Science.gov

Sample records for bisbibenzyls induce growth

  1. Abscisic acid induces biosynthesis of bisbibenzyls and tolerance to UV-C in the liverwort Marchantia polymorpha.

    PubMed

    Kageyama, Akito; Ishizaki, Kimitsune; Kohchi, Takayuki; Matsuura, Hideyuki; Takahashi, Kosaku

    2015-09-01

    Environmental stresses are effective triggers for the biosynthesis of various secondary metabolites in plants, and phytohormones such as jasmonic acid and abscisic acid are known to mediate such responses in flowering plants. However, the detailed mechanism underlying the regulation of secondary metabolism in bryophytes remains unclear. In this study, the induction mechanism of secondary metabolites in the model liverwort Marchantia polymorpha was investigated. Abscisic acid (ABA) and ultraviolet irradiation (UV-C) were found to induce the biosynthesis of isoriccardin C, marchantin C, and riccardin F, which are categorized as bisbibenzyls, characteristic metabolites of liverworts. UV-C led to the significant accumulation of ABA. Overexpression of MpABI1, which encodes protein phosphatase 2C (PP2C) as a negative regulator of ABA signaling, suppressed accumulation of bisbibenzyls in response to ABA and UV-C irradiation and conferred susceptibility to UV-C irradiation. These data show that ABA plays a significant role in the induction of bisbibenzyl biosynthesis, which might confer tolerance against UV-C irradiation in M. polymorpha. PMID:26055979

  2. Marchantin A, a cyclic bis(bibenzyl ether), isolated from the liverwort Marchantia emarginata subsp. tosana induces apoptosis in human MCF-7 breast cancer cells.

    PubMed

    Huang, Wei-Jan; Wu, Chia-Li; Lin, Chia-Wei; Chi, Li-Ling; Chen, Pen-Yuan; Chiu, Chun-Jung; Huang, Chung-Yang; Chen, Chia-Nan

    2010-05-01

    Liverwort constituents have been reported to exert a broad spectrum of biological activities. In this study, we used a bioactivity-guided separation of an extract from the liverwort species Marchantia emarginata subsp. tosana to determine its anticancer activity. A high level of the active ingredient was isolated from this liverwort and its chemical structure was identified and characterized by various spectra. It was found to be identical to a well-known compound, marchantin A, a cyclic bisbibenzyl ether. However, no anticancer activities of this compound have previously been reported. We found that marchantin A efficiently induced cell growth inhibition in human MCF-7 breast cancer cells, with an IC(50) of 4.0microg/mL. Fluorescence microscopy and a Western blot analysis indicated that marchantin A actively induced apoptosis of MCF-7 cells. The levels of cleaved caspase-8, cleaved caspase-3, cleaved caspase-9, and cleaved poly (ADP ribose) polymerase (PARP) increased. However, the level of Bid markedly decreased in a dose- and time-dependent manner. We also evaluated the anticancer activities of marchantin A on the regulation of cell cycle regulators such as p21, p27, cyclin B1, and cyclin D1. The p21 and p27 gene expressions increased markedly while cyclin B1 and D1 gene expression decreased markedly by treatment with marchantin A. Many report demonstrated that liverwort was suggested to possess potent antioxidant activity. Our results indicate that marchantin A possesses free radical-scavenging activity (EC(50)=20microg/mL). Taken together, for the first time, the compound marchantin A from liverworts demonstrated to be a potent inducer of apoptosis in MCF-7 cells. PMID:19913353

  3. Dihydroptychantol A, a macrocyclic bisbibenzyl derivative, induces autophagy and following apoptosis associated with p53 pathway in human osteosarcoma U2OS cells

    SciTech Connect

    Li Xia; Wu, William K.K.; Sun Bin; Cui Min; Liu Shanshan; Gao Jian; Lou Hongxiang

    2011-03-01

    Dihydroptychantol A (DHA), a novel macrocyclic bisbibenzyl compound extracted from liverwort Asterella angusta, has antifungal and multi-drug resistance reversal properties. Here, the chemically synthesized DHA was employed to test its anti-cancer activities in human osteosarcoma U2OS cells. Our results demonstrated that DHA induced autophagy followed by apoptotic cell death accompanied with G{sub 2}/M-phase cell cycle arrest in U2OS cells. DHA-induced autophagy was morphologically characterized by the formation of double membrane-bound autophagic vacuoles recognizable at the ultrastructural level. DHA also increased the levels of LC3-II, a marker of autophagy. Surprisingly, DHA-mediated apoptotic cell death was potentiated by the autophagy inhibitor 3-methyladenine, suggesting that autophagy may play a protective role that impedes the eventual cell death. Furthermore, p53 was shown to be involved in DHA-meditated autophagy and apoptosis. In this connection, DHA increased nuclear expression of p53, induced p53 phosphorylation, and upregulated p53 target gene p21{sup Waf1/Cip1}. In contrast, cytoplasmic p53 was reduced by DHA, which contributed to the stimulation of autophagy. In relation to the cell cycle, DHA decreased the expression of cyclin B{sub 1}, a cyclin required for progression through the G{sub 2}/M phase. Taken together, DHA induces G{sub 2}/M-phase cell cycle arrest and apoptosis in U2OS cells. DHA-induced apoptosis was preceded by the induction of protective autophagy. DHA-mediated autophagy and apoptosis are associated with the cytoplasmic and nuclear functions of p53.

  4. Activity-guided isolation of cytotoxic bis-bibenzyl constituents from Dumortiera hirsuta.

    PubMed

    Toyota, Masao; Ikeda, Risa; Kenmoku, Hiromichi; Asakawa, Yoshinori

    2013-01-01

    Activity-guided fractionation of the ether extract of Dumortiera hirsute (Japanese liverwort), using cytotoxicity testing with cultured HL 60 and KB cells, resulted in the isolation of a new cytotoxic bis-bibenzyl compound, along with the two known bis-bibenzyls: isomarchantin C and isoriccardin C. The structural determination of the new bis-bibenzyl through extensive NMR spectral data indicated a derivative of marchantin A, which has been isolated from the liverwort Marchantia polymorpha. The cytotoxicity of the bis-bibenzyls was evaluated by the MTT (3-(4,5-di-methylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay using cultured HL 60 and KB cells. PMID:23391534

  5. Structure-anti-MRSA activity relationship of macrocyclic bis(bibenzyl) derivatives.

    PubMed

    Sawada, Hiromi; Onoda, Kenji; Morita, Daichi; Ishitsubo, Erika; Matsuno, Kenji; Tokiwa, Hiroaki; Kuroda, Teruo; Miyachi, Hiroyuki

    2013-12-15

    We synthesized a series of macrocyclic bis(bibenzyl) derivatives, including riccardin-, isoplagiochin- and marchantin-class structures, and evaluated their antibacterial activity towards methicillin-resistant Staphylococcus aureus (anti-MRSA activity). The structure-activity relationships and the results of molecular dynamics simulations indicated that bis(bibenzyl)s with potent anti-MRSA activity commonly have a 4-hydroxyl group at the D-benzene ring and a 2-hydroxyl group at the C-benzene ring in the hydrophilic part of the molecule, and an unsubstituted phenoxyphenyl group in the hydrophobic part of the molecule containing the A-B-benzene rings. Pharmacological characterization of the bis(bibenzyl) derivatives and 2-phenoxyphenol fragment 25, previously proposed as the minimum structure of riccardin C 1 for anti-MRSA activity, indicated that they have different action mechanisms: the bis(bibenzyl)s are bactericidal, while 25 is bacteriostatic, showing only weak bactericidal activity. PMID:24239015

  6. Antifungal dibenzofuran bis(bibenzyl)s from the liverwort Asterella angusta.

    PubMed

    Qu, Jianbo; Xie, Chunfeng; Guo, Huaifang; Yu, Wentao; Lou, Hongxiang

    2007-07-01

    Bioactivity-guided separation of an antifungal extract from the liverwort Asterella angusta afforded four bis(bibenzyl)s, asterelin A (1), asterelin B (2), 11-O-demethyl marchantin I (3), and dihydroptychantol A (4), together with six known ones. Their structures were established by extensive spectroscopic analysis (1D and 2D-NMR, MS), and that of 2 was confirmed by X-ray crystallographic diffraction analysis. Compounds 1 and 2 are the first examples of dibenzofuran bis(bibenzyl)s. The antifungal activity of the isolated bis(bibenzyl)s against the common clinical pathogenic fungus Candida albicans was evaluated using both the thin-layer chromatography bioautographic assay and the broth microdilution method. They showed moderate antifungal activities with minimal inhibitory concentration (MIC) values ranging from 16 microg/ml to 512 microg/ml. PMID:17570447

  7. Study of bis(bibenzyls) in bryophytes using electron ionization time-of-flight and electrospray ionization triple-quadrupole mass spectrometry.

    PubMed

    Guo, Huaifang; Xing, Jie; Xie, Chunfeng; Qu, Jianbo; Gao, Yanhui; Lou, Hongxiang

    2007-01-01

    A detailed analysis of mass spectra generated from bis(bibenzyl) compounds in bryophytes under electron ionization time-of-flight (EI-TOF) and electrospray ionization triple-quadrupole (ESI-TQ) mass spectrometry conditions is reported. Proposed structures of the fragment ions were obtained by tracking the functional groups of 15 bis(bibenzyls), the structures of which are similar except for some alkoxyl substituents and linkage sites of biphenyl ether bonds. The elucidation was aided by the use of accurate mass measurements. Attempts have been made to provide rational pathways for the formation of these fragment ions, and a generalized fragmentation mechanism is proposed. The bis(bibenzyls) mentioned in this study include three types according to their structure characteristics, i.e. one biphenyl ether bond (A-type), two biphenyl ether bonds (B-type), one biphenyl ether and one biphenyl bond (C-type). The three types display different EI-MS and ESI-MS/MS product profiles, by which the bis(bibenzyl) type and the number of alkoxyl substituents can be identified. Isomers of bis(bibenzyls) can be differentiated to some extent, while the linkage sites of biphenyl ether bonds are difficult to identify. The structure-fragmentation relationships will facilitate the characterization of other bis(bibenzyls) and this will be of value for the high-throughput screening of novel bis(bibenzyls) in bryophytes. PMID:17348087

  8. Design, synthesis and biological evaluation of novel macrocyclic bisbibenzyl analogues as tubulin polymerization inhibitors.

    PubMed

    Sun, Bin; Li, Lin; Hu, Qing-Wen; Xie, Fei; Zheng, Hong-Bo; Niu, Huan-Min; Yuan, Hui-Qing; Lou, Hong-Xiang

    2016-10-01

    A series of novel macrocyclic bisbibenzyl analogues was designed, synthesized, and evaluated for their antiproliferative activity in vitro. All of the compounds were tested in five anthropic cancer cell lines, including a multidrug-resistant phenotype. Among these novel molecules, compounds 88, 92 and 94 displayed excellent anticancer activity against Hela, k562, HCC1428, HT29, and PC-3/Doc cell lines, with average IC50 values ranging from 2.23 μM to 3.86 μM, and were more potent than the parental compound marchantin C and much more potent than the positive control Adriamycin. In addition, the mechanism of action of compound 88 was investigated by cell cycle analysis and a tubulin polymerization assay in HCC1482 cells. The binding mode of compound 88 to tubulin was also investigated utilizing a molecular docking study. In conclusion, the present study improves our understanding of the action of bisbibenzyl-based tubulin polymerization inhibitors and provides a new molecular scaffold for the further development of antitumor agents that target tubulin. PMID:27318123

  9. Molecular asymmetry of macrocyclic bis(bibenzyl)s, natural products from liverwort species

    NASA Astrophysics Data System (ADS)

    Keserű, György M.; Kolossváry, István; Nógrádi, Mihály

    1995-10-01

    Conformation of marchantin H triacetate (1), a bis(diarylether)-type macrocyclic bis(bibenzyl), was studied by molecular mechanics calculations. The most stable enantiomeric conformations were found, but no direct path for the interconversion could be detected. Fast non-direct interconversion, however, was confirmed by chiral HPLC. Ring inversion of compounds containing the biphenyl moiety was investigated on plagiochin C tribenzyl ether (3). Enantiomers in both cases were separated by chiral HPLC and their CD spectra measured on-line. Conformational analysis of 3 was performed by molecular mechanics conformational search. Configuration of the minimum energy enantiomeric conformations was established by calculation of the rotatory strengths at the INDO/S level.

  10. Riccardin C derivatives as anti-MRSA agents: structure-activity relationship of a series of hydroxylated bis(bibenzyl)s.

    PubMed

    Sawada, Hiromi; Okazaki, Miki; Morita, Daichi; Kuroda, Teruo; Matsuno, Kenji; Hashimoto, Yuichi; Miyachi, Hiroyuki

    2012-12-15

    Members of a series of macrocyclic bis(bibenzyl) riccardin-class derivatives were found to exhibit antibacterial activity towards methicillin-resistant Staphylococcus aureus (anti-MRSA activity). Structure-activity relationship (SAR) studies were conducted, focusing on the number and position of the hydroxyl groups. The minimum essential structure for anti-MRSA activity was also investigated. PMID:23122868

  11. Bisbibenzyls, a New Type of Antifungal Agent, Inhibit Morphogenesis Switch and Biofilm Formation through Upregulation of DPP3 in Candida albicans

    PubMed Central

    Zhang, Li; Chang, Wenqiang; Sun, Bin; Groh, Matthias; Speicher, Andreas; Lou, Hongxiang

    2011-01-01

    The yeast-to-hypha transition plays a crucial role in the pathogenesis of C. albicans. Farnesol, a quorum sensing molecule (QSM) secreted by the fungal itself, could prevent the formation of hyphae and subsequently lead to the defect of biofilm formation. The DPP3, encoding phosphatase, is a key gene in regulating farnesol synthesis. In this study, we screened 24 bisbibenzyls and 2 bibenzyls that were isolated from bryophytes or chemically synthesized by using CLSI method for antifungal effect. Seven bisbibenzyls were found to have antifungal effects with IC80 less than 32 µg/ml, and among them, plagiochin F, isoriccardin C and BS-34 were found to inhibit the hyphae and biofilm formation of C. albicans in a dose-dependent manner. To uncover the underlying relationship between morphogenesis switch and QSM formation, we measured the farnesol production by HPLC-MS and quantified Dpp3 expression by detecting the fluorescent intensity of green fluorescent protein tagged strain using Confocal Laser Scanning microscopy and Multifunction Microplate Reader. The DPP3 transcripts were determined by real-time PCR. The data indicated that the bisbibenzyls exerted antifungal effects through stimulating the synthesis of farnesol via upregulation of Dpp3, suggesting a potential antifungal application of bisbibenzyls. In addition, our assay provides a novel, visual and convenient method to measure active compounds against morphogenesis switch. PMID:22174935

  12. Anti-MRSA activity of isoplagiochin-type macrocyclic bis(bibenzyl)s is mediated through cell membrane damage.

    PubMed

    Onoda, Kenji; Sawada, Hiromi; Morita, Daichi; Fujii, Kana; Tokiwa, Hiroaki; Kuroda, Teruo; Miyachi, Hiroyuki

    2015-07-01

    We synthesized three geometrical isomers of a macrocyclic bis(bibenzyl) based on isoplagiochin, a natural product isolated from bryophytes, and evaluated their antibacterial activity towards methicillin-resistant Staphylococcus aureus (anti-MRSA activity). The isomer containing a 1,4-linked ring (5) showed only weak activity, whereas the isomers containing a 1,3-linked (6) or 1,2-linked (7) C ring showed potent anti-MRSA activity. Molecular dynamics calculations indicated that these differences are probably due to differences in the conformational flexibility of the macrocyclic ring; the active compounds 6 and 7 were more rigid than 5. In order to understand the action mechanism of anti-MRSA activity, we investigated the cellular flux of a fluorescent DNA-binder, ethidium bromide (EtBr), in the presence and absence of these macrocycles. The active compound 6 increased the levels of EtBr inflow and outflow in S. aureus cells, as did our potent anti-MRSA riccardin derivative (4), indicating that these compounds increased the permeability of the cytoplasmic membrane. Inactive 5 had no effect on EtBr inflow or outflow. Furthermore, compound 6 abrogated the normal intracellular concentration gradients of Na(+) and K(+) in S. aureus cells, increasing the intracellular Na(+) concentration and decreasing the K(+) concentration, while 5 had no such effect. These results indicate that anti-MRSA-active macrocyclic bis(bibenzyl) derivatives directly damage the gram-positive bacterial membrane, resulting in increased permeability. PMID:25999206

  13. Growth factor involvement in tension-induced skeletal muscle growth

    NASA Technical Reports Server (NTRS)

    Vandenburgh, Herman W.

