2D EV experiment for studying condensed phase molecular ensembles. PMID:27304316

  13. High Resolution Emission Spectroscopy of the Vibration-Rotation Bands of Hbo and Hbs.

    NASA Astrophysics Data System (ADS)

    Li, G.; Ram, R. S.; Hargreaves, R. J.; Bernath, P. F.; Li, H.

    2012-06-01

    The vibration-rotation spectra of HBO and HBS have been investigated at high resolution using a Fourier transform spectrometer. The HBO molecules were produced in a high temperature furnace from the reaction of H2O vapor with boron by heating a mixture of crystalline boron and boron oxide (B2O3) at a temperature ˜1350°C. The spectra were recorded in the 1100-2200 cm-1 and 1700-4000 cm-1 wavenumber regions covering the ν3 and ν1 fundamentals, respectively. In total 24 vibrational bands involving 30 vibrational levels of H11BO and 12 bands involving 18 levels of H10BO have been rotationally analyzed. After combining the existing microwave and infrared measurements, the absolute term values have been determined for a number of vibrationally-excited states of H11BO and H10BO. The HBS molecules were formed by the reaction of CS2 and water vapor with crystalline boron at a temperature ˜1300°C. The spectra were recorded in the 850-1500 cm-1 and 1750-4000 cm-1 wavenumber regions covering the ν3 and ν1 frequency regions. In total 29 vibrational bands involving 33 vibrationally-excited levels of H11BS and 9 bands involving 12 vibrational levels of H10BS have been analyzed. The fitted spectroscopic parameters agree very well with the results of our {ab initio} calculations. {L}-resonance interactions observed between the 0200 (Σ) and 0220 (Δ) levels of HBO and HBS were analyzed using a 2×2 matrix to yield deperturbed constants.

  14. Capturing inhomogeneous broadening of the -CN stretch vibration in a Langmuir monolayer with high-resolution spectra and ultrafast vibrational dynamics in sum-frequency generation vibrational spectroscopy (SFG-VS)

    SciTech Connect

    Velarde Ruiz Esparza, Luis A.; Wang, Hongfei

    2013-08-28

    Even though in principle the frequency-domain and time-domain spectroscopic measurement should generate identical information for a given molecular system, inhomogeneous character of surface vibrations in the sum-frequency generation vibrational spectroscopy (SFG-VS) studies has only been studied with the time-domain SFGVS by mapping the decay of the vibrational polarization using ultrafast lasers, due to the lack of SFG vibrational spectra with high enough spectral resolution and accurate enough line shape. Here with recently developed high-resolution broadband SFG-VS (HR-BB-SFG-VS) we show that the inhomogeneous line shape can be obtained in the frequency-domain, for the anchoring CN stretch of the 4-n-octyl-4'-cyanobiphenyl (8CB) Langmuir monolayer at the air-water interface, and that an excellent agreement with the time-domain SFG free-induction-decay (FID) results can be established. We found that the 8CB CN stretch spectrum consists of a single peak centered at 2234.00 + * 0.01 cm-1 with a total line width of 10.9 + - 0.3 cm-1 at half maximum. The Lorentzian contribution accounts only for 4:7 + -0:4 cm-1 to this width and the Gaussian (inhomogeneous) broadening for as much as 8:1+*0:2 cm-1. Polarization analysis of the -CN spectra showed that the -CN group is tilted 57 + - 2 degrees from the surface normal. The large heterogeneity in the -CN spectrum is tentatively attributed to the -CN group interactions with the interfacial water molecules penetrated/accomodated into the 8CB monolayer, a unique phenomenon for the nCB Langmuir monolayers reported previously.

  15. Identification of vibrational signatures from short chains of interlinked molecule-nanoparticle junctions obtained by inelastic electron tunnelling spectroscopy.

    PubMed

    Jafri, S H M; Löfås, H; Fransson, J; Blom, T; Grigoriev, A; Wallner, A; Ahuja, R; Ottosson, H; Leifer, K

    2013-06-01

    Short chains containing a series of metal-molecule-nanoparticle nanojunctions are a nano-material system with the potential to give electrical signatures close to those from single molecule experiments while enabling us to build portable devices on a chip. Inelastic electron tunnelling spectroscopy (IETS) measurements provide one of the most characteristic electrical signals of single and few molecules. In interlinked molecule-nanoparticle (NP) chains containing typically 5-7 molecules in a chain, the spectrum is expected to be a superposition of the vibrational signatures of individual molecules. We have established a stable and reproducible molecule-AuNP multi-junction by placing a few 1,8-octanedithiol (ODT) molecules onto a versatile and portable nanoparticle-nanoelectrode platform and measured for the first time vibrational molecular signatures at complex and coupled few-molecule-NP junctions. From quantum transport calculations, we model the IETS spectra and identify vibrational modes as well as the number of molecules contributing to the electron transport in the measured spectra. PMID:23619506

  16. Frequency-domain time-resolved four wave mixing spectroscopy of vibrational coherence transfer with single-color excitation.

    PubMed

    Pakoulev, Andrei V; Rickard, Mark A; Mathew, Nathan A; Kornau, Kathryn M; Wright, John C

    2008-07-17

    Triply vibrationally enhanced four-wave mixing spectroscopy is employed to observe vibrational coherence transfer between the asymmetric and symmetric CO-stretching modes of rhodium(I) dicarbonyl acetylacetonate (RDC). Coherence transfer is a nonradiative transition of a coherent superposition of quantum states to a different coherent superposition due to coupling of the vibrational modes through the bath. All three excitation pulses in the experiment are resonant with a single quantum coherence, but coherence transfer results in new coherences with different frequencies. The new output frequency is observed with a monochromator that resolves it from the stronger peak at the original excitation frequency. This technique spectrally resolves pathways that include coherence transfer, discriminates against spectral features created solely by radiative transitions, and temporally resolves modulations created by interference between different coherence transfer pathways. Redfield theory simulates the temporal modulations in the impulsive limit, but it is also clear that coherence transfer violates the secular approximation invoked in most Redfield theories. Instead, it requires non-Markovian and bath memory effects. RDC may provide a simple model for the development of theories that incorporate these effects. PMID:18572931

  17. Direct vibrational structure of protein metal-binding sites from near-infrared Yb3+ vibronic side band spectroscopy.

    PubMed Central

    Roselli, C; Boussac, A; Mattioli, T A

    1994-01-01

    Near-infrared Yb3+ vibronic side band (VSB) spectroscopy is used to obtain structural information of metal binding sites in metalloproteins. This technique provides a selective "IR-like" vibrational spectrum of those ligands chelated to the Yb3+ ion. VSB spectra of various model complexes of Yb3+ representing different ligand types were studied to provide references for the VSB spectra of Yb(3+)-reconstituted metalloproteins. Ca2+ in the calcium-binding protein parvalbumin and Fe3+ in the iron-transporting protein transferrin were replaced with Yb3+. The fluorescence of Yb3+ reconstituted into these two proteins exhibits weak VSBs whose energy shifts, with respect to the main 2F5/2-->2F7/2 Yb3+ electronic transition, represent the vibrational frequencies of the Yb3+ ligands. The chemical nature of the ligands of the Yb3+ in these proteins, as deduced by the observed VSB frequencies, is entirely in agreement with their known crystal structures. For transferrin, replacement of the 12CO3(2-) metal counterion with 13CO3(2-) yielded the expected isotopic shift for the VSBs corresponding to the carbonate vibrational modes. This technique demonstrates enormous potential in elucidating the localized structure of metal binding sites in proteins. PMID:7809143

  18. Elucidating low-frequency vibrational dynamics in calcite and water with time-resolved third-harmonic generation spectroscopy.

    PubMed

    Wang, Liang; Liu, Weimin; Fang, Chong

    2015-07-14

    Low-frequency vibrations are foundational for material properties including thermal conductivity and chemical reactivity. To resolve the intrinsic molecular conformational dynamics in condensed phase, we implement time-resolved third-harmonic generation (TRTHG) spectroscopy to unravel collective skeletal motions in calcite, water, and aqueous salt solution in situ. The lifetime of three Raman-active modes in polycrystalline calcite at 155, 282 and 703 cm(-1) is found to be ca. 1.6 ps, 1.3 ps and 250 fs, respectively. The lifetime difference is due to crystallographic defects and anharmonic effects. By incorporating a home-built wire-guided liquid jet, we apply TRTHG to investigate pure water and ZnCl2 aqueous solution, revealing ultrafast dynamics of water intermolecular stretching and librational bands below 500 cm(-1) and a characteristic 280 cm(-1) vibrational mode in the ZnCl4(H2O)2(2-) complex. TRTHG proves to be a compact and versatile technique that directly uses the 800 nm fundamental laser pulse output to capture ultrafast low-frequency vibrational motion snapshots in condensed-phase materials including the omnipresent water, which provides the important time dimension to spectral characterization of molecular structure-function relationships. PMID:26062639

  19. Vibrational spectroscopy of N‧-(Adamantan-2-ylidene)thiophene-2-carbohydrazide, a potential antibacterial agent

    NASA Astrophysics Data System (ADS)

    Gladkov, Lev L.; Gaponenko, Sergey V.; Shabunya-Klyachkovskaya, Elena V.; Shimko, Anna N.; Al-Abdullah, Ebtehal S.; El-Emam, Ali A.

    2014-07-01

    Vibrational states of the newly synthesized molecule N‧-(Adamantan-2-ylidene)thiophene-2-carbohydrazide, a potential antibacterial agent, are examined experimentally for the crystalline phase and analyzed based on quantum chemical modelling of the solitary molecule and of the dimer, and assignment of the observed vibrational frequencies is proposed. Modelling of the title molecule dimer is found to describe better the experimentally observed vibration frequencies for the crystalline phase than calculations performed for a solitary molecule. Contributions from adamantane and thiophene parts within the molecule are identified. Additionally, multiple hydrogen bonds have been revealed both experimentally and computationally, inherent in the crystalline phase contrary to a solitary molecule. The spectroscopic findings correlate with the calculated interatomic distances which were found to change in the dimer versus a single molecule and to correspond better to the X-ray analysis data of the title compound in the crystalline phase.

  20. Overtone spectroscopy of the hydroxyl stretch vibration in hydroxylamine (NH[sub 2]OH)

    SciTech Connect

    Scott, J.L.; Luckhaus, D.; Brown, S.S.; Crim, F.F. )

    1995-01-08

    We present photoacoustic spectra of the second (3[nu][sub OH]), third (4[nu][sub OH]), and fourth (5[nu][sub OH]) overtone bands of the hydroxyl stretch vibration in hydroxylamine. Asymmetric rotor simulations of the rovibrational contours provide rotational constants and an estimate of the homogeneous linewidth. The fourth overtone band appears anomalously broad relative to the two lower bands, reflecting a sharp increase in the rate of intramolecular vibrational energy redistribution (IVR). By contrast, the calculated density of states increases smoothly with energy. The homogeneous linewidth of the fourth overtone transition is similar to that measured by Luo [ital et] [ital al]. [J. Chem. Phys. [bold 93], 9194 (1990)] for the predissociative sixth overtone band, supporting the conclusion that the broadening arises from increased (ro)vibrational coupling at an energy between the third and fourth overtone states.

  1. Vibrational structure of C 84 and Sc 2@C 84 analyzed by IR spectroscopy

    NASA Astrophysics Data System (ADS)

    Hulman, M.; Pichler, T.; Kuzmany, H.; Zerbetto, F.; Yamamoto, E.; Shinohara, H. N.

    1997-06-01

    The isomer III of Sc 2@C 84 was separated by multi-cycle HPLC purification. We present temperature dependent IR absorption measurements of Sc 2@C 84 which have been performed between 50 and 300 K and between 400 and 5000 cm -1, respectively. The vibrational structure of the endohedral compound is compared to the structure of unfilled C 84. We find a strong overall broadening of the vibrational modes in Sc 2@C 84. Also some of the vibrational absorption lines are strongly enhanced if compared to the spectrum for the empty cage. With decreasing temperature, a dramatic narrowing of the lines in the spectral range between 700 and 800 cm -1 is observed.

  2. Picosecond spectroscopy of vibrational and electronic dynamics in high-pressure molecular solids

    SciTech Connect

    Crowell, R.A. II.

    1992-01-01

    Picosecond time resolved studies of vibrational and electronic dynamics in molecular solids are presented. Several uranyl compounds were selected that had large gaps in their vibrational energy density of states. Picosecond coherent anti-Stokes Raman measurements (psCARS) reveal that at 10 K vibrational relaxation occurs by at least a fifth order anharmonic mechanism. At elevated temperatures vibrational decay proceeds predominantly by a cubic anharmonic upconversion mechanism. The results of psCARS on a low temperature molecular solid in a high pressure diamond anvil cell are presented. For carbon disulfide pressure induced shifts in the phonon frequencies result in the opening up of a new relaxation pathway for the 2[nu][sub 2] mode. This pressure induced relaxation mechanism appears to dominate the dynamics of this mode at pressures greater than 19 kbar. Pressure dependent low temperature psCARS measurements for the [nu][sub 9], [nu][sub 8], and [nu][sub 5] of naphthalene are presented. Pressure induced density of states effects are isolated, allowing direct observations of pressure induced anharmonic coupling effects. The magnitude of the pressure induced anharmonic coupling is highly mode specific. psCARS measurements at low temperature are performed on homogeneous high pressure crystals and on highly strained crystals. Results are analyzed in terms of competition between vibrational relaxation and inhomogeneous dephasing. Changes in vibrational dephasing induced by a large negative pressure change ([minus][Delta]P [ge] 5 kbar) are used to determine the magnitude of inhomogeneous dephasing effects. The strain induced inhomogeneous dephasing is mode specific. Picosecond photon echo measurements on a molecular solid in a high pressure diamond anvil cell at low temperature are presented. Results for the O[sub 1] and O[sub 3] photosites in pentacene doped pterphenyl are presented and discussed in terms of pressure induced changes in the Debye frequency.

  3. Sum Frequency Generation Vibrational Spectroscopy of Adsorbed Amino Acids, Peptides and Proteins of Hydrophilic and Hydrophobic Solid-Water Interfaces

    SciTech Connect

    Holinga IV, George Joseph

    2010-09-01

    Sum frequency generation (SFG) vibrational spectroscopy was used to investigate the interfacial properties of several amino acids, peptides, and proteins adsorbed at the hydrophilic polystyrene solid-liquid and the hydrophobic silica solid-liquid interfaces. The influence of experimental geometry on the sensitivity and resolution of the SFG vibrational spectroscopy technique was investigated both theoretically and experimentally. SFG was implemented to investigate the adsorption and organization of eight individual amino acids at model hydrophilic and hydrophobic surfaces under physiological conditions. Biointerface studies were conducted using a combination of SFG and quartz crystal microbalance (QCM) comparing the interfacial structure and concentration of two amino acids and their corresponding homopeptides at two model liquid-solid interfaces as a function of their concentration in aqueous solutions. The influence of temperature, concentration, equilibration time, and electrical bias on the extent of adsorption and interfacial structure of biomolecules were explored at the liquid-solid interface via QCM and SFG. QCM was utilized to quantify the biological activity of heparin functionalized surfaces. A novel optical parametric amplifier was developed and utilized in SFG experiments to investigate the secondary structure of an adsorbed model peptide at the solid-liquid interface.

  4. Vibrational spectroscopy of shock-compressed fluid N/sub 2/ and O/sub 2/

    SciTech Connect

    Schmidt, S.C.; Moore, D.S.; Shaw, M.S.; Johnson, J.D.

    1987-01-01

    Single-pulse, multiplex, coherent anti-Stokes Raman scattering (CARS) was used to observe the vibrational spectra of liquid N/sub 2/ shock-compressed to several pressures and temperatures up to 41 GPa and 5200 K and liquid O/sub 2/ shock-compressed to several pressures and temperatures up to 10 GPa and 1000 K. For N/sub 2/, the experimental spectra were compared to synthetic spectra calculated using a semiclassical model for CARS intensities and estimated vibrational frequencies, peak Raman susceptibilities and Raman line widths. The question of excited state populations in the shock-compressed state is addressed.

  5. Vibrational spectroscopy of shock-compressed fluid N/sub 2/ and O/sub 2/

    SciTech Connect

    Schmidt, S.C.; Moore, D.S.; Shaw, M.S.; Johnson, J.D.

    1987-01-01

    Single-pulse multiplex coherent anti-Stokes Raman scattering (CARS) was used to observe the vibrational spectra of liquid N/sub 2/ shock-compressed to several pressures and temperatures up to 41 GPa and 5200 K and liquid O/sub 2/ shock-compressed to several pressures and temperatures up to 10 GPa and 1000 K. For N/sub 2/, the experimental spectra were compared to synthetic spectra calculated using a semiclassical model for CARS intensities and estimated vibrational frequencies, peak Raman susceptibilities, and Raman line widths. The question of excited state populations in the shock-compressed state is addressed.

  6. Spectroscopy of electronic and vibrational excitations in semiconductors and oxide insulators

    NASA Astrophysics Data System (ADS)

    Bhosale, Jayprakash

    A temperature tuned light emitting diode (LED) has several advantages over conventional sources for optical spectroscopy. The large radiation density of LEDs, concentrated in a small spectral region, is ideal for Spectroscopic techniques where a high signal-to-noise (S/N) ratio is desired. A simple, inexpensive LED source leads to a superior performance at high resolutions exceeding that of a tungsten halogen lamp, from near infrared to ultraviolet spectral region. A theoretical investigation with ab initio techniques of the electron-phonon interaction of semiconductors with chalcopyrite structure and its comparison with modulated reflectivity experiments yield a striking difference between those with (AgGaS2) and without (ZnSnAs 2) d electrons in their valence bands. The former exhibit a non-monotonic temperature dependence of the band gaps whose origin is not yet fully understood. The analysis of this temperature dependence with the Bose-Einstein oscillator model involving two oscillator terms having weights of opposite signs, provides an excellent agreement with the experimental data and correlates well with the characteristic peaks in the phonon density of states associated with the acoustical phonon modes. This work underscores the need for theoretical understanding of the electron-phonon interaction involving d electrons, particularly in ab initio investigations. Spectroscopic signatures of point defects serve as insightful characterizations in basic studies on semiconductors and their applications. In this context, localized vibrational modes (LVMs) revealed in their infrared absorption spectra the appearance of vacancies and interstitials originating from the lack of exact stoichiometry is a special feature of compound semiconductors. A striking manifestation of the LVMs of oxygen impurities substitutionally incorporated into CdSe is observed in which cation vacancies are either generated or suppressed deliberately by adopting specific crystal growth

  7. Nuclear resonance vibrational spectroscopy reveals the FeS cluster composition and active site vibrational properties of an O2-tolerant NAD+-reducing [NiFe] hydrogenase

    DOE PAGESBeta

    Lauterbach, Lars; Wang, Hongxin; Horch, Marius; Gee, Leland B.; Yoda, Yoshitaka; Tanaka, Yoshihito; Zebger, Ingo; Lenz, Oliver; Cramer, Stephen P.

    2014-10-30

    Hydrogenases are complex metalloenzymes that catalyze the reversible splitting of molecular hydrogen into protons and electrons essentially without overpotential. The NAD+-reducing soluble hydrogenase (SH) from Ralstonia eutropha is capable of H2 conversion even in the presence of usually toxic dioxygen. The molecular details of the underlying reactions are largely unknown, mainly because of limited knowledge of the structure and function of the various metal cofactors present in the enzyme. Here, all iron-containing cofactors of the SH were investigated by 57Fe specific nuclear resonance vibrational spectroscopy (NRVS). Our data provide experimental evidence for one [2Fe2S] center and four [4Fe4S] clusters, whichmore » is consistent with the amino acid sequence composition. Only the [2Fe2S] cluster and one of the four [4Fe4S] clusters were reduced upon incubation of the SH with NADH. This finding explains the discrepancy between the large number of FeS clusters and the small amount of FeS cluster-related signals as detected by electron paramagnetic resonance spectroscopic analysis of several NAD+-reducing hydrogenases. For the first time, Fe–CO and Fe–CN modes derived from the [NiFe] active site could be distinguished by NRVS through selective 13C labeling of the CO ligand. This strategy also revealed the molecular coordinates that dominate the individual Fe–CO modes. The present approach explores the complex vibrational signature of the Fe–S clusters and the hydrogenase active site, thereby showing that NRVS represents a powerful tool for the elucidation of complex biocatalysts containing multiple cofactors.« less

  8. Applications and Developments on the Use of Vibrational Spectroscopy Imaging for the Analysis, Monitoring and Characterisation of Crops and Plants.

    PubMed

    Cozzolino, Daniel; Roberts, Jessica

    2016-01-01

    The adaptation and use of advanced technologies is an effective and encouraging way to efficiently and reliably characterise crops and plants. Additionally advances in these technologies will improve the information available for agronomists, breeders and plant physiologists in order to develop best management practices in the process and commercialization of agricultural products and commodities. Methods based on vibrational spectroscopy such as near infrared (NIR) spectroscopy using either single spot or hyperspectral measurements are now more available and ready to use than ever before. The main characteristics of these methodologies (high-throughput, non-destructive) have determined a growth in basic and applied research using NIR spectroscopy in many disciplines related with crop and plant sciences. A wide range of studies have demonstrated the ability of NIR spectroscopy to analyse different parameters in crops. Recently the use of hyperspectral imaging techniques have expanded the range of applications in crop and plant sciences. This article provides an overview of applications and developments of NIR hyperspectral image for the analysis, monitoring and characterisation of crops and plants. PMID:27294902

  9. Nonequilibrium molecular dynamics simulations with a backward-forward trajectories sampling for multidimensional infrared spectroscopy of molecular vibrational modes

    NASA Astrophysics Data System (ADS)

    Hasegawa, Taisuke; Tanimura, Yoshitaka

    2008-02-01

    A full molecular dynamics (MD) simulation approach to calculate multidimensional third-order infrared (IR) signals of molecular vibrational modes is proposed. Third-order IR spectroscopy involves three-time intervals between three excitation and one probe pulses. The nonequilibrium MD (NEMD) simulation allows us to calculate molecular dipoles from nonequilibrium MD trajectories for different pulse configurations and sequences. While the conventional NEMD approach utilizes MD trajectories started from the initial equilibrium state, our approach does from the intermediate state of the third-order optical process, which leads to the doorway-window decomposition of nonlinear response functions. The decomposition is made before the second pump excitation for a two-dimensional case of IR photon echo measurement, while it is made after the second pump excitation for a three-dimensional case of three-pulse IR photon echo measurement. We show that the three-dimensional IR signals are efficiently calculated by using the MD trajectories backward and forward in time for the doorway and window functions, respectively. We examined the capability of the present approach by evaluating the signals of two- and three-dimensional IR vibrational spectroscopies for liquid hydrogen fluoride. The calculated signals might be explained by anharmonic Brownian model with the linear-linear and square-linear system-bath couplings which was used to discuss the inhomogeneous broadening and dephasing mechanism of vibrational motions. The predicted intermolecular librational spectra clearly reveal the unusually narrow inhomogeneous linewidth due to the one-dimensional character of HF molecule and the strong hydrogen bond network.

  10. Water at the Surfaces of Aligned Phospholipid Multi-Bilayer Model Membranes Probed with Ultrafast Vibrational Spectroscopy

    PubMed Central

    Zhao, Wei; Moilanen, David E.; Fenn, Emily E.; Fayer, Michael D.

    2009-01-01

    The dynamics of water at the surface of artificial membranes composed of aligned multibilayers of the phospholipid dilauroyl phosphatidylcholine (DLPC) are probed with ultrafast polarization selective vibrational pump-probe spectroscopy. The experiments are performed at various hydration levels, x = 2 – 16 water molecules per lipid at 37 °C. The water molecules are ~1 nm above or below the membrane surface. The experiments are conducted on the OD stretching mode of dilute HOD in H2O to eliminate vibrational excitation transfer. The FT-IR absorption spectra of the OD stretch in the DLPC bilayer system at low hydration levels shows a red-shift in frequency relative to bulk water, which is in contrast to the blue shift often observed in systems such as water nanopools in reverse micelles. The spectra for x = 4 – 16 can be reproduced by a superposition of the spectra for x = 2 and bulk water. IR Pump-probe measurements reveal that the vibrational population decays (lifetimes) become longer as the hydration level is decreased. The population decays are fit well by biexponential functions. The population decays, measured as a function of the OD stretch frequency, suggest the existence of two major types of water molecules in the interfacial region of the lipid bilayers. One component may be a clathrate-like water cluster near the hydrophobic choline group and the other may be related to the hydration water molecules mainly associated with the phosphate group. As the hydration level increases, the vibrational lifetimes of these two components decrease, suggesting a continuous evolution of the hydration structures in the two components associated with the swelling of the bilayers. The agreement of the magnitudes of the two components obtained from IR spectra with those from vibrational lifetime measurements further supports the two component model. The vibrational population decay fitting also gives an estimation of the number of phosphate-associated water molecules

  11. High-Resolution Vibration-Rotation Spectroscopy of CO[subscript 2]: Understanding the Boltzmann Distribution

    ERIC Educational Resources Information Center

    Castle, Karen J.

    2007-01-01

    In this undergraduate physical chemistry laboratory experiment, students acquire a high-resolution infrared absorption spectrum of carbon dioxide and use their data to show that the rotational-vibrational state populations follow a Boltzmann distribution. Data are acquired with a mid-infrared laser source and infrared detector. Appropriate…

  12. Fourier Transform Vibrational Spectroscopy of Pure Carbon and Silicon-Carbon Clusters.

    NASA Astrophysics Data System (ADS)

    Withey, Paul Andrew

    Fourier transform infrared studies of pure carbon and silicon-carbon clusters produced by vacuum ultraviolet (VUV) photolysis and by the newly developed method of laser evaporation have resulted in the identification of new vibrational information for the C_4, SiC_4 and C_9 clusters. For the first time, the far-infrared bending vibration of C_4 has been observed at a frequency of 172.4 cm^{-1} and confirmed by ^{13}C isotopic data in agreement with predictions of theoretical ab initio calculations for the linear geometry. Along with the earlier observation of the antisymmetric stretching mode at 1543.4 cm^{-1}, the characterization of the infrared active fundamentals of C_4 under the strict linear geometry is now complete. With the exception of C_3, C _4 remains the only pure carbon cluster to be detected in the far-infrared by direct observation. An analysis of the products of the VUV photolysis of a mixture of silane (SiH_4) and 1,3-butadiene rm (C_4H_6) has resulted in the first identification of a vibration of SiC_4 at 2080.1 cm^ {-1} assigned to the nu _1 stretching mode. Prior to this, only rotational transitions for this cluster had been observed. SiC _4 is one of the few molecules to be identified in the circumstellar shell of an evolved carbon star, and the detection of the first vibrational frequency may facilitate its further detection in astronomical sources. A new technique employing laser evaporation of a graphite rod, designed specifically for the detection of the vibrational spectrum of C_9, has resulted in the confirmation of an absorption at 1998.0 cm^{-1} assigned to the nu_6(sigma_{u}) stretching fundamental. Another band at 1601.0 cm^{-1} is tentatively assigned to the nu_7(sigma_ {u}) vibration of the linear C _9 cluster. Laser evaporation has many advantages over high temperature evaporation and it is expected that this method may be beneficial in the observation of vibrational spectra of other molecular species, such as the pure silicon

  13. Nonequilibrium vibrational excitation of H{sub 2} in radiofrequency discharges: A theoretical approach based on coherent anti-Stokes Raman spectroscopy measurements

    SciTech Connect

    Hassouni, K.; Lombardi, G.; Gicquel, A.; Capitelli, M.; Shakhatov, V.A.; De Pascale, O.

    2005-07-15

    Vibrational and rotational experimental temperatures of molecular hydrogen obtained by coherent anti-Stokes Raman spectroscopy in radiofrequency inductive plasmas have been analyzed and interpreted in terms of vibration, electron, dissociation-recombination, and attachment kinetics by using a sophisticated kinetic model recently developed. The analysis clarifies the role of atomic hydrogen in affecting the vibrational content of the molecules. Theoretical plasma composition and population and electron energy distributions are presented as a function of the recombination coefficient {gamma}{sub H} of atomic hydrogen on the surfaces. The agreement between theoretical and experimental results is achieved for recombination coefficients consistent with those found in the literature.

  14. Nonequilibrium vibrational excitation of H2 in radiofrequency discharges: A theoretical approach based on coherent anti-Stokes Raman spectroscopy measurements

    NASA Astrophysics Data System (ADS)

    Hassouni, K.; Lombardi, G.; Gicquel, A.; Capitelli, M.; Shakhatov, V. A.; De Pascale, O.

    2005-07-01

    Vibrational and rotational experimental temperatures of molecular hydrogen obtained by coherent anti-Stokes Raman spectroscopy in radiofrequency inductive plasmas have been analyzed and interpreted in terms of vibration, electron, dissociation-recombination, and attachment kinetics by using a sophisticated kinetic model recently developed. The analysis clarifies the role of atomic hydrogen in affecting the vibrational content of the molecules. Theoretical plasma composition and population and electron energy distributions are presented as a function of the recombination coefficient γH of atomic hydrogen on the surfaces. The agreement between theoretical and experimental results is achieved for recombination coefficients consistent with those found in the literature.

  15. Precision Spectroscopy on Highly-Excited Vibrational Levels of H_2

    NASA Astrophysics Data System (ADS)

    Niu, Ming Li; Salumbides, Edcel John; Ubachs, Wim

    2015-06-01

    The ground electronic energy levels of H_2 have been used as a benchmark system for the most precise comparisons between ab initio calculations and experimental investigations. Recent examples include the determinations of the ionization energy [1], fundamental vibrational energy splitting [2], and rotational energy progression extending to J=16 [3]. In general, the experimental and theoretical values are in excellent agreement with each other. The energy calculations, however, reduce in accuracy with the increase in rotational and vibrational excitation, limited by the accuracy of non-Born Oppenheimer corrections, as well as the higher-order QED effects. While on the experimental side, it remains difficult to sufficiently populate these excited levels in the ground electronic state. We present here our high-resolution spectroscopic study on the X ^1σ^+_g electronic ground state levels with very high vibrational quanta (ν=10,11,12). Vibrationally-excited H_2 are produced from the photodissociation of H_2S [4], and subsequently probed by a narrowband pulsed dye laser system. The experimental results are consistent with and more accurate than the best theoretical values [5]. These vibrationally-excited level energies are also of interest to studies that extract constraints on the possible new interactions that extend beyond the Standard Model [6]. [1] J. Liu et al., J. Chem. Phys. 130, 174306 (2009). [2] G. Dickenson et al., Phys. Rev. Lett. 110, 193601 (2013). [3] E.J. Salumbides et al., Phys. Rev. Lett. 107, 143005 (2011). [4] J. Steadman and T. Baer, J. Chem. Phys. 91, 6113 (1989). [5] J. Komasa et al., J. Chem. Theory Comp. 7, 3105 (2011). [6] E.J. Salumbides et al., Phys. Rev. D 87, 112008 (2013).

  16. Picosecond Spectroscopy of Vibrational and Electronic Dynamics in High Pressure Molecular Solids.

    NASA Astrophysics Data System (ADS)

    Crowell, Robert Ashton, II

    Picosecond time resolved studies of vibrational and electronic dynamics in molecular solids are presented. In the first, several uranyl compounds were selected that had large gaps in their vibrational energy density of states. Picosecond coherent anti-Stokes Raman measurements (psCARS) revealed that at 10 K vibrational relaxation occurs by at least a fifth order anharmonic mechanism. However, at elevated temperatures vibrational decay is found to proceed predominantly by a cubic anharmonic upconversion mechanism. In a second study the results of some of the first psCARS on a low temperature molecular solid in a high pressure diamond anvil cell are presented. For carbon disulfide pressure induced shifts in the phonon frequencies result in the opening up of a new relaxation pathway for the 2nu_2 mode. This pressure induced relaxation mechanism appears to dominate the dynamics of this mode at pressures greater than 19 kbar. In the third project pressure dependent low temperature psCARS measurements for the nu_9, nu_8, and nu_5 of naphthalene are presented. Pressure induced density of states effects are isolated, thereby allowing the first direct observations of pressure induced anharmonic coupling effects. The results indicate that the magnitude of the pressure induced anharmonic coupling is highly mode specific. In a fourth study psCARS measurements at low temperature are performed on homogeneous high pressure crystals and on highly strained crystals. Results are analyzed in terms of competition between vibrational relaxation and inhomogeneous dephasing. Changes in vibrational dephasing induced by a large negative pressure change (-Delta P >= 5 kbar) are used to determine the magnitude of inhomogeneous dephasing effects. The strain induced inhomogeneous dephasing is found to be mode specific. Finally the first picosecond photon echo measurements on a molecular solid in a high pressure diamond anvil cell at low temperature are presented. Results for the O _1 and O_3

  17. Investigating vibrational anharmonic couplings in cyanide-bridged transition metal mixed valence complexes using two-dimensional infrared spectroscopy

    SciTech Connect

    Slenkamp, Karla M.; Lynch, Michael S.; Van Kuiken, Benjamin E.; Brookes, Jennifer F.; Bannan, Caitlin C.; Daifuku, Stephanie L.; Khalil, Munira

    2014-02-28

    Using polarization-selective two-dimensional infrared (2D IR) spectroscopy, we measure anharmonic couplings and angles between the transition dipole moments of the four cyanide stretching (ν{sub CN}) vibrations found in [(NH{sub 3}){sub 5}Ru{sup III}NCFe{sup II}(CN){sub 5}]{sup −} (FeRu) dissolved in D{sub 2}O and formamide and [(NC){sub 5}Fe{sup II}CNPt{sup IV}(NH{sub 3}){sub 4}NCFe{sup II}(CN){sub 5}]{sup 4−} (FePtFe) dissolved in D{sub 2}O. These cyanide-bridged transition metal complexes serve as model systems for studying the role of high frequency vibrational modes in ultrafast photoinduced charge transfer reactions. Here, we focus on the spectroscopy of the ν{sub CN} modes in the electronic ground state. The FTIR spectra of the ν{sub CN} modes of the bimetallic and trimetallic systems are strikingly different in terms of frequencies, amplitudes, and lineshapes. The experimental 2D IR spectra of FeRu and FePtFe and their fits reveal a set of weakly coupled anharmonic ν{sub CN} modes. The vibrational mode anharmonicities of the individual ν{sub CN} modes range from 14 to 28 cm{sup −1}. The mixed-mode anharmonicities range from 2 to 14 cm{sup −1}. In general, the bridging ν{sub CN} mode is most weakly coupled to the radial ν{sub CN} mode, which involves the terminal CN ligands. Measurement of the relative transition dipole moments of the four ν{sub CN} modes reveal that the FeRu molecule is almost linear in solution when dissolved in formamide, but it assumes a bent geometry when dissolved in D{sub 2}O. The ν{sub CN} modes are modelled as bilinearly coupled anharmonic oscillators with an average coupling constant of 6 cm{sup −1}. This study elucidates the role of the solvent in modulating the molecular geometry and the anharmonic vibrational couplings between the ν{sub CN} modes in cyanide-bridged transition metal mixed valence complexes.

