Science.gov

Sample records for biomphalaria alexandrina snails

  1. New scope on the relationship between rotifers and Biomphalaria alexandrina snails

    PubMed Central

    Mossallam, Shereen Farouk; Amer, Eglal Ibrahim; Abou-El-Naga, Iman Fathy

    2013-01-01

    Objective To investigate the effect of rotifer internalization into snail tissue on the development of schistosomes. Methods Susceptible laboratory-bred Biomphalaria alexandrina (B. alexandrina) snails were exposed to lab-maintained rotifers; Philodina spp., two weeks before and after being infected with Schistosoma mansoni (S. mansoni) miracidia. The consequent histopathological impact on snail tissues and cercarial biology were investigated before and after emergence from snails. Results Contamination of B. alexandrina snails with philodina, two weeks before miracidial exposure, was found to hinder the preliminary development of S. mansoni cercariae inside the snail tissues. Furthermore, when snails were contaminated with rotifers two weeks post miracidial exposure; growth of already established cercariae was found to be retarded. The consequent influence of internalized rotifers within the snail tissue was clearly reflected on cercarial emergence, activity and infectivity along the four weeks duration of shedding. In the present study, comparison of snail histopathological findings and altered cercarial biology observed between the experimental and control groups indicated that the rotifers may have affected the levels of snail's energy reservoirs, which eventually was found to have had an adverse impact on reproduction, growth and survival of the parasite within the snail host, coupled with its performance outside the snail. Conclusions In future biological control strategies of schistosomiasis, ritifers should be considered as a parasitic scourge of humanity. PMID:23905015

  2. Potential Use of Biomphalaria alexandrina Snail Antigens for Serodiagnosis of Schistosomiasis Mansoni by Immunoblot Analysis

    PubMed Central

    Basyoni, Maha MA; EL-Wahab, Azza Abd

    2013-01-01

    Background The aim of this study was to evaluate the possible use of Biomphalaria alexandrina snail antigens in diagnosis of schistosomiasis mansoni using enzyme linked immunolectrotransfere blot (EITB). Methods S. mansoni adult worm crude antigens (AWA), feet and visceral humps of B. alexandrina and Bulinus truncatus were used. Hyperimmune mice sera (HIS) versus each antigen were prepared for diagnosis of S. mansoni using western blot (WB). Results Snail foot antigens were more specific in antibodies detection than visceral hump antigens. Three of five polypeptides of B. alexandrina foot antigen identified by S. mansoni HIS showed specific positive reactivity. These polypeptides were at MW of 31/32 and 43 kDa. While, only one of the six polypeptides of B. alexandrina hepatopancrease antigen identified by S. mansoni HIS, at a MW of 43 kDa was specific. Similarly, 2 polypeptides at MW of 44 and 55 kDa were specific in detection of anti- S. haematobium antibodies. However, the antigenically active polypeptide of B. truncatus hepatopancrease antigen had no specific reactivity towards anti-S. haematobium antibodies. Conclusion B. alexandrina foot antigens were the most specific of the tested snail antigens in diagnosis of schistosomiasis mansoni. PMID:23682262

  3. Ecotoxicological effect of sublethal exposure to zinc oxide nanoparticles on freshwater snail Biomphalaria alexandrina.

    PubMed

    Fahmy, Sohair R; Abdel-Ghaffar, Fathy; Bakry, Fayez A; Sayed, Dawlat A

    2014-08-01

    Freshwater snails are used as sensitive biomarkers of aquatic ecosystem pollution. The potential impacts of zinc oxide nanoparticles (ZnONPs) on aquatic ecosystems have attracted special attention due to their unique properties. The present investigation was designed to evaluate the possible mechanisms of ecotoxicological effects of ZnONPs on freshwater snail Biomphalaria alexandrina. ZnONPs showed molluscicidal activity against B. alexandrina snails, and the LC50 was 145 μg/ml. Two tested concentrations of ZnONPs were selected: The first concentration was equivalent to LC10 (7 μg/ml), and the second was equivalent to LC25 (35 μg/ml). Exposure to ZnONPs (7 and 35 μg/ml) for three consecutive weeks significantly induced malondialdehyde and nitric oxide with concomitant decreases in glutathione and glutathione-S-transferase levels in hemolymph and soft tissues of treated snails. Moreover, ZnONPs elicited a significant decrease in total protein and albumin contents coinciding with enhancement of total lipids and cholesterol levels as well as activities of aspartate aminotransferase, alanine aminotransferase, and alkaline phosphatase in hemolymph and soft tissues of treated snails. This study highlights the potential ecological implications of ZnONP release in aquatic environments and may serve to encourage regulatory agencies in Egypt to more carefully monitor and regulate the industrial use and disposal of ZnONPs. PMID:24736985

  4. Molecular approach for detecting early prepatent Schistosoma mansoni infection in Biomphalaria alexandrina snail host.

    PubMed

    Farghaly, Adel; Saleh, Ayman A; Mahdy, Soad; Abd El-Khalik, Dalia; Abd El-Aal, Naglaa F; Abdel-Rahman, Sara A; Salama, Marwa A

    2016-09-01

    The present study aimed to evaluate a polymerase chain reaction (PCR) assay used for detection of Schistosoma mansoni infection in Biomphalaria alexandrina snails in early prepatent period and to compare between it and the ordinary detection methods (shedding and crushing). Biomphalaria alexandrina snails are best known for their role as intermediate hosts of S. mansoni. DNA was extracted from infected snails in addition to non-infected "negative control" (to optimized the efficiency of PCR reaction) and subjected to PCR using primers specific to a partial sequence of S. mansoni fructose-1,6-bus phosphate aldolase (SMALDO). SMALDO gene was detected in the infected laboratory snails with 70, 85, and 100 % positivity at the 1st, 3rd, and 7th day of infection, respectively. In contrast, the ordinary method was not sensitive enough in detection of early prepatent infection even after 7 days of infection which showed only 25 % positivity. By comparing the sensitivity of the three methods, it was found that the average sensitivity of shedding method compared to PCR was 23.8 % and the average sensitivity of crushing method compared to PCR was 46.4 % while the sensitivity of PCR was 100 %. We conclude that PCR is superior to the conventional methods and can detect positive cases that were negative when examined by shedding or crushing methods. This can help in detection of the areas and times of high transmission which in turn will be very beneficial in planning of the exact timing of the proper control strategy. PMID:27605788

  5. The endocrine disruptor effect of the herbicides atrazine and glyphosate on Biomphalaria alexandrina snails.

    PubMed

    Omran, Nahla Elsayed; Salama, Wesam Mohamed

    2016-04-01

    Atrazine (AZ) and glyphosate (GL) are herbicides that are widely applied to cereal crops in Egypt. The present study was designed to investigate the response of the snailBiomphalaria alexandrina(Mollusca: Gastropoda) as a bioindicator for endocrine disrupters in terms of steroid levels (testosterone (T) and 17β-estradiol (E)), alteration of microsomal CYP4501B1-like immunoreactivity, total protein (TP) level, and gonadal structure after exposure to sublethal concentrations of AZ or GL for 3 weeks. In order to study the ability of the snails' recuperation, the exposed snails were subjected to a recovery period for 2 weeks. The results showed that the level of T, E, and TP contents were significantly decreased (p≤ 0.05) in both AZ- and GL-exposed groups compared with control (unexposed) group. The level of microsomal CYP4501B1-like immunoreactivity increased significantly (p≤ 0.05) in GL- and AZ-exposed snails and reach nearly a 50% increase in AZ-exposed group. Histological investigation of the ovotestis showed that AZ and GL caused degenerative changes including azoospermia and oocytes deformation. Interestingly, all the recovered groups did not return back to their normal state. It can be concluded that both herbicides are endocrine disrupters and cause cellular toxicity indicated by the decrease of protein content and the increase in CYP4501B1-like immunoreactivity. This toxicity is irreversible and the snail is not able to recover its normal state. The fluctuation of CYP4501B1 suggests that this vertebrate-like enzyme may be functional also in the snail and may be used as a biomarker for insecticide toxicity. PMID:24215068

  6. Correlation between steroid sex hormones, egg laying capacity and cercarial shedding in Biomphalaria alexandrina snails after treatment with Haplophyllum tuberculatum.

    PubMed

    Rizk, Maha Z; Metwally, Nadia S; Hamed, Manal A; Mohamed, Azza M

    2012-10-01

    Schistosomiasis is considered the second most pre-valiant worldwide parasitic disease ranked next to malaria. It has significant economic and public health consequences in many developing countries. Several ways have been practiced in order to bring the disease under an adequate control through the breakage of the life cycle of the parasite. Snail control could be regarded as a rapid and efficient of reducing or eliminating transmission and remains among the methods of choice for schistosomiasis control. The aim of this work is to evaluate the role of Haplophyllum tuberculatum (family Rutaceae) as a plant molluscicide. The mortality rate of Biomphalaria alexandrina snails were monitored after treatment with three extracts of the plant aerial parts; petroleum ether, chloroform and ethanol. Chloroform extract that recorded the most potent effect was further evaluated through measuring the toxicity pattern against B. alexandrina snails, egg laying capacity, cercarial shedding, phenol oxidase enzyme and the levels of steroid sex hormones. Histopathological examination of hepatopancreas and ovotestis of treated snails were also done for result confirmation. Treatment of snails by chloroform extract recorded reduction in egg laying capacity, decrease in cercarial shedding, diminution in phenol oxidase enzyme, disturbance in steroid sex hormones and sever alternation of the histopathological picture of snails tissue. In conclusion, H. tuberculatum recorded molluscicidal potency against B. alexandrina snails. Further studies are needed for its environmental applications. PMID:22771439

  7. Impact of the age of Biomphalaria alexandrina snails on Schistosoma mansoni transmission: modulation of the genetic outcome and the internal defence system of the snail

    PubMed Central

    Abou-El-Naga, Iman Fathy; Sadaka, Hayam Abd El-Monem; Amer, Eglal Ibrahim; Diab, Iman Hassan; Khedr, Safaa Ibrahim Abd El-Halim

    2015-01-01

    Of the approximately 34 identified Biomphalaria species,Biomphalaria alexandrina represents the intermediate host of Schistosoma mansoni in Egypt. Using parasitological and SOD1 enzyme assay, this study aimed to elucidate the impact of the age of B. alexandrina snails on their genetic variability and internal defence against S. mansoni infection. Susceptible and resistant snails were reared individually for self-reproduction; four subgroups of their progeny were used in experiment. The young susceptible subgroup showed the highest infection rate, the shortest pre-patent period, the highest total cercarial production, the highest mortality rate and the lowest SOD1 activity. Among the young and adult susceptible subgroups, 8% and 26% were found to be resistant, indicating the inheritance of resistance alleles from parents. The adult resistant subgroup, however, contained only resistant snails and showed the highest enzyme activity. The complex interaction between snail age, genetic background and internal defence resulted in great variability in compatibility patterns, with the highest significant difference between young susceptible and adult resistant snails. The results demonstrate that resistance alleles function to a greater degree in adults, with higher SOD1 activity and provide potential implications for Biomphalaria control. The identification of the most susceptible snail age enables determination of the best timing for applying molluscicides. Moreover, adult resistant snails could be beneficial in biological snail control. PMID:26061235

  8. Molluscicidal Activity of the Methanol Extract of Callistemon viminalis (Sol. ex Gaertner) G.Don ex Loudon Fruits, Bark and Leaves against Biomphalaria alexandrina Snails

    PubMed Central

    A Gohar, Ahmed; T Maatooq, Galal; R Gadara, Sahar; S Aboelmaaty, Walaa; M El-Shazly, Atef

    2014-01-01

    Methanol extracts of Callistemon viminalis (Sol. Ex Gaertner) G.Don Ex Loudon fruits, bark and leaves were tested for molluscicidal activity. Snails were collected and kept in dechlorinated water under standard condition. Ten adults Biomphalaria Alexandrina, of the same size, were introduced in plastic acquaria for each experiment. The fruits, barks and leaves were extracted with methanol and the methanol extracts were kept for testing as molluscicides. Different extracts proved to have molluscicidal activity against the vector of schistosomiasis, B. alexandrina snails. LC50 values for C. viminalis fruits, bark and leaves were 6.2, 32 and 40 ppm respectively. The C. viminalis fruits extract showed the highest effect against the tested snails. Histopathological studies proved that the site of action of all tested extracts was localized in the digestive system and hermaphrodite gland. PMID:25237345

  9. Alterations in the fatty acid profile, antioxidant enzymes and protein pattern of Biomphalaria alexandrina snails exposed to the pesticides diazinon and profenfos.

    PubMed

    Bakry, Fayez A; El-Hommossany, Karem; Abd El-Atti, Mahmoud; Ismail, Somaya M

    2016-04-01

    The use of pesticides is widespread in agricultural activities. These pesticides may contaminate the irrigation and drainage systems during agriculture activities and pests' control and then negatively affect the biotic and a biotic component of the polluted water courses. The present study aimed to evaluate the effect of the pesticides diazinon and profenfos on some biological activities of Biomphalaria alexandrina snails such as fatty acid profile, some antioxidant enzymes (thioredoxin reductase (TrxR), sorbitol dehydrogenase (SDH), superoxide dismutase (SOD), catalase (CAT) as well as glutathione reductase (GR) and lipid peroxidation (LP)) and protein patterns in snails' tissues exposed for 4 weeks to LC10 of diazinon and profenfos. The results showed that the two pesticides caused considerable reduction in survival rates and egg production of treated snails. Identification of fatty acid composition in snail tissues treated with diazinon and profenfos pesticides was carried out using gas-liquid chromatography (GLC). The results declared alteration in fatty acid profile, fluctuation in percentage of long chain and short chain fatty acid contributions either saturated or unsaturated ones, and a decrease in total lipid content in tissues of snails treated with these pesticides. The data demonstrate that there was a significant inhibition in the activities of tissues SOD, CAT, glutathione reductase (GR), TrxR, and SDH in tissues of treated snails, while a significant elevation was detected in LP as compared to the normal control. On the other hand, the electrophoretic pattern of total protein showed differences in number and molecular weights of protein bands due to the treatment of snails. It was concluded that the residues of diazinon and profenfos pesticides in aquatic environments have toxic effects onB. alexandrina snails. PMID:24215063

  10. Biomphalaria alexandrina as a bioindicator of metal toxicity.

    PubMed

    Habib, Mohamed R; Mohamed, Azza H; Osman, Gamalat Y; Mossalem, Hanan S; Sharaf El-Din, Ahmed T; Croll, Roger P

    2016-08-01

    Heavy metals are common environmental pollutants to the aquatic ecosystems. Several aquatic species have been used as bioindicators and biomonitoring subjects for heavy metals pollution. In the present study, the effects of cadmium (Cd) and manganese (Mn) on the survival, attachment, locomotion, and feeding behaviours of the gastropod snail Biomphalaria alexandrina were determined. The short-term (96 h) LC50 for Cd and Mn were found to be 0.219 and 154.2 mg/l, respectively. Long-term exposures (16-20 days) to ascending concentrations of Cd (0.01-1 mg/l) and Mn (50-500 mg/l) also caused gradual decreases in the survival rate of B. alexandrina in a dose-dependent manner. Attachment, locomotion and feeding behaviours of snails exposed to lethal and sublethal concentrations of Cd and Mn at acute (96 h) and chronic exposure (24 days) intervals, respectively, were also recorded. Compared to controls, a significant decrease (p ≤ 0.05) was recorded in the different behaviours of exposed snails. These changes in behaviour would potentially impact the snail's ability to survive in the wild. Although Cd caused a more severe decline in snail survivorship than Mn, the behavioural effects of Mn were much more severe than Cd when the metals were roughly matched for lethality. In sum, the present study demonstrates B. alexandrina to be a sensitive bioindicator and model organism to assess heavy metals risk factors for severe toxicity in freshwater ecosystems. PMID:27209558

  11. Biological and hematological responses of Biomphalaria alexandrina to mycobiosynthsis silver nanoparticles.

    PubMed

    Abdel-Hamid, Hoda; Mekawey, Amal A I

    2014-12-01

    Silver nanoparticles (AgPNs) extracts were prepared from seven Seven fungal isolates were evaluated through measuring their toxicity against Biomphalaria alexandrina snails. The effects of the two promising Paecilomyces variotii and Aspergillus niger AgNPs sublethal concentrations (LC10 & LC25) on the levels of steroid sex hormones, liver enzymes, total protein, lipids, albumhin, glucose, total and differential count of hemocytes and morphology of hemocytes, oocytes and sperms were studied in this work. The short period of snails' exposure (24h) to the two fungal AgNPs resulted in significant decrease in the levels of progesterone in B. alexandrina. The level of testosterone hormone showed significant increase in snails exposed to P. variotii AgNPs while no significant change was recorded at the exposure to A. niger AgNPs. Also, estradiol hormone concentration increased significantly in this investigation with the increase of the concentration of the two tested compounds. In addition, significant elevation in ALT, AST and Alkaline phosphatase was recorded. The total number of the hematocytes increased significantly by 17.4-47.8%. Snails' granulocytes were reduced by 19.1-43.8%, while hyalinocytes increased by 63.6-354.5%. The exposure of B. alexandrina to LC25 of both P. variotii and A. niger AgNPs showed apoptotic hemolymph cells, fragmented, vacuolated and degenerated cytoplasm, shrunken nucleus and phagocytosis in the light microscopy photographs of the hemocytes. Besides, the photographs showed also, abnormal nuclear division, degeneration and large fat vacuoles in the cytoplasm and swallowed atretic oocytes. Also, the photographs showed dead sperm head separated from its tail, other sperms showed abnormal swallowed head with severely nodded tail, dead sperms with wrinkled tails, hyperplasia and necrotic sperm heads led to overlapping of tails. In conclusion, applying the biosynthesized compounds which led to destruction of blood cells (the immune system), ova

  12. Induced Changes in the Amino Acid Profile of Biomphalaria alexandrina Molluscan Host to Schistosoma mansoni Using Sublethal Concentrations of Selected Plant Molluscicides

    NASA Astrophysics Data System (ADS)

    Sanad Soliman, Mahmoud; El-Ansary, Afaf

    Amino acid profiles of control and Solanum nigrum, Ambrosia maritima, Thymelaea hirsute, Sinapis arvensis, Peganum haramala and Callistemon lanceolatus-treated Biomphalaria alexandrina snails were investigated in a trial to correlate the amino acid profile of treated snails to their previously reported molluscicidal and biological effects. Amino acid profiles of the snails were greatly manipulated with the treatment of dry powdered sublethal concentrations of the six studied plant molluscicides. The disturbed amino acid profiles of treated snails were discussed in relation to the decrease in snail's egg laying capacity, reduction of their compatibility for the development of the schistosome larvae and cercarial penetration of mammalian skin.

  13. Localization of Tyrosine Hydroxylase-like Immunoreactivity in the Nervous Systems of Biomphalaria glabrata and Biomphalaria alexandrina, Intermediate Hosts for Schistosomiasis

    PubMed Central

    Vallejo, Deborah; Habib, Mohammed R.; Delgado, Nadia; Vaasjo, Lee O.; Croll, Roger P.; Miller, Mark W.

    2014-01-01

    Planorbid snails of the genus Biomphalaria are major intermediate hosts for the digenetic trematode parasite Schistosoma mansoni. Evidence suggests that levels of the neurotransmitter dopamine (DA) are reduced during the course of S. mansoni multiplication and transformation within the snail. This investigation used immunohistochemical methods to localize tyrosine hydroxylase (TH), the rate-limiting enzyme in the biosynthesis of catecholamines, in the nervous system of Biomphalaria. The two species examined, Biomphalaria glabrata and Biomphalaria alexandrina, are the major intermediate hosts for S. mansoni in sub-Saharan Africa, where more than 90% of global cases of human intestinal schistosomiasis occur. TH-like immunoreactive (THli) neurons were distributed throughout the central nervous system (CNS) and labeled fibers were present in all commissures, connectives, and nerves. Some asymmetries were observed, including a large distinctive neuron (LPeD1) in the pedal ganglion described previously in several pulmonates. The majority of TH-like immunoreactive neurons were detected in the peripheral nervous system (PNS), especially in lip and foot regions of the anterior integument. Independent observations supporting the dopaminergic phenotype of THli neurons included 1) block of LPeD1 synaptic signaling by the D2/3 antagonist sulpiride, and 2) the similar localization of aqueous aldehyde (FaGlu) induced fluorescence. The distribution of THli neurons indicates that, as in other gastropods, dopamine functions as a sensory neurotransmitter and in the regulation of feeding and reproductive behaviors in Biomphalaria. It is hypothesized that infection could stimulate transmitter release from dopaminergic sensory neurons and that dopaminergic signaling could contribute to modifications of both host and parasite behavior. PMID:24477836

  14. Bacterial flora of the schistosome vector snail Biomphalaria glabrata.

    PubMed Central

    Ducklow, H W; Boyle, P J; Maugel, P W; Strong, C; Mitchell, R

    1979-01-01

    The aerobic heterotrophic bacterial flora in over 200 individuals from 10 wild populations and 3 laboratory colonies of the schistosome vector snail Biomphalaria glabrata was examined. Internal bacterial densities were inversely proportional to snail size and were higher in stressed and laboratory-reared snails. The numerically predominant bacterial genera in individual snails included Pseudomonas, Acinetobacter, Aeromonas, Vibrio, and several members of the Enterobacteriaceae. Enterobacteriaceae seldom predominated in laboratory colonies. Our data suggest that Vibrio extorquens and a Pasteurella sp. tend to predominate in high-bacterial-density snails. These snails may be compromised and may harbor opportunistic snail pathogens. PMID:539821

  15. Bacterial flora of the schistosome vector snail Biomphalaria glabrata.

    PubMed

    Ducklow, H W; Boyle, P J; Maugel, P W; Strong, C; Mitchell, R

    1979-10-01

    The aerobic heterotrophic bacterial flora in over 200 individuals from 10 wild populations and 3 laboratory colonies of the schistosome vector snail Biomphalaria glabrata was examined. Internal bacterial densities were inversely proportional to snail size and were higher in stressed and laboratory-reared snails. The numerically predominant bacterial genera in individual snails included Pseudomonas, Acinetobacter, Aeromonas, Vibrio, and several members of the Enterobacteriaceae. Enterobacteriaceae seldom predominated in laboratory colonies. Our data suggest that Vibrio extorquens and a Pasteurella sp. tend to predominate in high-bacterial-density snails. These snails may be compromised and may harbor opportunistic snail pathogens. PMID:539821

  16. Oral immunization of mice against Schistosoma mansoni using drinking water from trays containing Biomphalaria alexandrina infected with Schistosoma mansoni.

    PubMed

    Noureldin, M S

    1999-01-01

    Water collected from trays containing Biomphalaria alexandrina infected with Schistosoma mansoni at the time of cercariae shedding (SmISW) and trays containing clean, non-infected, B. alexandrina (NISW) and underground water (UW), were filtered used as a drinking water for 3 groups of albino mice males. After two months, blood samples were collected from the 3 groups and serum was tested for anti-cercarial IgG, then mice were infected with 150 S. mansoni cercariae. Eight weeks after infection, mice were perfused and adult S. mansoni worms were counted. Anti-cercarial IgG was positive in 23 (82.1%) out of the 28 samples collected from mice drinking SmISW and only in 2 (9.5%) out of the 21 samples collected from mice drinking NISW, while all samples collected from mice drinking UW were negative for anti-cercarial IgG (X2=45.897; P<0.001). Worm load was significantly lower in the group of mice drinking SmISW than mice drinking NISW (P=0.032) and mice drinking UW (P=0.02). In mice drinking SmISW, adult worm count showed significant negative correlation with anti-cercarial IgG concentration (Kendall's taub =-0.325 and P=0.018). The results indicate that antigens present in drinking water stimulate a level of immunity against schistosomiasis, (inhabitants of endemic areas) resulting in a lower intensity and severity of infection. Also, it may reduce the specificity of serological tests used for diagnosis of Schistosoma infection, based on antibody determination. PMID:12561896

  17. Ecology of bacterial communities in the schistosomiasis vector snailBiomphalaria glabrata.

    PubMed

    Ducklow, H W; Clausen, K; Mitchell, R

    1981-09-01

    The internal colony-forming bacterial flora of the schistosome intermediate host snailBiomphalaria glabrata (Say) has been characterized in ca. 500 individual snails from Puerto Rico, Guadeloupe, and St. Lucia, and from laboratory aquaria. Freshly captured wild snails harbor 2-40×10(6) CFU·g(-1), and healthy aquarium snails harbor 4-16×10(7) CFU·g(-1), whereas moribund individuals have 4-10 times as many bacteria as healthy individuals from the same habitats.Pseudomonas spp. are the most common predominant bacteria in normal snails, whereasAcinetobacter, Aeromonas, andMoraxella spp. predominate in moribund snails. External bacterial populations in water appear to have little effect on the composition and size of the flora in any snail. In addition to normal (healthy) and moribund snails, a third group of snails has been distinguished on the basis of internal bacterial density and predominating genera. These "high-density" snails may have undergone stresses and may harbor opportunistic pathogens. The microfloras of wild and laboratory-reared snails can be altered and stimulated to increase in density by crowding the snails or treating them with antibiotics. PMID:24227500

  18. Measurement of Selected Enzymatic Activities in Solanum nigrum-Treated Biomphalaria arabica Snails

    NASA Astrophysics Data System (ADS)

    Al-Daihan, Sooad

    In the present study, glucose, acid and alkaline phosphatases (ACP and ALP), α-amylase and lipase were measured for the first time in tissue homogenates of Biomphalaria arabica snails, molluscan intermediate host for Schistosoma mansoni in Saudi Arabia. Also, the effect of sublethal concentrations (LC25) of dry powdered Solanum nigrum leaf was tested as plant molluscicide against this snail species. The tested enzymes were altered in molluscicide-treated snails compared to control. While ALP and amylase were slightly affected, ACP and lipase were significantly altered. Glucose as an important energy source for a successful schistosome-snail relationship was significantly reduced in molluscicide-treated snails. In conclusion, sublethal concentration of the molluscicide showed potent effect in disturbing snail biochemistry which may render them physiologically unsuitable for the developing of schistosome parasite. This could be considered as a promising strategy to control the disease.

  19. Helobdella nilae and Alboglossiphonia conjugata leeches as biological agents for snails control.

    PubMed

    Abd-Allah, Karim F; Saleh, Mohamed H; El-Hamshary, Azza M S; Negm-Eldin, Mohsen M; El-Fakahany, Amany F; Abdel-Tawab, Ahmed H; Abdel-Maboud, Amina I; Aly, Nagwa S M

    2009-04-01

    The efficacy of leeches, as biological agents, in control of snail intermediate hosts of schistosomiasis (Bulinus truncatus, Biomphalaria alexandrina) and fascioliasis (Lymnaea natalensis) as well as their effect on the non-target snails Physa acuta, Melanioides tuberculata and Cleopatra bulimoides was evaluated. Two glossiphoniid snail leeches, Helobdella nilae and Alboglossiphonia conjugata were used. They destroyed egg masses and young snails more rapidly than adult ones. H. nilae showed a stronger destructive effect than A. conjugata. In a descending order, it preferred L. natalensis followed by B. truncatus, B. alexandrina, Ph. acuta, M. tuberculata and lastly C. bulimoides. But, A. conjugata preferred L. natalensis followed by B. truncatus, Ph. acuta, M. tuberculata, B. alexandrina and lastly C. bulimoides. The detailed diagnostic morphology and biology of the two leeches were given. PMID:19530628

  20. Determination and quantification of Schistosoma mansoni cercarial emergence from Biomphalaria glabrata snails.

    PubMed

    Tucker, Matthew S; Lewis, Fred A; Driver, James D; Granath, Willard O

    2014-12-01

    Living and fixed samples of Schistosoma mansoni -infected Biomphalaria glabrata snails were used to determine the relative contributions of different snail tissues to cercarial emergence (shedding). Three methods of observations were employed: (1) direct microscopical observations of shedding snails; (2) microscopic analysis of 5 μm serial sections (H&E stained) of actively shedding snails; and (3) scanning electron microscopic (SEM) observations of snails that were fixed while actively shedding. For this investigation, there were advantages and disadvantages to using each method. We confirmed the results of others that there were 3 tissues of the snail that contributed most prominently to cercarial release (mantle collar, pseudobranch, and headfoot). Based on histological analysis of cercarial accumulations in presumed shedding sites in these 3 tissues, 57% of the cercariae could be seen in the mantle collar, 30.6% in the pseudobranch, and 12.5% in the headfoot. Other anterior structures were involved to a much lesser extent. SEM observations clearly showed cercariae emerging either body first, tail first, or likely emerging en masse from blebs, especially from the mantle collar. These studies provide a more quantitative appraisal of the role the different anterior snail tissues play in cercarial emergence. PMID:25019357

  1. Schistosoma mansoni: identification of chemicals that attract or trap its snail vector, Biomphalaria glabrata.

    PubMed

    Uhazy, L S; Tanaka, R D; MacInnis, A J

    1978-09-01

    A new bioassay for chemical attractants of aquatic snails demonstrated that Biomphalaria glabrata could be attracted to or trapped in the vicinity of homogenates of lettuce. Fractionation of homogenates revealed the amino acids glutamate and proline and the primary attractants. Attraction was specific for the L form of glutamate. Proline appeared to stimulate reproductive activity. Glutathione, gamma-aminobutyric acid, and a number of other compounds had no effect. Extracts of lyophilized snail tissue also attracted other snails and may thus contain pheromones. These results permit formulation and testing of controlled-release attractants designed to overcome the repellant effects of slow-release molluscicides, as well as the design of stimulants to be used with no-release poisons. PMID:684418

  2. Digenetic larvae in Schistosome snails from El Fayoum, Egypt with detection of Schistosoma mansoni in the snail by PCR.

    PubMed

    Aboelhadid, Shawky M; Thabet, Marwa; El-Basel, Dayhoum; Taha, Ragaa

    2016-09-01

    The present study aims to detect the digenetic larvae infections in Bulinus truncatus and Biomphalaria alexandrina snails and also PCR detection of Schistosoma mansoni infection. The snails were collected from different branches of Yousef canal and their derivatives in El Fayoum Governorate. The snails were investigated for infection through induction of cercarial shedding by exposure to light and crushing of the snails. The shed cercariae were S. mansoni, Pharyngeate longifurcate type I and Pharyngeate longifurcate type II from B. alexandrina, while that found in B. truncatus were Schitosoma haematobium and Xiphidiocercaria species cercariae. The seasonal prevalence of infection was discussed. Polymerase chain reaction was used for the detection of S. mansoni in the DNA from field collected infected and non infected snails. The results of PCR showed that the pool of B. alexandrina snails which shed S. mansoni cercariae in the laboratory, gave positive reaction in the samples. Pooled samples of field collected B. alexandrina that showed negative microscopic shedding of cercariae gave negative and positive PCR in a consecutive manner. Accordingly, a latent infection in the snail (negative microscopic) could be detected by using PCR. PMID:27605774

  3. Development of the Statocyst in the Freshwater Snail Biomphalaria Glabrata (Pulmonata, Basommatophora)

    NASA Technical Reports Server (NTRS)

    Gao, Wenyuan; Wiederhold, Michael; Hejl, Robert

    1997-01-01

    The development of the statocyst of the freshwater snail Biomphalaria glabrata has been examined from embryo to adult. Special emphasis was put on the growth of the statoconia in the statocysts. In the statocysts of embryonic snails (90-120 h after oviposition) there is not a single statolith but an average of 40-50 statoconia per statocyst. The number of statoconia increases to 385-400 when the snails reach a shell diameter of 4 mm and remains relatively constant thereafter, irrespective of shell size. Small statoconia are found in supporting cells, which suggests that the statoconia are produced within these cells. The average diameter of statoconia and the total mass of statoconia increase with increasing shell diameter. The average number of large statoconia (diameter greater than 7 micrometers) per statocyst continues to increase from 2 to 10 mm animals while the number of small ones (diameter less than 4 micrometers) initially rises and then decreases after 4 mm. These results demonstrate continuous growth of the statoconia in the cyst lumen of Biomphalaria. The single statoconia vibrate in a regular pattern in vivo, indicating beating of the statocyst cilia. The statoconia sink under the influence of gravity to load and stimulate receptor cells which are at the bottom. The length of cilia and the size of statocyst gradually increase as the animal grows. However, the increase in the volume of the statocyst is relatively small compared with the increase in body weight during normal development.

  4. Differential gene expression in haemocytes of the snail Biomphalaria glabrata: effects of Schistosoma mansoni infection.

    PubMed

    Miller, A N; Raghavan, N; FitzGerald, P C; Lewis, F A; Knight, M

    2001-05-15

    Parasite encapsulation and destruction in Biomphalaria glabrata has been shown to involve the cellular component of the snail's internal defence system, the haemocytes. To identify genes involved in the immunobiology of these cells, we used the method of differential display reverse transcriptase polymerase chain reaction (DDRT-PCR) to investigate differential gene regulation in haemocytes isolated from Schistosoma mansoni exposed and unexposed snails. RNA isolated from circulating haemocytes from resistant snails (BS-90 stock), previously exposed to S. mansoni, was analysed using 12 different arbitrary primers in conjunction with an anchored Oligo d(T(11)CG) primer. Transcription profiles between haemocytes of parasite exposed and unexposed snails were compared and a total of 87 differentially regulated bands were identified and isolated. Of these, 65 bands were cloned and used as probes in Southern blots to show the presence of corresponding sequences in the snail genome. RT-PCR was performed to verify the regulation of these transcripts. DNA sequence analysis showed that the majority of the cloned sequences were novel, although a few showed a high degree of sequence similarity to other sequences in the DNA and protein databases. One of these included a differentially expressed transcript that showed a significant degree of sequence identity to E. coli transposase Tn5, an enzyme whose activity is normally associated with generating mobility and instability in the genome. PMID:11336750

  5. Differential spatial repositioning of activated genes in Biomphalaria glabrata snails infected with Schistosoma mansoni.

    PubMed

    Arican-Goktas, Halime D; Ittiprasert, Wannaporn; Bridger, Joanna M; Knight, Matty

    2014-09-01

    Schistosomiasis is an infectious disease infecting mammals as the definitive host and fresh water snails as the intermediate host. Understanding the molecular and biochemical relationship between the causative schistosome parasite and its hosts will be key to understanding and ultimately treating and/or eradicating the disease. There is increasing evidence that pathogens that have co-evolved with their hosts can manipulate their hosts' behaviour at various levels to augment an infection. Bacteria, for example, can induce beneficial chromatin remodelling of the host genome. We have previously shown in vitro that Biomphalaria glabrata embryonic cells co-cultured with schistosome miracidia display genes changing their nuclear location and becoming up-regulated. This also happens in vivo in live intact snails, where early exposure to miracidia also elicits non-random repositioning of genes. We reveal differences in the nuclear repositioning between the response of parasite susceptible snails as compared to resistant snails and with normal or live, attenuated parasites. Interestingly, the stress response gene heat shock protein (Hsp) 70 is only repositioned and then up-regulated in susceptible snails with the normal parasite. This movement and change in gene expression seems to be controlled by the parasite. Other differences in the behaviour of genes support the view that some genes are responding to tissue damage, for example the ferritin genes move and are up-regulated whether the snails are either susceptible or resistant and upon exposure to either normal or attenuated parasite. This is the first time host genome reorganisation has been seen in a parasitic host and only the second time for any pathogen. We believe that the parasite elicits a spatio-epigenetic reorganisation of the host genome to induce favourable gene expression for itself and this might represent a fundamental mechanism present in the human host infected with schistosome cercariae as well as in

  6. A study on biological control of six fresh water snails of medical and veterinary importance.

    PubMed

    Abd-Allah, Karim F; Negm-Eldin, Mohsen M; Saleh, Mohamed H; El-Hamshary, Azza M S; El-Gozamy, Bothina M R; Aly, Nagwa S M

    2009-04-01

    This study evaluated the molluscicidal effect of Commiphora mnolmol oil extract (Myrrh), on control of six fresh water snails (Lymnaea natalensis, Bulinus truncatus, Biomphalaria alexandrina, Physa acuta, Melania tuberculata and Cleopatra bulimoides). Also, the extract effect on the egg masses of L. natalensis, B. truncatus, B. alexandrina and Ph. acuta was evaluated. Snails and egg masses were exposed at 16-20 degrees C to various concentrations (conc.). LD50 after 24 hours expo-sure were 264/132, 283/195, 230/252, 200/224, 241/246 & 241/246 ppm for young/adult of L. natalensis, B. truncatus, B. alexandrina, Ph. acuta, M. tuberculata and C. bulimnoides respectively. LDtoo after 24 hours exposure were 400/400 for L. natalensis, B. truncatus, B. alexandrina, M. tuberculata and C. bulimoides, and 300/300 for Ph. acuta. Also, complete mortality (100%) was achieved for the egg masses of L. natalensis, B. truncatus, B. alexandrina and Ph. acuta at concentrations of 300, 200, 300 & 400 ppm respectively. Lower concentrations gave the same results after longer exposure. LD100 of C. molmol oil extract (Myrrh) had a rapid lethal effect on the six snail species and their egg masses in high conc. of 300 & 400 ppm. Commiphora molmol is a promising plant to be included with the candidate plant molluscicides. The oil extract of this plant showed a remarkable molluscicidal activity against used snail species. PMID:19530615

  7. The Structure of the Statocyst of the Freshwater Snail Biomphalaria Glabrata (Pulmonata, Basommatophora)

    NASA Technical Reports Server (NTRS)

    Gao, Wenyuan; Wiederhold, Michael L.

    1997-01-01

    The structure of the statocyst of the freshwater snail Biomphalaria glabrata has been examined by light and electron microscopy. The two statocysts are located on the dorsal-lateral side of the left and right pedal ganglion. The statocysts are spherical, fluid-filled capsules with a diameter of approximately 60 microns for young and 110 microns for adult snails. The wall of the cyst is composed of large receptor cells and many smaller supporting cells. The receptor cells bear cilia which are evenly distributed on the apical surface. The cilia have the typical 9+2 internal tubule configuration. Striate rootlets originate from the base of the basal body and run downward into the cytoplasm. Side-roots arise from one side of the basal body and a basal foot from the other. For each receptor cell, the basal foot always points to the periphery of the surface, indicating that the receptor cell is non-polarized. The receptor cells contain cytoplasmic organelles such as mitochondria, ribosomes, rough and smooth endoplasmic reticulum, compact Golgi bodies and multivesicular bodies. Supporting cells bearing microvilli are interposed between the receptor cells. The junction complex between the supporting cells and the receptor cells is composed of adherens and septate junctions, while between supporting cells only the adherens junctions are present. The static nerve arises from the lateral side of the cyst and contains axons in which parallel neurotubules and mitochondria are found. The axons arise directly from the base of the receptor cells without synapse. In the cyst lumen there are unattached statoconia. The statoconia have a plate-like or concentric membranous ring structure. Based on the morphology, the function of the statocyst in Biomphalaria is discussed.

  8. Effects of 17α-methyltestosterone on the reproduction of the freshwater snail Biomphalaria glabrata.

    PubMed

    Rivero-Wendt, C L G; Borges, A C; Oliveira-Filho, E C; Miranda-Vilela, A L; Ferreira, M F N; Grisolia, C K

    2014-01-01

    17-α-methyltestosterone (MT) is a synthetic hormone used in fish hatcheries to induce male monosex. Snails hold promise as possible test models to assess chemicals acting on the endocrine system. Biomphalaria glabrata is an aquatic gastropod mollusk (Pulmonata, Planorbidae) that can be easily maintained in aquaria, predisposing the species for use in ecotoxicological testing. This study evaluated the reproductive effects of MT on B. glabrata by examining histological changes and its reproductive performance. Ten snails per group were exposed for 4 weeks to different concentrations of MT (0.01, 0.1, and 1.0 mg/L). The total number of laid eggs, egg mass per group, size of type V oocytes, and production of spermatozoids were determined. Reproduction of B. glabrata was affected by MT. At the lowest concentration (0.01 mg/L), MT caused a statistically significant increase in the number of egg mass per snail compared with controls unexposed to MT. Histopathology analyses showed an increase in the sperm production at the higher MT concentrations of 0.1 and 1.0 mg/L. Chromatographic analyses of water samples showed that MT concentrations rapidly declined within a 96-h period. These results highlight the importance of giving more support to regulatory authorities, since MT is not registered for use on fish hatcheries in many countries around the world. Wastewater from fish farms discharged into aquatic ecosystems should be monitored for MT residues, since its presence could compromise the reproduction of other native snail species. PMID:24615026

  9. Histamine Immunoreactive Elements in the Central and Peripheral Nervous Systems of the Snail, Biomphalaria spp., Intermediate Host for Schistosoma mansoni

    PubMed Central

    Habib, Mohamed R.; Mohamed, Azza H.; Osman, Gamalat Y.; Sharaf El-Din, Ahmed T.; Mossalem, Hanan S.; Delgado, Nadia; Torres, Grace; Rolón-Martínez, Solymar; Miller, Mark W.; Croll, Roger P.

    2015-01-01

    Histamine appears to be an important transmitter throughout the Animal Kingdom. Gastropods, in particular, have been used in numerous studies establishing potential roles for this biogenic amine in the nervous system and showing its involvement in the generation of diverse behaviours. And yet, the distribution of histamine has only previously been described in a small number of molluscan species. The present study examined the localization of histamine-like immunoreactivity in the central and peripheral nervous systems of pulmonate snails of the genus Biomphalaria. This investigation demonstrates immunoreactive cells throughout the buccal, cerebral, pedal, left parietal and visceral ganglia, indicative of diverse regulatory functions in Biomphalaria. Immunoreactivity was also present in statocyst hair cells, supporting a role for histamine in graviception. In the periphery, dense innervation by immunoreactive fibers was observed in the anterior foot, perioral zone, and other regions of the body wall. This study thus shows that histamine is an abundant transmitter in these snails and its distribution suggest involvement in numerous neural circuits. In addition to providing novel subjects for comparative studies of histaminegic neurons in gastropods, Biomphalaria is also the major intermediate host for the digenetic trematode parasite, which causes human schistosomiasis. The study therefore provides a foundation for understanding potential roles for histamine in interactions between the snail hosts and their trematode parasites. PMID:26086611

  10. Studies on the molluscicidal activity of Agave angustifolia and Pittosporum tobira on schistosomiasis transmitting snails.

    PubMed

    Ibrahim, Abdalla M; Abdel-Gawad, Mahfouz M; El-Nahas, Hanan A; Osman, Nadia S

    2015-04-01

    In the search for new molluscicidal plants for controlling the snail vectors of schistosomiasis, laboratory evaluation was made to assess the molluscicidal activity of Agave angustifolia and Pittosporum tobira plants against Biomphalaria alexandrina snails. Results indicated that both plants have promising molluscicidal activity as the LC90 of the dry powder of both plants was 120 ppm. Both plants showed marked cercaricidal and miracidicidal potencies against S. mansoni larvae. The LC90 of both plants (120 ppm) killed most B. alexandrina eggs within 24 h of exposure. The sub-lethal concentrations of both plants markedly suppressed the survival rate of B. alexandrina snails and the mortality increased with increasing the concentrations and the exposure period up to 10 successive weeks. The accumulative toxic effect of these concentrations was continuous during the recovery period. Also, the reproductive rates of exposed snails were greatly affected even through the recovery period. This depression in reproductive ability of snails was accompanied by histological damage in the hermaphrodite glands of exposed snails. Meanwhile, the growth of snails was estimated weekly and it showed great inhibition in exposed snails comparing with the control ones. PMID:26012228

  11. Study of the snail intermediate hosts for Schistosoma mansoni on Itamaracá Island in northeast Brazil: spatial displacement of Biomphalaria glabrata by Biomphalaria straminea.

    PubMed

    Barbosa, Constança S; Barbosa, Verônica S; Nascimento, Wheverton C; Pieri, Otavio S; Araújo, Karina C G M

    2014-05-01

    In 2012 a malacological survey of the breeding sites of Biomphalaria glabrata and B. straminea , the two intermediate host snails of Schistosoma mansoni , was carried out on Itamaraca Island in Pernambuco, Brazil. This study has now been extended by studying the competition between the two species. Snails were collected and dissected to identify the species and tests were performed to verify S. mansoni infection. Student's t test was used to compare the proportion between the two species and their breeding sites and a parasitological survey was conducted among local residents, using the Kato-Katz method. The spatial distribution of the two snail species was determined using TerraView, while a snail density map was constructed by Kernel estimate. The survey identified two breeding sites for B. glabrata with 17 specimens and 19 breeding sites for B. straminea with 459 snails, all of them negative for S. mansoni infection. The statistical analysis revealed that the proportion of the numbers of specimens and breeding sites of B. straminea (37.84 ± 9.01) were significantly greater than those of B. glabrata (8.50 ± 6.50). Parasitological examinations from 41 residents diagnosed two cases of schistosomiasis with parasite loads of 60 and 84 eggs per 1 g of stool, respectively. This indiction of a competitive process between the two snail species requires monitoring of schistosomiasis in the resident and travelling human populations occupying this environment, which could potentially result in social and economic changes on the island risking its attraction as a centre for eco-tourism. PMID:24893012

  12. Ionotropic Receptors Identified within the Tentacle of the Freshwater Snail Biomphalaria glabrata, an Intermediate Host of Schistosoma mansoni.

    PubMed

    Liang, Di; Wang, Tianfang; Rotgans, Bronwyn A; McManus, Donald P; Cummins, Scott F

    2016-01-01

    Biomphalaria glabrata (B. glabrata) is an air-breathing aquatic mollusc found in freshwater habitats across the Western Hemisphere. It is most well-known for its recognized capacity to act as a major intermediate host for Schistosoma mansoni, the human blood fluke parasite. Ionotropic receptors (IRs), a variant family of the ionotropic glutamate receptors (iGluR), have an evolutionary ancient function in detecting odors to initiate chemosensory signaling. In this study, we applied an array of methods towards the goal of identifying IR-like family members in B. glabrata, ultimately revealing two types, the iGluR and IR. Sequence alignment showed that three ligand-binding residues are conserved in most Biomphalaria iGluR sequences, while the IRs did exhibit a variable pattern, lacking some or all known glutamate-interactingresidues, supporting their distinct classification from the iGluRs. We show that B. glabrata contains 7 putative IRs, some of which are expressed within its chemosensory organs. To further investigate a role for the more ancient IR25a type in chemoreception, we tested its spatial distribution pattern within the snail cephalic tentacle by in situ hybridization. The presence of IR25a within presumptive sensory neurons supports a role for this receptor in olfactory processing, contributing to our understanding of the molecular pathways that are involved in Biomphalaria olfactory processing. PMID:27253696

  13. Ionotropic Receptors Identified within the Tentacle of the Freshwater Snail Biomphalaria glabrata, an Intermediate Host of Schistosoma mansoni

    PubMed Central

    Liang, Di; Wang, Tianfang; Rotgans, Bronwyn A.; McManus, Donald P.; Cummins, Scott F.

    2016-01-01

    Biomphalaria glabrata (B. glabrata) is an air-breathing aquatic mollusc found in freshwater habitats across the Western Hemisphere. It is most well-known for its recognized capacity to act as a major intermediate host for Schistosoma mansoni, the human blood fluke parasite. Ionotropic receptors (IRs), a variant family of the ionotropic glutamate receptors (iGluR), have an evolutionary ancient function in detecting odors to initiate chemosensory signaling. In this study, we applied an array of methods towards the goal of identifying IR-like family members in B. glabrata, ultimately revealing two types, the iGluR and IR. Sequence alignment showed that three ligand-binding residues are conserved in most Biomphalaria iGluR sequences, while the IRs did exhibit a variable pattern, lacking some or all known glutamate-interactingresidues, supporting their distinct classification from the iGluRs. We show that B. glabrata contains 7 putative IRs, some of which are expressed within its chemosensory organs. To further investigate a role for the more ancient IR25a type in chemoreception, we tested its spatial distribution pattern within the snail cephalic tentacle by in situ hybridization. The presence of IR25a within presumptive sensory neurons supports a role for this receptor in olfactory processing, contributing to our understanding of the molecular pathways that are involved in Biomphalaria olfactory processing. PMID:27253696

  14. Effects of abnormal temperature and starvation on the internal defense system of the schistosome-transmitting snail Biomphalaria glabrata.

    PubMed

    Nelson, Molly K; Cruz, Brandon C; Buena, Kevin L; Nguyen, Hai; Sullivan, John T

    2016-07-01

    Climate change may affect the internal defense system (IDS) of freshwater snails, and as a result their capacity to transmit disease. We examined effects of short-term exposure to supra- and sub-optimal temperatures or starvation on 3 parameters of the IDS of the schistosome-resistant Salvador strain of Biomphalaria glabrata - hemocyte concentrations, cell division in the amebocyte-producing organ (APO), and resistance to infection with Schistosoma mansoni. Adult snails were exposed to 1 of 3 temperatures, 20°C, 27°C (controls), or 33°C, for 1 or 2weeks, with food. A fourth group was maintained at 27°C, but without food. Compared to the controls, starved snails had significantly higher hemocyte counts at both 1 and 2weeks, although mitotic activity in the APO was significantly lower at both time periods. Exposure to 20°C or 33°C for 1 or 2weeks did not affect hemocyte numbers. However, APO mitotic activity in snails exposed to 20°C was significantly higher at both 1 and 2weeks, whereas mitotic activity in snails exposed to 33°C was significantly lower at 1week but normal at 2weeks. None of the treatments altered the resistance phenotype of Salvador snails. In a follow-up experiment, exposure to 33°C for 4-5h, a treatment previously reported to both induce expression of heat shock proteins (Hsps) and abrogate resistance to infection, caused immediate upregulation of Hsp 70 and Hsp 90 expression, but did not alter resistance, and Hsp expression levels returned to baseline after 2weeks at 33°C. Results of this study indicate that abnormal environmental conditions can have both stimulatory and inhibitory effects on the IDS in adult B. glabrata, and that some degree of acclimation to abnormal temperatures may occur. PMID:27261059

  15. Fucoidan stimulates cell division in the amebocyte-producing organ of the schistosome-transmitting snail Biomphalaria glabrata

    PubMed Central

    Sullivan, John T.; Belloir, Joseph A.; Beltran, Roxxana V.; Grivakis, Aris; Ransone, Kathryn A.

    2014-01-01

    Adult Salvador (schistosome-resistant) strain Biomphalaria glabrata snails were injected with 5 μl of 10 mg/ml solutions of the sulfated polysaccharides λ carageenan, dextran sulfate, fucoidan, and heparin, the nonsulfated polysaccharide laminarin, and the monosaccharides L-fucose and L-galactose, and mitotic activity in the amebocyte-producing organ (APO) was measured in histological sections at 24h post injection. Among the substances tested, only fucoidan induced elevated mitotic activity. Desulfated fucoidan was not mitogenic, indicating that sulfate groups are required for activity. Schistosome-susceptible M-line snails possessed minimal or no hematopoietic tissue in their APO, which did not respond to fucoidan. Immersion of juvenile Salvador snails in 1 or 10 mg/ml solutions of fucoidan for 3h did not elevate mitotic activity at 24h post immersion, suggesting that the external and digestive tract epithelia of B. glabrata are impermeable to this molecule. These results provide support for the hypothesis that fucosylated glycans on the tegument and in excretory-secretory products of sporocysts of Schistosoma mansoni are in part responsible for increased mitotic activity in the APO of B. glabrata infected with this trematode or injected with its extracts. PMID:25233872

  16. A Shift from Cellular to Humoral Responses Contributes to Innate Immune Memory in the Vector Snail Biomphalaria glabrata

    PubMed Central

    Pinaud, Silvain; Portela, Julien; Duval, David; Nowacki, Fanny C.; Olive, Marie-Aude; Allienne, Jean-François; Galinier, Richard; Dheilly, Nolwenn M.; Kieffer-Jaquinod, Sylvie; Mitta, Guillaume; Théron, André; Gourbal, Benjamin

    2016-01-01

    Discoveries made over the past ten years have provided evidence that invertebrate antiparasitic responses may be primed in a sustainable manner, leading to the failure of a secondary encounter with the same pathogen. This phenomenon called “immune priming” or "innate immune memory" was mainly phenomenological. The demonstration of this process remains to be obtained and the underlying mechanisms remain to be discovered and exhaustively tested with rigorous functional and molecular methods, to eliminate all alternative explanations. In order to achieve this ambitious aim, the present study focuses on the Lophotrochozoan snail, Biomphalaria glabrata, in which innate immune memory was recently reported. We provide herein the first evidence that a shift from a cellular immune response (encapsulation) to a humoral immune response (biomphalysin) occurs during the development of innate memory. The molecular characterisation of this process in Biomphalaria/Schistosoma system was undertaken to reconcile mechanisms with phenomena, opening the way to a better comprehension of innate immune memory in invertebrates. This prompted us to revisit the artificial dichotomy between innate and memory immunity in invertebrate systems. PMID:26735307

  17. A Shift from Cellular to Humoral Responses Contributes to Innate Immune Memory in the Vector Snail Biomphalaria glabrata.

    PubMed

    Pinaud, Silvain; Portela, Julien; Duval, David; Nowacki, Fanny C; Olive, Marie-Aude; Allienne, Jean-François; Galinier, Richard; Dheilly, Nolwenn M; Kieffer-Jaquinod, Sylvie; Mitta, Guillaume; Théron, André; Gourbal, Benjamin

    2016-01-01

    Discoveries made over the past ten years have provided evidence that invertebrate antiparasitic responses may be primed in a sustainable manner, leading to the failure of a secondary encounter with the same pathogen. This phenomenon called "immune priming" or "innate immune memory" was mainly phenomenological. The demonstration of this process remains to be obtained and the underlying mechanisms remain to be discovered and exhaustively tested with rigorous functional and molecular methods, to eliminate all alternative explanations. In order to achieve this ambitious aim, the present study focuses on the Lophotrochozoan snail, Biomphalaria glabrata, in which innate immune memory was recently reported. We provide herein the first evidence that a shift from a cellular immune response (encapsulation) to a humoral immune response (biomphalysin) occurs during the development of innate memory. The molecular characterisation of this process in Biomphalaria/Schistosoma system was undertaken to reconcile mechanisms with phenomena, opening the way to a better comprehension of innate immune memory in invertebrates. This prompted us to revisit the artificial dichotomy between innate and memory immunity in invertebrate systems. PMID:26735307

  18. Genome size estimates for two important freshwater molluscs, the zebra mussel (Dreissena polymorpha) and the schistosomiasis vector snail (Biomphalaria glabrata).

    PubMed

    Gregory, T Ryan

    2003-10-01

    The haploid genome sizes of two important molluscs were assessed by Feulgen image analysis densitometry. The genome size of the zebra mussel (Dreissena polymorpha), a prolific invader of North American lakes, was estimated to be 1C = 1.70 +/- 0.03 pg, and that of the freshwater snail Biomphalaria glabrata, the predominant intermediate vector of the human parasite Schistosoma mansoni, was estimated at 0.95 +/- 0.01 pg. These estimates will be important in future efforts in molluscan genomics, which at present lags far behind work being carried out with vertebrate and arthropod models. B. glabrata in particular, which has one of the smallest known gastropod genomes, is recommended as a highly suitable target for future genome sequencing. PMID:14608401

  19. Epigenetic modulation, stress and plasticity in susceptibility of the snail host, Biomphalaria glabrata, to Schistosoma mansoni infection.

    PubMed

    Knight, Matty; Ittiprasert, Wannaporn; Arican-Goktas, Halime D; Bridger, Joanna M

    2016-06-01

    Blood flukes are the causative agent of schistosomiasis - a major neglected tropical disease that remains endemic in numerous countries of the tropics and sub-tropics. During the past decade, a concerted effort has been made to control the spread of schistosomiasis, using a drug intervention program aimed at curtailing transmission. These efforts notwithstanding, schistosomiasis has re-emerged in southern Europe, raising concerns that global warming could contribute to the spread of this disease to higher latitude countries where transmission presently does not take place. Vaccines against schistosomiasis are not currently available and reducing transmission by drug intervention programs alone does not prevent reinfection in treated populations. These challenges have spurred awareness that new interventions to control schistosomiasis are needed, especially since the World Health Organization hopes to eradicate the disease by 2025. For one of the major species of human schistosomes, Schistosoma mansoni, the causative agent of hepatointestinal schistosomiasis in Africa and the Western Hemisphere, freshwater snails of the genus Biomphalaria serve as the obligate intermediate host of this parasite. To determine mechanisms that underlie parasitism by S. mansoni of Biomphalaria glabrata, which might be manipulated to block the development of intramolluscan larval stages of the parasite, we focused effort on the impact of schistosome infection on the epigenome of the snail. Results to date reveal a complex relationship, manifested by the ability of the schistosome to manipulate the snail genome, including the expression of specific genes. Notably, the parasite subverts the stress response of the host to ensure productive parasitism. Indeed, in isolates of B. glabrata native to central and South America, susceptible to infection with S. mansoni, the heat shock protein 70 (Bg-HSP70) gene of this snail is rapidly relocated in the nucleus and transcribed to express HSP70

  20. Nimbus (BgI): An active non-LTR retrotransposon of the Schistosoma mansoni snail host Biomphalaria glabrata✰

    PubMed Central

    Raghavan, Nithya; Tettelin, Hervé; Miller, André; Hostetler, Jessica; Tallon, Luke; Knight, Matty

    2009-01-01

    The freshwater snail Biomphalaria glabrata is closely associated with the transmission of human schistosomiasis. An ecologically sound method has been proposed to control schistosomiasis using genetically modified snails to displace endemic, susceptible ones. To assess the viability of this form of biological control, studies towards understanding the molecular makeup of the snail relative to the presence of endogenous mobile genetic elements are being undertaken since they can be exploited for genetic transformation studies. We previously cloned a 1.95 Kb BamHI fragment in B. glabrata (BGR2) with sequence similarity to the human long interspersed nuclear element (LINE or L1). A contiguous, full-length sequence corresponding to BGR2, hereafter-named nimbus (BgI), has been identified from a B. glabrata bacterial artificial chromosome (BAC) library. Sequence analysis of the 65,764 bp BAC insert contained one full-length, complete nimbus (BgI) element (element I), two full-length elements (elements II and III) containing deletions and flanked by target site duplications and 10 truncated copies. The intact nimbus (BgI) contained two open reading frames (ORFs 1 and 2) encoding the characteristic hallmark domains found in non-long terminal repeat retrotransposons belonging to the I clade; a nucleic acid binding protein in ORF1 and an apurinic/apyrimidinic endonuclease, reverse transcriptase and RNase H in ORF2. Phylogenetic analysis revealed that nimbus (BgI) is closely related to Drosophila (I factor), mosquito Aedes aegypti (MosquI) and chordate ascidian Ciona intestinalis (CiI) retrotransposons. Nimbus (BgI) represents the first complete mobile element characterized from a mollusk that appears to be transcriptionally active and is widely distributed in snails of the neotropics and the Old World. PMID:17521654

  1. Developmental toxicity, acute toxicity and mutagenicity testing in freshwater snails Biomphalaria glabrata (Mollusca: Gastropoda) exposed to chromium and water samples.

    PubMed

    Tallarico, Lenita de Freitas; Borrely, Sueli Ivone; Hamada, Natália; Grazeffe, Vanessa Siqueira; Ohlweiler, Fernanda Pires; Okazaki, Kayo; Granatelli, Amanda Tosatte; Pereira, Ivana Wuo; Pereira, Carlos Alberto de Bragança; Nakano, Eliana

    2014-12-01

    A protocol combining acute toxicity, developmental toxicity and mutagenicity analysis in freshwater snail Biomphalaria glabrata for application in ecotoxicological studies is described. For acute toxicity testing, LC50 and EC50 values were determined; dominant lethal mutations induction was the endpoint for mutagenicity analysis. Reference toxicant potassium dichromate (K2Cr2O7) was used to characterize B. glabrata sensitivity for toxicity and cyclophosphamide to mutagenicity testing purposes. Compared to other relevant freshwater species, B. glabrata showed high sensitivity: the lowest EC50 value was obtained with embryos at veliger stage (5.76mg/L). To assess the model applicability for environmental studies, influent and effluent water samples from a wastewater treatment plant were evaluated. Gastropod sensitivity was assessed in comparison to the standardized bioassay with Daphnia similis exposed to the same water samples. Sampling sites identified as toxic to daphnids were also detected by snails, showing a qualitatively similar sensitivity suggesting that B. glabrata is a suitable test species for freshwater monitoring. Holding procedures and protocols implemented for toxicity and developmental bioassays showed to be in compliance with international standards for intra-laboratory precision. Thereby, we are proposing this system for application in ecotoxicological studies. PMID:25259848

  2. Regulation of laboratory populations of snails (Biomphalaria and Bulinus spp.) by river prawns, Macrobrachium spp. (Decapoda, Palaemonidae): implications for control of schistosomiasis

    PubMed Central

    Lafferty, Kevin D.; Kuris, Armand M.

    2014-01-01

    Human schistosomiasis is a common parasitic disease endemic in many tropical and subtropical countries. One barrier to achieving long-term control of this disease has been re-infection of treated patients when they swim, bathe, or wade in surface fresh water infested with snails that harbor and release larval parasites. Because some snail species are obligate intermediate hosts of schistosome parasites, removing snails may reduce parasitic larvae in the water, reducing re-infection risk. Here, we evaluate the potential for snail control by predatory freshwater prawns, Macrobrachium rosenbergii and M. vollenhovenii, native to Asia and Africa, respectively. Both prawn species are high value, protein-rich human food commodities, suggesting their cultivation may be beneficial in resource-poor settings where few other disease control options exist. In a series of predation trials in laboratory aquaria, we found both species to be voracious predators of schistosome-susceptible snails, hatchlings, and eggs, even in the presence of alternative food, with sustained average consumption rates of 12% of their body weight per day. Prawns showed a weak preference for Bulinus truncatus over Biomphalaria glabrata snails. Consumption rates were highly predictable based on the ratio of prawn: snail body mass, suggesting satiation-limited predation. Even the smallest prawns tested (0.5–2g) caused snail recruitment failure, despite high snail fecundity. With the World Health Organization turning attention toward schistosomiasis elimination, native prawn cultivation may be a viable snail control strategy that offers a win-win for public health and economic development. PMID:24388955

  3. Evolutionary history and phylogeography of the schistosome-vector freshwater snail Biomphalaria glabrata based on nuclear and mitochondrial DNA sequences.

    PubMed

    Mavárez, J; Steiner, C; Pointier, J-P; Jarne, P

    2002-10-01

    The phylogeography of the freshwater snail Biomphalaria glabrata remains poorly known, although this species is the major vector of schistosomiasis in the New World. It was here investigated in South America and the Lesser Antilles, based on partial mitochondrial large ribosomal subunit (16S rDNA) and nuclear internal transcribed spacer-2 (ITS-2) gene sequences. Sampling included 17 populations from a large part of the current geographic range of the species (Brazil, Venezuela and Lesser Antilles). Substantial variability was detected, as well as a high amount of phylogenetically informative signal. The molecular phylogeny inferred splits B. glabrata into Northern and Southern clades separated by the Amazon river, and may even suggest a supra-specific status for B. glabrata. Brazilian populations were the most diverse and appeared basal to the other populations. Venezuelan haplotypes formed a single clade, albeit not strongly supported. Two Venezuelan haplotypes appear rather similar to Brazilian haplotypes. Similarly, Lesser Antilles haplotypes clustered in the same monophyletic clade, which suggests that the recent colonisation of the Antilles has a northern South American origin. However, the estimated divergence time between Antilles and Venezuelan sequences is extremely large (conservatively higher than 10(5) years). These results are discussed in the light of (i) phylogeographic patterns at South American scale, and (ii) recurrent introduction of molluscs, especially in the Antilles, as a consequence of human activities. PMID:12242642

  4. Bioactivity Evaluation of Plant Extracts Used in Indigenous Medicine against the Snail, Biomphalaria glabrata, and the Larvae of Aedes aegypti.

    PubMed

    Dos Santos, Edilson Alves; de Carvalho, Cenira M; Costa, Ana L S; Conceição, Adilva S; Moura, Flávia de B Prado; Santana, Antônio Euzébio Goulart

    2012-01-01

    This investigation examined the molluscicidal and larvicidal activity of eight plants that are used in the traditional medicine of the Pankararé indigenous people in the Raso da Catarina region, Bahia state, Brazil. The tested plants were chosen based on the results of previous studies. Only those plants that were used either as insect repellents or to treat intestinal parasitic infections were included in the study. Crude extracts (CEs) of these plants were tested for their larvicidal activity (against Aedes aegypti larvae in the fourth instar) and molluscicidal activity (against the snail Biomphalaria glabrata). The plant species Scoparia dulcis and Helicteres velutina exhibited the best larvicidal activities (LC(50) 83.426 mg/L and LC(50) 138.896 mg/L, resp.), and Poincianella pyramidalis, Chenopodium ambrosoides, and Mimosa tenuiflora presented the best molluscicidal activities (LC(50) 0.94 mg/L, LC(50) 13.51 mg/L, and LC(50) 20.22 mg/L, resp.). As we used crude extracts as the tested materials, further study is warranted to isolate and purify the most active compounds. PMID:22194773

  5. Bioactivity Evaluation of Plant Extracts Used in Indigenous Medicine against the Snail, Biomphalaria glabrata, and the Larvae of Aedes aegypti

    PubMed Central

    dos Santos, Edilson Alves; de Carvalho, Cenira M.; Costa, Ana L. S.; Conceição, Adilva S.; Moura, Flávia de B. Prado; Santana, Antônio Euzébio Goulart

    2012-01-01

    This investigation examined the molluscicidal and larvicidal activity of eight plants that are used in the traditional medicine of the Pankararé indigenous people in the Raso da Catarina region, Bahia state, Brazil. The tested plants were chosen based on the results of previous studies. Only those plants that were used either as insect repellents or to treat intestinal parasitic infections were included in the study. Crude extracts (CEs) of these plants were tested for their larvicidal activity (against Aedes aegypti larvae in the fourth instar) and molluscicidal activity (against the snail Biomphalaria glabrata). The plant species Scoparia dulcis and Helicteres velutina exhibited the best larvicidal activities (LC50 83.426 mg/L and LC50 138.896 mg/L, resp.), and Poincianella pyramidalis, Chenopodium ambrosoides, and Mimosa tenuiflora presented the best molluscicidal activities (LC50 0.94 mg/L, LC50 13.51 mg/L, and LC50 20.22 mg/L, resp.). As we used crude extracts as the tested materials, further study is warranted to isolate and purify the most active compounds. PMID:22194773

  6. A family of variable immunoglobulin and lect in domain containing molecules in the snail Biomphalaria glabrata

    PubMed Central

    Dheilly, Nolwenn M; Duval, David; Mouahid, Gabriel; Emans, Rémi; Allienne, Jean-François; Galinier, Richard; Genthon, Clémence; Dubois, Emeric; Pasquier, Louis Du; Adema, Coen M; Grunau, Christoph; Mitta, Guillaume; Gourbal, Benjamin

    2014-01-01

    Technical limitations have hindered comprehensive studies of highly variable immune response molecules that are thought to have evolved due to pathogen-mediated selection such as Fibrinogen-related proteins (FREPs) from Biomphalaria glabrata. FREPs combine upstream immunoglobulin superfamily (IgSF) domains with a C-terminal fibrinogen-related domain (FreD) and participate in reactions against trematode parasites. From RNAseq data we assembled a de novo reference transcriptome of B. glabrata to investigate the diversity of FREP transcripts. This study increased over two-fold the number of bonafide FREP subfamilies and revealed important sequence diversity within FREP12 subfamily. We also report the discovery of related molecules that feature one or two IgSF domains associated with different C-terminal lectin domains, named C-type lectin-related proteins (CREPs) and Galectin-related protein (GREP). Together, the highly similar FREPs, CREPs and GREP were designated VIgL (Variable Immunoglobulin and Lectin domain containing molecules). PMID:25451302

  7. Altered Gene Expression in the Schistosome-Transmitting Snail Biomphalaria glabrata following Exposure to Niclosamide, the Active Ingredient in the Widely Used Molluscicide Bayluscide

    PubMed Central

    Zhang, Si-Ming; Buddenborg, Sarah K.; Adema, Coen M.; Sullivan, John T.; Loker, Eric S.

    2015-01-01

    In view of the call by the World Health Organization (WHO) for elimination of schistosomiasis as a public health problem by 2025, use of molluscicides in snail control to supplement chemotherapy–based control efforts is likely to increase in the coming years. The mechanisms of action of niclosamide, the active ingredient in the most widely used molluscicides, remain largely unknown. A better understanding of its toxicology at the molecular level will both improve our knowledge of snail biology and may offer valuable insights into the development of better chemical control methods for snails. We used a recently developed Biomphalaria glabrata oligonucleotide microarray (31K features) to investigate the effect of sublethal exposure to niclosamide on the transcriptional responses of the snail B. glabrata relative to untreated snails. Most of the genes highly upregulated following exposure of snails to niclosamide are involved in biotransformation of xenobiotics, including genes encoding cytochrome P450s (CYP), glutathione S-transferases (GST), and drug transporters, notably multi-drug resistance protein (efflux transporter) and solute linked carrier (influx transporter). Niclosamide also induced stress responses. Specifically, six heat shock protein (HSP) genes from three super-families (HSP20, HSP40 and HSP70) were upregulated. Genes encoding ADP-ribosylation factor (ARF), cAMP response element-binding protein (CREB) and coatomer, all of which are involved in vesicle trafficking in the Golgi of mammalian cells, were also upregulated. Lastly, a hemoglobin gene was downregulated, suggesting niclosamide may affect oxygen transport. Our results show that snails mount substantial responses to sublethal concentrations of niclosamide, at least some of which appear to be protective. The topic of how niclosamide’s lethality at higher concentrations is determined requires further study. Given that niclosamide has also been used as an anthelmintic drug for decades and has

  8. Altered Gene Expression in the Schistosome-Transmitting Snail Biomphalaria glabrata following Exposure to Niclosamide, the Active Ingredient in the Widely Used Molluscicide Bayluscide.

    PubMed

    Zhang, Si-Ming; Buddenborg, Sarah K; Adema, Coen M; Sullivan, John T; Loker, Eric S

    2015-01-01

    In view of the call by the World Health Organization (WHO) for elimination of schistosomiasis as a public health problem by 2025, use of molluscicides in snail control to supplement chemotherapy-based control efforts is likely to increase in the coming years. The mechanisms of action of niclosamide, the active ingredient in the most widely used molluscicides, remain largely unknown. A better understanding of its toxicology at the molecular level will both improve our knowledge of snail biology and may offer valuable insights into the development of better chemical control methods for snails. We used a recently developed Biomphalaria glabrata oligonucleotide microarray (31K features) to investigate the effect of sublethal exposure to niclosamide on the transcriptional responses of the snail B. glabrata relative to untreated snails. Most of the genes highly upregulated following exposure of snails to niclosamide are involved in biotransformation of xenobiotics, including genes encoding cytochrome P450s (CYP), glutathione S-transferases (GST), and drug transporters, notably multi-drug resistance protein (efflux transporter) and solute linked carrier (influx transporter). Niclosamide also induced stress responses. Specifically, six heat shock protein (HSP) genes from three super-families (HSP20, HSP40 and HSP70) were upregulated. Genes encoding ADP-ribosylation factor (ARF), cAMP response element-binding protein (CREB) and coatomer, all of which are involved in vesicle trafficking in the Golgi of mammalian cells, were also upregulated. Lastly, a hemoglobin gene was downregulated, suggesting niclosamide may affect oxygen transport. Our results show that snails mount substantial responses to sublethal concentrations of niclosamide, at least some of which appear to be protective. The topic of how niclosamide's lethality at higher concentrations is determined requires further study. Given that niclosamide has also been used as an anthelmintic drug for decades and has been

  9. Genome-Wide Scan and Test of Candidate Genes in the Snail Biomphalaria glabrata Reveal New Locus Influencing Resistance to Schistosoma mansoni

    PubMed Central

    Tennessen, Jacob A.; Bonner, Kaitlin M.; Bollmann, Stephanie R.; Johnstun, Joel A.; Yeh, Jan-Ying; Marine, Melanie; Tavalire, Hannah F.; Bayne, Christopher J.; Blouin, Michael S.

    2015-01-01

    Background New strategies to combat the global scourge of schistosomiasis may be revealed by increased understanding of the mechanisms by which the obligate snail host can resist the schistosome parasite. However, few molecular markers linked to resistance have been identified and characterized in snails. Methodology/Principal Findings Here we test six independent genetic loci for their influence on resistance to Schistosoma mansoni strain PR1 in the 13-16-R1 strain of the snail Biomphalaria glabrata. We first identify a genomic region, RADres, showing the highest differentiation between susceptible and resistant inbred lines among 1611 informative restriction-site associated DNA (RAD) markers, and show that it significantly influences resistance in an independent set of 439 outbred snails. The additive effect of each RADres resistance allele is 2-fold, similar to that of the previously identified resistance gene sod1. The data fit a model in which both loci contribute independently and additively to resistance, such that the odds of infection in homozygotes for the resistance alleles at both loci (13% infected) is 16-fold lower than the odds of infection in snails without any resistance alleles (70% infected). Genome-wide linkage disequilibrium is high, with both sod1 and RADres residing on haplotype blocks >2Mb, and with other markers in each block also showing significant effects on resistance; thus the causal genes within these blocks remain to be demonstrated. Other candidate loci had no effect on resistance, including the Guadeloupe Resistance Complex and three genes (aif, infPhox, and prx1) with immunological roles and expression patterns tied to resistance, which must therefore be trans-regulated. Conclusions/Significance The loci RADres and sod1 both have strong effects on resistance to S. mansoni. Future approaches to control schistosomiasis may benefit from further efforts to characterize and harness this natural genetic variation. PMID:26372103

  10. Elimination of Biomphalaria pfeifferi, Bulinus tropicus and Lymnaea natalensis by the ampullarid snail, Marisa cornuarietis, in a man-made dam in northern Tanzania.

    PubMed

    Nguma, J F; McCullough, F S; Masha, E

    1982-03-01

    Marisa cornuarietis is a well known ampullarid competitor/predator of Biomphalaria glabrata in Puerto Rico. For the first time in Africa a flourishing population of Marisa has been established in a small, permanent, man-made dam at Kisangara, near Moshi, Tanzania. Prior to the release of M. cornuarietis in June 1977, this dam supported thriving populations of the pulmonate snail hosts Biomphalaria pfeifferi and Lymnaea natalensis; Bulinus tropicus and the melaniid Melanoides tuberculata were also common. Some 24 months after the establishment of Marisa the three pulmonate species had been eliminated; only M. tuberculata remained at about the same population density as originally recorded. Marisa has not caused any obvious adverse environmental impact in the dam. There is at present no valid evidence that this ampullarid would be a threat to local rice production, which is the only crop at risk, but carefully designed field trials should be undertaken to confirm or refute this view. In view of the vast number of permanent, lentic habitats throughout the Afrotropical region, which act as important transmission sites of schistosomiasis and fascioliasis, the role of Marisa cornuarietis as a cost-effective biological control agent in integrated control operations deserves henceforth to be energetically explored. PMID:6122367

  11. Larval excretory-secretory products from the parasite Schistosoma mansoni modulate HSP70 protein expression in defence cells of its snail host, Biomphalaria glabrata

    PubMed Central

    Zahoor, Zahida; Davies, Angela J.; Kirk, Ruth S.; Rollinson, David

    2010-01-01

    Synthesis of heat shock proteins (HSPs) following cellular stress is a response shared by many organisms. Amongst the HSP family, the ∼70 kDa HSPs are the most evolutionarily conserved with intracellular chaperone and extracellular immunoregulatory functions. This study focused on the effects of larval excretory-secretory products (ESPs) from the parasite Schistosoma mansoni on HSP70 protein expression levels in haemocytes (defence cells) from its snail intermediate host Biomphalaria glabrata. S. mansoni larval stage ESPs are known to interfere with haemocyte physiology and behaviour. Haemocytes from two different B. glabrata strains, one which is susceptible to S. mansoni infection and one which is resistant, both showed reduced HSP70 protein levels following 1 h challenge with S. mansoni ESPs when compared to unchallenged controls; however, the reduction observed in the resistant strain was less marked. The decline in intracellular HSP70 protein persisted for at least 5 h in resistant snail haemocytes only. Furthermore, in schistosome-susceptible snails infected by S. mansoni for 35 days, haemocytes possessed approximately 70% less HSP70. The proteasome inhibitor, MG132, partially restored HSP70 protein levels in ESP-challenged haemocytes, demonstrating that the decrease in HSP70 was in part due to intracellular degradation. The extracellular signal-regulated kinase (ERK) signalling pathway appears to regulate HSP70 protein expression in these cells, as the mitogen-activated protein-ERK kinase 1/2 (MEK1/2) inhibitor, U0126, significantly reduced HSP70 protein levels. Disruption of intracellular HSP70 protein expression in B. glabrata haemocytes by S. mansoni ESPs may be a strategy employed by the parasite to manipulate the immune response of the intermediate snail host. PMID:20182834

  12. Immunolocalization of Schistosoma mansoni and Schistosoma haematobium antigens reacting with their Egyptian snail vectors.

    PubMed

    El-Dafrawy, Shadia M; Mohamed, Amira H; Hammam, Olfat A; Rabia, Ibrahim

    2007-12-01

    The reaction of the haemolymph and the tissue of infected intermediate hosts, Biomphalaria alexandrina and Bulinus truncatus to Schistosoma mansoni and S. haematobium antigens were investigated using the indirect immunoperoxidase technique. A new technique, Agarose cell block was used in collection of haemolymph which helped in collecting plenty of well formed cells in comparison to the ordinary one using the cytospin. Collected haemolymph and prepared tissues of uninfected and infected B. alexandria and B. truncatus were fixed and then reacted with anti-S. mansoni and anti-S. haematobium IgG polyclonal antibodies. The haemolymph and tissue of infected B. alexandrina and B. truncatus gave a positive peroxidase reaction represented by a brown colour. In haemolymph, the positive peroxidase reaction was detected mainly in the cytoplasm of the amoebocytes. In the tissue, it was detected in epithelial cells lining the tubules, male cells in the lumen of the tubules and in female oogonia cells along the periphery of the tubules. The similarity in the strength and distribution of positive reaction in B. alexandrina and B. truncates was observed as compared to control. Thus, the immunoperoxidase technique proved to be an effective indicator for the schistosome-antigen in the snails. PMID:18383803

  13. Characterization of immune genes from the schistosome host snail Biomphalaria glabrata that encode peptidoglycan recognition proteins and gram-negative bacteria binding protein

    PubMed Central

    Zeng, Yong; Loker, Eric S.

    2013-01-01

    Peptidoglycan (PGN) recognition proteins (PGRPs) and gram-negative bacteria binding proteins (GNBPs) play an essential role in Toll/Imd signaling pathways in arthropods. The existence of homologous pathways involving PGRPs and GNBPs in other major invertebrate phyla such as the Mollusca remains unclear. In this paper, we report four full-length PGRP cDNAs and one full-length GNBP cDNA cloned from the snail Biomphalaria glabrata, the intermediate host of the human blood fluke Schistosoma mansoni, designated as BgPGRPs and BgGNBP, respectively. Three transcripts are generated from a long form PGRP gene (BgPGRP-LA) by alternative splicing and one from a short form PGRP gene (BgPGRP-SA). BgGNBP encodes a putative secreted protein. Northern blots demonstrated that expression of BgPGRP-SA and BgGNBP was down-regulated in B. glabrata at 6 h after exposure to three types of microbes. No significant changes in expression were observed in snails at 2 days post-exposure (dpe) to the trematodes Echinostoma paraensei or S. mansoni. However, up-regulation of BgPGRP-SA in M line snails at later time points of infection with E. paraensei (i.e., 12 and 17 dpe) was observed. Our study revealed that exposure to either microbes or trematodes did not alter the expression levels of BgPGRP-LAs, which were consistently low. This study provides new insights into the potential pathogen recognition capabilities of molluscs, indicates that further studies of the Toll/Imd pathways in this phylum are in order, and provides additional ways to judge the importance of this pathway in the evolution of internal defense across the animal phyla. PMID:17805526

  14. Cytometric analysis, genetic manipulation and antibiotic selection of the snail embryonic cell line Bge from Biomphalaria glabrata, the intermediate host of Schistosoma mansoni.