    1987-01-01

    New muscle tissue culture techniques were developed to grow embryonic skeletal myofibers which are able to differentiate into more adultlike myofibers. Studies on mechanical simulation of cultured muscle cell growth will now be more directly applicable to mechanically-induced growth in adult muscle, and lead to better models for understanding muscle tissue atrophy caused by disuse in the microgravity of space.

  14. Growth factor involvement in tension-induced skeletal muscle growth

    NASA Technical Reports Server (NTRS)

    Vandenburgh, Herman H.

    1993-01-01

    Long-term manned space travel will require a better understanding of skeletal muscle atrophy which results from microgravity. Astronaut strength and dexterity must be maintained for normal mission operations and for emergency situations. Although exercise in space slows the rate of muscle loss, it does not prevent it. A biochemical understanding of how gravity/tension/exercise help to maintain muscle size by altering protein synthesis and/or degradation rate should ultimately allow pharmacological intervention to prevent muscle atrophy in microgravity. The overall objective is to examine some of the basic biochemical processes involved in tension-induced muscle growth. With an experimental in vitro system, the role of exogenous and endogenous muscle growth factors in mechanically stimulated muscle growth are examined. Differentiated avian skeletal myofibers can be 'exercised' in tissue culture using a newly developed dynamic mechanical cell stimulator device which simulates different muscle activity patterns. Patterns of mechanical activity which significantly affect muscle growth and metabolic characteristics were found. Both exogenous and endogenous growth factors are essential for tension-induced muscle growth. Exogenous growth factors found in serum, such as insulin, insulin-like growth factors, and steroids, are important regulators of muscle protein turnover rates and mechanically-induced muscle growth. Endogenous growth factors are synthesized and released into the culture medium when muscle cells are mechanically stimulated. At least one family of mechanically induced endogenous factors, the prostaglandins, help to regulate the rates of protein turnover in muscle cells. Endogenously synthesized IGF-1 is another. The interaction of muscle mechanical activity and these growth factors in the regulation of muscle protein turnover rates with our in vitro model system is studied.

  15. Growth factor involvement in tension-induced skeletal muscle growth

    NASA Technical Reports Server (NTRS)

    Vandenburgh, H. H.

    1987-01-01

    Muscle tissue culture techniques were developed to grow skeletal myofibers which differentiate into more adult-like myofibers. Mechanical simulation studies of these muscle cells in a newly developed mechanical cell simulator can now be performed to study growth processes in skeletal muscle. Conditions in the mechanical cell simulator were defined where mechanical activity can either prevent muscle wasting or stimulate muscle growth. The role of endogenous and exogenous growth factors in tension-induced muscle growth is being investigated under the defined conditions of tissue culture.

  16. Surface-Step-Induced Oscillatory Oxide Growth

    NASA Astrophysics Data System (ADS)

    Li, Liang; Luo, Langli; Ciston, Jim; Saidi, Wissam A.; Stach, Eric A.; Yang, Judith C.; Zhou, Guangwen

    2014-09-01

    We report in situ atomic-resolution transmission electron microscopy observations of the oxidation of stepped Cu surfaces. We find that the presence of surface steps both inhibits oxide film growth and leads to the oxide decomposition, thereby resulting in oscillatory oxide film growth. Using atomistic simulations, we show that the oscillatory oxide film growth is induced by oxygen adsorption on the lower terrace along the step edge, which destabilizes the oxide film formed on the upper terrace.

  17. Minimum structural requirements for cell membrane leakage-mediated anti-MRSA activity of macrocyclic bis(bibenzyl)s.

    PubMed

    Fujii, Kana; Morita, Daichi; Onoda, Kenji; Kuroda, Teruo; Miyachi, Hiroyuki

    2016-05-01

    Macrocyclic bis(bibenzyl)-type phenolic natural products, found exclusively in bryophytes, exhibit potent antibacterial activity towards methicillin-resistant Staphylococcus aureus (anti-MRSA activity). Here, in order to identify the minimum essential structure for cell membrane leakage-mediated anti-MRSA activity of these compounds, we synthesized acyclic fragment structures and evaluated their anti-MRSA activity. The activities of all of the acyclic fragments tested exhibited similar characteristics to those of the macrocycles, i.e., anti-MRSA bactericidal activity, an enhancing effect on influx and efflux of ethidium bromide (EtBr: fluorescent DNA-binder) in Staphylococcus aureus cells, and bactericidal activity towards a Staphylococcus aureus strain resistant to 2-phenoxyphenol (4). The latter result suggests that they have a different mechanism of action from 4, which is a FabI inhibitor previously proposed to be the minimum active fragment of riccardin-type macrocycles. Thus, cyclic structure is not a necessary condition for cell membrane leakage-mediated anti-MRSA activity of macrocyclic bis(bibenzyl)s. PMID:26995530

  18. Electron beam induced growth of tin whiskers

    SciTech Connect

    Vasko, A. C.; Karpov, V. G.; Warrell, G. R.; Parsai, E. I.; Shvydka, Diana

    2015-09-28

    We have investigated the influence of electron irradiation on tin whisker growth. Sputtered tin samples exposed to electron beam of 6 MeV energy exhibited fast whisker growth, while control samples did not grow any whiskers. The statistics of e-beam induced whiskers was found to follow the log-normal distribution. The observed accelerated whisker growth is attributed to electrostatic effects due to charges trapped in an insulating substrate. These results offer promise for establishing whisker-related accelerated life testing protocols.

  19. Electron beam induced growth of tin whiskers

    NASA Astrophysics Data System (ADS)

    Vasko, A. C.; Warrell, G. R.; Parsai, E. I.; Karpov, V. G.; Shvydka, Diana

    2015-09-01

    We have investigated the influence of electron irradiation on tin whisker growth. Sputtered tin samples exposed to electron beam of 6 MeV energy exhibited fast whisker growth, while control samples did not grow any whiskers. The statistics of e-beam induced whiskers was found to follow the log-normal distribution. The observed accelerated whisker growth is attributed to electrostatic effects due to charges trapped in an insulating substrate. These results offer promise for establishing whisker-related accelerated life testing protocols.

  20. Growth Factors and Tension-Induced Skeletal Muscle Growth

    NASA Technical Reports Server (NTRS)

    Vandenburgh, Herman H.

    1994-01-01

    The project investigated biochemical mechanisms to enhance skeletal muscle growth, and developed a computer based mechanical cell stimulator system. The biochemicals investigated in this study were insulin/(Insulin like Growth Factor) IGF-1 and Steroids. In order to analyze which growth factors are essential for stretch-induced muscle growth in vitro, we developed a defined, serum-free medium in which the differentiated, cultured avian muscle fibers could be maintained for extended periods of time. The defined medium (muscle maintenance medium, MM medium) maintains the nitrogen balance of the myofibers for 3 to 7 days, based on myofiber diameter measurements and myosin heavy chain content. Insulin and IGF-1, but not IGF-2, induced pronounced myofiber hypertrophy when added to this medium. In 5 to 7 days, muscle fiber diameters increase by 71 % to 98% compared to untreated controls. Mechanical stimulation of the avian muscle fibers in MM medium increased the sensitivity of the cells to insulin and IGF-1, based on a leftward shift of the insulin dose/response curve for protein synthesis rates. (54). We developed a ligand binding assay for IGF-1 binding proteins and found that the avian skeletal muscle cultures produced three major species of 31, 36 and 43 kD molecular weight (54) Stretch of the myofibers was found to have no significant effect on the efflux of IGF-1 binding proteins, but addition of exogenous collagen stimulated IGF-1 binding protein production 1.5 to 5 fold. Steroid hormones have a profound effect on muscle protein turnover rates in vivo, with the stress-related glucocorticoids inducing rapid skeletal muscle atrophy while androgenic steroids induce skeletal muscle growth. Exercise in humans and animals reduces the catabolic effects of glucocorticoids and may enhance the anabolic effects of androgenic steroids on skeletal muscle. In our continuing work on the involvement of exogenrus growth factors in stretch-induced avian skeletal muscle growth, we

  1. Telocytes in exercise-induced cardiac growth.

    PubMed

    Xiao, Junjie; Chen, Ping; Qu, Yi; Yu, Pujiao; Yao, Jianhua; Wang, Hongbao; Fu, Siyi; Bei, Yihua; Chen, Yan; Che, Lin; Xu, Jiahong

    2016-05-01

    Exercise can induce physiological cardiac growth, which is featured by enlarged cardiomyocyte cell size and formation of new cardiomyocytes. Telocytes (TCs) are a recently identified distinct interstitial cell type, existing in many tissues and organs including heart. TCs have been shown to form a tandem with cardiac stem/progenitor cells in cardiac stem cell niches, participating in cardiac regeneration and repair. Although exercise-induced cardiac growth has been confirmed as an important way to promote cardiac regeneration and repair, the response of cardiac TCs to exercise is still unclear. In this study, 4 weeks of swimming training was used to induce robust healthy cardiac growth. Exercise can induce an increase in cardiomyocyte cell size and formation of new cardiomyocytes as determined by Wheat Germ Lectin and EdU staining respectively. TCs were identified by three immunofluorescence stainings including double labelling for CD34/vimentin, CD34/platelet-derived growth factor (PDGF) receptor-α and CD34/PDGF receptor-β. We found that cardiac TCs were significantly increased in exercised heart, suggesting that TCs might help control the activity of cardiac stem/progenitor cells, cardiomyocytes or endothelial cells. Adding cardiac TCs might help promote cardiac regeneration and renewal. PMID:26987685

  2. Origin of growth-induced water potential

    SciTech Connect

    Nonami, H.; Boyer, J.S.

    1987-03-01

    The authors developed a new method to measure the solute concentration in the apoplast of stem tissue involving pressurizing the roots of intact seedlings (Glycine max (L.) Merr. or Pisum sativum L.), collecting a small amount of exudate from the surface of the stem under saturating humidities, and determining the osmotic potential of the solution with a micro-osmometer capable of measuring small volumes (0.5 microliter). In the elongating region, the apoplast concentrations were very low (equivalent to osmotic potentials of -0.03 to -0.04 megapascal) and negligible compared to the water potential of the apoplast (-0.15 to -0.30 megapascal) measured directly by isopiestic psychrometry in intact plants. Most of the apoplast water potential consisted of a negative pressure that could be measured with a pressure chamber (-0.15 to -0.28 megapascal). Tests showed that earlier methods involving infiltration of intercellular spaces or pressurizing cut segments caused solute to be released to the apoplast and resulted in spuriously high concentrations. These results indicate that, although a small amount of solute is present in the apoplast, the major component is a tension that is part of a growth-induced gradient in water potential in the enlarging tissue. The gradient originates from the extension of the cell walls, which prevents turgor from reaching its maximum and creates a growth-induced water potential that causes water to move from the xylem at a rate that satisfies the rate of enlargement. The magnitude of the gradient implies that growing tissue contains a large resistance to water movement.

  3. Nutritionally-Induced Catch-Up Growth

    PubMed Central

    Gat-Yablonski, Galia; Phillip, Moshe

    2015-01-01

    Malnutrition is considered a leading cause of growth attenuation in children. When food is replenished, spontaneous catch-up (CU) growth usually occurs, bringing the child back to its original growth trajectory. However, in some cases, the CU growth is not complete, leading to a permanent growth deficit. This review summarizes our current knowledge regarding the mechanism regulating nutrition and growth, including systemic factors, such as insulin, growth hormone, insulin- like growth factor-1, vitamin D, fibroblast growth factor-21, etc., and local mechanisms, including autophagy, as well as regulators of transcription, protein synthesis, miRNAs and epigenetics. Studying the molecular mechanisms regulating CU growth may lead to the establishment of better nutritional and therapeutic regimens for more effective CU growth in children with malnutrition and growth abnormalities. It will be fascinating to follow this research in the coming years and to translate the knowledge gained to clinical benefit. PMID:25594438

  4. CSR-induced emittance growth in achromats: Linear formalism revisited

    NASA Astrophysics Data System (ADS)

    Venturini, M.

    2015-09-01

    We review the R-matrix formalism used to describe Coherent Synchrotron Radiation (CSR)-induced projected emittance growth in electron beam transport lines and establish the connection with a description in terms of the dispersion-invariant function.

  5. Decreased growth-induced water potential: A primary cause of growth inhibition at low water potentials

    SciTech Connect

    Nonami, Hiroshi; Wu, Yajun; Boyer, J.S.

    1997-06-01

    Cell enlargement depends on a growth-induced difference in water potential to move water into the cells. Water deficits decrease this potential difference and inhibit growth. To investigate whether the decrease causes the growth inhibition, pressure was applied to the roots of soybean seedlings and the growth and potential difference were monitored in the stems. In water-limited plants, the inhibited stem growth increased when the roots were pressurized and it reverted to the previous rate when the pressure was released. The pressure around the roots was perceived as an increased turgor in the stem in small cells next to the xylem, but not in outlying cortical cells. This local effect implied that water transport was impeded by the small cells. The diffusivity for water was much less in the small cells than in the outlying cells. The small cells thus were a barrier that caused the growth-induced potential difference to be large during rapid growth, but to reverse locally during the early part of a water deficit. Such a barrier may be a frequent property of meristems. Because stem growth responded to the pressure-induced recovery of the potential difference across this barrier, we conclude that a decrease in the growth-induced potential difference was a primary cause of the inhibition.

  6. Selective fishing induces density-dependent growth.

    PubMed

    Svedäng, Henrik; Hornborg, Sara

    2014-01-01

    Over the last decades, views on fisheries management have oscillated between alarm and trust in management progress. The predominant policy for remedying the world fishing crisis aims at maximum sustainable yield (MSY) by adjusting gear selectivity and fishing effort. Here we report a case study on how striving for higher yields from the Eastern Baltic cod stock by increasing selectivity has become exceedingly detrimental for its productivity. Although there is a successive increase in numbers of undersized fish, growth potential is severely reduced, and fishing mortality in fishable size has increased. Once density-dependent growth is introduced, the process is self-enforcing as long as the recruitment remains stable. Our findings suggest that policies focusing on maximum yield while targeting greater sizes are risky and should instead prioritize catch rates over yield. Disregarding the underlying population structure may jeopardize stock productivity, with dire consequences for the fishing industry and ecosystem structure and function. PMID:24920387

  7. Fractured Geothermal Growth Induced by Heat Extraction

    SciTech Connect

    Tester, J.W.; Murphy, H.D.; Grigsby, C.O.; Potter, R.M.; Robinson, B.A.

