Science.gov

Sample records for bipolar outflow sources

  1. Magnetic field and spatial structure of bipolar outflow sources

    NASA Technical Reports Server (NTRS)

    Hodapp, Klaus-Werner

    1990-01-01

    Deep K band images of three bipolar outflow sources (Cep A, GL 490, and R Mon) are presented. The polarization of background or embedded stars close to these star-forming regions has been measured in the I band to determine the local projected magnetic field direction. For Cep A the outflow direction and the magnetic field are almost parallel as is the case for most bipolar outflow sources. This alignment is poorer in the case of R Mon while GL 490 is a peculiar case with the outflow direction almost perpendicular to the local magnetic field. No indication was found for a distortion of the magnetic field close to the collimating disks of the outflows.

  2. TRACING THE BIPOLAR OUTFLOW FROM ORION SOURCE I

    SciTech Connect

    Plambeck, R. L.; Wright, M. C. H.; Friedel, D. N.; Widicus Weaver, S. L.; Bolatto, A. D.; Pound, M. W.; Woody, D. P.; Lamb, J. W.; Scott, S. L.

    2009-10-10

    Using CARMA, we imaged the 87 GHz SiO v = 0 J = 2-1 line toward Orion-KL with 0.''45 angular resolution. The maps indicate that radio source I drives a bipolar outflow into the surrounding molecular cloud along a NE-SW axis, in agreement with the model of Greenhill et al. The extended high-velocity outflow from Orion-KL appears to be a continuation of this compact outflow. High-velocity gas extends farthest along a NW-SE axis, suggesting that the outflow direction changes on timescales of a few hundred years.

  3. Star formation and the nature of bipolar outflows

    NASA Technical Reports Server (NTRS)

    Shu, Frank H.; Ruden, Steven P.; Lada, Charles J.; Lizano, Susana

    1991-01-01

    This paper presents a simple physical model for the bipolar molecular outflows that frequently accompany star formation. The model forges an intrinsic link between the bipolar flow phenomenon and the process of star formation, and it helps to explain many of the systematics known for existing sources.

  4. A Well-Defined Bipolar Outflow Shell

    NASA Astrophysics Data System (ADS)

    Xie, Taoling; Goldsmith, Paul F.; Patel, Nimesh

    1992-12-01

    A well-defined "eggplant-shaped" thin shell is revealed in the Mon R2 central core region by CO and (13) CO J=1-0 maps obtained with QUARRY. This thin shell outlines the extended blue lobe of the massive bipolar outflow. The projected length and width of the shell are about 5.7 pc and 2.5 pc respectively, and the averaged projected thickness of the shell is ~ 0.3 pc. The shape of this shell can be satisfactorily accounted for quantitatively in terms of limb-brightening within the framework of the Shu et al shell model with radially directed wind, although the model seems to be oversimplified with respect to the complexity that our data reveal. The outflow shell's symmetry axis is estimated to be inclined by ~ 70(deg) with respect to the line of sight. We suggest that the coincident blue- and red-shifted emission and the bending of the red-shifted lobe are the result of the red-shifted shell being compressed, rather than having a second bipolar outflow aligned roughly perpendicular to the axis of the first bipolar outflow.

  5. Shocked molecular hydrogen in the bipolar outflow NGC 2071

    NASA Technical Reports Server (NTRS)

    Burton, Michael G.; Geballe, T. R.; Brand, P. W. J. L.

    1989-01-01

    Maps of the emission from the v = 1-0 S(1) line of molecular hydrogen in the bipolar outflow of NGC 2071 are presented. The line emission is shown to peak at six positions distributed irregularly along two lobes which are parallel to, but offset about 20 arcsec from, the lobes of the high-velocity CO-line emission. The energetics and composition of the high-velocity gas support a model in which the driving agent is a bipolar atomic wind which arises from the vicinity of the central IR sources and shocks the surrounding molecular cloud, evacuating a cavity within it.

  6. High resolution observations of the L1551 bipolar outflow

    NASA Technical Reports Server (NTRS)

    Snell, R.; Moriarty-Schieven, G.; Strom, S.; Schloerb, P.; Strom, K.; Grasdalen, G.

    1986-01-01

    The nearby dark cloud Lynds 1551 contains one of the closest examples of a well-collimated bipolar molecular outflow. This source has the largest angular size of any known outflow and was the first bipolar outflow to be detected. The outflow originates from a low-luminosity young stellar object, IRS-5. Optical and radio continuum observations show the presence of a highly collimated, ionized stellar wind orginating from close to IRS-5 and aligned with the molecular outflow. However, we have little information on the actual mechanism that generates the stellar wind and collimates it into opposed jets. The Very Large Array (VLA) observations indicate that the winds originate within 10(15) cm of IRS-5, unfortunately at a size scale difficult to resolve. For these reasons, observations of the structure and dynamics of the hypersonic molecular gas may provide valuable information on the origin and evolution of these outflows. In addition, the study of the impact of the outflowing gas on the surrounding molecular material is essential to understand the consequence these outflows have on the evolution and star formation history of the entire cloud. Moriarty-Schieven et al. (1986) obtained a oversampled map of the CO emission of a portion of both the blueshifted and redshifted outflows in LI551 using Five College Radio Astronomy Observatory 14 m telescope. The oversampled maps have been reconstructed to an effective angular resolution of 20 arcsec using a maximum entropy algorithm. A continuation of the study of Moriarty-Schieven et al. is presented. The entire L1551 outflow has now been mapped at 12 arcsec sampling requiring roughly 4000 spectra. This data has been constructed to 20 arcsec resolution to provide the first high resolution picture of the entire L1551 outflow. This new data has shown that the blueshifted lobe is more extended than previously thought and has expanded downstream sufficiently to break out of the dense molecular cloud, but the redshifted outflow

  7. Bipolar Molecular Outflows from High-Mass Protostars

    NASA Astrophysics Data System (ADS)

    Su, Yu-Nung; Zhang, Qizhou; Lim, Jeremy

    2004-03-01

    We report observations of the bipolar molecular outflows associated with the luminous (~2×104 Lsolar) far-IR sources IRAS 21519+5613 and IRAS 22506+5944, as well the dust and molecular gas condensations on which these outflows appear to be centered. The observations were made in 12CO, 13CO, C18O, and continuum at 3 mm with the BIMA array and in 12CO and 13CO with the NRAO 12 m telescope to recover extended emission filtered out by the interferometric array. We find that the outflow associated with each IRAS source shows a clear bipolar morphology in 12CO, with properties (i.e., total mass of order 10-100 Msolar, mass-outflow rate >~10-3 Msolar, dynamical timescale 104-105 yr, and energetics) comparable with those of other massive outflows associated with luminous young stellar objects. Each outflow appears to be centered on a dust and gas condensation with a mass of 200-300 Msolar, likely marking the location of the driving source. The outflow lobes of both sources are fully resolved along their major but not minor axes, and they have collimation factors that may be comparable with young low-mass stars. The mass-velocity diagrams of both outflows change in slope at a velocity of ~10 km s-1, suggesting that the high-velocity component (HVC) may drive the low-velocity component (LVC). Although the HVC of IRAS 21519+5613 shows evidence for deceleration, no such signature is seen in the HVC of IRAS 22506+5944. Neither HVC has a momentum supply rate sufficient to drive their corresponding LVCs, although it is possible that the HVC is more highly excited and hence its thrust underestimated. Like for other molecular outflows the primary driving agent cannot be ionized gas, leaving atomic gas as the other remaining candidate. Neither IRAS 21519+5613 nor IRAS 22506+5944 exhibits detectable free-free emission, which together with the observed properties of their molecular outflows and surrounding condensations make them credible candidates for high-mass protostars. The mass

  8. Bipolar Nuclear Outflow from the Seyfert 1 Galaxy NGC 5548

    NASA Astrophysics Data System (ADS)

    Wrobel, J. M.

    1994-12-01

    The S0/Sa galaxy NGC 5548 hosts a Seyfert 1 nucleus. Echo mapping of its broad optical-line-emitting region yields a radial extent R <~ 20 light days = (1)/(60) pc, or 70 h microarcseonds for H_0 = 100 h km s(-1) Mpc(-1) (Peterson 1993). Using data from larger radii, what boundary conditions can be imposed on the geometry and velocity field of the broad line region? R <~ 1400 h(-1) pc: Bipolar radio continuum lobes straddle a central radio component in NGC 5548. These lobes, which emit optically-thin synchrotron radiation with a 4-cm power of 10(21) h(-2) W Hz(-1) , trace bipolar outflow from the nucleus (Wilson & Ulvestad 1982; Wrobel 1994). R <~ 720 h(-1) pc: The radio lobes of NGC 5548 share the elongation position angle of the [OIII] narrow-line gas, with the broadest known line widths occuring NW of the nucleus at these radii (Wilson et al. 1989). This hints that some narrow-line gas receives additional mechanical energy from the bipolar outflow feeding the radio lobes, a situation analogous to the narrow-line superbubble in NGC 3079 (Veilleux et al. 1994). R <~ 10 h(-1) pc: Blueshifted absorption in the broad CIV lines proves that some gas is flowing out of the nucleus of NGC 5548, with observed speeds of 1200 km s(-1) relative to systemic (Shull & Sachs 1993). This absorption line outflow may have, or be able to achieve, a bipolar shape via the disk-focusing scheme proposed for NGC 3079 (Duric & Seaquist 1988; Veilleux et al. 1994).

  9. (abstract) A Test of the Theoretical Models of Bipolar Outflows: The Bipolar Outflow in Mon R2

    NASA Technical Reports Server (NTRS)

    Xie, Taoling; Goldsmith, Paul; Patel, Nimesh

    1993-01-01

    We report some results of a study of the massive bipolar outflow in the central region of the relatively nearby giant molecular cloud Monoceros R2. We make a quantative comparison of our results with the Shu et al. outflow model which incorporates a radially directed wind sweeping up the ambient material into a shell. We find that this simple model naturally explains the shape of this thin shell. Although Shu's model in its simplest form predicts with reasonable parameters too much mass at very small polar angles, as previously pointed out by Masson and Chernin, it provides a reasonable good fit to the mass distribution at larger polar angles. It is possible that this discrepancy is due to inhomogeneities of the ambient molecular gas which is not considered by the model. We also discuss the constraints imposed by these results on recent jet-driven outflow models.

  10. Coexisting conical bipolar and equatorial outflows from a high-mass protostar.

    PubMed

    Greenhill, L J; Gwinn, C R; Schwartz, C; Moran, J M; Diamond, P J

    1998-12-17

    The BN/KL region in the Orion molecular cloud is an archetype for the study of the formation of stars much more massive than the Sun. This region contains luminous young stars and protostars but, like most star-forming regions, is difficult to study in detail because of the obscuring effects of dust and gas. Our basic expectations are shaped to some extent by the present theoretical picture of star formation, the cornerstone of which is that protostars accrete gas from rotating equatorial disks and shed angular momentum by ejecting gas in bipolar outflows. The main source of the outflow in the BN/KL region may be an object known as radio source I, which is commonly believed to be surrounded by a rotating disk of molecular material. Here we report high-resolution observations of silicon monoxide (SiO) and water maser emission from the gas surrounding source I. We show that within 60 AU of the source (about the size of the Solar System), the region is dominated by a conical bipolar outflow, rather than the expected disk. A slower outflow, close to the equatorial plane of the protostellar system, extends to radii of 1,000 AU. PMID:9872312

  11. The bipolar outflow from the rotating carbon star, V Hydrae

    NASA Technical Reports Server (NTRS)

    Kahane, C.; Maizels, C.; Jura, M.

    1988-01-01

    A high-resolution optical spectrum of the mass-losing red giant carbon star, V Hya, has been obtained, and the (C-12)O (J = 1-0) millimeter emission in the circumstellar envelope around this star has been mapped. It is found that the CO emission is extended, clearly anisotropic and can be interpreted as the superposition of an isotropic emission with that of a bipolar flow. The optical spectrum of the photosphere suggests that this star is rotating with v sin i between 10 and 20 km/s. These data are interpreted, together, to suggest that the bipolar nature of the outflow results from the flattening of the star induced by its rapid rotation.

  12. A Micro-Molecular Bipolar Outflow from HL Tauri

    NASA Astrophysics Data System (ADS)

    Takami, Michihiro; Beck, Tracy L.; Pyo, Tae-Soo; McGregor, Peter; Davis, Christopher

    2007-11-01

    We present detailed geometry and kinematics of the inner outflow toward HL Tau observed using Near Infrared Integral Field Spectrograph (NIFS) at the Gemini-North 8 m Observatory. We analyzed H2 2.122 μm emission and [Fe II] 1.644 μm line emission as well as the adjacent continuum observed at a <0.2" resolution. The H2 emission shows (1) a bubble-like geometry to the northeast of the star, as briefly reported in the previous paper, and (2) faint emission in the southwest counterflow, which has been revealed through careful analysis. The emission on both sides of the star shows an arc 1.0" away from the star, exhibiting a bipolar symmetry. Different brightnesses and morphologies in the northeast and southwest flows are attributed to absorption and obscuration of the latter by a flattened envelope and a circumstellar disk. The H2 emission shows a remarkably different morphology from the collimated jet seen in [Fe II] emission. The positions of some features coincide with scattering continuum, indicating that these are associated with cavities in the dusty envelope. Such properties are similar to millimeter CO outflows, although the spatial scale of the H2 outflow in our image (~150 AU) is strikingly smaller than the millimeter outflows, which often extend over 1000-10000 AU scales. The position-velocity diagrams of the H2 and [Fe II] emission do not show any evidence for kinematic interaction between these flows. All results described above support the scenario that the jet is surrounded by an unseen wide-angled wind, which interacts with the ambient gas and produces the bipolar cavity and shocked H2 emission. Based on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the Particle Physics and Astronomy Research Council (United Kingdom), the National

  13. A young bipolar outflow from IRAS15398-3359

    NASA Astrophysics Data System (ADS)

    Bjerkeli, Per; Jørgensen, Jes K.

    2015-08-01

    The Class 0 protostar IRAS 15398-3359 is located in the Lupus I cloud at a distance of 155 pc. The source is known to harbour a molecular outflow, but the region has not attracted much interest until recently. IRAS 15398 is known to show interesting chemical signatures and being one of the very nearby, young outflow sources makes it an excellent target for detailed studies of the gas kinematics of different species.We present observations of several molecular species, carried out with the Submillimeter Array and ALMA, towards the IRAS 15398 outflow. The analysis of CO emission show obvious signs of episodic mass ejections, with a dynamical time scale between the knots in the jet, of the order 100 years. This is consistent with recent ALMA results where luminosity outbursts are estimated to occur on similar time-scales. The physical properties of the outflow, such as mass, momentum, momentum rate, mechanical luminosity, kinetic energy and mass-loss rate are estimated at relatively low values. We argue that this source is of a very young age, possibly younger than ~1000 years. This is consistent with recent studies of the kinematics of the inner envelope/disk. The observed line profiles were compared to full 3D radiative transfer models of the source, constructed with the Line Modelling Engine (LIME). The observed line shapes can only be understood when considering several distinctly different physical components, viz. the outflow cavity, the infalling envelope and the surrounding cloud material. This allows us to put quantitative constraints on the kinematics of the material close to the central source.

  14. Impacts of pure shocks in the BHR71 bipolar outflow

    NASA Astrophysics Data System (ADS)

    Gusdorf, A.; Riquelme, D.; Anderl, S.; Eislöffel, J.; Codella, C.; Gómez-Ruiz, A. I.; Graf, U. U.; Kristensen, L. E.; Leurini, S.; Parise, B.; Requena-Torres, M. A.; Ricken, O.; Güsten, R.

    2015-03-01

    Context. During the formation of a star, material is ejected along powerful jets that impact the ambient material. This outflow regulates star formation by e.g. inducing turbulence and heating the surrounding gas. Understanding the associated shocks is therefore essential to the study of star formation. Aims: We present comparisons of shock models with CO, H2, and SiO observations in a "pure" shock position in the BHR71 bipolar outflow. These comparisons provide an insight into the shock and pre-shock characteristics, and allow us to understand the energetic and chemical feedback of star formation on Galactic scales. Methods: New CO (Jup = 16, 11, 7, 6, 4, 3) observations from the shocked regions with the SOFIA and APEX telescopes are presented and combined with earlier H2 and SiO data (from the Spitzer and APEX telescopes). The integrated intensities are compared to a grid of models that were obtained from a magneto-hydrodynamical shock code, which calculates the dynamical and chemical structure of these regions combined with a radiative transfer module based on the "large velocity gradient" approximation. Results: The CO emission leads us to update the conclusions of our previous shock analysis: pre-shock densities of 104 cm-3 and shock velocities around 20-25 km s-1 are still constrained, but older ages are inferred (~4000 years). Conclusions: We evaluate the contribution of shocks to the excitation of CO around forming stars. The SiO observations are compatible with a scenario where less than 4% of the pre-shock SiO belongs to the grain mantles. We infer outflow parameters: a mass of 1.8 × 10-2 M⊙ was measured in our beam, in which a momentum of 0.4 M⊙ km s-1 is dissipated, corresponding to an energy of 4.2 × 1043 erg. We analyse the energetics of the outflow species by species. Comparing our results with previous studies highlights their dependence on the method: H2 observations only are not sufficient to evaluate the mass of outflows.

  15. An infrared study of the bi-polar outflow region GGD 12-15

    NASA Technical Reports Server (NTRS)

    Harvey, P. M.; Wilking, B. A.; Joy, M.; Lester, D. F.

    1984-01-01

    Infrared observations from 1 to 100 microns are presented for the region associated with a bipolar CO outflow source near the nebulous objects GGD 12 to 15. A luminous far-infrared source was found associated with a radio-continuum source in the area. This object appears to be a compact HII region around a nearly main-sequence BO star. A faint 20 micron source was also discovered at the position of an H2O maser 3O deg northwest of the HII region. This object appears to be associated with but not coincident with a 2 micron reflection nebula. This structure serves as evidence for a non-spherically symmetric, possibly disk-like dust distribution around the exciting star for the maser. This object probably powers the bi-polar CO outflow although its luminosity is less than 10% that of the star which excites the compact HII region. A number of other 2 micron sources found in the area are probably members of a recently formed cluster.

  16. Multiwavelength Spectroscopy of the Bipolar Outflow from Cepheus E

    NASA Astrophysics Data System (ADS)

    Smith, Michael D.; Froebrich, Dirk; Eislöffel, Jochen

    2003-07-01

    Cepheus E is the site of an exceptional example of a protostellar outflow with a very young dynamical age and extremely high near-infrared luminosity. We combine molecular spectroscopic data from the submillimeter to the near-infrared in order to interpret the rotational excitation of CO and the rovibrational excitation of H2. We conclude that C-type shocks with a paraboloidal bow shock geometry can simultaneously explain all the molecular excitations. Extinction accounts for the deviation of the column densities from local thermodynamic equilibrium. A difference in the extinction between the red- and blueshifted outflow lobes may account for the measured flux difference. The outflow is deeply embedded in a clump of density 105 cm-3, yet a good fraction of atomic hydrogen, about 40%, is required to explain the excitation and statistical equilibrium. We propose that this atomic component arises, self-consistently, from the dissociated gas at the apex of the leading bow shocks and the relatively long molecule reformation time. At least 20 bow shocks are required in each lobe, although these may be subdivided into smaller bows and turbulent shocked regions. The total outflow mechanical power and cooling amounts to over 30 Lsolar, almost half the source's bolometric luminosity. Nevertheless, only about 6% of the clump mass has been set in outward motion by the outflow, allowing a collapse to continue. Based on observations with ISO, an ESA project with instruments funded by ESA Member States (especially the PI countries: France, Germany, the Netherlands and the United Kingdom) and with the participation of ISAS and NASA.

  17. An Ordered Bipolar Outflow from a Massive Early-stage Core

    NASA Astrophysics Data System (ADS)

    Tan, Jonathan C.; Kong, Shuo; Zhang, Yichen; Fontani, Francesco; Caselli, Paola; Butler, Michael J.

    2016-04-01

    We present ALMA follow-up observations of two massive, early-stage core candidates, C1-N and C1-S, in IRDC G028.37+00.07, that were previously identified by their {{{N}}}2{{{D}}}+(3-2) emission, and show high levels of deuteration of this species. The cores are also dark at far-infrared wavelengths up to ∼ 100 μ {{m}}. We detect 12CO(2-1) from a narrow, highly collimated bipolar outflow that is being launched from near the center of the C1-S core, which is also the location of the peak 1.3 mm dust continuum emission. This protostar, C1-Sa, has associated dense gas traced by {{{C}}}18{{O}}(2-1) and DCN(3-2), from which we estimate that it has a radial velocity that is near the center of the range exhibited by the C1-S massive core. A second outflow-driving source is also detected within the projected boundary of C1-S, but it appears to be at a different radial velocity. After considering the properties of the outflows, we conclude that C1-Sa is a promising candidate for an early-stage massive protostar and as such it shows that these early phases of massive star formation can involve highly ordered outflow, and thus accretion, processes, similar to models developed to explain low-mass protostars.

  18. A young bipolar outflow from IRAS 15398-3359

    NASA Astrophysics Data System (ADS)

    Bjerkeli, P.; Jørgensen, J. K.; Brinch, C.

    2016-03-01

    Context. Changing physical conditions in the vicinity of protostars allow for a rich and interesting chemistry to occur. Heating and cooling of the gas allows molecules to be released from and frozen out on dust grains. These changes in physics, traced by chemistry as well as the kinematical information, allows us to distinguish between different scenarios describing the infall of matter and the launching of molecular outflows and jets. Aims: We aim to determine the spatial distribution of different species that are of different chemical origin. This is to examine the physical processes in play in the observed region. From the kinematical information of the emission lines we aim to determine the nature of the infalling and outflowing gas in the system. We also aim to determine the physical properties of the outflow. Methods: Maps from the Submillimeter Array (SMA) reveal the spatial distribution of the gaseous emission towards IRAS 15398-3359. The line radiative transfer code LIME is used to construct a full 3D model of the system taking all relevant components and scales into account. Results: CO, HCO+, and N2H+ are detected and shown to trace the motions of the outflow. For CO, the circumstellar envelope and the surrounding cloud also have a profound impact on the observed line profiles. N2H+ is detected in the outflow, but is suppressed towards the central region, perhaps because of the competing reaction between CO and H3+ in the densest regions as well as the destruction of N2H+ by CO. N2D+ is detected in a ridge south-west of the protostellar condensation and is not associated with the outflow. The morphology and kinematics of the CO emission suggests that the source is younger than ~1000 years. The mass, momentum, momentum rate, mechanical luminosity, kinetic energy, and mass-loss rate are also all estimated to be low. A full 3D radiative transfer model of the system can explain all the kinematical and morphological features in the system.

  19. DETECTION OF A BIPOLAR MOLECULAR OUTFLOW DRIVEN BY A CANDIDATE FIRST HYDROSTATIC CORE

    SciTech Connect

    Dunham, Michael M.; Chen Xuepeng; Arce, Hector G.; Bourke, Tyler L.; Schnee, Scott; Enoch, Melissa L.

    2011-11-20

    We present new 230 GHz Submillimeter Array observations of the candidate first hydrostatic core Per-Bolo 58. We report the detection of a 1.3 mm continuum source and a bipolar molecular outflow, both centered on the position of the candidate first hydrostatic core. The continuum detection has a total flux density of 26.6 {+-} 4.0 mJy, from which we calculate a total (gas and dust) mass of 0.11 {+-} 0.05 M{sub Sun} and a mean number density of 2.0 {+-} 1.6 Multiplication-Sign 10{sup 7} cm{sup -3}. There is some evidence for the existence of an unresolved component in the continuum detection, but longer-baseline observations are required in order to confirm the presence of this component and determine whether its origin lies in a circumstellar disk or in the dense inner envelope. The bipolar molecular outflow is observed along a nearly due east-west axis. The outflow is slow (characteristic velocity of 2.9 km s{sup -1}), shows a jet-like morphology (opening semi-angles {approx}8 Degree-Sign for both lobes), and extends to the edges of the primary beam. We calculate the kinematic and dynamic properties of the outflow in the standard manner and compare them to several other protostars and candidate first hydrostatic cores with similarly low luminosities. We discuss the evidence both in support of and against the possibility that Per-Bolo 58 is a first hydrostatic core, and we outline future work needed to further evaluate the evolutionary status of this object.

  20. Near-infrared polarization in the bipolar outflow OH 0739-14

    NASA Technical Reports Server (NTRS)

    Shure, Mark; Sellgren, K.; Jones, T. J.; Klebe, D.

    1995-01-01

    We present linear polarization observations of the bipolar outlfow source OH 0739-14 from 1.2 to 3.6 micrometers. The high levels of polarization (approximatly 47% in the bipolar lobes) and the angles of the vectors in the outflow lobes imply that the 1.2-3.6 micrometer polarization is due to single scattering by dust grains of light from the central source or from its immediate vicinity. Our polarization measurements, combined with phase-lag measurements of variability in the nebula by Kastner et al. (1992), tightly constrain the inclination angle i between the bipolar axis and the plane of the sky to be 35 deg less than or = i less than or = 37 deg. We observe the percentage polarization of the bipolar lobes to be constant with wavelength from 1.2 to 3.6 micrometers, which rules out any significant contribution by unpolarized emission, such as tiny grain emission, to the 3.6 micrometer emission. We propose to explain the K-L' color of the nebula as due to illumination by both the central star and by thermal emission from dust in a surrounding circumstellar shell with a dust temperature of 600-1000 K. Using this model, we find a relatively high minimum scattering optical depth at 3.75 micrometers of tau omega greater than 0.1. This is difficult to reconcile with Rayleigh scattering, which would then imply optically thick scattering at wavelengths of 1.2 and 1.65 micrometers, in constrast to the observations. We also find that the albedo of the grains at 3.75 micrometers and probably at 2.2 micrometers is higher than predicted for normal interstellar grains.

  1. SPITZER AND NEAR-INFRARED OBSERVATIONS OF A NEW BIPOLAR PROTOSTELLAR OUTFLOW IN THE ROSETTE MOLECULAR CLOUD

    SciTech Connect

    Ybarra, Jason E.; Lada, Elizabeth A.; Fleming, Scott W.; Balog, Zoltan; Phelps, Randy L.

    2010-05-01

    We present and discuss Spitzer and near-infrared H{sub 2} observations of a new bipolar protostellar outflow in the Rosette Molecular Cloud. The outflow is seen in all four InfraRed Array Camera (IRAC) bands and partially as diffuse emission in the MIPS 24 {mu}m band. An embedded MIPS 24 {mu}m source bisects the outflow and appears to be the driving source. This source is coincident with a dark patch seen in absorption in the 8 {mu}m IRAC image. Spitzer IRAC color analysis of the shocked emission was performed from which thermal and column density maps of the outflow were constructed. Narrowband near-infrared (NIR) images of the flow reveal H{sub 2} emission features coincident with the high temperature regions of the outflow. This outflow has now been given the designation MHO 1321 due to the detection of NIR H{sub 2} features. We use these data and maps to probe the physical conditions and structure of the flow.

  2. SPATIALLY RESOLVED OBSERVATIONS OF THE BIPOLAR OPTICAL OUTFLOW FROM THE BROWN DWARF 2MASS J12073347-3932540

    SciTech Connect

    Whelan, E. T.; Ray, T. P.; Comeron, F.; Bacciotti, F.; Kavanagh, P. J.

    2012-12-20

    Studies of brown dwarf (BD) outflows provide information pertinent to questions on BD formation, as well as allowing outflow mechanisms to be investigated at the lowest masses. Here new observations of the bipolar outflow from the 24 M{sub JUP} BD 2MASS J12073347-3932540 are presented. The outflow was originally identified through the spectro-astrometric analysis of the [O I]{lambda}6300 emission line. Follow-up observations consisting of spectra and [S II], R-band and I-band images were obtained. The new spectra confirm the original results and are used to constrain the outflow position angle (P.A.) at {approx}65 Degree-Sign . The [O I]{lambda}6300 emission line region is spatially resolved and the outflow is detected in the [S II] images. The detection is firstly in the form of an elongation of the point-spread function (PSF) along the direction of the outflow P.A. Four faint knot-like features (labeled A-D) are also observed to the southwest of 2MASS J12073347-3932540 along the same P.A. suggested by the spectra and the elongation in the PSF. Interestingly, D, the feature furthest from the source, is bow shaped with the apex pointing away from 2MASS J12073347-3932540. A color-color analysis allows us to conclude that at least feature D is part of the outflow under investigation while A is likely a star or galaxy. Follow-up observations are needed to confirm the origin of B and C. This is a first for a BD, as BD optical outflows have to date only been detected using spectro-astrometry. This result also demonstrates for the first time that BD outflows can be collimated and episodic.

  3. A Massive Bipolar Outflow and a Dusty Torus with Large Grains in the Preplanetary Nebula IRAS 22036+5306

    NASA Technical Reports Server (NTRS)

    Sahai, Raghvendra; Young, K.; Patel, N. A.; Sanchez Contreras, C.; Morris, M.

    2006-01-01

    We report high angular resolution (approx.1") CO J=3-2 interferometric mapping using the Submillimeter Array (SMA) of IRAS 22036+5306 (I22036), a bipolar preplanetary nebula (PPN) with knotty jets discovered in our HST snapshot survey of young PPNs. In addition, we have obtained supporting lower resolution (approx.10") CO and 13CO J=1-0 observations with the Owens Valley Radio Observatory (OVRO) interferometer, as well as optical long-slit echelle spectra at the Palomar Observatory. The CO J=3-2 observations show the presence of a very fast (approx.220 km/s), highly collimated, massive (0.03 Solar Mass) bipolar outflow with a very large scalar momentum (about 10(exp 39) g cm/s), and the characteristic spatiokinematic structure of bow shocks at the tips of this outflow. The H(alpha) line shows an absorption feature blueshifted from the systemic velocity by approx.100 km/s, which most likely arises in neutral interface material between the fast outflow and the dense walls of the bipolar lobes at low latitudes. The fast outflow in I22036, as in most PPNs, cannot be driven by radiation pressure. We find an unresolved source of submillimeter (and millimeter-wave) continuum emission in I22036, implying a very substantial mass (0.02-0.04 Solar Mass) of large (radius > or approx.1 mm), cold (< or approx.50 K) dust grains associated with I22036's toroidal waist. We also find that the C-13/C-12 ratio in I22036 is very high (0.16), close to the maximum value achieved in equilibrium CNO nucleosynthesis (0.33). The combination of the high circumstellar mass (i.e., in the extended dust shell and the torus) and the high C-13/C-12 ratio in I22036 provides strong support for this object having evolved from a massive (> or approx.4 Solar Mass) progenitor in which hot-bottom-burning has occurred.

  4. Spitzer And Near-infrared Observations Of A Bi-polar Outflow In The Rosette Molecular Cloud

    NASA Astrophysics Data System (ADS)

    Ybarra, Jason E.; Lada, E. A.; Balog, Z.; Fleming, S. W.; Phelps, R. L.

    2010-01-01

    We present and discuss Spitzer and near-infrared H2 observations of a bi-polar protostellar outflow in the Rosette Molecular Cloud. The outflow is seen in all four IRAC bands and partially in the MIP 24 micron band. A dark cloud seen in absorption in the 8 micron image bisects the outflow and contains an embedded Class 0 object that appears to be the outflow source. Near-infrared narrow-band H2 observations were obtained using the Infrared Side Port Imager (ISPI) on the CTIO 4 meter telescope. Spitzer IRAC color analysis of the shocked emission was performed from which thermal and density maps of the outflow were constructed. We use these data and maps to probe the physical conditions and structure of the flow. This work is based in part on archival data obtained with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA. Support for this work was provided by an award issued by JPL/Caltech, NASA LTSA Grant NNG05GD66G, and the Florida Space Grant Consortium

  5. Discovery of an Extremely Wide-angle Bipolar Outflow in AFGL 5142

    NASA Astrophysics Data System (ADS)

    Liu, Tie; Zhang, Qizhou; Kim, Kee-Tae; Wu, Yuefang; Lee, Chang-Won; Goldsmith, Paul F.; Li, Di; Liu, Sheng-Yuan; Chen, Huei-Ru; Tatematsu, Ken’ichi; Wang, Ke; Lee, Jeong-Eun; Qin, Sheng-Li; Mardones, Diego; Cho, Se-Hyung

    2016-06-01

    Most bipolar outflows are associated with individual young stellar objects and have small opening angles. Here we report the discovery of an extremely wide-angle (∼180°) bipolar outflow (“EWBO”) in a cluster forming region AFGL 5142 from low-velocity emission of the HCN (3–2) and HCO+ (3–2) lines. This bipolar outflow is along a north-west to south-east direction with a line of sight flow velocity of about 3 km s‑1 and is spatially connected to the high-velocity jet-like outflows. It seems to be a collection of low-velocity material entrained by the high-velocity outflows due to momentum feedback. The total ejected mass and mass loss rate due to both high-velocity jet-like outflows and the “EWBO” are ∼24.5 M ⊙ and ∼1.7 × 10‑3 M ⊙ yr‑1, respectively. Global collapse of the clump is revealed by the “blue profile” in the HCO+ (1–0) line. A hierarchical network of filaments was identified in NH3 (1, 1) emission. Clear velocity gradients of the order of 10 km s‑1 pc‑1 are found along filaments, indicating gas inflow along the filaments. The sum of the accretion rate along filaments and mass infall rate along the line of sight is ∼3.1 × 10‑3 M ⊙ yr‑1, which exceeds the total mass loss rate, indicating that the central cluster is probably still gaining mass. The central cluster is highly fragmented and 22 condensations are identified in 1.1 mm continuum emission. The fragmentation process seems to be determined by thermal pressure and turbulence. The magnetic field may not play an important role in fragmentation.

  6. Bipolar Outflow Offset from the Nucleus of M33

    NASA Astrophysics Data System (ADS)

    Roming, P. W. A.; Moody, J. W.; Hintz, M. L.; Wu, K.; Soria, R.

    2002-12-01

    Using long-slit spectra centered in wavelength about Hα , we have produced a velocity map of a 0.5' x 2' hourglass shaped object centered 38" southeast of the optical center of M33. The velocity resolution is 1.1 km/s. We have also produced electron temperature, electron density, and shock heating maps of the same region using the [NII](λ 6548), [NII](λ 6583), Hα , [SII](λ 6717), and [SII](λ 6731) lines. The data reveal that the gas is flowing away from the center of this hourglass shaped object and that the electron temperature and density of the region is relatively low. The shock heating maps indicate that very little of the gas in the region is shock heated. Using this new data and previously published UV, IR, and radio data we investigate possible scenarios that could explain this large scale, low velocity outflow.

  7. From bipolar to quadrupolar - The collimation processes of the Cepheus A outflow

    NASA Technical Reports Server (NTRS)

    Torrelles, Jose M.; Verdes-Montenegro, Lourdes; Ho, Paul T. P.; Rodriguez, Luis F.; Canto, Jorge

    1993-01-01

    Results of new K-band observations of the (1, 1) and (2, 2) ammonia lines toward Cepheus A are reported. The lines are mapped with approximately 2 arcsec of angular resolution and 0.3 km/s of velocity resolution. A sensitivity of 10 mJy has been achieved. The observations reveal details of the spatial and kinematics structure of the ambient high-density gas. It is suggested that the interstellar high-density gas is diverting and redirecting the outflow in the sense that the quadrupolar structure of the molecular outflow is produced by the interaction with the ammonia condensationss, with Cep A-1 and Cep A-3 splitting in two halves, respectively the blue- and redshifted lobes of an east-west bipolar molecular outflow.

  8. HH 588: A giant bipolar outflow in the dark cloud BRC 37

    NASA Astrophysics Data System (ADS)

    Movsessian, T. A.; Magakian, T. Yu.; Sargsyan, D. M.; Ogura, K.

    2012-12-01

    Results of 2D spectroscopy of the complex of Herbig-Haro objects HH 588 in the dark globule BRC 37 are presented. The multipupil spectrograph VAGR has been used to obtain spectra of four parts of this complex, including the objects NE2, NE1, center, and SW2. The kinematic characteristics of these components of the complex confirm the existence of a giant bipolar outflow from the central infrared source IRAS 21388+5622. Spectral studies also show that the central object has the very low excitation and strong [OI] and [SII] emission characteristic of jets emerging from young stellar objects. In terms of their physical parameters, the other objects are typical Herbig-Haro objects. On the other hand, it is found that the entire HH 588 complex is an irradiated Herbig-Haro flow. This is indicated by the comparatively high excitation of the object NE2, and by the fact that the entire HH 588 flow is an arc with its convex side facing the center of the HII region IC 1396.

  9. IONIZED OUTFLOWS FROM COMPACT STEEP SPECTRUM SOURCES

    SciTech Connect

    Shih, Hsin-Yi; Stockton, Alan; Kewley, Lisa E-mail: stockton@ifa.hawaii.edu

    2013-08-01

    Massive outflows are known to exist, in the form of extended emission-line regions (EELRs), around about one-third of powerful FR II radio sources. We investigate the origin of these EELRs by studying the emission-line regions around compact-steep-spectrum (CSS) radio galaxies that are younger (10{sup 3}-10{sup 5} yr old) versions of the FR II radio galaxies. We have searched for and analyzed the emission-line regions around 11 CSS sources by taking integral field spectra using Gemini Multi-Object Spectrograph on Gemini North. We fit the [O III] {lambda}5007 line and present the velocity maps for each detected emission-line region. We find, in most cases, that the emission-line regions have multi-component velocity structures with different velocity dispersions and/or flux distributions for each component. The velocity gradients of the emission-line gas are mostly well aligned with the radio axis, suggesting a direct causal link between the outflowing gas and the radio jets. The complex velocity structure may be a result of different driving mechanisms related to the onset of the radio jets. We also present the results from the line-ratio diagnostics we used to analyze the ionization mechanism of the extended gas, which supports the scenario where the emission-line regions are ionized by a combination of active galactic nucleus radiation and shock excitation.

  10. Optically thick outflows in ultraluminous supersoft sources

    NASA Astrophysics Data System (ADS)

    Urquhart, R.; Soria, R.

    2016-02-01

    Ultraluminous supersoft sources (ULSs) are defined by a thermal spectrum with colour temperatures ˜0.1 keV, bolometric luminosities ˜ a few 1039 erg s-1, and almost no emission above 1 keV. It has never been clear how they fit into the general scheme of accreting compact objects. To address this problem, we studied a sample of seven ULSs with extensive Chandra and XMM-Newton coverage. We find an anticorrelation between fitted temperatures and radii of the thermal emitter, and no correlation between bolometric luminosity and radius or temperature. We compare the physical parameters of ULSs with those of classical supersoft sources, thought to be surface-nuclear-burning white dwarfs, and of ultraluminous X-ray sources (ULXs), thought to be super-Eddington stellar-mass black holes. We argue that ULSs are the sub-class of ULXs seen through the densest wind, perhaps an extension of the soft-ultraluminous regime. We suggest that in ULSs, the massive disc outflow becomes effectively optically thick and forms a large photosphere, shrouding the inner regions from our view. Our model predicts that when the photosphere expands to ≳ 105 km and the temperature decreases below ≈50 eV, ULSs become brighter in the far-UV but undetectable in X-rays. Conversely, we find that harder emission components begin to appear in ULSs when the fitted size of the thermal emitter is smallest (interpreted as a shrinking of the photosphere). The observed short-term variability and absorption edges are also consistent with clumpy outflows. We suggest that the transition between ULXs (with a harder tail) and ULSs (with only a soft thermal component) occurs at blackbody temperatures of ≈150 eV.

  11. A high-speed bipolar outflow from the archetypical pulsating star Mira A

    NASA Astrophysics Data System (ADS)

    Meaburn, J.; López, J. A.; Boumis, P.; Lloyd, M.; Redman, M. P.

    2009-06-01

    Optical images and high-dispersion spectra have been obtained of the ejected material surrounding the pulsating AGB star Mira A. The two streams of knots on either side of the star, found in far-ultraviolet (FUV) GALEX images, have now been imaged clearly in the light of Hα. Spatially resolved profiles of the same line reveal that the bulk of these knots form a bipolar outflow with radial velocity extremes of ±150 km s-1 with respect to the central star. The south stream is approaching and the north stream receding from the observer. A displacement away from Mira A between the position of one of the south-stream knots in the new Hα image and its position in the previous Palomar Observatory Sky Survey (POSS I) red plate was noted. If interpreted as a consequence of expansion proper motions, the bipolar outflow is tilted at 69° ± 15° to the plane of the sky, has an outflow velocity of 160 ± 10 km s-1 and is ≈1000 y old.