    PubMed

    Rinaldi, Gabriel; Yan, Hongbin; Nacif-Pimenta, Rafael; Matchimakul, Pitchaya; Bridger, Joanna; Mann, Victoria H; Smout, Michael J; Brindley, Paul J; Knight, Matty

    2015-07-01

    The invertebrate cell line, Bge, from embryos of the snail Biomphalaria glabrata, remains to date the only established cell line from any species of the Phylum Mollusca. Since its establishment in 1976 by Eder Hansen, few studies have focused on profiling its cytometrics, growth characteristics or sensitivity to xenobiotics. Bge cells are reputed to be challenging to propagate and maintain. Therefore, even though this cell line is a noteworthy resource, it has not been studied widely. With growing interest in functional genomics, including genetic transformation, to elucidate molecular aspects of the snail intermediate hosts responsible for transmission of schistosomiasis, and aiming to enhance the convenience of maintenance of this molluscan cell line, we deployed the xCELLigene real time approach to study Bge cells. Doubling times for three isolates of Bge, termed CB, SL and UK, were longer than for mammalian cell lines - longer than 40 h in complete Bge medium supplemented with 7% fetal bovine serum at 25°C, ranging from ∼42 h to ∼157 h when 40,000 cells were seeded. To assess the potential of the cells for genetic transformation, antibiotic selection was explored. Bge cells were sensitive to the aminonucleoside antibiotic puromycin (from Streptomyces alboniger) from 5 μg/ml to 200 ng/ml, displaying a half maximal inhibitory concentration (IC50) of ∼1.91 μg/ml. Sensitivity to puromycin, and a relatively quick kill time (<48 h in 5 μg/ml) facilitated use of this antibiotic, together with the cognate resistance gene (puromycin N-acetyl-transferase) for selection of Bge cells transformed with the PAC gene (puroR). Bge cells transfected with a plasmid encoding puroR were partially rescued when cultured in the presence of 5 μg/ml of puromycin. These findings pave the way for the development of functional genomic tools applied to the host-parasite interaction during schistosomiasis and neglected tropical trematodiases at large. PMID:25907768

  15. Pathogen-associated molecular patterns activate expression of genes involved in cell proliferation, immunity and detoxification in the amebocyte-producing organ of the snail Biomphalaria glabrata.

    PubMed

    Zhang, Si-Ming; Loker, Eric S; Sullivan, John T

    2016-03-01

    The anterior pericardial wall of the snail Biomphalaria glabrata has been identified as a site of hemocyte production, hence has been named the amebocyte-producing organ (APO). A number of studies have shown that exogenous abiotic and biotic substances, including pathogen associated molecular patterns (PAMPs), are able to stimulate APO mitotic activity and/or enlarge its size, implying a role for the APO in innate immunity. The molecular mechanisms underlying such responses have not yet been explored, in part due to the difficulty in obtaining sufficient APO tissue for gene expression studies. By using a modified RNA extraction technique and microarray technology, we investigated transcriptomic responses of APOs dissected from snails at 24 h post-injection with two bacterial PAMPs, lipopolysaccharide (LPS) and peptidoglycan (PGN), or with fucoidan (FCN), which may mimic fucosyl-rich glycan PAMPs on sporocysts of Schistosoma mansoni. Based upon the number of genes differentially expressed, LPS exhibited the strongest activity, relative to saline-injected controls. A concurrent activation of genes involved in cell proliferation, immune response and detoxification metabolism was observed. A gene encoding checkpoint 1 kinase, a key regulator of mitosis, was highly expressed after stimulation by LPS. Also, seven different aminoacyl-tRNA synthetases that play an essential role in protein synthesis were found to be highly expressed. In addition to stimulating genes involved in cell proliferation, the injected substances, especially LPS, also induced expression of a number of immune-related genes including arginase, peptidoglycan recognition protein short form, tumor necrosis factor receptor, ficolin, calmodulin, bacterial permeability increasing proteins and E3 ubiquitin-protein ligase. Importantly, significant up-regulation was observed in four GiMAP (GTPase of immunity-associated protein) genes, a result which provides the first evidence suggesting an immune role of Gi

  16. Habitat characteristics for different freshwater snail species as determined biologically through macroinvertebrate information.

    PubMed

    El-Khayat, Hanaa M M; Mahmoud, Kadria M A; Mostafa, Bayomy B; Tantawy, Ahmad A; El-Deeb, Fatma A; Ragb, Fawzy M; Ismail, Nahed M; El-Said, Kalil M; Taleb, Hoda M Abu

    2011-12-01

    Macro-invertebrates including freshwater snails collected from 643 sites over 8 successive seasons among the River Nile, branches, main canals and certain drains in eight Egyptian Governorates. Thirteen snail species and one bivalve species were identified. The most distributed were Lanistus carinatus and Physa acuta while the most abundant were Cleopatra bulimoides and Physa acuta during the whole study. The sites that harbored each snail species in all the examined water-courses were grouped seasonally and their biological assessment was determined by their minimum and maximum total point similarity percentage to that of the corresponded reference site and mean of the total points. Habitats for most snail species attained minimum total point's similarity percentage less than 21% (very poor habitat) during autumn and winter then spring while during summer very poor habitat was harbored by only few snail species. P. acuta was the only survived snails in habitat which attained 0 as a minimum total point's similarity percentage during two seasons and L. carinatus and Succinea cleopatra during one season. With respect to medically important snails very poor sites constituted 23% of Biomphalaria alexandrina sites, 14% of Lymnaea natalensis and 9.4% of Bulinus truncatus sites. The studied macroinvertebrate matrices, total number of organisms, taxa richness, the Ephemeroptera, Plecoptera, and Trichoptera (EPT) index, ratio of EPT index to chironomidae, ratio of scraper to filtering collector, contribution of dominant macroinvertebrate major group, comparison revealed descending tolerances from B. alexanrina followed by L. natalensis then B. truncates, but Hilsenhoff Biotic Index (HBI) showed the same tolerance to organic pollution. PMID:22435158

  17. Update of fasciolosis-transmitting snails in Egypt (review and comment).

    PubMed

    Dar, Y D; Rondelaud, D; Dreyfuss, G

    2005-08-01

    Several snail species may contribute in transmission of fasciolosis in Egypt. These molluscs show a variable sensibility to natural infections with Fasciola species. Radix natalensis is considered to be the essential intermediate host for F. gigantica based on field and experimental studies. Cercarial production from R. natalensis experimentally infected with F. gigantica is affected by the species of definitive host from which the eggs are obtained, as well as the different laboratory conditions. Another lymnaeid, Galba truncatula, may play a role in transmitting this parasite in Egypt, as it was found naturally infected with F. gigantica. Latter snail species, originated from France, was susceptible to experimental infections with Egyptian miracidia of F. gigantica and it had a cercarial production close to that of local R. natalensis. Two other snails, Pseudosuccinea columella and Biomphalaria alexandrina, were naturally found harboring larvae of Fasciola sp. At the level of intermediate hosts of F. gigantica, the conditions are thus favorable in Egypt to transmit fasciolosis which could also be caused by another fasciolid, F. hepatica, as the existance of this fluke was confirmed in Egypt. PMID:16083061

  18. Predation of schistosomiasis vector snails by ostracoda (crustacea)

    USGS Publications Warehouse

    Sohn, I.G.; Kornicker, L.S.

    1972-01-01

    An ostracod species of Cypretta is an effective predator in laboratory experiments on 1- to 3-day-old Biomphalaria glabrata, a vector snail of the blood fluke that causes the tropical and subtropical disease schistosomiasis.

  19. Breeding of Biomphalaria tenagophila in mass scale.

    PubMed

    Rosa, Florence Mara; Marques, Daisymara P Almeida; Maciel, Engels; Couto, Josiane Maria; Negrão-Corrêa, Deborah A; Teles, Horácio M Santana; Santos, João Batista dos; Coelho, Paulo Marcos Zech

    2013-01-01

    An efficient method for breeding Biomphalaria tenagophila (Taim lineage/RS) was developed over a 5-year-period (2005-2010). Special facilities were provided which consisted of four cement tanks (9.4 x 0.6 x 0.22 m), with their bottom covered with a layer of sterilized red earth and calcium carbonate. Standard measures were adopted, as follows: each tank should contain an average of 3000 specimens, and would be provided with a daily ration of 35,000 mg complemented with lettuce. A green-house effect heating system was developed which constituted of movable dark canvas covers, which allowed the temperature to be controlled between 20 - 24 ºC. This system was essential, especially during the coldest months of the year. Approximately 27,000 specimens with a diameter of 12 mm or more were produced during a 14-month-period. The mortality rates of the newly-hatched and adult snails were 77% and 37%, respectively. The follow-up of the development system related to 310 specimens of B. tenagophila demonstrated that 70-day-old snails reached an average of 17.0 ± 0.9 mm diameter. The mortality rates and the development performance of B. tenagophila snails can be considered as highly satisfactory, when compared with other results in literature related to works carried out with different species of the genus Biomphalaria, under controlled laboratory conditions. PMID:23328724

  20. Freshwater snails (Mollusca: Gastropoda) from the Commonwealth of Dominica with a discussion of their roles in the transmission of parasites

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We collected six species of freshwater snails from Dominica, including Biomphalaria kuhniana, Gundlachia radiata Helisoma (= Planorbella) trivolvis, Melanoides tuberculata, Neritina punctulata, and Physa marmorata. Our collections indicate that un-reported species such as Gundlachia radiata and Hel...

  1. Snail Snooping.

    ERIC Educational Resources Information Center

    Miller, Dorothy

    1993-01-01

    Presents an activity in which students in grades 5-8 learn about snail reproduction by observing and charting the activities of land snails, freshwater snails, and slugs. Instructions to implement and extend the activity are provided. (MDH)

  2. Intraspecific and interspecific chemoattraction inBiomphalaria glabrata andHelisoma trivolvis (Gastropoda: Planorbidae).

    PubMed

    Marcopoulos, A A; Fried, B

    1994-10-01

    A Petri dish bioassay previously used to examine food preferences in planorbid snails was used to study intraspecific and interspecific chemoattraction inBiomphalaria glabrata (albino strain, M-line) andHelisoma trivolvis (Colorado strain) snails.B. glabrata snails showed significant intraspecific chemoattraction in the absence of visual cues and snail thigmotaxis.H. trivolvis snails also showed significant intraspecific chemoattraction. Interspecific chemoattraction between these species occurred in the bioassay, suggesting that the chemoattractants were not species specific. Artificial spring water conditioned by aqueous excretory-secretory products (snail-conditioned water) ofB. glabrata elicited significant intraspecific chemoattraction. However, lipophilic excretory-secretory products ofB. glabrata elicited significant chemorepulsion. Repellant factors in the lipophilic fraction were not characterized. PMID:24241838

  3. [Effects of eugenol and derivatives on Biomphalaria glabrata].

    PubMed

    De Souza, C P; De Oliveira, A B; Araújo, N; Katz, N

    1991-05-01

    Biomphalaria glabrata snails and egg-masses were exposed, for six to twenty-four hours to concentrations of 1, 10, 100 and 1000 ppm of Eugenol, O-methyleugenol, O-benzyleugenol and dehydrodieugenol. Only at 10 ppm O-benzyleugenol enhanced mortality of snails and egg-masses. The other substances showed ovicidal and molluscicidal activity only at 100 and 1000 ppm concentrations, causing a significant cardiac frequency reduction in snails after 6 to 24 hours of exposure as well as perduring low cardiac rates until 24 hours afterwards. Two specimen exposed to 100 ppm O-methyleugenol presented anesthetic effect and extrusion of copulator and urethral organs. No schistosomicide or anesthetic effects were observed in mice experimentally infected with Schistosoma mansoni and treated during 5 days with oral doses of 150 mg/kg of Eugenol, O-methyleugenol and O-benzyleugenol. PMID:1844101

  4. Schistosoma mansoni and Biomphalaria: past history and future trends.

    PubMed

    Morgan, J A; Dejong, R J; Snyder, S D; Mkoji, G M; Loker, E S

    2001-01-01

    Schistosoma mansoni is one of the most abundant infectious agents of humankind. Its widespread distribution is permitted by the broad geographic range of susceptible species of the freshwater snail genus Biomphalaria that serve as obligatory hosts for its larval stages. Molecular phylogenetic studies suggest that Schistosoma originated in Asia, and that a pulmonate-transmitted progenitor colonized Africa and gave rise to both terminal-spined and lateral-spined egg species groups, the latter containing S. mansoni. Schistosoma mansoni likely appeared only after the trans-Atlantic dispersal of Biomphalaria from the Neotropics to Africa, an event that, based on the present African fossil record, occurred only 2-5 million years ago. This parasite became abundant in tropical Africa and then entered the New World with the slave trade. It prospered in the Neotropics because a remarkably susceptible and productive host, B. glabrata, was widely distributed there. Indeed, a snail similar to B. glabrata may have given rise to the African species of Biomphalaria. Schistosoma mansoni has since spread into other Neotropical Biomphalaria species and mammalian hosts. The distribution of S. mansoni is in a state of flux. In Egypt, S. mansoni has nearly completely replaced S. haematobium in the Nile Delta, and has spread to other regions of the country. A susceptible host snail, B. straminea, has been introduced into Asia and there is evidence of S. mansoni transmission in Nepal. Dam and barrage construction has lead to an epidemic of S. mansoni in Senegal, and the parasite continues its spread in Brazil. Because of competition with introduced aquatic species and environmental changes, B. glabrata and consequently S. mansoni have become less abundant on the Caribbean islands. Control of S. mansoni using praziquantel and oxamniquine has reduced global prevalence but control is difficult to sustain, and S. mansoni can develop tolerance/resistance to praziquantel, raising concerns about

  5. Update on the distribution and phylogenetics of Biomphalaria (Gastropoda: Planorbidae) populations in Guangdong Province, China.

    PubMed

    Attwood, Stephen W; Huo, Guan-Nan; Qiu, Jian-Wen

    2015-01-01

    In 1973 planorbid snails then identified as Biomphalaria straminea were discovered in Hong Kong, China. It was assumed that these snails had been introduced to Hong Kong via the import of tropical fish by air from South America. In 2012 Biomphalaria were found for the first time in Guangdong Province, China. In view of the renewed interest in these invasive snails, a morphological and DNA-sequence based phylogenetic study was undertaken for seven populations of Biomphalaria snails collected in Guangdong. Morphologically and phylogenetically, five of the populations clustered more closely with Biomphalaria kuhniana than with B. straminea. Levels of genetic diversity among the populations were about half those of autochthonous populations in Brazil, the phylogenetic relationships did not correlate with a radiation from any one international port in China, and different lineages appeared associated with different ports. Consequently in explaining the current distribution of the snails, multiple colonization events, each establishing a new local snail population near to maritime international container ports, were considered more likely than the spread of snails from Hong Kong to China. The displacement of B. straminea by B. kuhniana in Guangdong is considered as an explanation for the habitat changes observed among the snails between Hong Kong in the 1980s and the present. The conclusions of the study are that any risk of Schistosoma mansoni transmission in China is more likely to come from parasite importation in the intramolluscan stage, than from transmission by migrant workers from South America or Africa. In addition, although likely to be rare, sporadic outbreaks of imported schistosomiasis (caused by invading infected snails) could be a threat to public health in the vicinity of International container ports (not only in Guangdong Province). Further work is called for to investigate further the presence of B. kuhniana and its potential interactions with B

  6. New insights into the amphibious life of Biomphalaria glabrata and susceptibility of its egg masses to fungal infection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Egg masses of an aquatic snail, Biomphalaria glabrata, matured, and juveniles subsequently eclosed and were mobile in a stable water film of transitory habitats simulated by two different simple test devices described here. The viability of eggs maintained in an unstable film due to low ambient mois...

  7. A Novel Bacterial Pathogen of Biomphalaria glabrata: A Potential Weapon for Schistosomiasis Control?

    PubMed Central

    Duval, David; Galinier, Richard; Mouahid, Gabriel; Toulza, Eve; Allienne, Jean François; Portela, Julien; Calvayrac, Christophe; Rognon, Anne; Arancibia, Nathalie; Mitta, Guillaume; Théron, André; Gourbal, Benjamin

    2015-01-01

    Background Schistosomiasis is the second-most widespread tropical parasitic disease after malaria. Various research strategies and treatment programs for achieving the objective of eradicating schistosomiasis within a decade have been recommended and supported by the World Health Organization. One of these approaches is based on the control of snail vectors in endemic areas. Previous field studies have shown that competitor or predator introduction can reduce snail numbers, but no systematic investigation has ever been conducted to identify snail microbial pathogens and evaluate their molluscicidal effects. Methodology/Principal findings In populations of Biomphalaria glabrata snails experiencing high mortalities, white nodules were visible on snail bodies. Infectious agents were isolated from such nodules. Only one type of bacteria, identified as a new species of Paenibacillus named Candidatus Paenibacillus glabratella, was found, and was shown to be closely related to P. alvei through 16S and Rpob DNA analysis. Histopathological examination showed extensive bacterial infiltration leading to overall tissue disorganization. Exposure of healthy snails to Paenibacillus-infected snails caused massive mortality. Moreover, eggs laid by infected snails were also infected, decreasing hatching but without apparent effects on spawning. Embryonic lethality was correlated with the presence of pathogenic bacteria in eggs. Conclusions/Significance This is the first account of a novel Paenibacillus strain, Ca. Paenibacillus glabratella, as a snail microbial pathogen. Since this strain affects both adult and embryonic stages and causes significant mortality, it may hold promise as a biocontrol agent to limit schistosomiasis transmission in the field. PMID:25719489

  8. Mathematical simulation of an aquatic snail population.

    PubMed

    Jobin, W R; Michelson, E H

    1967-01-01

    Techniques for controlling the intermediate snail hosts of schistosomiasis have had to be evaluated by field trials, since the complexity of snail population dynamics has so far made it impossible to predict the effects of these techniques and thereby avoid costly field testing.However, in laboratory studies with Biomphalaria glabrata it was found that the fecundity of these snails was directly proportional to F/NV, where F is the total amount of food in the habitat, N the number of snails, and V the volume of the habitat. The use of this fecundity variable together with data published on snail longevity and fecundity made it possible to construct a mathematical model of a snail population which may eventually be useful for evaluating snail control methods.For preliminary verification of the model, its predictions were compared with a published history of a population of Bulinus globosus in a small pond. The general agreement of the predicted and observed population data indicated that the basic structure of the model was sound. PMID:5301741

  9. New larval trematodes in Biomphalaria species (Planorbidae) from Northeastern Argentina.

    PubMed

    Fernández, María Virginia; Hamann, Monika Inés; de Núñez, Margarita Ostrowski

    2016-09-01

    Larval trematodes infecting Biomphalaria tenagophila and B. occidentalis were surveyed in a suburban and semipermanent pond of Corrientes province, Northeastern Argentina. A total of 1,409 snails were examined between spring 2011 to winter 2013, and 8 different larval trematodes were studied morphologically. Three of these species-Echinocercaria sp. IV, Ribeiroia sp. and Echinocercaria sp. XIV-have been previously found in Corrientes province. Six other trematodes belonging to Strigeidae (Furcocercaria sp. III), Clinostomidae (Cercaria Clinostomidae sp.), Spirorchiidae (Cercaria Spirorchiidae sp.) and Echinostomatidae (Echinocercaria sp. 1, Echinocercaria sp. 2, Echinocercaria sp. 3) are new species parasitizing Biomphalaria snails. Cercaria Spirorchiidae sp. is the third larval trematode related to Spirorchiidae recorded in South America and the first one for Argentina. Cercaria Clinostomidae sp. is the first one related to Clinostomidae in northeastern Argentina. The prevalence of larval trematodes infecting B. tenagophila and B. occidentalis in the environment studied was low (<5%) with the echinostome group better represented in terms of prevalence and species richness. Drought periods could affect the dynamics of parasitic transmission due to the absence of trematodes in the autumn and winter of the first seasonal cycle. However, in humid periods parasite transmission can occur throughout the year due to the presence of larvae in all seasons of the second seasonal cycle, although the less-warm seasons showed higher prevalence than the summer period probably related to the subtropical climate of Corrientes province. PMID:27447210

  10. Emergence of cercariae of Echinostoma caproni and Schistosoma mansoni from Biomphalaria glabrata under different laboratory conditions.

    PubMed

    Fried, B; LaTerra, R; Kim, Y

    2002-12-01

    Release of Echinostoma caproni cercariae and Schistosoma mansoni from experimentally infected Biomphalaria glabrata snails maintained under different laboratory conditions was studied. Infected snails were isolated individually for 1 h in Stender dishes containing 5 ml of artificial spring water and the number of cercariae released during this time was recorded. Of numerous conditions tested, the addition of lettuce, the use of water conditioned by B. glabrata snails and a temperature of 35 degrees C significantly increased the release of E. caproni cercariae. A significant increase in cercarial release of S. mansoni was seen only in cultures fed lettuce. A temperature of 12 degrees C caused a significant decrease in cercarial release of both E. caproni and S. mansoni. Increased snail activity associated with feeding behaviour was probably responsible for the enhanced cercarial sheds observed in this study. PMID:12498644

  11. Lethal and Sub-lethal Effects of UVB on Juvenile Biomphalaria glabrata (Mollusca: Pulmonata)

    PubMed Central

    Ruelas, Debbie S.; Karentz, Deneb; Sullivan, John T.

    2007-01-01

    Although Schistosoma mansoni occurs mainly in the tropics, where intense levels of solar radiation are present, the impact of ultraviolet (UV) light on schistosome transmission is not known. The purpose of this study was to investigate potential effects of UVB (290–320 nm) on juvenile Biomphalaria glabrata, the snail intermediate host of S. mansoni. Albino and wild type snails were exposed to doses of UVB from UV-fluorescent lamps, and the following were measured: survival, photoreactivation (light-mediated DNA repair), effects on feeding behavior, and morphological tissue abnormalities. Irradiation with UVB is lethal to B. glabrata in a dose-dependent manner. Exposure to white light subsequent to UVB irradiation enhances survival, probably by photoreactivation. The shell offers some, but not complete, protection. Experiments in which UVB transmittance through the shell was blocked with black nail polish suggest that injury to both exposed (headfoot) and shell-enclosed (mantle and visceral mass) tissues contributes to mortality in lethally-irradiated snails. Wild-type (pigmented) snails are less susceptible to lethal effects of UVB than albino snails, and they may be more capable of photoreactivation. UVB exposure inhibits snail feeding behavior, and causes tentacle forks and growths on the headfoot. Thus, UVB may influence the life cycle of S. mansoni by both lethal and sub-lethal damage to the snail intermediate host. However, the ability of snails to photoreactivate may mitigate these effects. PMID:16996081

  12. Snail Trails

    ERIC Educational Resources Information Center

    Galus, Pamela

    2002-01-01

    The slime trails of snails lead the author's students to a better understanding of science as inquiry and the processes of science. During this five-day activity, students get up close and personal with one of her favorite creatures, the land snail. Students begin by observing the organism and recording their observations. After making initial…

  13. Environmental epidemiology of intestinal schistosomiasis in Uganda: population dynamics of biomphalaria (gastropoda: planorbidae) in Lake Albert and Lake Victoria with observations on natural infections with digenetic trematodes.

    PubMed

    Rowel, Candia; Fred, Besigye; Betson, Martha; Sousa-Figueiredo, Jose C; Kabatereine, Narcis B; Stothard, J Russell

    2015-01-01

    This study documented the population dynamics of Biomphalaria and associated natural infections with digenetic trematodes, along the shores of Lake Albert and Lake Victoria, recording local physicochemical factors. Over a two-and-a-half-year study period with monthly sampling, physicochemical factors were measured at 12 survey sites and all freshwater snails were collected. Retained Biomphalaria were subsequently monitored in laboratory aquaria for shedding trematode cercariae, which were classified as either human infective (Schistosoma mansoni) or nonhuman infective. The population dynamics of Biomphalaria differed by location and by lake and had positive relationship with pH (P < 0.001) in both lakes and negative relationship with conductivity (P = 0.04) in Lake Albert. Of the Biomphalaria collected in Lake Albert (N = 6,183), 8.9% were infected with digenetic trematodes of which 15.8% were shedding S. mansoni cercariae and 84.2% with nonhuman infective cercariae. In Lake Victoria, 2.1% of collected Biomphalaria (N = 13,172) were infected with digenetic trematodes with 13.9% shedding S. mansoni cercariae, 85.7% shedding nonhuman infective cercariae, and 0.4% of infected snails shedding both types of cercariae. Upon morphological identification, species of Biomphalaria infected included B. sudanica, B. pfeifferi, and B. stanleyi in Lake Albert and B. sudanica, B. pfeifferi, and B. choanomphala in Lake Victoria. The study found the physicochemical factors that influenced Biomphalaria population and infections. The number and extent of snails shedding S. mansoni cercariae illustrate the high risk of transmission within these lake settings. For better control of this disease, greater effort should be placed on reducing environmental contamination by improvement of local water sanitation and hygiene. PMID:25705680

  14. Elucidating the temporal and spatial dynamics of Biomphalaria glabrata genetic diversity in three Brazilian villages

    PubMed Central

    Thiele, Elizabeth A.; Corrêa-Oliveira, Guilherme; Gazzinelli, Andrea; Minchella, Dennis J.

    2013-01-01

    Objective The freshwater snail Biomphalaria glabrata is the principal intermediate host for the parasite Schistosoma mansoni within Brazil. We assessed the potential effects of snail population dynamics on parasite transmission dynamics via population genetics. Methods We sampled snail populations located within the confines of three schistosome-endemic villages in the state of Minas Gerais, Brazil. Snails were collected from individual microhabitats following seasonal periods of flood and drought over the span of one year. Snail spatio-temporal genetic diversity and population differentiation of 598 snails from 12 sites were assessed at 7 microsatellite loci. Results Average genetic diversity was relatively low, ranging from 4.29 to 9.43 alleles per locus and, overall, subpopulations tended to exhibit heterozygote deficits. Genetic diversity was highly spatially partitioned among subpopulations, while virtually no partitioning was observed across temporal sampling. Comparison with previously published parasite genetic diversity data indicated that S. mansoni populations are significantly more variable and less subdivided than those of the B. glabrata intermediate hosts. Discussion Within individual Brazilian villages, observed distributions of snail genetic diversity indicate temporal stability and very restricted gene flow. This is contrary to observations of schistosome genetic diversity over the same spatial scale, corroborating the expectation that parasite gene flow at the level of individual villages is likely driven by vertebrate host movement. PMID:23911082

  15. Epidemiology of Schistosoma mansoni infection and its relationship to snail distribution in a village at the Nile bank south to Cairo.

    PubMed

    Sayed, Hanan A; El-Ayyat, Afaf; Kader, Ahmed Abdel; Sabry, Hoda Y; Amer, Neimat M

    2004-01-01

    The relationship between epidemiology of S. mansoni infection and snail distribution at a village, related to Guiza Governorate and lies south to Cairo, was investigated. A systematic random sample of houses was selected. All inhabitants of the houses were invited to share in the study. The Number examined was 704. Urine and stools were examined using Nucleopore filtration and standard Kato-Katz techniques, respectively. Snail collection was done from 35 sites along the water bodies related to the village. Snails collected were examined by cercariae shedding under light. Snail differentiation was done. The results showed that the prevalence of Schistosoma mansoni human infection was 25.1 % and GMEC was 2.4 +/- 5.5. Schistosoma haematobium infection was zero percent. Biomphlaria alexandrina snail infection rate was 3.7% with density equal 0.5 +/- 1.3. Bulinus truncatus snail infection rate was zero percent. The pattern of S. mansoni human infection was closely related to snail distribution and infection. Presence of a hybrid species of B. alexandrina and B. glabrata may explain the epidemiological pattern found in the studied village. PMID:16916052

  16. Snails home

    NASA Astrophysics Data System (ADS)

    Dunstan, D. J.; Hodgson, D. J.

    2014-06-01

    Many gardeners and horticulturalists seek non-chemical methods to control populations of snails. It has frequently been reported that snails that are marked and removed from a garden are later found in the garden again. This phenomenon is often cited as evidence for a homing instinct. We report a systematic study of the snail population in a small suburban garden, in which large numbers of snails were marked and removed over a period of about 6 months. While many returned, inferring a homing instinct from this evidence requires statistical modelling. Monte Carlo techniques demonstrate that movements of snails are better explained by drift under the influence of a homing instinct than by random diffusion. Maximum likelihood techniques infer the existence of two groups of snails in the garden: members of a larger population that show little affinity to the garden itself, and core members of a local garden population that regularly return to their home if removed. The data are strongly suggestive of a homing instinct, but also reveal that snail-throwing can work as a pest management strategy.

  17. Effects of aestivation and starvation on the neutral lipid and phospholipid content of Biomphalaria glabrata infected with Schistosoma mansoni.

    PubMed

    White, Meredith M; Fried, Bernard; Sherma, Joseph

    2007-02-01

    The effects of aestivation or starvation on the neutral lipid and phospholipid content of Biomphalaria glabrata patently infected with Schistosoma mansoni were determined by high-performance thin-layer chromatography-densitometry. Infected-aestivated snails were maintained in a moist chamber at 24 +/- 1 C and a relative humidity of 98 +/- 1%. Infected-starved snails were maintained in artificial spring water (ASW) at 23 +/- 1 C without exogenous food. Infected snails (the controls) were maintained in ASW at 23 +/- 1 C and fed lettuce ad libitum. The 3 groups were maintained in the laboratory for 7 days, and then the lipids from the digestive gland-gonad complex (DGG) were extracted and analyzed by class. Infected-aestivated snails exhibited greater mortality rate and weight loss after 7 days than did the infected-starved snails. The steryl ester concentration in the infected-starved snails was significantly increased (P = 0.010) compared with the controls but not compared with infected-aestivated snails; the concentration of phosphatidylcholine in infected-aestivated snails was significantly decreased (P = 0.007) compared with the controls but not when compared with the infected-starved snails. Aestivation or starvation had a significant effect on the concentration of certain lipid classes in the DGG of B. glabrata infected with S. mansoni. PMID:17436935

  18. Environmental Epidemiology of Intestinal Schistosomiasis in Uganda: Population Dynamics of Biomphalaria (Gastropoda: Planorbidae) in Lake Albert and Lake Victoria with Observations on Natural Infections with Digenetic Trematodes

    PubMed Central

    Rowel, Candia; Fred, Besigye; Sousa-Figueiredo, Jose C.; Kabatereine, Narcis B.; Stothard, J. Russell

    2015-01-01

    This study documented the population dynamics of Biomphalaria and associated natural infections with digenetic trematodes, along the shores of Lake Albert and Lake Victoria, recording local physicochemical factors. Over a two-and-a-half-year study period with monthly sampling, physicochemical factors were measured at 12 survey sites and all freshwater snails were collected. Retained Biomphalaria were subsequently monitored in laboratory aquaria for shedding trematode cercariae, which were classified as either human infective (Schistosoma mansoni) or nonhuman infective. The population dynamics of Biomphalaria differed by location and by lake and had positive relationship with pH (P < 0.001) in both lakes and negative relationship with conductivity (P = 0.04) in Lake Albert. Of the Biomphalaria collected in Lake Albert (N = 6,183), 8.9% were infected with digenetic trematodes of which 15.8% were shedding S. mansoni cercariae and 84.2% with nonhuman infective cercariae. In Lake Victoria, 2.1% of collected Biomphalaria  (N = 13,172) were infected with digenetic trematodes with 13.9% shedding S. mansoni cercariae, 85.7% shedding nonhuman infective cercariae, and 0.4% of infected snails shedding both types of cercariae. Upon morphological identification, species of Biomphalaria infected included B. sudanica, B. pfeifferi, and B. stanleyi in Lake Albert and B. sudanica, B. pfeifferi, and B. choanomphala in Lake Victoria. The study found the physicochemical factors that influenced Biomphalaria population and infections. The number and extent of snails shedding S. mansoni cercariae illustrate the high risk of transmission within these lake settings. For better control of this disease, greater effort should be placed on reducing environmental contamination by improvement of local water sanitation and hygiene. PMID:25705680

  19. Early Differential Gene Expression in Haemocytes from Resistant and Susceptible Biomphalaria glabrata Strains in Response to Schistosoma mansoni

    PubMed Central

    Lockyer, Anne E.; Emery, Aidan M.; Kane, Richard A.; Walker, Anthony J.; Mayer, Claus D.; Mitta, Guillaume; Coustau, Christine; Adema, Coen M.; Hanelt, Ben; Rollinson, David; Noble, Leslie R.; Jones, Catherine S.

    2012-01-01

    The outcome of infection in the host snail Biomphalaria glabrata with the digenean parasite Schistosoma mansoni is determined by the initial molecular interplay occurring between them. The mechanisms by which schistosomes evade snail immune recognition to ensure survival are not fully understood, but one possibility is that the snail internal defence system is manipulated by the schistosome enabling the parasite to establish infection. This study provides novel insights into the nature of schistosome resistance and susceptibility in B. glabrata at the transcriptomic level by simultaneously comparing gene expression in haemocytes from parasite-exposed and control groups of both schistosome-resistant and schistosome-susceptible strains, 2 h post exposure to S. mansoni miracidia, using an novel 5K cDNA microarray. Differences in gene expression, including those for immune/stress response, signal transduction and matrix/adhesion genes were identified between the two snail strains and tests for asymmetric distributions of gene function also identified immune-related gene expression in resistant snails, but not in susceptible. Gene set enrichment analysis revealed that genes involved in mitochondrial electron transport, ubiquinone biosynthesis and electron carrier activity were consistently up-regulated in resistant snails but down-regulated in susceptible. This supports the hypothesis that schistosome-resistant snails recognize schistosomes and mount an appropriate defence response, while in schistosome-susceptible snails the parasite suppresses this defence response, early in infection. PMID:23300533

  20. Biological, biochemical and histopathological features related to parasitic castration of Biomphalaria glabrata infected by Schistosoma mansoni.

    PubMed

    Faro, Marta Julia; Perazzini, Mariana; Corrêa, Lygia dos Reis; Mello-Silva, Clélia Christina; Pinheiro, Jairo; Mota, Ester Maria; de Souza, Samaly; de Andrade, Zilton; Júnior, Arnaldo Maldonado

    2013-06-01

    Parasitic castration in the snail-trematode relationship can be understood as any change in the reproductive function of the snail that is due to interference by the developing larvae inside the snail that leads to the reduction or complete disruption of egg-laying activity. This study was designed to observe the parasitic castration of Biomphalaria glabrata infected with Schistosoma mansoni during both the pre-patent and patent periods. The effect of infection on snail fecundity and fertility, growth rate and survival was studied during the 62 days following miracidia exposure. An integrated approach was employed that used biochemical and histological tools over the same period. To study the effect of infection on reproduction, we individually exposed 30 snails to 5 miracidia each and tracked their fertility and fecundity. For our histopathological studies, 50 snails were exposed to 20 miracidia each, and for our histochemical studies, 50 snails were exposed to 5 miracidia each. An equal number of uninfected snails were used as a control for each group. The B. glabrata exposed to the BH strain of S. mansoni showed 50% positivity for cercarial shedding. Both the experimental and control groups showed 100% survival. The pre-patent period lasted until 39 days after exposure to miracidia. Exposed snails that showed cercarial shedding exhibited higher growth rates than either exposed snails that did not demonstrate cercarial shedding or uninfected controls. Exposed snails without cercarial shedding and uninfected controls showed no differences in the reproductive parameters evaluated during the patent period; snails experiencing cercarial shedding showed a reduction in fecundity and fertility. These snails began to lay eggs only after the 50th day post miracidia exposure. The haemolymph glucose levels showed an oscillating pattern that decreased during periods of greater mobilisation of energy by the larvae and was accompanied by a depletion of glycogen in the

  1. OVICIDAL EFFECT OF PIPERACEAE SPECIES ON Biomphalaria glabrata, Schistosoma mansoni HOST

    PubMed Central

    Rapado, Ludmila Nakamura; Lopes, Priscila Orechio de Moraes; Yamaguchi, Lydia Fumiko; Nakano, Eliana

    2013-01-01

    SUMMARY Schistosomiasis is a neglected disease with public health importance in tropical and subtropical regions. An alternative to the disease control is the use of molluscicides to eliminate or reduce the intermediate host snail population causing a reduction of transmission in endemic regions. In this study nine extracts from eight Piperaceae species were evaluated against Biomphalaria glabrata embryos at blastula stage. The extracts were evaluated in concentrations ranging from 100 to 10 mg/L. Piper crassinervium and Piper tuberculatum extracts were the most active (100% of mortality at 20 mg/L and 30 mg/L respectively). PMID:24213196

  2. Effects of Plagiorchis elegans (Digenea: Plagiorchiidae) infection on the reproduction of Biomphalaria glabrata (Pulmonata: Planorbidae).

    PubMed

    Zakikhani, M; Rau, M E

    1998-10-01

    Infection with the digenean parasite Plagiorchis elegans dramatically reduced the reproductive output of Biomphalaria glabrata exposed to the parasite as juveniles or adults. The total number of eggs produced by infected snails was reduced to approximately 7 and 13% of control values, respectively. Parasitic castration was attributed to the presence of mother sporocysts that readily established in the tissues of this incompatible host. Infection did not result in the production of cercariae but significantly shortened the life span of juvenile and adult B. glabrata by approximately 23 and 10%, respectively. Plagiorchis elegans also castrated its compatible host, Stagnicola elodes. PMID:9794632

  3. Infection with schistosome parasites in snails leads to increased predation by prawns: implications for human schistosomiasis control.

    PubMed

    Swartz, Scott J; De Leo, Giulio A; Wood, Chelsea L; Sokolow, Susanne H

    2015-12-01

    Schistosomiasis - a parasitic disease that affects over 200 million people across the globe - is primarily transmitted between human definitive hosts and snail intermediate hosts. To reduce schistosomiasis transmission, some have advocated disrupting the schistosome life cycle through biological control of snails, achieved by boosting the abundance of snails' natural predators. But little is known about the effect of parasitic infection on predator-prey interactions, especially in the case of schistosomiasis. Here, we present the results of laboratory experiments performed on Bulinus truncatus and Biomphalaria glabrata snails to investigate: (i) rates of predation on schistosome-infected versus uninfected snails by a sympatric native river prawn, Macrobrachium vollenhovenii, and (ii) differences in snail behavior (including movement, refuge-seeking and anti-predator behavior) between infected and uninfected snails. In predation trials, prawns showed a preference for consuming snails infected with schistosome larvae. In behavioral trials, infected snails moved less quickly and less often than uninfected snails, and were less likely to avoid predation by exiting the water or hiding under substrate. Although the mechanism by which the parasite alters snail behavior remains unknown, these results provide insight into the effects of parasitic infection on predator-prey dynamics and suggest that boosting natural rates of predation on snails may be a useful strategy for reducing transmission in schistosomiasis hotspots. PMID:26677260

  4. Susceptibility and compatibility of Biomphalaria tenagophila from the Río de la Plata basin with Schistosoma mansoni from Brazil.

    PubMed

    Borda, Carlos Edgardo; Rea, María Josefa F

    2010-07-01

    Schistosomiasis has expanded to southern parts of Brazil. Between 2005-2007 the dispersion and the proliferation of Biomphalaria tenagophila was verified in the province of Corrientes near the Brazilian border. In order to study the possibility that schistosomiasis might spread into the basins of the Paraná and Uruguay Rivers, 440 B. tenagophila collected from 10 populations groups were experimentally exposed to infection with Schistosoma mansoni of the SJ2 strain. Snails from five localities were susceptible. Frandsen's index (TCP/100) shows that those snails from Mirungá (11%), Aguacerito (2%) and Curupicay (2%) were Class I and not very compatible. Meanwhile, snails from Copra (6%) and Pay-Ubre (22%), in the Paraná River basin, were Class II and poorly compatible. PMID:20721498

  5. Snail control in urban sites in Brazil with slow-release hexabutyldistannoxane and pentachlorophenol*

    PubMed Central

    Toledo, J. V.; Da Silva, C. S. Monteiro; Bulhões, M. S.; Leme, L. A. Paes; Netto, J. A. Da Silva; Gilbert, B.

    1976-01-01

    Slow release formulations of hexabutyldistannoxane (TBTO) and pentachlorophenol (PCP) were tested for the control of Biomphalaria tenagophila in 52 urban sites in Rio de Janeiro. TBTO acted faster and lasted longer than PCP and at 15 g/m2 it eliminated snails from 76% of the treated sites for 1 year. Water pollution and rate of flow had no significant influence on the molluscicidal properties of either compound, but alkalinity lowered the activity of TBTO. Failure to control snail populations was due mainly to human interference and to the non-treatment of adjacent breeding sites that were temporarily dry and therefore overlooked. PMID:1088356

  6. Observed disparity on schistosome infection rates in field Biomphalaria pfeifferi (Krauss) between two areas of the Jos Metropolis, Nigeria.

    PubMed

    Akufongwe, P F; Dondji, B; Okwuosa, V N; Dakul, D A; Ntonifor, H N

    1995-03-01

    Two regions of the Jos Metropolis in Plateau State, Nigeria, with contrasting topographic features and harbouring many snails infested water bodies were surveyed for the presence of cercariae shedding Biomphalaria pfeifferi (Krauss) for a period of 12 months. A significantly marked (P < 0.01) fluctuation in infection rates in field B. pfeifferi was observed between the two areas. The factors contributing to the disparity in shedding capacities are linked to human behavioural pattern, and the drying up of water bodies. Their importance with respect to the control of intestinal schistosomiasis in the region are discussed. PMID:9137649

  7. A Novel Toll-Like Receptor (TLR) Influences Compatibility between the Gastropod Biomphalaria glabrata, and the Digenean Trematode Schistosoma mansoni

    PubMed Central

    Pila, Emmanuel A.; Tarrabain, Mahmoud; Kabore, Alethe L.; Hanington, Patrick C.

    2016-01-01

    Schistosomiasis, a devastating disease caused by parasitic flatworms of the genus Schistosoma, affects over 260 million people worldwide especially in tropical and sub-tropical regions. Schistosomes must undergo their larval development within specific species of snail intermediate hosts, a trait that is shared among almost all digenean trematodes. This unique and long-standing host-parasite relationship presents an opportunity to study both the importance of conserved immunological features in novel immunological roles, as well as new immunological adaptations that have arisen to combat a very specific type of immunological challenge. While it is well supported that the snail immune response is important for protecting against schistosome infection, very few specific snail immune factors have been identified and even fewer have been functionally characterized. Here, we provide the first functional report of a snail Toll-like receptor, which we demonstrate as playing an important role in the cellular immune response of the snail Biomphalaria glabrata following challenge with Schistosoma mansoni. This TLR (BgTLR) was identified as part of a peptide screen of snail immune cell surface proteins that differed in abundance between B. glabrata snails that differ in their compatibility phenotype to challenge by S. mansoni. The S. mansoni-resistant strain of B. glabrata (BS-90) displayed higher levels of BgTLR compared to the susceptible (M-line) strain. Transcript expression of BgTLR was found to be very responsive in BS-90 snails when challenged with S. mansoni, increasing 27 fold relative to β-actin (non-immune control gene); whereas expression in susceptible M-line snails was not significantly increased. Knockdown of BgTLR in BS-90 snails via targeted siRNA oligonucleotides was confirmed using a specific anti-BgTLR antibody and resulted in a significant alteration of the resistant phenotype, yielding patent infections in 43% of the normally resistant snails, which

  8. A Novel Toll-Like Receptor (TLR) Influences Compatibility between the Gastropod Biomphalaria glabrata, and the Digenean Trematode Schistosoma mansoni.

    PubMed

    Pila, Emmanuel A; Tarrabain, Mahmoud; Kabore, Alethe L; Hanington, Patrick C

    2016-03-01

    Schistosomiasis, a devastating disease caused by parasitic flatworms of the genus Schistosoma, affects over 260 million people worldwide especially in tropical and sub-tropical regions. Schistosomes must undergo their larval development within specific species of snail intermediate hosts, a trait that is shared among almost all digenean trematodes. This unique and long-standing host-parasite relationship presents an opportunity to study both the importance of conserved immunological features in novel immunological roles, as well as new immunological adaptations that have arisen to combat a very specific type of immunological challenge. While it is well supported that the snail immune response is important for protecting against schistosome infection, very few specific snail immune factors have been identified and even fewer have been functionally characterized. Here, we provide the first functional report of a snail Toll-like receptor, which we demonstrate as playing an important role in the cellular immune response of the snail Biomphalaria glabrata following challenge with Schistosoma mansoni. This TLR (BgTLR) was identified as part of a peptide screen of snail immune cell surface proteins that differed in abundance between B. glabrata snails that differ in their compatibility phenotype to challenge by S. mansoni. The S. mansoni-resistant strain of B. glabrata (BS-90) displayed higher levels of BgTLR compared to the susceptible (M-line) strain. Transcript expression of BgTLR was found to be very responsive in BS-90 snails when challenged with S. mansoni, increasing 27 fold relative to β-actin (non-immune control gene); whereas expression in susceptible M-line snails was not significantly increased. Knockdown of BgTLR in BS-90 snails via targeted siRNA oligonucleotides was confirmed using a specific anti-BgTLR antibody and resulted in a significant alteration of the resistant phenotype, yielding patent infections in 43% of the normally resistant snails, which

  9. Screening for novel plant sources of prenyloxyanthraquinones: Senna alexandrina Mill. and Aloe vera (L.) Burm. F.

    PubMed

    Epifano, Francesco; Fiorito, Serena; Locatelli, Marcello; Taddeo, Vito Alessandro; Genovese, Salvatore

    2015-01-01

    As a continuation of our ongoing studies aimed to reveal the presence of oxyprenylated anthraquinones in plants claimed to have a laxative effect, in this article, we describe the extraction and HPLC separation of madagascin (3-isopentenyloxyemodin) and 3-geranyloxyemodine from dried leaves and fruits of Senna alexandrina Mill. (Leguminosae) and leaves and gel of Aloe vera (L.) Burm. F. (Xanthorrhoeaceae). Both compounds are described herein for the first time as components of extracts of the title plants. PMID:25342202

  10. Molecular evidence supports an african affinity of the neotropical freshwater gastropod, Biomphalaria glabrata, say 1818, an intermediate host for Schistosoma mansoni.

    PubMed

    Campbell, G; Jones, C S; Lockyer, A E; Hughes, S; Brown, D; Noble, L R; Rollinson, D

    2000-12-01

    Freshwater snails of the genus Biomphalaria, Preston 1910, are the most important and widely distributed intermediate hosts of Schistosoma mansoni, the blood fluke responsible for human intestinal schistosomiasis, in Africa and the Neotropics. S. mansoni is thought to have been imported repeatedly into the Americas during the last 500 years with the African slave trade. Surprisingly considering that the New and Old World separated 95-106 million years (Myr) ago, the disease rapidly became established due to the presence of endemic susceptible hosts. Reconstructing the phylogenetic relationships within Biomphalaria may provide insights into the successful intercontinental spread of S. mansoni. Parsimony and distance analyses of mitochondrial and nuclear sequences show African taxa to be monophyletic and Neotropical species paraphyletic, with Biomphalaria glabrata forming a separate clade from other Neotropical Biomphalaria, and ancestral to the African taxa. A west to east trans-Atlantic dispersal of a B. glabrata-like taxon, possibly as recently as the Plio-Pleistocene (1.8-3.6 Myr ago) according to a general mitochondrial clock, would fit these observations. Vicariance or an African origin for B. glabrata followed by multiple introductions to South America over the past 500 years with the African slave trade seem unlikely explanations. Knowledge of the phylogenetic relationships among important intermediate host species may prove useful in furthering control measures which exploit genetic differences in susceptibility to parasites, and in elucidating the evolution of schistosome resistance. PMID:11133023

  11. Potential schistosome-vector snails and associated trematodes in ricefields of Corrients province, Argentina. Preliminary results.

    PubMed

    Rumi, A; Hamann, M I

    1990-01-01

    Considering the possibility of introduction of schistosomiasis mansoni into Argentina as a consequence of dam construction on the Rio De La Plata basin, preliminary studies have been carried out on agrosystems such as ricefields in Corrientes province with the following purposes: 1) to survey and estimate the relative abundance of planorbids and identify potential vector species; 2) to identify environmental factors capable of influencing Biomphalaria population dynamics; and 3) to find out snail-parasite associations and estimate snail infection rates in order to detect possible competitive interactions between larval stages of native trematodes that could be used in biological control of Schistosoma mansoni. Three potential schistosome vectors were detected in ricefields, namely Biomphalaria straminea, B. tenagophila and B. peregrina, although B. orbignyi, a species refractory to infection with S. mansoni, proved the most frequent and abundant. Positive correlations (P less than 0.05) were found between Biomphalaria abundance and some environmental parameters: conductivity, hardness, calcium, nitrites plus nitrates, ammonium and bicarbonates. Water temperature correlation was negative (P less than 0.05). No correlation (P less than 0.05) was found in total iron, phosphates (SRP), pH and soil granulometry. PMID:2134706

  12. Distribution and Schistosoma mansoni infection of Biomphalaria glabrata in different habitats in a rural area in the Jequitinhonha Valley, Minas Gerais, Brazil: environmental and epidemiological aspects.

    PubMed

    Kloos, Helmut; Passos, Liana Kanovaloff Janotti; Loverde, Philip; Oliveira, Rodrigo Correa; Gazzinelli, Andréa

    2004-11-01

    This paper examines the distribution and infection of Biomphalaria glabrata with Schistosoma mansoni in all aquatic snail habitats in a rural area in the state of Minas Gerais, Brazil, in relation to physico/biotic and behavioral factors. Snail and environmental surveys were carried out semi-annually between July 2001 and November 2002 at 106 sites. Collected snails were examined in the laboratory for infection. B. glabrata densities were highest in overflow ponds, irrigation ponds, springs, canals and wells, and lowest in fishponds and water tanks. Snail densities were higher during the hot, rainy season except for streams and canals and were statistically associated with the presence of fish, pollution, and vegetation density. Tilapia fish and an unidentified Diptera larva were found to be predators of B. glabrata but ducks were not. Twenty-four of the 25 infected snails were collected in 2001(1.4% infection rate) and only one in 2002, after mass chemotherapy. The occurrence of B. glabrata in all 11 snail habitats both at and away from water contact sites studied indicates widespread risk of human infection in the study area. In spite of the strong association between B. glabrata and tilapia in fishponds we do not recommend its use in schistosomiasis control for ecological reasons and its relative inefficiency in streams and dams. PMID:15654420

  13. Effects of Plagiorchis elegans (Digenea: Plagiorchiidae) infection of Biomphalaria glabrata (Pulmonata: Planorbidae) on a challenge infection with Schistosoma mansoni (Digenea: Schistosomatidae).

    PubMed

    Zakikhani, M; Smith, J M; Rau, M E

    2003-02-01

    Prior exposure of Biomphalaria glabrata to the eggs of an incompatible digenean, Plagiorchis elegans, rendered this snail host less suitable to a compatible species, Schistosoma mansoni. Although P. elegans failed to develop patent infections in B. glabrata, it reduced the production of S. mansoni cercariae by 88%. Concomitantly, host attributes such as reproduction, growth, and survival were compromised. The effect of P. elegans infection was most severe among snails that, in addition, had developed patent schistosome infections. Although few S. mansoni cercariae were produced, egg production by B. glabrata was only 4% of control values. Furthermore, no doubly infected snails survived for more than 3 wk after patency, whereas controls experienced no mortality during the same time period. The above effects were attributable to the establishment and persistence of P. elegans sporocysts in the tissues of the incompatible snail host. Their indirect antagonistic interaction with thelarval stages of S. mansoni may be mediated, in part, through their long-term stimulation of the host's internal defense mechanisms. These findings are discussed with a view to use P. elegans and other plagiorchiid digeneans as agents in the biological control of snails and snail-borne diseases. PMID:12659305

  14. Chemoattraction and penetration of Echinostoma trivolvis and E. caproni cercariae in the presence of Biomphalaria glabrata, Helisoma trivolvis, and Lymnaea elodes dialysate.

    PubMed

    Fried, B; Frazer, B A; Reddy, A

    1997-01-01

    A petri-dish bioassay was used to study the chemoattraction and penetration of the cercariae of Echinostoma trivolvis and E. caproni in the presence of snail dialysates from Helisoma trivolvis (Pennsylvania and Colorado strains). Biomphalaria glabrata, and Lynmaea elodes. Significant chemoattraction was seen with E. trivolvis cercariae in the presence of all snail dialysates released from nonperforated dialysis sacs with a molecular-weight exclusion of 12,000. Under the same conditions, E. caproni was significantly attracted to B. glabrata and H. trivolvis (CO strain) but not to L. elodes or H. trivolvis (PA strain). Dialysis sacs were perforated with needles to allow the release of snail substances of all molecular weights into the bioassay. Cercariae of both species were significantly attracted to all snail dialysates released from perforated sacs. Moreover, cercariae entered these sacs and penetrated the snails, and 24 h later the percentage of cysts per snail species ranged from 70% to 83% for E. trivolvis and from 73% to 93% for E. caproni. Dialysates released from intact sacs were extracted in choloroform-methanol (2:1) to obtain hydrophilic and lipophilic fractions. When these extracts were placed on agar plugs in the bioassay, the lipophilic fraction, but not the hydrophilic fraction, was mainly chemoattractive. PMID:9039703

  15. Distribution and abundance of schistosomiasis and fascioliasis host snails along the Mara River in Kenya and Tanzania

    PubMed Central

    Dida, Gabriel O.; Gelder, Frank B.; Anyona, Douglas N.; Matano, Ally-Said; Abuom, Paul O.; Adoka, Samson O.; Ouma, Collins; Kanangire, Canisius K.; Owuor, Phillip O.; Ofulla, Ayub V. O.

    2014-01-01

    We purposively selected 39 sampling sites along the Mara River and its two perennial tributaries of Amala and Nyangores and sampled snails. In addition, water physicochemical parameters (temperature, turbidity, dissolved oxygen, conductivity, alkalinity, salinity and pH) were taken to establish their influence on the snail abundance and habitat preference. Out of the 39 sites sampled, 10 (25.6%) had snails. The snail species encountered included Biomphalaria pfeifferi Krauss – the intermediate host of Schistosoma mansoni Sambon, Bulinus africanus – the intermediate host of Schistosoma haematobium, and Lymnaea natalensis Krauss – the intermediate host of both Fasciola gigantica and F. hepatica Cobbold. Ceratophallus spp., a non-vector snail was also encountered. Most (61.0%) of the snails were encountered in streamside pools. Schistosomiasis-transmitting host snails, B. pfeifferi and B. africanus, were fewer than fascioliasis-transmitting Lymnaea species. All the four different snail species were found to be attached to different aquatic weeds, with B. pfeifferi accounting for over half (61.1%) of the snails attached to the sedge, followed by B. africanus and Lymnaea spp., accounting for 22.2 and 16.7%, respectively. Ceratophallus spp. were non-existent in sedge. The results from this preliminary study show that snails intermediate hosts of schistosomiasis and fascioliasis exists in different habitats, in few areas along the Mara River, though their densities are still low to have any noticeable impacts on disease transmission in case they are infected. The mere presence of the vector snails in these focal regions calls for their immediate control and institution of proper regulations, management, and education among the locals that can help curtail the spread of the snails and also schistosomiasis and fascioliasis within the Mara River basin. PMID:25405008

  16. Steroid Androgen Exposure during Development Has No Effect on Reproductive Physiology of Biomphalaria glabrata

    PubMed Central

    Lockyer, Anne E.; Routledge, Edwin J.; Jones, Catherine S.; Noble, Leslie R.; Jobling, Susan

    2016-01-01

    Gastropod mollusks have been proposed as alternative models for male reproductive toxicity testing, due to similarities in their reproductive anatomy compared to mammals, together with evidence that endocrine disrupting chemicals can cause effects in some mollusks analogous to those seen in mammals. To test this hypothesis, we used the freshwater pulmonate snail, Biomphalaria glabrata, for which various genetic tools and a draft genome have recently become available, to investigate the effects of two steroid androgens on the development of mollusk secondary sexual organs. Here we present the results of exposures to two potent androgens, the vertebrate steroid; 5α-dihydrotestosterone (DHT) and the pharmaceutical anabolic steroid; 17α-methyltestosterone (MT), under continuous flow-through conditions throughout embryonic development and up to sexual maturity. Secondary sexual gland morphology, histopathology and differential gene expression analysis were used to determine whether steroid androgens stimulated or inhibited organ development. No significant differences between tissues from control and exposed snails were identified, suggesting that these androgens elicited no biologically detectable response normally associated with exposure to androgens in vertebrate model systems. Identifying no effect of androgens in this mollusk is significant, not only in the context of the suitability of mollusks as alternative model organisms for testing vertebrate androgen receptor agonists but also, if applicable to other similar mollusks, in terms of the likely impacts of androgens and anti-androgenic pollutants present in the aquatic environment. PMID:27448327

  17. Differences in the Gene Expression Profiles of Haemocytes from Schistosome-Susceptible and -Resistant Biomphalaria glabrata Exposed to Schistosoma mansoni Excretory-Secretory Products

    PubMed Central

    Davies, Angela J.; Kirk, Ruth S.; Emery, Aidan M.; Rollinson, David; Jones, Catherine S.; Noble, Leslie R.; Walker, Anthony J.

    2014-01-01

    During its life cycle, the helminth parasite Schistosoma mansoni uses the freshwater snail Biomphalaria glabrata as an intermediate host to reproduce asexually generating cercariae for infection of the human definitive host. Following invasion of the snail, the parasite develops from a miracidium to a mother sporocyst and releases excretory-secretory products (ESPs) that likely influence the outcome of host infection. To better understand molecular interactions between these ESPs and the host snail defence system, we determined gene expression profiles of haemocytes from S. mansoni-resistant or -susceptible strains of B. glabrata exposed in vitro to S. mansoni ESPs (20 μg/ml) for 1 h, using a 5K B. glabrata cDNA microarray. Ninety-eight genes were found differentially expressed between haemocytes from the two snail strains, 57 resistant specific and 41 susceptible specific, 60 of which had no known homologue in GenBank. Known differentially expressed resistant-snail genes included the nuclear factor kappa B subunit Relish, elongation factor 1α, 40S ribosomal protein S9, and matrilin; known susceptible-snail specific genes included cathepsins D and L, and theromacin. Comparative analysis with other gene expression studies revealed 38 of the 98 identified genes to be uniquely differentially expressed in haemocytes in the presence of ESPs, thus identifying for the first time schistosome ESPs as important molecules that influence global snail host-defence cell gene expression profiles. Such immunomodulation may benefit the schistosome, enabling its survival and successful development in the snail host. PMID:24663063

  18. Toxicity of Euphorbia milii latex and niclosamide to snails and nontarget aquatic species.

    PubMed

    Oliveira-Filho, E C; Paumgartten, F J

    2000-07-01

    The toxicity of Euphorbia milii molluscicidal latex and niclosamide (NCL) to target snails (Biomphalaria glabrata and Biomphalaria tenagophila) and nontarget aquatic organisms is evaluated. Planorbidae snails were killed by very low concentrations of lyophilized latex (48-h LC(50), mg/L: B. glabrata, 0.12; B. tenagophila, 0.09; Helisoma duryi, 0.10). Latex was less toxic (48-h LC(50) or EC(50), mg/L) to oligochaeta (Tubifex tubifex, 0.31), planktonic crustacea (Daphnia similis, 0.38; C. dubia, 1.07; Artemia sp., 0.93), and fishes (Danio rerio, 0.96; Poecilia reticulata, 1. 39), and considerably less toxic to Ampullariidae snails (Pomacea sp. , 10.55) and frog tadpoles (Rana catesbeiana, 7.50). Latex (up to 100 mg/L) was not toxic to bacteria (P. putida and V. fischeri), algae (Selenastrum capricornutum and Chlorella vulgaris), and mosquito larvae (Anopheles albitarsis, Aedes aegypti, Aedes fluviatilis). NCL was very toxic (48-h LC(50) or EC(50), mg/L) to Planorbidae snails (B. glabrata, 0.15, B. tenagophila, 0.13; H. duryi, 0.10), T. tubifex (0.11), crustacea (D. similis, 0.19; Ceriodaphnia dubia, 0.47; Artemia sp. 0.18), fishes (D. rerio, 0.25; P. reticulata, 0.29), R. catesbeiana (0.16), and Pomacea sp. (0.76). NCL was toxic to bacteria, algae (96-h IC(50), mg/L: S. capricornutum, 0.34; C. vulgaris, 1.23) and slightly toxic to mosquito larvae. In conclusion, E. milii latex, as compared with the reference molluscicide niclosamide, presents a higher degree of selectivity toward snails which are intermediate hosts of Schistosoma trematodes. PMID:10903832

  19. Evaluation of the mitochondrial system in the gonad-digestive gland complex of Biomphalaria glabrata (Mollusca, Gastropoda) after infection by Echinostoma paraensei (Trematoda, Echinostomatidae).

    PubMed

    Tunholi, Victor Menezes; Tunholi-Alves, Vinícius Menezes; Santos, Anderson Teixeira; Garcia, Juberlan da Silva; Maldonado, Arnaldo; da-Silva, Wagner Seixas; Rodrigues, Maria de Lurdes de Azevedo; Pinheiro, Jairo

    2016-05-01

    The effect of infection by Echinostoma paraensei on the mitochondrial physiology of Biomphalaria glabrata was investigated after exposure to 50 miracidia. The snails were dissected one, two, three and four weeks after infection for collection and mechanical permeabilization of the gonad-digestive gland (DGG) complex. The results obtained indicate that prepatent infection by this echinostomatid fluke significantly suppresses the phosphorylation state (respiratory state 3) and basal oxygen consumption of B. glabrata, demonstrating that the infection reduces the ability of the intermediate host to carry out aerobic oxidative reactions. Additionally, relevant variations related to the uncoupled mitochondrial (state 3u) of B. glabrata infected by E. paraensei were observed. Four weeks after exposure, a significant reduction in mitochondrial oxygen consumption after addition of ADP (3.68±0.26pmol O2/mg proteins) was observed in the infected snails in comparison with the respective control group (5.14±0.25). In the uncoupled state, the infected snails consumed about 62% less oxygen than the infected snails (7.87±0.84pmol O2/mg proteins) in the same period. These results demonstrate a reduction in oxidative decarboxylation rate of the tricarboxylic acid cycle and faster anaerobic degradation of carbohydrates in the infected snails. The possible mechanisms that explain this new metabolic condition in the infected organisms are discussed. PMID:27079167

  20. Differential transcriptomic responses of Biomphalaria glabrata (Gastropoda, Mollusca) to bacteria and metazoan parasites, Schistosoma mansoni and Echinostoma paraensei (Digenea, Platyhelminthes).

    PubMed

    Adema, Coen M; Hanington, Patrick C; Lun, Cheng-Man; Rosenberg, George H; Aragon, Anthony D; Stout, Barbara A; Lennard Richard, Mara L; Gross, Paul S; Loker, Eric S

    2010-01-01

    A 70-mer-oligonucleotide-based microarray (1152 features) that emphasizes stress and immune responses factors was constructed to study transcriptomic responses of the snail Biomphalaria glabrata to different immune challenges. In addition to sequences with relevant putative ID and Gene Ontology (GO) annotation, the array features non-immune factors and unknown B. glabrata ESTs for functional gene discovery. The transcription profiles of B. glabrata (3 biological replicates, each a pool of 5 snails) were recorded at 12h post-wounding, exposure to Gram negative or Gram positive bacteria (Escherichia coli and Micrococcus luteus, respectively), or infection with compatible trematode parasites (Schistosoma mansoni or Echinostoma paraensei, 20 miracidia/snail), relative to controls, using universal reference RNA. The data were subjected to Significance Analysis for Microarrays (SAM), with a false positive rate (FPR) snails challenged with E. coli (83 up/20 down) or M. luteus (120 up/42 down), mostly showing up-regulation of defense and stress-related features. Significantly altered expression of selected immune features indicates that B. glabrata detects and responds differently to compatible trematodes. Echinostoma paraensei infection was associated mostly with down-regulation of many (immune-) transcripts (42 up/68 down), whereas S. mansoni exposure yielded a preponderance of up-regulated features (140 up/23 down), with only few known immune genes affected. These observations may reflect the divergent strategies developed by trematodes during their evolution as specialized pathogens of snails to negate host defense responses. Clearly, the immune defenses of B. glabrata distinguish and respond differently to various immune challenges. PMID:19962194

  1. Usnic Acid Potassium Salt: An Alternative for the Control of Biomphalaria glabrata (Say, 1818)

    PubMed Central

    Lima, Vera L. M.; Pereira, Eugênia C.; Falcão, Emerson P. S.; Melo, Ana M. M. A.; da Silva, Nicácio Henrique

    2014-01-01

    In Brazil, the snail Biomphalaria glabrata is the most important vector of schistosomiasis due to its wide geographical distribution, high infection rate and efficient disease transmission. Among the methods of schistosomiasis control, the World Health Organization recommends the use of synthetic molluscicides, such as niclosamide. However, different substances of natural origin have been tested as alternatives for the control or eradication of mollusks. The literature describes the antitumor, antimicrobial and antiviral properties of usnic acid as well as other important activities of common interest between medicine and the environment. However, usnic acid has a low degree of water solubility, which can be a limiting factor for its use, especially in aquatic environments, since the organic solvents commonly used to solubilize this substance can have toxic effects on aquatic biota. Thus, the aim of the present study was to test the potassium salt of usnic acid (potassium usnate) with regard to molluscicidal activity and toxicity to brine shrimp (Artemia salina). To obtain potassium usnate, usnic acid was extracted with diethyl ether isolated and purified from the lichen Cladonia substellata. Biological assays were performed with embryos and adult snails of B. glabrata exposed for 24 h to the usnate solution solubilized in dechlorinated water at 2.5; 5 and 10 µg/ml for embryos, 0.5; 0.9; 1;5 and 10 µg/ml for mollusks and 0.5; 1; 5; 10 µg/ml for A. salina. The lowest lethal concentration for the embryos and adult snails was 10 and 1 µg/ml, respectively. No toxicity to A. salina was found. The results show that modified usnic acid has increased solubility (100%) without losing its biological activity and may be a viable alternative for the control of B. glabrata. PMID:25375098

  2. The Nuclear Receptors of Biomphalaria glabrata and Lottia gigantea: Implications for Developing New Model Organisms

    PubMed Central

    Kaur, Satwant; Jobling, Susan; Jones, Catherine S.; Noble, Leslie R.; Routledge, Edwin J.; Lockyer, Anne E.

    2015-01-01

    Nuclear receptors (NRs) are transcription regulators involved in an array of diverse physiological functions including key roles in endocrine and metabolic function. The aim of this study was to identify nuclear receptors in the fully sequenced genome of the gastropod snail, Biomphalaria glabrata, intermediate host for Schistosoma mansoni and compare these to known vertebrate NRs, with a view to assessing the snail's potential as a invertebrate model organism for endocrine function, both as a prospective new test organism and to elucidate the fundamental genetic and mechanistic causes of disease. For comparative purposes, the genome of a second gastropod, the owl limpet, Lottia gigantea was also investigated for nuclear receptors. Thirty-nine and thirty-three putative NRs were identified from the B. glabrata and L. gigantea genomes respectively, based on the presence of a conserved DNA-binding domain and/or ligand-binding domain. Nuclear receptor transcript expression was confirmed and sequences were subjected to a comparative phylogenetic analysis, which demonstrated that these molluscs have representatives of all the major NR subfamilies (1-6). Many of the identified NRs are conserved between vertebrates and invertebrates, however differences exist, most notably, the absence of receptors of Group 3C, which includes some of the vertebrate endocrine hormone targets. The mollusc genomes also contain NR homologues that are present in insects and nematodes but not in vertebrates, such as Group 1J (HR48/DAF12/HR96). The identification of many shared receptors between humans and molluscs indicates the potential for molluscs as model organisms; however the absence of several steroid hormone receptors indicates snail endocrine systems are fundamentally different. PMID:25849443

  3. Assessment of toxicity of Moringa oleifera flower extract to Biomphalaria glabrata, Schistosoma mansoni and Artemia salina.

    PubMed

    Rocha-Filho, Cláudio A A; Albuquerque, Lidiane P; Silva, Luanna R S; Silva, Patrícia C B; Coelho, Luana C B B; Navarro, Daniela M A F; Albuquerque, Monica C P A; Melo, Ana Maria M A; Napoleão, Thiago H; Pontual, Emmanuel V; Paiva, Patrícia M G

    2015-08-01

    This study reports the effect of an aqueous extract from Moringa oleifera Lam. flowers on Biomphalaria glabrata embryos and adults and on Schistosoma mansoni adult worms. The extract contains tannins, saponins, flavones, flavonols, xanthones, and trypsin inhibitor activity. The toxicity of the extract on Artemia salina larvae was also investigated to determine the safety of its use for schistosomiasis control. After incubation for 24h, the flower extract significantly (p<0.05) delayed the development of B. glabrata embryos and promoted mortality of adult snails (LC50: 2.37±0.5mgmL(-1)). Furthermore, treatment with the extract disrupted the development of embryos generated by snails, with most of them remaining in the blastula stage while control embryos were already in the gastrula stage. Flower extract killed A. salina larvae with a LC50 value (0.2±0.015mgmL(-1)) lower than that determined for snails. A small reduction (17%) in molluscicidal activity was detected when flower extract (2.37mgmL(-1)) was exposed to tropical environmental conditions (UVI index ranging from 1 to 14, temperature from 25 to 30°C, and 65% relative humidity). Toxicity to A. salina was also reduced (LC50 value of 0.28±0.01mgmL(-1)). In conclusion, M. oleifera flower extract had deleterious effects on B. glabrata adults and embryos. However, unrestricted use to control schistosomiasis should be avoided due to the toxicity of this extract on A. salina. PMID:25867917

  4. Susceptibility of Snails to Infection with Schistosomes is influenced by Temperature and Expression of Heat Shock Proteins

    PubMed Central

    Knight, Matty; Elhelu, O; Smith, M; Haugen, B; Miller, A; Raghavan, N; Wellman, C; Cousin, C; Dixon, F; Mann, V; Rinaldi, G; Ittiprasert, W; Brindley, PJ

    2015-01-01

    The freshwater snail, Biomphalaria glabrata is the obligate intermediate host for the transmission of the parasitic trematode, Schistosoma mansoni the causative agent of the chronic debilitating neglected tropical disease, schistosomiasis. We showed previously that in juvenile snails, early and significant induction of stress manifested by the expression of stress proteins, Hsp 70, Hsp 90 and reverse transcriptase (RT) of the non- LTR retrotransposon, nimbus, is a characteristic feature of juvenile susceptible NMRI but not resistant BS-90 snails. These latter, however, could be rendered susceptible after mild heat shock at 32°C, revealing that resistance in the BS-90 resistant snail to schistosomes is a temperature dependent trait. Here we tested the hypothesis that maintenance of BS-90 resistant snails at the permissive temperature for several generations affects the resistance phenotype displayed at the non-permissive temperature of 25°C. The progeny of BS-90 snails bred and maintained through several generations (F1 to F4) at 32°C were susceptible to the schistosome infection when returned to room temperature, shedding cercariae at four weeks post-infection. Moreover, the study of expression levels of the heat shock protein (Hsp) 70 protein by ELISA and western blot analysis, showed that this protein is also differentially expressed between susceptible and resistant snails, with susceptible snails expressing more protein than their resistant counterparts after early exposure to wild-type but not to radiation-attenuated miracidia. These data suggested that in the face of global warming, the ability to sustain a reduction in schistosomiasis by using refractory snails as a strategy to block transmission of the disease might prove challenging since non-lethal elevation in temperature, affects snail susceptibility to S. mansoni. PMID:26504668

  5. Application of synchrotron-radiation-based computer microtomography (SRICT) to selected biominerals: embryonic snails, statoliths of medusae, and human teeth.

    PubMed

    Prymak, Oleg; Tiemann, Henry; Sötje, Ilka; Marxen, Julia C; Klocke, Arndt; Kahl-Nieke, Bärbel; Beckmann, Felix; Donath, Tilman; Epple, Matthias

    2005-10-01

    Synchrotron-radiation-based computer microtomography (SRmicroCT) was applied to three biomineralised objects First, embryonic snails of the freshwater snail Biomphalaria glabrata, second, rhopalia (complex sense organs) of the medusa Aurelia aurita, and third, human teeth. The high absorption contrast between the soft tissue and mineralised tissues, i.e. the shell in the first case (consisting of calcium carbonate) and the statoliths in the second case (consisting of calcium sulphate hemihydrate), makes this method ideal for the study of biomineralised tissues. The objects can be non-destructively studied on a micrometre scale, and quantitative parameters like the thickness of a forming a snail shell or statolith crystal sizes can be obtained on a length scale of 1-2 mum. Using SRmicroCT, the dentin-enamel border can be clearly identified in X-ray dense teeth. PMID:16187072

  6. Digenean-gastropod host associations inform on aspects of specific immunity in snails

    PubMed Central

    Adema, C.M.; Loker, E.S.

    2014-01-01

    Gastropod immunology is informed importantly by the study of the frequent encounters snails endure with digeneans (digenetic trematodes). One of the hallmarks of gastropod-digenean associations is their specificity: any particular digenean parasite species is transmitted by a limited subset of snail taxa. We discuss the nature of this specificity, including its immunological basis. We then review studies of the model gastropod Biomphalaria glabrata indicating that the baseline responses of snails to digeneans can be elevated in a specific manner. Studies incorporating molecular and functional approaches are then highlighted, and are further suggestive of the capacity for specific gastropod immune responses. These studies have led to the compatibility polymorphism hypothesis: the interactions between diversified fibrinogen-related proteins (FREPs) and diverse carbohydrate-decorated polymorphic parasite antigens determine recognition and trigger specific immunity. Complex glycan structures are also likely to play a role in the host specificity typifying snail-digenean interactions. We conclude by noting the dynamic and consequential interactions between snails and digeneans can be considered as drivers of diversification of digenean parasites and in the development and maintenance of specific immunity in gastropods. PMID:25034871

  7. Large-scale determinants of intestinal schistosomiasis and intermediate host snail distribution across Africa: does climate matter?

    PubMed

    Stensgaard, Anna-Sofie; Utzinger, Jürg; Vounatsou, Penelope; Hürlimann, Eveline; Schur, Nadine; Saarnak, Christopher F L; Simoonga, Christopher; Mubita, Patricia; Kabatereine, Narcis B; Tchuem Tchuenté, Louis-Albert; Rahbek, Carsten; Kristensen, Thomas K

    2013-11-01

    The geographical ranges of most species, including many infectious disease agents and their vectors and intermediate hosts, are assumed to be constrained by climatic tolerances, mainly temperature. It has been suggested that global warming will cause an expansion of the areas potentially suitable for infectious disease transmission. However, the transmission of infectious diseases is governed by a myriad of ecological, economic, evolutionary and social factors. Hence, a deeper understanding of the total disease system (pathogens, vectors and hosts) and its drivers is important for predicting responses to climate change. Here, we combine a growing degree day model for Schistosoma mansoni with species distribution models for the intermediate host snail (Biomphalaria spp.) to investigate large-scale environmental determinants of the distribution of the African S. mansoni-Biomphalaria system and potential impacts of climatic changes. Snail species distribution models included several combinations of climatic and habitat-related predictors; the latter divided into "natural" and "human-impacted" habitat variables to measure anthropogenic influence. The predictive performance of the combined snail-parasite model was evaluated against a comprehensive compilation of historical S. mansoni parasitological survey records, and then examined for two climate change scenarios of increasing severity for 2080. Future projections indicate that while the potential S. mansoni transmission area expands, the snail ranges are more likely to contract and/or move into cooler areas in the south and east. Importantly, we also note that even though climate per se matters, the impact of humans on habitat play a crucial role in determining the distribution of the intermediate host snails in Africa. Thus, a future contraction in the geographical range size of the intermediate host snails caused by climatic changes does not necessarily translate into a decrease or zero-sum change in human

  8. A water snail catches a ride on STS-90 as part of Neurolab

    NASA Technical Reports Server (NTRS)

    1998-01-01

    A water snail (Biomphalaria glabrata), like those that are part of the Neurolab payload on Space Shuttle Mission STS-90, is held up for inspection in the Operations and Checkout Building. The snails will fly in the Closed Equilibrated Biological Aquatic System (CEBAS) Minimodule, a middeck locker-sized fresh water habitat, designed to allow the controlled incubation of aquatic species in a self-stabilizing, artifical ecosystem for up to three weeks under space conditions. Investigations during the Neurolab mission will focus on the effects of microgravity on the nervous system. The crew of STS-90, slated for launch April 16 at 2:19 p.m. EDT, includes Commander Richard Searfoss, Pilot Scott Altman, Mission Specialists Richard Linnehan, D.V.M., Dafydd (Dave) Williams, M.D., and Kathryn (Kay) Hire, and Payload Specialists Jay Buckey, M.D., and James Pawelczyk, Ph.D.

  9. Spatial distribution of Biomphalaria mollusks at São Francisco River Basin, Minas Gerais, Brazil, using geostatistical procedures.

    PubMed

    Guimarães, Ricardo J P S; Freitas, Corina C; Dutra, Luciano V; Felgueiras, Carlos A; Moura, Ana C M; Amaral, Ronaldo S; Drummond, Sandra C; Scholte, Ronaldo G C; Oliveira, Guilherme; Carvalho, Omar S

    2009-03-01

    Geostatistics is used in this work to make inferences about the presence of the species of Biomphalaria (B. glabrata, B. tenagophila and/or B. straminea), intermediate hosts of Schistosoma mansoni, at the São Francisco River Basin, in Minas Gerais, Brazil. One of these geostatistical procedures, known as indicator kriging, allows the classification of categorical data, in areas where the data are not available, using a punctual sample set. The result is a map of species and risk area definition. More than a single map of the categorical attribute, the procedure also permits the association of uncertainties of the stochastic model, which can be used to qualify the inferences. In order to validate the estimated data of the risk map, a fieldwork in five municipalities was carried out. The obtained results showed that indicator kriging is a rather robust tool since it presented a very good agreement with the field findings. The obtained risk map can be thought as an auxiliary tool to formulate proper public health strategies, and to guide other fieldwork, considering the places with higher occurrence probability of the most important snail species. Also, the risk map will enable better resource distribution and adequate policies for the mollusk control. This methodology will be applied to other river basins to generate a predictive map for Biomphalaria species distribution for the entire state of Minas Gerais. PMID:19046937

  10. The Effect of Increasing Water Temperatures on Schistosoma mansoni Transmission and Biomphalaria pfeifferi Population Dynamics: An Agent-Based Modelling Study

    PubMed Central

    McCreesh, Nicky; Booth, Mark

    2014-01-01

    Introduction There is increasing interest in the control and elimination of schistosomiasis. Little is known, however, about the likely effects of increasing water-body temperatures on transmission. Methods We have developed an agent-based model of the temperature-sensitive stages of the Schistosoma and intermediate host snail life-cycles, parameterised using data from S. mansoni and Biomphalaria pfeifferi laboratory and field-based observations. Infection risk is calculated as the number of cercariae in the model, adjusted for their probability of causing infection. Results The number of snails in the model is approximately constant between 15–31°C. Outside this range, snail numbers drop sharply, and the snail population cannot survive outside the range 14–32°C. Mean snail generation time decreases with increasing temperature from 176 days at 14°C to 46 days at 26°C. Human infection risk is highest between 16–18°C and 1 pm and 6–10 pm in calm water, and 20–25°C and 12–4 pm in flowing water. Infection risk increases sharply when temperatures increase above the minimum necessary for sustained transmission. Conclusions The model suggests that, in areas where S. mansoni is already endemic, warming of the water at transmission sites will have differential effects on both snails and parasites depending on abiotic properties of the water-body. Snail generation times will decrease in most areas, meaning that snail populations will recover faster from natural population reductions and from snail-control efforts. We suggest a link between the ecological properties of transmission sites and infection risk which could significantly affect the outcomes of interventions designed to alter water contact behaviour – proposing that such interventions are more likely to reduce infection levels at river locations than lakes, where infection risk remains high for longer. In cooler areas where snails are currently found, increasing temperatures may significantly

  11. Circulating Biomphalaria glabrata hemocyte subpopulations possess shared schistosome glycans and receptors capable of binding larval glycoconjugates.