  18. Vibrational spectroscopy of water in hydrated lipid multi-bilayers. I. Infrared spectra and ultrafast pump-probe observables

    PubMed Central

    Gruenbaum, S. M.; Skinner, J. L.

    2011-01-01

    The vibrational spectroscopy of hydration water in dilauroylphosphatidylcholine lipid multi-bilayers is investigated using molecular dynamics simulations and a mixed quantum∕classical model for the OD stretch spectroscopy of dilute HDO in H2O. FTIR absorption spectra, and isotropic and anisotropic pump-probe decay curves have been measured experimentally as a function of the hydration level of the lipid multi-bilayer, and our goal is to make connection with these experiments. To this end, we use third-order response functions, which allow us to include non-Gaussian frequency fluctuations, non-Condon effects, molecular rotations, and a fluctuating vibrational lifetime, all of which we believe are important for this system. We calculate the response functions using existing transition frequency and dipole maps. From the experiments it appears that there are two distinct vibrational lifetimes corresponding to HDO molecules in different molecular environments. In order to obtain these lifetimes, we consider a simple two-population model for hydration water hydrogen bonds. Assuming a different lifetime for each population, we then calculate the isotropic pump-probe decay, fitting to experiment to obtain the two lifetimes for each hydration level. With these lifetimes in hand, we then calculate FTIR spectra and pump-probe anisotropy decay as a function of hydration. This approach, therefore, permits a consistent calculation of all observables within a unified computational scheme. Our theoretical results are all in qualitative agreement with experiment. The vibrational lifetime of lipid-associated OD groups is found to be systematically shorter than that of the water-associated population, and the lifetimes of each population increase with decreasing hydration, in agreement with previous analysis. Our theoretical FTIR absorption spectra successfully reproduce the experimentally observed red-shift with decreasing lipid hydration, and we confirm a previous interpretation

  19. Vibrational spectroscopy investigation and density functional theory calculations on (E)-N‧-(4-methoxybenzylidene) benzohydrazide

    NASA Astrophysics Data System (ADS)

    Saleem, H.; Subashchandrabose, S.; Ramesh Babu, N.; Syed Ali Padusha, M.

    2015-05-01

    The FT-IR, FT-Raman and UV-Vis spectra of the Schiff base compound (E)-N‧-(4-methoxybenzylidene) benzohydrazide (MBBH) have been recorded and analyzed. The optimized geometrical parameters were calculated. The complete vibrational assignments were performed on the basis of TED of the vibrational modes, calculated with the help of SQM method. NBO analysis has been carried out to explore the hyperconjugative interactions and their second order stabilization energy within the molecule. The molecular orbitals (MO's) and its energy gap were studied. The first order hyperpolarizability (β0) and related properties (β, α0, Δα) of MBBH are also calculated. All theoretical calculations were performed on the basis of B3LYP/6-311++G(d,p) level of theory.

  20. Comparative Study of Cl-Atom Reactions in Solution Using Time-Resolved Vibrational Spectroscopy.

    PubMed

    Shin, Jae Yoon; Case, Amanda S; Crim, F Fleming

    2016-04-28

    A Cl atom can react with 2,3-dimethylbutane (DMB), 2,3-dimethyl-2-butene (DMBE), and 2,5-dimethyl-2,4-hexadiene (DMHD) in solution via a hydrogen-abstraction reaction. The large exoergicity of the reaction between a Cl atom and alkenes (DMBE and DMHD) makes vibrational excitation of the HCl product possible, and we observe the formation of vibrationally excited HCl (v = 1) for both reactions. In CCl4, the branching fractions of HCl (v = 1), Γ (v = 1), for the Cl-atom reactions with DMBE and DMHD are 0.14 and 0.23, respectively, reflecting an increased amount of vibrational excitation in the products of the more exoergic reaction. In addition, Γ (v = 1) for both reactions is larger in the solvent CDCl3, being 0.23 and 0.40, as the less viscous solvent apparently dampens the vibrational excitation of the nascent HCl less effectively. The bimolecular reaction rates for the Cl reactions with DMB, DMBE, and DMHD in CCl4 are diffusion limited (having rate constants of 1.5 × 10(10), 3.6 × 10(10), and 17.5 × 10(10) M(-1) s(-1), respectively). In fact, the bimolecular reaction rate for Cl + DMHD exceeds a typical diffusion-limited reaction rate, implying that the attractive intermolecular forces between a Cl atom and a C═C bond increase the rate of favorable encounters. The 2-fold increase in the reaction rate of the Cl + DMBE reaction from that of the Cl + DMB reaction likely reflects the effect of the C═C bond, while both the number of C═C bonds and the molecular geometry likely play a role in the large reaction rate of the Cl + DMHD reaction. PMID:27046419

  1. Vibrationally highly excited molecules and intramolecular mode coupling through high-overtone spectroscopy

    SciTech Connect

    Wong, J.S.; Moore, C.B.

    1981-08-01

    High overtone spectra of organic molecules can be interpreted using the local mode model for absorptions by the inequivalent C-H bonds. The spectra can be assigned using either observed C-H bond lengths or isolated fundamental frequencies. The spectra of trihalomethanes indicate that the dominant intramolecular mode coupling for the C-H stretching overtones is Fermi resonance with combination states with one less C-H stretching quantum plus two quanta of the C-H bending vibrations.

  2. Global Calculations Using Potential Functions and Effective Hamiltonian Models for Vibration-Rotation Spectroscopy and Dynamics of Small Polyatomic Molecules

    NASA Astrophysics Data System (ADS)

    Tuyterev, Vladimir

    2010-06-01

    It has become increasingly common to use accurate potential energy surfaces and dipole moment surfaces for predictions and assignment of high-resolution vibration-rotation molecular spectra. These surfaces are obtained either from high-level ab initio electronic structure calculations or from a direct fit to experimental spectroscopic data. The talk will continue a discussion of some recent advances in the domain of the "potentiology". The role of basis extrapolations, of the Born-Oppenheimer breakdown corrections , in particular for very highly excited vibration states will be considered. As effective polyad Hamiltonians and band transition moment operators are still widely used for data reductions in high-resolutions molecular spectroscopy, experimental spectra analyses invoke a need for accurate methods of building physically meaningful effective models from ab initio surfaces. This involves predictions for various spectroscopic constants, including vibration dependence of rotational and centrifugal distortion and resonance coupling parameters. Topics planned for discussion include: high-order Contact Transformations of rovibrational Hamiltonians and of the dipole moment for small polyatomic molecules; convergence issues; the role of the anharmonicity in a potential energy function and of resonance couplings on the normal mode mixing and on vib-rot assignments with application to high energy vibration levels of SO_2 and to ozone near the dissociation limit; intensity anomalies in H_2S / HDS / D_2S spectra, relation of the shape of ab initio dipole moment surfaces with a "mystery" of nearly vanishing symmetry allowed bands. A full account for symmetry properties requires efficient theoretical tools for transformations of molecular Hamiltonians such as irreducible tensor formalism, applications using phosphine and methane potentials will be discussed. Both potential functions and effective polyad Hamiltonians allow studying changes in quasi-classical vibration

  3. Vibrational Spectroscopy and Phonon-Related Properties of the L-Aspartic Acid Anhydrous Monoclinic Crystal.

    PubMed

    Silva, A M; Costa, S N; Sales, F A M; Freire, V N; Bezerra, E M; Santos, R P; Fulco, U L; Albuquerque, E L; Caetano, E W S

    2015-12-10

    The infrared absorption and Raman scattering spectra of the monoclinic P21 l-aspartic acid anhydrous crystal were recorded and interpreted with the help of density functional theory (DFT) calculations. The effect of dispersive forces was taken into account, and the optimized unit cells allowed us to obtain the vibrational normal modes. The computed data exhibits good agreement with the measurements for low wavenumbers, allowing for a very good assignment of the infrared and Raman spectral features. The vibrational spectra of the two lowest energy conformers of the l-aspartic molecule were also evaluated using the hybrid B3LYP functional for the sake of comparison, showing that the molecular calculations give a limited description of the measured IR and Raman spectra of the l-aspartic acid crystal for wavenumbers below 1000 cm(-1). The results obtained reinforce the need to use solid-state calculations to describe the vibrational properties of molecular crystals instead of calculations for a single isolated molecule picture even for wavenumbers beyond the range usually associated with lattice modes (200 cm(-1) < ω < 1000 cm(-1)). PMID:26623495

  4. Vibrational overtone spectroscopy of bound and predissociative states of hydrogen peroxide cooled in a supersonic expansion

    SciTech Connect

    Butler, L.; Ticich, T.M.; Likar, M.D.; Crim, F.F.

    1986-08-15

    The vibrational overtone excitation spectra of both bound and predissociative states of hydrogen peroxide molecules cooled in a supersonic expansion show features that are obscured otherwise. Spectra of p-italicr-italice-italicd-italici-italics-italics-italico-italicc-italici-italica-italict-italici-italicv-italice-italic states are measured by detecting the decomposition product following excitation of an overtone vibration. Spectra of b-italico-italicu-italicn-italicd-italic states are obtained by a two-photon excitation technique in which a second photon excites the molecule from its bound vibrational overtone state to a dissociative state. The features in the bound state (4..nu../sub OH/) spectrum are 0.08 to 0.13 cm/sup -1/ wide, reflecting small inhomogeneous broadening, but those to the predissociative state (6..nu../sub OH/) are 1.5 +- 0.3 cm/sup -1/ wide. This width, which corresponds to a lifetime of about 3.5 ps, reflects coupling into the dissociative continuum.

  5. Dielectric and electric properties of new chitosan-hydroxyapatite materials for biomedical application: Dielectric spectroscopy and corona treatment.

    PubMed

    Petrov, Ivo; Kalinkevich, Oksana; Pogorielov, Maksym; Kalinkevich, Aleksei; Stanislavov, Aleksandr; Sklyar, Anatoly; Danilchenko, Sergei; Yovcheva, Temenuzhka

    2016-10-20

    Chitosan-hydroxyapatite composite materials were synthesized and the possibility to make their surface charged by corona discharge treatment has been evaluated. Dielectric and electric properties of the materials were studied by dielectric spectroscopy, including application of equivalent circuits method and computer simulations. Dielectric spectroscopy shows behavior of the materials quite different from that of both chitosan and HA alone. The obtained dielectric permittivity data are of particular interest in predicting the materials' behavior in electrostimulation after implantation. The ε values observed at physiological temperature in the frequency ranges applied are similar to ε data available for bone tissues. PMID:27474624

  6. Direct observation of the fundamental vibration-rotation transitions within the NiD X2Δ ground state by CO-Faraday-L.M.R. spectroscopy and zero field transitions in NiH

    NASA Astrophysics Data System (ADS)

    Lipus, K.; Simon, U.; Bachem, E.; Nelis, Th.; Urban, W.

    We report the first direct observation of the vibration-rotation spectrum of nickel-deuteride in its X2Δ ground state by CO-Faraday-L.M.R. spectroscopy. A set of effective molecular parameters is given. We present first results on the vibration-rotation spectroscopy of NiH, employing a tunable diode laser spectrometer.

  7. Matrix isolation technique for the study of some factors affecting the partitioning of trace elements. [using vibrational spectroscopy

    NASA Technical Reports Server (NTRS)

    Grzybowski, J. M.; Allen, R. O.

    1974-01-01

    The factors that affect the preferred positions of cations in ionic solid solutions were investigated utilizing vibrational spectroscopy. Solid solutions of the sulfate and chromate ions codoped with La(+3) and Ca(+2) in a KBr host lattice were examined as a function of the polyvalent cation concentration. The cation-anion pairing process was found to be random for Ca(+2), whereas the formation of La(+3)-SO4(-2) ion pairs with a C2 sub v bonding geometry is highly preferential to any type of La(+3)-CrO4(-2) ion pair formation. The relative populations of ion pair site configurations are discussed in terms of an energy-entropy competition model which can be applied to the partition of trace elements during magmatic processes.

  8. Elucidation of molecular structures at buried polymer interfaces and biological interfaces using sum frequency generation vibrational spectroscopy

    PubMed Central

    Zhang, Chi; Myers, John; Chen, Zhan

    2013-01-01

    Sum frequency generation (SFG) vibrational spectroscopy has been developed into an important technique to study surfaces and interfaces. It can probe buried interfaces in situ and provide molecular level structural information such as the presence of various chemical moieties, quantitative molecular functional group orientation, and time dependent kinetics or dynamics at such interfaces. This paper focuses on these three most important advantages of SFG and reviews some of the recent progress in SFG studies on interfaces related to polymer materials and biomolecules. The results discussed here demonstrate that SFG can provide important molecular structural information of buried interfaces in situ and in real time, which is difficult to obtain by other surface sensitive analytical techniques. PMID:23710244

  9. In Situ Molecular Level Studies on Membrane Related Peptides and Proteins in Real Time Using Sum Frequency Generation Vibrational Spectroscopy

    PubMed Central

    Ye, Shuji; Nguyen, Khoi Tan; Le Clair, Stéphanie V.; Chen, Zhan

    2009-01-01

    Sum frequency generation (SFG) vibrational spectroscopy has been demonstrated to be a powerful technique to study the molecular structures of surfaces and interfaces in different chemical environments. This review summarizes recent SFG studies on hybrid bilayer membranes and substrate-supported lipid monolayers and bilayers, the interaction between peptides/proteins and lipid monolayers/bilayers, and bilayer perturbation induced by peptides/proteins. To demonstrate the ability of SFG to determine the orientations of various secondary structures, studies on the interaction between different peptides/proteins (melittin, G proteins, almethicin, and tachyplesin I) and lipid bilayers are discussed. Molecular level details revealed by SFG in these studies show that SFG can provide a unique understanding on the interactions between a lipid monolayer/bilayer and peptides/proteins in real time, in situ and without any exogenous labeling. PMID:19306928

  10. Probing surface and interfacial molecular structures of a rubbery adhesion promoter using sum frequency generation vibrational spectroscopy

    NASA Astrophysics Data System (ADS)

    Fang, Yong; Li, Bolin; Yu, Jincheng; Zhou, Jie; Xu, Xin; Shao, Wei; Lu, Xiaolin

    2013-09-01

    The molecular structures of an adhesion promoter, polybutadiene-modified epoxy (PBME) rubber at surfaces and buried interfaces with gold (Au) were studied using sum frequency generation (SFG) vibrational spectroscopy. The SFG spectra showed that the soft butadiene part of PBME can segregate to the surfaces and buried interfaces in two base formulations. This is consistent with its application as an adhesion promoter. For the first time, the orientation of the segregated vinyl methylene groups of PBME at the surface and buried interface was evaluated. We found that the vinyl methylene groups at the surface were highly tilted and twisted by quantitative analysis; while the vinyl methylene groups at the buried Au interface were highly tilted by qualitative estimation. Furthermore, this study confirms that the sandwiched-face-down experimental setup can be employed to study the buried interfaces. This could be developed into a standard way to probe the buried interfaces between the commercialized resins and metal substrates.

  11. Description of pnicogen bonding with the help of vibrational spectroscopy-The missing link between theory and experiment

    NASA Astrophysics Data System (ADS)

    Setiawan, D.; Kraka, E.; Cremer, D.

    2014-10-01

    The nature of the E⋯E‧ pnicogen bond (E = N, P, As) in dimers such as H2FP⋯PH2F (1) and H3N⋯PHNO2 (2) can be described using vibrational spectroscopy in form of the calculated infrared and depolarized Raman scattering spectra. Utilizing the six calculated intermonomer frequencies, the corresponding local mode E⋯E‧ stretching frequency and force constant are obtained, where the latter provides a unique measure of the E⋯E‧ bond strength. Pnicogen bonding in 1 is relative strong (bond strength order n = 0.151) and covalent whereas pnicogen bonding in 2 is electrostatic (n = 0.047) because of a different bonding mechanism.

  12. Vibrational and structural properties of amorphous n-butanol: A complementary Raman spectroscopy and X-ray diffraction study

    NASA Astrophysics Data System (ADS)

    Hédoux, Alain; Guinet, Yannick; Paccou, L.; Derollez, P.; Danède, F.

    2013-06-01

    Raman spectroscopy and X-ray diffraction experiments were performed in the liquid, undercooled liquid, and glassy states of n-butanol. Clear correlated signatures are obtained below the melting temperature, from both temperature dependences of the low-wavenumber vibrational excitations and the intermediate-range order characterized by a prepeak detected in the different amorphous states. It was found that these features are related to molecular associations via strong hydrogen bonds, which preferentially develop at low temperature, and which are not compatible with the long-range order of the crystal. This study provides information on structural heterogeneities developing in hydrogen-bonded liquids, associated to the undercooled regime and the inherent glass transition. The analysis of the isothermal abortive crystallization, 2 K above the glass transition temperature, has given the opportunity to analyze the early stages of the crystallization and to describe the origin of the frustration responsible for an uncompleted crystallization.

  13. Femtosecond stimulated Raman spectroscopy as a tool to detect molecular vibrations in ground and excited electronic states.

    PubMed

    Gelin, Maxim F; Domcke, Wolfgang; Rao, B Jayachander

    2016-05-14

    We give a detailed theoretical analysis of the simplest variant of femtosecond stimulated Raman spectroscopy, where a picosecond Raman pump pulse and a femtosecond Raman probe pulse are applied resonantly to a chromophore in thermal equilibrium in the ground electronic state. We demonstrate that this technique is capable of the detection of dephasing-free Raman-like lines revealing vibrational modes not only in the electronic ground state but also in the excited electronic state of the chromophore. The analytical results obtained with simplifying assumptions for the shape of the laser pulses are substantiated by numerical simulations with realistic laser pulses, employing the equation-of-motion phase-matching approach. PMID:27179484

  14. Salt Effects on Surface Structures of Polyelectrolyte Multilayers (PEMs) Investigated by Vibrational Sum Frequency Generation (SFG) Spectroscopy.

    PubMed

    Ge, Aimin; Matsusaki, Michiya; Qiao, Lin; Akashi, Mitsuru; Ye, Shen

    2016-04-26

    Sum frequency generation (SFG) vibrational spectroscopy was employed to investigate the surface structures of polyelectrolyte multilayers (PEMs) constructed by sequentially alternating adsorption of poly(diallyldimethylammonium chloride) (PDDA) and poly(styrenesulfonate) (PSS). It was found that the surface structures and surface charge density of the as-deposited PEMs of PDDA/PSS significantly depend on the concentration of sodium chloride (NaCl) present in the polyelectrolyte solutions. Furthermore, it was found that the surface structure of the as-deposited PEMs is in a metastable state and will reach the equilibrium state by diffusion of the polyelectrolyte chain after an aging process, resulting in a polyelectrolyte mixture on the PEM surfaces. PMID:27045932

  15. Structure and charging of hydrophobic material/water interfaces studied by phase-sensitive sum-frequency vibrational spectroscopy

    PubMed Central

    Tian, C. S.; Shen, Y. R.

    2009-01-01

    We have studied the hydrophobic water/octadecyltrichlorosilane (OTS) interface by using the phase-sensitive sum-frequency vibrational spectroscopy (PS-SFVS), and we obtained detailed structural information of the interface at the molecular level. Excess ions emerging at the interface were detected by changes of the surface vibrational spectrum induced by the surface field created by the excess ions. Both hydronium (H3O+) and hydroxide (OH−) ions were found to adsorb at the interface, and so did other negative ions such as Cl−. By varying the ion concentrations in the bulk water, their adsorption isotherms were measured. It was seen that among the three, OH− has the highest adsorption energy, and H3O+ has the lowest; OH− also has the highest saturation coverage, and Cl− has the lowest. The result shows that even the neat water/OTS interface is not neutral, but charged with OH− ions. The result also explains the surprising observation that the isoelectric point appeared at ∼3.0 when HCl was used to decrease the pH starting from neat water. PMID:19706483

  16. Nanosecond time-resolved FTIR emission spectroscopy: Monitoring the energy distribution of highly vibrationally excited molecules during collisional deactivation

    SciTech Connect

    Pibel, C.D.; Sirota, E.; Brenner, J.; Dai, H.

    1998-01-01

    The 10{sup {minus}8} second time resolution in infrared emission spectroscopy has been demonstrated using a Fourier Transform spectrometer paired with a fast HgCdTe detector. The rapid time response of this system has enabled us to measure, with subcollisional period time resolution, the emission spectrum of highly vibrationally excited NO{sub 2} molecules during collisional deactivation by room temperature NO{sub 2}. The greatly improved time resolution of the spectra allows the determination of N(E,t), the instantaneous energy distribution of the ensemble of excited molecules, with virtually no distortion due to collisional averaging. In addition, an improved procedure for extracting optimized N(E,t) from the spectral data makes no prior assumptions about the shape of the energy distribution. It is found that the distribution is well approximated as the sum of a Gaussian function at high vibrational energies and a population at low energies resulting from V{endash}V transfer to bath NO{sub 2} molecules. The observation of a Gaussian-like function for the highly excited molecules is consistent with the widely invoked assumption that the step-size function of energy transfer per collision is exponential. {copyright} {ital 1998 American Institute of Physics.}

  17. Vibrational dynamics of single-crystal YVO4 studied by polarized micro-Raman spectroscopy and ab initio calculations

    NASA Astrophysics Data System (ADS)

    Sanson, Andrea; Giarola, Marco; Rossi, Barbara; Mariotto, Gino; Cazzanelli, Enzo; Speghini, Adolfo

    2012-12-01

    The vibrational properties of yttrium orthovanadate (YVO4) single crystals, with tetragonal zircon structure, have been investigated by means of polarized micro-Raman spectroscopy and ab initio calculations. Raman spectra were taken at different polarizations and orientations carefully set by the use of a micromanipulator, so that all of the twelve Raman-active modes, expected on the basis of the group theory, were selected in turn and definitively assigned in wave number and symmetry. In particular the Eg(4) mode, assigned incorrectly in previous literature, has been observed at 387 cm-1. Moreover, the very weak Eg(1) mode, peaked at about 137 cm-1, was clearly observed only under some excitation wavelengths, and its peculiar Raman excitation profile was measured within a wide region of the visible. Finally, ab initio calculations based on density-functional theory have been performed in order to determine both Raman and infrared vibrational modes and to corroborate the experimental results. The rather good agreement between computational and experimental frequencies is slightly better than in previous computational works and supports our experimental symmetry assignments.

  18. Molecular gels in the gas phase? Gelator-gelator and gelator-solvent interactions probed by vibrational spectroscopy.

    PubMed

    Lozada-Garcia, Rolando; Mu, Dan; Plazanet, Marie; Çarçabal, Pierre

    2016-08-10

    Benzylidene glucose (BzGlc) is a member of the benzylidene glycoside family. These molecules have the ability to form molecular physical gels. These materials are formed when gelator molecules create a non-covalently bound frame where solvent molecules are trapped. Since the gel formation process and its properties are determined by the subtle balance between non-covalent forces, it is difficult to anticipate them. Quantitative and qualitative understanding of the gelator-gelator and gelator-solvent interactions is needed to better control these materials for important potential applications. We have used gas phase vibrational spectroscopy and theoretical chemistry to study the conformational choices of BzGlc, its dimer and the complexes it forms with water or toluene. To interpret the vibrational spectra we have used the dispersion corrected functional B97D which we have calibrated for the calculation of OH stretching frequencies. Even at the most basic molecular level, it is possible to interrogate a large range of non-covalent interactions ranging from OH → OH hydrogen bonding, to OH → π, and CH → π, all being at the center of gel properties at the macroscopic level. PMID:27443393

  19. Vibrational and electronic spectroscopy of the retro-carotenoid rhodoxanthin in avian plumage, solid-state films, and solution.

    PubMed

    Berg, Christopher J; LaFountain, Amy M; Prum, Richard O; Frank, Harry A; Tauber, Michael J

    2013-11-15

    Rhodoxanthin is one of few retro-carotenoids in nature. These chromophores are defined by a pattern of single and double bond alternation that is reversed relative to most carotenoids. Rhodoxanthin is found in the plumage of several families of birds, including fruit doves (Ptilinopus, Columbidae) and the red cotingas (Phoenicircus, Cotingidae). The coloration associated with the rhodoxanthin-containing plumage of these fruit dove and cotinga species ranges from brilliant red to magenta or purple. In the present study, rhodoxanthin is characterized in situ by UV-Vis reflectance and resonance Raman spectroscopy to gain insights into the mechanisms of color-tuning. The spectra are compared with those of the isolated pigment in solution and in thin solid films. Key vibrational signatures are identified for three isomers of rhodoxanthin, primarily in the fingerprint region. Electronic structure (DFT) calculations are employed to describe the normal modes of vibration, and determine characteristic modes of retro-carotenoids. These results are discussed in the context of various mechanisms that change the electronic absorption, including structural distortion of the chromophore or enhanced delocalization of π-electrons in the ground-state. From the spectroscopic evidence, we suggest that the shift in absorption is likely a consequence of perturbations that primarily affect the excited state of the chromophore. PMID:24055537

  20. Vibrational Coherence Spectroscopy of the Heme Domain in the CO-Sensing Transcriptional Activator CooA

    PubMed Central

    Karunakaran, Venugopal; Benabbas, Abdelkrim; Youn, Hwan

    2011-01-01

    Femtosecond vibrational coherence spectroscopy was used to investigate the low frequency vibrational dynamics of the heme in the carbon monoxide oxidation activator protein (CooA) from the thermophilic anaerobic bacterium Carboxydothermus hydrogenoformans (Ch-CooA). Low frequency vibrational modes are important because they are excited by the ambient thermal bath (kBT = 200 cm-1) and participate in thermally activated barrier crossing events. However, such modes are nearly impossible to detect in the aqueous phase using traditional spectroscopic methods. Here we present the low frequency coherence spectra of the ferric, ferrous, and CO-bound forms of Ch-CooA in order to compare the protein-induced heme distortions in its active and inactive states. Distortions take place predominantly along the coordinates of low-frequency modes because of their weak force constants and such distortions are reflected in the intensity of the vibrational coherence signals. A strong mode near ~90 cm-1 in the ferrous form of Ch-CooA is suggested to contain a large component of heme ruffling, consistent with the imidazole bound ferrous heme crystal structure, which shows a significant protein-induced heme distortion along this coordinate. A mode observed at ~228 cm-1 in the six-coordinate ferrous state is proposed to be the ν(Fe-His) stretching vibration. The observation of the Fe-His mode indicates that photolysis of the N-terminal α-amino axial ligand takes place. This is followed by a rapid (~8.5 ps) transient absorption recovery, analogous to methionine rebinding in photolyzed ferrous cytochrome c. We have also studied CO photolysis in CooA, which revealed very strong photoproduct state coherent oscillations. The observation of heme-CO photoproduct oscillations is unusual because most other heme systems have CO rebinding kinetics that are too slow to make the measurement possible. The low frequency coherence spectrum of the CO-bound form of Ch-CooA shows a strong vibration at ~230

  1. Vibrational spectroscopy at interfaces by IR-VIS sum-frequency generation using CLIO FEL

    SciTech Connect

    Peremans, A.; Tadjeddine, A.; Wan Quan, Z.

    1995-12-31

    IR-vis sum-frequency generation (SFG) has developed into a versatile technique for probing the vibrational structure of interfaces. To overcome the limited spectral range accessible by benchtop IR lasers, we have developed an SFG spectrometer that makes use of the broad band tuneable infrared beam provided by the CLIO-FEL. We will evaluate the gain in sensitivity of the FEL-SFG spectrometer in comparison to that of benchtop lasers, taking account of the surface damage by laser heating. Thereafter, we review the different research projects undertaken using this facility: (1) The interface selectivity of SFG makes it particularly suitable for probing buried liquid/solid interface. We took advantage of the spectrometer sensitivity to monitor the electrochemical deposition of hydrogen on platinum single crystals at under- and overpotential (2) Because of its sensitivity to the molecular symmetry, SFG allows probing the conformation of self assembled monolayers deposited on metals. We discuss SFG spectra of {omega}(4-nitroanilino)-dodecane adsorbed on polycrystalline gold and silver films; in the 1550 - 900 cm{sup -1} spectral range. (3) We have undertaken a spectroscopic approach for the investigation of polymer films adhesion on glass. Polyurethane/glass interface is investigated in the 2200 - 1600 cin{sup -1} spectral region. (4) The use of the CLIO FEL allows probing of the vibrational dynamics of the prominent IR active vibrations between 1500 and 500 cm{sup -1} of fullerene epitaxial films. These modes are modified upon charge transfer from the substrate to the C{sub 60} molecules. Preliminary SFG spectra of C{sub 60}/Ag interface are presented. (5) Site specific detection of CO adsorption and CO + O coadsorption on Pd(111) are studied.

  2. Vibrational Spectroscopy of Na-H Complexes in ZnO

    NASA Astrophysics Data System (ADS)

    Parmar, Narendra S.; McCluskey, Matthew D.; Lynn, Kelvin G.

    2013-12-01

    Sodium acceptors were diffused into ZnO bulk single crystals to a depth of ~1 μm, with a near-surface concentration of ~1018-cm3. An O-H local vibrational mode (LVM) was observed at 3304-cm-1, at a temperature of 9 K, in hydrogenated samples. The LVM is attributed to an O-H bond-stretching mode adjacent to a Na acceptor. When deuterium substitutes for hydrogen, a peak is observed at 2466-cm-1. The isotopic frequency ratio is similar to values found in other hydrogen complexes. In the deuterated sample, a sideband at 2461-cm-1 is attributed to a Fermi resonance.

  3. Modeling for proximate analysis and heating value of torrefied biomass with vibration spectroscopy.

    PubMed

    Via, Brian K; Adhikari, Sushil; Taylor, Steve

    2013-04-01

    The goal of this study was to characterize the changes in biomass with torrefaction for near infrared reflectance (NIR) and attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy for sweetgum, loblolly pine, and switchgrass. Calibration models were built for the prediction of proximate analysis after torrefaction. Two dimensional (2D) correlation spectroscopy between NIR and FTIR was found to precisely explain the depolymerization at key functional groups located within hemicellulose, cellulose, and lignin. This novel 2D technique also demonstrated the possibility of assigning key NIR wavenumbers based on mid IR spectra. Hemicellulose based wavenumbers were found to be most sensitive to torrefaction severity with complete degradation at 250-275°C. Lignin associated wavenumbers exhibited the least degradation to severity but was still detected with 2D correlation spectroscopy. Finally, calibration models for proximate analysis were performed and while both systems could be used for rapid monitoring, NIR performed better than FTIR. PMID:23402771

  4. A Narrow Amide I Vibrational Band Observed by Sum Frequency Generation Spectroscopy Reveals Highly Ordered Structures of a Biofilm Protein at the Air/Water Interface†

    PubMed Central

    Wang, Zhuguang; Morales-Acosta, M. Daniela; Li, Shanghao; Liu, Wei; Kanai, Tapan; Liu, Yuting; Chen, Ya-Na; Walker, Frederick J.; Ahn, Charles H.; Leblanc, Roger M.

    2016-01-01

    We characterized BslA, a bacterial biofilm protein, at the air/water interface using vibrational sum frequency generation spectroscopy and observed one of the sharpest amide I band ever reported. Combining methods of surface pressure measurements, thin film X-ray reflectivity, and atomic force microscopy, we showed extremely ordered BslA at the interface. PMID:26779572

  5. Isomer selective infrared spectroscopy of supersonically cooled cis- and trans-N-phenylamides in the region from the amide band to NH stretching vibration.

    PubMed

    Miyazaki, Mitsuhiko; Saikawa, Jiro; Ishizuki, Hideki; Taira, Takunori; Fujii, Masaaki

    2009-08-01

    We measured the infrared (IR) spectra of supersonically cooled N-phenylformamide (formanilide) and N-phenylacetamide (acetanilide) in the amide band and X-H stretch vibration regions by using IR-UV depletion spectroscopy combined with a newly developed mid-IR light source based on difference frequency generation in ZnGeP(2). The two rotational isomers, cis- and trans- of the amide group were separately monitored to record the IR spectra. Both of the conformers showed similar features in the amide I and II regions, while major differences of the isomers appeared in the amide III vibration region. The IR spectrum of trans-acetanilide closely resembles that of trans-formanilide, except for vibrations of the methyl group; that is, substitution of the formyl hydrogen to a methyl group has only a minor effect on the amide vibrations. PMID:19606319

  6. Anharmonic Vibrational Spectroscopy of the F-(H20)n, complexes, n=1,2

    NASA Technical Reports Server (NTRS)

    Chaban, Galina M.; Xantheas, Sotiris; Gerber, R. Benny; Kwak, Dochan (Technical Monitor)

    2003-01-01

    We report anharmonic vibrational spectra (fundamentals, first overtones) for the F-(H(sub 2)O) and F-(H(sub 2)O)2 clusters computed at the MP2 and CCSD(T) levels of theory with basis sets of triple zeta quality. Anharmonic corrections were estimated via the correlation-corrected vibrational self-consistent field (CC-VSCF) method. The CC-VSCF anharmonic spectra obtained on the potential energy surfaces evaluated at the CCSD(T) level of theory are the first ones reported at a correlated level beyond MP2. We have found that the average basis set effect (TZP vs. aug-cc-pVTZ) is on the order of 30-40 cm(exp -1), whereas the effects of different levels of electron correlation [MP2 vs. CCSD(T)] are smaller, 20-30 cm(exp -1). However, the basis set effect is much larger in the case of the H-bonded O-H stretch of the F-(H(sub 2)O) cluster amounting to 100 cm(exp -1) for the fundamentals and 200 cm (exp -1) for the first overtones. Our calculations are in agreement with the limited available set of experimental data for the F-(H(sub 2)O) and F-(H(sub 2)O)2 systems and provide additional information that can guide further experimental studies.