  12. High-resolution CO Observation of the Carbon Star CIT 6 Revealing the Spiral Structure and a Nascent Bipolar Outflow

    NASA Astrophysics Data System (ADS)

    Kim, Hyosun; Liu, Sheng-Yuan; Hirano, Naomi; Zhao-Geisler, Ronny; Trejo, Alfonso; Yen, Hsi-Wei; Taam, Ronald E.; Kemper, Francisca; Kim, Jongsoo; Byun, Do-Young; Liu, Tie

    2015-11-01

    CIT 6 is a carbon star in the transitional phase from the asymptotic giant branch (AGB) to the protoplanetary nebulae (pPNs). Observational evidences of two point sources in the optical, circumstellar arc segments in an HC3N line emission, and a bipolar nebula in near-infrared provide strong support for the presence of a binary companion. Hence, CIT 6 is very attractive for studying the role of companions in the AGB-pPN transition. We have carried out high-resolution 12CO J = 2-1 and 13CO J = 2-1 observations of CIT 6 with the Submillimeter Array combined with the Submillimeter Telescope (single-dish) data. The 12CO channel maps reveal a spiral-shell pattern connecting the HC3N segments in a continuous form and an asymmetric outflow corresponding to the near-infrared bipolar nebula. Rotation of the 12CO channel peak position may be related to the inner spiral winding and/or the bipolar outflow. An eccentric orbit binary is suggested for the presence of an anisotropic mass loss to the west and a double spiral pattern. The lack of interarm emission to the west may indicate a feature corresponding to the periastron passage of a highly eccentric orbit of the binary. Spatially averaged radial and spectral profiles of 12CO J = 2-1 and 13CO J = 2-1 are compared with simple spherical radiative transfer models, suggesting a change of 12CO/13CO abundance ratio from ˜30 to ˜50 inward in the CSE of CIT 6. The millimeter continuum emission is decomposed into extended dust thermal emission (spectral index ˜ -2.4) and compact emission from radio photosphere (spectral index ˜ -2.0).

  13. Bipolar gas outflow from the nova V458 Vul

    NASA Astrophysics Data System (ADS)

    Goranskij, V. P.; Barsukova, E. A.; Fatkhullin, T. A.

    2010-06-01

    Classical nova V458 Vul (N Vul 2007 No.1) was detected as a supersoft X-ray source by the Swift XRT (ATel#1246, #1603). This star is interesting with its spectral class change: features of Fe II class nova completely changed by features of He/N class in the SSS phase (T.N. Tarasova, IBVS No.5807). We performed spectral observations of V458 Vul with the Russian 6-m telescope BTA and spectral camera SCORPIO on 2010 June 9.84 UT.

  14. Multiple outflows in the bipolar planetary nebula M1-16: A molecular line study

    NASA Technical Reports Server (NTRS)

    Sahai, Raghvendra; Wootten, Alwyn; Schwarz, Hugo E.; Wild, W.

    1994-01-01

    Extensive observations of the molecular gas in the young, compact planetary nebula M1-16 have been made, using the Swedish-ESO-Submillimeter Telescope. A map of the CO J = 2-1 emission shows that the molecular envelope contains both a slow and a fast outflow with expansion velocities of 19 km/s and greater than 34 km/s, respectively. The slow outflow is mildly elliptical, while the fast molecular outflow is bipolar. This fast outflow is roughly aligned with the very fast outflows recently found in the optical, while the long axis of the slow elliptical outflow is roughly orthogonal to the optical outflow axis. The kinematic timescales for the CO fast outflow and the optical very fast outflow agree closely, supporting the view that the former represents material in the slow outflow accelerated by the very fast outflow. The kinematic signature of a disk expanding with about 15.5 km/s can also be seen in the CO J = 2-1 data. The mass-loss rate (a) for the slow outflow is greater than or equal to 2.8 x 10(exp -5) solar mass/yr and possibly as large as 9 x 10(exp -5) solar mass/yr, (b) for the fast outflow is greater than or equal to 5 x 10(exp -6) solar mass/yr, and (c) for the very fast optically visible outflow is approximately equal 5 x 10(exp -7) solar mass/yr. The disk mass is approximately equal 6 x 10(exp -3) solar mass. Grain photoelectric heating results in temperatures of 20-70 K in molecular gas of the slow outflow. The (13)C/(12)C abundance ratio in M1-16 is found to be 0.33, quite possibly the highest found for any evolved object. Upper limits for the (18)O/(16)O and (17)O/(16)O ratios were found to be consistent with the values found in AGB stars. A search for other molecular species in M1-16 resulted in the detection of the high-excitation species HCN, CN, (13)CN, HCO(+), and H(13)CO(+) and possibly N2H(+). Both the HCO(+)/HCN and CN/HCN line-intensity ratios are enhanced, the former by a very large factor, over the values found in the envelopes of AGB

  15. A BIPOLAR OUTFLOW FROM THE MASSIVE PROTOSTELLAR CORE W51e2-E

    SciTech Connect

    Shi Hui; Han, J. L.; Zhao Junhui E-mail: hil@nao.cas.c

    2010-08-01

    We present high-resolution images of the bipolar outflow from W51e2, which are produced from the Submillimeter Array archival data observed for CO(3-2) and HCN(4-3) lines with angular resolutions of 0.''8 x 0.''6 and 0.''3 x 0.''2, respectively. The images show that the powerful outflow originates from the protostellar core W51e2-E rather than from the ultracompact H II region W51e2-W. The kinematic timescale of the outflow from W51e2-E is about 1000 yr, younger than the age ({approx}5000 yr) of the ultracompact H II region W51e2-W. A large mass-loss rate of {approx}1 x 10{sup -3} M{sub sun} yr{sup -1} and a high mechanical power of 120 L{sub sun} are inferred, suggesting that an O star or a cluster of B stars are forming in W51e2-E. The observed outflow activity along with the inferred large accretion rate indicates that at present W51e2-E is in a rapid phase of star formation.

  16. Hu 1-2: a metal-poor bipolar planetary nebula with fast collimated outflows

    NASA Astrophysics Data System (ADS)

    Fang, X.; Guerrero, M. A.; Miranda, L. F.; Riera, A.; Velázquez, P. F.; Raga, A. C.

    2015-09-01

    We present narrow-band optical and near-IR imaging and optical long-slit spectroscopic observations of Hu 1-2, a Galactic planetary nebula (PN) with a pair of [N II]-bright, fast-moving (>340 km s-1) bipolar knots. Intermediate-dispersion spectra are used to derive physical conditions and abundances across the nebula, and high-dispersion spectra to study the spatio-kinematical structure. Generally, Hu 1-2 has high He/H (≈0.14) and N/O ratios (≈0.9), typical of Type I PNe. On the other hand, its abundances of O, Ne, S, and Ar are low as compared with the average abundances of Galactic bulge and disc PNe. The position-velocity maps can be generally described as an hour-glass shaped nebula with bipolar expansion, although the morphology and kinematics of the innermost regions cannot be satisfactorily explained with a simple, tilted equatorial torus. The spatio-kinematical study confines the inclination angle of its major axis to be within 10° of the plane of sky. As in the irradiated bow-shocks of IC 4634 and NGC 7009, there is a clear stratification in the emission peaks of [O III], Hα, and [N II] in the north-west (NW) knot of Hu 1-2. Fast collimated outflows in PNe exhibit higher excitation than other low-ionization structures. This is particularly the case for the bipolar knots of Hu 1-2, with He II emission levels above those of collimated outflows in other Galactic PNe. The excitation of the knots in Hu 1-2 is consistent with the combined effects of shocks and UV radiation from the central star. The mechanical energy and luminosity of the knots are similar to those observed in the PNe known to harbour a post-common envelope (post-CE) close binary central star.

  17. Spiral-shells and nascent bipolar outflow in CIT 6: hints for an eccentric-orbit binary?

    NASA Astrophysics Data System (ADS)

    Kim, Hyosun; Liu, Sheng-Yuan; Hirano, Naomi; Zhao-Geisler, Ronny; Trejo, Alfonso; Yen, Hsi-Wei; Taam, Ronald E.; Kemper, Francisca; Kim, Jongsoo; Byun, Do-Young; Liu, Tie

    2016-07-01

    We present the essential results pointed out in a recently published paper, Kim et al. 2015, Astrophys. J., 814, 61. The carbon star CIT 6 reveals evidences for a binary in a high-resolution CO line emission map of its circumstellar envelope taken with the Submillimeter Array. The morphology of the outflow described by the spiral-shell pattern, bipolar (or possibly multipolar) outflow, one-sided interarm gaps, and double spiral feature point to a plausible scenario that CIT 6 is a binary system in an eccentric orbit with the mass losing star evolving from the AGB.

  18. Submillimeter array observations of NGC 2264-C: molecular outflows and driving sources

    NASA Astrophysics Data System (ADS)

    Cunningham, Nichol; Lumsden, Stuart L.; Cyganowski, Claudia J.; Maud, Luke T.; Purcell, Cormac

    2016-05-01

    We present 1.3 mm Submillimeter Array (SMA) observations at ˜3 arcsec resolution towards the brightest section of the intermediate/massive star-forming cluster NGC 2264-C. The millimetre continuum emission reveals ten 1.3 mm continuum peaks, of which four are new detections. The observed frequency range includes the known molecular jet/outflow tracer SiO (5-4), thus providing the first high-resolution observations of SiO towards NGC 2264-C. We also detect molecular lines of 12 additional species towards this region, including CH3CN, CH3OH, SO, H2CO, DCN, HC3N, and 12CO. The SiO (5-4) emission reveals the presence of two collimated, high-velocity (up to 30 km s-1 with respect to the systemic velocity) bipolar outflows in NGC 2264-C. In addition, the outflows are traced by emission from 12CO, SO, H2CO, and CH3OH. We find an evolutionary spread between cores residing in the same parent cloud. The two unambiguous outflows are driven by the brightest mm continuum cores, which are IR-dark, molecular line weak, and likely the youngest cores in the region. Furthermore, towards the Red MSX Source AFGL 989-IRS1, the IR-bright and most evolved source in NGC 2264-C, we observe no molecular outflow emission. A molecular line rich ridge feature, with no obvious directly associated continuum source, lies on the edge of a low-density cavity and may be formed from a wind driven by AFGL 989-IRS1. In addition, 229 GHz class I maser emission is detected towards this feature.

  19. Identification of the Exciting Source of CO Outflow in the Star-Formation Region GGD 12-15

    NASA Astrophysics Data System (ADS)

    Sato, Yaeko; Tamura, Motohide; Kandori, Ryo; Nakajima, Yasushi; Kusakabe, Nobuhiko; Hashimoto, Jun; Kudo, Tomoyuki; Saito, Hiroo; Kitamura, Yoshimi; Kawamura, Akiko; Nishiyama, Shogo; Sunada, Kazuyoshi; Ueno, Munetaka

    2008-12-01

    We present results of near-infrared imaging polarimetry of the GGD 12-15 region with the IRSF 1.4m telescope and the SIRIUS camera/SIRPOL polarimeter and mid-infrared imaging with the AKARI telescope and the Infra-Red Camera (IRC). Two infrared sources, IRS9E and IRS9M near an H2O maser source situated on both sides around a VLA source (VLA7), have been believed to be two bipolar lobes associated with a massive CO outflow. However, our polarimetric observations have revealed that IRS9E is stellar-like, and not part of a reflection nebula. Furthermore, IRS9M itself is not stellar, but a bipolar nebula, extending north-south. Both polarization vector maps and polarized intensity images show that the true illuminating source, IRS9Mc, is not resolved, and is situated near the peak of the intensity image. Our astrometry also indicates that the position of IRS9Mc does not coincide with the water maser position, but rather coincides with the VLA7 position. We suggest that the unresolved illuminating source IRS9Mc is the true exciting source of the CO outflow, corresponding to amid-infrared source detected by AKARI with a lower spatial resolution. Fluxes of the newly identified source at 1 to 11μm were derived by separating contributions from nearby infrared sources; the spectral energy distribution is consistent with that of a class I/0 source.

  20. Resolved Spectroscopy of a Gravitationally Lensed L^{*} Lyman Break Galaxy at z˜5: Evidence for a Starburst-Driven, Galactic-Scale Bi-Polar Outflow

    NASA Astrophysics Data System (ADS)

    Swinbank, M.

    2007-12-01

    We exploit the gravitational potential of a massive, rich cluster as a natural magnifying glass to study the internal properties of the highly magnified galaxy at z=4.88. Using high resolution HST imaging we construct a detailed mass model and, together with optical (VIMOS) and near-infrared (SINFONI) Integral Field Spectroscopy, we have mapped the source-frame morphology of the lensed galaxy behind galaxy cluster RCS0224-002 on 200pc scales to find an ˜L^{*} Lyman-break galaxy with a dynamical mass of 1.0×10^{10} M_{⊙} within 2 kpc and infer an integrated star-formation rate of just 12±2 M_{⊙} yr^{-1}. By combing the spatially resolved velocities from the [O II] and Lyα emission and UV ISM absorption lines we suggest that this galaxy is surrounded by a galactic-scale bi-polar outflow which has recently burst out of the system and is escaping at a speed of ˜500 km s^{-1}. The geometry and velocity of the outflow suggests that the ejected material is travelling far faster than escape velocity and we estimate that it will travel at least 1 Mpc (comoving) before eventually stalling. The enriched, outflowing material is therefore efficient at expelling baryons which are likely to subsequently play no further part in the star-formation history of this galaxy, but rather will pollute the IGM in a volume of at least 3Mpc^{3}.

  1. AN INFRARED-LUMINOUS MERGER WITH TWO BIPOLAR MOLECULAR OUTFLOWS: ALMA AND SMA OBSERVATIONS OF NGC 3256

    SciTech Connect

    Sakamoto, Kazushi; Aalto, Susanne; Combes, Francoise; Evans, Aaron; Peck, Alison

    2014-12-20

    We report Atacama Large Millimeter/sub-millimeter Array and Submillimeter Array observations of the infrared-luminous merger NGC 3256, the most luminous galaxy within z = 0.01. Both of the two merger nuclei separated by 5'' (0.8 kpc) have a molecular gas concentration, a nuclear disk, with Σ{sub mol} > 10{sup 3} M {sub ☉} pc{sup –2}. The northern nucleus is more massive and is surrounded by molecular spiral arms. Its nuclear disk is face-on, while the southern nuclear disk is almost edge-on. The high-velocity molecular gas in the system can be resolved into two molecular outflows from the two nuclei. The one from the northern nucleus is part of a starburst-driven superwind seen nearly pole-on. Its maximum velocity is >750 km s{sup –1} and its mass outflow rate is >60 M {sub ☉} yr{sup –1} for a conversion factor X{sub CO}=N{sub H{sub 2}}/I{sub CO(1−0)} of 1 × 10{sup 20} cm{sup –2} (K km s{sup –1}){sup –1}. The molecular outflow from the southern nucleus is a highly collimated bipolar jet seen nearly edge-on. Its line-of-sight velocity increases with distance, out to 300 pc from the nucleus, to the maximum de-projected velocity of ∼2000 km s{sup –1} for the estimated inclination and ≳1000 km s{sup –1} taking into account the uncertainty. Its mass outflow rate is estimated to be >50 M {sub ☉} yr{sup –1} for the same X {sub CO}. This southern outflow has indications of being driven by a bipolar radio jet from an active galactic nucleus that recently weakened. The sum of these outflow rates, although subject to the uncertainty in the molecular mass estimate, either exceeds or compares to the total star formation rate. The feedback from nuclear activity through molecular outflows is therefore significant in the gas consumption, and hence evolution, of this system.

  2. On the possible bipolar nature of 21 micron IRAS sources

    NASA Technical Reports Server (NTRS)

    Hrivnak, Bruce J.; Kwok, S.

    1991-01-01

    The discovery of another IRAS source (22574 + 6609) showing the unidentified 21-micron emission feature is reported. Its overall energy distribution is similar to the well-known edge-on bipolar nebulae AFGL 2688 and AFGL 618. Ground-based optical and infrared observations of this object and two other 21-micron sources show that while all three have very similar infrared properties, they differ greatly in the visual region. All three of these 21-micron sources are intrinsically similar bipolar nebulae, viewed at different orientations.

  3. Evaluation of nitrous acid sources and sinks in urban outflow

    NASA Astrophysics Data System (ADS)

    Gall, Elliott T.; Griffin, Robert J.; Steiner, Allison L.; Dibb, Jack; Scheuer, Eric; Gong, Longwen; Rutter, Andrew P.; Cevik, Basak K.; Kim, Saewung; Lefer, Barry; Flynn, James

    2016-02-01

    Intensive air quality measurements made from June 22-25, 2011 in the outflow of the Dallas-Fort Worth (DFW) metropolitan area are used to evaluate nitrous acid (HONO) sources and sinks. A two-layer box model was developed to assess the ability of established and recently identified HONO sources and sinks to reproduce observations of HONO mixing ratios. A baseline model scenario includes sources and sinks established in the literature and is compared to scenarios including three recently identified sources: volatile organic compound-mediated conversion of nitric acid to HONO (S1), biotic emission from the ground (S2), and re-emission from a surface nitrite reservoir (S3). For all mechanisms, ranges of parametric values span lower- and upper-limit values. Model outcomes for 'likely' estimates of sources and sinks generally show under-prediction of HONO observations, implying the need to evaluate additional sources and variability in estimates of parameterizations, particularly during daylight hours. Monte Carlo simulation is applied to model scenarios constructed with sources S1-S3 added independently and in combination, generally showing improved model outcomes. Adding sources S2 and S3 (scenario S2/S3) appears to best replicate observed HONO, as determined by the model coefficient of determination and residual sum of squared errors (r2 = 0.55 ± 0.03, SSE = 4.6 × 106 ± 7.6 × 105 ppt2). In scenario S2/S3, source S2 is shown to account for 25% and 6.7% of the nighttime and daytime budget, respectively, while source S3 accounts for 19% and 11% of the nighttime and daytime budget, respectively. However, despite improved model fit, there remains significant underestimation of daytime HONO; on average, a 0.15 ppt/s unknown daytime HONO source, or 67% of the total daytime source, is needed to bring scenario S2/S3 into agreement with observation. Estimates of 'best fit' parameterizations across lower to upper-limit values results in a moderate reduction of the unknown

  4. On the Thermal Line Emission from the Outflows in Ultraluminous X-Ray Sources

    NASA Astrophysics Data System (ADS)

    Xu, Ya-Di; Cao, Xinwu

    2016-08-01

    The atomic features in the X-ray spectra of ultraluminous X-ray sources (ULXs) may be associated with the outflow, which may provide a way to explore the physics of the ULXs. We construct a conical outflow model and calculate the thermal X-ray Fe emission lines from the outflows. Our results show that thermal line luminosity decreases with increasing outflow velocity and/or opening angle of the outflow for a fixed kinetic power of the outflows. Assuming the kinetic power of the outflows to be comparable with the accretion power in the ULXs, we find that the equivalent width can be several eV for the thermal X-ray Fe emission line from the outflows in the ULXs with stellar-mass black holes. The thermal line luminosity is proportional to 1/M bh (M bh is the black hole mass of the ULX). The equivalent width decreases with the black hole mass, which implies that the Fe line emission from the outflows can hardly be detected if the ULXs contain intermediate-mass black holes. Our results suggest that the thermal X-ray Fe line emission should be preferentially be detected in the ULXs with high kinetic power slowly moving outflows from the accretion disks surrounding stellar-mass black holes/neutron stars. The recently observed X-ray atomic features of the outflows in a ULX may imply that it contains a stellar-mass black hole.

  5. Caught in the Act: Imaging the Disk and Outflows in V Hya, a carbon-rich AGB star in transition to a Bipolar Pre-Planetary Nebula

    NASA Astrophysics Data System (ADS)

    Sahai, Raghvendra; Rajagopal, Jayadev; Morris, Mark; Hinkle, Kenneth H.; Joyce, Richard R.

    2015-01-01

    The carbon star V Hya is experiencing heavy mass loss as it undergoes the transition from AGB star to a bipolar pre-planetary nebula (PPN). V Hya is possibly the earliest object known in this brief phase, which is so short that few nearby stars are likely to be caught in the act. Using STIS/HST we discovered a high velocity (>200 km/s) blob that was ejected very recently from near (<0.3 arcsec) the star and measured its proper motion. We found time-variable high-velocity absorption features in the CO 4.6 micron vibration-rotation lines from a multi-epoch study - modelling shows that these are produced in compact clumps of outflowing gas with significant temperature gradients. Millimeter wave interferometry with 3.5 arcsec resolution shows that the high-velocity outflow is collimated and bipolar. The STIS data and recent mid-infrared interferometry also suggest the presence of a small (<0.55 arcsec size) circumstellar disk.We report new observations to investigate V Hya's high-velocity outflow and disk with STIS (HST) and GPI (Gemini South). Our STIS data show that the high-velocity outflow emission has weakened significantly over a 12-year period. Our Y-band coronagraphic polarimetric imaging with GPI reveals the presence of an inclined disk in scattered light, aligned roughly north-south, i.e., orthogonal to the high-velocity outflow. We discuss the implications of these results for the disk/outflow system in V Hya in particular, and in nascent PPNe, in general.

  6. Bipolar outflows as a repulsive gravitational phenomenon — Azimuthally Symmetric Theory of Gravitation (II)

    NASA Astrophysics Data System (ADS)

    Nyambuya, Golden Gadzirayi

    2010-11-01

    This paper is part of a series on the Azimuthally Symmetric Theory of Gravitation (ASTG). This theory is built on Laplace-Poisson's well known equation and it has been shown that the ASTG is capable of explaining, from a purely classical physics standpoint, the precession of the perihelion of solar planets as a consequence of the azimuthal symmetry emerging from the spin of the Sun. This symmetry has and must have an influence on the emergent gravitational field. We show herein that the emergent equations from the ASTG, under some critical conditions determined by the spin, do possess repulsive gravitational fields in the polar regions of the gravitating body in question. This places the ASTG on an interesting pedestal to infer the origins of outflows as a repulsive gravitational phenomenon. Outflows are a ubiquitous phenomenon found in star forming systems and their true origin is a question yet to be settled. Given the current thinking on their origin, the direction that the present paper takes is nothing short of an asymptotic break from conventional wisdom; at the very least, it is a complete paradigm shift because gravitation is not at all associated with this process, but rather it is thought to be an all-attractive force that only tries to squash matter together onto a single point. Additionally, we show that the emergent Azimuthally Symmetric Gravitational Field from the ASTG strongly suggests a solution to the supposed Radiation Problem that is thought to be faced by massive stars in their process of formation. That is, at ~ 8-10 , radiation from the nascent star is expected to halt the accretion of matter. We show that in-falling material will fall onto the equatorial disk and from there, this material will be channeled onto the forming star via the equatorial plane, thus accretion of mass continues well past the value of ~ 8-10 , albeit via the disk. Along the equatorial plane, the net force (with the radiation force included) on any material there

  7. Solar Jets as Sources of Outflows, Heating and Waves

    NASA Astrophysics Data System (ADS)

    Nishizuka, N.

    2013-05-01

    Recent space solar observations of the Sun, such as Hinode and SDO, have revealed that magnetic reconnection is ubiquitous in the solar atmosphere, ranging from small scale reconnection (observed as nanoflares) to large scale one (observed as long duration flares or giant arcades). Especially recent Hinode observations has found various types of tiny chromospheric jets, such as chromospheric anemone jets, penumbral microjets and light bridge jets from sunspot umbra. It was also found that the corona is full of tiny X-ray jets. Often they are seen as helical spinning jets with Alfvenic waves in the corona. Sometimes they are seen as chromospheric jets with slow-mode magnetoacoustic waves and sometimes as unresolved jet-like events at the footpoint of recurrent outflows and waves at the edge of the active region. There is increasing evidence of magnetic reconnection in these tiny jets and its association with waves. The origin of outflows and waves is one of the issues concerning coronal heating and solar wind acceleration. To answer this question, we had a challenge to reproduce solar jets with laboratory plasma experiment and directly measured outflows and waves. As a result, we could find a propagating wave excited by magnetic reconnection, whose energy flux is 10% of the released magnetic energy. That is enough for solar wind acceleration and locally enough for coronal heating, consistent with numerical MHD simulations of solar jets. Here we would discuss recent observations with Hinode, theories and experimental results related to jets and waves by magnetic reconnection, and discuss possible implication to reconnection physics, coronal heating and solar wind acceleration.

  8. Martian outflow channels: How did their source aquifers form, and why did they drain so rapidly?

    PubMed Central

    Rodriguez, J. Alexis P.; Kargel, Jeffrey S.; Baker, Victor R.; Gulick, Virginia C.; Berman, Daniel C.; Fairén, Alberto G.; Linares, Rogelio; Zarroca, Mario; Yan, Jianguo; Miyamoto, Hideaki; Glines, Natalie

    2015-01-01

    Catastrophic floods generated ~3.2 Ga by rapid groundwater evacuation scoured the Solar System’s most voluminous channels, the southern circum-Chryse outflow channels. Based on Viking Orbiter data analysis, it was hypothesized that these outflows emanated from a global Hesperian cryosphere-confined aquifer that was infused by south polar meltwater infiltration into the planet’s upper crust. In this model, the outflow channels formed along zones of superlithostatic pressure generated by pronounced elevation differences around the Highland-Lowland Dichotomy Boundary. However, the restricted geographic location of the channels indicates that these conditions were not uniform Boundary. Furthermore, some outflow channel sources are too high to have been fed by south polar basal melting. Using more recent mission data, we argue that during the Late Noachian fluvial and glacial sediments were deposited into a clastic wedge within a paleo-basin located in the southern circum-Chryse region, which was then completely submerged under a primordial northern plains ocean. Subsequent Late Hesperian outflow channels were sourced from within these geologic materials and formed by gigantic groundwater outbursts driven by an elevated hydraulic head from the Valles Marineris region. Thus, our findings link the formation of the southern circum-Chryse outflow channels to ancient marine, glacial, and fluvial erosion and sedimentation. PMID:26346067

  9. Martian outflow channels: How did their source aquifers form, and why did they drain so rapidly?

    NASA Astrophysics Data System (ADS)

    Rodriguez, J. Alexis P.; Kargel, Jeffrey S.; Baker, Victor R.; Gulick, Virginia C.; Berman, Daniel C.; Fairén, Alberto G.; Linares, Rogelio; Zarroca, Mario; Yan, Jianguo; Miyamoto, Hideaki; Glines, Natalie

    2015-09-01

    Catastrophic floods generated ~3.2 Ga by rapid groundwater evacuation scoured the Solar System’s most voluminous channels, the southern circum-Chryse outflow channels. Based on Viking Orbiter data analysis, it was hypothesized that these outflows emanated from a global Hesperian cryosphere-confined aquifer that was infused by south polar meltwater infiltration into the planet’s upper crust. In this model, the outflow channels formed along zones of superlithostatic pressure generated by pronounced elevation differences around the Highland-Lowland Dichotomy Boundary. However, the restricted geographic location of the channels indicates that these conditions were not uniform Boundary. Furthermore, some outflow channel sources are too high to have been fed by south polar basal melting. Using more recent mission data, we argue that during the Late Noachian fluvial and glacial sediments were deposited into a clastic wedge within a paleo-basin located in the southern circum-Chryse region, which was then completely submerged under a primordial northern plains ocean. Subsequent Late Hesperian outflow channels were sourced from within these geologic materials and formed by gigantic groundwater outbursts driven by an elevated hydraulic head from the Valles Marineris region. Thus, our findings link the formation of the southern circum-Chryse outflow channels to ancient marine, glacial, and fluvial erosion and sedimentation.

  10. Martian outflow channels: How did their source aquifers form, and why did they drain so rapidly?

    PubMed

    Rodriguez, J Alexis P; Kargel, Jeffrey S; Baker, Victor R; Gulick, Virginia C; Berman, Daniel C; Fairén, Alberto G; Linares, Rogelio; Zarroca, Mario; Yan, Jianguo; Miyamoto, Hideaki; Glines, Natalie

    2015-01-01

    Catastrophic floods generated ~3.2 Ga by rapid groundwater evacuation scoured the Solar System's most voluminous channels, the southern circum-Chryse outflow channels. Based on Viking Orbiter data analysis, it was hypothesized that these outflows emanated from a global Hesperian cryosphere-confined aquifer that was infused by south polar meltwater infiltration into the planet's upper crust. In this model, the outflow channels formed along zones of superlithostatic pressure generated by pronounced elevation differences around the Highland-Lowland Dichotomy Boundary. However, the restricted geographic location of the channels indicates that these conditions were not uniform. Furthermore, some outflow channel sources are too high to have been fed by south polar basal melting. Using more recent mission data, we argue that during the Late Noachian fluvial and glacial sediments were deposited into a clastic wedge within a paleo-basin located in the southern circum-Chryse region, which at the time was completely submerged under a primordial northern plains ocean [corrected]. Subsequent Late Hesperian outflow channels were sourced from within these geologic materials and formed by gigantic groundwater outbursts driven by an elevated hydraulic head from the Valles Marineris region. Thus, our findings link the formation of the southern circum-Chryse outflow channels to ancient marine, glacial, and fluvial erosion and sedimentation. PMID:26346067

  11. Outflow in global magnetohydrodynamics as a function of a passive inner boundary source

    NASA Astrophysics Data System (ADS)

    Welling, D. T.; Liemohn, M. W.

    2014-04-01

    Numerous studies of the terrestrial magnetosphere that use global magnetohydrodynamic codes have found that the model's inner boundary can act as a significant source of plasma, even if the radial velocity about the boundary is held at zero. Though inherent in many models, this "de facto outflow" is poorly understood. This work uses the Block Adaptive Tree Solar Wind Roe-type Upwind Scheme MHD model to investigate the behavior of this type of outflow as a function of boundary conditions and solar wind drivers. It is found that even for temporally and spatially constant boundary conditions, the mass is accelerated away from the body in a dynamic manner. Fluxes organize into cusp, polar cap, and auroral zone concentrations. Pressure gradient forces appear predominantly responsible for cusp and polar cap outflow, while the Lorentz force, resulting from field-aligned current systems, is the strongest driver of outflow in other regions. Integrated fluxes probed just outside of the inner boundary vary linearly as a function of cross polar cap potential and solar wind dynamic pressure. The resulting dynamics strongly resemble patterns found in in situ measurements, while net fluences agree within an order of magnitude. Two free parameters, inner boundary mass density and composition, can strongly affect results. Accounting for these unknowns is likely best left to physics-based or empirical specifications of outflow. Despite this, such outflow appears to be an acceptable proxy.

  12. Jet rotation: Launching region, angular momentum balance and magnetic properties in the bipolar outflow from RW Aur

    NASA Astrophysics Data System (ADS)

    Woitas, J.; Bacciotti, F.; Ray, T. P.; Marconi, A.; Coffey, D.; Eislöffel, J.

    2005-03-01

    Using STIS on board the HST we have obtained a spectroscopic map of the bipolar jet from RW Aur with the slit parallel to the jet axis and moved across the jet in steps of 0.07 arcsec. After applying a velocity correction due to uneven slit illumination we find signatures of rotation within the first 300 AU of the jet (1.5 arcsec at the distance of RW Aur). Both lobes rotate in the same direction (i.e. with different helicities), with toroidal velocities in the range 5-30 km s-1 at 20 and 30 AU from the symmetry axis in the blueshifted and redshifted lobes, respectively. The sense of rotation is anti-clockwise looking from the tip of the blue lobe (PA 130° north to east) down to the star. Rotation is more evident in the [OI] and [NII] lines and at the largest sampled distance from the axis. These results are consistent with other STIS observations carried out with the slit perpendicular to the jet axis, and with theoretical simulations. Using current magneto-hydrodynamic models for the launch of the jets, we find that the mass ejected in the observed part of the outflow is accelerated from a region in the disk within about 0.5 AU from the star for the blue lobe, and within 1.6 AU from the star for the red lobe. Using also previous results we estimate upper and lower limits for the angular momentum transport rate of the jet. We find that this can be a large fraction (two thirds or more) of the estimated rate transported through the relevant portion of the disk. The magnetic lever arm (defined as the ratio rA/r0 between the Alfvèn and footpoint radii) is in the range 3.5-4.6 (with an accuracy of 20-25%), or, alternatively, the ejection index ξ = dln (dot{M}acc ) / d r is in the range 0.025-0.046 (with similar uncertainties). The derived values are in the range predicted by the models, but they also suggest that some heating must be provided at the base of the flow. Finally, using the general disk wind theory we derive the ratio Bφ / Bp of the toroidal and

  13. The radio source and bipolar nebulosity in the Seyfert galaxy NGC 3516

    NASA Technical Reports Server (NTRS)

    Miyaji, Takamitsu; Wilson, Andrew S.; Perez-Fournon, Ismael

    1992-01-01

    Results of radio continuum and optical emission-line observations of the type 1 Seyfert galaxy NGC 3516 are presented. The radio maps reveal an elongated one-sided curved structure, which comprises a series of small-scale 'blobs' and extends up to 4 kpc from the nucleus. This radio structure is aligned and cospatial with one side of the double-sided and highly symmetric Z-shaped emission-line structure. It is argued that these morphological features are associated with a bipolar gaseous outflow from the nucleus of NGC 3516. The radio 'blobs' are elongated roughly perpendicular to the apparent local direction of the outflow, a result which is interpreted in terms of synchrotron emission from outflow-driven shock waves.

  14. Geochemistry and source waters of rock glacier outflow, Colorado Front Range

    USGS Publications Warehouse

    Williams, M.W.; Knauf, M.; Caine, N.; Liu, F.; Verplanck, P.L.

    2006-01-01

    We characterize the seasonal variation in the geochemical and isotopic content of the outflow of the Green Lake 5 rock glacier (RG5), located in the Green Lakes Valley of the Colorado Front Range, USA. Between June and August, the geochemical content of rock glacier outflow does not appear to differ substantially from that of other surface waters in the Green Lakes Valley. Thus, for this alpine ecosystem at this time of year there does not appear to be large differences in water quality among rock glacier outflow, glacier and blockslope discharge, and discharge from small alpine catchments. However, in September concentrations of Mg2+ in the outflow of the rock glacier increased to more than 900 ??eq L-1 compared to values of less than 40 ??eq L-1 at all the other sites, concentrations of Ca2+ were greater than 4,000 ??eq L-1 compared to maximum values of less than 200 ??eq L-1 at all other sites, and concentrations of SO42- reached 7,000 ??eq L-1, compared to maximum concentrations below 120 ??eq L-1 at the other sites. Inverse geochemical modelling suggests that dissolution of pyrite, epidote, chlorite and minor calcite as well as the precipitation of silica and goethite best explain these elevated concentrations of solutes in the outflow of the rock glacier. Three component hydrograph separation using end-member mixing analysis shows that melted snow comprised an average of 30% of RG5 outflow, soil water 32%, and base flow 38%. Snow was the dominant source water in June, soil water was the dominant water source in July, and base flow was the dominant source in September. Enrichment of ?? 18O from - 10??? in the outflow of the rock glacier compared to -20??? in snow and enrichment of deuterium excess from +17.5??? in rock glacier outflow compared to +11??? in snow, suggests that melt of internal ice that had undergone multiple melt/freeze episodes was the dominant source of base flow. Copyright ?? 2005 John Wiley & Sons, Ltd.

  15. A bipolar outflow of ionized gas in K3-50A: H76 alpha radio recombination line and continuum observations of K3-50

    NASA Technical Reports Server (NTRS)

    Depree, C. G.; Goss, W. M.; Palmer, Patrick; Rubin, Robert H.

    1994-01-01

    The H II regions near K3-50 (G70.3 + 1.6) have been imaged at high angular resolution (approximately 1 sec .3) in the continuum and the recombination lines H76(sub alpha and He76(sub alpha) using the Very Large Array (VLA). The helium line is detected in only the brightest component K3-50A while the hydrogen line is detected in three components (K3-50A, B and C1). K3-50A shows a pronounced velocity gradient of approximately 150 km/sec/pc along its major axis (P.A. = 160 deg); in addition a wide range of line widths are observed, from 20 to 65 km/sec. Kinematics from the line data and the morphology of the continuum emission suggest that the ionized material associated with K3-50A is undergoing a high-velocity bipolar outflow.

  16. Raman-scattered O VI λ1032 and He II λ1025 and Bipolar Outflow in the Symbiotic Star V455 Sco

    NASA Astrophysics Data System (ADS)

    Heo, Jeong-Eun; Angeloni, Rodolfo; Di Mille, Francesco; Palma, Tali; Chang, Seok-Jun; Hong, Chae-Lin; Lee, Hee-Won

    2016-07-01

    Raman-scattering by atomic hydrogen is a unique spectroscopic process that may probe the mass transfer and mass loss phenomena in symbiotic stars(SSs). In the optical high- resolution spectra of the S-type SS V455 Sco, we note the presence of two Raman-scattered features, one at around 6825 Å with a triple-peak profile formed from Raman-scattering of O VI λ1032 and the other Raman-scattered He II λ1025 at around 6545 Å. Adopting an accretion flow model with additional contribution from a collimated bipolar outflow, we propose that the blue and central peaks are contributed from the accretion flow and the bipolar flow is responsible for the remaining red peak. With the absence of [N II] λ6548, the Raman-scattered He II λ1025 at around 6545 Å is immersed in the broad Ha wings that appear to be formed by Raman-scattering of far-UV continuum near Lyman series.

  17. Source apportionment of light absorbing WSOC in South Asian outflow

    NASA Astrophysics Data System (ADS)

    Bosch, Carme; Kirillova, Elena; Andersson, August; Kruså, Martin; Budhavant, Krishnakant; Tiwari, Suresh; Gustafsson, Örjan

    2013-04-01

    Carbonaceous aerosols (CA) formed over South Asia are of special concern for human health and regional climate impacts. Anthropogenic emissions forming CA are generally high throughout the region and particularly over the Indo-Gangetic Plain. The net effects of CA on radiative climate forcing are still uncertain. One of the components of CA is black carbon (BC), dominated by soot-like elemental carbon, a strong absorber of solar radiation. Another component is organic carbon (OC), traditionally considered as a light scattering particle. However, recent field studies have shown OC to absorb at lower wavelengths. Thus OC, in addition to BC, may also contribute to light absorption and have a positive direct radiative effect on climate. Light absorbing organic aerosol is usually termed brown carbon (BrC). A significant fraction of BrC is water-soluble, therefore its dissolution into clouds could result in absorbing droplets that affect the cloud absorption and thus contributing to the indirect aerosol climate effects. In this study, light absorption and δ13C + Δ14C isotopic measurements of WSOC were studied in fine aerosols (PM 2.5) at two sites during early pre-monsoon season. New Delhi, one of the most densely populated and industrialized urban megacities in South Asia, was chosen to represent a strong source and Maldives Climate Observatory at Hanimaadhoo (MCOH) was chosen as a regional receptor which in wintertime is located downwind of the Indian subcontinent. Sampling in Delhi was done from mid-February to mid-March 2011 and in MCOH during March 2012. WSOC concentrations were 12±4.5 and 0.71±0.30 μg m-3 in Delhi and MCOH respectively. Whereas in Delhi WSOC contributed 31±4% of total organic carbon, this contribution was slightly higher in MCOH (40±12%). Light absorption by WSOC exhibited strong wavelength (?) dependence. In Maldives, WSOC Absorption Ångström Exponent (AAE) was found to be 6.9±0.4 and Mass Absorption Efficiency (MAE) measured at 365 nm

  18. ALMA OBSERVATIONS OF THE MASSIVE MOLECULAR OUTFLOW G331.512-0.103

    SciTech Connect

    Merello, Manuel; Bronfman, Leonardo; Garay, Guido; Lo, Nadia; Evans, Neal J. II; Nyman, Lars-Ake; Cortes, Juan R.; Cunningham, Maria R.

    2013-09-01

    The object of this study is one of the most energetic and luminous molecular outflows known in the Galaxy, G331.512-0.103. Observations with ALMA Band 7 (350 GHz; 0.86 mm) reveal a very compact, extremely young bipolar outflow and a more symmetric outflowing shocked shell surrounding a very small region of ionized gas. The velocities of the bipolar outflow are about 70 km s{sup -1} on either side of the systemic velocity. The expansion velocity of the shocked shell is {approx}24 km s{sup -1}, implying a crossing time of about 2000 yr. Along the symmetry axis of the outflow, there is a velocity feature, which could be a molecular ''bullet'' of high-velocity dense material. The source is one of the youngest examples of massive molecular outflow found associated with a high-mass star.

  19. Infrared and optical imaging of IRAS sources with CO outflow - A snapshot of early star formation

    NASA Technical Reports Server (NTRS)

    Chen, H.; Tokunaga, A. T.; Strom, K. M.; Hodapp, K.-W.

    1993-01-01

    We present multiband imaging of three IRAS sources associated with CO molecular outflows. We find stellar density enhancements around all three IRAS sources. Optical and near-IR photometry indicates that at least 60 percent of the near-IR sources in the vicinity of the IRAS sources are pre-main-sequence stars. Using the photometric data at nbL and M, we are able to identify candidates for the near-IR counterparts of the IRAS sources. We also find that (1) the spectral energy distribution of the deeply embedded sources could be complicated by source confusion and scattered light from the young stellar objects; (2) star formation in the vicinity of the IRAS sources is a continuous process with an age span of 0.5-3 Myr; and (3) stellar density enhancement is probably a phenomenon found at the earliest stage of star formation.