    PubMed

    Yoshino, Timothy P; Wu, Xiao-Jun; Gonzalez, Laura A; Hokke, Cornelis H

    2013-01-01

    Host lectin-like recognition molecules may play an important role in innate resistance in Biomphalaria glabrata snails to larval schistosome infection, thus implicating parasite-expressed glycans as putative ligands for these lectin receptors. While host lectins may utilize specific glycan structures for parasite recognition, it also has been hypothesized that the parasite may use this system to evade immune detection by mimicking naturally-expressed host glycans, resulting in reduced immunorecognition capacity. By employing immunocytochemical (ICC) and Western blot assays using schistosome glycan-specific monoclonal antibodies (mABs) we sought to identify specific glycan epitopes (glycotopes) shared in common between larval Schistosoma mansoni and B. glabrata hemocytes, the primary immune effector cells in snails. Results confirmed the presence of selected larval glycotopes on subpopulations of hemocytes by ICC and association with numerous hemocyte proteins by Western blot analyses, including a trimannosyl core N-glycan (TriMan), and two fucosylated lacdiNAc (LDN) variants, F-LDN and F-LDN-F. Snail strain differences were seen in the prevalence of constitutively expressed F-LDN on hemocytes, and in the patterns of protein immunoreactivity with these mABs. In contrast, there was little to no hemocyte reactivity with mABs for Lewis X (LeX), LDN, LDN-F or LDN-DF. When intact hemocytes were exposed to larval transformation products (LTPs), distinct cell subpopulations displayed weak (LeX, LDN-DF) to moderate (LDN, LDN-F) glycotope reactivity by ICC, including snail strain differences in the prevalence of LDN-reactive cellular subsets. Far-Western blot analyses of the hemocytes following exposure to larval transformation proteins (LTPs) also revealed multiple mAB-reactive hemocyte protein bands for LeX, LDN, LDN-F, and LDN-DF. These results demonstrate the existence of complex patterns of shared larval glycan constitutively expressed on hemocytes and their proteins

  12. Trematode infections in freshwater snails and cattle from the Kafue wetlands of Zambia during a period of highest cattle-water contact.

    PubMed

    Phiri, A M; Phiri, I K; Chota, A; Monrad, J

    2007-03-01

    A total of 984 snails, comprising nine species, were collected from six areas in the Kafue wetlands between August and October 2003 to assess larval trematode infections. Of these, 135 (13.7%) were positive. Most trematode infections were recorded from Lymnaea natalensis (42.8%), which harboured four of the five morphologically different cercariae found. No trematodes were recovered from Bellamya capillata, Biomphalaria pfeifferi, Melanoides tuberculata, Physa acuta and Cleopatra nswendweensis. One snail (0.2%) of 416 Bulinus snails shed brevifurcate-apharyngeate distome cercariae while three (0.7%) shed amphistomes. Gymnocephalous and longifurcate-pharyngeate distome were the commonest types of cercariae recorded while xiphidiocercaria was the least common. The highest prevalence rates of F. gigantica (68.8%) and amphistomes (50.0%) in cattle (n = 101) were in Chiyasa while those in Kaleya had the lowest (9.1 and 18.2%, respectively). In most habitats, infections were recorded in both cattle and snails. Critical determinants of infection may have been the distance of settlements and/or cattle kraals, the number of animals in nearby homesteads and the presence of susceptible host snails. This study suggests that fascioliasis and amphistomiasis could be major constraints of cattle production in the Kafue wetlands because favourable factors were available to introduce and maintain the infections. It further provides a starting point for some comprehensive studies on snail-related aspects of transmission and snail host ecology in Zambia. PMID:17381873

  13. Environmental epidemiology of intestinal schistosomiasis and genetic diversity of Schistosoma mansoni infections in snails at Bugoigo village, Lake Albert.

    PubMed

    Levitz, Sarah; Standley, Claire J; Adriko, Moses; Kabatereine, Narcis B; Stothard, J Russell

    2013-11-01

    Intestinal schistosomiasis continues to be hyper-endemic in the fishing community of Bugoigo located on the eastern shore of Lake Albert, Uganda. Our study aimed to identify the factors that determine the local distribution and abundance of Biomphalaria, as well as infection(s) with Schistosoma mansoni inclusive of their genetic diversity. In addition, a DNA barcoding approach was taken to genotype schistosome cercariae, exploring the micro-epidemiology of infections. Over a 3-week period in June-July 2010, several hundred Biomphalaria spp. were collected, together with environmental information, from 10 selected sites, representative of both putative wave-exposed (n=5) and wave-sheltered shorelines (n=5). A Mann-Whitney U-test and a generalized linear model were used to assess associations with snail abundance and parasite infections across the shoreline. Levels of local wave action were recorded over the 19-day period using digital accelerometers. The general absence of wave action on the sheltered shoreline likely helped to raise and focalize other environmental parameters, such as water conductivity by lack of mixing, that foster transmission of intestinal schistosomiasis. Over the study period, a total of 10 infected snails were encountered and a selection of schistosome cercariae from each infected snail was harvested for analysis by DNA barcoding. In total, 91 DNA barcodes were generated with 15 unique barcode types identified. Of these, 4 barcodes had been found previously in Lake Albert and (or) Victoria, the remaining 11 were newly encountered here and described. The distribution of DNA barcodes across infected snails and sampled locations revealed a complicated spatial sub-structuring. By shedding new light on the fine-scale patterning of infections, DNA barcoding has revealed a rather heterogeneous landscape of cercariae, likely inclusive of multi-miracidial infections within the snail, which will in turn interplay with human water contact activities to

  14. Thai koi-hoi snail dish and angiostrongyliasis due to Angiostrongylus cantonensis: Effects of food flavoring and alcoholic drink on the third-stage larvae in infected snail meat.

    PubMed

    Eamsobhana, Praphathip; Yoolek, Adisak; Punthuprapasa, Paibulaya; Yong, Hoi-Sen

    2009-04-01

    Human infection with the rat lungworm Angiostrongylus cantonensis (Parastrongylus cantonensis) in Thailand, especially in the northeastern region, is associated with the habit of eating koi-hoi, which contains raw snail meat. Infection results from the snails being carriers of the larval parasite. The present study was conducted to assess the effect of food flavorings in koi-hoi, alcohol, and exposure time of the two variable on the infective larvae of A. cantonensis. Infected Biomphalaria glabrata snails were used for koi-hoi preparation. Raw snail meat was mixed with koi-hoi flavoring and left at room temperature for various time periods ranging from 5 to 60 minutes. At a predetermined time, two pieces of snail meat were removed at random and examined for viability (as determined by motility) of the parasitic third-stage larvae. At the same time, two random pieces of snail meat were removed and treated with 10 mL of a local 40% alcoholic drink for 30 minutes before examination of larval viability. Exposure of infected snail meat for 10 minutes or more to koi-hoi food flavoring resulted in significantly more nonmotile (dying or dead) larvae. Addition of the local alcoholic drink after exposure to the flavoring exerted an additional killing effect on the larvae. Despite long exposure time, both the koi-hoi flavoring and addition of alcoholic drink were not completely effective in killing the infective larvae in the snail meat. Thorough cooking of the food intended for human consumption should still be practiced. PMID:19272010

  15. Comparative toxicity of Euphorbia milii latex and synthetic molluscicides to Biomphalaria glabrata embryos.

    PubMed

    Oliveira-Filho, Eduardo C; Geraldino, Barbara R; Coelho, Deise R; De-Carvalho, Rosângela R; Paumgartten, Francisco J R

    2010-09-01

    Plant molluscicides have been regarded as possible alternatives to the costly and environmentally hazardous molluscicides currently available. This study was undertaken to compare the developmental toxicity of a plant molluscicide (Euphorbia milii latex, LAT) with that of three synthetic molluscicidal compounds. Biomphalaria glabrata egg masses (0-15 h after spawning) were exposed to molluscicides for 96 h and thereafter examined up to the 14th day after spawning. Embryo deaths, abnormal embryo development (malformations) and the day of hatching were recorded. Although exhibiting a weak ovicidal effect, LAT markedly impaired the development of snail embryos at concentrations 1000 microg L(-1) and produced anomalies (EC(50)=2040 microg L(-1)) such as abnormal shells, hydropic embryos, cephalic and non-specific malformations. Embryolethal potencies of molluscicides were as follows: triphenyltin hydroxide (TPTH; LC(50)=0.30 microg L(-1))>niclosamide (NCL; LC(50)=70 microg L(-1))>copper sulphate (CuSO(4); LC(50)=2190 microg L(-1)) > LAT (LC(50)=34030 microg L(-1)). A few malformations were recorded in embryos exposed to concentrations of TPTH within the range of lethal concentrations, while almost no anomalies were noted among those treated with NCL or CuSO(4). A hatching delay (hatching on day 10 after spawning or later) was observed among LAT-exposed embryos. The effects of NCL, TPTH and CuSO4 on hatching were to some extent masked by their marked embryolethality. The no-observed effect concentrations (NOEC) for embryotoxicity were as follows: TPTH, 0.1 microg L(-1); NCL, 25.0 microg L(-1); CuSO(4), 500.0 microg L(-1) and LAT, 500.0 microg L(-1). Results from this study suggest that, although LAT was not acutely embryolethal after a short-term exposure, it markedly disrupted snail development. The marked embryotoxicity of E. milii possibly contributes to its effectiveness as a molluscicide. PMID:20594574

  16. 3D-Ultrastructure, Functions and Stress Responses of Gastropod (Biomphalaria glabrata) Rhogocytes

    PubMed Central

    Kokkinopoulou, Maria; Güler, M. Alptekin; Lieb, Bernhard; Barbeck, Mike; Ghanaati, Shahram; Markl, Jürgen

    2014-01-01

    Rhogocytes are pore cells scattered among the connective tissue of different body parts of gastropods and other molluscs, with great variation in their number, shape and size. They are enveloped by a lamina of extracellular matrix. Their most characteristic feature is the “slit apparatus”, local invaginations of the plasma membrane bridged by cytoplasmic bars, forming slits of ca. 20 nm width. A slit diaphragm creates a molecular sieve with permeation holes of 20×20 nm. In blue-blooded gastropods, rhogocytes synthesize and secrete the respiratory protein hemocyanin, and it has been proposed–though not proven–that in the rare red-blooded snail species they might synthesize and secrete the hemoglobin. However, the cellular secretion pathway for respiratory proteins, and the functional role(s) of the enigmatic rhogocyte slit apparatus are still unclear. Additional functions for rhogocytes have been proposed, notably a role in protein uptake and degradation, and in heavy metal detoxification. Here we provide new structural and functional information on the rhogocytes of the red-blooded freshwater snail Biomphalaria glabrata. By in situ hybridization of mantle tissues, we prove that rhogocytes indeed synthesize hemoglobin. By electron tomography, the first three dimensional (3D) reconstructions of the slit apparatus are provided, showing detail of highly dense material in the cytoplasmic bars close to the slits. By immunogold labelling, we collected evidence that a major component of this material is actin. By genome databank mining, the complete sequence of a B. glabrata nephrin was obtained, and localized to the rhogocytes by immunofluorescence microscopy. The presence of both proteins fit the ultrastructure-based hypothesis that rhogocytes are related to mammalian podocytes and insect nephrocytes. Reactions of the rhogocytes to deprivation of food and cadmium toxification are also documented, and a possible secretion pathway of newly synthesized respiratory

  17. 3D-ultrastructure, functions and stress responses of gastropod (Biomphalaria glabrata) rhogocytes.

    PubMed

    Kokkinopoulou, Maria; Güler, M Alptekin; Lieb, Bernhard; Barbeck, Mike; Ghanaati, Shahram; Markl, Jürgen

    2014-01-01

    Rhogocytes are pore cells scattered among the connective tissue of different body parts of gastropods and other molluscs, with great variation in their number, shape and size. They are enveloped by a lamina of extracellular matrix. Their most characteristic feature is the "slit apparatus", local invaginations of the plasma membrane bridged by cytoplasmic bars, forming slits of ca. 20 nm width. A slit diaphragm creates a molecular sieve with permeation holes of 20×20 nm. In blue-blooded gastropods, rhogocytes synthesize and secrete the respiratory protein hemocyanin, and it has been proposed-though not proven-that in the rare red-blooded snail species they might synthesize and secrete the hemoglobin. However, the cellular secretion pathway for respiratory proteins, and the functional role(s) of the enigmatic rhogocyte slit apparatus are still unclear. Additional functions for rhogocytes have been proposed, notably a role in protein uptake and degradation, and in heavy metal detoxification. Here we provide new structural and functional information on the rhogocytes of the red-blooded freshwater snail Biomphalaria glabrata. By in situ hybridization of mantle tissues, we prove that rhogocytes indeed synthesize hemoglobin. By electron tomography, the first three dimensional (3D) reconstructions of the slit apparatus are provided, showing detail of highly dense material in the cytoplasmic bars close to the slits. By immunogold labelling, we collected evidence that a major component of this material is actin. By genome databank mining, the complete sequence of a B. glabrata nephrin was obtained, and localized to the rhogocytes by immunofluorescence microscopy. The presence of both proteins fit the ultrastructure-based hypothesis that rhogocytes are related to mammalian podocytes and insect nephrocytes. Reactions of the rhogocytes to deprivation of food and cadmium toxification are also documented, and a possible secretion pathway of newly synthesized respiratory proteins

  18. Endogenous growth factor stimulation of hemocyte proliferation induces resistance to Schistosoma mansoni challenge in the snail host.

    PubMed

    Pila, Emmanuel A; Gordy, Michelle A; Phillips, Valerie K; Kabore, Alethe L; Rudko, Sydney P; Hanington, Patrick C

    2016-05-10

    Digenean trematodes are a large, complex group of parasitic flatworms that infect an incredible diversity of organisms, including humans. Larval development of most digeneans takes place within a snail (Gastropoda). Compatibility between snails and digeneans is often very specific, such that suitable snail hosts define the geographical ranges of diseases caused by these worms. The immune cells (hemocytes) of a snail are sentinels that act as a crucial barrier to infection by larval digeneans. Hemocytes coordinate a robust and specific immunological response, participating directly in parasite killing by encapsulating and clearing the infection. Hemocyte proliferation and differentiation are influenced by unknown digenean-specific exogenous factors. However, we know nothing about the endogenous control of hemocyte development in any gastropod model. Here, we identify and functionally characterize a progranulin [Biomphalaria glabrata granulin (BgGRN)] from the snail B. glabrata, a natural host for the human blood fluke Schistosoma mansoni Granulins are growth factors that drive proliferation of immune cells in organisms, spanning the animal kingdom. We demonstrate that BgGRN induces proliferation of B. glabrata hemocytes, and specifically drives the production of an adherent hemocyte subset that participates centrally in the anti-digenean defense response. Additionally, we demonstrate that susceptible B. glabrata snails can be made resistant to infection with S. mansoni by first inducing hemocyte proliferation with BgGRN. This marks the functional characterization of an endogenous growth factor of a gastropod mollusc, and provides direct evidence of gain of resistance in a snail-digenean infection model using a defined factor to induce snail resistance to infection. PMID:27114544

  19. Experimental evaluation of Candonocypris novaezelandiae (Crustacea: Ostracoda) in the biocontrol of Schistosomiasis mansoni transmission

    PubMed Central

    Yousif, Fouad; Hafez, Sherif; El Bardicy, Samia; Tadros, Menerva; Taleb, Hoda Abu

    2013-01-01

    Objective To test Candonocypris novaezelandiae (Baird) (C. novaezelandiae), sub-class Ostracoda, obtained from the Nile, Egypt for its predatory activity on snail, Biomphalaria alexandrina (B. alexandrina), intermediate host of Schistosoma mansoni (S. mansoni) and on the free-living larval stages of this parasite (miracidia and cercariae). Methods The predatory activity of C. novaezelandiae was determined on B. alexandrina snail (several densities of eggs, newly hatched and juveniles). This activity was also determined on S. mansoni miracidia and cercariae using different volumes of water and different numbers of larvae. C. novaezelandiae was also tested for its effect on infection of snails and on the cercarial production. Results C. novaezelandiae was found to feed on the eggs, newly hatched and juvenile snails, but with significant reduction in the consumption in the presence of other diet like the blue green algae (Nostoc muscorum). This ostracod also showed considerable predatory activity on the free-living larval stages of S. mansoni which was affected by certain environmental factors such as volume of water, density of C. novaezelandiae and number of larvae of the parasite. Conclusions The presence of this ostracod in the aquatic habitat led to significant reduction of snail population, infection rate of snails with schistosme miracidia as well as of cercarial production from the infected snails. This may suggest that introducing C. novaezelandiae into the habitat at schistosome risky sites could suppress the transmission of the disease. PMID:23620849

  20. Inquiry, Land Snails, and Environmental Factors.

    ERIC Educational Resources Information Center

    Barrow, Lloyd H.; Krantz, Patrick D.

    2002-01-01

    Introduces land snails for use in inquiry-based science activities. Describes common characteristics and safety considerations while introducing students to land snails. Explains procedures for inquiry-based use of land snails in classrooms. (YDS)

  1. Effects of Cu/Zn Superoxide Dismutase (sod1) Genotype and Genetic Background on Growth, Reproduction and Defense in Biomphalaria glabrata

    PubMed Central

    Bonner, Kaitlin M.; Bayne, Christopher J.; Larson, Maureen K.; Blouin, Michael S.

    2012-01-01

    Resistance of the snail Biomphalaria glabrata to the trematode Schistosoma mansoni is correlated with allelic variation at copper-zinc superoxide dismutase (sod1). We tested whether there is a fitness cost associated with carrying the most resistant allele in three outbred laboratory populations of snails. These three populations were derived from the same base population, but differed in average resistance. Under controlled laboratory conditions we found no cost of carrying the most resistant allele in terms of fecundity, and a possible advantage in terms of growth and mortality. These results suggest that it might be possible to drive resistant alleles of sod1 into natural populations of the snail vector for the purpose of controlling transmission of S. mansoni. However, we did observe a strong effect of genetic background on the association between sod1 genotype and resistance. sod1 genotype explained substantial variance in resistance among individuals in the most resistant genetic background, but had little effect in the least resistant genetic background. Thus, epistatic interactions with other loci may be as important a consideration as costs of resistance in the use of sod1 for vector manipulation. PMID:22724037

  2. Polymorphism in pleistocene land snails.

    PubMed

    Owen, D F

    1966-04-01

    Under suitable conditions the colors and patterns of the shells of land snails may be preserved for thousands of years. In a late Pleistocene population of Limicolaria martensiana all the major color forms that occur in modern living snails may be distinguished, and the basic polymorphism is at least 8,000 to 10,000 year old. PMID:17830234

  3. An artificial perch to help Snail Kites handle an exotic Apple Snail

    USGS Publications Warehouse

    Pias, Kyle E.; Welch, Zach C.; Kitchens, Wiley M.

    2012-01-01

    In the United States, the Snail Kite (Rostrhamus sociabilis plumbeus) is a federally endangered species and restricted to the wetlands of south-central Florida where the current population numbers less than 1,500. The Snail Kite is an extreme dietary specialist, previously feeding almost exclusively on one species of snail, the Florida Apple Snail (Pomacea paludosa). Within the past decade, an exotic species of apple snail, the Island Apple Snail (Pomacea insularum), has become established on lakes in central Florida. Island Apple Snails are larger than the native Florida Apple Snails, and Snail Kites handle the exotic snails less efficiently. Juvenile Snail Kites, in particular, have lower daily energy balances while feeding on Island Apple Snails. An inexpensive, easy-to-construct platform was developed that would provide Snail Kites with a flat, stable surface on which to extract snails. The platform has the potential to reduce the difficulties Snail Kites experience when handling exotic snails, and may benefit the Snail Kite population as a whole. Initial observations indicate that Snail Kites use the platforms frequently, and snails extracted at the platforms are larger than snails extracted at other perches.

  4. Involvement of the Cytokine MIF in the Snail Host Immune Response to the Parasite Schistosoma mansoni

    PubMed Central

    Baeza Garcia, Alvaro; Pierce, Raymond J.; Gourbal, Benjamin; Werkmeister, Elisabeth; Colinet, Dominique; Reichhart, Jean-Marc; Dissous, Colette; Coustau, Christine

    2010-01-01

    We have identified and characterized a Macrophage Migration Inhibitory Factor (MIF) family member in the Lophotrochozoan invertebrate, Biomphalaria glabrata, the snail intermediate host of the human blood fluke Schistosoma mansoni. In mammals, MIF is a widely expressed pleiotropic cytokine with potent pro-inflammatory properties that controls cell functions such as gene expression, proliferation or apoptosis. Here we show that the MIF protein from B. glabrata (BgMIF) is expressed in circulating immune defense cells (hemocytes) of the snail as well as in the B. glabrata embryonic (Bge) cell line that has hemocyte-like features. Recombinant BgMIF (rBgMIF) induced cell proliferation and inhibited NO-dependent p53-mediated apoptosis in Bge cells. Moreover, knock-down of BgMIF expression in Bge cells interfered with the in vitro encapsulation of S. mansoni sporocysts. Furthermore, the in vivo knock-down of BgMIF prevented the changes in circulating hemocyte populations that occur in response to an infection by S. mansoni miracidia and led to a significant increase in the parasite burden of the snails. These results provide the first functional evidence that a MIF ortholog is involved in an invertebrate immune response towards a parasitic infection and highlight the importance of cytokines in invertebrate-parasite interactions. PMID:20886098

  5. Evaluation of the molluscicidal potential of hydroalcoholic extracts of Jatropha gossypiifolia Linnaeus, 1753 on Biomphalaria glabrata (Say, 1818).

    PubMed

    Pereira Filho, Adalberto Alves; França, Clícia Rosane Costa; Oliveira, Dorlam's da Silva; Mendes, Renato Juvino de Aragão; Gonçalves, José de Ribamar Santos; Rosa, Ivone Garros

    2014-01-01

    The action of extracts from the stem, leaves, and fruit of Jatropha gossypiifolia on Biomphalaria glabrata was studied by analyzing survival, feeding capacity and oviposition ability. The extracts were obtained by macerating the plant parts in 92% ethanol, which were then evaporated until a dry residue was obtained and phytochemically studied. The molluscicidal activity on B. glabrata was investigated using the procedures recommended by WHO (1965). The amount of food ingested and oviposition were measured during each experiment. The extract of leaves from J. gossypiifolia was shown to be a strong molluscicidal agent, causing 100% mortality of B. glabrata, even in the lowest concentration tested, of 25 ppm. Regarding the fruit extract, there was variation in the mortality, depending on the concentration used (100, 75, 50 and 25 ppm). The snails that were in contact with the fruit extract had significant reduction in feeding and number of embryos in comparison to the control. The stem extract did not present molluscicidal activity nor had any influence on the feeding and oviposition abilities of B. glabrata, in the concentrations tested. In conclusion, the extracts of leaves and fruits of J. gossypiifolia investigated in this work show molluscicidal effect and may be sources of useful compounds for the schistosomiasis control. PMID:25351545

  6. First report on the presence of Biomphalaria straminea in the municipality of Jaboticatubas, State of Minas Gerais, Brazil.

    PubMed

    Massara, Cristiano Lara; Carvalho, Omar dos Santos; Caldeira, Roberta Lima; Jannotti-Passos, Liana Konovaloff; Schall, Virgínia Torres

    2002-01-01

    This is the first report on occurrence of Biomphalaria straminea in the district of São José de Almeida (municipality of Jaboticatubas) State of Minas Gerais, Brazil. The presence of B. glabrata and B. tenagophila had already been reported in this area. Such municipality is part of the metropolitan region of Belo Horizonte and comprises 60% of the Tourist Complex of Serra do Cipó. Since the 1950s throughout the 1990s, a schistosomiasis prevalence ranging from 15 to 40% has been observed. Although no B. straminea specimen has been found naturally infected in the region, descendants of these snails collected in the area, showed to be experimentally susceptible to Schistosoma mansoni infection reaching rates from 14.6 to 28.6%. Even not being found naturally infected, in the State of Minas Gerais, the possibility that the species B. straminea may keep endemicity foci of schistosomiasis should be regarded, as in the Northeastern region of Brazil where the high density of this planorbid and the social-economic and sanitary conditions enable to the transmission. PMID:12426590

  7. EVALUATION OF THE MOLLUSCICIDAL POTENTIAL OF HYDROALCOHOLIC EXTRACTS OF Jatropha gossypiifolia Linnaeus, 1753 ON Biomphalaria glabrata (Say, 1818)

    PubMed Central

    Pereira, Adalberto Alves; França, Clícia Rosane Costa; Oliveira, Dorlam's da Silva; Mendes, Renato Juvino de Aragão; Gonçalves, José de Ribamar Santos; Rosa, Ivone Garros

    2014-01-01

    The action of extracts from the stem, leaves, and fruit of Jatropha gossypiifolia on Biomphalaria glabrata was studied by analyzing survival, feeding capacity and oviposition ability. The extracts were obtained by macerating the plant parts in 92% ethanol, which were then evaporated until a dry residue was obtained and phytochemically studied. The molluscicidal activity on B. glabrata was investigated using the procedures recommended by WHO (1965). The amount of food ingested and oviposition were measured during each experiment. The extract of leaves from J. gossypiifolia was shown to be a strong molluscicidal agent, causing 100% mortality of B. glabrata, even in the lowest concentration tested, of 25 ppm. Regarding the fruit extract, there was variation in the mortality, depending on the concentration used (100, 75, 50 and 25 ppm). The snails that were in contact with the fruit extract had significant reduction in feeding and number of embryos in comparison to the control. The stem extract did not present molluscicidal activity nor had any influence on the feeding and oviposition abilities of B. glabrata, in the concentrations tested. In conclusion, the extracts of leaves and fruits of J. gossypiifolia investigated in this work show molluscicidal effect and may be sources of useful compounds for the schistosomiasis control. PMID:25351545

  8. Small Molecules in the Cone Snail Arsenal.

    PubMed

    Neves, Jorge L B; Lin, Zhenjian; Imperial, Julita S; Antunes, Agostinho; Vasconcelos, Vitor; Olivera, Baldomero M; Schmidt, Eric W

    2015-10-16

    Cone snails are renowned for producing peptide-based venom, containing conopeptides and conotoxins, to capture their prey. A novel small-molecule guanine derivative with unprecedented features, genuanine, was isolated from the venom of two cone snail species. Genuanine causes paralysis in mice, indicating that small molecules and not just polypeptides may contribute to the activity of cone snail venom. PMID:26421741

  9. Observations on bilharziasis and the potential snail hosts in the Republic of the Congo (Brazzaville)

    PubMed Central

    McCullough, Fergus S.

    1964-01-01

    In 1962, the author conducted a preliminary investigation of bilharziasis in the Republic of the Congo (Brazzaville), at the request of the Government, in order to review existing information and work done on bilharziasis, to assess the prevalence and distribution of the disease, to make observations on the potential snail hosts, and to propose further suitable studies and control measures. Although little time was available for this study, it appears reasonable to conclude that Schistosoma haematobium is confined to a few foci in the west of the country, the main snail host being a new subspecies of Bulinus (B.) truncatus. Intestinal bilharziasis is apparently very rare, but systematic stool surveys have not been done; S. mansoni may be, or become, endemic at Dolisie, where Biomphalaria camerunensis is abundant. The main factors governing the restricted distribution of bilharziasis are discussed. Bilharziasis control appears to merit relatively low priority compared with that due to several other diseases, and the author concludes that bilharziasis is unlikely to become widespread in future years unless there is major environmental change, although the intensity of transmission may increase in some present endemic foci. PMID:14163961

  10. Air-water CO2 outgassing in the Lower Lakes (Alexandrina and Albert, Australia) following a millennium drought.

    PubMed

    Li, Siyue; Bush, Richard T; Ward, Nicholas J; Sullivan, Leigh A; Dong, Fangyong

    2016-01-15

    Lakes are an important source and sink of atmospheric CO2, and thus are a vital component of the global carbon cycle. However, with scarce data on potentially important subtropical and tropical areas for whole continents such as Australia, the magnitude of large-scale lake CO2 emissions is unclear. This study presents spatiotemporal changes of dissolved inorganic carbon and water - to - air interface CO2 flux in the two of Australia's largest connected, yet geomorphically different freshwater lakes (Lake Alexandrina and Lake Albert, South Australia), during drought (2007 to September-2010) and post-drought (October 2010 to 2013). Lake levels in the extreme drought were on average approximately 1m lower than long-term average (0.71 m AHD). Drought was associated with an increase in the concentrations of dissolved inorganic species, organic carbon, nitrogen, Chl-a and major ions, as well as water acidification as a consequence of acid sulfate soil (ASS) exposure, and hence, had profound effects on lake pCO2 concentrations. Lakes Alexandrina and Albert were a source of CO2 to the atmosphere during the drought period, with efflux ranging from 0.3 to 7.0 mmol/m(2)/d. The lake air-water CO2 flux was negative in the post-drought, ranging between -16.4 and 0.9 mmol/m(2)/d. The average annual CO2 emission was estimated at 615.5×10(6) mol CO2/y during the drought period. These calculated emission rates are in the lower range for lakes, despite the potential for drought conditions that shift the lakes from sink to net source for atmospheric CO2. These observations have significant implications in the context of predicted increasing frequency and intensity of drought as a result of climate change. Further information on the spatial and temporal variability in CO2 flux from Australian lakes is urgently warranted to revise the global carbon budget for lakes. PMID:26520269

  11. Snail modulates cell metabolism in MDCK cells

    SciTech Connect

    Haraguchi, Misako; Indo, Hiroko P.; Iwasaki, Yasumasa; Iwashita, Yoichiro; Fukushige, Tomoko; Majima, Hideyuki J.; Izumo, Kimiko; Horiuchi, Masahisa; Kanekura, Takuro; Furukawa, Tatsuhiko; Ozawa, Masayuki

    2013-03-22

    Highlights: ► MDCK/snail cells were more sensitive to glucose deprivation than MDCK/neo cells. ► MDCK/snail cells had decreased oxidative phosphorylation, O{sub 2} consumption and ATP content. ► TCA cycle enzyme activity, but not expression, was lower in MDCK/snail cells. ► MDCK/snail cells showed reduced PDH activity and increased PDK1 expression. ► MDCK/snail cells showed reduced expression of GLS2 and ACLY. -- Abstract: Snail, a repressor of E-cadherin gene transcription, induces epithelial-to-mesenchymal transition and is involved in tumor progression. Snail also mediates resistance to cell death induced by serum depletion. By contrast, we observed that snail-expressing MDCK (MDCK/snail) cells undergo cell death at a higher rate than control (MDCK/neo) cells in low-glucose medium. Therefore, we investigated whether snail expression influences cell metabolism in MDCK cells. Although gylcolysis was not affected in MDCK/snail cells, they did exhibit reduced pyruvate dehydrogenase (PDH) activity, which controls pyruvate entry into the tricarboxylic acid (TCA) cycle. Indeed, the activity of multiple enzymes involved in the TCA cycle was decreased in MDCK/snail cells, including that of mitochondrial NADP{sup +}-dependent isocitrate dehydrogenase (IDH2), succinate dehydrogenase (SDH), and electron transport Complex II and Complex IV. Consequently, lower ATP content, lower oxygen consumption and increased survival under hypoxic conditions was also observed in MDCK/snail cells compared to MDCK/neo cells. In addition, the expression and promoter activity of pyruvate dehydrogenase kinase 1 (PDK1), which phosphorylates and inhibits the activity of PDH, was increased in MDCK/snail cells, while expression levels of glutaminase 2 (GLS2) and ATP-citrate lyase (ACLY), which are involved in glutaminolysis and fatty acid synthesis, were decreased in MDCK/snail cells. These results suggest that snail modulates cell metabolism by altering the expression and activity of

  12. Celss nutrition system utilizing snails

    NASA Astrophysics Data System (ADS)

    Midorikawa, Y.; Fujii, T.; Ohira, A.; Nitta, K.

    At the 40th IAF Congress in Malaga, a nutrition system for a lunar base CELSS was presented. A lunar base with a total of eight crew members was envisaged. In this paper, four species of plants—rice, soybean, lettuce and strawberry—were introduced to the system. These plants were sufficient to satisfy fundamental nutritional needs of the crew members. The supply of nutrition from plants and the human nutritional requirements could almost be balanced. Our study revealed that the necessary plant cultivation area per crew member would be nearly 40 m 3 in the lunar base. The sources of nutrition considered in the study were energy, sugar, fat, amino acids, inorganic salt and vitamins; however, calcium, vitamin B 2, vitamin A and sodium were found to be lacking. Therefore, a subsystem to supply these elements is of considerable value. In this paper, we report on a study for breeding snails and utilizing meat as food. Nutrients supplied from snails are shown to compensate for the abovementioned lacking elements. We evaluate the snail breeder and the associated food supply system as a subsystem of closed ecological life support system.

  13. Characterization of the Life Cycle of a Fish Eye Fluke, Austrodiplostomum ostrowskiae (Digenea: Diplostomidae), with Notes on Two Other Diplostomids Infecting Biomphalaria havanensis (Mollusca: Planorbidae) from Catfish Aquaculture Ponds in Mississippi, USA.

    PubMed

    Rosser, Thomas G; Alberson, Neely R; Khoo, Lester H; Woodyard, Ethan T; Pote, Linda M; Griffin, Matt J

    2016-04-01

    Ocular diplostomiasis is caused by trematode species in the family Diplostomidae, specifically those in the genera Austrodiplostomum, Diplostomum, and Tylodelphys. Diplostomid trematodes are globally distributed parasites of fish. Heavy infections of diplostomids that parasitize the eyes of fish can result in acute mortality while chronic infections are often characterized by impaired vision or blindness. In the southeastern United States, commercial catfish production is threatened by piscivorous birds and the many trematode species that parasitize them. The life cycles typically involve a piscivorous avian definitive host, a mollusk first intermediate host, and a fish second intermediate host. A survey of parasites infecting the snail host Biomphalaria havanensis (= B. obstructa ) in catfish production ponds was undertaken. Snails were collected from 2 separate ponds during the summer of 2014 and observed for the release of trematode cercariae. A total of 1,740 snails were collected. Three distinct longifurcate pharyngeate cercariae were observed and these cercariae were characterized morphologically and molecularly. Sequencing of ∼4,200 base pairs (bp) of the nuclear ribosomal genes and ∼450 bp of the mitochondrial cytochrome c oxidase gene revealed 3 genetically distinct species. One morphotype shared 99-100% sequence identity with metacercariae from the aqueous and vitreous humors of gizzard shad Dorosoma cepedianum and channel catfish Ictalurus punctatus as well as an adult trematode, Austrodiplostomum ostrowskiae, a parasite of the double-crested cormorant Nannopterum auritus. The remaining 2 cercariae morphotypes shared 99-100% sequence identity with an unidentified Tylodelphys sp. and Austrodiplostomum sp. metacercaria from the brain and eyes of several freshwater fish. Herein we molecularly link the cercaria, metacercaria, and adult stage of the life cycle of A. ostrowskiae, identifying the snail host for this parasite, in addition to providing notes

  14. Toxic effects of Microgramma vacciniifolia rhizome lectin on Artemia salina, human cells, and the schistosomiasis vector Biomphalaria glabrata.

    PubMed

    de Albuquerque, Lidiane Pereira; Pontual, Emmanuel Viana; Santana, Giselly Maria de Sá; Silva, Luanna Ribeiro Santos; Aguiar, Jaciana dos Santos; Coelho, Luana Cassandra Breitenbach Barroso; Rêgo, Moacyr Jesus Barreto de Melo; Pitta, Maira Galdino da Rocha; da Silva, Teresinha Gonçalves; Melo, Ana Maria Mendonça de Albuquerque; Napoleão, Thiago Henrique; Paiva, Patrícia Maria Guedes

    2014-10-01

    The present study evaluated the toxicity of Microgramma vacciniifolia rhizome lectin (MvRL) to Artemia salina, human tumour cell lines (larynx epidermoid carcinoma Hep-2, NCI-H292 lung mucoepidermoid carcinoma, and chronic myelocytic leukaemia K562), and normal peripheral blood mononuclear cells (PBMCs), as well as to Biomphalaria glabrata embryos and adults. MvRL was toxic to A. salina (LC50=159.9 μg/mL), and exerted cytotoxic effects on NCI-H292 cells (IC50=25.23 μg/mL). The lectin (1-100 μg/mL) did not affect the viability of K562 and Hep-2 tumour cells, as well as of PBMCs. MvRL concentration of 1, 10, and 100 μg/mL promoted malformations (mainly exogastrulation) in 7.8%, 22.5%, and 27.7% of embryos, respectively, as well as delayed embryo development in 42.0%, 69.5%, and 54.7% of embryos, respectively. MvRL at a concentration of 100 μg/mL killed B. glabrata embryos (17.7%) and adults (25%). Further, MvRL damaged B. glabrata reproductive processes, which was evidenced by observations that snails exposed to the lectin (100 μg/mL) deposited fewer eggs than those in the control group, and approximately 40% of the deposited eggs exhibited malformations. Comparison of these results with that from A. salina assay indicates that MvRL is adulticidal at the concentration range which is toxic to environment. In conclusion, the cytotoxicity of MvRL on tumour cell and absence of toxicity to normal cell indicate its potential as chemotherapeutic drug. Also, the study revealed that the lectin is able to promote deleterious effects on B. glabrata embryos at environmentally safe concentrations. PMID:24954527

  15. Demographic responses to multi-generation cadmium exposure in two strains of the freshwater gastropod, Biomphalaria glabrata.

    SciTech Connect

    Salice, Christopher J.; Miller, Thomas J.; Roesijadi, Guritno

    2008-08-20

    A life table response experiment (LTRE) was used to quantify the population-level effects of continuous, multi-generation cadmium exposure on two strains of the freshwater gastropod, Biomphalaria glabrata; the parasite resistant BS90 and parasite susceptible NMRI strains. Snails were exposed to waterborne cadmium for three consecutive generations. Survival, growth and reproduction were measured empirically and incorporated into a stage-based, deterministic population model. Cadmium significantly affected hatching success, time to maturity and juvenile and adult survival in both strains. There were significant effects of generation on fecundity, hatching success time to maturity and juvenile survival in NMRI and time to maturity and adult survival in BS90. Cadmium significantly affected the population growth rate, lambda (λ), in BS90. Cadmium, generation and the cadmium x generation interaction had significant effects on λ in NMRI. At the high cadmium exposure, λ for NMRI showed a decrease from generation 1 to generation 2 followed by and increase from generation 2 to 3. Lambda in high cadmium BS90 steadily decreased over the three generations while NMRI at this same concentration was similar to the controls. The results indicated that strain-specific differences in response to multi-generation cadmium exposure are evident in B. glabrata. Moreover, effects seen in the first generation are not necessarily indicative of effects in subsequent generations. Changes in λ over the course of the three-generation exposure suggest that acclimation and/or adaptation to cadmium may have occurred, particularly in NMRI at the high cadmium exposure level.

  16. Production of apple snail for space diet

    NASA Astrophysics Data System (ADS)

    Yamashita, Masamichi; Motoki, Shigeru; Space Agriculture Task Force, J.; Katayama, Naomi

    For food production in space at recycling bio-elements under closed environment, appropriate organisms should be chosen to drive the closed materials recycle loop. We propose a combination of green algae, photosynthetic protozoa, and aquatic plants such as Wolffia spp., for the primary producer fixing solar energy to chemical form in biomass, and apple snail, Pomacea bridgesii, which converts this biomass to animal meat. Because of high proliferation rate of green algae or protozoa compared to higher plants, and direct conversion of them to apple snail, the efficiency of food production in this combination is high, in terms of energy usage, space for rearing, and yield of edible biomass. Furthermore, green algae and apple snail can form a closed ecological system with exchanging bio-elements between two member, i.e. excreta of snail turn to fertilizer of algae, and grown algae become feed for snail. Since apple snail stays in water or on wet substrate, control of rearing is easy to make. Mass production technology of apple snail has been well established to utilize it as human food. Nutrients of apple snail are also listed in the standard tables of food composition in Japan. Nutrients for 100 g of apple snail canned in brine are energy 340 kJ, protein 16.5 g, lipid 1.0 g, cholesterol 240 mg, carbohydrate 0.8 g, Ca 400 mg, Fe 3.9 mg, Zn 1.5 mg. It is rich in minerals, especially Ca and Fe. Vitamin contents are quite low, but K 0.005 mg, B2 0.09 mg, B12 0.0006 mg, folate 0.001 mg, and E 0.6 mg. The amino acid score of apple snail could not be found in literature. Overall, apple snail provides rich protein and animal lipid such as cholesterol. It could be a good source of minerals. However, it does not give enough vitamin D and B12 , which are supposed to be supplemented by animal origin foods. In terms of acceptance in food culture, escargot is a gourmet menu in French dishes, and six to ten snail, roughly 50 g, are served for one person. Apple snail reaches to 30 g

  17. Inquiry, Land Snails, and Environmental Factors

    ERIC Educational Resources Information Center

    Barrow, Lloyd H.; Krantz, Patrick D.

    2005-01-01

    Land snails are common invertebrates that fascinate children. Unfortunately, they are seldom used for activities in the science classroom. Snails are inexpensive, take up little space in the classroom, and require only low maintenance, and their learning dividends can be enormous. For example, students can use them in inquiry-based activities that…

  18. Controlling slugs and snails in orchids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Slugs and snails are pests of orchids, preferring tender plant tissues such as flowers and root tips. Unlike many insect pests which feed only on certain types of plants, most species of slugs and snails are generalists, feeding on green plants, algae, fungi, decaying plant matter, or decaying anima...

  19. Invertebrate host-parasite relationships: convergent evolution of a tropomyosin epitope between Schistosoma sp., Fasciola hepatica, and certain pulmonate snails.

    PubMed

    Weston, D; Allen, B; Thakur, A; LoVerde, P T; Kemp, W M

    1994-05-01

    Monoclonal antibodies (mAb) directed against Schistosoma mansoni tropomyosin isoform, SMTM (Xu et al. Experimental Parasitology 69, 373-392, 1989), were used to test for cross-reactivity with Biomphalaria glabrata antigens. One mAb (1F10) recognized antigens of 39, 41, and 80 kDa in a snail head/foot antigen preparation but not a hepatopancreas antigen preparation. Another mAb (1C1) cross-reacted with a 39-kDa antigen in the head/foot extract but not in the hepatopancreas extract. Epitope mapping revealed the 1F10 epitope to be between amino acids 135 and 188 of both Bg39 (Dissous et al. Molecular and Biochemical Parasitology 43, 245-256, 1990) and BgTMII (Weston and Kemp, Experimental Parasitology 76, 358-370, 1993), while the 1C1 epitope was located between amino acids 189 and 213 of BgTMII. Various invertebrate species, including members from Trematoda, Pulmonata, Annelida, and Arthropoda, were tested for cross-reactivity with the monoclonal antibodies. While the 1F10 mAb displayed broad invertebrate cross-reactivity, the 1C1 mAb cross-reactivity was restricted to schistosomes, F. hepatica, and the pulmonate snails B. glabrata and Physa sp. PMID:7512930

  20. Identification and characterisation of functional expressed sequence tags-derived simple sequence repeat (eSSR) markers for genetic linkage mapping of Schistosoma mansoni juvenile resistance and susceptibility loci in Biomphalaria glabrata

    PubMed Central

    Ittiprasert, Wannaporn; Miller, André; Su, Xin-zhuan; Mu, Jianbing; Bhusudsawang, Ganlayarat; Ukoskit, Kitipat; Knight, Matty

    2013-01-01

    Biomphalaria glabrata susceptibility to Schistosoma mansoni has a strong genetic component, offering the possibility for investigating host–parasite interactions at the molecular level, perhaps leading to novel control approaches. The identification, mapping and molecular characterisation of genes that influence the outcome of parasitic infection in the intermediate snail host is, therefore, seen as fundamental to the control of schistosomiasis. To better understand the evolutionary processes driving disease resistance/susceptibility phenotypes, we previously identified polymorphic random amplification of polymorphic DNA and genomic simple sequence repeats from B. glabrata. In the present study we identified and characterised polymorphic expressed simple sequence repeats markers (Bg-eSSR) from existing B. glabrata expressed sequence tags. Using these markers, and with previously identified genomic simple sequence repeats, genetic linkage mapping for parasite refractory and susceptibility phenotypes, the first known for B. glabrata, was initiated. Data mining of 54,309 expressed sequence tag, produced 660 expressed simple sequence repeats of which dinucleotide motifs (TA)n were the most common (37.88%), followed by trinucleotide (29.55%), mononucleotide (18.64%) and tetranucleotide (10.15%). Penta- and hexanucleotide motifs represented <3% of the Bg-eSSRs identified. While the majority (71%) of Bg-eSSRs were monomorphic between resistant and susceptible snails, several were, however, useful for the construction of a genetic linkage map based on their inheritance in segregating F2 progeny snails derived from crossing juvenile BS-90 and NMRI snails. Polymorphic Bg-eSSRs assorted into six linkage groups at a logarithm of odds score of 3. Interestingly, the heritability of four markers (Prim1_910, Prim1_771, Prim6_1024 and Prim7_823) with juvenile snail resistance were, by t-test, significant (P < 0.05) while an allelic marker, Prim24_524, showed linkage with the

  1. Modeling apple snail population dynamics on the Everglades landscape

    USGS Publications Warehouse

    Darby, Phil; DeAngelis, Donald L.; Romanach, Stephanie; Suir, Kevin J.; Bridevaux, Joshua L.

    2015-01-01

    Comparisons of model output to empirical data indicate the need for more data to better understand, and eventually parameterize, several aspects of snail ecology in support of EverSnail. A primary value of EverSnail is its capacity to describe the relative response of snail abundance to alternative hydrologic scenarios considered for Everglades water management and restoration.

  2. On the Ultrastructure and Function of Rhogocytes from the Pond Snail Lymnaea stagnalis

    PubMed Central

    Kokkinopoulou, Maria; Spiecker, Lisa; Messerschmidt, Claudia; Barbeck, Mike; Ghanaati, Shahram; Landfester, Katharina; Markl, Jürgen

    2015-01-01

    Rhogocytes, also termed “pore cells”, occur as solitary or clustered cells in the connective tissue of gastropod molluscs. Rhogocytes possess an enveloping lamina of extracellular matrix and enigmatic extracellular lacunae bridged by cytoplasmic bars that form 20 nm diaphragmatic slits likely to act as a molecular sieve. Recent papers highlight the embryogenesis and ultrastructure of these cells, and their role in heavy metal detoxification. Rhogocytes are the site of hemocyanin or hemoglobin biosynthesis in gastropods. Based on electron microscopy, we recently proposed a possible pathway of hemoglobin exocytosis through the slit apparatus, and provided molecular evidence of a common phylogenetic origin of molluscan rhogocytes, insect nephrocytes and vertebrate podocytes. However, the previously proposed secretion mode of the respiratory proteins into the hemolymph is still rather hypothetical, and the possible role of rhogocytes in detoxification requires additional data. Although our previous study on rhogocytes of the red-blooded (hemoglobin-containing) freshwater snail Biomphalaria glabrata provided much new information, a disadvantage was that the hemoglobin molecules were not unequivocally defined in the electron microscope. This made it difficult to trace the exocytosis pathway of this protein. Therefore, we have now performed a similar study on the rhogocytes of the blue-blooded (hemocyanin-containing) freshwater snail Lymnaea stagnalis. The intracellular hemocyanin could be identified in the electron microscope, either as individual molecules or as pseudo-crystalline arrays. Based on 3D-electron microscopy, and supplemented by in situ hybridization, immunocytochemistry and stress response experiments, we provide here additional details on the structure and hemocyanin biosynthesis of rhogocytes, and on their response in animals under cadmium and starvation stress. Moreover, we present an advanced model on the release of synthesized hemocyanin molecules

  3. Freshwater snail consumption and angiostrongyliasis in Malaya.

    PubMed

    Liat, L B; Fong, Y L; Krishnansamy, M; Ramachandran, P; Mansor, S

    1978-06-01

    A survey of the freshwater snails, Pila scutata and Bellamyia ingallsiana, as food consumed by the local population was carried out in Peninsular Malaysia. Of these two species the first is preferred; the sizes favoured are between 25--40 mm. Pila snails were found to be consumed by the three communities, viz. Malay, Chinese and Indian, in different ways. The various methods of preparing the snails for consumption are described. P. scutata is an intermediate host of the rat-lung worm, Angiostrongylus malaysiensis. As this worm presumably is the causative agent of human eosinophilic meningoencephalitis, the eating habits of the three races in consuming the snail in relation to the epidemiology of the disease was also discussed. PMID:726037

  4. Behavioural responses of the snail Lymnaea acuminata to carbohydrates in snail-attractant pellets

    NASA Astrophysics Data System (ADS)

    Tiwari, Farindra; Singh, D. K.

    Snail control is one of the most important tools in the campaign to reduce the incidence of fascioliasis. In order to attain this objective, the method of bait formulation in order to contain an attractant and a molluscicide is an expedient approach to lure the target snail population to the molluscicide. This study identifies certain carbohydrates, namely sucrose, maltose, glucose, fructose and starch, for preparing such baits. These were tested on Lymnaea acuminata, an intermediate host of the digenean trematodes Fasciola hepatica and Fasciola gigantica. The behavioural responses of snails to these carbohydrates were examined. Significant variations in behavioural responses were observed in the snail even when the five carbohydrates were used in low concentrations in snail-attractant pellets. Starch emerged as the strongest attractant for Lymnaea acuminata, followed by maltose.

  5. Glycotope Sharing between Snail Hemolymph and Larval Schistosomes: Larval Transformation Products Alter Shared Glycan Patterns of Plasma Proteins

    PubMed Central

    Yoshino, Timothy P.; Wu, Xiao-Jun; Liu, Hongdi; Gonzalez, Laura A.; Deelder, André M.; Hokke, Cornelis H.

    2012-01-01

    Recent evidence supports the involvement of inducible, highly diverse lectin-like recognition molecules in snail hemocyte-mediated responses to larval Schistosoma mansoni. Because host lectins likely are involved in initial parasite recognition, we sought to identify specific carbohydrate structures (glycans) shared between larval S. mansoni and its host Biomphalaria glabrata to address possible mechanisms of immune avoidance through mimicry of elements associated with the host immunoreactivity. A panel of monoclonal antibodies (mABs) to specific S. mansoni glycans was used to identify the distribution and abundance of shared glycan epitopes (glycotopes) on plasma glycoproteins from B. glabrata strains that differ in their susceptibilities to infection by S. mansoni. In addition, a major aim of this study was to determine if larval transformation products (LTPs) could bind to plasma proteins, and thereby alter the glycotopes exposed on plasma proteins in a snail strain-specific fashion. Plasma fractions (<100 kDa/>100 kDa) from susceptible (NMRI) and resistant (BS-90) snail strains were subjected to SDS-PAGE and immunoblot analyses using mAB to LacdiNAc (LDN), fucosylated LDN variants, Lewis X and trimannosyl core glycans. Results confirmed a high degree of glycan sharing, with NMRI plasma exhibiting a greater distribution/abundance of LDN, F-LDN and F-LDN-F than BS-90 plasma (<100 kDa fraction). Pretreatment of blotted proteins with LTPs significantly altered the reactivity of specific mABs to shared glycotopes on blots, mainly through the binding of LTPs to plasma proteins resulting in either glycotope blocking or increased glycotope attachment to plasma. Many LTP-mediated changes in shared glycans were snail-strain specific, especially those in the <100 kDa fraction for NMRI plasma proteins, and for BS-90, mainly those in the >100 kDa fraction. Our data suggest that differential binding of S. mansoni LTPs to plasma proteins of susceptible and resistant B

  6. Glycotope sharing between snail hemolymph and larval schistosomes: larval transformation products alter shared glycan patterns of plasma proteins.

    PubMed

    Yoshino, Timothy P; Wu, Xiao-Jun; Liu, Hongdi; Gonzalez, Laura A; Deelder, André M; Hokke, Cornelis H

    2012-01-01

    Recent evidence supports the involvement of inducible, highly diverse lectin-like recognition molecules in snail hemocyte-mediated responses to larval Schistosoma mansoni. Because host lectins likely are involved in initial parasite recognition, we sought to identify specific carbohydrate structures (glycans) shared between larval S. mansoni and its host Biomphalaria glabrata to address possible mechanisms of immune avoidance through mimicry of elements associated with the host immunoreactivity. A panel of monoclonal antibodies (mABs) to specific S. mansoni glycans was used to identify the distribution and abundance of shared glycan epitopes (glycotopes) on plasma glycoproteins from B. glabrata strains that differ in their susceptibilities to infection by S. mansoni. In addition, a major aim of this study was to determine if larval transformation products (LTPs) could bind to plasma proteins, and thereby alter the glycotopes exposed on plasma proteins in a snail strain-specific fashion. Plasma fractions (< 100 kDa/> 100 kDa) from susceptible (NMRI) and resistant (BS-90) snail strains were subjected to SDS-PAGE and immunoblot analyses using mAB to LacdiNAc (LDN), fucosylated LDN variants, Lewis X and trimannosyl core glycans. Results confirmed a high degree of glycan sharing, with NMRI plasma exhibiting a greater distribution/abundance of LDN, F-LDN and F-LDN-F than BS-90 plasma (< 100 kDa fraction). Pretreatment of blotted proteins with LTPs significantly altered the reactivity of specific mABs to shared glycotopes on blots, mainly through the binding of LTPs to plasma proteins resulting in either glycotope blocking or increased glycotope attachment to plasma. Many LTP-mediated changes in shared glycans were snail-strain specific, especially those in the < 100 kDa fraction for NMRI plasma proteins, and for BS-90, mainly those in the > 100 kDa fraction. Our data suggest that differential binding of S. mansoni LTPs to plasma proteins of susceptible and resistant B

  7. Aquatic Snails, Passive Hosts of Mycobacterium ulcerans

    PubMed Central

    Marsollier, Laurent; Sévérin, Tchibozo; Aubry, Jacques; Merritt, Richard W.; Saint André, Jean-Paul; Legras, Pierre; Manceau, Anne-Lise; Chauty, Annick; Carbonnelle, Bernard; Cole, Stewart T.

    2004-01-01

    Accumulative indirect evidence of the epidemiology of Mycobacterium ulcerans infections causing chronic skin ulcers (i.e., Buruli ulcer disease) suggests that the development of this pathogen and its transmission to humans are related predominantly to aquatic environments. We report that snails could transitorily harbor M. ulcerans without offering favorable conditions for its growth and replication. A novel intermediate link in the transmission chain of M. ulcerans becomes likely with predator aquatic insects in addition to phytophage insects. Water bugs, such as Naucoris cimicoides, a potential vector of M. ulcerans, were shown to be infected specifically by this bacterium after feeding on snails experimentally exposed to M. ulcerans. PMID:15466578

  8. Studies on the effect of pollution on Lake Manzala ecosystem in Port-Said, Damietta and Dakahlia Governorates Egypt.

    PubMed

    El-Khayat, Hanaa M M; Mahmoud, Kadria M A; Gaber, Hanan S; Abdel-Hamid, Hoda; Abu Taleb, Hoda M A

    2015-04-01

    This work studied how pollution impacts the ecosystem of Lake Manzala by determination of physicochemical parameters, studying biodiversity of aquatic plants and macroinvertebrates, and determining bioaccumulation of Pb, Cu, Cd & Zn in some major organisms, Biomphalaria alexandrina and Melanoides tuberculata snails and Oreochromis niloticus fish. The more near to Mediterranean Sea and to the industrial area, Port-Said and Damietta sites showed higher dissolved oxygen and conductivity than Dakahlia sites. Distribution percentage of Eichhornia crassipes is high among Port-Said and Dakahlia sites of 100 and 88%, respectively, while Lemna giba is the most abundant among Damietta sites of 60%. The maximum macroinvertebrate taxa richness was obtained at Gammalya, Dakahlia of 16 species while the maximum abundance was registered at Annanya, Damietta of 591 organisms. Gastropoda are the most distributed organisms in Lake Manzala followed by Hemiptera and Plecoptera then shrimps and scud. All the medically important snails, B. alexandrina, B. truncatus and L. natalensis were recorded in Dakahlia, but only B. alexandrina was in Damietta and Port-Said sites. The collected water samples from Damietta sites showed the highest significant Cu & Cd concentration while Port-Said samples showed the highest Pb concentration and Dakahlia showed the highest Zn concentration. The metals concentrations were higher in snail tissue and in fish liver, kidney and most of muscle samples as compared in surface water. The higher metal bioaccumulation was determined in snails collected from sites showed higher water metals concentrations. Fish muscle showed the least residues than liver and kidney for all the measured metals. Pb and Cd were more accumulated in kidneys, Cu was more accumulated in liver and Zn was accumulated in all examined fish parts in descending order as follows Kidney > liver > muscle. PMID:26012230

  9. The dual protection of a micro land snail against a micro predatory snail.

    PubMed

    Wada, Shinichiro; Chiba, Satoshi

    2013-01-01

    Defense against a single predatory attack strategy may best be achieved not by a single trait but by a combination of different traits. We tested this hypothesis experimentally by examining the unique shell traits (the protruded aperture and the denticles within the aperture) of the micro land snail Bensonella plicidens. We artificially altered shell characteristics by removing the denticles and/or cutting the protruded aperture. These snails were offered to the carnivorous micro land snail Indoennea bicolor, which preys on the snails by gaining entry to their shell. B. plicidens exhibited the best defence when both of the traits studied were present; the defensive ability of B. plicidens decreased if either trait was removed and was further reduced if both traits were removed. These results suggest that a combination of different traits provides more effective defence against attack by the predator than either single trait by itself. PMID:23326582

  10. The Dual Protection of a Micro Land Snail against a Micro Predatory Snail

    PubMed Central

    Wada, Shinichiro; Chiba, Satoshi

    2013-01-01

    Defense against a single predatory attack strategy may best be achieved not by a single trait but by a combination of different traits. We tested this hypothesis experimentally by examining the unique shell traits (the protruded aperture and the denticles within the aperture) of the micro land snail Bensonella plicidens. We artificially altered shell characteristics by removing the denticles and/or cutting the protruded aperture. These snails were offered to the carnivorous micro land snail Indoennea bicolor, which preys on the snails by gaining entry to their shell. B. plicidens exhibited the best defence when both of the traits studied were present; the defensive ability of B. plicidens decreased if either trait was removed and was further reduced if both traits were removed. These results suggest that a combination of different traits provides more effective defence against attack by the predator than either single trait by itself. PMID:23326582

  11. Modeling snail breeding in a bioregenerative life support system

    NASA Astrophysics Data System (ADS)

    Kovalev, V. S.; Manukovsky, N. S.; Tikhomirov, A. A.; Kolmakova, A. A.

    2015-07-01

    The discrete-time model of snail breeding consists of two sequentially linked submodels: "Stoichiometry" and "Population". In both submodels, a snail population is split up into twelve age groups within one year of age. The first submodel is used to simulate the metabolism of a single snail in each age group via the stoichiometric equation; the second submodel is used to optimize the age structure and the size of the snail population. Daily intake of snail meat by crewmen is a guideline which specifies the population productivity. The mass exchange of the snail unit inhabited by land snails of Achatina fulica is given as an outcome of step-by-step modeling. All simulations are performed using Solver Add-In of Excel 2007.

  12. Modeling snail breeding in a bioregenerative life support system.

    PubMed

    Kovalev, V S; Manukovsky, N S; Tikhomirov, A A; Kolmakova, A A

    2015-07-01

    The discrete-time model of snail breeding consists of two sequentially linked submodels: "Stoichiometry" and "Population". In both submodels, a snail population is split up into twelve age groups within one year of age. The first submodel is used to simulate the metabolism of a single snail in each age group via the stoichiometric equation; the second submodel is used to optimize the age structure and the size of the snail population. Daily intake of snail meat by crewmen is a guideline which specifies the population productivity. The mass exchange of the snail unit inhabited by land snails of Achatina fulica is given as an outcome of step-by-step modeling. All simulations are performed using Solver Add-In of Excel 2007. PMID:26256627

  13. Snail promotes an invasive phenotype in lung carcinoma

    PubMed Central

    2012-01-01

    Background Snail is a transcriptional factor which is known to influence the epitheliomesenchymal transition (EMT) by regulating adhesion proteins such as E-cadherin and claudins as well as matrix metalloproteases (MMP). Methods To evaluate the functional importance of snail, a transciptional factor involved in EMT in lung tumors, we investigated its expression in a large set of lung carcinomas by immunohistochemistry. Expression of snail and effects of snail knockdown was studied in cell lines. Results Nuclear snail expression was seen in 21% of cases this being strongest in small cell lung carcinomas (SCLC). There was significantly greater snail expression in SCLC compared to squamous cell or adenocarcinoma. Positive snail expression was associated with poor survival in the whole material and separately in squamous cell and adenocarcinomas. In Cox regression analysis, snail expression showed an independent prognostic value in all of these groups. In several cell lines knockdown of snail reduced invasion in both matrigel assay and in the myoma tissue model for invasion. The influence of snail knockdown on claudin expression was cell type specific. Snail knockdown in these cell lines modified the expression of MMP2 and MMP9 but did not influence the activation of these MMPs to any significant degree. Conclusions The results show that snail plays an important role in the invasive characteristics of lung carcinoma influencing the survival of the patients. Snail knockdown might thus be one option for targeted molecular therapy in lung cancer. Snail knockdown influenced the expression of claudins individually in a cell-line dependent manner but did not influence MMP expressions or activations to any significant degree. PMID:23157169

  14. Mate desertion in the snail kite

    USGS Publications Warehouse

    Beissinger, S.R.; Snyder, N.F.R.

    1988-01-01

    Mate desertion during the breeding cycle was documented at 28 of 36 (78%) snail kite, Rostrhamus sociabilis nests in Florida between 1979 and 1983. Offspring mortality occurred at only one deserted nest, however. Parents that were deserted by their mates continued to care for their young until independence (3?5 additional weeks) and provided snails at a rate similar to that of both parents combined before desertion. Males and females deserted with nearly equal frequency, except in 1982 when more females deserted. No desertion occurred during drought years, whereas desertion occurred at nearly every nest during favourable conditions. The occurrence of mate desertion was generally related to indirect measures of snail abundance: foraging range, snail delivery rates to the young and growth rates. Small broods were deserted more frequently by females than by males and tended to be deserted earlier than large ones. After desertion, deserters had the opportunity to re-mate and nest again since breeding seasons were commonly lengthy, but whether they did so was impossible to determine conclusively in most cases. The deserted bird sometimes incurred increased energetic costs and lost breeding opportunities during periods of monoparental care.

  15. Field tests of hexabutyldistannoxane (TBTO) in slow-release formulations against Biomphalaria spp.

    PubMed

    Gilbert, B; Paesleme, L A; Ferreira, A M; Bulhões, M S; Castleton, C

    1973-01-01

    Hexabutyldistannoxane (TBTO) in an asphalt base was found to retain molluscicidal activity for more than a year in the field. It was not deactivated by immersion in mud or by drying and exposure to the sun. Complete elimination of planorbid snails was achieved and maintained when repopulation pressure was sporadic, but control of a continuously entering population was not practicable. Fixing the product at the site is important, and a formulation in fragments of rubber that floated failed after 1-2 months. TBTO apparently acts cumulatively in snails, but is only initially toxic to aquatic insects and fish, which return to repopulate treated areas that remain snail-free. PMID:4548389

  16. Snail1 Mediates Hypoxia-Induced Melanoma Progression

    PubMed Central

    Liu, Shujing; Kumar, Suresh M.; Martin, James S.; Yang, Ruifeng; Xu, Xiaowei

    2011-01-01

    Tumor hypoxia is a known adverse prognostic factor, and the hypoxic dermal microenvironment participates in melanomagenesis. High levels of hypoxia inducible factor (HIF) expression in melanoma cells, particularly HIF-2α, is associated with poor prognosis. The mechanism underlying the effect of hypoxia on melanoma progression, however, is not fully understood. We report evidence that the effects of hypoxia on melanoma cells are mediated through activation of Snail1. Hypoxia increased melanoma cell migration and drug resistance, and these changes were accompanied by increased Snail1 and decreased E-cadherin expression. Snail1 expression was regulated by HIF-2α in melanoma. Snail1 overexpression led to more aggressive tumor phenotypes and features associated with stem-like melanoma cells in vitro and increased metastatic capacity in vivo. In addition, we found that knockdown of endogenous Snail1 reduced melanoma proliferation and migratory capacity. Snail1 knockdown also prevented melanoma metastasis in vivo. In summary, hypoxia up-regulates Snail1 expression and leads to increased metastatic capacity and drug resistance in melanoma cells. Our findings support that the effects of hypoxia on melanoma are mediated through Snail1 gene activation and suggest that Snail1 is a potential therapeutic target for the treatment of melanoma. PMID:21996677

  17. Fecundity of the Chinese mystery snail in a Nebraska reservoir

    USGS Publications Warehouse

    Stephen, Bruce J.; Allen, Craig R.; Chaine, Noelle M.; Fricke, Kent A.; Haak, Danielle M.; Hellman, Michelle L.; Kill, Robert A.; Nemec, Kristine T.; Pope, Kevin L.; Smeenk, Nicholas A.; Uden, Daniel R.; Unstad, Kody M.; VanderHam, Ashley E.; Wong, Alec

    2013-01-01

    The Chinese mystery snail (Bellamya chinensis) is a non-indigenous, invasive species in freshwater ecosystems of North America. We provide fecundity estimates for a population of these snails in a Nebraska reservoir. We dissected 70 snails, of which 29 were females. Nearly all female snails contained developing young, with an average of 25 young per female. Annual fecundity was estimated at between 27.2 and 33.3 young per female per year. Based on an estimated adult population and the calculated fecundity, the annual production for this reservoir was between 2.2 and 3.7 million young.

  18. The convoluted evolution of snail chirality

    NASA Astrophysics Data System (ADS)

    Schilthuizen, M.; Davison, A.

    2005-11-01

    The direction that a snail (Mollusca: Gastropoda) coils, whether dextral (right-handed) or sinistral (left-handed), originates in early development but is most easily observed in the shell form of the adult. Here, we review recent progress in understanding snail chirality from genetic, developmental and ecological perspectives. In the few species that have been characterized, chirality is determined by a single genetic locus with delayed inheritance, which means that the genotype is expressed in the mother's offspring. Although research lags behind the studies of asymmetry in the mouse and nematode, attempts to isolate the loci involved in snail chirality have begun, with the final aim of understanding how the axis of left-right asymmetry is established. In nature, most snail taxa (>90%) are dextral, but sinistrality is known from mutant individuals, populations within dextral species, entirely sinistral species, genera and even families. Ordinarily, it is expected that strong frequency-dependent selection should act against the establishment of new chiral types because the chiral minority have difficulty finding a suitable mating partner (their genitalia are on the ‘wrong’ side). Mixed populations should therefore not persist. Intriguingly, however, a very few land snail species, notably the subgenus Amphidromus sensu stricto, not only appear to mate randomly between different chiral types, but also have a stable, within-population chiral dimorphism, which suggests the involvement of a balancing factor. At the other end of the spectrum, in many species, different chiral types are unable to mate and so could be reproductively isolated from one another. However, while empirical data, models and simulations have indicated that chiral reversal must sometimes occur, it is rarely likely to lead to so-called ‘single-gene’ speciation. Nevertheless, chiral reversal could still be a contributing factor to speciation (or to divergence after speciation) when

  19. Phenotypic Plasticity of the Introduced New Zealand Mud Snail, Potamopyrgus antipodarum, Compared to Sympatric Native Snails

    PubMed Central

    Levri, Edward P.; Krist, Amy C.; Bilka, Rachel; Dybdahl, Mark F.

    2014-01-01

    Phenotypic plasticity is likely to be important in determining the invasive potential of a species, especially if invasive species show greater plasticity or tolerance compared to sympatric native species. Here in two separate experiments we compare reaction norms in response to two environmental variables of two clones of the New Zealand mud snail, Potamopyrgus antipodarum, isolated from the United States, (one invasive and one not yet invasive) with those of two species of native snails that are sympatric with the invader, Fossaria bulimoides group and Physella gyrina group. We placed juvenile snails in environments with high and low conductivity (300 and 800 mS) in one experiment, and raised them at two different temperatures (16°C and 22°C) in a second experiment. Growth rate and mortality were measured over the course of 8 weeks. Mortality rates were higher in the native snails compared to P. antipodarum across all treatments, and variation in conductivity influenced mortality. In both experiments, reaction norms did not vary significantly between species. There was little evidence that the success of the introduced species is a result of greater phenotypic plasticity to these variables compared to the sympatric native species. PMID:24699685

  20. Supercharged Snails for Stream Ecology & Water-Quality Studies

    ERIC Educational Resources Information Center

    Stewart, Arthur J.; Ryon, Michael G.

    2003-01-01

    Gill-breathing freshwater snails (Family "Pleuroceridae") are ecologically important, abundant in many streams in the United States, and easy to collect and maintain under classroom conditions. These snails can be used in classroom tests to demonstrate effects of pollutants on aquatic organisms. In more advanced classes, students can cage the…

  1. Characterization of the myoglobin and its coding gene of the mollusc Biomphalaria glabrata.

    PubMed

    Dewilde, S; Winnepenninckx, B; Arndt, M H; Nascimento, D G; Santoro, M M; Knight, M; Miller, A N; Kerlavage, A R; Geoghagen, N; Van Marck, E; Liu, L X; Weber, R E; Moens, L

    1998-05-29

    A cDNA clone isolated from a Biomphalaria glabrata (Mollusca, Gastropoda) neural cDNA library was identified as encoding a myoglobin-like protein of 148 amino acids with a single domain and a calculated mass of 16,049.29. Alignment with globin sequences with known tertiary structure confirms its overall globin nature. The expressed myoglobin was identified in the radular muscle and isolated. Oxygen equilibrium measurements on the protein reveal a high oxygen affinity. Val-B10 and Gln-E7, important residues for the determination of the oxygen affinity, are strikingly different from the standard molluscan pattern (Conti, E., Moser, C., Rizzi, M., Mattevi, A., Lionetti, C., Coda, A., Ascenzi, P., Brunori, M., Bolognesi, M. (1993) J. Mol. Biol. 233, 498-508). The single gene encoding the globin chain is interrupted by three introns at positions A3.2, B12.2, and G7.0. Comparison with other nonvertebrate globin genes reveals on the one hand conservation (B12.2 and G7.0) and on the other hand variability of the insertion positions (A3.2). The Biomphalaria myoglobin sequence was used together with all other molluscan globin sequences available to assess the origin and phylogeny of the phylum. Our results confirm the doubts raised about monophyletic origin of the Mollusca, which was first observed using SSU rRNA as a molecular marker. PMID:9593695

  2. North American Paleozoic land snails with a summary of other Paleozoic nonmarine snails

    USGS Publications Warehouse

    Solem, Alan; Yochelson, Ellis Leon

    1979-01-01

    Land snails from the Paleozoic of North America are known from the coal fields of eastern Canada, from the Dunkard basin west of the Allegheny Mountains, and from the western margin of the Illinois basin. The earliest finds were made about 125 years ago; essentially no new information has been recorded for a century. Large collections of Anthracopupa from the Dunkard basin sparked inquiry into the land snails from the other two areas. Studies using the SEM (scanning electron microscope) have provided considerable insight into microdetails of shell structure, which allow systematic assignment of these gastropods. All may be assigned to extant families, except one, for which insufficient material allows only superfamily assignment. The prosobranch Dawsonella is confirmed as being a terrestrial neritacean gastropod. To date, it is known only from the upper Middle Pennsylvanian of Illinois and Indiana. All the other Paleozoic land snails are stylommatophoran pulmonates; their current classification as nonmarine cyclophoraceans is not correct. Restudy of material from the Joggins section of Nova Scotia indicates that representatives of two ordinal groups of pulmonates appeared simultaneously in upper Lower Pennsylvanian strata; the oldest land prosobranch is found in only very slightly younger rocks. Zonites (Conulus) priscus is reassigned to the new genus Protodiscus in the extant family Discidae. Dendropupa is placed within the family Enidae, Anthraaopupa is placed in the family Tornatellinidae, and 'Pupa' bigsbii is assigned to the superfamily Pupillacea. All four of these family-level taxa are diverse and belong to two orders within the superorder Stylommatophora, heretofore considered a derived rather than an ancestral stock. Anthracopupa ohioensis Whitfield is a highly variable species, and two other species Naticopsis (?) diminuta and A.(?) dunkardona, both named by Stauffer and Schroyer, are placed in synonymy with it. To obtain taxonomic data to support the

  3. The Mitochondrial Genome of the Venomous Cone Snail Conus consors

    PubMed Central

    Brauer, Age; Kurz, Alexander; Stockwell, Tim; Baden-Tillson, Holly; Heidler, Juliana; Wittig, Ilka; Kauferstein, Silke; Mebs, Dietrich; Stöcklin, Reto; Remm, Maido

    2012-01-01

    Cone snails are venomous predatory marine neogastropods that belong to the species-rich superfamily of the Conoidea. So far, the mitochondrial genomes of two cone snail species (Conus textile and Conus borgesi) have been described, and these feed on snails and worms, respectively. Here, we report the mitochondrial genome sequence of the fish-hunting cone snail Conus consors and describe a novel putative control region (CR) which seems to be absent in the mitochondrial DNA (mtDNA) of other cone snail species. This possible CR spans about 700 base pairs (bp) and is located between the genes encoding the transfer RNA for phenylalanine (tRNA-Phe, trnF) and cytochrome c oxidase subunit III (cox3). The novel putative CR contains several sequence motifs that suggest a role in mitochondrial replication and transcription. PMID:23236512

  4. How parasitism, stream substrate, and movement patterns mediate response to disturbance in the snail Elimia flava

    NASA Astrophysics Data System (ADS)

    Tomba, A. M.; Feminella, J. W.

    2005-05-01

    Snails in the genus Elimia are abundant in southeastern USA streams, and also serve as intermediate hosts to parasitic trematodes. Previous work indicated that high-flows decrease snail abundance and trematode prevalence, and others have shown substrate type and snail size affect likelihood of snail dislodgement. To investigate how parasitism, size, substrate, and snail behavior influenced dislodgement, we placed Elimia flava in artificial streams containing tile or gravel substrates, and then exposed them to progressively increasing flow velocities ( ~10, 40, 90 cm/s) for 5 minutes each. We recorded snail behavior and time to dislodgement, and then preserved snails to quantify their size and parasite load. Snails on tile dislodged significantly faster than snails on gravel, and snails with high parasite loads also dislodged faster than snails without parasites. Parasitism also appeared to affect movement patterns: snails showing predominantly downstream movement had higher parasite loads than those that did not. Behavior also affected dislodgement probability, as snails moving upstream or to the waterline remained on the substrate longer than snails not showing those behaviors. Parasitism, substrate composition, and snail movement are useful predictors of the likelihood of dislodgement, and parasitism and substrate may both increase snail vulnerability to flow disturbance.

  5. Population dynamics of aquatic snails in Pampulha reservoir.

    PubMed

    Freitas, J R; Bedê, L C; De Marco Júnior, P; Rocha, L A; Santos, M B

    1987-01-01

    An attempt was made to determine more accurately the density of molluskan populations in the Pampulha reservoir, using the quadrate method, intending to detect the fluctuation of the populations density, the habitat conditions and the possible competitive interactions among Biomphalaria tenagophila, Melanoides tuberculata, Pomacea haustrum and Biomphalaria glabrata, through the analysis of populational parameters. Among the most significative facts observed in the reservoir it has to be mentioned: the almost disappearance of B. glabrata; the invasion, colonization, fixation and fast growing of M. tuberculata population until reaching about 11,000 individuals/m2; the density fluctuations of B. tenagophila, P. haustrum and M. tuberculata alives and deads; differences on the habitat preference of these three molluskan species at the edge (at the limit earth-water, at 0.70m and 1.40m from the shore line); monthly mortality rates and reproduction seasons of the species. PMID:3509186

  6. Effects of sewage sludge amendment on snail growth and trace metal transfer in the soil-plant-snail food chain.

    PubMed

    Bourioug, Mohamed; Gimbert, Frédéric; Alaoui-Sehmer, Laurence; Benbrahim, Mohammed; Badot, Pierre-Marie; Alaoui-Sossé, Badr; Aleya, Lotfi

    2015-11-01

    Cu, Zn, Pb, and Cd concentrations in a soil plant (Lactuca sativa) continuum were measured after sewage sludge amendment. The effects of sewage sludge on growth and trace metal bioaccumulation in snails (Cantareus aspersus) were investigated in a laboratory experiment specifically designed to identify contamination sources (e.g., soil and leaves). Application of sewage sludge increased trace metal concentrations in topsoil. However, except Zn, metal concentrations in lettuce leaves did not reflect those in soil. Lettuce leaves were the main source of Zn, Cu, and Cd in exposed snails. Bioaccumulation of Pb suggested its immediate transfer to snails via the soil. No apparent toxic effects of trace metal accumulation were observed in snails. Moreover, snail growth was significantly stimulated at high rates of sludge application. This hormesis effect may be due to the enhanced nutritional content of lettuce leaves exposed to sewage sludge. PMID:26165994

  7. Modeling snail breeding in Bioregenerative Life Support System

    NASA Astrophysics Data System (ADS)

    Kovalev, Vladimir; Tikhomirov, Alexander A.; Nickolay Manukovsky, D..

    It is known that snail meat is a high quality food that is rich in protein. Hence, heliciculture or land snail farming spreads worldwide because it is a profitable business. The possibility to use the snails of Helix pomatia in Biological Life Support System (BLSS) was studied by Japanese Researches. In that study land snails were considered to be producers of animal protein. Also, snail breeding was an important part of waste processing, because snails were capable to eat the inedible plant biomass. As opposed to the agricultural snail farming, heliciculture in BLSS should be more carefully planned. The purpose of our work was to develop a model for snail breeding in BLSS that can predict mass flow rates in and out of snail facility. There are three linked parts in the model called “Stoichiometry”, “Population” and “Mass balance”, which are used in turn. Snail population is divided into 12 age groups from oviposition to one year. In the submodel “Stoichiometry” the individual snail growth and metabolism in each of 12 age groups are described with stoichiometry equations. Reactants are written on the left side of the equations, while products are written on the right side. Stoichiometry formulas of reactants and products consist of four chemical elements: C, H, O, N. The reactants are feed and oxygen, products are carbon dioxide, metabolic water, snail meat, shell, feces, slime and eggs. If formulas of substances in the stoichiometry equations are substituted with their molar masses, then stoichiometry equations are transformed to the equations of molar mass balance. To get the real mass balance of individual snail growth and metabolism one should multiply the value of each molar mass in the equations on the scale parameter, which is the ratio between mass of monthly consumed feed and molar mass of feed. Mass of monthly consumed feed and stoichiometry coefficients of formulas of meat, shell, feces, slime and eggs should be determined experimentally

  8. Spatial mosaic evolution of snail defensive traits

    PubMed Central

    Johnson, Steven G; Hulsey, C Darrin; de León, Francisco J García

    2007-01-01

    Background Recent models suggest that escalating reciprocal selection among antagonistically interacting species is predicted to occur in areas of higher resource productivity. In a putatively coevolved interaction between a freshwater snail (Mexipyrgus churinceanus) and a molluscivorous cichlid (Herichthys minckleyi), we examined three components of this interaction: 1) spatial variation in two putative defensive traits, crushing resistance and shell pigmentation; 2) whether abiotic variables or frequency of molariform cichlids are associated with spatial patterns of crushing resistance and shell pigmentation and 3) whether variation in primary productivity accounted for small-scale variation in these defensive traits. Results Using spatial autocorrelation to account for genetic and geographic divergence among populations, we found no autocorrelation among populations at small geographic and genetic distances for the two defensive traits. There was also no correlation between abiotic variables (temperature and conductivity) and snail defensive traits. However, crushing resistance and frequency of pigmented shells were negatively correlated with molariform frequency. Crushing resistance and levels of pigmentation were significantly higher in habitats dominated by aquatic macrophytes, and both traits are phenotypically correlated. Conclusion Crushing resistance and pigmentation of M. churinceanus exhibit striking variation at small spatial scales often associated with differences in primary productivity, substrate coloration and the frequency of molariform cichlids. These local geographic differences may result from among-habitat variation in how resource productivity interacts to promote escalation in prey defenses. PMID:17397540

  9. What can be learnt from a snail?

    PubMed

    Johannesson, Kerstin

    2016-01-01

    The marine snail Littorina saxatilis is a common inhabitant of intertidal shores of the north Atlantic. It is amazingly polymorphic and forms reproductively isolated ecotypes in microhabitats where crabs are either present and wave action is less furious, or where waves are strong and crabs are absent. Decades of research have unveiled much of the ecological and demographic context of the formation of crab- and wave-ecotype snails showing important phenotypic differences being inherited, differential selection being strong over adjacent microhabitats, local dispersal being restricted, and long-distance transports of individuals being rare. In addition, strong assortative mating of ecotypes has been shown to include a component of male mate preference based on female size. Several studies support ecotypes being diverged locally and under gene flow in a parallel and highly replicated fashion. The high level of replication at various levels of independence (from local to pan-European scale) provides excellent opportunities to investigate the detailed mechanisms of microevolution, including the formation of barriers to gene flow. Current investigations benefit from a draft reference genome and an integration of genomic approaches, modelling and experiments to unveil molecular and ecological components of speciation and their interactions. PMID:27087845

  10. Chiral Speciation in Terrestrial Pulmonate Snails

    PubMed Central

    Gittenberger, Edmund; Hamann, Thomas D.; Asami, Takahiro

    2012-01-01

    On the basis of data in the literature, the percentages of dextral versus sinistral species of snails have been calculated for western Europe, Turkey, North America (north of Mexico), and Japan. When the family of Clausiliidae is represented, about a quarter of all snail species may be sinistral, whereas less than one per cent of the species may be sinistral where that family does not occur. The number of single-gene speciation events on the basis of chirality, resulting in the origin of mirror image species, is not closely linked to the percentage of sinistral versus dextral species in a particular region. Turkey is nevertheless exceptional by both a high percentage of sinistral species and a high number of speciation events resulting in mirror image species. Shell morphology and genetic background may influence the ease of chirality-linked speciation, whereas sinistrality may additionally be selected against by internal selection. For the Clausiliidae, the fossil record and the recent fauna suggest that successful reversals in coiling direction occurred with a frequency of once every three to four million years. PMID:22532825

  11. The emerging role of Snail1 in the tumor stroma.

    PubMed

    Herrera, A; Herrera, M; Peña, C

    2016-09-01

    The transcription factor Snail1 leads to the epithelial-mesenchymal transition by repressing the adherent and tight junctions in epithelial cells. This process is related to an increase of cell migratory and mesenchymal properties during both embryonic development and tumor progression. Although Snail1 expression is very limited in adult animals, emerging evidence has placed Snail at the forefront of medical science. As a transcriptional repressor, Snail1 confers cancer stem cell-like traits on tumor cells and promotes drug resistance, tumor recurrence and metastasis. In this review, we summarize recent reports that suggest the pro-tumorigenic roles of Snail1 expression in tumor stroma. The crosstalk between tumor and stromal cells mediated by Snail1 regulates paracrine communication, pro-tumorigenic abilities of cancer cells, extracellular matrix characteristics and mesenchymal differentiation in cancer stem cells and cancer-associated fibroblasts. Therefore, understanding the regulation and functional roles of Snail1 in the tumor microenvironment will provide us with new therapies for treating metastatic disease. PMID:26687368

  12. Snails, stable iostopes, and southwestern desert paleoclimates

    SciTech Connect

    Sharpe, S.E.; Whelan, J.F.; Forester, R.M.; Burdett, J.