  7. Direct observation of vibrational coherence in bacterial reaction centers using femtosecond absorption spectroscopy.

    PubMed

    Vos, M H; Lambry, J C; Robles, S J; Youvan, D C; Breton, J; Martin, J L

    1991-10-15

    It is shown that vibrational coherence modulates the femtosecond kinetics of stimulated emission and absorption of reaction centers of purple bacteria. In the DLL mutant of Rhodobacter capsulatus, which lacks the bacteriopheophytin electron acceptor, oscillations with periods of approximately 500 fs and possibly also of approximately 2 ps were observed, which are associated with formation of the excited state. The kinetics, which reflect primary processes in Rhodobacter sphaeroides R-26, were modulated by oscillations with a period of approximately 700 fs at 796 nm and approximately 2 ps at 930 nm. In the latter case, at 930 nm, where the stimulated emission of the excited state, P*, is probed, oscillations could only be resolved when a sufficiently narrow (10 nm) and concomitantly long pump pulse was used. This may indicate that the potential energy surface of the excited state is anharmonic or that low-frequency oscillations are masked when higher frequency modes are also coherently excited, or both. The possibility is discussed that the primary charge separation may be a coherent and adiabatic process coupled to low-frequency vibrational modes. PMID:1924348

  8. A vibrational spectroscopy study on 3-aminophenylacetic acid by DFT calculations

    NASA Astrophysics Data System (ADS)

    Akkaya, Yasemin; Balci, Kubilay; Goren, Yeliz; Akyuz, Sevim

    2015-08-01

    In this study, in which the group vibrations of 3-aminophenylacetic acid were investigated by electronic structure calculations based on Density Functional Theory (DFT), the possible stable conformers of the molecule were searched through a relaxed "potential energy surface scan" carried out at B3LYP/6-31G(d) level of theory. The corresponding equilibrium geometrical and vibrational spectral data for each of the determined stable conformers and for their possible dimer structures were obtained through "geometry optimisation" and "frequency" calculations carried out at B3LYP/6-31G(d) and B3LYP/6-311G++(d,p) levels of theory. The obtained results confirmed that anharmonic wavenumbers calculated at B3LYP/6-311G++(d,p) level generally quite well agree with the experimental wavenumbers, however, harmonic wavenumbers calculated at both levels of theory need an efficient refinement for a satisfactory agreement with experiment. In particular, the harmonic wavenumbers, IR and Raman intensities refined within Scaled Quantum Mechanical Force Field (SQM FF) methodology constituted the primary data set in the interpretation of the experimental FT-IR, FT-Raman and dispersive Raman spectra of 3-aminophenylacetic acid. By the help of these refined spectral data, the effects of conformation and intermolecular hydrogen bonding on the fundamental bands observed in the experimental spectra could be correctly predicted.

  9. Vibrational spectroscopy and aromaticity investigation of squarate salts: A theoretical and experimental approach

    NASA Astrophysics Data System (ADS)

    Georgopoulos, Stéfanos L.; Diniz, Renata; Yoshida, Maria I.; Speziali, Nivaldo L.; Santos, Hélio F. Dos; Junqueira, Geórgia Maria A.; de Oliveira, Luiz F. C.

    2006-08-01

    Experimental and theoretical investigations of squarate salts [M 2(C 4O 4)] (M=Li, Na, K and Rb) were performed aiming to correlate the structures, vibrational analysis and aromaticity. Powder X-ray diffraction data show that these compounds are not isostructural, indicating that the metal-squarate and hydrogen bonds to water molecules interactions play a significant role on the the crystal packing. The infrared and Raman assigments suggest an equalization of the C-C bond lengths with the increasing of the counter-ion size. This result is interpreted as an enhancement in the electronic delocalization and consequently in the degree of aromaticity for salts with larger ions. Quantum mechanical calculations for structures, vibrational spectra and aromaticity index are in agreement with experimental finding, giving insights at molecular level for the role played by distinct complexation modes to the observed properties. Comparison between our results and literature, regarding molecular dynamics in different chemical environments, shows that aromaticity and hydrogen bonds are the most important forces driving the interactions in the solid structures of squarate ion.

  10. Submillimeter-wave spectroscopy of HCO + in the excited vibrational states

    NASA Astrophysics Data System (ADS)

    Hirao, T.; Yu, Shanshan; Amano, T.

    2008-03-01

    The pure rotational transitions of HCO + in excited vibrational states located below 5000 cm -1 over the ground state have been investigated with a high-sensitivity frequency/magnetic field double modulation submillimeter-wave spectrometer in the frequency range of 280-810 GHz. The ions were generated in an extended negative glow discharge through a gas mixture of a few millitorrs of H 2 and CO and 12 mTorr of Ar buffer gas. Throughout the experiments, the cell was maintained at liquid nitrogen temperature. In the present study, we have determined accurate molecular constants for the excited vibrational states. Our analysis suggests that there may be a higher order Coriolis interaction between the (0 3 1) and (1 2 0) states. In previous investigations, the Stark effect caused by the electric field present in the discharge plasma was cited as a reason for non-observations of low- J lines in the ( 0220) and for the systematic shifts observed for low- J lines in the ( 0110), ( 0220), ( 0310), and ( 0420) states of HCO + as well as DCO +. In the present investigation, some low- J lines in the ( 0220) and ( 0420) states have been observed in emission. Furthermore, J = 8-7, J = 9-8 lines in ( 031e1) were detected in emission. This finding indicates that missing low- J lines for the Δ sublevel obtained in the past is not due to the Stark effect but due to small population differences in those levels.

  11. Rotation and Rotation-Vibration Spectroscopy of the 0+-0- Inversion Doublet in Deuterated Cyanamide

    NASA Astrophysics Data System (ADS)

    Kisiel, Zbigniew; Kraśnicki, Adam; Jabs, Wolfgang; Herbst, Eric; Winnewisser, Brenda P.; Winnewisser, Manfred

    2013-10-01

    The pure rotation spectrum of deuterated cyanamide was recorded at frequencies from 118 to 649 GHz, which was complemented by measurement of its high-resolution rotation-vibration spectrum at 8-350 cm-1. For D2NCN the analysis revealed considerable perturbations between the lowest Ka rotational energy levels in the 0+ and 0- substates of the lowest inversion doublet. The final data set for D2NCN exceeded 3000 measured transitions and was successfully fitted with a Hamiltonian accounting for the 0+ - 0- coupling. A smaller data set, consisting only of pure rotation and rotation-vibration lines observed with microwave techniques was obtained for HDNCN, and additional transitions of this type were also measured for H2NCN. The spectroscopic data for all three isotopic species were fitted with a unified, robust Hamiltonian allowing confident prediction of spectra well into the terahertz frequency region, which is of interest to contemporary radioastronomy. The isotopic dependence of the determined inversion splitting, -E = 16.4964789(8), 32.089173(3), and 49.567770(6) cm-1, for D2NCN, HDNCN, and H2NCN, respectively, is found to be in good agreement with estimates from a simple reduced quartic-quadratic double minimum potential.

  12. A vibrational spectroscopy study on 3-aminophenylacetic acid by DFT calculations.

    PubMed

    Akkaya, Yasemin; Balci, Kubilay; Goren, Yeliz; Akyuz, Sevim

    2015-08-01

    In this study, in which the group vibrations of 3-aminophenylacetic acid were investigated by electronic structure calculations based on Density Functional Theory (DFT), the possible stable conformers of the molecule were searched through a relaxed "potential energy surface scan" carried out at B3LYP/6-31G(d) level of theory. The corresponding equilibrium geometrical and vibrational spectral data for each of the determined stable conformers and for their possible dimer structures were obtained through "geometry optimisation" and "frequency" calculations carried out at B3LYP/6-31G(d) and B3LYP/6-311G++(d,p) levels of theory. The obtained results confirmed that anharmonic wavenumbers calculated at B3LYP/6-311G++(d,p) level generally quite well agree with the experimental wavenumbers, however, harmonic wavenumbers calculated at both levels of theory need an efficient refinement for a satisfactory agreement with experiment. In particular, the harmonic wavenumbers, IR and Raman intensities refined within Scaled Quantum Mechanical Force Field (SQM FF) methodology constituted the primary data set in the interpretation of the experimental FT-IR, FT-Raman and dispersive Raman spectra of 3-aminophenylacetic acid. By the help of these refined spectral data, the effects of conformation and intermolecular hydrogen bonding on the fundamental bands observed in the experimental spectra could be correctly predicted. PMID:25854610

  13. Ultrafast vibrational dynamics and spectroscopy of a siloxane self-assembled monolayer

    NASA Astrophysics Data System (ADS)

    Nihonyanagi, Satoshi; Eftekhari-Bafrooei, Ali; Borguet, Eric

    2011-02-01

    Time and frequency domain sum-frequency generation (SFG) were combined to study the dynamics and structure of self-assembled monolayers (SAMs) on a fused silica surface. SFG-free induction decay (SFG-FID) of octadecylsilane SAM in the CH stretching region shows a relatively long time scale oscillation that reveals that six vibrational modes are involved in the response of the system. Five of the modes have commonly been used for the fitting of SFG spectra in the CH stretching region, namely the symmetric stretch and Fermi resonance of the methyl group, the antisymmetric stretch of the methyl, as well as the symmetric and antisymmetric stretches of the methylene group. The assignment of the sixth mode to the terminal CH2 group was confirmed by performing a density function theory calculation. The SFG-FID measures the vibrational dephasing time (T2) of each of the modes, including a specific CH2 group within the SAM, the terminal CH2, which had never been measured before. The relatively long (˜1.3 ps) dephasing of the terminal CH2 suggests that alkyl monolayer structure is close to that of the liquid condensed phase of Langmuir Blodgett films.

  14. Vibrational spectroscopy and chemometrics for rapid, quantitative analysis of bitter acids in hops (Humulus lupulus).

    PubMed

    Killeen, Daniel P; Andersen, David H; Beatson, Ron A; Gordon, Keith C; Perry, Nigel B

    2014-12-31

    Hops, Humulus lupulus, are grown worldwide for use in the brewing industry to impart characteristic flavor and aroma to finished beer. Breeders produce many varietal crosses with the aim of improving and diversifying commercial hops varieties. The large number of crosses critical to a successful breeding program imposes high demands on the supporting chemical analytical laboratories. With the aim of reducing the analysis time associated with hops breeding, quantitative partial least-squares regression (PLS-R) models have been produced, relating reference data acquired by the industrial standard HPLC and UV methods, to vibrational spectra of the same, chemically diverse hops sample set. These models, produced from rapidly acquired infrared (IR), near-infrared (NIR), and Raman spectra, were appraised using standard statistical metrics. Results demonstrated that all three spectroscopic methods could be used for screening hops for α-acid, total bitter acids, and cohumulone concentrations in powdered hops. Models generated from Raman and IR spectra also showed potential for use in screening hops varieties for xanthohumol concentrations. NIR analysis was performed using both a standard benchtop spectrometer and a portable NIR spectrometer, with comparable results obtained by both instruments. Finally, some important vibrational features of cohumulone, colupulone, and xanthohumol were assigned using DFT calculations, which allow more insightful interpretation of PLS-R latent variable plots. PMID:25485767

  15. Single-Molecule Vibrational Spectroscopy Adds Structural Resolution to the Optical Trap

    PubMed Central

    Ganim, Ziad

    2013-01-01

    The ability to apply forces on single molecules with an optical trap is combined with the endogenous structural resolution of Raman spectroscopy in an article in this issue, and applied to measure the Raman spectrum of ds-DNA during force-extension. PMID:23332052

  16. Nonlinear Spectroscopy Study of Vibrational Self-Trapping in Hydrogen Bonded Crystals

    NASA Astrophysics Data System (ADS)

    Edler, Julian; Hamm, Peter

    Femtosecond pump probe spectroscopy proves that self-trapping occurs in the NH and amide I band of crystalline acetanilide (ACN). The phonon modes that mediate the self-trapping are identified. Comparison between ACN and N-methylacetamide, both model systems for proteins, shows that self-trapping is a common feature in hydrogen bonded systems.

  17. Noninvasive biomedical sensor

    NASA Astrophysics Data System (ADS)

    Ling, Daniel; Bullock, Audra

    2003-07-01

    A non-invasive biomedical sensor for monitoring glucose levels is described. The sensor utilizes laser light to determine glucose levels in urine, but could also be used for drug screening and diagnosis of other medical conditions. The glucose measurement is based on modulation spectroscopy with harmonic analysis. Active signal processing and filtering are used to increase the signal-to-noise ratio and decreases the measurement time to allow for real time sample analysis. Preliminary data are given which show the concentration of glucose in a control sample. Future applications of this technology, for example, as a portable multipurpose bio-medical analysis tool, are explored.

  18. Vibrational Properties of h-BN and h-BN-Graphene Heterostructures Probed by Inelastic Electron Tunneling Spectroscopy

    NASA Astrophysics Data System (ADS)

    Jung, Suyong; Park, Minkyu; Park, Jaesung; Jeong, Tae-Young; Kim, Ho-Jong; Watanabe, Kenji; Taniguchi, Takashi; Ha, Dong Han; Hwang, Chanyong; Kim, Yong-Sung

    2015-11-01

    Inelastic electron tunneling spectroscopy is a powerful technique for investigating lattice dynamics of nanoscale systems including graphene and small molecules, but establishing a stable tunnel junction is considered as a major hurdle in expanding the scope of tunneling experiments. Hexagonal boron nitride is a pivotal component in two-dimensional Van der Waals heterostructures as a high-quality insulating material due to its large energy gap and chemical-mechanical stability. Here we present planar graphene/h-BN-heterostructure tunneling devices utilizing thin h-BN as a tunneling insulator. With much improved h-BN-tunneling-junction stability, we are able to probe all possible phonon modes of h-BN and graphite/graphene at Γ and K high symmetry points by inelastic tunneling spectroscopy. Additionally, we observe that low-frequency out-of-plane vibrations of h-BN and graphene lattices are significantly modified at heterostructure interfaces. Equipped with an external back gate, we can also detect high-order coupling phenomena between phonons and plasmons, demonstrating that h-BN-based tunneling device is a wonderful playground for investigating electron-phonon couplings in low-dimensional systems.

  19. Vibrational Properties of h-BN and h-BN-Graphene Heterostructures Probed by Inelastic Electron Tunneling Spectroscopy

    PubMed Central

    Jung, Suyong; Park, Minkyu; Park, Jaesung; Jeong, Tae-Young; Kim, Ho-Jong; Watanabe, Kenji; Taniguchi, Takashi; Ha, Dong Han; Hwang, Chanyong; Kim, Yong-Sung

    2015-01-01

    Inelastic electron tunneling spectroscopy is a powerful technique for investigating lattice dynamics of nanoscale systems including graphene and small molecules, but establishing a stable tunnel junction is considered as a major hurdle in expanding the scope of tunneling experiments. Hexagonal boron nitride is a pivotal component in two-dimensional Van der Waals heterostructures as a high-quality insulating material due to its large energy gap and chemical-mechanical stability. Here we present planar graphene/h-BN-heterostructure tunneling devices utilizing thin h-BN as a tunneling insulator. With much improved h-BN-tunneling-junction stability, we are able to probe all possible phonon modes of h-BN and graphite/graphene at Γ and K high symmetry points by inelastic tunneling spectroscopy. Additionally, we observe that low-frequency out-of-plane vibrations of h-BN and graphene lattices are significantly modified at heterostructure interfaces. Equipped with an external back gate, we can also detect high-order coupling phenomena between phonons and plasmons, demonstrating that h-BN-based tunneling device is a wonderful playground for investigating electron-phonon couplings in low-dimensional systems. PMID:26563740

  20. Spectral methods for study of the G-protein-coupled receptor rhodopsin: I. Vibrational and electronic spectroscopy

    NASA Astrophysics Data System (ADS)

    Struts, A. V.; Barmasov, A. V.; Brown, M. F.

    2015-05-01

    Here we review the application of modern spectral methods for the study of G-protein-coupled receptors (GPCRs) using rhodopsin as a prototype. Because X-ray analysis gives us immobile snapshots of protein conformations, it is imperative to apply spectroscopic methods for elucidating their function: vibrational (Raman, FTIR), electronic (UV-visible absorption, fluorescence) spectroscopies, and magnetic resonance (electron paramagnetic resonance, EPR), and nuclear magnetic resonance (NMR). In the first of the two companion articles, we discuss the application of optical spectroscopy for studying rhodopsin in a membrane environment. Information is obtained regarding the time-ordered sequence of events in rhodopsin activation. Isomerization of the chromophore and deprotonation of the retinal Schiff base leads to a structural change of the protein involving the motion of helices H5 and H6 in a pH-dependent process. Information is obtained that is unavailable from X-ray crystallography, which can be combined with spectroscopic studies to achieve a more complete understanding of GPCR function.

  1. Understanding and Manipulating Electrostatic Fields at the Protein-Protein Interface Using Vibrational Spectroscopy and Continuum Electrostatics Calculations.

    PubMed

    Ritchie, Andrew W; Webb, Lauren J

    2015-11-01

    Biological function emerges in large part from the interactions of biomacromolecules in the complex and dynamic environment of the living cell. For this reason, macromolecular interactions in biological systems are now a major focus of interest throughout the biochemical and biophysical communities. The affinity and specificity of macromolecular interactions are the result of both structural and electrostatic factors. Significant advances have been made in characterizing structural features of stable protein-protein interfaces through the techniques of modern structural biology, but much less is understood about how electrostatic factors promote and stabilize specific functional macromolecular interactions over all possible choices presented to a given molecule in a crowded environment. In this Feature Article, we describe how vibrational Stark effect (VSE) spectroscopy is being applied to measure electrostatic fields at protein-protein interfaces, focusing on measurements of guanosine triphosphate (GTP)-binding proteins of the Ras superfamily binding with structurally related but functionally distinct downstream effector proteins. In VSE spectroscopy, spectral shifts of a probe oscillator's energy are related directly to that probe's local electrostatic environment. By performing this experiment repeatedly throughout a protein-protein interface, an experimental map of measured electrostatic fields generated at that interface is determined. These data can be used to rationalize selective binding of similarly structured proteins in both in vitro and in vivo environments. Furthermore, these data can be used to compare to computational predictions of electrostatic fields to explore the level of simulation detail that is necessary to accurately predict our experimental findings. PMID:26375183

  2. Vibrational spectroscopy and density functional theory analysis of 3-O-caffeoylquinic acid.

    PubMed

    Mishra, Soni; Tandon, Poonam; Eravuchira, Pinkie J; El-Abassy, Rasha M; Materny, Arnulf

    2013-03-01

    Density functional theory (DFT) calculations are being performed to investigate the geometric, vibrational, and electronic properties of the chlorogenic acid isomer 3-CQA (1R,3R,4S,5R)-3-{[(2E)-3-(3,4-dihydroxyphenyl)prop-2-enoyl]oxy}-1,4,5-trihydroxycyclohexanecarboxylic acid), a major phenolic compound in coffee. DFT calculations with the 6-311G(d,p) basis set produce very good results. The electrostatic potential mapped onto an isodensity surface has been obtained. A natural bond orbital analysis (NBO) has been performed in order to study intramolecular bonding, interactions among bonds, and delocalization of unpaired electrons. HOMO-LUMO studies give insights into the interaction of the molecule with other species. The calculated HOMO and LUMO energies indicate that a charge transfer occurs within the molecule. PMID:23274263

  3. Vibrational spectroscopy and density functional theory analysis of 3-O-caffeoylquinic acid

    NASA Astrophysics Data System (ADS)

    Mishra, Soni; Tandon, Poonam; Eravuchira, Pinkie J.; El-Abassy, Rasha M.; Materny, Arnulf

    2013-03-01

    Density functional theory (DFT) calculations are being performed to investigate the geometric, vibrational, and electronic properties of the chlorogenic acid isomer 3-CQA (1R,3R,4S,5R)-3-{[(2E)-3-(3,4-dihydroxyphenyl)prop-2-enoyl]oxy}-1,4,5-trihydroxycyclohexanecarboxylic acid), a major phenolic compound in coffee. DFT calculations with the 6-311G(d,p) basis set produce very good results. The electrostatic potential mapped onto an isodensity surface has been obtained. A natural bond orbital analysis (NBO) has been performed in order to study intramolecular bonding, interactions among bonds, and delocalization of unpaired electrons. HOMO-LUMO studies give insights into the interaction of the molecule with other species. The calculated HOMO and LUMO energies indicate that a charge transfer occurs within the molecule.

  4. Introduction of a valence space in QRPA: Impact on vibrational mass parameters and spectroscopy

    SciTech Connect

    Lechaftois, F. Péru, S.; Deloncle, I.

    2015-10-15

    For the first time, using a unique finite range interaction (D1M Gogny force), a fully coherent and time-feasible calculation of the Bohr Hamiltonian vibrational mass is envisioned in a Hartree-Fock-Bogoliubov + Quasiparticle Random Phase Approximation (QRPA) framework. In order to reach handable computation time, we evaluate the feasibility of this method by considering the insertion of a valence space for QRPA. We validate our approach in the even-even tin isotopes comparing the convergence scheme of the mass parameter with those of built-in QRPA outputs: excited state energy and reduced transition probability. The seeming convergence of these intrinsic quantities is shown to be misleading and the difference with the theoretical expected value is quantified. This work is a primary step towards the systematic calculation of mass parameters.

  5. Vibrational spectroscopy of a harmonic oscillator system nonlinearly coupled to a heat bath

    NASA Astrophysics Data System (ADS)

    Kato, Tsuyoshi; Tanimura, Yoshitaka

    2002-10-01

    Vibrational relaxation of a harmonic oscillator nonlinearly coupled to a heat bath is investigated by the Gaussian-Markovian quantum Fokker-Planck equation approach. The system-bath interaction is assumed to be linear in the bath coordinate, but linear plus square in the system coordinate modeling the elastic and inelastic relaxation mechanisms. Interplay of the two relaxation processes induced by the linear-linear and square-linear interactions in Raman or infrared spectra is discussed for various system-bath couplings, temperatures, and correlation times for the bath fluctuations. The one-quantum coherence state created through the interaction with the pump laser pulse relaxes through different pathways in accordance with the mechanisms of the system-bath interactions. Relations between the present theory, Redfield theory, and stochastic theory are also discussed.

  6. Ribonuclease S Dynamics Measured Using a Nitrile Label with 2D IR Vibrational Echo Spectroscopy

    PubMed Central

    Bagchi, Sayan; Boxer, Steven G.; Fayer, M. D.

    2012-01-01

    A nitrile labeled amino acid, p-cyanophenylalanine, is introduced near the active site of the semisynthetic enzyme ribonuclease S to serve as a probe of protein dynamics and fluctuations. Ribonuclease S is the limited proteolysis product of subtilisin acting on ribonuclease A, and consists of a small fragment including amino acids 1–20, the S-peptide, and a larger fragment including residues 21–124, the S-protein. A series of two-dimensional vibrational echo experiments performed on the nitrile labeled S-peptide and the RNase S are described. The time-dependent changes in the two-dimensional infrared vibrational echo line shapes are analyzed using the center line slope method to obtain the frequency-frequency correlation function (FFCF). The observations show that the nitrile probe in the S-peptide has dynamics that are similar to, but faster than, those of the single amino acid p-cyanophenylalanine in water. In contrast, the dynamics of the nitrile label when the peptide is bound to form ribonuclease S are dominated by homogeneous dephasing (motionally narrowed) contributions with only a small contribution from very fast inhomogeneous structural dynamics. The results provide insights into the nature of the structural dynamics of the ribonuclease S complex. The equilibrium dynamics of the nitrile labeled S-peptide and the ribonuclease S complex are also investigated by molecular dynamics simulations. The experimentally determined FFCFs are compared to the FFCFs obtained from the molecular dynamics simulations, thereby testing the capacity of simulations to determine the amplitudes and time scales of protein structural fluctuations on fast time scales under thermal equilibrium conditions. PMID:22417088

  7. Proton Translocation in Cytochrome c Oxidase: Insights from Proton Exchange Kinetics and Vibrational Spectroscopy

    PubMed Central

    Ishigami, Izumi; Hikita, Masahide; Egawa, Tsuyoshi; Yeh, Syun-Ru; Rousseau, Denis L.

    2014-01-01

    Cytochrome c oxidase is the terminal enzyme in the electron transfer chain. It reduces oxygen to water and harnesses the released energy to translocate protons across the inner mitochondrial membrane. The mechanism by which the oxygen chemistry is coupled to proton translocation is not yet resolved owing to the difficulty of monitoring dynamic proton transfer events. Here we summarize several postulated mechanisms for proton translocation, which have been supported by a variety of vibrational spectroscopic studies. We recently proposed a proton translocation model involving proton accessibility to the regions near the propionate groups of the heme a and heme a3 redox centers of the enzyme based by hydrogen/deuterium (H/D) exchange Raman scattering studies (Egawa et al., PLOS ONE 2013). To advance our understanding of this model and to refine the proton accessibility to the hemes, the H/D exchange dependence of the heme propionate group vibrational modes on temperature and pH was measured. The H/D exchange detected at the propionate groups of heme a3 takes place within a few seconds under all conditions. In contrast, that detected at the heme a propionates occurs in the oxidized but not the reduced enzyme and the H/D exchange is pH-dependent with a pKa of ~8.0 (faster at high pH). Analysis of the thermodynamic parameters revealed that, as the pH is varied, entropy/enthalpy compensation held the free energy of activation in a narrow range. The redox dependence of the possible proton pathways to the heme groups is discussed. PMID:25268561

  8. Photoinduced transformation of UVR8 monitored by vibrational and fluorescence spectroscopy.

    PubMed

    Heilmann, Monika; Christie, John M; Kennis, John T M; Jenkins, Gareth I; Mathes, Tilo

    2015-02-01

    Tryptophan residues at the dimer interface of the plant photoreceptor UVR8 promote monomerisation after UV-B absorption via a so far unknown mechanism. Using FTIR spectroscopy we assign light-induced structural transitions of UVR8 mainly to amino acid side chains without major transformations of the secondary structure of the physiologically relevant C-terminal extension. Additionally, we assign the monomerisation associated increase and red shift of the UVR8 tryptophan emission to a photoinduced rearrangement of tryptophan side chains and a relocation of the aspartic acid residues D96 and D107, respectively. By illumination dependent emission spectroscopy we furthermore determined the quantum yield of photoinduced monomerisation to 20 ± 8%. PMID:25274012

  9. Application of multivariate analysis and vibrational spectroscopy in classification of biological systems

    NASA Astrophysics Data System (ADS)

    Salman, A.; Shufan, E.; Lapidot, I.; Tsror, L.; Zeiri, L.; Sahu, R. K.; Moreh, R.; Mordechai, S.; Huleihel, M.

    2015-12-01

    Fourier Transform Infrared (FTIR) and Raman spectroscopies have emerged as powerful tools for chemical analysis. This is due to their ability to provide detailed information about the spatial distribution of chemical composition at the molecular level. A biological sample, i.e. bacteria or fungi, has a typical spectrum. This spectral fingerprint, characterizes the sample and can therefore be used for differentiating between biology samples which belong to different groups, i.e., several different isolates of a given fungi. When the spectral differences between the groups are minute, multivariate analysis should be used to provide a good differentiation. We hereby review several results which demonstrate the differentiation success obtained by combining spectroscopy measurements and multivariate analysis.

  10. Time-Resolved Vibrational and Electronic Spectroscopy in Shocked Ammonium Perchlorate Single Crystals

    NASA Astrophysics Data System (ADS)

    Gruzdkov, Yuri; Winey, Michael; Feng, Ruqiang

    1997-07-01

    Experimental methods to obtain time-resolved Raman and absorption spectroscopy data on shocked ammonium perchlorate (AP) single crystals were developed. These included: (a) target designs for thin sample shock wave reverberation experiments; (b) techniques to perform Raman measurements with non-transparent flyers; and (c) adaptation of a high-velocity, 20 mm powder gun for optical spectroscopy. Good quality Raman and absorption spectra, with 50 ns resolution, have been obtained for shock compression along the [210] and [001] directions. Results for peak pressures up to 18 GPa and calculated temperatures up to 600 K are presented. Pressure/temperature-induced frequency hardening and broadening of the different AP Raman modes is observed. Evidence for shock-induced chemical decomposition is discussed.

  11. X-ray and vibrational spectroscopy of manganese complexes relevant to the oxygen-evolving complex of photosynthesis

    SciTech Connect

    Visser, Hendrik

    2001-05-16

    Manganese model complexes, relevant to the oxygen-evolving complex (OEC) in photosynthesis, were studied with Mn K-edge X-ray absorption near-edge spectroscopy (XANES), Mn Kb X-ray emission spectroscopy (XES), and vibrational spectroscopy. A more detailed understanding was obtained of the influence of nuclearity, overall structure, oxidation state, and ligand environment of the Mn atoms on the spectra from these methods. This refined understanding is necessary for improving the interpretation of spectra of the OEC. Mn XANES and Kb XES were used to study a di-(mu)-oxo and a mono-(mu)-oxo di-nuclear Mn compound in the (III,III), (III,IV), and (IV,IV) oxidation states. XANES spectra show energy shifts of 0.8 - 2.2 eV for 1-electron oxidation-state changes and 0.4 - 1.8 eV for ligand-environment changes. The shifts observed for Mn XES spectra were approximately 0.21 eV for oxidation state-changes and only approximately 0.04 eV for ligand-environment changes. This indicates that Mn Kb XES i s more sensitive to the oxidation state and less sensitive to the ligand environment of the Mn atoms than XANES. These complimentary methods provide information about the oxidation state and the ligand environment of Mn atoms in model compounds and biological systems. A versatile spectroelectrochemical apparatus was designed to aid the interpretation of IR spectra of Mn compounds in different oxidation states. The design, based on an attenuated total reflection device, permits the study of a wide spectral range: 16,700 (600 nm) - 225

  12. The Clusters-in-a-Liquid Approach for Solvation: New Insights from the Conformer Specific Gas Phase Spectroscopy and Vibrational Optical Activity Spectroscopy

    PubMed Central

    Perera, Angelo S.; Thomas, Javix; Poopari, Mohammad R.; Xu, Yunjie

    2016-01-01

    Vibrational optical activity spectroscopies, namely vibrational circular dichroism (VCD) and Raman optical activity (ROA), have been emerged in the past decade as powerful spectroscopic tools for stereochemical information of a wide range of chiral compounds in solution directly. More recently, their applications in unveiling solvent effects, especially those associated with water solvent, have been explored. In this review article, we first select a few examples to demonstrate the unique sensitivity of VCD spectral signatures to both bulk solvent effects and explicit hydrogen-bonding interactions in solution. Second, we discuss the induced solvent chirality, or chiral transfer, VCD spectral features observed in the water bending band region in detail. From these chirality transfer spectral data, the related conformer specific gas phase spectroscopic studies of small chiral hydration clusters, and the associated matrix isolation VCD experiments of hydrogen-bonded complexes in cold rare gas matrices, a general picture of solvation in aqueous solution emerges. In such an aqueous solution, some small chiral hydration clusters, rather than the chiral solutes themselves, are the dominant species and are the ones that contribute mainly to the experimentally observed VCD features. We then review a series of VCD studies of amino acids and their derivatives in aqueous solution under different pHs to emphasize the importance of the inclusion of the bulk solvent effects. These experimental data and the associated theoretical analyses are the foundation for the proposed “clusters-in-a-liquid” approach to account for solvent effects effectively. We present several approaches to identify and build such representative chiral hydration clusters. Recent studies which applied molecular dynamics simulations and the subsequent snapshot averaging approach to generate the ROA, VCD, electronic CD, and optical rotatory dispersion spectra are also reviewed. Challenges associated with

  13. The clusters-in-a-liquid approach for solvation: New insights from the conformer specific gas phase spectroscopy and vibrational optical activity spectroscopy

    NASA Astrophysics Data System (ADS)

    Xu, Yunjie; Perera, Angelo; Thomas, Javix; Poopari, Mohammad

    2016-02-01

    Vibrational optical activity spectroscopies, namely vibrational circular dichroism (VCD) and Raman optical activity (ROA), have been emerged in the past decade as a powerful spectroscopic tool for stereochemical information of a wide range of chiral compounds in solution directly. More recently, their applications in unveiling solvent effects, especially those associated with water solvent, have been explored. In this review article, we first select a few examples to demonstrate the unique sensitivity of VCD spectral signatures to both bulk solvent effects and explicit hydrogen-bonding interactions in solution. Second, we discuss the induced solvent chirality, or chiral transfer, VCD spectral features observed at the water bending band region in detail. From these chirality transfer spectral data, the related conformer specific gas phase spectroscopic studies of small chiral hydration clusters, and the associated matrix isolation VCD experiments of hydrogen-bonded complexes in cold rare gas matrices, a general picture of solvation in aqueous solution emerges. In such an aqueous solution, some small chiral hydration clusters, rather than the chiral solutes themselves, are the dominant species and are the ones who contribute mainly to the experimentally observed VCD features. We then review a series of VCD studies of amino acids and their derivatives in aqueous solution under different pHs to emphasize the importance of the inclusion of the bulk solvent effects. These experimental data and the associated theoretical analyses are the foundation for the proposed “clusters-in-a-liquid” approach to account for solvent effects effectively. We present several approaches to identify and build such representative chiral hydration clusters. Recent studies which applied molecular dynamics simulations and the subsequent snapshot averaging approach to generate the ROA, electronic CD, and optical rotatory dispersion spectra are also reviewed. Challenges associated with the

  14. The Clusters-in-a-Liquid Approach for Solvation: New Insights from the Conformer Specific Gas Phase Spectroscopy and Vibrational Optical Activity Spectroscopy.

    PubMed

    Perera, Angelo S; Thomas, Javix; Poopari, Mohammad R; Xu, Yunjie

    2016-01-01

    Vibrational optical activity spectroscopies, namely vibrational circular dichroism (VCD) and Raman optical activity (ROA), have been emerged in the past decade as powerful spectroscopic tools for stereochemical information of a wide range of chiral compounds in solution directly. More recently, their applications in unveiling solvent effects, especially those associated with water solvent, have been explored. In this review article, we first select a few examples to demonstrate the unique sensitivity of VCD spectral signatures to both bulk solvent effects and explicit hydrogen-bonding interactions in solution. Second, we discuss the induced solvent chirality, or chiral transfer, VCD spectral features observed in the water bending band region in detail. From these chirality transfer spectral data, the related conformer specific gas phase spectroscopic studies of small chiral hydration clusters, and the associated matrix isolation VCD experiments of hydrogen-bonded complexes in cold rare gas matrices, a general picture of solvation in aqueous solution emerges. In such an aqueous solution, some small chiral hydration clusters, rather than the chiral solutes themselves, are the dominant species and are the ones that contribute mainly to the experimentally observed VCD features. We then review a series of VCD studies of amino acids and their derivatives in aqueous solution under different pHs to emphasize the importance of the inclusion of the bulk solvent effects. These experimental data and the associated theoretical analyses are the foundation for the proposed "clusters-in-a-liquid" approach to account for solvent effects effectively. We present several approaches to identify and build such representative chiral hydration clusters. Recent studies which applied molecular dynamics simulations and the subsequent snapshot averaging approach to generate the ROA, VCD, electronic CD, and optical rotatory dispersion spectra are also reviewed. Challenges associated with the

  15. Vibrational state-selective autodetachment photoelectron spectroscopy from dipole-bound states of cold 2-hydroxyphenoxide: o - HO(C6H4)O-

    NASA Astrophysics Data System (ADS)

    Huang, Dao-Ling; Liu, Hong-Tao; Ning, Chuan-Gang; Wang, Lai-Sheng

    2015-03-01

    We report a photodetachment and high-resolution photoelectron imaging study of cold 2-hydroxyphenoxide anion, o - HO(C6H4)O-, cooled in a cryogenic ion trap. Photodetachment spectroscopy revealed a dipole-bound state (DBS) of the anion, 25 ± 5 cm-1, below the detachment threshold of 18ߙ784 ± 5 cm-1 (2.3289 ± 0.0006 eV ), i.e., the electron affinity of the 2-hydroxyphenoxy radical o - HO(C6H4)Oṡ. Twenty-two vibrational levels of the DBS are observed as resonances in the photodetachment spectrum. By tuning the detachment laser to these DBS vibrational levels, we obtain 22 high-resolution resonant photoelectron spectra, which are highly non-Franck-Condon due to mode-selective autodetachment and the Δv = - 1 propensity rule. Numerous Franck-Condon inactive vibrational modes are observed in the resonant photoelectron spectra, significantly expanding the vibrational information that is available in traditional high-resolution photoelectron spectroscopy. A total of 15 fundamental vibrational frequencies are obtained for the o - HO(C6H4)Oṡ radical from both the photodetachment spectrum and the resonant photoelectron spectra, including six symmetry-forbidden out-of-plane modes as a result of resonant enhancement.