  20. A spectacular molecular outflow in the Monoceros OB1 molecular cloud

    NASA Technical Reports Server (NTRS)

    Margulis, Michael; Lada, Charles J.; Hasegawa, Tetsuo; Hayashi, Saeko S.; Hayashi, Masihiko

    1990-01-01

    Detailed observations of CO, CS, IR continuum, and H2 emission from a large, highly collimated, bipolar outflow in the Monoceros OB1 molecular cloud are presented. The CO observations suggest that molecular gas in the outflow is contained in a shell with higher velocity material situated interior to lower velocity material. The velocities of outflow emission are found to increase with increasing distance from the center of the outflow. Additional detections include shock-excited molecular hydrogen emission from the blueshifted lobe of the outflow and six 2-micron sources in the direction of the outflow. Near-IR and IRAS observations suggest that the driving source for the outflow must have a bolometric luminosity below about 4.5 solar luminosities. It is concluded that the flow is probably not driven by stellar radiation from a central source.

  1. Seasonal variability of organic matter composition in an Alaskan glacier outflow: insights into glacier carbon sources

    NASA Astrophysics Data System (ADS)

    Spencer, Robert G. M.; Vermilyea, Andrew; Fellman, Jason; Raymond, Peter; Stubbins, Aron; Scott, Durelle; Hood, Eran

    2014-05-01

    Glacier ecosystems are a significant source of bioavailable, yet ancient dissolved organic carbon (DOC). Characterizing DOC in Mendenhall Glacier outflow (southeast Alaska) we document a seasonal persistence to the radiocarbon-depleted signature of DOC, highlighting ancient DOC as a ubiquitous feature of glacier outflow. We observed no systematic depletion in Δ 14C-DOC with increasing discharge during the melt season that would suggest mobilization of an aged subglacial carbon store. However, DOC concentration, δ 13C-DOC, Δ 14C-DOC and fluorescence signatures appear to have been influenced by runoff from vegetated hillslopes above the glacier during onset and senescence of melt. In the peak glacier melt period, the Δ 14C-DOC of stream samples at the outflow (-181.7 to -355.3‰) was comparable to the Δ 14C-DOC for snow samples from the accumulation zone (-207.2 to -390.9‰), suggesting that ancient DOC from the glacier surface is exported in glacier runoff. The pre-aged DOC in glacier snow and runoff is consistent with contributions from fossil fuel combustion sources similar to those documented previously in ice cores and thus provides evidence for anthropogenic perturbation of the carbon cycle. Overall, our results emphasize the need to further characterize DOC inputs to glacier ecosystems, particularly in light of predicted changes in glacier mass and runoff in the coming century.

  2. Reverse electrodialysis using bipolar ion-exchange membranes as a source of electric energy

    SciTech Connect

    Pivovarov, N.Ya.; Greben`, V.P.; Kovarskii, N.Ya.

    1994-06-01

    It is established that, in the regime of the H{sup +} and OH{sup {minus}} ions recombination, voltage on the bipolar membranes and the efficiency of the latter, as a transformer of chemical energy into electric, increases in the series of ionogen groups contained in the bipolar region. This is due to an increase in the recombination rate constants in the bipolar contact for the H{sup +} and OH{sup {minus}} ions. As the sodium and chlorine ions penetrate the bipolar transition region, they sharply decrease the membrane potential and the voltage drop on the bipolar membranes, because the ionogen groups turn into salt form, which is catalytically inactive in the H{sup +} and OH{sup {minus}} ions recombination reaction. It is shown that the source of current, containing the MB-24 (bipolar), MF-4sk (cation-exchange), and AMV (anion-exchange) ion-exchange membranes, has a specific power of 0.11 W/dm{sup 2} (calculated in terms of one bipolar membrane) and efficiency of 29% for 0.5 M solution of hydrochloric acid and sodium hydroxide, and 0.5 A/dm{sup 2} current density.

  3. Active region plasma outflows as sources of slow/intermediate solar wind

    NASA Astrophysics Data System (ADS)

    van Driel-Gesztelyi, Lidia M.

    2015-08-01

    L. van Driel-Gesztelyi (1,2,3), D. Baker (1), P. Démoulin (2), Culhane, J.L. (1), M.L. DeRosa (4) C.H. Mandrini (5,6), D.H. Brooks (7), A.N. Fazakerley (1), L.K. Harra (1), L. Zhao (7), T.H. Zurbuchen (7), F.A. Nuevo (5,6), A.M. Vásquez (5,6), G.D. Cristiani (5,6) M. Pick (2)1) UCL/MSSL, UK, (2) Paris Observatory, LESIA, CNRS, France, (3) Konkoly Observatory, Hungary, (4) Lockheed Martin Solar and Astrophysics Laboratory, USA, (5) IAFE, CONICET-UBA, Argentina (6) FCEN, UBA, Argentina (7) Dept. of Atmospheric, Oceanic and Earth Sciences, Univ. of Michigan, USAWe analyse plasma upflows of tens of km/s from the edges of solar active regions discovered by Hinode/EIS and investigate whether or not they become outflows, i.e. find their way into the solar wind. We analyse two magnetic configurations: bipolar and quadrupolar and find that the active region plasma may be directly channeled into the solar wind via interchange reconnection at a high-altitude null point above the active region especially when active regions are located besides coronal holes or in a more complex way via multiple reconnections even from under a closed helmet streamer. We relate the solar observations to in-situ slow/intermediate solar wind streams.

  4. ALMA OBSERVATIONS OF THE OUTFLOW FROM SOURCE I IN THE ORION-KL REGION

    SciTech Connect

    Zapata, Luis A.; Rodriguez, Luis F.; Loinard, Laurent; Schmid-Burgk, Johannes; Menten, Karl M.; Curiel, Salvador

    2012-07-20

    In this Letter, we present sensitive millimeter SiO (J = 5-4; {nu} = 0) line observations of the outflow arising from the enigmatic object Orion Source I made with the Atacama Large Millimeter/Submillimeter Array (ALMA). The observations reveal that at scales of a few thousand AU, the outflow has a marked 'butterfly' morphology along a northeast-southwest axis. However, contrary to what is found in the SiO and H{sub 2}O maser observations at scales of tens of AU, the blueshifted radial velocities of the moving gas are found to the northwest, while the redshifted velocities are in the southeast. The ALMA observations are complemented with SiO (J = 8-7; {nu} = 0) maps (with a similar spatial resolution) obtained with the Submillimeter Array. These observations also show a similar morphology and velocity structure in this outflow. We discuss some possibilities to explain these differences at small and large scales across the flow.

  5. Very low-luminosity Class I/flat outflow sources in σ Orionis

    NASA Astrophysics Data System (ADS)

    Riaz, B.; Thompson, M.; Whelan, E. T.; Lodieu, N.

    2015-01-01

    We present an optical to submillimetre multiwavelength study of two very low-luminosity Class I/flat systems, Mayrit 1701117 and Mayrit 1082188, in the σ Orionis cluster. We performed moderate-resolution (R ˜ 1000) optical (˜0.4-0.9 μm) spectroscopy with the Cassegrain Twin Spectrograph (TWIN) spectrograph at the Calar Alto 3.5-m telescope. The spectra for both sources show prominent emission in accretion- and outflow-associated lines. The mean accretion rate measured from multiple line diagnostics is 6.4 × 10-10 M⊙ yr-1 for Mayrit 1701117 and 2.5 × 10-10 M⊙ yr-1 for Mayrit 1082188. The outflow mass-loss rates for the two systems are similar and estimated to be ˜1 × 10-9 M⊙ yr-1. The activity rates are within the range observed for low-mass Class I protostars. We obtained submillimetre continuum observations with the Submillimetre Common-User Bolometer Array (SCUBA-2) bolometer at the James Clerk Maxwell Telescope. Both objects are detected at a ≥5σ level in the SCUBA-2 850-μm band. The bolometric luminosity of the targets as measured from the observed spectral energy distribution over ˜0.8-850 μm is 0.18 ± 0.04 L⊙ for Mayrit 1701117 and 0.16 ± 0.03 L⊙ for Mayrit 1082188 and is in the very low mass range. The total dust+gas mass derived from submillimetre fluxes is ˜36 MJup and ˜22 MJup for Mayrit 1701117 and Mayrit 1082188, respectively. There is the possibility that some of the envelope material might be dissipated by the strong outflows driven by these sources, resulting in a final mass of the system close to or below the substellar limit.

  6. Fossil and Nonfossil Sources of Organic and Elemental Carbon Aerosols in the Outflow from Northeast China.

    PubMed

    Zhang, Yan-Lin; Kawamura, Kimitaka; Agrios, Konstantinos; Lee, Meehye; Salazar, Gary; Szidat, Sönke

    2016-06-21

    Source quantification of carbonaceous aerosols in the Chinese outflow regions still remains uncertain despite their high mass concentrations. Here, we unambiguously quantified fossil and nonfossil contributions to elemental carbon (EC) and organic carbon (OC) of total suspended particles (TSP) from a regional receptor site in the outflow of Northeast China using radiocarbon measurement. OC and EC concentrations were lower in summer, representing mainly marine air, than in other seasons, when air masses mostly traveled over continental regions in Mongolia and northeast China. The annual-mean contribution from fossil-fuel combustion to EC was 76 ± 11% (0.1-1.3 μg m(-3)). The remaining 24 ± 11% (0.03-0.42 μg m(-3)) was attributed to biomass burning, with slightly higher contribution in the cold period (∼31%) compared to the warm period (∼21%) because of enhanced emissions from regional biomass combustion sources in China. OC was generally dominated by nonfossil sources, with an annual average of 66 ± 11% (0.5-2.8 μg m(-3)), approximately half of which was apportioned to primary biomass-burning sources (34 ± 6%). In winter, OC almost equally originated from primary OC (POC) emissions and secondary OC (SOC) formation from fossil fuel and biomass-burning sources. In contrast, summertime OC was dominated by primary biogenic emissions as well as secondary production from biogenic and biomass-burning sources, but fossil-derived SOC was the smallest contributor. Distinction of POC and SOC was performed using primary POC-to-EC emission ratios separated for fossil and nonfossil emissions. PMID:27203471

  7. Resolved atomic lines reveal outflows in two ultraluminous X-ray sources

    NASA Astrophysics Data System (ADS)

    Pinto, Ciro; Middleton, Matthew J.; Fabian, Andrew C.

    2016-05-01

    Ultraluminous X-ray sources are extragalactic, off-nucleus, point sources in galaxies, and have X-ray luminosities in excess of 3 × 1039 ergs per second. They are thought to be powered by accretion onto a compact object. Possible explanations include accretion onto neutron stars with strong magnetic fields, onto stellar-mass black holes (of up to 20 solar masses) at or in excess of the classical Eddington limit, or onto intermediate-mass black holes (103-105 solar masses). The lack of sufficient energy resolution in previous analyses has prevented an unambiguous identification of any emission or absorption lines in the X-ray band, thereby precluding a detailed analysis of the accretion flow. Here we report the presence of X-ray emission lines arising from highly ionized iron, oxygen and neon with a cumulative significance in excess of five standard deviations, together with blueshifted (about 0.2 times light velocity) absorption lines of similar significance, in the high-resolution X-ray spectra of the ultraluminous X-ray sources NGC 1313 X-1 and NGC 5408 X-1. The blueshifted absorption lines must occur in a fast-outflowing gas, whereas the emission lines originate in slow-moving gas around the source. We conclude that the compact object in each source is surrounded by powerful winds with an outflow velocity of about 0.2 times that of light, as predicted by models of accreting supermassive black holes and hyper-accreting stellar-mass black holes.

  8. Resolved atomic lines reveal outflows in two ultraluminous X-ray sources.

    PubMed

    Pinto, Ciro; Middleton, Matthew J; Fabian, Andrew C

    2016-05-01

    Ultraluminous X-ray sources are extragalactic, off-nucleus, point sources in galaxies, and have X-ray luminosities in excess of 3 × 10(39) ergs per second. They are thought to be powered by accretion onto a compact object. Possible explanations include accretion onto neutron stars with strong magnetic fields, onto stellar-mass black holes (of up to 20 solar masses) at or in excess of the classical Eddington limit, or onto intermediate-mass black holes (10(3)-10(5) solar masses). The lack of sufficient energy resolution in previous analyses has prevented an unambiguous identification of any emission or absorption lines in the X-ray band, thereby precluding a detailed analysis of the accretion flow. Here we report the presence of X-ray emission lines arising from highly ionized iron, oxygen and neon with a cumulative significance in excess of five standard deviations, together with blueshifted (about 0.2 times light velocity) absorption lines of similar significance, in the high-resolution X-ray spectra of the ultraluminous X-ray sources NGC 1313 X-1 and NGC 5408 X-1. The blueshifted absorption lines must occur in a fast-outflowing gas, whereas the emission lines originate in slow-moving gas around the source. We conclude that the compact object in each source is surrounded by powerful winds with an outflow velocity of about 0.2 times that of light, as predicted by models of accreting supermassive black holes and hyper-accreting stellar-mass black holes. PMID:27120159

  9. Auroral ion upflow and outflow: dynamics of the ionospheric source (Invited)

    NASA Astrophysics Data System (ADS)

    Zettergren, M. D.; Lynch, K. A.; Hampton, D. L.; Nicolls, M. J.; Blelly, P.; Lee, Y.; Wright, B.; Burleigh, M.

    2013-12-01

    The outflow of plasma from the auroral ionosphere to the magnetosphere is thought to be produced by a combination of physical processes. In the F-region ionosphere, plasma heating due to electric fields and precipitating particles produces bulk upflows which are capable of moving large amounts of heavy ions to high altitudes. At altitudes above where upflows are initiated, transverse ion energization by plasma waves and interaction with the auroral acceleration region can give the heavy ions sufficient energy to escape to the magnetosphere. This chain of processes is necessarily affected by the intensity and duration of the low altitude bulk upflows, in addition to any transient features. Furthermore, both chemical and perpendicular transport processes, which affect amounts and types of heavy ions available for extraction, are known to be concurrent with some bulk upflows. This work explores dynamical features of the auroral ionosphere important to the ion outflow process using a suite of 1-,2- and 3-dimensional local ionospheric models, ISR data, and optical data. The models are used to study time-dependent features of bulk upflows, including upflow buildup, propagation to higher altitudes, relaxation, composition, and hysteresis effects as a function of electric fields, precipitating particles, background densities, and thermospheric winds. Realistic modeling case studies are constructed by constraining model inputs with electric field, wind, and particle estimates derived from PFISR, FPI, and optical imager data. In addition to illustrating the highly variable nature of low altitude upflow, case studies also provide compelling evidence for the generation of molecular ions and the interplay between chemically-driven and electrodynamic density depletion processes. Finally, source populations for molecular ion outflows during geomagnetically disturbed times are examined in a statistical analysis of Sondrestrom ISR measurements. Results from these studies generally

  10. On noise sources in hot electron-degraded bipolar junction transistors

    NASA Astrophysics Data System (ADS)

    Llinares, P.; Ghibaudo, G.; Chroboczek, J. A.

    1997-09-01

    The effects of electrical stress on static characteristics and power spectral density, SIb, of base current, Ib, fluctuations at low frequencies, f<1 kHz, have been studied in quasiself-aligned bipolar n-p-n junction. In as-fabricated devices SIb∝1/AE, where AE is the transistor emitter area, whereas in strongly degraded transistors Sib∝1/PE, where PE is the transistor perimeter. The latter demonstrates directly that hot carrier-induced noise sources are generated at the periphery of the transistors, in agreement with former work on hot electron-induced aging of bipolar junction transistors.

  11. Downscattering due to Wind Outflows in Compact X-ray Sources: Theory and Interpretation

    NASA Technical Reports Server (NTRS)

    Titarchuk, Lev; Shrader, Chris

    2004-01-01

    A number of recent lines of evidence point towards the presence of hot, outflowing plasma from the central regions of compact Galactic and extragalactic X-ray sources. Additionally, it has long been noted that many of these sources exhibit an "excess" continuum component, above approx. 10 keV, usually attributed to Compton Reflection from a static medium. Motivated by these facts, as well as by recent observational constraints on the Compton reflection models - specifically apparently discrepant variability timescales for line and continuum components in some cases - we consider possible of effects of out-flowing plasma on the high-energy continuum spectra of accretion powered compact objects. We present a general formulation for photon downscattering diffusion which includes recoil and Comptonization effects due to divergence of the flow. We then develop an analytical theory for the spectral formation in such systems that allows us to derive formulae for the emergent spectrum. Finally we perform the analytical model fitting on several Galactic X-ray binaries. Objects which have been modeled with high-covering-fraction Compton reflectors, such as GS1353-64 are included in our analysis. In addition, Cyg X-3, is which is widely believed to be characterized by dense circumstellar winds with temperature of order 10(exp 6) K, provides an interesting test case. Data from INTEGRAL and RXTE covering the approx. 3 - 300 keV range are used in our analysis. We further consider the possibility that the widely noted distortion of the power-law continuum above 10 keV may in some cases be explained by these spectral softening effects.

  12. Outflows and Shock Chemistry

    NASA Astrophysics Data System (ADS)

    Tafalla, M.

    2016-05-01

    Bipolar outflows result from the supersonic ejection of material by a protostar, and constitute one of the most characteristic signposts of stellar birth. They also provide ideal targets to test chemical models, and can serve as templates for more complex systems of galactic and extragalactic astronomy where supersonic interactions between gas components take place.

  13. Continuous plasma outflows from the edge of a solar active region as a possible source of solar wind.

    PubMed

    Sakao, Taro; Kano, Ryouhei; Narukage, Noriyuki; Kotoku, Jun'ichi; Bando, Takamasa; Deluca, Edward E; Lundquist, Loraine L; Tsuneta, Saku; Harra, Louise K; Katsukawa, Yukio; Kubo, Masahito; Hara, Hirohisa; Matsuzaki, Keiichi; Shimojo, Masumi; Bookbinder, Jay A; Golub, Leon; Korreck, Kelly E; Su, Yingna; Shibasaki, Kiyoto; Shimizu, Toshifumi; Nakatani, Ichiro

    2007-12-01

    The Sun continuously expels a huge amount of ionized material into interplanetary space as the solar wind. Despite its influence on the heliospheric environment, the origin of the solar wind has yet to be well identified. In this paper, we report Hinode X-ray Telescope observations of a solar active region. At the edge of the active region, located adjacent to a coronal hole, a pattern of continuous outflow of soft-x-ray-emitting plasmas was identified emanating along apparently open magnetic field lines and into the upper corona. Estimates of temperature and density for the outflowing plasmas suggest a mass loss rate that amounts to approximately 1/4 of the total mass loss rate of the solar wind. These outflows may be indicative of one of the solar wind sources at the Sun. PMID:18063788

  14. A distance-limited sample of massive molecular outflows

    NASA Astrophysics Data System (ADS)

    Maud, L. T.; Moore, T. J. T.; Lumsden, S. L.; Mottram, J. C.; Urquhart, J. S.; Hoare, M. G.

    2015-10-01

    We have observed 99 mid-infrared-bright, massive young stellar objects and compact H II regions drawn from the Red MSX source survey in the J = 3-2 transition of 12CO and 13CO, using the James Clerk Maxwell Telescope. 89 targets are within 6 kpc of the Sun, covering a representative range of luminosities and core masses. These constitute a relatively unbiased sample of bipolar molecular outflows associated with massive star formation. Of these, 59, 17 and 13 sources (66, 19 and 15 per cent) are found to have outflows, show some evidence of outflow, and have no evidence of outflow, respectively. The time-dependent parameters of the high-velocity molecular flows are calculated using a spatially variable dynamic time-scale. The canonical correlations between the outflow parameters and source luminosity are recovered and shown to scale with those of low-mass sources. For coeval star formation, we find the scaling is consistent with all the protostars in an embedded cluster providing the outflow force, with massive stars up to ˜30 M⊙ generating outflows. Taken at face value, the results support the model of a scaled-up version of the accretion-related outflow-generation mechanism associated with discs and jets in low-mass objects with time-averaged accretion rates of ˜10-3 M⊙ yr-1 on to the cores. However, we also suggest an alternative model, in which the molecular outflow dynamics are dominated by the entrained mass and are unrelated to the details of the acceleration mechanism. We find no evidence that outflows contribute significantly to the turbulent kinetic energy of the surrounding dense cores.

  15. Interpreting observations of molecular outflow sources: the MHD shock code mhd_vode

    NASA Astrophysics Data System (ADS)

    Flower, D. R.; Pineau des Forêts, G.

    2015-06-01

    The planar MHD shock code mhd_vode has been developed in order to simulate both continuous (C) type shock waves and jump (J) type shock waves in the interstellar medium. The physical and chemical state of the gas in steady-state may also be computed and used as input to a shock wave model. The code is written principally in FORTRAN 90, although some routines remain in FORTRAN 77. The documented program and its input data are described and provided as supplementary material, and the results of exemplary test runs are presented. Our intention is to enable the interested user to run the code for any sensible parameter set and to comprehend the results. With applications to molecular outflow sources in mind, we have computed, and are making available as supplementary material, integrated atomic and molecular line intensities for grids of C- and J-type models; these computations are summarized in the Appendices. Appendix tables, a copy of the current version of the code, and of the two model grids are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/578/A63

  16. Highly supersonic bipolar mass ejection from a red giant OH/IR source - OH 0739 - 14

    NASA Technical Reports Server (NTRS)

    Cohen, M.; Dopita, M. A.; Schwartz, R. D.; Tielens, A. G. G. M.

    1985-01-01

    From long-slit spectrophotometry of the bipolar nebula associated with the unusual OH source, OH 0739 - 14, the presence of a blue companion to the M9 III central star was shown and a Herbig-Haro-like knot beyond each nebular lobe was discovered. From differential colors of the lobes and from radial velocities of these knots it was demonstrated that the system inclines its northern lobe in the forward direction. It was also shown that the nebulous knots are shocks being driven into an extensive circumstellar envelope, and that this material is very overabundant in nitrogen, suggesting that it is matter lost from a star of mass greater than 3 solar masses. A model of biconical ejection from a central binary is consistent with the OH observations, and a possible relation of OH 0739 - 14 to the symbiotic stars and to bipolar planetary nebulae is suggested.

  17. Highly supersonic bipolar mass ejection from a red giant OH/IR source - OH 0739 - 14

    SciTech Connect

    Cohen, M.; Dopita, M.A.; Schwartz, R.D.; Tielens, A.G.G.M.

    1985-10-01

    From long-slit spectrophotometry of the bipolar nebula associated with the unusual OH source, OH 0739 - 14, the presence of a blue companion to the M9 III central star was shown and a Herbig-Haro-like knot beyond each nebular lobe was discovered. From differential colors of the lobes and from radial velocities of these knots it was demonstrated that the system inclines its northern lobe in the forward direction. It was also shown that the nebulous knots are shocks being driven into an extensive circumstellar envelope, and that this material is very overabundant in nitrogen, suggesting that it is matter lost from a star of mass greater than 3 solar masses. A model of biconical ejection from a central binary is consistent with the OH observations, and a possible relation of OH 0739 - 14 to the symbiotic stars and to bipolar planetary nebulae is suggested. 42 references.

  18. Tracking Solar Active Region Outflow Plasma from its Source to the near-Earth Environment

    NASA Astrophysics Data System (ADS)

    Culhane, J. L.; Brooks, D.; Zurbuchen, T.; van Driel-Gesztelyi, L.; Fazakerley, A. N.; DeRosa, M. L.

    2012-12-01

    In a recent study of persistent active region outflow from AR 10978 in the period 10 - 15, December, 2007, Brooks and Warren (2011), using the Hinode EUV Imaging Spectrometer (EIS) instrument showed the presence of a strong low-FIP element enhancement in the outflowing plasma that was replicated three days later in the in-situ solar wind measurements made by the ACE/SWICS instrument. In the present work, we examine the outflowing plasma properties (Te, Ne, v, abundances) as a function of time in greater detail as AR 10978 passes the Earth-Sun line. The structure of the magnetic field above the two outflow regions - E and W of the AR, is also examined. Following an assessment of the relevant magnetic structures between Sun and Earth, the properties of the solar wind plasma arriving at ACE approximately three days later are measured and compared with those of the outflowing AR plasma. The relationship of these measurements to the in-situ magnetic field observed by the ACE magnetometer is also studied. Finally the role of persistent AR outflows in contributing to the slow solar wind is assessed.

  19. Time-dependent modelling of the molecular line emission from shock waves in outflow sources

    NASA Astrophysics Data System (ADS)

    Flower, D. R.; Pineau des Forêts, G.

    2012-04-01

    We have developed further the technique of time-dependent modelling of magnetohydrodynamic shock waves, with a view to interpreting the molecular line emission from outflow sources. The extensively observed source L1157 B1 was chosen as an exemplar of the application of this technique. The dynamical age of the shock wave model was varied in the range 500 ≤t≤ 5000 yr, with the best fit to the observed line intensities being obtained for t= 1000 yr; this is of the same order as the dynamical age derived by Gueth, Guilloteau & Bachiller from their observations of L1157 B1. The emission line spectra of H2, CO, SiO, ortho- and para-H2O, ortho- and para-NH3, and A- and E-type CH3OH were calculated in parallel with the dynamical and chemical parameters of the model, using the 'large velocity gradient' (LVG) approximation to the line transfer problem. We compared the predictions of the models with the observed intensities of emission lines of H2, CO, SiO, ortho-H2O, ortho-NH3 and CH3OH, which include recent Herschel satellite measurements. In the case of SiO, we show (in Appendix A) that extrapolations of the collisional rate coefficients beyond the range of kinetic temperature for which they were originally calculated lead to spurious rotational line intensities and profiles. The computed emission-line spectra of SiO, NH3 and CH3OH are shown to depend on the assumed initial composition of the grain mantles, from whence they are released, by sputtering in the shock wave, into the gas phase. The dependence of the model predictions on the adopted form of the grain-size distribution is investigated in Appendix B; the corresponding integral line intensities are given in tabular form, for a range of C-type shock speeds, in the online Supporting Information.

  20. Effect of source depth on the specificity of bipolar EEG measurements.

    PubMed

    Ryynanen, Outi; Vaisanen, Juho; Hyttinen, Jari; Malmivuo, Jaakko

    2006-01-01

    The purpose of the present study was to evaluate how the brain sources located at different depths can be most effectively measured with bipolar EEG leads. The specificity of an EEG lead to detect sources was studied with a new parameter called region of interest sensitivity ratio (ROISR) by employing a spherical head model. We studied the specificity as a function of electrode distance and further as a function of scalp:skull:brain resistivity ratio. The simulations indicate that the closer to the surface of the brain the source is located, the shorter is the interelectrode distance in the optimal lead. Also in the case of superficial sources, the small misplacement of the electrodes results in a substantial decrease in specificity. The resistivity ratio has the largest effect on the specificity, when the source is located close to the surface of the brain. However in the case of deep sources, the resistivity ratio has only minimal effect on the specificity. PMID:17945620

  1. Constraints on Asian and European sources of methane from CH4-C2H6-CO correlations in Asian outflow

    NASA Astrophysics Data System (ADS)

    Xiao, Yaping; Jacob, Daniel J.; Wang, James S.; Logan, Jennifer A.; Palmer, Paul I.; Suntharalingam, Parvadha; Yantosca, Robert M.; Sachse, Glen W.; Blake, Donald R.; Streets, David G.

    2004-08-01

    Aircraft observations of Asian outflow from the Transport and Chemical Evolution Over the Pacific (TRACE-P) aircraft mission over the NW Pacific (March and April 2001) show large CH4 enhancements relative to background, as well as strong CH4-C2H6-CO correlations that provide signatures of regional sources. We apply a global chemical transport model simulation of the CH4-C2H6-CO system for the TRACE-P period to interpret these observations in terms of CH4 sources and to explore in particular the unique constraints from the CH4-C2H6-CO correlations. We use as a priori a global CH4 source inventory constrained with National Oceanic and Atmospheric Administration (NOAA) Climate Monitoring and Diagnostics Laboratory (CMDL) surface observations [Wang et al., 2004]. We find that the observed CH4 concentration enhancements and CH4-C2H6-CO correlations in Asian outflow in TRACE-P are determined mainly by anthropogenic emissions from China and Eurasia (defined here as Europe and eastern Russia), with only little contribution from tropical sources (wetlands and biomass burning). The a priori inventory overestimates the observed CH4 enhancements and shows regionally variable biases for the CH4/C2H6 slope. The CH4/CO slopes are simulated without significant bias. Matching both the observed CH4 enhancements and the CH4-C2H6-CO slopes in Asian outflow requires increasing the east Asian anthropogenic source of CH4, and decreasing the Eurasian anthropogenic source, by at least 30% for both. The need to increase the east Asian source is driven by the underestimate of the CH4/C2H6 slope in boundary layer Chinese outflow. The Streets et al. [2003] anthropogenic emission inventory for east Asia fits this constraint by increasing CH4 emissions from that region by 40% relative to the a priori, largely because of higher livestock and landfill source estimates. Eurasian sources (mostly European) then need to be reduced by 30-50% from the a priori value of 68 Tg yr-1. The decrease of

  2. A double-plasma source of continuous bipolar ion-ion beam

    SciTech Connect

    Dudin, S. V.; Rafalskyi, D. V.

    2013-01-21

    A double-plasma source capable of the generation of a continuous bipolar ion-ion beam is described. The quasi-neutral ion-ion flow to an extraction electrode is formed in the system containing primary inductively coupled plasma separated from a secondary plasma by an electrostatic grid-type filter. The total current of each ion species to the 250 mm diameter extraction electrode is about 80 mA; the electron current does not exceed 30% of the ion current. Method of positive/negative ion current ratio control is proposed, allowing the ion currents ratio variation in wide range.

  3. Seasonal variations of Asian black carbon outflow to the Pacific: Contribution from anthropogenic sources in China and biomass burning sources in Siberia and Southeast Asia

    NASA Astrophysics Data System (ADS)

    Matsui, H.; Koike, M.; Kondo, Y.; Oshima, N.; Moteki, N.; Kanaya, Y.; Takami, A.; Irwin, M.

    2013-12-01

    The Community Multiscale Air Quality model with a source and process tagged method (CMAQ/PASCAL) was used to understand source regions and types (anthropogenic (AN) and biomass burning (BB)) of Asian black carbon (BC) outflow to the Pacific during 2008 - 2010. The model simulations generally reproduced absolute concentrations and temporal (seasonal, monthly, and day-to-day) variations of BC mass concentrations, observed by both surface and aircraft measurements in outflow regions in East Asia. These model simulations show that both the total eastward flux and transport efficiency (fractions transported from sources) of BC are highest during spring (26 kg s-1 and 33% at 150E) and lowest during summer (8 kg s-1 and 20% at 150E). These seasonal variations of Asian BC outflow are generally controlled by transport patterns (monsoons, frontal passages, and convection) and emissions, from the following three sources: (1) AN emissions from China (China AN), (2) BB emissions from Southeast Asia and South China (SEA BB) during February - April, and (3) BB emissions from Siberia and Kazakhstan (Siberia BB) during April - July. In our simulations, China AN dominates the total eastward BC flux on a three-year average (61%, 17%, and 6% from China AN, Siberia BB, and SEA BB, respectively, at 150E). In contrast, SEA and Siberia BB account for 30 - 50% of the total eastward BC flux (150E and 175E) during spring and summer, and they increase the seasonal variability of the Asian BC outflow flux. BC from Siberia BB is also found to be transported to the Pacific more efficiently than BC from other sources. Although the magnitudes of BB emissions are highly uncertain, our results suggest that the control of Siberia BB will be important in terms of the trans-boundary transport of BC to the Pacific, North America, and the Arctic.

  4. Seasonal variations of Asian black carbon outflow to the Pacific: Contribution from anthropogenic sources in China and biomass burning sources in Siberia and Southeast Asia

    NASA Astrophysics Data System (ADS)

    Matsui, H.; Koike, M.; Kondo, Y.; Oshima, N.; Moteki, N.; Kanaya, Y.; Takami, A.; Irwin, M.

    2013-09-01

    The Community Multiscale Air Quality model with a source and process tagged method (CMAQ/PASCAL) was used to understand source regions and types (anthropogenic (AN) and biomass burning (BB)) of Asian black carbon (BC) outflow to the Pacific during 2008-2010. The model simulations generally reproduced absolute concentrations and temporal (seasonal, monthly, and day-to-day) variations of BC mass concentrations, observed by both surface and aircraft measurements in outflow regions in East Asia. These model simulations show that both the total eastward flux and transport efficiency (fractions transported from sources) of BC are highest during spring (26 kg s-1 and 33% at 150°E) and lowest during summer (8 kg s-1 and 20% at 150°E). These seasonal variations of Asian BC outflow are generally controlled by transport patterns (monsoons, frontal passages, and convection) and emissions from the following three sources: (1) AN emissions from China (China AN), (2) BB emissions from Southeast Asia and South China (SEA BB) during February-April, and (3) BB emissions from Siberia and Kazakhstan (Siberia BB) during April-July. In our simulations, China AN dominates the total eastward BC flux on a 3 year average (61%, 17%, and 6% from China AN, Siberia BB, and SEA BB, respectively, at 150°E). In contrast, SEA and Siberia BB account for 30-50% of the total eastward BC flux (150°E and 175°E) during spring and summer, and they increase the seasonal variability of the Asian BC outflow flux. BC from Siberia BB is also found to be transported to the Pacific more efficiently than BC from other sources. Although the magnitudes of BB emissions are highly uncertain, our results suggest that the control of Siberia BB will be important in terms of the transboundary transport of BC to the Pacific, North America, and the Arctic.

  5. Sources and light absorption of water-soluble organic carbon aerosols in the outflow from northern China

    NASA Astrophysics Data System (ADS)

    Kirillova, E. N.; Andersson, A.; Han, J.; Lee, M.; Gustafsson, Ö.

    2014-02-01

    High loadings of anthropogenic carbonaceous aerosols in Chinese air influence the air quality for over one billion people and impact the regional climate. A large fraction (17-80%) of this aerosol carbon is water-soluble, promoting cloud formation and thus climate cooling. Recent findings, however, suggest that water-soluble carbonaceous aerosols also absorb sunlight, bringing additional direct and indirect climate warming effects, yet the extent and nature of light absorption by this water-soluble "brown carbon" and its relation to sources is poorly understood. Here, we combine source estimates constrained by dual carbon isotopes with light-absorption measurements of water-soluble organic carbon (WSOC) for a March 2011 campaign at the Korea Climate Observatory at Gosan (KCOG), a receptor station in SE Yellow Sea for the outflow from northern China. The mass absorption cross section at 365 nm (MAC365) of WSOC for air masses from N. China were in general higher (0.8-1.1 m2 g-1), than from other source regions (0.3-0.8 m2 g-1). However, this effect corresponds to only 2-10% of the radiative forcing caused by light absorption by elemental carbon. Radiocarbon constraints show that the WSOC in Chinese outflow had significantly higher fraction fossil sources (30-50%) compared to previous findings in S. Asia, N. America and Europe. Stable carbon (δ13C) measurements were consistent with aging during long-range air mass transport for this large fraction of carbonaceous aerosols.

  6. Submillimeter Polarimetry of the Protostellar Outflow Sources in Serpens with the Submillimeter Common-User Bolometer Array.

    PubMed

    Davis; Chrysostomou; Matthews; Jenness; Ray

    2000-02-20

    Submillimeter polarimetric measurements of the 850 µm dust continuum emission associated with the class 0/I protostars in the Serpens dark cloud core are presented. The data are used to infer the magnetic field morphology in the region. Dust grain alignment in accretion flows and/or outflows is also briefly considered. The polarization vectors around the SMM-NW cluster of sources are more ordered than those observed near the SMM-SE cluster. Toward SMM-NW, the vectors are generally orientated north-south; between the intensity peaks in the SMM-SE region, the vectors are approximately east-west. In both regions, we suggest that the polarization pattern may be dictated by a large-scale magnetic field. We consider whether the rough northwest-southeast ridge of submillimeter sources was formed via cloud collapse along field lines that run perpendicular to this ridge. However, our data offer only very tentative support for this hypothesis. We further note that, although overall the polarization pattern in Serpens does not appear to be affected by the many outflows in the region, toward the most luminous source, SMM 1, the source of the Serpens radio jet, the vectors deviate considerably from the general pattern, instead being roughly perpendicular to the flow axis, as one would expect from a B-field oriented parallel with the flow. PMID:10655178

  7. Characterization of Molecular Outflows in the Substellar Domain

    NASA Astrophysics Data System (ADS)

    Phan-Bao, Ngoc; Lee, Chin-Fei; Ho, Paul T. P.; Dang-Duc, Cuong; Li, Di

    2014-11-01

    We report here our latest search for molecular outflows from young brown dwarfs and very low-mass stars in nearby star-forming regions. We have observed three sources in Taurus with the Submillimeter Array and the Combined Array for Research in Millimeter-wave Astronomy at 230 GHz frequency to search for CO J = 2 → 1 outflows. We obtain a tentative detection of a redshifted and extended gas lobe at about 10 arcsec from the source GM Tau, a young brown dwarf in Taurus with an estimated mass of 73 M J , which is right below the hydrogen-burning limit. No blueshifted emission around the brown dwarf position is detected. The redshifted gas lobe that is elongated in the northeast direction suggests a possible bipolar outflow from the source with a position angle of about 36°. Assuming that the redshifted emission is outflow emission from GM Tau, we then estimate a molecular outflow mass in the range from 1.9 × 10-6 M ⊙ to 2.9 × 10-5 M ⊙ and an outflow mass-loss rate from 2.7 × 10-9 M ⊙ yr-1 to 4.1 × 10-8 M ⊙ yr-1. These values are comparable to those we have observed in the young brown dwarf ISO-Oph 102 of 60 M J in ρ Ophiuchi and the very low-mass star MHO 5 of 90 M J in Taurus. Our results suggest that the outflow process in very low-mass objects is episodic with a duration of a few thousand years and the outflow rate of active episodes does not significantly change for different stages of the formation process of very low-mass objects. This may provide us with important implications that clarify the formation process of brown dwarfs.

  8. Characterization of molecular outflows in the substellar domain

    SciTech Connect

    Phan-Bao, Ngoc; Dang-Duc, Cuong; Lee, Chin-Fei; Ho, Paul T. P.; Li, Di E-mail: pbngoc@asiaa.sinica.edu.tw

    2014-11-01

    We report here our latest search for molecular outflows from young brown dwarfs and very low-mass stars in nearby star-forming regions. We have observed three sources in Taurus with the Submillimeter Array and the Combined Array for Research in Millimeter-wave Astronomy at 230 GHz frequency to search for CO J = 2 → 1 outflows. We obtain a tentative detection of a redshifted and extended gas lobe at about 10 arcsec from the source GM Tau, a young brown dwarf in Taurus with an estimated mass of 73 M {sub J}, which is right below the hydrogen-burning limit. No blueshifted emission around the brown dwarf position is detected. The redshifted gas lobe that is elongated in the northeast direction suggests a possible bipolar outflow from the source with a position angle of about 36°. Assuming that the redshifted emission is outflow emission from GM Tau, we then estimate a molecular outflow mass in the range from 1.9 × 10{sup –6} M {sub ☉} to 2.9 × 10{sup –5} M {sub ☉} and an outflow mass-loss rate from 2.7 × 10{sup –9} M {sub ☉} yr{sup –1} to 4.1 × 10{sup –8} M {sub ☉} yr{sup –1}. These values are comparable to those we have observed in the young brown dwarf ISO-Oph 102 of 60 M {sub J} in ρ Ophiuchi and the very low-mass star MHO 5 of 90 M {sub J} in Taurus. Our results suggest that the outflow process in very low-mass objects is episodic with a duration of a few thousand years and the outflow rate of active episodes does not significantly change for different stages of the formation process of very low-mass objects. This may provide us with important implications that clarify the formation process of brown dwarfs.

  9. X-RAY OUTFLOWS AND SUPER-EDDINGTON ACCRETION IN THE ULTRALUMINOUS X-RAY SOURCE HOLMBERG IX X-1

    SciTech Connect

    Walton, D. J.; Harrison, F. A.; Miller, J. M.; Reis, R. C.; Fabian, A. C.; Roberts, T. P.; Middleton, M. J.

    2013-08-10

    Studies of X-ray continuum emission and flux variability have not conclusively revealed the nature of ultraluminous X-ray sources (ULXs) at the high-luminosity end of the distribution (those with L{sub X} {>=} 10{sup 40} erg s{sup -1}). These are of particular interest because the luminosity requires either super-Eddington accretion onto a black hole of mass {approx}10 M{sub Sun} or more standard accretion onto an intermediate-mass black hole. Super-Eddington accretion models predict strong outflowing winds, making atomic absorption lines a key diagnostic of the nature of extreme ULXs. To search for such features, we have undertaken a long, 500 ks observing campaign on Holmberg IX X-1 with Suzaku. This is the most sensitive data set in the iron K bandpass for a bright, isolated ULX to date, yet we find no statistically significant atomic features in either emission or absorption; any undetected narrow features must have equivalent widths less than 15-20 eV at 99% confidence. These limits are far below the {approx}>150 eV lines expected if observed trends between mass inflow and outflow rates extend into the super-Eddington regime and in fact rule out the line strengths observed from disk winds in a variety of sub-Eddington black holes. We therefore cannot be viewing the central regions of Holmberg IX X-1 through any substantial column of material, ruling out models of spherical super-Eddington accretion. If Holmberg IX X-1 is a super-Eddington source, any associated outflow must have an anisotropic geometry. Finally, the lack of iron emission suggests that the stellar companion cannot be launching a strong wind and that Holmberg IX X-1 must primarily accrete via Roche-lobe overflow.