    1995-09-01

    Modern and fossil molluscs (snails) occur in many localities in and semi-arid regions throughout the desert southwest. Live terrestrial snails are found under rocks and in forest litter and aquatic taxa inhabit springs, seeps, and/or wetlands. Molluscs uptake local water during their growing season (spring and summer) and incorporate its delta 180 signature into their shells. Preliminary 180 analysis of modem shells from the southern Great Basin indicates that the shells probably reflect meteoric water 180 values during the growing season. This provides a way to estimate the delta 180 value of precipitation and, thereby, the source of the moisture-bearing air masses. Significant 180 variability in shells analyzed include geographic location, elevation, taxonomy, and habitat (terrestrial, spring, or wetland). We found a rough inverse correlation with elevation in modem shells from the Spring Range in southern Nevada. The delta 180 values of modem and fossil shells are also very different; modem values in this location are much higher than those from nearby late Pleistocene-age molluscs suggesting that the Pleistocene summers were variously colder and wetter than today or less evaporative (more humid). Assuming shell material directly reflects the 180 of the growing-season environment, comparison of modem and fossil shell delta 180 values can potentially identify changes in air-mass moisture sources and can help to define seasonal precipitation change through time. Comprehension and quantification of community and isotopic variability in modem gastropods is required to create probabilistic valid transfer functions with fossil materials. Valid inferences about past environmental conditions can then be established with known confidence limits.

  13. Energy saving through trail following in a marine snail.

    PubMed

    Davies, Mark S; Blackwell, Janine

    2007-05-01

    Most snails and slugs locomote over a layer of mucus and although the resultant mucus trail is expensive to produce, we show that this expense can be reduced by trail following. When tracking over fresh conspecific trails, the marine intertidal snail Littorina littorea (L.) produced only approximately 27% of the mucus laid by marker snails. When tracking over weathered trails, snails adjusted their mucus production to recreate a convex trail profile of similar shape and thickness to the trail as originally laid. Maximum energy saving occurs when following recently laid trails which are little weathered. Many and diverse ecological roles for trail following have been proposed. Energy saving is the only role that applies across the Gastropoda and so may help to explain why trail following is such a well-established behaviour. PMID:17327203

  14. Apple Snail: a Bio Cleaner of the Water Free Surface.

    NASA Astrophysics Data System (ADS)

    Bassiri, Golnaz

    2005-11-01

    Oil spills from tankers represent a threat for shorelines and marine life. Despite continuing research, there has been little change in the fundamental technology for dealing with oil spills. An experimental investigation of the feeding strategy of Apple snails from the water free surface, called surface film feeding, is being studied motivated by the need to develop new techniques to recover oil spills. To feed on floating food (usually a thin layer of microorganisms), the apple snail forms a funnel with its foot and pulls the free surface toward the funnel. High speed imaging and particle image velocimetry were used in the present investigation to measure the free surface motion and to investigate the mechanism used by the apple snails to pull the free surface. The results suggest that the snail pulls the free surface via the wavy motion of the muscles in its funnel.

  15. METHODS FOR EXCLUDING SLUGS AND SNAILS ON EXPORTED HORTICULTURAL COMMODITIES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Increasingly, slugs and snails (mollusks) are recognized as important quarantine pests threatening agriculture, export markets and the environment. This increased awareness results from the rapid spread of damaging species concurrent with higher levels of international trade of horticultural commodi...

  16. Snail levels control the migration mechanism of mesenchymal tumor cells

    PubMed Central

    BELGIOVINE, CRISTINA; CHIESA, GIULIO; CHIODI, ILARIA; FRAPOLLI, ROBERTA; BONEZZI, KATIUSCIA; TARABOLETTI, GIULIA; D'INCALCI, MAURIZIO; MONDELLO, CHIARA

    2016-01-01

    Cancer cells use two major types of movement: Mesenchymal, which is typical of cells of mesenchymal origin and depends on matrix metalloproteinase (MMP) activity, and amoeboid, which is characteristic of cells with a rounded shape and relies on the activity of Rho-associated kinase (ROCK). The present authors previously demonstrated that, during neoplastic transformation, telomerase-immortalized human fibroblasts (cen3tel cells) acquired a ROCK-dependent/MMP independent mechanism of invasion, mediated by the downregulation of the ROCK cellular inhibitor Round (Rnd)3/RhoE. In the present study, cen3tel transformation was also demonstrated to be paralleled by downregulation of Snail, a major determinant of the mesenchymal movement. To test whether Snail levels could determine the type of movement adopted by mesenchymal tumor cells, Snail was ectopically expressed in tumorigenic cells. It was observed that ectopic Snail did not increase the levels of typical mesenchymal markers, but induced cells to adopt an MMP-dependent mechanism of invasion. In cells expressing ectopic Snail, invasion became sensitive to the MMP inhibitor Ro 28–2653 and insensitive to the ROCK inhibitor Y27632, suggesting that, once induced by Snail, the mesenchymal movement prevails over the amoeboid one. Snail-expressing cells had a more aggressive behavior in vivo, and exhibited increased tumor growth rate and metastatic ability. These results confirm the high plasticity of cancer cells, which can adopt different types of movement in response to changes in the expression of specific genes. Furthermore, the present findings indicate that Rnd3 and Snail are possible regulators of the type of invasion mechanism adopted by mesenchymal tumor cells. PMID:27347214

  17. Modulation of defensive reflex conditioning in snails by serotonin.

    PubMed

    Andrianov, Vyatcheslav V; Bogodvid, Tatiana K; Deryabina, Irina B; Golovchenko, Aleksandra N; Muranova, Lyudmila N; Tagirova, Roza R; Vinarskaya, Aliya K; Gainutdinov, Khalil L

    2015-01-01

    Highlights Daily injection of serotonin before a training session accelerated defensive reflex conditioning in snails.Daily injection of 5-hydroxytryptophan before a training session in snails with a deficiency of serotonin induced by the "neurotoxic" analog of serotonin 5,7-dihydroxytryptamine, restored the ability of snails to learn.After injection of the "neurotoxic" analogs of serotonin 5,6- and 5,7-dihydroxytryptamine as well as serotonin, depolarization of the membrane and decrease of the threshold potential of premotor interneurons was observed. We studied the role of serotonin in the mechanisms of learning in terrestrial snails. To produce a serotonin deficit, the "neurotoxic" analogs of serotonin, 5,6- or 5,7-dihydroxytryptamine (5,6/5,7-DHT) were used. Injection of 5,6/5,7-DHT was found to disrupt defensive reflex conditioning. Within 2 weeks of neurotoxin application, the ability to learn had recovered. Daily injection of serotonin before a training session accelerated defensive reflex conditioning and daily injections of 5-HTP in snails with a deficiency of serotonin induced by 5,7-DHT restored the snail's ability to learn. We discovered that injections of the neurotoxins 5,6/5,7-DHT as well as serotonin, caused a decrease in the resting and threshold potentials of the premotor interneurons LPa3 and RPa3. PMID:26557063

  18. Modulation of defensive reflex conditioning in snails by serotonin

    PubMed Central

    Andrianov, Vyatcheslav V.; Bogodvid, Tatiana K.; Deryabina, Irina B.; Golovchenko, Aleksandra N.; Muranova, Lyudmila N.; Tagirova, Roza R.; Vinarskaya, Aliya K.; Gainutdinov, Khalil L.

    2015-01-01

    Highlights Daily injection of serotonin before a training session accelerated defensive reflex conditioning in snails.Daily injection of 5-hydroxytryptophan before a training session in snails with a deficiency of serotonin induced by the “neurotoxic” analog of serotonin 5,7-dihydroxytryptamine, restored the ability of snails to learn.After injection of the “neurotoxic” analogs of serotonin 5,6- and 5,7-dihydroxytryptamine as well as serotonin, depolarization of the membrane and decrease of the threshold potential of premotor interneurons was observed. We studied the role of serotonin in the mechanisms of learning in terrestrial snails. To produce a serotonin deficit, the “neurotoxic” analogs of serotonin, 5,6- or 5,7-dihydroxytryptamine (5,6/5,7-DHT) were used. Injection of 5,6/5,7-DHT was found to disrupt defensive reflex conditioning. Within 2 weeks of neurotoxin application, the ability to learn had recovered. Daily injection of serotonin before a training session accelerated defensive reflex conditioning and daily injections of 5-HTP in snails with a deficiency of serotonin induced by 5,7-DHT restored the snail's ability to learn. We discovered that injections of the neurotoxins 5,6/5,7-DHT as well as serotonin, caused a decrease in the resting and threshold potentials of the premotor interneurons LPa3 and RPa3. PMID:26557063

  19. A conserved role for Snail as a potentiator of active transcription

    PubMed Central

    Rembold, Martina; Ciglar, Lucia; Yáñez-Cuna, J. Omar; Zinzen, Robert P.; Girardot, Charles; Jain, Ankit; Welte, Michael A.; Stark, Alexander; Leptin, Maria; Furlong, Eileen E.M.

    2014-01-01

    The transcription factors of the Snail family are key regulators of epithelial–mesenchymal transitions, cell morphogenesis, and tumor metastasis. Since its discovery in Drosophila ∼25 years ago, Snail has been extensively studied for its role as a transcriptional repressor. Here we demonstrate that Drosophila Snail can positively modulate transcriptional activation. By combining information on in vivo occupancy with expression profiling of hand-selected, staged snail mutant embryos, we identified 106 genes that are potentially directly regulated by Snail during mesoderm development. In addition to the expected Snail-repressed genes, almost 50% of Snail targets showed an unanticipated activation. The majority of “Snail-activated” genes have enhancer elements cobound by Twist and are expressed in the mesoderm at the stages of Snail occupancy. Snail can potentiate Twist-mediated enhancer activation in vitro and is essential for enhancer activity in vivo. Using a machine learning approach, we show that differentially enriched motifs are sufficient to predict Snail's regulatory response. In silico mutagenesis revealed a likely causative motif, which we demonstrate is essential for enhancer activation. Taken together, these data indicate that Snail can potentiate enhancer activation by collaborating with different activators, providing a new mechanism by which Snail regulates development. PMID:24402316

  20. Functional Changes in the Snail Statocyst System Elicited by Microgravity

    PubMed Central

    Balaban, Pavel M.; Malyshev, Aleksey Y.; Ierusalimsky, Victor N.; Aseyev, Nikolay; Korshunova, Tania A.; Bravarenko, Natasha I.; Lemak, M. S.; Roshchin, Matvey; Zakharov, Igor S.; Popova, Yekaterina; Boyle, Richard

    2011-01-01

    Background The mollusk statocyst is a mechanosensing organ detecting the animal's orientation with respect to gravity. This system has clear similarities to its vertebrate counterparts: a weight-lending mass, an epithelial layer containing small supporting cells and the large sensory hair cells, and an output eliciting compensatory body reflexes to perturbations. Methodology/Principal Findings In terrestrial gastropod snail we studied the impact of 16- (Foton M-2) and 12-day (Foton M-3) exposure to microgravity in unmanned orbital missions on: (i) the whole animal behavior (Helix lucorum L.), (ii) the statoreceptor responses to tilt in an isolated neural preparation (Helix lucorum L.), and (iii) the differential expression of the Helix pedal peptide (HPep) and the tetrapeptide FMRFamide genes in neural structures (Helix aspersa L.). Experiments were performed 13–42 hours after return to Earth. Latency of body re-orientation to sudden 90° head-down pitch was significantly reduced in postflight snails indicating an enhanced negative gravitaxis response. Statoreceptor responses to tilt in postflight snails were independent of motion direction, in contrast to a directional preference observed in control animals. Positive relation between tilt velocity and firing rate was observed in both control and postflight snails, but the response magnitude was significantly larger in postflight snails indicating an enhanced sensitivity to acceleration. A significant increase in mRNA expression of the gene encoding HPep, a peptide linked to ciliary beating, in statoreceptors was observed in postflight snails; no differential expression of the gene encoding FMRFamide, a possible neurotransmission modulator, was observed. Conclusions/Significance Upregulation of statocyst function in snails following microgravity exposure parallels that observed in vertebrates suggesting fundamental principles underlie gravi-sensing and the organism's ability to adapt to gravity changes. This

  1. Snail1 controls TGF-β responsiveness and differentiation of Mesenchymal Stem Cells

    PubMed Central

    Batlle, Raquel; Alba-Castellón, Lorena; Loubat-Casanovas, Jordina; Armenteros, Elena; Francí, Clara; Stanisavljevic, Jelena; Banderas, Rodrigo; Martin-Caballero, Juan; Bonilla, Félix; Baulida, Josep; Casal, J. Ignacio; Gridley, Thomas; de Herreros, Antonio García

    2012-01-01

    The Snail1 transcriptional repressor plays a key role in triggering epithelial to mesenchymal transition. Although Snail1 is widely expressed in early development, in adult animals it is limited to a subset of mesenchymal cells where it has a largely unknown function. Using a mouse model with inducible depletion of Snail1, here we demonstrate that Snail1 is required to maintain mesenchymal stem cells (MSCs). This effect is associated to the responsiveness to TGF-β1 which shows a strong Snail1 dependence. Snail1-depletion in conditional knock-out adult animals causes a significant decrease in the number of bone marrow-derived MSCs. In culture, Snail1-deficient MSCs prematurely differentiate to osteoblasts or adipocytes and, in contrast to controls, are resistant to the TGF-β1-induced differentiation block. These results demonstrate a new role for Snail1 in TGF-β response and MSC maintenance. PMID:22869142

  2. Lactic acid microflora of the gut of snail Cornu aspersum

    PubMed Central

    Koleva, Zdravka; Dedov, Ivaylo; Kizheva, Joana; Lipovanska, Roxana; Moncheva, Penka; Hristova, Petya

    2014-01-01

    The intestinal lactic acid microflora of the edible snail Cornu aspersum was studied by culture-based methods and was phenotypically and molecularly characterized. The antibacterial activity of lactic acid bacteria (LAB) isolates was investigated. Snails in different stages of development were collected from farms located in several regions of Bulgaria. One hundred twenty-two isolates, belonging to the group of LAB, were characterized morphologically and were divided into four groups. Representative isolates from each morphological type were subjected to phenotypic characterization and molecular identification. The snail gut lactic acid microflora was composed by Enterococcus (17 isolates), Lactococcus (12 isolates), Leuconostoc (7 isolates), Lactobacillus (18 isolates) and Weissella (1 isolate). The species affiliation of Lactococcus lactis (12), Leuconostoc mesenteroides (4) and Lactobacillus plantarum (2) was confirmed by species-specific primers. The Lactobacillus isolates were identified by sequence analysis of 16S rDNA as Lactobacillus brevis (12), L. plantarum (2), Lactobacillus graminis (1) and Lactobacillus curvatus (3). The species L. brevis, L. graminis and L. curvatus were found in snails in a phase of hibernation, whereas L. plantarum was identified both in active and hibernation phases. Antibacterial activity (bacteriocine-like) was shown only by one strain of L. mesentereoides P4/8 against Propionibacterium acnes. The present study showed that the LAB are a component of the microbial communities in the snail digestive system. This is the first report on Lactobacillus strains detected in the gut of C. aspersum. PMID:26019550

  3. Loss of Snail2 favors skin tumor progression by promoting the recruitment of myeloid progenitors

    PubMed Central

    Villarejo, Ana; Molina-Ortiz, Patricia; Montenegro, Yenny; Moreno-Bueno, Gema; Morales, Saleta; Santos, Vanesa; Gridley, Tom; Pérez-Moreno, Mirna A.; Peinado, Héctor; Portillo, Francisco; Calés, Carmela; Cano, Amparo

    2015-01-01

    Snail2 is a zinc finger transcription factor involved in driving epithelial to mesenchymal transitions. Snail2 null mice are viable, but display defects in melanogenesis, gametogenesis and hematopoiesis, and are markedly radiosensitive. Here, using mouse genetics, we have studied the contributions of Snail2 to epidermal homeostasis and skin carcinogenesis. Snail2 −/− mice presented a defective epidermal terminal differentiation and, unexpectedly, an increase in number, size and malignancy of tumor lesions when subjected to the two-stage mouse skin chemical carcinogenesis protocol, compared with controls. Additionally, tumor lesions from Snail2 −/− mice presented a high inflammatory component with an elevated percentage of myeloid precursors in tumor lesions that was further increased in the presence of the anti-inflammatory agent dexamethasone. In vitro studies in Snail2 null keratinocytes showed that loss of Snail2 leads to a decrease in proliferation indicating a non-cell autonomous role for Snail2 in the skin carcinogenic response observed in vivo. Bone marrow (BM) cross-reconstitution assays between Snail2 wild-type and null mice showed that Snail2 absence in the hematopoietic system fully reproduces the tumor behavior of the Snail2 null mice and triggers the accumulation of myeloid precursors in the BM, blood and tumor lesions. These results indicate a new role for Snail2 in preventing myeloid precursors recruitment impairing skin chemical carcinogenesis progression. PMID:25784375

  4. The faucet snail (Bithynia tentaculata) invades the St. Louis River Estuary

    EPA Science Inventory

    The European-origin faucet snail (Bithynia tentaculata) now numbers among the aquatic invasive species present in the St. Louis River Estuary. This snail has been in the lower Great Lakes since the early 20th century but is new to the Lake Superior basin. We found faucet snails...

  5. Helix and Drugs: Snails for Western Health Care From Antiquity to the Present

    PubMed Central

    2005-01-01

    The land helix, or snail, has been used in medicine since antiquity and prepared according to several formulations. This historical report traces the understanding of their properties from the time of Hippocrates, who proposed the use of snail mucus against protoccle and Pliny who thought that the snail increased the speed of delivery and was “a sovereign remedy to treat pain related to burns, abscesses and other wounds”, Galien recommended snails against hydrops foetails. In the 18th century, various snail “preparations” were also recommended for external use with dermatological disorders and internally for symptoms associated with tuberculosis and nephritis. Surprisingly, the 19th century saw a renewed interest in the pharmaceutical and medical use of snails with numerous indications for snail preparations. This interest in snails did not stop at the end of the 19th century. The 1945 edition of Dorvault devotes an entire paragraph to snails, indicating that the therapeutic usage of snails was still alive at that time. Recently the FDA has also shown an interest in snails. Ziconotide (SNXIII), a synthetic peptide coming from snail venom, has been under FDA review since 1999. Pre-clinical and clinical studies of this new drug are promising. PMID:15841274

  6. Loss of Snail2 favors skin tumor progression by promoting the recruitment of myeloid progenitors.

    PubMed

    Villarejo, Ana; Molina-Ortiz, Patricia; Montenegro, Yenny; Moreno-Bueno, Gema; Morales, Saleta; Santos, Vanesa; Gridley, Tom; Pérez-Moreno, Mirna A; Peinado, Héctor; Portillo, Francisco; Calés, Carmela; Cano, Amparo

    2015-05-01

    Snail2 is a zinc finger transcription factor involved in driving epithelial to mesenchymal transitions. Snail2 null mice are viable, but display defects in melanogenesis, gametogenesis and hematopoiesis, and are markedly radiosensitive. Here, using mouse genetics, we have studied the contributions of Snail2 to epidermal homeostasis and skin carcinogenesis. Snail2 (-/-) mice presented a defective epidermal terminal differentiation and, unexpectedly, an increase in number, size and malignancy of tumor lesions when subjected to the two-stage mouse skin chemical carcinogenesis protocol, compared with controls. Additionally, tumor lesions from Snail2 (-/-) mice presented a high inflammatory component with an elevated percentage of myeloid precursors in tumor lesions that was further increased in the presence of the anti-inflammatory agent dexamethasone. In vitro studies in Snail2 null keratinocytes showed that loss of Snail2 leads to a decrease in proliferation indicating a non-cell autonomous role for Snail2 in the skin carcinogenic response observed in vivo. Bone marrow (BM) cross-reconstitution assays between Snail2 wild-type and null mice showed that Snail2 absence in the hematopoietic system fully reproduces the tumor behavior of the Snail2 null mice and triggers the accumulation of myeloid precursors in the BM, blood and tumor lesions. These results indicate a new role for Snail2 in preventing myeloid precursors recruitment impairing skin chemical carcinogenesis progression. PMID:25784375

  7. Larvicidal Activity against Aedes aegypti and Molluscicidal Activity against Biomphalaria glabrata of Brazilian Marine Algae.

    PubMed

    Guedes, Elíca Amara Cecília; de Carvalho, Cenira M; Ribeiro Junior, Karlos Antonio Lisboa; Lisboa Ribeiro, Thyago Fernando; de Barros, Lurdiana Dayse; de Lima, Maria Raquel Ferreira; Prado Moura, Flávia de Barros; Goulart Sant'ana, Antônio Euzebio

    2014-01-01

    This study investigated the biological activities of five benthic marine algae collected from Northeastern Region of Brazil. The tested activities included larvicidal activity against Aedes aegypti, molluscicidal activity against Biomphalaria glabrata, and toxicity against Artemia salina. Extracts of Ulva lactuca (Chlorophyta), Padina gymnospora, Sargassum vulgare (Phaeophyta), Hypnea musciformis, and Digenea simplex (Rhodophyta) were prepared using different solvents of increasing polarity, including dichloromethane, methanol, ethanol, and water. Of the extracts screened, the dichloromethane extracts of H. musciformis and P. gymnospora exhibited the highest activities and were subjected to bioassay-guided fractionation in hexane and chloroform. The chloroform fractions of the P. gymnospora and H. musciformis extracts showed molluscicidal activity at values below 40  μ g·mL(-1) (11.1460  μ g·mL(-1) and 25.8689  μ g·mL(-1), resp.), and the chloroform and hexane fractions of P. gymnospora showed larvicidal activity at values below 40  μ g·mL(-1) (29.018  μ g·mL(-1) and 17.230  μ g·mL(-1), resp.). The crude extracts were not toxic to A. salina, whereas the chloroform and hexane fractions of P. gymnospora (788.277  μ g·mL(-1) and 706.990  μ g·mL(-1)) showed moderate toxicity, indicating that the toxic compounds present in these algae are nonpolar. PMID:24688787

  8. Larvicidal Activity against Aedes aegypti and Molluscicidal Activity against Biomphalaria glabrata of Brazilian Marine Algae

    PubMed Central

    Guedes, Elíca Amara Cecília; de Carvalho, Cenira M.; Ribeiro Junior, Karlos Antonio Lisboa; Lisboa Ribeiro, Thyago Fernando; de Barros, Lurdiana Dayse; de Lima, Maria Raquel Ferreira; Prado Moura, Flávia de Barros; Goulart Sant'Ana, Antônio Euzebio

    2014-01-01

    This study investigated the biological activities of five benthic marine algae collected from Northeastern Region of Brazil. The tested activities included larvicidal activity against Aedes aegypti, molluscicidal activity against Biomphalaria glabrata, and toxicity against Artemia salina. Extracts of Ulva lactuca (Chlorophyta), Padina gymnospora, Sargassum vulgare (Phaeophyta), Hypnea musciformis, and Digenea simplex (Rhodophyta) were prepared using different solvents of increasing polarity, including dichloromethane, methanol, ethanol, and water. Of the extracts screened, the dichloromethane extracts of H. musciformis and P. gymnospora exhibited the highest activities and were subjected to bioassay-guided fractionation in hexane and chloroform. The chloroform fractions of the P. gymnospora and H. musciformis extracts showed molluscicidal activity at values below 40 μg·mL−1 (11.1460 μg·mL−1 and 25.8689 μg·mL−1, resp.), and the chloroform and hexane fractions of P. gymnospora showed larvicidal activity at values below 40 μg·mL−1 (29.018 μg·mL−1 and 17.230 μg·mL−1, resp.). The crude extracts were not toxic to A. salina, whereas the chloroform and hexane fractions of P. gymnospora (788.277 μg·mL−1 and 706.990 μg·mL−1) showed moderate toxicity, indicating that the toxic compounds present in these algae are nonpolar. PMID:24688787

  9. MTA3 regulates CGB5 and Snail genes in trophoblast

    SciTech Connect

    Chen, Ying; Miyazaki, Jun; Nishizawa, Haruki; Kurahashi, Hiroki; Leach, Richard; Wang, Kai

    2013-04-19

    Highlights: •Impaired MTA3, raised CGB5 and Snail expression are associated with preeclampsia. •Knock-down of MTA3 causes up-regulation of CGB5 and Snail genes in BeWo cells. •MTA3 occupies CGB5 and Snail gene promoters in BeWo cells. -- Abstract: Secreted by the placental trophoblast, human chorionic gonadotropin (hCG) is an important hormone during pregnancy and is required for the maintenance of pregnancy. Previous studies have shown that dys-regulation of hCG expression is associated with preeclampsia. However, the exact relationship between altered hCG levels and development of preeclampsia is unknown. Metastasis associated protein 3 (MTA3), a chromatin remodeling protein, is abundantly expressed in the placental trophoblasts, but its function is unknown. In breast cancer, MTA3 has been shown to repress the expression of Snail and cell migration. However, whether MTA3 acts similarly in the trophoblast has not been investigated. In the present study, we examined the role of MTA3 in regulating the hCG β-subunit gene (gene name: CGB5) and Snail expression in the trophoblast cell line, BeWo, as well as its relevance to the high hCG expression levels seen in preeclampsia. First, we investigated MTA3 expression in preeclamptic placenta as compared to normal control placenta via gene expression microarray and qRT-PCR and found that MTA3 was significantly down-regulated, whereas both CGB5 and Snail were up-regulated in preeclamptic placenta. Secondly, we knocked down MTA3 gene in trophoblast cell line BeWo and found Snail and hCG were both up-regulated, suggesting that MTA3 represses Snail and hCG gene expression in trophoblasts. Next, we cloned the CGB5 and Snail promoters into the pGL3-basic vector individually and found that silencing of MTA3 by siRNA resulted in an increase of both CGB5 and Snail promoter activities. To confirm that this MTA3 inhibition is a direct effect, we performed a chromatin immune-precipitation (ChIP) assay and found that MTA3

  10. Movements of florida apple snails in relation to water levels and drying events

    USGS Publications Warehouse

    Darby, P.C.; Bennetts, R.E.; Miller, S.J.; Percival, H.F.

    2002-01-01

    Florida apple snails (Pomacea Paludosa) apparently have only a limited tolerance to wetland drying events (although little direct evidence exists), but their populations routinely face dry downs under natural and managed water regimes. In this paper, we address speculation that apple snails respond to decreasing water levels and potential drying events by moving toward refugia that remain inundated. We monitored the movements of apple snails in central Florida, USA during drying events at the Blue Cypress Marsh (BC) and at Lake Kissimmee (LK). We monitored the weekly movements of 47 BC snails and 31 LK snails using radio-telemetry. Snails tended to stop moving when water depths were 10 cm. Snails moved along the greatest positive depth gradient (i.e., towards deeper water) when they encountered water depths between 10 and 20 cm. Snails tended to move toward shallower water in water depths ???50 cm, suggesting that snails were avoiding deep water areas such as canals and sloughs. Of the 11 BC snails originally located in the area that eventually went dry, three (27%) were found in deep water refugia by the end of the study. Only one of the 31 LK snails escaped the drying event by moving to deeper water. Our results indicate that some snails may opportunistically escape drying events through movement. The tendency to move toward deeper water was statistically significant and indicates that this behavioral trait might enhance survival when the spatial extent of a dry down is limited. However, as water level falls below 10 cm, snails stop moving and become stranded. As the spatial extent of a dry down increases, we predict that the number of snails stranded would increase proportionally. Stranded Pomacea paludosa must contend with dry marsh conditions, possibly by aestivation. Little more than anecdotal information has been published on P. paludosa aestivation, but it is a common adaptation among other apple snails (Caenogastropoda: Ampullaridae). ?? 2002, The Society

  11. Global assessment of schistosomiasis control over the past century shows targeting the snail intermediate host works best

    USGS Publications Warehouse

    Sokolow, Susanne H.; Wood, Chelsea L.; Jones, Isabel J.; Swartz, Scott J.; Lopez, Melina; Hsieh, Michael H.; Lafferty, Kevin D.; Kuris, Armand M.; Rickards, Chloe; De Leo, Giulio A.

    2016-01-01

    Snail control has been the most effective way to reduce schistosomiasis prevalence. Despite evidence that snail control leads to long-term disease reduction and elimination, most current schistosomiasis control efforts emphasize MDA using praziquantel over snail control. Combining drug-based control programs with affordable snail control seems the best strategy for eliminating schistosomiasis.

  12. Intraguild predation by shore crabs affects mortality, behavior, growth, and densities of California horn snails

    USGS Publications Warehouse

    Lorda, J.; Hechinger, R.F.; Cooper, S. D.; Kuris, A. M.; Lafferty, Kevin D.

    2016-01-01

    The California horn snail, Cerithideopsis californica, and the shore crabs, Pachygrapsus crassipesand Hemigrapsus oregonensis, compete for epibenthic microalgae, but the crabs also eat snails. Such intraguild predation is common in nature, despite models predicting instability. Using a series of manipulations and field surveys, we examined intraguild predation from several angles, including the effects of stage-dependent predation along with direct consumptive and nonconsumptive predator effects on intraguild prey. In the laboratory, we found that crabs fed on macroalgae, snail eggs, and snails, and the size of consumed snails increased with predator crab size. In field experiments, snails grew less in the presence of crabs partially because snails behaved differently and were buried in the sediment (nonconsumptive effects). Consistent with these results, crab and snail abundances were negatively correlated in three field surveys conducted at three different spatial scales in estuaries of California, Baja California, and Baja California Sur: (1) among 61 sites spanning multiple habitat types in three estuaries, (2) among the habitats of 13 estuaries, and (3) among 34 tidal creek sites in one estuary. These results indicate that shore crabs are intraguild predators on California horn snails that affect snail populations via predation and by influencing snail behavior and performance.

  13. Nuclear ubiquitination by FBXL5 modulates Snail1 DNA binding and stability.

    PubMed

    Viñas-Castells, Rosa; Frías, Álex; Robles-Lanuza, Estefanía; Zhang, Kun; Longmore, Gregory D; García de Herreros, Antonio; Díaz, Víctor M

    2014-01-01

    The zinc finger transcription factor Snail1 regulates epithelial to mesenchymal transition, repressing epithelial markers and activating mesenchymal genes. Snail1 is an extremely labile protein degraded by the cytoplasmic ubiquitin-ligases β-TrCP1/FBXW1 and Ppa/FBXL14. Using a short hairpin RNA screening, we have identified FBXL5 as a novel Snail1 ubiquitin ligase. FBXL5 is located in the nucleus where it interacts with Snail1 promoting its polyubiquitination and affecting Snail1 protein stability and function by impairing DNA binding. Snail1 downregulation by FBXL5 is prevented by Lats2, a protein kinase that phosphorylates Snail1 precluding its nuclear export but not its polyubiquitination. Actually, although polyubiquitination by FBXL5 takes place in the nucleus, Snail1 is degraded in the cytosol. Finally, FBXL5 is highly sensitive to stress conditions and is downregulated by iron depletion and γ-irradiation, explaining Snail1 stabilization in these conditions. These results characterize a novel nuclear ubiquitin ligase controlling Snail1 protein stability and provide the molecular basis for understanding how radiotherapy upregulates the epithelial to mesenchymal transition-inducer Snail1. PMID:24157836

  14. Nuclear ubiquitination by FBXL5 modulates Snail1 DNA binding and stability

    PubMed Central

    Viñas-Castells, Rosa; Frías, Álex; Robles-Lanuza, Estefanía; Zhang, Kun; Longmore, Gregory D.; García de Herreros, Antonio; Díaz, Víctor M.

    2014-01-01

    The zinc finger transcription factor Snail1 regulates epithelial to mesenchymal transition, repressing epithelial markers and activating mesenchymal genes. Snail1 is an extremely labile protein degraded by the cytoplasmic ubiquitin-ligases β-TrCP1/FBXW1 and Ppa/FBXL14. Using a short hairpin RNA screening, we have identified FBXL5 as a novel Snail1 ubiquitin ligase. FBXL5 is located in the nucleus where it interacts with Snail1 promoting its polyubiquitination and affecting Snail1 protein stability and function by impairing DNA binding. Snail1 downregulation by FBXL5 is prevented by Lats2, a protein kinase that phosphorylates Snail1 precluding its nuclear export but not its polyubiquitination. Actually, although polyubiquitination by FBXL5 takes place in the nucleus, Snail1 is degraded in the cytosol. Finally, FBXL5 is highly sensitive to stress conditions and is downregulated by iron depletion and γ-irradiation, explaining Snail1 stabilization in these conditions. These results characterize a novel nuclear ubiquitin ligase controlling Snail1 protein stability and provide the molecular basis for understanding how radiotherapy upregulates the epithelial to mesenchymal transition-inducer Snail1. PMID:24157836

  15. Snail Coordinately Regulates Downstream Pathways to Control Multiple Aspects of Mammalian Neural Precursor Development

    PubMed Central

    Zander, Mark A.; Burns, Sarah E.; Yang, Guang; Kaplan, David R.

    2014-01-01

    The Snail transcription factor plays a key role in regulating diverse developmental processes but is not thought to play a role in mammalian neural precursors. Here, we have examined radial glial precursor cells of the embryonic murine cortex and demonstrate that Snail regulates their survival, self-renewal, and differentiation into intermediate progenitors and neurons via two distinct and separable target pathways. First, Snail promotes cell survival by antagonizing a p53-dependent death pathway because coincident p53 knockdown rescues survival deficits caused by Snail knockdown. Second, we show that the cell cycle phosphatase Cdc25b is regulated by Snail in radial precursors and that Cdc25b coexpression is sufficient to rescue the decreased radial precursor proliferation and differentiation observed upon Snail knockdown. Thus, Snail acts via p53 and Cdc25b to coordinately regulate multiple aspects of mammalian embryonic neural precursor biology. PMID:24719096

  16. Effects of serotonin on the heartbeat of pond snails in a hunger state

    PubMed Central

    Yamagishi, Miki; Watanabe, Takayuki; Hatakeyama, Dai; Ito, Etsuro

    2015-01-01

    Serotonin (5-hydroxytryptamine: 5-HT) is a multimodal transmitter that controls both feeding response and heartbeat in snails. However, the effects of 5-HT on the hunger state are still unknown. We therefore examined the relation among the hunger state, the heartbeat rate and the 5-HT action in food-starved snails. We found that the hunger state was significantly distinguished by the heartbeat rate in snails. The heartbeat rate was high in the food-satiated snails, whereas it was low in the food-starved snails. An increase in 5-HT concentration in the body boosted the heartbeat rate in the food-starved snails, but did not affect the rate in the food-satiated snails. These results suggest that 5-HT application may mimic the change from a starvation to a satiation state normally achieved by direct ingestion of food. PMID:27493507

  17. An ecological study of Bithynia snails, the first intermediate host of Opisthorchis viverrini in northeast Thailand.

    PubMed

    Wang, Yi-Chen; Ho, Richard Cheng Yong; Feng, Chen-Chieh; Namsanor, Jutamas; Sithithaworn, Paiboon

    2015-01-01

    Infection with the food-borne trematodiasis, liver fluke Opisthorchis viverrini, is a major public health concern in Southeast Asia. While epidemiology and parasitic incidence in humans are well studied, ecological information on the O. viverrini intermediate hosts remains limited. This study aimed to investigate the factors affecting the distribution and abundance of the first intermediate host, Bithynia siamensis goniomphalos snails. Water quality and snails were sampled in 31 sites in Muang District, Khon Kaen Province, Thailand from June 2012 to January 2013 to characterize the B.s. goniomphalos snail habitats. Species relative abundance and Shannon's diversity and evenness indices were employed to describe snail compositions and diversities across different habitat types. Statistical analyses were conducted to examine the extent to which the water quality variables and species interactions account for the relative abundance of B.s. goniomphalos snails. The results showed that the freshwater habitats of ponds, streams and rice paddies possessed significantly different abiotic water qualities, with water temperature and pH showing distinct statistical differences (P<0.05). Different habitats had different snail diversity and species evenness, with high B.s. goniomphalos snail abundance at rice paddy habitats. The differences in snail abundance might be due to the distinct sets of abiotic water qualities associated with each habitat types. The relative abundance of B.s. goniomphalos snails was found to be negatively correlated with that of Filopaludina martensi martensi snails (r=-0.46, P<0.05), underscoring the possible influence of species interaction on B.s. goniomphalos snail population. Field work observations revealed that rice planting seasons and irrigation could regulate snail population dynamics at rice paddy habitats. This study provides new ecological insights into the factors affecting Bithynia snail distribution and abundance. It bridges the

  18. A snail-eating snake recognizes prey handedness

    PubMed Central

    Danaisawadi, Patchara; Asami, Takahiro; Ota, Hidetoshi; Sutcharit, Chirasak; Panha, Somsak

    2016-01-01

    Specialized predator-prey interactions can be a driving force for their coevolution. Southeast Asian snail-eating snakes (Pareas) have more teeth on the right mandible and specialize in predation on the clockwise-coiled (dextral) majority in shelled snails by soft-body extraction. Snails have countered the snakes’ dextral-predation by recurrent coil reversal, which generates diverse counterclockwise-coiled (sinistral) prey where Pareas snakes live. However, whether the snake predator in turn evolves any response to prey reversal is unknown. We show that Pareas carinatus living with abundant sinistrals avoids approaching or striking at a sinistral that is more difficult and costly to handle than a dextral. Whenever it strikes, however, the snake succeeds in predation by handling dextral and sinistral prey in reverse. In contrast, P. iwasakii with little access to sinistrals on small peripheral islands attempts and frequently misses capturing a given sinistral. Prey-handedness recognition should be advantageous for right-handed snail-eating snakes where frequently encountering sinistrals. Under dextral-predation by Pareas snakes, adaptive fixation of a prey population for a reversal gene instantaneously generates a sinistral species because interchiral mating is rarely possible. The novel warning, instead of sheltering, effect of sinistrality benefitting both predators and prey could further accelerate single-gene ecological speciation by left-right reversal. PMID:27046345

  19. Fossil snail shells tell story about Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Wendel, JoAnna

    2014-09-01

    Ancient and modern snail shells have given scientists a unique look at the evolution of the Tibetan Plateau, confirming that parts of the plateau have actually lost elevation over time, despite its immense height. A new paper detailing the research was published on 29 August in the Geological Society of America Bulletin (doi:10.1130/B31000.1).

  20. A snail-eating snake recognizes prey handedness.

    PubMed

    Danaisawadi, Patchara; Asami, Takahiro; Ota, Hidetoshi; Sutcharit, Chirasak; Panha, Somsak

    2016-01-01

    Specialized predator-prey interactions can be a driving force for their coevolution. Southeast Asian snail-eating snakes (Pareas) have more teeth on the right mandible and specialize in predation on the clockwise-coiled (dextral) majority in shelled snails by soft-body extraction. Snails have countered the snakes' dextral-predation by recurrent coil reversal, which generates diverse counterclockwise-coiled (sinistral) prey where Pareas snakes live. However, whether the snake predator in turn evolves any response to prey reversal is unknown. We show that Pareas carinatus living with abundant sinistrals avoids approaching or striking at a sinistral that is more difficult and costly to handle than a dextral. Whenever it strikes, however, the snake succeeds in predation by handling dextral and sinistral prey in reverse. In contrast, P. iwasakii with little access to sinistrals on small peripheral islands attempts and frequently misses capturing a given sinistral. Prey-handedness recognition should be advantageous for right-handed snail-eating snakes where frequently encountering sinistrals. Under dextral-predation by Pareas snakes, adaptive fixation of a prey population for a reversal gene instantaneously generates a sinistral species because interchiral mating is rarely possible. The novel warning, instead of sheltering, effect of sinistrality benefitting both predators and prey could further accelerate single-gene ecological speciation by left-right reversal. PMID:27046345

  1. Molecular diversity of avian schistosomes in Danish freshwater snails.

    PubMed

    Christiansen, Anne Ø; Olsen, Annette; Buchmann, Kurt; Kania, Per W; Nejsum, Peter; Vennervald, Birgitte J

    2016-03-01

    Avian schistosomes are widespread parasites of snails and waterfowl and may cause cercarial dermatitis (swimmer's itch) in humans, a disease that is frequently reported in European countries. These parasites are known to occur in Denmark, but here, we applied a new approach using molecular tools to identify the parasites at species level. In order to do that, 499 pulmonate freshwater snails (Radix sp., Lymnaea stagnalis, Stagnicola sp. and Planorbarius corneus) were sampled from 12 lakes, ponds, and marshes in the greater Copenhagen area. Avian schistosome cercariae were identified by microscopy and subjected to molecular investigation by sequencing and phylogenetic analysis of the 5.8S and ITS2 ribosomal DNA for species identification. Additionally, snail hosts belonging to the genus Radix were identified by sequencing and phylogenetic analysis of partial ITS2 ribosomal DNA. Three out of 499 snails shed different species of Trichobilharzia cercariae: Trichobilharzia szidati was isolated from L. stagnalis, Trichobilharzia franki from Radix auricularia and Trichobilharzia regenti from Radix peregra. In the light of the public health risk represented by bird schistosomes, these findings are of concern and, particularly, the presence of the potentially neuro-pathogenic species, T. regenti, in Danish freshwaters calls for attention. PMID:26573519

  2. Environmental adaptations of the African snail Limicolaria festiva Martens

    NASA Astrophysics Data System (ADS)

    El Rayah, El Amin; Constantinou, C.; Cloudsley-Thompson, J. L.

    1984-12-01

    L. festiva is able to exist in the hot, arid, Sahel savanna regions of Africa in consequence of its nocturnal circadian rhythm of locomotory activity, and its low rate of water loss during periods of inactivity when an epiphragm has been secreted and while the snail is aestivating.

  3. Food Choice in the Common Snail (Helix Aspersa).

    ERIC Educational Resources Information Center

    Gill, John; Howell, Pauline

    1985-01-01

    The easily obtained common snail shows interesting dietary preferences which can be the source of several simple experiments. Specific student instructions are given for quantitative and comparative studies using cabbage, lettuce, carrot, rutabaga, and onion. Suggestions for laboratory setup and further work are included. (DH)

  4. The maintenance of hybrids by parasitism in a freshwater snail.

    PubMed

    Guttel, Yonathan; Ben-Ami, Frida

    2014-11-01

    Hybrids have often been labelled evolutionary dead-ends due to their lower fertility and viability. However, there is growing awareness that hybridisation between different species may play a constructive role in animal evolution as a means to create variability. Thus, hybridisation and introgression may contribute to adaptive evolution, for example with regards to natural antagonists (parasites, predators, competitors) and adaptation to local environmental conditions. Here we investigated whether parasite intensity contributes to the continuous recreation of hybrids in 74 natural populations of Melanopsis, a complex of freshwater snails with three species. We also examined, under laboratory conditions, whether hybrids and their parental taxa differ in their tolerance of low and high temperatures and salinity levels. Infections were consistently less prevalent in males than in females, and lower in snails from deeper habitats. Infection prevalence in hybrids was significantly lower than in the parental taxa. Low hybrid infection rates could not be explained by sediment type, snail density or geographic distribution of the sampling sites. Interestingly, infected hybrid snails did not show signs of parasite-induced gigantism, whereas all parental taxa did. We found that hybrids mostly coped with extreme temperatures and salinity levels as well as their parental taxa did. Taken together, our results suggest that Melanopsis hybrids perform better in the presence of parasites and environmental stress. This may explain the widespread and long-term occurrence of Melanopsis hybrids as evidenced by paleontological and biogeographic data. Hybridisation may be an adaptive host strategy, reducing infection rates and resisting gigantism. PMID:25173837

  5. Schistosomiasis Control Using Piplartine against Biomphalaria glabrata at Different Developmental Stages

    PubMed Central

    Rapado, Ludmila Nakamura; Pinheiro, Alessandro de Sá; Lopes, Priscila Orechio de Moraes Victor; Fokoue, Harold Hilarion; Scotti, Marcus Tullius; Marques, Joaquim Vogt; Ohlweiler, Fernanda Pires; Borrely, Sueli Ivone; Pereira, Carlos Alberto de Bragança; Kato, Massuo Jorge; Nakano, Eliana; Yamaguchi, Lydia Fumiko

    2013-01-01

    Background Schistosomiasis is one of the most significant diseases in tropical countries and affects almost 200 million people worldwide. The application of molluscicides to eliminate the parasite's intermediate host, Biomphalaria glabrata, from infected water supplies is one strategy currently being used to control the disease. Previous studies have shown a potent molluscicidal activity of crude extracts from Piper species, with extracts from Piper tuberculatum being among the most active. Methods and Findings The molluscicidal activity of P. tuberculatum was monitored on methanolic extracts from different organs (roots, leaves, fruit and stems). The compounds responsible for the molluscicidal activity were identified using 1H NMR and ESIMS data and multivariate analyses, including principal component analysis and partial least squares. These results indicated that the high molluscicidal activity displayed by root extracts (LC50 20.28 µg/ml) was due to the presence of piplartine, a well-known biologically-active amide. Piplartine was isolated from P. tuberculatum root extracts, and the molluscicidal activity of this compound on adults and embryos of B. glabrata was determined. The compound displayed potent activity against all developmental stages of B. glabrata. Next, the environmental toxicity of piplartine was evaluated using the microcrustacean Daphnia similis (LC50 7.32 µg/ml) and the fish Danio rerio (1.69 µg/ml). The toxicity to these organisms was less compared with the toxicity of niclosamide, a commercial molluscicide. Conclusions The development of a new, natural molluscicide is highly desirable, particularly because the commercially available molluscicide niclosamide is highly toxic to some organisms in the environment (LC50 0.25 µg/ml to D. similis and 0.12 µg/ml to D. rerio). Thus, piplartine is a potential candidate for a natural molluscicide that has been extracted from a tropical plant species and showed less toxic to environment. PMID

  6. Trematode communities in snails can indicate impact and recovery from hurricanes in a tropical coastal lagoon

    USGS Publications Warehouse

    Aguirre-Macedo, Maria Leopoldina; Vidal-Martinez, Victor M.; Lafferty, Kevin D.

    2011-01-01

    In September 2002, Hurricane Isidore devastated the Yucatán Peninsula, Mexico. To understand its effects on the parasites of aquatic organisms, we analyzed long-term monthly population data of the horn snail Cerithidea pliculosa and its trematode communities in Celestún, Yucatán, Mexico before and after the hurricane (February 2001 to December 2009). Five trematode species occurred in the snail population: Mesostephanus appendiculatoides, Euhaplorchis californiensis, two species of the genus Renicola and one Heterophyidae gen. sp. Because these parasites use snails as first intermediate hosts, fishes as second intermediate hosts and birds as final hosts, their presence in snails depends on food webs. No snails were present at the sampled sites for 6 months after the hurricane. After snails recolonised the site, no trematodes were found in snails until 14 months after the hurricane. It took several years for snail and trematode populations to recover. Our results suggest that the increase in the occurrence of hurricanes predicted due to climate change can impact upon parasites with complex life cycles. However, both the snail populations and their parasite communities eventually reached numbers of individuals and species similar to those before the hurricane. Thus, the trematode parasites of snails can be useful indicators of coastal lagoon ecosystem degradation and recovery.

  7. Pseudosuccinea columella: age resistance to Calicophoron daubneyi infection in two snail populations

    PubMed Central

    Dar, Yasser; Rondelaud, Daniel; Vignoles, Philippe; Dreyfuss, Gilles

    2015-01-01

    Individual infections of Egyptian and French Pseudosuccinea columella with five miracidia of Calicophoron daubneyi were carried out to determine whether this lymnaeid was capable of sustaining larval development of this parasite. On day 42 post-exposure (at 23 °C), infected snails were only noted in groups of individuals measuring 1 or 2 mm in height at miracidial exposure. Snail survival in the 2-mm groups was significantly higher than that noted in the 1-mm snails, whatever the geographic origin of snail population. In contrast, prevalence of C. daubneyi infection was significantly greater in the 1-mm groups (15–20% versus 3.4–4.0% in the 2-mm snails). Low values were noted for the mean shell growth of infected snails at their death (3.1–4.0 mm) and the mean number of cercariae (<9 in the 1-mm groups, <19 in the 2-mm snails). No significant differences between snail populations and snails groups were noted for these last two parameters. Most infected snails died after a single cercarial shedding wave. Both populations of P. columella showed an age resistance to C. daubneyi infection and only juveniles measuring 2 mm or less in shell height at exposure can ensure larval development of this digenean up to cercarial shedding. PMID:25664810

  8. Snail and serpinA1 promote tumor progression and predict prognosis in colorectal cancer

    PubMed Central

    Choi, Jin Hwa; Lee, Ja Rang; Kim, Hye Kyung; Jo, Hong-jae; Kim, Hyun Sung; Oh, Nahmgun; Song, Geun Am; Park, Do Youn

    2015-01-01

    The role of Snail and serpin peptidase inhibitor clade A member 1 (serpinA1) in tumorigenesis has been previously identified. However, the exact role and mechanism of these proteins in progression of colorectal cancer (CRC) are controversial. In this study, we investigated the role of Snail and serpinA1 in colorectal cancer (CRC) and examined the mechanisms through which these proteins mediate CRC progression. Immunohistochemical analysis of 528 samples from patients with CRC showed that elevated expression of Snail or serpinA1 was correlated with advanced stage, lymph node metastasis, and poor prognosis. Moreover, we detected a correlation between Snail and serpinA1 expression. Functional studies performed using the CRC cell lines DLD-1 and SW-480 showed that overexpression of Snail or serpinA1 significantly increased CRC cell invasion and migration. Conversely, knockdown of Snail or serpinA1 expression suppressed CRC cell invasion and migration. ChIP analysis revealed that Snail regulated serpinA1 by binding to its promoter. In addition, fibronectin mediated Snail and serpinA1 signaling was involved in CRC cell invasion and migration. Taken together, our data showed that Snail and serpinA1 promoted CRC progression through fibronectin. These findings suggested that Snail and serpinA1 were novel prognostic biomarkers and candidate therapeutic targets in CRC. PMID:26015410

  9. Snail1 transcriptional repressor binds to its own promoter and controls its expression

    PubMed Central

    Peiró, Sandra; Escrivà, Maria; Puig, Isabel; Barberà, Maria José; Dave, Natàlia; Herranz, Nicolás; Larriba, Maria Jesús; Takkunen, Minna; Francí, Clara; Muñoz, Alberto; Virtanen, Ismo; Baulida, Josep; de Herreros, Antonio García

    2006-01-01

    The product of Snail1 gene is a transcriptional repressor of E-cadherin expression and an inductor of the epithelial–mesenchymal transition in several epithelial tumour cell lines. Transcription of Snail1 is induced when epithelial cells are forced to acquire a mesenchymal phenotype. In this work we demonstrate that Snail1 protein limits its own expression: Snail1 binds to an E-box present in its promoter (at −146 with respect to the transcription start) and represses its activity. Therefore, mutation of the E-box increases Snail1 transcription in epithelial and mesenchymal cells. Evidence of binding of ectopic or endogenous Snail1 to its own promoter was obtained by chromatin immunoprecipitation (ChIP) experiments. Studies performed expressing different forms of Snail1 under the control of its own promoter demonstrate that disruption of the regulatory loop increases the cellular levels of Snail protein. These results indicate that expression of Snail1 gene can be regulated by its product and evidence the existence of a fine-tuning feed-back mechanism of regulation of Snail1 transcription. PMID:16617148

  10. Transient SNAIL1 Expression is Necessary for Metastatic Competence in Breast Cancer

    PubMed Central

    Tran, Hung D.; Luitel, Krishna; Kim, Michael; Zhang, Kun; Longmore, Gregory D.; Tran, David D.

    2016-01-01

    SNAIL1 has been suggested to regulate breast cancer metastasis based on analyses of human breast tumor transcriptomes and experiments using cancer cell lines and xenografts. However, in vivo genetic experimental support for a role for SNAIL1 in breast cancer metastasis that develops in an immunocompetent tumor microenvironment has not been determined. To address this question, we created a genetic SNAIL1 model by coupling an endogenous SNAIL1 reporter with an inducible SNAIL1 transgene. Using multiple genetic models of breast cancer, we demonstrated that endogenous SNAIL1 expression was restricted to primary tumors that ultimately disseminate. SNAIL1 gene deletion either during the premalignant phase or after primary tumors have reached a palpable size blunted metastasis, indicating that late metastasis was the main driver of metastasis and that this was dependent on SNAIL1. Importantly, SNAIL1 expression during breast cancer metastasis was transient and forced transient, but not continuous, SNAIL1 expression in breast tumors was sufficient to increase metastasis. PMID:25164016

  11. Snail controls proliferation of Drosophila ovarian epithelial follicle stem cells, independently of E-cadherin.

    PubMed

    Tseng, Chen-Yuan; Kao, Shih-Han; Hsu, Hwei-Jan

    2016-06-15

    Epithelial stem cells undergo constant self-renewal and differentiation to maintain the homeostasis of epithelial tissues that undergo rapid turnover. Recent studies have shown that the epithelial-mesenchymal transition (EMT), which is primarily mediated by Snail via the suppression of E-cadherin, is able to generate cells with stem cell properties. However, the role of Snail in epithelial stem cells remains unclear. Here, we report that Snail directly controls proliferation of follicle stem cells (FSCs) in Drosophila females. Disruption of Snail expression in FSCs compromises their proliferation, but not their maintenance. Conversely, FSCs with excessive Snail expression display increased proliferation and lifespan, which is accompanied by a moderate decrease in the expression of E-cadherin (required for adhesion of FSCs to their niche) at the junction between their adjacent cells, indicating a conserved role of Snail in E-cadherin inhibition, which promote epithelial cell proliferation. Interestingly, a decrease in E-cadherin in snail-knock down FSCs does not restore the decreased proliferation of snail-knock down FSCs, suggesting that adhesion strength of FSCs to their niche is dispensable for Snail-mediated FSC division. Our results demonstrate that Snail controls epithelial stem cell division independently of its known role in the EMT, which contributes to induction of cancer stem cells. PMID:27141871

  12. Overexpression of Snail in retinal pigment epithelial triggered epithelial–mesenchymal transition

    SciTech Connect

    Li, Hui; Li, Min; Xu, Ding; Zhao, Chun; Liu, Guodong; Wang, Fang

    2014-03-28

    Highlights: • First reported overexpression of Snail in RPE cells could directly trigger EMT. • Further confirmed the regulator role of Snail in RPE cells EMT in vitro. • Snail may be a potential therapeutic target to prevent the fibrosis of PVR. - Abstract: Snail transcription factor has been implicated as an important regulator in epithelial–mesenchymal transition (EMT) during tumourigenesis and fibrogenesis. Our previous work showed that Snail transcription factor was activated in transforming growth factor β1 (TGF-β1) induced EMT in retinal pigment epithelial (RPE) cells and may contribute to the development of retinal fibrotic disease such as proliferative vitreoretinopathy (PVR). However, whether Snail alone has a direct role on retinal pigment epithelial–mesenchymal transition has not been investigated. Here, we analyzed the capacity of Snail to drive EMT in human RPE cells. A vector encoding Snail gene or an empty vector were transfected into human RPE cell lines ARPE-19 respectively. Snail overexpression in ARPE-19 cells resulted in EMT, which was characterized by the expected phenotypic transition from a typical epithelial morphology to mesenchymal spindle-shaped. The expression of epithelial markers E-cadherin and Zona occludin-1 (ZO-1) were down-regulated, whereas mesenchymal markers a-smooth muscle actin (a-SMA) and fibronectin were up-regulated in Snail expression vector transfected cells. In addition, ectopic expression of Snail significantly enhanced ARPE-19 cell motility and migration. The present data suggest that overexpression of Snail in ARPE-19 cells could directly trigger EMT. These results may provide novel insight into understanding the regulator role of Snail in the development of retinal pigment epithelial–mesenchymal transition.

  13. Metabolic acceleration in the pond snail Lymnaea stagnalis?

    NASA Astrophysics Data System (ADS)

    Zimmer, Elke I.; Ducrot, V.; Jager, T.; Koene, J.; Lagadic, L.; Kooijman, S. A. L. M.

    2014-11-01

    Under constant environmental conditions, most animals tend to grow following the von Bertalanffy growth curve. Deviations from this curve can point to changes in the environment that the animals experience, such as food limitation when the available food is not sufficient or suitable. However, such deviations can also point to a phenomenon called metabolic acceleration, which is receiving increasing attention in the field of Dynamic Energy Budget (DEB) modeling. Reasons for such an acceleration are usually changes in shape during ontogeny, which cause changes in the surface area to volume ratio of the organism. Those changes, in turn, lead to changes in some of the model parameters that have length in their dimension. The life-history consequences of metabolic acceleration as implemented in the DEB theory are an s-shaped growth curve (when body size is expressed as a length measure) and a prolongation of the hatching time. The great pond snail Lymnaea stagnalis was earlier found to be food limited during the juvenile phase in laboratory experiments conducted under classical ecotoxicity test protocols. The pond snail has isomorphic shell growth but yet does not exhibit the expected von Bertalanffy growth curve under food limitation. When applying the standard DEB model to data from such life-cycle experiments, we also found that the hatching time is consistently underestimated, which could be a sign of metabolic acceleration. We here present an application of the DEB model including metabolic acceleration to the great pond snail. We account for the simultaneous hermaphroditism of the snail by including a model extension that describes the relative investment into the male and female function. This model allowed us to adequately predict the life history of the snail over the entire life cycle. However, the pond snail does not change in shape substantially after birth, so the original explanation for the metabolic acceleration does not hold. Since the change in shape

  14. Arsenic transfer and impacts on snails exposed to stabilized and untreated As-contaminated soils.

    PubMed

    Coeurdassier, M; Scheifler, R; Mench, M; Crini, N; Vangronsveld, J; de Vaufleury, A

    2010-06-01

    An As-contaminated soil (Unt) was amended with either iron grit (Z), a coal fly ash (beringite, B) or B + Z (BZ) and placed in lysimeters in 1997. An uncontaminated soil (R) was also studied. In summer and autumn 2003, lettuces were cultivated in the lysimeters and snails were caged for one month. Lettuce As concentrations were higher during the summer, while no differences occurred in snails between seasons. Snail As concentrations (microg g(-1) DW) ranged from 2.5 to 7.0 in B, Z and BZ, and peaked at 17.5 in Unt. In summer, snail survival was affected in Unt and Z compared to R and B while no mortality was noticed in autumn. Snail growth decreased only in B, BZ and Unt in autumn. Snail As concentrations suggest a risk for their predators even on the remediated soils. PMID:20362375

  15. Lumican Inhibits SNAIL-Induced Melanoma Cell Migration Specifically by Blocking MMP-14 Activity.

    PubMed

    Stasiak, Marta; Boncela, Joanna; Perreau, Corinne; Karamanou, Konstantina; Chatron-Colliet, Aurore; Proult, Isabelle; Przygodzka, Patrycja; Chakravarti, Shukti; Maquart, François-Xavier; Kowalska, M Anna; Wegrowski, Yanusz; Brézillon, Stéphane

    2016-01-01

    Lumican, a small leucine rich proteoglycan, inhibits MMP-14 activity and melanoma cell migration in vitro and in vivo. Snail triggers epithelial-mesenchymal transitions endowing epithelial cells with migratory and invasive properties during tumor progression. The aim of this work was to investigate lumican effects on MMP-14 activity and migration of Snail overexpressing B16F1 (Snail-B16F1) melanoma cells and HT-29 colon adenocarcinoma cells. Lumican inhibits the Snail induced MMP-14 activity in B16F1 but not in HT-29 cells. In Snail-B16F1 cells, lumican inhibits migration, growth, and melanoma primary tumor development. A lumican-based strategy targeting Snail-induced MMP-14 activity might be useful for melanoma treatment. PMID:26930497

  16. Lumican Inhibits SNAIL-Induced Melanoma Cell Migration Specifically by Blocking MMP-14 Activity

    PubMed Central

    Stasiak, Marta; Boncela, Joanna; Perreau, Corinne; Karamanou, Konstantina; Chatron-Colliet, Aurore; Proult, Isabelle; Przygodzka, Patrycja; Chakravarti, Shukti; Maquart, François-Xavier; Kowalska, M. Anna; Wegrowski, Yanusz; Brézillon, Stéphane

    2016-01-01

    Lumican, a small leucine rich proteoglycan, inhibits MMP-14 activity and melanoma cell migration in vitro and in vivo. Snail triggers epithelial-mesenchymal transitions endowing epithelial cells with migratory and invasive properties during tumor progression. The aim of this work was to investigate lumican effects on MMP-14 activity and migration of Snail overexpressing B16F1 (Snail-B16F1) melanoma cells and HT-29 colon adenocarcinoma cells. Lumican inhibits the Snail induced MMP-14 activity in B16F1 but not in HT-29 cells. In Snail-B16F1 cells, lumican inhibits migration, growth, and melanoma primary tumor development. A lumican-based strategy targeting Snail-induced MMP-14 activity might be useful for melanoma treatment. PMID:26930497

  17. Determination of wing cell fate by the escargot and snail genes in Drosophila.

    PubMed

    Fuse, N; Hirose, S; Hayashi, S

    1996-04-01

    Inset appendages such as the wing and the leg are formed in response to inductive signals in the embryonic field. In Drosophila, cells receiving such signals initiate developmental programs which allow them to become imaginal discs. Subsequently, these discs autonomously organize patterns specific for each appendage. We here report that two related transcription factors, Escargot and Snail that are expressed in the embryonic wing disc, function as intrinsic determinants of the wing cell fate. In escargot or snail mutant embryos, wing-specific expression of Snail, Vestigial and beta-galactosidase regulated by escargot enhancer were found as well as in wild-type embryos. However, in escargot snail double mutant embryos, wing development proceeded until stage 13, but the marker expression was not maintained in later stages, and the invagination of the primordium was absent. From such analyses, it was concluded that Escargot and Snail expression in the wing disc are maintained by their auto- and crossactivation. Ubiquitous escargot or snail expression induced from the hsp70 promoter rescued the escargot snail double mutant phenotype with the effects confined to the prospective wing cells. Similar DNA binding specificities of Escargot and Snail suggest that they control the same set of genes required for wing development. We thus propose the following scenario for early wing disc development. Prospective wing cells respond to the induction by turning on escargot and snail transcription, and become competent for regulation by Escargot and Snail. Such cells initiate auto- and crossregulatory circuits of escargot and snail. The sustained Escargot and Snail expression then activates vestigial and other target genes that are essential for wing development. This maintains the commitment to the wing cell fate and induces wing-specific cell shape change. PMID:8620833

  18. Removal of corallivorous snails as a proactive tool for the conservation of acroporid corals

    PubMed Central

    Miller, Margaret W.; Bright, Allan J.; Cameron, Caitlin M.

    2014-01-01

    Corallivorous snail feeding is a common source of tissue loss for the threatened coral, Acropora palmata, accounting for roughly one-quarter of tissue loss in monitored study plots over seven years. In contrast with larger threats such as bleaching, disease, or storms, corallivory by Coralliophila abbreviata is one of the few direct sources of partial mortality that may be locally managed. We conducted a field experiment to explore the effectiveness and feasibility of snail removal. Long-term monitoring plots on six reefs in the upper Florida Keys were assigned to one of three removal treatments: (1) removal from A. palmata only, (2) removal from all host coral species, or (3) no-removal controls. During the initial removal in June 2011, 436 snails were removed from twelve 150 m2 plots. Snails were removed three additional times during a seven month “removal phase”, then counted at five surveys over the next 19 months to track recolonization. At the conclusion, snails were collected, measured and sexed. Before-After-Control-Impact analysis revealed that both snail abundance and feeding scar prevalence were reduced in removal treatments compared to the control, but there was no difference between removal treatments. Recolonization by snails to baseline abundance is estimated to be 3.7 years and did not differ between removal treatments. Recolonization rate was significantly correlated with baseline snail abundance. Maximum snail size decreased from 47.0 mm to 34.6 mm in the removal treatments. The effort required to remove snails from A. palmata was 30 diver minutes per 150 m2 plot, compared with 51 min to remove snails from all host corals. Since there was no additional benefit observed with removing snails from all host species, removals can be more efficiently focused on only A. palmata colonies and in areas where C. abbreviata abundance is high, to effectively conserve A. palmata in targeted areas. PMID:25469321

  19. Removal of corallivorous snails as a proactive tool for the conservation of acroporid corals.

    PubMed

    Williams, Dana E; Miller, Margaret W; Bright, Allan J; Cameron, Caitlin M

    2014-01-01

    Corallivorous snail feeding is a common source of tissue loss for the threatened coral, Acropora palmata, accounting for roughly one-quarter of tissue loss in monitored study plots over seven years. In contrast with larger threats such as bleaching, disease, or storms, corallivory by Coralliophila abbreviata is one of the few direct sources of partial mortality that may be locally managed. We conducted a field experiment to explore the effectiveness and feasibility of snail removal. Long-term monitoring plots on six reefs in the upper Florida Keys were assigned to one of three removal treatments: (1) removal from A. palmata only, (2) removal from all host coral species, or (3) no-removal controls. During the initial removal in June 2011, 436 snails were removed from twelve 150 m(2) plots. Snails were removed three additional times during a seven month "removal phase", then counted at five surveys over the next 19 months to track recolonization. At the conclusion, snails were collected, measured and sexed. Before-After-Control-Impact analysis revealed that both snail abundance and feeding scar prevalence were reduced in removal treatments compared to the control, but there was no difference between removal treatments. Recolonization by snails to baseline abundance is estimated to be 3.7 years and did not differ between removal treatments. Recolonization rate was significantly correlated with baseline snail abundance. Maximum snail size decreased from 47.0 mm to 34.6 mm in the removal treatments. The effort required to remove snails from A. palmata was 30 diver minutes per 150 m(2) plot, compared with 51 min to remove snails from all host corals. Since there was no additional benefit observed with removing snails from all host species, removals can be more efficiently focused on only A. palmata colonies and in areas where C. abbreviata abundance is high, to effectively conserve A. palmata in targeted areas. PMID:25469321

  20. Phenotypic plasticity in two marine snails: constraints superseding life history.

    PubMed

    Hollander, J; Collyer, M L; Adams, D C; Johannesson, K

    2006-11-01

    In organisms encountering predictable environments, fixed development is expected, whereas in organisms that cannot predict their future environment, phenotypic plasticity would be optimal to increase local adaptation. To test this prediction we experimentally compared phenotypic plasticity in two rocky-shore snail species; Littorina saxatilis releasing miniature snails on the shore, and Littorina littorea releasing drifting larvae settling on various shores, expecting L. littorea to show more phenotypic plasticity than L. saxatilis. We compared magnitude and direction of vectors of phenotypic difference in juvenile shell traits after 3 months exposure to different stimuli simulating sheltered and crab-rich shores, or wave-exposed and crab-free shores. Both species showed similar direction and magnitude of vectors of phenotypic difference with minor differences only between ecotypes of the nondispersing species, indicating that plasticity is an evolving trait in L. saxatilis. The lack of a strong plastic response in L. littorea might be explained by limits rather than costs to plasticity. PMID:17040383

  1. Mercury residues in south Florida apple snails (Pomacea paludosa)

    USGS Publications Warehouse

    Eisemann, J.D.; Beyer, W.N.; Bennetts, R.E.; Morton, Alexandra

    1997-01-01

    Mercury concentrations in the sediments of south Florida wetlands have increased three fold in the last century (Rood et al. 1993). Because south Florida is home to many endemic and endangered species, it is important to understand the potential impacts of mercury in this ecosystem's food web. Recent research by Malley et al. (1996) has shown mollusks to be sensitive indicators of methyl mercury which can reflect small differences in background methyl mercury concentrations. In this study, we attempted to determine if the apple snail (Pomacea paludosa) or its eggs are good indicators of bioavailable mercury. Then, using the apple snail as an indicator, we attempted to determine geographic differences in the concentrations of mercury in south Florida.

  2. How Stress Alters Memory in ‘Smart’ Snails

    PubMed Central

    Dalesman, Sarah; Lukowiak, Ken

    2012-01-01

    Cognitive ability varies within species, but whether this variation alters the manner in which memory formation is affected by environmental stress is unclear. The great pond snail, Lymnaea stagnalis, is commonly used as model species in studies of learning and memory. The majority of those studies used a single laboratory strain (i.e. the Dutch strain) originating from a wild population in the Netherlands. However, our recent work has identified natural populations that demonstrate significantly enhanced long-term memory (LTM) formation relative to the Dutch strain following operant conditioning of aerial respiratory behaviour. Here we assess how two populations with enhanced memory formation (i.e. ‘smart’ snails), one from Canada (Trans Canada 1: TC1) and one from the U.K. (Chilton Moor: CM) respond to ecologically relevant stressors. In control conditions the Dutch strain forms memory lasting 1–3 h following a single 0.5 h training session in our standard calcium pond water (80 mg/l [Ca2+]), whereas the TC1 and CM populations formed LTM lasting 5+ days following this training regime. Exposure to low environmental calcium pond water (20 mg/l [Ca2+]), which blocks LTM in the Dutch strain, reduced LTM retention to 24 h in the TC1 and CM populations. Crowding (20 snails in 100 ml) immediately prior to training blocks LTM in the Dutch strain, and also did so in TC1 and CM populations. Therefore, snails with enhanced cognitive ability respond to these ecologically relevant stressors in a similar manner to the Dutch strain, but are more robust at forming LTM in a low calcium environment. Despite the two populations (CM and TC1) originating from different continents, LTM formation was indistinguishable in both control and stressed conditions. This indicates that the underlying mechanisms controlling cognitive differences among populations may be highly conserved in L. stagnalis. PMID:22384220

  3. Snail Is a Critical Mediator of Invadosome Formation and Joint Degradation in Arthritis.

    PubMed

    Lauzier, Annie; Lavoie, Roxane R; Charbonneau, Martine; Gouin-Boisvert, Béatrice; Harper, Kelly; Dubois, Claire M

    2016-02-01

    Progressive cartilage destruction, mediated by invasive fibroblast-like synoviocytes, is a central feature in the pathogenesis of rheumatoid arthritis (RA). Members of the Snail family of transcription factors are required for cell migration and invasion, but their role in joint destruction remains unknown. Herein, we demonstrate that Snail is essential for the formation of extracellular matrix-degrading invadosomal structures by synovial cells from collagen-induced arthritis (CIA) rats and RA patients. Mechanistically, Snail induces extracellular matrix degradation in synovial cells by repressing PTEN, resulting in increased phosphorylation of platelet-derived growth factor receptor and activation of the phosphatidylinositol 3-kinase/AKT pathway. Of significance, Snail is overexpressed in synovial cells and tissues of CIA rats and RA patients, whereas knockdown of Snail in CIA joints prevents cartilage invasion and joint damage. Furthermore, Snail expression is associated with an epithelial-mesenchymal transition gene signature characteristic of transglutaminase 2/transforming growth factor-β activation. Transforming growth factor-β and transglutaminase 2 stimulate Snail-dependent invadosome formation in rat and human synoviocytes. Our results identify the Snail-PTEN platelet-derived growth factor receptor/phosphatidylinositol 3-kinase axis as a novel regulator of the prodestructive invadosome-forming phenotype of synovial cells. New therapies for RA target inflammation, and are only partly effective in preventing joint damage. Blocking Snail and/or its associated gene expression program may provide an additional tool to improve the efficacy of treatments to prevent joint destruction. PMID:26704941

  4. Ajuba LIM proteins are Snail/Slug corepressors required for neural crest development in Xenopus

    PubMed Central

    Langer, Ellen M.; Feng, Yunfeng; Zhaoyuan, Hou; Rauscher, Frank J.; Kroll, Kristen L.; Longmore, Gregory D.

    2008-01-01

    Snail family transcriptional repressors regulate epithelial mesenchymal transitions during physiological and pathological processes. A conserved SNAG repression domain present in all vertebrate Snail proteins is necessary for repressor complex assembly. Here, we identify the Ajuba family of LIM proteins as functional corepressors of the Snail family via an interaction with the SNAG domain. Ajuba LIM proteins interact with Snail in the nucleus on endogenous E-cadherin promoters and contribute to Snail-dependent repression of E-cadherin. Using Xenopus neural crest as a model of in vivo Snail- or Slug-induced EMT, we demonstrate that Ajuba LIM proteins contribute to neural crest development as Snail/Slug corepressors and are required for in vivo Snail/Slug function. Because Ajuba LIM proteins are also components of adherens junction and contribute to their assembly or stability, their functional interaction with Snail proteins in the nucleus suggests that Ajuba LIM proteins are important regulators of epithelia dynamics communicating surface events with nuclear responses. PMID:18331720

  5. Population estimate of Chinese mystery snail (Bellamya chinensis) in a Nebraska reservoir

    USGS Publications Warehouse

    Chaine, Noelle M.; Allen, Craig R.; Fricke, Kent A.; Haak, Danielle M.; Hellman, Michelle L.; Kill, Robert A.; Nemec, Kristine T.; Pope, Kevin L.; Smeenk, Nicholas A.; Stephen, Bruce J.; Uden, Daniel R.; Unstad, Kody M.; VanderHam, Ashley E.

    2012-01-01

    The Chinese mystery snail (Bellamya chinensis) is an aquatic invasive species in North America. Little is known regarding this species' impacts on freshwater ecosystems. It is be lieved that population densities can be high, yet no population estimates have been reported. We utilized a mark-recapture approach to generate a population estimate for Chinese mystery snail in Wild Plum Lake, a 6.47-ha reservoir in southeast Nebraska. We calculated, using bias-adjusted Lincoln-Petersen estimation, that there were approximately 664 adult snails within a 127 m2 transect (5.2 snails/m2). If this density was consistent throughout the littoral zone (<3 m in depth) of the reservoir, then the total adult population in this impoundment is estimated to be 253,570 snails, and the total Chinese mystery snail wet biomass is estimated to be 3,119 kg (643 kg/ha). If this density is confined to the depth sampled in this study (1.46 m), then the adult population is estimated to be 169,400 snails, and wet biomass is estimated to be 2,084 kg (643 kg/ha). Additional research is warranted to further test the utility of mark-recapture methods for aquatic snails and to better understand Chinese mystery snail distributions within reservoirs.

  6. Fasciola hepatica in Snails Collected from Water-Dropwort Fields using PCR

    PubMed Central

    Kim, Hwang-Yong; Choi, In-Wook; Kim, Yeon-Rok; Quan, Juan-Hua; Ismail, Hassan Ahmed Hassan Ahmed; Cha, Guang-Ho; Hong, Sung-Jong

    2014-01-01

    Fasciola hepatica is a trematode that causes zoonosis mainly in cattle and sheep and occasionally in humans. Fascioliasis has been reported in Korea; however, determining F. hepatica infection in snails has not been done recently. Thus, using PCR, we evaluated the prevalence of F. hepatica infection in snails at 4 large water-dropwort fields. Among 349 examined snails, F. hepatica-specific internal transcribed space 1 (ITS-1) and/or ITS-2 markers were detected in 12 snails and confirmed using sequence analysis. Morphologically, 213 of 349 collected snails were dextral shelled, which is the same aperture as the lymnaeid snail, the vectorial host for F. hepatica. Among the 12 F. hepatica-infected snails, 6 were known first intermediate hosts in Korea (Lymnaea viridis and L. ollula) and the remaining 6 (Lymnaea sp.) were potentially a new first intermediate host in Korea. It has been shown that the overall prevalence of the snails contaminated with F. hepatica in water-dropwort fields was 3.4%; however, the prevalence varied among the fields. This is the first study to estimate the prevalence of F. hepatica infection using the vectorial capacity of the snails in Korea. PMID:25548416

  7. Snail1 is required for the maintenance of the pancreatic acinar phenotype

    PubMed Central

    Loubat-Casanovas, Jordina; Peña, Raúl; Gonzàlez, Núria; Alba-Castellón, Lorena; Rosell, Santi; Francí, Clara; Navarro, Pilar; de Herreros, Antonio García

    2016-01-01

    The Snail1 transcriptional factor is required for correct embryonic development, yet its expression in adult animals is very limited and its functional roles are not evident. We have now conditionally inactivated Snail1 in adult mice and analyzed the phenotype of these animals. Snail1 ablation rapidly altered pancreas structure: one month after Snail1 depletion, acinar cells were markedly depleted, and pancreas accumulated adipose tissue. Snail1 expression was not detected in the epithelium but was in pancreatic mesenchymal cells (PMCs). Snail1 ablation in cultured PMCs downregulated the expression of several β-catenin/Tcf-4 target genes, modified the secretome of these cells and decreased their ability to maintain acinar markers in cultured pancreas cells. Finally, Snail1 deficiency modified the phenotype of pancreatic tumors generated in transgenic mice expressing c-myc under the control of the elastase promoter. Specifically, Snail1 depletion did not significantly alter the size of the tumors but accelerated acinar-ductal metaplasia. These results demonstrate that Snail1 is expressed in PMCs and plays a pivotal role in maintaining acinar cells within the pancreas in normal and pathological conditions. PMID:26735179

  8. TREMATODE INFECTION OF FRESHWATER SNAIL, FAMILY BITHYNIIDAE IN THAILAND.

    PubMed

    Kulsantiwong, Jutharat; Prasopdee, Sattrachai; Piratae, Supawadee; Khampoosa, Panita; Thammasiri, Chalida; Suwannatrai, Apiporn; Boonmars, Thidarut; Viyanant, Vithoon; Ruangsitichai, Jiraporn; Tarbsripair, Pairat; Tesana, Smarn

    2015-05-01

    Opisthorchis viverrini is restricted to and requires for its aquatic life cycle only Bithynia snail as first intermediate host but many species of cyprinid fish as second intermediate hosts. A survey in Thailand of trematode infection in freshwater snails of the family Bithyniidae carried out during October 2008 - July 2009 found a total of 5,492 snails, classified into ten species distributed in various geographic areas. Bithyniafuniculata and Gabbia pygmaea were localized to the north, B. s. goniomphalos, Wattebledia siamensis and W. crosseana to northeast and B. s. siamensis, Hydrobioides nassa and G. wykoffi to central region. W. baschi and G. erawanensis was found only in the south and Erawan waterfall, Kanchanaburi Province, respectively. Trematode infection rate was 3.15%. Cercariae were identified as belonging to six types, namely, amartae , monostome, mutabile, O. viverrini, virgulate, and unknown. The prevalence of cercarial infection in B. s. goniomphalos of amartae, mutabile, O. viverrini, virgulate, and unknown type cercaria was 0.55%, 0.74%, 1.07%, 2.87%, and 0.37%, respectively, and in B. s. siamensis monostome (1.10%) and virgulate (0.55%). Only virgulate cercariae were shed from W. crosseana (3.85%) and W. siamensis (5.19%). Cercariae of the unknown type were found in G. wykoffi (1.69%). No infection of O. viverrini cercariae was detected in the other species. PMID:26521513

  9. Biomphalaria straminea (Mollusca: Planorbidae) as an intermediate host of Drepanocephalus spp. (Trematoda: Echinostomatidae) in Brazil: a morphological and molecular study.