    1989-02-01

    Field testing of a hydraulically stimulated, hot dry rock (HDR) geothermal system at the Fenton Hill site in northern New Mexico indicated that significant reservoir growth occurred as energy was extracted. Tracer, microseismic, and geochemical measurements provided the primary quantitative evidence for the increases in accessible reservoir volume and fractured rock surface area that were observed during energy extraction operations that caused substantial thermal drawdown in portions of the reservoir. These temporal increases suggest that augmentation of reservoir hear-production capacity in an HDR system may be possible. [DJE 2005

  8. Autophagy contributes to gefitinib-induced glioma cell growth inhibition

    SciTech Connect

    Chang, Cheng-Yi; Kuan, Yu-Hsiang; Ou, Yen-Chuan; Li, Jian-Ri; Wu, Chih-Cheng; Pan, Pin-Ho; Chen, Wen-Ying; Huang, Hsuan-Yi; Chen, Chun-Jung

    2014-09-10

    Epidermal growth factor receptor tyrosine kinase inhibitors, including gefitinib, have been evaluated in patients with malignant gliomas. However, the molecular mechanisms involved in gefitinib-mediated anticancer effects against glioma are incompletely understood. In the present study, the cytostatic potential of gefitinib was demonstrated by the inhibition of glioma cell growth, long-term clonogenic survival, and xenograft tumor growth. The cytostatic consequences were accompanied by autophagy, as evidenced by monodansylcadaverine staining of acidic vesicle formation, conversion of microtubule-associated protein-1 light chain 3-II (LC3-II), degradation of p62, punctate pattern of GFP-LC3, and conversion of GFP-LC3 to cleaved-GFP. Autophagy inhibitor 3-methyladenosine and chloroquine and genetic silencing of LC3 or Beclin 1 attenuated gefitinib-induced growth inhibition. Gefitinib-induced autophagy was not accompanied by the disruption of the Akt/mammalian target of rapamycin signaling. Instead, the activation of liver kinase-B1/AMP-activated protein kinase (AMPK) signaling correlated well with the induction of autophagy and growth inhibition caused by gefitinib. Silencing of AMPK suppressed gefitinib-induced autophagy and growth inhibition. The crucial role of AMPK activation in inducing glioma autophagy and growth inhibition was further supported by the actions of AMP mimetic AICAR. Gefitinib was shown to be capable of reducing the proliferation of glioma cells, presumably by autophagic mechanisms involving AMPK activation. - Highlights: • Gefitinib causes cytotoxic and cytostatic effect on glioma. • Gefitinib induces autophagy. • Gefitinib causes cytostatic effect through autophagy. • Gefitinib induces autophagy involving AMPK.

  9. Radiation induced growth of micro crystallites

    SciTech Connect

    Meisel, D.

    1991-01-01

    Generation of colloidal particles during the radiolysis of aqueous solutions was already observed in the early days of radiation chemistry. Systematic studies using radiation chemistry techniques as synthetic tools in the preparation of colloidal particles, primarily metallic particles, were begun approximately a decade ago in conjunction since they were found to catalyze multi-electron redox processes. A large number of metallic colloidal particles were then synthesized, including silver, gold, platinum, iridium, nickel, cadmium, and others. More recently, attention has turned to semiconductor colloidal particles. The stimulus to these studies is the observation of quantum size effects in small semiconductor particles that exhibit hybrid properties between those of the molecular species and the solid state bulk material. In the following we discuss our own observations on the evolution of semiconductor particles whose growth has been initiated by pulse radiolysis. 13 refs., 2 figs.

  10. Mechanically induced alterations in cultured skeletal muscle growth

    NASA Technical Reports Server (NTRS)

    Vandenburgh, H. H.; Hatfaludy, S.; Karlisch, P.; Shansky, J.

    1991-01-01

    Model systems are available for mechanically stimulating cultured skeletal muscle cells by passive tensile forces which simulate those found in vivo. When applied to embryonic muscle cells in vitro these forces induce tissue organogenesis, metabolic adaptations, and muscle cell growth. The mechanical stimulation of muscle cell growth correlates with stretch-induced increases in the efflux of prostaglandins PGE2 and PGF2(alpha) in a time and frequency dependent manner. These prostaglandins act as mechanical 'second messengers' regulating skeletal muscle protein turnover rates. Since they also effect bone remodelling in response to tissue loading and unloading, secreted prostaglandins may serve as paracrine growth factors, coordinating the growth rates of muscle and bone in response to external mechanical forces. Cell culture model systems will supplement other models in understanding mechanical transduction processes at the molecular level.

  11. Debris disc formation induced by planetary growth

    NASA Astrophysics Data System (ADS)

    Kobayashi, H.; Löhne, T.

    2014-08-01

    Several hundred stars older than 10 million years have been observed to have infrared excesses. These observations are explained by dust grains formed by the collisional fragmentation of hidden planetesimals. Such dusty planetesimal discs are known as debris discs. In a dynamically cold planetesimal disc, collisional coagulation of planetesimals produces planetary embryos which then stir the surrounding leftover planetesimals. Thus, the collisional fragmentation of planetesimals that results from planet formation forms a debris disc. We aim to determine the properties of the underlying planetesimals in debris discs by numerically modelling the coagulation and fragmentation of planetesimal populations. The brightness and temporal evolution of debris discs depend on the radial distribution of planetesimal discs, the location of their inner and outer edges, their total mass, and the size of planetesimals in the disc. We find that a radially narrow planetesimal disc is most likely to result in a debris disc that can explain the trend of observed infrared excesses of debris discsvvv around G-type stars, for which planet formation occurs only before 100 million years. Early debris disc formation is induced by planet formation, while the later evolution is explained by the collisional decay of leftover planetesimals around planets that have already formed. Planetesimal discs with underlying planetesimals of radii ˜100 km at ≈30 au most readily explain the Spitzer Space Telescope 24 and 70 μm fluxes from debris discs around G-type stars.

  12. Growth dynamics of light-induced thrombi in microvessels

    NASA Astrophysics Data System (ADS)

    Petrishchev, Nikolai N.; Kondratyev, Alexander; Mikhailova, Irene

    1996-01-01

    Laser-induced thrombosis is one of the most adequate methods of studying of thrombus formation in mesenteric vessels. The in vivo simulation of different conditions of thrombi growth and the developed phenomenological theory of these processes confirm the concept of platelet activation time in treatment of the thrombi phenomenon.

  13. Investigation of plasmid-induced growth defect in Pseudomonas putida.

    PubMed

    Mi, Jia; Sydow, Anne; Schempp, Florence; Becher, Daniela; Schewe, Hendrik; Schrader, Jens; Buchhaupt, Markus

    2016-08-10

    Genetic engineering in bacteria mainly relies on the use of plasmids. But despite their pervasive use for physiological studies as well as for the design and optimization of industrially used production strains, only limited information about plasmid induced growth defects is available for different replicons and organisms. Here, we present the identification and characterization of such a phenomenon for Pseudomonas putida transformants carrying the pBBR1-derived plasmid pMiS1. We identified the kanamycin resistance gene and the transcription factor encoding rhaR gene to be causal for the growth defect in P. putida. In contrast, this effect was not observed in Escherichia coli. The plasmid-induced growth defect was eliminated after introduction of a mutation in the plasmid-encoded rep gene, thus enabling construction of the non-toxic variant pMiS4. GFP reporters construct analyses and qPCR experiments revealed a distinctly lowered plasmid copy number for pMiS4, which is probably the reason for alleviation of the growth defect by this mutation. Our work expands the knowledge about plasmid-induced growth defects and provides a useful low-copy pBBR1 replicon variant. PMID:27287537

  14. Growth-induced electronic properties of epitaxial graphene

    NASA Astrophysics Data System (ADS)

    First, Phillip

    2012-02-01

    The growth of epitaxial graphene on silicon carbide is challenging to understand and control, yet rife with scientific and technological opportunities. This is due in part to different growth-induced structures such as the ``moire'' alignment of graphene layers in multilayer epitaxial graphene on SiC(0001) and the formation of sidewall ribbons at natural and lithographically-defined SiC(0001) step-bunches (nanofacets). We apply scanning tunneling microscopy (STM) and spectroscopy (STS) to probe the local energy bands of such growth-induced structures. STS at cryogenic temperatures and large magnetic fields creates a comb of discrete Landau level energies that we use to quantitatively characterize the local electronic properties.

  15. Thermal spike model of ion-induced grain growth

    SciTech Connect

    Alexander, D.E. ); Was, G.S. . Dept. of Nuclear Engineering)

    1990-11-01

    A thermal spike model has been developed to describe the phenomenon of ion irradiation-induced grain growth in metal alloy thin films. In single phase films where the driving force for grain growth is the reduction of grain boundary curvature, the model shows that ion-induced grain boundary mobility, M{sub ion}, is proportional to the quantity F{sub D}{sup 2}/{Delta}H{sub coh}{sup 3}, where F{sub D} is the deposited ion damage energy and {Delta}H{sub coh} is the cohesive energy of the element or alloy. Experimental strain growth results from ion irradiated coevaporated binary alloy films compare favorably with model predictions. 11 refs., 1 fig., 1 tab.

  16. Local diffusion induced roughening in cobalt phthalocyanine thin film growth.

    PubMed

    Gedda, Murali; Subbarao, Nimmakayala V V; Goswami, Dipak K

    2014-07-29

    We have studied the kinetic roughening in the growth of cobalt phthalocyanine (CoPc) thin films grown on SiO2/Si(001) surfaces as a function of the deposition time and the growth temperature using atomic force microscopy (AFM). We have observed that the growth exhibits the formation of irregular islands, which grow laterally as well as vertically with coverage of CoPc molecules, resulting rough film formation. Our analysis further disclosed that such formation is due to an instability in the growth induced by local diffusion of the molecules following an anomalous scaling behavior. The instability relates the (ln(t))(1/2), with t as deposition time, dependence of the local surface slope as described in nonequilibrium film growth. The roughening has been characterized by calculating different scaling exponents α, β, and 1/z determined from the height fluctuations obtained from AFM images. We obtained an average roughness exponent α = 0.78 ± 0.04. The interface width (W) increases following a power law as W ∼ t(β), with growth exponent β = 0.37 ± 0.05 and lateral correlation length (ξ) grows as ξ ∼ t(1/z) with dynamic exponent 1/z = 0.23 ± 0.06. The exponents revealed that the growth belongs to a different class of universality. PMID:24992503

  17. The stochastic nature of growth of laser-induced damage

    NASA Astrophysics Data System (ADS)

    Carr, C. W.; Cross, David A.; Liao, Zhi M.; Norton, Mary A.; Negres, Raluca A.

    2015-07-01

    Laser fluence and operational tempo of ICF systems operating in the UV are typically limited by the growth of laser- induced damage on their final optics (primarily silica optics). In the early 2000 time frame, studies of laser damage growth with relevant large area beams revealed that for some laser conditions damage sites located on the exit surface of a fused silica optic grew following an exponential growth rule: D(n) = D0 exp (n α(φ)), where D is final site diameter, D0 is the initial diameter of the site, φ is the laser fluence, α(φ) is the growth coefficient, and n is the number of exposures. In general α is a linear function of φ, with a threshold of φTH. In recent years, it has been found that that growth behavior is actually considerably more complex. For example, it was found that α is not a constant for a given fluence but follows a probability distribution with a mean equal to α(φ). This is complicated by observations that these distributions are actually functions of the pulse shape, damage site size, and initial morphology of damage initiation. In addition, there is not a fixed fluence threshold for damage sites growth, which is better described by a probability of growth which depends on site size, morphology and laser fluence. Here will review these findings and discuss implications for the operation of large laser systems.

  18. Transpiration- and growth-induced water potentials in maize

    SciTech Connect

    Westgate, M.E.; Boyer, J.S.

    1984-01-01

    Recent evidence from leaves and stems indicates that gradients in water potential (psi/sub w/) necessary for water movement through growing tissues are larger than previously assumed. Because growth is sensitive to tissue psi/sub w/ and the behavior of these gradients has not been investigated in transpiring plants, the authors examined the water status of all the growing and mature vegetative tissues of maize (Zea mays L.) during high and low rates of transpiration. The psi/sub w/ measured in the mature regions of the plant responded primarily to transpiration, while the psi/sub w/ in the growing regions was affected both by transpiration and growth. The transpiration-induced potentials of the mature tissue formed a gradient of decreasing psi/sub w/ along the transpiration stream while the growth-induced potentials formed a gradient of decreasing psi/sub w/ from the transpiration stream to the expanding cells in the growing tissue. The growth-induced gradient in psi/sub w/ within the leaf remained fairly constant as the xylem psi/sub w/ decreased during the day and was associated with a decreased osmotic potential (psi/sub s/) of the growing region (osmotic adjustment). The growth-induced gradient in psi/sub w/ was not caused by excision of the tissue because intact maize stems exhibited a similar psi/sub w/. These observations support the concept that large gradients in psi/sub w/ are required to maintain water flow to expanding cells within all the vegetative tissues and suggest that the maintenance of a favorable gradient in psi/sub w/ for cell enlargement may be an important role for osmotic adjustment. 33 references, 7 figures, 1 table.

  19. Early growth response 1 regulates glucose deprivation-induced necrosis

    PubMed Central

    JEON, HYUN MIN; LEE, SU YEON; JU, MIN KYUNG; KIM, CHO HEE; PARK, HYE GYEONG; KANG, HO SUNG

    2013-01-01

    Necrosis is commonly found in the core region of solid tumours due to metabolic stress such as hypoxia and glucose deprivation (GD) resulting from insufficient vascularization. Necrosis promotes tumour growth and development by releasing the tumour-promoting cytokine high mobility group box 1 (HMGB1); however, the molecular mechanism underlying necrotic cell death remains largely unknown. In this study, we show that early growth response 1 (Egr-1) is induced in a reactive oxygen species (ROS)-dependent manner by GD in several cell lines such as A549, MDA-MB-231 and HepG2 cells that exhibit necrosis upon GD. We found that Egr-1 short hairpin RNA (shRNA) prevented GD-induced necrosis and HMGB1 release. Necrosis-inhibiting activity of Egr-1 shRNA was also seen in multicellular tumour spheroids (MTSs), an in vitro tumour model system. In contrast, Egr-1 overexpression appeared to make tumour cells more susceptible to GD-induced necrosis. Finally, Egr-1 shRNA suppressed the growth of MTSs. These findings demonstrate that Egr-1 is implicated in GD-induced necrosis and tumour progression. PMID:23152075

  20. Growth Induced Magnetic Anisotropy in Crystalline and Amorphous Thin Films

    SciTech Connect

    Hellman, Frances

    1998-10-03

    OAK B204 Growth Induced Magnetic Anisotropy in Crystalline and Amorphous Thin Films. The work in the past 6 months has involved three areas of magnetic thin films: (1) amorphous rare earth-transition metal alloys, (2) epitaxial Co-Pt and hTi-Pt alloy thin films, and (3) collaborative work on heat capacity measurements of magnetic thin films, including nanoparticles and CMR materials.