  10. Fast outflows in broad absorption line quasars and their connection with CSS/GPS sources

    NASA Astrophysics Data System (ADS)

    Bruni , G.; Mack, K.-H.; Montenegro-Montes, F. M.; Brienza, M.; González-Serrano, J. I.

    2016-02-01

    Broad absorption line quasars are among the objects presenting the fastest outflows. The launching mechanism itself is not completely understood. Models in which they could be launched from the accretion disk, and then curved and accelerated by the effect of the radiation pressure, have been presented. We conducted an extensive observational campaign, from radio to optical band, to collect information about their nature and test the models present in the literature, the main dichotomy being between a young scenario and an orientation one. We found a variety of possible orientations, morphologies, and radio ages, not converging to a particular explanation for the BAL phenomenon. From our latest observations in the m- and mm-band, we obtained an indication of a lower dust abundance with respect to normal quasars, thus suggesting a possible feedback process on the host galaxy. Also, in the low-frequency regime we confirmed the presence of CSS components, sometime in conjunction with a GPS one already detected at higher frequencies. Following this, about 70 % of our sample turns out to be in a GPS or CSS+GPS phase. We conclude that fast outflows, responsible for the BAL features, can be more easily present among objects going through a restarting or just-started radio phase, where radiation pressure can substantially contribute to their acceleration.

  11. Ancient drainage basin of the Tharsis region, Mars: Potential source for outflow channel systems and putative oceans or paleolakes

    USGS Publications Warehouse

    Dohm, J.M.; Ferris, J.C.; Baker, V.R.; Anderson, R.C.; Hare, T.M.; Strom, R.G.; Barlow, N.G.; Tanaka, K.L.; Klemaszewski, J.E.; Scott, D.H.

    2001-01-01

    Paleotopographic reconstructions based on a synthesis of published geologic information and high-resolution topography, including topographic profiles, reveal the potential existence of an enormous drainage basin/aquifer system in the eastern part of the Tharsis region during the Noachian Period. Large topographic highs formed the margin of the gigantic drainage basin. Subsequently, lavas, sediments, and volatiles partly infilled the basin, resulting in an enormous and productive regional aquifer. The stacked sequences of water-bearing strata were then deformed locally and, in places, exposed by magmatic-driven uplifts, tectonic deformation, and erosion. This basin model provides a potential source of water necessary to carve the large outflow channel systems of the Tharsis and surrounding regions and to contribute to the formation of putative northern-plains ocean(s) and/or paleolakes. Copyright 2001 by the American Geophysical Union.

  12. Bipolar square-wave current source for transient electromagnetic systems based on constant shutdown time

    NASA Astrophysics Data System (ADS)

    Wang, Shilong; Yin, Changchun; Lin, Jun; Yang, Yu; Hu, Xueyan

    2016-03-01

    Cooperative work of multiple magnetic transmitting sources is a new trend in the development of transient electromagnetic system. The key is the bipolar current waves shutdown, concurrently in the inductive load. In the past, it was difficult to use the constant clamping voltage technique to realize the synchronized shutdown of currents with different peak values. Based on clamping voltage technique, we introduce a new controlling method with constant shutdown time. We use the rising time to control shutdown time and use low voltage power source to control peak current. From the viewpoint of the circuit energy loss, by taking the high-voltage capacitor bypass resistance and the capacitor of the passive snubber circuit into account, we establish the relationship between the rising time and the shutdown time. Since the switch is not ideal, we propose a new method to test the shutdown time by the low voltage, the high voltage and the peak current. Experimental results show that adjustment of the current rising time can precisely control the value of the clamp voltage. When the rising time is fixed, the shutdown time is unchanged. The error for shutdown time deduced from the energy consumption is less than 6%. The new controlling method on current shutdown proposed in this paper can be used in the cooperative work of borehole and ground transmitting system.

  13. Bipolar Disorder

    MedlinePlus

    ... How Can I Help a Friend Who Cuts? Bipolar Disorder KidsHealth > For Teens > Bipolar Disorder Print A A ... Bipolar Disorder en español Trastorno bipolar What Is Bipolar Disorder? Bipolar disorders are one of several medical conditions ...

  14. Plasma outflows at the border of active regions and the solar wind

    NASA Astrophysics Data System (ADS)

    Nuevo, F. A.; Mandrini, C. H.; Vásquez, A. M.; Deumoulin, P.; Van Driel-Gesztely, L.; Baker, D.; Cristiani, G. D.; Pick, M.; Culhane, J. L.

    We present a detailed topological analysis of active region (AR) 10978; based on a Potential Field Source Surface (PFSS) model. AR 10978 is a standard bipolar region which appears fully covered by the magnetic field lines of a coronal streamer. Despite this simple magnetic configuration; our analysis shows that it is possible for the AR plasma; contained in the outflows observed at the AR borders; to be released into the solar wind via magnetic reconnection.

  15. Effects of stellar outflows on interstellar sulfur oxide chemistry

    NASA Technical Reports Server (NTRS)

    Welch, W. J.; Vogel, S.; Terebey, S.; Dreher, J.; Jackson, J.; Carlstrom, J.

    1986-01-01

    Interferometer Maps with 2" to 6" resolution of a number of regions with active star formation (Orion A, W49, W51, SGRB2) show that the distribution of the molecule SO is very compact around stellar outflow sources. Both SO and SO2 were studied near three outflows, OrionA/IRc2 and two sources in W49. The two molecules have similar distributions and abundances. More than 95% of the emission comes from regions whose extents are only .05 to .2 pc., being larger around the more energetic sources. Their spectra are broad, 30 km/sec or more, suggesting that the oxide production is associated with the flows. The outflows are identified by water masers and by extended bipolar flows in SiO. Maps in other molecules, such as HCO+ and CS, which have similar collisional excitation requirements, have much greater spatial extent. Thus it appears that the SO and SO2 abundances are truly compact and are closely associated with the outflows.

  16. Particle Acceleration in Relativistic Outflows

    NASA Technical Reports Server (NTRS)

    Bykov, Andrei; Gehrels, Neil; Krawczynski, Henric; Lemoine, Martin; Pelletier, Guy; Pohl, Martin

    2012-01-01

    In this review we confront the current theoretical understanding of particle acceleration at relativistic outflows with recent observational results on various source classes thought to involve such outflows, e.g. gamma-ray bursts, active galactic nuclei, and pulsar wind nebulae. We highlight the possible contributions of these sources to ultra-high-energy cosmic rays.

  17. Controlling Influence of Magnetic Field on Solar Wind Outflow: An Investigation using Current Sheet Source Surface Model

    NASA Astrophysics Data System (ADS)

    Poduval, B.

    2016-08-01

    This Letter presents the results of an investigation into the controlling influence of large-scale magnetic field of the Sun in determining the solar wind outflow using two magnetostatic coronal models: current sheet source surface (CSSS) and potential field source surface. For this, we made use of the Wang and Sheeley inverse correlation between magnetic flux expansion rate (FTE) and observed solar wind speed (SWS) at 1 au. During the period of study, extended over solar cycle 23 and beginning of solar cycle 24, we found that the coefficients of the fitted quadratic equation representing the FTE–SWS inverse relation exhibited significant temporal variation, implying the changing pattern of the influence of FTE on SWS over time. A particularly noteworthy feature is an anomaly in the behavior of the fitted coefficients during the extended minimum, 2008–2010 (CRs 2073–2092), which is considered due to the particularly complex nature of the solar magnetic field during this period. However, this variation was significant only for the CSSS model, though not a systematic dependence on the phase of the solar cycle. Further, we noticed that the CSSS model demonstrated better solar wind prediction during the period of study, which we attribute to the treatment of volume and sheet currents throughout the corona and the more accurate tracing of footpoint locations resulting from the geometry of the model.

  18. A Study of Ion Outflow as a Source of Plasma for the Magnetosphere

    NASA Technical Reports Server (NTRS)

    Chappell, Charles R.

    2003-01-01

    Spacecraft measurements beginning in the early 1970 s gave indications that the ionosphere was a contributor to the energetic particle population of the Earth s magnetosphere This surprising result ran counter to the previously accepted model that the magnetospheric plasmas, because of their higher energies, must have come from the solar wind. Indeed, the original discovery of the Van Allen radiation belts, with energies of millions of electron volts, set a strong community belief in the sun as the plasma source because of the dramatic difference in the radiation belt energy and that of the Earth s ionospheric source.

  19. SURFACE AND LIGHTNING SOURCES OF NITROGEN OXIDES OVER THE UNITED STATES: MAGNITUDES, CHEMICAL EVOLUTION, AND OUTFLOW

    EPA Science Inventory

    We use observations from two aircraft during the ICARTT campaign over the eastern United States and North Atlantic during summer 2004, interpreted with a global 3-D model of tropospheric chemistry (GEOS-Chem) to test current understanding of regional sources, chemical evolution...

  20. Empirical laws of particle extraction from single-grid source of bipolar ion-electron flow.

    PubMed

    Dudin, S V; Rafalskyi, D V

    2012-11-01

    The present research is devoted to the problem of extraction grid choice for a single-grid source of bipolar ion-electron flow. The paper contains detailed reference information on ion and electron extraction characteristics of 10 different grids with broad range of parameters: aperture width (0.09-0.6 mm), grid transparency (0.19-0.51), thickness (0.036-0.5 mm), and with different aperture geometry. The grids with square, circular, and slit apertures were made with different technologies: laser cutting, welding, weaving, and electrolytic erosion. The general regularities of the ion and electron extraction from the single-grid source are experimentally researched for the cases of dc and RF extraction grid biasing. A conclusion has been made that the maximum extracted ion current at low ion energy (0-200 eV) does not significantly vary for all the grids and does not exceed half of the primary ion current from plasma multiplied by the optical grid transparency. The low-energy limit of efficient ion extraction has been discovered which cannot be overcome by the aperture narrowing. A conclusion is made that the RF extraction mode is superior for all the researched grids since it is characterized by higher extracted ion current at any acceleration voltage for any grid with much more simple and smooth extraction curves behavior in comparison to the dc case as well as absence of arcing, jumps, and hysteresis of the measured curves at any RF voltages. The unique ability of the RF biased single-grid source of simultaneous ion∕electron emission has been studied. The measured maximal attainable ion beam current compensation ratio is always sufficiently higher than 1 and typically varies in the range 2-6. The results obtained in the present paper demonstrate prospective of the single-grid source in space thruster applications and in modern technologies, particularly for ion beam processing of wide bandgap semiconductor devices such as GaN and SiC transistors due to inherent

  1. Empirical laws of particle extraction from single-grid source of bipolar ion-electron flow

    SciTech Connect

    Dudin, S. V.; Rafalskyi, D. V.

    2012-11-15

    The present research is devoted to the problem of extraction grid choice for a single-grid source of bipolar ion-electron flow. The paper contains detailed reference information on ion and electron extraction characteristics of 10 different grids with broad range of parameters: aperture width (0.09-0.6 mm), grid transparency (0.19-0.51), thickness (0.036-0.5 mm), and with different aperture geometry. The grids with square, circular, and slit apertures were made with different technologies: laser cutting, welding, weaving, and electrolytic erosion. The general regularities of the ion and electron extraction from the single-grid source are experimentally researched for the cases of dc and RF extraction grid biasing. A conclusion has been made that the maximum extracted ion current at low ion energy (0-200 eV) does not significantly vary for all the grids and does not exceed half of the primary ion current from plasma multiplied by the optical grid transparency. The low-energy limit of efficient ion extraction has been discovered which cannot be overcome by the aperture narrowing. A conclusion is made that the RF extraction mode is superior for all the researched grids since it is characterized by higher extracted ion current at any acceleration voltage for any grid with much more simple and smooth extraction curves behavior in comparison to the dc case as well as absence of arcing, jumps, and hysteresis of the measured curves at any RF voltages. The unique ability of the RF biased single-grid source of simultaneous ion/electron emission has been studied. The measured maximal attainable ion beam current compensation ratio is always sufficiently higher than 1 and typically varies in the range 2-6. The results obtained in the present paper demonstrate prospective of the single-grid source in space thruster applications and in modern technologies, particularly for ion beam processing of wide bandgap semiconductor devices such as GaN and SiC transistors due to inherent

  2. Exploring the engines of molecular outflows. Radio continuum and H_2_O maser observations.

    NASA Astrophysics Data System (ADS)

    Tofani, G.; Felli, M.; Taylor, G. B.; Hunter, T. R.

    1995-09-01

    We present A-configuration VLA observations of the 22GHz H_2_O maser line and 8.4GHz continuum emission of 22 selected CO bipolar outflows associated with water masers. These observations allow us to study the region within 10^4^AU of the engine powering the outflow. The positions of the maser spots are compared with those of ultra-compact (UC) continuum sources found in our observations, with IRAS data and with data from the literature on the molecular outflows. Weak unresolved continuum sources are found in several cases associated with the maser. Most probably they represent the ionized envelope surrounding the young stellar object (YSO) which powers the maser and the outflow. These weak radio continuum sources are not necessarily associated with the IRAS sources, which are more representative of the global emission from the star forming region. A comparison of the velocity pattern of the CO outflow with those of the maser spots detected with the VLA is also made. Asymmetries in the H_2_O velocities are found on opposite sides of the YSO, suggesting that the outflow acceleration begins from the YSO itself. In a few cases we find evidence for two outflows in different evolutionary stages. The H_2_O masers in these sources are always found at the centre of the younger outflow. The degree of variability of each maser is derived from single dish observations obtained with the Medicina radiotelescope before and after the VLA observations. Velocity drifts of some features are interpreted as acceleration of the maser.

  3. Molecular Outflows in Massive Star Forming Regions

    NASA Astrophysics Data System (ADS)

    Cunningham, Nichol

    2015-11-01

    This thesis presents millimetre continuum and molecular line observations exploring the properties of molecular outflows towards massive star forming regions. Massive stars produce some of the most energetic phenomena in the Galaxy, yet we still do not have a comprehensive understanding of how they actually form. Outflows are known to play a key role in this formation process and their properties, particularly how they change depending on the mass, luminosity and evolution of the driving source can shed light on how massive stars actually form. This thesis presents observations at both high (SMA 3 arcsecond) and low (JCMT 15 arcsecond) spatial resolution of the known jet/outflow tracers, SiO and 12CO, towards a sample massive star forming region drawn from the RMS survey. Furthermore, the presence of infall signatures is explored through observations of HCO+ and H13CO+, and the hot core nature of the regions is probed using tracers such as CH3CN, HC3N and CH3OH. SiO is detected towards approximately 50% of the massive young stellar objects and HII regions in the JCMT sample. The detection of SiO appears to be linked to the age of the RMS source, with the likely younger sources showing a stronger dependence with SiO. The presence of SiO also appears to be linked to the CO velocity, with SiO more efficiently tracing sources with higher velocity dispersions. In the MOPRA observations towards a sample of 33 RMS sources, CH3CN is detected towards 66% of the sources, with the redder likely younger sources having the largest rotational temperatures. This thesis presents the first interferometric SiO (5-4) and 12CO (2-1) observations, taken with the SMA, towards the massive star forming region G203.3166/NGC 2264-C. In this intermediate/massive star forming cluster, SiO is again tracing the youngest sources. Both the SiO and 12CO emission trace two bipolar, high velocity outflows towards the mm brightest, IR-dark, likely youngest sources in this reg! ion. In contrast the IR

  4. Episodic molecular outflow in the very young protostellar cluster Serpens South.

    PubMed

    Plunkett, Adele L; Arce, Héctor G; Mardones, Diego; van Dokkum, Pieter; Dunham, Michael M; Fernández-López, Manuel; Gallardo, José; Corder, Stuartt A

    2015-11-01

    The loss of mass from protostars, in the form of a jet or outflow, is a necessary counterpart to protostellar mass accretion. Outflow ejection events probably vary in their velocity and/or in the rate of mass loss. Such 'episodic' ejection events have been observed during the class 0 protostellar phase (the early accretion stage), and continue during the subsequent class I phase that marks the first one million years of star formation. Previously observed episodic-ejection sources were relatively isolated; however, the most common sites of star formation are clusters. Outflows link protostars with their environment and provide a viable source of the turbulence that is necessary for regulating star formation in clusters, but it is not known how an accretion-driven jet or outflow in a clustered environment manifests itself in its earliest stage. This early stage is important in establishing the initial conditions for momentum and energy transfer to the environment as the protostar and cluster evolve. Here we report that an outflow from a young, class 0 protostar, at the hub of the very active and filamentary Serpens South protostellar cluster, shows unambiguous episodic events. The (12)C(16)O (J = 2-1) emission from the protostar reveals 22 distinct features of outflow ejecta, the most recent having the highest velocity. The outflow forms bipolar lobes--one of the first detectable signs of star formation--which originate from the peak of 1-mm continuum emission. Emission from the surrounding C(18)O envelope shows kinematics consistent with rotation and an infall of material onto the protostar. The data suggest that episodic, accretion-driven outflow begins in the earliest phase of protostellar evolution, and that the outflow remains intact in a very clustered environment, probably providing efficient momentum transfer for driving turbulence. PMID:26536957

  5. Episodic molecular outflow in the very young protostellar cluster Serpens South

    NASA Astrophysics Data System (ADS)

    Plunkett, Adele L.; Arce, Héctor G.; Mardones, Diego; van Dokkum, Pieter; Dunham, Michael M.; Fernández-López, Manuel; Gallardo, José; Corder, Stuartt A.

    2015-11-01

    The loss of mass from protostars, in the form of a jet or outflow, is a necessary counterpart to protostellar mass accretion. Outflow ejection events probably vary in their velocity and/or in the rate of mass loss. Such `episodic' ejection events have been observed during the Class 0 protostellar phase (the early accretion stage), and continue during the subsequent class I phase that marks the first one million years of star formation. Previously observed episodic-ejection sources were relatively isolated; however, the most common sites of star formation are clusters. Outflows link protostars with their environment and provide a viable source of turbulence that is necessary for regulating star formation in clusters, but it is not known how an accretion-driven jet or outflow in a clustered environment manifests itself in its earliest stage. This early stage is important in establishing the initial conditions for momentum and energy transfer to the environment as the protostar and cluster evolve. Here we report that an outflow from a very young class 0 protostar, at the hub of the very active and filamentary Serpens South protostellar cluster, shows unambiguous episodic events. The 12CO (J=2-1) emission from the protostar reveals 22 distinct features of outflow ejecta, the most recent having the highest velocity. The outflow forms bipolar lobes --- one of the first detectable signs of star formation --- which originate from the peak of 1-mm continuum emission. Emission from the surrounding C18O envelope shows kinematics consistent with rotation and an infall of material onto the protostar. The data suggest that episodic accretion-driven outflow begins in the earliest phase of protostellar evolution, and that the outflow remains intact in a very clustered environment, probably providing efficient momentum transfer for driving turbulence.

  6. Surface and Lightning Sources of Nitrogen Oxides over the United States: Magnitudes, Chemical Evolution, and Outflow

    NASA Technical Reports Server (NTRS)

    Hudman, Rynda C.; Jacob, Daniel J.; Turquety, Solene; Leinbensperger, E. M.; Murray, L. T.; Wu, Samuel; Gilliland, A. B.; Avery, Melody A.; Bertram, Timothy H.; Brune, W. H.; Cohen, Ronald C.; Dibb, Jack E.; Flocke, F. M.; Fried, Alan; Holloway, J.; Neuman, J. A.; Orville, R.; Perring, Anne; Ren, Xinrong; Ryerson, T. B.; Sachse, Glen W.; Singh, H. B.; Swanson, Aaron; Wooldridge, Paul J.

    2007-01-01

    We use observations from two aircraft during the International Consortium for Atmospheric Research on Transport and Transformation (ICARTT) campaign over the eastern United States and North Atlantic during summer 2004, interpreted with a global 3-D model of tropospheric chemistry (GEOS-Chem) to test current understanding of the regional sources, chemical evolution, and export of nitrogen oxides. The boundary layer NO(x) data provide top-down verification of a 50% decrease in power plant and industry NO(x) emissions over the eastern United States between 1999 and 2004. Observed 8-12 8 km NO(x) concentrations in ICARTT were 0.55 +/- 36 ppbv, much larger than in previous United States aircraft campaigns (ELCHEM, SUCCESS, SONEX). We show that regional lightning was the dominant source of this NO(x) and increased upper tropospheric ozone by 10 ppbv. Simulating the ICARTT upper tropospheric NO(x) observations with GEOS-Chem require a factor of 4 increase in the model NO(x) yield per flash (to 500 mol/flash). Observed OH concentrations were a factor of 2 lower than can be explained from current photochemical models, and if correct would imply a broader lightning influence in the upper troposphere than presently thought.An NO(y)-CO correlation analysis of the fraction f of North American NO(x) emissions vented to the free troposphere as NO(y) (sum of NO(x) and its oxidation products PAN and HNO3) s shows observed f=16+/-10 percent and modeled f=14 +/- 8 percent, consistent with previous studies. Export to the lower free troposphere is mostly HNO3 but at higher altitudes is mostly PAN. The model successfully simulates NO(y) export efficiency and speciation, supporting previous model estimates of a large U.S. contribution to tropospheric ozone through NO(x) and PAN export.

  7. Bipolar disorder

    MedlinePlus

    Manic depression; Bipolar affective disorder; Mood disorder - bipolar; Manic depressive disorder ... Bipolar disorder affects men and women equally. It most often starts between ages 15 and 25. The exact ...

  8. Controlling Influence of Magnetic Field on Solar Wind Outflow: An Investigation using Current Sheet Source Surface Model

    NASA Astrophysics Data System (ADS)

    Poduval, Bala

    2016-05-01

    The Wang and Sheeley empirical relationship between magnetic flux tube expansion (FTE) in the inner corona and the solar wind speed (SWS) observed near the Earth's orbit forms the basis of current solar wind prediction techniques such as WSA/ENLIL. Based on this concept, the Current Sheet Source Surface (CSSS) model, built on a corona in magnetostatic equilibrium incorporating electric currents, has recently been validated for solar wind prediction. We present the initial results of an investigation of the influence of solar magnetic field in determining the solar wind outflow using the CSSS model. We found that there is significant temporal variation in the functional form of FTE--SWS relation and that the accuracy of CSSS predictions are nearly twice better than the PFSS predcitions. We attribute the greater accuracy of CSSS predictions to the model's capability to trace the solar wind sources better than the PFSS model and, perhaps, the treatment of electric currents in the inner corona in the CSSS model.Synoptic maps of coronal magnetic field, similar to the photospheric ones, are still a long way away, though techniques are under development, especially using the Coronal Multi-Channel Polarimeter data. And the near--Sun regions below 0.3 AU remain unexplored until Solar Probe Plus and Solar Orbiter are launched. A well-validated model of the corona capable of providing reliable solar wind conditions in the near-Sun region will be of great use in interpreting the data collected by these spacecraft. The magnetohydrodynamic models such as ENLIL for space weather prediction, require ambient plasma and magnetic field information at their inner boundaries, usually provided by magnetostatic models, such as PFSS, in the absence of sufficient observational data. Our present work is an attempt to provide methods to generate reliable solar wind conditions in the near-Sun region.

  9. Bipolar disorder

    MedlinePlus

    Manic depression; Bipolar affective disorder; Mood disorder - bipolar; Manic depressive disorder ... happiness and high activity or energy (mania) or depression and low activity or energy (depression). The following ...

  10. Nature or Nurture: the peculiar HH 900 jet and outflow system in the Carina nebula

    NASA Astrophysics Data System (ADS)

    Reiter, Megan; Smith, Nathan; Kiminki, Megan M.; Bally, John

    2015-01-01

    We present new optical and IR spectroscopy and Hubble Space Telescope imaging of HH 900, a peculiar protostellar outflow in the Carina nebula. Previous Hα imaging from HST revealed an unusually broad, bipolar outflow emerging from a small, tadpole-shaped globule that is illuminated by the many O-type stars in nearby Trumpler 16. Near-IR narrowband [Fe II] images reveal a symmetric, collimated jet that bisects the broad outflow traced by Hα. In a giant H II region like Carina, [Fe II] emission traces dense gas that is self-shielded from Lyman continuum photons from nearby O-type stars, but is excited by non-ionizing FUV photons that penetrate the ionization front within the jet. New Gemini AO images of near-IR H2 emission show that molecules survive in the outflow, and follow the Hα morphology. Position-velocity diagrams of the three lines also reveal very different kinematics. [Fe II] traces steady, jet-like velocities that are faster than those observed in H2 emission. Most strikingly, Hα velocities resemble the Hubble wedges seen in the position-velocity diagrams of some molecular outflows, but few other protostellar jets. We propose that [Fe II] emission traces the protostellar jet itself while H2 emission reveals the molecules that (briefly) survive in the outflow, and Hα traces the ionized skin of the outflow sheath entrained by the jet. The high estimated mass-loss rate of the jet requires a high accretion rate, implying that the unseen driving source is an intermediate-mass (~2-8 Msun) protostar. We propose that HH 900 provides a bridge between molecular outflows driven by deeply embedded sources, and jets from unobscured low-mass protostars because external irradiation from nearby O-type stars illuminates both the collimated atomic jet core and the material it sweeps up.

  11. Sources of water for the outflow channels on Mars: Implications of the Late Noachian "icy highlands" model for melting and groundwater recharge on the Tharsis rise

    NASA Astrophysics Data System (ADS)

    Cassanelli, James P.; Head, James W.; Fastook, James L.

    2015-04-01

    From the Late Noachian period, through the Hesperian, and into the Amazonian periods on Mars, large outflow channels were formed. Many are interpreted to have originated through the catastrophic discharge of groundwater from martian aquifers, involving the release of up to millions of cubic-kilometers of water. Such a mechanism for outflow channel formation requires that martian aquifers were supplied with significant quantities of water some time prior to the discharge events. Typical groundwater recharge occurs due to the infiltration of surficial waters through a permeable substrate down into aquifers. However, some climate models predict an early martian climate dominated by generally "cold and icy" conditions. In this scenario, a globally continuous, impermeable cryosphere prevents infiltration of liquid water (that might be generated at the surface through anomalous heating conditions), leaving the martian aquifers without an apparent source of recharge to supply later outflow channel formation by groundwater discharge. More recent global climate modeling of an early, thicker CO2 martian atmosphere predicts that, when coupled with a full water cycle, the atmosphere of Mars will behave adiabatically causing temperatures to decrease with elevation. The high standing areas of Mars, such as the southern highlands and the Tharsis region, then act as cold traps. This leads to the preferential accumulation of snow and ice, resulting in the formation of regional ice sheets throughout the highlands that characterize the Late Noachian "icy highlands" early Mars climate model (LNIH). We make the initial assumption that the LNIH model is representative of the early Mars climate, and seek to test the model against the presence of the Hesperian and Amazonian outflow channels to determine if it can be consistent. In order to reconcile the LNIH early Mars climate model with the presence of the later outflow channels a groundwater recharge mechanism that can operate under the

  12. High Velocity Outflows in Quasars

    NASA Astrophysics Data System (ADS)

    Hamann, Fred; Rodriguez Hidalgo, Paola; Nestor, Daniel

    2006-02-01

    High velocity (HV) outflows are important components of SMBH growth and evolution. The ability of SMBHs to accrete matter and light up as AGN probably requires that outflows are present to carry away angular momentum. Outflows during the luminous AGN phase might also play a critical role in ``unveiling" young dust-enshrouded AGN and in ``polluting" the intergalactic medium with metals at high redshifts. Nonetheless, AGN outflows remain poorly understood. We have begun a program to study a nearly unexplored realm of AGN outflow parameter space: HV winds with v> 10,000 km/s up to v~ 0.2c but small velocity dispersions (narrow absorption lines), such that v/(Delta) v ≫ 1. These extreme outflows have been detected so far in just a few quasars, but they might be ubiquitous if, as expected, the flows subtend a small solid angle as seen from the central engine. Narrow-line HV flows merit specific attention because they pose unique challenges for theoretical models of the wind acceleration, mass loss rates, launch radii, etc. They might also comprise a significant fraction of absorbers previously attributed to unrelated (interveinng) gas or galaxies. We have compiled a list of bright quasars with candidate HV outflow lines (CIV 1550 A) in existing SDSS spectra. We now propose to observe ~50 of these candidates with the 2.1m GoldCam to i) identify/confirm some of the true outflow systems (based on line variability), ii) place a firm lower limit on the fraction of quasars with narrow-line HV outflows, iii) compile a short list of confirmed HV outflow sources for future study, and iv) use the combined SDSS and GoldCam data to measure or constrain basic outflow properties, such as the kinematics, locations, and physical conditions.

  13. HST/STIS observations of the RW Aurigae bipolar jet: mapping the physical parameters close to the source

    NASA Astrophysics Data System (ADS)

    Melnikov, S. Yu; Eislöffel, J.; Bacciotti, F.; Woitas, J.; Ray, T. P.

    2009-11-01

    Context: We present the results of new spectral diagnostic investigations applied to high-resolution long-slit spectra obtained with the Hubble Space Telescope Imaging Spectrograph (HST/STIS) of the jet from the T Tauri star RW Aur. Aims: Our primary goal is to determine basic physical parameters (electron density ne and electron temperature Te, hydrogen ionisation fraction xe, total hydrogen density nH, radial velocity vr and the mass outflow rate dot Mj) along both the red- and blueshifted lobes of the RW Aur jet. Methods: The input dataset consists of seven long-slit spectra, of 0.1 arcsec spatial resolution, taken with the STIS slit parallel to the jet, and stepped across it. We use the Bacciotti & Eislöffel (1999, A&A, 342, 717) method to analyse the forbidden doublets [O I]λλ6300,6363, [S II]λλ 6716,6731, and [N II]λλ 6548,6583 Å to extract n_e, T_e, x_e, and n_H. Results: We were able to extract the parameters as far as 3.9 arcsec in the red- and 2.1 arcsec in the blueshifted beam. The electron density at the base of both lobes is close to the critical density for [S II] emission but then it decreases gradually with distance from the source. The range of electron temperatures derived for this jet (Te = 10^4-2×104 K) is similar to those generally found in other outflows from young stars. The ionisation fraction xe varies between 0.04 and 0.4, increasing within the first few arcseconds and then decreasing in both lobes. The total hydrogen density, derived as nH = ne / x_e, is on average 3.2×104 cm-3 and shows a gradual decrease along the beam. Variations of the above quantities along the jet lobes appear to be correlated with the position of knots. Combining the derived parameters with vr measured from the HST spectra and other characteristics available for this jet, we estimate dot Mj following two different procedures. The mass-outflow rate dot Mj is moderate and similar in the two lobes, despite the fact that the well-known asymmetry in the radial

  14. Helical Magnetic Fields in the NGC 1333 IRAS 4A Protostellar Outflows

    NASA Astrophysics Data System (ADS)

    Ching, Tao-Chung; Lai, Shih-Ping; Zhang, Qizhou; Yang, Louis; Girart, Josep M.; Rao, Ramprasad

    2016-03-01

    We present Submillimeter Array polarization observations of the CO J = 3-2 line toward NGC 1333 IRAS 4A. The CO Stokes I maps at an angular resolution of ˜1″ reveal two bipolar outflows from the binary sources of NGC 1333 IRAS 4A. The kinematic features of the CO emission can be modeled by wind-driven outflows at ˜20° inclined from the plane of the sky. Close to the protostars the CO polarization, at an angular resolution of ˜2.″3, has a position angle approximately parallel to the magnetic field direction inferred from the dust polarizations. The CO polarization direction appears to vary smoothly from an hourglass field around the core to an arc-like morphology wrapping around the outflow, suggesting a helical structure of magnetic fields that inherits the poloidal fields at the launching point and consists of toroidal fields at a farther distance of outflow. The helical magnetic field is consistent with the theoretical expectations for launching and collimating outflows from a magnetized rotating disk. Considering that the CO polarized emission is mainly contributed from the low-velocity and low-resolution data, the helical magnetic field is likely a product of the wind-envelope interaction in the wind-driven outflows. The CO data reveal a PA of ˜30° deflection in the outflows. The variation in the CO polarization angle seems to correlate with the deflections. We speculate that the helical magnetic field contributes to ˜10° deflection of the outflows by means of Lorentz force.

  15. Rotating molecular outflows: the young T Tauri star in CB 26

    NASA Astrophysics Data System (ADS)

    Launhardt, R.; Pavlyuchenkov, Ya.; Gueth, F.; Chen, X.; Dutrey, A.; Guilloteau, S.; Henning, Th.; Piétu, V.; Schreyer, K.; Semenov, D.

    2009-01-01

    Context: The disk-outflow connection is thought to play a key role in extracting excess angular momentum from a forming proto-star. Although jet rotation has been observed in a few objects, no rotation of molecular outflows has been unambiguously reported so far. Aims: We report new millimeter-interferometric observations of the edge-on T Tauri star - disk system in the isolated Bok globule CB 26. The aim of these observations was to study the disk-outflow relation in this 1 Myr old low-mass young stellar object. Methods: The IRAM PdBI array was used to observe 12CO(2-1) at 1.3 mm in two configurations, resulting in spectral line maps with 1.5´´ resolution. We use an empirical parameterized steady-state outflow model combined with 2-D line radiative transfer calculations and χ^2-minimization in parameter space to derive a best-fit model and constrain parameters of the outflow. Results: The data reveal a previously undiscovered collimated bipolar molecular outflow of total length ≈2000 AU, escaping perpendicular to the plane of the disk. We find peculiar kinematic signatures that suggest that the outflow is rotating with the same orientation as the disk. However, we could not ultimately exclude jet precession or two misaligned flows as possible origins of the observed peculiar velocity field. There is indirect indication that the embedded driving source is a binary system, which, together with the youth of the source, could provide a clue to the observed kinematic features of the outflow. Conclusions: CB 26 is so far the most promising source in which to study the rotation of a molecular outflow. Assuming that the outflow is rotating, we compute and compare masses, mass flux, angular momenta, and angular momentum flux of the disk and outflow and derive disk dispersal timescales of 0.5 ldots 1 Myr, comparable to the age of the system. Based on observations carried out with the IRAM Plateau de Bure Interferometer. IRAM is supported by INSU/CNRS (France), MPG

  16. Coronal Pseudo-Streamer and Bipolar Streamer Observed by SOHO/UVCS in March 2008

    NASA Astrophysics Data System (ADS)

    Abbo, L.; Lionello, R.; Riley, P.; Wang, Y.-M.

    2015-07-01

    The past solar minimum is characterized by several peculiar aspects and by a complex magnetic topology with two different types of coronal streamers: pseudo-streamers and bipolar streamers. Pseudo-streamers or unipolar streamer are coronal structures that separate coronal holes of the same polarity, without a current sheet in the outer corona; unlike bipolar streamers, which separate coronal holes of opposite magnetic polarity. In this study, two examples of these structures have been identified in the period of Carrington rotation 2067 by applying a potential-field source-surface extrapolation of the photospheric field measurements. We present a spectroscopic analysis of a pseudo-streamer and a bipolar streamer observed in the period 12 - 17 March 2008 at high spectral and spatial resolution by the Ultraviolet Coronagraph Spectrometer (UVCS; Kohl et al., Solar Phys. 162, 313, 1995) onboard the Solar and Heliospheric Observatory (SOHO). The solar wind plasma parameters, such as kinetic temperature, electron density, and outflow velocity, were inferred in the extended corona (from 1.7 to ) by analyzing the O vi doublet and H i Ly line spectra. The coronal magnetic topology was taken into account and was extrapolated with a 3D magneto-hydrodynamic model of the global corona. The results of the analysis show some peculiarities of the pseudo-streamer physical parameters in comparison with those obtained for bipolar streamers: in particular, we have found a higher kinetic temperature and higher outflow velocities of O vi ions and lower electron density values. In conclusion, we point out that pseudo-streamers produce a hybrid type of outflow that is intermediate between the slow and fast solar winds. These outflows are a possible source of slow/fast wind in a non-dipolar solar magnetic field configuration.

  17. Bipolar Disorder

    MedlinePlus

    Bipolar disorder is a serious mental illness. People who have it go through unusual mood changes. They go ... The down feeling is depression. The causes of bipolar disorder aren't always clear. It runs in families. ...

  18. Disentangling the outflow and protostars in HH 900 in the Carina Nebula

    NASA Astrophysics Data System (ADS)

    Reiter, Megan; Smith, Nathan; Kiminki, Megan M.; Bally, John; Anderson, Jay

    2015-04-01

    HH 900 is a peculiar protostellar outflow emerging from a small, tadpole-shaped globule in the Carina Nebula. Previous Hα imaging with Hubble Space Telescope (HST)/Advanced Camera for Surveys showed an ionized outflow with a wide opening angle that is distinct from the highly collimated structures typically seen in protostellar jets. We present new narrowband near-IR [Fe II] images taken with the Wide Field Camera 3 on the HST that reveal a remarkably different structure than Hα. In contrast to the unusual broad Hα outflow, the [Fe II] emission traces a symmetric, collimated bipolar jet with the morphology and kinematics that are more typical of protostellar jets. In addition, new Gemini adaptive optics images reveal near-IR H2 emission coincident with the Hα emission, but not the [Fe II]. Spectra of these three components trace three separate and distinct velocity components: (1) H2 from the slow, entrained molecular gas, (2) Hα from the ionized skin of the accelerating outflow sheath, and (3) [Fe II] from the fast, dense, and collimated protostellar jet itself. Together, these data require a driving source inside the dark globule that remains undetected behind a large column density of material. In contrast, Hα and H2 emission trace the broad outflow of material entrained by the jet, which is irradiated outside the globule. As it get dissociated and ionized, it remains visible for only a short time after it is dragged into the H II region.

  19. Sublimating comets as the source of nucleation seeds for grain condensation in the gas outflow from AGB stars

    NASA Technical Reports Server (NTRS)

    Whitmire, D. P.; Matese, John J.; Reynolds, R. T.

    1989-01-01

    A growing amount of observational and theoretical evidence suggests that most main sequence stars are surrounded by disks of cometary material. The dust production by comets in such disks is investigated when the central stars evolve up the red giant and asymptotic giant branch (AGB). Once released, the dust is ablated and accelerated by the gas outflow and the fragments become the seeds necessary for condensation of the gas. The origin of the requisite seeds has presented a well known problem for classical nucleation theory. This model is consistent with the dust production observed in M giants and supergiants (which have increasing luminosities) and the fact that earlier supergiants and most WR stars (whose luminosities are unchanging) do not have significant dust clouds even though they have significant stellar winds. Another consequence of the model is that the spatial distribution of the dust does not, in general, coincide with that of the gas outflow, in contrast to the conventional condensation model. A further prediction is that the condensation radius is greater that that predicted by conventional theory which is in agreement with IR interferometry measurements of alpha-Ori.

  20. Ionospheric outflows as possible source of the low-energy plasma flux tubes controlling the dimension of pulsating auroral patches

    NASA Astrophysics Data System (ADS)

    Liang, J.; Donovan, E.; Nishimura, T.; Yang, B.; Angelopoulos, V.

    2014-12-01

    Conjunctive observations of low-Earth-orbit satellites and optical auroral imagers have indicated that, a majority of pulsating auroral patches (PAPs) are associated with low-energy ion (LEI) precipitation structures with core energies ranging from several tens of eV up to a few hundred eV. This result is consistent with a long-standing proposal that the PAPs connect to flux tubes filled with enhanced "cold" plasma. To further explore the origin and generation mechanism of those LEI structures, we investigate a few THEMIS events when the in-situ probes are conceived as conjugate to PAPs, judging by an apparent correlation between the in-situ whistler-mode chorus and the oscillation of the PAP luminosity [Nishimura et al., 2011]. We notice a common existence of LEI structures from THEMIS in-situ data during those conjugacy event intervals. Such LEI structures are always strongly field-aligned, with core energies ranging from several tens of eV up to a few hundred eV, and often exhibit distinct energy dispersion features. Contingent upon the energy range and time, the pitch-angle distribution of the LEI structures can be either heavily biased toward parallel direction, or biased toward anti-parallel direction, or roughly symmetric between parallel and anti-parallel directions. The above observations allude to the ion outflows from the ionosphere as a plausible origin of the observed LEI structures. To check the above notion, we perform particle simulations assuming that the low-energy ions originate from the ion outflows in topside ionosphere and bounce between hemispheres while convecting with EXB drift. The simulation results can reproduce some of the basic observable features of the LEI structures, such as the energy dispersion and the variation of pitch-angle distribution versus time and energy. Combining the results from low-Earth-orbit satellites observations, THEMIS in-situ observations, and simulations, we propose that the ion outflows into the magnetosphere

  1. XMM Observations of Two Quadrupolar Outflows

    NASA Astrophysics Data System (ADS)

    Simon, Theodore

    2009-03-01

    X-ray images of two small dark clouds, L1455 and L723, have been obtained with the EPIC cameras on board the XMM-Newton telescope. Both regions contain multiple independent but overlapping bipolar flows in high-velocity CO, a collection of Herbig-Haro objects, and a number of filaments and knots of H2 emission. The field of view in each cloud was centered on the confluence of the nearly orthogonal CO flows. More than three dozen compact X-ray sources were detected. However, the Class 0/I protostars thought to be the driving sources of the flows in both clouds were not detected. Strong emission was observed from RNO 15, an optically visible, nebulous T Tauri star in the dense core of L1455. A thermal plasma model for the X-ray spectrum of RNO 15 gave a luminosity of L X ~ 1031.2 erg s-1. The heavily reddened Class II star L1455 IRS 5 in the same region was detected as a weak X-ray source. No emission was detected from IRS 1 or IRS 4, which have been suggested as the launch sites for separate outflows in L1455. X-ray emission was observed from IRAS 19156+1906 in L723. The thermal radio source VLA 2, which is offset ~10'' east of the IRAS position and is considered the most likely energy source for the strong east-west flow in L723, was not detected. The source of the more narrowly collimated north-south flow in L723 is unknown but may be an embedded infrared object at the X-ray and IRAS position.