    PubMed

    Pinto, Hudson A; Griffin, Matt J; Quiniou, Sylvie M; Ware, Cynthia; Melo, Alan L

    2016-01-01

    Species of trematodes belonging to the genus Drepanocephalus are intestinal parasites of piscivorous birds, primarily cormorants (Phalachrocorax spp.), and are widely reported in the Americas. During a 4-year malacological study conducted on an urban lake in Brazil, 27-collar-spined echinostome cercariae were found in 1665/15,459 (10.7 %) specimens of Biomphalaria straminea collected. The cercariae were identified as Drepanocephalus spp. by sequencing the 18S (SSU) rDNA, ITS1/5.8S rDNA/ITS2 (ITS), 28S (LSU) rDNA region, cytochrome oxidase subunit 1 (CO1), and nicotinamide adenine dinucleotide dehydrogenase subunit 1 (ND1) markers. In experimental life cycle studies, metacercariae developed in laboratory-reared guppies (Poecilia reticulata); however, attempts to infect birds and rodents were unsuccessful. Two closely related morphotypes of cercariae were characterized. One species, identified by molecular markers as a genetic variant of Drepanocephalus auritus (99.9 % similarity at SSU, ITS, LSU; 97.2 % at CO1; 95.8 % at ND1), differs slightly from an archived North American isolate of this species also sequenced as part of this study. A second species, putatively identified as Drepanocephalus sp., has smaller cercariae and demonstrates significant differences from D. auritus at the CO1 (11.0 %) and ND1 (13.6 %) markers. Aspects related to the morphological taxonomic identification of 27-collar-spined echinostome metacercariae are briefly discussed. This is the first report of the involvement of molluscs of the genus Biomphalaria in the transmission of Drepanocephalus and the first report of D. auritus in South America. PMID:25982569

  10. Controlled Chaos of Polymorphic Mucins in a Metazoan Parasite (Schistosoma mansoni) Interacting with Its Invertebrate Host (Biomphalaria glabrata)

    PubMed Central

    Roger, Emmanuel; Grunau, Christoph; Pierce, Raymond J.; Hirai, Hirohisa; Gourbal, Benjamin; Galinier, Richard; Emans, Rémi; Cesari, Italo M.; Cosseau, Céline; Mitta, Guillaume

    2008-01-01

    Invertebrates were long thought to possess only a simple, effective and hence non-adaptive defence system against microbial and parasitic attacks. However, recent studies have shown that invertebrate immunity also relies on immune receptors that diversify (e.g. in echinoderms, insects and mollusks (Biomphalaria glabrata)). Apparently, individual or population-based polymorphism-generating mechanisms exists that permit the survival of invertebrate species exposed to parasites. Consequently, the generally accepted arms race hypothesis predicts that molecular diversity and polymorphism also exist in parasites of invertebrates. We investigated the diversity and polymorphism of parasite molecules (Schistosoma mansoni Polymorphic Mucins, SmPoMucs) that are key factors for the compatibility of schistosomes interacting with their host, the mollusc Biomphalaria glabrata. We have elucidated the complex cascade of mechanisms acting both at the genomic level and during expression that confer polymorphism to SmPoMuc. We show that SmPoMuc is coded by a multi-gene family whose members frequently recombine. We show that these genes are transcribed in an individual-specific manner, and that for each gene, multiple splice variants exist. Finally, we reveal the impact of this polymorphism on the SmPoMuc glycosylation status. Our data support the view that S. mansoni has evolved a complex hierarchical system that efficiently generates a high degree of polymorphism—a “controlled chaos”—based on a relatively low number of genes. This contrasts with protozoan parasites that generate antigenic variation from large sets of genes such as Trypanosoma cruzi, Trypanosoma brucei and Plasmodium falciparum. Our data support the view that the interaction between parasites and their invertebrate hosts are far more complex than previously thought. While most studies in this matter have focused on invertebrate host diversification, we clearly show that diversifying mechanisms also exist on

  11. Aquatic snails from mining sites have evolved to detect and avoid heavy metals.

    PubMed

    Lefcort, H; Abbott, D P; Cleary, D A; Howell, E; Keller, N C; Smith, M M

    2004-05-01

    Toxicants in polluted environments are often patchily distributed. Hence, rather than being passive absorbers of pollution, some organisms have evolved the ability to detect and avoid toxicants. We studied the avoidance behavior of Physella columbiana, an aquatic pulmonate snail, in a pond that has been polluted with heavy metals for more than 120 years. Populations of this snail are rare at reference sites and are only robust at heavy-metal-polluted sites. We hypothesized that the snails are able to persist because they have evolved the ability to minimize their exposure to metals by actively avoiding metals in their environment. Using a Y-maze flow tank, we tested the avoidance behavior of snails to heavy-metal-polluted sediments and single-metal solutions of cadmium, zinc, or lead. We also tested the avoidance behaviors of the snails' laboratory-reared offspring raised in nonpolluted conditions. In addition, we tested the avoidance behavior of a small population of snails from a reference pond. Although all the snails we tested were able to detect low concentrations of heavy metals, we found that snails from the polluted site were the most sensitive, that their offspring were somewhat less sensitive, and that snails from the reference site were the least sensitive. This suggests that the ability of polluted-site snails to avoid heavy metals is both genetic and environmental. The concentrations of metals avoided by the snails from the polluted site were below the levels found at hot spots within their natal pond. The snails may be able to persist at this site because they decrease their exposure by moving to less-polluted sections of the pond. One application of our findings is the use of aquatic snails and our Y-maze design as an inexpensive pollution detector. Environmental pollutants such as lead, zinc, and arsenic are a problem throughout the world. People in underdeveloped countries often lack sophisticated pollution detection devices. We have developed a

  12. THE BIOCIDE TRIBUTYLTIN REDUCES THE ACCUMULATION OF TESTOSTERONE AS FATTY ACID ESTERS IN THE MUD SNAIL (ILYANASSA OBSOLETA)

    EPA Science Inventory

    Imposex, the development of male sex characteristics by female gonochoristic snails, has been documented globally and is causally associated with exposure to the ubiquitous environmental contaminant tributyltin (TBT). Elevated testosterone levels in snails also are associated wit...

  13. A pilot study testing a natural and a synthetic molluscicide for controlling invasive apple snails (Pomacea maculata)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pomacea maculata (formerly P. insularum), an apple snail native to South America, was discovered in Louisiana in 2008. These snails strip vegetation, reproduce at tremendous rates, and have reduced rice production and caused ecosystem changes in Asia. In this study snails were exposed to two mollusc...

  14. Measuring Animal Movements in a Natural Ecosystem: A Mark-Recapture Investigation Using Stream-Dwelling Snails

    ERIC Educational Resources Information Center

    Stewart, Timothy W.

    2007-01-01

    In this investigation, students measure and describe movements of animals in a natural ecosystem. Students mark stream-dwelling snails with nail polish, then search for these snails 1-7 days later. Distances and directions moved by recaptured snails are recorded. Simple statistical techniques are used to answer specific research questions and…

  15. Increased response to cadmium and Bacillus thuringiensis maize toxicity in the snail Helix aspersa infected by the nematode Phasmarhabditis hermaphrodita.

    PubMed

    Kramarz, Paulina E; de Vaufleury, Annette; Zygmunt, Piotr M S; Verdun, Cyrille

    2007-01-01

    To determine the effect of nematode infection on the response of snails to selected toxins, we infected Helix aspersa with 0-, 0.25-, 1-, or 4-fold the recommended field dose of a commercial nematode application for agricultural use. In the first experiment, the snails also were exposed to cadmium via food and soil at concentrations of 0, 30, 60, 120, or 240 mg/kg in a full-factorial design. In the second experiment, snails were infected with nematodes and also fed either Bt (expressing Bacillus thuringiensis toxin) maize or non-Bt maize. The snails were weighed at the beginning and end (after four weeks) of the experiments, and mortality was checked daily. Neither exposure of snails to nematodes nor exposure of snails to cadmium or Bt toxin affected the survival rates of snails. The number of dead snails was highest for combinations of nematode treatments with cadmium concentrations of 120 and 240 mg/kg. In both experiments (Bt and cadmium), the growth rate decreased with increasing nematode dose. The Bt maize was not harmful to the snails in the absence of nematodes, but infected snails grew faster when fed non-Bt maize. The growth rate of snails exposed to cadmium decreased with exposure to increasing Cd concentrations and differed significantly between the no-nematode treatment and the treatments with nematode doses of one- and fourfold the recommended field dose. Snails treated with the highest dose of nematodes accumulated the highest cadmium concentrations. PMID:17269462

  16. Irrigation canals in Melo creek basin (Rio Espera and Capela Nova municipalities, Minas Gerais, Brazil): habitats to Biomphalaria (Gastropoda: Planorbidae) and potential spread of schistosomiasis.

    PubMed

    Leite, M G P; Pimenta, E C; Fujaco, M A G; Eskinazi-Sant'Anna, E M

    2016-04-19

    This study analyzed the presence of Biomphalaria in Melo creek basin, Minas Gerais state, and its relationship to irrigation canals. Seventeen of these canals were used to determine a limnological, morphological and hydrological characterization during an annual seasonal cycle. Biomphalaria samples were sent to René Rachou Research Center/FIOCRUZ for identification and parasitological examination. Six canals were identified as breeding areas for mollusks and in one of them it was registered the coexistence of B. tenagophila (first report to this basin) and B. glabrata species. Results indicated that the low flow rate and speed of water flow were the main characteristics that contributed to this specific growth of the mollusks in the area. These hydraulic characteristics were created due to anthropogenic action through the canalization of lotic areas in Melo creek, which allowed ideal ecological conditions to Biomphalaria outbreak. The results emphasize the need of adequate handling and constant monitoring of the hydrographic basin, subject to inadequate phytosanitary conditions, aiming to prevent the occurrence and propagation of schistosomiasis. PMID:27097093

  17. Activation of the ATM-Snail pathway promotes breast cancer metastasis

    PubMed Central

    Sun, Mianen; Guo, Xiaojing; Qian, Xiaolong; Wang, Haibo; Yang, Chunying; Brinkman, Kathryn L.; Serrano-Gonzalez, Monica; Jope, Richard S.; Zhou, Binhua; Engler, David A.; Zhan, Ming; Wong, Stephen T.C.; Fu, Li; Xu, Bo

    2012-01-01

    The DNA damage response (DDR) is critical for the maintenance of genetic stability and serves as an anti-cancer barrier during early tumorigenesis. However, the role of the DDR in tumor progression and metastasis is less known. Here, we demonstrate that the ATM kinase, one of the critical DDR elements, is hyperactive in late stage breast tumor tissues with lymph-node metastasis and this hyperactivity correlates with elevated expression of the epithelial–mesenchymal transition marker, Snail. At the molecular level, we demonstrate that ATM regulates Snail stabilization by phosphorylation on Serine-100. Using mass spectrometry, we identified HSP90 as a critical binding protein of Snail in response to DNA damage. HSP90 binds to and stabilizes phosphorylated Snail. We further provide in vitro and in vivo evidence that activation of ATM-mediated Snail phosphorylation promotes tumor invasion and metastasis. Finally, we demonstrate that Snail Serine-100 phosphorylation is elevated in breast cancer tissues with lymph-node metastasis, indicating clinical significance of the ATM-Snail pathway. Together, our findings provide strong evidence that the ATM-Snail pathway promotes tumor metastasis, highlighting a previously undescribed role of the DDR in tumor invasion and metastasis. PMID:22923499

  18. The non-native faucet snail (Bithynia tentaculata) makes the leap to Lake Superior

    EPA Science Inventory

    The European-origin faucet snail (Bithynia tentaculata) has been present in the lower Great Lakes since the late 1800s but only very recently reached Lake Superior. Surveys from 2011 through 2013 found faucet snail to be abundant and wide-spread in the St. Louis River Estuary wi...

  19. EFFECTS OF DIETARY EXPOSURE TO FOREST PESTICIDES ON THE BROWN GARDEN SNAIL HELIX ASPERSA MULLER

    EPA Science Inventory

    Brown garden snails, Helix aspersa, were fed prepared diets with 12 pesticides used in forest spraying practices where endangered arboreal and terrestrial snails may be at risk. cephate, atrazine, glyphosate, hexazinone, and picloram were not lethal at concentrations of 5,000 mg/...

  20. Feeding clusters and olfaction in the mangrove snail Terebralia palustris (Linnaeus) (Potamididae: Gastropoda).

    PubMed

    Fratini, S; Cannicci, S; Vannini, M

    2001-07-01

    Large numbers of the snail Terebralia palustris (Linnaeus) (Potamididae; Gastropoda) are frequently observed feeding in a cluster on a single fallen mangrove leaf, yet none are present on leaves nearby. Consequently, we investigated the food-finding ability of T. palustris in a Kenyan mangrove forest using field experiments. We estimated the attractive effect of different cues and analysed the paths (video-recorded) of snails when approaching a food-related odour. This intertidal snail can potentially use both air-borne and water-borne odours to locate food. T. palustris is attracted to conspecifics feeding on leaves, while intact leaves as well as non-feeding snails are not attractive. Moreover, the guiding stimulus appears to be compounds released when the leaves are damaged.T. palustris also seems able to discriminate between different food items; it is more strongly attracted to green mangrove leaves than senescent or fallen ones or mangrove propagules, probably because green leaves release a greater amount of attractive cues.Feeding snails thus recruit more snails to feed on the same leaf. The ecological implications of this behaviour are discussed: a large number of snails on the same leaf counteracts the ability of crabs to remove the leaf being eaten by the snails. PMID:11399273

  1. 50 CFR 17.45 - Special rules-snails and clams. [Reserved

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 2 2012-10-01 2012-10-01 false Special rules-snails and clams. 17.45 Section 17.45 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF THE INTERIOR... Special rules—snails and clams....

  2. 50 CFR 17.45 - Special rules-snails and clams. [Reserved

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 2 2011-10-01 2011-10-01 false Special rules-snails and clams. 17.45 Section 17.45 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF THE INTERIOR... Special rules—snails and clams....

  3. 50 CFR 17.45 - Special rules-snails and clams. [Reserved

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 2 2013-10-01 2013-10-01 false Special rules-snails and clams. 17.45 Section 17.45 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF THE INTERIOR... Special rules—snails and clams....

  4. 50 CFR 17.45 - Special rules-snails and clams. [Reserved

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 2 2010-10-01 2010-10-01 false Special rules-snails and clams. 17.45 Section 17.45 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF THE INTERIOR... Special rules—snails and clams....

  5. 50 CFR 17.45 - Special rules-snails and clams. [Reserved

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 2 2014-10-01 2014-10-01 false Special rules-snails and clams. 17.45 Section 17.45 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF THE INTERIOR... Special rules—snails and clams....

  6. Exploring the temporal effects of seasonal water availability on the snail kite of Florida: Part III

    USGS Publications Warehouse

    Mooij, Wolf M.; Martin, Julien; Kitchens, Wiley M.; DeAngelis, Donald L.

    2007-01-01

    The Florida snail kite (Rostrhamus sociabilis) is an endangered raptor that occurs as an isolated population, currently of about 2,000 birds, in the wetlands of southern and central Florida, USA. Its exclusive prey species, the apple snail (Pomacea paludosa) is strongly influenced by seasonal changes in water abundance. Droughts during the snail kite breeding season have a direct negative effect on snail kite survival and reproduction, but droughts are also needed to maintain aquatic vegetation types favorable to snail kite foraging for snails. We used a spatially explicit matrix model to explore the effects of temporal variation in water levels on the viability of the snail kite population under different temporal drought regimes in its wetland breeding habitat. We focused on three aspects of variations in water levels that were likely to affect kites: (1) drought frequency; (2) drought duration; and (3) drought timing within the year. We modeled a 31-year historical scenario using four different scenarios in which the average water level was maintained constant, but the amplitude of water level fluctuations was modified. Our results reveal the complexity of the effects of temporal variation in water levels on snail kite population dynamics. Management implications of these results are discussed. In particular, management decisions should not be based on annual mean water levels alone, but must consider the intra-annual variability.

  7. Local adaptation of the trematode Fasciola hepatica to the snail Galba truncatula.

    PubMed

    Dreyfuss, G; Vignoles, P; Rondelaud, D

    2012-08-01

    Experimental infections of six riverbank populations of Galba truncatula with Fasciola hepatica were carried out to determine if the poor susceptibility of these populations to this digenean might be due to the scarcity or the absence of natural encounters between these snails and the parasite. The first three populations originated from banks frequented by cattle in the past (riverbank group) whereas the three others were living on islet banks without any known contact with local ruminants (islet group). After their exposure, all snails were placed in their natural habitats from the end of October up to their collection at the beginning of April. Compared to the riverbank group, snails, which died without cercarial shedding clearly predominated in the islet group, while the other infected snails were few in number. Most of these last snails released their cercariae during a single shedding wave. In islet snails dissected after their death, the redial and cercarial burdens were significantly lower than those noted in riverbank G. truncatula. Snails living on these islet banks are thus able to sustain larval development of F. hepatica. The modifications noted in the characteristics of snail infection suggest the existence of an incomplete adaptation between these G. truncatula and the parasite, probably due to the absence of natural contact between host and parasite. PMID:22910670

  8. Dry down impacts on apple snail (Pomacea paludosa) demography: Implications for wetland water management

    USGS Publications Warehouse

    Darby, P.C.; Bennetts, R.E.; Percival, H.F.

    2008-01-01

    Florida apple snails (Pomacea paludosa Say) are prey for several wetland-dependent predators, most notably for the endangered Florida snail kite (Rostrhamus sociabilis Vieillot). Management concerns for kites have been raised regarding the impacts of wetland dry downs on snails, but little data exists to validate these concerns. We simulated drying events in experimental tanks, where we observed that snail survival patterns, regardless of hydrology, were driven by a post-reproductive die off. In contrast to earlier reports of little to no dry down tolerance, we found that 70% of pre-reproductive adult-sized snails survived a 12-week dry down. Smaller size classes of snails exhibited significantly lower survival rates (< 50% after eight weeks dry). Field surveys showed that 77% of egg production occurs in April-June. Our hydrologic analyses of six peninsular Florida wetlands showed that most dry downs overlapped a portion of the peak snail breeding season, and 70% of dry downs were ??? 12 weeks in duration. Dry down timing can affect recruitment by truncating annual egg production and stranding juveniles. Dry down survival rates and seasonal patterns of egg cluster production helped define a range of hydrologic conditions that support robust apple snail populations, and illustrate why multiple characteristics of dry down events should be considered in developing target hydrologic regimes for wetland fauna. ?? 2008, The Society of Wetland Scientists.

  9. Snail/beta-catenin signaling protects breast cancer cells from hypoxia attack

    SciTech Connect

    Scherbakov, Alexander M.; Stefanova, Lidia B.; Sorokin, Danila V.; Semina, Svetlana E.; Berstein, Lev M.; Krasil’nikov, Mikhail A.

    2013-12-10

    The tolerance of cancer cells to hypoxia depends on the combination of different factors – from increase of glycolysis (Warburg Effect) to activation of intracellular growth/apoptotic pathways. Less is known about the influence of epithelial–mesenchymal transition (EMT) and EMT-associated pathways on the cell sensitivity to hypoxia. The aim of this study was to explore the role of Snail signaling, one of the key EMT pathways, in the mediating of hypoxia response and regulation of cell sensitivity to hypoxia, using as a model in vitro cultured breast cancer cells. Earlier we have shown that estrogen-independent HBL-100 breast cancer cells differ from estrogen-dependent MCF-7 cells with increased expression of Snail1, and demonstrated Snail1 involvement into formation of hormone-resistant phenotype. Because Snail1 belongs to hypoxia-activated proteins, here we studied the influence of Snail1 signaling on the cell tolerance to hypoxia. We found that Snail1-enriched HBL-100 cells were less sensitive to hypoxia-induced growth suppression if compared with MCF-7 line (31% MCF-7 vs. 71% HBL-100 cell viability after 1% O{sub 2} atmosphere for 3 days). Snail1 knock-down enhanced the hypoxia-induced inhibition of cell proliferation giving the direct evidence of Snail1 involvement into cell protection from hypoxia attack. The protective effect of Snail1 was shown to be mediated, at least in a part, via beta-catenin which positively regulated expression of HIF-1-dependent genes. Finally, we found that cell tolerance to hypoxia was accompanied with the failure in the phosphorylation of AMPK – the key energy sensor, and demonstrated an inverse relationship between AMPK and Snail/beta-catenin signaling. Totally, our data show that Snail1 and beta-catenin, besides association with loss of hormone dependence, protect cancer cells from hypoxia and may serve as an important target in the treatment of breast cancer. Moreover, we suggest that the level of these proteins as well

  10. Refuge function of marine algae complicates selection in an intertidal snail.

    PubMed

    Kemppainen, Petri; van Nes, Solveig; Ceder, Christofer; Johannesson, Kerstin

    2005-04-01

    Species with restricted gene flow often show trait-shifts from one type of environment to another. In those rock-dwelling marine gastropods that lack larval dispersal, size generally decreases in wave-exposed habitats reducing risk of dislodgement, while increases in less exposed habitats to resist crab-crushing. In Littorina fabalis, however, snails of moderately exposed shores are generally much larger (11-14 mm) than snails of sheltered shores (5-8 mm). Observations from the White Sea (where crabs are not present) indicate that in the absence of crabs snails are small (6-7 mm) in both habitats. We assumed that the optimal size for L. fabalis in the absence of crabs is less than 8 mm, and thus that increased size in moderately exposed habitats in areas with crabs might be a response to crab predation. In a crab-rich area (Sweden) we showed that crab predation is an important mortality factor for this snail species in both sheltered and moderately exposed habitats. In sheltered habitats, snails were relatively more protected from crab-predation when dwelling on their habitual substrate, fucoid algae, than if experimentally tethered to rocks below the algae. This showed that algae function as snail refuges. Snail dislodgement increased, however, with wave exposure but tethering snails in moderately exposed habitats showed that large snails survived equally well on rocks under the algae as in the canopy of the algae. Thus in sheltered habitats a small snail size is favored, probably due to life-history reasons, while increased risk of being dislodged from the algae refuges promotes a large size in moderately exposed habitats. This study shows an example of selection of a trait depends on complex interactions of different factors (life-history optimization, crab predation, wave induced dislodgement and algal refuges). PMID:15711994

  11. Snails and slugs damaging the cut foliage, Cordyline fruticosa and use of biorationals towards their management.

    PubMed

    Karthiga, S; Jegathambigai, V; Karunarathne, M D S D; Svinningen, A; Mikunthan, G

    2012-01-01

    Snails and slugs became a serious molluscan pests and damaging leaves of purple compacta, Cordyline fruticosa extensively grown for export at Green Farm Ltd, Sri Lanka. The export quality of leaves of C. fruticosa is lowered due to feeding of snails, Achantina fulica (Bowditch), Opeas pyrgula Schmacker and Boettgerx and Helix aspersa Muller and slugs incurring great loss to cut foliage industry. Paucity of information is available to understand snails and slugs damage and their host range that limits to develop suitable management practices. Therefore this study was aimed to determine damage, alternate hosts and to develop possible management practices. Snails and slugs damaged mainly fresh leaves of C. fruticosa. The severity of damage was 44.5% in infested field based on the visual rating method. Leaves of cassava, sting bean, okra, cucumber, passion fruit, papaya, Glyricidia and shoe flower were identified as alternate hosts and neem, Ixora and Dracaena spp were not served as alternate hosts. Among the plant materials tested for their repellence against snails and slugs revealed that neem seed powder was an irritant; neem leaves, mint leaves and Lantana leaves were acted as anti-feedant and Salt as chemical repellent. Among the barrier and bait experiments Bordeaux mixture exhibited a significant barrier effect against horizontal movement of snails. Baits made out of Metaldehyde bait, vegetables bait and jaggery had a strong effect in repelling the snails and slugs. Mulching with Madhuca longifolia punnac was the best to reduce the snails and slugs population compared to M. longifolia seed kernel powder. Oil from M. longifolia failed to reduce their population. Hence the results revealed that saponin containing M. longifolia punnac helped to eliminate snails and slugs when used as mulch. Metaldehyde, vegetable and jaggery baits are also useful to minimize their colonization further. Hence combination of these methods will help to prevent snails and slugs from

  12. Changes in Frequency of Spontaneous Oscillations in Procerebrum Correlate to Behavioural Choice in Terrestrial Snails

    PubMed Central

    Samarova, Elena; Balaban, Pavel

    2009-01-01

    The aim of our study was to understand functional significance of spontaneous oscillations of local field potential in the olfactory brain lobe of terrestrial snail, the procerebrum (PC). We compared changes in frequency of oscillations in semi-intact preparations from snails trained to percept the same conditioned odor as positive (associated with food reinforcement) or negative (associated with noxious reinforcement). In vivo recordings in freely behaving naïve snails showed a significant decrease of spontaneous PC oscillations frequency during a stage of tentacle withdrawal to odor presentation. In in vitro preparations from naïve snails, a similar decrease in frequency of the PC oscillations to odor presentation was observed. Changes in frequency of the oscillations to cineole presentations in the “aversive” group of snails (demonstrating withdrawal) were much more pronounced than in naïve snails. No significant difference in responses to 5% and 20% cineole was noted. Changes in the spontaneous oscillations frequency in the snails trained to respond with positive reaction (approach) to cineole depended on the concentration of the applied odor, and these responses were qualitatively similar to responses of other groups during the first 10 s of responses to odor, but significantly different (increase in PC oscillations frequency) from the responses of the aversively trained and naïve snails in the interval 11–30 s, which corresponds to the end of the tentacle withdrawal and timing of decision making (approach or escape) in the free behaving snails. Obtained results suggest that frequency of the PC lobe spontaneous oscillations correlate to the choice of behavior in snails: withdrawal (decrease in frequency) or approach (increase in frequency) to the source of odor. PMID:19753329

  13. Effects of an exotic prey species on a native specialist: Eexample of the snail kite

    USGS Publications Warehouse

    Cattau, Christopher E.; Martin, J.; Kitchens, W.M.

    2010-01-01

    Despite acknowledging that exotic species can exhibit tremendous influence over native populations, few case studies have clearly demonstrated the effects of exotic prey species on native predators. We examined the effects of the recently introduced island apple snail (Pomacea insularum) on the foraging behavior and energetics of the endangered snail kite (Rostrhamus sociabilis plumbeus) in Florida. We conducted time-activity budgets: (i) on kites foraging for native Florida apple snails (Pomacea paludosa) in major wetland units within the kites' range that had not been invaded by the exotic island apple snail and (ii) on kites foraging for exotic apple snails in Lake Tohopekaliga, the only major wetland utilized by the snail kite that had suffered a serious invasion of P. insularum. When foraging for P. insularum, snail kites dropped a greater proportion of snails, and they experienced increased handling times and decreased consumption rates; however, kites foraging for P. insularum also spent a smaller proportion of the day in flight. Estimates of net daily energy balances between kites feeding on P. insularum versus P. paludosa were comparable for adults, but juveniles experienced energetic deficiencies when feeding on the exotic snail. Due to this discrepancy, we hypothesize that wetlands invaded by P. insularum, such as Lake Tohopekaliga, may function as ecological traps for the snail kite in Florida by attracting breeding adults but simultaneously depressing juvenile survival. This study highlights the conservation implications and importance of elucidating the effects that exotic species have on native specialists, especially those that are endangered, because subtle influences on behavior may have significant population consequences. ?? 2009 Elsevier Ltd.

  14. Effects of an exotic prey species on a native specialist: example of the snail kite

    USGS Publications Warehouse

    Cattau, Christopher E.; Martin, J.; Kitchens, Wiley M.

    2010-01-01

    Despite acknowledging that exotic species can exhibit tremendous influence over native populations, few case studies have clearly demonstrated the effects of exotic prey species on native predators. We examined the effects of the recently introduced island apple snail (Pomacea insularum) on the foraging behavior and energetics of the endangered snail kite (Rostrhamus sociabilis plumbeus) in Florida. We conducted time-activity budgets: (i) on kites foraging for native Florida apple snails (Pomacea paludosa) in major wetland units within the kites' range that had not been invaded by the exotic island apple snail and (ii) on kites foraging for exotic apple snails in Lake Tohopekaliga, the only major wetland utilized by the snail kite that had suffered a serious invasion of P. insularum. When foraging for P. insularum, snail kites dropped a greater proportion of snails, and they experienced increased handling times and decreased consumption rates; however, kites foraging for P. insularum also spent a smaller proportion of the day in flight. Estimates of net daily energy balances between kites feeding on P. insularum versus P. paludosa were comparable for adults, but juveniles experienced energetic deficiencies when feeding on the exotic snail. Due to this discrepancy, we hypothesize that wetlands invaded by P. insularum, such as Lake Tohopekaliga, may function as ecological traps for the snail kite in Florida by attracting breeding adults but simultaneously depressing juvenile survival. This study highlights the conservation implications and importance of elucidating the effects that exotic species have on native specialists, especially those that are endangered, because subtle influences on behavior may have significant population consequences.

  15. Controllable Snail-Paced Light in Biological Bacteriorhodopsin Thin Film

    NASA Astrophysics Data System (ADS)

    Wu, Pengfei; Rao, D. V. G. L. N.

    2005-12-01

    We observe that the group velocity of light is reduced to an extremely low value of 0.091mm/s in a biological thin film of bacteriorhodopsin at room temperature. By exploiting unique features of a flexible photoisomerization process for coherent population oscillation, the velocity is all-optically controlled over an enormous span, from snail-paced to normal light speed, with no need of modifying the characteristics of the incident pulse. Because of the large quantum yield for the photoreaction in this biochemical system, the ultraslow light is observed even at low light levels of microwatts, indicating high energy efficiency.

  16. [Equipment for biological experiments with snails aboard piloted orbital stations].

    PubMed

    Gorgiladze, G I; Korotkova, E V; Kuznetsova, E E; Mukhamedieva, L N; Begrov, V V; Pepeliaev, Iu V

    2010-01-01

    To fly biological experiments aboard piloted orbital stations, research equipment was built up of an incubation container, filter system and automatic temperature controller. Investigations included analysis of the makeup and concentrations of gases produced by animals (snails) during biocycle, and emitted after death. Filters are chemisorption active fibrous materials (AFM) with high sorption rate and water receptivity (cation exchange fiber VION-KN-1 and anion exchange fiber VION-AS-1), and water-repellent carbon adsorbent SKLTS. AFM filters were effective in air cleaning and practically excluded ingress of chemical substances from the container into cabin atmosphere over more than 100 days. PMID:21033402

  17. An embryonic transcriptome of the pulmonate snail Radix balthica.

    PubMed

    Tills, Oliver; Truebano, Manuela; Rundle, Simon

    2015-12-01

    The pond snail, Radix balthica (Linnaeus 1758), is an emerging model species within ecological developmental biology. While its development has been characterised in detail, genomic resources for embryonic stages are lacking. We applied Illumina MiSeq RNA-seq to RNA isolated from pools of embryos at two points during development. Embryos were cultured in either the presence or absence of predator kariomones to increase the diversity of the transcripts assembled. Sequencing produced 47.2M paired-end reads, assembled into 54,360 contigs of which 73% were successfully annotated. This transcriptome provides an invaluable resource to build a mechanistic understanding of developmental plasticity. PMID:26297600

  18. [An experimental unit for the recording of the escape reaction of a ground snail to tactile stimulation].

    PubMed

    Moskvitin, A A; Pivovarov, A S

    2003-01-01

    An original working experimental unit for noninvasive objective recording of the magnitude of escape reaction of a ground snail evoked by tactile stimulation is described. A. snail creeps upwards over the cylinder rotating around its horizontal axis. A watching device ensures a constant snail position relative to a light source and a photoelement. A device for tactile stimulation which provides graduated energy of an impact is constructed on the basis of the magnetic circuit of a loudspeaker. In response to a tactile stimulus a snail pulls in its feelers, head, and foot, and the area of snail's shadow decreases. These changes are indicated by the photoelement. PMID:12754854

  19. The repressor function of snail is required for Drosophila gastrulation and is not replaceable by Escargot or Worniu.

    PubMed

    Hemavathy, Kirugaval; Hu, Xiaodi; Ashraf, Shovon I; Small, Stephen J; Ip, Y Tony

    2004-05-15

    Mesoderm formation in the Drosophila embryo depends on the maternal Toll signaling pathway. The Toll pathway establishes the Dorsal nuclear gradient, which regulates many zygotic genes to establish the mesodermal fate and promote the invagination of ventral cells. An important target gene of Dorsal is snail, which is required for proper mesoderm invagination. The Snail protein contains five zinc fingers and is a transcriptional repressor. However, it is not clear whether repressing target genes is a requirement for Snail to control ventral invagination. To examine such requirement, we conducted a series of genetic rescue experiments in snail mutant embryos. Snail, Worniu, and Escargot are closely related zinc-finger proteins and have equal functions during neuroblast development. However, among these three proteins, only Snail can rescue the mesoderm invagination phenotype. Moreover, the ability of various Snail mutant constructs to repress gene expression correlates with their ability to control invagination. This unique property of Snail in mesoderm formation can be attributed mostly to the CtBP co-repressor interaction motifs in the N-terminus, not to the C-terminal DNA-binding zinc fingers. Ectopic expression of Snail outside the ventral domain is not sufficient to induce cell movement even though repression of target genes still occurs. Together, the results show that the repressor function of Snail is essential for gastrulation. The repression of target genes by Snail may permit other factors in the ventral cells to positively promote mesoderm invagination. PMID:15110709

  20. Snail Family Transcription Factors Are Implicated in Thyroid Carcinogenesis

    PubMed Central

    Hardy, Robert G.; Vicente-Dueñas, Carolina; González-Herrero, Ines; Anderson, Catriona; Flores, Teresa; Hughes, Sharon; Tselepis, Chris; Ross, James A.; Sánchez-García, Isidro

    2007-01-01

    E-Cadherin (CDH1) expression is reduced in thyroid carcinomas by primarily unknown mechanisms. In several tissues, SNAIL (SNAI1) and SLUG (SNAI2) induce epithelial-mesenchymal transition by altering target gene transcription, including CDH1 repression, but these transcription factors have not been studied in thyroid carcinoma. Recently, our group has provided direct evidence that ectopic SNAI1 expression induces epithelial and mesenchymal mouse tumors. SNAI1, SNAI2, and CDH1 expression were analyzed in thyroid-derived cell lines and samples of human follicular and papillary thyroid carcinoma by reverse transcriptase-polymerase chain reaction, Western blotting, and immunohistochemistry. The effect of SNAI1 expression on CDH1 transcription was analyzed by reverse transcriptase-polymerase chain reaction and Western blotting in ori-3 cells. Thyroid carcinoma development was analyzed in CombitTA-Snail mice, in which SNAI1 levels are up-regulated. SNAI1 and SNAI2 were not expressed in cells derived from normal thyroid tissue, or in normal human thyroid samples, but were highly expressed in cell lines derived from thyroid carcinomas, in human thyroid carcinoma samples, and their metastases. SNAI1 expression in ori-3 cells repressed CDH1 transcription. Combi-TA mice developed papillary thyroid carcinomas, the incidence of which was increased by concomitant radiotherapy. In conclusion, SNAI1 and SNAI2 are ectopically expressed in thyroid carcinomas, and aberrant expression in mice is associated with papillary carcinoma development. PMID:17724139

  1. Allying with armored snails: the complete genome of gammaproteobacterial endosymbiont

    PubMed Central

    Nakagawa, Satoshi; Shimamura, Shigeru; Takaki, Yoshihiro; Suzuki, Yohey; Murakami, Shun-ichi; Watanabe, Tamaki; Fujiyoshi, So; Mino, Sayaka; Sawabe, Tomoo; Maeda, Takahiro; Makita, Hiroko; Nemoto, Suguru; Nishimura, Shin-Ichiro; Watanabe, Hiromi; Watsuji, Tomo-o; Takai, Ken

    2014-01-01

    Deep-sea vents harbor dense populations of various animals that have their specific symbiotic bacteria. Scaly-foot gastropods, which are snails with mineralized scales covering the sides of its foot, have a gammaproteobacterial endosymbiont in their enlarged esophageal glands and diverse epibionts on the surface of their scales. In this study, we report the complete genome sequencing of gammaproteobacterial endosymbiont. The endosymbiont genome displays features consistent with ongoing genome reduction such as large proportions of pseudogenes and insertion elements. The genome encodes functions commonly found in deep-sea vent chemoautotrophs such as sulfur oxidation and carbon fixation. Stable carbon isotope (13C)-labeling experiments confirmed the endosymbiont chemoautotrophy. The genome also includes an intact hydrogenase gene cluster that potentially has been horizontally transferred from phylogenetically distant bacteria. Notable findings include the presence and transcription of genes for flagellar assembly, through which proteins are potentially exported from bacterium to the host. Symbionts of snail individuals exhibited extreme genetic homogeneity, showing only two synonymous changes in 19 different genes (13 810 positions in total) determined for 32 individual gastropods collected from a single colony at one time. The extremely low genetic individuality in endosymbionts probably reflects that the stringent symbiont selection by host prevents the random genetic drift in the small population of horizontally transmitted symbiont. This study is the first complete genome analysis of gastropod endosymbiont and offers an opportunity to study genome evolution in a recently evolved endosymbiont. PMID:23924784

  2. Reproduction and demography of the Florida Everglade (Snail) Kite

    USGS Publications Warehouse

    Snyder, N.F.R.; Beissinger, S.R.; Chandler, R.E.

    1989-01-01

    An 18-year study of reproduction and survival of the Florida Everglade (Snail) Kite (Rostrhamus sociabilis plumbeus) has revealed the following: extremely poor nesting success (only 13.6% of nests found at the nest-building stage successful); extremely long breeding seasons (some reproductive activity in almost all months in good years); frequent multiple brooding and frequent multiple brooding and frequent renesting after failure; low egg hatchability (81%); high failure rates due to nest collapse, desertion, and predation; extremely high survival of juveniles and adults under good water conditions; and high vulnerability to drought due to near total dependency on a single species of drought-sensitive snail for food. Despite low nesting success, the species has increased rapidly under good conditions, mainly because of multiple nesting attempts within long breeding seasons and high survival rates of free-flying birds. Nesting success varied significantly between regions and nest substrates, but not as a function of seasons or solitary vs. colonial nesting. While nesting success was reduced in low water years, this effect was at least partly due to heavy use of poor nest substrates under such conditions. Clutch size and numbers of young per successful nest varied with regions, but not as a function of seasons or water levels. The effects of coloniality on clutch size and numbers of young were inconsistent. Significant effects of nest-substrate types on clutch size and numbers of young were apparently artifacts of substrate differences between regions.

  3. Microgeographic evolution of snail shell shape and predator behavior.

    PubMed

    Schilthuizen, Menno; van Til, Angelique; Salverda, Merijn; Liew, Thor-Seng; James, S Sheena; bin Elahan, Berjaya; Vermeulen, Jaap J

    2006-09-01

    Genetic divergence in geographically isolated populations is a prerequisite for allopatric speciation, one of the most common modes of speciation. In ecologically equivalent populations existing within a small, environmentally homogeneous area, an important role for environmentally neutral divergence is often found or inferred. We studied a species complex of conspicuously shaped Opisthostoma land snails on scattered limestone outcrops within a small area of lowland rainforest in Borneo. We used shell morphometrics, mitochondrial and nuclear DNA sequences, and marks of predation to study the factors involved in allopatric divergence. We found that a striking geographic divergence exists in shell morphology, which is partly associated with neutral genetic divergence. We also found geographic differentiation in the behavior of the snails' invertebrate predator and evidence of an evolutionary interaction between aspects of shell shape and predator behavior. Our study shows that adaptation to biotic aspects of the environment may play a more important role in allopatric speciation than previously suspected, even on a geographically very small scale. PMID:17089969

  4. Characterizations of cholinesterases in golden apple snail (Pomacea canaliculata).

    PubMed

    Zou, Xiang-Hui; Xie, Heidi Qun-Hui; Zha, Guang-Cai; Chen, Vicky Ping; Sun, Yan-Jie; Zheng, Yu-Zhong; Tsim, Karl Wah-Keung; Dong, Tina Ting-Xia; Choi, Roy Chi-Yan; Luk, Wilson Kin-Wai

    2014-07-01

    Cholinesterases (ChEs) have been identified in vertebrates and invertebrates. Inhibition of ChE activity in invertebrates, such as bivalve molluscs, has been used to evaluate the exposure of organophosphates, carbamate pesticides, and heavy metals in the marine system. The golden apple snail (Pomacea canaliculata) is considered as one of the worst invasive alien species harmful to rice and other crops. The ChE(s) in this animal, which has been found recently, but poorly characterized thus far, could serve as biomarker(s) for environmental surveillance as well as a potential target for the pest control. In this study, the tissue distribution, substrate preference, sensitivity to ChE inhibitors, and molecular species of ChEs in P. canaliculata were investigated. It was found that the activities of both AChE and BChE were present in all test tissues. The intestine had the most abundant ChE activities. Both enzymes had fair activities in the head, kidney, and gills. The BChE activity was more sensitive to tetra-isopropylpyrophosphoramide (iso-OMPA) than the AChE. Only one BChE molecular species, 5.8S, was found in the intestine and head, whereas two AChE species, 5.8S and 11.6S, were found there. We propose that intestine ChEs of this snail may be potential biomarkers for manipulating pollutions. PMID:24217797

  5. [Dynamic transmission of Schistosoma by Biomphalaria pfeifferi in the region of Man in Côte d'Ivoire].

    PubMed

    Yapi Yapi, G; Touré, M; Boka, O M; Tia, E; Boby, O A-M

    2014-12-01

    Intestinal schistosomiasis by Schistosoma mansoni is a parasitary affection transmitted in West Africa by the mollusc Biomphalaria pfeifferi. Transmission dynamic of schistosomiasis by Biomphalaria pfeifferi has seldom been investigated in Côte d'Ivoire. In the framework of a research project on the epidemiology of schistosomiasis in the natural forest ecosystems, this study was performed longitudinally over a period of three years in Man region, in western Côte d'Ivoire. The trial set up from 1986 to 1989 and the project was funded by the World Health Organization. The general objective is to design a strategy of schistosomiasis control based on chemotherapy. The approach aims at interrupting or considerably reducing the reinfections, prolonging in that way the duration of the positive effects of the chemotherapy. The specific objectives assigned to the work consisted in studying the dynamic of the B. pfeifferi population and the infection of B. pfeifferi. To achieve our objectives, diverse methods (i: the molluscs sampling by two prospectors during 15 minutes per study site and ii: individual isolation of molluscs in test tubes with 5 or 10 mL of filtered water and exposure to light) have been used. They enabled us in the sampling of the intermediary host molluscs of Schistosoma and seek their infections. The results show that apparent high densities of B. pfeifferi can be observed at the end of the dry season and at the beginning of rainy seasons. In addition, the variation of relative abundance of intermediary host molluscs of Schistosoma is significantly influenced by rainfall and the system of water ways. The period of transmission of the infection to man is six months at Gueupleu village and ten months at Botonguiné village. In order to optimize the effect of chemotherapy in these sites of transmission characterized by a high level of endemy (68 %), an extreme mobility of human populations and a multiplicity of contamination sites, this study should not

  6. Bacterial induction of Snail1 contributes to blood-brain barrier disruption

    PubMed Central

    Kim, Brandon J.; Hancock, Bryan M.; Bermudez, Andres; Cid, Natasha Del; Reyes, Efren; van Sorge, Nina M.; Lauth, Xavier; Smurthwaite, Cameron A.; Hilton, Brett J.; Stotland, Aleksandr; Banerjee, Anirban; Buchanan, John; Wolkowicz, Roland; Traver, David; Doran, Kelly S.

    2015-01-01

    Bacterial meningitis is a serious infection of the CNS that results when blood-borne bacteria are able to cross the blood-brain barrier (BBB). Group B Streptococcus (GBS) is the leading cause of neonatal meningitis; however, the molecular mechanisms that regulate bacterial BBB disruption and penetration are not well understood. Here, we found that infection of human brain microvascular endothelial cells (hBMECs) with GBS and other meningeal pathogens results in the induction of host transcriptional repressor Snail1, which impedes expression of tight junction genes. Moreover, GBS infection also induced Snail1 expression in murine and zebrafish models. Tight junction components ZO-1, claudin 5, and occludin were decreased at both the transcript and protein levels in hBMECs following GBS infection, and this repression was dependent on Snail1 induction. Bacteria-independent Snail1 expression was sufficient to facilitate tight junction disruption, promoting BBB permeability to allow bacterial passage. GBS induction of Snail1 expression was dependent on the ERK1/2/MAPK signaling cascade and bacterial cell wall components. Finally, overexpression of a dominant-negative Snail1 homolog in zebrafish elevated transcription of tight junction protein–encoding genes and increased zebrafish survival in response to GBS challenge. Taken together, our data support a Snail1-dependent mechanism of BBB disruption and penetration by meningeal pathogens. PMID:25961453

  7. Comparative toxicity of Paraquat herbicide and some plant extracts in Lymnaea natalensis snails.

    PubMed

    Bakry, Fayez A; Eleiwa, Mona E; Taha, Samir A; Ismil, Somya M

    2016-01-01

    Paraquat has been shown to be a highly toxic compound for humans and animals, and many cases of acute poisoning and death have been reported over the past few decades. The present study was undertaken to evaluate comprehensively herbicides (Paraquat) and some plant extracts to biochemical aspects of Lymnaea natalensis snails. It was found that the exposure of L. natalensis to Paraquat and plant extracts led to a significant reduction in the infectivity of Fasciola gigantica miracidia to the snail. The glucose level in hemolymph of exposed snails was elevated, while the glycogen showed a decrease in soft tissues when compared with the control group. In addition, the activity level of some enzymes representing glycolytic enzymes as hexokinase (HK), pyruvate kinase (PK), phosphofructokinase (PFK), lactate dehydrogenase (LDH), and glucose phosphate isomerase (GPI) in snail's tissues were reduced in response to the treatment. It was concluded that the pollution of the aquatic environment by herbicide would adversely affect the metabolism of the L. natalensis snails. Snails treated with Agave attenuate, Ammi visnaga, and Canna iridiflora plant had less toxic effect compared to snails treated with Paraquat. PMID:24081640

  8. Taken to the limit--Is desiccation stress causing precocious encystment of trematode parasites in snails?

    PubMed

    O'Dwyer, Katie; Poulin, Robert

    2015-12-01

    When hosts experience environmental stress, the quantity and quality of resources they provide for parasites may be diminished, and host longevity may be decreased. Under stress, parasites may adopt alternative strategies to avoid fitness reductions. Trematode parasites typically have complex life cycles, involving asexual reproduction in a gastropod first intermediate host. A rare phenomenon, briefly mentioned in the literature, and termed 'precocious encystment' involves the next stage in the parasites' life cycle (metacercarial cyst) forming within the preceding stage (redia), while still inside the snail. In the trematode Parorchis sp. NZ using rocky shore snails exposed to long periods outside water, we hypothesised that this might be an adaptive strategy against desiccation, preventing parasite emergence from the snail. To test this, we first investigated the effect of prolonged desiccation on the survival of two species of high intertidal snails. Secondly, we measured the reproductive output (cercarial production) of the parasite under wet and dry conditions. Finally, we quantified the influence of desiccation stress on the occurrence of precocious encystment. Snail mortality was higher under dry conditions, indicating stress, and it was somewhat exacerbated for infected snails. Parasite reproductive output differed between wet and dry conditions, with parasites of snails kept in dry conditions producing more cercariae when placed in water. Little variation was observed in the occurrence of precocious encystment, although some subtle patterns emerged. Given the stresses associated with living in high intertidal environments, we discuss precocious encystment as a possible stress response in this trematode parasite. PMID:26344863

  9. Male characteristics on female mud snails caused by antifouling bottom paints.

    PubMed

    Smith, B S

    1981-02-01

    This study continues an investigation of an anatomical abnormality, named 'imposex', which consists of a superimposition of male characteristics on to a functionally normal female reproductive anatomy of the dioecious snail Nassarius obsoletus Say. Imposex is prevalent in natural populations living near yacht basins and rarely found distant from them. In the current study caged snails were transferred between a yacht basin and a distant 'clean' locality where the natural population of snails was normal. Imposex was induced in some normal snails kept at the marina and suppressed, but not lost in abnormal snails kept at the clean locality. A similar positive result was obtained in the laboratory by exposing normal snails to organotin-containing antifouling paints and abnormal snails to clean sea water. Results were negative in parallel tests of various marina-associated materials which did not contain organotin. The laboratory studies have thus identified a causative factor for the anatomical abnormalities common near yacht basins in the natural environment. They also provide a rare, if not unique, example of a chemical agent which causes the appearance of superfluous anatomical features in an animal. PMID:7185870

  10. The mesoderm determinant snail collaborates with related zinc-finger proteins to control Drosophila neurogenesis.

    PubMed

    Ashraf, S I; Hu, X; Roote, J; Ip, Y T

    1999-11-15

    The Snail protein functions as a transcriptional regulator to establish early mesodermal cell fate. Later, in germ band-extended embryos, Snail is also expressed in most neuroblasts. Here we present evidence that this expression of Snail is required for central nervous system (CNS) development. The neural function of snail is masked by two closely linked genes, escargot and worniu. Both Escargot and Worniu contain zinc-finger domains that are highly homologous to that of Snail. Although not affecting expression of early neuroblast markers, the deletion of the region containing all three genes correlates with loss of expression of CNS determinants including fushi tarazu, pdm-2 and even-skipped. Transgenic expression of each of the three Snail family proteins can rescue efficiently the fushi tarazu defects, and partially the pdm-2 and even-skipped CNS patterns. These results demonstrate that the Snail family proteins have essential functions during embryonic CNS development, around the time of ganglion mother cell formation. PMID:10562554

  11. [Life span and cercaria shedding of schistosome-infected snails in mountain region of Yunnan].

    PubMed

    Xie, F; Yin, G; Wu, J; Duan, Y; Zhang, X; Yang, J; Qian, K; Tan, H; Zheng, J; Zhang, R

    1990-01-01

    The life span and cercaria shedding of infected Oncomelania snails in a mountain region of Shitoudi village, Weishan County, Yunnan Province were observed in simulated local ecological environments. 135 infected snails were isolated for observation 3 months after exposure to miracidia in August, 1987. The snail survival rate from the day of initial cercaria shedding to next June, July, August and September was 27.4, 16.3, 13.3 and 11.9% respectively, and the average number of cercariae shed was 139.9, 29.6, 39.2 and 75 per month respectively. The average life span of infected snails was 171.6 days. The average number of cercariae shed per snail in its whole life was 673.0. It was estimated that the average patent period of infected snails was over half a year. As this is the first report in our country in respect to the life span and cercariae shedding of infected snails in a mountain region, the result might be useful for quantitative analysis of epidemiological factors of schistosomiasis in this kind of endemic areas as well as for formulation of control strategy. PMID:2114229

  12. Temperature dependence of Opisthorchis viverrini infection in first intermediate host snail, Bithynia siamensis goniomphalos.

    PubMed

    Prasopdee, Sattrachai; Kulsantiwong, Jutharat; Piratae, Supawadee; Khampoosa, Panita; Thammasiri, Chalida; Suwannatrai, Apiporn; Laha, Thewarach; Grams, Rudi; Loukas, Alex; Tesana, Smarn

    2015-01-01

    Determining of the success of a parasite's infectiveness in its snail host clearly depends on environmental conditions. Temperature, one of the most influential factors impinging on metabolism of cold-blooded animals, is believed to be an important factor in parasitic infection in snails. In order to elucidate the influence of temperature, sex and size of snails on infectivity of Opisthorchis viverrini to its first intermediate host, Bithynia siamensis goniomphalos, 960 snails were divided into 2 groups by sex. Each group was subdivided by their size into small and medium sub-groups. Each snail was fed with embryonated uterine-eggs of O. viverrini at different temperatures (16-37°C, 3°C intervals). Dissections were carried out 1, 7, 14, 28 and 56 days thereafter and detection of O. viverrini infection was undertaken by PCR using specific primers. Infection was strongly temperature-dependent, as temperature increases of 1°C resulted in increased odds of infection 5.4% (P<0.01). A temperature of 34°C gave the highest rate of infection of 44.14%. We also found that the odds of infection in small sized snails was 39.8% higher relative to medium sized snails (P<0.05). Relative to day 1, the decrease in the odds of infection was detected when the day post infection was longer (P<0.01). Proportion of infection in female was not different to male significantly. PMID:24161535

  13. Dining local: the microbial diet of a snail that grazes microbial communities is geographically structured.

    PubMed

    O'Rorke, Richard; Cobian, Gerald M; Holland, Brenden S; Price, Melissa R; Costello, Vincent; Amend, Anthony S

    2015-05-01

    Achatinella mustelina is a critically endangered tree snail that subsists entirely by grazing microbes from leaf surfaces of native trees. Little is known about the fundamental aspects of these microbe assemblages: not taxonomic composition, how this varies with host plant or location, nor whether snails selectively consume microbes. To address these questions, we collected 102 snail faecal samples as a proxy for diet, and 102 matched-leaf samples from four locations. We used Illumina amplicon sequencing to determine bacterial and fungal community composition. Microbial community structure was significantly distinct between snail faeces and leaf samples, but the same microbes occurred in both. We conclude that snails are not 'picky' eaters at the microbial level, but graze the surface of whatever plant they are on. In a second experiment, the gut was dissected from non-endangered native tree snails in the same family as Achatinella to confirm that faecal samples reflect gut contents. Over 60% of fungal reads were shared between faeces, gut and leaf samples. Overall, location, sample type (faeces or leaf) and host plant identity all significantly explained the community composition and variation among samples. Understanding the microbial ecology of microbes grazed by tree snails enables effective management when conservation requires captive breeding or field relocation. PMID:25285515

  14. The ectopic expression of Snail in MDBK cells does not induce epithelial-mesenchymal transition

    PubMed Central

    IZAWA, GENYA; KOBAYASHI, WAKAKO; HARAGUCHI, MISAKO; SUDO, AKIHARU; OZAWA, MASAYUKI

    2015-01-01

    Epithelial-mesenchymal transition (EMT), a key process in the tumor metastatic cascade, is characterized by the loss of cell-cell junctions and cell polarity, as well as by the acquisition of migratory and invasive properties. However, the precise molecular events that initiate this complex EMT process are poorly understood. Snail expression induces EMT in Madin-Darby canine kidney (MDCK) cells and the human epidermoid carcinoma cell line, A431. Snail is a zinc finger transcription factor and triggers EMT by suppressing E-cadherin expression. In the present study, to broaden our knowledge of Snail-induced EMT, we generated stable Snail transfectants using Madin-Darby bovine kidney (MDBK) cells. Contrary to the MDCK or A431 cells examined in our previous studies, the MDBK cells transfected with the Snail construct maintained an epithelial morphology and showed no sign of reduced cell-cell adhesiveness compared to the control cells. Consistent with these observations, the down-regulation of epithelial marker proteins, e.g. E-cadherin and desmoglein, and the upregulation of mesenchymal marker proteins, e.g., N-cadherin and fibronectin, were not detected. Furthermore, the E-cadherin promoter was not methylated. Therefore, in the MDBK cells, the ectopic expression of Snail failed to induce EMT. As previously demonstrated, in MDCK cells, Snail expression is accompanied by the increased expression of other EMT-inducing transcription factors, e.g., Slug and zinc finger E-box-binding homeobox 1 (ZEB1). However, the MDBK cells transfected with the Snail construct did not exhibit an increased expression of these factors. Thus, it is possible that the failure to upregulate other EMT-related transcription factors may explain the lack of Snail-mediated induction of EMT in MDBK cells. PMID:25998899

  15. SNAIL gene inhibited by hypoxia-inducible factor 1α (HIF-1α) in epithelial ovarian cancer.

    PubMed

    Zhang, Pengnan; Liu, Yanmei; Feng, Youji; Gao, Shujun

    2016-09-01

    The aim of this study was to investigate the relationship between HIF-1α and SNAIL gene expression in the epithelial ovarian cancer (EOC) cell line. EOC cells were treated with hypoxia, hypoxia combined with rapamycin, and control. The expression of HIF-1α and E-cad were assessed by reverse transcription-polymerase chain reaction (RT-PCR) and western blotting. The gene expression of SNAIL was studied by RT-PCR and real-time PCR. RNA interference technology was used to determine the relationship between HIF-1α and SNAIL. The present study indicated that the HIF-1α protein was expressed and increased in EOC cell line. SNAIL mRNA was found to increase and E-cad expression decreased with the time of hypoxia prolonged. Hypoxia increased invasion abilities of EOC cell line, but compared with cells exposed to hypoxia, the change of invasive ability of cells with rapamycin had no effect. The expression of HIF-1α protein and SNAIL mRNA could be inhibited gradually by rapamycin. siRNA of HIF-1α could suppress the expression of SNAIL while siRNA of SNAIL had no influence on HIF-1α protein expression. HIF-1α may be the upstream of the SNAIL gene in EOC. Our data suggested that HIF-1α might be an upregulator of the SNAIL gene and HIF-1α-SNAIL-E-cad pathway may play an important role in EOC invasion and metastasis. PMID:27044634

  16. Solar radio-transmitters on snail kites in Florida

    USGS Publications Warehouse

    Snyder, N.F.R.; Beissinger, S.R.; Fuller, M.R.

    1989-01-01

    The effectiveness and safety of one- and two-stage solar radio-transmitters in tracking the movements and survival of adult and fledgling Snail Kites (Rostrhamus sociabilis) were evaluated between 1979 and 1983 in southern Florida. Transmitters were attached to birds with back-pack arrangements using teflon ribbon straps. Accessory plastic shields minimized feather coverage of the solar cells. Intact transmitters were seen on birds up to 47 mo after installation. Operating lives ranged from 8 to 21 mo for one-stage, and 10 to 14 mo for two-stage transmitters. Because survival of adult and nestling radio-marked kites was high, we conclude that our transmitter-attachment method had little effect on the birds.

  17. Toxins from cone snails: properties, applications and biotechnological production.

    PubMed

    Becker, Stefan; Terlau, Heinrich

    2008-05-01

    Cone snails are marine predators that use venoms to immobilize their prey. The venoms of these mollusks contain a cocktail of peptides that mainly target different voltage- and ligand-gated ion channels. Typically, conopeptides consist of ten to 30 amino acids but conopeptides with more than 60 amino acids have also been described. Due to their extraordinary pharmacological properties, conopeptides gained increasing interest in recent years. There are several conopeptides used in clinical trials and one peptide has received approval for the treatment of pain. Accordingly, there is an increasing need for the production of these peptides. So far, most individual conopeptides are synthesized using solid phase peptide synthesis. Here, we describe that at least some of these peptides can be obtained using prokaryotic or eukaryotic expression systems. This opens the possibility for biotechnological production of also larger amounts of long chain conopeptides for the use of these peptides in research and medical applications. PMID:18340446

  18. Gut stem cells, a story of snails, flies and mice

    PubMed Central

    Amoyel, Marc

    2015-01-01

    Intestinal stem cells (ISCs) replenish and regenerate several types of cells in the gut, both during normal homeostasis and in response to various insults such as infections. Although gut structure and complexity vary across phyla, two functional categories of differentiated cell types are always present: absorptive cells and those of the secretory lineage. A series of studies in Drosophila and mouse published in The EMBO Journal, including one in this issue, identifies conserved roles for the Snail family of zinc finger transcription factors in regulating self-renewal and differentiation of ISCs (Korzelius et al, 2014; Loza-Coll et al, 2014; Horvay et al, 2015). PMID:25863942

  19. Copper toxicity to the fresh water snail, Lymnaea luteola

    SciTech Connect

    Reddy, N.M.; Rao, P.V.

    1987-07-01

    Haemocyanins are found in arthropoda and mollusca and show a copper content characteristic for each phylum. Heavy metal accumulation by mollusks is widely reported. Approximately one third of the enzymes either required addition of a metal ion as a cofactor in order to exhibit maximum activity or contained a slightly bound metal ion which appeared to be involved in the catalytic process. Copper is the only metal which has been detected in significant amounts in amino oxidase. The present study is designed to evaluate the influence of such copper, which is of such common occurrence in biological material, on some of the lipolytic enzymes of fresh water pulmonate snail, Lymnaea luteola when added to ambient medium. The present study also highlights the possible detoxification mechanism prevailing in this fresh water mollusk.

  20. Elongator Protein 3 (Elp3) stabilizes Snail1 and regulates neural crest migration in Xenopus

    PubMed Central

    Yang, Xiangcai; Li, Jiejing; Zeng, Wanli; Li, Chaocui; Mao, Bingyu

    2016-01-01

    Elongator protein 3 (Elp3) is the enzymatic unit of the elongator protein complex, a histone acetyltransferase complex involved in transcriptional elongation. It has long been shown to play an important role in cell migration; however, the underlying mechanism is unknown. Here, we showed that Elp3 is expressed in pre-migratory and migrating neural crest cells in Xenopus embryos, and knockdown of Elp3 inhibited neural crest cell migration. Interestingly, Elp3 binds Snail1 through its zinc-finger domain and inhibits its ubiquitination by β-Trcp without interfering with the Snail1/Trcp interaction. We showed evidence that Elp3-mediated stabilization of Snail1 was likely involved in the activation of N-cadherin in neural crest cells to regulate their migratory ability. Our findings provide a new mechanism for the function of Elp3 in cell migration through stabilizing Snail1, a master regulator of cell motility. PMID:27189455

  1. Wet Adhesion and Adhesive Locomotion of Snails on Anti-Adhesive Non-Wetting Surfaces

    PubMed Central

    Shirtcliffe, Neil J.; McHale, Glen; Newton, Michael I.

    2012-01-01

    Creating surfaces capable of resisting liquid-mediated adhesion is extremely difficult due to the strong capillary forces that exist between surfaces. Land snails use this to adhere to and traverse across almost any type of solid surface of any orientation (horizontal, vertical or inverted), texture (smooth, rough or granular) or wetting property (hydrophilic or hydrophobic) via a layer of mucus. However, the wetting properties that enable snails to generate strong temporary attachment and the effectiveness of this adhesive locomotion on modern super-slippy superhydrophobic surfaces are unclear. Here we report that snail adhesion overcomes a wide range of these microscale and nanoscale topographically structured non-stick surfaces. For the one surface which we found to be snail resistant, we show that the effect is correlated with the wetting response of the surface to a weak surfactant. Our results elucidate some critical wetting factors for the design of anti-adhesive and bio-adhesion resistant surfaces. PMID:22693563

  2. Bioluminescent signals spatially amplified by wavelength-specific diffusion through the shell of a marine snail

    PubMed Central

    Deheyn, Dimitri D.; Wilson, Nerida G.

    2011-01-01

    Some living organisms produce visible light (bioluminescence) for intra- or interspecific visual communication. Here, we describe a remarkable bioluminescent adaptation in the marine snail Hinea brasiliana. This species produces a luminous display in response to mechanical stimulation caused by encounters with other motile organisms. The light is produced from discrete areas on the snail's body beneath the snail's shell, and must thus overcome this structural barrier to be viewed by an external receiver. The diffusion and transmission efficiency of the shell is greater than a commercial diffuser reference material. Most strikingly, the shell, although opaque and pigmented, selectively diffuses the blue-green wavelength of the species bioluminescence. This diffusion generates a luminous display that is enlarged relative to the original light source. This unusual shell thus allows spatially amplified outward transmission of light communication signals from the snail, while allowing the animal to remain safely inside its hard protective shell. PMID:21159673

  3. Bioaccumulative and conchological assessment of heavy metal transfer in a soil-plant-snail food chain

    PubMed Central

    2012-01-01

    Background Copper (Cu), zinc (Zn), cadmium (Cd), and lead (Pb) can pose serious threats to environmental health because they tend to bioaccumulate in terrestrial ecosystems. We investigated under field conditions the transfer of these heavy metals in a soil-plant-snail food chain in Banat area, Romania. The main goal of this paper was to assess the Roman snail (Helix pomatia) usefulness in environmental monitoring as bioindicator of heavy metal accumulation. Eight sampling sites, selected by different history of heavy metal (HM) exposure, were chosen to be sampled for soil, nettle leaves, and newly matured snails. This study also aimed to identify the putative effects of HM accumulation in the environment on phenotypic variability in selected shell features, which included shell height (SH), relative shell height (RSH), and whorl number (WN). Results Significantly higher amounts of HMs were accumulated in snail hepatopancreas and not in foot. Cu, Zn, and Cd have biomagnified in the snail body, particularly in the hepatopancreas. In contrast, Pb decreased when going up into the food chain. Zn, Cd, and Pb correlated highly with each other at all levels of the investigated food chain. Zn and Pb exhibited an effective soil–plant transfer, whereas in the snail body only foot Cu concentration was correlated with that in soil. There were significant differences among sampling sites for WN, SH, and RSH when compared with reference snails. WN was strongly correlated with Cd and Pb concentrations in nettle leaves but not with Cu and Zn. SH was independent of HM concentrations in soil, snail hepatopancreas, and foot. However, SH correlated negatively with nettle leaves concentrations for each HM except Cu. In contrast, RSH correlated significantly only with Pb concentration in hepatopancreas. Conclusions The snail hepatopancreas accumulates high amounts of HMs, and therefore, this organ can function as a reliable biomarker for tracking HM bioavailability in soil. Long

  4. Snail/beta-catenin signaling protects breast cancer cells from hypoxia attack.

    PubMed

    Scherbakov, Alexander M; Stefanova, Lidia B; Sorokin, Danila V; Semina, Svetlana E; Berstein, Lev M; Krasil'nikov, Mikhail A

    2013-12-10

    The tolerance of cancer cells to hypoxia depends on the combination of different factors--from increase of glycolysis (Warburg Effect) to activation of intracellular growth/apoptotic pathways. Less is known about the influence of epithelial-mesenchymal transition (EMT) and EMT-associated pathways on the cell sensitivity to hypoxia. The aim of this study was to explore the role of Snail signaling, one of the key EMT pathways, in the mediating of hypoxia response and regulation of cell sensitivity to hypoxia, using as a model in vitro cultured breast cancer cells. Earlier we have shown that estrogen-independent HBL-100 breast cancer cells differ from estrogen-dependent MCF-7 cells with increased expression of Snail1, and demonstrated Snail1 involvement into formation of hormone-resistant phenotype. Because Snail1 belongs to hypoxia-activated proteins, here we studied the influence of Snail1 signaling on the cell tolerance to hypoxia. We found that Snail1-enriched HBL-100 cells were less sensitive to hypoxia-induced growth suppression if compared with MCF-7 line (31% MCF-7 vs. 71% HBL-100 cell viability after 1% O2 atmosphere for 3 days). Snail1 knock-down enhanced the hypoxia-induced inhibition of cell proliferation giving the direct evidence of Snail1 involvement into cell protection from hypoxia attack. The protective effect of Snail1 was shown to be mediated, at least in a part, via beta-catenin which positively regulated expression of HIF-1-dependent genes. Finally, we found that cell tolerance to hypoxia was accompanied with the failure in the phosphorylation of AMPK - the key energy sensor, and demonstrated an inverse relationship between AMPK and Snail/beta-catenin signaling. Totally, our data show that Snail1 and beta-catenin, besides association with loss of hormone dependence, protect cancer cells from hypoxia and may serve as an important target in the treatment of breast cancer. Moreover, we suggest that the level of these proteins as well the level of

  5. The Effect of Aquatic Plant Abundance on Shell Crushing Resistance in a Freshwater Snail

    PubMed Central

    Chaves-Campos, Johel; Coghill, Lyndon M.; García de León, Francisco J.; Johnson, Steven G.

    2012-01-01

    Most of the shell material in snails is composed of calcium carbonate but the organic shell matrix determines the properties of calcium carbonate crystals. It has been shown that the deposition of calcium carbonate is affected by the ingestion of organic compounds. We hypothesize that organic compounds not synthesized by the snails are important for shell strength and must be obtained from the diet. We tested this idea indirectly by evaluating whether the abundance of the organic matter that snails eat is related to the strength of their shells. We measured shell crushing resistance in the snail Mexipyrgus churinceanus and the abundance of the most common aquatic macrophyte, the water lily Nymphaea ampla, in ten bodies of water in the valley of Cuatro Ciénegas, Mexico. We used stable isotopes to test the assumption that these snails feed on water lily organic matter. We also measured other factors that can affect crushing resistance, such as the density of crushing predators, snail density, water pH, and the concentration of calcium and phosphorus in the water. The isotope analysis suggested that snails assimilate water lily organic matter that is metabolized by sediment bacteria. The variable that best explained the variation in crushing resistance found among sites was the local abundance of water lilies. We propose that the local amount of water lily organic matter provides organic compounds important in shell biomineralization, thus determining crushing resistance. Hence, we propose that a third trophic level could be important in the coevolution of snail defensive traits and predatory structures. PMID:22970206

  6. The Giant Snail Achatina fulica as a Candidate Species for Advanced Bioregenerative Life Support Systems

    NASA Astrophysics Data System (ADS)

    Verbitskaya, Olga; Manukovsky, Nickolay; Kovalev, Vladimir

    Maintenance of crew health is of paramount importance for long duration space missions. Weight loss, bone and calcium loss, increased exposure to radiation and oxidative stress are critical concerns that need to be alleviated. Rational nutrition is a resource for mitigating the influence of unfavorable conditions. The insufficiency of vegetarian diet has been examined by the Japanese, Chinese and U.S. developers of bioregenerative life support systems (BLSS). Hence, inclusion of animals such as silkworm in BLSS looks justified. The giant snail is currently under studying as a source of animal food and a species of reducing waste in BLSS. An experimental system to conduct cultivation of giant snail was developed. It was established that there are some reasons to use the giant snails in BLSS. It could be a source of delicious meat. A. fulica is capable of consuming a wide range of feedstuffs including plant residues. Cultivation of snail in the limited volume does not demand the big expenditures of labor. The production of crude edible biomass and protein of A. fulica was 60±15 g and 7±1.8 g respectively per 1 kg of consumed forage (fresh salad leaves, root and leafy tops of carrot). To satisfy daily animal protein needs (30-35 g) a crewman has to consume 260-300 g of snail meat. To produce such amount of snail protein it takes to use 4.3-5.0 kg of plant forage daily. The nutritional composition of A. fulica whole bodies (without shell) and a meal prepared in various ways was quantitatively determined. Protein, carbohydrate, fat acid and ash content percentages were different among samples prepared in various ways. The protein content was highest (68 %) in the dry sample washed with CH3 COOH solution. Taking into consideration the experimental results a conceptual configuration of BLSS with inclusion of giant snail was developed and mass flow rates between compartments were calculated. Keywords: animal food; protein; giant snail; BLSS; conceptual configuration.

  7. The effect of aquatic plant abundance on shell crushing resistance in a freshwater snail.

    PubMed

    Chaves-Campos, Johel; Coghill, Lyndon M; García de León, Francisco J; Johnson, Steven G

    2012-01-01

    Most of the shell material in snails is composed of calcium carbonate but the organic shell matrix determines the properties of calcium carbonate crystals. It has been shown that the deposition of calcium carbonate is affected by the ingestion of organic compounds. We hypothesize that organic compounds not synthesized by the snails are important for shell strength and must be obtained from the diet. We tested this idea indirectly by evaluating whether the abundance of the organic matter that snails eat is related to the strength of their shells. We measured shell crushing resistance in the snail Mexipyrgus churinceanus and the abundance of the most common aquatic macrophyte, the water lily Nymphaea ampla, in ten bodies of water in the valley of Cuatro Ciénegas, Mexico. We used stable isotopes to test the assumption that these snails feed on water lily organic matter. We also measured other factors that can affect crushing resistance, such as the density of crushing predators, snail density, water pH, and the concentration of calcium and phosphorus in the water. The isotope analysis suggested that snails assimilate water lily organic matter that is metabolized by sediment bacteria. The variable that best explained the variation in crushing resistance found among sites was the local abundance of water lilies. We propose that the local amount of water lily organic matter provides organic compounds important in shell biomineralization, thus determining crushing resistance. Hence, we propose that a third trophic level could be important in the coevolution of snail defensive traits and predatory structures. PMID:22970206

  8. Polymorphism and Population Density in the African Land Snail, Limicolaria martensiana.

    PubMed

    Owen, D F

    1963-05-10

    In natural populations of the African land snail, Limicolaria martensiana, the degree of polymorphism in color and pattern may vary with the density of the population. This could occur because predators eat the snails selectively and use past experience as a guide in finding further prey. Hence contrasting color forms may be at an advantage in dense populations where predators would have ample opportunity to learn to recognize prey. PMID:17737105

  9. [Occurrence of Achatina fulica Bowdich, 1822 (Mollusca, Gastropoda) in Brazil: intermediate snail host of angiostrongyliasis].

    PubMed

    Teles, H M; Vaz, J F; Fontes, L R; Domingos, M de F

    1997-06-01

    Achatina fulica, the intermediate snail host of angiostrongyliasis and also an agricultural pest, is being bred in Brazil for human consumption as "escargot". The snail has escaped from its artificial breeding sites and its dispersal in Itariri country, State of S. Paulo, is reported here for the first time. A. fulica is a transmitter of the rat lungworm Angiostrongylus cantonensis, nematode which causes meningoencephalic angiostrongyliasis; the risks of human contamination are commented on. PMID:9515269

  10. Occurrence of a Snail Borne Disease, Cercarial Dermatitis (Swimmer Itch) in Doon Valley (Uttarakhand), India

    PubMed Central

    JAUHARI, Rakesh Kumar; NONGTHOMBAM, Pemola Devi

    2014-01-01

    Abstract Background ‘Cercarial dermatitis’ also known as swimmers itch (Skin allergies) is caused by a trematode parasite, Schistosoma which has two hosts - an invertebrate (snail) and a vertebrate (livestock, human being). Although the availability of both vector snails and pathogens at the selected site the Doon Valley in northern India has already been confirmed but there was a hazy picture of the disease, whether it is due to entrance of cercariae or due to wild variety of grass (Parthenium hysterophorus). The present study is an attempt to provide a way forward towards the vector snails and snail borne diseases in the study area. Methods Snail sampling and identification was done by applying standard methods / using Keys & Catalogues. Associated parasites and cercariometry in snails has been worked out by cercarial shedding. Human involvement at zo-onotic level has been performed in collaboration with Health centers and socio- economic aspect of inhabitants of study area. Results The snail diversity encountered 19 species including the vector species such as Indoplanorbis exustus, Gyraulus convexiusculus, Melanoides tuberculata and Lymnaea acuminata. The cercarial diversity comprised Furcocercous, Monostome, Amphistome and liver fluke / Xiphidiocercaria. During the study (2009–2010), 0.173% was found with cercarial dermatitis among human population in the selected area. The symptoms of disease recorded were red spots and swellings on effected parts of skin. Frequent visits of livestock to the water body and presence of vector snails provides a clue in completing the life cycle of the parasite of the family Schistosomatidae. Conclusion Cercarial dermatitis has been considered a potential risk at those places where warm blooded and snail’s hosts share a link with aquatic bodies with particular emphasis to temperature and time of year. PMID:26060739

  11. The effects of wetland habitat structure on Florida apple snail density

    USGS Publications Warehouse

    Karunaratne, L.B.; Darby, P.C.; Bennetts, R.E.

    2006-01-01

    Wetlands often support a variety of juxtaposed habitat patches (e.g., grass-, shrub- or tree-dominated) differentially suited to support the inhabiting fauna. The proportion of available habitat types has been affected by human activity and consequently has contributed to degrading habitat quality for some species. The Florida apple snail (Pomacea paludosa) has drawn attention as a critical prey item for wetlands wildlife and as an indicator of wetlands restoration success in peninsular Florida, USA. An apparent contradiction has evolved wherein this species appears intolerant of drying events, but these disturbances may be necessary to maintain suitable habitat structure for apple snails. We recently reported that assertions regarding intolerance to dry downs in this species were inaccurate. Here, we compared snail density in habitats with (wet prairie) and without (slough) emergent macrophytes, as well as evaluating the effects of structural attributes within the broad wet prairie habitat type. Snail densities were greater in prairies relative to sloughs (??2= 12.90, df=1, P=0.0003), often by a factor of two to three. Within wet prairie habitats, we found greater snail densities in Panicum hemitomon as compared to Eleocharis cellulosa (??2=31.45, df=1, P=0.0001). Significantly fewer snails were found in dense E. cellulosa as compared to habitats with lower stem density (??2= 10.73, df=1, P=0.011). Our results indicate that wet prairie habitat supports greater snail densities than nymphaea-dominatd slough. Our results have implications for wetlands water management in that continuous inundation has been shown to convert wet prairie to slough habitat, and we suggest this should be avoided in support of apple snails and their predators. ?? 2006, The Society of Wetland Scientists.

  12. Biochemical responses to the toxicity of the biocide abamectin on the freshwater snail Physa acuta.

    PubMed

    Ma, Junguo; Zhou, Chune; Li, Yao; Li, Xiaoyu

    2014-03-01

    The toxic effects of abamectin (ABM), an anthelmintic drug, on the snail, Physa Acuta, and the biochemical responses to the exposure stress were evaluated. The activities of superoxide dismutase (SOD), catalase (CAT), glutathione S-transferase (GST), acetylcholinesterase (AChE), and nitric oxide synthase (NOS), and the contents of malondialdehyde (MDA) were determined in snail soft tissues (head, foot, visceral mass, and the mantle) for up to 96h of exposure to 3.4, 9.6, 19.2, or 27.4μgL(-1) of ABM. The results showed that SOD and GST activities were promoted by ABM-exposure at the earlier periods of treatment (12-48h) while these activites were inhibited at the end of test. The tendency of CAT activity was similar to that of SOD, but it increased at the end of test. MDA levels of the snail soft tissues increased in all treatment groups, including the recovery group, indicating that lipid peroxidation occurred in snail soft tissues. ABM-exposure inhibited AChE activity. However, NOS activities increased by ABM-exposure. In addition, activities of antioxidant enzymes and AChE from the snail soft tissues resumed the normal levels after 96h of recovery period, but MDA level did not attain the original level. This study provides information on the biochemical mechanism of ABM toxicity on the snail. PMID:24507123

  13. Bacterial diversity in different regions of gastrointestinal tract of Giant African Snail (Achatina fulica)

    PubMed Central

    Pawar, Kiran D; Banskar, Sunil; Rane, Shailendra D; Charan, Shakti S; Kulkarni, Girish J; Sawant, Shailesh S; Ghate, Hemant V; Patole, Milind S; Shouche, Yogesh S

    2012-01-01

    The gastrointestinal (GI) tract of invasive land snail Achatina fulica is known to harbor metabolically active bacterial communities. In this study, we assessed the bacterial diversity in the different regions of GI tract of Giant African snail, A. fulica by culture-independent and culture-dependent methods. Five 16S rRNA gene libraries from different regions of GI tract of active snails indicated that sequences affiliated to phylum γ-Proteobacteria dominated the esophagus, crop, intestine, and rectum libraries, whereas sequences affiliated to Tenericutes dominated the stomach library. On phylogenetic analysis, 30, 27, 9, 27, and 25 operational taxonomic units (OTUs) from esophagus, crop, stomach, intestine, and rectum libraries were identified, respectively. Estimations of the total bacterial diversity covered along with environmental cluster analysis showed highest bacterial diversity in the esophagus and lowest in the stomach. Thirty-three distinct bacterial isolates were obtained, which belonged to 12 genera of two major bacterial phyla namely γ-Proteobacteria and Firmicutes. Among these, Lactococcus lactis and Kurthia gibsonii were the dominant bacteria present in all GI tract regions. Quantitative real-time polymerase chain reaction (qPCR) analysis indicated significant differences in bacterial load in different GI tract regions of active and estivating snails. The difference in the bacterial load between the intestines of active and estivating snail was maximum. Principal component analysis (PCA) of terminal restriction fragment length polymorphism suggested that bacterial community structure changes only in intestine when snail enters estivation state. PMID:23233413

  14. NF2 blocks Snail-mediated p53 suppression in mesothelioma

    PubMed Central

    Cho, Jung-Hyun; Lee, Su-Jin; Oh, Ah-Young; Yoon, Min-Ho; Woo, Tae-Geun; Park, Bum-Joon

    2015-01-01

    Although asbestos causes malignant pleural mesothelioma (MPM), rising from lung mesothelium, the molecular mechanism has not been suggested until now. Extremely low mutation rate in classical tumor suppressor genes (such as p53 and pRb) and oncogenes (including Ras or myc) indicates that there would be MPM-specific carcinogenesis pathway. To address this, we treated silica to mimic mesothelioma carcinogenesis in mesothelioma and non-small cell lung cancer cell lines (NSCLC). Treatment of silica induced p-Erk and Snail through RKIP reduction. In addition, p53 and E-cadherin were decreased by silica-treatment. Elimination of Snail restored p53 expression. We found that NF2 (frequently deleted in MPM) inhibited Snail-mediated p53 suppression and was stabilized by RKIP. Importantly, GN25, an inhibitor of p53-Snail interaction, induced p53 and apoptosis. These results indicate that MPM can be induced by reduction of RKIP/NF2, which suppresses p53 through Snail. Thus, the p53-Snail binding inhibitor such as GN25 is a drug candidate for MPM. PMID:25823924

  15. Toxicity of copper sulfate and rotenone to Chinese mystery snail (Bellamya chinensis)

    USGS Publications Warehouse

    Haak, Danielle M.; Stephen, Bruce J.; Kill, Robert A.; Smeenk, Nicholas A.; Allen, Craig R.; Pope, Kevin L.