  1. Placental Growth Factor Administration Abolishes Placental Ischemia-Induced Hypertension.

    PubMed

    Spradley, Frank T; Tan, Adelene Y; Joo, Woo S; Daniels, Garrett; Kussie, Paul; Karumanchi, S Ananth; Granger, Joey P

    2016-04-01

    Preeclampsia is a pregnancy-specific disorder of new-onset hypertension. Unfortunately, the most effective treatment is early delivery of the fetus and placenta. Placental ischemia appears central to the pathogenesis of preeclampsia because placental ischemia/hypoxia induced in animals by reduced uterine perfusion pressure (RUPP) or in humans stimulates release of hypertensive placental factors into the maternal circulation. The anti-angiogenic factor soluble fms-like tyrosine kinase-1 (sFlt-1), which antagonizes and reduces bioavailable vascular endothelial growth factor and placental growth factor (PlGF), is elevated in RUPP rats and preeclampsia. Although PlGF and vascular endothelial growth factor are both natural ligands for sFlt-1, vascular endothelial growth factor also has high affinity to VEGFR2 (Flk-1) causing side effects like edema. PlGF is specific for sFlt-1. We tested the hypothesis that PlGF treatment reduces placental ischemia-induced hypertension by antagonizing sFlt-1 without adverse consequences to the mother or fetus. On gestational day 14, rats were randomized to 4 groups: normal pregnant or RUPP±infusion of recombinant human PlGF (180 μg/kg per day; AG31, a purified, recombinant human form of PlGF) for 5 days via intraperitoneal osmotic minipumps. On day 19, mean arterial blood pressure and plasma sFlt-1 were higher and glomerular filtration rate lower in RUPP than normal pregnant rats. Infusion of recombinant human PlGF abolished these changes seen with RUPP along with reducing oxidative stress. These data indicate that the increased sFlt-1 and reduced PlGF resulting from placental ischemia contribute to maternal hypertension. Our novel finding that recombinant human PlGF abolishes placental ischemia-induced hypertension, without major adverse consequences, suggests a strong therapeutic potential for this growth factor in preeclampsia. PMID:26831193

  2. A serum component mediates food restriction-induced growth attenuation.

    PubMed

    Pando, Rakefet; Shtaif, Biana; Phillip, Moshe; Gat-Yablonski, Galia

    2014-03-01

    Proper nutrition in terms of calories and essential food components is required to maximize longitudinal growth in children. Our previous study showed that prepubertal male rats subjected to 10 days of 40% food restriction (RES) exhibited a dramatic reduction in weight and epiphyseal growth plate height, as well as changes in gene expression and microRNAs (miRNAs) in the epiphyseal growth plate. These findings reversed rapidly after renewal of the regular food supply (catch-up [CU]). To further elucidate the mechanisms underlying the nutrition-growth association, serum collected from the RES and CU rats and control rats fed ad libitum (AL) was added to the culture medium of the chondrocyte cell line ATDC5 (instead of fetal calf serum). Serum from the RES group induced a reduction in cell viability (25%, P < .05) concomitant with an increase in cell differentiation compared with that for the AL group serum. The most interesting observation, in our opinion, was the significant reduction in the expression of specific miRNAs, including the chondro-specific miR-140. These effects were not observed for serum from refed (CU) rats. Serum levels of IGF-I, leptin, and fibroblast growth factor 21 were reduced by food restriction. The addition of IGF-I and leptin to the culture increased cell viability, whereas fibroblast growth factor 21 reduced it, suggesting the involvement of IGF-I, leptin, and possibly other still unidentified serum factors in chondrocyte cell growth. In conclusion, specific miRNAs respond to nutritional cues, and these effects are mediated by serum-borne factors. These results may promote the development of superior interventions for children with malnutrition and growth abnormalities. PMID:24456162

  3. Leptin-Induced JAK/STAT Signaling and Cancer Growth.

    PubMed

    Mullen, McKay; Gonzalez-Perez, Ruben Rene

    2016-01-01

    Growth factor and cytokine signaling can influence the development of several cancer types. One of the key players in the development of cancer is the Janus kinas (JAK) signal transducer of activators of transcription (STAT) signaling pathway. The majority of growth factors and cytokine interactions with their membrane-bound receptors trigger JAK-STAT activation. The influential relationship between obesity and cancer is a fact. However, there is a complex sequence of events contributing to the regulation of this mechanism to promote tumor growth, yet to be fully elucidated. The JAK-STAT pathway is influenced by obesity-associated changes that have been shown to impact cancer growth and progression. This intricate process is highly regulated by a vast array of adipokines and cytokines that exert their pleiotropic effects on cancer cells to enhance metastasis to distant target sites. Leptin is a cytokine, or more precise, an adipokine secreted mainly by adipose tissue that requires JAK-STAT activation to exert its biological functions. Leptin is the central regulator of energy balance and appetite. Leptin binding to its receptor OB-R in turn activates JAK-STAT, which induces proliferation, angiogenesis, and anti-apoptotic events in normal cells and malignant cells expressing the receptor. Leptin also induces crosstalk with Notch and IL-1 (NILCO), which involves other angiogenic factors promoting tumor growth. Therefore, the existence of multiple novel classes of therapeutics that target the JAK/STAT pathway has significant clinical implications. Then, the identification of the signaling networks and factors that regulate the obesity-cancer link to which potential pharmacologic interventions can be implemented to inhibit tumor growth and metastasis. In this review, we will discuss the specific relationship between leptin-JAK-STAT signaling and cancer. PMID:27472371

  4. Tumor-Induced Hyperlipidemia Contributes to Tumor Growth

    PubMed Central

    Huang, Jianfeng; Li, Lena; Lian, Jihong; Schauer, Silvia; Vesely, Paul W.; Kratky, Dagmar; Hoefler, Gerald; Lehner, Richard

    2016-01-01

    Summary The known link between obesity and cancer suggests an important interaction between the host lipid metabolism and tumorigenesis. Here, we used a syngeneic tumor graft model to demonstrate that tumor development influences the host lipid metabolism. BCR-Abl-transformed precursor B cell tumors induced hyperlipidemia by stimulating very low-density lipoprotein (VLDL) production and blunting VLDL and low-density lipoprotein (LDL) turnover. To assess whether tumor progression was dependent on tumor-induced hyperlipidemia, we utilized the VLDL production-deficient mouse model, carboxylesterase3/triacylglycerol hydrolase (Ces3/TGH) knockout mice. In Ces3/Tgh–/– tumor-bearing mice, plasma triglyceride and cholesterol levels were attenuated. Importantly tumor weight was reduced in Ces3/Tgh–/– mice. Mechanistically, reduced tumor growth in Ces3/Tgh–/– mice was attributed to reversal of tumor-induced PCSK9-mediated degradation of hepatic LDLR and decrease of LDL turnover. Our data demonstrate that tumor-induced hyperlipidemia encompasses a feed-forward loop that reprograms hepatic lipoprotein homeostasis in part by providing LDL cholesterol to support tumor growth. PMID:27050512

  5. Tumor-Induced Hyperlipidemia Contributes to Tumor Growth.

    PubMed

    Huang, Jianfeng; Li, Lena; Lian, Jihong; Schauer, Silvia; Vesely, Paul W; Kratky, Dagmar; Hoefler, Gerald; Lehner, Richard

    2016-04-12

    The known link between obesity and cancer suggests an important interaction between the host lipid metabolism and tumorigenesis. Here, we used a syngeneic tumor graft model to demonstrate that tumor development influences the host lipid metabolism. BCR-Abl-transformed precursor B cell tumors induced hyperlipidemia by stimulating very low-density lipoprotein (VLDL) production and blunting VLDL and low-density lipoprotein (LDL) turnover. To assess whether tumor progression was dependent on tumor-induced hyperlipidemia, we utilized the VLDL production-deficient mouse model, carboxylesterase3/triacylglycerol hydrolase (Ces3/TGH) knockout mice. In Ces3/Tgh(-/-) tumor-bearing mice, plasma triglyceride and cholesterol levels were attenuated. Importantly tumor weight was reduced in Ces3/Tgh(-/-) mice. Mechanistically, reduced tumor growth in Ces3/Tgh(-/-) mice was attributed to reversal of tumor-induced PCSK9-mediated degradation of hepatic LDLR and decrease of LDL turnover. Our data demonstrate that tumor-induced hyperlipidemia encompasses a feed-forward loop that reprograms hepatic lipoprotein homeostasis in part by providing LDL cholesterol to support tumor growth. PMID:27050512

  6. Nanopillar growth by focused helium ion-beam-induced deposition.

    PubMed

    Chen, Ping; van Veldhoven, Emile; Sanford, Colin A; Salemink, Huub W M; Maas, Diederik J; Smith, Daryl A; Rack, Philip D; Alkemade, Paul F A

    2010-11-12

    A 25 keV focused helium ion beam has been used to grow PtC nanopillars on a silicon substrate by beam-induced decomposition of a (CH(3))(3)Pt(C(P)CH(3)) precursor gas. The ion beam diameter was about 1 nm. The observed relatively high growth rates suggest that electronic excitation is the dominant mechanism in helium ion-beam-induced deposition. Pillars grown at low beam currents are narrow and have sharp tips. For a constant dose, the pillar height decreases with increasing current, pointing to depletion of precursor molecules at the beam impact site. Furthermore, the diameter increases rapidly and the total pillar volume decreases slowly with increasing current. Monte Carlo simulations have been performed with realistic values for the fundamental deposition processes. The simulation results are in good agreement with experimental observations. In particular, they reproduce the current dependences of the vertical and lateral growth rates and of the volumetric deposition efficiency. Furthermore, the simulations reveal that the vertical pillar growth is due to type-1 secondary electrons and primary ions, while the lateral outgrowth is due to type-2 secondary electrons and scattered ions. PMID:20947951

  7. Total triterpenoids from Ganoderma Lucidum suppresses prostate cancer cell growth by inducing growth arrest and apoptosis.

    PubMed

    Wang, Tao; Xie, Zi-ping; Huang, Zhan-sen; Li, Hao; Wei, An-yang; Di, Jin-ming; Xiao, Heng-jun; Zhang, Zhi-gang; Cai, Liu-hong; Tao, Xin; Qi, Tao; Chen, Di-ling; Chen, Jun

    2015-10-01

    In this study, one immortalized human normal prostatic epithelial cell line (BPH) and four human prostate cancer cell lines (LNCaP, 22Rv1, PC-3, and DU-145) were treated with Ganoderma Lucidum triterpenoids (GLT) at different doses and for different time periods. Cell viability, apoptosis, and cell cycle were analyzed using flow cytometry and chemical assays. Gene expression and binding to DNA were assessed using real-time PCR and Western blotting. It was found that GLT dose-dependently inhibited prostate cancer cell growth through induction of apoptosis and cell cycle arrest at G1 phase. GLT-induced apoptosis was due to activation of Caspases-9 and -3 and turning on the downstream apoptotic events. GLT-induced cell cycle arrest (mainly G1 arrest) was due to up-regulation of p21 expression at the early time and down-regulation of cyclin-dependent kinase 4 (CDK4) and E2F1 expression at the late time. These findings demonstrate that GLT suppresses prostate cancer cell growth by inducing growth arrest and apoptosis, which might suggest that GLT or Ganoderma Lucidum could be used as a potential therapeutic drug for prostate cancer. PMID:26489631

  8. Lack of Collagen VI Promotes Wound-Induced Hair Growth.

    PubMed

    Chen, Peiwen; Cescon, Matilde; Bonaldo, Paolo

    2015-10-01

    Collagen VI is an extracellular matrix molecule that is abundantly expressed in the skin. However, the role of collagen VI in hair follicle growth is unknown. Here, we show that collagen VI is strongly deposited in hair follicles, and is markedly upregulated by skin wounding. Lack of collagen VI in Col6a1(-/-) mice delays hair cycling and growth under physiological conditions, but promotes wound-induced hair regrowth without affecting skin regeneration. Conversely, addition of purified collagen VI rescues the abnormal wound-induced hair regrowth in Col6a1(-/-) mice. Mechanistic studies revealed that the increased wound-induced hair regrowth of Col6a1(-/-) mice is triggered by activation of the Wnt/β-catenin signaling pathway, and is abolished by inhibition of this pathway. These findings highlight the essential relationships between extracellular matrix (ECM) and hair follicle regeneration, and suggest that collagen VI could be a potential therapeutic target for hair loss and other skin-related diseases. PMID:25989472

  9. Genetic analysis of growth-regulator-induced parthenocarpy in Arabidopsis.

    PubMed

    Vivian-Smith, A; Koltunow, A M

    1999-10-01

    In Arabidopsis, seedless silique development or parthenocarpy can be induced by the application of various plant growth regulators (PGRs) to unfertilized pistils. Ecotype-specific responses were observed in the Arabidopsis ecotypes Columbia and Landsberg relative to the type of PGR and level applied. The parthenocarpic response was greatest in ecotype Landsberg, and comparisons of fruit growth and morphology were studied primarily in this ecotype. Gibberellic acid application (10 micromol pistil(-1)) caused development similar to that in pollinated pistils, while benzyladenine (1 micromol pistil(-1)) and naphthylacetic acid (10 micromol pistil(-1)) treatment produced shorter siliques. Naphthylacetic acid primarily modified mesocarp cell expansion. Arabidopsis mutants were employed to examine potential dependencies on gibberellin biosynthesis (ga1-3, ga4-1, and ga5-1) and perception (spy-4 and gai) during parthenocarpic silique development. Emasculated spy-4 pistils were neither obviously parthenocarpic nor deficient in PGR perception. By contrast, emasculated gai mutants did not produce parthenocarpic siliques following gibberellic acid application, but silique development occurred following pollination or application of auxin and cytokinin. Pollinated gai siliques had decreased cell numbers and morphologically resembled auxin-induced parthenocarpic siliques. This shows that a number of independent and possibly redundant pathways can direct hormone-induced parthenocarpy, and that endogenous gibberellins play a role in regulating cell expansion and promoting cell division in carpels. PMID:10517835

  10. Characterization of Alcohol-induced Filamentous Growth in Saccharomyces cerevisiae

    PubMed Central

    Lorenz, Michael C.; Cutler, N. Shane; Heitman, Joseph

    2000-01-01

    Diploid cells of the budding yeast Saccharomyces cerevisiae starved for nitrogen differentiate into a filamentous growth form. Poor carbon sources such as starches can also stimulate filamentation, whereas haploid cells undergo a similar invasive growth response in rich medium. Previous work has demonstrated a role for various alcohols, by-products of amino acid metabolism, in altering cellular morphology. We found that several alcohols, notably isoamyl alcohol and 1-butanol, stimulate filamentous growth in haploid cells in which this differentiation is normally repressed. Butanol also induces cell elongation and changes in budding pattern, leading to a pseudohyphal morphology, even in liquid medium. The filamentous colony morphology and cell elongation require elements of the pheromone-responsive MAPK cascade and TEC1, whereas components of the nutrient-sensing machinery, such as MEP2, GPA2, and GPR1, do not affect this phenomenon. A screen for 1-butanol–insensitive mutants identified additional proteins that regulate polarized growth (BUD8, BEM1, BEM4, and FIG1), mitochondrial function (MSM1, MRP21, and HMI1), and a transcriptional regulator (CHD1). Furthermore, we have also found that ethanol stimulates hyperfilamentation in diploid cells, again in a MAPK-dependent manner. Together, these results suggest that yeast may sense a combination of nutrient limitation and metabolic by-products to regulate differentiation. PMID:10637301

  11. The molecular dynamics simulation of ion-induced ripple growth

    SciTech Connect

    Suele, P.; Heinig, K.-H.