  2. Very low-luminosity Class I/Flat outflow sources in sigma Orionis: Clues to alternative formation mechanisms for very low-mass stars

    NASA Astrophysics Data System (ADS)

    Riaz, Basmah; Whelan, E.; Thompson, M.; Vorobyov, E.; Lodieu, N.

    2015-01-01

    We present an optical through sub-millimetre multi-wavelength study of two very low-luminosity Class I/Flat systems, Mayrit 1701117 and Mayrit 1082188, in the sigma Orionis cluster. We performed moderate resolution (R 1000) optical ( 0.4-0.9mu) spectroscopy with the TWIN spectrograph at the Calar Alto 3.5-m telescope. The spectra for both sources show prominent emission in accretion- and outflow-associated lines. The mean accretion rate measured from multiple line diagnostics is 6.4x10^{-10} Msun/yr for Mayrit 1701117, and 2.5x10^{-10} Msun/yr for Mayrit 1082188. The outflow mass loss rates for the two systems are similar and estimated to be 1x10^{-9} Msun/yr. The activity rates are within the range observed for low-mass Class I protostars. We obtained sub-millimetre continuum observations with the Submillimetre Common-User Bolometer Array (SCUBA-2) bolometer at the James Clerk Maxwell Telescope. Both objects are detected at a >5-sigma level in the SCUBA-2 850mu band. The bolometric luminosity of the targets as measured from the observed spectral energy distribution over 0.8-850mu is 0.18+/-0.04 Lsun for Mayrit 1701117, and 0.16+/-0.03 Lsun for Mayrit 1082188, and is in the very low-mass range. The total dust+gas mass derived from sub-millimetre fluxes is 36 M_Jup and 22 M_Jup for Mayrit 1701117 and Mayrit 1082188, respectively. There is the possibility that some of the envelope material might be dissipated by the strong outflows driven by these sources, resulting in a final mass of the system close to or below the sub-stellar limit. Given the membership of these objects in a relatively evolved cluster of 3 Myr of age, we consider an alternate formation mechanism in the context of the `hybrid' model of disk fragmentation, followed by ejection of a gaseous clump.

  3. Coronal hole boundaries evolution at small scales. II. XRT view. Can small-scale outflows at CHBs be a source of the slow solar wind

    NASA Astrophysics Data System (ADS)

    Subramanian, S.; Madjarska, M. S.; Doyle, J. G.

    2010-06-01

    Aims: We aim to further explore the small-scale evolution of coronal hole boundaries using X-ray high-resolution and high-cadence images. We intend to determine the fine structure and dynamics of the events causing changes of coronal hole boundaries and to explore the possibility that these events are the source of the slow solar wind. Methods: We developed an automated procedure for the identification of transient brightenings in images from the X-ray telescope on-board Hinode taken with an Al Poly filter in the equatorial coronal holes, polar coronal holes, and the quiet Sun with and without transient coronal holes. Results: We found that in comparison to the quiet Sun, the boundaries of coronal holes are abundant with brightening events including areas inside the coronal holes where closed magnetic field structures are present. The visual analysis of these brightenings revealed that around 70% of them in equatorial, polar and transient coronal holes and their boundaries show expanding loop structures and/or collimated outflows. In the quiet Sun only 30% of the brightenings show flows with most of them appearing to be contained in the solar corona by closed magnetic field lines. This strongly suggests that magnetic reconnection of co-spatial open and closed magnetic field lines creates the necessary conditions for plasma outflows to large distances. The ejected plasma always originates from pre-existing or newly emerging (at X-ray temperatures) bright points. Conclusions: The present study confirms our findings that the evolution of loop structures known as coronal bright points is associated with the small-scale changes of coronal hole boundaries. The loop structures show an expansion and eruption with the trapped plasma consequently escaping along the “quasi” open magnetic field lines. These ejections appear to be triggered by magnetic reconnection, e.g. the so-called interchange reconnection between the closed magnetic field lines (BPs) and the open

  4. Bipolar Disorder.

    ERIC Educational Resources Information Center

    Spearing, Melissa

    Bipolar disorder, a brain disorder that causes unusual shifts in a person's mood, affects approximately one percent of the population. It commonly occurs in late adolescence and is often unrecognized. The diagnosis of bipolar disorder is made on the basis of symptoms, course of illness, and when possible, family history. Thoughts of suicide are…

  5. Bipolar Disorder

    MedlinePlus

    ... or digestive problems Problems sleeping, or wanting to sleep all of the time Feeling tired all of the time Thoughts about death and suicide Causes & Risk Factors What causes bipolar disorder? Bipolar disorder may be caused by a chemical imbalance in the brain. It sometimes runs in ...

  6. Bipolar disorder.

    PubMed

    Grande, Iria; Berk, Michael; Birmaher, Boris; Vieta, Eduard

    2016-04-01

    Bipolar disorder is a recurrent chronic disorder characterised by fluctuations in mood state and energy. It affects more than 1% of the world's population irrespective of nationality, ethnic origin, or socioeconomic status. Bipolar disorder is one of the main causes of disability among young people, leading to cognitive and functional impairment and raised mortality, particularly death by suicide. A high prevalence of psychiatric and medical comorbidities is typical in affected individuals. Accurate diagnosis of bipolar disorder is difficult in clinical practice because onset is most commonly a depressive episode and looks similar to unipolar depression. Moreover, there are currently no valid biomarkers for the disorder. Therefore, the role of clinical assessment remains key. Detection of hypomanic periods and longitudinal assessment are crucial to differentiate bipolar disorder from other conditions. Current knowledge of the evolving pharmacological and psychological strategies in bipolar disorder is of utmost importance. PMID:26388529

  7. The Structure and Environmental Impacts of Protostellar Outflows in DR 21 and Orion

    NASA Astrophysics Data System (ADS)

    Wiseman, J. J.; Ho, P. T. P.; Brown, R.

    1997-12-01

    Regions of high-mass star formation are considerably more complicated than their low-mass counterparts. Recent HST NICMOS images of Orion-KL (Thompson et al. 1997) as well as sensitive ground-based infrared images of H_2 shock emission in the Orion outflow region (Chrysostomou et al. 1997, McCaughrean & Mac Low 1997, Schild et al. 1997) reveal intricate clumpy shock structures extending in nearly all radial directions from the source. The one radial direction in which the shock emission is particularly diminished is to the northeast, and it is precisely here that a molecular gas filament is present and highly heated, as though blocking the path of outflowing material from Orion-KL. We present our latest NH_3 (1,1), (2,2), and (3,3) VLA MEM mosaics of the Orion-KL region. We present evidence from temperature and chemical excitation gradients that the molecular gas cores along the filament extending to the northeast of Orion-KL are strongly heated by impacts from protostellar ejecta. These effects are seen in the core ``CS1'' 30'' northeast of IRc2 and also in cores at least twice as distant (1.5 pc). The DR 21 outflow region is also quite complex, with multiple molecular outflows extending from a multiple-component HII region. We present sensitive VLA maps of hydrogen recombination line emission, and we report the detection of bipolar ionized gas within the molecular outflow lobes. This detection gives observational evidence for the initial ionized inner structure of high mass protostellar outflows. Chrysostomou, A. et al. 1997, MNRAS, 289, 605 McCaughrean, M., & Mac Low, M.-M. 1997, AJ, 113, 391 Schild, H., Miller, S., & Tennyson, J. 1997, A&A, 319, 1037 Thompson, R., Rieke, M., Schneider, G., Stolovy, S., Erickson, E., & Axon, D. 1997, STSCI Early Release Observation PRC97-13

  8. Sources, solubility, and acid processing of aerosol iron and phosphorous over the South China Sea: East Asian dust and pollution outflows vs. Southeast Asian biomass burning

    NASA Astrophysics Data System (ADS)

    Hsu, S.-C.; Gong, G.-C.; Shiah, F.-K.; Hung, C.-C.; Kao, S.-J.; Zhang, R.; Chen, W.-N.; Chen, C.-C.; Chou, C. C.-K.; Lin, Y.-C.; Lin, F.-J.; Lin, S.-H.

    2014-08-01

    Iron and phosphorous are essential to marine microorganisms in vast regions in oceans worldwide. Atmospheric inputs are important allochthonous sources of Fe and P. The variability in airborne Fe deposition is hypothesized to serve an important function in previous glacial-interglacial cycles, contributing to the variability in atmospheric CO2 and ultimately the climate. Understanding the mechanisms underlying the mobilization of airborne Fe and P from insoluble to soluble forms is critical to evaluate the biogeochemical effects of these elements. In this study, we present a robust power-law correlation between fractional Fe solubility and non-sea-salt-sulfate / Total-Fe (nss-sulfate / FeT) molar ratio independent of distinct sources of airborne Fe of natural and/or anthropogenic origins over the South China Sea. This area receives Asian dust and pollution outflows and Southeast Asian biomass burning. This correlation is also valid for nitrate and total acids, demonstrating the significance of acid processing in enhancing Fe mobilization. Such correlations are also found for P, yet source dependent. These relationships serve as straightforward parameters that can be directly incorporated into available atmosphere-ocean coupling models that facilitate the assessment of Fe and P fertilization effects. Although biomass burning activity may supply Fe to the bioavailable Fe pool, pyrogenic soils are possibly the main contributors, not the burned plants. This finding warrants a multidisciplinary investigation that integrates atmospheric observations with the resulting biogeochemistry in the South China Sea, which is influenced by atmospheric forcings and nutrient dynamics with monsoons.

  9. SIO Emission in the Multilobe Outflow Associated with IRAS 16293-2422

    NASA Astrophysics Data System (ADS)

    Hirano, Naomi; Mikami, Hitomi; Umemoto, Tomofumi; Yamamoto, Satoshi; Taniguchi, Yoshiaki

    2001-02-01

    We have mapped the thermal emission line of SiO (v=0; J=2-1) associated with the quadrupolar molecular outflow driven by the very cold far-infrared source IRAS 16293-2422. The SiO emission is significantly enhanced in the northeastern red lobe and at the position ~50" east of the IRAS source. Strong SiO emission observed at ~50" east of the IRAS source presents evidence for a dynamical interaction between a part of the eastern blue lobe and the dense ambient gas condensation; however, such an interaction is unlikely to be responsible for producing the quadrupolar morphology. The SiO emission in the northeastern red lobe shows spatial and velocity structure similar to those of the CO outflow, suggesting that the SiO emission comes from the molecular outflow in the northeastern red lobe itself. The observed velocity structure is reproduced by a simple spatiokinematic model of bow shock with a shock velocity of 19-24 km s-1 inclined by 30°-45° from the plane of the sky. This implies that the northeastern red lobe is independent of the eastern blue lobe and that the quadrupolar structure is due to two separate bipolar outflows. The SiO emission observed in the western red lobe has a broad pedestal shape with low intensity. Unlike the SiO emission in the northeastern red lobe, the spatial extent of the SiO emission in the western red lobe is restricted to its central region. The spatial and velocity structures and the line profiles suggest that three different types of SiO emission are observed in this outflow: the SiO emission arising from the interface between the outflowing gas and the dense ambient gas clump, the SiO emission coming from the outflow lobe itself, and the broad SiO emission with low intensity observed at the central region of the outflow lobe. Based on observations made at the Nobeyama Radio Observatory (NRO). Nobeyama Radio Observatory is a branch of the National Astronomical Observatory of Japan, an interuniversity research institute operated by

  10. Bipolar Disorder

    MedlinePlus

    ... health professional before making a commitment. Learn More Free Booklets and Brochures Bipolar Disorder: A brochure on ... in the public domain and available for use free of charge. Citation of the NIMH is appreciated. ...

  11. Bipolar battery

    DOEpatents

    Kaun, Thomas D.

    1992-01-01

    A bipolar battery having a plurality of cells. The bipolar battery includes: a negative electrode; a positive electrode and a separator element disposed between the negative electrode and the positive electrode, the separator element electrically insulating the electrodes from one another; an electrolyte disposed within at least one of the negative electrode, the positive electrode and the separator element; and an electrode containment structure including a cup-like electrode holder.

  12. THE CIRCUMBINARY OUTFLOW: A PROTOSTELLAR OUTFLOW DRIVEN BY A CIRCUMBINARY DISK

    SciTech Connect

    Machida, Masahiro N.; Inutsuka, Shu-ichiro; Matsumoto, Tomoaki E-mail: inutsuka@nagoya-u.j

    2009-10-10

    Protostellar outflow is a star's first cry at the moment of birth. The outflows have an indispensable role in the formation of single stars because they carry off the excess angular momentum from the center of the shrinking gas cloud, and permit further collapse to form a star. On the other hand, a significant fraction of stars is supposedly born as binaries with circumbinary disks that are frequently observed. Here, we investigate the evolution of a magnetized rotating cloud using a three-dimensional resistive MHD nested-grid code, and show that the outflow is driven by the circumbinary disk and has an important role even in the binary formation. After the adiabatic core formation in the collapsing cloud core, the magnetic flux is significantly removed from the center of the cloud by the Ohmic dissipation. Since this removal makes the magnetic braking ineffective, the adiabatic core continuously acquires the angular momentum to induce fragmentation and subsequent binary formation. The magnetic field accumulates in the circumbinary disk where the removal and accretion of magnetic field are balanced, and finally drives the circumbinary outflow. This result explains the spectacular morphology of some specific young stellar objects such as L1551 IRS5. We can infer that most of the bipolar molecular outflows observed by low density tracers (i.e., CO) would correspond to circumbinary or circum-multiple outflows found in this Letter, since most of the young stellar objects are supposed to be binaries or multiples.

  13. CLASSICAL T TAURI-LIKE OUTFLOW ACTIVITY IN THE BROWN DWARF MASS REGIME

    SciTech Connect

    Whelan, E. T.; Ray, T. P.; Podio, L.; Bacciotti, F.; Randich, S.

    2009-12-01

    Over the last number of years, spectroscopic studies have strongly supported the assertion that protostellar accretion and outflow activity persist to the lowest masses. Indeed, previous to this work, the existence of three brown dwarf (BD) outflows had been confirmed by us. In this paper, we present the results of our latest investigation of BD outflow activity and report on the discovery of two new outflows. Observations to date have concentrated on studying the forbidden emission line (FEL) regions of young BDs and in all cases data have been collected using the UV-Visual Echelle Spectrometer (UVES) on the ESO Very Large Telescope. Offsets in the FEL regions are recovered using spectro-astrometry. Here, ISO-Oph 32 is shown to drive a blueshifted outflow with a radial velocity of 10-20 km s{sup -1} and spectro-astrometric analysis constrains the position angle of this outflow to 240{sup 0} +- 7{sup 0}. The BD candidate, ISO-ChaI 217 is found to have a bipolar outflow bright in several key forbidden lines (V{sub RAD} = -20 km s{sup -1}, +40 km s{sup -1}) and with a P.A. of 193{sup 0}-209{sup 0}. A striking feature of the ISO-ChaI 217 outflow is the strong asymmetry between the red- and blueshifted lobes. This asymmetry is revealed in the relative brightness of the two lobes (redshifted lobe is brighter), the factor of 2 difference in radial velocity (the redshifted lobe is faster) and the difference in the electron density (again higher in the red lobe). Such asymmetries are common in jets from low-mass protostars and the observation of a marked asymmetry at such a low mass (<0.1 M{sub sun}) supports the idea that BD outflow activity is scaled down from low-mass protostellar activity. Also note that although asymmetries are unexceptional, it is uncommon for the redshifted lobe to be the brightest as some obscuration by the accretion disk is assumed. This phenomenon has only been observed in one other source, the classical T Tauri (CTTS) star RW Aur. The physical

  14. Tracking sources of severe haze episodes and their physicochemical and hygroscopic properties under Asian continental outflow: Long-range transport pollution, postharvest biomass burning, and Asian dust

    NASA Astrophysics Data System (ADS)

    Jung, Jinsang; Kim, Young J.

    2011-01-01

    Aerosol physicochemical and hygroscopic properties were measured from 12 October to 21 November 2005 at a downwind area of the Asian continental outflow (Gwangju, Korea) to characterize severe haze episodes. Using optically measured elemental carbon (EC) at 660 nm (Opt.EC) and 880 nm (BC) wavelengths and Mie theory, it was estimated that the higher BC/Opt.EC ratio during the cloudy day of the long-range transport (LTP) period was mainly due to EC particle growth from in-cloud processing with secondary aerosols such as sulfate and organic aerosols. Single scattering albedo (SSA) of biomass burning (BB) aerosol increased sharply from 0.89 to 0.94 under a relative humidity >70%, suggesting that organic aerosols emitted from rice straw burning contained high amounts of hydrophilic compounds. The contribution of aerosol water content to the total light extinction coefficient (bext) was determined as 51.4% and 68.4% during the BB and BB + LTP periods, respectively, indicating that the haze episodes were highly enhanced by an increase in aerosol water content. The Asian dust event was characterized by the highest SSA (0.92 ± 0.02), the lowest mass scattering efficiency of fine particles (2.5 ± 1.0 m2 g-1), and the lowest hygroscopic nature (humidity-dependent light scattering enhancement factor, f(80%), which is defined by the ratio of light scattering coefficient at 80% relative humidity to that at dry condition, = ˜1.37). Based on the Ångström exponent (α) values observed at the source region of the Asian continent and the downwind area of South Korea during the BB + LTP period, it was found that the α value of urban aerosols decreased ˜11% for 1-2 days of the transport, probably due to the increase in particle size through water uptake. Increasing rates of surface PM10 mass concentrations at western coastal areas of the South Korean peninsula were in the range 2.4-14.4 μgm-3 h-1 at the beginning of the BB + LTP period (24 October 2005, 0700-2300 LT). Based on

  15. Infrared polarization images of star-forming regions. I - The ubiquity of bipolar structure

    NASA Technical Reports Server (NTRS)

    Tamura, M.; Gatley, Ian; Joyce, R. R.; Ueno, M.; Suto, H.; Sekiguchi, M.

    1991-01-01

    The inefficiency of the stellar formation process leads rather generally to high residual dust densities, and so to the existence of infrared reflection nebulosity (IRN), in regions of star formation. Polarization images of several star-forming regions with mass outflows (GSS 30, S255, GL 5180, GL 2591, GGD 27, and NGC 7538) presented here: (1) establish the universality of bipolarity and of shell or cavity structure in the IRN consistent with that of CO outflow; (2) identify the source of the mass outflow in each case; (3) show that the opening angle near this central source is large; and (4) demonstrate several instances of multiple shells, probably arising from episodic mass loss. Astrometry of 2.2-micron sources with arcsecond accuracy identifies the illuminating source of each IRN uniquely with a compact H II region or a bright IR source. The polarization images provide strong evidence for large-scale dust toroids around each of these sources. The density and mass of these disks are estimated from the extinction through the disk.

  16. Bipolar disorder

    PubMed Central

    Goodwin, Frederick K.; Ghaemi, S. Nassir

    1999-01-01

    Bipolar disorder's unique combination of three characteristics - clear genetic diathesis, distinctive clinical features, early availability of an effective treatment (lithium) - explains its special place in the history of psychiatry and its contribution to the current explosive growth of neuroscience. This article looks at the state of the art in bipolar disorder from the vantage point of: (i) genetics (possible linkages on chromosomes 18 and 21q, polygenic hypothesis, research into genetic markers); (ii) diagnosis (new focus on the subjective aspects of bipolar disorder to offset the current trend of underdiagnosis due to overreliance on standardized interviews and rating scales); (iii) outcome (increase in treatment-resistant forms signaling a change in the natural history of bipolar disorder); (iv) pathophysiology (research into circadian biological rhythms and the kindling hypothesis to explain recurrence); (v) treatment (emergence of the anticonvulsants, suggested role of chronic antidepressant treatment in the development of treatment resistance); (vi) neurobiology (evaluation of regulatory function in relation to affective disturbances, role of postsynaptic second-messenger mechanisms, advances in functional neuroimaging); and (vii) psychosocial research (shedding overly dualistic theories of the past to understand the mind and brain as an entity, thus emphasizing the importance of balancing the psychopharmacological and psychotherapeutic approaches). Future progress in the understanding and treatment of bipolar disorder will rely on successful integration of the biological and psychosocial lines of investigation. PMID:22033232

  17. The resolved outflow from 3C 48

    SciTech Connect

    Shih, Hsin-Yi; Stockton, Alan E-mail: stockton@ifa.hawaii.edu

    2014-10-20

    We investigate the properties of the high-velocity outflow driven by the young radio jet of 3C 48, a compact-steep-spectrum source. We use the Space Telescope Imaging Spectrograph on board the Hubble Space Telecope to obtain (1) low-resolution UV and optical spectra and (2) multi-slit medium-resolution spectra of the ionized outflow. With supporting data from ground-based spectrographs, we are able to accurately measure the ratios of diagnostic emission lines such as [O III] λ5007, [O III] λ3727, [N II] λ6548, Hα, Hβ, [Ne V] λ3425, and [Ne III] λ3869. We fit the observed emission-line ratios using a range of ionization models, powered by active galactic nucleus (AGN) radiation and shocks, produced by the MAPPINGS code. We have determined that AGN radiation is likely the dominant ionization source. The outflow's density is estimated to be in the range n = 10{sup 3}-10{sup 4} cm{sup –3}, the mass is ∼6 × 10{sup 6} M {sub ☉}, and the metallicity is likely equal to or higher than solar. Compared with the typical outflows associated with more evolved radio jets, this young outflow is denser, less massive, and more metal rich. Multi-slit observations allow us to construct a two-dimensional velocity map of the outflow that shows a wide range of velocities with distinct velocity components, suggesting a wide-angle clumpy outflow.

  18. Outflow Detection in a 70 μm Dark High-Mass Core

    NASA Astrophysics Data System (ADS)

    Feng, Siyi; Beuther, Henrik; Zhang, Qizhou; Liu, Hauyu Baobab; Zhang, Zhiyu; Wang, Ke; Qiu, Keping

    2016-09-01

    We present observations toward a high-mass (\\gt 40 {M}ȯ ), low-luminosity (\\lt 10 {L}ȯ ) 70 μ {{m}} dark molecular core G28.34 S-A at 3.4 mm, using the IRAM 30 m telescope and the NOEMA interferometer. We report the detection of {SiO} J=2\\to 1 line emission, which is spatially resolved in this source at a linear resolution of ∼0.1 pc, while the 3.4 mm continuum image does not resolve any internal sub-structures. The SiO emission exhibits two W–E oriented lobes centering on the continuum peak. Corresponding to the redshifted and blueshifted gas with velocities up to 40 {km} {{{s}}}-1 relative to the quiescent cloud, these lobes clearly indicate the presence of a strong bipolar outflow from this 70 μ {{m}} dark core, a source previously considered as one of the best candidates of “starless” core. Our SiO detection is consistent with ALMA archival data of {SiO} J=5\\to 4, whose high-velocity blueshifted gas reveals a more compact lobe spatially closer to the dust center. This outflow indicates that the central source may be in an early evolutionary stage of forming a high-mass protostar. We also find that the low-velocity components (in the range of {{Vlsr}}-5+3 {km} {{{s}}}-1) have an extended, NW–SE oriented distribution. Discussing the possible accretion scenarios of the outflow-powering young stellar object, we argue that molecular line emission and the molecular outflows may provide a better indication of the accretion history of the forming young stellar object, than snapshot observations of the present bolometric luminosity. This is particularly significant for cases of episodic accretion, which may occur during the collapse of the parent molecular core.

  19. Outflow Driven Turbulence in Star Forming Clouds

    NASA Astrophysics Data System (ADS)

    Frank, Adam

    Setting young stellar object jets and outflows in their broadest context requires an understanding of outflows as “feedback” in the development of molecular cloud turbulence and the determination of star formation efficiencies. In this contribution I review our group’s recent studies exploring relationships between protostellar outflows and turbulence in molecular clouds. We first present studies of turbulence and fossil cavities driven by YSO outflows using numerical simulations which track the evolution of single transient jets driven into a turbulent medium. Our simulations show both the effect of turbulence on outflow structures and, conversely, the effect of outflows on the ambient turbulence. These studies demonstrate that individual transient outflows have the capacity to re-energize decaying turbulence. Next we present simulations of multiple interacting jets. We show that turbulence can readily be sustained by these interactions and show that it is possible to broadly characterize an effective driving scale of the outflows. Comparing the velocity spectrum obtained in our studies to that of an isotropically forced control we show that in outflow driven turbulence a power law of the form E(k) ∝ k - β is indeed achieved. However we find a steeper spectrum β ˜ 3 is obtained in outflow driven turbulence models than in isotropically forced simulations β ˜ 2. 0. Taken together both studies provide broad support for the conclusion that fossil cavities driven by decaying jets can provide a source of turbulence and feedback which mediate star formation processes in molecular clouds. Whether this does obtain in real clouds remains a point which must be demonstrated

  20. Bipolar Disorder

    MedlinePlus

    ... might cause your mood changes. If not treated, bipolar disorder can lead to damaged relationships, poor job or school performance, and even suicide. However, there are effective treatments to control symptoms: medicine and talk therapy. A combination usually works best. NIH: National Institute ...

  1. SMA submillimeter observations of HL Tau: revealing a compact molecular outflow

    SciTech Connect

    Lumbreras, Alba M.; Zapata, Luis A.

    2014-04-01

    We present archival high angular resolution (∼2'') {sup 12}CO(3-2) line and continuum submillimeter observations of the young stellar object HL Tau made with the Submillimeter Array. The {sup 12}CO(3-2) line observations reveal the presence of a compact and wide opening angle bipolar outflow with a northeast to southwest orientation (P.A. = 50°) that is associated with the optical and infrared jet emanating from HL Tau with a similar orientation. On the other hand, the 850 μm continuum emission observations exhibit a strong and compact source in the position of HL Tau that has a spatial size of ∼200 × 70 AU with a P.A. = 145° and a dust mass of around 0.1 M {sub ☉}. These physical parameters are in agreement with values obtained recently from millimeter observations. This submillimeter source is therefore related to the disk surrounding HL Tau.

  2. Tracing outflows in the AGN forbidden region with SINFONI

    NASA Astrophysics Data System (ADS)

    Kakkad, D.; Mainieri, V.; Padovani, P.; Cresci, G.; Husemann, B.; Carniani, S.; Brusa, M.; Lamastra, A.; Lanzuisi, G.; Piconcelli, E.; Schramm, M.

    2016-08-01

    Context. Active galactic nucleus (AGN) driven outflows are invoked in numerical simulations to reproduce several observed properties of local galaxies. The z > 1 epoch is of particular interest as it was during this time that the volume averaged star formation and the accretion rate of black holes were at their maximum. Radiatively driven outflows are therefore believed to be common during this epoch. Aims: We aim to trace and characterize outflows in AGN hosts with high mass accretion rates at z > 1 using integral field spectroscopy. We obtain spatially resolved kinematics of the [O iii] λ5007 line in two targets which reveal the morphology and spatial extension of the outflows. Methods: We present SINFONI observations in the J band and the H + K band of five AGNs at 1.2 < z < 2.2. To maximize the chance of observing radiatively driven outflows, our sample was pre-selected based on peculiar values of the Eddington ratio and the hydrogen column density of the surrounding interstellar medium. We observe high velocity (~600-1900 km s-1) and kiloparsec scale extended ionized outflows in at least three of our targets, using [O iii] λ5007 line kinematics tracing the AGN narrow line region. We estimate the total mass of the outflow, the mass outflow rate, and the kinetic power of the outflows based on theoretical models and report on the uncertainties associated with them. Results: We find mass outflow rates of ~1-10 M⊙/yr for the sample presented in this paper. Based on the high star formation rates of the host galaxies, the observed outflow kinetic power, and the expected power due to the AGN, we infer that both star formation and AGN radiation could be the dominant source for the outflows. The outflow models suffer from large uncertainties, hence we call for further detailed observations for an accurate determination of the outflow properties to confirm the exact source of these outflows.

  3. PROTOSTELLAR OUTFLOWS AND RADIATIVE FEEDBACK FROM MASSIVE STARS

    SciTech Connect

    Kuiper, Rolf; Yorke, Harold W.; Turner, Neal J. E-mail: Harold.W.Yorke@jpl.nasa.gov

    2015-02-20

    We carry out radiation hydrodynamical simulations of the formation of massive stars in the super-Eddington regime including both their radiative feedback and protostellar outflows. The calculations start from a prestellar core of dusty gas and continue until the star stops growing. The accretion ends when the remnants of the core are ejected, mostly by the force of the direct stellar radiation in the polar direction and elsewhere by the reradiated thermal infrared radiation. How long the accretion persists depends on whether the protostellar outflows are present. We set the mass outflow rate to 1% of the stellar sink particle's accretion rate. The outflows open a bipolar cavity extending to the core's outer edge, through which the thermal radiation readily escapes. The radiative flux is funneled into the polar directions while the core's collapse proceeds near the equator. The outflow thus extends the ''flashlight effect'', or anisotropic radiation field, found in previous studies from the few hundred AU scale of the circumstellar disk up to the 0.1 parsec scale of the core. The core's flashlight effect allows core gas to accrete on the disk for longer, in the same way that the disk's flashlight effect allows disk gas to accrete on the star for longer. Thus although the protostellar outflows remove material near the core's poles, causing slower stellar growth over the first few free-fall times, they also enable accretion to go on longer in our calculations. The outflows ultimately lead to stars of somewhat higher mass.

  4. Bipolar electrochemistry.

    PubMed

    Fosdick, Stephen E; Knust, Kyle N; Scida, Karen; Crooks, Richard M

    2013-09-27

    A bipolar electrode (BPE) is an electrically conductive material that promotes electrochemical reactions at its extremities (poles) even in the absence of a direct ohmic contact. More specifically, when sufficient voltage is applied to an electrolyte solution in which a BPE is immersed, the potential difference between the BPE and the solution drives oxidation and reduction reactions. Because no direct electrical connection is required to activate redox reactions, large arrays of electrodes can be controlled with just a single DC power supply or even a battery. The wireless aspect of BPEs also makes it possible to electrosynthesize and screen novel materials for a wide variety of applications. Finally, bipolar electrochemistry enables mobile electrodes, dubbed microswimmers, that are able to move freely in solution. PMID:23843205

  5. Types of Bipolar Disorder

    MedlinePlus

    ... Research Studies Peer Support Research WeSearchTogether Types of Bipolar Disorder There are several kinds of bipolar disorder. Each ... like an illness. What is the difference between bipolar disorder and ordinary mood swings? The three main things ...

  6. Bipolar-Battery Construction

    NASA Technical Reports Server (NTRS)

    Rippel, Wally E.; Edwards, Dean B.

    1988-01-01

    Bipolar batteries fabricated in continuous quasi-automated process. Components of battery configured so processing steps run sequentially. Key components of battery, bipolar plate and bipolar separator, fabricated separately and later joined together.

  7. MASSIVE STAR FORMATION, OUTFLOWS, AND ANOMALOUS H{sub 2} EMISSION IN Mol 121 (IRAS 20188+3928)

    SciTech Connect

    Wolf-Chase, Grace; Arvidsson, Kim; Smutko, Michael; Sherman, Reid

    2013-01-10

    We have discovered 12 new molecular hydrogen emission-line objects (MHOs) in the vicinity of the candidate massive young stellar object Mol 121, in addition to five that were previously known. H{sub 2} 2.12 {mu}m/H{sub 2} 2.25 {mu}m flux ratios indicate another region dominated by fluorescence from a photodissociation region, and one region that displays an anomalously low H{sub 2} 2.12 {mu}m/H{sub 2} 2.25 {mu}m flux ratio (<1) and coincides with a previously reported deeply embedded source (DES). Continuum observations at 3 mm reveal five dense cores; the brightest core is coincident with the DES. The next brightest cores are both associated with centimeter continuum emission. One of these is coincident with the IRAS source; the other lies at the centroid of a compact outflow defined by bipolar MHOs. The brighter of these bipolar MHOs exhibits [Fe II] emission and both MHOs are associated with CH{sub 3}OH maser emission observed at 95 GHz and 44 GHz. Masses and column densities of all five cores are consistent with theoretical predictions for massive star formation. Although it is impossible to associate all MHOs with driving sources in this region, it is evident that there are several outflows along different position angles, and some unambiguous associations can be made. We discuss implications of observed H{sub 2} 2.12 {mu}m/H{sub 2} 2.25 {mu}m and [Fe II] 1.64 {mu}m/H{sub 2} 2.12 {mu}m flux ratios and compare the estimated total H{sub 2} luminosity with the bolometric luminosity of the region. We conclude that the outflows are driven by massive young stellar objects embedded in cores that are likely to be in different evolutionary stages.

  8. Starburst outflows from nearby galaxies

    NASA Technical Reports Server (NTRS)

    Waller, William H.

    1990-01-01

    Starburst outflows from NGC 5461, 1569 and M82 are discussed. The Sc I galaxy, M101, is reknowned for the kpc-size superassociations of star clusters and HII regions that dominate its spiral arms. NGC 5461 is one of the brightest of these superassociations, rivaling the Large Magellanic Cloud in H alpha luminosity. The NGC 5461 superassociation is dominated by a single unresolved HII region of outstanding luminosity (approx. 1000 Orion nebulae). Detailed examination of corresponding continuum images indicates that only the southern plume has any sort of stellar counterpart. The other plumes are clearly diffuse with no underlying hot stars. An image of NGC 1569 is discussed. Besides showing the peculiar arm noted by Zwicky (1971) and the filamentary extensions to the North and South (as noted by Hodge 1974), this image also reveals two arc-like features of diffuse ionized gas to the South. Both arcs are concentric with the bright center of the galaxy - where the super star clusters, A and B are located. The inner arc (Arc 1) appears to follow the same curve as the SW arm thus suggesting that the two features represent limb-brightened fragments of vast superbubble that was blown out by a central starburst sometime in the past. As the classic starburst galaxy, M82 displays all the luminous hallmarks of intense high-mass star formation and outflow activity. The diffuse H alpha and x ray emitting gas along the minor axis provides especially good evidence for a bipolar outflow of hot gas which is shock heating the swept-up interstellar medium (ISM) to temperatures of approx. 10(exp 4) K. An image shows the H alpha emission within the disk and along the minor axis. Another image shows the same field in the light of near-infrared. Both figures are based on charge coupled device images taken with the McGraw-Hill 1.3 m telescope (Waller 1989). The longer wavelength emission clearly shows a more extended morphology along the major axis. The morphological discrepancy is most

  9. Cirrus outflow dynamics

    NASA Technical Reports Server (NTRS)

    Lilly, Douglas K.

    1988-01-01

    In the present analyses of cirrus clouds' deep-convection outflow plumes as dynamically and thermodynamically active systems, the initial outflow is considered as an analog to wake collapse: after a neutrally-buoyant flow intrusion is flattened and stretched by its stratified environment, the initially isotropic turbulence within it is converted to other forms. Dugan et al.'s (1976) analytic and numerical calculations are used to predict the early spread of the outflow. Strong radiative heat flux curvature then leads to maintenance or regeneration of buoyant turbulence in the collapsed outflow plume. The rise of narrow plumes is sufficiently rapid that their mean temperature does not significantly differ from that of their environment.

  10. SUBMILLIMETER ARRAY OBSERVATIONS OF THE MOLECULAR OUTFLOW IN HIGH-MASS STAR-FORMING REGION G240.31+0.07

    SciTech Connect

    Qiu Keping; Zhang Qizhou; Wu Jingwen; Chen, H.-R.

    2009-05-01

    We present Submillimeter Array observations toward the 10{sup 4.7} L {sub sun} star-forming region G240.31+0.07, in the J = 2-1 transition of {sup 12}CO and {sup 13}CO and at 1.3 mm continuum, as well as the {sup 12}CO and {sup 13}CO observations from the Caltech Submillimeter Observatory to recover the extended emission filtered out by the interferometer. Maps of the {sup 12}CO and {sup 13}CO emission show a bipolar, wide-angle, quasi-parabolic molecular outflow, roughly coincident with an infrared nebula revealed by the Spitzer 3.6 and 4.5 {mu}m emission. The outflow has {approx}98 M {sub sun} molecular gas, making it one of the most massive molecular outflows known, and resulting in a very high mass-loss rate of 4.1 x 10{sup -3} M {sub sun} yr{sup -1} over a dynamical timescale of 2.4 x 10{sup 4} yr. The 1.3 mm continuum observations with a 4'' x 3'' beam reveal a flattened dusty envelope of {approx}150 M {sub sun}, which is further resolved with a 1.''2 x 1'' beam into three dense cores with a total mass of {approx}40 M {sub sun}. The central mm core, showing evidence of active star formation, approximately coincides with the geometric center of the bipolar outflow thus most likely harbors the powering source of the outflow. Overall, our observations provide the best case to date of a well defined wide-angle molecular outflow in a higher than 10{sup 4} L {sub sun} star-forming region. The outflow is morphologically and kinematically similar to low-mass protostellar outflows but has two to three orders of magnitude greater mass, momentum, and energy, and is apparently driven by an underlying wide-angle wind, hence further supports that high-mass stars up to late-O types, even in a crowded clustering environment, can form as a scaled-up version of low-mass star formation.

  11. Episodic High-velocity Outflows from V899 Mon: A Constraint On The Outflow Mechanisms

    NASA Astrophysics Data System (ADS)

    Ninan, J. P.; Ojha, D. K.; Philip, N. S.

    2016-07-01

    We report the detection of large variations in the outflow wind velocity from a young eruptive star, V899 Mon, during its ongoing high accretion outburst phase. Such large variations in the outflow velocity (from ‑722 to ‑425 km s‑1) have never been reported previously in this family of objects. Our continuous monitoring of this source shows that the multi-component, clumpy, and episodic high velocity outflows are stable in the timescale of a few days, and vary over the timescale of a few weeks to months. We detect significant decoupling in the instantaneous outflow strength to accretion rate. From the comparison of various possible outflow mechanisms in magnetospheric accretion of young stellar objects, we conclude magnetically driven polar winds to be the most consistent mechanism for the outflows seen in V899 Mon. The large scale fluctuations in outflow over the short period makes V899 Mon the most ideal source to constrain various magnetohydrodynamics simulations of magnetospheric accretion. Based on observations made with the Southern African Large Telescope (SALT).

  12. CARMA OBSERVATIONS OF PROTOSTELLAR OUTFLOWS IN NGC 1333

    SciTech Connect

    Plunkett, Adele L.; Arce, Hector G.; Corder, Stuartt A.; Mardones, Diego; Sargent, Anneila I.; Schnee, Scott L.

    2013-09-01

    We present observations of outflows in the star-forming region NGC 1333 using the Combined Array for Research in Millimeter-Wave Astronomy (CARMA). We combined the {sup 12}CO and {sup 13}CO (1-0) CARMA mosaics with data from the 14 m Five College Radio Astronomy Observatory to probe the central, most dense, and active region of this protostellar cluster at scales from 5'' to 7' (or 1000 AU to 0.5 pc at a distance of 235 pc). We map and identify {sup 12}CO outflows, and along with {sup 13}CO data we estimate their mass, momentum, and energy. Within the 7' Multiplication-Sign 7' map, the 5'' resolution allows for a detailed study of morphology and kinematics of outflows and outflow candidates, some of which were previously confused with other outflow emission in the region. In total, we identify 22 outflow lobes, as well as 9 dense circumstellar envelopes marked by continuum emission, of which 6 drive outflows. We calculate a total outflow mass, momentum, and energy within the mapped region of 6 M{sub Sun }, 19 M{sub Sun} km s{sup -1}, and 7 Multiplication-Sign 10{sup 44} erg, respectively. Within this same region, we compare outflow kinematics with turbulence and gravitational energy, and we suggest that outflows are likely important agents for the maintenance of turbulence in this region. In the earliest stages of star formation, outflows do not yet contribute enough energy to totally disrupt the clustered region where most star formation is happening, but have the potential to do so as the protostellar sources evolve. Our results can be used to constrain outflow properties, such as outflow strength, in numerical simulations of outflow-driven turbulence in clusters.