  16. INFRARED VIBRATIONAL PREDISSOCIATION SPECTROSCOPY OF WATER CLUSTERS BY THE CROSSED LASER MOLECULAR BEAM TECHNIQUE

    SciTech Connect

    Vernon, M.F.; Krajnovich, D.J.; Kwok, H.S.; Lisy, J.M.; Shen, Y.R.; Lee, Y.T.

    1981-11-01

    Water clusters formed in a molecular beam are predissociated by tunable, pulsed, infrared radiation in the frequency range 2900~3750 cm{sup -1}. The recoiling fragments are detected off axis from the molecular beam using a rotatable mass spectrometer. Arguments are presented which show that the measured frequency dependent signal at a fixed detector angle is proportional to the absorption spectrum of the clusters. It is found that the spectra of clusters containing three or more water molecules are remarkably similar to the liquid phase spectrum. Dynamical information on the predissociation process is obtained from the velocity distribution of the fragments. An upper limit to the excited vibrational state lifetime of ~1 microsecond is observed for the results reported here. The most probable dissociation process concentrates the available excess energy into the internal motions of the fragment molecules. Both the time scale and translational energy distribution are consistent with the qualitative predictions of current theoretical models for cluster predissociation. From adiabatic dissociation trajectories and Monte Carlo simulations it is seen that the strong coupling present in the water polymers probably invalidates the simpler "diatomic" picture formulations of cluster predissociation. Instead, the energy can be extensively shared among the intermolecular motions in the polymer before dissociation. Comparison between current intermolecular potentials describing liquid water and the observed frequencies is made in the normal mode approximation. The inability of any potential to predict the gross spectral features (the number of bands and their observed frequency shift from the gas phase monomer) suggests that substantial improvement in the potential energy functions are possible, but that more accurate methods of solving the vibrational wave equation are necessary before a proper explanation of the spectral fine structure is possible. The observed differences

  17. Sum frequency generation vibrational spectroscopy at solid gas interfaces: CO adsorption on Pd model catalysts at ambient pressure

    NASA Astrophysics Data System (ADS)

    Rupprechter, Günther; Unterhalt, Holger; Morkel, Matthias; Galletto, Paolo; Hu, Linjie; Freund, Hans-Joachim

    2002-04-01

    Carbon monoxide adsorption on Pd(1 1 1) and Pd nanoparticles supported by Al 2O 3/NiAl(1 1 0) was examined by vibrational sum frequency generation spectroscopy from 10 -8 to 1000 mbar, and from 100 to 400 K. Identical CO saturation structures were observed on Pd(1 1 1) under ultrahigh vacuum (˜10 -7 mbar, 95 K) and at high pressure (e.g. ⩾1 mbar, 190 K) with no indications of pressure-induced surface rearrangements. Special attention was paid to experimental artifacts that may occur under elevated pressure and may be misinterpreted as "high pressure effects". Vibrational spectra of CO on defect-rich Pd(1 1 1) exhibited an additional peak that originated from CO bound to defect (step or edge) sites. The CO adsorbate structure on supported Pd nanoparticles was different from Pd(1 1 1) but more similar to stepped Pd(1 1 1). At low pressure (10 -7 mbar CO) the adsorbate structure depended strongly on the Pd morphology revealing specific differences in the adsorption properties of supported nanoparticles and single crystal surfaces. At high pressure (e.g. 200 mbar CO) these differences were even more pronounced. Prominent high coverage CO structures on Pd(1 1 1) could not be established on Pd particles. However, in spite of structural differences between well faceted and rough Pd nanoparticles nearly identical adsorption site occupancies were observed in both cases at 200 mbar CO. Initial tests of the catalytic activity of Pd/Al 2O 3/NiAl(1 1 0) for ethylene hydrogenation at 1 bar revealed a remarkable activity and stability of the model system with catalytic properties similar to impregnated catalysts.

  18. 3D Motions of Iron in Six-Coordinate {FeNO}(7) Hemes by Nuclear Resonance Vibration Spectroscopy.

    PubMed

    Peng, Qian; Pavlik, Jeffrey W; Silvernail, Nathan J; Alp, E Ercan; Hu, Michael Y; Zhao, Jiyong; Sage, J Timothy; Scheidt, W Robert

    2016-04-25

    The vibrational spectrum of a six-coordinate nitrosyl iron porphyrinate, monoclinic [Fe(TpFPP)(1-MeIm)(NO)] (TpFPP=tetra-para-fluorophenylporphyrin; 1-MeIm=1-methylimidazole), has been studied by oriented single-crystal nuclear resonance vibrational spectroscopy (NRVS). The crystal was oriented to give spectra perpendicular to the porphyrin plane and two in-plane spectra perpendicular or parallel to the projection of the FeNO plane. These enable assignment of the FeNO bending and stretching modes. The measurements reveal that the two in-plane spectra have substantial differences that result from the strongly bonded axial NO ligand. The direction of the in-plane iron motion is found to be largely parallel and perpendicular to the projection of the bent FeNO on the porphyrin plane. The out-of-plane Fe-N-O stretching and bending modes are strongly mixed with each other, as well as with porphyrin ligand modes. The stretch is mixed with v50 as was also observed for dioxygen complexes. The frequency of the assigned stretching mode of eight Fe-X-O (X=N, C, and O) complexes is correlated with the Fe-XO bond lengths. The nature of highest frequency band at ≈560 cm(-1) has also been examined in two additional new derivatives. Previously assigned as the Fe-NO stretch (by resonance Raman), it is better described as the bend, as the motion of the central nitrogen atom of the FeNO group is very large. There is significant mixing of this mode. The results emphasize the importance of mode mixing; the extent of mixing must be related to the peripheral phenyl substituents. PMID:26999733

  19. Far-infrared VRT spectroscopy of the water dimer: Characterization of the 20 μm out-of-plane librational vibration.

    PubMed

    Cole, William T S; Fellers, Ray S; Viant, Mark R; Leforestier, Claude; Saykally, Richard J

    2015-10-21

    We report the first high-resolution spectra for the out-of-plane librational vibration in the water dimer. Three vibrational subbands comprising a total of 188 transitions have been measured by diode laser spectroscopy near 500 cm(-1) and assigned to (H2O)2 libration-rotation-tunneling eigenstates. The band origin for the Ka = 1 subband is ~524 cm(-1). Librational excitation increases the interchange and bifurcation hydrogen bond rearrangement tunneling splittings by factors of 3-5 and 4-40, respectively. Analysis of the rotational constants obtained from a nonlinear least squares fit indicates that additional external perturbations to the energy levels are likely. PMID:26493906

  20. Real time observation of low frequency heme protein vibrations using femtosecond coherence spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhu, L.; Li, P.; Huang, M.; Sage, J. T.; Champion, P. M.

    1994-01-01

    Femtosecond laser pulses, resonant with the Soret bands of myoglobin (Mb) and cytochrome c, are used to probe coherent low frequency nuclear motion of the heme group. The time domain analysis is in good agreement with frequencies obtained independently using spontaneous resonance Raman spectroscopy. The deoxyMb data reveal a strong oscillation near 300 fs (~ 100 cm-1) and a persistent feature also appears near 50 cm-1. This is near the frequency expected for heme doming motion, which has been associated with the ligand binding reaction coordinate of Mb.

  1. Distinguishing gramicidin D conformers through two-dimensional infrared spectroscopy of vibrational excitons.

    PubMed

    Stevenson, Paul; Tokmakoff, Andrei

    2015-06-01

    Gramicidin D is a short peptide which dimerizes to form helical pores, adopting one of two conformations in the process. These conformations differ primarily in number of residues per turn and the hydrogen-bond registry between rungs of the helix. Using amide I 2D infrared (IR) and FTIR, we have demonstrated that it is possible to distinguish between the different conformers of gramicidin D in solution. We show that the spectra observed for this helical peptide bear no resemblance to the spectra of α- or 310-helices and that while the FTIR spectra appear similar to spectra of β-sheets, 2D IR reveals that the observed resonances arise from vibrational modes unlike those observed in β-sheets. We also present an idealized model which reproduces the experimental data with high fidelity. This model is able to explain the polarization-dependence of the experimental 2D IR data. Using this model, we show the coupling between the rungs of the helix dominates the spectra, and as a consequence of this, the number of residues per turn can greatly influence the amide I spectra of gramicidin D. PMID:26049444

  2. Statistical strategies to reveal potential vibrational markers for in vivo analysis by confocal Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Oliveira Mendes, Thiago de; Pinto, Liliane Pereira; Santos, Laurita dos; Tippavajhala, Vamshi Krishna; Téllez Soto, Claudio Alberto; Martin, Airton Abrahão

    2016-07-01

    The analysis of biological systems by spectroscopic techniques involves the evaluation of hundreds to thousands of variables. Hence, different statistical approaches are used to elucidate regions that discriminate classes of samples and to propose new vibrational markers for explaining various phenomena like disease monitoring, mechanisms of action of drugs, food, and so on. However, the technical statistics are not always widely discussed in applied sciences. In this context, this work presents a detailed discussion including the various steps necessary for proper statistical analysis. It includes univariate parametric and nonparametric tests, as well as multivariate unsupervised and supervised approaches. The main objective of this study is to promote proper understanding of the application of various statistical tools in these spectroscopic methods used for the analysis of biological samples. The discussion of these methods is performed on a set of in vivo confocal Raman spectra of human skin analysis that aims to identify skin aging markers. In the Appendix, a complete routine of data analysis is executed in a free software that can be used by the scientific community involved in these studies.

  3. Communication: Quantitative multi-site frequency maps for amide I vibrational spectroscopy.

    PubMed

    Reppert, Mike; Tokmakoff, Andrei

    2015-08-14

    An accurate method for predicting the amide I vibrational spectrum of a given protein structure has been sought for many years. Significant progress has been made recently by sampling structures from molecular dynamics simulations and mapping local electrostatic variables onto the frequencies of individual amide bonds. Agreement with experiment, however, has remained largely qualitative. Previously, we used dipeptide fragments and isotope-labeled constructs of the protein G mimic NuG2b as experimental standards for developing and testing amide I frequency maps. Here, we combine these datasets to test different frequency-map models and develop a novel method to produce an optimized four-site potential (4P) map based on the CHARMM27 force field. Together with a charge correction for glycine residues, the optimized map accurately describes both experimental datasets, with average frequency errors of 2-3 cm(-1). This 4P map is shown to be convertible to a three-site field map which provides equivalent performance, highlighting the viability of both field- and potential-based maps for amide I spectral modeling. The use of multiple sampling points for local electrostatics is found to be essential for accurate map performance. PMID:26277120

  4. Vibrational spectroscopy as a probe to rapidly detect, identify, and characterize micro-organisms

    NASA Astrophysics Data System (ADS)

    Sockalingum, Ganesh D.; Lamfarraj, Hasnae; Beljebbar, Abdelilah; Pina, Patrick; Delavenne, Marc; Witthuhn, Fabienne; Allouch, Pierre; Manfait, Michel

    1999-04-01

    Fast and exact identification of a great number of microorganisms is becoming a serious challenge. Differentiation and identification of microorganisms is today mainly achieved by the use of a variety of distinct techniques based on morphological, serological aspects and a set of biochemical test. Vibrational spectroscopic techniques can be complementary and useful methods in this field due to their rapidity, 'fingerprinting' capabilities, and the molecular information that they can provide. Using SERS at Ag colloids, we have conducted pilot studies to rapidly detect and identify bacterial clinical strains. Using a Raman microspectrometer equipped with a He/Ne laser, a first attempt to record SERS spectra was made on colloidal solutions. Spectra were of good quality but not very reproducible due to the movement of the microorganisms. Strains were then put in presence of Ag colloids and direct on-plate analysis was performed. Spectra were more reproducible, with diminished fluorescence, and reveal characteristic cellular-level information. Different growth conditions and colloid preparations have been tested. Pseudomonas aeruginosa and Escherichia coli clinical strains, responsible for nosocomial infections, have been our first test samples. An attempt has also been made to record SERS data from gold colloids in view of future measurement in the near-IR. Spectroscopic data are compared with ATR-FTIR results.

  5. Distinguishing gramicidin D conformers through two-dimensional infrared spectroscopy of vibrational excitons

    PubMed Central

    Tokmakoff, Andrei

    2015-01-01

    Gramicidin D is a short peptide which dimerizes to form helical pores, adopting one of two conformations in the process. These conformations differ primarily in number of residues per turn and the hydrogen-bond registry between rungs of the helix. Using amide I 2D infrared (IR) and FTIR, we have demonstrated that it is possible to distinguish between the different conformers of gramicidin D in solution. We show that the spectra observed for this helical peptide bear no resemblance to the spectra of α- or 310-helices and that while the FTIR spectra appear similar to spectra of β-sheets, 2D IR reveals that the observed resonances arise from vibrational modes unlike those observed in β-sheets. We also present an idealized model which reproduces the experimental data with high fidelity. This model is able to explain the polarization-dependence of the experimental 2D IR data. Using this model, we show the coupling between the rungs of the helix dominates the spectra, and as a consequence of this, the number of residues per turn can greatly influence the amide I spectra of gramicidin D. PMID:26049444

  6. Gas phase vibrational spectroscopy of cold (TiO 2 ) n - (n = 3-8) clusters

    NASA Astrophysics Data System (ADS)

    Weichman, Marissa L.; Song, Xiaowei; Fagiani, Matias R.; Debnath, Sreekanta; Gewinner, Sandy; Schöllkopf, Wieland; Neumark, Daniel M.; Asmis, Knut R.

    2016-03-01

    We report infrared photodissociation (IRPD) spectra for the D2-tagged titanium oxide cluster anions (TiO 2 ) n - with n = 3-8 in the spectral region from 450 to 1200 cm-1. The IRPD spectra are interpreted with the aid of harmonic spectra from BP86/6-311+G* density functional theory calculations of energetically low-lying isomers. We conclusively assign the IRPD spectra of the n = 3 and n = 6 clusters to global minimum energy structures with Cs and C2 symmetry, respectively. The vibrational spectra of the n = 4 and n = 7 clusters can be attributed to contributions of at most two low-lying structures. While our calculations indicate that the n = 5 and n = 8 clusters have many more low-lying isomers than the other clusters, the dominant contributions to their spectra can be assigned to the lowest energy structures. Through comparison between the calculated and experimental spectra, we can draw conclusions about the size-dependent evolution of the properties of (TiO 2 ) n - clusters, and on their potential utility as model systems for catalysis on a bulk TiO2 surface.

  7. Distinguishing gramicidin D conformers through two-dimensional infrared spectroscopy of vibrational excitons

    NASA Astrophysics Data System (ADS)

    Stevenson, Paul; Tokmakoff, Andrei

    2015-06-01

    Gramicidin D is a short peptide which dimerizes to form helical pores, adopting one of two conformations in the process. These conformations differ primarily in number of residues per turn and the hydrogen-bond registry between rungs of the helix. Using amide I 2D infrared (IR) and FTIR, we have demonstrated that it is possible to distinguish between the different conformers of gramicidin D in solution. We show that the spectra observed for this helical peptide bear no resemblance to the spectra of α- or 310-helices and that while the FTIR spectra appear similar to spectra of β-sheets, 2D IR reveals that the observed resonances arise from vibrational modes unlike those observed in β-sheets. We also present an idealized model which reproduces the experimental data with high fidelity. This model is able to explain the polarization-dependence of the experimental 2D IR data. Using this model, we show the coupling between the rungs of the helix dominates the spectra, and as a consequence of this, the number of residues per turn can greatly influence the amide I spectra of gramicidin D.

  8. Communication: Quantitative multi-site frequency maps for amide I vibrational spectroscopy

    NASA Astrophysics Data System (ADS)

    Reppert, Mike; Tokmakoff, Andrei

    2015-08-01

    An accurate method for predicting the amide I vibrational spectrum of a given protein structure has been sought for many years. Significant progress has been made recently by sampling structures from molecular dynamics simulations and mapping local electrostatic variables onto the frequencies of individual amide bonds. Agreement with experiment, however, has remained largely qualitative. Previously, we used dipeptide fragments and isotope-labeled constructs of the protein G mimic NuG2b as experimental standards for developing and testing amide I frequency maps. Here, we combine these datasets to test different frequency-map models and develop a novel method to produce an optimized four-site potential (4P) map based on the CHARMM27 force field. Together with a charge correction for glycine residues, the optimized map accurately describes both experimental datasets, with average frequency errors of 2-3 cm-1. This 4P map is shown to be convertible to a three-site field map which provides equivalent performance, highlighting the viability of both field- and potential-based maps for amide I spectral modeling. The use of multiple sampling points for local electrostatics is found to be essential for accurate map performance.

  9. Communication: Quantitative multi-site frequency maps for amide I vibrational spectroscopy

    SciTech Connect

    Reppert, Mike; Tokmakoff, Andrei

    2015-08-14

    An accurate method for predicting the amide I vibrational spectrum of a given protein structure has been sought for many years. Significant progress has been made recently by sampling structures from molecular dynamics simulations and mapping local electrostatic variables onto the frequencies of individual amide bonds. Agreement with experiment, however, has remained largely qualitative. Previously, we used dipeptide fragments and isotope-labeled constructs of the protein G mimic NuG2b as experimental standards for developing and testing amide I frequency maps. Here, we combine these datasets to test different frequency-map models and develop a novel method to produce an optimized four-site potential (4P) map based on the CHARMM27 force field. Together with a charge correction for glycine residues, the optimized map accurately describes both experimental datasets, with average frequency errors of 2–3 cm{sup −1}. This 4P map is shown to be convertible to a three-site field map which provides equivalent performance, highlighting the viability of both field- and potential-based maps for amide I spectral modeling. The use of multiple sampling points for local electrostatics is found to be essential for accurate map performance.

  10. Investigation of bi- and trinuclear thiochloride complexes of molybdenum by vibrational spectroscopy

    SciTech Connect

    Kolesov, B.A.; Fedin, V.P.; Kuz'mina, O.A.; Fedorov, V.E.

    1988-04-01

    The IR and Raman spectra of bi- and trinuclear thiochloride complex of molybdenum have been studied. The following compounds containing the /sup 92/Mo and /sup 100/Mo isotopes have been synthesized: H/sub 2/(Mo/sub 2/S/sub 4/Cl/sub 8/) x 6H/sub 2/O, Cs/sub 2/(Mo/sub 2/S/sub 4/Cl/sub 9/), Mo/sub 2/S/sub 4/Cl/sub 6/, and Mo/sub 2/S/sub 4/Cl/sub 4/. An analysis of the normal modes of vibration of the (Mo/sub 2/S/sub 4/Cl/sub 8/) and (Mo/sub 2/S/sub 4/Cl/sub 6/) fragments has been carried out. The force constants of the Mo-Mo, Mo-S, and Mo-Cl bonds have been determined, and the values before and after the transition from the trinuclear complex to the binuclear complex have been compared. The nature of the chemical bonding in the complexes of molybdenum with dichalogenide ligands has been discussed.

  11. Vibrational Spectroscopy of BENZENE-(WATER)_N Clusters with N=6,7

    NASA Astrophysics Data System (ADS)

    Tabor, Daniel P.; Sibert, Edwin; Kusaka, Ryoji; Walsh, Patrick S.; Zwier, Timothy S.

    2015-06-01

    The investigation of benzene-water clusters (Bz-(H_2O)_n) provides insight into the relative importance π-hydrogen bond interactions in cluster formation. Taking advantage of the higher resolution of current IR sources, isomer-specific resonant ion-dip infrared (RIDIR) spectra were recorded in the OH stretch region (3000-3750 cm-1). A local mode Hamiltonian for describing the OH stretch vibrations of water clusters is applied to Bz-(H_2O)_6 and Bz-(H_2O)_7 and compared with the RIDIR spectra. These clusters are the smallest water clusters in which three-dimensional H-bonded networks containing three-coordinate water molecules begin to be formed, and are therefore particularly susceptible to re-ordering or re-shaping in response to the presence of a benzene molecule. The spectrum of Bz-(H_2O)_6 is assigned to an inverted book structure while the major conformer of Bz-(H_2O)_7 is assigned to an S_4-derived inserted cubic structure in which the benzene occupies one corner of the cube. The local mode model is used to extract monomer Hamiltonians for individual water molecules, including stretch-bend Fermi resonance and intra-monomer couplings. The monomer Hamiltonians divide into sub-groups based on their local H-bonding architecture (DA, DDA, DAA) and the nature of their interaction with benzene.

  12. Local vibrations in disordered solids studied via single-molecule spectroscopy: Comparison with neutron, nuclear, Raman scattering, and photon echo data

    NASA Astrophysics Data System (ADS)

    Vainer, Yu. G.; Naumov, A. V.; Kador, L.

    2008-06-01

    The energy spectrum of low-frequency vibrational modes (LFMs) in three disordered organic solids—amorphous polyisobutylene (PIB), toluene and deuterated toluene glasses, weakly doped with fluorescent chromophore molecules of tetra-tert-butylterrylene (TBT) has been measured via single-molecule (SM) spectroscopy. Analysis of the individual temperature dependences of linewidths of single TBT molecules allowed us to determine the values of the vibrational mode frequencies and the SM-LFM coupling constants for vibrations in the local environment of the molecules. The measured LFM spectra were compared with the “Boson peak” as measured in pure PIB by inelastic neutron scattering, in pure toluene glass by low-frequency Raman scattering, in doped toluene glass by nuclear inelastic scattering, and with photon echo data. The comparative analysis revealed close agreement between the spectra of the local vibrations as measured in the present study and the literature data of the Boson peak in PIB and toluene. The analysis has also the important result that weak doping of the disordered matrices with nonpolar probe molecules whose chemical composition is similar to that of the matrix molecules does not influence the observed vibrational dynamics markedly. The experimental data displaying temporal stability on the time scale of a few hours of vibrational excitation parameters in local surroundings was obtained for the first time both for polymer and molecular glass.

  13. The isomers and conformers of some push pull enamines studied by vibrational and NMR spectroscopy and by ab initio calculations

    NASA Astrophysics Data System (ADS)

    Pigošová, J.; Gatial, A.; Milata, V.; Černuchová, P.; Prónayová, N.; Liptaj, T.; Matějka, P.

    2005-06-01

    The isomers and conformers of six push-pull enamines: 3-dimethylamino-, 3-methylamino- and 3-amino-2-acetyl propenenitrile [(H 3C) 2N-CH dbnd6 C(CN)(COCH 3), H 3C-NH-CH dbnd6 C(CN)(COCH 3) and H 2N-CH dbnd6 C(CN)(COCH 3)] and 3-dimethylamino-, 3-methylamino- and 3-amino-2-methylsulfonyl propenenitrile [(H 3C) 2N-CH dbnd6 C(CN)(SO 2CH 3), H 3C-NH-CH dbnd6 C(CN)(SO 2CH 3) and H 2N-CH dbnd6 C(CN)(SO 2CH 3)] have been studied experimentally by vibrational and NMR spectroscopy and theoretically by the ab initio calculations at MP2 level in 6-31G** basis set. The IR and Raman spectra of all compounds as a solid and solute in various solvents have been recorded in the region 4000-50 cm -1. The NMR spectra were obtained in chloroform and DMSO at room temperature. All six compounds have been prepared by the same way. NMR spectra revealed that both dimethylamino compounds were prepared as a pure E isomers whereas in the case of methylamino compounds the 3-methylamino-2-methylsulfonyl propenenitrile was prepared also as a pure E isomer but 3-methylamino-2-acetyl propenenitrile as a pure Z isomer. Also 3-amino-2-methylsulfonyl propenenitrile was obtained as a pure the E isomer, but 3-amino-2-acetyl propenenitrile as a mixture of both E and Z isomers. Confomational possibilities of studied compounds are given only by the rotation of the acetyl and methylamino groups. Vibrational spectra revealed existence of two conformers with Z and E orientation of acetyl group for 3-dimethylamino-2-acetyl propenenitrile. Two conformers with anti or syn orientation of methylamino group for 3-methylamino-2-methylsulfonyl propenenitrile have been confirmed by vibrational and NMR spectra, but only one conformer with anti orientation of methylamino group for 3-methylamino-2-acetyl propenenitrile in chloroform solution and in solid phase was found. For latter compound the additional isomer/conformer was detected in more polar solvents (acetonitrile/DMSO). These experimental findings have been

  14. Final Technical Report Structural Dynamics in Complex Liquids Studied with Multidimensional Vibrational Spectroscopy

    SciTech Connect

    Tokmakoff, Andrei; Fiechtner, Gregory J.

    2015-12-10

    This grant supported work in the Tokmakoff lab at the University of Chicago aimed at understanding the fundamental properties of water at a molecular level, and how water participates in proton transport in aqueous media. The physical properties of water and aqueous solutions are inextricably linked with efforts to develop new sustainable energy sources. Energy conversion, storage, and transduction processes, particularly those that occur in biology and soft matter, make use of water for the purpose of storing and moving charge. Water’s unique physical and chemical properties depend on the ability of water molecules to participate in up to four hydrogen bonds, and the rapid fluctuations and ultrafast energy dissipation of its hydrogenbonded networks. Our work during the grant period led to advances in four areas: (1) the generation of short pulses of broadband infrared light (BBIR) for use in time-resolved twodimensional spectroscopy (2D IR), (2) the investigation of the spectroscopy and transport of excess protons in water, (3) the study of aqueous hydroxide to describe the interaction of the ion and water and the dynamics of proton transfer, and (4) the coupled motion of water and its hydrogen-bonding solutes.

  15. Structural study of human growth hormone-releasing factor fragment (1?29) by vibrational spectroscopy

    NASA Astrophysics Data System (ADS)

    Carmona, P.; Molina, M.; Lasagabaster, A.

    1995-05-01

    The conformational structure of fragment 1-29 of human growth hormone releasing factor, hGHRF (1-29), in aqueous solution and in the solid state is investigated by infrared and Raman spectroscopy. The polypeptide backbone is found to be unordered in the solid state. However, the spectra of the peptide prepared as 5% (w/w) aqueous solutions show that approximately 28% of the peptide is involved in intermolecular β-sheet aggregation. The remainder of the peptide exists largely as disordered and β-sheet conformations with a small portion of α-helices. Tyrosine residues are found to be exposed to the solvent. The secondary structures are quantitatively examined through infrared spectroscopy, the conformational percentages being near those obtained by HONDAet al. [ Biopolymers31, 869 (1991)] using circular dichroism. The fast hydrogen/deuterium exchange in peptide groups and the absence of any NMR sign indicative of ordered structure [ G. M. CLOREet al., J. Molec. Biol.191, 553 (1986)] support that the solution conformations of the non-aggregated peptide interconvert in dynamic equilibrium. Some physiological advantages that may derive from this conformational flexibility are also discussed

  16. Vibrational overtone spectroscopy of H/sub 2/O (4. gamma. /sub OH/) using energy-selective electron impact ionization

    SciTech Connect

    Hayden, C.C.; Penn, S.M.; Carlson, K.J.; Crim, F.F.

    1988-03-24

    The authors describe a new method for obtaining vibrational overtone spectra of polyatomic molecules in supersonic expansions that uses low-energy electrons to ionize the vibrationally excited molecules. Measuring the excitation spectrum of water in the region of the third overtone of the OH stretching vibration (4..sigma../sub OH/) demonstrates the technique. The ionization process is probably not direct but may occur by electron impact excitation to vibrationally and electronically excited states from which the neutral molecule is subsequently ionizes

  17. A vibrational spectroscopy study of the orientational ordering in CH 3 Cl monolayers physisorbed on graphite

    NASA Astrophysics Data System (ADS)

    Nalezinski, R.; Bradshaw, A. M.; Knorr, K.

    1997-12-01

    Methylchloride physisorbed on highly ordered pyrolytic graphite (HOPG) has been investigated by infrared reflection-absorption spectroscopy (IRAS). The results confirm the change in orientation of the molecules from flat to inclined between the two 2D crystalline monolayer phases and the up-down staggering in the inclined phase as suggested by previous diffraction studies. At lower coverages the molecules are found to be oriented perpendicular to the substrate, in disagreement with calculations for single, isolated molecules physisorbed on a smooth graphite surface. Measurements of the transient growth behaviour show that this latter state is long-lived and gives rise to complex growth laws. The results show that IRAS is a valuable tool for the study of physisorbed molecular layers.

  18. Interactions of ibuprofen with hybrid lipid bilayers probed by complementary surface-enhanced vibrational spectroscopies

    PubMed Central

    Levin, Carly S.; Kundu, Janardan; Janesko, Benjamin G.; Scuseria, Gustavo E.; Raphael, Robert M.; Halas, Naomi J.

    2016-01-01

    The incorporation of small molecules into lipid bilayers is a process of biological importance and clinical relevance that can change the material properties of cell membranes and cause deleterious side effects for certain drugs. Here we report the direct observation, using surface enhanced Raman and IR spectroscopies (SERS, SEIRA), of the insertion of ibuprofen molecules into hybrid lipid bilayers. The alkanethiol-phospholipid hybrid bilayers were formed onto gold nanoshells by self-assembly, where the underlying nanoshell substrates provided the necessary enhancements for SERS and SEIRA. The spectroscopic data reveal specific interactions between ibuprofen and phospholipid moieties and indicate that the overall hydrophobicity of ibuprofen plays an important role in its intercalation in these membrane mimics. PMID:18942873

  19. Nanoscale chemical and mechanical characterization of thin films:sum frequency generation (SFG) vibrational spectroscopy at buriedinterfaces

    SciTech Connect

    Kweskin, S.J.

    2006-05-19

    Sum frequency generation (SFG) surface vibrational spectroscopy was used to characterize interfaces pertinent to current surface engineering applications, such as thin film polymers and novel catalysts. An array of advanced surface science techniques like scanning probe microscopy (SPM), x-ray photoelectron spectroscopy (XPS), gas chromatography (GC) and electron microscopy were used to obtain experimental measurements complementary to SFG data elucidating polymer and catalyst surface composition, surface structure, and surface mechanical behavior. Experiments reported in this dissertation concentrate on three fundamental questions: (1) How does the interfacial molecular structure differ from that of the bulk in real world applications? (2) How do differences in chemical environment affect interface composition or conformation? (3) How do these changes correlate to properties such as mechanical or catalytic performance? The density, surface energy and bonding at a solid interface dramatically alter the polymer configuration, physics and mechanical properties such as surface glass transition, adhesion and hardness. The enhanced sensitivity of SFG at the buried interface is applied to three systems: a series of acrylates under compression, the compositions and segregation behavior of binary polymer polyolefin blends, and the changes in surface structure of a hydrogel as a function of hydration. In addition, a catalytically active thin film of polymer coated nanoparticles is investigated to evaluate the efficacy of SFG to provide in situ information for catalytic reactions involving small mass adsorption and/or product development. Through the use of SFG, in situ total internal reflection (TIR) was used to increase the sensitivity of SFG and provide the necessary specificity to investigate interfaces of thin polymer films and nanostructures previously considered unfeasible. The dynamic nature of thin film surfaces is examined and it is found that the non

  20. Variation of Exciton-Vibrational Coupling in Photosystem II Core Complexes from Thermosynechococcus elongatus As Revealed by Single-Molecule Spectroscopy

    PubMed Central

    2015-01-01

    The spectral properties and dynamics of the fluorescence emission of photosystem II core complexes are investigated by single-molecule spectroscopy at 1.6 K. The emission spectra are dominated by sharp zero-phonon lines (ZPLs). The sharp ZPLs are the result of weak to intermediate exciton-vibrational coupling and slow spectral diffusion. For several data sets, it is possible to surpass the effect of spectral diffusion by applying a shifting algorithm. The increased signal-to-noise ratio enables us to determine the exciton-vibrational coupling strength (Huang–Rhys factor) with high precision. The Huang–Rhys factors vary between 0.03 and 0.8. The values of the Huang–Rhys factors show no obvious correlation between coupling strength and wavelength position. From this result, we conclude that electrostatic rather than exchange or dispersive interactions are the main contributors to the exciton-vibrational coupling in this system. PMID:25708355

  1. Vibrational spectroscopy of the borate mineral tunellite SrB6O9(OH)2·3(H2O) - Implications for the molecular structure

    NASA Astrophysics Data System (ADS)

    Frost, Ray L.; López, Andrés; Scholz, Ricardo; Xi, Yunfei

    2014-02-01

    Tunellite is a strontium borate mineral with formula: SrB6O9(OH)2·3(H2O) and occurs as colorless crystals in the monoclinic pyramidal crystal system. An intense Raman band at 994 cm-1 was assigned to the BO stretching vibration of the B2O3 units. Raman bands at 1043, 1063, 1082 and 1113 cm-1 are attributed to the in-plane bending vibrations of trigonal boron. Sharp Raman bands observed at 464, 480, 523, 568 and 639 cm-1 are simply defined as trigonal and tetrahedral borate bending modes. The Raman spectrum clearly shows intense Raman bands at 3567 and 3614 cm-1, attributed to OH units. The molecular structure of a natural tunellite has been assessed by using vibrational spectroscopy.

  2. Effect of surface structure on catalytic reactions: A sum frequency generation surface vibrational spectroscopy study

    SciTech Connect

    McCrea, Keith R.

    2001-09-07

    In the results discussed above, it is clear that Sum Frequency Generation (SFG) is a unique tool that allows the detection of vibrational spectra of adsorbed molecules present on single crystal surfaces under catalytic reaction conditions. Not only is it possible to detect active surface intermediates, it is also possible to detect spectator species which are not responsible for the measured turnover rates. By correlating high-pressure SFG spectra under reaction conditions and gas chromatography (GC) kinetic data, it is possible to determine which species are important under reaction intermediates. Because of the flexibility of this technique for studying surface intermediates, it is possible to determine how the structures of single crystal surfaces affect the observed rates of catalytic reactions. As an example of a structure insensitive reaction, ethylene hydrogenation was explored on both Pt(111) and Pt(100). The rates were determined to be essentially the same. It was observed that both ethylidyne and di-{sigma} bonded ethylene were present on the surface under reaction conditions on both crystals, although in different concentrations. This result shows that these two species are not responsible for the measured turnover rate, as it would be expected that one of the two crystals would be more active than the other, since the concentration of the surface intermediate would be different on the two crystals. The most likely active intermediates are weakly adsorbed molecules such as {pi}-bonded ethylene and ethyl. These species are not easily detected because their concentration lies at the detection limit of SFG. The SFG spectra and GC data essentially show that ethylene hydrogenation is structure insensitive for Pt(111) and Pt(100). SFG has proven to be a unique and excellent technique for studying adsorbed species on single crystal surfaces under high-pressure catalytic reactions. Coupled with kinetic data obtained from gas chromatography measurements, it can

  3. New Insights from Sum Frequency Generation Vibrational Spectroscopy into the Interactions of Islet Amyloid Polypeptides with Lipid Membranes

    PubMed Central

    Wang, Zhuguang; Batista, Victor S.; Yan, Elsa C. Y.