    2009-11-28

    The wavelength-dependence of ion-sputtering induced growth of repetitive nanostructures, such as ripples has been studied by molecular dynamics (MD) simulations in Si. The early stage of the ion erosion driven development of ripples has been simulated on prepatterned Si stripes with a wavy surface. The time evolution of the height function and amplitude of the sinusoidal surface profile has been followed by simulated ion-sputtering. According to Bradley-Harper (BH) theory, we expect correlation between the wavelength of ripples and the stability of them. However, we find that in the small ripple wavelength ({lambda}) regime BH theory fails to reproduce the results obtained by molecular dynamics. We find that at short wavelengths ({lambda}<35 nm) the adatom yield drops hence no surface diffusion takes place which is sufficient for ripple growth. The MD simulations predict that the growth of ripples with {lambda}>35 nm is stabilized in accordance with the available experimental results. According to the simulations, few hundreds of ion impacts in {lambda} long and few nanometers wide Si ripples are sufficient for reaching saturation in surface growth for for {lambda}>35 nm ripples. In another words, ripples in the long wavelength limit seems to be stable against ion-sputtering. A qualitative comparison of our simulation results with recent experimental data on nanopatterning under irradiation is attempted.

  12. Protective Role of Growth Hormone against Hyperhomocysteinemia Induced Glomerular Injury

    PubMed Central

    Li, Caixia; Xia, Min; Abais, Justine M.; Liu, Xiaocheng; Li, Ningjun; Boini, Krishna M.; Li, Pin-Lan

    2013-01-01

    The present study investigated the protective role of growth hormone (GH) against hyperhomocysteinemia (hHcys)-induced activations of reactive oxygen species (ROS)/hypoxia-inducible factor (HIF)-1α, epithelial-mesenchymal transition (EMT) and consequent glomerular injury. A hyperhomocysteinemia (hHcys) model was induced by folate free (FF) diet in mice. The urine protein excretion significantly increased while plasma GH levels dramatically decreased in hHcys. Real time RT-PCR showed that GH receptor (GHR) level increased in the cortex of hHcys mice, which mainly occurred in podocytes as shown by confocal microscopy. Recombinant mouse growth hormone (rmGH) treatment (0.02 mg/kg, once a day for 6 weeks) significantly restored the plasma GH, inhibited GHR up-regulation and attenuated proteinuria. Correspondingly, rmGH treatment also blocked hHcys-induced decrease in the expression of podocin, a podocyte slit diaphragm molecule, and inhibited the increases in the expression of desmin, a podocyte injury marker. It was also demonstrated that in hHcys the expression of epithelial markers, p-cadherin and ZO-1, decreased, while the expression of mesenchymal markers, FSP-1 and α-SMA, increased in podocytes, which together suggest the activation of EMT in podocytes. NADPH oxidase (Nox)-dependent superoxide anion (O2·−) and HIF-1α level in the hHcys mice cortex was markedly enhanced. These hHcys-induced EMT enhancement and Nox-dependant O2·−/HIF-1α activation were significantly attenuated by rmGH treatment. HIF-1α level increased in Hcys-treated cultured podocytes, which were blocked by rmGH treatment. Meanwhile, Hcys-induced EMT in cultured podocytes was significantly reversed by HIF-1α siRNA. All these results support the view that GH ameliorates hHcys-induced glomerular injury by reducing Nox-dependent O2·−/HIF-1α signal pathway and EMT. PMID:23529346

  13. Sphingosine kinase-1 mediates androgen-induced osteoblast cell growth.

    PubMed

    Martin, Claire; Lafosse, Jean-Michel; Malavaud, Bernard; Cuvillier, Olivier

    2010-01-01

    Herein we report that the lipid kinase sphingosine kinase-1 (SphK1) is instrumental in mediating androgen-induced cell proliferation in osteoblasts. Dihydrotestosterone (DHT) triggered cell growth in steroid-deprived MC3T3 cells, which was associated with a rapid stimulation of SphK1 and activation of both Akt and ERK signaling pathways. This mechanism relied on functional androgen receptor/PI3K/Akt nongenotropic signaling as pharmacological antagonists could block SphK1 stimulation by DHT and its consequences. Finally, SphK1 inhibition not only abrogated DHT-induced ERK activation but also blocked cell proliferation, while ERK inhibition had no impact, suggesting that SphK1 was critical for DHT signaling yet independently of the ERK. PMID:19932089

  14. Sphingosine kinase-1 mediates androgen-induced osteoblast cell growth

    SciTech Connect

    Martin, Claire; Lafosse, Jean-Michel; Malavaud, Bernard; Cuvillier, Olivier

    2010-01-01

    Herein we report that the lipid kinase sphingosine kinase-1 (SphK1) is instrumental in mediating androgen-induced cell proliferation in osteoblasts. Dihydrotestosterone (DHT) triggered cell growth in steroid-deprived MC3T3 cells, which was associated with a rapid stimulation of SphK1 and activation of both Akt and ERK signaling pathways. This mechanism relied on functional androgen receptor/PI3K/Akt nongenotropic signaling as pharmacological antagonists could block SphK1 stimulation by DHT and its consequences. Finally, SphK1 inhibition not only abrogated DHT-induced ERK activation but also blocked cell proliferation, while ERK inhibition had no impact, suggesting that SphK1 was critical for DHT signaling yet independently of the ERK.

  15. Transforming growth factor-{beta}-inducible phosphorylation of Smad3.

    PubMed

    Wang, Guannan; Matsuura, Isao; He, Dongming; Liu, Fang

    2009-04-10

    Smad proteins transduce the transforming growth factor-beta (TGF-beta) signal at the cell surface into gene regulation in the nucleus. Upon TGF-beta treatment, the highly homologous Smad2 and Smad3 are phosphorylated by the TGF-beta receptor at the SSXS motif in the C-terminal tail. Here we show that in addition to the C-tail, three (S/T)-P sites in the Smad3 linker region, Ser(208), Ser(204), and Thr(179) are phosphorylated in response to TGF-beta. The linker phosphorylation peaks at 1 h after TGF-beta treatment, behind the peak of the C-tail phosphorylation. We provide evidence suggesting that the C-tail phosphorylation by the TGF-beta receptor is necessary for the TGF-beta-induced linker phosphorylation. Although the TGF-beta receptor is necessary for the linker phosphorylation, the receptor itself does not phosphorylate these sites. We further show that ERK is not responsible for TGF-beta-dependent phosphorylation of these three sites. We show that GSK3 accounts for TGF-beta-inducible Ser(204) phosphorylation. Flavopiridol, a pan-CDK inhibitor, abolishes TGF-beta-induced phosphorylation of Thr(179) and Ser(208), suggesting that the CDK family is responsible for phosphorylation of Thr(179) and Ser(208) in response to TGF-beta. Mutation of the linker phosphorylation sites to nonphosphorylatable residues increases the ability of Smad3 to activate a TGF-beta/Smad-target gene as well as the growth-inhibitory function of Smad3. Thus, these observations suggest that TGF-beta-induced phosphorylation of Smad3 linker sites inhibits its antiproliferative activity. PMID:19218245

  16. Growth Hormone Induces Transforming Growth Factor-Beta-Induced Protein in Podocytes: Implications for Podocyte Depletion and Proteinuria.

    PubMed

    Chitra, P Swathi; Swathi, T; Sahay, Rakesh; Reddy, G Bhanuprakash; Menon, Ram K; Kumar, P Anil

    2015-09-01

    The glomerular podocytes form a major size selective barrier for the filtration of serum proteins and reduced podocyte number is a critical event in the pathogenesis of proteinuria during diabetic nephropathy (DN). An elevated level of growth hormone (GH) is implicated as a causative factor in the development of nephropathy in patients with type 1 diabetes mellitus. We have previously shown that podocytes express GH receptor and are a target for GH action. To elucidate the molecular basis for the effects of GH on podocyte depletion, we conducted PCR-array analyses for extracellular matrix and adhesion molecules in podocytes. Our studies reveal that GH increases expression of a gene that encodes transforming growth factor-beta-induced protein (TGFBIp) expression. Similarly, microarray data retrieved from the Nephromine database revealed elevation of TGFBIp in patients with DN. Treatment with GH results in increased secretion of extracellular TGFBIp by podocytes. Both GH and TGFBIp induced apoptosis and epithelial mesenchymal transition (EMT) of podocytes. Exposure of podocytes to GH and TGFBIp resulted in increased migration of cells and altered podocyte permeability to albumin across podocyte monolayer. Administration of GH to rats induced EMT and apoptosis in the glomerular fraction of the kidney. Therefore, we conclude that the GH-dependent increase in TGFBIp in the podocyte is one of the mechanisms responsible for podocyte depletion in DN. PMID:25740786

  17. Cannabinoid-induced actomyosin contractility shapes neuronal morphology and growth

    PubMed Central

    Roland, Alexandre B; Ricobaraza, Ana; Carrel, Damien; Jordan, Benjamin M; Rico, Felix; Simon, Anne; Humbert-Claude, Marie; Ferrier, Jeremy; McFadden, Maureen H; Scheuring, Simon; Lenkei, Zsolt

    2014-01-01

    Endocannabinoids are recently recognized regulators of brain development, but molecular effectors downstream of type-1 cannabinoid receptor (CB1R)-activation remain incompletely understood. We report atypical coupling of neuronal CB1Rs, after activation by endo- or exocannabinoids such as the marijuana component ∆9-tetrahydrocannabinol, to heterotrimeric G12/G13 proteins that triggers rapid and reversible non-muscle myosin II (NM II) dependent contraction of the actomyosin cytoskeleton, through a Rho-GTPase and Rho-associated kinase (ROCK). This induces rapid neuronal remodeling, such as retraction of neurites and axonal growth cones, elevated neuronal rigidity, and reshaping of somatodendritic morphology. Chronic pharmacological inhibition of NM II prevents cannabinoid-induced reduction of dendritic development in vitro and leads, similarly to blockade of endocannabinoid action, to excessive growth of corticofugal axons into the sub-ventricular zone in vivo. Our results suggest that CB1R can rapidly transform the neuronal cytoskeleton through actomyosin contractility, resulting in cellular remodeling events ultimately able to affect the brain architecture and wiring. DOI: http://dx.doi.org/10.7554/eLife.03159.001 PMID:25225054

  18. Mycobacterium massiliense Induces Macrophage Extracellular Traps with Facilitating Bacterial Growth

    PubMed Central

    Yoon, Yina; Na, Yirang; Kim, Bum-Joon; Seok, Seung Hyeok

    2016-01-01

    Human neutrophils have been known to release neutrophil extracellular traps (NETs), antimicrobial DNA structures capable of capturing and killing microbes. Recently, a similar phenomenon has been reported in macrophages infected with various pathogens. However, a role for macrophages extracellular traps (METs) in host defense responses against Mycobacterium massiliense (M. mass) has yet to be described. In this study, we show that M. mass, a rapid growing mycobacterium (RGM), also induces the release of METs from PMA-differentiated THP-1 cells. Intriguingly, this process is not dependent on NADPH oxidase activity, which regulates NET formation. Instead, M. mass-induced MET formation partially depends on calcium influx and requires phagocytosis of high bacterial load. The METs consist of a DNA backbone embedded with microbicidal proteins such as histone, MPO and elastase. Released METs entrap M. mass and prevent their dissemination, but do not have bactericidal activity. Instead, they result in enhanced bacterial growth. In this regard, METs were considered to provide interaction of M. mass with cells and an environment for bacterial aggregation, which may facilitate mycobacterial survival and growth. In conclusion, our results demonstrate METs as an innate defense response against M. mass infection, and suggest that extracellular traps play a multifaceted role in the interplay between host and bacteria. PMID:27191593

  19. Sugar-induced plant growth is dependent on brassinosteroids

    PubMed Central

    Zhang, Yongqiang; He, Junxian

    2015-01-01

    Sugars, the end products of photosynthesis, not only fuel growth and development of plants as carbon and energy sources, but also function as signaling molecules to modulate a range of important processes during plant growth and development. We recently found that sugar can promote hypocotyl elongation in Arabidopsis in darkness and this is largely dependent on brassinosteroids (BRs), a group of essential phytohormones involved in mediation of plant cell elongation. Sugars not only positively regulate the transcription of BZR1, the gene encoding the BR-activated transcription factor BRASSINAZOLE RESISTANT1 (BRZ1), but also stabilize the BZR1 protein. Based on these results, we proposed that BZR1 may act as a converging node for crosstalk between BR and sugar signaling in regulating plant growth in darkness. In this short communication, we present some new data showing that HEXOKINASE1 (HXK1), the first identified glucose (Glc) sensor in plants, was positively involved in Glc promotion of hypocotyl elongation in Arabidopsis in the dark. It appears that the function of HXK1 is dependent on the presence of BR, suggesting that BR may act downstream of HXK1 to positively regulate Glc-induced hypocotyl elongation in Arabidopsis in darkness. PMID:26340221

  20. X-ray-induced changes in growth of Mozambique tilapia

    SciTech Connect

    Jana, B.B.; Basu, M.

    1995-01-01

    Early fry (30 d postfertilization) and 7-8-week-old Mozambique tilapias (Tilapia mossambica) were exposed to X rays in dosages of 50, 100, 200, 300, 400 or 500 roentgens and reared in outdoor culture tanks between May 1981 and October 1988. Fish of either sex that were irradiated as fry grew faster than controls at all test X-ray doses. Among fish irradiated at 7-8 weeks, males grew significantly faster, but females grew significantly slower, than controls at all test doses. X-ray-induced changes in growth were dose-dependent: growth rates of fry (both sexes) and of juvenile males rose relative to those of controls with increased radiation dose. The growth increase per unit of radiation dose was higher for fry than for older juveniles. The length-weight regression was steeper for irradiated males than for controls. The average weights of F{sub 1} offspring of irradiated fish were greatly reduced as compared with controls, which suggests the transfer of the detrimental effects of X rays from irradiated parents to their offspring. 39 refs., 3 figs., 3 tabs.

  1. Nitroxoline induces apoptosis and slows glioma growth in vivo

    PubMed Central

    Lazovic, Jelena; Guo, Lea; Nakashima, Jonathan; Mirsadraei, Leili; Yong, William; Kim, Hyun J.; Ellingson, Benjamin; Wu, Hong; Pope, Whitney B.