  13. Mid-infrared imaging of the bipolar planetary nebula M2-9 from SOFIA

    SciTech Connect

    Werner, M. W.; Sahai, R.; Davis, J.; Livingston, J.; Lykou, F.; DE Buizer, J.; Keller, L.; Adams, J.; Gull, G.; Henderson, C.; Herter, T.; Schoenwald, J.

    2014-01-10

    We have imaged the bipolar planetary nebula M2-9 using SOFIA's FORCAST instrument in six wavelength bands between 6.6 and 37.1 μm. A bright central point source, unresolved with SOFIA's ∼4''-5'' beam, is seen at each wavelength, and the extended bipolar lobes are clearly seen at 19.7 μm and beyond. The photometry between 10 and 25 μm is well fit by the emission predicted from a stratified disk seen at large inclination, as has been proposed for this source by Lykou et al. and by Smith and Gehrz. The principal new results in this paper relate to the distribution and properties of the dust that emits the infrared radiation. In particular, a considerable fraction of this material is spread uniformly through the lobes, although the dust density does increase at the sharp outer edge seen in higher resolution optical images of M2-9. The dust grain population in the lobes shows that small (<0.1 μm) and large (>1 μm) particles appear to be present in roughly equal amounts by mass. We suggest that collisional processing within the bipolar outflow plays an important role in establishing the particle size distribution.

  14. Outflow Propagation in Collapsars: Collimated Jets And Expanding Outflows

    SciTech Connect

    Mizuta, A.; Yamasaki, T.; Nagataki, S.; Mineshige, S.; /Kyoto U., Yukawa Inst., Kyoto /KIPAC, Menlo Park

    2007-06-08

    We investigate the outflow propagation in the collapsar in the context of gamma-ray bursts (GRBs) with 2D relativistic hydrodynamic simulations. We vary the specific internal energy and bulk Lorentz factor of the injected outflow from non-relativistic regime to relativistic one, fixing the power of the outflow to be 10{sup 51}erg s{sup -1}. We observed the collimated outflow, when the Lorentz factor of the injected outflow is roughly greater than 2. To the contrary, when the velocity of the injected outflow is slower, the expanding outflow is observed. The transition from collimated jet to expanding outflow continuously occurs by decreasing the injected velocity. Different features of the dynamics of the outflows would cause the difference between the GRBs and similar phenomena, such as, X-ray flashes.

  15. AN ENVELOPE DISRUPTED BY A QUADRUPOLAR OUTFLOW IN THE PRE-PLANETARY NEBULA IRAS 19475+3119

    SciTech Connect

    Hsu, Ming-Chien; Lee, Chin-Fei E-mail: cflee@asiaa.sinica.edu.tw

    2011-07-20

    IRAS 19475+3119 is a quadrupolar pre-planetary nebula (PPN), with two bipolar lobes, one in the east-west (E-W) direction and one in the southeast-northwest (SE-NW) direction. We have observed it in CO J = 2-1 with the Submillimeter Array at {approx}1'' resolution. The E-W bipolar lobe is known to trace a bipolar outflow and it is detected at high velocity. The SE-NW bipolar lobe appears at low velocity, and could trace a bipolar outflow moving in the plane of the sky. Two compact clumps are seen at low velocity around the common waist of the two bipolar lobes, spatially coincident with the two emission peaks in the NIR, tracing dense envelope material. They are found to trace the two limb-brightened edges of a slowly expanding torus-like circumstellar envelope produced in the late asymptotic giant branch phase. This torus-like envelope originally could be either a torus or a spherical shell, and it appears as it is now because of the two pairs of cavities along the two bipolar lobes. Thus, the envelope appears to be disrupted by the two bipolar outflows in the PPN phase.

  16. Treatment of source-separated urine by a combination of bipolar electrodialysis and a gas transfer membrane.

    PubMed

    Pronk, W; Biebow, M; Boller, M

    2006-01-01

    Urine contains nutrients which can be applied usefully as a fertiliser in agriculture, but the relatively high pH can lead to ammonia evaporation. Electrodialysis with bipolar membranes was combined with an additional mass transfer unit in order to render a product containing ammonium and phosphate at a low pH. In one case, the additional mass transfer unit consisted of bubble columns placed in acid and basic concentrate streams, connected with a circulating gas phase. In the other case, the unit consisted of a gas-filled (hydrophobic) membrane placed in between the circulating acid and basic concentrate streams. The results showed that ammonia was transferred through the gas phase, but also carbonate, which is present in stored urine originating from the hydrolysis of urea. Although the pH in the product stream decreases initially, it rises above pH 7 at longer operation times. This pH increase can be attributed to a combination of proton compensating effects. The use of ammonia-selective membranes for the transfer into the acid concentrate could provide a solution to generate an ammonium phosphate product at low pH and high recoveries. PMID:16605026

  17. Galaxy Outflows Without Supernovae

    NASA Astrophysics Data System (ADS)

    Sur, Sharanya; Scannapieco, Evan; Ostriker, Eve C.

    2016-02-01

    High surface density, rapidly star-forming galaxies are observed to have ≈50-100 km s-1 line of sight velocity dispersions, which are much higher than expected from supernova driving alone, but may arise from large-scale gravitational instabilities. Using three-dimensional simulations of local regions of the interstellar medium, we explore the impact of high velocity dispersions that arise from these disk instabilities. Parametrizing disks by their surface densities and epicyclic frequencies, we conduct a series of simulations that probe a broad range of conditions. Turbulence is driven purely horizontally and on large scales, neglecting any energy input from supernovae. We find that such motions lead to strong global outflows in the highly compact disks that were common at high redshifts, but weak or negligible mass loss in the more diffuse disks that are prevalent today. Substantial outflows are generated if the one-dimensional horizontal velocity dispersion exceeds ≈35 km s-1, as occurs in the dense disks that have star-formation rate (SFR) densities above ≈0.1 M⊙ yr-1 kpc-2. These outflows are triggered by a thermal runaway, arising from the inefficient cooling of hot material coupled with successive heating from turbulent driving. Thus, even in the absence of stellar feedback, a critical value of the SFR density for outflow generation can arise due to a turbulent heating instability. This suggests that in strongly self-gravitating disks, outflows may be enhanced by, but need not caused by, energy input from supernovae.

  18. Triggered star formation: Rotation, magnetic fields and outflows

    NASA Astrophysics Data System (ADS)

    Frank, A.; Li, S.; Blackman, E. G.

    2015-12-01

    Star formation can be triggered by compression from wind or supernova driven shock waves that sweep over molecular clouds. In a previous work we used Adaptive Mesh Refinement (AMR) simulation methods, including sink particles, to simulate the full collapse of a stable Bonnor-Ebert sphere subjected to a passing shock. We tracked the flow of cloud material after a star (a sink particle) had formed. For rotating clouds we observed the formation of disks which then interact with the post-shock flow. In this paper we take the next step forward in complexity, presenting first results of simulations that include a magnetized cloud. Our results show that after a disk is formed a collimated magneto-centrifugal outflow is launched. The outflow is bipolar but asymmetric, due to interactions with the shocked flow. We explore the influence of the outflows on the post-triggering collapse dynamics.

  19. Spitzer IRAC Detection of Protostellar Outflows

    NASA Astrophysics Data System (ADS)

    Ybarra, Jason E.; Lada, E. A.; Balog, Z.

    2009-01-01

    We will discuss a method for detecting shocked H2 emission in IRAC band images and distinguishing H2 knots from stellar sources. Using this method we will present Spitzer IRAC imaging of a recently discovered parsec scale protostellar outflow. This outflow was detected in all four IRAC bands. The proposed source of the outflow is an embedded Class 0 object detected in the MIPS images. This work is based in part on archival data obtained with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA. Support for this work was provided by an award issued by JPL/Caltech and also a NASA LTSA Grant NNG05GD66G

  20. Studies of Quasar Outflows

    NASA Technical Reports Server (NTRS)

    Arav, Nahum

    2002-01-01

    The main aim of this research program is to determine the ionization equilibrium and abundances in quasar outflows. Especially in the broad absorption line QSO PG 0946+301. We find that the outflow's metalicity is consistent with being solar, while the abundance ratio of phosphorus to other metals is at least ten times solar. These findings are based on diagnostics that are not sensitive to saturation and partial covering effects in the BALs (Broad Adsorption Lines), which considerably weakened previous claims for enhanced metalicity. Ample evidence for these effects is seen in the spectrum.

  1. Kiloparsec-scale outflows are prevalent among luminous AGN: outflows and feedback in the context of the overall AGN population

    NASA Astrophysics Data System (ADS)

    Harrison, C. M.; Alexander, D. M.; Mullaney, J. R.; Swinbank, A. M.

    2014-07-01

    We present integral field unit observations covering the [O III]λλ4959, 5007 and Hβ emission lines of 16 z < 0.2 type 2 active galactic nuclei (AGN). Our targets are selected from a well-constrained parent sample of ≈24 000 AGN so that we can place our observations into the context of the overall AGN population. Our targets are radio quiet with star formation rates (SFRs; ≲[10-100] M⊙ yr-1) that are consistent with normal star-forming galaxies. We decouple the kinematics of galaxy dynamics and mergers from outflows. We find high-velocity ionized gas (velocity widths ≈600-1500 km s-1; maximum velocities ≤1700 km s-1) with observed spatial extents of ≳(6-16) kpc in all targets and observe signatures of spherical outflows and bi-polar superbubbles. We show that our targets are representative of z < 0.2, luminous (i.e. L[O III] > 1041.7 erg s-1) type 2 AGN and that ionized outflows are not only common but also in ≥70 per cent (3σ confidence) of cases, they are extended over kiloparsec scales. Our study demonstrates that galaxy-wide energetic outflows are not confined to the most extreme star-forming galaxies or radio-luminous AGN; however, there may be a higher incidence of the most extreme outflow velocities in quasars hosted in ultraluminous infrared galaxies. Both star formation and AGN activity appear to be energetically viable to drive the outflows and we find no definitive evidence that favours one process over the other. Although highly uncertain, we derive mass outflow rates (typically ≈10 times the SFRs), kinetic energies (≈0.5-10 per cent of LAGN) and momentum rates (typically ≳10-20 × LAGN/c) consistent with theoretical models that predict AGN-driven outflows play a significant role in shaping the evolution of galaxies.

  2. Metallicity and Quasar Outflows

    NASA Astrophysics Data System (ADS)

    Wang, Huiyuan; Zhou, Hongyan; Yuan, Weimin; Wang, Tinggui

    2012-06-01

    Correlations of the outflow strength of quasars, as measured by the blueshift and asymmetry index (BAI) of the C IV line, with intensities and ratios of broad emission lines, based on composite quasar spectra built from the Sloan Digital Sky Survey, are investigated. We find that most of the line ratios of other ions to C IV increase prominently with BAI. These behaviors can be well understood in the context of increasing metallicity with BAI. The strength of the dominant coolant, C IV line, decreases, and weak collisionally excited lines increase with gas metallicity as a result of the competition between different line coolants. Using Si IV+O IV]/C IV as an indicator of gas metallicity, we present, for the first time, a strong correlation between the metallicity and the outflow strength of quasars over a wide range of 1.7-6.9 times solar abundance. Our result implies that metallicity plays an important role in the formation of quasar outflows, likely by affecting outflow acceleration. This effect may have a profound impact on galaxy evolution via momentum feedback and chemical enrichment.

  3. METALLICITY AND QUASAR OUTFLOWS

    SciTech Connect

    Wang, Huiyuan; Zhou, Hongyan; Wang, Tinggui; Yuan, Weimin

    2012-06-01

    Correlations of the outflow strength of quasars, as measured by the blueshift and asymmetry index (BAI) of the C IV line, with intensities and ratios of broad emission lines, based on composite quasar spectra built from the Sloan Digital Sky Survey, are investigated. We find that most of the line ratios of other ions to C IV increase prominently with BAI. These behaviors can be well understood in the context of increasing metallicity with BAI. The strength of the dominant coolant, C IV line, decreases, and weak collisionally excited lines increase with gas metallicity as a result of the competition between different line coolants. Using Si IV+O IV]/C IV as an indicator of gas metallicity, we present, for the first time, a strong correlation between the metallicity and the outflow strength of quasars over a wide range of 1.7-6.9 times solar abundance. Our result implies that metallicity plays an important role in the formation of quasar outflows, likely by affecting outflow acceleration. This effect may have a profound impact on galaxy evolution via momentum feedback and chemical enrichment.

  4. Bipolar lead acid battery development

    NASA Technical Reports Server (NTRS)

    Eskra, Michael; Vidas, Robin; Miles, Ronald; Halpert, Gerald; Attia, Alan; Perrone, David

    1991-01-01

    A modular bipolar battery configuration is under development at Johnson Control, Inc. (JCI) and the Jet Propulsion Laboratory (JPL). The battery design, incorporating proven lead acid electrochemistry, yields a rechargeable, high-power source that is light weight and compact. This configuration offers advantages in power capability, weight, and volume over conventional monopolar batteries and other battery chemistries. The lead acid bipolar battery operates in a sealed, maintenance-free mode allowing for maximum application flexibility. It is ideal for high-voltage and high-power applications.

  5. Bipolar lead acid battery development

    NASA Astrophysics Data System (ADS)

    Eskra, Michael; Vidas, Robin; Miles, Ronald; Halpert, Gerald; Attia, Alan; Perrone, David

    A modular bipolar battery configuration is under development at Johnson Control, Inc. (JCI) and the Jet Propulsion Laboratory (JPL). The battery design, incorporating proven lead acid electrochemistry, yields a rechargeable, high-power source that is light weight and compact. This configuration offers advantages in power capability, weight, and volume over conventional monopolar batteries and other battery chemistries. The lead acid bipolar battery operates in a sealed, maintenance-free mode allowing for maximum application flexibility. It is ideal for high-voltage and high-power applications.

  6. Episodic outflows from high-mass protostars

    SciTech Connect

    Mitchell, G.F.; Maillard, J.P.; Hasegawa, T.I. Canada-France-Hawaii Telescope Corp., Waimea, HI CNRS, Institut d'Astrophysique, Paris Duke University, Durham, NC )

    1991-04-01

    This paper examines the kinematics and physical properties of the outflowing gas from seven luminous deeply embedded young stellar objects or protostars: M8E-IR, GL 490, GL 2591, W3 IRS 5, NGC 7538 IRS 1, NGC 7538 IRS 9, and S140 IRS 1. The outflows are seen as blueshifted absorption features in lines of the fundamental band of CO. The CO lines seen in absorption are compared with CO lines seen in emission at mm wavelengths. New CO J = 2-1 emission-line data are presented for the first five of the sources. 60 refs.

  7. Discovery of Relativistic Outflow in the Seyfert Galaxy Ark 564

    NASA Astrophysics Data System (ADS)

    Gupta, A.; Mathur, S.; Krongold, Y.; Nicastro, F.

    2013-07-01

    We present Chandra High Energy Transmission Grating Spectra of the narrow-line Seyfert-1 galaxy Ark 564. The spectrum shows numerous absorption lines which are well modeled with low-velocity outflow components usually observed in Seyfert galaxies. There are, however, some residual absorption lines which are not accounted for by low-velocity outflows. Here, we present identifications of the strongest lines as Kα transitions of O VII (two lines) and O VI at outflow velocities of ~0.1c. These lines are detected at 6.9σ, 6.2σ, and 4.7σ, respectively, and cannot be due to chance statistical fluctuations. Photoionization models with ultra-high velocity components improve the spectral fit significantly, providing further support for the presence of relativistic outflow in this source. Without knowing the location of the absorber, its mass and energy outflow rates cannot be well constrained; we find \\dot{E}(outflow)/L_{bol} lower limit of >=0.006% assuming a bi-conical wind geometry. This is the first time that absorption lines with ultra-high velocities are unambiguously detected in the soft X-ray band. The presence of outflows with relativistic velocities in active galactic nuclei (AGNs) with Seyfert-type luminosities is hard to understand and provides valuable constraints to models of AGN outflows. Radiation pressure is unlikely to be the driving mechanism for such outflows and magnetohydrodynamic may be involved.

  8. Suppression of galactic outflows by cosmological infall and circumgalactic medium

    NASA Astrophysics Data System (ADS)

    Singh, Priyanka; Rana, Sandeep; Bagla, Jasjeet S.; Nath, Biman B.

    2016-06-01

    We investigate the relative importance of two galactic outflow suppression mechanisms: (a) cosmological infall of the intergalactic gas on to the galaxy, and (b) the existence of a hot circumgalactic medium (CGM). Considering only radial motion, the infall reduces the speed of outflowing gas and even halts the outflow, depending on the mass and redshift of the galaxy. For star-forming galaxies, there exists an upper mass limit beyond which outflows are suppressed by the gravitational field of the galaxy. We find that infall can reduce this upper mass limit approximately by a factor of 2 (independent of the redshift). Massive galaxies (≳1012 M⊙) host large reservoir of hot, diffuse CGM around the central part of the galaxy. The CGM acts as a barrier between the infalling and outflowing gas and provides an additional source of outflow suppression. We find that at low redshifts (z ≲ 3.5), the CGM is more effective than the infall in suppressing the outflows. Together, these two processes give a mass range in which galaxies are unable to have effective outflows. We also discuss the impact of outflow suppression on the enrichment history of the galaxy and its environment.

  9. Shaping Outflows from Evolved Stars: Secrets Revealed by Chandra

    NASA Astrophysics Data System (ADS)

    Kastner, Joel H.

    2011-05-01

    Planetary nebulae (PNe), the near-endpoints of stellar evolution for intermediate-mass stars, exhibit a dizzying variety of optical/near-infrared morphologies: round; elliptical; bipolar; highly point-symmetric; chaotic and clumpy. The physical mechanisms responsible for this morphological menagerie are hotly debated. It is thought that the shape of a PN results from the sculpting of previously ejected, slow-moving (red giant) stellar envelope material by a fast wind from a (newly unveiled) white dwarf at the PN's core. But to explain the large fraction of nonspherical PNe -- which are presumably shaped by aspherical fast winds -- some models now further propose that many (perhaps most) PNe are the products of interacting binary systems. Chandra is yielding valuable insight into these stellar outflow shaping processes. Chandra imaging spectroscopy of PNe provides a unique means to determine the X-ray surface brightness distributions, temperatures, emission measures, and elemental abundances within the "hot bubbles" generated by fast wind shocks. Chandra observations of PNe have also revealed intriguing examples of unresolved X-ray sources that are too hard to be modeled as photospheric emission from hot white dwarfs. Such hard X-ray point sources are likely indicative of the presence of binary companions and/or accretion processes at PN central stars. I summarize the progress in these areas resulting from Chandra's first dozen years, and present early results from the first systematic Chandra survey of PNe in the solar neighborhood -- a survey designed to understand the formation and evolution of hot bubbles, and to establish the frequency and characteristics of point-like X-ray sources, within PNe with names like the Ring, the Dumbbell, the Owl, and Saturn. This work is supported by NASA Astrophysics Data Analysis Program and Chandra X-ray Center (CXC) grants to RIT. The CXC is operated by SAO for and on behalf of NASA under contract NAS8-03060.

  10. Electrical resistivity change in Al:ZnO thin films dynamically deposited by bipolar pulsed direct-current sputtering and a remote plasma source

    SciTech Connect

    Yang, Wonkyun; Joo, Junghoon

    2010-07-15

    The Al-doped ZnO (AZO) thin films for a transparent conducting oxide in solar cell devices were deposited by bipolar pulsed dc magnetron sputtering. This work was performed in an in-line type system and investigated AZO films in a static deposition mode and dynamic one, which is more important in the practical fields. Because of this dynamic deposition process, the zigzagged columnar structure was observed. This resulted in the decreasing electrical property, optical properties, and surface roughness. As a deposition in the dynamic mode, the resistivity increased from 1.64x10{sup -3} to 2.50x10{sup -3} {Omega} cm, as compared to that in the static mode, and the transmittance also decreased from 83.9% to 78.3%. To recover the disadvantage, a remote plasma source (RPS) was supported between the substrate and target for reducing zigzagged formation during the deposition. The deposition rate decreased by using RPS, but the electrical and optical properties of films got better than only dynamic mode. The resistivity and transmittance in the dynamic mode using RPS were 2.1x10{sup -3} {Omega} cm and 85.5%, respectively. In this study, the authors found the possibility to advance the electrical and optical properties of AZO thin films in the industry mode.

  11. Bipolar offspring: a window into bipolar disorder evolution.

    PubMed

    Chang, Kiki; Steiner, Hans; Dienes, Kimberly; Adleman, Nancy; Ketter, Terence

    2003-06-01

    Children of parents with bipolar disorder (bipolar offspring) represent a rich cohort for study with potential for illumination of prodromal forms of bipolar disorder. Due to their high-risk nature, bipolar offspring may present phenomenological, temperamental, and biological clues to early presentations of bipolar disorder. This article reviews the evidence for establishing bipolar offspring as a high-risk cohort, the studies which point to possible prodromal states in bipolar offspring, biological findings in bipolar offspring which may be indicators of even higher risk for bipolar disorder, initial attempts at early intervention in prodromal pediatric bipolar disorder, and implications for future research. PMID:12788239

  12. Help With Bipolar Disorders

    MedlinePlus

    ... a Psychiatrist Patients & Families All Topics Help With Bipolar Disorders Curated and updated for the community by APA Topic Information Bipolar disorders are brain disorders that cause changes in a ...

  13. The nature of AFGL 2591 and its associated molecular outflow: Infrared and millimeter-wave observations

    NASA Technical Reports Server (NTRS)

    Lada, C. J.; Thronson, H. A., Jr.; Smith, H. A.; Schwartz, P. R.; Glaccum, W.

    1984-01-01

    The results of infrared photometry from 2 to 160 microns of AFGL and CO(12) observations of its associated molecular cloud and high velocity molecular outflow are presented and discussed. The observed solar luminosity is 6.7 x 10(4) at a distance of 2 kpc. The spectrum of AFGL 2591 is interpreted in the context of a model in which a single embedded object is the dominant source of the infrared luminosity. This object is determined to be surrounded by a compact, optically thick dust shell with a temperature in excess of several hundred degrees kelvin. The extinction to this source is estimated to be between 26 and 50 visual magnitudes. The absolute position of the infrared sources at 10 microns was determined to an accuracy of + or in. This indicates for the first time that the IR source and H2O source are not coincident. The CO(12) observations show the high-velocity molecular flow near AFGL 2591 to be extended, bipolar and roughly centered on the infrared emission. The observations suggest that the red-shifted flow component extends beyond the boundary of the ambient cloud within which AFGL 2591 is embedded. The CO(12) observations also show that AFGL 2591 is embedded in a molecular cloud with an LSR velocity of -5 km/s.

  14. Models of polarized infrared emission from bipolar nebulae

    NASA Technical Reports Server (NTRS)

    Burns, M. S.; Johnson, P.; Thronson, H. A., Jr.

    1986-01-01

    Many stars with circumstellar dust shells show a high degree of linear polarization (Sato et al. 1985). We are developing a model which assumes that the polarization arises from scattering by circumstellar dust. Our model assumes a geometry in which the star is surrounded by an optically thin spherical dust shell and embedded within an optically thick disk. This geometry is consistent with that proposed for objects with bipolar molecular outflow. This is important because many bipolar flow objects have also been observed to be highly polarized. The high degree of linear polarization is produced because the disk differentially attenuates the light from the star. The light incident from the point source is attenuated by a factor of exp(-tau/cos theta) where theta is the angle between a ray from the point source to the scatterer and a ray normal to the disk; tau is the optical depth at the wavelength of interest. Hence, the light scattered from the regions directly above and below the disk give the largest contribution to the total flux. The scattering angle for light from these regions is near 90 deg., so the light is strongly polarized and, in the Rayleigh scattering regime, is polarized parallel to the disk. The Stokes parameters for the scattered light from each particle in the shell are calculated by using the scattering matrix elements generated by a Mie scattering program. After the Stokes parameters for each particle are computed they are summed to give the Stokes parameters for the entire shell. Two graphs are presented which show the intensity and polarization spectrum generated by our model using the optical constants for astronomical silicates as defined by Draine and Lee (1984).

  15. Bipolar pulse forming line

    DOEpatents

    Rhodes, Mark A.

    2008-10-21

    A bipolar pulse forming transmission line module for linear induction accelerators having first, second, third, fourth, and fifth planar conductors which form an interleaved stack with dielectric layers between the conductors. Each conductor has a first end, and a second end adjacent an acceleration axis. The first and second planar conductors are connected to each other at the second ends, the fourth and fifth planar conductors are connected to each other at the second ends, and the first and fifth planar conductors are connected to each other at the first ends via a shorting plate adjacent the first ends. The third planar conductor is electrically connectable to a high voltage source, and an internal switch functions to short a high voltage from the first end of the third planar conductor to the first end of the fourth planar conductor to produce a bipolar pulse at the acceleration axis with a zero net time integral. Improved access to the switch is enabled by an aperture through the shorting plate and the proximity of the aperture to the switch.

  16. Nutrition and Bipolar Depression.

    PubMed

    Beyer, John L; Payne, Martha E

    2016-03-01

    As with physical conditions, bipolar disorder is likely to be impacted by diet and nutrition. Patients with bipolar disorder have been noted to have relatively unhealthy diets, which may in part be the reason they also have an elevated risk of metabolic syndrome and obesity. An improvement in the quality of the diet should improve a bipolar patient's overall health risk profile, but it may also improve their psychiatric outcomes. New insights into biological dysfunctions that may be present in bipolar disorder have presented new theoretic frameworks for understanding the relationship between diet and bipolar disorder. PMID:26876319

  17. Confronting the outflow-regulated cluster formation model with observations

    SciTech Connect

    Nakamura, Fumitaka; Li, Zhi-Yun E-mail: zl4h@virginia.edu

    2014-03-10

    Protostellar outflows have been shown theoretically to be capable of maintaining supersonic turbulence in cluster-forming clumps and keeping the star formation rate per free-fall time as low as a few percent. We aim to test two basic predictions of this outflow-regulated cluster formation model, namely, (1) the clump should be close to virial equilibrium and (2) the turbulence dissipation rate should be balanced by the outflow momentum injection rate, using recent outflow surveys toward eight nearby cluster-forming clumps (B59, L1551, L1641N, Serpens Main Cloud, Serpens South, ρ Oph, IC 348, and NGC 1333). We find, for almost all sources, that the clumps are close to virial equilibrium and the outflow momentum injection rate exceeds the turbulence momentum dissipation rate. In addition, the outflow kinetic energy is significantly smaller than the clump gravitational energy for intermediate and massive clumps with M {sub cl} ≳ a few × 10{sup 2} M {sub ☉}, suggesting that the outflow feedback is not enough to disperse the clump as a whole. The number of observed protostars also indicates that the star formation rate per free-fall time is as small as a few percent for all clumps. These observationally based results strengthen the case for outflow-regulated cluster formation.

  18. THE MULTIPHASE STRUCTURE AND POWER SOURCES OF GALACTIC WINDS IN MAJOR MERGERS

    SciTech Connect

    Rupke, David S. N.; Veilleux, Sylvain

    2013-05-01

    Massive, galaxy-scale outflows are known to be ubiquitous in major mergers of disk galaxies in the local universe. In this paper, we explore the multiphase structure and power sources of galactic winds in six ultraluminous infrared galaxies (ULIRGs) at z < 0.06 using deep integral field spectroscopy with the Gemini Multi-Object Spectrograph (GMOS) on Gemini North. We probe the neutral, ionized, and dusty gas phases using Na I D, strong emission lines ([O I], H{alpha}, and [N II]), and continuum colors, respectively. We separate outflow motions from those due to rotation and tidal perturbations, and find that all of the galaxies in our sample host high-velocity flows on kiloparsec scales. The properties of these outflows are consistent with multiphase (ionized, neutral, and dusty) collimated bipolar winds emerging along the minor axis of the nuclear disk to scales of 1-2 kpc. In two cases, these collimated winds take the form of bipolar superbubbles, identified by clear kinematic signatures. Less collimated (but still high-velocity) flows are also present on scales up to 5 kpc in most systems. The three galaxies in our sample with obscured QSOs host higher velocity outflows than those in the three galaxies with no evidence for an active galactic nucleus. The peak outflow velocity in each of the QSOs is in the range 1450-3350 km s{sup -1}, and the highest velocities (2000-3000 km s{sup -1}) are seen only in ionized gas. The outflow energy and momentum in the QSOs are difficult to produce from a starburst alone, but are consistent with the QSO contributing significantly to the driving of the flow. Finally, when all gas phases are accounted for, the outflows are massive enough to provide negative feedback to star formation.

  19. The Resolved Outflow from 3C 48

    NASA Astrophysics Data System (ADS)

    Shih, Hsin-Yi; Stockton, Alan

    2014-10-01

    We investigate the properties of the high-velocity outflow driven by the young radio jet of 3C 48, a compact-steep-spectrum source. We use the Space Telescope Imaging Spectrograph on board the Hubble Space Telecope to obtain (1) low-resolution UV and optical spectra and (2) multi-slit medium-resolution spectra of the ionized outflow. With supporting data from ground-based spectrographs, we are able to accurately measure the ratios of diagnostic emission lines such as [O III] λ5007, [O III] λ3727, [N II] λ6548, Hα, Hβ, [Ne V] λ3425, and [Ne III] λ3869. We fit the observed emission-line ratios using a range of ionization models, powered by active galactic nucleus (AGN) radiation and shocks, produced by the MAPPINGS code. We have determined that AGN radiation is likely the dominant ionization source. The outflow's density is estimated to be in the range n = 103-104 cm-3, the mass is ~6 × 106 M ⊙, and the metallicity is likely equal to or higher than solar. Compared with the typical outflows associated with more evolved radio jets, this young outflow is denser, less massive, and more metal rich. Multi-slit observations allow us to construct a two-dimensional velocity map of the outflow that shows a wide range of velocities with distinct velocity components, suggesting a wide-angle clumpy outflow. Based in part on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with program GO-11574. Some of the data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation. Some of the

  20. Protostellar Outflow Evolution in Turbulent Environments

    SciTech Connect

    Cunningham, A; Frank, A; Carroll, J; Blackman, E; Quillen, A

    2008-04-11

    The link between turbulence in star formatting environments and protostellar jets remains controversial. To explore issues of turbulence and fossil cavities driven by young stellar outflows we present a series of numerical simulations tracking the evolution of transient protostellar jets driven into a turbulent medium. Our simulations show both the effect of turbulence on outflow structures and, conversely, the effect of outflows on the ambient turbulence. We demonstrate how turbulence will lead to strong modifications in jet morphology. More importantly, we demonstrate that individual transient outflows have the capacity to re-energize decaying turbulence. Our simulations support a scenario in which the directed energy/momentum associated with cavities is randomized as the cavities are disrupted by dynamical instabilities seeded by the ambient turbulence. Consideration of the energy power spectra of the simulations reveals that the disruption of the cavities powers an energy cascade consistent with Burgers-type turbulence and produces a driving scale-length associated with the cavity propagation length. We conclude that fossil cavities interacting either with a turbulent medium or with other cavities have the capacity to sustain or create turbulent flows in star forming environments. In the last section we contrast our work and its conclusions with previous studies which claim that jets can not be the source of turbulence.

  1. Protostellar Outflow Evolution in Turbulent Environments

    NASA Astrophysics Data System (ADS)

    Cunningham, Andrew J.; Frank, Adam; Carroll, Jonathan; Blackman, Eric G.; Quillen, Alice C.

    2009-02-01

    The link between turbulence in star-forming environments and protostellar jets remains controversial. To explore issues of turbulence and fossil cavities driven by young stellar outflows, we present a series of numerical simulations tracking the evolution of transient protostellar jets driven into a turbulent medium. Our simulations show both the effect of turbulence on outflow structures and, conversely, the effect of outflows on the ambient turbulence. We demonstrate how turbulence will lead to strong modifications in jet morphology. More importantly, we demonstrate that individual transient outflows have the capacity to re-energize decaying turbulence. Our simulations support a scenario in which the directed energy/momentum associated with cavities is randomized as the cavities are disrupted by dynamical instabilities seeded by the ambient turbulence. Consideration of the energy power spectra of the simulations reveals that the disruption of the cavities powers an energy cascade consistent with Burgers'-type turbulence and produces a driving scale length associated with the cavity propagation length. We conclude that fossil cavities interacting either with a turbulent medium or with other cavities have the capacity to sustain or create turbulent flows in star-forming environments. In the last section, we contrast our work and its conclusions with previous studies which claim that jets cannot be the source of turbulence.

  2. Estimation of the mass outflow rates around rotating black holes

    NASA Astrophysics Data System (ADS)

    Aktar, Ramiz; Das, Santabrata

    We consider steady, advective, rotating, inviscid accretion disc around the spinning black holes to compute the mass outflow rate (R_{dot{m}}) defined as the ratio of mass flux of outflowing to the inflowing matter. Due to centrifugal barrier, accreting matter suffers discontinuous shock transition and because of shock compression, the post-shock matter becomes hot and denser than the pre-shock matter. We call the post-shock disc as Post Shock Corona (PSC). During accretion, a part of the inflowing matter deflects as bipolar outflows due to the presence of excess thermal gradient force at PSC. We find that R_{dot{m}}is directly correlated with the spin of the black hole (a_{k}) for the same set of inflow parameter, namely specific energy (E) and specific angular momentum (λ). We observe that the maximum outflow rate(R_{dot{m}}^{max}) weakly depends on spin (a_{k}) that lies in the range˜ 17% - 18% of the inflow rate.

  3. Gas physical conditions and kinematics of the giant outflow Ou4

    NASA Astrophysics Data System (ADS)

    Corradi, Romano L. M.; Grosso, Nicolas; Acker, Agnès; Greimel, Robert; Guillout, Patrick

    2014-10-01

    Context. The recently discovered bipolar outflow Ou4 has a projected size of more than one degree in the plane of the sky. It is apparently centred on the young stellar cluster - whose most massive representative is the triple system HR 8119 - inside the H ii region Sh 2-129. The driving source, the nature, and the distance of Ou4 are not known. Aims: The basic properties of Ou4 and its environment are investigated to shed light on the origin of this remarkable outflow. Methods: Deep narrow-band imagery of the whole nebula at arcsecond resolution was obtained to study the details of its morphology. Long-slit spectroscopy of the bipolar lobe tips was secured to determine the gas ionisation mechanism, physical conditions, and line-of-sight velocities. An estimate of the proper motions at the tip of the south lobe using archival plate images was attempted. The existing multi-wavelength data for Sh 2-129 and HR 8119 were also comprehensively reviewed. Results: The observed morphology of Ou4, its emission-line spatial distribution, line flux ratios, and the kinematic modelling developed adopting a bow-shock parabolic geometry, illustrate the expansion of a shock-excited fast collimated outflow. The observed radial velocities of Ou4 and its reddening are consistent with those of Sh 2-129 and HR 8119. The improved determination of the distance to HR 8119 (composed of two B0 V and one B0.5 V stars) and Sh 2-129 is 712 pc. We identify in WISE images at 22 μm an emission bubble of 5' radius (1 pc at the distance above) emitted by hot (107 K) dust grains, located inside the central part of Ou4 and corresponding to several [O iii] emission features of Ou4. Conclusions: The apparent position of Ou4 and the properties studied in this work are consistent with the hypothesis that Ou4 is located inside the Sh 2-129 H ii region, suggesting that it was launched some 90 000 yr ago by HR 8119. The outflow total kinetic energy is estimated to be ≈4 × 1047 ergs. However, we cannot

  4. HOT ELECTROMAGNETIC OUTFLOWS. I. ACCELERATION AND SPECTRA

    SciTech Connect

    Russo, Matthew; Thompson, Christopher

    2013-04-20

    The theory of cold, relativistic, magnetohydrodynamic outflows is generalized by the inclusion of an intense radiation source. In some contexts, such as the breakout of a gamma-ray burst (GRB) jet from a star, the outflow is heated to a high temperature at a large optical depth. Eventually it becomes transparent and is pushed to a higher Lorentz factor by a combination of the Lorentz force and radiation pressure. We obtain its profile, both inside and outside the fast magnetosonic critical point, when the poloidal magnetic field is radial and monopolar. Most of the energy flux is carried by the radiation field and the toroidal magnetic field that is wound up close to the rapidly rotating engine. Although the entrained matter carries little energy, it couples the radiation field to the magnetic field. Then the fast critical point is pulled inward from infinity and, above a critical radiation intensity, the outflow is accelerated mainly by radiation pressure. We identify a distinct observational signature of this hybrid outflow: a hardening of the radiation spectrum above the peak of the seed photon distribution, driven by bulk Compton scattering. The non-thermal spectrum-obtained by a Monte Carlo method-is most extended when the Lorentz force dominates the acceleration, and the seed photon beam is wider than the Lorentz cone of the MHD fluid. This effect is a generic feature of hot, magnetized outflows interacting with slower relativistic material. It may explain why some GRB spectra appear to peak at photon energies above the original Amati et al. scaling. A companion paper addresses the case of jet breakout, where diverging magnetic flux surfaces yield strong MHD acceleration over a wider range of Lorentz factor.

  5. Hot Electromagnetic Outflows. I. Acceleration and Spectra

    NASA Astrophysics Data System (ADS)

    Russo, Matthew; Thompson, Christopher

    2013-04-01

    The theory of cold, relativistic, magnetohydrodynamic outflows is generalized by the inclusion of an intense radiation source. In some contexts, such as the breakout of a gamma-ray burst (GRB) jet from a star, the outflow is heated to a high temperature at a large optical depth. Eventually it becomes transparent and is pushed to a higher Lorentz factor by a combination of the Lorentz force and radiation pressure. We obtain its profile, both inside and outside the fast magnetosonic critical point, when the poloidal magnetic field is radial and monopolar. Most of the energy flux is carried by the radiation field and the toroidal magnetic field that is wound up close to the rapidly rotating engine. Although the entrained matter carries little energy, it couples the radiation field to the magnetic field. Then the fast critical point is pulled inward from infinity and, above a critical radiation intensity, the outflow is accelerated mainly by radiation pressure. We identify a distinct observational signature of this hybrid outflow: a hardening of the radiation spectrum above the peak of the seed photon distribution, driven by bulk Compton scattering. The non-thermal spectrum—obtained by a Monte Carlo method—is most extended when the Lorentz force dominates the acceleration, and the seed photon beam is wider than the Lorentz cone of the MHD fluid. This effect is a generic feature of hot, magnetized outflows interacting with slower relativistic material. It may explain why some GRB spectra appear to peak at photon energies above the original Amati et al. scaling. A companion paper addresses the case of jet breakout, where diverging magnetic flux surfaces yield strong MHD acceleration over a wider range of Lorentz factor.

  6. Zephyria Outflow Features

    NASA Technical Reports Server (NTRS)

    2004-01-01

    1 October 2004 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows streamlined islands and a small cataract in an outflow channel system in the Zephyria region of Mars, south of Cerberus. The fluids responsible for creating these landforms flowed from the lower left (southwest) toward upper right (northeast). The fluids may have been water and mud or, some Mars scientists have argued, extremely fluid lava. The presence of a small cataract probably argues more strongly for a water and mud origin. This image is located near 3.8oN, 204.7oW. The picture covers an area about 3 km (1.9 mi) wide and is illuminated by sunlight from upper left.

  7. Driving Mechanisms for Molecular Outflows

    NASA Astrophysics Data System (ADS)

    Downes, Turlough P.

    Molecular outflows are observed to be closely associated with star formation. The cumulative momentum and the momentum injection rate in these outflows are important parameters in theories of star formation. The cumulative momentum in an outflow is a measure of the feed-back from star formation on molecular cloud turbulence. The level of turbulence in a cloud also effects the formation of further stars and, indeed, the survival of the cloud itself (e.g. [15]). In addition the rate of injection of momentum is an important constraint for theoretical models of outflows from young stars [10, 18]. Hence, while these outflows are interesting in themselves, it is also critical to understand their origin and behaviour as part of the general study of how stars themselves form.

  8. The contribution of quasar outflows to cosmological structure formation

    NASA Astrophysics Data System (ADS)

    Arav, Nahum

    2011-10-01

    A vast new discovery space is opened up by the high sensitivity of COS in the far UV. These new capabilities are ushering a revolution in the study of AGN outflows. We now have the ability to obtain high quality data on objects up to a redshift of about 1, providing access to ten times more {and better} diagnostic absorption lines than was possible with STIS {which could only observe outflows at z<0.05 with sufficient S/N}. These diagnostics will allow us to quantify how much do quasar outflow contribute to AGN feedback. On the way to this lofty goal, we'll be able to resolve important questions in the study of these outflows: Where are they situated within the host galaxy? What is their ionization equilibrium and chemical abundances? Unlike ground-based observations, COS data can yield the answers to all these questions for the most ubiquitous outflows, and therefore connect them to our developing understanding of cosmological structure formation.Our analysis of recent archived COS observations gives a concrete example for the above claims; including the first determination of the distance from the central source for a high-ionization outflow. Here we propose an archive program to look through the 520 COS G130M and G160M orbits of AGN archive observations, identify quasar outflows and publish the analyses of the best cases.

  9. Unsplit bipolar pulse forming line

    DOEpatents

    Rhodes, Mark A.