    2016-01-01

    Studies of amyloid polypeptides on membrane surfaces have gained increasing attention in recent years. Several studies have revealed that membranes can catalyze protein aggregation and that the early products of amyloid aggregation can disrupt membrane integrity, increasing water permeability and inducing ion cytotoxicity. Nonetheless, probing aggregation of amyloid proteins on membrane surfaces is challenging. Surface-specific methods are required to discriminate contributions of aggregates at the membrane interface from those in the bulk phase and to characterize protein secondary structures in situ and in real time without the use of perturbing spectroscopic labels. Here, we review the most recent applications of sum frequency generation (SFG) vibrational spectroscopy applied in conjunction with computational modeling techniques, a joint experimental and computational methodology that has provided valuable insights into the aggregation of islet amyloid polypeptide (IAPP) on membrane surfaces. These applications show that SFG can provide detailed information about structures, kinetics, and orientation of IAPP during interfacial aggregation, relevant to the molecular mechanisms of type II diabetes. These recent advances demonstrate the promise of SFG as a new approach for studying amyloid diseases at the molecular level and for the rational drug design targeting early aggregation products on membrane surfaces. PMID:26697504

  4. Energy calibration issues in nuclear resonant vibrational spectroscopy: observing small spectral shifts and making fast calibrations

    PubMed Central

    Wang, Hongxin; Yoda, Yoshitaka; Dong, Weibing; Huang, Songping D.

    2013-01-01

    The conventional energy calibration for nuclear resonant vibrational spectroscopy (NRVS) is usually long. Meanwhile, taking NRVS samples out of the cryostat increases the chance of sample damage, which makes it impossible to carry out an energy calibration during one NRVS measurement. In this study, by manipulating the 14.4 keV beam through the main measurement chamber without moving out the NRVS sample, two alternative calibration procedures have been proposed and established: (i) an in situ calibration procedure, which measures the main NRVS sample at stage A and the calibration sample at stage B simultaneously, and calibrates the energies for observing extremely small spectral shifts; for example, the 0.3 meV energy shift between the 100%-57Fe-enriched [Fe4S4Cl4]= and 10%-57Fe and 90%-54Fe labeled [Fe4S4Cl4]= has been well resolved; (ii) a quick-switching energy calibration procedure, which reduces each calibration time from 3–4 h to about 30 min. Although the quick-switching calibration is not in situ, it is suitable for normal NRVS measurements. PMID:23955030

  5. Sub-Doppler Resolution Spectroscopy of the Fundamental Vibration Band of HCl with a Comb-Referenced Spectrometer

    NASA Astrophysics Data System (ADS)

    Iwakuni, Kana; Sera, Hideyuki; Abe, Masashi; Sasada, Hiroyuki

    2015-06-01

    Sub-Doppler resolution spectroscopy of the fundamental bands of H35Cl and H37Cl has been carried out from 87 to 90 THz using a comb-referenced difference-frequency-generation (DFG) spectrometer. While the frequencies of the pump and signal waves are locked to that of the individual nearest comb mode, the repetition rate of the comb is varied for sweeping the idler frequency. Therefore, the relative uncertainty of the frequency scale is 10-11, and the spectral resolution remains about 250 kHz even when the spectrum is accumulated for a long time. The hyperfine structures caused by chlorine nucleus are resolved for the R(0) to R(4) transitions. The figure depicts wavelength-modulation spectrum of the R(0) transition of H35Cl. Three Lamb dips correspond to the F= 0, 1, and -1 components left to right, and the others with arrows are cross-over resonances which are useful for determining the weak F=-1 component frequencies for the R(1) to R(3) transitions. We have determined 49 and 44 transition frequencies of H35Cl and H37Cl with an uncertainty of 10 kHz. Six molecular constants of the vibrational excited state for each isotopomer are determined. They reproduce the determined frequencies with a standard deviation of about 10 kHz.

  6. Femtosecond pump-probe photoionization-photofragmentation spectroscopy: photoionization-induced twisting and coherent vibrational motion of azobenzene cation.

    PubMed

    Ho, Jr-Wei; Chen, Wei-Kan; Cheng, Po-Yuan

    2009-10-01

    We report studies of ultrafast dynamics of azobenzene cation using femtosecond photoionization-photofragmentation spectroscopy. In our experiments, a femtosecond pump pulse first produces an ensemble of azobenzene cations via photoionization of the neutrals. A delayed probe pulse then brings the evolving ionic system to excited states that ultimately undergo ion fragmentation. The dynamics is followed by monitoring either the parent-ion depletion or fragment-ion formation as a function of the pump-probe delay time. The observed transients for azobenzene cation are characterized by a constant ion depletion modulated by a rapidly damped oscillatory signal with a period of about 1 ps. Theoretical calculations suggest that the oscillation arises from a vibration motion along the twisting inversion coordinate involving displacements in CNNC and phenyl-ring torsions. The oscillation is damped rapidly with a time constant of about 1.2 ps, suggesting that energy dissipation from the active mode to bath modes takes place in this time scale. PMID:19814554

  7. IR and Vibrational Circular Dichroism Spectroscopy of Matrine- and Artemisinin-Type Herbal Products: Stereochemical Characterization and Solvent Effects.

    PubMed

    Zhang, Yuefei; Poopari, M Reza; Cai, Xiaoli; Savin, Aliaksandr; Dezhahang, Zahra; Cheramy, Joseph; Xu, Yunjie

    2016-04-22

    Five Chinese herbal medicines-matrine, oxymatrine, sophoridine, artemisinin, and dihydroartemisinin-were investigated using vibrational circular dichroism (VCD) experiments and density functional theory calculations to extract their stereochemical information. The three matrine-type alkaloids are available from the dry roots of Sophora flavescens and have long been used in various traditional Chinese herbal medicines to combat diseases such as cancer and cardiac arrhythmia. Artemisinin and the related dihydroartemisinin, discovered in 1979 by Professor Youyou Tu, a 2015 Nobel laureate in medicine, are effective drugs for the treatment of malaria. The VCD measurements were carried out in CDCl3 and DMSO-d6, two solvents with different dielectric constants and hydrogen-bonding characteristics. A "clusters-in-a-liquid" approach was used to model both explicit and implicit solvent effects. The studies show that effectively accounting for solvent effects is critical to using IR and VCD spectroscopy to provide unique spectroscopic features to differentiate the potential stereoisomers of these Chinese herbal medicines. PMID:27070079

  8. In Situ Potentiodynamic Analysis of the Electrolyte/Silicon Electrodes Interface Reactions--A Sum Frequency Generation Vibrational Spectroscopy Study.

    PubMed

    Horowitz, Yonatan; Han, Hui-Ling; Ross, Philip N; Somorjai, Gabor A

    2016-01-27

    The key factor in long-term use of batteries is the formation of an electrically insulating solid layer that allows lithium ion transport but stops further electrolyte redox reactions on the electrode surface, hence solid electrolyte interphase (SEI). We have studied a common electrolyte, 1.0 M LiPF6/ethylene carbonate (EC)/diethyl carbonate (DEC), reduction products on crystalline silicon (Si) electrodes in a lithium (Li) half-cell system under reaction conditions. We employed in situ sum frequency generation vibrational spectroscopy (SFG-VS) with interface sensitivity in order to probe the molecular composition of the SEI surface species under various applied potentials where electrolyte reduction is expected. We found that, with a Si(100)-hydrogen terminated wafer, a Si-ethoxy (Si-OC2H5) surface intermediate forms due to DEC decomposition. Our results suggest that the SEI surface composition varies depending on the termination of Si surface, i.e., the acidity of the Si surface. We provide the evidence of specific chemical composition of the SEI on the anode surface under reaction conditions. This supports an electrochemical electrolyte reduction mechanism in which the reduction of the DEC molecule to an ethoxy moiety plays a key role. These findings shed new light on the formation mechanism of SEI on Si anodes in particular and on SEI formation in general. PMID:26651259

  9. Vibrational properties of epitaxial Bi{sub 4}Te{sub 3} films as studied by Raman spectroscopy

    SciTech Connect

    Xu, Hao; Pan, Wenwu; Chen, Qimiao; Wu, Xiaoyan; Song, Yuxin E-mail: shumin@chalmers.se; Gong, Qian; Lu, Pengfei; Wang, Shumin E-mail: shumin@chalmers.se

    2015-08-15

    Bi{sub 4}Te{sub 3}, as one of the phases of the binary Bi–Te system, shares many similarities with Bi{sub 2}Te{sub 3}, which is known as a topological insulator and thermoelectric material. We report the micro-Raman spectroscopy study of 50 nm Bi{sub 4}Te{sub 3} films on Si substrates prepared by molecular beam epitaxy. Raman spectra of Bi{sub 4}Te{sub 3} films completely resolve the six predicted Raman-active phonon modes for the first time. Structural features and Raman tensors of Bi{sub 4}Te{sub 3} films are introduced. According to the wavenumbers and assignments of the six eigenpeaks in the Raman spectra of Bi{sub 4}Te{sub 3} films, it is found that the Raman-active phonon oscillations in Bi{sub 4}Te{sub 3} films exhibit the vibrational properties of those in both Bi and Bi{sub 2}Te{sub 3} films.

  10. Electron beam exposure mechanisms in hydrogen silsesquioxane investigated by vibrational spectroscopy and in-situ electron beam induced desorption

    SciTech Connect

    Olynick, D.L.; Cord, B.; Schipotinin, A.; Ogletree, D.F.; Schuck, P.J.

    2009-11-13

    Hydrogen Silsesquioxane (HSQ) is used as a high-resolution resist with resolution down below 10nm half-pitch. This material or materials with related functionalities could have widespread impact in nanolithography and nanoscience applications if the exposure mechanism was understood and instabilities controlled. Here we have directly investigated the exposure mechanism using vibrational spectroscopy (both Raman and Fourier transform Infrared) and electron beam desorption spectrocscopy (EBDS). In the non-networked HSQ system, silicon atoms sit at the corners of a cubic structure. Each silicon is bonded to a hydrogen atom and bridges 3 oxygen atoms (formula: HSiO3/2). For the first time, we have shown, via changes in the Si-H2 peak at ~;;2200 cm -1 in the Raman spectra and the release of SiHx products in EBID, that electron-bam exposed materials crosslinks via a redistribution reaction. In addition, we observe the release of significantly more H2 than SiH2 during EBID, which is indicative of additional reaction mechanisms. Additionally, we compare the behavior of HSQ in response to both thermal and electron-beam induced reactions.

  11. Hydrogenated graphene on Ir(111): A high-resolution electron energy loss spectroscopy study of the vibrational spectrum

    NASA Astrophysics Data System (ADS)

    Kyhl, Line; Balog, Richard; Angot, Thierry; Hornekær, Liv; Bisson, Régis

    2016-03-01

    Hydrogen atom adsorption on high-quality graphene on Ir(111) [gr/Ir(111)] is investigated using high-resolution electron energy loss spectroscopy. The evolution of the vibrational spectrum, up to 400 meV, of gr/Ir(111) upon increasing hydrogen atom exposures is measured. The two dominant binding configurations of atomic hydrogen are identified as (1) graphanelike hydrogen clusters on the parts of the graphene more strongly interacting with the Ir(111) surface and (2) dimers bound more weakly to the freestanding parts of the graphene. The graphanelike surface structures lead to increased corrugation of the graphene sheet, yielding graphane-related phonon components. Additionally, a recent theoretical prediction of the existence of a bending character for a LO/TO graphane chair phonon mode is experimentally verified. No clear evidence was found for hydrogen bound on both sides of a high-quality graphene sheet and phonon features strongly suggest interactions between graphanelike hydrogen clusters and Ir atoms in the substrate.

  12. Rapid vibrational and rotational energy-transfer rates in heated carbon dioxide collisions by double-resonance laser spectroscopy

    SciTech Connect

    Thomason, M.D.

    1982-07-01

    Rates for resonant vibrational and rotational energy transfer from the 001 state by CO/sub 2/ + CO/sub 2/ collisions have been measured. All data were obtained by double resonance spectroscopy with CO/sub 2/ lasers in a 2.5 meter absorption cell at 700/sup 0/K. Results for rotation transfer include pumped-level relaxation and the response of other 001 levels with ..delta..J up to 18. These data are compared to four relevant collision models via a 35-level rate equation analysis. Sequence-band (002 ..-->.. 101) and hot-band (011 ..-->.. 110) lasting have been used to observe resonant nu/sub 3/-transfer relaxation involving 001 + 001 reversible 002 + 000, 001 + 100 reversible 101 + 000, and 001 + 010 reversible 011 + 000. A multilevel rate analysis has been utilized to determine the rate coefficients for 001 going to the 002, the 101, and the 011 levels. Part of the hot-band data has been interpreted as due to 110 + 000 reversible 100 + 010, and the associated rate constant has been estimated. The results of the study are compared to the theory and to other experiments.

  13. A combined vibrational sum frequency generation spectroscopy and atomic force microscopy study of sphingomyelin-cholesterol monolayers.

    PubMed

    Weeraman, Champika; Chen, Maohui; Moffatt, Douglas J; Lausten, Rune; Stolow, Albert; Johnston, Linda J

    2012-09-11

    A combination of vibrational sum frequency generation spectroscopy and atomic force microscopy is used to study the changes in morphology and conformational order in monolayers prepared from three natural sphingomyelin (SM) mixtures as a function of surface pressure and cholesterol concentration. The most homogeneous SM gave monolayers with well-ordered acyl chains and few gauche defects with relatively small effects of either increasing surface pressure or cholesterol addition. Heterogeneous SM mixtures with a mixture of acyl chain lengths or with significant fractions of unsaturated acyl chains had much larger contributions from gauche defects at low surface pressure and gave increasingly well-ordered monolayers as the surface pressure increased. They also showed substantial increases in lipid chain order after cholesterol addition. Overall, these results are consistent with the strong hydrogen bonding capacity of SM leading to well-ordered monolayers over a range of surface pressures. The changes in acyl chain order for natural SMs as a function of cholesterol are relevant to formation of sphingolipid-cholesterol enriched domains in cell membranes. PMID:22889131

  14. Chiral recognition between lactic acid derivatives and an aromatic alcohol in a supersonic expansion: electronic and vibrational spectroscopy.

    PubMed

    Seurre, N; Le Barbu-Debus, K; Lahmani, F; Zehnacker, A; Borho, N; Suhm, M A

    2006-02-28

    Jet-cooled diastereoisomeric complexes formed between a chiral probe, (+/-)-2-naphthyl-1-ethanol, and chiral lactic acid derivatives have been characterised by laser-induced fluorescence and IR fluorescence-dip spectroscopy. Complexes with non chiral alpha-hydroxyesters and chiral beta-hydroxyesters have also been studied for the sake of comparison. DFT calculations have been performed to assist in the analysis of the vibrational spectra and the determination of the structures. The observed 1 : 1 complexes correspond to the addition of the hydroxy group of the chromophore on the oxygen atom of the hydroxy in alpha-position relative to the ester function. Moreover, (+/-)-methyl lactate and (+/-)-ethyl lactate complexes with (+/-)-2-naphthyl-1-ethanol show an enantioselectivity in the size of the formed adducts: while fluorescent 1 : 1 complexes are the most abundant species observed when mixing (S)-2-naphthyl-1-ethanol with (R)-methyl or ethyl lactate, they are absent in the case of the SS mixture, which only shows 1 : 2 adducts. This property has been related to steric hindrance brought by the methyl group on the hydroxy-bearing carbon atom. PMID:16482344

  15. I. Hydrophobic nanoporous silica particles for biomedical applications II. Novel approaches to two-dimensional correlation spectroscopy

    NASA Astrophysics Data System (ADS)

    Brumaru, Claudiu Stelian

    of adsorption sites. One of them corresponds to the polarity of surface silanol groups while the other sites have a polarity consistent with the environment inside the C18 organic layer. We also discover an additional adsorption mode situated at a polarity higher than exposed silanol surface that could presumably be linked to a different ionization state of the silanol groups. We are developing a method for resolving spectra of complex samples using two-dimensional hetero-correlation spectroscopy by correlating the intensity fluctuations in optical spectra to those of completely separated peaks in analytical separations. We demonstrate this methodology for fluorescence spectra and electrophoregrams of mixtures anthracene-pyrene. All the individual vibronic features that overlap in mixtures are cleanly extracted in cross-sections of the two-dimensional asynchronous spectrum.

  16. Perspective: Watching low-frequency vibrations of water in biomolecular recognition by THz spectroscopy

    NASA Astrophysics Data System (ADS)

    Xu, Yao; Havenith, Martina

    2015-11-01

    Terahertz (THz) spectroscopy has turned out to be a powerful tool which is able to shed new light on the role of water in biomolecular processes. The low frequency spectrum of the solvated biomolecule in combination with MD simulations provides deep insights into the collective hydrogen bond dynamics on the sub-ps time scale. The absorption spectrum between 1 THz and 10 THz of solvated biomolecules is sensitive to changes in the fast fluctuations of the water network. Systematic studies on mutants of antifreeze proteins indicate a direct correlation between biological activity and a retardation of the (sub)-ps hydration dynamics at the protein binding site, i.e., a "hydration funnel." Kinetic THz absorption studies probe the temporal changes of THz absorption during a biological process, and give access to the kinetics of the coupled protein-hydration dynamics. When combined with simulations, the observed results can be explained in terms of a two-tier model involving a local binding and a long range influence on the hydration bond dynamics of the water around the binding site that highlights the significance of the changes in the hydration dynamics at recognition site for biomolecular recognition. Water is shown to assist molecular recognition processes.

  17. Vibrational spectroscopy of bacteriorhodopsin mutants: Evidence for the interaction of proline-186 with the retinylidene chromophore

    SciTech Connect

    Rothschild, K.J.; He, Y.W.; Mogi, T.; Marti, T.; Stern, L.J.; Khorana, H.G. )

    1990-06-26

    Fourier-transform infrared difference spectroscopy has been used to study the role of the three membrane-embedded proline residues, Pro-50, Pro-91, and Pro-186, in the structure and function of bacteriorhodopsin. All three prolines were replaced by alanine and glycine; in addition, Pro-186 was changed to valine. Difference spectra were recorded for the bR----K and bR----M photoreactions of each of these mutants and compared to those of wild-type bacteriorhodopsin. Only substitutions of Pro-186 caused significant perturbations in the frequency of the C = C and C - C stretching modes of the retinylidene chromophore. In addition, these substitutions reduced bands in the amide I and II region associated with secondary structural changes and altered signals assigned to the adjacent Tyr-185. Pro-186----Val caused the largest alterations, producing a second species similar to bR548 and nearly blocking chromophore isomerization at 78 K but not at 250 K. These results are consistent with a model of the retinal binding site in which Pro-186 and Tyr-185 are located in direct proximity to the chromophore and may be involved in linking chromophore isomerization to protein structural changes. Evidence is also found that Pro-50 may be structurally active during the bR----K transition and that substitution of this residue by glycine preserves the normal protein structural changes during the photocycle.

  18. Vibrational Spectroscopy after OSU - From C2- to Interstellar Polycyclic Aromatic Hydrocarbons

    NASA Technical Reports Server (NTRS)

    Allamandola, Louis J.

    2006-01-01

    The composition of interstellar ice and dust provides insight into the chemical history of the interstellar medium and early solar system. It is now possible to probe this unique and unusual chemistry and determine the composition of these microscopic interstellar particles which are hundreds to many thousands of light years away thanks to substantial progress in two areas: astronomical spectroscopic techniques in the middle-infrared, the spectral region most diagnostic of chemical composition, and laboratory simulations which realistically reproduce the critical conditions in various interstellar environments. High quality infrared spectra of many different astronomical sources, some associated with giant, dark molecular clouds -the birthplace of stars and planets- and others in more tenuous, UV radiation rich regions are now available. The fundamentals of IR spectroscopy and what comparisons of astronomical IR spectra with laboratory spectra of materials prepared under realistic simulated interstellar conditions tell us about the components of these materials is the subject of this talk. These observations have shown that mixed molecular ices comprised of H2O, CH3OH, CO, NH3 and H2CO contain most of the molecular material in molecular clouds and that gas phase, ionized polycyclic aromatic hydrocarbons (PAHs) are widespread and surprisingly abundant throughout most of the interstellar medium.

  19. Evidence for Tautomerisation of Glutamine in BLUF Blue Light Receptors by Vibrational Spectroscopy and Computational Chemistry

    NASA Astrophysics Data System (ADS)

    Domratcheva, Tatiana; Hartmann, Elisabeth; Schlichting, Ilme; Kottke, Tilman

    2016-03-01

    BLUF (blue light sensor using flavin) domains regulate the activity of various enzymatic effector domains in bacteria and euglenids. BLUF features a unique photoactivation through restructuring of the hydrogen-bonding network as opposed to a redox reaction or an isomerization of the chromophore. A conserved glutamine residue close to the flavin chromophore plays a central role in the light response, but the underlying modification is still unclear. We labelled this glutamine with 15N in two representative BLUF domains and performed time-resolved infrared double difference spectroscopy. The assignment of the signals was conducted by extensive quantum chemical calculations on large models with 187 atoms reproducing the UV-vis and infrared signatures of BLUF photoactivation. In the dark state, the comparatively low frequency of 1,667 cm‑1 is assigned to the glutamine C=O accepting a hydrogen bond from tyrosine. In the light state, the signature of a tautomerised glutamine was extracted with the C=N stretch at ~1,691 cm‑1 exhibiting the characteristic strong downshift by 15N labelling. Moreover, an indirect isotope effect on the flavin C4=O stretch was found. We conclude that photoactivation of the BLUF receptor does not only involve a rearrangement of hydrogen bonds but includes a change in covalent bonds of the protein.

  20. Vibrational spectroscopy via the Caldeira-Leggett model with anharmonic system potentials.

    PubMed

    Gottwald, Fabian; Ivanov, Sergei D; Kühn, Oliver

    2016-04-28

    The Caldeira-Leggett (CL) model, which describes a system bi-linearly coupled to a harmonic bath, has enjoyed popularity in condensed phase spectroscopy owing to its utmost simplicity. However, the applicability of the model to cases with anharmonic system potentials, as it is required for the description of realistic systems in solution, is questionable due to the presence of the invertibility problem [F. Gottwald et al., J. Phys. Chem. Lett. 6, 2722 (2015)] unless the system itself resembles the CL model form. This might well be the case at surfaces or in the solid regime, which we here confirm for a particular example of an iodine molecule in the atomic argon environment under high pressure. For this purpose we extend the recently proposed Fourier method for parameterizing linear generalized Langevin dynamics [F. Gottwald et al., J. Chem. Phys. 142, 244110 (2015)] to the non-linear case based on the CL model and perform an extensive error analysis. In order to judge on the applicability of this model in advance, we give practical empirical criteria and discuss the effect of the potential renormalization term. The obtained results provide evidence that the CL model can be used for describing a potentially broad class of systems. PMID:27131526

  1. Vibrational spectroscopy via the Caldeira-Leggett model with anharmonic system potentials

    NASA Astrophysics Data System (ADS)

    Gottwald, Fabian; Ivanov, Sergei D.; Kühn, Oliver

    2016-04-01

    The Caldeira-Leggett (CL) model, which describes a system bi-linearly coupled to a harmonic bath, has enjoyed popularity in condensed phase spectroscopy owing to its utmost simplicity. However, the applicability of the model to cases with anharmonic system potentials, as it is required for the description of realistic systems in solution, is questionable due to the presence of the invertibility problem [F. Gottwald et al., J. Phys. Chem. Lett. 6, 2722 (2015)] unless the system itself resembles the CL model form. This might well be the case at surfaces or in the solid regime, which we here confirm for a particular example of an iodine molecule in the atomic argon environment under high pressure. For this purpose we extend the recently proposed Fourier method for parameterizing linear generalized Langevin dynamics [F. Gottwald et al., J. Chem. Phys. 142, 244110 (2015)] to the non-linear case based on the CL model and perform an extensive error analysis. In order to judge on the applicability of this model in advance, we give practical empirical criteria and discuss the effect of the potential renormalization term. The obtained results provide evidence that the CL model can be used for describing a potentially broad class of systems.

  2. Relations between aliphatics and silicate components in 12 stratospheric particles deduced from vibrational spectroscopy

    SciTech Connect

    Merouane, S.; Djouadi, Z.; Le Sergeant d'Hendecourt, L.

    2014-01-10

    Interplanetary dust particles (IDPs) are among the most pristine extraterrestrial samples available in the laboratory for analyses with moderate to high spatial- and spectral-resolution spectroscopic techniques. Their composition can provide precious information on the early stages of the solar nebula as well as on the processes on the surfaces of different small bodies in the solar system from which IDPs originate. In this work, we have analyzed six anhydrous IDPs and six stratospheric particles possibly of cosmic origin through infrared (IR) and Raman micro-spectroscopy to study and investigate their silicate and organic components. We find that the length/ramification of the aliphatic organics given by the CH{sub 2}/CH{sub 3} ratios in the IDPs is closely linked to the silicate family (pyroxene or olivine) present in the samples. Both IR and Raman data suggest that this relation is not correlated with either aqueous (as evidenced by the absence of aqueous related minerals) or thermal processes (as deduced from Raman measurements). Therefore, this observation might be related to the initial path of formation of the organics on the silicate surfaces, thus tracing a possible catalytic role that silicates would play in the formation and/or ramification of organic matter in the primitive nebula.

  3. Evidence for Tautomerisation of Glutamine in BLUF Blue Light Receptors by Vibrational Spectroscopy and Computational Chemistry

    PubMed Central

    Domratcheva, Tatiana; Hartmann, Elisabeth; Schlichting, Ilme; Kottke, Tilman

    2016-01-01

    BLUF (blue light sensor using flavin) domains regulate the activity of various enzymatic effector domains in bacteria and euglenids. BLUF features a unique photoactivation through restructuring of the hydrogen-bonding network as opposed to a redox reaction or an isomerization of the chromophore. A conserved glutamine residue close to the flavin chromophore plays a central role in the light response, but the underlying modification is still unclear. We labelled this glutamine with 15N in two representative BLUF domains and performed time-resolved infrared double difference spectroscopy. The assignment of the signals was conducted by extensive quantum chemical calculations on large models with 187 atoms reproducing the UV-vis and infrared signatures of BLUF photoactivation. In the dark state, the comparatively low frequency of 1,667 cm−1 is assigned to the glutamine C=O accepting a hydrogen bond from tyrosine. In the light state, the signature of a tautomerised glutamine was extracted with the C=N stretch at ~1,691 cm−1 exhibiting the characteristic strong downshift by 15N labelling. Moreover, an indirect isotope effect on the flavin C4=O stretch was found. We conclude that photoactivation of the BLUF receptor does not only involve a rearrangement of hydrogen bonds but includes a change in covalent bonds of the protein. PMID:26947391

  4. Relations between Aliphatics and Silicate Components in 12 Stratospheric Particles Deduced from Vibrational Spectroscopy

    NASA Astrophysics Data System (ADS)

    Merouane, S.; Djouadi, Z.; Le Sergeant d'Hendecourt, L.

    2014-01-01

    Interplanetary dust particles (IDPs) are among the most pristine extraterrestrial samples available in the laboratory for analyses with moderate to high spatial- and spectral-resolution spectroscopic techniques. Their composition can provide precious information on the early stages of the solar nebula as well as on the processes on the surfaces of different small bodies in the solar system from which IDPs originate. In this work, we have analyzed six anhydrous IDPs and six stratospheric particles possibly of cosmic origin through infrared (IR) and Raman micro-spectroscopy to study and investigate their silicate and organic components. We find that the length/ramification of the aliphatic organics given by the CH2/CH3 ratios in the IDPs is closely linked to the silicate family (pyroxene or olivine) present in the samples. Both IR and Raman data suggest that this relation is not correlated with either aqueous (as evidenced by the absence of aqueous related minerals) or thermal processes (as deduced from Raman measurements). Therefore, this observation might be related to the initial path of formation of the organics on the silicate surfaces, thus tracing a possible catalytic role that silicates would play in the formation and/or ramification of organic matter in the primitive nebula.

  5. Vibrational spectroscopy study of the oxidation of Hylamer UHMWPE explanted acetabular cups sterilized differently

    NASA Astrophysics Data System (ADS)

    Reggiani, Matteo; Tinti, Anna; Visentin, Manuela; Stea, Susanna; Erani, Paolo; Fagnano, Concezio

    2007-05-01

    Ultra-high-molecular-weight polyethylene (UHMWPE) has been used for over 40 years for acetabular cups in total hip joint prosthesis. Hylamer is a hot isostatically pressed material with high crystallinity. Early loosening due to extensive oxidation and phase transformation has been observed for this material. To analyze the reasons for its high tendency to oxidize, we have examined by FT-IR spectroscopy explanted acetabular cups γ-sterilized in different ways. The oxidation and wear rate observed were: Hylamer cups γ-sterilized in air with a long shelf life > Hylamer cups γ-sterilized in air with short shelf life ⩾ Hylamer cups γ-sterilized in nitrogen. Our data indicate the important role of the shelf life on the oxidation of the cups: the samples γ-sterilized in air characterized by a shelf life greater than 3 years showed severe oxidation, a high wear rate, and marked debris production with delamination and the formation of a brittle zone in the more oxidated regions. In these regions we observed an increase in crystallinity, which was probably due to the decrease in the molecular weight of PE. The high oxidation was probably due to the modifications induced by the material treatment.

  6. XRD, Electron Microscopy and Vibrational Spectroscopy Characterization of Simulated SB6 HLW Glasses - 13028

    SciTech Connect

    Stefanovsky, S.V.; Nikonov, B.S.; Omelianenko, B.I.; Choi, A.; Marra, J.C.

    2013-07-01

    Sample glasses have been made using SB6 high level waste (HLW) simulant (high in both Al and Fe) with 12 different frit compositions at a constant waste loading of 36 wt.%. As follows from X-ray diffraction (XRD) and optical and scanning electron microscopy (SEM) data, all the samples are composed of primarily glass and minor concentration of spinel phases which form both isometric grains and fine cubic (∼1 μm) crystals. Infrared spectroscopy (IR) spectra of all the glasses within the range of 400-1600 cm{sup -1} consist of the bands due to stretching and bending modes in silicon-oxygen, boron-oxygen, aluminum-oxygen and iron-oxygen structural groups. Raman spectra showed that for the spectra of all the glasses within the range of 850-1200 cm{sup -1} the best fit is achieved by suggestion of overlapping of three major components with maxima at 911-936 cm{sup -1}, 988-996 cm{sup -1} and 1020-1045 cm{sup -1}. The structural network is primarily composed of metasilicate chains and rings with embedded AlO{sub 4} and FeO{sub 4} tetrahedra. Major BO{sub 4} tetrahedra and BO{sub 3} triangles form complex borate units and are present as separate constituents. (authors)

  7. Copper/oxide interface formation: a vibrational and electronic investigation by electron spectroscopies

    NASA Astrophysics Data System (ADS)

    Conard, T.; Ghijsen, J.; Vohs, J. M.; Thiry, P. A.; Caudano, R.; Johnson, R. L.

    1992-04-01

    In this study, we deposited copper on a MgO(100) surface at room temperature (using a Knudsen cell) and studied the interface formation using electron spectroscopy. The evolution of the AES peak intensities showed that copper grows on MgO(100) in the Stranski-Krastanov mode. In HREELS experiments, the intensity and the position of the energy loss corresponding to the MgO surface optical phonon at 80.7 meV, both decrease with increasing Cu coverage. These results agree with theoretical spectra simulated from the dielectric theory by considering a Cu 2O overlayer on a semi-infinite MgO crystal substrate at the beginning of the growth. From the HREELS data, both the formation of a homogeneous Cu metallic overlayer or a CuO overlayer on MgO can be ruled out. The synchrotron-radiation (SR) photoemission measurements were performed in the vicinity of the Cu3p3d resonance. The positions of the Cu resonance peaks as a function of Cu coverage on MgO show that at low coverage the difference in energy between the main Cu 3d peak and the resonance peak is close to that found in Cu 2O and at higher coverage close to metallic copper indicating the formation of an interacting phase at the beginning followed by the growth of metallic copper.

  8. Elucidation of the atherosclerotic disease process in apo E and wild type mice by vibrational spectroscopy

    NASA Astrophysics Data System (ADS)

    Adar, Fran; Jelicks, Linda; Naudin, Coralie; Rousseau, Denis; Yeh, Syun-ru

    2004-07-01

    Raman and FTIR microprobe spectroscopy have been used to characterize the atherosclerotic process in Apo E and wild type mice. The Apo E null mouse is being studied in parallel with a healthy strain as a model of the human atherosclerotic disease. Preliminary Raman microprobe spectra have been recorded from the lumen of the aorta vessels from a normal black mouse (C57BL/6J) and the apo E null mouse fed on a normal chow diet. Spectra were also recorded from another normal mouse fed breeder chow containing a much higher content of fats. In the Raman spectra the fat cells exhibited spectra typical of esterified triglycerides while the wall tissue had spectra dominated by Amide I and III modes and the phenylalanine stretch at 1003 cm-1 of protein. The FTIR spectra showed the typical Amide I and II bands of protein and the strong >C=O stretch of the triglycerides. In addition, there were morphologically distinct regions of the specimens indicating a surprising form of calcification in one very old mouse (wild type), and free fatty acid inclusions in the knock out mouse. The observation of these chemistries provide new information for elucidation of the molecular mechanisms of the development of atherosclerosis.

  9. Complementary Vibrational Spectroscopy Investigations of Iron and Iron-Bearing Minerals (Invited)

    NASA Astrophysics Data System (ADS)

    Murphy, C. A.; Antonangeli, D.; Fiquet, G.; Fei, Y.; Alatas, A.; Dera, P. K.

    2013-12-01

    The high-pressure elastic and thermodynamic properties of iron have been extensively studied because iron is thought to be the main constituent in Earth's core, along with ~5 to 10 wt% nickel and some light elements. In particular, nuclear resonant inelastic x-ray scattering (NRIXS) is an isotope-selective technique that has been used to investigate the vibrational properties of 57Fe at high-pressure via its measured phonon density of states (DOS) [e.g., 1]. For example, the low-energy region of a material's phonon DOS is proportional to its Debye sound velocity (vD), which reflects an average of its compressional (vP) and shear (vS) sound velocities, weighted more heavily towards vS [2]. In order to separate the compressional and shear components of vD, one often relies on established equations of state (EOS) which, in the case of iron, diverge above 100 GPa [e.g., 3; 4]. In turn, such uncertainties are propagated into iron's sound velocities--particularly vP--at pressures approaching those of Earth's core. Here we demonstrate how the combination of NRIXS and high-energy resolution inelastic x-ray scattering (HERIX) data allows for the determination of both vP and vS, independent of an EOS. In particular, we used NRIXS and HERIX to probe the total phonon DOS and points along the longitudinal acoustic phonon branch, respectively, of pure iron loaded into similarly prepared diamond anvil cells, up to a pressure of 171 GPa at 300 K [1; 5]. Experiments were performed at the Advanced Photon Source and European Synchrotron Radiation Facility, where sample volumes (densities) were also measured with in-situ x-ray diffraction. Using established NRIXS and HERIX fitting procedures, we determined iron's density-dependent vD and vP, respectively, accounting for mass effects in the former parameter using a harmonic oscillator model. The combination of these datasets [1; 5] provides a new tight constraint on the density-dependent compressional and shear sound velocities of iron

  10. Complementary Vibrational Spectroscopy Investigations of Iron and Iron-Bearing Minerals (Invited)

    NASA Astrophysics Data System (ADS)

    Murphy, C. A.; Antonangeli, D.; Fiquet, G.; Fei, Y.; Alatas, A.; Dera, P. K.