    2014-01-01

    The Chinese mystery snail (Bellamya chinensis) is a freshwater snail native to Southeast Asia, Japan, and Russia and is currently classified as an invasive species in at least 27 states in the USA. The species tolerates a wide range of environmental conditions, making management of established populations difficult. We tested the efficacy of two traditional chemical treatments, rotenone and copper sulfate, on the elimination of adult Chinese mystery snails in laboratory experiments. All snails (N=50) survived 72-hour exposure to rotenone-treated lake water, and 96% (N=25) survived 72-hour exposure to pre-determined rotenone concentrations of 0.25, 2.5, and 25.0 mg/L. All snails (N=10) survived exposure to 1.25 mg/L copper sulfate solution, 90% (N=10) survived exposure to 2.50 mg/L copper sulfate solution, and 80% (N=5) survived exposure to 5.0 mg/L copper sulfate solution. Neither rotenone nor copper sulfate effectively killed adult Chinese mystery snails in laboratory experiments, most likely due to their relatively large size, thick shell, and operculum. Therefore, it appears that populations will be very difficult to control once established, and management should focus on preventing additional spread or introductions of this species.

  16. Snail nuclear transport: the gateways regulating epithelial-to-mesenchymal transition?

    PubMed

    Muqbil, Irfana; Wu, Jack; Aboukameel, Amro; Mohammad, Ramzi M; Azmi, Asfar S

    2014-08-01

    Epithelial-to-mesenchymal transition (EMT) and the reverse process (MET) play central role in organ developmental biology. It is a fine tuned process that when disturbed leads to pathological conditions especially cancers with aggressive and metastatic behavior. Snail is an oncogene that has been well established to be a promoter of EMT through direct repression of epithelial morphology promoter E-cadherin. It can function in the nucleus, in the cytosol and as discovered recently, extracellularly through secretory vesicular structures. The intracellular transport of snail has for long been shown to be regulated by the nuclear pore complex. One of the Karyopherins, importin alpha, mediates snail import, while exportin 1 (Xpo1) also known as chromosome maintenance region 1 (CRM1) is its major nuclear exporter. A number of additional biological regulators are emerging that directly modulate Snail stability by altering its subcellular localization. These observations indicate that targeting the nuclear transport machinery could be an important and as of yet, unexplored avenue for therapeutic intervention against the EMT processes in cancer. In parallel, a number of novel agents that disrupt nuclear transport have recently been discovered and are being explored for their anti-cancer effects in the early clinical settings. Through this review we provide insights on the mechanisms regulating snail subcellular localization and how this impacts EMT. We discuss strategies on how the nuclear transport function can be harnessed to rein in EMT through modulation of snail signaling. PMID:24954011

  17. Snail Nuclear Transport: the Gateways Regulating Epithelial-to-Mesenchymal Transition?

    PubMed Central

    Muqbil, Irfana; Wu, Jack; Aboukameel, Amro; Mohammad, Ramzi M.; Azmi, Asfar S.

    2014-01-01

    Epithelial-to-mesenchymal transition (EMT) and the reverse process (MET) plays central role in organ developmental biology. It is a fine tuned process that when disturbed leads to pathological conditions especially cancers with aggressive and metastatic behavior. Snail is an oncogene that has been well established to be a promoter of EMT through direct repression of epithelial morphology promoter E-cadherin. It can function in the nucleus, in the cytosol and as discovered recently, extracellularly through secretory vesicular structures. The intracellular transport of snail has for long been shown to be regulated by the nuclear pore complex. One of the Karyopherins, importin alpha, mediates snail import, while importin beta/exportin 1 (Xpo1) or chromosome maintenance region 1 (CRM1) is its major nuclear exporter. A number of additional biological regulators are emerging that directly modulate Snail stability by altering its subcellular localization. These observations indicate that targeting the nuclear transport machinery could be an important and as of yet, unexplored avenue for therapeutic intervention against the EMT processes in cancer. In parallel, a number of novel agents that disrupt nuclear transport have recently been discovered and are being explored for their anti-cancer effects in the early clinical settings. Through this review we provide insights on the mechanisms regulating snail subcellular localization and how this impacts EMT. We discuss strategies on how the nuclear transport function can be harnessed to rein in EMT through modulation of snail signaling. PMID:24954011

  18. Endothelial Snail Regulates Capillary Branching Morphogenesis via Vascular Endothelial Growth Factor Receptor 3 Expression

    PubMed Central

    Park, Jeong Ae; Kim, Dong Young; Kim, Young-Myeong; Kwon, Young-Guen

    2015-01-01

    Vascular branching morphogenesis is activated and maintained by several signaling pathways. Among them, vascular endothelial growth factor receptor 2 (VEGFR2) signaling is largely presented in arteries, and VEGFR3 signaling is in veins and capillaries. Recent reports have documented that Snail, a well-known epithelial-to-mesenchymal transition protein, is expressed in endothelial cells, where it regulates sprouting angiogenesis and embryonic vascular development. Here, we identified Snail as a regulator of VEGFR3 expression during capillary branching morphogenesis. Snail was dramatically upregulated in sprouting vessels in the developing retinal vasculature, including the leading-edged vessels and vertical sprouting vessels for capillary extension toward the deep retina. Results from in vitro functional studies demonstrate that Snail expression colocalized with VEGFR3 and upregulated VEGFR3 mRNA by directly binding to the VEGFR3 promoter via cooperating with early growth response protein-1. Snail knockdown in postnatal mice attenuated the formation of the deep capillary plexus, not only by impairing vertical sprouting vessels but also by downregulating VEGFR3 expression. Collectively, these data suggest that the Snail-VEGFR3 axis controls capillary extension, especially in vessels expressing VEGFR2 at low levels. PMID:26147525

  19. Role of Ras signaling in the induction of snail by transforming growth factor-beta.

    PubMed

    Horiguchi, Kana; Shirakihara, Takuya; Nakano, Ayako; Imamura, Takeshi; Miyazono, Kohei; Saitoh, Masao

    2009-01-01

    The epithelial-mesenchymal transition (EMT) is a crucial morphological event that occurs during the progression of epithelial tumors. EMT can be induced by transforming growth factor (TGF)-beta in some tumor cells. Here, we demonstrate the molecular mechanism whereby Snail, a key regulator of EMT, is induced by TGF-beta in tumor cells. Snail induction by TGF-beta was highly dependent on cooperation with active Ras signals, and silencing of Ras abolished Snail induction by TGF-beta in pancreatic cancer Panc-1 cells. Transfection of constitutively active Ras into HeLa cells led to induction of Snail by TGF-beta, while representative direct targets of TGF-beta, including Smad7 and PAI-1, were not affected by Ras signaling. Using mitogen-activated protein kinase inhibitors or Smad3 or Smad2 mutants, we found that phosphorylation at the linker region of Smad2/3 was not required for the induction of Snail by TGF-beta. Taken together, these findings indicate that Ras and TGF-beta-Smad signaling selectively cooperate in the induction of Snail, which occurs in a Smad-dependent manner, but independently of phosphorylation at the linker region of R-Smads by Ras signaling. PMID:19010789

  20. Differences in predatory pressure on terrestrial snails by birds and mammals.

    PubMed

    Rosin, Zuzanna M; Olborska, Paulina; Surmacki, Adrian; Tryjanowski, Piotr

    2011-09-01

    The evolution of shell polymorphism in terrestrial snails is a classic textbook example of the effect of natural selection in which avian and mammalian predation represents an important selective force on gene frequency. However, many questions about predation remain unclear, especially in the case of mammals. We collected 2000 specimens from eight terrestrial gastropod species to investigate the predation pressure exerted by birds and mice on snails. We found evidence of avian and mammalian predation in 26.5% and 36.8% of the shells. Both birds and mammals were selective with respect to snail species, size and morphs. Birds preferred the brown-lipped banded snail Cepaea nemoralis (L.) and mice preferred the burgundy snail Helix pomatia L. Mice avoided pink mid-banded C. nemoralis and preferred brown mid-banded morphs, which were neglected by birds. In contrast to mice, birds chose larger individuals. Significant differences in their predatory pressure can influence the evolution and maintenance of shell size and polymorphism of shell colouration in snails. PMID:21857115

  1. Impact of invasive apple snails on the functioning and services of natural and managed wetlands

    NASA Astrophysics Data System (ADS)

    Horgan, Finbarr G.; Stuart, Alexander M.; Kudavidanage, Enoka P.

    2014-01-01

    At least 14 species of apple snail (Ampullariidae) have been released to water bodies outside their native ranges; however, less than half of these species have become widespread or caused appreciable impacts. We review evidence for the impact of apple snails on natural and managed wetlands focusing on those studies that have elucidated impact mechanisms. Significant changes in wetland ecosystems have been noted in regions where the snails are established: Two species in particular (Pomacea canaliculata and Pomacea maculata) have become major pests of aquatic crops, including rice, and caused enormous increases in molluscicide use. Invasive apple snails have also altered macrophyte community structure in natural and managed wetlands through selective herbivory and certain apple snail species can potentially shift the balance of freshwater ecosystems from clear water (macrophyte dominated) to turbid (plankton dominated) states by depleting densities of native aquatic plants. Furthermore, the introductions of some apple snail species have altered benthic community structure either directly, through predation, or indirectly, through exploitation competition or as a result of management actions. To date much of the evidence for these impacts has been based on correlations, with few manipulative field or mesocosm experiments. Greater attention to impact monitoring is required, and, for Asia in particular, a landscape approach to impact management that includes both natural and managed-rice wetlands is recommended.

  2. Foraging and refuge use by a pond snail: Effects of physiological state, predators, and resources

    NASA Astrophysics Data System (ADS)

    Wojdak, Jeremy M.

    2009-09-01

    The costs and benefits of anti-predator behavioral responses should be functions of the actual risk of predation, the availability of the prey's resources, and the physiological state of the prey. For example, a food-stressed individual risks starvation when hiding from predators, while a well-fed organism can better afford to hide (and pay the cost of not foraging). Similarly, the benefits of resource acquisition are probably highest for the prey in the poorest state, while there may be diminishing returns for prey nearing satiation. Empirical studies of state-dependent behavior are only beginning, however, and few studies have investigated interactions between all three potentially important factors. Here I present the results of a laboratory experiment where I manipulated the physiological state of pond snails ( Physa gyrina), the abundance of algal resources, and predation cues ( Belostoma flumineum waterbugs consuming snails) in a full factorial design to assess their direct effects on snail behavior and indirect effects on algal biomass. On average, snails foraged more when resources were abundant, and when predators were absent. Snails also foraged more when previously exposed to physiological stress. Snails spent more time at the water's surface (a refuging behavior) in the presence of predation cues on average, but predation, resource levels, and prey state had interactive effects on refuge use. There was a consistent positive trait-mediated indirect effect of predators on algal biomass, across all resource levels and prey states.

  3. Overexpression of miR-506 inhibits growth of osteosarcoma through Snail2

    PubMed Central

    Yu, Zhongxiang; Zhang, Yuting; Gao, Ningyang; Wang, Xiang

    2015-01-01

    Osteosarcoma (OS) is a prevalent primary bone malignancy and its distal metastasis accounts for the majority of OS-related death. MicroRNAs (miRNAs) play critical roles during cancer metastasis. Thus, elucidation of the involvement of specific miRNAs in the metastasis of OS may provide novel therapeutic targets for OS treatment. Here, we showed that in the OS specimens from patients, the levels of miR-506 were significantly decreased and the levels of Snail2 were significantly increased, compared to the paired normal bone tissue. MiR-506 and Snail2 inversely correlated in patients’ specimen. Bioinformatics analyses predicted that miR-506 may target the 3’-UTR of Snail2 mRNA to inhibit its translation, which was confirmed by luciferase-reporter assay. Moreover, miR-506 overexpression inhibited Snail2-mediated cell invasiveness, while miR-506 depletion increased Snail2-mediated cell invasiveness in OS cells. Together, our data suggest that miR-506 suppression in OS cells may promote Snail2-mediated cancer metastasis. PMID:26885269

  4. Snail mediates medial-lateral patterning of the ascidian neural plate.

    PubMed

    Hudson, Clare; Sirour, Cathy; Yasuo, Hitoyoshi

    2015-07-15

    The ascidian neural plate exhibits a regular, grid-like arrangement of cells. Patterning of the neural plate across the medial-lateral axis is initiated by bilateral sources of Nodal signalling, such that Nodal signalling induces expression of lateral neural plate genes and represses expression of medial neural plate genes. One of the earliest lateral neural plate genes induced by Nodal signals encodes the transcription factor Snail. Here, we show that Snail is a critical downstream factor mediating this Nodal-dependent patterning. Using gain and loss of function approaches, we show that Snail is required to repress medial neural plate gene expression at neural plate stages and to maintain the lateral neural tube genetic programme at later stages. A comparison of these results to those obtained following Nodal gain and loss of function indicates that Snail mediates a subset of Nodal functions. Consistently, overexpression of Snail can partially rescue a Nodal inhibition phenotype. We conclude that Snail is an early component of the gene regulatory network, initiated by Nodal signals, that patterns the ascidian neural plate. PMID:25962578

  5. Effects of dietary exposure to forest pesticides on the brown garden snail Helix aspersa mueller

    SciTech Connect

    Schuytema, G.S.; Nebeker, A.V.; Griffis, W.L.

    1994-01-01

    Brown garden snails, Helix aspersa, were fed prepared diets with 12 pesticides used in forest spraying practices where endangered arboreal and terrestrial snails may be at risk. Acephate, atrazine, glyphosate, hexazinone, and picloram were not lethal at concentrations of 5,000 mg/kg in 14-day screening tests. The remaining seven pesticides, lethal to 13-100% of the tested snails at 5,000 mg/kg, were evaluated in 10-day definitive feeding tests. Azinphosmethyl (Guthion) and aminocarb were the most toxic, with 10-day LC50s of 188 and 313 mg/kg, respectively. Paraquat, trichlorfon and fenitrothion had 10-day LC50s of 659, 664, and 7,058 mg/kg respectively. Avoidance of pesticide-containing foods occurred, e.g., 10-day LC50s of >10,000 mg/kg for carbaryl and ethyl parathion. Significant descreases (p<0.05) in snail weight (total, shell-only, body-only) or shell diameter were accompanied by a significant decrease in the amount of food consumed/snail/day. Concentrations of pesticide in tissues were measured in snails exposed to atrazine and azinphosmethyl; there was no bioaccumulation. (Copyright (c) 1994 Springer-Verlag New York Inc.)

  6. Small mammals cause non-trophic effects on habitat and associated snails in a native system.

    PubMed

    Huntzinger, Mikaela; Karban, Richard; Maron, John L

    2011-12-01

    Legacy effects occur when particular species or their interactions with others have long-lasting impacts, and they are increasingly recognized as important determinants of ecological processes. However, when such legacy effects have been explicitly explored, they most often involve the long-term direct effects of species on systems, as opposed to the indirect effects. Here, we explore how a legacy of small mammal exclusion on the abundance of a shrub, bush lupine (Lupinus arboreus), influences the abundance of a native land snail (Helminthoglypta arrosa) in coastal prairie and dune habitats in central California. The factors that limit populations of land snails are very poorly known despite the threats to the persistence of this group of species. In grasslands, prior vole (Microtus californicus) exclusion created long-lasting gains in bush lupine abundance, mediated through the seedbank, and was associated with increased snail numbers (10×) compared to control plots where mammals were never excluded. Similar plots in dune habitat showed no difference in snail numbers due to previous mammal exclusion. We tested whether increased competition for food, increased predation, and/or lower desiccation explained the decline in snail numbers in plots with reduced lupine cover. Tethering experiments supported the hypothesis that voles can have long-lasting impacts as ecosystem engineers, reducing woody lupine habitat required for successful aestivation by snails. These results add to a growing list of studies that have found that non-trophic interactions can be limiting to invertebrate consumers. PMID:21691854

  7. Research on Dynamic Monitoring (1990-2010) of Schistosomiasis Vector-Snail at Xinmin Beach, Gaoyou Lake, Jiangsu Province, China

    NASA Astrophysics Data System (ADS)

    Liu, Zhaoyan; Li, Chuanrong; Tang, Lingli; Zhou, Xiaonong; Ma, Lingling

    2014-11-01

    Schistosomiasis is a parasitic disease that menaces human health. In terms of impact, this disease is second only to malaria as the most devastating parasitic disease. Oncomelania hupensis (snail) is the unique intermediate host of schistosoma, so monitoring and controlling of the number of snail is key to reduce the risk of schistosomiasis transmission. Remote sensing technology can real-timely access the large-scale environmental factors related to snail breeding and reproduction, and can also provide the efficient information to determine the location, area, and spread tendency of snail. Based on the T-S (Takagi-Sugeno) fuzzy information theory, a quantitative remote sensing monitoring model of snail has been developed in previous wok. In a case study, this paper will take Xinmin beach, Gaoyou Lake as new research area, carry out 20 years (1990 - 2010) dynamic monitoring, to further validate the effectiveness of the T-S Fuzzy RS snail monitoring model.

  8. Age-dependent susceptibilities of Bulinus truncatus snails to an aqueous extract of Pulicaria crispa (Forssk.) Oliv. (Asteraceae) leaves.

    PubMed

    Ali, Elnour A; Bushara, Hamid O; Ali, Faisal S; Hussein, Mansour F

    2009-05-01

    This study was carried out to investigate the potential use of the herb Pulicaria crispa in the biological control of different developmental stages of Bulinus truncatus, a major snail intermediate host of urinary schistosomiasis. Age-dependent susceptibilities of mature adult snails, immature snails, juveniles, and one-day old egg masses to aqueous extracts of Pulicaria crispa leaves collected from Khartoum (Sudan) and Riyadh (Saudi Arabia) was determined and compared. The results show the juvenile snails are the most susceptible, followed in descending order by one-day old egg masses, immature snails, and mature adult snails. The P. crispa sample collected from Riyadh was significantly more potent against B. truncatus than that collected from Khartoum, as indicated by the least (LC50) and (LC90) values for all B. truncatus ages. PMID:19842431

  9. SNAIL transcription factor increases the motility and invasive capacity of prostate cancer cells.

    PubMed

    Osorio, Luis A; Farfán, Nancy M; Castellón, Enrique A; Contreras, Héctor R

    2016-01-01

    The incidence and mortality rates of prostate cancer (PCa) are increasing, and PCa is almost the second‑leading cause of cancer‑associated mortality in men. During tumor progression, epithelial cells decrease the number of adhesion molecules, change their polarity and position, rearrange their cytoskeleton and increase their migratory and invasive capacities. These changes are known under the concept of epithelial‑mesenchymal transition (EMT). EMT is characterized by an upregulation of certain transcription factors, including SNAIL1, which represses genes that are characteristic of an epithelial phenotype, including E‑cadherin, and indirectly increase the expression levels of genes, which are associated with the mesenchymal phenotype. It has been suggested that the transcription factor, SNAIL1, decreases the proliferation and increases the migratory and invasive capacities of PCa cell lines. The present study was performed using LNCaP and PC3 cell lines, in which the expression levels of SNAIL1 were increased or silenced through the use of lentiviral vectors. The expression levels of EMT markers were quantified using reverse transcription‑quantitative polymerase chain reaction and western blot analysis. In addition, cell survival was analyzed using an MTS assay; cell proliferation was examined using an antibody targeting Ki‑67; migration on plates with 8 µm pores to allow the passage of cells; and invasiveness was analyzed using a membrane chamber covered in dried basement membrane matrix solution. The levels of apoptosis were determined using a Caspase 3/7 assay containing a substrate modified by caspases 3 and 7. The results demonstrated that the overexpression and silencing of SNAIL1 decreased cell proliferation and survival. However, the overexpression of SNAIL1 decreased apoptosis, compared with cells with the SNAIL1‑silenced cells, in which cell apoptosis increased. The migration and invasive capacities increased in the cells overexpressing

  10. Release of Lungworm Larvae from Snails in the Environment: Potential for Alternative Transmission Pathways

    PubMed Central

    Giannelli, Alessio; Colella, Vito; Abramo, Francesca; do Nascimento Ramos, Rafael Antonio; Falsone, Luigi; Brianti, Emanuele; Varcasia, Antonio; Dantas-Torres, Filipe; Knaus, Martin; Fox, Mark T.; Otranto, Domenico

    2015-01-01

    Background Gastropod-borne parasites may cause debilitating clinical conditions in animals and humans following the consumption of infected intermediate or paratenic hosts. However, the ingestion of fresh vegetables contaminated by snail mucus and/or water has also been proposed as a source of the infection for some zoonotic metastrongyloids (e.g., Angiostrongylus cantonensis). In the meantime, the feline lungworms Aelurostrongylus abstrusus and Troglostrongylus brevior are increasingly spreading among cat populations, along with their gastropod intermediate hosts. The aim of this study was to assess the potential of alternative transmission pathways for A. abstrusus and T. brevior L3 via the mucus of infected Helix aspersa snails and the water where gastropods died. In addition, the histological examination of snail specimens provided information on the larval localization and inflammatory reactions in the intermediate host. Methodology/Principal Findings Twenty-four specimens of H. aspersa received ~500 L1 of A. abstrusus and T. brevior, and were assigned to six study groups. Snails were subjected to different mechanical and chemical stimuli throughout 20 days in order to elicit the production of mucus. At the end of the study, gastropods were submerged in tap water and the sediment was observed for lungworm larvae for three consecutive days. Finally, snails were artificially digested and recovered larvae were counted and morphologically and molecularly identified. The anatomical localization of A. abstrusus and T. brevior larvae within snail tissues was investigated by histology. L3 were detected in the snail mucus (i.e., 37 A. abstrusus and 19 T. brevior) and in the sediment of submerged specimens (172 A. abstrusus and 39 T. brevior). Following the artificial digestion of H. aspersa snails, a mean number of 127.8 A. abstrusus and 60.3 T. brevior larvae were recovered. The number of snail sections positive for A. abstrusus was higher than those for T. brevior

  11. SNAIL transcription factor increases the motility and invasive capacity of prostate cancer cells

    PubMed Central

    OSORIO, LUIS A.; FARFÁN, NANCY M.; CASTELLÓN, ENRIQUE A.; CONTRERAS, HÉCTOR R.

    2016-01-01

    The incidence and mortality rates of prostate cancer (PCa) are increasing, and PCa is almost the second-leading cause of cancer-associated mortality in men. During tumor progression, epithelial cells decrease the number of adhesion molecules, change their polarity and position, rearrange their cytoskeleton and increase their migratory and invasive capacities. These changes are known under the concept of epithelial-mesenchymal transition (EMT). EMT is characterized by an upregulation of certain transcription factors, including SNAIL1, which represses genes that are characteristic of an epithelial phenotype, including E-cadherin, and indirectly increase the expression levels of genes, which are associated with the mesenchymal phenotype. It has been suggested that the transcription factor, SNAIL1, decreases the proliferation and increases the migratory and invasive capacities of PCa cell lines. The present study was performed using LNCaP and PC3 cell lines, in which the expression levels of SNAIL1 were increased or silenced through the use of lentiviral vectors. The expression levels of EMT markers were quantified using reverse transcription-quantitative polymerase chain reaction and western blot analysis. In addition, cell survival was analyzed using an MTS assay; cell proliferation was examined using an antibody targeting Ki-67; migration on plates with 8 µm pores to allow the passage of cells; and invasiveness was analyzed using a membrane chamber covered in dried basement membrane matrix solution. The levels of apoptosis were determined using a Caspase 3/7 assay containing a substrate modified by caspases 3 and 7. The results demonstrated that the overexpression and silencing of SNAIL1 decreased cell proliferation and survival. However, the overexpression of SNAIL1 decreased apoptosis, compared with cells with the SNAIL1-silenced cells, in which cell apoptosis increased. The migration and invasive capacities increased in the cells overexpressing SNAIL1, and

  12. Effects of washing produce contaminated with the snail and slug hosts of Angiostrongylus cantonensis with three common household solutions.

    PubMed

    Yeung, Norine W; Hayes, Kenneth A; Cowie, Robert H

    2013-06-01

    The emerging infectious disease angiostrongyliasis (rat lungworm disease) is caused by ingesting snails and slugs infected by the nematode Angiostrongylus cantonensis. The definitive hosts of A. cantonensis are rats and the obligatory intermediate hosts are slugs and snails. Many cases result from accidentally ingesting infected snails or slugs on produce (eg, lettuce). This study assessed three readily available household products as washing solutions for removing snails and slugs from produce (romaine lettuce) to lower the probability of accidentally ingesting them. The solutions were acetic acid (vinegar), sodium hypochlorite (bleach), and sodium chloride (domestic salt). Snail and slug species known to be intermediate hosts and that are common in the Hawaiian Islands were used in the experiments: the alien snail Succinea tenella, the alien semi-slug Parmarion martensi, and the alien slugs Veronicella cubensis and Deroceras laeve. None of the products was any more effective than washing and rinsing with tap water alone. Most snails and slugs were removed after treatment but some remained on the lettuce even after washing and rinsing the produce. Only washing, rinsing, and then rinsing each leaf individually resulted in complete removal of all snails and slugs. The study did not address removal of any remaining slime left by the snails and slugs, nor did it address killing of worms. PMID:23901391

  13. FBXO11 promotes ubiquitination of the Snail family of transcription factors in cancer progression and epidermal development.

    PubMed

    Jin, Yue; Shenoy, Anitha K; Doernberg, Samuel; Chen, Hao; Luo, Huacheng; Shen, Huangxuan; Lin, Tong; Tarrash, Miriam; Cai, Qingsong; Hu, Xin; Fiske, Ryan; Chen, Ting; Wu, Lizi; Mohammed, Kamal A; Rottiers, Veerle; Lee, Siu Sylvia; Lu, Jianrong

    2015-06-28

    The Snail family of transcription factors are core inducers of epithelial-to-mesenchymal transition (EMT). Here we show that the F-box protein FBXO11 recognizes and promotes ubiquitin-mediated degradation of multiple Snail family members including Scratch. The association between FBXO11 and Snai1 in vitro is independent of Snai1 phosphorylation. Overexpression of FBXO11 in mesenchymal cells reduces Snail protein abundance and cellular invasiveness. Conversely, depletion of endogenous FBXO11 in epithelial cancer cells causes Snail protein accumulation, EMT, and tumor invasion, as well as loss of estrogen receptor expression in breast cancer cells. Expression of FBXO11 is downregulated by EMT-inducing signals TGFβ and nickel. In human cancer, high FBXO11 levels correlate with expression of epithelial markers and favorable prognosis. The results suggest that FBXO11 sustains the epithelial state and inhibits cancer progression. Inactivation of FBXO11 in mice leads to neonatal lethality, epidermal thickening, and increased Snail protein levels in epidermis, validating that FBXO11 is a physiological ubiquitin ligase of Snail. Moreover, in C. elegans, the FBXO11 mutant phenotype is attributed to the Snail factors as it is suppressed by inactivation/depletion of Snail homologs. Collectively, these findings suggest that the FBXO11-Snail regulatory axis is evolutionarily conserved and critically governs carcinoma progression and mammalian epidermal development. PMID:25827072

  14. Changes in epilithic communities due to individual and combined treatments of zinc and snail grazing in stream mesocosms

    SciTech Connect

    Genter, R.B.; Colwell, F.S.; Pratt, J.R.; Cherry, D.S.; Cairns, J. Jr.

    1988-06-01

    Effects of 0.5 mg/liter zinc (Zn) and snail grazing (400 snails/m2) on density of dominant algal and protozoan taxa, epilithic glucose respiration, and ash-free dry weight (AFDW) were examined using established (12-day colonization) periphyton communities in flow-through stream mesocosms with four treatments (Zn, snails, Zn and snails, control) for 30 days. Grazing and Zn similarly reduced the abundance of 5 of 10 dominant algal taxa and AFDW during the first 10 days of treatment. Abundance of these taxa and AFDW in grazed (ambient Zn) treatments approached control levels after 10 days as the effect due to snails decreased. Decreasing temperatures may have reduced snail activity. Snails, Zn, and the combination of these treatments contributed to higher rates of glucose respiration per unit AFDW. Protozoan species abundance was reduced to less than half by Zn but was unaffected by snails. Although Zn and snails individually altered structural and functional aspects of this microbial community, the effects when both treatments were combined could not always be inferred from the individual effects. Testing individual and combined variables that affect periphyton with a corresponding assessment of population dynamics, biomass, and community functional attributes will enhance understanding of the overall effects of pollutants on periphyton communities.

  15. FBXO11 promotes ubiquitination of the Snail family of transcription factors in cancer progression and epidermal development

    PubMed Central

    Jin, Yue; Shenoy, Anitha K.; Doernberg, Samuel; Chen, Hao; Luo, Huacheng; Shen, Huangxuan; Lin, Tong; Tarrash, Miriam; Cai, Qingsong; Hu, Xin; Fiske, Ryan; Chen, Ting; Wu, Lizi; Mohammed, Kamal A.; Rottiers, Veerle; Lee, Siu Sylvia; Lu, Jianrong

    2015-01-01

    The Snail family of transcription factors are core inducers of epithelial-to-mesenchymal transition (EMT). Here we show that the F-box protein FBXO11 recognizes and promotes ubiquitin-mediated degradation of multiple Snail family members including Scratch. The association between FBXO11 and Snai1 in vitro is independent of Snai1 phosphorylation. Overexpression of FBXO11 in mesenchymal cells reduces Snail protein abundance and cellular invasiveness. Conversely, depletion of endogenous FBXO11 in epithelial cancer cells causes Snail protein accumulation, EMT, and tumor invasion, as well as loss of estrogen receptor expression in breast cancer cells. Expression of FBXO11 is downregulated by EMT-inducing signals TGFβ and nickel. In human cancer, high FBXO11 levels correlate with expression of epithelial markers and favorable prognosis. The results suggest that FBXO11 sustains the epithelial state and inhibits cancer progression. Inactivation of FBXO11 in mice leads to neonatal lethality, epidermal thickening, and increased Snail protein levels in epidermis, validating that FBXO11 is a physiological ubiquitin ligase of Snail. Moreover, in C. elegans, the FBXO11 mutant phenotype is attributed to the Snail factors as it is suppressed by inactivation/depletion of Snail homologs. Collectively, these findings suggest that the FBXO11-Snail regulatory axis is evolutionarily conserved and critically governs carcinoma progression and mammalian epidermal development. PMID:25827072

  16. Chlorophyllin Bait Formulation and Exposure to Different Spectrum of Visible Light on the Reproduction of Infected/Uninfected Snail Lymnaea acuminata

    PubMed Central

    Kumar, Navneet; Singh, D. K.; Singh, Vinay Kumar

    2016-01-01

    Fasciolosis is a waterborne disease, caused by Fasciola species. Snail Lymnaea acuminata is an intermediate host of these flukes. Control of snail population is major tool in reducing the incidences. Variation in light intensity and wavelength caused significant changes in reproduction pattern of snails. Maximum fecundity was noted with bait containing carbohydrate (starch, 468 ± 0.10/20 snails) or amino acid (serine, 319 ± 0.29/20 snails) as attractant. Sublethal feeding of chlorophyllin bait with starch or serine attractant to infected and uninfected snails caused significant reduction in fecundity, hatchability, and survivability. These significant changes are observed in snails exposed to different spectral band of visible light and sunlight. Maximum fecundity of 536 ± 2.0 and minimum of 89.3 ± 0.4 were noted in snails not fed with bait and exposed to sunlight and red spectral band, respectively. There was complete arrest in the fecundity of infected and uninfected snails and no survivability of uninfected snails after 48 h feeding with bait containing chlorophyllin + attractant. Minimum hatchability (9.25 ± 0.5) was noted in red light exposed, chlorophyllin + starch fed infected snails and hatching period of bait fed snails was prolonged. Conclusively, chlorophyllin bait and red light reduce reproduction capacity in snails. PMID:26925296

  17. Chlorophyllin Bait Formulation and Exposure to Different Spectrum of Visible Light on the Reproduction of Infected/Uninfected Snail Lymnaea acuminata.

    PubMed

    Kumar, Navneet; Singh, D K; Singh, Vinay Kumar

    2016-01-01

    Fasciolosis is a waterborne disease, caused by Fasciola species. Snail Lymnaea acuminata is an intermediate host of these flukes. Control of snail population is major tool in reducing the incidences. Variation in light intensity and wavelength caused significant changes in reproduction pattern of snails. Maximum fecundity was noted with bait containing carbohydrate (starch, 468 ± 0.10/20 snails) or amino acid (serine, 319 ± 0.29/20 snails) as attractant. Sublethal feeding of chlorophyllin bait with starch or serine attractant to infected and uninfected snails caused significant reduction in fecundity, hatchability, and survivability. These significant changes are observed in snails exposed to different spectral band of visible light and sunlight. Maximum fecundity of 536 ± 2.0 and minimum of 89.3 ± 0.4 were noted in snails not fed with bait and exposed to sunlight and red spectral band, respectively. There was complete arrest in the fecundity of infected and uninfected snails and no survivability of uninfected snails after 48 h feeding with bait containing chlorophyllin + attractant. Minimum hatchability (9.25 ± 0.5) was noted in red light exposed, chlorophyllin + starch fed infected snails and hatching period of bait fed snails was prolonged. Conclusively, chlorophyllin bait and red light reduce reproduction capacity in snails. PMID:26925296

  18. Thermal tolerance and climate warming sensitivity in tropical snails.

    PubMed

    Marshall, David J; Rezende, Enrico L; Baharuddin, Nursalwa; Choi, Francis; Helmuth, Brian

    2015-12-01

    Tropical ectotherms are predicted to be especially vulnerable to climate change because their thermal tolerance limits generally lie close to current maximum air temperatures. This prediction derives primarily from studies on insects and lizards and remains untested for other taxa with contrasting ecologies. We studied the HCT (heat coma temperatures) and ULT (upper lethal temperatures) of 40 species of tropical eulittoral snails (Littorinidae and Neritidae) inhabiting exposed rocky shores and shaded mangrove forests in Oceania, Africa, Asia and North America. We also estimated extremes in animal body temperature at each site using a simple heat budget model and historical (20 years) air temperature and solar radiation data. Phylogenetic analyses suggest that HCT and ULT exhibit limited adaptive variation across habitats (mangroves vs. rocky shores) or geographic locations despite their contrasting thermal regimes. Instead, the elevated heat tolerance of these species (HCT = 44.5 ± 1.8°C and ULT = 52.1 ± 2.2°C) seems to reflect the extreme temperature variability of intertidal systems. Sensitivity to climate warming, which was quantified as the difference between HCT or ULT and maximum body temperature, differed greatly between snails from sunny (rocky shore; Thermal Safety Margin, TSM = -14.8 ± 3.3°C and -6.2 ± 4.4°C for HCT and ULT, respectively) and shaded (mangrove) habitats (TSM = 5.1 ± 3.6°C and 12.5 ± 3.6°C). Negative TSMs in rocky shore animals suggest that mortality is likely ameliorated during extreme climatic events by behavioral thermoregulation. Given the low variability in heat tolerance across species, habitat and geographic location account for most of the variation in TSM and may adequately predict the vulnerability to climate change. These findings caution against generalizations on the impact of global warming across ectothermic taxa and highlight how the consideration of nonmodel animals, ecological transitions

  19. FOXQ1 promotes gastric cancer metastasis through upregulation of Snail.

    PubMed

    Zhang, Jing; Liu, Yimin; Zhang, Jia; Cui, Xiaohai; Li, Gang; Wang, Jiansheng; Ren, Hong; Zhang, Yunfeng

    2016-06-01

    Gastric cancer (GC) is one of the most common cancers, and the second most common cause of cancer deaths worldwide. Forkhead box Q1 (FOXQ1) is a member of the forkhead transcription factor family and its upregulation is closely correlated with tumor progression and prognosis of multiple cancer types, including GC. FOXQ1 has been shown to regulate EMT and function in human cancers. However, the role of FOXQ1 in regulating EMT in GC and the exactly mechanism has not been clarified. The purpose of this study was to investigate the effects of FOXQ1 on EMT in human GC. FOXQ1 protein was detected by immunohistochemistry in human GC specimens and their clinical significance evaluated. We examined the cell biology and molecular biology changes after overexpression and knockdown of FOXQ1 in gastric cancer cells in vitro. To further understand the underlying mechanisms of EMT promoted by FOXQ1, we examined the changes of target genes of FOXQ1 after overexpression and knockdown of FOXQ1 in gastric cancer cells. In the present study, we demonstrate that FOXQ1 is overexpressed in GC tissues and its expression level is closely correlated with histologic differentiation, pTNM stage, and lymphatic metastasis of GC. Kaplan-Meier survival analysis showed that a high expression level of FOXQ1 resulted in a significantly poor prognosis of GC patients. FOXQ1 modulated GC cell invasion in vitro, and induced E-cadherin repression. FOXQ1 also upregulated the expression of vimentin in vitro. The Snail signaling pathway was likely involved in the induction of EMT by FOXQ1 in GC. Our results demonstrate that FOXQ1 is a prognostic marker for patients with GC, FOXQ1 over-expression is involved in acquisition of the mesenchymal phenotype of gastric cancer cells, and that subsequent Snail expression is essential for induction of EMT. The results suggest that FOXQ1 is a potential therapeutic target for the development of therapies for GC. PMID:27109028

  20. The Application of Electric Shock as a Novel Pest Control Method for Apple Snail, Pomacea canaliculata (Gastropoda: Ampullariidae)

    NASA Astrophysics Data System (ADS)

    Yagyu, Yoshihito; Tsuji, Satoshi; Satoh, Saburoh; Yamabe, Chobei

    The apple snail, Pomacea canaliculata, brought to Japan from Taiwan for human consumption in the 1980s, has come to be considered as deleterious for rice cultivation. The snail is unable to injure young rice plants while receiving electric shock because the snail retracts its entire body into its shell and shuts its aperture with its operculum. Electric shock should be applied intermittently to reduce the amount of energy that is wasted when the snail is in its shell made of one of the insulator. The minimum electric shock required for controlling snails and the time required for movement after application of electric shock to determine the frequency of each electric shock were investigated using two methods; vertical and horizontal application of the electrical stimulation. The results showed that there is a strong correlation between the strength of electric shock and the reaction of the snails, and electric shock made snails inactive when it was applied 0.35 A/m2 in the horizontal direction and 0.45 A/m2 in the vertical direction with water of 11 mS/m. A positive correlation was also found between electric shock and the reaction of the snails and shell height. In comparison with larger snails, the smaller snails had higher threshold levels against electric current density because their shorter feet tended to have lower voltage dorp. Moreover, the frequency of electric shock should be chosen the minimum duration for the inactive condition, and it was approximately 10 seconds. Consequently the direction of electric current should be in the horizontal direction above 0.35 A/m2 and the frequency of electric shock should be less than 10 seconds for practical use. However, electric shock would have to be maintained at greater than 0.35 A/m2 because snails might become habituated to electric shock and water in paddy field would have high electric conductivity.

  1. Toxicity of Metals to a Freshwater Snail, Melanoides tuberculata

    PubMed Central

    Shuhaimi-Othman, M.; Nur-Amalina, R.; Nadzifah, Y.

    2012-01-01

    Adult freshwater snails Melanoides tuberculata (Gastropod, Thiaridae) were exposed for a four-day period in laboratory conditions to a range of copper (Cu), cadmium (Cd), zinc (Zn), lead (Pb), nickel (Ni), iron (Fe), aluminium (Al), and manganese (Mn) concentrations. Mortality was assessed and median lethal times (LT50) and concentrations (LC50) were calculated. LT50 and LC50 increased with the decrease in mean exposure concentrations and times, respectively, for all metals. The LC50 values for the 96-hour exposures to Cu, Cd, Zn, Pb, Ni, Fe, Al, and Mn were 0.14, 1.49, 3.90, 6.82, 8.46, 8.49, 68.23, and 45.59 mg L−1, respectively. Cu was the most toxic metal to M. tuberculata, followed by Cd, Zn, Pb, Ni, Fe, Mn, and Al (Cu > Cd > Zn > Pb > Ni > Fe > Mn > Al). Metals bioconcentration in M. tuberculata increases with exposure to increasing concentrations and Cu has the highest accumulation (concentration factor) in the soft tissues. A comparison of LC50 values for metals for this species with those for other freshwater gastropods reveals that M. tuberculata is equally sensitive to metals. PMID:22666089

  2. Phylogeography and conservation genetics of the Iowa pleistocene snail.

    PubMed

    Ross, T K

    1999-09-01

    The Iowa Pleistocene snail, Discus macclintocki, is an endangered species that survives only in relictual populations on algific (cold-air) talus slopes in northeast Iowa and northwest Illinois in the central region of the USA. These populations are believed to have been isolated since the temperatures began to warm at the end of the last glacial period around 16 500 years ago. DNA sequencing of the 16s rRNA gene of the mitochondria was used to determine the genetic relationship among 10 populations and the genetic diversity within these populations. Genetic diversity is extremely high within this species with 40 haplotypes spread across the 10 populations sampled within a 4000 km2 region. Phylogenetic analyses showed that haplotypes formed monophyletic groups by the watershed on which they were found, suggesting that watersheds were important historical avenues of gene flow. Genetic distances were strongly related to the geographical distance among all populations, but this relationship was dependent on the scale being considered. PMID:10564443

  3. A phylogeny of the land snails (Gastropoda: Pulmonata).

    PubMed Central

    Wade, C. M.; Mordan, P. B.; Clarke, B.

    2001-01-01

    We have undertaken the first large-scale molecular phylogenetic analysis of the Stylommatophora. Sequences of the ribosomal RNA gene-cluster were examined in 104 species of snails and slugs from 50 families, encompassing all the currently recognized major groups. It allows an independent test of the present classification based on morphology. At the level of families our molecular phylogeny closely supports the current taxonomy, but the deep branches within the tree do not. Surprisingly, a single assemblage including the families Achatinidae, Subulinidae and Streptaxidae lies near the base of the tree, forming a sister group to all remaining stylommatophorans. This primary division into 'achatinoid' and 'non-achatinoid' taxa is unexpected, and demands a radical reinterpretation of early stylommatophoran evolution. In particular, the Orthurethra appear to be relatively advanced within the 'non-achatinoid clade', and broadly equivalent to other super-familial clusters. This indicates that supposedly primitive features such as the orthurethran kidney are derived. The molecular tree also suggests that the origin of the Stylommatophora is much earlier than the main period of their diversification. PMID:11270439

  4. Prostaglandin E2 accelerates invasion by upregulating Snail in hepatocellular carcinoma cells.

    PubMed

    Zhang, Min; Zhang, Hai; Cheng, Shanyu; Zhang, Dengcai; Xu, Yan; Bai, Xiaoming; Xia, Shukai; Zhang, Li; Ma, Juan; Du, Mingzhan; Wang, Yipin; Wang, Jie; Chen, Meng; Leng, Jing

    2014-07-01

    Our previous studies showed that prostaglandin E2 (PGE2) promotes hepatoma cell growth and migration, as well as invasion; however, the precise mechanism remains elusive. Snail and p65 protein levels were detected in human samples with hepatocellular carcinoma (HCC) by immunohistochemistry (IHC) staining. HCC cell lines (Huh-7 and Hep3B) were used for in vitro experiments. PGE2/Akt/NF-κB pathway was investigated in Huh-7 and Hep3B cells after treatment with PGE2, EP4 receptor (EP4R) agonist, Akt inhibitor, and NF-κB inhibitor, respectively, by real-time reverse transcription (RT)-PCR, Western blotting, and immunofluorescence (IF) staining. In vitro cell invasion assay was performed to evaluate the effect of PGE2 on tumor invasiveness. Knockdown of EP4R was carried out in Huh-7 cells through plasmid-based small interfering RNA (siRNA) approach to confirm the regulation of PGE2 on Snail by EP4R. Dual luciferase reporter assay was performed to assess Snail promoter activity in Huh-7 cell after treatment with EP4R agonist. We found that the protein levels of Snail were higher in HCC tissues than those in control and that PGE2 and EP4R agonist treatment significantly increased Snail expression in Huh-7 and Hep3B cells. EP4R agonist also profoundly promoted invasiveness of Huh-7 cells. Knockdown of the EP4R by siRNA completely blocked the PGE2-induced upregulation of Snail expression and reduced invasiveness of Huh-7 cells. We failed to find that EP4R-induced upregulation of Snail was reversed by inhibition of cAMP response element-binding protein (CREB), a canonical downstream target of EP4R. Alternatively, EP4R agonist treatment significantly increased the levels of phosphorylated EGFR and Akt both in Huh-7 and Hep3B cells. AG1478, an EGFR inhibitor, blocked the phosphorylation of Akt. The levels of phosphorylated IκB increased in Huh-7 cells after treatment with EP4R agonist for 30 min. The levels of phosphorylated p65 started to increase in Huh-7 cells treated

  5. Bisphenol A regulates Snail-mediated epithelial-mesenchymal transition in hemangioma cells.

    PubMed

    Zhai, Denggao; He, Jiantai; Li, Xiaoli; Gong, Liansheng; Ouyang, Yang

    2016-08-01

    Hemangioma (HA) can be exposed to bisphenol A (BPA) through direct skin absorption. Although numerous studies indicated that BPA can trigger the progression of cancers, there is no study concerning the effects of BPA on development of HA. Our present study revealed that nanomolar BPA can significantly increase the in vitro migration and invasion of HA cells via induction of epithelial-mesenchymal transition (EMT), which was evidenced by the upregulation of vimentin and downregulation of E-cadherin. The BPA treatment also significantly increased the expression and nuclear localization of Snail and the key transcription factor of EMT, while it had no effect on the expression of other transcription factors such as Slug, Twist, or ZEB1. Silencing of Snail by small interfering RNAs attenuated BPA-induced downregulation of cadherin and upregulation of vimentin, suggesting that Snail is essential for BPA-induced EMT. Both estrogen receptor α (ERα) and G protein-coupled estrogen receptor (GPER) were expressed in HA cells; furthermore, BPA treatment can increase the expression of both ERα and GPER. However, only the inhibitor of ERα (ICI 182, 780), and not GPER (G15), can abolish BPA-induced upregulation of Snail. It suggested that ERα is involved in BPA-induced EMT of HA cells. Collectively, our data suggested that BPA can trigger the EMT of HA cells via ERα/Snail signals. It indicated that more attention should be paid to the skin exposure to BPA for HA patients. PMID:27480627

  6. Estimating Genetic and Maternal Effects Determining Variation in Immune Function of a Mixed-Mating Snail

    PubMed Central

    Seppälä, Otto; Langeloh, Laura

    2016-01-01

    Evolution of host defenses such as immune function requires heritable genetic variation in them. However, also non-genetic maternal effects can contribute to phenotypic variation, thus being an alternative target for natural selection. We investigated the role of individuals’ genetic background and maternal effects in determining immune defense traits (phenoloxidase and antibacterial activity of hemolymph), as well as in survival and growth, in the simultaneously hermaphroditic snail Lymnaea stagnalis. We utilized the mixed mating system of this species by producing full-sib families in which each parental snail had produced offspring as both a dam and as a sire, and tested whether genetic background (family) and non-genetic maternal effects (dam nested within family) explain trait variation. Immune defense traits and growth were affected solely by individuals’ genetic background. Survival of snails did not show family-level variation. Additionally, some snails were produced through self-fertilization. They showed reduced growth and survival suggesting recessive load or overdominance. Immune defense traits did not respond to inbreeding. Our results suggest that the variation in snail immune function and growth was due to genetic differences. Since immune traits did not respond to inbreeding, this variation is most likely due to additive or epistatic genetic variance. PMID:27551822

  7. An overview of freshwater snails in Asia with main focus on Vietnam.

    PubMed

    Madsen, H; Hung, N M

    2014-12-01

    Freshwater snails have received much attention for their role as intermediate hosts for trematodes causing disease in people and animals such as schistosomiasis and various food-borne trematodes. While effective medical treatment exists for some of these diseases there is need for preventive measures to reduce transmission, e.g. control of intermediate hosts because transmission patterns are often complicated due to presence of reservoir final hosts. In order to implement control measures against the intermediate host snails with minimal impact on the freshwater ecosystems and their biodiversity, a profound knowledge on transmission patterns of the trematodes is required and this is partly related to distribution, habitat preferences, and seasonal variation in density of the intermediate host species. Identification of snail species can be problematic on the basis of morphological and anatomical characters alone as some species show morphological plasticity and similarly morphological differentiation of cercariae found in snails may be difficult and this could lead to biased perceptions of intermediate host spectra and transmission patterns. In this paper, we give an overview of the snail families and their medical and veterinary importance in Asia but with main focus on Vietnam. PMID:25149356

  8. Reprint of "An overview of freshwater snails in Asia with main focus on Vietnam".

    PubMed

    Madsen, H; Hung, N M

    2015-01-01

    Freshwater snails have received much attention for their role as intermediate hosts for trematodes causing disease in people and animals such as schistosomiasis and various food-borne trematodes. While effective medical treatment exists for some of these diseases there is need for preventive measures to reduce transmission, e.g. control of intermediate hosts because transmission patterns are often complicated due to presence of reservoir final hosts. In order to implement control measures against the intermediate host snails with minimal impact on the freshwater ecosystems and their biodiversity, a profound knowledge on transmission patterns of the trematodes is required and this is partly related to distribution, habitat preferences, and seasonal variation in density of the intermediate host species. Identification of snail species can be problematic on the basis of morphological and anatomical characters alone as some species show morphological plasticity and similarly morphological differentiation of cercariae found in snails may be difficult and this could lead to biased perceptions of intermediate host spectra and transmission patterns. In this paper, we give an overview of the snail families and their medical and veterinary importance in Asia but with main focus on Vietnam. PMID:25446169

  9. Heat shock proteins and survival strategies in congeneric land snails (Sphincterochila) from different habitats.

    PubMed

    Mizrahi, Tal; Heller, Joseph; Goldenberg, Shoshana; Arad, Zeev

    2012-09-01

    Polmunate land snails are subject to stress conditions in their terrestrial habitat, and depend on a range of behavioural, physiological and biochemical adaptations for coping with problems of maintaining water, ionic and thermal balance. The involvement of the heat shock protein (HSP) machinery in land snails was demonstrated following short-term experimental aestivation and heat stress, suggesting that land snails use HSPs as part of their survival strategy. As climatic variation was found to be associated with HSP expression, we tested whether adaptation of land snails to different habitats affects HSP expression in two closely related Sphincterochila snail species, a desert species Sphincterochila zonata and a Mediterranean-type species Sphincterochila cariosa. Our study suggests that Sphincterochila species use HSPs as part of their survival strategy following desiccation and heat stress, and as part of the natural annual cycle of activity and aestivation. Our studies also indicate that adaptation to different habitats results in the development of distinct strategies of HSP expression in response to stress, namely the reduced expression of HSPs in the desert-inhabiting species. We suggest that these different strategies reflect the difference in heat and aridity encountered in the natural habitats, and that the desert species S. zonata relies on mechanisms and adaptations other than HSP induction thus avoiding the fitness consequences of continuous HSP upregulation. PMID:22528052

  10. Antidepressants cause foot detachment from substrate in five species of marine snail.

    PubMed

    Fong, Peter P; Molnar, Nikolett

    2013-03-01

    Active Pharmaceutical Ingredients (APIs) are released into aquatic ecosystems through discharged sewage wastewater. Antidepressants are among those APIs often detected in wastewater effluent and have been recently reported to cause foot detachment from the substrate in freshwater snails. We tested the effects of four commonly prescribed antidepressants {fluoxetine ("Prozac"), fluvoxamine ("Luvox"), venlafaxine ("Effexor"), and citalopram ("Celexa") on adhesion to the substrate in five species of marine snails, three from the Pacific coast (Chlorostoma funebralis, Nucella ostrina, Urosalpinx cinerea) and two species from the Atlantic coast (Tegula fasciatus and Lithopoma americanum) of North America representing three different gastropod families. All antidepressants tested induced foot detachment from the substrate in all snail species in a mainly dose-dependent manner (p < 0.04-0.00000001). The lowest LOECs (lowest observed effect concentration) for antidepressants and snails were recorded for Lithopoma in 43.4 μg/L (100 nM) fluvoxamine and Chlorostoma in 157 μg/L (500 nM) venlafaxine and 217 μg/L (500 nM) fluvoxamine. The trochids and turbinids were 2-10× more sensitive to the antidepressants than the muricids. Latency to detachment was also dose dependent, with the fastest average times to detach seen in Chlorostoma and Lithopoma (7.33 and 13.16 min respectively in 3.13 mg/L venlafaxine). The possible physiological mechanisms regulating antidepressant-induced foot detachment in marine snails and the possible ecological consequences are discussed. PMID:23218553

  11. Formin Is Associated with Left-Right Asymmetry in the Pond Snail and the Frog

    PubMed Central

    Davison, Angus; McDowell, Gary S.; Holden, Jennifer M.; Johnson, Harriet F.; Koutsovoulos, Georgios D.; Liu, M. Maureen; Hulpiau, Paco; Van Roy, Frans; Wade, Christopher M.; Banerjee, Ruby; Yang, Fengtang; Chiba, Satoshi; Davey, John W.; Jackson, Daniel J.; Levin, Michael; Blaxter, Mark L.

    2016-01-01

    Summary While components of the pathway that establishes left-right asymmetry have been identified in diverse animals, from vertebrates to flies, it is striking that the genes involved in the first symmetry-breaking step remain wholly unknown in the most obviously chiral animals, the gastropod snails. Previously, research on snails was used to show that left-right signaling of Nodal, downstream of symmetry breaking, may be an ancestral feature of the Bilateria [1, 2]. Here, we report that a disabling mutation in one copy of a tandemly duplicated, diaphanous-related formin is perfectly associated with symmetry breaking in the pond snail. This is supported by the observation that an anti-formin drug treatment converts dextral snail embryos to a sinistral phenocopy, and in frogs, drug inhibition or overexpression by microinjection of formin has a chirality-randomizing effect in early (pre-cilia) embryos. Contrary to expectations based on existing models [3, 4, 5], we discovered asymmetric gene expression in 2- and 4-cell snail embryos, preceding morphological asymmetry. As the formin-actin filament has been shown to be part of an asymmetry-breaking switch in vitro [6, 7], together these results are consistent with the view that animals with diverse body plans may derive their asymmetries from the same intracellular chiral elements [8]. PMID:26923788

  12. Distinct Bacterial Microbiomes in Sexual and Asexual Potamopyrgus antipodarum, a New Zealand Freshwater Snail.

    PubMed

    Takacs-Vesbach, Cristina; King, Kayla; Van Horn, David; Larkin, Katelyn; Neiman, Maurine

    2016-01-01

    Different reproductive strategies and the transition to asexuality can be associated with microbial symbionts. Whether such a link exists within mollusks has never been evaluated. We took the first steps towards addressing this possibility by performing pyrosequencing of bacterial 16S rRNA genes associated with Potamopyrgus antipodarum, a New Zealand freshwater snail. A diverse set of 60 tissue collections from P. antipodarum that were genetically and geographically distinct and either obligately sexual or asexual were included, which allowed us to evaluate whether reproductive mode was associated with a particular bacterial community. 2624 unique operational taxonomic units (OTU, 97% DNA similarity) were detected, which were distributed across ~30 phyla. While alpha diversity metrics varied little among individual samples, significant differences in bacterial community composition and structure were detected between sexual and asexual snails, as well as among snails from different lakes and genetic backgrounds. The mean dissimilarity of the bacterial communities between the sexual and asexual P. antipodarum was 90%, largely driven by the presence of Rickettsiales in sexual snails and Rhodobacter in asexual snails. Our study suggests that there might be a link between reproductive mode and the bacterial microbiome of P. antipodarum, though a causal connection requires additional study. PMID:27563725

  13. Snail-type zinc finger proteins prevent neurogenesis in Scutoid and transgenic animals of Drosophila.

    PubMed

    Fuse, N; Matakatsu, H; Taniguchi, M; Hayashi, S

    1999-10-01

    Scutoid is a classical dominant gain-of-function mutation of Drosophila, causing a loss of bristles and roughening of the compound eye. Previous genetic and molecular analyses have shown that Scutoid is associated with a chromosomal transposition resulting in a fusion of no-oceli and snail genes. How this gene fusion event leads to the defects in neurogenesis was not known until now. Here have found that snail is ectopically expressed in the eye-antennal and wing imaginal discs in Scutoid larvae, and that this expression is reduced in Scutoid revertants. We have also shown that the expressivity of Scutoid is enhanced by zeste mutations. snail and escargot encode evolutionarily conserved zinc-finger proteins involved in the development of mesoderm and limbs. Snail and Escargot proteins share a common target DNA sequence with the basic helix-loop-helix (bHLH) type proneural gene products. When expressed in the developing external sense organ precursors of the thorax and the eye, these proteins cause a loss of mechanosensory bristles in the thorax and perturbed the development of the compound eye. Such phenotypes resemble those associated with Scutoid. Furthermore, the effect of ectopic Escargot on bristle development is antagonized by coexpression of the bHLH gene asense. Thus, our results suggest that the Scutoid phenotype is due to an ectopic snail expression under the control of no-oceli enhancer, antagonizing neurogenesis through its inhibitory interaction with bHLH proteins. PMID:10552298

  14. The Drosophila gene escargot encodes a zinc finger motif found in snail-related genes.

    PubMed

    Whiteley, M; Noguchi, P D; Sensabaugh, S M; Odenwald, W F; Kassis, J A

    1992-02-01

    Two independent P-element enhancer detection lines were obtained that express lacZ in a pattern of longitudinal stripes early in germband elongation. In this paper, molecular and genetic characterization of a gene located near these transposons is presented. Sequence analysis of a cDNA clone from the region reveals that this gene has a high degree of similarity with the Drosophila snail gene (Boulay et al., 1987). The sequence similarity extends over 400 nucleotides, and includes a region encoding five tandem zinc finger motifs (72% nucleotide identity; 76% amino acid identity). This region is also conserved in the snail homologue from Xenopus laevis (76% nucleotide identity; 83% amino acid identity) (Sargent and Bennett, 1990). We have named the Drosophila snail-related gene escargot (esg), and the region of sequence conservation common to all three genes the 'snailbox'. A number of Drosophila genomic DNA fragments cross-hybridize to a probe from the snailbox region suggesting that snail and escargot are members of a multigene family. The expression pattern of escargot is dynamic and complex. Early in germband elongation, escargot RNA is expressed in a pattern of longitudinal stripes identical to the one observed in the two enhancer detection lines. Later in development, escargot is expressed in cells that will form the larval imaginal tissues, escargot is allelic with l(2)35Ce, an essential gene located near snail in the genome. PMID:1571289

  15. Prehistoric inter-archipelago trading of Polynesian tree snails leaves a conservation legacy.

    PubMed

    Lee, Taehwan; Burch, John B; Coote, Trevor; Fontaine, Benoît; Gargominy, Olivier; Pearce-Kelly, Paul; Foighil, Diarmaid O

    2007-11-22

    Inter-archipelago exchange networks were an important aspect of prehistoric Polynesian societies. We report here a novel genetic characterization of a prehistoric exchange network involving an endemic Pacific island tree snail, Partula hyalina. It occurs in the Society (Tahiti only), Austral and Southern Cook Islands. Our genetic data, based on museum, captive and wild-caught samples, establish Tahiti as the source island. The source lineage is polymorphic in shell coloration and contains a second nominal species, the dark-shelled Partula clara, in addition to the white-shelled P. hyalina. Prehistoric inter-island introductions were non-random: they involved white-shelled snails only and were exclusively inter-archipelago in scope. Partulid shells were commonly used in regional Polynesian jewellery, and we propose that the white-shelled P. hyalina, originally restricted to Tahiti, had aesthetic value throughout these archipelagoes. Demand within the Society Islands could be best met by trading dead shells, but a low rate of inter-archipelago exchange may have prompted the establishment of multiple founder populations in the Australs and Southern Cooks. The alien carnivorous land snail Euglandina rosea has recently devastated populations of all 61 endemic species of Society Island partulid snails. Southern Cooks and Australs P. hyalina now represent the only unscathed wild populations remaining of this once spectacular land snail radiation. PMID:17848368

  16. Specialized insulin is used for chemical warfare by fish-hunting cone snails.

    PubMed

    Safavi-Hemami, Helena; Gajewiak, Joanna; Karanth, Santhosh; Robinson, Samuel D; Ueberheide, Beatrix; Douglass, Adam D; Schlegel, Amnon; Imperial, Julita S; Watkins, Maren; Bandyopadhyay, Pradip K; Yandell, Mark; Li, Qing; Purcell, Anthony W; Norton, Raymond S; Ellgaard, Lars; Olivera, Baldomero M

    2015-02-10

    More than 100 species of venomous cone snails (genus Conus) are highly effective predators of fish. The vast majority of venom components identified and functionally characterized to date are neurotoxins specifically targeted to receptors, ion channels, and transporters in the nervous system of prey, predators, or competitors. Here we describe a venom component targeting energy metabolism, a radically different mechanism. Two fish-hunting cone snails, Conus geographus and Conus tulipa, have evolved specialized insulins that are expressed as major components of their venoms. These insulins are distinctive in having much greater similarity to fish insulins than to the molluscan hormone and are unique in that posttranslational modifications characteristic of conotoxins (hydroxyproline, γ-carboxyglutamate) are present. When injected into fish, the venom insulin elicits hypoglycemic shock, a condition characterized by dangerously low blood glucose. Our evidence suggests that insulin is specifically used as a weapon for prey capture by a subset of fish-hunting cone snails that use a net strategy to capture prey. Insulin appears to be a component of the nirvana cabal, a toxin combination in these venoms that is released into the water to disorient schools of small fish, making them easier to engulf with the snail's distended false mouth, which functions as a net. If an entire school of fish simultaneously experiences hypoglycemic shock, this should directly facilitate capture by the predatory snail. PMID:25605914

  17. Correlated S-palmitoylation profiling of Snail-induced epithelial to mesenchymal transition.

    PubMed

    Hernandez, Jeannie L; Davda, Dahvid; Majmudar, Jaimeen D; Won, Sang Joon; Prakash, Ashesh; Choi, Alexandria I; Martin, Brent R

    2016-05-24

    Epithelial cells form spatially-organized adhesion complexes that establish polarity gradients, regulate cell proliferation, and direct wound healing. As cells accumulate oncogenic mutations, these key tumor suppression mechanisms are disrupted, eliminating many adhesion complexes and bypassing contact inhibition. The transcription factor Snail is often expressed in malignant cancers, where it promotes transcriptional reprogramming to drive epithelial-mesenchymal transition (EMT) and establishes a more invasive state. S-Palmitoylation describes the fatty-acyl post-translational modification of cysteine residues in proteins, and is required for membrane anchoring, trafficking, localization and function of hundreds of proteins involved in cell growth, polarity, and signaling. Since Snail-expression disrupts apico-basolateral cell polarity, we asked if Snail-dependent transformation induces proteome-wide changes in S-palmitoylation. MCF10A breast cancer cells were retrovirally transduced with Snail and correlated proteome-wide changes in protein abundance and S-palmitoylation were profiled by using stable isotope labeling in cell culture with amino acid (SILAC) mass spectrometry. This analysis identified increased levels of proteins involved in migration, glycolysis, and cell junction remodeling, and decreased levels of proteins involved in cell adhesion. Overall, protein S-palmitoylation is highly correlated with protein abundance, yet for a subset of proteins, this correlation is uncoupled. These findings suggest that Snail-overexpression affects the S-palmitoylation cycle of some proteins, which may participate in cell polarity and tumor suppression. PMID:27030425

  18. Formin Is Associated with Left-Right Asymmetry in the Pond Snail and the Frog.

    PubMed

    Davison, Angus; McDowell, Gary S; Holden, Jennifer M; Johnson, Harriet F; Koutsovoulos, Georgios D; Liu, M Maureen; Hulpiau, Paco; Van Roy, Frans; Wade, Christopher M; Banerjee, Ruby; Yang, Fengtang; Chiba, Satoshi; Davey, John W; Jackson, Daniel J; Levin, Michael; Blaxter, Mark L

    2016-03-01

    While components of the pathway that establishes left-right asymmetry have been identified in diverse animals, from vertebrates to flies, it is striking that the genes involved in the first symmetry-breaking step remain wholly unknown in the most obviously chiral animals, the gastropod snails. Previously, research on snails was used to show that left-right signaling of Nodal, downstream of symmetry breaking, may be an ancestral feature of the Bilateria [1 and 2]. Here, we report that a disabling mutation in one copy of a tandemly duplicated, diaphanous-related formin is perfectly associated with symmetry breaking in the pond snail. This is supported by the observation that an anti-formin drug treatment converts dextral snail embryos to a sinistral phenocopy, and in frogs, drug inhibition or overexpression by microinjection of formin has a chirality-randomizing effect in early (pre-cilia) embryos. Contrary to expectations based on existing models [3, 4 and 5], we discovered asymmetric gene expression in 2- and 4-cell snail embryos, preceding morphological asymmetry. As the formin-actin filament has been shown to be part of an asymmetry-breaking switch in vitro [6 and 7], together these results are consistent with the view that animals with diverse body plans may derive their asymmetries from the same intracellular chiral elements [8]. PMID:26923788

  19. Fascioliasis Control: In Vivo and In Vitro Phytotherapy of Vector Snail to Kill Fasciola Larva

    PubMed Central

    Sunita, Kumari; Singh, D. K.

    2011-01-01

    Snail is one of the important components of an aquatic ecosystem, it acts as intermediate host of Fasciola species. Control of snail population below a certain threshold level is one of the important methods in the campaign to reduce the incidence of fascioliasis. Life cycle of the parasite can be interrupted by killing the snail or Fasciola larva redia and cercaria in the snail body. In vivo and in vitro toxicity of the plant products and their active component such as citral, ferulic acid, umbelliferone, azadirachtin, and allicin against larva of Fasciola in infected snail Lymnaea acuminata were tested. Mortality of larvae were observed at 2 h, 4 h, 6 h, and 8 h, of treatment. In in vivo treatment, azadirachtin caused highest mortality in redia and cercaria larva (8 h, LC50 0.11, and 0.05 mg/L) whereas in in vitro condition allicin was highly toxic against redia and cercaria (8 h, LC50 0.01, and 0.009 mg/L). Toxicity of citral was lowest against redia and cercaria larva. PMID:22132306

  20. Estimating Genetic and Maternal Effects Determining Variation in Immune Function of a Mixed-Mating Snail.

    PubMed

    Seppälä, Otto; Langeloh, Laura

    2016-01-01

    Evolution of host defenses such as immune function requires heritable genetic variation in them. However, also non-genetic maternal effects can contribute to phenotypic variation, thus being an alternative target for natural selection. We investigated the role of individuals' genetic background and maternal effects in determining immune defense traits (phenoloxidase and antibacterial activity of hemolymph), as well as in survival and growth, in the simultaneously hermaphroditic snail Lymnaea stagnalis. We utilized the mixed mating system of this species by producing full-sib families in which each parental snail had produced offspring as both a dam and as a sire, and tested whether genetic background (family) and non-genetic maternal effects (dam nested within family) explain trait variation. Immune defense traits and growth were affected solely by individuals' genetic background. Survival of snails did not show family-level variation. Additionally, some snails were produced through self-fertilization. They showed reduced growth and survival suggesting recessive load or overdominance. Immune defense traits did not respond to inbreeding. Our results suggest that the variation in snail immune function and growth was due to genetic differences. Since immune traits did not respond to inbreeding, this variation is most likely due to additive or epistatic genetic variance. PMID:27551822

  1. Distinct Bacterial Microbiomes in Sexual and Asexual Potamopyrgus antipodarum, a New Zealand Freshwater Snail

    PubMed Central

    Takacs-Vesbach, Cristina; King, Kayla; Van Horn, David; Larkin, Katelyn; Neiman, Maurine

    2016-01-01

    Different reproductive strategies and the transition to asexuality can be associated with microbial symbionts. Whether such a link exists within mollusks has never been evaluated. We took the first steps towards addressing this possibility by performing pyrosequencing of bacterial 16S rRNA genes associated with Potamopyrgus antipodarum, a New Zealand freshwater snail. A diverse set of 60 tissue collections from P. antipodarum that were genetically and geographically distinct and either obligately sexual or asexual were included, which allowed us to evaluate whether reproductive mode was associated with a particular bacterial community. 2624 unique operational taxonomic units (OTU, 97% DNA similarity) were detected, which were distributed across ~30 phyla. While alpha diversity metrics varied little among individual samples, significant differences in bacterial community composition and structure were detected between sexual and asexual snails, as well as among snails from different lakes and genetic backgrounds. The mean dissimilarity of the bacterial communities between the sexual and asexual P. antipodarum was 90%, largely driven by the presence of Rickettsiales in sexual snails and Rhodobacter in asexual snails. Our study suggests that there might be a link between reproductive mode and the bacterial microbiome of P. antipodarum, though a causal connection requires additional study. PMID:27563725

  2. Prehistoric inter-archipelago trading of Polynesian tree snails leaves a conservation legacy

    PubMed Central

    Lee, Taehwan; Burch, John B; Coote, Trevor; Fontaine, Benoît; Gargominy, Olivier; Pearce-Kelly, Paul; Foighil, Diarmaid Ó

    2007-01-01

    Inter-archipelago exchange networks were an important aspect of prehistoric Polynesian societies. We report here a novel genetic characterization of a prehistoric exchange network involving an endemic Pacific island tree snail, Partula hyalina. It occurs in the Society (Tahiti only), Austral and Southern Cook Islands. Our genetic data, based on museum, captive and wild-caught samples, establish Tahiti as the source island. The source lineage is polymorphic in shell coloration and contains a second nominal species, the dark-shelled Partula clara, in addition to the white-shelled P. hyalina. Prehistoric inter-island introductions were non-random: they involved white-shelled snails only and were exclusively inter-archipelago in scope. Partulid shells were commonly used in regional Polynesian jewellery, and we propose that the white-shelled P. hyalina, originally restricted to Tahiti, had aesthetic value throughout these archipelagoes. Demand within the Society Islands could be best met by trading dead shells, but a low rate of inter-archipelago exchange may have prompted the establishment of multiple founder populations in the Australs and Southern Cooks. The alien carnivorous land snail Euglandina rosea has recently devastated populations of all 61 endemic species of Society Island partulid snails. Southern Cooks and Australs P. hyalina now represent the only unscathed wild populations remaining of this once spectacular land snail radiation. PMID:17848368

  3. Use of ice water and salt treatments to eliminate an exotic snail, red-rim melania Melanoides tuberculatus, from small immersible fisheries equipment

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ice water and salt treatments were evaluated for disinfection of fisheries equipment contaminated with a non-indigenous tropical snail, the red-rim melania Melanoides tuberculatus. The snail can displace native snails and can transmit trematodes directly to fishes and indirectly to other animals, i...

  4. Survival of the faucet snail Bithynia tentaculata after chemical disinfection, pH extremes, and heated water bath treatments

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bithynia tentaculata, the faucet snail, is a non indigenous aquatic snail from Eurasia that was introduced into Lake Michigan in 1871. The snail’s distribution in the United States has expanded to the mid-Atlantic states and the drainage basin of the Great Lakes and most recently to the Mississippi...

  5. Global Assessment of Schistosomiasis Control Over the Past Century Shows Targeting the Snail Intermediate Host Works Best

    PubMed Central

    Sokolow, Susanne H.; Wood, Chelsea L.; Jones, Isabel J.; Lopez, Melina; Lafferty, Kevin D.; Kuris, Armand M.; Rickards, Chloe; De Leo, Giulio A.

    2016-01-01

    Background Despite control efforts, human schistosomiasis remains prevalent throughout Africa, Asia, and South America. The global schistosomiasis burden has changed little since the new anthelmintic drug, praziquantel, promised widespread control. Methodology We evaluated large-scale schistosomiasis control attempts over the past century and across the globe by identifying factors that predict control program success: snail control (e.g., molluscicides or biological control), mass drug administrations (MDA) with praziquantel, or a combined strategy using both. For data, we compiled historical information on control tactics and their quantitative outcomes for all 83 countries and territories in which: (i) schistosomiasis was allegedly endemic during the 20th century, and (ii) schistosomiasis remains endemic, or (iii) schistosomiasis has been "eliminated," or is "no longer endemic," or transmission has been interrupted. Principal Findings Widespread snail control reduced prevalence by 92 ± 5% (N = 19) vs. 37 ± 7% (N = 29) for programs using little or no snail control. In addition, ecological, economic, and political factors contributed to schistosomiasis elimination. For instance, snail control was most common and widespread in wealthier countries and when control began earlier in the 20th century. Conclusions/Significance Snail control has been the most effective way to reduce schistosomiasis prevalence. Despite evidence that snail control leads to long-term disease reduction and elimination, most current schistosomiasis control efforts emphasize MDA using praziquantel over snail control. Combining drug-based control programs with affordable snail control seems the best strategy for eliminating schistosomiasis. PMID:27441556

  6. Alterations of biochemical indicators in hepatopancreas of the golden apple snail, Pomacea canaliculata, from paddy fields in Taiwan.

    PubMed

    Chiu, Yuh-Wen; Wu, Jui-Pin; Hsieh, Tsung-Chih; Liang, Shih-Hsiung; Chen, Chien-Min; Huang, Da-Ji

    2014-07-01

    The freshwater golden apple snail, Pomacea canaliculata, is one of the world's 100 worst invasive alien species. The snails' wide distribution, high abundance, and sensitivity to environmental pollution make them a potential bioindicator for environmental contamination. In this study, the biochemical status of golden apple snails collected from paddy fields throughout the island of Taiwan was examined. This study found that the biochemical status of apple snails collected from paddy fields differed from that of animals bred and maintained in the laboratory. Furthermore, certain biochemical endpoints of the snails collected from the paddy fields before and after agricultural activities were also different-hemolymphatic vitellogenin protein was induced in male snail after exposure to estrogen-like chemicals, the hepatic monooxygenase (1.97 +/- 0.50 deltaA(650mm) 30 min(-1) mg(-1) protein in control group) and glutathione S transferase (0.02 +/- 0.01 delta A(340mm) 30 min(-1) mg(-1) protein in control group) snails exposed to pesticides, as well as the hepatopancreatic levels of aspartate aminotransferase (450.00 +/- 59.40 U mg(-1) mg(-1) protein in control group) and alanine aminotransferase (233.27 +/- 42.09 U mg(-1) mg(-1) protein in control group) decreased the indicating that xenobiotics destroyed hepatopancreatic. The above findings reveal that apple snail could be used as a practical bioindicator to monitor anthropogenic environmental pollution. PMID:25004751

  7. Survival and growth of freshwater pulmonate and nonpulmonate snails in 28-day exposures to copper, ammonia, and pentachlorophenol

    USGS Publications Warehouse

    Besser, John M.; Dorman, Rebecca A.; Hardesty, Douglas K.; Ingersoll, Christopher G.

    2016-01-01

    We performed toxicity tests with two species of pulmonate snails (Lymnaea stagnalis and Physa gyrina) and four taxa of nonpulmonate snails in the family Hydrobiidae (Pyrgulopsis robusta,Taylorconcha serpenticola, Fluminicola sp., and Fontigens aldrichi). Snails were maintained in static-renewal or recirculating culture systems with adults removed periodically to isolate cohorts of offspring for toxicity testing. This method successfully produced offspring for both species of pulmonate snails and for two hydrobiid species, P. robusta and Fluminicola sp. Toxicity tests were performed for 28 days with copper, ammonia, and pentachlorophenol in hard reconstituted water with endpoints of survival and growth. Tests were started with 1-week-old L. stagnalis, 2-week-old P. gyrina, 5- to 13-week-old P. robusta and Fluminicola sp., and older juveniles and adults of several hydrobiid species. For all three chemicals, chronic toxicity values for pulmonate snails were consistently greater than those for hydrobiid snails, and hydrobiids were among the most sensitive taxa in species sensitivity distributions for all three chemicals. These results suggest that the toxicant sensitivity of nonpulmonate snails in the family Hydrobiidae would not be adequately represented by results of toxicity testing with pulmonate snails.

  8. Survival and Growth of Freshwater Pulmonate and Nonpulmonate Snails in 28-Day Exposures to Copper, Ammonia, and Pentachlorophenol.

    PubMed

    Besser, John M; Dorman, Rebecca A; Hardesty, Douglas L; Ingersoll, Christopher G

    2016-02-01

    We performed toxicity tests with two species of pulmonate snails (Lymnaea stagnalis and Physa gyrina) and four taxa of nonpulmonate snails in the family Hydrobiidae (Pyrgulopsis robusta, Taylorconcha serpenticola, Fluminicola sp., and Fontigens aldrichi). Snails were maintained in static-renewal or recirculating culture systems with adults removed periodically to isolate cohorts of offspring for toxicity testing. This method successfully produced offspring for both species of pulmonate snails and for two hydrobiid species, P. robusta and Fluminicola sp. Toxicity tests were performed for 28 days with copper, ammonia, and pentachlorophenol in hard reconstituted water with endpoints of survival and growth. Tests were started with 1-week-old L. stagnalis, 2-week-old P. gyrina, 5- to 13-week-old P. robusta and Fluminicola sp., and older juveniles and adults of several hydrobiid species. For all three chemicals, chronic toxicity values for pulmonate snails were consistently greater than those for hydrobiid snails, and hydrobiids were among the most sensitive taxa in species sensitivity distributions for all three chemicals. These results suggest that the toxicant sensitivity of nonpulmonate snails in the family Hydrobiidae would not be adequately represented by results of toxicity testing with pulmonate snails. PMID:26747374

  9. Copper, zinc and lead bioaccumulation in marine snail, Strombus gigas, from Guacanayabo Gulf, Cuba.

    PubMed

    Díaz Rizo, O; Olivares Reumont, S; Viguri Fuente, J; Díaz Arado, O; López Pino, N; D'Alessandro Rodríguez, K; Arado López, J O; Gelen Rudnikas, A; Arencibia Carballo, G

    2010-09-01

    Levels of copper, zinc and lead were determined in sediments and edible muscle of marine snail Strombus gigas collected from Guacanayabo Gulf, Cuba. The concentration range of each metal in marine snail muscle on mg kg(-1) wet weight varied as follows: Cu = 6.4-32.6, Zn = 20.4-31.1 and Pb = 0.2-2.3; and in corresponding sediments (on mg kg(-1) dry weight) as: Cu = 157-186, Zn = 56-94 and Pb = 20-37. The average biota-sediment accumulation factors (BSAFs) obtained for studied metals are less than unity in all cases, indicating that only a little fraction of metal content in the sediments is bioavailable, independently of their possible enrichments in the sediments. The concentrations of copper and lead in some of the marine snails are above typical public health recommended limits. PMID:20676604

  10. Scope for growth in a tropical freshwater snail -- Implications for monitoring sublethal toxic stressors

    SciTech Connect

    Lai, P.C.C.; Lam, P.K.S.