    2011-05-24

    A bipolar pulse forming transmission line module and system for linear induction accelerators having first, second, third, and fourth planar conductors which form a sequentially arranged interleaved stack having opposing first and second ends, with dielectric layers between the conductors. The first and second planar conductors are connected to each other at the first end, and the first and fourth planar conductors are connected to each other at the second end via a shorting plate. The third planar conductor is electrically connectable to a high voltage source, and an internal switch functions to short at the first end a high voltage from the third planar conductor to the fourth planar conductor to produce a bipolar pulse at the acceleration axis with a zero net time integral. Improved access to the switch is enabled by an aperture through the shorting plate and the proximity of the aperture to the switch.

  10. The dependence of galactic outflows on the properties and orientation of zCOSMOS galaxies at z ∼ 1

    SciTech Connect

    Bordoloi, R.; Lilly, S. J.; Hardmeier, E.; Carollo, C. M.; Contini, T.; Kneib, J.-P.; Fevre, O. Le; Garilli, B.; Renzini, A.; Scodeggio, M.; Zamorani, G.; Bardelli, S.; Bolzonella, M.; Bongiorno, A.; Caputi, K.; Cucciati, O.; De la Torre, S.; De Ravel, L.; Iovino, A.; and others

    2014-10-20

    We present an analysis of cool outflowing gas around galaxies, traced by Mg II absorption lines in the coadded spectra of a sample of 486 zCOSMOS galaxies at 1 ≤ z ≤ 1.5. These galaxies span a range of stellar masses (9.45 ≤ log{sub 10}[M {sub *}/M {sub ☉}] ≤ 10.7) and star formation rates (0.14 ≤ log{sub 10}[SFR/M {sub ☉} yr{sup –1}] ≤ 2.35). We identify the cool outflowing component in the Mg II absorption and find that the equivalent width of the outflowing component increases with stellar mass. The outflow equivalent width also increases steadily with the increasing star formation rate of the galaxies. At similar stellar masses, the blue galaxies exhibit a significantly higher outflow equivalent width as compared to red galaxies. The outflow equivalent width shows strong correlation with the star formation surface density (Σ{sub SFR}) of the sample. For the disk galaxies, the outflow equivalent width is higher for the face-on systems as compared to the edge-on ones, indicating that for the disk galaxies, the outflowing gas is primarily bipolar in geometry. Galaxies typically exhibit outflow velocities ranging from –150 km s{sup –1} ∼–200 km s{sup –1} and, on average, the face-on galaxies exhibit higher outflow velocity as compared to the edge-on ones. Galaxies with irregular morphologies exhibit outflow equivalent width as well as outflow velocities comparable to face on disk galaxies. These galaxies exhibit mass outflow rates >5-7 M {sub ☉} yr{sup –1} and a mass loading factor (η = M-dot {sub out}/SFR) comparable to the star formation rates of the galaxies.

  11. Contribution of alluvial groundwater to the outflow of mountainous catchments

    NASA Astrophysics Data System (ADS)

    Käser, Daniel; Hunkeler, Daniel

    2016-02-01

    Alluvial aquifers in mountainous regions cover typically a limited area. Their contribution to catchment storage and outflow is rarely isolated; alluvial groundwater discharge under gauging stations is generally assumed negligible; and hydrological models tend to lump alluvial storage with other units. The role of alluvial aquifers remains therefore unclear: can they contribute significantly to outflow when they cover a few percent of catchment area? Should they be considered a dynamic storage unit or merely a transmission zone? We address these issues based on the continuous monitoring of groundwater discharge, river discharge (one year), and aquifer storage (6 months) in the 6 km2 alluvial system of a 194 km2 catchment. River and groundwater outflow were measured jointly through "coupled gauging stations." The contribution of alluvial groundwater to outflow was highest at the outlet of a subcatchment (52 km2), where subsurface discharge amounted to 15% of mean annual outflow, and 85% of outflow during the last week of a drought. In this period, alluvial-aquifer depletion supported 75% of the subcatchment outflow and 35% of catchment outflow—thus 3% of the entire catchment supported a third of the outflow. Storage fluctuations occurred predominantly in the aquifer's upstream part, where heads varied over 6 m. Not only does this section act as a significant water source, but storage recovers also rapidly at the onset of precipitation. Storage dynamics were best conceptualized along the valley axis, rather than across the more conventional riparian-channel transect. Overall the contribution of alluvial aquifers to catchment outflow deserves more attention.

  12. Treatment of bipolar depression.

    PubMed

    Musetti, Laura; Del Grande, Claudia; Marazziti, Donatella; Dell'Osso, Liliana

    2013-08-01

    Depressive symptoms and episodes dominate the long-term course of bipolar disorder and are associated with high levels of disability and an increased risk of suicide. However, the treatment of bipolar depression has been poorly investigated in comparison with that of manic episodes and unipolar major depressive disorder. The goal of treatment in bipolar depression is not only to achieve full remission of acute symptoms, but also to avoid long-term mood destabilization and to prevent relapses. A depressive presentation of bipolar disorder may often delay the appropriate management and, thus, worsen the long-term outcome. In these cases, an accurate screening for diagnostic indicators of a possible bipolar course of the illness should guide the therapeutic choices, and lead to prognostic improvement. Antidepressant use is still the most controversial issue in the treatment of bipolar depression. Despite inconclusive evidence of efficacy and tolerability, this class of agents is commonly prescribed in acute and long-term treatment, often in combination with mood stabilizers. In this article, we review available treatment options for bipolar depression, and we shall provide some suggestions for the management of the different presentations of depression in the course of bipolar disorder. PMID:23391164

  13. The Ebers-Moll model for magnetic bipolar transistors

    NASA Astrophysics Data System (ADS)

    Fabian, Jaroslav; Žutić, Igor

    2005-03-01

    The equivalent electrical circuit of the Ebers-Moll-type is introduced for magnetic bipolar transistors. In addition to conventional diodes and current sources, the new circuit comprises two novel elements due to spin-charge coupling. A classification scheme of the operating modes of magnetic bipolar transistors in the low bias regime is presented.

  14. Auroral arcs and ion outflow

    NASA Astrophysics Data System (ADS)

    Maggiolo, Romain

    2016-04-01

    This presentation provides an overwiew of the chapter "Auroral Arcs and Ion Outflow" from the AGU book "Auroral Dynamics and Space Weather" (eds Y. Zhang and L. J. Paxton). This topic covers a wide range of domains, from auroral acceleration processes, auroral arc morphology and dynamics to global magnetosphere-ionosphere coupling and atmospheric erosion. This presentation mainly focuses on the observational properties of auroral ion outflow. Recent observations about their large-scale spatial distribution and link with auroral forms will be presented. Auroral ion outflow statistical dependence on solar and geomagnetic activity and its modulation by auroral dynamics at the timescale of substorms will also be discussed.

  15. Insight in bipolar disorder.

    PubMed

    Látalová, Klára

    2012-09-01

    Although there has been interest in insight in bipolar disorder, research has not been as developed as in schizophrenia. The Medline, Embase, and PsychInfo data bases were searched. The key words used in the search were "bipolar", "mania", "manic", "awareness", and "insight". Books, editorials, letters, and reports on pediatric subjects were excluded. Abstracts or full texts were screened for relevance. Better insight is associated with better adherence to treatment and better outcomes. Impairments of executive functions and memory, as well as higher severity of psychotic symptoms, are associated with impairments of insight. Insight is more impaired during an illness episode than during remission, in mixed than in pure manic episodes, in bipolar II than in bipolar I patients, in pure mania than in bipolar or unipolar depression. Psychosocial treatments improve insight and outcomes. There is a need for integration of quantitative assessment methods and their introduction into research and clinical practice. PMID:22101737

  16. Nuclear ashes and outflow in the eruptive star Nova Vul 1670.

    PubMed

    Kamiński, Tomasz; Menten, Karl M; Tylenda, Romuald; Hajduk, Marcin; Patel, Nimesh A; Kraus, Alexander

    2015-04-16

    CK Vulpeculae was observed in outburst in 1670-1672 (ref. 1), but no counterpart was seen until 1982, when a bipolar nebula was found at its location. Historically, CK Vul has been considered to be a nova (Nova Vul 1670), but its similarity to 'red transients', which are more luminous than classical novae and thought to be the results of stellar collisions, has re-opened the question of CK Vul's status. Red transients cool to resemble late M-type stars, surrounded by circumstellar material rich in molecules and dust. No stellar source has been seen in CK Vul, though a radio continuum source was identified at the expansion centre of the nebula. Here we report that CK Vul is surrounded by chemically rich molecular gas in the form of an outflow, as well as dust. The gas has peculiar isotopic ratios, revealing that CK Vul's composition was strongly enhanced by the nuclear ashes of hydrogen burning. The chemical composition cannot be reconciled with a nova or indeed any other known explosion. In addition, the mass of the surrounding gas is too large for a nova, though the conversion from observations of CO to a total mass is uncertain. We conclude that CK Vul is best explained as the remnant of a merger of two stars. PMID:25799986

  17. Kinematics of the Envelope and Two Bipolar Jets in the Class 0 Protostellar System L1157

    NASA Astrophysics Data System (ADS)

    Kwon, Woojin; Fernández-López, Manuel; Stephens, Ian W.; Looney, Leslie W.

    2015-11-01

    A massive envelope and a strong bipolar outflow are the two main structures characterizing the youngest protostellar systems. In order to understand the physical properties of a bipolar outflow and the relationship with those of the envelope, we obtained a mosaic map covering the whole bipolar outflow of the youngest protostellar system L1157 with about 5″ angular resolution in CO J = 2-1 using the Combined Array for Research in Millimeter-wave Astronomy. By utilizing these observations of the whole bipolar outflow, we estimate its physical properties and show that they are consistent with multiple jets. We also constrain a preferred precession direction. In addition, we observed the central envelope structure with 2″ resolution in the λ =1.3 and 3 mm continua and various molecular lines: C17O, C18O, 13CO, CS, CN, N2H+, CH3OH, H2O, SO, and SO2. All of the CO isotopes and CS, CN, and N2H+ have been detected and imaged. We marginally detected the features that can be interpreted as a rotating inner envelope in C17O and C18O and as an infalling outer envelope in N2H+. We also estimated the envelope and central protostellar masses and found that the dust-opacity spectral index changes with radius.

  18. Outflows of stars due to quasar feedback

    NASA Astrophysics Data System (ADS)

    Zubovas, Kastytis; Nayakshin, Sergei; Sazonov, Sergey; Sunyaev, Rashid

    2013-05-01

    Quasar feedback outflows are commonly invoked to drive gas out of galaxies in the early gas-rich epoch to terminate growth of galaxies. Here we present simulations that show that AGN feedback may drive not only gas but also stars out of their host galaxies under certain conditions. The mechanics of this process is as follows: (1) AGN-driven outflows accelerate and compress gas filling the host galaxy; (2) the accelerated dense shells become gravitationally unstable and form stars on radial trajectories. For the spherically symmetric initial conditions explored here, the black hole needs to exceed the host's Mσ mass by a factor of a few to accelerate the shells and the new stars to escape velocities. We discuss potential implications of these effects for the host galaxies: (i) radial mixing of bulge stars with the rest of the host; (ii) contribution of quasar outflows to galactic fountains as sources of high-velocity clouds; (iii) wholesale ejection of hypervelocity stars out of their hosts, giving rise to Type II supernovae on galactic outskirts, and contributing to reionization and metal enrichment of the Universe; (iv) bulge erosion and even complete destruction in extreme cases resulting in overweight or bulgeless SMBHs.

  19. CSO and CARMA Observations of L1157. II. Chemical Complexity in the Shocked Outflow

    NASA Astrophysics Data System (ADS)

    Burkhardt, Andrew M.; Dollhopf, Niklaus M.; Corby, Joanna F.; Carroll, P. Brandon; Shingledecker, Christopher N.; Loomis, Ryan A.; Booth, Shawn Thomas; Blake, Geoffrey A.; Herbst, Eric; Remijan, Anthony J.; McGuire, Brett A.

    2016-08-01

    L1157, a molecular dark cloud with an embedded Class 0 protostar possessing a bipolar outflow, is an excellent source for studying shock chemistry, including grain-surface chemistry prior to shocks, and post-shock, gas-phase processing. The L1157-B1 and B2 positions experienced shocks at an estimated ∼2000 and 4000 years ago, respectively. Prior to these shock events, temperatures were too low for most complex organic molecules to undergo thermal desorption. Thus, the shocks should have liberated these molecules from the ice grain-surfaces en masse, evidenced by prior observations of SiO and multiple grain mantle species commonly associated with shocks. Grain species, such as OCS, CH3OH, and HNCO, all peak at different positions relative to species that are preferably formed in higher-velocity shocks or repeatedly shocked material, such as SiO and HCN. Here, we present high spatial resolution (∼3″) maps of CH3OH, HNCO, HCN, and HCO+ in the southern portion of the outflow containing B1 and B2, as observed with Combined Array for Research in Millimeter-Wave Astronomy. The HNCO maps are the first interferometric observations of this species in L1157. The maps show distinct differences in the chemistry within the various shocked regions in L1157B. This is further supported through constraints of the molecular abundances using the non-LTE code radex. We find that the east/west chemical differentiation in C2 may be explained by the contrast of the shock’s interaction with either cold, pristine material or warm, previously shocked gas, as seen in enhanced HCN abundances. In addition, the enhancement of the HNCO abundance toward the the older shock, B2, suggests the importance of high-temperature O-chemistry in shocked regions.

  20. CSO and CARMA Observations of L1157. II. Chemical Complexity in the Shocked Outflow

    NASA Astrophysics Data System (ADS)

    Burkhardt, Andrew M.; Dollhopf, Niklaus M.; Corby, Joanna F.; Carroll, P. Brandon; Shingledecker, Christopher N.; Loomis, Ryan A.; Booth, Shawn Thomas; Blake, Geoffrey A.; Herbst, Eric; Remijan, Anthony J.; McGuire, Brett A.

    2016-08-01

    L1157, a molecular dark cloud with an embedded Class 0 protostar possessing a bipolar outflow, is an excellent source for studying shock chemistry, including grain-surface chemistry prior to shocks, and post-shock, gas-phase processing. The L1157-B1 and B2 positions experienced shocks at an estimated ˜2000 and 4000 years ago, respectively. Prior to these shock events, temperatures were too low for most complex organic molecules to undergo thermal desorption. Thus, the shocks should have liberated these molecules from the ice grain-surfaces en masse, evidenced by prior observations of SiO and multiple grain mantle species commonly associated with shocks. Grain species, such as OCS, CH3OH, and HNCO, all peak at different positions relative to species that are preferably formed in higher-velocity shocks or repeatedly shocked material, such as SiO and HCN. Here, we present high spatial resolution (˜3″) maps of CH3OH, HNCO, HCN, and HCO+ in the southern portion of the outflow containing B1 and B2, as observed with Combined Array for Research in Millimeter-Wave Astronomy. The HNCO maps are the first interferometric observations of this species in L1157. The maps show distinct differences in the chemistry within the various shocked regions in L1157B. This is further supported through constraints of the molecular abundances using the non-LTE code radex. We find that the east/west chemical differentiation in C2 may be explained by the contrast of the shock’s interaction with either cold, pristine material or warm, previously shocked gas, as seen in enhanced HCN abundances. In addition, the enhancement of the HNCO abundance toward the the older shock, B2, suggests the importance of high-temperature O-chemistry in shocked regions.

  1. Source-diagnostic dual-isotope composition and optical properties of water-soluble organic carbon and elemental carbon in the South Asian outflow intercepted over the Indian Ocean

    NASA Astrophysics Data System (ADS)

    Bosch, Carme; Andersson, August; Kirillova, Elena N.; Budhavant, Krishnakant; Tiwari, Suresh; Praveen, P. S.; Russell, Lynn M.; Beres, Nicholas D.; Ramanathan, Veerabhadran; Gustafsson, Örjan

    2014-10-01

    The dual carbon isotope signatures and optical properties of carbonaceous aerosols have been investigated simultaneously for the first time in the South Asian outflow during an intensive campaign at the Maldives Climate Observatory on Hanimaadhoo (MCOH) (February and March 2012). As one component of the Cloud Aerosol Radiative Forcing Dynamics Experiment, this paper reports on the sources and the atmospheric processing of elemental carbon (EC) and water-soluble organic carbon (WSOC) as examined by a dual carbon isotope approach. The radiocarbon (Δ14C) data show that WSOC has a significantly higher biomass/biogenic contribution (86 ± 5%) compared to EC (59 ± 4%). The more 13C-enriched signature of MCOH-WSOC (-20.8 ± 0.7‰) compared to MCOH-EC (-25.8 ± 0.3‰) and megacity Delhi WSOC (-24.1 ± 0.9‰) suggests that WSOC is significantly more affected by aging during long-range transport than EC. The δ13C-Δ14C signal suggests that the wintertime WSOC intercepted over the Indian Ocean largely represents aged primary biomass burning aerosols. Since light-absorbing organic carbon aerosols (Brown Carbon (BrC)) have recently been identified as potential contributors to positive radiative forcing, optical properties of WSOC were also investigated. The mass absorption cross section of WSOC (MAC365) was 0.5 ± 0.2 m2 g-1 which is lower than what has been observed at near-source sites, indicating a net decrease of WSOC light-absorption character during long-range transport. Near-surface WSOC at MCOH accounted for ~1% of the total direct solar absorbance relative to EC, which is lower than the BrC absorption inferred from solar spectral observations of ambient aerosols, suggesting that a significant portion of BrC might be included in the water-insoluble portion of organic aerosols.

  2. Bipolar Disorder in Children

    PubMed Central

    2014-01-01

    Although bipolar disorder historically was thought to only occur rarely in children and adolescents, there has been a significant increase in children and adolescents who are receiving this diagnosis more recently (Carlson, 2005). Nonetheless, the applicability of the current bipolar disorder diagnostic criteria for children, particularly preschool children, remains unclear, even though much work has been focused on this area. As a result, more work needs to be done to further the understanding of bipolar symptoms in children. It is hoped that this paper can assist psychologists and other health service providers in gleaning a snapshot of the literature in this area so that they can gain an understanding of the diagnostic criteria and other behaviors that may be relevant and be informed about potential approaches for assessment and treatment with children who meet bipolar disorder criteria. First, the history of bipolar symptoms and current diagnostic criteria will be discussed. Next, assessment strategies that may prove helpful for identifying bipolar disorder will be discussed. Then, treatments that may have relevance to children and their families will be discussed. Finally, conclusions regarding work with children who may have a bipolar disorder diagnosis will be offered. PMID:24800202

  3. Shining a light on galactic outflows: photoionized outflows

    NASA Astrophysics Data System (ADS)

    Chisholm, John; Tremonti, Christy A.; Leitherer, Claus; Chen, Yanmei; Wofford, Aida

    2016-04-01

    We study the ionization structure of galactic outflows in 37 nearby, star-forming galaxies with the Cosmic Origins Spectrograph on the Hubble Space Telescope. We use the O I, Si II, Si III, and Si IV ultraviolet absorption lines to characterize the different ionization states of outflowing gas. We measure the equivalent widths, line widths, and outflow velocities of the four transitions, and find shallow scaling relations between them and galactic stellar mass and star formation rate. Regardless of the ionization potential, lines of similar strength have similar velocities and line widths, indicating that the four transitions can be modelled as a comoving phase. The Si equivalent width ratios (e.g. Si IV/Si II) have low dispersion, and little variation with stellar mass; while ratios with O I and Si vary by a factor of 2 for a given stellar mass. Photoionization models reproduce these equivalent width ratios, while shock models under predict the relative amount of high ionization gas. The photoionization models constrain the ionization parameter (U) between -2.25 < log (U) < -1.5, and require that the outflow metallicities are greater than 0.5 Z⊙. We derive ionization fractions for the transitions, and show that the range of ionization parameters and stellar metallicities leads to a factor of 1.15-10 variation in the ionization fractions. Historically, mass outflow rates are calculated by converting a column density measurement from a single metal ion into a total hydrogen column density using an ionization fraction, thus mass outflow rates are sensitive to the assumed ionization structure of the outflow.

  4. Review of Evidence for Use of Antidepressants in Bipolar Depression

    PubMed Central

    McInerney, Shane J.

    2014-01-01

    Objective: Depressive episodes predominate over the course of bipolar disorder and cause considerable functional impairment. Antidepressants are frequently prescribed in the treatment of bipolar depression, despite concerns about efficacy and risk of switching to mania. This review provides a critical examination of the evidence for and against the use of antidepressants in bipolar depression. Data Sources: English-language peer-reviewed literature and evidence-based guidelines published between January 1, 1980, and March 2014, were identified using PubMed, MEDLINE, PsycINFO/PsycLIT, and EMBASE. All searches contained the terms antidepressants, bipolar depression, depressive episodes in bipolar disorder, and treatment guidelines for bipolar depression. Meta-analyses, randomized controlled trials, systematic reviews, and practice guidelines were included. Bibliographies from these publications were used to identify additional articles of interest. Data Extraction: Studies involving treatment of bipolar depression with antidepressant monotherapy, adjunctive use of antidepressant with a mood stabilizer, and meta-analysis of such studies combined were reviewed. Conclusions: The body of evidence on the use of antidepressant monotherapy to treat patients with bipolar depression is contentious, but the recommendations from evidence-based guidelines do not support antidepressant monotherapy for bipolar depression. Only when mood stabilizer or atypical antipsychotic monotherapy has failed should adjunctive treatment with an antidepressant be considered. PMID:25667812

  5. Bipolar fuel cell

    DOEpatents

    McElroy, James F.

    1989-01-01

    The present invention discloses an improved fuel cell utilizing an ion transporting membrane having a catalytic anode and a catalytic cathode bonded to opposite sides of the membrane, a wet-proofed carbon sheet in contact with the cathode surface opposite that bonded to the membrane and a bipolar separator positioned in electrical contact with the carbon sheet and the anode of the adjacent fuel cell. Said bipolar separator and carbon sheet forming an oxidant flowpath, wherein the improvement comprises an electrically conductive screen between and in contact with the wet-proofed carbon sheet and the bipolar separator improving the product water removal system of the fuel cell.

  6. On the physical origin of AGN outflow driving mechanisms

    NASA Astrophysics Data System (ADS)

    Ishibashi, Wako

    2016-07-01

    Super-massive black holes in active galactic nuclei (AGN) respond to the accretion process by feeding back energy and momentum into the surrounding environment. Galaxy-scale outflows are thought to provide the physical link connecting the small scales of the central black hole to the large scales of the host galaxy. Such powerful outflows are now starting to be commonly observed, and have been considered as a proof of AGN feedback in action. However, the physical origin of the mechanism driving the observed outflows is still unclear, and whether it is due to energy-driving or radiation-driving is a source of much debate in the literature. We consider AGN feedback driven by radiation pressure on dust, and show that AGN radiative feedback is capable of driving powerful outflows on galactic scales. In particular, we can obtain outflowing shells with high velocity and large momentum flux, by properly taking into account the effects of radiation trapping. Alternatively, the observed outflow characteristics may be significantly biased by AGN variability. I will discuss the resulting implications in the global context of black hole accretion-AGN feedback coupling.

  7. Identifying the Main Driver of Active Region Outflows

    NASA Astrophysics Data System (ADS)

    Baker, D.; van Driel-Gesztelyi, L.; Mandrini, C. H.; Démoulin, P.; Murray, M. J.

    2012-08-01

    Hinode's EUV Imaging Spectrometer (EIS) has discovered ubiquitous outflows of a few to 50 km s-1 from active regions (ARs). The characteristics of these outflows are very curious in that they are most prominent at the AR boundary and appear over monopolar magnetic areas. They are linked to strong non-thermal line broadening and are stronger in hotter EUV lines. The outflows persist for at least several days. Whereas red-shifted down flows observed in AR closed loops are well understood, to date there is no general consensus for the mechanism(s) driving blue-shifted AR-related outflows. We use Hinode EIS and X-Ray Telescope observations of AR 10942 coupled with magnetic modeling to demonstrate for the first time that the outflows originate from specific locations of the magnetic topology where field lines display strong gradients of magnetic connectivity, namely quasi-separatrix layers (QSLs), or in the limit of infinitely thin QSLs, separatrices. The strongest AR outflows were found to be in the vicinity of QSL sections located over areas of strong magnetic field. We argue that magnetic reconnection at QSLs, separating closed field lines of the AR and either large-scale externally connected or ‘open’ field lines, is a viable mechanism for driving AR outflows which are potentially sources of the slow solar wind. In fact, magnetic reconnection along QSLs (including separatricies) is the first theory to explain the most puzzling characteristics of the outflows, namely their occurrence over monopolar areas at the periphery of ARs and their longevity.

  8. The Detection of [C i] in Molecular Outflows Associated with Young Stellar Objects

    NASA Astrophysics Data System (ADS)

    Walker, Christopher K.; Narayanan, Gopal; Buettgenbach, Thomas H.; Carlstrom, John E.; Keene, Jocelyn; Phillips, T. G.

    1993-10-01

    The first observations of atomic carbon in molecular outflows are presented. Most of the outflow regions show similar [C I] and 13CO line profiles suggesting the [C I] emission from outflow sources traces the same volume of gas as the CO emission, as previous studies have suggested for molecular clouds in general. The [C I] and CO column densities for the 11 sources surveyed are computed over wing and line center velocities. If the [C I] column densities derived from line center velocities are probing conditions in the ambient cloud in the vicinity of the infrared source, then a comparison of these values indicates the carbon abundance in the low-velocity component of the outflows is essentially the same as in the ambient cloud; there is no evidence for shock enhancement of [C 1] in the swept-up material. A map of the [C I] emission from the central arcminute of the luminous DR 21 outflow is presented. The [C I] emission is detected from the two CO outflow lobes; [C I] emission from the southwest lobe appears as a limb-brightened, conical shell. Outflow parameters derived from [C I] are consistent with those derived from CO, suggesting the [C I] emission arises from ambient cloud material swept-up by the outflow. The presence of carbon in the swept-up component of the outflows indicates that gas phase carbon is present deep within molecular clouds and is not confined solely to surface layers.

  9. Mid­Infrared Imaging of the Bipolar Planetary Nebula M2-­9 from SOFIA

    NASA Astrophysics Data System (ADS)

    Sahai, R.; Werner, M. W.; Davis, J.; Livingston, J.; Lykou, F.; de Buizer, J.; Morris, M.; Keller, L.; Adams, J.; Gull, G.; Henderson, C.; Herter, T.; Schoenwald, J.

    2014-04-01

    We have imaged the bi-polar planetary nebula M2-9 using SOFIA's FORCAST instrument in six wavelength bands between 6.6 and 37.1 micron. A bright central point source, unresolved with SOFIA's ~4" beam, is seen at each wavelength, and the extended bipolar lobes are clearly seen at 19.7 μm and beyond. The photometry between 10 and 25 micron is well fit by a model of the type previously proposed for this source by Lykou et al and Chesneau et al. The principal new results in this paper relate to the distribution and properties of the dust that emits the infrared radiation. In particular, a considerable fraction of this material is spread uniformly through the lobes, although the dust density does increase at the sharp outer edge seen in higher resolution optical images of M2-9. The dust grain population in the source is unusual in that small (<0.1 micron) and large (>1 micron) particles appear to be present in roughly equal quantities by mass. We suggest that collisional processing within the bipolar outflow plays an important role in determining the particle size distribution. These early results show the promise of the SOFIA airborne observatory as a platform for studying planetary nebulae. This work is based on observations made with the NASA/DLR Stratospheric Observatory for Infrared Astronomy (SOFIA), operated by USRA and DSI. Portions of the work were carried out at the Jet Propulsion Laboratory, operated by the California Institute of Technology under a contract with NASA.

  10. APEX CO (9-8) MAPPING OF AN EXTREMELY HIGH VELOCITY AND JET-LIKE OUTFLOW IN A HIGH-MASS STAR-FORMING REGION

    SciTech Connect

    Qiu Keping; Wyrowski, Friedrich; Menten, Karl M.; Guesten, Rolf; Leurini, Silvia; Leinz, Christian

    2011-12-10

    Atacama Pathfinder Experiment (APEX) mapping observations in CO (9-8) and (4-3) toward a high-mass star-forming region, NGC 6334 I, are presented. The CO (9-8) map has a 6.''4 resolution, revealing a {approx}0.5 pc, jet-like, and bipolar outflow. This is the first map of a molecular outflow in a THz line. The CO (9-8) and (4-3) lines arising from the outflow lobes both show extremely high velocity line wings, and their ratios indicate a gas temperature greater than 100 K and a density higher than 10{sup 4} cm{sup -3}. The spatial-velocity structure of the CO (9-8) data is typical of a bow-shock-driven flow, which is consistent with the association between the bipolar outflow and the infrared bow-shaped tips. In short, the observations unveil a highly excited and collimated component in a bipolar outflow that is powered by a high-mass protostar, and provide insights into the driving mechanism of the outflow. Meanwhile, the observations demonstrate that high-quality mapping observations can be performed with the new THz receiver on APEX.

  11. RADIATION MAGNETOHYDRODYNAMICS SIMULATION OF PROTO-STELLAR COLLAPSE: TWO-COMPONENT MOLECULAR OUTFLOW

    SciTech Connect

    Tomida, Kengo; Tomisaka, Kohji; Ohsuga, Ken; Matsumoto, Tomoaki; Machida, Masahiro N.; Saigo, Kazuya E-mail: tomisaka@th.nao.ac.jp E-mail: masahiro.machida@nao.ac.jp E-mail: matsu@hosei.ac.jp

    2010-05-01

    We perform a three-dimensional nested-grid radiation magnetohydrodynamics (RMHD) simulation with self-gravity to study the early phase of the low-mass star formation process from a rotating molecular cloud core to a first adiabatic core just before the second collapse begins. Radiation transfer is implemented with the flux-limited diffusion approximation, operator-splitting, and implicit time integrator. In the RMHD simulation, the outer region of the first core attains a higher entropy and its size is larger than that in the magnetohydrodynamics simulations with the barotropic approximation. Bipolar molecular outflow consisting of two components is driven by magnetic Lorentz force via different mechanisms, and shock heating by the outflow is observed. Using the RMHD simulation we can predict and interpret the observed properties of star-forming clouds, first cores, and outflows with millimeter/submillimeter radio interferometers, especially the Atacama Large Millimeter/submillimeter Array.

  12. Herbig-Haro objects in the receding lobe of the L 1551 outflow

    NASA Technical Reports Server (NTRS)

    Graham, J. A.; Rubin, Vera C.

    1992-01-01

    A spectrum has been obtained of two Herbig-Haro objects which are seen against the receding lobe of the bipolar outflow within the dark cloud Lynds 1551. Positive heliocentric velocities up to 90 km/s have been measured from the H-alpha line which point to an association of these emission knots with the embedded infrared source L 1551-IRS 5 rather than with other young stellar objects in this part of the sky. There is a velocity range of 50-100 km/s within each object. (S II) lambda 6716 is also detected at a strength of about 50 pct of H-alpha. Along the entire length of the slit there is broad H-alpha emission with strength about four times that normally seen in emission from the night sky. This feature partially resolves into two components, one of which we suggest is from the general Galactic field, and the other from extended bow-shock emission.

  13. Mediterranean outflow mixing and dynamics.

    PubMed

    Price, J F; Baringer, M O; Lueck, R G; Johnson, G C; Ambar, I; Parrilla, G; Cantos, A; Kennelly, M A; Sanford, T B

    1993-02-26

    The Mediterranean Sea produces a salty, dense outflow that is strongly modified by entrainment as it first begins to descend the continental slope in the eastern Gulf of Cadiz. The current accelerates to 1.3 meters per second, which raises the internal Froude number above 1, and is intensely turbulent through its full thickness. The outflow loses about half of its density anomaly and roughly doubles its volume transport as it entrains less saline North Atlantic Central water. Within 100 kilometers downstream, the current is turned by the Coriolis force until it flows nearly parallel to topography in a damped geostrophic balance. The mixed Mediterranean outflow continues westward, slowly descending the continental slope until it becomes neutrally buoyant in the thermocline where it becomes an important water mass. PMID:17732247

  14. Origin of outflows and winds

    NASA Technical Reports Server (NTRS)

    Koenigl, Arieh; Ruden, Steven P.

    1993-01-01

    Recent developments concerning the accretion-outflow connection and the role of magnetic fields are examined. It is argued that the weakly ionized wind most likely represents an MHD outflow driven centrifugally from the disk surfaces or from the boundary between the disk and the star. Specific wind models for each of these alternatives are presented, and it is contended that both provide a natural explanation of the observed correlation between accretion and outflow. The kinematic, thermal, and chemical wind properties predicted by these models are described and their observational implications are considered. It is suggested that the wind characteristics may be reflected in the observed forbidden line and IR continuum emission of T Tauri stars and in the measured abundances of various molecular species.

  15. Mediterranean Outflow Mixing and Dynamics

    NASA Astrophysics Data System (ADS)

    Price, James F.; O'Neil Baringer, Molly; Lueck, Rolf G.; Johnson, Gregory C.; Ambar, Isabel; Parrilla, Gregorio; Cantos, Alain; Kennelly, Maureen A.; Sanford, Thomas B.

    1993-02-01

    The Mediterranean Sea produces a salty, dense outflow that is strongly modified by entrainment as it first begins to descend the continental slope in the eastern Gulf of Cadiz. The current accelerates to 1.3 meters per second, which raises the internal Froude number above 1, and is intensely turbulent through its full thickness. The outflow loses about half of its density anomaly and roughly doubles its volume transport as it entrains less saline North Atlantic Central water. Within 100 kilometers downstream, the current is turned by the Coriolis force until it flows nearly parallel to topography in a damped geostrophic balance. The mixed Mediterranean outflow continues westward, slowly descending the continental slope until it becomes neutrally buoyant in the thermocline where it becomes an important water mass.

  16. High resolution imaging of the outflow channels on Mars

    NASA Astrophysics Data System (ADS)

    Davatzes, A. K.; Gulick, V. C.

    2008-12-01

    We report observations of the outflow channels on Mars from HiRISE images in MRO's first Martian year. Several hundred images of the outflow channels on Mars have been collected to date from HiRISE, as well as coordinated images with CTX and CRISM. Depositional features, such as slackwater deposits and small bedforms that are expected to be visible at the resolution of HiRISE have not yet been observed, largely due to post-fluvial modification of the channels. Many of the channels have been subsequently covered by a thin layer of lava, ash, dust, or lineated valley fill. Although altered slightly by later aeolian modification, Ares Valles and Kasei Valles preserve much of the original fluvial erosional forms, particularly cataracts and longitudinal grooves that can be used to infer the mechanics of the flow. Cataracts, steep knickpoints in the large outflow channels, were once large waterfalls on the Martian surface. These have been observed in all of the larger outflow systems, including Kasai, Athabasca, Mangala, and Reull Valles. High resolution imaging shows that all of the cataract systems have multiple generations of erosion, with smaller subchannels within the cataract system. Based on the length of the recession and the morphological evidence most of the large channels experienced multiple flooding events or pulses. The tectonically sourced outflow channels, such as Athabasca and Mangala Valles, show sourcing at regions of complex fault geometries, specifically at fault relays. In terrestrial systems, relays tend to be regions of concentrated stress that can produce dilation manifested as high joint density, as well as point sources for hydrothermal outflow on Earth. Athabasca and Mangala Valles, sourced proximal to large volcanic centers, may have been regions of major hydrothermal activity in the past.

  17. The collimated outflows of the planetary nebula Hu 1-2: proper motion and radial velocity measurements

    NASA Astrophysics Data System (ADS)

    Miranda, L. F.; Blanco, M.; Guerrero, M. A.; Riera, A.

    2012-04-01

    Hu 1-2 is a planetary nebula that contains an isolated knot located north-west of the main nebula, which could be related to a collimated outflow. We present a subarcsecond Hα+[N II] image and a high-resolution, long-slit spectrum of Hu 1-2 that allow us to identify the south-eastern counterpart of the north-western knot and to establish their high-velocity (>340 km s-1), collimated bipolar outflow nature. The detection of the north-western knot in Palomar Observatory Sky Atlas (POSS) red plates allows us to carry out a proper motion analysis by combining three POSS red plates and two narrow-band Hα+[N II] CCD images, with a time baseline of ≃57 yr. A proper motion of 20 ± 6 mas yr-1 along position angle 312°± 15° and a dynamical age of 1375? yr are obtained for the bipolar outflow. The measured proper motion and the spatio-kinematical properties of the bipolar outflow yield a lower limit of 2.7 kpc for the distance to Hu 1-2. The Andalucia Faint Object Spectrograph and Camera (ALFOSC) is provided by the Instituto de Astrofísica de Andalucía (IAA) under a joint agreement with the University of Copenhagen and NOTSA. The IACUB uncrossed echelle spectrograph was built in a collaboration between the IAC and the Queen's University of Belfast.

  18. Evidence for a chemically differentiated outflow in Mrk 231

    NASA Astrophysics Data System (ADS)

    Lindberg, J. E.; Aalto, S.; Muller, S.; Martí-Vidal, I.; Falstad, N.; Costagliola, F.; Henkel, C.; van der Werf, P.; García-Burillo, S.; González-Alfonso, E.

    2016-03-01

    Aims: Our goal is to study the chemical composition of the outflows of active galactic nuclei and starburst galaxies. Methods: We obtained high-resolution interferometric observations of HCN and HCO+J = 1 → 0 and J = 2 → 1 of the ultra-luminous infrared galaxy Mrk 231 with the IRAM Plateau de Bure Interferometer. We also use previously published observations of HCN and HCO+J = 1 → 0 and J = 3 → 2, and HNC J = 1 → 0 in the same source. Results: In the line wings of the HCN, HCO+, and HNC emission, we find that these three molecular species exhibit features at distinct velocities which differ between the species. The features are not consistent with emission lines of other molecular species. Through radiative transfer modelling of the HCN and HCO+ outflow emission we find an average abundance ratio X(HCN) /X(HCO+) ≳ 1000. Assuming a clumpy outflow, modelling of the HCN and HCO+ emission produces strongly inconsistent outflow masses. Conclusions: Both the anti-correlated outflow features of HCN and HCO+ and the different outflow masses calculated from the radiative transfer models of the HCN and HCO+ emission suggest that the outflow is chemically differentiated. The separation between HCN and HCO+ could be an indicator of shock fronts present in the outflow, since the HCN/HCO+ ratio is expected to be elevated in shocked regions. Our result shows that studies of the chemistry in large-scale galactic outflows can be used to better understand the physical properties of these outflows and their effects on the interstellar medium in the galaxy. Based on observations with the IRAM Plateau de Bure Interferometer. IRAM is supported by INSU/CNRS (France), MPG (Germany), and IGN (Spain).Reduced datacubes as FITS files are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/587/A15

  19. Depression and Bipolar Support Alliance

    MedlinePlus

    ... events Visit the podcast archive Mood Disorders Depression Bipolar Disorder Anxiety Screening Center Co-occurring Illnesses/Disorders Related ... for Your Patients Information about Depression Information about Bipolar Disorder Wellness Tools DBSA Support Groups Active Research Studies ...

  20. Bipolar Affective Disorder and Migraine

    PubMed Central

    Engmann, Birk

    2012-01-01

    This paper consists of a case history and an overview of the relationship, aetiology, and treatment of comorbid bipolar disorder migraine patients. A MEDLINE literature search was used. Terms for the search were bipolar disorder bipolar depression, mania, migraine, mood stabilizer. Bipolar disorder and migraine cooccur at a relatively high rate. Bipolar II patients seem to have a higher risk of comorbid migraine than bipolar I patients have. The literature on the common roots of migraine and bipolar disorder, including both genetic and neuropathological approaches, is broadly discussed. Moreover, bipolar disorder and migraine are often combined with a variety of other affective disorders, and, furthermore, behavioural factors also play a role in the origin and course of the diseases. Approach to treatment options is also difficult. Several papers point out possible remedies, for example, valproate, topiramate, which acts on both diseases, but no first-choice treatments have been agreed upon yet. PMID:22649454

  1. Lightweight bipolar storage battery

    NASA Technical Reports Server (NTRS)

    Rowlette, John J. (Inventor)

    1992-01-01

    An apparatus [10] is disclosed for a lightweight bipolar battery of the end-plate cell stack design. Current flow through a bipolar cell stack [12] is collected by a pair of copper end-plates [16a,16b] and transferred edgewise out of the battery by a pair of lightweight, low resistance copper terminals [28a,28b]. The copper terminals parallel the surface of a corresponding copper end-plate [16a,16b] to maximize battery throughput. The bipolar cell stack [12], copper end-plates [16a,16b] and copper terminals [28a,28b] are rigidly sandwiched between a pair of nonconductive rigid end-plates [20] having a lightweight fiber honeycomb core which eliminates distortion of individual plates within the bipolar cell stack due to internal pressures. Insulating foam [30] is injected into the fiber honeycomb core to reduce heat transfer into and out of the bipolar cell stack and to maintain uniform cell performance. A sealed battery enclosure [ 22] exposes a pair of terminal ends [26a,26b] for connection with an external circuit.