    2011-12-01

    The high-pressure elastic and thermodynamic properties of iron have been extensively studied because iron is thought to be the main constituent in Earth's core, along with ~5 to 10 wt% nickel and some light elements. In particular, nuclear resonant inelastic x-ray scattering (NRIXS) is an isotope-selective technique that has been used to investigate the vibrational properties of 57Fe at high-pressure via its measured phonon density of states (DOS) [e.g., 1]. For example, the low-energy region of a material's phonon DOS is proportional to its Debye sound velocity (vD), which reflects an average of its compressional (vP) and shear (vS) sound velocities, weighted more heavily towards vS [2]. In order to separate the compressional and shear components of vD, one often relies on established equations of state (EOS) which, in the case of iron, diverge above 100 GPa [e.g., 3; 4]. In turn, such uncertainties are propagated into iron's sound velocities--particularly vP--at pressures approaching those of Earth's core. Here we demonstrate how the combination of NRIXS and high-energy resolution inelastic x-ray scattering (HERIX) data allows for the determination of both vP and vS, independent of an EOS. In particular, we used NRIXS and HERIX to probe the total phonon DOS and points along the longitudinal acoustic phonon branch, respectively, of pure iron loaded into similarly prepared diamond anvil cells, up to a pressure of 171 GPa at 300 K [1; 5]. Experiments were performed at the Advanced Photon Source and European Synchrotron Radiation Facility, where sample volumes (densities) were also measured with in-situ x-ray diffraction. Using established NRIXS and HERIX fitting procedures, we determined iron's density-dependent vD and vP, respectively, accounting for mass effects in the former parameter using a harmonic oscillator model. The combination of these datasets [1; 5] provides a new tight constraint on the density-dependent compressional and shear sound velocities of iron

  11. From Vibrational Spectroscopy to Force Fields and Structures of Saccharides: New Computational Algorithms and Applications

    SciTech Connect

    Pincu, Madeleine; Gerber, Robert Benny

    2013-07-17

    This work was undertaken with the main objective to investigate basic reactions that take place in relatively simple saccharides (mono-saccharides and cellobiose - the building block of cellulose) , in isolation and in cluster with few water molecules or with (gas-phase) clusters of few waters and ionic compounds (salt, isolated ions like H{sup +} or OH{sup -}). Within the context of this work, different potentials were investigated; among them, were the PM3 semi empirical potential, DFT/BLYP and a new hybrid potential constructed from MP2 for the harmonic part and from adjusted Hartree-Fock anharmonic interactions (VSCF-PT2). These potentials were evaluated by comparison with experimental data from published sources and from several collaborating groups. The findings show excellent agreement between experiments and predictions with the hybrid VSCF-PT2 potential and very good agreement with predictions obtained from dynamics with dispersion corrected DFT/BLYP potential. Investigation of hydration of cellobiose, was another topic of interest. Guided by a hydration motif demonstrated by our experimental collaborators (team of Prof J.P. Simons), we demonstrated large energetic and structural differences between the two species of cellobiose: cis and trans. The later, which is dominant in solid and liquid phases, is higher in energy in the gas-phase and compared to pure water, it does not disturb as much the network of H bonds. In contrast, the cis species exhibits asymmetric hydration in cluster with up to 25 waters, indicating that it has surfactant properties. Another highlight of this research effort was the successful first time spectrometric and spectroscopic study of a gas-phase protonated sugar derivative (alpha-D-Galactopyranoside) and its interpretation by Ab Initio molecular dynamics (AIMD) simulations. The findings demonstrate the formation of a motif in which a proton bridges between two Oxygen atoms (belonging to OH groups) at the sugar; The vibrational

  12. Semifluorinated thiols in Langmuir monolayers - a study by nonlinear and linear vibrational spectroscopies.

    PubMed

    Volpati, Diogo; Chachaj-Brekiesz, Anna; Souza, Adriano L; Rimoli, Caio Vaz; Miranda, Paulo B; Oliveira, Osvaldo N; Dynarowicz-Łątka, Patrycja

    2015-12-15

    A series of semifluorinated thiols of the general formula CmF2m+1CnH2nSH (abbr. FmHnSH) have been synthesized and characterized in Langmuir monolayers with surface pressure-area isotherms, complemented with polarization-modulated reflection absorption spectroscopy (PM-IRRAS) and sum-frequency generation (SFG) techniques. A comparative analysis was performed for compounds having the same length of fluorinated segment (F10) and variable length of the hydrogenated part (H6, H10, H12), and having identical hydrogenated segment (H12) connected to a fluorinated moiety of different lengths (F6, F8, F10). For the sake of comparison, an alkanethiol (H18SH) was also examined, and F10H10COOH and F10H10OH molecules were used for helping the assignment of SFG spectra of CH stretches. SFG was applied to investigate the hydrocarbon chain and the terminal CF3 group, while PM-IRRAS was used to probe CF2 groups. The number of gauche defects in the hydrocarbon chain increased with the increasing length of the molecule, either by elongation of the hydrogenated or perfluorinated part. SFG measurements recorded at three polarization combinations (ppp, ssp, sps) enabled us to estimate the tilt angle of the terminal CF3 group in semifluorinated thiol molecules as ranging from 35° to 45°, which is consistent with nearly vertical fluorinated segments. Upon increasing the surface pressure, the fluorinated segment gets slightly more upright, but the hydrocarbon chain tilt increases while keeping the same average number of gauche defects. The extent of disorder in the hydrogenated segment may be controlled by varying the size of the fluorinated segment, and this could be exploited for designing functionalized surfaces with insertion of other molecules in the defect region. PMID:26364075

  13. Probing the electronic and vibrational structure of Au2Al2(-) and Au2Al2 using photoelectron spectroscopy and high resolution photoelectron imaging.

    PubMed

    Lopez, Gary V; Czekner, Joseph; Jian, Tian; Li, Wei-Li; Yang, Zheng; Wang, Lai-Sheng

    2014-12-14

    The electronic and vibrational structures of Au2Al2(-) and Au2Al2 have been investigated using photoelectron spectroscopy (PES), high-resolution photoelectron imaging, and theoretical calculations. Photoelectron spectra taken at high photon energies with a magnetic-bottle apparatus reveal numerous detachment transitions and a large energy gap for the neutral Au2Al2. Vibrationally resolved PE spectra are obtained using high-resolution photoelectron imaging for the ground state detachment transition of Au2Al2(-) at various photon energies (670.55-843.03 nm). An accurate electron affinity of 1.4438(8) eV is obtained for the Au2Al2 neutral cluster, as well as two vibrational frequencies at 57 ± 8 and 305 ± 13 cm(-1). Hot bands transitions yield two vibrational frequencies for Au2Al2(-) at 57 ± 10 and 144 ± 12 cm(-1). The obtained vibrational and electronic structure information is compared with density functional calculations, unequivocally confirming that both Au2Al2(-) and Au2Al2 possess C2v tetrahedral structures. PMID:25494751

  14. Probing the electronic and vibrational structure of Au2Al2- and Au2Al2 using photoelectron spectroscopy and high resolution photoelectron imaging

    NASA Astrophysics Data System (ADS)

    Lopez, Gary V.; Czekner, Joseph; Jian, Tian; Li, Wei-Li; Yang, Zheng; Wang, Lai-Sheng

    2014-12-01

    The electronic and vibrational structures of Au2Al2- and Au2Al2 have been investigated using photoelectron spectroscopy (PES), high-resolution photoelectron imaging, and theoretical calculations. Photoelectron spectra taken at high photon energies with a magnetic-bottle apparatus reveal numerous detachment transitions and a large energy gap for the neutral Au2Al2. Vibrationally resolved PE spectra are obtained using high-resolution photoelectron imaging for the ground state detachment transition of Au2Al2- at various photon energies (670.55-843.03 nm). An accurate electron affinity of 1.4438(8) eV is obtained for the Au2Al2 neutral cluster, as well as two vibrational frequencies at 57 ± 8 and 305 ± 13 cm-1. Hot bands transitions yield two vibrational frequencies for Au2Al2- at 57 ± 10 and 144 ± 12 cm-1. The obtained vibrational and electronic structure information is compared with density functional calculations, unequivocally confirming that both Au2Al2- and Au2Al2 possess C2v tetrahedral structures.

  15. Homogeneous and inhomogeneous broadenings and the Voigt line shapes in the phase-resolved and intensity sum-frequency generation vibrational spectroscopy.

    PubMed

    Chen, Shun-Li; Fu, Li; Gan, Wei; Wang, Hong-Fei

    2016-01-21

    In this report, we show that the ability to measure the sub-1 cm(-1) resolution phase-resolved and intensity high-resolution broadband sum frequency generation vibrational spectra of the -CN stretch vibration of the Langmuir-Blodgett (LB) monolayer of the 4-n-octyl-4'-cyanobiphenyl (8CB) on the z-cut α-quartz surface allows the direct comparison and understanding of the homogeneous and inhomogeneous broadenings in the imaginary and intensity SFG vibrational spectral line shapes in detail. The difference of the full width at half maximum (FWHM) of the imaginary and intensity sum-frequency generation vibrational spectroscopy spectra of the same vibrational mode is the signature of the Voigt line shape and it measures the relative contribution to the overall line shape from the homogeneous and inhomogeneous broadenings in SFG vibrational spectra. From the phase-resolved and intensity spectra, we found that the FWHM of the 2238.00 ± 0.02 cm(-1) peak in the phase-resolved imaginary and intensity spectra is 19.2 ± 0.2 cm(-1) and 21.6 ± 0.4 cm(-1), respectively, for the -CN group of the 8CB LB monolayer on the z-cut α-quartz crystal surface. The FWHM width difference of 2.4 cm(-1) agrees quantitatively with a Voigt line shape with a homogeneous broadening half width of Γ = 5.29 ± 0.08 cm(-1) and an inhomogeneous standard derivation width Δω = 5.42 ± 0.07 cm(-1). These results shed new lights on the understanding and interpretation of the line shapes of both the phase-resolved and the intensity SFG vibrational spectra, as well as other incoherent and coherent spectroscopic techniques in general. PMID:26801040

  16. Homogeneous and inhomogeneous broadenings and the Voigt line shapes in the phase-resolved and intensity sum-frequency generation vibrational spectroscopy

    NASA Astrophysics Data System (ADS)

    Chen, Shun-Li; Fu, Li; Gan, Wei; Wang, Hong-Fei

    2016-01-01

    In this report, we show that the ability to measure the sub-1 cm-1 resolution phase-resolved and intensity high-resolution broadband sum frequency generation vibrational spectra of the -CN stretch vibration of the Langmuir-Blodgett (LB) monolayer of the 4-n-octyl-4'-cyanobiphenyl (8CB) on the z-cut α-quartz surface allows the direct comparison and understanding of the homogeneous and inhomogeneous broadenings in the imaginary and intensity SFG vibrational spectral line shapes in detail. The difference of the full width at half maximum (FWHM) of the imaginary and intensity sum-frequency generation vibrational spectroscopy spectra of the same vibrational mode is the signature of the Voigt line shape and it measures the relative contribution to the overall line shape from the homogeneous and inhomogeneous broadenings in SFG vibrational spectra. From the phase-resolved and intensity spectra, we found that the FWHM of the 2238.00 ± 0.02 cm-1 peak in the phase-resolved imaginary and intensity spectra is 19.2 ± 0.2 cm-1 and 21.6 ± 0.4 cm-1, respectively, for the -CN group of the 8CB LB monolayer on the z-cut α-quartz crystal surface. The FWHM width difference of 2.4 cm-1 agrees quantitatively with a Voigt line shape with a homogeneous broadening half width of Γ = 5.29 ± 0.08 cm-1 and an inhomogeneous standard derivation width Δω = 5.42 ± 0.07 cm-1. These results shed new lights on the understanding and interpretation of the line shapes of both the phase-resolved and the intensity SFG vibrational spectra, as well as other incoherent and coherent spectroscopic techniques in general.

  17. Quantitative determination of molecular structure in multilayered thin films of biaxial and lower symmetry from photon spectroscopies. I. Reflection infrared vibrational spectroscopy

    NASA Astrophysics Data System (ADS)

    Parikh, Atul N.; Allara, David L.

    1992-01-01

    A semitheoretical formalism based on classical electromagnetic wave theory has been developed for application to the quantitative treatment of reflection spectra from multilayered anisotropic films on both metallic and nonmetallic substrates. Both internal and external reflection experiments as well as transmission can be handled. The theory is valid for all wavelengths and is appropriate, therefore, for such experiments as x-ray reflectivity, uv-visible spectroscopic ellipsometry, and infrared reflection spectroscopy. Further, the theory is applicable to multilayered film structures of variable number of layers, each with any degree of anisotropy up to and including full biaxial symmetry. The reflectivities (and transmissivities) are obtained at each frequency by solving the wave propagation equations using a rigorous 4×4 transfer matrix method developed by Yeh in which the optical functions of each medium are described in the form of second rank (3×3) tensors. In order to obtain optical tensors for materials not readily available in single crystal form, a method has been developed to evaluate tensor elements from the complex scalar optical functions (n̂) obtained from the isotropic material with the limitations that the molecular excitations are well characterized and obey photon-dipole selection rules. This method is intended primarily for infrared vibrational spectroscopy and involves quantitative decomposition of the isotropic imaginary optical function (k) spectrum into a sum of contributions from fundamental modes, the assignment of a direction in molecular coordinates to the transition dipole matrix elements for each mode, the appropriate scaling of each k vector component in surface coordinates according to a selected surface orientation of the molecule to give a diagonal im(n̂) tensor, and the calculation of the real(n̂) spectrum tensor elements by the Kramers-Kronig transformation. Tensors for other surface orientations are generated by an

  18. Isomers and conformers of two push pull hydrazines studied by NMR and vibrational spectroscopy and by ab initio calculations

    NASA Astrophysics Data System (ADS)

    Gróf, M.; Polovková, J.; Gatial, A.; Milata, V.; Černuchová, P.; Prónayová, N.; Matějka, P.

    2007-05-01

    The isomers and conformers of two push-pull hydrazines: 3- N, N-dimethylhydrazino-2-acetyl propenenitrile [(H 3C) 2N sbnd NH sbnd CH dbnd C(CN)(COCH 3)] (DMHAP) and 3- N, N-dimethylhydrazino-2-methylsulfonyl propenenitrile [(H 3C) 2N sbnd NH sbnd CH dbnd C(CN)(SO 2CH 3)] (DMHSP) have been studied experimentally by NMR and vibrational spectroscopy and theoretically by the ab initio calculations at MP2 level in 6-31G** basis set. The IR and Raman spectra of both compounds as a solid and solute in various solvents have been recorded. The NMR spectra were obtained in chloroform and DMSO at room temperature. Both compounds have been prepared by the same way. NMR spectra revealed that DMHAP was prepared as a pure Z-isomer whereas in the case of DMHSP a pure E-isomer was obtained. Due to the low barrier for both compounds practically free isomerisation process occurred in the solutions but in opposite directions. Whereas DMHAP exists in the solid state and in the less polar solvent as Z-isomer, in more polar solvents the appearance of next two conformers of E-isomer was observed. On the contrary DMHSP exists in the solid state and in the more polar solvent as E-isomer only but in less polar solvent the presence of Z-isomer was observed as well. Conformational possibilities of both studied compounds are given by the rotation of dimethylhydrazino group with its anti- or syn-orientation towards the olefinic double bond. Moreover, by the rotation of the acetyl group with Z- and E-orientation of carbonyl bond towards olefinic double bond can occur in DMHAP. Vibrational and NMR spectra revealed the existence of single conformer with intramolecular hydrogen bond for Z-isomer in less polar solvent and next two conformers for E-isomer of DMHAP with Z-orientation of acetyl group and anti and syn orientation of dimethylhydrazine group in more polar solvents. For E-isomer of DMHSP two conformers with anti or syn orientations of dimethylhydrazino group have been also confirmed by NMR

  19. Pd Nanoparticle Formation in Ionic Liquid Thin Films Monitored by in situ Vibrational Spectroscopy.

    PubMed

    Mehl, Sascha; Toghan, Arafat; Bauer, Tanja; Brummel, Olaf; Taccardi, Nicola; Wasserscheid, Peter; Libuda, Jörg

    2015-11-10

    Ionic liquids (ILs) are flexible reaction media and solvents for the synthesis of metal nanoparticles (NPs). Here, we describe a new preparation method for metallic NPs in nanometer thick films of ultraclean ILs in an ultrahigh vacuum (UHV) environment. CO-covered Pd NPs are formed by simultaneous and by sequential physical vapor deposition (PVD) of the IL and the metal in the presence of low partial pressures of CO. The film thickness and the particle size can be controlled by the deposition parameters. We followed the formation of the NPs and their thermal behavior by time-resolved IR reflection absorption spectroscopy (TP-IRAS) and by temperature-programmed IRAS (TR-IRAS). Codeposition of Pd and [C1C2Im][OTf] in CO at 100 K leads to the growth of homogeneous multilayer films of CO-covered Pd aggregates in an IL matrix. The size of these NPs can be controlled by the metal fraction in the co-deposit. With increasing metal fraction, the size of the Pd NPs also increases. At very low metal content, small Pd carbonyl-like species are formed, which bind CO in on-top geometry only. Upon annealing, the [OTf](-) anion coadsorbs at the NP surface and partially displaces CO. Co-adsorption of CO and IL is indicated by a strong red-shift of the CO stretching bands. While the weakly bound on-top CO is mainly replaced below the melting transition of the IL, coadsorbate shells with bridge-bonded CO and IL are stable well above the melting point. Larger three-dimensional Pd NPs can be prepared by PVD of Pd onto a solid [C1C2Im][OTf] film at 100 K. Upon annealing, on-top CO desorbs from these NPs below 200 K. Upon melting of the IL film, the CO-covered Pd NPs immerse into the IL and again form a stable coadsorbate shell that consists of bridge-bonded CO and the IL. PMID:26479118

  20. Photoluminescence spectroscopy of YVO{sub 4}:Eu{sup 3+} nanoparticles with aromatic linker molecules: A precursor to biomedical functionalization

    SciTech Connect

    Senty, T. R.; Yalamanchi, M.; Cushing, S. K.; Seehra, M. S.; Bristow, A. D.; Zhang, Y.; Shi, X.

    2014-04-28

    Photoluminescence spectra of YVO{sub 4}:Eu{sup 3+} nanoparticles are presented, with and without the attachment of organic molecules that are proposed for linking to biomolecules. YVO{sub 4}:Eu{sup 3+} nanoparticles with 5% dopant concentration were synthesized via wet chemical synthesis. X-ray diffraction and transmission electron microscopy show the expected wakefieldite structure of tetragonal particles with an average size of 17 nm. Fourier-transform infrared spectroscopy determines that metal-carboxylate coordination is successful in replacing native metal-hydroxyl bonds with three organic linkers, namely, benzoic acid, 3-nitro 4-chloro-benzoic acid, and 3,4-dihydroxybenzoic acid, in separate treatments. UV-excitation photoluminescence spectra show that the position and intensity of the dominant {sup 5}D{sub 0} – {sup 7}F{sub 2} electric-dipole transition at 619 nm are unaffected by the benzoic acid and 3-nitro 4-chloro-benzoic acid treatments. Attachment of 3,4-dihydroxybenzoic acid produces an order-of-magnitude quenching in the photoluminescence, due to the presence of high-frequency vibrational modes in the linker. Ratios of the dominant electric- and magnetic-dipole transitions confirm infrared measurements, which indicate that the bulk crystal of the nanoparticle is unchanged by all three treatments.

  1. Biomedical research

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Biomedical problems encountered by man in space which have been identified as a result of previous experience in simulated or actual spaceflight include cardiovascular deconditioning, motion sickness, bone loss, muscle atrophy, red cell alterations, fluid and electrolyte loss, radiation effects, radiation protection, behavior, and performance. The investigations and the findings in each of these areas were reviewed. A description of how biomedical research is organized within NASA, how it is funded, and how it is being reoriented to meet the needs of future manned space missions is also provided.

  2. Vibration-rotation alchemy in acetylene (12C2H2), ? at low vibrational excitation: from high resolution spectroscopy to fast intramolecular dynamics

    NASA Astrophysics Data System (ADS)

    Perry, David S.; Miller, Anthony; Amyay, Badr; Fayt, André; Herman, Michel

    2010-04-01

    The link between energy-resolved spectra and time-resolved dynamics is explored quantitatively for acetylene (12C2H2), ? with up to 8600 cm-1 of vibrational energy. This comparison is based on the extensive and reliable knowledge of the vibration-rotation energy levels and on the model Hamiltonian used to fit them to high precision [B. Amyay, S. Robert, M. Herman, A. Fayt, B. Raghavendra, A. Moudens, J. Thiévin, B. Rowe, and R. Georges, J. Chem. Phys. 131, 114301 (2009)]. Simulated intensity borrowing features in high resolution absorption spectra and predicted survival probabilities in intramolecular vibrational redistribution (IVR) are first investigated for the v 4 + v 5 and v 3 bright states, for J = 2, 30 and 100. The dependence of the results on the rotational quantum number and on the choice of vibrational bright state reflects the interplay of three kinds of off-diagonal resonances: anharmonic, rotational l-type, and Coriolis. The dynamical quantities used to characterize the calculated time-dependent dynamics are the dilution factor φ d, the IVR lifetime τ IVR , and the recurrence time τ rec. For the two bright states v 3 + 2v 4 and 7v 4, the collisionless dynamics for thermally averaged rotational distributions at T = 27, 270 and 500 K were calculated from the available spectroscopic data. For the 7v 4 bright state, an apparent irreversible decay of is found. In all cases, the model Hamiltonian allows a detailed calculation of the energy flow among all of the coupled zeroth-order vibration-rotation states.

  3. Time Correlation Function Modeling of Third-Order Sum Frequency Vibrational Spectroscopy of a Charged Surface/Water Interface.

    PubMed

    Green, Anthony J; Space, Brian

    2015-07-23

    Sum frequency vibrational spectroscopy (SFVS), a second-order optical process, is interface-specific in the dipole approximation [Perry, A.; Neipert, C.; Moore, P.; Space, B. Chem. Rev. 2006, 106, 1234-1258; Richmond, G. L. Chem. Rev. 2002, 102, 2693-2724; Byrnes, S. J.; Geissler, P. L.; Shen, Y. R. Chem. Phys. Lett. 2011, 516, 115-124]. At charged interfaces, the experimentally detected signal is a combination of enhanced second-order and static-field-induced third-order contributions due to the existence of a static field. Evidence of the importance/relative magnitude of this third-order contribution is seen in the literature [Ong, S.; Zhao, X.; Eisenthal, K. B. Chem. Phys. Lett. 1992, 191, 327-335; Zhao, X.; Ong, S.; Eisenthal, K. B. Chem. Phys. Lett. 1993, 202, 513-520; Shen, Y. R. Appl. Phys. B: Laser Opt. 1999, 68, 295-300], but a molecularly detailed approach to separately calculating the second- and third-order contributions is difficult to construct. Recent work presented a novel molecular dynamics (MD)-based theory that provides a direct means to calculate the third-order contributions to SFVS spectra at charged interfaces [Neipert, C.; Space, B. J. Chem. Phys. 2006, 125, 224706], and a hyperpolarizability model for water was developed as a prerequisite to practical implementation [Neipert, C.; Space, B. Comput. Lett. 2007, 3, 431-440]. Here, these methods are applied to a highly abstracted/idealized silica/water interface, and the results are compared to experimental data for water at a fused quartz surface. The results suggest that such spectra have some quite general spectral features. PMID:25415752

  4. Electronic and vibrational spectroscopy of the cytochrome c:cytochrome c oxidase complexes from bovine and Paracoccus denitrificans.

    PubMed Central

    Lynch, S. R.; Copeland, R. A.

    1992-01-01

    The 1:1 complex between horse heart cytochrome c and bovine cytochrome c oxidase, and between yeast cytochrome c and Paracoccus denitrificans cytochrome c oxidase have been studied by a combination of second derivative absorption, circular dichroism (CD), and resonance Raman spectroscopy. The second derivative absorption and CD spectra reveal changes in the electronic transitions of cytochrome a upon complex formation. These results could reflect changes in ground state heme structure or changes in the protein environment surrounding the chromophore that affect either the ground or excited electronic states. The resonance Raman spectrum, on the other hand, reflects the heme structure in the ground electronic state only and shows no significant difference between cytochrome a vibrations in the complex or free enzyme. The only major difference between the Raman spectra of the free enzyme and complex is a broadening of the cytochrome a3 formyl band of the complex that is relieved upon complex dissociation at high ionic strength. These data suggest that the differences observed in the second derivative and CD spectra are the result of changes in the protein environment around cytochrome a that affect the electronic excited state. By analogy to other protein-chromophore systems, we suggest that the energy of the Soret pi* state of cytochrome a may be affected by (1) changes in the local dielectric, possibly brought about by movement of a charged amino acid side chain in proximity to the heme group, or (2) pi-pi interactions between the heme and aromatic amino acid residues. PMID:1338946

  5. High resolution study of the. nu. sub 1 vibration of CH sub 3 by coherent Raman photofragment spectroscopy

    SciTech Connect

    Triggs, N.E.; Zahedi, M.; Nibler, J.W. ); DeBarber, P.; Valentini, J.J. )

    1992-02-01

    Coherent anti-Stokes Raman spectroscopy (CARS) was used to measure the vibrational--rotational {ital Q}-branch structure of the {nu}{sub 1} symmetric stretch of methyl radicals produced by 266 nm laser photolysis of methyl iodide. Spectra were recorded in both flow cells and free jet expansions at instrumental resolutions ranging from 0.25 to 0.005 cm{sup {minus}1}. Due to the high recoil velocity of the CH{sub 3} fragment, Doppler and collisional broadening of the transitions is appreciable. Even at the highest resolution such broadening of the transitions leads to interference effects among the closely spaced Raman transitions that influence both the line positions and intensities in the observed CARS spectra. The molecular parameters (cm{sup {minus}1}) obtained from the analysis are {nu}{sub 1}=3004.42(4), {alpha}{sub {ital B}1}=0.0851(8), {alpha}{sub {ital C}1}=0.0475(7), {ital D}{sub {ital N}1}{minus}{ital D}{sub {ital N}0}={minus}0.000 046(8), {ital D}{sub {ital NK}1}{minus}{ital D}{sub {ital NK}0}=0.000 083(20), and, with assumptions, {ital D}{sub {ital K}1}{minus}{ital D}{sub {ital K}0}={minus}0.000 039. These results and infrared data in the literature yield a CH bond length of 1.08378(5) A for the (1000) state and, with some assumptions, an equilibrium bond length {ital R}{sub {ital e}} of 1.076 A for this prototypic case of {ital sp}{sup 2} bonding.

  6. Use of Molecular Symmetry to Describe Pauli Principle Effects on the Vibration-Rotation Spectroscopy of Co2(g)

    ERIC Educational Resources Information Center

    Myrick, M. L.; Colavita, P. E.; Greer, A. E.; Long, B.; Andreatta, D.

    2004-01-01

    The measurement of the infrared rotation-vibration spectrum of HCl(g) is a common experiment in the physical chemistry laboratory, which allows students the opportunity to explore quantization of rotational states in diatomic molecules. It is found that the CO2 vibration-rotation spectrum if used as an addition to the HCl experiment would give the…

  7. Infrared micro-spectroscopy of human tissue: principles and future promises.

    PubMed

    Diem, Max; Ergin, Ayşegül; Remiszewski, Stan; Mu, Xinying; Akalin, Ali; Raz, Dan

    2016-06-23

    This article summarizes the methods employed, and the progress achieved over the past two decades in applying vibrational (Raman and IR) micro-spectroscopy to problems of medical diagnostics and cellular biology. During this time, several research groups have verified the enormous information contained in vibrational spectra; in fact, information on protein, lipid and metabolic composition of cells and tissues can be deduced by decoding the observed vibrational spectra. This decoding process is aided by the availability of computer workstations and advanced algorithms for data analysis. Furthermore, commercial instrumentation for the fast collection of both Raman and infrared micro-spectral data has enabled the collection of images of cells and tissues based solely on vibrational spectroscopic data. The progress in the field has been manifested by a steady increase in the number and quality of publications submitted by established and new research groups in vibrational spectroscopy in the biological and biomedical arenas. PMID:27075634

  8. Application of high-resolution photoelectron spectroscopy: Vibrational resolved C 1s and O 1s spectra of CO adsorbed on Ni(100)

    SciTech Connect

    Foehlisch, A.; Nilsson, A.; Martensson, N.

    1997-04-01

    There are various effects which determine the line shape of a core-level electron spectrum. These are due to the finite life-time of the core hole, inelastic scattering of the outgoing photoelectron, electronic shake-up and shake-off processes and vibrational excitations. For free atoms and molecules the different contributions to the observed line shapes can often be well separated. For solids, surfaces and adsorbates the line shapes are in general much broader and it has in the past been assumed that no separation of the various contributions can be made. In the present report the authors will show that this is indeed not the case. Surprisingly, the vibrational fine structure of CO adsorbed on Ni(100) can be resolved in the C 1s and O 1s electron spectra. This was achieved by the combination of highly monochromatized soft X-rays from B18.0 with a high resolution Scienta 200 mm photoelectron spectrometer. X-ray photoelectron spectroscopy (XPS) with tunable excitation energy yields as a core level spectroscopy atomic and site-specific information. The presented measurements allow for a determination of internuclear distances and potential energy curves in corehole ionized adsorbed molecules. The authors analysis of the c(2x2) phase CO/Ni(100) on {open_quotes}top{close_quotes} yielded a vibrational splitting of 217 +/- 2 meV for C 1s ionization. For O 1s ionization a splitting of 173 +/- 8 meV was found.

  9. Unified treatment and measurement of the spectral resolution and temporal effects in frequency-resolved sum-frequency generation vibrational spectroscopy (SFG-VS)

    SciTech Connect

    Velarde Ruiz Esparza, Luis A.; Wang, Hongfei

    2013-12-14

    The emergence of sub-wavenumber high-resolution broadband sum-frequency generation vibrational spectroscopy (HR-BBSFG-VS) [Velarde et al., J. Chem. Phys., 2011, 135, 241102] has offered new opportunities in obtaining and understanding the spectral lineshape and temporal effects on the surface vibrational spectroscopy. Particularly, the high accuracy in the HR-BBSFG-VS spectral lineshape measurement provides detailed information on the complex coherent vibrational dynamics through spectral measurement. Here we present a unified formalism of the theoretical and experimental approaches for obtaining the accurate lineshape of the SFG response, and then present a analysis on the higher and lower spectral resolution SFG spectra as well as their temporal effects of the cholesterol molecules at the air/water interface. With the high spectral resolution and accurate lineshape, it is shown that the parameters from the sub-wavenumber resolution SFG spectra can be used not only to understand but also to quantitatively reproduce the temporal effects in the lower resolution SFG measurement. These not only provide a unified picture in understanding both the frequency-domain and the time-domain SFG response of the complex molecular interface, but also provide novel experimental approaches that can directly measure them.

  10. Molecular geometry and vibrational studies of 3,5-diamino-1,2,4-triazole using quantum chemical calculations and FT-IR and FT-Raman spectroscopies

    NASA Astrophysics Data System (ADS)

    Guennoun, L.; El jastimi, J.; Guédira, F.; Marakchi, K.; Kabbaj, O. K.; El Hajji, A.; Zaydoun, S.

    2011-01-01

    The 3,5-diamino-1,2,4-triazole (guanazole) was investigated by vibrational spectroscopy and quantum methods. The solid phase FT-IR and FT-Raman spectra were recorded in the region 4000-400 cm -1 and 3600-50 cm -1 respectively, and the band assignments were supported by deuteration effects. The results of energy calculations have shown that the most stable form is 1H-3,5-diamino-1,2,4-triazole under C 1 symmetry. For this form, the molecular structure, harmonic vibrational wave numbers, infrared intensities and Raman activities were calculated by the ab initio/HF and DFT/B3LYP methods using 6-31G* basis set. The calculated geometrical parameters of the guanazole molecule using B3LYP methodology are in good agreement with the previously reported X-ray data, and the scaled vibrational wave number values are in good agreement with the experimental data. The normal vibrations were characterized in terms of potential energy distribution (PEDs) using VEDA 4 program.

  11. Investigating vibrational relaxation in cyanide-bridged transition metal mixed-valence complexes using two-dimensional infrared and infrared pump-probe spectroscopies

    PubMed Central

    Slenkamp, Karla M.; Lynch, Michael S.; Brookes, Jennifer F.; Bannan, Caitlin C.; Daifuku, Stephanie L.; Khalil, Munira

    2016-01-01

    Using polarization-selective two-dimensional infrared (2D IR) and infrared pump-probe spectroscopies, we study vibrational relaxation of the four cyanide stretching (νCN) vibrations found in [(NH3)5RuIIINCFeII(CN)5]− (FeRu) dissolved in D2O or formamide and [(NC)5FeIICNPtIV(NH3)4NCFeII(CN)5]4− (FePtFe) dissolved in D2O. These cyanide-bridged transition metal complexes serve as models for understanding the role high frequency vibrational modes play in metal-to-metal charge transfers over a bridging ligand. However, there is currently little information about vibrational relaxation and dephasing dynamics of the anharmonically coupled νCN modes in the electronic ground state of these complexes. IR pump-probe experiments reveal that the vibrational lifetimes of the νCN modes are ∼2 times faster when FeRu is dissolved in D2O versus formamide. They also reveal that the vibrational lifetimes of the νCN modes of FePtFe in D2O are almost four times as long as for FeRu in D2O. Combined with mode-specific relaxation dynamics measured from the 2D IR experiments, the IR pump-probe experiments also reveal that intramolecular vibrational relaxation is occurring in all three systems on ∼1 ps timescale. Center line slope dynamics, which have been shown to be a measure of the frequency-frequency correlation function, reveal that the radial, axial, and trans νCN modes exhibit a ∼3 ps timescale for frequency fluctuations. This timescale is attributed to the forming and breaking of hydrogen bonds between each mode and the solvent. The results presented here along with our previous work on FeRu and FePtFe reveal a picture of coupled anharmonic νCN modes where the spectral diffusion and vibrational relaxation dynamics depend on the spatial localization of the mode on the molecular complex and its specific interaction with the solvent. PMID:27158634

  12. Biomedical Conferences

    NASA Technical Reports Server (NTRS)

    1976-01-01

    As a result of Biomedical Conferences, Vivo Metric Systems Co. has produced cardiac electrodes based on NASA technology. Frequently in science, one highly specialized discipline is unaware of relevant advances made in other areas. In an attempt to familiarize researchers in a variety of disciplines with medical problems and needs, NASA has sponsored conferences that bring together university scientists, practicing physicians and manufacturers of medical instruments.