    2015-01-01

    Background Nitroxoline is an FDA-approved antibiotic with potential antitumor activity. Here we evaluated whether nitroxoline has antiproliferative properties on glioma cell growth in vitro and in vivo using glioma cell lines and a genetically engineered PTEN/KRAS mouse glioma model. Methods The effect of nitroxoline treatment on U87 and/or U251 glioma cell proliferation, cell-cycle arrest, invasion, and ability to induce an apoptotic cascade was determined in vitro. Magnetic resonance imaging was used to measure glioma volumes in genetically engineered PTEN/KRAS mice prior to and after nitroxoline therapy. Induction of apoptosis by nitroxoline was evaluated at the end of treatment using terminal deoxyribonucleotidyl transferase (TDT)-mediated dUTP-digoxigenin nick end labeling (TUNEL). Results Nitroxoline inhibited the proliferation and invasion of glioblastoma cells in a time- and dose-dependent manner in vitro. Growth inhibition was associated with cell-cycle arrest in G1/G0 phase and induction of apoptosis via caspase 3 and cleaved poly(ADP-ribose) polymerase. In vivo, nitroxoline-treated mice had no increase in tumor volume after 14 days of treatment, whereas tumor volumes doubled in control mice. Histological examination revealed 15%–20% TUNEL-positive cells in nitroxoline-treated mice, compared with ∼5% in the control group. Conclusion Nitroxoline induces apoptosis and inhibits glioma growth in vivo and in vitro. As an already FDA-approved treatment for urinary tract infections with a known safety profile, nitroxoline could move quickly into clinical trials pending confirmatory studies. PMID:25074541

  2. Cortical bone growth and maturational changes in dwarf rats induced by recombinant human growth hormone

    NASA Technical Reports Server (NTRS)

    Martinez, D. A.; Orth, M. W.; Carr, K. E.; Vanderby, R. Jr; Vailas, A. C.

    1996-01-01

    The growth hormone (GH)-deficient dwarf rat was used to investigate recombinant human (rh) GH-induced bone formation and to determine whether rhGH facilitates simultaneous increases in bone formation and bone maturation during rapid growth. Twenty dwarf rats, 37 days of age, were randomly assigned to dwarf plus rhGH (GH; n = 10) and dwarf plus vehicle (n = 10) groups. The GH group received 1.25 mg rhGH/kg body wt two times daily for 14 days. Biochemical, morphological, and X-ray diffraction measurements were performed on the femur middiaphysis. rhGH stimulated new bone growth in the GH group, as demonstrated by significant increases (P < 0.05) in longitudinal bone length (6%), middiaphyseal cross-sectional area (20%), and the amount of newly accreted bone collagen (28%) in the total pool of middiaphyseal bone collagen. Cortical bone density, mean hydroxyapatite crystal size, and the calcium and collagen contents (microgram/mm3) were significantly smaller in the GH group (P < 0.05). Our findings suggest that the processes regulating new collagen accretion, bone collagen maturation, and mean hydroxyapatite crystal size may be independently regulated during rapid growth.

  3. Methoxyacetic acid suppresses prostate cancer cell growth by inducing growth arrest and apoptosis

    PubMed Central

    Parajuli, Keshab R; Zhang, Qiuyang; Liu, Sen; Patel, Neil K; Lu, Hua; Zeng, Shelya X; Wang, Guangdi; Zhang, Changde; You, Zongbing

    2014-01-01

    Methoxyacetic acid (MAA) is a primary metabolite of ester phthalates that are used in production of consumer products and pharmaceutical products. MAA causes embryo malformation and spermatocyte death through inhibition of histone deacetylases (HDACs). Little is known about MAA’s effects on cancer cells. In this study, two immortalized human normal prostatic epithelial cell lines (RWPE-1 and pRNS-1-1) and four human prostate cancer cell lines (LNCaP, C4-2B, PC-3, and DU-145) were treated with MAA at different doses and for different time periods. Cell viability, apoptosis, and cell cycle analysis were performed using flow cytometry and chemical assays. Gene expression and binding to DNA were assessed using real-time PCR, Western blot, and chromatin immunoprecipitation analyses. We found that MAA dose-dependently inhibited prostate cancer cell growth through induction of apoptosis and cell cycle arrest at G1 phase. MAA-induced apoptosis was due to down-regulation of the anti-apoptotic gene baculoviral inhibitor of apoptosis protein repeat containing 2 (BIRC2, also named cIAP1), leading to activation of caspases 7 and 3 and turning on the downstream apoptotic events. MAA-induced cell cycle arrest (mainly G1 arrest) was due to up-regulation of p21 expression at the early time and down-regulation of cyclin-dependent kinase 4 (CDK4) and CDK2 expression at the late time. MAA up-regulated p21 expression through inhibition of HDAC activities, independently of p53/p63/p73. These findings demonstrate that MAA suppresses prostate cancer cell growth by inducing growth arrest and apoptosis, which suggests that MAA could be used as a potential therapeutic drug for prostate cancer. PMID:25606576

  4. Chronic intermittent hypoxia induces lung growth in adult mice

    PubMed Central

    Bevans-Fonti, Shannon; Grigoryev, Dmitry N.; Drager, Luciano F.; Myers, Allen C.; Wise, Robert A.; Schwartz, Alan R.; Mitzner, Wayne; Polotsky, Vsevolod Y.

    2011-01-01

    Obstructive sleep apnea (OSA) increases cardiovascular morbidity and mortality, which have been attributed to intermittent hypoxia (IH). The effects of IH on lung structure and function are unknown. We used a mouse model of chronic IH, which mimics the O2 profile in patients with OSA. We exposed adult C57BL/6J mice to 3 mo of IH with a fraction of inspired oxygen (FiO2) nadir of 5% 60 times/h during the 12-h light phase. Control mice were exposed to room air. Lung volumes were measured by quasistatic pressure-volume (PV) curves under anesthesia and by water displacement postmortem. Lungs were processed for morphometry, and the mean airspace chord length (Lm) and alveolar surface area were determined. Lung tissue was stained for markers of proliferation (proliferating cell nuclear antigen), apoptosis (terminal deoxynucleotidyl transferase dUTP nick-end labeling), and type II alveolar epithelial cells (surfactant protein C). Gene microarrays were performed, and results were validated by real-time PCR. IH increased lung volumes by both PV curves (air vs. IH, 1.16 vs. 1.44 ml, P < 0.0001) and water displacement (P < 0.01) without changes in Lm, suggesting that IH increased the alveolar surface area. IH induced a 60% increase in cellular proliferation, but the number of proliferating type II alveolocytes tripled. There was no increase in apoptosis. IH upregulated pathways of cellular movement and cellular growth and development, including key developmental genes vascular endothelial growth factor A and platelet-derived growth factor B. We conclude that IH increases alveolar surface area by stimulating lung growth in adult mice. PMID:21131398

  5. Exercise‐Induced growth hormone during acute sleep deprivation

    PubMed Central

    Ritsche, Kevin; Nindl, Bradly C.; Wideman, Laurie

    2014-01-01

    Abstract The effect of acute (24‐h) sleep deprivation on exercise‐induced growth hormone (GH) and insulin‐like growth factor‐1 (IGF‐1) was examined. Ten men (20.6 ± 1.4 years) completed two randomized 24‐h sessions including a brief, high‐intensity exercise bout following either a night of sleep (SLEEP) or (24‐h) sleep deprivation (SLD). Anaerobic performance (mean power [MP], peak power [PP], minimum power [MinP], time to peak power [TTPP], fatigue index, [FI]) and total work per sprint [TWPS]) was determined from four maximal 30‐sec Wingate sprints on a cycle ergometer. Self‐reported sleep 7 days prior to each session was similar between SLEEP and SLD sessions (7.92 ± 0.33 vs. 7.98 ± 0.39 h, P =0.656, respectively) and during the actual SLEEP session in the lab, the total amount of sleep was similar to the 7 days leading up to the lab session (7.72 ± 0.14 h vs. 7.92 ± 0.33 h, respectively) (P =0.166). No differences existed in MP, PP, MinP, TTPP, FI, TWPS, resting GH concentrations, time to reach exercise‐induced peak GH concentration (TTP), or free IGF‐1 between sessions. GH area under the curve (AUC) (825.0 ± 199.8 vs. 2212.9 ± 441.9 μg/L*min, P <0.01), exercise‐induced peak GH concentration (17.8 ± 3.7 vs. 39.6 ± 7.1 μg/L, P <0.01) and ΔGH (peak GH – resting GH) (17.2 ± 3.7 vs. 38.2 ± 7.3 μg/L, P <0.01) were significantly lower during the SLEEP versus SLD session. Our results indicate that the exercise‐induced GH response was significantly augmented in sleep‐deprived individuals. PMID:25281616

  6. Salt-induced aggregation of lysozyme: Implications for crystal growth

    NASA Technical Reports Server (NTRS)

    Wilson, Lori J.

    1994-01-01

    Crystallization of proteins is a prerequisite for structural analysis by x-ray crystallography. While improvements in protein crystals have been obtained in microgravity onboard the U.S. Space Shuttle, attempts to improve the crystal growth process both on the ground and in space have been limited by our lack of understanding of the mechanisms involved. Almost all proteins are crystallized with the aid of a precipitating agent. Many of the common precipitating agents are inorganic salts. An understanding of the role of salts on the aggregation of protein monomers is the key to the elucidation of the mechanisms involved in protein crystallization. In order for crystallization to occur individual molecules must self-associate into aggregates. Detection and characterization of aggregates in supersaturated protein solutions is the first step in understanding salt-induced crystallization.

  7. Salt-induced aggregation of lysozyme: Implications for crystal growth

    NASA Astrophysics Data System (ADS)

    Wilson, Lori J.

    1994-10-01

    Crystallization of proteins is a prerequisite for structural analysis by x-ray crystallography. While improvements in protein crystals have been obtained in microgravity onboard the U.S. Space Shuttle, attempts to improve the crystal growth process both on the ground and in space have been limited by our lack of understanding of the mechanisms involved. Almost all proteins are crystallized with the aid of a precipitating agent. Many of the common precipitating agents are inorganic salts. An understanding of the role of salts on the aggregation of protein monomers is the key to the elucidation of the mechanisms involved in protein crystallization. In order for crystallization to occur individual molecules must self-associate into aggregates. Detection and characterization of aggregates in supersaturated protein solutions is the first step in understanding salt-induced crystallization.

  8. Nerve growth factor-induced migration of endothelial cells.

    PubMed

    Dollé, Jean-Pierre; Rezvan, Amir; Allen, Fred D; Lazarovici, Philip; Lelkes, Peter I

    2005-12-01

    Nerve growth factor (NGF) is a well known neurotropic and neurotrophic agonist in the nervous system, which recently was shown to also induce angiogenic effects in endothelial cells (ECs). To measure NGF effects on the migration of cultured ECs, an important step in neoangiogenesis, we optimized an omnidirectional migration assay using human aortic endothelial cells (HAECs) and validated the assay with human recombinant basic fibroblast growth factor (rhbFGF) and human recombinant vascular endothelial growth factor (rhVEGF). The potencies of nerve growth factor purified from various species (viper, mouse, and recombinant human) to stimulate HAEC migration was similar to that of VEGF and basic fibroblast growth factor (bFGF) (EC50 of approximately 0.5 ng/ml). Recombinant human bFGF was significantly more efficacious than either viper NGF or rhVEGF, both of which stimulated HAEC migration by approximately 30% over basal spontaneous migration. NGF-mediated stimulation of HAEC migration was completely blocked by the NGF/TrkA receptor antagonist K252a [(8R*,9S*,11S*)-(/)-9-hydroxy-9-methoxycarbonyl-8-methyl-2,3,9,10-tetrahydro-8,11-epoxy-1H,-8H,11H-2,7b,11a-triazadibenzo(a,g)cycloocta(c,d,e)trindene-1-one] (30 nM) but not by the VEGF/Flk receptor antagonist SU-5416 [3-[(2,4-dimethylpyrrol-5-yl) methylidenyl]-indolin-2-one] (250 nM), indicating a direct effect of NGF via TrkA receptor activation on HAEC migration. Viper NGF stimulation of HAEC migration was additively increased by either rhVEGF or rhbFGF, suggesting a potentiating interaction between their tyrosine kinase receptor signaling pathways. Viper NGF represents a novel pharmacological tool to investigate possible TrkA receptor subtypes in endothelial cells. The ability of NGF to stimulate migration of HAEC cells in vitro implies that this factor may play an important role in the cardiovascular system besides its well known effects in the nervous system. PMID:16123305

  9. Growth-induced mass flows in fungal networks

    PubMed Central

    Heaton, Luke L. M.; López, Eduardo; Maini, Philip K.; Fricker, Mark D.; Jones, Nick S.

    2010-01-01

    Cord-forming fungi form extensive networks that continuously adapt to maintain an efficient transport system. As osmotically driven water uptake is often distal from the tips, and aqueous fluids are incompressible, we propose that growth induces mass flows across the mycelium, whether or not there are intrahyphal concentration gradients. We imaged the temporal evolution of networks formed by Phanerochaete velutina, and at each stage calculated the unique set of currents that account for the observed changes in cord volume, while minimizing the work required to overcome viscous drag. Predicted speeds were in reasonable agreement with experimental data, and the pressure gradients needed to produce these flows are small. Furthermore, cords that were predicted to carry fast-moving or large currents were significantly more likely to increase in size than cords with slow-moving or small currents. The incompressibility of the fluids within fungi means there is a rapid global response to local fluid movements. Hence velocity of fluid flow is a local signal that conveys quasi-global information about the role of a cord within the mycelium. We suggest that fluid incompressibility and the coupling of growth and mass flow are critical physical features that enable the development of efficient, adaptive biological transport networks. PMID:20538649

  10. Aerosol-nutrient-induced picoplankton growth in Lake Tahoe

    NASA Astrophysics Data System (ADS)

    Mackey, Katherine R. M.; Hunter, Deborah; Fischer, Emily V.; Jiang, Yilun; Allen, Brant; Chen, Ying; Liston, Anne; Reuter, John; Schladow, Geoff; Paytan, Adina

    2013-07-01

    Tahoe is an oligotrophic lake appreciated for its transparent waters, yet the Lake's clarity has been declining for several decades due in part to eutrophication. At the same time, a shift from nitrogen (N) toward phosphorus (P) limitation of phytoplankton has occurred that could be due to atmospheric deposition of nutrients with high N:P ratios. Atmospheric particle samples collected during 2005-2006 had a mean soluble N:P ratio of 192:1, well above the Redfield ratio of 16:1 typically required by phytoplankton. Samples collected during the Angora Fire that occurred in 2007 were particularly enriched in N relative to P, with a mean ratio >2800:1. A bioassay incubation experiment was conducted using locally collected atmospheric total suspended particulate (TSP) matter. TSP samples with high ammonium (NH4+) and low P content favored the growth of picoplankton (cells <3 µm) and opportunistic filamentous cyanobacteria, whereas larger nanophytoplankton (cells 3-20 µm) were better competitors when more P was available. Picoplankton growth can increase primary productivity without causing a large increase in chlorophyll (chl a) or biomass. Aerosol-nutrient-induced picoplankton growth (together with shifts in grazing dynamics and stratification trends) may contribute to the uncoupling between primary productivity, chl a, and biomass that has been observed in Lake Tahoe in the last several decades and, in particular, following the Wheeler and Angora Fires. The chemical composition of aerosols has a marked impact on ecosystem dynamics in Lake Tahoe with potential consequences to lake productivity and microbial community dynamics.