    1995-12-31

    Scope for growth (SfG), the difference between the energy input to an organism from its food and the output from respiratory metabolism, has been used as a bioassay for environmental stress in the temperate region. Here, the same technique was applied to a tropical freshwater snail, Brotia hainanensis (Thiaridae), to investigate whether the technique is applicable to biological systems at lower latitudes. In this study, the effects of copper and low pH on the SfG of the snails were examined. The results show that both copper and low pH can significantly reduce the SfG of individual snails through a decrease in the amount of energy absorbed, while the change in energy expenditure is not apparent. It was also found that the SfG assay is most informative at stress levels too low to be detected by the corresponding acute tests.

  11. Bugs as drugs, part two: worms, leeches, scorpions, snails, ticks, centipedes, and spiders.

    PubMed

    Cherniack, E Paul

    2011-03-01

    In this second of a two-part series analyzing the evidence for the use of organisms as medicine, the use of a number of different "bugs" (worms, leeches, snails, ticks, centipedes, and spiders) is detailed. Several live organisms are used as treatments: leeches for plastic surgery and osteoarthritis and the helminths Trichuris suis and Necator americanus for inflammatory bowel disease. Leech saliva is the source of a number of anticoagulants, including the antithrombin agent hirudin and its synthetic analogues, which have been approved for human use. Predatory arthropods, such as certain species of snails, spiders, scorpions, centipedes, and ticks provide a trove of potential analgesic peptides in their venom. A synthetic analogue of a snail venom peptide, ziconotide, has been approved for human use and is used as an alternative to opioids in severe pain cases. Arthropods, such as ticks, have venom that contains anticoagulants and centipede venom has a protein that corrects abnormalities in lipid metabolism. PMID:21438646

  12. Tristetraprolin suppresses the EMT through the down-regulation of Twist1 and Snail1 in cancer cells

    PubMed Central

    Yoon, Nal Ae; Jo, Hyun Gun; Lee, Unn Hwa; Park, Ji Hye; Yoon, Ji Eun; Ryu, Jinhyun; Kang, Sang Soo; Min, Young Joo; Ju, Seong-A; Seo, Eun Hui; Huh, In Young; Lee, Byung Ju; Park, Jeong Woo; Cho, Wha Ja

    2016-01-01

    Inhibition of epithelial-mesenchymal transition (EMT)-inducing transcription factors Twist and Snail prevents tumor metastasis but enhances metastatic growth. Here, we report an unexpected role of a tumor suppressor tristetraprolin (TTP) in inhibiting Twist and Snail without enhancing cellular proliferation. TTP bound to the AU-rich element (ARE) within the mRNA 3′UTRs of Twist1 and Snail1, enhanced the decay of their mRNAs and inhibited the EMT of cancer cells. The ectopic expression of Twist1 or Snail1 without their 3′UTRs blocked the inhibitory effects of TTP on the EMT. We also observed that TTP overexpression suppressed the growth of cancer cells. Our data propose a new model whereby TTP down-regulates Twist1 and Snail1 and inhibits both the EMT and the proliferation of cancer cells. PMID:26840564

  13. KSHV-Mediated Regulation of Par3 and SNAIL Contributes to B-Cell Proliferation.

    PubMed

    Jha, Hem C; Sun, Zhiguo; Upadhyay, Santosh K; El-Naccache, Darine W; Singh, Rajnish K; Sahu, Sushil K; Robertson, Erle S

    2016-07-01

    Studies have suggested that Epithelial-Mesenchymal Transition (EMT) and transformation is an important step in progression to cancer. Par3 (partitioning-defective protein) is a crucial factor in regulating epithelial cell polarity. However, the mechanism by which the latency associated nuclear antigen (LANA) encoded by Kaposi's Sarcoma associated herpesvirus (KSHV) regulates Par3 and EMTs markers (Epithelial-Mesenchymal Transition) during viral-mediated B-cell oncogenesis has not been fully explored. Moreover, several studies have demonstrated a crucial role for EMT markers during B-cell malignancies. In this study, we demonstrate that Par3 is significantly up-regulated in KSHV-infected primary B-cells. Further, Par3 interacted with LANA in KSHV positive and LANA expressing cells which led to translocation of Par3 from the cell periphery to a predominantly nuclear signal. Par3 knockdown led to reduced cell proliferation and increased apoptotic induction. Levels of SNAIL was elevated, and E-cadherin was reduced in the presence of LANA or Par3. Interestingly, KSHV infection in primary B-cells led to enhancement of SNAIL and down-regulation of E-cadherin in a temporal manner. Importantly, knockdown of SNAIL, a major EMT regulator, in KSHV cells resulted in reduced expression of LANA, Par3, and enhanced E-cadherin. Also, SNAIL bound to the promoter region of p21 and can regulate its activity. Further a SNAIL inhibitor diminished NF-kB signaling through upregulation of Caspase3 in KSHV positive cells in vitro. This was also supported by upregulation of SNAIL and Par3 in BC-3 transplanted NOD-SCID mice which has potential as a therapeutic target for KSHV-associated B-cell lymphomas. PMID:27463802

  14. Mucus trail tracking in a predatory snail: olfactory processing retooled to serve a novel sensory modality

    PubMed Central

    Patel, Kinjal; Shaheen, Nagma; Witherspoon, Jessica; Robinson, Natallia; Harrington, Melissa A

    2014-01-01

    Introduction The rosy wolfsnail (Euglandina rosea), a predatory land snail, finds prey snails and potential mates by following their mucus trails. Euglandina have evolved unique, mobile lip extensions that detect mucus and aid in following trails. Currently, little is known of the neural substrates of the trail-following behavior. Methods To investigate the neural correlates of trail following we used tract-tracing experiments in which nerves were backfilled with either nickel-lysine or Lucifer yellow, extracellular recording of spiking neurons in snail procerebra using a multielectrode array, and behavioral assays of trail following and movement toward the source of a conditioned odor. Results The tract-tracing experiments demonstrate that in Euglandina, the nerves carrying mucus signals innervate the same region of the central ganglia as the olfactory nerves, while the electrophysiology studies show that mucus stimulation of the sensory epithelium on the lip extensions alters the frequency and pattern of neural activity in the procerebrum in a manner similar to odor stimulation of the olfactory epithelium on the optic tentacles of another land snail species, Cantareus aspersa (previously known as Helix aspersa). While Euglandina learn to follow trails of novel chemicals that they contact with their lip extensions in one to three trials, these snails proved remarkably resistant to associative learning in the olfactory modality. Even after seven to nine pairings of odorant molecules with food, they showed no orientation toward the conditioned odor. This is in marked contrast to Cantareus snails, which reliably oriented toward conditioned odors after two to three trials. Conclusions The apparent inability of Euglandina to learn to associate food with odors and use odor cues to drive behavior suggests that the capability for sophisticated neural processing of nonvolatile mucus cues detected by the lip extensions has evolved at the expense of processing of odorant

  15. Comparative Functional Responses Predict the Invasiveness and Ecological Impacts of Alien Herbivorous Snails

    PubMed Central

    Xu, Meng; Mu, Xidong; Dick, Jaimie T. A.; Fang, Miao; Gu, Dangen; Luo, Du; Zhang, Jiaen; Luo, Jianren; Hu, Yinchang

    2016-01-01

    Understanding determinants of the invasiveness and ecological impacts of alien species is amongst the most sought-after and urgent research questions in ecology. Several studies have shown the value of comparing the functional responses (FRs) of alien and native predators towards native prey, however, the technique is under-explored with herbivorous alien species and as a predictor of invasiveness as distinct from ecological impact. Here, in China, we conducted a mesocosm experiment to compare the FRs among three herbivorous snail species: the golden apple snail, Pomacea canaliculata, a highly invasive and high impact alien listed in “100 of the World's Worst Invasive Alien Species”; Planorbarius corneus, a non-invasive, low impact alien; and the Chinese native snail, Bellamya aeruginosa, when feeding on four locally occurring plant species. Further, by using a numerical response equation, we modelled the population dynamics of the snail consumers. For standard FR parameters, we found that the invasive and damaging alien snail had the highest “attack rates” a, shortest “handling times” h and also the highest estimated maximum feeding rates, 1/hT, whereas the native species had the lowest attack rates, longest handling times and lowest maximum feeding rates. The non-invasive, low impact alien species had consistently intermediate FR parameters. The invasive alien species had higher population growth potential than the native snail species, whilst that of the non-invasive alien species was intermediate. Thus, while the comparative FR approach has been proposed as a reliable method for predicting the ecological impacts of invasive predators, our results further suggest that comparative FRs could extend to predict the invasiveness and ecological impacts of alien herbivores and should be explored in other taxa and trophic groups to determine the general utility of the approach. PMID:26771658

  16. Association between shell morphology of micro-land snails (genus Plectostoma) and their predator's predatory behaviour.

    PubMed

    Liew, Thor-Seng; Schilthuizen, Menno

    2014-01-01

    Predator-prey interactions are among the main ecological interactions that shape the diversity of biological form. In many cases, the evolution of the mollusc shell form is presumably driven by predation. However, the adaptive significance of several uncommon, yet striking, shell traits of land snails are still poorly known. These include the distorted coiled "tuba" and the protruded radial ribs that can be found in micro-landsnails of the genus Plectostoma. Here, we experimentally tested whether these shell traits may act as defensive adaptations against predators. We characterised and quantified the possible anti-predation behaviour and shell traits of Plectostoma snails both in terms of their properties and efficiencies in defending against the Atopos slug predatory strategies, namely, shell-apertural entry and shell-drilling. The results showed that Atopos slugs would first attack the snail by shell-apertural entry, and, should this fail, shift to the energetically more costly shell-drilling strategy. We found that the shell tuba of Plectostoma snails is an effective defensive trait against shell-apertural entry attack. None of the snail traits, such as resting behaviour, shell thickness, shell tuba shape, shell rib density and intensity can fully protect the snail from the slug's shell-drilling attack. However, these traits could increase the predation costs to the slug. Further analysis on the shell traits revealed that the lack of effectiveness in these anti-predation shell traits may be caused by a functional trade-off between shell traits under selection of two different predatory strategies. PMID:24749008

  17. KSHV-Mediated Regulation of Par3 and SNAIL Contributes to B-Cell Proliferation

    PubMed Central

    Jha, Hem C.; Sun, Zhiguo; Upadhyay, Santosh K.; El-Naccache, Darine W.; Singh, Rajnish K.; Sahu, Sushil K.; Robertson, Erle S.

    2016-01-01

    Studies have suggested that Epithelial–Mesenchymal Transition (EMT) and transformation is an important step in progression to cancer. Par3 (partitioning-defective protein) is a crucial factor in regulating epithelial cell polarity. However, the mechanism by which the latency associated nuclear antigen (LANA) encoded by Kaposi's Sarcoma associated herpesvirus (KSHV) regulates Par3 and EMTs markers (Epithelial-Mesenchymal Transition) during viral-mediated B-cell oncogenesis has not been fully explored. Moreover, several studies have demonstrated a crucial role for EMT markers during B-cell malignancies. In this study, we demonstrate that Par3 is significantly up-regulated in KSHV-infected primary B-cells. Further, Par3 interacted with LANA in KSHV positive and LANA expressing cells which led to translocation of Par3 from the cell periphery to a predominantly nuclear signal. Par3 knockdown led to reduced cell proliferation and increased apoptotic induction. Levels of SNAIL was elevated, and E-cadherin was reduced in the presence of LANA or Par3. Interestingly, KSHV infection in primary B-cells led to enhancement of SNAIL and down-regulation of E-cadherin in a temporal manner. Importantly, knockdown of SNAIL, a major EMT regulator, in KSHV cells resulted in reduced expression of LANA, Par3, and enhanced E-cadherin. Also, SNAIL bound to the promoter region of p21 and can regulate its activity. Further a SNAIL inhibitor diminished NF-kB signaling through upregulation of Caspase3 in KSHV positive cells in vitro. This was also supported by upregulation of SNAIL and Par3 in BC-3 transplanted NOD-SCID mice which has potential as a therapeutic target for KSHV-associated B-cell lymphomas. PMID:27463802

  18. Comparative Functional Responses Predict the Invasiveness and Ecological Impacts of Alien Herbivorous Snails.

    PubMed

    Xu, Meng; Mu, Xidong; Dick, Jaimie T A; Fang, Miao; Gu, Dangen; Luo, Du; Zhang, Jiaen; Luo, Jianren; Hu, Yinchang

    2016-01-01

    Understanding determinants of the invasiveness and ecological impacts of alien species is amongst the most sought-after and urgent research questions in ecology. Several studies have shown the value of comparing the functional responses (FRs) of alien and native predators towards native prey, however, the technique is under-explored with herbivorous alien species and as a predictor of invasiveness as distinct from ecological impact. Here, in China, we conducted a mesocosm experiment to compare the FRs among three herbivorous snail species: the golden apple snail, Pomacea canaliculata, a highly invasive and high impact alien listed in "100 of the World's Worst Invasive Alien Species"; Planorbarius corneus, a non-invasive, low impact alien; and the Chinese native snail, Bellamya aeruginosa, when feeding on four locally occurring plant species. Further, by using a numerical response equation, we modelled the population dynamics of the snail consumers. For standard FR parameters, we found that the invasive and damaging alien snail had the highest "attack rates" a, shortest "handling times" h and also the highest estimated maximum feeding rates, 1/hT, whereas the native species had the lowest attack rates, longest handling times and lowest maximum feeding rates. The non-invasive, low impact alien species had consistently intermediate FR parameters. The invasive alien species had higher population growth potential than the native snail species, whilst that of the non-invasive alien species was intermediate. Thus, while the comparative FR approach has been proposed as a reliable method for predicting the ecological impacts of invasive predators, our results further suggest that comparative FRs could extend to predict the invasiveness and ecological impacts of alien herbivores and should be explored in other taxa and trophic groups to determine the general utility of the approach. PMID:26771658

  19. Paraphyly and budding speciation in the hairy snail (Pulmonata, Hygromiidae)

    PubMed Central

    Kruckenhauser, Luise; Duda, Michael; Bartel, Daniela; Sattmann, Helmut; Harl, Josef; Kirchner, Sandra; Haring, Elisabeth

    2014-01-01

    Delimitation of species is often complicated by discordance of morphological and genetic data. This may be caused by the existence of cryptic or polymorphic species. The latter case is particularly true for certain snail species showing an exceptionally high intraspecific genetic diversity. The present investigation deals with the Trochulus hispidus complex, which has a complicated taxonomy. Our analyses of the COI sequence revealed that individuals showing a T. hispidus phenotype are distributed in nine highly differentiated mitochondrial clades (showing p-distances up to 19%). The results of a parallel morphometric investigation did not reveal any differentiation between these clades, although the overall variability is quite high. The phylogenetic analyses based on 12S, 16S and COI sequences show that the T. hispidus complex is paraphyletic with respect to several other morphologically well-defined Trochulus species (T. clandestinus, T. villosus, T. villosulus and T. striolatus) which form well-supported monophyletic groups. The nc marker sequence (5.8S–ITS2–28S) shows only a clear separation of T. o. oreinos and T. o. scheerpeltzi, and a weakly supported separation of T. clandestinus, whereas all other species and the clades of the T. hispidus complex appear within one homogeneous group. The paraphyly of the T. hispidus complex reflects its complicated history, which was probably driven by geographic isolation in different glacial refugia and budding speciation. At our present state of knowledge, it cannot be excluded that several cryptic species are embedded within the T. hispidus complex. However, the lack of morphological differentiation of the T. hispidus mitochondrial clades does not provide any hints in this direction. Thus, we currently do not recommend any taxonomic changes. The results of the current investigation exemplify the limitations of barcoding attempts in highly diverse species such as T. hispidus. PMID:25170185

  20. Growth rate of the intermediate snail host Galba truncatula influences redial development of the trematode Fascioloides magna.

    PubMed

    Rondelaud, D; Novobilský, A; Höglund, J; Kašný, M; Pankrác, J; Vignoles, P; Dreyfuss, G

    2014-12-01

    A total of 850 pre-adult Galba truncatula (shell height, 4 mm), originating from four French snail populations differing in shell height at the adult stage (from 6.5 to 12 mm), were individually subjected at 20°C to single-miracidium infections with Fascioloides magna. At day 75 post-exposure, the surviving snails were dissected, and rediae and cercariae were counted. Snail groups differed in shell growth during the experiment: from 1.8 ± 0.4 mm in group A up to 4.0 ± 1.1 mm in group D. The prevalence of F. magna infection, the numbers of free rediae and cercariae significantly increased together with increasing growth of infected snails during the experiment. Group A produced 1-6 first-generation rediae per snail and the mean daughter redia production ranged from 7.5 second-generation rediae (when a single first generation per snail developed) to 2.3 (6 first-generation rediae per snail). In contrast, up to ten first-generation rediae were noted in group D, and each mother redia gave daughter rediae with averages ranging from 1.5 (ten first-generation rediae per snail) to 13 (a single first generation per snail). In conclusion, the development of F. magna in G. truncatula exhibited both inter- and intrapopulation variability, where the development of rediae and cercariae was positively correlated with snail growth. PMID:23710885

  1. Resistance of pulmonate snail populations to repeated treatments of copper sulfate

    NASA Astrophysics Data System (ADS)

    Blankespoor, Harvey D.; Cameron, Stephen C.; Cairns, John

    1985-09-01

    Two species of pulmonate snails, Lymnaea cat-ascopium and Physa integra, were collected from Douglas and Houghton Lakes. Snail populations from the former lake (pristine) had never been exposed to copper sulfate, whereas those from the latter one (treated) had been subjected to the molluscicide for more than 40 years. Molluscs from the treated lake were more resistant to the copper at concentrations of 0.5 and 1.0 ppm than those from the pristine lake. Furthermore, larger lymnaeids had a higher survival rate than smaller ones.

  2. Phytochemical and molluscicidal investigations of Fagonia arabica.

    PubMed

    El-Wakil, Eman A

    2007-01-01

    The aqueous methanolic extract of the aerial parts of Fagonia arabica L. (family Zygophyllaceae) was successively fractionated using certain organic solvents. From the ethyl acetate fraction, two flavonoid glycosides were isolated and identified as kaempferol-7-O-rhamnoside and acacetin-7-O-rhamnoside. Four triterpenoidal glycosides were isolated from the butanolic layer. Their structures were elucidated on the basis of the spectral and chemical data as 3-O-beta-D-glucopyranosyl-(1-->3)-alpha-L-arabinopyranoside oleanolic acid (1), 3-O-alpha-L-arabinopyranosyl quinovic acid 28-O-beta-D-glucopyranoside (2), 3-O-[beta-D-glucopyranosyl-(1-->2)]-beta-D-glucopyranosyl-(1-->3)-alpha-L-arabinosyl oleanolic acid (3) and 3-O-beta-D-glucopyranosyl-(1-->3)-alpha-L-arabino-pyranosyl quinovic acid 28-O-beta-D-glucopyranoside (4). The two monodesmosidic saponins 1 and 3 were found to possess strong molluscicidal activity against Biomphalaria alexandrina snails, the intermediate host of Schistosoma mansoni in Egypt (LC90 = 13.33 and 16.44 microM), whereas the other two bidesmosidic saponins 2 and 4 as well as the two flavonoid glycosides were inactive up to 50 microM. PMID:18069237

  3. Worm development in hamsters infected with unisex and cross-mated Schistosoma mansoni and Schistosoma haematobium.

    PubMed

    Khalil, S B; Mansour, N S

    1995-02-01

    Schistosoma mansoni and Schistosoma haematobium coexist in Egypt and in other areas in Africa, and people frequently are infected with parasites of both species. The effects of the interactions between worms of both sexes of the 2 species on development and egg laying were evaluated in vivo by infecting hamsters with cercariae from Biomphalaria alexandrina and Bulinus truncatus snails infected with single miracidia. In hamsters with unisex infections, male worms of both species were small. Schistosoma mansoni females were stunted and partially mature but did not contain eggs. Schistosoma haematobium females, though stunted, sometimes contained and laid small eggs, which were deposited in the liver, but few of which contained motile embryos. This suggests that unisexual infection with S. haematobium female worms produces a risk for liver damage due to egg deposition in tissues. Both S. mansoni and S. haematobium females that mated with males of the heterologous species were significantly larger than females from unisexual infections; they were sexually mature and possessed eggs in the uterus. The eggs in the liver homogenates of cross-specific infected hamsters contained fully developed miracidia that hatched in filtered pond water. PMID:7876983

  4. Molluscicidal and Mosquitocidal activities of the essential oils of Thymus capitatus Hoff. et Link. and Marrubium vulgare L.

    PubMed

    Salama, Maha M; Taher, Eman E; El-Bahy, Mohamed M

    2012-01-01

    Steam distillation of essential oils of aerial parts of Thymus capitatus and Marrubium vulgare L. collected at North cost of Egypt yielded 0.5% and 0.2%, respectively. Results of Gas chromatography-mass spectrometry analyses of the two samples identified 96.27% and 90.19% of the total oil composition for T. capitatus and M. vulgare, respectively. The two oil samples appeared dominated by the oxygenated constituents (88.22% for T. capitatus and 57.50% for M. vulgare), composed of phenols, mainly carvacrol (32.98%) and thymol (32.82%) in essential oil of T. capitatus, and thymol (34.55%) in essential oil of M. vulgare. It was evaluated the molluscicidal activity of T. capitatus and M. vulgare essential oils on adult and eggs of Biomphalaria alexandrina as well as their mosquitocidal activity on Culex pipiens. The LC50 and LC90 of T. capitatus essential oil against adult snails was 200 and 400 ppm/3hrs, respectively, while for M. vulgare it was 50 and 100 ppm/3hrs, respectively. Moreover, M. vulgare showed LC100 ovicidal activity at 200 ppm/24 hrs while T. capitatus oil showed no ovicidal activity. It was verified mosquitocidal activity, with LC50 and LC90 of 100 and 200 ppm/12hrs respectively for larvae, and 200 and 400 ppm/12hrs respectively for pupae of C. pipiens. PMID:22983292

  5. Survival of the faucet snail after chemical disinfection, pH extremes, and heated water bath treatments

    USGS Publications Warehouse

    Mitchell, A.J.; Cole, R.A.

    2008-01-01

    The faucet snail Bithynia tentaculata, a nonindigenous aquatic snail from Eurasia, was introduced into Lake Michigan in 1871 and has spread to the mid-Atlantic states, the Great Lakes region, Montana, and most recently, the Mississippi River. The faucet snail serves as intermediate host for several trematodes that have caused large-scale mortality among water birds, primarily in the Great Lakes region and Montana. It is important to limit the spread of the faucet snail; small fisheries equipment can serve as a method of snail distribution. Treatments with chemical disinfection, pH extremes, and heated water baths were tested to determine their effectiveness as a disinfectant for small fisheries equipment. Two treatments eliminated all test snails: (1) a 24-h exposure to Hydrothol 191 at a concentration of at least 20 mg/L and (2) a treatment with 50??C heated water for 1 min or longer. Faucet snails were highly resistant to ethanol, NaCl, formalin, Lysol, potassium permanganate, copper sulfate, Baquacil, Virkon, household bleach, and pH extremes (as low as 1 and as high as 13).

  6. Role of the lymnaeid snail Pseudosuccinea columella in the transmission of the liver fluke Fasciola hepatica in Egypt.

    PubMed

    Dar, Y; Vignoles, P; Rondelaud, D; Dreyfuss, G

    2015-11-01

    Experimental infections of three Egyptian Pseudosuccinea columella populations with sympatric miracidia of Fasciola sp., coming from cattle- or sheep-collected eggs, were carried out to determine the capacity of this lymnaeid to support larval development of the parasite. Using microsatellite markers, the isolates of Egyptian miracidia were identified as Fasciola hepatica. Apart from being independent of snail origin, prevalences ranging from 60.4 to 75.5% in snails infected with five miracidia of F. hepatica were significantly higher than values of 30.4 to 42.2% in snails with bi-miracidial infections. The number of metacercariae ranged from 243 to 472 per cercarial-shedding snail and was independent of snail origin, parasite origin and miracidial dose used for infection. If P. columella was subjected to two successive bi-miracidial infections with F. hepatica, prevalence of infection was 63.3%, with a mean of 311 metacercariae per snail. These values were clearly greater than those already reported for Radix natalensis infected with the same parasite and the same protocol. Successful experimental infection of P. columella with F. hepatica suggests that this lymnaeid snail is an important intermediate host for the transmission of fascioliasis in Egypt. PMID:24865184

  7. Schistosoma haematobium detection in snails by DraI PCR and Sh110/Sm-Sl PCR: further evidence of the interruption of schistosomiasis transmission in Morocco

    PubMed Central

    2014-01-01

    Background This is the first study in Morocco to estimate snail infection rates at the last historic transmission sites of schistosomiasis, known to be free from new infection among humans since 2004. Screening of large numbers of snails for infection is one way to confirm that Schistosoma haematobium transmission has stopped and does not resurge. Methods A total of 2703 Bulinus truncatus snails were collected from 24 snail habitats in five provinces of Morocco: Errachidia, El Kelaa des Sraghna, Tata, Beni Mellal, and Chtouka Ait Baha. All visible snails were collected with a scoop net or by hand. We used waders and gloves as simple precautions. Snails were morphologically identified according to Moroccan Health Ministry guide of schistosomiasis (1982). All snails were analyzed in pools by molecular tool, using primers from the newly identified repeated DNA sequence, termed DraI, in the S. haematobium group. To distinguish S. bovis and S. haematobium, the snails were analyzed by Sh110/Sm-Sl PCR that was specific of S. haematobium. Results The results showed that snails from Errachidia, Chtouka Ait Baha, sector of Agoujgal in Tata and sector of Mbarkiya in El kelaa des Sraghna were negative for DraI PCR; but, snails from remaining snail habitats of El Kelaa des Sraghna, Tata and Beni Mellal were positive. This led to suggest the presence of circulating schistosome species (S. haematobium, S. bovis or others) within these positive snail habitats. Subsequently, confirmation with S. haematobium species specific molecular assay, Sh110/Sm-Sl PCR, showed that none of the collected snails were infected by S. haematobium in all historic endemic areas. Conclusion The absence of S. haematobium infection in snails supports the argument of S. haematobium transmission interruption in Morocco. PMID:24962624

  8. Identification of SNAIL1 Peptide-Based Irreversible Lysine-Specific Demethylase 1-Selective Inactivators.

    PubMed

    Itoh, Yukihiro; Aihara, Keisuke; Mellini, Paolo; Tojo, Toshifumi; Ota, Yosuke; Tsumoto, Hiroki; Solomon, Viswas Raja; Zhan, Peng; Suzuki, Miki; Ogasawara, Daisuke; Shigenaga, Akira; Inokuma, Tsubasa; Nakagawa, Hidehiko; Miyata, Naoki; Mizukami, Tamio; Otaka, Akira; Suzuki, Takayoshi

    2016-02-25

    Inhibition of lysine-specific demethylase 1 (LSD1), a flavin-dependent histone demethylase, has recently emerged as a new strategy for treating cancer and other diseases. LSD1 interacts physically with SNAIL1, a member of the SNAIL/SCRATCH family of transcription factors. This study describes the discovery of SNAIL1 peptide-based inactivators of LSD1. We designed and prepared SNAIL1 peptides bearing a propargyl amine, hydrazine, or phenylcyclopropane moiety. Among them, peptide 3, bearing hydrazine, displayed the most potent LSD1-inhibitory activity in enzyme assays. Kinetic study and mass spectrometric analysis indicated that peptide 3 is a mechanism-based LSD1 inhibitor. Furthermore, peptides 37 and 38, which consist of cell-membrane-permeable oligoarginine conjugated with peptide 3, induced a dose-dependent increase of dimethylated Lys4 of histone H3 in HeLa cells, suggesting that they are likely to exhibit LSD1-inhibitory activity intracellularly. In addition, peptide 37 decreased the viability of HeLa cells. We believe this new approach for targeting LSD1 provides a basis for development of potent selective inhibitors and biological probes for LSD1. PMID:26700437

  9. Larval development of Angiostrongylus vasorum in the land snail Helix aspersa.

    PubMed

    Di Cesare, Angela; Crisi, Paolo Emidio; Bartolini, Roberto; Iorio, Raffaella; Talone, Tonino; Filippi, Laura; Traversa, Donato

    2015-10-01

    The metastrongyloid nematode Angiostrongylus vasorum affects the heart and pulmonary arteries of dogs and wild animals. Over the recent years, dog angiostrongylosis has gained great attention in the veterinary community for the expansion of its geographic range and for a rise in the number of clinical cases. Global warming, changes in phenology of mollusc intermediate hosts and movements of wild reservoirs have been evocated in the spreading of mollusc-borne parasites, including A. vasorum. The land snail Helix aspersa, a vector of other respiratory metastrongyloids, is endemic in most regions of the World, where it is a pest outside its native Mediterranean range. In the present study, the susceptibility and suitability of H. aspersa as an intermediate host of A. vasorum were investigated along with the characteristics of larval recovery and development following two different ways of inoculation, i.e. experimental (group A) vs natural infection (group B). After infections, the snails were kept at environmental conditions for 2 months. Five snails from groups A and B were randomly selected, digested and examined at 15-day intervals for 2 months. L1s, L2s and L3s were microscopically identified based on key morphological and morphometric characteristics and their identity was genetically confirmed. The results showed that A. vasorum may reach the infective stage in H. aspersa and that uptake of larvae and parasitic burden within the snails depend on the grazing capability of the molluscs. Biological and epidemiological implications are discussed. PMID:26122991

  10. Angiotensin II Contributes to Diabetic Renal Dysfunction in Rodents and Humans via Notch1/Snail Pathway

    PubMed Central

    Gagliardini, Elena; Perico, Norberto; Rizzo, Paola; Buelli, Simona; Longaretti, Lorena; Perico, Luca; Tomasoni, Susanna; Zoja, Carla; Macconi, Daniela; Morigi, Marina; Remuzzi, Giuseppe; Benigni, Ariela

    2014-01-01

    In nondiabetic rat models of renal disease, angiotensin II (Ang II) perpetuates podocyte injury and promotes progression to end-stage kidney disease. Herein, we wanted to explore the role of Ang II in diabetic nephropathy by a translational approach spanning from in vitro to in vivo rat and human studies, and to dissect the intracellular pathways involved. In isolated perfused rat kidneys and in cultured human podocytes, Ang II down-regulated nephrin expression via Notch1 activation and nuclear translocation of Snail. Hairy enhancer of split-1 was a Notch1-downstream gene effector that activated Snail in cultured podocytes. In vitro changes of the Snail/nephrin axis were similar to those in renal biopsy specimens of Zucker diabetic fatty rats and patients with advanced diabetic nephropathy, and were normalized by pharmacological inhibition of the renin-angiotensin system. Collectively, the present studies provide evidence that Ang II plays a relevant role in perpetuating glomerular injury in experimental and human diabetic nephropathy via persistent activation of Notch1 and Snail signaling in podocytes, eventually resulting in down-regulation of nephrin expression, the integrity of which is crucial for the glomerular filtration barrier. PMID:23707238

  11. Regulation of heterochromatin transcription by Snail1/LOXL2 during epithelial-to-mesenchymal transition.

    PubMed

    Millanes-Romero, Alba; Herranz, Nicolás; Perrera, Valentina; Iturbide, Ane; Loubat-Casanovas, Jordina; Gil, Jesús; Jenuwein, Thomas; García de Herreros, Antonio; Peiró, Sandra

    2013-12-12

    Although heterochromatin is enriched with repressive traits, it is also actively transcribed, giving rise to large amounts of noncoding RNAs. Although these RNAs are responsible for the formation and maintenance of heterochromatin, little is known about how their transcription is regulated. Here, we show that the Snail1 transcription factor represses mouse pericentromeric transcription, acting through the H3K4 deaminase LOXL2. Since Snail1 plays a key role in the epithelial-to-mesenchymal transition (EMT), we analyzed the regulation of heterochromatin transcription in this process. At the onset of EMT, one of the major structural heterochromatin proteins, HP1α, is transiently released from heterochromatin foci in a Snail1/LOXL2-dependent manner, concomitantly with a downregulation of major satellite transcription. Moreover, preventing the downregulation of major satellite transcripts compromised the migratory and invasive behavior of mesenchymal cells. We propose that Snail1 regulates heterochromatin transcription through LOXL2, thus creating the favorable transcriptional state necessary for completing EMT. PMID:24239292

  12. Plasticity as Phenotype: G x E Interaction in a Freshwater Snail

    NASA Astrophysics Data System (ADS)

    Brunkow, P. E.; Calloway, S. A.

    2005-05-01

    Plasticity in morphological development allows species to accommodate environmental variation experienced during growth; however, genetic variation for phenotypic plasticity per se has been relatively under-studied. We utilized the well-documented plastic response of shell development to predator cues in a freshwater snail to quantify genetic variation for plasticity in growth rate and shell shape. Field-caught pairs of snails reproduced in the laboratory to create families of full siblings, which were then divided and allowed to grow in control and predator cue treatments. Predator (crayfish) cues had significant effects on both size-corrected growth rate and shell shape; family identity also significantly affected both final shell shape and growth rate. The interaction between predator treatment and family identity significantly affected snail growth rate but not final shell shape, suggesting genetic variation in the plastic response to predator cues for a physiological variable (growth rate) but not for a variable known to mechanically reduce the risk of predation (shell shape), at least in this population of snails. The possibility that risk of multiple modes of predation (i.e., both fish and crayfish) in some populations might maintain genetic variation in morphological plasticity is discussed.

  13. NF-κB and Snail1a coordinate the cell cycle with gastrulation

    PubMed Central

    Liu, Xiaolin; Huang, Sizhou; Ma, Jun; Li, Chun; Zhang, Yaoguang

    2009-01-01

    The cell cycle needs to strictly coordinate with developmental processes to ensure correct generation of the body plan and different tissues. However, the molecular mechanism underlying the coordination remains largely unknown. In this study, we investigate how the cell cycle coordinates gastrulation cell movements in zebrafish. We present a system to modulate the cell cycle in early zebrafish embryos by manipulating the geminin-Cdt1 balance. Alterations of the cell cycle change the apoptotic level during gastrulation, which correlates with the nuclear level of antiapoptotic nuclear factor κB (NF-κB). NF-κB associates with the Snail1a promoter region on the chromatin and directly activates Snail1a, an important factor controlling cell delamination, which is the initial step of mesendodermal cell movements during gastrulation. In effect, the cell cycle coordinates the delamination of mesendodermal cells through the transcription of Snail1a. Our results suggest a molecular mechanism by which NF-κB and Snail1a coordinate the cell cycle through gastrulation. PMID:19307597

  14. NF-kappaB and Snail1a coordinate the cell cycle with gastrulation.

    PubMed

    Liu, Xiaolin; Huang, Sizhou; Ma, Jun; Li, Chun; Zhang, Yaoguang; Luo, Lingfei

    2009-03-23

    The cell cycle needs to strictly coordinate with developmental processes to ensure correct generation of the body plan and different tissues. However, the molecular mechanism underlying the coordination remains largely unknown. In this study, we investigate how the cell cycle coordinates gastrulation cell movements in zebrafish. We present a system to modulate the cell cycle in early zebrafish embryos by manipulating the geminin-Cdt1 balance. Alterations of the cell cycle change the apoptotic level during gastrulation, which correlates with the nuclear level of antiapoptotic nuclear factor kappaB (NF-kappaB). NF-kappaB associates with the Snail1a promoter region on the chromatin and directly activates Snail1a, an important factor controlling cell delamination, which is the initial step of mesendodermal cell movements during gastrulation. In effect, the cell cycle coordinates the delamination of mesendodermal cells through the transcription of Snail1a. Our results suggest a molecular mechanism by which NF-kappaB and Snail1a coordinate the cell cycle through gastrulation. PMID:19307597

  15. Exposure to novel odors induces opioid-mediated analgesia in the land snail, Cepaea nemoralis.

    PubMed

    Kavaliers, M; Tepperman, F S

    1988-11-01

    Land snails, Cepaea nemoralis, that were exposed for 1-30 min to a novel odor of either peppermint extract or vegetable juice concentrate displayed an increase in the latency of their nociceptive response to an aversive thermal stimulus (40 degrees C, hot-plate). This "analgesic" response, which entailed the elevation of the fully extended foot in hydrated snails, was evident directly after exposure to the novel chemostimuli and lasted for 15-30 min. This novelty-induced analgesia was blocked by the exogenous opiate antagonist naloxone. Analgesia was not observed in snails that were exposed to the same olfactory cue 4 or 24 h later, but was evident when the alternate novel odor (peppermint or vegetable juice) was presented. However, a significant analgesia was displayed by snails that were reexposed to their initial olfactory stimulus after 48-72 h. These findings indicate that exposure to a novel olfactory stimulus can activate endogenous opioid systems and induce an analgesic response in mollusks. PMID:2849409

  16. Guanine and inosine nucleotides, nucleosides and oxypurines in snail muscles as potential biomarkers of fluoride toxicity.

    PubMed

    Rać, Monika E; Safranow, Krzysztof; Dołegowska, Barbara; Machoy, Zygmunt

    2007-01-01

    The aim of the present study was to determine the toxicity of fluorides on energy metabolism in muscles of the Helix aspersa maxima snail. Qualitative and quantitative analysis of purine compounds was performed in slices of foot from mature snails with high-performance liquid chromatography. Fluoride concentrations were measured using an ion-selective electrode and gas chromatography. The results show that exposure to fluoride pollution was accompanied by a statistically significant increase in fluoride concentrations in soft tissues. This effect was already noticeable with the smallest fluoride dose. Accumulation was greatest in the shell. There is a significant and positive correlation between fluoride concentrations in foot muscles and guanine and inosine nucleotides or uridine content. The content of low-energy guanylate, inosylate and oxypurine in foot muscles significantly increased with rising dose of fluoride. The difference as compared with controls was significant only for the highest dose of fluoride. Interestingly, uric acid, the final product of purine catabolism, dominated quantitatively in the foot muscles of snails. In conclusion, increased low-energy guanylate and inosylate as well as decreased xanthine concentrations in snail muscle can be indicators of the toxic influence of fluoride on the organism. The measuring of fluoride accumulation in the shell is the most suitable bioindicator of fluoride pollution in the environment. PMID:18274260

  17. Unpredictable responses of garden snail ( Helix aspersa) populations to climate change

    NASA Astrophysics Data System (ADS)

    Bezemer, T. Martijn; Knight, Kevin J.

    2001-08-01

    We studied the impact of climate change on the population dynamics of the garden snail ( Helix aspersa) in the Ecotron controlled environment facility. The experimental series ran for three plant generations, allowing the snails to reproduce. We investigated the isolated and combined effects of elevated CO 2 (current + 200 μmol mol -1) and warming (current + 2ºC) in three consecutive runs (CO 2, Temperature and Combined). In the CO 2 Run, the number of juvenile snails recorded at the end of the experiment did not differ between ambient and elevated CO 2, whereas in the Temperature Run, fewer juveniles were found at elevated temperatures. An opposite response was observed in the Combined Run, where significantly more juveniles were found in elevated temperature and CO 2 compared to elevated CO 2 on its own. Within each run, juvenile emergence was not affected by treatments but juvenile presence was first observed about 70 days earlier in the Combined Run than in the Temperature Run. The differences in snail performance in the different runs were not correlated with differences in community structure or leaf quality measured as C:N ratios and neither with the abundance of the most preferred host plant species, Cardamine hirsuta. The abundance of this species, however, was significantly altered in all runs. The results illustrate clearly the degree of difficulty in making predictable generalisations about the consequences of climate change for certain species.

  18. Specialized insulin is used for chemical warfare by fish-hunting cone snails

    PubMed Central

    Safavi-Hemami, Helena; Gajewiak, Joanna; Karanth, Santhosh; Robinson, Samuel D.; Ueberheide, Beatrix; Douglass, Adam D.; Schlegel, Amnon; Imperial, Julita S.; Watkins, Maren; Bandyopadhyay, Pradip K.; Yandell, Mark; Li, Qing; Purcell, Anthony W.; Norton, Raymond S.; Ellgaard, Lars; Olivera, Baldomero M.

    2015-01-01

    More than 100 species of venomous cone snails (genus Conus) are highly effective predators of fish. The vast majority of venom components identified and functionally characterized to date are neurotoxins specifically targeted to receptors, ion channels, and transporters in the nervous system of prey, predators, or competitors. Here we describe a venom component targeting energy metabolism, a radically different mechanism. Two fish-hunting cone snails, Conus geographus and Conus tulipa, have evolved specialized insulins that are expressed as major components of their venoms. These insulins are distinctive in having much greater similarity to fish insulins than to the molluscan hormone and are unique in that posttranslational modifications characteristic of conotoxins (hydroxyproline, γ-carboxyglutamate) are present. When injected into fish, the venom insulin elicits hypoglycemic shock, a condition characterized by dangerously low blood glucose. Our evidence suggests that insulin is specifically used as a weapon for prey capture by a subset of fish-hunting cone snails that use a net strategy to capture prey. Insulin appears to be a component of the nirvana cabal, a toxin combination in these venoms that is released into the water to disorient schools of small fish, making them easier to engulf with the snail’s distended false mouth, which functions as a net. If an entire school of fish simultaneously experiences hypoglycemic shock, this should directly facilitate capture by the predatory snail. PMID:25605914

  19. Reconsolidation of a Context Long-Term Memory in the Terrestrial Snail Requires Protein Synthesis

    ERIC Educational Resources Information Center

    Gainutdinova, Tatiana H.; Tagirova, Rosa R.; Ismailova, Asja I.; Muranova, Lyudmila N.; Samarova, Elena I.; Gainutdinov, Khalil L.; Balaban, Pavel M.

    2005-01-01

    We investigated the influence of the protein synthesis blocker anisomycin on contextual memory in the terrestrial snail "Helix." Prior to the training session, the behavioral responses in two contexts were similar. Two days after a session of electric shocks (5 d) in one context only, the context conditioning was observed as the significant…

  20. 76 FR 31866 - Endangered and Threatened Wildlife and Plants; Reclassification of the Tulotoma Snail From...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-02

    ... in the Federal Register on June 22, 2010 (75 FR 35424). The tulotoma snail (Tulotoma magnifica... Coosa River drainage (56 FR 797; January 9, 1991). These included approximately a 3-kilometer (km) (1.8... species prior to June 22, 2010, are outlined in our proposed rule for this reclassification (75 FR...

  1. Atrazine does not affect algal biomass or snail populations in microcosm communities at environmentally relevant concentrations.

    PubMed

    Baxter, Leilan R; Moore, Dana L; Sibley, Paul K; Solomon, Keith R; Hanson, Mark L

    2011-07-01

    The herbicide atrazine is a photosynthetic inhibitor used around the world in agricultural applications. Contamination of surface waters adjacent to treated areas can directly reduce growth of nontarget aquatic autotrophs, but the severity of impacts is highly dependent on species sensitivity and exposure concentration. Secondary effects resulting from macrophyte or phytoplankton decline may include an expansion of the more tolerant periphyton community. Recently, this shift in the autotrophic community has been proposed as a mechanism for increased rates of parasite infections in amphibians via augmented populations of aquatic snails which act as intermediate hosts to larval trematodes. To further clarify this relationship, an outdoor microcosm study was conducted to examine the effects of atrazine on primary production and snail populations over a range of environmentally relevant concentrations. In July 2009, 15 experimental ponds were treated to achieve initial concentrations of 0, 1, 10, 30, and 100 µg/L atrazine. Over a period of 73 d, measures were taken of macrophyte, phytoplankton, and periphyton biomass, growth, and fecundity of caged snails (Physella spp. and Stagnicola elodes) and free-living snails (Physella spp.). Except for declines in macrophyte biomass at the highest treatment level, no consistent relationships were found between atrazine concentration and any measured parameter. Comparison of these results with previous findings highlights the variability of responses to atrazine exposure between similarly constructed freshwater communities, even at concentrations up to 20 times higher than sustained environmental levels. PMID:21567448

  2. A "Love" Dart Allohormone Identified in the Mucous Glands of Hermaphroditic Land Snails.

    PubMed

    Stewart, Michael J; Wang, Tianfang; Koene, Joris M; Storey, Kenneth B; Cummins, Scott F

    2016-04-01

    Animals have evolved many ways to enhance their own reproductive success. One bizarre sexual ritual is the "love" dart shooting of helicid snails, which has courted many theories regarding its precise function. Acting as a hypodermic needle, the dart transfers an allohormone that increases paternity success. Its precise physiological mechanism of action within the recipient snail is to close off the entrance to the sperm digestion organ via a contraction of the copulatory canal, thereby delaying the digestion of most donated sperm. In this study, we used the common garden snailCornu aspersumto identify the allohormone that is responsible for this physiological change in the female system of this simultaneous hermaphrodite. The love dart allohormone (LDA) was isolated from extracts derived from mucous glands that coat the dart before it is stabbed through the partner's body wall. We isolated LDA from extracts using bioassay-guided contractility measurement of the copulatory canal. LDA is encoded within a 235-amino acid precursor protein containing multiple cleavage sites that, when cleaved, releases multiple bioactive peptides. Synthetic LDA also stimulated copulatory canal contractility. Combined with our finding that the protein amino acid sequence resembles previously described molluscan buccalin precursors, this indicates that LDA is partially conserved in helicid snails and less in other molluscan species. In summary, our study provides the full identification of an allohormone that is hypodermically injected via a love dart. More importantly, our findings have important consequences for understanding reproductive biology and the evolution of alternative reproductive strategies. PMID:26817846

  3. THE BIOCIDE TRIBUTYLTIN ALTERS TESTOSTERONE ESTERIFICATION IN MUD SNAILS (ILYANASSA OBSOLETA)

    EPA Science Inventory

    The Biocide Tributyltin Alters Testosterone Esterification in Mud Snails (Ilyanassa obsoleta)

    Meredith P. Gooding and Gerald A. LeBlanc
    Department of Environmental and Molecular Toxicology, North Carolina State University, Raleigh, NC 27695-7633

    Tributyltin (TBT...

  4. Mitochondrial Genome Sequence of the Galápagos Endemic Land Snail Naesiotus nux

    PubMed Central

    Hunter, Samuel S.; Settles, Matthew L.; New, Daniel D.; Parent, Christine E.

    2016-01-01

    We report herein the draft mitochondrial genome sequence of Naesiotus nux, a Galápagos endemic land snail species of the genus Naesiotus. The circular genome is 15 kb and encodes 13 protein-coding genes, 2 rRNA genes, and 21 tRNA genes. PMID:26798085

  5. Effect of snails (Elimia clavaeformis) on phosphorus cycling in stream periphyton and leaf detritus communities

    SciTech Connect

    Jay, E.A.

    1993-10-01

    In this study, the author examined the effect of grazing on phosphorus cycling in stream periphyton and leaf detritus communities using the snail Elimia clavaeformis. Phosphorus cycling fluxes and turnover rates were measured in a laboratory and in a natural stream, respectively, using radioactive tracer techniques.

  6. Larval dermestid beetles feeding on nestling snail kites, wood storks, and great blue herons

    USGS Publications Warehouse

    Snyder, N.F.R.; Ogden, J.C.; Bittner, J.D.; Grau, G.A.

    1984-01-01

    In recent years abdominal lesions attributable to larval dermestid beetles (Dermestes nidum) have appeared in nestling Snail (Everglade) Kites (Rostrhamus sociabilis), Wood Storks (Mycteria americana), and Great Blue Herons (Ardea herodias). Although it appears that most nestlings affected have survived, the degree of threat posed by dermestid larvae to various avian species is as yet unclear.

  7. Larval dermestid beetles feeding on nestling snail kites, wood storks, and great blue herons

    USGS Publications Warehouse

    Snyder, N.F.R.; Ogden, J.C.; Bittner, J.D.; Grau, G.A.

    1984-01-01

    In recent years abdominal lesions attributable to larval dermestid beetles (D. nidum) have appeared in nestling snail (Everglade) kites (R. sociabilis), wood storks (M. americana) and great blue herons (A. herodias). Although it appears that most nestlings affected have survived, the degree of threat posed by dermestid larvae to various avian species is as yet unclear.

  8. Tropical sea snail shells: Possible exotic sources for ceramic biomaterial synthesis

    SciTech Connect

    Oktar, F. N.; Kiyici, I. A.; Gökçe, H.; Ağaogulları, D.; Kayali, E. S.

    2013-12-16

    In this study, chemical and structural properties of sea snail shell based bioceramic materials (i.e. hydroxyapatite, whitlockite and other phases) are produced by using mechano-chemical (ultrasonic) conversion method. For this purpose, differential thermal and gravimetric analysis (DTA/TG), X-ray diffraction, infra-red (IR) and scanning electron microscope (SEM) studies are performed.

  9. A multiplex PCR for the detection of Fasciola hepatica in the intermediate snail host Galba cubensis.

    PubMed

    Alba, Annia; Vázquez, Antonio A; Hernández, Hilda; Sánchez, Jorge; Marcet, Ricardo; Figueredo, Mabel; Sarracent, Jorge; Fraga, Jorge

    2015-07-30

    Fasciolosis is a snail-borne trematode infection that has re-emerged as a human disease, and is considered a significant problem for veterinary medicine worldwide. The evaluation of the transmission risk of fasciolosis as well as the efficacy of the strategies for its control could be carried out through epidemiological surveillance of the snails that act as intermediate hosts of the parasites. The present study aimed to develop the first multiplex PCR to detect Fasciola hepatica in Galba cubensis, an important intermediate host of the parasite in the Americas and especially in the Caribbean basin. The multiplex PCR was optimized for the amplification of a 340 bp fragment of the second internal transcribed spacer (ITS-2) of F. hepatica rDNA, while another set of primers was designed and used to amplify a conserved segment of the nuclear 18S rDNA of the snail (451 bp), as an internal control of the reaction. The assay was able to detect up to 100 pg of the parasite even at high concentrations of snail DNA, an analytical sensitivity that allows the detection of less than a single miracidium, which is the minimal biological infestation unit. A controlled laboratory-reared G. cubensis - F. hepatica system was used for the evaluation of the developed multiplex PCR, and 100% sensitivity and specificity was achieved. This assay constitutes a novel, useful and suitable technique for the survey of fasciolosis transmission through one of the main intermediate hosts in the Western hemisphere. PMID:26012858

  10. Effects of Endosulfan on Predator-Prey Interactions Between Catfish and Schistosoma Host Snails.

    PubMed

    Monde, Concillia; Syampungani, Stephen; Van den Brink, Paul J

    2016-08-01

    The effect of the pesticide endosulfan on predator-prey interactions between catfish and Schistosoma host snails was assessed in static tank experiments. Hybrid catfish (Clarias gariepinus × C. ngamensis) and Bulinus globosus were subjected to various endosulfan concentrations including an untreated control. The 48- and 96-h LC50 values for catfish were 1.0 and <0.5 µg/L, respectively, whereas the 48- and 96-h LC50 values for snails were 1137 and 810 µg/L. To assess sublethal effects on the feeding of the catfish on B. globosus, endosulfan concentrations between 0.03 and 1.0 µg/L were used. Predation was significantly greater (p < 0.001) in control tanks than in all other treatments. There was progressively decreasing predation with increasing toxicant concentration. Biological control of Schistosoma host snails using fish may be affected in endosulfan-polluted aquatic systems of Southern Africa because it has been found present at concentrations that are indicated to cause lethal effects on the evaluated hybrid catfish and to inhibit the predation of snails by this hybrid catfish. PMID:27033099

  11. Evolution of whole-body enantiomorphy in the tree snail genus Amphidromus

    PubMed Central

    SUTCHARIT, C; ASAMI, T; PANHA, S

    2007-01-01

    Diverse animals exhibit left–right asymmetry in development. However, no example of dimorphism for the left–right polarity of development (whole-body enantiomorphy) is known to persist within natural populations. In snails, whole-body enantiomorphs have repeatedly evolved as separate species. Within populations, however, snails are not expected to exhibit enantiomorphy, because of selection against the less common morph resulting from mating disadvantage. Here we present a unique example of evolutionarily stable whole-body enantiomorphy in snails. Our molecular phylogeny of South-east Asian tree snails in the genus Amphidromus indicates that enantiomorphy has likely persisted as the ancestral state over a million generations. Enantiomorphs have continuously coexisted in every population surveyed spanning a period of 10 years. Our results indicate that whole-body enantiomorphy is maintained within populations opposing the rule of directional asymmetry in animals. This study implicates the need for explicit approaches to disclosure of a maintenance mechanism and conservation of the genus. PMID:17305832

  12. Snails as indicators of pesticide drift, deposit, transfer and effects in the vineyard.

    PubMed

    Druart, Coline; Millet, Maurice; Scheifler, Renaud; Delhomme, Olivier; Raeppel, Caroline; de Vaufleury, Annette

    2011-09-15

    This paper presents a field-study of real pesticide application conditions in a vineyard. The objective was to measure the exposure, the transfer and the effects of pesticides on a non-target soil invertebrate, the land snail Helix aspersa. There was no drift of the herbicides (glyphosate and glufosinate) whereas the fungicides (cymoxanil, folpet, tebuconazole and pyraclostrobin) were detected up to 20 m from the treated area. For folpet and particularly tebuconazole, spray deposits on soil (corresponding to losses for the intended target i.e. the vine leaves) were high (41.1% and 88.8% loss of applied dose, respectively). For herbicides, the target was the soil and losses (percentage of compounds which did not reach the soil) were of 22% for glufosinate and 52% for glyphosate. In the study plot, glyphosate was transferred to and accumulated in snail tissues (4 mg kg(-1) dry weight, dw), as was its metabolite AMPA (8 mg kg(-1) dw) which could be in relation with the reduced growth observed in snails. No effects on snail survival or growth were found after exposure to the other organic compounds or to copper and sulphur-fungicides, although transfer of tebuconazole, pyraclostrobin and copper occurred. This study brings original field data on the fate of pesticides in a vineyard agro-ecosystem under real conditions of application and shows that transfer and effects of pesticides to a non-target organism occurred. PMID:21784506

  13. Population genetics and the effects of a severe bottleneck in an ex situ population of critically endangered Hawaiian tree snails.

    PubMed

    Price, Melissa R; Hadfield, Michael G

    2014-01-01

    As wild populations decline, ex situ propagation provides a potential bank of genetic diversity and a hedge against extinction. These programs are unlikely to succeed if captive populations do not recover from the severe bottleneck imposed when they are founded with a limited number of individuals from remnant populations. In small captive populations allelic richness may be lost due to genetic drift, leading to a decline in fitness. Wild populations of the Hawaiian tree snail Achatinella lila, a hermaphroditic snail with a long life history, have declined precipitously due to introduced predators and other human impacts. A captive population initially thrived after its founding with seven snails, exceeding 600 captive individuals in 2009, but drastically declined in the last five years. Measures of fitness were examined from 2,018 captive snails that died between 1998 and 2012, and compared with genotypic data for six microsatellite loci from a subset of these deceased snails (N = 335), as well as live captive snails (N = 198) and wild snails (N = 92). Surprisingly, the inbreeding coefficient (Fis) declined over time in the captive population, and is now approaching values observed in the 2013 wild population, despite a significant decrease in allelic richness. However, adult annual survival and fecundity significantly declined in the second generation. These measures of fitness were positively correlated with heterozygosity. Snails with higher measures of heterozygosity had more offspring, and third generation offspring with higher measures of heterozygosity were more likely to reach maturity. These results highlight the importance of maintaining genetic diversity in captive populations, particularly those initiated with a small number of individuals from wild remnant populations. Genetic rescue may allow for an increase in genetic diversity in the captive population, as measures of heterozygosity and rarified allelic richness were higher in wild tree

  14. Elevated Snail Expression Mediates Tumor Progression in Areca Quid Chewing-Associated Oral Squamous Cell Carcinoma via Reactive Oxygen Species

    PubMed Central

    Lee, Shiuan-Shinn; Tsai, Chung-Hung; Yu, Cheng-Chia; Chang, Yu-Chao

    2013-01-01

    Background Snail is an important transcription factor implicated in several tumor progression and can be induced by reactive oxygen species (ROS). Areca quid chewing is a major risk factor of oral squamous cell carcinoma (OSCC). Therefore, we hypothesize that the major areca nut alkaloid arecoline may induce Snail via ROS and involve in the pathogenesis of areca quid chewing-associated OSCC. Methodology/Principal Finding Thirty-six OSCC and ten normal oral epithelium specimens were examined by immunohistochemistry and analyzed by the clinico-pathological profiles. Cytotoxicity, 2′, 7′-dichlorofluorescein diacetate assay, and western blot were used to investigate the effects of arecoline in human oral keratinocytes (HOKs) and oral epithelial cell line OECM-1 cells. In addition, antioxidants N-acetyl-L-cysteine (NAC), curcumin, and epigallocatechin-3 gallate (EGCG) were added to find the possible regulatory mechanisms. Initially, Snail expression was significantly higher in OSCC specimens (p<0.05). Elevated Snail expression was associated with lymph node metastasis (p = 0.031) and poor differentiation (p = 0.017). Arecoline enhanced the generation of intracellular ROS at the concentration higher than 40 µg/ml (p<0.05). Arecoline was also found to induced Snail expression in a dose- and time-dependent manner (p<0.05). Treatment with NAC, curcumin, and EGCG markedly inhibited arecoline induced Snail expression (p<0.05). Conclusion/Significance: Our results suggest that Snail overexpression in areca quid chewing-associated OSCC is associated with tumors differentiation and lymph node metastasis. Arecoline-upregulated Snail expression may be mediated by ROS generation. In addition, arecoline induced Snail expression was downregulated by NAC, curcumin, and EGCG. PMID:23874481

  15. New insight in lymnaeid snails (Mollusca, Gastropoda) as intermediate hosts of Fasciola hepatica (Trematoda, Digenea) in Belgium and Luxembourg

    PubMed Central

    2014-01-01

    Background The present study aims to assess the epidemiological role of different lymnaeid snails as intermediate hosts of the liver fluke Fasciola hepatica in Belgium and Luxembourg. Methods During summer 2008, 7103 lymnaeid snails were collected from 125 ponds distributed in 5 clusters each including 25 ponds. Each cluster was located in a different biogeographic area of Belgium and Luxembourg. In addition, snails were also collected in sixteen other biotopes considered as temporary wet areas. These snails were identified as Galba truncatula (n = 2474) (the main intermediate host of F. hepatica in Europe) and Radix sp. (n = 4629). Moreover, several biological and non-biological variables were also recorded from the different biotopes. DNA was extracted from each snail collected using Chelex® technique. DNA samples were screened through a multiplex PCR that amplifies lymnaeid internal transcribed spacer 2 gene sequences (500–600 bp) (acting as an internal control) and a 124 bp fragment of repetitive DNA from Fasciola sp. Results Lymnaeid snails were found in 75 biotopes (53.2%). Thirty individuals of G. truncatula (1.31%) and 7 of Radix sp. (0.16%) were found to be positive for Fasciola sp. The seven positive Radix sp. snails all belonged to the species R. balthica (Linnaeus, 1758). Classification and regression tree analysis were performed in order to better understand links and relative importance of the different recorded factors. One of the best explanatory variables for the presence/absence of the different snail species seems to be the geographic location, whereas for the infection status of the snails no obvious relationship was linked to the presence of cattle. Conclusions Epidemiological implications of these findings and particularly the role of R. balthica as an alternative intermediate host in Belgium and Luxembourg were discussed. PMID:24524623

  16. Biotic interactions modify the transfer of cesium-137 in a soil-earthworm-plant-snail food web.

    PubMed

    Fritsch, Clémentine; Scheifler, Renaud; Beaugelin-Seiller, Karine; Hubert, Philippe; Coeurdassier, Michaël; de Vaufleury, Annette; Badot, Pierre-Marie

    2008-08-01

    The present study investigated the possible influence of the earthworm Aporrectodea tuberculata on the transfer of cesium-137 ((137)Cs) from a contaminated (130 Bq/kg) deciduous forest soil to the lettuce Lactuca sativa and to the snail Cantareus aspersus (formerly Helix aspersa) in two laboratory experiments. In the first experiment, the International Organization for Standardization 15952 test was used to expose snails for five weeks to contaminated soil with or without earthworms. In these conditions, the presence of earthworms caused a two- to threefold increase in (137)Cs concentrations in snails. Transfer was low in earthworms as well as in snails, with transfer factors (TFs) lower than 3.7 x 10(-2). Activity concentrations were higher in earthworms (2.8- 4.8 Bq/kg dry mass) than in snails (<1.5 Bq/kg). In the second experiment, microcosms were used to determine the contribution of soil and lettuce in the accumulation of (137)Cs in snails. Results suggest that the contribution of lettuce and soil is 80 and 20%, respectively. Microcosms also were used to study the influence of earthworms on (137)Cs accumulation in snail tissues in the most ecologically relevant treatment (soil-earthworm-plant-snail food web). In this case, soil-to-plant transfer was high, with a TF of 0.8, and was not significantly modified by earthworms. Conversely, soil-to-snail transfer was lower (TF, approximately 0.1) but was significantly increased in presence of earthworms. Dose rates were determined in the microcosm study with the EDEN (elementary dose evaluation for natural environment) model. Dose rates were lower than 5.5 x 10(-4) mGy/d, far from values considered to have effects on terrestrial organisms (1 mGy/d). PMID:18266477

  17. Population Genetics and the Effects of a Severe Bottleneck in an Ex Situ Population of Critically Endangered Hawaiian Tree Snails

    PubMed Central

    Price, Melissa R.; Hadfield, Michael G.

    2014-01-01

    As wild populations decline, ex situ propagation provides a potential bank of genetic diversity and a hedge against extinction. These programs are unlikely to succeed if captive populations do not recover from the severe bottleneck imposed when they are founded with a limited number of individuals from remnant populations. In small captive populations allelic richness may be lost due to genetic drift, leading to a decline in fitness. Wild populations of the Hawaiian tree snail Achatinella lila, a hermaphroditic snail with a long life history, have declined precipitously due to introduced predators and other human impacts. A captive population initially thrived after its founding with seven snails, exceeding 600 captive individuals in 2009, but drastically declined in the last five years. Measures of fitness were examined from 2,018 captive snails that died between 1998 and 2012, and compared with genotypic data for six microsatellite loci from a subset of these deceased snails (N = 335), as well as live captive snails (N = 198) and wild snails (N = 92). Surprisingly, the inbreeding coefficient (Fis) declined over time in the captive population, and is now approaching values observed in the 2013 wild population, despite a significant decrease in allelic richness. However, adult annual survival and fecundity significantly declined in the second generation. These measures of fitness were positively correlated with heterozygosity. Snails with higher measures of heterozygosity had more offspring, and third generation offspring with higher measures of heterozygosity were more likely to reach maturity. These results highlight the importance of maintaining genetic diversity in captive populations, particularly those initiated with a small number of individuals from wild remnant populations. Genetic rescue may allow for an increase in genetic diversity in the captive population, as measures of heterozygosity and rarified allelic richness were higher in wild tree

  18. Field and laboratory evaluation of the influence of copper-diquat on apple snails in southern Florida

    USGS Publications Warehouse

    Winger, P.V.; Imlay, M.J.; McMillan, W.E.; Martin, T.W.; Takekawa, J.; Johnson, W.W.

    1984-01-01

    The recent decline of apple snail (Pomacea paludosa) populations in canals surrounding Loxahatchee National Wildlife Refuge in southern Florida coincided with the use of copper-diquat for the control of the aquatic weed hydrilla (Hydrilla ver/icillara). Field and laboratory studies were designed to assess the effects of copper-diquat on apple snails, which are the primary food of the endangered snail kite Rostrhamus sociabilis (formerly known as the Everglade kite). Acute toxicities (96-h LC50 values) of Cutrine-Plus and Komeen (chelated formulations of copper) to immature apple snails were 22 and 241-?g/L, respectively. Diquat was toxic at a concentration of 1,800 I-?g/L and did not increase the toxicity of copper when the chemicals were used in combination. Evaluation of field samples indicated that copper concentrations were higher in detritus than in water. plants and mud, and that there was a gradient of copper concentration from the canal to the interior, the highest residues being in samples from the canal. Copper associated with detritus (up to 150 ?g/g) had no effect on growth or survival of apple snails in field cage and tank studies. Also, field applications of copper.diquat to hydrilla had no effect on survival of caged adult and immature snails. Copper from field applications was rapidly taken out of solution by plants and organic material in the water and subsequently incorporated into the bottom detritus. Although the effects of repeated applications of copper-diquat and high body burdens of copper (accumulated during exposure to herbicidal treatment) on survival and reproduction of apple snails are not known, the information available indicates that treatment of hydrilla with copper-diquat was probably not responsible for the decline in the apple snail population. Application at recommended rates should pose no threat to these snails in the organically rich waters of southern Florida.

  19. The identity, distribution, and impacts of non-native apple snails in the continental United States

    PubMed Central

    Rawlings, Timothy A; Hayes, Kenneth A; Cowie, Robert H; Collins, Timothy M

    2007-01-01

    Background Since the mid 1990s populations of non-native apple snails (Ampullariidae) have been discovered with increasing frequency in the continental United States. Given the dramatic effects that introduced apple snails have had on both natural habitats and agricultural areas in Southeast Asia, their introduction to the mainland U.S. is cause for concern. We combine phylogenetic analyses of mtDNA sequences with examination of introduced populations and museum collections to clarify the identities, introduced distributions, geographical origins, and introduction histories of apple snails. Results Based on sampling to date, we conclude there are five species of non-native apple snails in the continental U.S. Most significantly, we recognize three species within what has been called the channeled apple snail: Pomacea canaliculata (California and Arizona), Pomacea insularum, (Florida, Texas, and Georgia) and Pomacea haustrum (Florida). The first established populations of P. haustrum were discovered in the late 1970s in Palm Beach County Florida, and have not spread appreciably in 30 years. In contrast, populations of P. insularum were established in Texas by 1989, in Florida by the mid to late 1990s, and in Georgia by 2005, and this species continues to spread rapidly. Most introduced P. insularum haplotypes are a close match to haplotypes from the Río Uruguay near Buenos Aires, indicating cold tolerance, with the potential to spread from Florida, Georgia, and Texas through Louisiana, Alabama, Mississippi, and South Carolina. Pomacea canaliculata populations were first discovered in California in 1997. Haplotypes of introduced P. canaliculata match native-range haplotypes from near Buenos Aires, Argentina, also indicating cold tolerance and the potential to establish farther north. Conclusion The term "channeled apple snail" is descriptive of a morphology found in many apple snail species. It does not identify a single species or a monophyletic group. Clarifying

  20. Heat shock protein expression in relation to reproductive cycle in land snails: Implications for survival.

    PubMed

    Mizrahi, Tal; Heller, Joseph; Goldenberg, Shoshana; Arad, Zeev

    2011-10-01

    Land snails are subject to daily and seasonal variations in temperature and in water availability and use heat shock proteins (HSPs) as part of their survival strategy. We tested whether the reproductive cycle of land snails affects the endogenous levels of HSPs, and their involvement in the reproductive process. We examined HSP levels in the foot tissue of two Sphincterochila species, S. cariosa and S. zonata, before and after laying eggs, and analyzed the albumen gland (reproductive organ) of both species and eggs of S. cariosa for the presence and quantity of various HSPs. Our study shows reduction in the expression level of Hsp70 isoforms and Hsp90 in S. zonata foot and of Hsp74 in S. cariosa foot during the period preceding egg laying compared to the post-reproductive stage. Hsp70 isoforms and Hsp25 were highly expressed in both large albumen glands and in freshly laid eggs of S. cariosa, whereas large albumen glands of S. zonata expressed mainly Hsp70 isoforms. We conclude that a trade-off between survival and fertility is responsible for the expression level of HSPs in the foot tissue of Sphincterochila snails. Our study shows that HSPs are involved in the reproductive process. We propose that parental provision of HSPs may be part of a "be prepared" strategy of Sphincterochila snails, and that HSPs may play important roles in the survival strategy of land snails during the early life stages. Our observations also highlight the importance of the reproductive status in study of whole organisms, especially when assessing the HSP response to stress. PMID:21664480

  1. Soil Calcium Availability Influences Shell Ecophenotype Formation in the Sub-Antarctic Land Snail, Notodiscus hookeri

    PubMed Central

    Charrier, Maryvonne; Marie, Arul; Guillaume, Damien; Bédouet, Laurent; Le Lannic, Joseph; Roiland, Claire; Berland, Sophie; Pierre, Jean-Sébastien; Le Floch, Marie; Frenot, Yves; Lebouvier, Marc

    2013-01-01

    Ecophenotypes reflect local matches between organisms and their environment, and show plasticity across generations in response to current living conditions. Plastic responses in shell morphology and shell growth have been widely studied in gastropods and are often related to environmental calcium availability, which influences shell biomineralisation. To date, all of these studies have overlooked micro-scale structure of the shell, in addition to how it is related to species responses in the context of environmental pressure. This study is the first to demonstrate that environmental factors induce a bi-modal variation in the shell micro-scale structure of a land gastropod. Notodiscus hookeri is the only native land snail present in the Crozet Archipelago (sub-Antarctic region). The adults have evolved into two ecophenotypes, which are referred to here as MS (mineral shell) and OS (organic shell). The MS-ecophenotype is characterised by a thick mineralised shell. It is primarily distributed along the coastline, and could be associated to the presence of exchangeable calcium in the clay minerals of the soils. The Os-ecophenotype is characterised by a thin organic shell. It is primarily distributed at high altitudes in the mesic and xeric fell-fields in soils with large particles that lack clay and exchangeable calcium. Snails of the Os-ecophenotype are characterised by thinner and larger shell sizes compared to snails of the MS- ecophenotype, indicating a trade-off between mineral thickness and shell size. This pattern increased along a temporal scale; whereby, older adult snails were more clearly separated into two clusters compared to the younger adult snails. The prevalence of glycine-rich proteins in the organic shell layer of N. hookeri, along with the absence of chitin, differs to the organic scaffolds of molluscan biominerals. The present study provides new insights for testing the adaptive value of phenotypic plasticity in response to spatial and temporal

  2. Polyethylene glycol-mediated colorectal cancer chemoprevention: roles of epidermal growth factor receptor and Snail.

    PubMed

    Wali, Ramesh K; Kunte, Dhananjay P; Koetsier, Jennifer L; Bissonnette, Marc; Roy, Hemant K

    2008-09-01

    Polyethylene glycol (PEG) is a clinically widely used agent with profound chemopreventive properties in experimental colon carcinogenesis. We reported previously that Snail/beta-catenin signaling may mediate the suppression of epithelial proliferation by PEG, although the upstream events remain unclear. We report herein the role of epidermal growth factor receptor (EGFR), a known mediator of Snail and overexpressed in approximately 80% of human colorectal cancers, on PEG-mediated antiproliferative and hence antineoplastic effects in azoxymethane (AOM) rats and HT-29 colon cancer cells. AOM rats were randomized to either standard diet or one with 10% PEG-3350 and euthanized 8 weeks later. The colonic samples were subjected to immunohistochemical or Western blot analyses. PEG decreased mucosal EGFR by 60% (P < 0.001). Similar PEG effects were obtained in HT-29 cells. PEG suppressed EGFR protein via lysosmal degradation with no change in mRNA levels. To show that EGFR antagonism per se was responsible for the antiproliferative effect, we inhibited EGFR by either pretreating cells with gefitinib or stably transfecting with EGFR-short hairpin RNA and measured the effect of PEG on proliferation. In either case, PEG effect was blunted, suggesting a vital role of EGFR. Flow cytometric analysis revealed that EGFR-short hairpin RNA cells, besides having reduced membrane EGFR, also expressed low Snail levels (40%), corroborating a strong association. Furthermore, in EGFR silenced cells, PEG effect on EGFR or Snail was muted, similar to that on proliferation. In conclusion, we show that EGFR is the proximate membrane signaling molecule through which PEG initiates antiproliferative activity with Snail/beta-catenin pathway playing the central intermediary function. PMID:18790788

  3. Physiological, Diurnal and Stress-Related Variability of Cadmium-Metallothionein Gene Expression in Land Snails

    PubMed Central

    Pedrini-Martha, Veronika; Niederwanger, Michael; Kopp, Renate; Schnegg, Raimund; Dallinger, Reinhard

    2016-01-01

    The terrestrial Roman snail Helix pomatia has successfully adapted to strongly fluctuating conditions in its natural soil habitat. Part of the snail’s stress defense strategy is its ability to express Metallothioneins (MTs). These are multifunctional, cysteine-rich proteins that bind and inactivate transition metal ions (Cd2+, Zn2+, Cu+) with high affinity. In Helix pomatia a Cadmium (Cd)-selective, inducible Metallothionein Isoform (CdMT) is mainly involved in detoxification of this harmful metal. In addition, the snail CdMT has been shown to also respond to certain physiological stressors. The aim of the present study was to investigate the physiological and diurnal variability of CdMT gene expression in snails exposed to Cd and non-metallic stressors such as desiccation and oxygen depletion. CdMT gene expression was upregulated by Cd exposure and desiccation, whereas no significant impact on the expression of CdMT was measured due to oxygen depletion. Overall, Cd was clearly more effective as an inducer of the CdMT gene expression compared to the applied non-metallic stressors. In unexposed snails, diurnal rhythmicity of CdMT gene expression was observed with higher mRNA concentrations at night compared to daytime. This rhythmicity was severely disrupted in Cd-exposed snails which exhibited highest CdMT gene transcription rates in the morning. Apart from diurnal rhythmicity, feeding activity also had a strong impact on CdMT gene expression. Although underlying mechanisms are not completely understood, it is clear that factors increasing MT expression variability have to be considered when using MT mRNA quantification as a biomarker for environmental stressors. PMID:26935042

  4. Effects of shorebird predation and snail abundance on an intertidal mudflat community

    NASA Astrophysics Data System (ADS)

    Cheverie, Anne V.; Hamilton, Diana J.; Coffin, Michael R. S.; Barbeau, Myriam A.

    2014-09-01

    Top-down effects of predation are well documented in a variety of ecological communities, including marine soft-sediment systems. It has been proposed that intertidal mudflats in the upper Bay of Fundy, Canada, which host a large population of foraging shorebirds each summer, may exhibit this community dynamic. Biofilm (consisting mainly of diatoms) forms the base of the mudflat community food web, which is dominated by the amphipod Corophium volutator. To assess the potential for a trophic cascade, we conducted a manipulative field experiment examining individual and combined effects of the shorebird Calidris pusilla, a primary predator of C. volutator, and the eastern mudsnail (Nassarius obsoletus), an intraguild predator, on community structure (including macrofauna and large meiofauna retained by a 250-μm screen). Snails exhibited density-dependent top-down effects, primarily from strong negative interactions with juvenile and adult C. volutator, likely due to interference, consumption and emigration. Medium and high densities of snails reduced chlorophyll a concentration (a measure of diatom abundance), likely through consumption and disturbance of the sediment. When present at higher densities, snails also increased variability in community structure. Shorebirds were less influential in determining community structure. They reduced C. volutator biomass through consumption, but there was no resulting effect on primary production. Top-down effects of snails and birds were cumulative on C. volutator, but did not generate a trophic cascade. We suggest that a combination of omnivory and intraguild predation by shorebirds and snails, coupled with relatively low grazing pressure by C. volutator, prevented transmission of top-down effects.

  5. Density-dependence across dispersal stages in a hermaphrodite land snail: insights from discrete choice models.

    PubMed

    Dahirel, Maxime; Vardakis, Michalis; Ansart, Armelle; Madec, Luc

    2016-08-01

    Dispersal movements, i.e. movements leading to gene flow, are key behaviours with important, but only partially understood, consequences for the dynamics and evolution of populations. In particular, density-dependent dispersal has been widely described, yet how it is determined by the interaction with individual traits, and whether density effects differ between the three steps of dispersal (departure, transience, and settlement), remains largely unknown. Using a semi-natural landscape, we studied dispersal choices of Cornu aspersum land snails, a species in which negative effects of crowding are well documented, and analysed them using dispersal discrete choice models, a new method allowing the analysis of dispersal decisions by explicitly considering the characteristics of all available alternatives and their interaction with individual traits. Subadults were more dispersive than adults, confirming existing results. In addition, departure and settlement were both density dependent: snails avoided crowded patches at both ends of the dispersal process, and subadults were more reluctant to settle into crowded patches than adults. Moreover, we found support for carry-over effects of release density on subsequent settlement decisions: snails from crowded contexts were more sensitive to density in their subsequent immigration choices. The fact that settlement decisions were informed indicates that costs of prospecting are not as important as previously thought in snails, and/or that snails use alternative ways to collect information, such as indirect social information (e.g. trail following). The observed density-dependent dispersal dynamics may play an important role in the ability of C. aspersum to successfully colonise frequently human-disturbed habitats around the world. PMID:27139427

  6. Molecular Diversity and Gene Evolution of the Venom Arsenal of Terebridae Predatory Marine Snails

    PubMed Central

    Gorson, Juliette; Ramrattan, Girish; Verdes, Aida; Wright, Elizabeth M.; Kantor, Yuri; Rajaram Srinivasan, Ramakrishnan; Musunuri, Raj; Packer, Daniel; Albano, Gabriel; Qiu, Wei-Gang; Holford, Mandë

    2015-01-01

    Venom peptides from predatory organisms are a resource for investigating evolutionary processes such as adaptive radiation or diversification, and exemplify promising targets for biomedical drug development. Terebridae are an understudied lineage of conoidean snails, which also includes cone snails and turrids. Characterization of cone snail venom peptides, conotoxins, has revealed a cocktail of bioactive compounds used to investigate physiological cellular function, predator-prey interactions, and to develop novel therapeutics. However, venom diversity of other conoidean snails remains poorly understood. The present research applies a venomics approach to characterize novel terebrid venom peptides, teretoxins, from the venom gland transcriptomes of Triplostephanus anilis and Terebra subulata. Next-generation sequencing and de novo assembly identified 139 putative teretoxins that were analyzed for the presence of canonical peptide features as identified in conotoxins. To meet the challenges of de novo assembly, multiple approaches for cross validation of findings were performed to achieve reliable assemblies of venom duct transcriptomes and to obtain a robust portrait of Terebridae venom. Phylogenetic methodology was used to identify 14 teretoxin gene superfamilies for the first time, 13 of which are unique to the Terebridae. Additionally, basic local algorithm search tool homology-based searches to venom-related genes and posttranslational modification enzymes identified a convergence of certain venom proteins, such as actinoporin, commonly found in venoms. This research provides novel insights into venom evolution and recruitment in Conoidean predatory marine snails and identifies a plethora of terebrid venom peptides that can be used to investigate fundamental questions pertaining to gene evolution. PMID:26025559

  7. Physiology of the invasive apple snail Pomacea maculata: tolerance to low temperatures

    USGS Publications Warehouse

    Lewis E. Deaton; William Schmidt; Brody Leblanc; Carter, Jacoby; Kristy Mueck; Merino, Sergio

    2016-01-01

    Apple snails of the genus Pomacea native to South America have invaded and become established in Europe, Asia, and the United States. Both the channeled apple snail Pomacea canaliculata and the island apple snail Pomacea maculata have been reported in the United States. The two species are difficult to distinguish using morphological characters, leading to uncertainty about the identity of the animals from populations in the United States. Because the snails are subtropical, their tolerance of low temperatures is a critical factor in limiting the spread of the animals from present localities along the coast of the Gulf of Mexico to more northern areas. The tolerance of P. maculata collected in Louisiana to temperatures as low as 0°C was examined. There was no mortality among animals maintained in water at temperatures of 20°C or 15°C for 10 days. Survival of animals during a 10-day exposure to water at temperatures 10°C and 5°C was 50%. The LD50 for a 10-day exposure was 7°C. Snails did not survive more than 5 days in liquid water at 0°C. Ammonia excretion by animals in temperatures of 20°C and 15°C was comparable to values reported for freshwater gastropods; at very low temperatures, excretion of ammonia was decreased. There was no difference in the mean values of the osmolality of the hemolymph of animals exposed to 20°C, 15°C and 10°C for 10 days. Sequencing of mitochondrial cytochrome oxidase 1 identified the animals in the Louisiana population used in this study as P. maculata.

  8. Structure and Function of the Snail Statocyst System after a 16-Day Flight on Foton-M-2

    NASA Technical Reports Server (NTRS)

    Balaban, P. M.; Malyshev, A. Y.; Zakharov, I. S.; Aseev, N. A.; Bravarenko, N. I.; Ierusalimsky, V. N.; Samarova, A. I.; Vorontzov, D. D.; Popova, Y.; Boyle, R.