  13. Systematic Vibration Studies on a Cryogen-Free ^3 He/^4 He Dilution Refrigerator for X-ray Spectroscopy at Storage Rings

    NASA Astrophysics Data System (ADS)

    Scholz, P. A.; Kraft-Bermuth, S.; Andrianov, V.

    2016-01-01

    High-precision X-ray spectroscopy of highly charged ions at storage rings provides a sensitive test of quantum electrodynamics in strong Coulomb fields. To increase the precision of such experiments, silicon microcalorimeters have already been applied successfully. To minimize the interruption of beam times due to maintenance, a new cryogen-free ^3 He/^4 He dilution refrigerator has been designed and is under commissioning. However, in cryogen-free systems microphonic noise due to vibrations contributes considerably to the overall noise and may limit the detector energy resolution. Therefore, we report on systematic vibration studies on a cryogen-free ^3 He/^4 He dilution refrigerator which is specially adapted for experiments at storage rings.

  14. An experimental study of the structural and vibrational properties of sesquiterpene lactone cnicin using FT-IR, FT-Raman, UV-visible and NMR spectroscopies

    NASA Astrophysics Data System (ADS)

    Chain, Fernando; Romano, Elida; Leyton, Patricio; Paipa, Carolina; Catalán, César Atilio Nazareno; Fortuna, Mario Antonio; Brandán, Silvia Antonia

    2014-05-01

    An experimental and theoretical investigation of cnicin is presented, combining the use of infrared, Raman, NMR and UV-visible spectroscopies with density functional theory (DFT) that employs hybrid B3LYP exchange correlation functional and a 6-31G∗ basis set. The molecular electrostatic potentials, atomic charges, bond orders, stabilization energies, topological properties and energy gap are presented by performing NBO, AIM and HOMO-LUMO calculations at the same level of theory as cnicin. A complete vibrational compound assignment was performed by employing internal coordinate analysis and a scaled quantum mechanical force field (SQMFF) methodology. Comparisons between the theoretical and experimental vibrational and ultraviolet-visible spectra show a strong concordance. The geometrical parameters and NBO studies suggest a probable negative Cotton effect for cnicin, which can be attributed to the π → π∗ transition for an α,β-unsaturated γ-lactone, as reported in the literature.

  15. Low-frequency vibrational properties of crystalline and glassy indomethacin probed by terahertz time-domain spectroscopy and low-frequency Raman scattering.

    PubMed

    Shibata, Tomohiko; Mori, Tatsuya; Kojima, Seiji

    2015-11-01

    In order to clarify the intermolecular vibrations, the low-frequency modes of the glassy and crystalline states of model pharmaceutical indomethacin have been studied using broadband terahertz time-domain spectroscopy and low-frequency Raman scattering. In the crystalline γ-form, the center of symmetry was suggested by the observation of the exclusion principle of the infrared (IR) and Raman selection rules in the frequency range between 0.2 and 6.5 THz. In addition, a boson peak of the glassy state was observed in both IR and Raman spectra and their frequency showed apparent discrepancy. The intermediate correlation length of the glassy structure was estimated to be about 2.5 nm. The existence of hydrogen bonded cyclic dimers in a glassy state was suggested by the observation of the infrared active intermolecular vibrational mode of the hydrogen bonded cyclic dimers as a broad peak at 3.0 THz in the IR spectrum. PMID:26051642

  16. Systematic Vibration Studies on a Cryogen-Free ^3He/^4He Dilution Refrigerator for X-ray Spectroscopy at Storage Rings

    NASA Astrophysics Data System (ADS)

    Scholz, P. A.; Kraft-Bermuth, S.; Andrianov, V.

    2016-08-01

    High-precision X-ray spectroscopy of highly charged ions at storage rings provides a sensitive test of quantum electrodynamics in strong Coulomb fields. To increase the precision of such experiments, silicon microcalorimeters have already been applied successfully. To minimize the interruption of beam times due to maintenance, a new cryogen-free ^3He/^4He dilution refrigerator has been designed and is under commissioning. However, in cryogen-free systems microphonic noise due to vibrations contributes considerably to the overall noise and may limit the detector energy resolution. Therefore, we report on systematic vibration studies on a cryogen-free ^3He/^4He dilution refrigerator which is specially adapted for experiments at storage rings.

  17. Generalized theoretical method for the interaction between arbitrary nonuniform electric field and molecular vibrations: Toward near-field infrared spectroscopy and microscopy.

    PubMed

    Iwasa, Takeshi; Takenaka, Masato; Taketsugu, Tetsuya

    2016-03-28

    A theoretical method to compute infrared absorption spectra when a molecule is interacting with an arbitrary nonuniform electric field such as near-fields is developed and numerically applied to simple model systems. The method is based on the multipolar Hamiltonian where the light-matter interaction is described by a spatial integral of the inner product of the molecular polarization and applied electric field. The computation scheme is developed under the harmonic approximation for the molecular vibrations and the framework of modern electronic structure calculations such as the density functional theory. Infrared reflection absorption and near-field infrared absorption are considered as model systems. The obtained IR spectra successfully reflect the spatial structure of the applied electric field and corresponding vibrational modes, demonstrating applicability of the present method to analyze modern nanovibrational spectroscopy using near-fields. The present method can use arbitral electric fields and thus can integrate two fields such as computational chemistry and electromagnetics. PMID:27036436

  18. Far-infrared VRT spectroscopy of the water dimer: Characterization of the 20 μm out-of-plane librational vibration

    SciTech Connect

    Cole, William T. S.; Fellers, Ray S.; Viant, Mark R.; Saykally, Richard J.; Leforestier, Claude

    2015-10-21

    We report the first high-resolution spectra for the out-of-plane librational vibration in the water dimer. Three vibrational subbands comprising a total of 188 transitions have been measured by diode laser spectroscopy near 500 cm{sup −1} and assigned to (H{sub 2}O){sub 2} libration-rotation-tunneling eigenstates. The band origin for the K{sub a} = 1 subband is ~524 cm{sup −1}. Librational excitation increases the interchange and bifurcation hydrogen bond rearrangement tunneling splittings by factors of 3-5 and 4-40, respectively. Analysis of the rotational constants obtained from a nonlinear least squares fit indicates that additional external perturbations to the energy levels are likely.

  19. Solid-state transformation of the pseudopolymorphic forms of codeine phosphate hemihydrate and codeine phosphate sesquihydrate monitored by vibrational spectroscopy and thermal analysis

    NASA Astrophysics Data System (ADS)

    Petruševski, Gjorgji; Ugarkovic, Sonja; Makreski, Petre

    2011-05-01

    The results from the first study on the pseudopolymorphism and solid-state transformations of codeine phosphate hemihydrate and codeine phosphate sesquihydrate are presented. The vibrational (infrared and Raman) spectra for both studied forms have revealed differences indicating that vibrational spectroscopy could discriminate between pseudopolymorphic forms of these compounds. Coupling the obtained spectroscopic data and the results from the thermoanalytical techniques (TGA/DSC) afforded interpretation of the undergoing solid-state transformations that occur when the compounds are being exposed at increased humidity and/or temperature. It was observed that, at room temperature, the hemihydrate and the sesquihydrate forms are the only sufficiently stable pseudopolymorphs of codeine phosphate explaining their intense pharmaceutical application.

  20. A method for the direct measurement of electronic site populations in a molecular aggregate using two-dimensional electronic-vibrational spectroscopy.

    PubMed

    Lewis, Nicholas H C; Dong, Hui; Oliver, Thomas A A; Fleming, Graham R

    2015-09-28

    Two dimensional electronic spectroscopy has proved to be a valuable experimental technique to reveal electronic excitation dynamics in photosynthetic pigment-protein complexes, nanoscale semiconductors, organic photovoltaic materials, and many other types of systems. It does not, however, provide direct information concerning the spatial structure and dynamics of excitons. 2D infrared spectroscopy has become a widely used tool for studying structural dynamics but is incapable of directly providing information concerning electronic excited states. 2D electronic-vibrational (2DEV) spectroscopy provides a link between these domains, directly connecting the electronic excitation with the vibrational structure of the system under study. In this work, we derive response functions for the 2DEV spectrum of a molecular dimer and propose a method by which 2DEV spectra could be used to directly measure the electronic site populations as a function of time following the initial electronic excitation. We present results from the response function simulations which show that our proposed approach is substantially valid. This method provides, to our knowledge, the first direct experimental method for measuring the electronic excited state dynamics in the spatial domain, on the molecular scale. PMID:26429003

  1. A method for the direct measurement of electronic site populations in a molecular aggregate using two-dimensional electronic-vibrational spectroscopy

    SciTech Connect

    Lewis, Nicholas H. C.; Dong, Hui; Oliver, Thomas A. A.; Fleming, Graham R.

    2015-09-28

    Two dimensional electronic spectroscopy has proved to be a valuable experimental technique to reveal electronic excitation dynamics in photosynthetic pigment-protein complexes, nanoscale semiconductors, organic photovoltaic materials, and many other types of systems. It does not, however, provide direct information concerning the spatial structure and dynamics of excitons. 2D infrared spectroscopy has become a widely used tool for studying structural dynamics but is incapable of directly providing information concerning electronic excited states. 2D electronic-vibrational (2DEV) spectroscopy provides a link between these domains, directly connecting the electronic excitation with the vibrational structure of the system under study. In this work, we derive response functions for the 2DEV spectrum of a molecular dimer and propose a method by which 2DEV spectra could be used to directly measure the electronic site populations as a function of time following the initial electronic excitation. We present results from the response function simulations which show that our proposed approach is substantially valid. This method provides, to our knowledge, the first direct experimental method for measuring the electronic excited state dynamics in the spatial domain, on the molecular scale.

  2. Mechanism of Interaction between the General Anesthetic Halothane and a Model Ion Channel Protein, II: Fluorescence and Vibrational Spectroscopy Using a Cyanophenylalanine Probe

    SciTech Connect

    Liu, J.; Strzalka, J; Tronin, A; Johansson, J; Blasie, J

    2009-01-01

    We demonstrate that cyano-phenylalanine (PheCN) can be utilized to probe the binding of the inhalational anesthetic halothane to an anesthetic-binding, model ion channel protein hbAP-PheCN. The Trp to PheCN mutation alters neither the a-helical conformation nor the 4-helix bundle structure. The halothane binding properties of this PheCN mutant hbAP-PheCN, based on fluorescence quenching, are consistent with those of the prototype, hbAP1. The dependence of fluorescence lifetime as a function of halothane concentration implies that the diffusion of halothane in the nonpolar core of the protein bundle is one-dimensional. As a consequence, at low halothane concentrations, the quenching of the fluorescence is dynamic, whereas at high concentrations the quenching becomes static. The 4-helix bundle structure present in aqueous detergent solution and at the air-water interface, is preserved in multilayer films of hbAP-PheCN, enabling vibrational spectroscopy of both the protein and its nitrile label (-CN). The nitrile groups' stretching vibration band shifts to higher frequency in the presence of halothane, and this blue-shift is largely reversible. Due to the complexity of this amphiphilic 4-helix bundle model membrane protein, where four PheCN probes are present adjacent to the designed cavity forming the binding site within each bundle, all contributing to the infrared absorption, molecular dynamics (MD) simulation is required to interpret the infrared results. The MD simulations indicate that the blue-shift of -CN stretching vibration induced by halothane arises from an indirect effect, namely an induced change in the electrostatic protein environment averaged over the four probe oscillators, rather than a direct interaction with the oscillators. hbAP-PheCN therefore provides a successful template for extending these investigations of the interactions of halothane with the model membrane protein via vibrational spectroscopy, using cyano-alanine residues to form the

  3. Mechanism of Interaction between the General Anesthetic Halothane and a Model Ion Channel Protein, II: Fluorescence and Vibrational Spectroscopy Using a Cyanophenylalanine Probe

    PubMed Central

    Liu, Jing; Strzalka, Joseph; Tronin, Andrey; Johansson, Jonas S.; Blasie, J. Kent

    2009-01-01

    We demonstrate that cyano-phenylalanine (PheCN) can be utilized to probe the binding of the inhalational anesthetic halothane to an anesthetic-binding, model ion channel protein hbAP-PheCN. The Trp to PheCN mutation alters neither the α-helical conformation nor the 4-helix bundle structure. The halothane binding properties of this PheCN mutant hbAP-PheCN, based on fluorescence quenching, are consistent with those of the prototype, hbAP1. The dependence of fluorescence lifetime as a function of halothane concentration implies that the diffusion of halothane in the nonpolar core of the protein bundle is one-dimensional. As a consequence, at low halothane concentrations, the quenching of the fluorescence is dynamic, whereas at high concentrations the quenching becomes static. The 4-helix bundle structure present in aqueous detergent solution and at the air-water interface, is preserved in multilayer films of hbAP-PheCN, enabling vibrational spectroscopy of both the protein and its nitrile label (-CN). The nitrile groups' stretching vibration band shifts to higher frequency in the presence of halothane, and this blue-shift is largely reversible. Due to the complexity of this amphiphilic 4-helix bundle model membrane protein, where four PheCN probes are present adjacent to the designed cavity forming the binding site within each bundle, all contributing to the infrared absorption, molecular dynamics (MD) simulation is required to interpret the infrared results. The MD simulations indicate that the blue-shift of -CN stretching vibration induced by halothane arises from an indirect effect, namely an induced change in the electrostatic protein environment averaged over the four probe oscillators, rather than a direct interaction with the oscillators. hbAP-PheCN therefore provides a successful template for extending these investigations of the interactions of halothane with the model membrane protein via vibrational spectroscopy, using cyano-alanine residues to form the

  4. Detailed structural study of β-artemether: Density functional theory (DFT) calculations of Infrared, Raman spectroscopy, and vibrational circular dichroism

    NASA Astrophysics Data System (ADS)

    Wang, Zhiqiang; Chen, Jianchao; Li, Linwei; Zhou, Zhixu; Geng, Yiding; Sun, Tiemin

    2015-10-01

    In this study, the experimental and theoretical studies on the structure of β-artemether are presented. The optimized molecular structure, Mulliken atomic charges, vibrational spectra (IR, Raman and vibrational circular dichroism), and molecular electrostatic potential have been calculated by density functional theory (DFT) using B3LYP method with the 6-311++G (2d, p) basis set. Reliable vibrational assignments for Artemether have been made on the basis of potential energy distribution (PED). The vibrational circular dichroism (VCD) has been explored by ab initio calculations, and then was used to compare with the experimental VCD. The consistence between them confirmed the absolute configuration of Artemether. In addition, HOMO-LUMO of the title compound as well as thermo-dynamical parameters has illustrated the stability of β-artemether.

  5. High-resolution synchrotron infrared spectroscopy of acrolein: The vibrational levels between 850 and 1020 cm-1

    NASA Astrophysics Data System (ADS)

    McKellar, A. R. W.; Billinghurst, B. E.; Xu, Li-Hong; Lees, R. M.

    2015-11-01

    Using spectra obtained at the Canadian Light Source synchrotron radiation facility, a previously unobserved out-of-plane vibration of trans-acrolein (propenal) is reliably assigned for the first time. Its origin is at 1002.01 cm-1, which is about 20 cm-1 higher than usually quoted in the past. This mode is thus labelled as v14, leaving the label v15 for the known vibration at 992.66 cm-1. Weak combination bands 171182 ← 182, 171131 ← 131, 121182 ← 181, and 171182 ← 181 are studied for the first time, and assignments in the known v11, v16, and v15 fundamental bands are also extended. The seven excited vibrations involved in these bands are analyzed, together with five more unobserved vibrations in the same region (850-1020 cm-1), in a large 12-state simultaneous fit which accounts for most of the many observed perturbations in the spectra.

  6. Use of vibrational spectroscopy to study protein and DNA structure, hydration, and binding of biomolecules: A combined theoretical and experimental approach

    NASA Astrophysics Data System (ADS)

    Jalkanen, K. J.; Jürgensen, V. Würtz; Claussen, A.; Rahim, A.; Jensen, G. M.; Wade, R. C.; Nardi, F.; Jung, C.; Degtyarenko, I. M.; Nieminen, R. M.; Herrmann, F.; Knapp-Mohammady, M.; Niehaus, T. A.; Frimand, K.; Suhai, S.

    We report on our work with vibrational absorption, vibrational circular dichroism, Raman scattering, Raman optical activity, and surface-enhanced Raman spectroscopy to study protein and DNA structure, hydration, and the binding of ligands, drugs, pesticides, or herbicides via a combined theoretical and experimental approach. The systems we have studied systematically are the amino acids (L-alanine, L-tryptophan, and L-histidine), peptides (N-4271 acetyl L-alanine N?-methyl amide, N-acetyl L-tryptophan N?-methyl amide, N-acetyl L-histidine N?-methyl amide, L-alanyl L-alanine, tri-L-serine, N-acetyl L-alanine L-proline L-tyrosine N?-methyl amide, Leu-enkephalin, cyclo-(gly-L-pro)3, N-acetyl (L-alanine)n N?-methyl amide), 3-methyl indole, and a variety of small molecules (dichlobenil and 2,6-dochlorobenzamide) of relevance to the protein systems under study. We have used molecular mechanics, the SCC-DFTB, SCC-DFTB+disp, RHF, MP2, and DFT methodologies for the modeling studies with the goal of interpreting the experimentally measured vibrational spectra for these molecules to the greatest extent possible and to use this combined approach to understand the structure, function, and electronic properties of these molecules in their various environments. The application of these spectroscopies to biophysical and environmental assays is expanding, and therefore a thorough understanding of the phenomenon from a rigorous theoretical basis is required. In addition, we give some exciting and new preliminary results which allow us to extend our methods to even larger and more complex systems. The work presented here is the current state of the art to this ever and fast changing field of theoretical spectroscopic interpretation and use of VA, VCD, Raman, ROA, EA, and ECD spectroscopies.

  7. Jahn-Teller distortion around Fe{sup 4+} in Sr(Fe{sub x}Ti{sub 1-x})O{sub 3-{delta}} from x-ray absorption spectroscopy, x-ray diffraction, and vibrational spectroscopy

    SciTech Connect

    Vracar, M.; Merkle, R.; Kotomin, E. A.; Maier, J.; Kuzmin, A.; Purans, J.; Mathon, O.

    2007-11-01

    Sr(Fe{sub x}Ti{sub 1-x})O{sub 3-{delta}} perovskites (strontium titanate ferrite solid solution) with well-defined oxygen stoichiometry have been studied as a function of iron concentration by x-ray diffraction, Fe and Ti K-edge x-ray absorption spectroscopy (XAS), and vibrational (Raman and infrared) spectroscopy. In reduced Sr(Fe{sub x}Ti{sub 1-x})O{sub 3-x/2} samples, the analysis of the Fe K-edge extended x-ray absorption fine structure indicates the expected presence of oxygen vacancies V{sub O}{sup {center_dot}}{sup {center_dot}} in the first coordination shell of Fe{sup 3+} ions. In oxidized Sr(Fe{sub x}Ti{sub 1-x})O{sub 3} samples, the combination of XAS and vibrational spectroscopy results yields strong indications for the presence of a Jahn-Teller distortion around Fe{sup 4+} ions, which is most pronounced for x{approx_equal}0.03 and decreases for higher iron concentrations.

  8. Catalyzed hydrogenation of nitrogen and ethylene on metal (Fe, Pt) single crystal surfaces and effects of coadsorption: A sum frequency generation vibrational spectroscopy study

    SciTech Connect

    Westerberg, Staffan Per Gustav

    2004-12-15

    High-pressure catalytic reactions and associated processes, such as adsorption have been studied on a molecular level on single crystal surfaces. Sum Frequency Generation (SFG) vibrational spectroscopy together with Auger Electron Spectroscopy (AES), Temperature Programmed Desorption (TPD) and Gas Chromatography (GC) were used to investigate the nature of species on catalytic surfaces and to measure the catalytic reaction rates. Special attention has been directed at studying high-pressure reactions and in particular, ammonia synthesis in order to identify reaction intermediates and the influence of adsorbates on the surface during reaction conditions. The adsorption of gases N{sub 2}, H{sub 2}, O{sub 2} and NH{sub 3} that play a role in ammonia synthesis have been studied on the Fe(111) crystal surface by sum frequency generation vibrational spectroscopy using an integrated Ultra-High Vacuum (UHV)/high-pressure system. SFG spectra are presented for the dissociation intermediates, NH{sub 2} ({approx}3325 cm{sup -1}) and NH ({approx}3235 cm{sup -1}) under high pressure of ammonia (200 Torr) on the clean Fe(111) surface. Addition of 0.5 Torr of oxygen to 200 Torr of ammonia does not significantly change the bonding of dissociation intermediates to the surface. However, it leads to a phase change of nearly 180{sup o} between the resonant and non-resonant second order non-linear susceptibility of the surface, demonstrated by the reversal of the SFG spectral features. Heating the surface in the presence of 200 Torr ammonia and 0.5 Torr oxygen reduces the oxygen coverage, which can be seen from the SFG spectra as another relative phase change of 180{sup o}. The reduction of the oxide is also supported by Auger electron spectroscopy. The result suggests that the phase change of the spectral features could serve as a sensitive indicator of the chemical environment of the adsorbates.

  9. Composite vibrational spectroscopy of the group 12 difluorides: ZnF2, CdF2, and HgF2.

    PubMed

    Solomonik, Victor G; Smirnov, Alexander N; Navarkin, Ilya S

    2016-04-14

    The vibrational spectra of group 12 difluorides, MF2 (M = Zn, Cd, Hg), were investigated via coupled cluster singles, doubles, and perturbative triples, CCSD(T), including core correlation, with a series of correlation consistent basis sets ranging in size from triple-zeta through quintuple-zeta quality, which were then extrapolated to the complete basis set (CBS) limit using a variety of extrapolation procedures. The explicitly correlated coupled cluster method, CCSD(T)-F12b, was employed as well. Although exhibiting quite different convergence behavior, the F12b method yielded the CBS limit estimates closely matching more computationally expensive conventional CBS extrapolations. The convergence with respect to basis set size was examined for the contributions entering into composite vibrational spectroscopy, including those from higher-order correlation accounted for through the CCSDT(Q) level of theory, second-order spin-orbit coupling effects assessed within four-component and two-component relativistic formalisms, and vibrational anharmonicity evaluated via a perturbative treatment. Overall, the composite results are in excellent agreement with available experimental values, except for the CdF2 bond-stretching frequencies compared to spectral assignments proposed in a matrix isolation infrared and Raman study of cadmium difluoride vapor species [Loewenschuss et al., J. Chem. Phys. 50, 2502 (1969); Givan and Loewenschuss, J. Chem. Phys. 72, 3809 (1980)]. These assignments are called into question in the light of the composite results. PMID:27083721

  10. Partially Hydrated Electrons at the Air/Water Interface Observed by UV-Excited Time-Resolved Heterodyne-Detected Vibrational Sum Frequency Generation Spectroscopy.

    PubMed

    Matsuzaki, Korenobu; Kusaka, Ryoji; Nihonyanagi, Satoshi; Yamaguchi, Shoichi; Nagata, Takashi; Tahara, Tahei

    2016-06-22

    Hydrated electrons are the most fundamental anion species, consisting only of electrons and surrounding water molecules. Although hydrated electrons have been extensively studied in the bulk aqueous solutions, even their existence is still controversial at the water surface. Here, we report the observation and characterization of hydrated electrons at the air/water interface using new time-resolved interface-selective nonlinear vibrational spectroscopy. With the generation of electrons at the air/water interface by ultraviolet photoirradiation, we observed the appearance of a strong transient band in the OH stretch region by heterodyne-detected vibrational sum-frequency generation. Through the comparison with the time-resolved spectra at the air/indole solution interface, the transient band was assigned to the vibration of water molecules that solvate electrons at the interface. The analysis of the frequency and decay of the observed transient band indicated that the electrons are only partially hydrated at the water surface, and that they escape into the bulk within 100 ps. PMID:27281547

  11. Intrinsic Chirality and Prochirality at Air/R-(+)- and S-(-)-Limonene Interfaces: Spectral Signatures with Interference Chiral Sum-Frequency Generation Vibrational Spectroscopy

    SciTech Connect

    Fu, Li; Zhang, Yun; Wei, Zhehao; Wang, Hongfei

    2014-06-04

    We report in this work detailed measurements on the chiral and achiral sum-frequency vibrational spectra in the C-H stretching vibration region (2800-3050cm-1) of the air/liquid interfaces of R-limonene and S-limonene, using the recently developed high-resolution broadband sum-frequency generation vibrational spectroscopy (HR-BB-SFG-VS). The achiral SFG spectra of R-limonene and S-limonene, as well as the equal amount (50/50) racemic mixture show that the enantiomers are with the same interfacial orientations. The interference chiral SFG spectra of the limonene enantiomers exhibit spectral signature from chiral response of the Cα-H stretching mode, and spectral signature from prochiral response of the CH2 asymmetric stretching mode, respectively. The chiral spectral feature of the Cα-H stretching mode changes sign from R-limonene to S-limonene, and disappears for the 50/50 racemic mixture. While the prochiral spectral feature of the CH2 asymmetric stretching mode is the same for R-limonene and S-limonene, and also surprisingly remains the same for the 50/50 racemic mixture. These results provided detail information in understanding the structure and chirality of molecular interfaces, and demonstrated the sensitivity and potential of SFG-VS as unique spectroscopic tool for chirality characterization and chiral recognition at the molecular interface.

  12. Evaluation and differentiation of the Betulaceae birch bark species and their bioactive triterpene content using analytical FT-vibrational spectroscopy and GC-MS

    PubMed Central

    2012-01-01

    Background Aiming to obtain the highest triterpene content in the extraction products, nine bark samples from the forest abundant flora of Apuseni Mountains, Romania were Raman spectroscopically evaluated. Three different natural extracts from Betula pendula Roth birch bark have been obtained and characterized using Fourier transform vibrational spectra. Results This study shows that principal components of the birch tree extract can be rapidly recognized and differentiated based on their vibrational fingerprint band shape and intensity. The vibrational spectroscopy results are supported by the GC-MS data. Based on IR and Raman analysis, one can conclude that all the extracts, independent on the solvent(s) used, revealed dominant betulin species, followed by lupeol. Conclusions Since Raman measurements could also be performed on fresh plant material, we demonstrated the possibility to apply the present results for the prediction of the highest triterpene content in bark species, for the selection of harvesting time or individual genotypes directly in the field, with appropriate portable Raman equipment. PMID:22808999

  13. Composite vibrational spectroscopy of the group 12 difluorides: ZnF2, CdF2, and HgF2

    NASA Astrophysics Data System (ADS)

    Solomonik, Victor G.; Smirnov, Alexander N.; Navarkin, Ilya S.

    2016-04-01

    The vibrational spectra of group 12 difluorides, MF2 (M = Zn, Cd, Hg), were investigated via coupled cluster singles, doubles, and perturbative triples, CCSD(T), including core correlation, with a series of correlation consistent basis sets ranging in size from triple-zeta through quintuple-zeta quality, which were then extrapolated to the complete basis set (CBS) limit using a variety of extrapolation procedures. The explicitly correlated coupled cluster method, CCSD(T)-F12b, was employed as well. Although exhibiting quite different convergence behavior, the F12b method yielded the CBS limit estimates closely matching more computationally expensive conventional CBS extrapolations. The convergence with respect to basis set size was examined for the contributions entering into composite vibrational spectroscopy, including those from higher-order correlation accounted for through the CCSDT(Q) level of theory, second-order spin-orbit coupling effects assessed within four-component and two-component relativistic formalisms, and vibrational anharmonicity evaluated via a perturbative treatment. Overall, the composite results are in excellent agreement with available experimental values, except for the CdF2 bond-stretching frequencies compared to spectral assignments proposed in a matrix isolation infrared and Raman study of cadmium difluoride vapor species [Loewenschuss et al., J. Chem. Phys. 50, 2502 (1969); Givan and Loewenschuss, J. Chem. Phys. 72, 3809 (1980)]. These assignments are called into question in the light of the composite results.

  14. Reinterpretation of the Vibrational Spectroscopy of the Medicinal Bioinorganic Synthon c,c,t-[Pt(NH3)2Cl2(OH)2]†

    PubMed Central

    Johnstone, Timothy C.

    2014-01-01

    The Pt(IV) complex c,c,t-[Pt(NH3)2Cl2(OH)2] is an important intermediate in the synthesis of Pt(IV) anticancer prodrugs and has been investigated as an anticancer agent in its own right. An analysis of the vibrational spectroscopy of this molecule was previously reported [Faggiani et al., 1982, Can. J. Chem. 60, 529] in which crystallographic determination of the structure of the complex permitted a site group approach. The space group, however, was incorrectly assigned. In the present study we have redetermined at high resolution crystal structures of c,c,t-[Pt(NH3)2Cl2(OH)2] and c,c,t-[Pt(NH3)2Cl2(OH)2]·H2O2, which enable discussion of the effect of hydrogen bonding on the N–H and O–H vibrational bands. The correct crystallographic site symmetry of the platinum complex in the c,c,t-[Pt(NH3)2Cl2(OH)2] structure is employed to conduct a new vibrational analysis using both group theoretical and modern DFT methods. This analysis reveals the nature and symmetry of the “missing band” described in the original publication and suggests a possible explanation for its disappearance. PMID:24515615

  15. Vibrational Energy Relaxation of Benzene Dimer Studied by Picosecond Time-Resolved Infrared-Ultraviolet Pump-Probe Spectroscopy

    NASA Astrophysics Data System (ADS)

    Kusaka, R.; Ebata, T.

    2010-06-01

    The benzene dimer is excited to the CH stretching vibrational levels by a picosecond IR pulse, and the time evolution of the population of the pumped and redistributed levels are probed by (1+1)REMPI with a picosecond UV pulse. In order to accomplish IR excitation localized in the site of the T-shaped dimer, two dimer isotopomers [(1) Top=C_6H_6, Stem=C_6D_6, (2) Top=C_6D_6, Stem=C_6H_6] are used. From the time profiles of the pumped and the relaxed levels, the rate constants of intracluster vibrational redistribution (ICVR) at each site and subsequent vibrational predissociation (VP) are discussed.

  16. Engineering and Characterization of Peptides and Proteins at Surfaces and Interfaces: A Case Study in Surface-Sensitive Vibrational Spectroscopy.

    PubMed

    Ding, Bei; Jasensky, Joshua; Li, Yaoxin; Chen, Zhan

    2016-06-21

    Understanding molecular structures of interfacial peptides and proteins impacts many research fields by guiding the advancement of biocompatible materials, new and improved marine antifouling coatings, ultrasensitive and highly specific biosensors and biochips, therapies for diseases related to protein amyloid formation, and knowledge on mechanisms for various membrane proteins and their interactions with ligands. Developing methods for measuring such unique systems, as well as elucidating the structure and function relationship of such biomolecules, has been the goal of our lab at the University of Michigan. We have made substantial progress to develop sum frequency generation (SFG) vibrational spectroscopy into a powerful technique to study interfacial peptides and proteins, which lays a foundation to obtain unique and valuable insights when using SFG to probe various biologically relevant systems at the solid/liquid interface in situ in real time. One highlighting feature of this Account is the demonstration of the power of combining SFG with other techniques and methods such as ATR-FTIR, surface engineering, MD simulation, liquid crystal sensing, and isotope labeling in order to study peptides and proteins at interfaces. It is necessary to emphasize that SFG plays a major role in these studies, while other techniques and methods are supplemental. The central role of SFG is to provide critical information on interfacial peptide and protein structure (e.g., conformation and orientation) in order to elucidate how surface engineering (e.g., to vary the structure) can ultimately affect surface function (e.g., to optimize the activity). This Account focuses on the most significant recent progress in research on interfacial peptides and proteins carried out by our group including (1) the development of SFG analysis methods to determine orientations of regular as well as disrupted secondary structures, and the successful demonstration and application of an isotope

  17. Studies of Heterogeneously Catalyzed Liquid-Phase Alcohol Oxidation on Platinum bySum-frequency Generation Vibrational Spectroscopy and Reaction Rate Measurements

    SciTech Connect

    Thompson, Christopher

    2014-05-15

    Compared to many branches of chemistry, the molecular level study of catalytically active surfaces is young. Only with the invention of ultrahigh vacuum technology in the past half century has it been possible to carry out experiments that yield useful molecular information about the reactive occurrences at a surface. The reason is two-fold: low pressure is necessary to keep a surface clean for an amount of time long enough to perform an experiment, and most atomic scale techniques that are surface speci c (x-ray photoelectron spectroscopy, electron energy loss spectroscopy, Auger electron spectroscopy, etc.) cannot be used at ambient pressures, because electrons, which act as chemical probes in these techniques, are easily scattered by molecules. Sum-frequency generation (SFG) vibrational spectroscopy is one technique that can provide molecular level information from the surface without the necessity for high vacuum. Since the advent of SFG as a surface spectroscopic tool it has proved its worth in the studies of surface catalyzed reactions in the gas phase, with numerous reactions in the gas phase having been investigated on a multitude of surfaces. However, in situ SFG characterization of catalysis at the solid-liquid interface has yet to be thoroughly pursued despite the broad interest in the use of heterogeneous catalysts in the liquid phase as replacements for homogeneous counterparts. This work describes an attempt to move in that direction, applying SFG to study the solid-liquid interface under conditions of catalytic alcohol oxidation on platinum.

  18. Communication: He-tagged vibrational spectra of the SarGlyH{sup +} and H{sup +}(H{sub 2}O){sub 2,3} ions: Quantifying tag effects in cryogenic ion vibrational predissociation (CIVP) spectroscopy

    SciTech Connect

    Johnson, Christopher J.; Wolk, Arron B.; Fournier, Joseph A.; Johnson, Mark A.; Sullivan, Erin N.; Weddle, Gary H.