  11. Laser-induced growth of nanocrystals embedded in porous materials

    NASA Astrophysics Data System (ADS)

    Capoen, Bruno; Chahadih, Abdallah; El Hamzaoui, Hicham; Cristini, Odile; Bouazaoui, Mohamed

    2013-06-01

    Space localization of the linear and nonlinear optical properties in a transparent medium at the submicron scale is still a challenge to yield the future generation of photonic devices. Laser irradiation techniques have always been thought to structure the matter at the nanometer scale, but combining them with doping methods made it possible to generate local growth of several types of nanocrystals in different kinds of silicate matrices. This paper summarizes the most recent works developed in our group, where the investigated nanoparticles are either made of metal (gold) or chalcogenide semiconductors (CdS, PbS), grown in precursor-impregnated porous xerogels under different laser irradiations. This review is associated to new results on silver nanocrystals in the same kind of matrices. It is shown that, depending on the employed laser, the particles can be formed near the sample surface or deep inside the silica matrix. Photothermal and/or photochemical mechanisms may be invoked to explain the nanoparticle growth, depending on the laser, precursor, and matrix. One striking result is that metal salt reduction, necessary to the production of the corresponding nanoparticles, can efficiently occur due to the thermal wrenching of electrons from the matrix itself or due to multiphoton absorption of the laser light by a reducer additive in femtosecond regime. Very localized semiconductor quantum dots could also be generated using ultrashort pulses, but while PbS nanoparticles grow faster than CdS particles due to one-photon absorption, this better efficiency is counterbalanced by a sensitivity to oxidation. In most cases where the reaction efficiency is high, particles larger than the pores have been obtained, showing that a fast diffusion of the species through the interconnected porosity can modify the matrix itself. Based on our experience in these techniques, we compare several examples of laser-induced nanocrystal growth in porous silica xerogels, which allows

  12. Laser-induced growth of nanocrystals embedded in porous materials

    PubMed Central

    2013-01-01

    Space localization of the linear and nonlinear optical properties in a transparent medium at the submicron scale is still a challenge to yield the future generation of photonic devices. Laser irradiation techniques have always been thought to structure the matter at the nanometer scale, but combining them with doping methods made it possible to generate local growth of several types of nanocrystals in different kinds of silicate matrices. This paper summarizes the most recent works developed in our group, where the investigated nanoparticles are either made of metal (gold) or chalcogenide semiconductors (CdS, PbS), grown in precursor-impregnated porous xerogels under different laser irradiations. This review is associated to new results on silver nanocrystals in the same kind of matrices. It is shown that, depending on the employed laser, the particles can be formed near the sample surface or deep inside the silica matrix. Photothermal and/or photochemical mechanisms may be invoked to explain the nanoparticle growth, depending on the laser, precursor, and matrix. One striking result is that metal salt reduction, necessary to the production of the corresponding nanoparticles, can efficiently occur due to the thermal wrenching of electrons from the matrix itself or due to multiphoton absorption of the laser light by a reducer additive in femtosecond regime. Very localized semiconductor quantum dots could also be generated using ultrashort pulses, but while PbS nanoparticles grow faster than CdS particles due to one-photon absorption, this better efficiency is counterbalanced by a sensitivity to oxidation. In most cases where the reaction efficiency is high, particles larger than the pores have been obtained, showing that a fast diffusion of the species through the interconnected porosity can modify the matrix itself. Based on our experience in these techniques, we compare several examples of laser-induced nanocrystal growth in porous silica xerogels, which allows

  13. Placental Induced Growth Factor (PIGf) in Coronary Artery Disease

    NASA Technical Reports Server (NTRS)

    Sundaresan, Alamelu; Carabello, Blaise; Mehta, Satish; Schlegel, Todd; Pellis, Neal; Ott, Mark; Pierson, Duane

    2010-01-01

    Our previous studies on normal human lymphocytes have shown a five-fold increase (p less than 0.001) in angiogenic inducers such as Placental Induced Growth Factor (PIGf) in physiologically stressful environments such as modeled microgravity, a space analog. This suggests de-regulation of cardiovascular signalling pathways indicated by upregulation of PIGf. In the current study, we measured PIGf in the plasma of 33 patients with and without coronary artery disease (CAD) to investigate whether such disease is associated with increased levels of PIGf. A control consisting of 31 sex matched apparently healthy subjects was also included in the study. We observed that the levels of PIGf in CAD patients were significantly increased compared to those in healthy control subjects (p less than 0.001) and usually increased beyond the clinical threshold level (greater than 27ng/L). The mechanisms leading to up-regulation of angiogenic factors and the adaptation of organisms to stressful environments such as isolation, high altitude, hypoxia, ischemia, microgravity, increased radiation, etc are presently unknown and require further investigation in spaceflight and these other physiologically stressed environments.

  14. Progestin-induced hypersecretion of growth hormone: an introductory review.

    PubMed

    Rijnberk, A; Mol, J A

    1997-01-01

    In the 1970s acromegalic features were reported in some dogs used in long-term toxicity studies of progestins. In 1980 confirmation that progestagen administration can lead to increased circulating growth hormone (GH) concentrations was obtained. This phenomenon appeared not to be confined to exogenous progestins, for an excess of GH was also found in bitches during the luteal phase of the oestrous cycle. In bitches with a progestin-induced excess of GH, GH secretion could neither be inhibited nor stimulated by well-known regulatory neurohormones, indicating autonomous secretion. Because it could not be attributed to a neoplasm and was reversible, an extra-pituitary site of GH production was investigated. The progestin-induced GH was found to originate from the mammary gland. This phenomenon seems to play a role in the mammary development that occurs during the luteal phase of the oestrous cycle. The increase in cell proliferative activity may also be responsible for the susceptibility of the mammary gland to neoplastic transformation. The discovery of mammary GH in the dog has recently become of wider importance now that expression of the GH gene has also been demonstrated in other species, namely, humans and cats. PMID:9404303

  15. Epidermal Growth Factor-induced Vacuolar (H+)-ATPase Assembly

    PubMed Central

    Xu, Yanqing; Parmar, Amanda; Roux, Emmanuelle; Balbis, Alejandro; Dumas, Victor; Chevalier, Stephanie; Posner, Barry I.

    2012-01-01

    Using proteomics and immunofluorescence, we demonstrated epidermal growth factor (EGF) induced recruitment of extrinsic V1 subunits of the vacuolar (H+)-ATPase (V-ATPase) to rat liver endosomes. This was accompanied by reduced vacuolar pH. Bafilomycin, an inhibitor of V-ATPase, inhibited EGF-stimulated DNA synthesis and mammalian target of rapamycin complex 1 (mTORC1) activation as indicated by a decrease in eukaryotic initiation factor 4E-binding 1 (4E-BP1) phosphorylation and p70 ribosomal S6 protein kinase (p70S6K) phosphorylation and kinase activity. There was no corresponding inhibition of EGF-induced Akt and extracellular signal-regulated kinase (Erk) activation. Chloroquine, a neutralizer of vacuolar pH, mimicked bafilomycin effects. Bafilomycin did not inhibit the association of mTORC1 with Raptor nor did it affect AMP-activated protein kinase activity. Rather, the intracellular concentrations of essential but not non-essential amino acids were decreased by bafilomycin in EGF-treated primary rat hepatocytes. Cycloheximide, a translation elongation inhibitor known to augment intracellular amino acid levels, prevented the effect of bafilomycin on amino acids levels and completely reversed its inhibition of EGF-induced mTORC1 activation. In vivo administration of EGF stimulated the recruitment of Ras homologue enriched in brain (Rheb) but not mammalian target of rapamycin (mTOR) to endosomes and lysosomes. This was inhibited by chloroquine treatment. Our results suggest a role for vacuolar acidification in EGF signaling to mTORC1. PMID:22689575

  16. Modeling photothermal and acoustical induced microbubble generation and growth.

    PubMed

    Krasovitski, Boris; Kislev, Hanoch; Kimmel, Eitan

    2007-12-01

    Previous experimental studies showed that powerful heating of nanoparticles by a laser pulse using energy density greater than 100 mJ/cm(2), could induce vaporization and generate microbubbles. When ultrasound is introduced at the same time as the laser pulse, much less laser power is required. For therapeutic applications, generation of microbubbles on demand at target locations, e.g. cells or bacteria can be used to induce hyperthermia or to facilitate drug delivery. The objective of this work is to develop a method capable of predicting photothermal and acoustic parameters in terms of laser power and acoustic pressure amplitude that are needed to produce stable microbubbles; and investigate the influence of bubble coalescence on the thresholds when the microbubbles are generated around nanoparticles that appear in clusters. We develop and solve here a combined problem of momentum, heat and mass transfer which is associated with generation and growth of a microbubble, filled with a mixture of non-vaporized gas (air) and water vapor. The microbubble's size and gas content vary as a result of three mechanisms: gas expansion or compression, evaporation or condensation on the bubble boundary, and diffusion of dissolved air in the surrounding water. The simulations predict that when ultrasound is applied relatively low threshold values of laser and ultrasound power are required to obtain a stable microbubble from a single nanoparticle. Even lower power is required when microbubbles are formed by coalescence around a cluster of 10 nanoparticles. Laser pulse energy density of 21 mJ/cm(2) is predicted for instance together with acoustic pressure of 0.1 MPa for a cluster of 10 or 62 mJ/cm(2) for a single nanoparticle. Those values are well within the safety limits, and as such are most appealing for targeted therapeutic purposes. PMID:17910969

  17. Connective tissue growth factor induces cardiac hypertrophy through Akt signaling

    SciTech Connect

    Hayata, Nozomi; Fujio, Yasushi; Yamamoto, Yasuhiro; Iwakura, Tomohiko; Obana, Masanori; Takai, Mika; Mohri, Tomomi; Nonen, Shinpei; Maeda, Makiko; Azuma, Junichi

    2008-05-30

    In the process of cardiac remodeling, connective tissue growth factor (CTGF/CCN2) is secreted from cardiac myocytes. Though CTGF is well known to promote fibroblast proliferation, its pathophysiological effects in cardiac myocytes remain to be elucidated. In this study, we examined the biological effects of CTGF in rat neonatal cardiomyocytes. Cardiac myocytes stimulated with full length CTGF and its C-terminal region peptide showed the increase in cell surface area. Similar to hypertrophic ligands for G-protein coupled receptors, such as endothelin-1, CTGF activated amino acid uptake; however, CTGF-induced hypertrophy is not associated with the increased expression of skeletal actin or BNP, analyzed by Northern-blotting. CTGF treatment activated ERK1/2, p38 MAPK, JNK and Akt. The inhibition of Akt by transducing dominant-negative Akt abrogated CTGF-mediated increase in cell size, while the inhibition of MAP kinases did not affect the cardiac hypertrophy. These findings indicate that CTGF is a novel hypertrophic factor in cardiac myocytes.

  18. A chemical pollen suppressant inhibits auxin-induced growth in maize coleoptile sections

    SciTech Connect

    Vesper, M.J. ); Cross, J.W. )

    1990-05-01

    Chemical inhibitors of pollen development having a phenylcinnoline carboxylate structure were found to inhibit IAA- and 1-NAA-induced growth in maize coleoptile sections. The inhibitor (100 {mu}M) used in these experiments caused approx. 35% reduction in auxin-induced growth over the auxin concentration range of 0.3 to 100 {mu}M. Growth inhibition was noted as a lengthening of the latent period and a decrease in the rate of an auxin-induced growth response. An acid growth response to pH 5 buffer in abraded sections was not impaired. The velocity of basipetal transport of ({sup 3}H)IAA through the coleoptile sections also was not inhibited by the compound, nor was uptake of ({sup 3}H)IAA. Similarly, the inhibitor does not appear to alter auxin-induced H{sup +} secretion. We suggest that the agent targets some other process necessary for auxin-dependent growth.

  19. Role of chloride ions in the promotion of auxin-induced growth of maize coleoptile segments

    PubMed Central

    Burdach, Zbigniew; Kurtyka, Renata; Siemieniuk, Agnieszka; Karcz, Waldemar

    2014-01-01

    Background and Aims The mechanism of auxin action on ion transport in growing cells has not been determined in detail. In particular, little is known about the role of chloride in the auxin-induced growth of coleoptile cells. Moreover, the data that do exist in the literature are controversial. This study describes experiments that were carried out with maize (Zea mays) coleoptile segments, this being a classical model system for studies of plant cell elongation growth. Methods Growth kinetics or growth and pH changes were recorded in maize coleoptiles using two independent measuring systems. The growth rate of the segments was measured simultaneously with medium pH changes. Membrane potential changes in parenchymal cells of the segments were also determined for chosen variants. The question of whether anion transport is involved in auxin-induced growth of maize coleoptile segments was primarily studied using anion channel blockers [anthracene-9-carboxylic acid (A-9-C) and 4,4′-diisothiocyanatostilbene-2,2′-disulphonic acid (DIDS)]. In addition, experiments in which KCl was replaced by KNO3 were also performed. Key Results Both anion channel blockers, added at 0·1 mm, diminished indole-3-acetic acid (IAA)-induced elongation growth by ∼30 %. Medium pH changes measured simultaneously with growth indicated that while DIDS stopped IAA-induced proton extrusion, A-9-C diminished it by only 50 %. Addition of A-9-C to medium containing 1 mm KCl did not affect the characteristic kinetics of IAA-induced membrane potential changes, while in the presence of 10 mm KCl the channel blocker stopped IAA-induced membrane hyperpolarization. Replacement of KCl with KNO3 significantly decreased IAA-induced growth and inhibited proton extrusion. In contrast to the KCl concentration, the concentration of KNO3 did not affect the growth-stimulatory effect of IAA. For comparison, the effects of the cation channel blocker tetraethylammonium chloride (TEA-Cl) on IAA-induced growth and

  20. Lichen growth responses to stress induced by automobile exhaust pollution.

    PubMed

    Lawrey, J D; Hale, M E

    1979-04-27

    Growth rates were significantly suppressed in juvenile thalli (less than 0.1 square millimeter in initial size) of the saxicolous lichen Pseudoparmelia baltimorensis from a Potomac River island with high atmospheric lead burden as compared to the case for a similar island with a lower lead burden. However, larger thalli showed no significant changes in growth response as a result of atmospheric pollution stress. Disruptions in lichen growth thus appear to affect life stages when growth is most rapid andfood reserves are low. Once a minimnum thallus size is attained, the stress tolerance of the lichen increases. PMID:17758017

  1. Carbon Sources for Yeast Growth as a Precondition of Hydrogen Peroxide Induced Hormetic Phenotype

    PubMed Central

    Vasylkovska, Ruslana; Petriv, Natalia; Semchyshyn, Halyna

    2015-01-01

    Hormesis is a phenomenon of particular interest in biology, medicine, pharmacology, and toxicology. In this study, we investigated the relationship between H2O2-induced hormetic response in S. cerevisiae and carbon sources in yeast growth medium. In general, our data indicate that (i) hydrogen peroxide induces hormesis in a concentration-dependent manner; (ii) the effect of hydrogen peroxide on yeast reproductive ability depends on the type of carbon substrate in growth medium; and (iii) metabolic and growth rates as well as catalase activity play an important role in H2O2-induced hormetic response in yeast. PMID:26843865

  2. Carbon Sources for Yeast Growth as a Precondition of Hydrogen Peroxide Induced Hormetic Phenotype.

    PubMed

    Vasylkovska, Ruslana; Petriv, Natalia; Semchyshyn, Halyna

    2015-01-01

    Hormesis is a phenomenon of particular interest in biology, medicine, pharmacology, and toxicology. In this study, we investigated the relationship between H2O2-induced hormetic response in S. cerevisiae and carbon sources in yeast growth medium. In general, our data indicate that (i) hydrogen peroxide induces hormesis in a concentration-dependent manner; (ii) the effect of hydrogen peroxide on yeast reproductive ability depends on the type of carbon substrate in growth medium; and (iii) metabolic and growth rates as well as catalase activity play an important role in H2O2-induced hormetic response in yeast. PMID:26843865

  3. Galactose inhibits auxin-induced growth of Avena coleoptiles by two mechanisms

    NASA Technical Reports Server (NTRS)

    Cheung, S. P.; Cleland, R. E.