    2006-01-01

    In terrestrial gastropod snail Helix lucorum L. we studied the changes after a 16-day exposure to microgravity in: behavior, neural responses to adequate motion stimulation, intersensory interactions between the photosensory pathways and the statocyst receptors, and in expression of the HPeP gene in the statocyst receptors. In behavioral experiments it was found that the latency of body position change to sudden orientation change (flip from horizontal to downwards position) was significantly reduced in the postflight snails. Extracellularly recorded neural responses of the statocyst nerve to adequate motion stimulation in the postflight snails were independent of the motion direction while in the control animals an orientation selectivity was observed. Significant differences in the HPeP gene mRNA expression pattern in the statocyst receptor neurons were observed in postflight (30h) and control snails. Obtained results confirm the possibility to elucidate the influence of microgravity exposure on mechanisms and function of gravireceptors using this simple model animal.

  9. THE BIOCIDE TRIBUTYLTIN REDUCES THE RETENTION OF TESTOSTERONE AS FATTY ACID ESTERS IN THE MUD SNAIL (ILYANASSA OBSOLETA)

    EPA Science Inventory

    ABSTRACT

    Imposex, the development of male sex characteristics by female gonochoristic snails, has been causally associated with exposure to the ubiquitous environmental contaminant tributyltin (TBT). Documentation of imposex distribution indicates that this masculinizat...

  10. Trematodes in snails near raccoon latrines suggest a final host role for this mammal in California Salt Marshes

    USGS Publications Warehouse

    Lafferty, K.D.; Dunham, E.J.

    2005-01-01

    Of the 18 trematode species that use the horn snail, Cerithidea californica, as a first intermediate host, 6 have the potential to use raccoons as a final host. The presence of raccoon latrines in Carpinteria Salt Marsh, California, allowed us to investigate associations between raccoons and trematodes in snails. Two trematode species, Probolocoryphe uca and Stictodora hancocki, occurred at higher prevalences in snails near raccoon latrines than in snails away from latrines, suggesting that raccoons may serve as final hosts for these species. Fecal remains indicated that raccoons fed on shore crabs, the second intermediate host for P. uca, and fish, the second intermediate host for S. hancocki. The increase in raccoon populations in the suburban areas surrounding west coast salt marshes could increase their importance as final hosts for trematodes in this system. ?? American Society of Parasitologists 2005.

  11. CXCL1 expression is correlated with Snail expression and affects the prognosis of patients with gastric cancer

    PubMed Central

    XIANG, ZHEN; JIANG, DA-PING; XIA, GUANG-GAI; WEI, ZHE-WEI; CHEN, WEI; HE, YULONG; ZHANG, CHANG-HUA

    2015-01-01

    Gastric cancer (GC) continues to result in a poor survival rate and prognostic biomarkers for the disease are lacking. Chemokine (C-X-C motif) ligand (CXCL1) expression plays a critical role in tumor metastasis, and Snail promotes epithelial-mesenchymal transition (EMT) to promote metastasis. Therefore, the present study aimed to investigate the correlation between CXCL1 and Snail expression and the effect of CXCL1 expression on the survival of patients with GC. CXCL1 and Snail expression in paraffin-embedded tissue sections from 127 patients with GC were each assessed by immunohistochemistry. Cox regression and Kaplan-Meier analyses were performed to evaluate the prognostic significance of CXCL1 and Snail. Evaluation of the association between CXCL1 and Snail expression and clinical characteristics was based on the χ2 test. Spearman's rank correlation coefficient and Fisher's exact test were used to explore the association between CXCL1 and Snail expression in GC tissues. CXCL1 was found to be significantly associated with tumor invasion (P=0.003), tumor-node-metastasis (TNM) staging (P=0.001), tumor size (P=0.013) and lymph node metastasis (P=0.022) in GC. Snail overexpression was also significantly associated with tumor invasion (P=0.001), TNM staging (P=0.005), tumor size (P=0.026), lymph node metastases (P=0.014) and perineural invasion (P=0.009). CXCL1 and Snail expression were independent factors for a worse overall survival rate, as determined by multivariate analysis (P=0.011 and P=0.018; respectively). The combined expression of CXCL1 and Snail resulted in a worse prognosis compared with the other three groups (P=0.005). Furthermore, there was a significantly positive correlation between CXCL1 and Snail expression in GC (r=0.431; P<0.001). The expression of CXCL1 is significantly associated with Snail expression and may be used as a predictive co-biomarker for patient prognosis and tumor aggressiveness in GC. CXCL1 may promote GC metastasis by regulating

  12. Recruitment of Glycosyl Hydrolase Proteins in a Cone Snail Venomous Arsenal: Further Insights into Biomolecular Features of Conus Venoms

    PubMed Central

    Violette, Aude; Leonardi, Adrijana; Piquemal, David; Terrat, Yves; Biass, Daniel; Dutertre, Sébastien; Noguier, Florian; Ducancel, Frédéric; Stöcklin, Reto; Križaj, Igor; Favreau, Philippe

    2012-01-01

    Cone snail venoms are considered an untapped reservoir of extremely diverse peptides, named conopeptides, displaying a wide array of pharmacological activities. We report here for the first time, the presence of high molecular weight compounds that participate in the envenomation cocktail used by these marine snails. Using a combination of proteomic and transcriptomic approaches, we identified glycosyl hydrolase proteins, of the hyaluronidase type (Hyal), from the dissected and injectable venoms (“injectable venom” stands for the venom variety obtained by milking of the snails. This is in contrast to the “dissected venom”, which was obtained from dissected snails by extraction of the venom glands) of a fish-hunting cone snail, Conus consors (Pionoconus clade). The major Hyal isoform, Conohyal-Cn1, is expressed as a mixture of numerous glycosylated proteins in the 50 kDa molecular mass range, as observed in 2D gel and mass spectrometry analyses. Further proteomic analysis and venom duct mRNA sequencing allowed full sequence determination. Additionally, unambiguous segment location of at least three glycosylation sites could be determined, with glycans corresponding to multiple hexose (Hex) and N-acetylhexosamine (HexNAc) moieties. With respect to other known Hyals, Conohyal-Cn1 clearly belongs to the hydrolase-type of Hyals, with strictly conserved consensus catalytic donor and positioning residues. Potent biological activity of the native Conohyals could be confirmed in degrading hyaluronic acid. A similar Hyal sequence was also found in the venom duct transcriptome of C. adamsonii (Textilia clade), implying a possible widespread recruitment of this enzyme family in fish-hunting cone snail venoms. These results provide the first detailed Hyal sequence characterized from a cone snail venom, and to a larger extent in the Mollusca phylum, thus extending our knowledge on this protein family and its evolutionary selection in marine snail venoms. PMID:22412800

  13. Trematode maturation patterns in a migratory snail host: What happens during upshore residency in a Mediterranean lagoon?

    PubMed

    Born-Torrijos, Ana; Raga, Juan Antonio; Holzer, Astrid Sibylle

    2016-02-01

    Maturation of trematode larval stages is expected to be temporally and spatially adapted to maximise the encounter with the adequate downstream host, i.e. the host, which will be infected by this parasite stage. Since studies on intramolluscan parasite maturation are scarce but important in the context of parasite transmission, the larval development inside sporocysts was monitored during upshore residency of the snail host Gibbula adansonii (Trochidae), i.e., from March to May (2011 and 2013), when these snails temporarily reside in the intertidal habitat of a Western Mediterranean lagoon (40° 37' 35″ N, 0° 44' 31″ E, Spain). Data on the relative quantity of different maturation stages of Cainocreadium labracis and Macvicaria obovata (Opecoelidae) parasitising the G. adansonii as well as on snail and sporocyst size were explored using linear models and linear mixed models. The effect of the trematodes on snail growth was shown to be species-specific, with snail and sporocyst size acting as proxies of the reproductive capacity of M. obovata but not that of C. labracis. The number of cercarial embryos and germinal balls did not show monthly variation in either parasite species, but a higher number of mature stages and the highest maturity index was found in April. Hence, during the snail's limited spawning-related presence in the upshore waters of the lagoon, continuous production and output of infectious cercariae was observed, which indicates a link between larval maturation and snail migration. The synchronization of snails, mature parasite transmission stages and downstream hosts in time and space guarantees a successful completion of the life cycle. PMID:26446090

  14. A novel monoclonal antibody-based immunoenzymatic assay for epidemiological surveillance of the vector snails of Fasciola hepatica (Trematoda: Digenea).

    PubMed

    Alba, Annia; Hernández, Hilda M; Marcet, Ricardo; Vázquez, Antonio A; Figueredo, Mabel; Sánchez, Jorge; Otero, Oscar; Sarracent, Jorge

    2015-02-01

    Fasciolosis is a globally distributed snail-borne disease which requires economic consideration due to its enormous impact on veterinary medicine. During recent decades, this parasitosis has also shown increasing prevalence in human populations worldwide. The dissemination and successful transmission of fasciolosis ultimately depends on the existence of susceptible snails that act as intermediate hosts. Therefore, to accomplish effective control of this disease, surveillance and detection of the infected intermediate host would be essential. The screening of trematodes within snails using classical parasitological examination of the larvae can be unreliable (sensitivity and specificity vary depending on the time of infection and the experience of the observer) and relatively costly when using molecular biological methods during large-scale monitoring. Here we propose a novel monoclonal antibody-based immunoenzymatic assay to detect ongoing Fasciola hepatica infection in lymnaeid snails. Anti-F. hepatica rediae mouse monoclonal antibodies were generated and used to develop a double monoclonal antibody-based ELISA for parasite detection. Fasciola hepatica-infected and uninfected laboratory-reared Galba cubensis and Pseudosuccinea columella were used for assessment of the developed ELISA. Experimentally infected snails were dissected and examined for parasite larvae as the "gold standard" method. Sensitivity results were 100% for both snail species, while specificity was 98% for G. cubensis and 100% for P. columella. No cross-reactivity was detected in lymnaeids infected with Trichobilharzia sp. or Cotylophoron sp. The ELISA enabled detection of the infection from day 8 p.i. in G. cubensis while in P. columella it was noted as early as day 4. To our knowledge no previous immunoassays have been reported to detect helminth-infected snails and the developed sandwich ELISA method is therefore suggested for infection status validation in natural populations of lymnaeid

  15. The Snail protein family regulates neuroblast expression of inscuteable and string, genes involved in asymmetry and cell division in Drosophila.

    PubMed

    Ashraf, S I; Ip, Y T

    2001-12-01

    Delaminated neuroblasts in Drosophila function as stem cells during embryonic central nervous system development. They go through repeated asymmetric divisions to generate multiple ganglion mother cells, which divide only once more to produce postmitotic neurons. Snail, a zinc-finger transcriptional repressor, is a pan-neural protein, based on its extensive expression in neuroblasts. Previous results have demonstrated that Snail and related proteins, Worniu and Escargot, have redundant and essential functions in the nervous system. We show that the Snail family of proteins control central nervous system development by regulating genes involved in asymmetry and cell division of neuroblasts. In mutant embryos that have the three genes deleted, the expression of inscuteable is significantly lowered, while the expression of other genes that participate in asymmetric division, including miranda, staufen and prospero, appears normal. The deletion mutants also have much reduced expression of string, suggesting that a key component that drives neuroblast cell division is abnormal. Consistent with the gene expression defects, the mutant embryos lose the asymmetric localization of prospero RNA in neuroblasts and lose the staining of Prospero protein that is normally present in ganglion mother cells. Simultaneous expression of inscuteable and string in the snail family deletion mutant efficiently restores Prospero expression in ganglion mother cells, demonstrating that the two genes are key targets of Snail in neuroblasts. Mutation of the dCtBP co-repressor interaction motifs in the Snail protein leads to reduction of the Snail function in central nervous system. These results suggest that the Snail family of proteins control both asymmetry and cell division of neuroblasts by activating, probably indirectly, the expression of inscuteable and string. PMID:11731456

  16. Evaluation of different methods for the experimental infection of the land snail Helix aspersa with Aelurostrongylus abstrusus lungworm.

    PubMed

    Napoli, Ettore; Falsone, Luigi; Gaglio, Gabriella; Colella, Vito; Otranto, Domenico; Giannetto, Salvatore; Brianti, Emanuele

    2016-07-30

    The laboratory maintenance of parasitic life cycles is crucial to support research in many fields of parasitology. The land snail Helix aspersa (syn. Cornu aspersum), an intermediate host of feline lungworms Aelurostrongylus abstrusus and Troglostrongylus brevior, is adopted to produce infective stages of those nematodes in laboratory condition. The aim of this study was to compare the most common methods of experimental infection of H. aspersa with first stage larvae (L1) of A. abstrusus (i.e., contact of the snail foot with the L1) with the injection of these larvae in the foot of the snail, instrumental to reduce the infection time and to maximize the output of third-stage larvae (L3). Three groups (i.e., A, B, C) of 15 H. aspersa snails were infected with L1 of A. abstrusus (n=250 for each snail), whereas a fourth group (group D) was not infected (control). Snails were individually placed for 48h on a microfilm containing L1 (group A), on a potato slice previously irrigated with a suspension of L1 (group B), or they were inoculated by injection of L1 in the posterior-ventral portion of the foot (group C). Eighteen days after the infection all snails were analyzed and tissues were digested to recover L3. No difference in mortality rate was recorded among snail groups and the mean number of retrieved L3 was significantly larger in group C (71.5±52.9) compared to group B (38.2±44.9; p=0.0161) and group A (19±23.3; p<0.0001). The injection of A. abstrusus L1 in the foot of H. aspersa proved to be a fast, easy to apply and effective method, resulting in the largest number of infective larvae retrieved. PMID:27369568

  17. Gut Bacterial Communities in the Giant Land Snail Achatina fulica and Their Modification by Sugarcane-Based Diet

    PubMed Central

    Cardoso, Alexander M.; Cavalcante, Janaína J. V.; Vieira, Ricardo P.; Lima, Joyce L.; Grieco, Maria Angela B.; Clementino, Maysa M.; Vasconcelos, Ana Tereza R.; Garcia, Eloi S.; de Souza, Wanderley; Albano, Rodolpho M.; Martins, Orlando B.

    2012-01-01

    The invasive land snail Achatina fulica is one of the most damaging agricultural pests worldwide representing a potentially serious threat to natural ecosystems and human health. This species is known to carry parasites and harbors a dense and metabolically active microbial community; however, little is known about its diversity and composition. Here, we assessed for the first time the complexity of bacterial communities occurring in the digestive tracts of field-collected snails (FC) by using culture-independent molecular analysis. Crop and intestinal bacteria in FC were then compared to those from groups of snails that were reared in the laboratory (RL) on a sugarcane-based diet. Most of the sequences recovered were novel and related to those reported for herbivorous gut. Changes in the relative abundance of Bacteroidetes and Firmicutes were observed when the snails were fed a high-sugar diet, suggesting that the snail gut microbiota can influence the energy balance equation. Furthermore, this study represents a first step in gaining a better understanding of land snail gut microbiota and shows that this is a complex holobiont system containing diverse, abundant and active microbial communities. PMID:22438932

  18. Mechanical signals regulate and activate SNAIL1 protein to control the fibrogenic response of cancer-associated fibroblasts.

    PubMed

    Zhang, Kun; Grither, Whitney R; Van Hove, Samantha; Biswas, Hirak; Ponik, Suzanne M; Eliceiri, Kevin W; Keely, Patricia J; Longmore, Gregory D

    2016-05-15

    Increased deposition of collagen in extracellular matrix (ECM) leads to increased tissue stiffness and occurs in breast tumors. When present, this increases tumor invasion and metastasis. Precisely how this deposition is regulated and maintained in tumors is unclear. Much has been learnt about mechanical signal transduction in cells, but transcriptional responses and the pathophysiological consequences are just becoming appreciated. Here, we show that the SNAIL1 (also known as SNAI1) protein level increases and accumulates in nuclei of breast tumor cells and cancer-associated fibroblasts (CAFs) following exposure to stiff ECM in culture and in vivo SNAIL1 is required for the fibrogenic response of CAFs when exposed to a stiff matrix. ECM stiffness induces ROCK activity, which stabilizes SNAIL1 protein indirectly by increasing intracellular tension, integrin clustering and integrin signaling to ERK2 (also known as MAPK1). Increased ERK2 activity leads to nuclear accumulation of SNAIL1, and, thus, avoidance of cytosolic proteasome degradation. SNAIL1 also influences the level and activity of YAP1 in CAFs exposed to a stiff matrix. This work describes a mechanism whereby increased tumor fibrosis can perpetuate activation of CAFs to sustain tumor fibrosis and promote tumor metastasis through regulation of SNAIL1 protein level and activity. PMID:27076520

  19. The Snail Transcription Factor Regulates the Numbers of Neural Precursor Cells and Newborn Neurons throughout Mammalian Life

    PubMed Central

    Zander, Mark A.; Cancino, Gonzalo I.; Gridley, Thomas; Kaplan, David R.; Miller, Freda D.

    2014-01-01

    The Snail transcription factor regulates diverse aspects of stem cell biology in organisms ranging from Drosophila to mammals. Here we have asked whether it regulates the biology of neural precursor cells (NPCs) in the forebrain of postnatal and adult mice, taking advantage of a mouse containing a floxed Snail allele (Snailfl/fl mice). We show that when Snail is inducibly ablated in the embryonic cortex, this has long-term consequences for cortical organization. In particular, when Snailfl/fl mice are crossed to Nestin-cre mice that express Cre recombinase in embryonic neural precursors, this causes inducible ablation of Snail expression throughout the postnatal cortex. This loss of Snail causes a decrease in proliferation of neonatal cortical neural precursors and mislocalization and misspecification of cortical neurons. Moreover, these precursor phenotypes persist into adulthood. Adult neural precursor cell proliferation is decreased in the forebrain subventricular zone and in the hippocampal dentate gyrus, and this is coincident with a decrease in the number of adult-born olfactory and hippocampal neurons. Thus, Snail is a key regulator of the numbers of neural precursors and newborn neurons throughout life. PMID:25136812

  20. Detection of Early and Single Infections of Schistosoma japonicum in the Intermediate Host Snail, Oncomelania hupensis, by PCR and Loop-Mediated Isothermal Amplification (LAMP) Assay

    PubMed Central

    Kumagai, Takashi; Furushima-Shimogawara, Rieko; Ohmae, Hiroshi; Wang, Tian-Ping; Lu, Shaohong; Chen, Rui; Wen, Liyong; Ohta, Nobuo

    2010-01-01

    Polymerase chain reaction (PCR) with the specific primer set amplifying 28S ribosomal DNA (rDNA) of Schistosoma japonicum was able to detect genomic DNA of S. japonicum, but not S. mansoni, at 100 fg. This procedure enabled us to detect the DNA from a single miracidium and a snail infected with one miracidium at just 1 day after infection. We compared these results with those from loop-mediated isothermal amplification (LAMP) targeting 28S rDNA and found similar results. The LAMP could amplify the specific DNA from a group of 100 normal snails mixed with one infected snail A PCR screening of infected snails from endemic regions in Anhui Province revealed schistosomal DNA even in snails found negative by microscopy. PCR and LAMP show promise for monitoring the early infection rate in snails, and they may be useful for predicting the risk of infection in the endemic places. PMID:20810818

  1. The ecology of vector snail habitats and mosquito breeding-places

    PubMed Central

    Muirhead-Thomson, R. C.

    1958-01-01

    The ecology of freshwater snails—in particular those which act as intermediate hosts of bilharziasis—is reviewed in the light of the much more extensive knowledge available on the breeding-places of anopheline mosquitos. Experimental ecological methods are recommended for the field and laboratory investigation of a number of common problems involved in the study of snail habitats and mosquito breeding-places. Among the environmental factors discussed are temperature, oxygen concentration, water movement, pollution and salinity. Sampling methods for estimating populations of both snails and mosquito larvae are also described. An attempt is made to show how malacologists and entomologists alike would benefit from improved facilities for keeping abreast of general developments in the wider field of freshwater ecology. PMID:13596888

  2. Postembryonic neurogenesis in the procerebrum of the terrestrial snail, Helix lucorum L

    NASA Technical Reports Server (NTRS)

    Zakharov, I. S.; Hayes, N. L.; Ierusalimsky, V. N.; Nowakowski, R. S.; Balaban, P. M.

    1998-01-01

    Neuronogenesis during posthatching development of the procerebrum of the terrestrial snail Helix lucorum was analyzed using bromodeoxyuridine immunohistochemistry to label proliferating cells. Comparison of the distribution of labeled cells in a series of animals which differed in age at the time of incubation with bromodeoxyuridine, in survival time after incubation, and in age at sacrifice reveals a clear pattern and developmental sequence in neuron origin. First, the proliferating cells are located only at the apical portion of the procerebrum. Second, cells which are produced at any particular age remain, for the most part, confined to a single layer in the procerebrum. Third, as development proceeds, each layer of previously produced neurons is displaced toward the basal part of the procerebrum by the production of additional neurons. Our results suggest that the vast majority of the neurons (probably about 70-80%) of the snail procerebrum are produced during the first 1-2 months of posthatching development.

  3. Biochemical and immunological evidence for a cardiodilatin-like substance in the snail neurocardiac axis.

    PubMed Central

    Nehls, M; Reinecke, M; Lang, R E; Forssmann, W G

    1985-01-01

    Cardiac hormones, which have been isolated recently from mammalian atria, are potent regulatory peptides of blood pressure and blood volume. By using biochemical and immunological methods to determine cardiac hormones of the cardiodilatin family, this type of peptide hormone was detected in a neurosecretory system projecting from the subesophageal ganglion to the heart of the snail. The cardiodilatin-like molecule was characterized by its biological effects on mammalian vascular smooth muscle, by radioimmunoassay combined with high-performance liquid chromatography, and by immunocytochemistry. In mammals cardiodilatin-like peptides appear to serve purely endocrine functions. In contrast, in the snail they are present in a neuroendocrine system, the function of which remains to be established. Images PMID:3865194

  4. Three-dimensional culture of leech and snail ganglia for studies of neural repair.

    PubMed

    Babington, E J; Vatanparast, J; Verrall, J; Blackshaw, S E

    2005-11-01

    Three-dimensional (3D) collagen gels provide a stable matrix in which isolated regenerating ganglia from leech and snail can be maintained for studies of the molecular and cellular mechanisms underlying the regenerative process. Segmental ganglia from leech, or supraoesophageal, suboesophageal or buccal ganglia from snail were maintained for up to 3 weeks in 3D matrices of mammalian Type I collagen. The collagen matrix supports the regenerative outgrowth of axon tracts as well as the migration of microglial cells, important elements in the repair process. Proteins or soluble factors or target tissue may be added to the basic collagen matrix to manipulate the environment of the regenerating tissue. We describe techniques for immunostaining of regenerating axons and microglial cells within the gel matrix in combination with staining of cell nuclei, and the use of intracellular labelling to distinguish axons of identified neurons within the regenerative outgrowth. PMID:16172883

  5. The molluscicidal activities of some Euphorbia milii hybrids against the snail Indoplanorbis exustus.

    PubMed

    Sermsart, Bunguorn; Sripochang, Somphong; Suvajeejarun, Thongdee; Kiatfuengfoo, Rachada

    2005-01-01

    The objective of this study was to observe the molluscicidal activities of Euphorbia milli, known as "poysean" in Thailand, against Indoplanorbis exustus. Latex from 12 different E. milii hybrids was screened for its molluscicidal activities. Indoplanorbis exustus were exposed for 24 and 48 hours to the latex at various concentrations ranging from 6 to 25 ppm and mortality rates were recorded. Eight hybrids of latex were effective. The six most effective hybrids were E. milii Dang-udom, E. milii Arunroong, E. milii Raweechotchuong, E. milii Srisompote, E. milii Sri-umporn and E. milii Tongnopakun, which killed all snails after 24 hours of exposure. Under the same conditions, latex of E. milii Dowpraket and E. milii Promsatid killed 50% of the snails. Such results indicate that these 6 hybrids seem promising as natural molluscicidal agents. PMID:16438208

  6. Controls of spatial variation in the prevalence of trematode parasites infecting a marine snail.

    PubMed

    Byers, James E; Blakeslee, April M H; Linder, Ernst; Cooper, Andrew B; Maguire, Timothy J

    2008-02-01

    Geographic variability in abundance can be driven by multiple physical and biological factors operating at multiple scales. To understand the determinants of larval trematode prevalence within populations of the marine snail host Littorina littorea, we quantified many physical and biological variables at 28 New England intertidal sites. A hierarchical, mixed-effects model identified the abundance of gulls (the final hosts and dispersive agents of infective trematode stages) and snail size (a proxy for time of exposure) as the primary factors associated with trematode prevalence. The predominant influence of these variables coupled with routinely low infection rates (21 of the 28 populations exhibited prevalence <12%) suggest broad-scale recruitment limitation of trematodes. Although infection rates were spatially variable, formal analyses detected no regional spatial gradients in either trematode prevalence or independent environmental variables. Trematode prevalence appears to be predominantly determined by local site characteristics favoring high gull abundance. PMID:18409433

  7. Complete mitochondrial genome of the giant ramshorn snail Marisa cornuarietis (Gastropoda: Ampullariidae).

    PubMed

    Wang, Mingling; Qiu, Jian-Wen

    2016-05-01

    We report the complete mitochondrial genome (mitogenome) of the giant ramshorn snail Marisa cornuarietis, a biocontrol agent of freshwater weeds and snail vectors of schistosomes. The mitogenome is 15,923 bp in length, encoding 13 protein-coding genes, 22 transfer RNAs and 2 ribosomal RNAs. The mitogenome is A+T biased (70.0%), with 28.9% A, 41.1% T, 16.7% G, and 13.3% C. A comparison with Pomacea canaliculata, the other member in the same family (Ampullariidae) with a sequenced mitogenome, shows that the two species have an identical gene order, but their intergenic regions vary substantially in sequence length. The mitogenome data can be used to understand the population genetics of M. cornuarietis, and resolve the phylogenetic relationship of various genera in Ampullariidae. PMID:25259454

  8. Consequences of physical disturbance by tadpoles and snails on chironomid larvae.

    PubMed

    Pal, Gargi; Aditya, Gautam; Hazra, Niladri

    2014-01-01

    Indirect interactions among community members impact on organisms. The effects of two snails, banded pond snail, Bellamya bengalensis (Lamarck), and Red-rimmed melania, Melanoides tuberculata (Müller), and tadpoles of Asian common toad, Duttaphrynus melanostictus (Schneider), on nonbiting midge larvae, Chironomus striatipennis Kieffer, were observed in experimental microcosm. Decrease in tube number and tube length of midge larvae was observed compared to control condition due to introduction of selected above mentioned organisms. The direct effects of non-predator organisms on the midge larvae are due to physical disturbance that destroys their tubes. This may result in vulnerability of midge larvae to predators in the wild. So the community structure may be altered by indirect effects, where one or more species, through their direct disturbance, indirectly change the abundance of other species. PMID:24672384

  9. Consequences of Physical Disturbance by Tadpoles and Snails on Chironomid Larvae

    PubMed Central

    Pal, Gargi; Aditya, Gautam; Hazra, Niladri

    2014-01-01

    Indirect interactions among community members impact on organisms. The effects of two snails, banded pond snail, Bellamya bengalensis (Lamarck), and Red-rimmed melania, Melanoides tuberculata (Müller), and tadpoles of Asian common toad, Duttaphrynus melanostictus (Schneider), on nonbiting midge larvae, Chironomus striatipennis Kieffer, were observed in experimental microcosm. Decrease in tube number and tube length of midge larvae was observed compared to control condition due to introduction of selected above mentioned organisms. The direct effects of non-predator organisms on the midge larvae are due to physical disturbance that destroys their tubes. This may result in vulnerability of midge larvae to predators in the wild. So the community structure may be altered by indirect effects, where one or more species, through their direct disturbance, indirectly change the abundance of other species. PMID:24672384

  10. Strategic ejaculation in simultaneously hermaphroditic land snails: more sperm into virgin mates

    PubMed Central

    2013-01-01

    Background It has been theorised that sperm competition promotes the strategic usage of costly sperm. Although sperm competition is thought to be an important driving force of reproductive traits in simultaneous hermaphrodites as well as in species with separate sexes, empirical studies on strategic ejaculation in simultaneous hermaphrodites are scarce. Results In the present study, we tested whether the simultaneously hermaphroditic land snail Euhadra quaesita adjusts the number of sperm donated according to the condition of the mate and whether the pattern of strategic ejaculation is in line with previously suggested theories. We found that individuals donated much more sperm when they copulated with a virgin mate than when they copulated with a non-virgin. Conclusion The virgin-biased pattern of ejaculation matches the theoretical prediction and suggests that sperm competition significantly influence the reproductive traits of simultaneously hermaphroditic land snails. PMID:24304518

  11. The complete mitochondrial genome of Chinese land snail Aegista aubryana (Gastropoda: Pulmonata: Bradybaenidae).

    PubMed

    Yang, Xue; Xie, Guang-Long; Wu, Xiao-Ping; Ouyang, Shan

    2016-09-01

    Aegista aubryana is an endemic land snail in China. The complete mitochondrial genome of A. aubryana was first determined using long PCR reactions and primer walking method (accession number KT192071). The genome has a length of 14 238 bp, containing 37 typical mitochondrial genes (13 protein-coding genes, 22 tRNA genes and 2 rRNA genes). The base composition of the whole heavy strand is A 31.32%, T 37.86%, C 14.46% and G 16.36%. The results of phylogenetic analyses showed that the A. aubryana is most closely related to Mastigeulota kiangsinensis. This new complete mitochondrial genome can be the basic data for further studies on mitogenome comparison, molecular taxonomy and phylogenetic analyses in bradybaenid snails and Molluscs at large. PMID:26260173

  12. Waste yield, proximate and mineral composition of three different types of land snails found in Nigeria.

    PubMed

    Adeyeye, E I

    1996-03-01

    Some aspects of the chemical and anatomical weight composition of land snails in Nigeria were analysed with a view to assessing the waste yield, carcass yield and their nutritional evaluation on wet weight basis. Proximate analysis of Archachatina, Archatina and Limicolaria species was carried out on the carcass. Moisture and protein contents were high in all samples, fat and ash contents were generally low while crude fibre was not detected. The concentrations of iron, copper, zinc, manganese, sodium, calcium, magnesium, potassium and cobalt were determined in the carcass. Values of iron, calcium, magnesium, sodium and potassium were consistently high while both chromium and cobalt were not detected. Anatomical fractionation showed the shell to vary between 17.12 - 31.99%, carcass varied between 36.97 - 45.14% and the intestine varied between 18.80 - 22.74%. Snails interact with man in a variety of ways, the beneficial interactions are enumerated. PMID:8833175

  13. Factors controlling carbon isotopic composition of land snail shells estimated from lab culturing experiment

    NASA Astrophysics Data System (ADS)

    Zhang, Naizhong; Yamada, Keita; Yoshida, Naohiro

    2014-05-01

    Carbon isotopic composition (δ13C) of land snail shell carbonate is widely applied in reconstructing the C3/C4 vegetation distribution of paleo-environment, which is considered to reflect variations of some environmental parameters [1][2][3]. Land snail shell carbon has three potential sources: diet, atmospheric CO2 and ingested carbonate (limestone) [4]. However, their relative contributions to shell carbonate have not been understood well yet [4][5][6][7][8]. More researches are necessary before we could apply this tool in paleo-environment reconstruction, especially inter-lab culturing experiment. A kind of land snail species, Acusta despecta sieboldiana, was collected at Yokohama, Japan and cultured under suitable environment to lay eggs. The second generations were growing up from eggs to adults around 6-12 months at the temperature of 20°, 25° and 30°, respectively. All of the snails at 25° and 30° and most of those at 20° were fed by cabbage (C3 plant) during their life span while others were fed by corn (C4 plant). To investigate the effect of ingested carbonate, some of them were fed by Ca3(PO4)2 powder while others were fed by CaCO3 powder. δ13C of shells were analyzed by an Isotope Ratio Mass Spectrometry (Thermo Finnigan MAT 253); δ13C of food and snail tissue were measured by a Cavity Ring-Down Spectroscopy (Picarro G1121-i). At the same time, δ13C of eggshell and new born snails were analyzed by a Continuous Flow Isotope Ratio Mass Spectrometry (GasBench II). We confirmed that diet, atmospheric CO2 and ingested limestone could be important sources controlling shell δ13C values. And the temperature could affect shell carbonate δ13C values, too. A simple but credible frame was raised to discuss the mechanism of how each possible source and environmental parameter could affect shell carbonate δ13C values based on previous works [4][6][8] and this study. According to this frame and some reasonable assumptions, we have estimated the

  14. Ocean acidification increases the vulnerability of native oysters to predation by invasive snails.

    PubMed

    Sanford, Eric; Gaylord, Brian; Hettinger, Annaliese; Lenz, Elizabeth A; Meyer, Kirstin; Hill, Tessa M

    2014-03-01

    There is growing concern that global environmental change might exacerbate the ecological impacts of invasive species by increasing their per capita effects on native species. However, the mechanisms underlying such shifts in interaction strength are poorly understood. Here, we test whether ocean acidification, driven by elevated seawater pCO₂, increases the susceptibility of native Olympia oysters to predation by invasive snails. Oysters raised under elevated pCO₂ experienced a 20% increase in drilling predation. When presented alongside control oysters in a choice experiment, 48% more high-CO₂ oysters were consumed. The invasive snails were tolerant of elevated CO₂ with no change in feeding behaviour. Oysters raised under acidified conditions did not have thinner shells, but were 29-40% smaller than control oysters, and these smaller individuals were consumed at disproportionately greater rates. Reduction in prey size is a common response to environmental stress that may drive increasing per capita effects of stress-tolerant invasive predators. PMID:24430847

  15. Molluscicidal effects of neem (Azadirachta indica) extracts on edible tropical land snails.

    PubMed

    Ebenso, Ime E

    2004-02-01

    The effects of 350, 500 and 700 mg kg(-1) of crude extracts of neem, Azadirachta indica A Juss, on edible tropical land snails Archachatina marginata and Limicolaria aurora (Jay) were determined and compared with control using pawpaw, Carica papaya L as bait. Responses were measured through normal feeding, cessation of food intake, cessation of crawling, mucus secretion, lack of response to mechanical stimuli (mortality) and decomposition. Results showed no effects on the controls or snails exposed to neem seed oil extract. Crude extracts of bark, root and leaf of neem at 500 and 700 mg kg(-1) produced mortality after exposure for 48 h for L aurora and 72 h for A marginata. PMID:14971686

  16. ALX1 promotes migration and invasion of lung cancer cells through increasing snail expression

    PubMed Central

    Yao, Wei; Liu, Yong; Zhang, Zhuo; Li, Guoquan; Xu, Xiaoying; Zou, Kun; Xu, Yinghui; Zou, Lijuan

    2015-01-01

    Lung cancer is one of the main causes in cancer-related death. Here we reported a novel functional role of Aristaless-like homeobox1 (ALX1) in lung carcinogenesis. Analysis of ALX1 in lung cancer specimens confirms upregulation of ALX1 in lung cancer, especially these with distant metastasis. Moreover, higher level of ALX1 expression is associated with poorer prognosis of lung cancer patients. Ectopic expression of ALX1 significantly promotes lung cancer cell proliferation, migration and invasion, while ALX1 silencing by siRNA significantly inhibits these abilities of lung cancer cells. The functional role of ALX1 is dependent on increasing Snail expression and knockdown of Snail could restrain the role of ALX1. Collectively, we identify critical roles of ALX1 in lung cancer development and progression. These findings may serve as a framework for future investigations designed to more comprehensive determination of ALX1 as a potential therapeutic target. PMID:26722397

  17. Expression of the prospective mesoderm genes twist, snail, and mef2 in penaeid shrimp.

    PubMed

    Wei, Jiankai; Glaves, Richard Samuel Elliot; Sellars, Melony J; Xiang, Jianhai; Hertzler, Philip L

    2016-07-01

    In penaeid shrimp, mesoderm forms from two sources: naupliar mesoderm founder cells, which invaginate during gastrulation, and posterior mesodermal stem cells called mesoteloblasts, which undergo characteristic teloblastic divisions. The primordial mesoteloblast descends from the ventral mesendoblast, which arrests in cell division at the 32-cell stage and ingresses with its sister dorsal mesendoblast prior to naupliar mesoderm invagination. The naupliar mesoderm forms the muscles of the naupliar appendages (first and second antennae and mandibles), while the mesoteloblasts form the mesoderm, including the muscles, of subsequently formed posterior segments. To better understand the mechanism of mesoderm and muscle formation in penaeid shrimp, twist, snail, and mef2 cDNAs were identified from transcriptomes of Penaeus vannamei, P. japonicus, P. chinensis, and P. monodon. A single Twist ortholog was found, with strong inferred amino acid conservation across all three species. Multiple Snail protein variants were detected, which clustered in a phylogenetic tree with other decapod crustacean Snail sequences. Two closely-related mef2 variants were found in P. vannamei. The developmental mRNA expression of these genes was studied by qPCR in P. vannamei embryos, larvae, and postlarvae. Expression of Pv-twist and Pv-snail began during the limb bud stage and continued through larval stages to the postlarva. Surprisingly, Pv-mef2 expression was found in all stages from the zygote to the postlarva, with the highest expression in the limb bud and protozoeal stages. The results add comparative data on the development of anterior and posterior mesoderm in malacostracan crustaceans, and should stimulate further studies on mesoderm and muscle development in penaeid shrimp. PMID:27129985

  18. Relationships between nutrient enrichment, pleurocerid snail density and trematode infection rate in streams

    USGS Publications Warehouse

    Ciparis, Serena; Iwanowicz, Deborah D.; Voshell, J. Reese, Jr.

    2013-01-01

    Summary 1. Nutrient enrichment is a widespread environmental problem in freshwater ecosystems. Eutrophic conditions caused by nutrient enrichment may result in a higher prevalence of infection by trematode parasites in host populations, due to greater resource availability for the molluscan first intermediate hosts. 2. This study examined relationships among land use, environmental variables indicating eutrophication, population density of the pleurocerid snail, Leptoxis carinata, and trematode infections. Fifteen study sites were located in streams within the Shenandoah River catchment (Virginia, U.S.A.), where widespread nutrient enrichment has occurred. 3. Snail population density had a weak positive relationship with stream water nutrient concentration. Snail population density also increased as human activities within stream catchments increased, but density did not continue to increase in catchments where anthropogenic disturbance was greatest. 4. Cercariae from five families of trematodes were identified in L. carinata, and infection rate was generally low (<10%). Neither total infection rate nor the infection rate of individual trematode types showed a positive relationship with snail population density, nutrients or land use. 5. There were statistically significant but weak relationships between the prevalence of infection by two trematode families and physical and biological variables. The prevalence of Notocotylidae was positively related to water depth, which may be related to habitat use by definitive hosts. Prevalence of Opecoelidae had a negative relationship with orthophosphate concentration and a polynomial relationship with chlorophyll a concentration. Transmission of Opecoelid trematodes between hosts may be inhibited by eutrophic conditions. 6. Leptoxis carinata appears to be a useful species for monitoring the biological effects of eutrophication and investigating trematode transmission dynamics in lotic systems.

  19. Global metabolite analysis of the land snail Theba pisana hemolymph during active and aestivated states.

    PubMed

    Bose, U; Centurion, E; Hodson, M P; Shaw, P N; Storey, K B; Cummins, S F

    2016-09-01

    The state of metabolic dormancy has fascinated people for hundreds of years, leading to research exploring the identity of natural molecular components that may induce and maintain this state. Many animals lower their metabolism in response to high temperatures and/or arid conditions, a phenomenon called aestivation. The biological significance for this is clear; by strongly suppressing metabolic rate to low levels, animals minimize their exposure to stressful conditions. Understanding blood or hemolymph metabolite changes that occur between active and aestivated animals can provide valuable insights relating to those molecular components that regulate hypometabolism in animals, and how they afford adaptation to their different environmental conditions. In this study, we have investigated the hemolymph metabolite composition from the land snail Theba pisana, a remarkably resilient mollusc that displays an annual aestivation period. Using LC-MS-based metabolomics analysis, we have identified those hemolymph metabolites that show significant changes in relative abundance between active and aestivated states. We show that certain metabolites, including some phospholipids [e.g. LysoPC(14:0)], and amino acids such as l-arginine and l-tyrosine, are present at high levels within aestivated snails. Further investigation of our T. pisana RNA-sequencing data elucidated the entire repertoire of phospholipid-synthesis genes in the snail digestive gland, as a precursor towards future comparative investigation between the genetic components of aestivating and non-aestivating species. In summary, we have identified a large number of metabolites that are elevated in the hemolymph of aestivating snails, supporting their role in protecting against heat or desiccation. PMID:27318654

  20. Land snails as a diet diversification proxy during the early upper palaeolithic in Europe.

    PubMed

    Fernández-López de Pablo, Javier; Badal, Ernestina; Ferrer García, Carlos; Martínez-Ortí, Alberto; Sanchis Serra, Alfred

    2014-01-01

    Despite the ubiquity of terrestrial gastropods in the Late Pleistocene and Holocene archaeological record, it is still unknown when and how this type of invertebrate resource was incorporated into human diets. In this paper, we report the oldest evidence of land snail exploitation as a food resource in Europe dated to 31.3-26.9 ka yr cal BP from the recently discovered site of Cova de la Barriada (eastern Iberian Peninsula). Mono-specific accumulations of large Iberus alonensis land snails (Ferussac 1821) were found in three different archaeological levels in association with combustion structures, along with lithic and faunal assemblages. Using a new analytical protocol based on taphonomic, microX-Ray Diffractometer (DXR) and biometric analyses, we investigated the patterns of selection, consumption and accumulation of land snails at the site. The results display a strong mono-specific gathering of adult individuals, most of them older than 55 weeks, which were roasted in ambers of pine and juniper under 375°C. This case study uncovers new patterns of invertebrate exploitation during the Gravettian in southwestern Europe without known precedents in the Middle Palaeolithic nor the Aurignacian. In the Mediterranean context, such an early occurrence contrasts with the neighbouring areas of Morocco, France, Italy and the Balkans, where the systematic nutritional use of land snails appears approximately 10,000 years later during the Iberomaurisian and the Late Epigravettian. The appearance of this new subsistence activity in the eastern and southern regions of Spain was coeval to other demographically driven transformations in the archaeological record, suggesting different chronological patterns of resource intensification and diet broadening along the Upper Palaeolithic in the Mediterranean basin. PMID:25141047

  1. Heat shock proteins and resistance to desiccation in congeneric land snails.

    PubMed

    Mizrahi, Tal; Heller, Joseph; Goldenberg, Shoshana; Arad, Zeev

    2010-07-01

    Land snails are subject to daily and seasonal variations in temperature and in water availability and depend on a range of behavioral and physiological adaptations for coping with problems of maintaining water, ionic, and thermal balance. Heat shock proteins (HSPs) are a multigene family of proteins whose expression is induced by a variety of stress agents. We used experimental desiccation to test whether adaptation to different habitats affects HSP expression in two closely related Sphincterochila snail species, a desiccation-resistant, desert species Sphincterochila zonata, and a Mediterranean-type, desiccation-sensitive species Sphincterochila cariosa. We examined the HSP response in the foot, hepatopancreas, and kidney tissues of snails exposed to normothermic desiccation. Our findings show variations in the HSP response in both timing and magnitude between the two species. The levels of endogenous Hsp72 in S. cariosa were higher in all the examined tissues, and the induction of Hsp72, Hsp74, and Hsp90 developed earlier than in S. zonata. In contrary, the induction of sHSPs (Hsp25 and Hsp30) was more pronounced in S. zonata compared to S. cariosa. Our results suggest that land snails use HSPs as part of their survival strategy during desiccation and as important components of the aestivation mechanism in the transition from activity to dormancy. Our study underscores the distinct strategy of HSP expression in response to desiccation, namely the delayed induction of Hsp70 and Hsp90 together with enhanced induction of sHSPs in the desert-dwelling species, and suggests that evolution in harsh environments will result in selection for reduced Hsp70 expression. PMID:19953352

  2. Unusual snail species involved in the transmission of Fasciola hepatica in watercress beds in central France.

    PubMed

    Dreyfuss, G; Vignoles, P; Abrous, M; Rondelaud, D

    2002-06-01

    Four freshwater pulmonate species (Lymnaea ovata, L. stagnalis, Physa acuta, Planorbis leucostoma) were living in several watercress beds known for their relationships with human cases of fasciolosis, whereas L. truncatula was never found. The aims of these studies were to determine the prevalence of natural infections with Fasciola hepatica in snails and to verify if these species might ensure the full larval development of this trematode (with cercarial shedding) when they were experimentally subjected to F. hepatica only, or to co-infections with an other trematode species. Investigations were so carried out in six snail populations living in watercress beds (including three for P. acuta) and in four others originating from three brooks or a pond (as controls). Snails naturally infected with F. hepatica were found in two watercress beds inhabited by L. ovata (prevalence of infection: 1.4%) and P. leucostoma (0.1%), respectively. The L. ovata from the watercress bed could be infected at a higher size than those from the control population and the prevalence of this infection was greater in the bed population. Similar findings were noted for L. stagnalis. Despite single or dual infections, the results obtained with the four populations of P. acuta were unsuccessful. In contrast, the co-infections of young P. leucostoma with Paramphistomum daubneyi and F. hepatica resulted in the shedding of some F. hepatica cercariae. According to the authors, the occurrence of fasciolosis in these watercress beds would be the consequence of frequent natural encounters between parasite and snails (L. ovata, L. stagnalis), or of co-infections with P. daubneyi and F. hepatica (P. leucostoma). In watercress beds only colonized by P. acuta, a lymnaeid species would have ensured the larval development of F. hepatica but it would have been eliminated by P. acuta, as this last species was known to be invasive and could colonize open drainage ditches on siliceous soil. PMID:12116856

  3. Characterization of the venom of the vermivorous cone snail Conus fulgetrum.

    PubMed

    Abdel-Wahab, Mohammed; Miyashita, Masahiro; Kitanaka, Atsushi; Juichi, Hironori; Sarhan, Moustafa; Fouda, Maged; Abdel-Rahman, Mohamed; Saber, Samy; Nakagawa, Yoshiaki

    2016-10-01

    Over 200 components with molecular mass ranging mainly from 400 to 4000 Da were characterized from the venom of the vermivorous cone snail Conus fulgetrum that inhabit Egyptian Red Sea. One major component having a molecular mass of 2946 Da was purified by HPLC, and its primary structure was determined by a combination of Edman degradation and MS/MS analysis. PMID:27095279

  4. Notch1-Snail1-E-cadherin pathway in metastatic hepatocellular carcinoma.

    PubMed

    Wang, Xiao Qi; Zhang, Wu; Lui, Eric L H; Zhu, Yongqiang; Lu, Ping; Yu, Xiaoming; Sun, Jisan; Yang, Sitian; Poon, Ronnie T P; Fan, Sheung Tat

    2012-08-01

    Notch signaling, a critical pathway for tissue development, also contributes to tumorigenesis in many cancers, but its pathological function in liver cancer is not well defined. In our study, Notch1 expression and its clinicopathological parameters were evaluated in 82 human hepatocellular carcinoma (HCC) patients. Plasmid-based siNotch1 shRNA was transiently or stably transfected into metastatic HCC cells and subsequently evaluated for the effects on orthotopic liver tumor metastasis in a mouse model as well as the effects on downstream pathways. Aberrant high expression of Notch1 was significantly associated with metastatic disease parameters in HCC patients, such as tumor-node-metastasis Stages III-IV and tumor venous invasion. Knocking-down Notch1 reduced cell motility in vitro and orthotopic tumor metastasis from the liver to the lung in vivo in a mouse model. In metastatic HCC cells, abnormal expression of Notch1 was associated with increased expression of Snail1 and repressed expression of E-cadherin; the Notch1-Snail1-E-cadherin association can also be found in HCC patient tumors. Inhibition of Notch1 by shRNA abolished Snail1 expression, which further resulted in the re-establishment of repressed E-cadherin in metastatic HCC cells. Thus, abnormal Notch1 expression was strongly associated with HCC metastatic disease, which might be mediated through the Notch1-Snail1-E-cadherin pathway. Knock-down of Notch1 reversed HCC tumor metastasis in a mouse model. Therefore, these data suggest that effective targeting of Notch signaling might also inhibit tumor metastasis. PMID:22052196

  5. Development of Helisoma trivolvis pond snails as biological samplers for biomonitoring of current-use pesticides.

    PubMed

    Morrison, Shane A; Belden, Jason B

    2016-09-01

    Nontarget aquatic organisms residing in wetlands are commonly exposed to current-use pesticides through spray drift and runoff. However, it is frequently challenging to measure exposure because of rapid dissipation of pesticides from water and reduced bioavailability. The authors' hypothesis is that freshwater snails can serve as bioindicators of pesticide exposure based on their capacity to passively accumulate tissue residues. Helisoma trivolvis snails were evaluated as biomonitors of pesticide exposure using a fungicide formulation that contains pyraclostrobin and metconazole and is frequently applied to crops surrounding depressional wetlands. Exposure-response studies indicate that H. trivolvis are tolerant of pyraclostrobin and metconazole at concentrations >10 times those lethal to many aquatic species, with a median lethal concentration based on pyraclostrobin of 441 μg/L (95% confidence interval of 359-555 μg/L). Bioconcentration factors ranged from 137 mL/g to 211 mL/g and from 39 mL/g to 59 mL/g for pyraclostrobin and metconazole, respectively. Elimination studies suggested one-compartmental elimination and snail tissue half-lives (t50 ) of approximately 15 h and 5 h for pyraclostrobin and metconazole, respectively. Modeling derived toxicokinetic parameters in the context of an environmentally relevant pulsed exposure suggests that residues can be measured in snails long after water concentrations fall below detection limits. With high fungicide tolerance, rapid accumulation, and slow elimination, H. trivolvis may be viable for biomonitoring of pyraclostrobin and should be investigated for other pesticides. Environ Toxicol Chem 2016;35:2320-2329. © 2016 SETAC. PMID:26876158

  6. Insights into the origins of fish hunting in venomous cone snails from studies of Conus tessulatus.

    PubMed

    Aman, Joseph W; Imperial, Julita S; Ueberheide, Beatrix; Zhang, Min-Min; Aguilar, Manuel; Taylor, Dylan; Watkins, Maren; Yoshikami, Doju; Showers-Corneli, Patrice; Safavi-Hemami, Helena; Biggs, Jason; Teichert, Russell W; Olivera, Baldomero M

    2015-04-21

    Prey shifts in carnivorous predators are events that can initiate the accelerated generation of new biodiversity. However, it is seldom possible to reconstruct how the change in prey preference occurred. Here we describe an evolutionary "smoking gun" that illuminates the transition from worm hunting to fish hunting among marine cone snails, resulting in the adaptive radiation of fish-hunting lineages comprising ∼100 piscivorous Conus species. This smoking gun is δ-conotoxin TsVIA, a peptide from the venom of Conus tessulatus that delays inactivation of vertebrate voltage-gated sodium channels. C. tessulatus is a species in a worm-hunting clade, which is phylogenetically closely related to the fish-hunting cone snail specialists. The discovery of a δ-conotoxin that potently acts on vertebrate sodium channels in the venom of a worm-hunting cone snail suggests that a closely related ancestral toxin enabled the transition from worm hunting to fish hunting, as δ-conotoxins are highly conserved among fish hunters and critical to their mechanism of prey capture; this peptide, δ-conotoxin TsVIA, has striking sequence similarity to these δ-conotoxins from piscivorous cone snail venoms. Calcium-imaging studies on dissociated dorsal root ganglion (DRG) neurons revealed the peptide's putative molecular target (voltage-gated sodium channels) and mechanism of action (inhibition of channel inactivation). The results were confirmed by electrophysiology. This work demonstrates how elucidating the specific interactions between toxins and receptors from phylogenetically well-defined lineages can uncover molecular mechanisms that underlie significant evolutionary transitions. PMID:25848010

  7. Insights into the origins of fish hunting in venomous cone snails from studies of Conus tessulatus

    PubMed Central

    Aman, Joseph W.; Imperial, Julita S.; Ueberheide, Beatrix; Zhang, Min-Min; Aguilar, Manuel; Taylor, Dylan; Watkins, Maren; Yoshikami, Doju; Showers-Corneli, Patrice; Safavi-Hemami, Helena; Biggs, Jason; Teichert, Russell W.; Olivera, Baldomero M.

    2015-01-01

    Prey shifts in carnivorous predators are events that can initiate the accelerated generation of new biodiversity. However, it is seldom possible to reconstruct how the change in prey preference occurred. Here we describe an evolutionary “smoking gun” that illuminates the transition from worm hunting to fish hunting among marine cone snails, resulting in the adaptive radiation of fish-hunting lineages comprising ∼100 piscivorous Conus species. This smoking gun is δ-conotoxin TsVIA, a peptide from the venom of Conus tessulatus that delays inactivation of vertebrate voltage-gated sodium channels. C. tessulatus is a species in a worm-hunting clade, which is phylogenetically closely related to the fish-hunting cone snail specialists. The discovery of a δ-conotoxin that potently acts on vertebrate sodium channels in the venom of a worm-hunting cone snail suggests that a closely related ancestral toxin enabled the transition from worm hunting to fish hunting, as δ-conotoxins are highly conserved among fish hunters and critical to their mechanism of prey capture; this peptide, δ-conotoxin TsVIA, has striking sequence similarity to these δ-conotoxins from piscivorous cone snail venoms. Calcium-imaging studies on dissociated dorsal root ganglion (DRG) neurons revealed the peptide’s putative molecular target (voltage-gated sodium channels) and mechanism of action (inhibition of channel inactivation). The results were confirmed by electrophysiology. This work demonstrates how elucidating the specific interactions between toxins and receptors from phylogenetically well-defined lineages can uncover molecular mechanisms that underlie significant evolutionary transitions. PMID:25848010

  8. Gigagauss-scale quasistatic magnetic field generation in a snail-shaped target

    NASA Astrophysics Data System (ADS)

    Korneev, Ph.; d'Humières, E.; Tikhonchuk, V.

    2015-04-01

    A simple setup for the generation of ultra-intense quasistatic magnetic fields, based on the generation of electron currents with a predefined geometry in a curved snail (or `escargot') target, is proposed and analyzed. Particle-in-cell simulations and qualitative estimates show that gigagauss scale magnetic fields may be obtained with existent laser facilities. The described mechanism of the strong magnetic field generation may be useful in a wide range of applications, from laboratory astrophysics to magnetized inertial confinement fusion schemes.

  9. Land Snails as a Diet Diversification Proxy during the Early Upper Palaeolithic in Europe

    PubMed Central

    Fernández-López de Pablo, Javier; Badal, Ernestina; Ferrer García, Carlos; Martínez-Ortí, Alberto; Sanchis Serra, Alfred

    2014-01-01

    Despite the ubiquity of terrestrial gastropods in the Late Pleistocene and Holocene archaeological record, it is still unknown when and how this type of invertebrate resource was incorporated into human diets. In this paper, we report the oldest evidence of land snail exploitation as a food resource in Europe dated to 31.3-26.9 ka yr cal BP from the recently discovered site of Cova de la Barriada (eastern Iberian Peninsula). Mono-specific accumulations of large Iberus alonensis land snails (Ferussac 1821) were found in three different archaeological levels in association with combustion structures, along with lithic and faunal assemblages. Using a new analytical protocol based on taphonomic, microX-Ray Diffractometer (DXR) and biometric analyses, we investigated the patterns of selection, consumption and accumulation of land snails at the site. The results display a strong mono-specific gathering of adult individuals, most of them older than 55 weeks, which were roasted in ambers of pine and juniper under 375°C. This case study uncovers new patterns of invertebrate exploitation during the Gravettian in southwestern Europe without known precedents in the Middle Palaeolithic nor the Aurignacian. In the Mediterranean context, such an early occurrence contrasts with the neighbouring areas of Morocco, France, Italy and the Balkans, where the systematic nutritional use of land snails appears approximately 10,000 years later during the Iberomaurisian and the Late Epigravettian. The appearance of this new subsistence activity in the eastern and southern regions of Spain was coeval to other demographically driven transformations in the archaeological record, suggesting different chronological patterns of resource intensification and diet broadening along the Upper Palaeolithic in the Mediterranean basin. PMID:25141047

  10. Prednisolone impairs embryonic and posthatching development and shell formation of the freshwater snail, Physa acuta.

    PubMed

    Bal, Navdeep; Kumar, Anu; Du, Jun; Nugegoda, Dayanthi

    2016-09-01

    The aim of the present study was to investigate the lethal and sublethal effects of prednisolone exposure on the embryonic and posthatching stage of the freshwater snail, Physa acuta. The egg masses were exposed for 14 d to prednisolone concentrations ranging from 15.6 μg/L to 1000 μg/L. Treatment with prednisolone at 125 μg/L to 1000 μg/L resulted in significant decline in growth, survival, and heart rate, as well as notable abnormalities in embryonic development. Premature embryonic hatching was observed at lower concentrations of 31.25 μg/L and 62.5 μg/L, whereas delayed hatching was seen at concentrations from 125 μg/L to 1000 μg/L. To assess impacts of prednisolone exposure on the hatched juveniles, the drug exposure was extended for another 28 d. Impairment of shell development was noted in juveniles exposed to concentrations from 62.5 μg/L to 1000 μg/L at the end of 42 d, which resulted in thin and fragile shells. The thickness of shells in snails exposed to 1000 μg/L was significantly lower in comparison to those in the 15.6-μg/L and control treatments. In addition, lower calcium concentration in shells of the exposed juvenile snails at treatments of 62.5 μg/L to 1000 μg/L consequently reduced their growth. The present study confirms that continuous exposure to prednisolone can result in deleterious effects on calcium deposition, resulting in shell thinning in the freshwater snail P. acuta. Environ Toxicol Chem 2016;35:2339-2348. © 2016 SETAC. PMID:26887568

  11. Major carbon-14 deficiency in modern snail shells from southern Nevada springs

    USGS Publications Warehouse

    Riggs, A.C.

    1984-01-01

    Carbon-14 contents as low as 3.3 ?? 0.2 percent modern (apparent age, 27,000 years) measured from the shells of snails Melanoides tuberculatus living in artesian springs in southern Nevada are attributed to fixation of dissolved HCO3- with which the shells are in carbon isotope equilibrium. Recognition of the existence of such extreme deficiencies is necessary so that erroneous ages are not attributed to freshwater biogenic carbonates.

  12. Adaptation of Lymnaea fuscus and Radix balthica to Fasciola hepatica through the experimental infection of several successive snail generations

    PubMed Central

    2014-01-01

    Background High prevalence of Fasciola hepatica infection (>70%) was noted during several outbreaks before the 2000s in several French farms where Galba truncatula is lacking. Other lymnaeids such as Lymnaea fuscus, L. glabra and/or Radix balthica are living in meadows around these farms but only juvenile snails can sustain complete larval development of F. hepatica while older snails were resistant. The low prevalence of infection (<20%) and limited cercarial production (<50 cercariae per infected snail) noted with these juveniles could not explain the high values noted in these cattle herds. As paramphistomosis due to Calicophoron daubneyi was not still noted in these farms, the existence of another mode of infection was hypothesized. Experimental infection of several successive generations of L. glabra, originating from eggs laid by their parents already infected with this parasite resulted in a progressive increase in prevalence of snail infection and the number of shed cercariae. The aim of this paper was to determine if this mode of snail infection was specific to L. glabra, or it might occur in other lymnaeid species such as L. fuscus and R. balthica. Methods Five successive generations of L. fuscus and R. balthica were subjected to individual bimiracidial infections in the laboratory. Resulting rediae and cercariae in the first four generations were counted after snail dissection at day 50 p.e. (20°C), while the dynamics of cercarial shedding was followed in the F5 generation. Results In the first experiment, prevalence and intensity of F. hepatica infection in snails progressively increased from the F1 (R. balthica) or F2 (L. fuscus) generation. In the second experiment, the prevalence of F. hepatica infection and the number of shed cercariae were significantly lower in L. fuscus and R. balthica (without significant differences between both lymnaeids) than in G. truncatula. Conclusion The F. hepatica infection of several successive snail generations

  13. Downregulation of SNAIL sensitizes hepatocellular carcinoma cells to TRAIL-induced apoptosis by regulating the NF-κB pathway.

    PubMed

    Wan, Zhaojun; Pan, Huazheng; Liu, Shihai; Zhu, Jingjuan; Qi, Weiwei; Fu, Kai; Zhao, Teng; Liang, Jun

    2015-03-01

    Hepatocellular carcinoma (HCC) is the sixth most common cancer and the second most lethal cancer worldwide. Evidence has shown HCC cell resistance to TRAIL‑mediated apoptosis. In a previous study, we verified that silencing SNAIL downregulated the growth of HCC cells. In addition, the mechanism of resistance to TRAIL in HCC cells was connected with the activation of nuclear factor-κB (NF-κB). Thus, it was hypothesized that the downregultaion of SNAIL sensitizes HCC cells to TRAIL-induced apoptosis by regulating the NF-κB pathway. In the present study, the most effective lentiviral vectors carrying shRNA against SNAIL were selected and adenoviral vectors harboring TRAIL were constructed. The expression of SNAIL and TRAIL was detected by quantitative PCR and western blotting. HCC cell viability and apoptosis were assessed using an MTT assay and the Hoechst test. To determine how to sensitize HCC cells to TRAIL-induced apoptosis after silencing SNAIL, p53 was assessed by western blot analysis. We also investigated the expression of Bcl-xL, cIAP2, survivin and Raf-1 protein using western blot analysis and the apoptotic degree of HuH-7 cells was detected using the Hoechst test following the suppression of each gene, which was a possible molecular mechanism to sensitive TRAIL-induced apoptosis through the downregulation of SNAIL in HCC cells. Silencing SNAIL resulted in increased apoptosis by enhancing sensitization to TRAIL in all the HCC cells. Additionally, p53 protein was upregulated in HuH-7 cells. Expression of Bcl-xL, cIAP2, survivin and Raf-1 was downregulated following silencing of SNAIL, while down-regulation of any of the proteins contributed to SNAIL suppression enhancing HCC cell sensitivity to TRAIL‑induced apoptosis, with the exception of cIAP2. The results demonstrated that silencing SNAIL can sensitize TRAIL-induced apoptosis in HCC cells by upregulating p53 protein and by regulating related genes of the NF-κB pathway such as Bcl-xL, survivin and

  14. Concentration and retention of Toxoplasma gondii oocysts by marine snails demonstrate a novel mechanism for transmission of terrestrial zoonotic pathogens in coastal ecosystems

    USGS Publications Warehouse

    Krusor, Colin; Smith, Woutrina A.; Tinker, M. Tim; Silver, Mary; Conrad, Patricia A.; Shapiro, Karen

    2015-01-01

    The parasite Toxoplasma gondii is an environmentally persistent pathogen that can cause fatal disease in humans, terrestrial warm-blooded animals and aquatic mammals. Although an association between T. gondii exposure and prey specialization on marine snails was identified in threatened California sea otters, the ability of kelp-dwelling snails to transmit terrestrially derived pathogens has not been previously investigated. The objective of this study was to measure concentration and retention of T. gondii by marine snails in laboratory aquaria, and to test for natural T. gondii contamination in field-collected snails. Following exposure to T. gondii-containing seawater, oocysts were detected by microscopy in snail faeces and tissues for 10 and 3 days respectively. Nested polymerase chain reaction was also applied as a method for confirming putative T. gondii oocysts detected in snail faeces and tissues by microscopy. Toxoplasma gondiiwas not detected in field-collected snails. Results suggest that turban snails are competent transport hosts for T. gondii. By concentrating oocysts in faecal pellets, snails may facilitate entry of T. gondii into the nearshore marine food web. This novel mechanism also represents a general pathway by which marine transmission of terrestrially derived microorganisms can be mediated via pathogen concentration and retention by benthic invertebrates.

  15. Concentration and retention of Toxoplasma gondii oocysts by marine snails demonstrate a novel mechanism for transmission of terrestrial zoonotic pathogens in coastal ecosystems.

    PubMed

    Krusor, Colin; Smith, Woutrina A; Tinker, M Tim; Silver, Mary; Conrad, Patricia A; Shapiro, Karen

    2015-11-01

    The parasite Toxoplasma gondii is an environmentally persistent pathogen that can cause fatal disease in humans, terrestrial warm-blooded animals and aquatic mammals. Although an association between T. gondii exposure and prey specialization on marine snails was identified in threatened California sea otters, the ability of kelp-dwelling snails to transmit terrestrially derived pathogens has not been previously investigated. The objective of this study was to measure concentration and retention of T. gondii by marine snails in laboratory aquaria, and to test for natural T. gondii contamination in field-collected snails. Following exposure to T. gondii-containing seawater, oocysts were detected by microscopy in snail faeces and tissues for 10 and 3 days respectively. Nested polymerase chain reaction was also applied as a method for confirming putative T. gondii oocysts detected in snail faeces and tissues by microscopy. Toxoplasma gondii was not detected in field-collected snails. Results suggest that turban snails are competent transport hosts for T. gondii. By concentrating oocysts in faecal pellets, snails may facilitate entry of T. gondii into the nearshore marine food web. This novel mechanism also represents a general pathway by which marine transmission of terrestrially derived microorganisms can be mediated via pathogen concentration and retention by benthic invertebrates. PMID:26033089

  16. Impacts of an Invasive Snail (Tarebia granifera) on Nutrient Cycling in Tropical Streams: The Role of Riparian Deforestation in Trinidad, West Indies

    PubMed Central

    Moslemi, Jennifer M.; Snider, Sunny B.; MacNeill, Keeley; Gilliam, James F.; Flecker, Alexander S.

    2012-01-01

    Non-native species and habitat degradation are two major catalysts of environmental change and often occur simultaneously. In freshwater systems, degradation of adjacent terrestrial vegetation may facilitate introduced species by altering resource availability. Here we examine how the presence of intact riparian cover influences the impact of an invasive herbivorous snail, Tarebia granifera, on nitrogen (N) cycling in aquatic systems on the island of Trinidad. We quantified snail biomass, growth, and N excretion in locations where riparian vegetation was present or removed to determine how snail demographics and excretion were related to the condition of the riparian zone. In three Neotropical streams, we measured snail biomass and N excretion in open and closed canopy habitats to generate estimates of mass- and area-specific N excretion rates. Snail biomass was 2 to 8 times greater and areal N excretion rates ranged from 3 to 9 times greater in open canopy habitats. Snails foraging in open canopy habitat also had access to more abundant food resources and exhibited greater growth and mass-specific N excretion rates. Estimates of ecosystem N demand indicated that snail N excretion in fully closed, partially closed, and open canopy habitats supplied 2%, 11%, and 16% of integrated ecosystem N demand, respectively. We conclude that human-mediated riparian canopy loss can generate hotspots of snail biomass, growth, and N excretion along tropical stream networks, altering the impacts of an invasive snail on the biogeochemical cycling of N. PMID:22761706

  17. Ocean acidification alters the response of intertidal snails to a key sea star predator.

    PubMed

    Jellison, Brittany M; Ninokawa, Aaron T; Hill, Tessa M; Sanford, Eric; Gaylord, Brian

    2016-06-29

    Organism-level effects of ocean acidification (OA) are well recognized. Less understood are OA's consequences for ecological species interactions. Here, we examine a behaviourally mediated predator-prey interaction within the rocky intertidal zone of the temperate eastern Pacific Ocean, using it as a model system to explore OA's capacity to impair invertebrate anti-predator behaviours more broadly. Our system involves the iconic sea star predator, Pisaster ochraceus, that elicits flee responses in numerous gastropod prey. We examine, in particular, the capacity for OA-associated reductions in pH to alter flight behaviours of the black turban snail, Tegula funebralis, an often-abundant and well-studied grazer in the system. We assess interactions between these species at 16 discrete levels of pH, quantifying the full functional response of Tegula under present and near-future OA conditions. Results demonstrate the disruption of snail anti-predator behaviours at low pH, with decreases in the time individuals spend in refuge locations. We also show that fluctuations in pH, including those typical of rock pools inhabited by snails, do not materially change outcomes, implying little capacity for episodically benign pH conditions to aid behavioural recovery. Together, these findings suggest a strong potential for OA to induce cascading community-level shifts within this long-studied ecosystem. PMID:27358371

  18. Complex interactions between cis-regulatory modules in native conformation are critical for Drosophila snail expression.

    PubMed

    Dunipace, Leslie; Ozdemir, Anil; Stathopoulos, Angelike

    2011-09-01

    It has been shown in several organisms that multiple cis-regulatory modules (CRMs) of a gene locus can be active concurrently to support similar spatiotemporal expression. To understand the functional importance of such seemingly redundant CRMs, we examined two CRMs from the Drosophila snail gene locus, which are both active in the ventral region of pre-gastrulation embryos. By performing a deletion series in a ∼25 kb DNA rescue construct using BAC recombineering and site-directed transgenesis, we demonstrate that the two CRMs are not redundant. The distal CRM is absolutely required for viability, whereas the proximal CRM is required only under extreme conditions such as high temperature. Consistent with their distinct requirements, the CRMs support distinct expression patterns: the proximal CRM exhibits an expanded expression domain relative to endogenous snail, whereas the distal CRM exhibits almost complete overlap with snail except at the anterior-most pole. We further show that the distal CRM normally limits the increased expression domain of the proximal CRM and that the proximal CRM serves as a `damper' for the expression levels driven by the distal CRM. Thus, the two CRMs interact in cis in a non-additive fashion and these interactions may be important for fine-tuning the domains and levels of gene expression. PMID:21813571

  19. Chemoreception of hunger levels alters the following behaviour of a freshwater snail.

    PubMed

    Larcher, Marie; Crane, Adam L

    2015-12-01

    Chemically-mediated orientation is essential for many animals that must locate sites containing resources such as mates or food. One way to find these areas is by using publically-available information from other individuals. We tested a freshwater snail, Physa gyrina, for chemoreception of conspecific cues and predicted they could discriminate between cues based on information regarding hunger levels. We placed 'tracker' snails into a 2-arm arena where they could either follow or avoid an area previously used by a 'marker' snail. The hunger levels of both trackers and markers was manipulated, being either starved or fed. Starved and fed trackers did not differ in their following response when markers were hungry, but starved trackers were significantly more likely to follow fed markers, compared to fed trackers that tended to avoid areas used by fed markers. This outcome suggests that P. gyrina uses conspecific chemical cues to find food and potentially in some situations to avoid intra-specific food competition. PMID:26478254

  20. FOXM1 Promotes Lung Adenocarcinoma Invasion and Metastasis by Upregulating SNAIL

    PubMed Central

    Wei, Ping; Zhang, Nu; Wang, Yiqin; Li, Dawei; Wang, Lisha; Sun, Xiangjie; Shen, Chen; Yang, Yusi; Zhou, Xiaoyan; Du, Xiang

    2015-01-01

    The forkhead box M1 (FOXM1) transcription factor is one of the key genes inducing tumor invasion and metastasis by an unknown mechanism. In this study, we set out to investigate the effects of FOXM1 overexpression on metastatic human lung adenocarcinoma and the underlying mechanism. FOXM1 expression was analyzed in 78 frozen lung adenocarcinoma tissue samples using an Affymetrix microarray and a 155-paraffin-embedded lung adenocarcinoma tissue microarray with immunohistochemical detection. FOXM1 was found to be overexpressed in lung adenocarcinoma, particularly in metastatic patients, compared to non-metastatic patients. Knockdown of FOXM1 by a specific siRNA significantly suppressed EMT progression, migration and invasion of lung adenocarcinoma cells in vitro, and tumor growth and metastasis in vivo, whereas restored expression of FOXM1 had the opposite effect. FOXM1 binds directly to the SNAIL promoter through two specific binding sites and constitutively transactivates it. Collectively, our findings indicate that FOXM1 may play an important role in advancing lung adenocarcinoma progression. Aberrant FOXM1 expression directly and constitutively activates SNAIL, thereby promoting lung adenocarcinoma metastasis. Inhibition of FOXM1-SNAIL signaling may present an ideal target for future treatment. PMID:25561901

  1. Gender-based differences in Florida apple snail (Pomacea paludosa) movements

    USGS Publications Warehouse

    Valentine-Darby, P. L.; Darby, P.C.; Percival, H.F.

    2011-01-01

    Gastropod movements have been studied in the context of habitat selection, finding food and mates, and avoiding predation. Many of these studies were conducted in the laboratory, where constraints on spatial scale influence behavior. We conducted a field study of Florida apple snail (Pomacea paludosa) movements using telemetry. We hypothesized that Florida apple snail movements were driven by reproductive activity, and that gender differences would be evident. We documented male and female directions and distances traveled. We also conducted a trapping study that included conspecific bait to test if the presence of females attracted more males as measured by M:F ratios in traps. The greatest distances traveled were by males, and males were more likely to maintain a consistent bearing compared to females. Male distances peaked in what typically corresponds to peak breeding season. M:F ratios in traps were positively associated with reproductive activity in the study population as measured by egg cluster counts. Conspecific bait had no effect on the number of males or females captured. However, if a female crawled into the trap, we observed greater numbers of males compared to those with no trapped females. Males may have tracked females to increase mating encounters, following slime trails, as seen in other aquatic (including other Pomacea) snails. The capacity for mate finding has implications for reproductive success in the relatively low density populations often seen for Pomacea paludosa.

  2. Distribution and abundance of the Japanese snail, Viviparus japonicus, and associated macrobenthos in Sandusky Bay, Ohio

    USGS Publications Warehouse

    Wolfert, David R.; Hiltunen, Jarl K.

    1968-01-01

    A survey of the macrobenthos of Sandusky Bay, Lake Erie, in June, 1963, provided information on the abundance and distribution of the introduced Japanese snail, Viviparus japonicus, which has become a nuisance to commercial seine fishermen. The abundance and distribution varied considerably within the bay; at the time of the survey, most snails were found near the north-central shore. Environmental characteristics were nearly uniform and had no apparent effect on the distribution; concentrations in different areas at different times appeared to result from water movements induced by winds. The time of the study coincided with a period of reproduction; young-of-the-year snails were most abundant in areas where adults were most common. The frequency distributions of shell height and diameter suggested the presence of two age groups of adults in the population. Considerable natural mortality was seen, both at the time of the study and in other seasons. Only three other gastropods were observed in the bay; the most abundant was another viviparid, Campeloma decisum. Other mollusks present were four species of Sphaeriidae and 18 species of Unionidae. A summary of invertebrates found, other than the mollusks, is also presented.

  3. Mercury toxicity to terrestrial snails in a partial life cycle experiment.

    PubMed

    Gimbert, Frédéric; Perrier, Fanny; Caire, Ange-Lyne; de Vaufleury, Annette

    2016-02-01

    Despite growing concerns about the potential adverse effects of elevated mercury (Hg) concentrations in the terrestrial environment, only a few toxicity data are available for soil invertebrates. The chronic toxicity of inorganic Hg-Hg(II)--through food or soil contaminations was therefore assessed for the snail Cantareus aspersus, a well-recognized soil quality bioindicator. The 28-day EC50s (the concentrations causing 50% effect) for the snail growth were 600 and 5048 mg Hg kg(-1) for food and soil, respectively. A survey of growth over its entire duration (91 days) allowed to show that the effects took place rapidly after the beginning of exposure and persisted in the long term. Reproduction was also impaired, and we established 28-day EC50s for sexual maturation and fecundity of 831 and 339 mg Hg kg(-1), respectively, for food and 1719 and 53 mg Hg kg(-1), respectively, for soil. Total Hg analyses in snails exposed to contaminated matrices revealed important bioaccumulation capacities up to 2000 mg Hg kg(-1) viscera. Critical limits in internal Hg concentration of about 500 and 1000 mg Hg kg(-1) were determined as thresholds for the induction of growth toxicity through food and soil exposure, respectively. These different values underlined differences in the uptake and toxicological dynamics of Hg according to its bioavailability in the source of exposure. PMID:26507730

  4. Forskolin potentiates the paraoxon-induced hyperexcitability in snail neurons by blocking afterhyperpolarization.

    PubMed

    Vatanparast, Jafar; Janahmadi, Mahyar; Asgari, Ali Reza

    2007-11-01

    One characteristic of organophosphate poisoning is the ability to increase excitability or induce epileptiform activity in nerve cells, but underlying mechanisms are not fully understood. We have previously reported that paraoxon, an organophosphate compound, at submicromolar concentrations effectively suppress Ca(2+) spikes and modulate the activity of snail neurons. This effect was unrelated to acetylcholinesterase (AChE) inhibition but was found to involve the direct or indirect modulation of ion channels [Vatanparast J, Janahmadi M, Asgari AR, Sepehri H, Haeri-Rohani A. Paraoxon suppresses Ca(2+) spike and afterhyperpolarization in snail neurons: relevance to the hyperexcitability induction. Brain Res 2006a;1083(1):110-7]. In the present study, the interaction of paraoxon with cAMP formation on the modulation of Ca(2+) spikes and neuronal excitability was examined. Forskolin, the activators of adenylate cyclase, suppressed afterhyperpolarization (AHP) and increased the activity of snail neurons without any significant effect on the Ca(2+) spike duration. Pretreatment with forskolin, although attenuated the suppressing effect of paraoxon on the duration of Ca(2+) spikes but also potentiated the paraoxon-induced hyperexcitability by enhancing the suppressive effects of paraoxon on AHP. Our findings support the possible involvement of cAMP formation in the paraoxon-induced AHP suppression and neuronal hyperexcitability, although activation of cAMP pathway may attenuates some effects of paraoxon. PMID:17720247

  5. Adjustment of metabolite composition in the haemolymph to seasonal variations in the land snail Helix pomatia.

    PubMed

    Nicolai, Annegret; Filser, Juliane; Lenz, Roman; Bertrand, Carole; Charrier, Maryvonne

    2011-05-01

    In temperate regions, land snails are subjected to subzero temperatures in winter and hot temperatures often associated to drought in summer. The response to these environmental factors is usually a state of inactivity, hibernation and aestivation, respectively, in a temperature and humidity buffered refuge, accompanied by physiological adjustments to resist cold or heat stress. We investigated how environmental factors in the microhabitat and body condition influence the metabolite composition of haemolymph of the endangered species Helix pomatia. We used UPLC and GC-MS techniques and analyzed annual biochemical variations in a multivariate model. Hibernation and activity months differed in metabolite composition. Snails used photoperiod as cue for seasonal climatic variations to initiate a physiological state and were also highly sensitive to temperature variations, therefore constantly adjusting their physiological processes. Galactose levels gave evidence for the persistence of metabolic activity with energy expenditure during hibernation and for high reproductive activity in June. Triglycerides accumulated prior to hibernation might act as cryoprotectants or energy reserves. During the last month of hibernation snails activated physiological processes related to arousal. During activity, protein metabolism was reflected by high amino acid level. An exceptional aestivation period was observed in April giving evidence for heat stress responses, like the protection of cells from dehydration by polyols and saccharides, the membrane stabilization by cholesterol and enhanced metabolism using the anaerobic succinic acid pathway to sustain costly stress responses. In conclusion, physiological adjustments to environmental variations in Helix pomatia involve water loss regulation, cryoprotectant or heatprotectant accumulation. PMID:21136264

  6. Using parasites to inform ecological history: comparisons among three congeneric marine snails.

    PubMed

    Blakeslee, April M H; Byers, James E

    2008-04-01

    Species introduced to novel regions often leave behind many parasite species. Signatures of parasite release could thus be used to resolve cryptogenic (uncertain) origins such as that of Littorina littorea, a European marine snail whose history in North America has been debated for over 100 years. Through extensive field and literature surveys, we examined species richness of parasitic trematodes infecting this snail and two co-occurring congeners, L. saxatilis and L. obtusata, both considered native throughout the North Atlantic. Of the three snails, only L. littorea possessed significantly fewer trematode species in North America, and all North American trematodes infecting the three Littorina spp. were a nested subset of Europe. Surprisingly, several of L. littorea's missing trematodes in North America infected the other Littorina congeners. Most likely, long separation of these trematodes from their former host resulted in divergence of the parasites' recognition of L. littorea. Overall, these patterns of parasitism suggest a recent invasion from Europe to North America for L. littorea and an older, natural expansion from Europe to North America for L. saxatilis and L. obtusata. PMID:18481531

  7. Nutritional status of four species of giant land snails in Nigeria

    PubMed Central

    Fagbuaro, O.; Oso, J.A.; Edward, J.B.; Ogunleye, R.F.</