    2014-06-14

    To assess the degree to which more perturbative, but widely used “tag” species (Ar, H{sub 2}, Ne) affect the intrinsic band patterns of the isolated ions, we describe the extension of mass-selective, cryogenic ion vibrational spectroscopy to the very weakly interacting helium complexes of three archetypal ions: the dipeptide SarGlyH{sup +} and the small protonated water clusters: H{sup +}(H{sub 2}O){sub 2,3}, including the H{sub 5}O{sub 2}{sup +} “Zundel” ion. He adducts were generated in a 4.5 K octopole ion trap interfaced to a double-focusing, tandem time-of-flight photofragmentation mass spectrometer to record mass-selected vibrational predissociation spectra. The H{sub 2} tag-induced shift (relative to that by He) on the tag-bound NH stretch of the SarGlyH{sup +} spectrum is quite small (12 cm{sup −1}), while the effect on the floppy H{sub 5}O{sub 2}{sup +} ion is more dramatic (125 cm{sup −1}) in going from Ar (or H{sub 2}) to Ne. The shifts from Ne to He, on the other hand, while quantitatively significant (maximum of 10 cm{sup −1}), display the same basic H{sub 5}O{sub 2}{sup +} band structure, indicating that the He-tagged H{sub 5}O{sub 2}{sup +} spectrum accurately represents the delocalized nature of the vibrational zero-point level. Interestingly, the He-tagged spectrum of H{sup +}(H{sub 2}O){sub 3} reveals the location of the non-bonded OH group on the central H{sub 3}O{sup +} ion to fall between the collective non-bonded OH stretches on the flanking water molecules in a position typically associated with a neutral OH group.

  19. ROLE OF VIBRATIONAL SPECTROSCOPY AT THE U.S. ENVIRONMENTAL PROTECTION AGENCY'S ENVIRONMENTAL RESEARCH LABORATORY IN ATHENS, GEORGIA

    EPA Science Inventory

    The Environmental Research Laboratory, U.S. Environmental Protection Agency, Athens GA, is best known by vibrational spectroscopists as the laboratory where much of the pioneering work on the development of a sensitive, real-time gas chromatograph/Fourier transform infrared syste...

  20. Terahertz spectroscopy and solid-state density functional theory calculation of anthracene: Effect of dispersion force on the vibrational modes

    SciTech Connect

    Zhang, Feng; Tominaga, Keisuke E-mail: tominaga@kobe-u.ca.jp; Hayashi, Michitoshi E-mail: tominaga@kobe-u.ca.jp Wang, Houng-Wei; Kambara, Ohki; Sasaki, Tetsuo; Nishizawa, Jun-ichi E-mail: tominaga@kobe-u.ca.jp

    2014-05-07

    The phonon modes of molecular crystals in the terahertz frequency region often feature delicately coupled inter- and intra-molecular vibrations. Recent advances in density functional theory such as DFT-D{sup *} have enabled accurate frequency calculation. However, the nature of normal modes has not been quantitatively discussed against experimental criteria such as isotope shift (IS) and correlation field splitting (CFS). Here, we report an analytical mode-decoupling method that allows for the decomposition of a normal mode of interest into intermolecular translation, libration, and intramolecular vibrational motions. We show an application of this method using the crystalline anthracene system as an example. The relationship between the experimentally obtained IS and the IS obtained by PBE-D{sup *} simulation indicates that two distinctive regions exist. Region I is associated with a pure intermolecular translation, whereas region II features coupled intramolecular vibrations that are further coupled by a weak intermolecular translation. We find that the PBE-D{sup *} data show excellent agreement with the experimental data in terms of IS and CFS in region II; however, PBE-D{sup *} produces significant deviations in IS in region I where strong coupling between inter- and intra-molecular vibrations contributes to normal modes. The result of this analysis is expected to facilitate future improvement of DFT-D{sup *}.

  1. The determination of absorption cross sections and line profiles in vibrational overtone spectra with the use of intracavity absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Bettermann, H.; Kleist, E.; Kok, R.

    1993-03-01

    This contribution presents quantitative absorption data concerning the 7 th CH overtone stretching vibrations of n-hexane and of methylcyclopentane. The transitions are adapted to Lorentzian and Gaussian line shapes. The bank shape analyses yield the spectral positions, absorption cross sections and linewidths of the investigated transitions.

  2. The Cologne Carbon Cluster Experiment: ro-vibrational spectroscopy on C 8 and other small carbon clusters

    NASA Astrophysics Data System (ADS)

    Neubauer-Guenther, P.; Giesen, T. F.; Berndt, U.; Fuchs, G.; Winnewisser, G.

    2003-02-01

    We report on our ongoing efforts in obtaining the IR-spectra of the linear carbon cluster molecules C n with n=8-13. So far C 8, C 9, C 10, and C 13 have been recorded at Cologne. With the exception of C 8 all assignments have been secured. For C 8 a tentative assignment could be derived with the bandcenter of the σu antisymmetric stretching mode located at ν0=2067.9779 cm -1 and a preliminary rotational constant in the vibrational ground state of B″=0.02068 cm -1. The measured signal to noise ratio of the ro-vibrational band is fairly weak and thus the lower J ro-vibrational transitions can not be assigned with certainty. As a consequence the band center remains uncertain by 4 J or 0.17 cm -1. For a more reliable assignment the sensitivity of the system has to be increased by at least one order of magnitude. The envisaged sensitivity increase of our experiment will be discussed along with the intention to perform terahertz observations of the low energetic bending ro-vibrational spectra. These sub-mm wave measurements will be carried out simultaneously with the IR measurements.

  3. Measurement of vibrational, gas, and rotational temperatures of H2 (X1 Σg+) in radio frequency inductive discharge plasma by multiplex coherent anti-Stokes Raman scattering spectroscopy technique

    NASA Astrophysics Data System (ADS)

    Shakhatov, V. A.; De Pascale, O.; Capitelli, M.; Hassouni, K.; Lombardi, G.; Gicquel, A.

    2005-02-01

    Translational, rotational, and vibrational temperatures of H2 in radio frequency inductive discharge plasmas at pressures and power release ranges, respectively, of 0.5-8 torr and 0.5-2W/cm3 have been measured by using multiplex coherent anti-Stokes Raman scattering (CARS) spectroscopy. Computational codes have been developed to determine the rotational and vibrational temperatures and to analyze H2 CARS spectrum for nonequilibrium conditions. The results show a decrease of the vibrational temperature from 4250 to 2800 K by increasing the pressure from 0.5 to 8 torr and a corresponding increase of the rotational temperature from 525 to 750 K.

  4. Oriented single-crystal nuclear resonance vibrational spectroscopy of [Fe(TPP)(MI)(NO)] : quantitative sssessment of the trans effect of NO.

    SciTech Connect

    Lehnert, N.; Sage, J. T.; Silvernail, N.; Scheidt, W. R.; Alp, E. E.; Sturhahn, W.; Zhao, J.

    2010-01-01

    This paper presents oriented single-crystal Nuclear Resonance Vibrational Spectroscopy (NRVS) data for the six-coordinate (6C) ferrous heme-nitrosyl model complex [{sup 57}Fe(TPP)(MI)(NO)] (1; TPP{sup 2-} = tetraphenylporphyrin dianion; MI = 1-methylimidazole). The availability of these data enables for the first time the detailed simulation of the complete NRVS data, including the porphyrin-based vibrations, of a 6C ferrous heme-nitrosyl, using our quantum chemistry centered normal coordinate analysis (QCC-NCA). Importantly, the Fe-NO stretch is split by interaction with a porphyrin-based vibration into two features, observed at 437 and 472 cm{sup -1}. The 437 cm{sup -1} feature is strongly out-of-plane (oop) polarized and shows a {sup 15}N{sup 18}O isotope shift of 8 cm{sup -1} and is therefore assigned to v(Fe-NO). The admixture of Fe-N-O bending character is small. Main contributions to the Fe-N-O bend are observed in the 520-580 cm{sup -1} region, distributed over a number of in-plane (ip) polarized porphyrin-based vibrations. The main component, assigned to {delta}{sub ip}(Fe-N-O), is identified with the feature at 563 cm{sup -1}. The Fe-N-O bend also shows strong mixing with the Fe-NO stretching internal coordinate, as evidenced by the oop NRVS intensity in the 520-580 cm{sup -1} region. Very accurate normal mode descriptions of ?(Fe-NO) and {delta}{sub ip}(Fe-N-O) have been obtained in this study. These results contradict previous interpretations of the vibrational spectra of 6C ferrous heme-nitrosyls where the higher energy feature at {approx}550 cm{sup -1} had usually been associated with v(Fe-NO). Furthermore, these results provide key insight into NO binding to ferrous heme active sites in globins and other heme proteins, in particular with respect to (a) the effect of hydrogen bonding to the coordinated NO and (b) changes in heme dynamics upon NO coordination. [Fe(TPP)(MI)(NO)] constitutes an excellent model system for ferrous NO adducts of myoglobin

  5. Oriented single-crystal nuclear resonance vibrational spectroscopy of [Fe(TPP)(MI)(NO)]: quantitative assessment of the trans effect of NO.

    PubMed

    Lehnert, Nicolai; Sage, J Timothy; Silvernail, Nathan; Scheidt, W Robert; Alp, E Ercan; Sturhahn, Wolfgang; Zhao, Jiyong

    2010-08-01

    This paper presents oriented single-crystal Nuclear Resonance Vibrational Spectroscopy (NRVS) data for the six-coordinate (6C) ferrous heme-nitrosyl model complex [(57)Fe(TPP)(MI)(NO)] (1; TPP(2-) = tetraphenylporphyrin dianion; MI = 1-methylimidazole). The availability of these data enables for the first time the detailed simulation of the complete NRVS data, including the porphyrin-based vibrations, of a 6C ferrous heme-nitrosyl, using our quantum chemistry centered normal coordinate analysis (QCC-NCA). Importantly, the Fe-NO stretch is split by interaction with a porphyrin-based vibration into two features, observed at 437 and 472 cm(-1). The 437 cm(-1) feature is strongly out-of-plane (oop) polarized and shows a (15)N(18)O isotope shift of 8 cm(-1) and is therefore assigned to nu(Fe-NO). The admixture of Fe-N-O bending character is small. Main contributions to the Fe-N-O bend are observed in the 520-580 cm(-1) region, distributed over a number of in-plane (ip) polarized porphyrin-based vibrations. The main component, assigned to delta(ip)(Fe-N-O), is identified with the feature at 563 cm(-1). The Fe-N-O bend also shows strong mixing with the Fe-NO stretching internal coordinate, as evidenced by the oop NRVS intensity in the 520-580 cm(-1) region. Very accurate normal mode descriptions of nu(Fe-NO) and delta(ip)(Fe-N-O) have been obtained in this study. These results contradict previous interpretations of the vibrational spectra of 6C ferrous heme-nitrosyls where the higher energy feature at approximately 550 cm(-1) had usually been associated with nu(Fe-NO). Furthermore, these results provide key insight into NO binding to ferrous heme active sites in globins and other heme proteins, in particular with respect to (a) the effect of hydrogen bonding to the coordinated NO and (b) changes in heme dynamics upon NO coordination. [Fe(TPP)(MI)(NO)] constitutes an excellent model system for ferrous NO adducts of myoglobin (Mb) mutants where the distal histidine (His64

  6. Two-dimensional IR spectroscopy of protein dynamics using two vibrational labels: a site-specific genetically encoded unnatural amino acid and an active site ligand.

    PubMed

    Thielges, Megan C; Axup, Jun Y; Wong, Daryl; Lee, Hyun Soo; Chung, Jean K; Schultz, Peter G; Fayer, Michael D

    2011-09-29

    Protein dynamics and interactions in myoglobin (Mb) were characterized via two vibrational dynamics labels (VDLs): a genetically incorporated site-specific azide (Az) bearing unnatural amino acid (AzPhe43) and an active site CO ligand. The Az-labeled protein was studied using ultrafast two-dimensional infrared (2D IR) vibrational echo spectroscopy. CO bound at the active site of the heme serves as a second VDL located nearby. Therefore, it was possible to use Fourier transform infrared (FT-IR) and 2D IR spectroscopic experiments on the Az in unligated Mb and in Mb bound to CO (MbAzCO) and on the CO in MbCO and MbAzCO to investigate the environment and motions of different states of one protein from the perspective of two spectrally resolved VDLs. A very broad bandwidth 2D IR spectrum, encompassing both the Az and CO spectral regions, found no evidence of direct coupling between the two VDLs. In MbAzCO, both VDLs reported similar time scale motions: very fast homogeneous dynamics, fast, ∼1 ps dynamics, and dynamics on a much slower time scale. Therefore, each VDL reports independently on the protein dynamics and interactions, and the measured dynamics are reflective of the protein motions rather than intrinsic to the chemical nature of the VDL. The AzPhe VDL also permitted study of oxidized Mb dynamics, which could not be accessed previously with 2D IR spectroscopy. The experiments demonstrate that the combined application of 2D IR spectroscopy and site-specific incorporation of VDLs can provide information on dynamics, structure, and interactions at virtually any site throughout any protein. PMID:21823631

  7. Two-Dimensional IR Spectroscopy of Protein Dynamics Using Two Vibrational Labels: A Site-Specific Genetically Encoded Unnatural Amino Acid and an Active Site Ligand

    PubMed Central

    Thielges, Megan C.; Axup, Jun Y.; Wong, Daryl; Lee, Hyun Soo; Chung, Jean K.; Schultz, Peter G.; Fayer, Michael D.

    2012-01-01

    Protein dynamics and interactions in myoglobin (Mb) were characterized via two vibrational dynamics labels (VDLs): a genetically incorporated site-specific azide (Az) bearing unnatural amino acid (AzPhe43) and an active site CO ligand. The Az-labeled protein was studied using ultrafast two-dimensional infrared (2D IR) vibrational echo spectroscopy. CO bound at the active site of the heme serves as a second VDL located nearby. Therefore, it was possible to use Fourier transform infrared (FT-IR) and 2D IR spectroscopic experiments on the Az in unligated Mb and in Mb bound to CO (MbAzCO) and on the CO in MbCO and MbAzCO to investigate the environment and motions of different states of one protein from the perspective of two spectrally resolved VDLs. A very broad bandwidth 2D IR spectrum, encompassing both the Az and CO spectral regions, found no evidence of direct coupling between the two VDLs. In MbAzCO, both VDLs reported similar time scale motions: very fast homogeneous dynamics, fast, ~1 ps dynamics, and dynamics on a much slower time scale. Therefore, each VDL reports independently on the protein dynamics and interactions, and the measured dynamics are reflective of the protein motions rather than intrinsic to the chemical nature of the VDL. The AzPhe VDL also permitted study of oxidized Mb dynamics, which could not be accessed previously with 2D IR spectroscopy. The experiments demonstrate that the combined application of 2D IR spectroscopy and site-specific incorporation of VDLs can provide information on dynamics, structure, and interactions at virtually any site throughout any protein. PMID:21823631

  8. Rotational spectroscopy of pyridazine and its isotopologs from 235-360 GHz: equilibrium structure and vibrational satellites.

    PubMed

    Esselman, Brian J; Amberger, Brent K; Shutter, Joshua D; Daane, Mitchell A; Stanton, John F; Woods, R Claude; McMahon, Robert J

    2013-12-14

    The rotational spectrum of pyridazine (o-C4H4N2), the ortho disubstituted nitrogen analog of benzene, has been measured and analyzed in the gas phase. For the ground vibrational state of the normal isotopolog, over 2000 individual rotational transitions have been identified between 238 and 360 GHz and have been fit to 13 parameters of a 6th-order centrifugal distortion Hamiltonian. All transitions in this frequency region can now be predicted from this model to near experimental accuracy, i.e., well enough for the purpose of any future radio-astronomical search for this species. Three isotopologs, [3-(13)C]-C4H4N2, [4-(13)C]-C4H4N2, and [1-(15)N]-C4H4N2, have been detected in natural abundance, and several hundred lines have been measured for each of these species and fit to 6th-order Hamiltonians. Ten additional isotopologs were synthesized with enhanced deuterium substitution and analyzed to allow for a complete structure determination. The equilibrium structure (Re) of pyridazine was obtained by correcting the experimental rotational constants for the effects of vibration-rotation coupling using interaction constants predicted from CCSD(T) calculations with an ANO0 basis set and further correcting for the effect of electron mass. The final Re structural parameters are determined with excellent accuracy, as evidenced by their ability to predict 28 independent moments of inertia (Ia and Ib for 14 isotopologs) very well from 9 structural parameters. The rotational spectra of the six lowest-energy fundamental vibrational satellites of the main isotopolog have been detected. The rotational spectra of the five lowest-energy vibrational satellites have been assigned and fit to yield accurate rotational and distortion constants, while the fit and assignment for the sixth is less complete. The resultant vibration-rotation interaction (α) constants are found to be in excellent agreement with ones predicted from coupled-cluster calculations, which proved to be the key

  9. Rotational spectroscopy of pyridazine and its isotopologs from 235–360 GHz: Equilibrium structure and vibrational satellites

    SciTech Connect

    Esselman, Brian J.; Amberger, Brent K.; Shutter, Joshua D.; Daane, Mitchell A.; Woods, R. Claude; McMahon, Robert J.; Stanton, John F.

    2013-12-14

    The rotational spectrum of pyridazine (o-C{sub 4}H{sub 4}N{sub 2}), the ortho disubstituted nitrogen analog of benzene, has been measured and analyzed in the gas phase. For the ground vibrational state of the normal isotopolog, over 2000 individual rotational transitions have been identified between 238 and 360 GHz and have been fit to 13 parameters of a 6th-order centrifugal distortion Hamiltonian. All transitions in this frequency region can now be predicted from this model to near experimental accuracy, i.e., well enough for the purpose of any future radio-astronomical search for this species. Three isotopologs, [3-{sup 13}C]-C{sub 4}H{sub 4}N{sub 2}, [4-{sup 13}C]-C{sub 4}H{sub 4}N{sub 2}, and [1-{sup 15}N]-C{sub 4}H{sub 4}N{sub 2}, have been detected in natural abundance, and several hundred lines have been measured for each of these species and fit to 6th-order Hamiltonians. Ten additional isotopologs were synthesized with enhanced deuterium substitution and analyzed to allow for a complete structure determination. The equilibrium structure (R{sub e}) of pyridazine was obtained by correcting the experimental rotational constants for the effects of vibration-rotation coupling using interaction constants predicted from CCSD(T) calculations with an ANO0 basis set and further correcting for the effect of electron mass. The final R{sub e} structural parameters are determined with excellent accuracy, as evidenced by their ability to predict 28 independent moments of inertia (I{sub a} and I{sub b} for 14 isotopologs) very well from 9 structural parameters. The rotational spectra of the six lowest-energy fundamental vibrational satellites of the main isotopolog have been detected. The rotational spectra of the five lowest-energy vibrational satellites have been assigned and fit to yield accurate rotational and distortion constants, while the fit and assignment for the sixth is less complete. The resultant vibration-rotation interaction (α) constants are found to

  10. Vibrational biospectroscopy: from plants to animals to humans. A historical perspective

    NASA Astrophysics Data System (ADS)

    Shaw, R. Anthony; Mantsch, Henry H.

    1999-05-01

    Today, more than ever, vibrational spectroscopy means different things to different people. From their roots as molecular fingerprinting techniques, both infrared and Raman spectroscopy have evolved to the point where they play roles in a staggering variety of scientific endeavors. This survey focuses upon biological and medical applications. The past 40 years have witnessed enormous advances in our understanding of the building blocks of life, and vibrational spectroscopy has played an important role. That role is reviewed briefly here. In parallel with these efforts, the near-IR community developed powerful 'chemometric' methods to extract a wealth of information from spectra that appeared superficially featureless. As vibrational spectroscopy is finding new niches in the medical and clinical realms, these chemometric methods are proving to be a valuable (but not infallible!) adjunct to conventional spectral interpretation. This survey includes a brief outline of biomedical vibrational spectroscopy and imaging, including several representative examples to illustrate the strengths and pitfalls of a growing reliance upon multivariate quantitation and classification methods.

  11. Measurement of the intermolecular vibration-rotation tunneling spectrum of the ammonia dimer by tunable far infrared laser spectroscopy

    NASA Astrophysics Data System (ADS)

    Havenith, M.; Cohen, R. C.; Busarow, K. L.; Gwo, D.-H.; Lee, Y. T.

    1991-04-01

    Over 150 lines in six tunneling subbands of an intermolecular vibration located near 25/cm have been measured with partial hyperfine resolution and assigned to (NH3)2. The transitions sample all three types of tunneling states (A, G, E) and are consistent with the following assumptions: (1) G36 is the appropriate molecular symmetry group, (2) the equilibrium structure contains a plane of symmetry, (3) interchange tunneling of inequivalent monomers occurs via a trans path, (4) the 2C3 + I limit of hydrogen exchange tunneling is appropriate, and (5) tunneling and rotational motions are separable. A qualitative vibration-rotation tunneling energy level diagram is presented. Strong perturbations are observed among the states of E symmetry. This work supports the conclusions of Nelson et al. (1987).

  12. Resonance-enhanced multiphoton ionization (REMPI) spectroscopy of bromobenzene and its perdeuterated isotopologue: Assignment of the vibrations of the S(0), S(1), and D(0)(+) states of bromobenzene and the S(0) and D(0)(+) states of iodobenzene.

    PubMed

    Andrejeva, Anna; Tuttle, William D; Harris, Joe P; Wright, Timothy G

    2015-12-28

    We report vibrationally resolved spectra of the S1←S0 transition of bromobenzene using resonance-enhanced multiphoton ionization spectroscopy. We study bromobenzene-h5 as well as its perdeuterated isotopologue, bromobenzene-d5. The form of the vibrational modes between the isotopologues and also between the S0 and S1 electronic states is discussed for each species, allowing assignment of the bands to be achieved and the activity between states and isotopologues to be established. Vibrational bands are assigned utilizing quantum chemical calculations, previous experimental results, and isotopic shifts. Previous work and assignments of the S1 spectra are discussed. Additionally, the vibrations in the ground state cation, D0 (+), are considered, since these have also been used by previous workers in assigning the excited neutral state spectra. We also examine the vibrations of iodobenzene in the S0 and D0 (+) states and comment on the previous assignments of these. In summary, we have been able to assign the corresponding vibrations across the whole monohalobenzene series of molecules, in the S0, S1, and D0 (+) states, gaining insight into vibrational activity and vibrational couplings. PMID:26723684

  13. Sum Frequency Generation Vibrational Spectroscopy Studies on ModelPeptide Adsorption at the Hydrophobic Solid-Water and HydrophilicSolid-Water Interfaces

    SciTech Connect

    York, Roger L.

    2007-12-19

    Sum frequency generation (SFG) vibrational spectroscopy has been used to study the interfacial structure of several polypeptides and amino acids adsorbed to hydrophobic and hydrophilic surfaces under a variety of experimental conditions. Peptide sequence, peptide chain length, peptide hydrophobicity, peptide side-chain type, surface hydrophobicity, and solution ionic strength all affect an adsorbed peptide's interfacial structure. Herein, it is demonstrated that with the choice of simple, model peptides and amino acids, surface specific SFG vibrational spectroscopy can be a powerful tool to elucidate the interfacial structure of these adsorbates. Herein, four experiments are described. In one, a series of isosequential amphiphilic peptides are synthesized and studied when adsorbed to both hydrophobic and hydrophilic surfaces. On hydrophobic surfaces of deuterated polystyrene, it was determined that the hydrophobic part of the peptide is ordered at the solid-liquid interface, while the hydrophilic part of the peptide appears to have a random orientation at this interface. On a hydrophilic surface of silica, it was determined that an ordered peptide was only observed if a peptide had stable secondary structure in solution. In another experiment, the interfacial structure of a model amphiphilic peptide was studied as a function of the ionic strength of the solution, a parameter that could change the peptide's secondary structure in solution. It was determined that on a hydrophobic surface, the peptide's interfacial structure was independent of its structure in solution. This was in contrast to the adsorbed structure on a hydrophilic surface, where the peptide's interfacial structure showed a strong dependence on its solution secondary structure. In a third experiment, the SFG spectra of lysine and proline amino acids on both hydrophobic and hydrophilic surfaces were obtained by using a different experimental geometry that increases the SFG signal. Upon comparison of

  14. Vibrational Spectroscopy of Ions and Radicals Present in the Interstellar Medium and in Planetary Atmospheres: A Theoretical Study

    NASA Technical Reports Server (NTRS)

    Chaban, Galina M.

    2004-01-01

    Anharmonic vibrational frequencies and intensities are calculated for OH(H2O)n and H(H2O)n radicals (that form on icy particles of the interstellar medium), HCO radical (the main intermediate in the synthesis of organic molecules in space), NH2(-) and C2H(-) anions, H5(+) cation, and other systems relevant to interstellar chemistry. In addition to pure ions and radicals, their complexes with water are studied to assess the effects of water environment on infrared spectra. The calculations are performed using the correlation-corrected vibrational self-consistent field (CC-VSCF) method with ab initio potential surfaces at the MP2 and CCSD(T) levels. Fundamental, overtone, and combination excitations are computed. The results are in good agreement with available experimental data and provide reliable predictions for vibrational excitations not yet measured in laboratory experiments. The data should be useful for interpretation of astronomically observed spectra and identification of ions and radicals present in the interstellar medium and in planetary atmospheres.

  15. Biomedical ultrasonoscope

    NASA Technical Reports Server (NTRS)

    Lee, R. D. (Inventor)

    1979-01-01

    The combination of a "C" mode scan electronics in a portable, battery powered biomedical ultrasonoscope having "A" and "M" mode scan electronics, the latter including a clock generator for generating clock pulses, a cathode ray tube having X, Y and Z axis inputs, a sweep generator connected between the clock generator and the X axis input of the cathode ray tube for generating a cathode ray sweep signal synchronized by the clock pulses, and a receiver adapted to be connected to the Z axis input of the cathode ray tube. The "C" mode scan electronics comprises a plurality of transducer elements arranged in a row and adapted to be positioned on the skin of the patient's body for converting a pulsed electrical signal to a pulsed ultrasonic signal, radiating the ultrasonic signal into the patient's body, picking up the echoes reflected from interfaces in the patient's body and converting the echoes to electrical signals; a plurality of transmitters, each transmitter being coupled to a respective transducer for transmitting a pulsed electrical signal thereto and for transmitting the converted electrical echo signals directly to the receiver, a sequencer connected between the clock generator and the plurality of transmitters and responsive to the clock pulses for firing the transmitters in cyclic order; and a staircase voltage generator connected between the clock generator and the Y axis input of the cathode ray tube for generating a staircase voltage having steps synchronized by the clock pulses.

  16. Vibrational spectroscopy of the phosphate mineral lazulite--(Mg, Fe)Al2(PO4)2·(OH)2 found in the Minas Gerais, Brazil.

    PubMed

    Frost, Ray L; Xi, Yunfei; Beganovic, Martina; Belotti, Fernanda Maria; Scholz, Ricardo

    2013-04-15

    This research was done on lazulite samples from the Gentil mine, a lithium bearing pegmatite located in the municipality of Mendes Pimentel, Minas Gerais, Brazil. Chemical analysis was carried out by electron microprobe analysis and indicated a magnesium rich phase with partial substitution of iron. Traces of Ca and Mn, (which partially replaced Mg) were found. The calculated chemical formula of the studied sample is: (Mg0.88, Fe0.11)Al1.87(PO4)2.08(OH)2.02. The Raman spectrum of lazulite is dominated by an intense sharp band at 1060 cm(-1) assigned to PO stretching vibrations of of tetrahedral [PO4] clusters presents into the HPO4(2-) units. Two Raman bands at 1102 and 1137 cm(-1) are attributed to both the HOP and PO antisymmetric stretching vibrations. The two infrared bands at 997 and 1007 cm(-1) are attributed to the ν1PO4(3-) symmetric stretching modes. The intense bands at 1035, 1054, 1081, 1118 and 1154 cm(-1) are assigned to the ν3PO4(3-) antisymmetric stretching modes from both the HOP and tetrahedral [PO4] clusters. A set of Raman bands at 605, 613, 633 and 648 cm(-1) are assigned to the ν4 out of plane bending modes of the PO4, HPO4 and H2PO4 units. Raman bands observed at 414, 425, 460, and 479 cm(-1) are attributed to the ν2 tetrahedral PO4 clusters, HPO4 and H2PO4 bending modes. The intense Raman band at 3402 and the infrared band at 3403 cm(-1) are assigned to the stretching vibration of the OH units. A combination of Raman and infrared spectroscopy enabled aspects of the molecular structure of the mineral lazulite to be understood. PMID:23434550

  17. Excited-state intramolecular hydrogen transfer (ESIHT) of 1,8-dihydroxy-9,10-anthraquinone (DHAQ) characterized by ultrafast electronic and vibrational spectroscopy and computational modeling.

    PubMed

    Mohammed, Omar F; Xiao, Dequan; Batista, Victor S; Nibbering, Erik T J

    2014-05-01

    We combine ultrafast electronic and vibrational spectroscopy and computational modeling to investigate the photoinduced excited-state intramolecular hydrogen-transfer dynamics in 1,8-dihydroxy-9,10-anthraquinone (DHAQ) in tetrachloroethene, acetonitrile, dimethyl sulfoxide, and methanol. We analyze the electronic excited states of DHAQ with various possible hydrogen-bonding schemes and provide a general description of the electronic excited-state dynamics based on a systematic analysis of femtosecond UV/vis and UV/IR pump-probe spectroscopic data. Upon photoabsorption at 400 nm, the S2 electronic excited state is initially populated, followed by a rapid equilibration within 150 fs through population transfer to the S1 state where DHAQ exhibits ESIHT dynamics. In this equilibration process, the excited-state population is distributed between the 9,10-quinone (S2) and 1,10-quinone (S1) states while undergoing vibrational energy redistribution, vibrational cooling, and solvation dynamics on the 0.1-50 ps time scale. Transient UV/vis pump-probe data in methanol also suggest additional relaxation dynamics on the subnanosecond time scale, which we tentatively ascribe to hydrogen bond dynamics of DHAQ with the protic solvent, affecting the equilibrium population dynamics within the S2 and S1 electronic excited states. Ultimately, the two excited singlet states decay with a solvent-dependent time constant ranging from 139 to 210 ps. The concomitant electronic ground-state recovery is, however, only partial because a large fraction of the population relaxes to the first triplet state. From the similarity of the time scales involved, we conjecture that the solvent plays a crucial role in breaking the intramolecular hydrogen bond of DHAQ during the S2/S1 relaxation to either the ground or triplet state. PMID:24684387

  18. Vibrational spectroscopy of the phosphate mineral lazulite - (Mg, Fe)Al2(PO4)2·(OH)2 found in the Minas Gerais, Brazil

    NASA Astrophysics Data System (ADS)

    Frost, Ray L.; Xi, Yunfei; Beganovic, Martina; Belotti, Fernanda Maria; Scholz, Ricardo

    2013-04-01

    This research was done on lazulite samples from the Gentil mine, a lithium bearing pegmatite located in the municipality of Mendes Pimentel, Minas Gerais, Brazil. Chemical analysis was carried out by electron microprobe analysis and indicated a magnesium rich phase with partial substitution of iron. Traces of Ca and Mn, (which partially replaced Mg) were found. The calculated chemical formula of the studied sample is: (Mg0.88, Fe0.11)Al1.87(PO4)2.08(OH)2.02. The Raman spectrum of lazulite is dominated by an intense sharp band at 1060 cm-1 assigned to PO stretching vibrations of of tetrahedral [PO4] clusters presents into the HPO42- units. Two Raman bands at 1102 and 1137 cm-1 are attributed to both the HOP and PO antisymmetric stretching vibrations. The two infrared bands at 997 and 1007 cm-1 are attributed to the ν1PO43- symmetric stretching modes. The intense bands at 1035, 1054, 1081, 1118 and 1154 cm-1 are assigned to the ν3PO43- antisymmetric stretching modes from both the HOP and tetrahedral [PO4] clusters. A set of Raman bands at 605, 613, 633 and 648 cm-1 are assigned to the ν4 out of plane bending modes of the PO4, HPO4 and H2PO4 units. Raman bands observed at 414, 425, 460, and 479 cm-1 are attributed to the ν2 tetrahedral PO4 clusters, HPO4 and H2PO4 bending modes. The intense Raman band at 3402 and the infrared band at 3403 cm-1 are assigned to the stretching vibration of the OH units. A combination of Raman and infrared spectroscopy enabled aspects of the molecular structure of the mineral lazulite to be understood.

  19. Laser excitation spectroscopy of the B 1Sigma + u(O + u) <-- a 3Pi g(O + g) transition of Cd2: Vibrational analysis and rotational structure

    NASA Astrophysics Data System (ADS)

    Tran, H. C.; Eden, J. G.

    1996-10-01

    The B 1Σ+u←a 3Πg transition of Cd2 (natural abundance) and 114Cd2 has been observed by laser excitation spectroscopy and analyzed. By exciting the Cd2 B←a transition in the visible (560≤λ≤730 nm) while monitoring B 1Σ+u→X 1Σ+g (bound→free) emission in the ultraviolet (˜270-310 nm), more than 40 red-degraded vibrational bands were recorded. Analysis of the spectrum has yielded vibrational constants for both the a 3Πg and B 1Σ+u states: ωe″=153.6±4.0 cm-1, ωe″xe″=0.52±0.06 cm-1, ωe'=105.3±1.0 cm-1, and ωe'xe'=0.44±0.03 cm-1. In addition, ΔRe≡ReB-Rea was determined to be 0.31±0.03 Å. Rotational structure has been partially resolved for 114Cd2 bands in the 620-655 nm and 719-723 nm regions, and the spontaneous emission lifetime of the a 3Πg state and the rate constant for quenching of Cd2 (a 3Πg) by collisions with background Cd atoms have been determined to be 8.6±2.5 μs and (2.2±0.3)×10-13 cm3 s-1, respectively. Also, analysis of the B→X emission (Condon internal diffraction) spectra produced when specific B 1Σ+u vibrational levels are populated has yielded ReX-ReB=0.95±0.02 Å.

  20. FT-IR, FT-Raman, UV-visible, and NMR spectroscopy and vibrational properties of the labdane-type diterpene 13-epi-sclareol.

    PubMed

    Chain, Fernando E; Leyton, Patricio; Paipa, Carolina; Fortuna, Mario; Brandán, Silvia A

    2015-03-01

    In this work, FT-IR, FT-Raman, UV-Visible and NMR spectroscopies and density functional theory (DFT) calculations were employed to study the structural and vibrational properties of the labdane-type diterpene 13-epi-sclareol using the hybrid B3LYP method together with the 6-31G(∗) basis set. Three stable structures with minimum energy found on the potential energy curves (PES) were optimized, and the corresponding molecular electrostatic potentials, atomic charges, bond orders, stabilization energies and topological properties were computed at the same approximation level. The complete assignment of the bands observed in the vibrational spectrum of 13-epi-sclareol was performed taking into account the internal symmetry coordinates for the three structures using the scaled quantum mechanical force field (SQMFF) methodology at the same level of theory. In addition, the force constants were calculated and compared with those reported in the literature for similar compounds. The predicted vibrational spectrum and the calculated (1)H NMR and (13)C NMR chemical shifts are in good agreement with the corresponding experimental results. The theoretical UV-Vis spectra for the most stable structure of 13-epi-sclareol demonstrate a better correlation with the corresponding experimental spectrum. The study of the three conformers by means of the theory of atoms in molecules (AIM) revealed different H bond interactions and a strong dependence of the interactions on the distance between the involved atoms. Furthermore, the natural bond orbital (NBO) calculations showed the characteristics of the electronic delocalization for the two six-membered rings with chair conformations. PMID:25498827