  2. Molecular outflows in starburst nuclei

    NASA Astrophysics Data System (ADS)

    Roy, Arpita; Nath, Biman B.; Sharma, Prateek; Shchekinov, Yuri

    2016-08-01

    Recent observations have detected molecular outflows in a few nearby starburst nuclei. We discuss the physical processes at work in such an environment in order to outline a scenario that can explain the observed parameters of the phenomenon, such as the molecular mass, speed and size of the outflows. We show that outflows triggered by OB associations, with NOB ≥ 105 (corresponding to a star formation rate (SFR)≥1 M⊙ yr-1 in the nuclear region), in a stratified disk with mid-plane density n0 ˜ 200-1000 cm-3 and scale height z0 ≥ 200(n0/102 cm-3)-3/5 pc, can form molecules in a cool dense and expanding shell. The associated molecular mass is ≥107 M⊙ at a distance of a few hundred pc, with a speed of several tens of km s-1. We show that a SFR surface density of 10 ≤ ΣSFR ≤ 50 M⊙ yr-1 kpc-2 favours the production of molecular outflows, consistent with observed values.

  3. The Geometry of Quasar Outflows

    NASA Astrophysics Data System (ADS)

    Ganguly, Rajib

    2012-10-01

    Quasar outflows are important for understanding the accretion and growth processes of the central black hole, but also potentially play a role in feedback to the galaxy, halting star formation and infall of gas. A big uncertainty lies in the geometry and density of these outflows, especially as a function of ionization and velocity. We aim to tackle this using the archival COS M grating spectra of 266 quasars. We separate the geometry of outflows into two parts: the solid angle subtended around the black hole, and the distance of the outflow from the central engine. Large numbers of quasars with high resolution spectra are required for each aspect of this statistical investigation. First, we will determine which/how many absorption-line systems are intrinsic through both partial covering methods and statistical assessments. Second, we will consider the incidence of intrinsic absorbers as a function of quasar property {e.g., radio-loudness, SED shape, black hole mass, bolometric luminosity}. This will reveal what determines the solid angle. This can only be done at moderate redshifts where quasars with a larger range of properties are observable, and hence requires HST/COS. Third, we will use the wide range of diagnostic lines to constrain the physical conditions of the absorbers. We will target the CIII*1175 complex and apply photoionization models to constrain the densities and ionization parameters. This will provide the largest set yet of intrinsic absorbers with systematic distance constraints. In tandem with the solid angles, this work will inform models regarding the geometry of quasar outflows.

  4. Hot outflows in galaxy clusters

    NASA Astrophysics Data System (ADS)

    Kirkpatrick, C. C.; McNamara, B. R.

    2015-10-01

    The gas-phase metallicity distribution has been analysed for the hot atmospheres of 29 galaxy clusters using Chandra X-ray Observatory observations. All host brightest cluster galaxies (BCGs) with X-ray cavity systems produced by radio AGN. We find high elemental abundances projected preferentially along the cavities of 16 clusters. The metal-rich plasma was apparently lifted out of the BCGs with the rising X-ray cavities (bubbles) to altitudes between twenty and several hundred kiloparsecs. A relationship between the maximum projected altitude of the uplifted gas (the `iron radius') and jet power is found with the form R_Fe ∝ P_jet^{0.45}. The estimated outflow rates are typically tens of solar masses per year but exceed 100 M⊙ yr- 1 in the most powerful AGN. The outflow rates are 10-20 per cent of the cooling rates, and thus alone are unable to offset a cooling inflow. Nevertheless, hot outflows effectively redistribute the cooling gas and may play a significant role at regulating star formation and AGN activity in BCGs and presumably in giant elliptical galaxies. The metallicity distribution overall can be complex, perhaps due to metal-rich gas returning in circulation flows or being blown around in the hot atmospheres. Roughly 15 per cent of the work done by the cavities is expended lifting the metal-enriched gas, implying their nuclear black holes have increased in mass by at least ˜107-109 M⊙. Finally, we show that hot outflows can account for the broad, gas-phase metallicity distribution compared to the stellar light profiles of BCGs, and we consider a possible connection between hot outflows and cold molecular gas flows discovered in recent Atacama Large Millimeter Array observations.

  5. Evidence for Collimated Outflow from Sgr A*?

    NASA Astrophysics Data System (ADS)

    Yusef-Zadeh, Farhad; Arendt, R.; Bushouse, H.; Cotton, W.; Haggard, D.; Heinke, C.; Roberts, D. A.; Royster, M.; Wardle, M.

    2012-05-01

    The compact radio source Sgr A* is considered to be coincident with a 4 million solar mass black hole at the dynamical center of the Galaxy. There has been a considerable debate as to whether the jet or the accretion flow model can explain the broad band spectrum of the emission. Here, we present high resolution radio, X-ray continuum and FeII line images showing new structural details within the inner arcminute (2.4pc) of Sgr A*. On a small scale, we find a chain of radio blobs which appear to be emanating from Sgr A*. These blobs are detected beyond the inner 1" of Sgr A* and are distributed along a continuous linear feature that is tilted by 28 degrees with respect to the Galactic plane. In linear polarization images at 3.6cm, three blobs of emission have been detected symmetrically about 1' from Sgr A*. The morphology and polarization of the linear feature suggest a jet outflow from Sgr A*, punching through the orbiting ionized gas and producing X-ray emission as well as a hot bubble of FeIII/FeII line emission. On a scale of about 15pc, we also note a collection of large-scale radio and X-ray "streamers" in the direction perpendicular to the Galactic plane. This complex structure consists of nonthermal and thermal continuum features as well as molecular clouds traced at infrared wavelengths. The base of the outflowing gas appears to be confined by the 2-pc molecular ring, within which a cluster of massive stars lie. These features suggest star-burst driven outflow may be responsible for this energetic activity.

  6. VizieR Online Data Catalog: Fermi sources with massive YSO associations (Munar-Adrover+, 2011)

    NASA Astrophysics Data System (ADS)

    Munar-Adrover, P.; Paredes, J. M.; Romero, G. E.

    2011-09-01

    Massive protostars have associated bipolar outflows that can produce strong shocks when they interact with the surrounding medium. At these shocks, particles can be accelerated up to relativistic energies. Relativistic electrons and protons can then produce gamma-ray emission, as some theoretical models predict. To identify young galactic objects that may emit gamma rays, we crossed the Fermi First Year Catalog with some catalogs of known massive young stellar objects (MYSOs), early type stars, and OB associations, and we implemented Monte Carlo simulations to find the probability of chance coincidences. We obtained a list of massive MYSOs that are spatially coincident with Fermi sources. (4 data files).

  7. Serotonergic Dysfunction in Patients with Bipolar Disorder Assessed by the Loudness Dependence of the Auditory Evoked Potential

    PubMed Central

    Lee, Kyung-Sang; Park, Young-Min

    2012-01-01

    Objective The loudness dependence of the auditory evoked potential (LDAEP) is suggested to be a marker of serotonin system function. This study explored the LDAEP of multiple mood statuses (depression, mania, and euthymia) and its clinical implication in bipolar disorder patients. Methods A total of 89 subjects, comprising 35 patients with bipolar disorder, 32 patients with schizophrenia, and 22 healthy controls were evaluated. The bipolar disorder cases comprised 10 depressed patients, 15 patients with mania, and 10 euthymic patients. The N1/P2 peak-to-peak amplitudes were measured at 5 stimulus intensities, and the LDAEP was calculated as the slope of the linear regression. Both cortical and source LDAEP values were calculated. Results LDAEP varied according to mood statuses, and was significantly stronger in cases of euthymia, depression, and mania. Cortical LDAEP was significantly stronger in patients with bipolar euthymia compared with schizophrenia, stronger in bipolar depression than in schizophrenia, stronger in healthy controls than in schizophrenia patients, and stronger in healthy controls than in patients with bipolar mania. Source LDAEP was significantly stronger in patients with bipolar euthymia, bipolar depression, and bipolar mania compared with schizophrenia, stronger in bipolar euthymia than in bipolar mania. Psychotic features weakened the source LDAEP relative to nonpsychotic features. The severity of the depressive symptom was negatively correlated with source LDAEP. Conclusion These findings suggest that the serotonin activity of patients with bipolar disorder may vary according to mood status. A longitudinal follow-up study should be pursued using drug-naive subjects. PMID:22993531

  8. Estimation of cold plasma outflow during geomagnetic storms

    NASA Astrophysics Data System (ADS)

    Haaland, S.; Eriksson, A. I.; Andre, M.; Maes, L.; Baddeley, L. J.; Barakat, A. R.; Chappell, C. R.; Eccles, V.; Johnsen, C.; Lybekk, B.; Li, K.; Pedersen, A.; Schunk, R. W.; Welling, D. T.

    2015-12-01

    Low energy ions of ionospheric origin provide a significant contributon to the magnetospheric plasmapopulation. Measuring cold ions is difficult though. Observations have to be done at sufficiently high altitudes and typically in regions of space where spacecraft attain a positive charge due to solar illumination. Cold ions are therefore shielded from the satellite particle detectors. Furthermore, spacecraft can only cover key regions of ion outflow during segments of their orbit, so additional complications arise arise if continuous longtime observations such as the during a geomagnetic storms are needed. In this paper we suggest a new approach, based on a combination of synoptic observations and a novel technique to estimate the flux and total outflow during the various phases of geomagnetic storms. Our results indicate large variations in both outflow rates and transport throughout the storm. Prior to the storm main phase, outflow rates are moderate, and the cold ions are mainly emanating from moderately sized polar cap regions. Throughout the main phase of the storm, outflow rates increase and the polar cap source regions expand. Furthermore, faster transport, resulting from enhanced convection, leads to a much larger supply of cold ions to the near Earth region during gemagnetic storms.

  9. Estimation of cold plasma outflow during geomagnetic storms

    NASA Astrophysics Data System (ADS)

    Haaland, S.; Eriksson, A.; André, M.; Maes, L.; Baddeley, L.; Barakat, A.; Chappell, R.; Eccles, V.; Johnsen, C.; Lybekk, B.; Li, K.; Pedersen, A.; Schunk, R.; Welling, D.

    2015-12-01

    Low-energy ions of ionospheric origin constitute a significant contributor to the magnetospheric plasma population. Measuring cold ions is difficult though. Observations have to be done at sufficiently high altitudes and typically in regions of space where spacecraft attain a positive charge due to solar illumination. Cold ions are therefore shielded from the satellite particle detectors. Furthermore, spacecraft can only cover key regions of ion outflow during segments of their orbit, so additional complications arise if continuous longtime observations, such as during a geomagnetic storm, are needed. In this paper we suggest a new approach, based on a combination of synoptic observations and a novel technique to estimate the flux and total outflow during the various phases of geomagnetic storms. Our results indicate large variations in both outflow rates and transport throughout the storm. Prior to the storm main phase, outflow rates are moderate, and the cold ions are mainly emanating from moderately sized polar cap regions. Throughout the main phase of the storm, outflow rates increase and the polar cap source regions expand. Furthermore, faster transport, resulting from enhanced convection, leads to a much larger supply of cold ions to the near-Earth region during geomagnetic storms.

  10. Bipolar battery construction

    NASA Technical Reports Server (NTRS)

    Rippel, Wally E. (Inventor); Edwards, Dean B. (Inventor)

    1981-01-01

    A lightweight, bipolar battery construction for lead acid batteries in which a plurality of thin, rigid, biplates each comprise a graphite fiber thermoplastic composition in conductive relation to lead stripes plated on opposite flat surfaces of the plates, and wherein a plurality of nonconductive thermoplastic separator plates support resilient yieldable porous glass mats in which active material is carried, the biplates and separator plates with active material being contained and maintained in stacked assembly by axial compression of the stacked assembly. A method of assembling such a bipolar battery construction.

  11. Dominant Nuclear Outflow Driving Mechanisms in Powerful Radio Galaxies

    NASA Astrophysics Data System (ADS)

    Batcheldor, Dan; Tadhunter, Clive; Holt, Joanna; Morganti, Raffaella; O'Dea, Christopher P.; Axon, David J.; Koekemoer, Anton

    2007-05-01

    In order to identify the dominant nuclear outflow mechanisms in active galactic nuclei, we have undertaken deep, high-resolution observations of two compact radio sources (PKS 1549-79 and PKS 1345+12) with the Advanced Camera for Surveys (ACS) aboard the Hubble Space Telescope. Not only are these targets known to have powerful emission-line outflows, but they also contain all the potential drivers for the outflows: relativistic jets, quasar nuclei, and starbursts. ACS allows the compact nature (<0.15") of these radio sources to be optically resolved for the first time. Through comparison with existing radio maps, we have seen consistency in the nuclear position angles of both the optical emission-line and radio data. There is no evidence for biconical emission-line features on the large scale, and there is a divergence in the relative position angles of the optical and radio structure. This enables us to exclude starburst-driven outflows. However, we are unable to clearly distinguish between radiative AGN wind-driven outflows and outflows powered by relativistic radio jets. The small-scale biconical features, indicative of such mechanisms, could be below the resolution limit of ACS, especially if aligned close to the line of sight. In addition, there may be offsets between the radio and optical nuclei induced by heavy dust obscuration, nebular continuum, or scattered light from the AGN. Based on observations made with the NASA/ESA Hubble Space Telescope obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc. under NASA contract NAS 5-26555. These observations are associated with program 10206.

  12. Endophenotypes in bipolar disorder.

    PubMed

    Lenox, Robert H; Gould, Todd D; Manji, Husseini K

    2002-05-01

    The search for genes in bipolar disorder has provided numerous genetic loci that have been linked to susceptibility to developing the disorder. However, because of the genetic heterogeneity inherent in bipolar disorder, additional strategies may need to be employed to fully dissect the genetic underpinnings. One such strategy involves reducing complex behaviors into their component parts (endophenotypes). Abnormal neurophysiological, biochemical, endocrinological, neuroanatomical, cognitive, and neuropsychological findings are characteristics that often accompany psychiatric illness. It is possible that some of these may eventually be useful in subdefining complex genetic disorders, allowing for improvements in diagnostic assessment, genetic linkage studies, and development of animal models. Findings in patients with bipolar disorder that may eventually be useful as endophenotypes include abnormal regulation of circadian rhythms (the sleep/wake cycle, hormonal rhythms, etc.), response to sleep deprivation, P300 event-related potentials, behavioral responses to psychostimulants and other medications, response to cholinergics, increase in white matter hyperintensities (WHIs), and biochemical observations in peripheral mononuclear cells. Targeting circadian rhythm abnormalities may be a particularly useful strategy because circadian cycles appear to be an inherent evolutionarily conserved function in all organisms and have been implicated in the pathophysiology of bipolar disorder. Furthermore, lithium has been shown to regulate circadian cycles in diverse species, including humans, possibly through inhibition of glycogen synthase kinase 3-beta (GSK-3beta), a known target of lithium. PMID:11992561

  13. NGC 6334-V - An infrared bipolar nebula

    NASA Technical Reports Server (NTRS)

    Harvey, P. M.; Wilking, B. A.

    1984-01-01

    High angular resolution infrared mapping of the enigmatic far-infrared source NGC 6334-V shows it to have a bipolar structure at 1-4 microns. This structure together with the near-infrared colors and previous observations of H2 emission suggests a model for the source (IRS 4) in which a single luminous star is embedded in a dust cloud with a disklike geometry. Photometry of near-infrared sources within 0.5 pc of IRS 4 is also presented. These data suggest that there are at least four lower luminosity members of a young, dense cluster associated with the dominant source.

  14. Interstitial thermotherapy with bipolar electrosurgical devices

    NASA Astrophysics Data System (ADS)

    Desinger, Kai; Stein, Thomas; Boehme, A.; Mack, Martin G.; Mueller, Gerhard J.

    1998-01-01

    In addition to the laser, microwave or other energy sources, interstitial thermotherapy with radio-frequency current (RFITT) in bipolar technique has already been shown in vitro to be a safe and economical alternative energy source with a comparable operating performance. The bipolar technique is, from the technical point of view, completely without risk whereas with monopolar devices, where a neutral electrode has to be applied, an uncontrolled current flow passes through the patient's body. The therapeutical application efficiency of these bipolar RF-needle applicators was evaluated using newly designed high performance flushed and cooled probes (qq 3 mm). These can be used to create large coagulation volumes in tissue such as for the palliative treatment of liver metastases or the therapy of the benign prostate hyperplasia. As a result, the achievable lesion size resulting from these flushed and internally cooled RF- probes could be increased by a factor of three compared to a standard bipolar probe. With these bipolar power RF- applicators, coagulation dimensions of 5 cm length and 4 cm diameter with a power input of 40 watt could be achieved within 20 minutes. No carbonization and electrode tissue adherence was found. Investigations in vitro with adapted RFITT-probes using paramagnetic materials such as titanium alloys and high performance plastic have shown that monitoring under MRI (Siemens Magnetom, 1.5 Tesla), allows visualization of the development of the spatial temperature distribution in tissue using an intermittent diagnostic and therapeutical application. This does not lead to a loss in performance compared to continuous application. A ratio of 1:4 (15 s Thermo Flash MRI, 60 s RF-energy) has shown to be feasible.

  15. Nitrided Metallic Bipolar Plates

    SciTech Connect

    Brady, Michael P; Tortorelli, Peter F; Pihl, Josh A; Toops, Todd J; More, Karren Leslie; Meyer III, Harry M; Vitek, John Michael; Wang, Heli; Turner, John; Wilson, Mahlon; Garzon, Fernando; Rockward, Tommy; Connors, Dan; Rakowski, Jim; Gervasio, Don

    2008-01-01

    The objectives are: (1) Develop and optimize stainless steel alloys amenable to formation of a protective Cr-nitride surface by gas nitridation, at a sufficiently low cost to meet DOE targets and with sufficient ductility to permit manufacture by stamping. (2) Demonstrate capability of nitridation to yield high-quality stainless steel bipolar plates from thin stamped alloy foils (no significant stamped foil warping or embrittlement). (3) Demonstrate single-cell fuel cell performance of stamped and nitrided alloy foils equivalent to that of machined graphite plates of the same flow-field design ({approx}750-1,000 h, cyclic conditions, to include quantification of metal ion contamination of the membrane electrode assembly [MEA] and contact resistance increase attributable to the bipolar plates). (4) Demonstrate potential for adoption in automotive fuel cell stacks. Thin stamped metallic bipolar plates offer the potential for (1) significantly lower cost than currently-used machined graphite bipolar plates, (2) reduced weight/volume, and (3) better performance and amenability to high volume manufacture than developmental polymer/carbon fiber and graphite composite bipolar plates. However, most metals exhibit inadequate corrosion resistance in proton exchange membrane fuel cell (PEMFC) environments. This behavior leads to high electrical resistance due to the formation of surface oxides and/or contamination of the MEA by metallic ions, both of which can significantly degrade fuel cell performance. Metal nitrides offer electrical conductivities up to an order of magnitude greater than that of graphite and are highly corrosion resistant. Unfortunately, most conventional coating methods (for metal nitrides) are too expensive for PEMFC stack commercialization or tend to leave pinhole defects, which result in accelerated local corrosion and unacceptable performance.

  16. Martian groundwater outflow processes and morphology; reconstruction of paleohydrology using landscape evolution experiments

    NASA Astrophysics Data System (ADS)

    Marra, Wouter A.; Kleinhans, Maarten G.; de Jong, Steven M.; Hauber, Ernst

    2015-04-01

    Groundwater played an important role in the aqueous history of Mars but how, how long, and with what intensity remains unclear. Two types of fluvial landforms related to groundwater emergence are the giant outflow channels and the disputed sapping valleys. Understanding of the relation between subsurface and surface processes is slim, which limits inferences of climate implications from the observable morphology. We aim to increase this understanding and to apply this knowledge to Martian cases to reconstruct former hydrological conditions. Using a series of sandbox experiments, we investigated formative processes of valleys formed by groundwater. These experiments showed the morphology and processes of groundwater sapping and pressurized groundwater outflow (see Marra et al, 2014, Icarus doi:10.1016/j.icarus.2013.12.026) and further focused on landscape characteristics of groundwater sapping sourced locally or distally, and identified various processes linked to pressurized groundwater outbursts including the formation and eruption of subsurface reservoirs that can explain the high reconstructed discharges of large outflow valleys (see Marra et al, 2014, JGR doi:10.1002/2014JE004701). Based on the experiments, we identified novel morphological indicators for groundwater outflow in the outflow channel region of Lunae and Ophir Plana. These, in combination with the classic outflow features, show a clear trend of increasing outflow magnitude with decreasing elevation to the northeast, indicating a head from a common aquifer. The putative aquifer we identified was likely recharged by infiltration over the Tharsis region. Outflow channel activity peaked in the Hesperian, but continued in the Amazonian at a lower magnitude. Our results agree well with groundwater recharge in the Noachian and Early Hesperian, corresponding to a climate that sustained an active hydrological cycle. Furthermore, the large outflow events require a confining layer to build up enough pressure

  17. APEX-CHAMP+ high-J CO observations of low-mass young stellar objects. III. NGC 1333 IRAS 4A/4B envelope, outflow, and ultraviolet heating

    NASA Astrophysics Data System (ADS)

    Yıldız, Umut A.; Kristensen, Lars E.; van Dishoeck, Ewine F.; Belloche, Arnaud; van Kempen, Tim A.; Hogerheijde, Michiel R.; Güsten, Rolf; van der Marel, Nienke

    2012-06-01

    Context. The NGC 1333 IRAS 4A and IRAS 4B sources are among the most well-studied Stage 0 low-mass protostars, which drive prominent bipolar outflows. Spectrally resolved molecular emission lines provide crucial information about the physical and chemical structure of the circumstellar material as well as the dynamics of the different components. Most studies have so far concentrated on the colder parts (T ≤ 30 K) of these regions. Aims: The aim is to characterize the warmer parts of the protostellar envelope using the new generation of submillimeter instruments. This will allow us to quantify the feedback of the protostars on their surroundings in terms of shocks, ultraviolet (UV) heating, photodissociation, and outflow dispersal. Methods: The dual frequency 2 × 7 pixel 650/850 GHz array receiver CHAMP+ mounted on APEX was used to obtain a fully sampled, large-scale ~4' × 4' map at 9″ resolution of the IRAS 4A/4B region in the 12CO J = 6-5 line. Smaller maps were observed in the 13CO 6-5 and [C i] J = 2-1 lines. In addition, a fully sampled 12CO J = 3-2 map made with HARP-B on the JCMT is presented and deep isotopolog observations are obtained at selected outflow positions to constrain the optical depth. Complementary Herschel-HIFI and ground-based lines of CO and its isotopologs, from J = 1-0 up to 10-9 (Eu/k ≈ 300 K), are collected at the source positions and used to construct velocity-resolved CO ladders and rotational diagrams. Radiative-transfer models of the dust and lines are used to determine the temperatures and masses of the outflowing and photon-heated gas and infer the CO abundance structure. Results: Broad CO emission-line profiles trace entrained shocked gas along the outflow walls, which have an average temperature of ~100 K. At other positions surrounding the outflow and the protostar, the 6-5 line profiles are narrow indicating UV excitation. The narrow 13CO 6-5 data directly reveal the UV heated gas distribution for the first time. The

  18. MOLECULAR OUTFLOWS IN THE SUBSTELLAR DOMAIN: MILLIMETER OBSERVATIONS OF YOUNG VERY LOW MASS OBJECTS IN TAURUS AND {rho} OPHIUCHI

    SciTech Connect

    Ngoc Phan-Bao; Lee, Chin-Fei; Ho, Paul T. P.; Tang, Ya-Wen E-mail: pbngoc@asiaa.sinica.edu.tw

    2011-07-01

    We report here our search for molecular outflows from young very low mass stars and brown dwarfs in Taurus and {rho} Ophiuchi. Using the Submillimeter Array and the Combined Array for Research in Millimeter-wave Astronomy, we have observed four targets at 1.3 mm wavelength (230 GHz) to search for CO J = 2 {yields} 1 outflows. A young very low mass star MHO 5 (in Taurus) with an estimated mass of 90 M{sub J}, which is just above the hydrogen-burning limit, shows two gas lobes that are likely outflows. While the CO map of MHO 5 does not show a clear structure of outflow, possibly due to environment gas, its position-velocity diagram indicates two distinct blue- and redshifted components. We therefore conclude that they are components of a bipolar molecular outflow from MHO 5. We estimate an outflow mass of 7.0 x 10{sup -5} M{sub sun} and a mass-loss rate of 9.0 x 10{sup -10} M{sub sun}. These values are over two orders of magnitude smaller than the typical ones for T Tauri stars and somewhat weaker than those we have observed in the young brown dwarf ISO-Oph 102 of 60 M{sub J} in {rho} Ophiuchi. This makes MHO 5 the first young very low mass star showing a bipolar molecular outflow in Taurus. The detection boosts the scenario that very low mass objects form like low-mass stars but in a version scaled down by a factor of over 100.

  19. A SYSTEMATIC SEARCH FOR MOLECULAR OUTFLOWS TOWARD CANDIDATE LOW-LUMINOSITY PROTOSTARS AND VERY LOW LUMINOSITY OBJECTS

    SciTech Connect

    Schwarz, Kamber R.; Shirley, Yancy L.; Dunham, Michael M.

    2012-10-01

    We present a systematic single-dish search for molecular outflows toward a sample of nine candidate low-luminosity protostars and 30 candidate very low luminosity objects (VeLLOs; L{sub int} {<=} 0.1 L{sub Sun }). The sources are identified using data from the Spitzer Space Telescope cataloged by Dunham et al. toward nearby (D < 400 pc) star-forming regions. Each object was observed in {sup 12}CO and {sup 13}CO J = 2 {yields} 1 simultaneously using the sideband separating ALMA Band-6 prototype receiver on the Heinrich Hertz Telescope at 30'' resolution. Using five-point grid maps, we identify five new potential outflow candidates and make on-the-fly maps of the regions surrounding sources in the dense cores B59, L1148, L1228, and L1165. Of these new outflow candidates, only the map of B59 shows a candidate blue outflow lobe associated with a source in our survey. We also present larger and more sensitive maps of the previously detected L673-7 and the L1251-A-IRS4 outflows and analyze their properties in comparison to other outflows from VeLLOs. The accretion luminosities derived from the outflow properties of the VeLLOs with detected CO outflows are higher than the observed internal luminosity of the protostars, indicating that these sources likely had higher accretion rates in the past. The known L1251-A-IRS3 outflow is detected but not re-mapped. We do not detect clear, unconfused signatures of red and blue molecular wings toward the other 31 sources in the survey indicating that large-scale, distinct outflows are rare toward this sample of candidate protostars. Several potential outflows are confused with the kinematic structure in the surrounding core and cloud. Interferometric imaging is needed to disentangle large-scale molecular cloud kinematics from these potentially weak protostellar outflows.

  20. ALMA Observation of the 658 GHz Vibrationally Excited H2O Maser in Orion KL Source I

    NASA Astrophysics Data System (ADS)

    Hirota, Tomoya; Kim, Mi Kyoung; Honma, Mareki

    2016-02-01

    We present an observational study of the vibrationally excited H2O line at 658 GHz ({ν }2 = 1, {1}{1,0}-1{}{0,1}) toward Orion KL using the Atacama Large Millimeter/Submillimeter Array (ALMA). This line is clearly detected at the position of the massive protostar candidate, Source I. The spatial structure is compact, with a size of about 100 AU, and is elongated along the northeast-southwest low-velocity (18 km -1) bipolar outflow traced by 22 GHz H2O masers, SiO masers, and thermal SiO lines. A velocity gradient can be seen perpendicular to the bipolar outflow. The overall spatial and velocity structure seems to be analogous to that of the 321 GHz H2O maser line previously detected with ALMA and vibrationally excited SiO maser emission. The brightness temperature of the 658 GHz H2O line is estimated to be higher than 2 × 104 K, implying that it is emitted via maser action. Our results suggest that the 658 GHz H2O maser line is emitted from the base of the outflow from a rotating and expanding accretion disk as observed for the SiO masers and the 321 GHz H2O maser. We also search for two other H2O lines at 646 GHz (9{}{7,3}-8{}{8,0} and {9}{7,2}-8{}{8,1}), but they are not detected in Orion KL.

  1. Empirical outflow velocities in an equatorial coronal streamer

    NASA Astrophysics Data System (ADS)

    Strachan, L.; Suleiman, R.; Panasyuk, A.; Biesecker, D.; Kohl, J.

    We use combined Ultraviolet Coronagraph Spectrometer (UVCS) and Large Angle Spectroscopic Coronagraph (LASCO) data to determine the O5+ outflow velocities as a function of height along the axis of an equatorial streamer at solar minimum and as a function of latitude (at 2.3 solar radii from sun center). The results show that outflow increases rather abruptly in the region between 3.6 and 4.1 solar radii near the streamer cusp, and gradually increases to 90 km/s at about 5 solar radii in the streamer stalk beyond the cusp. The latitudinal variation at 2.3 solar radii shows that there is no outflow (within the measurement uncertainties) in the center of the streamer called the core, and that a steep increase in outflow occurs just beyond the streamer legs, where the O VI 1032 intensity relative to H I 1216 (Ly) is higher than in the core. Velocity variations in both height and latitude show that the transitions from no measurable outflow to positive outflow are relatively sharp and thus can be used to infer the location of the transition from closed to open field lines in streamer magnetic field topologies. Such information, including the densities and kinetic temperatures derived from the observations, provides hard constraints for realistic theoretical models of streamers and the source regions of the slow solar wind. This work is supported by NASA Grant NAG5-11420 to the Smithsonian Astrophysical Observatory, by the Italian Space Agency, and by the ESA PRODEX program (Swiss contribution).

  2. RADIATION TRANSFER OF MODELS OF MASSIVE STAR FORMATION. II. EFFECTS OF THE OUTFLOW

    SciTech Connect

    Zhang, Yichen; Tan, Jonathan C.; McKee, Christopher F. E-mail: jt@astro.ufl.edu

    2013-04-01

    We present radiation transfer simulations of a massive (8 M{sub Sun }) protostar forming from a massive (M{sub c} = 60 M{sub Sun }) protostellar core, extending the model developed by Zhang and Tan. The two principal improvements are (1) developing a model for the density and velocity structure of a disk wind that fills the bipolar outflow cavities, based in part on the disk-wind model of Blandford and Payne; and (2) solving for the radially varying accretion rate in the disk due to a supply of mass and angular momentum from the infall envelope and their loss to the disk wind. One consequence of the launching of the disk wind is a reduction in the amount of accretion power that is radiated by the disk. We also include a non-Keplerian potential appropriate for a growing, massive disk. For the transition from dusty to dust-free conditions where gas opacities dominate, we now implement a gradual change as a more realistic approximation of dust destruction. We study how the above effects, especially the outflow, influence the spectral energy distributions (SEDs) and the synthetic images of the protostar. Dust in the outflow cavity significantly affects the SEDs at most viewing angles. It further attenuates the short-wavelength flux from the protostar, controlling how the accretion disk may be viewed, and contributes a significant part of the near- and mid-IR fluxes. These fluxes warm the disk, boosting the mid- and far-IR emission. We find that for near face-on views, i.e., looking down the outflow cavity (although not too close to the axis), the SED from the near-IR to about 60 {mu}m is very flat, which may be used to identify such systems. We show that the near-facing outflow cavity and its walls are still the most significant features in images up to 70 {mu}m, dominating the mid-IR emission and determining its morphology. The thermal emission from the dusty outflow itself dominates the flux at {approx}20 {mu}m. The detailed distribution of the dust in the outflow

  3. Hydrothermal outflow plume of Valles caldera, New Mexico, and a comparison with other outflow plumes

    SciTech Connect

    Goff, F.; Shevenell, L.; Gardner, J.N.; Vuataz, F.; Grigsby, C.O.

    1988-06-10

    Stratigraphic, temperature gradient, hydrogeochemical, and hydrologic data have been integrated with geologic data from previous studies to show the structural configuration of the Valles caldera hydrothermal outflow plume. Hydrologic data suggest that 25--50% of the discharge of the Valles outflow is confined to the Jemez fault zone, which predates caldera formation. Thermal gradient data from bores penetrating the plume show that shallow gradients are highest in the vicinity of the Jemez fault zone (up to 190 /sup 0/C/km). Shallow heat flow above the hydrothermal plume is as high as 500 mW m/sup -2/ near core hole VC-1 (Jemez fault zone) to 200 mW m/sup -2/ at Fenton Hill (Jemez Plateau). Chemical and isotopic data indicate that two source reservoirs within the caldera (Redondo Creek and Sulphur Springs reservoirs) are parents to mixed fluids flowing in the hydrothermal plume. However, isotopic data, borehole data, basic geology, and inverse relations between temperature and chloride content at major hot springs indicate that no single reservoir fluid and no single diluting fluid are involved in mixing. The Valles caldera hydrothermal plume is structurally dominated by lateral flow through a belt of vertical conduits (Jemez fault zone) that strike away from the source reservoir. Stratigraphically confined flow is present but dispersed over a wide area in relatively impermeable rocks. The Valles configuration is contrasted with the configuration of the hydrothermal plume at Roosevelt Hot Springs, which is dominated by lateral flow through a near-surface, widespread, permeable aquifer. Data from 12 other representative geothermal systems show that outflow plumes occur in a variety of magmatic and tectonic settings, have varying reservoir compositions, and have different flow characteristics.

  4. An Unbiased Search for Molecular Hydrogen Outflows in the Orion B Star Forming Region

    NASA Astrophysics Data System (ADS)

    Froebrich, D.; Ziener, R.; Eislöffel, J.

    The formation of stars is often accompanied by molecular outflows. One possible tracer of these outflows is the shocked emission of molecular hydrogen in the near-infrared. We conducted an unbiased survey for molecular outflows in the Orion B region with MAGIC at the 1.23 m telescope on Calar Alto in the 1-0 S(1) line of molecular hydrogen at 2.212μm and in the K' bandpass (continuum). The observed field was about 2.7 square degrees, including the known outflows of NGC2071, HH19, HH24, HH25, HH26, HH27, HH37, HH67, HH91, HH92, HH93, HH94, HH212, HH247, HH248, HH249 and HH260. In addition to these known H2 flows, we find ten new groups of H2 emission features, and discuss their morphology and possible outflow sources.

  5. Accretion Disk Outflows from Compact Object Mergers

    NASA Astrophysics Data System (ADS)

    Metzger, Brian

    nuclear reaction network along characteristic Lagrangian trajectories. Results of these calculations will be used to (1) reassess NS-NS/NS-BH mergers as an astrophysical source of heavy r-process nuclei; and (2) calculate the light curves of the optical transients (`kilonovae') powered by the radioactive decay. Separate work will assess the effects that neutrino irradiation from a long-lived neutron star remnant has on the electron fraction of the disk outflows. The strong contrast between the opacities of proton- and neutron-rich matter imply that the presence and lifetime of such a remnant could be imprinted on the kilonova emission. Our investigation sheds light on the central engines of GRBs and other high-energy transients and hence is relevant to NASA's Swift, MAXI, and Fermi missions. Our results will also impact the interpretation of future observations of supernovae and their galactic environments with the Hubble Space Telescope (HST). Our results will also impact follow-up observations of kilonovae, maximizing the impact of HST to constrain the key open questions such as the progenitors of gamma-ray bursts and the origin of r-process nuclei.

  6. BIPOLAR JETS LAUNCHED FROM ACCRETION DISKS. II. THE FORMATION OF ASYMMETRIC JETS AND COUNTER JETS

    SciTech Connect

    Fendt, Christian; Sheikhnezami, Somayeh E-mail: nezami@mpia.de

    2013-09-01

    We investigate the jet launching from accretion disks, in particular the formation of intrinsically asymmetric jet/counter jet systems. We perform axisymmetric MHD simulations of the disk-jet structure on a bipolar computational domain covering both hemispheres. We apply various models such as asymmetric disks with (initially) different scale heights in each hemisphere, symmetric disks into which a local disturbance is injected, and jets launched into an asymmetric disk corona. We consider both a standard global magnetic diffusivity distribution and a novel local diffusivity model. Typical disk evolution first shows substantial disk warping and then results in asymmetric outflows with a 10%-30% mass flux difference. We find that the magnetic diffusivity profile is essential for establishing a long-term outflow asymmetry. We conclude that bipolar asymmetry in protostellar and extragalactic jets can indeed be generated intrinsically and maintained over a long time by disk asymmetries and the standard jet launching mechanism.

  7. MASSIVE MOLECULAR OUTFLOWS AND NEGATIVE FEEDBACK IN ULIRGs OBSERVED BY HERSCHEL-PACS

    SciTech Connect

    Sturm, E.; Gracia-Carpio, J.; Hailey-Dunsheath, S.; Contursi, A.; Poglitsch, A.; Davies, R.; Genzel, R.; Lutz, D.; Tacconi, L.; De Jong, J. A.; Gonzalez-Alfonso, E.; Veilleux, S.; Fischer, J.; Sternberg, A.; Verma, A.; Maiolino, R.

    2011-05-20

    Mass outflows driven by stars and active galactic nuclei (AGNs) are a key element in many current models of galaxy evolution. They may produce the observed black-hole-galaxy mass relation and regulate and quench both star formation in the host galaxy and black hole accretion. However, observational evidence of such feedback processes through outflows of the bulk of the star-forming molecular gas is still scarce. Here we report the detection of massive molecular outflows, traced by the hydroxyl molecule (OH), in far-infrared spectra of ULIRGs obtained with Herschel-PACS as part of the SHINING key project. In some of these objects the (terminal) outflow velocities exceed 1000 km s{sup -1}, and their outflow rates (up to {approx}1200 M{sub sun} yr{sup -1}) are several times larger than their star formation rates. We compare the outflow signatures in different types of ULIRGs and in starburst galaxies to address the issue of the energy source (AGN or starburst) of these outflows. We report preliminary evidence that ULIRGs with a higher AGN luminosity (and higher AGN contribution to L{sub IR}) have higher terminal velocities and shorter gas depletion timescales. The outflows in the observed ULIRGs are able to expel the cold gas reservoirs from the centers of these objects within {approx}10{sup 6}-10{sup 8} years.

  8. ISOTROPICALLY DRIVEN VERSUS OUTFLOW DRIVEN TURBULENCE: OBSERVATIONAL CONSEQUENCES FOR MOLECULAR CLOUDS

    SciTech Connect

    Carroll, Jonathan J.; Frank, Adam; Blackman, Eric G.

    2010-10-10

    Feedback from protostellar outflows can influence the nature of turbulence in star-forming regions even if they are not the primary source of velocity dispersion for all scales of molecular clouds. For the rate and power expected in star-forming regions, we previously (Carroll et al.) demonstrated that outflows could drive supersonic turbulence at levels consistent with the scaling relations from Matzner although with a steeper velocity power spectrum than expected for an isotropically driven supersonic turbulent cascade. Here, we perform higher resolution simulations and combine simulations of outflow driven turbulence with those of isotropically forced turbulence. We find that the presence of outflows within an ambient isotropically driven turbulent environment produces a knee in the velocity power spectrum at the outflow scale and a steeper slope at sub-outflow scales than for a purely isotropically forced case. We also find that the presence of outflows flattens the density spectrum at large scales effectively reducing the formation of large-scale turbulent density structures. These effects are qualitatively independent of resolution. We have also carried out Principal Component Analysis (PCA) for synthetic data from our simulations. We find that PCA as a tool for identifying the driving scale of turbulence has a misleading bias toward low amplitude large-scale velocity structures even when they are not necessarily the dominant energy containing scales. This bias is absent for isotropically forced turbulence but manifests strongly for collimated outflow driven turbulence.

  9. Pleated metal bipolar assembly

    DOEpatents

    Wilson, Mahlon S.; Zawodzinski, Christine

    2001-01-01

    A thin low-cost bipolar plate for an electrochemical cell is formed from a polymer support plate with first flow channels on a first side of the support plate and second flow channels on a second side of the support plate, where the first flow channels and second flow channels have intersecting locations and have a depth effective to form openings through the support plate at the intersecting locations. A first foil of electrically conductive material is pressed into the first flow channels. A second foil of electrically conductive material pressed into the second flow channels so that electrical contact is made between the first and second foils at the openings through the support plate. A particular application of the bipolar plate is in polymer electrolyte fuel cells.

  10. Carbamazepine in Bipolar Disorder With Pain: Reviewing Treatment Guidelines

    PubMed Central

    Campbell, Austin; O’Connell, Christopher R.; Nallapula, Kishan

    2014-01-01

    Objective: To determine if any monotherapy drug treatment has robust efficacy to treat comorbid bipolar disorder and chronic pain. Data Sources: The American Psychiatric Association (APA) treatment guidelines for bipolar mood disorder and the 2012 Cochrane database for pain disorders. Study Selection: We relied on the treatment guides to determine if the drugs that are APA guideline–supported to treat bipolar disorder have supporting data from the Cochrane database for chronic pain. Data Synthesis: No single drug was mentioned by either guideline to treat this comorbidity. However, carbamazepine was the only drug that has guideline-supported robust efficacy in the management of each condition separately. Conclusions: Carbamazepine was found to have strong preclinical data for the treatment of comorbid bipolar mood disorder and chronic pain disorders. While requiring more studies in this population, we propose that this treatment modality may benefit patients. PMID:25667814