    1991-01-01

    Galactose inhibits auxin-induced growth of Avena coleoptiles by at least two mechanisms. First, it inhibits auxin-induced H(+)-excretion needed for the initiation of rapid elongation. Galactose cannot be doing so by directly interfering with the ATPase since fusicoccin-induced H(+)-excretion is not affected. Secondly, galactose inhibits long-term auxin-induced growth, even in an acidic (pH 4.5) solution. This may be due to an inhibition of cell wall synthesis. However, galactose does not reduce the capacity of walls to be loosened by H+, given exogenously or excreted in response to fusicoccin.

  4. Evidence that auxin-induced growth of soybean hypocotyls involves proton excretion

    SciTech Connect

    Rayle, D.L.; Cleland, R.E.

    1980-09-01

    The role of H/sup +/ excretion in auxin-induced growth of soybean hypocotyl tissues has been investigated, using tissues whose cuticle was rendered permeable to protons or buffers by scarification (scrubbing). Indoleacetic acid induces both elongation and H/sup +/ excretion after a lag of 10 to 12 minutes. Cycloheximide inhibits growth and causes the tissues to remove protons from the medium. Neutral buffers (pH 7.0) inhibit auxin-induced growth of scrubbed but not intact sections; the inhibition increases as the buffers strength is increased. Both live and frozen-thawed sections, in the absence of auxin, extend in response to exogenously supplied protons. Fusicoccin induces both elongation and H/sup +/ excretion at rates greater than does auxin. These results indicate that H/sup +/ excretion is involved in the initiation of auxin-induced elongation in soybean hypocotyl tissue.

  5. Characteristics and implications of prolonged fusicoccin-induced growth of Avena coleoptile sections

    NASA Technical Reports Server (NTRS)

    Cleland, R. E.

    1994-01-01

    A study has been made of the prolonged growth of Avena coleoptile sections in response to fusicoccin (FC), a phytotoxin that promotes apoplastic acidification. The final amount of FC-induced growth is a function of the FC concentration. Removal of the epidermis speeds up the initial rate of elongation and shortens the duration of the response, without affecting the total amount of extension. A suboptimal FC concentration (7 x 10(-8) M) which induces the same rate of proton excretion as does optimal indoleacetic acid (IAA) (1 x 10(-5) M), causes elongation which is 60-75% of that induced by IAA in 4 h or 50-65% in 7 h. This suggests that acid-induced extension could make a major contribution to auxin-induced growth for at least 7 h.

  6. Auxin-induced growth of Avena coleoptiles involves two mechanisms with different pH optima

    NASA Technical Reports Server (NTRS)

    Cleland, R. E.

    1992-01-01

    Although rapid auxin-induced growth of coleoptile sections can persist for at least 18 hours, acid-induced growth lasts for a much shorter period of time. Three theories have been proposed to explain this difference in persistence. To distinguish between these theories, the pH dependence for auxin-induced growth of oat (Avena sativa L.) coleoptiles has been determined early and late in the elongation process. Coleoptile sections from which the outer epidermis was removed to facilitate buffer entry were incubated, with or without 10 micromolar indoleacetic acid, in 20 millimolar buffers at pH 4.5 to 7.0 to maintain a fixed wall pH. During the first 1 to 2 hours after addition of auxin, elongation occurs by acid-induced extension (i.e. the pH optimum is <5 and the elongation varies inversely with the solution pH). Auxin causes no additional elongation because the buffers prevent further changes in wall pH. After 60 to 90 minutes, a second mechanism of auxin-induced growth, whose pH optimum is 5.5 to 6.0, predominates. It is proposed that rapid growth responses to changes in auxin concentration are mediated by auxin-induced changes in wall pH, whereas the prolonged, steady-state growth rate is controlled by a second, auxin-mediated process whose pH optimum is less acidic.

  7. Epidermal growth factor (EGF) antagonizes transforming growth factor (TGF)-beta1-induced collagen lattice contraction by human skin fibroblasts.

    PubMed

    Park, J S; Kim, J Y; Cho, J Y; Kang, J S; Yu, Y H

    2000-12-01

    Wound contraction plays an important role in healing, but in extreme conditions, it may lead to excessive scar formation and pathological wound contracture. To date, the key regulator of excessive contracture is known to be transforming growth factor-beta (TGF-beta1). In this study, we have evaluated epidermal growth factor (EGF) antagonism in fibroblast-populated collagen lattice (FPCL) gel contraction, which has been generally used as an in vitro model thought to mimic wound contraction in vivo. As expected, TGF-beta1 treatment enhanced normal fibroblast-induced collagen gel contraction in a dose-dependent manner. In contrast, EGF did not affect normal gel formation, but significantly antagonized TGF-beta1-induced gel formation (p<0.05 at 100 ng/ml), whereas the other growth factor, platelet-derived growth factor (PDGF), did not altered either normal or TGF-beta1-induced gel contractions. Similarly, EGF treatment, but not PDGF, also significantly suppressed TGF-beta1 release that was autologously elicited by TGF-beta1 treatment (p<0.01 at 100 ng/ml). Therefore, the results suggest that EGF may negatively regulate the role of TGF-beta1 through attenuating autologous release of TGF-beta1. PMID:11145189

  8. Inhibitory Activity of Yokukansankachimpihange against Nerve Growth Factor-Induced Neurite Growth in Cultured Rat Dorsal Root Ganglion Neurons.

    PubMed

    Murayama, Chiaki; Watanabe, Shimpei; Nakamura, Motokazu; Norimoto, Hisayoshi

    2015-01-01

    Chronic pruritus is a major and distressing symptom of many cutaneous diseases, however, the treatment remains a challenge in the clinic. The traditional Chinese-Japanese medicine (Kampo medicine) is a conservative and increasingly popular approach to treat chronic pruritus for both patients and medical providers. Yokukansankachimpihange (YKH), a Kampo formula has been demonstrated to be effective in the treatment of itching of atopic dermatitis in Japan although its pharmacological mechanism is unknown clearly. In an attempt to clarify its pharmacological actions, in this study, we focused on the inhibitory activity of YKH against neurite growth induced with nerve growth factor (NGF) in cultured rat dorsal root ganglion (DRG) neurons because epidermal hyperinnervation is deeply related to itch sensitization. YKH showed approximately 200-fold inhibitory activity against NGF-induced neurite growth than that of neurotropin (positive control), a drug used clinically for treatment of chronic pruritus. Moreover, it also found that Uncaria hook, Bupleurum root and their chemical constituents rhynchophylline, hirsutine, and saikosaponin a, d showed inhibitory activities against NGF-induced neurite growth, suggesting they should mainly contribute to the inhibitory activity of YKH. Further study on the effects of YKH against epidermal nerve density in "itch-scratch" animal models is under investigation. PMID:26287150

  9. The threshold stress intensity for hydrogen-induced crack growth

    NASA Astrophysics Data System (ADS)

    Akhurst, K. N.; Baker, T. J.

    1981-06-01

    The crack growth rates and threshold stress intensities, K TH, for a 3 1/2 NiCrMoV steel (0.2 pct proof stress 1200 MPa) have been measured in a hydrogen environment at various temperatures and hydrogen pressures. Fractographic evidence and the observation of alternating fast and slow crack growth near K TH suggests that the crack advances by the repeated nucleation of microcracks at microstructural features ahead of the main crack. Transient crack growth is observed following load increases just below K TH. Using the idea, from unstable cleavage fracture theory, that for fracture a critical stress must be exceeded over a critical distance ahead of the crack, and assuming that this critical stress is reduced in proportion to the local hydrogen concentration (in equilibrium with the external hydrogen at K TH), a theoretical dependence of K TH on hydrogen pressure is derived which compares well with the experimental evidence.

  10. Plant growth promotion induced by phosphate solubilizing endophytic Pseudomonas isolates

    PubMed Central

    Oteino, Nicholas; Lally, Richard D.; Kiwanuka, Samuel; Lloyd, Andrew; Ryan, David; Germaine, Kieran J.; Dowling, David N.

    2015-01-01

    The use of plant growth promoting bacterial inoculants as live microbial biofertilizers provides a promising alternative to chemical fertilizers and pesticides. Inorganic phosphate solubilization is one of the major mechanisms of plant growth promotion by plant associated bacteria. This involves bacteria releasing organic acids into the soil which solubilize the phosphate complexes converting them into ortho-phosphate which is available for plant up-take and utilization. The study presented here describes the ability of endophytic bacteria to produce gluconic acid (GA), solubilize insoluble phosphate, and stimulate the growth of Pisum sativum L. plants. This study also describes the genetic systems within three of these endophyte strains thought to be responsible for their effective phosphate solubilizing abilities. The results showed that many of the endophytic strains produced GA (14–169 mM) and have moderate to high phosphate solubilization capacities (~400–1300 mg L−1). When inoculated into P. sativum L. plants grown in soil under soluble phosphate limiting conditions, the endophytes that produced medium-high levels of GA displayed beneficial plant growth promotion effects. PMID:26257721

  11. Cyclic stretching of soft substrates induces spreading and growth

    PubMed Central

    Cui, Yidan; Hameed, Feroz M.; Yang, Bo; Lee, Kyunghee; Pan, Catherine Qiurong; Park, Sungsu; Sheetz, Michael

    2015-01-01

    In the body, soft tissues often undergo cycles of stretching and relaxation that may affect cell behaviour without changing matrix rigidity. To determine whether transient forces can substitute for a rigid matrix, we stretched soft pillar arrays. Surprisingly, 1–5% cyclic stretching over a frequency range of 0.01–10 Hz caused spreading and stress fibre formation (optimum 0.1 Hz) that persisted after 4 h of stretching. Similarly, stretching increased cell growth rates on soft pillars comparative to rigid substrates. Of possible factors linked to fibroblast growth, MRTF-A (myocardin-related transcription factor-A) moved to the nucleus in 2 h of cyclic stretching and reversed on cessation; but YAP (Yes-associated protein) moved much later. Knockdown of either MRTF-A or YAP blocked stretch-dependent growth. Thus, we suggest that the repeated pulling from a soft matrix can substitute for a stiff matrix in stimulating spreading, stress fibre formation and growth. PMID:25704457

  12. Cyclic stretching of soft substrates induces spreading and growth.

    PubMed

    Cui, Yidan; Hameed, Feroz M; Yang, Bo; Lee, Kyunghee; Pan, Catherine Qiurong; Park, Sungsu; Sheetz, Michael

    2015-01-01

    In the body, soft tissues often undergo cycles of stretching and relaxation that may affect cell behaviour without changing matrix rigidity. To determine whether transient forces can substitute for a rigid matrix, we stretched soft pillar arrays. Surprisingly, 1-5% cyclic stretching over a frequency range of 0.01-10 Hz caused spreading and stress fibre formation (optimum 0.1 Hz) that persisted after 4 h of stretching. Similarly, stretching increased cell growth rates on soft pillars comparative to rigid substrates. Of possible factors linked to fibroblast growth, MRTF-A (myocardin-related transcription factor-A) moved to the nucleus in 2 h of cyclic stretching and reversed on cessation; but YAP (Yes-associated protein) moved much later. Knockdown of either MRTF-A or YAP blocked stretch-dependent growth. Thus, we suggest that the repeated pulling from a soft matrix can substitute for a stiff matrix in stimulating spreading, stress fibre formation and growth. PMID:25704457

  13. p53 signaling is involved in leptin-induced growth of hepatic and breast cancer cells

    PubMed Central

    Shrestha, Mohan

    2016-01-01

    Leptin, an adipokine predominantly produced from adipose tissue, is well known to induce tumor growth. However, underlying molecular mechanisms are not established yet. While p53 has long been well recognized as a potent tumor suppressor gene, accumulating evidence has also indicated its potential role in growth and survival of cancer cells depending on experimental environments. In the present study, we examined if p53 signaling is implicated in leptin-induced growth of cancer cells. Herein, we demonstrated that leptin treatment significantly increased p53 protein expression in both hepatic (HepG2) and breast (MCF-7) cancer cells without significant effect on mRNA expression. Enhanced p53 expression by leptin was mediated via modulation of ubiquitination, in particular ubiquitin specific protease 2 (USP2)-dependent manner. Furthermore, gene silencing of p53 by small interfering RNA (siRNA) suppressed leptin-induced growth of hepatic and breast cancer cells, indicating the role of p53 signaling in tumor growth by leptin. In addition, we also showed that knockdown of p53 restored suppression of caspase-3 activity by leptin through modulating Bax expression and prevented leptin-induced cell cycle progression, implying the involvement of p53 signaling in the regulation of both apoptosis and cell cycle progression in cancer cells treated with leptin. Taken together, the results in the present study demonstrated the potential role of p53 signaling in leptin-induced tumor growth. PMID:27610035

  14. p53 signaling is involved in leptin-induced growth of hepatic and breast cancer cells.

    PubMed

    Shrestha, Mohan; Park, Pil-Hoon

    2016-09-01

    Leptin, an adipokine predominantly produced from adipose tissue, is well known to induce tumor growth. However, underlying molecular mechanisms are not established yet. While p53 has long been well recognized as a potent tumor suppressor gene, accumulating evidence has also indicated its potential role in growth and survival of cancer cells depending on experimental environments. In the present study, we examined if p53 signaling is implicated in leptin-induced growth of cancer cells. Herein, we demonstrated that leptin treatment significantly increased p53 protein expression in both hepatic (HepG2) and breast (MCF-7) cancer cells without significant effect on mRNA expression. Enhanced p53 expression by leptin was mediated via modulation of ubiquitination, in particular ubiquitin specific protease 2 (USP2)-dependent manner. Furthermore, gene silencing of p53 by small interfering RNA (siRNA) suppressed leptin-induced growth of hepatic and breast cancer cells, indicating the role of p53 signaling in tumor growth by leptin. In addition, we also showed that knockdown of p53 restored suppression of caspase-3 activity by leptin through modulating Bax expression and prevented leptin-induced cell cycle progression, implying the involvement of p53 signaling in the regulation of both apoptosis and cell cycle progression in cancer cells treated with leptin. Taken together, the results in the present study demonstrated the potential role of p53 signaling in leptin-induced tumor growth. PMID:27610035

  15. Growth hormone used to control intractable bleeding caused by radiation-induced gastritis

    PubMed Central

    Zhang, Liang; Xia, Wen-Jie; Zhang, Zheng-Sen; Lu, Xin-Liang

    2015-01-01

    Intractable bleeding caused by radiation-induced gastritis is rare. We describe a 69-year-old man with intractable hemorrhagic gastritis induced by postoperative radiotherapy for the treatment of esophageal carcinoma. Although anti-secretory therapy with or without octreotide was initiated for hemostasis over three months, melena still occurred off and on, and the patient required blood transfusions to maintain stable hemoglobin. Finally growth hormone was used in the treatment of hemorrhage for two weeks, and hemostasis was successfully achieved. This is the first report that growth hormone has been used to control intractable bleeding caused by radiation-induced gastritis. PMID:26309374

  16. Analysis of kicker noise induced beam emittance growth

    SciTech Connect

    Zhang W.; Sandberg, J.; Ahrens, L.; Blacker, I.M.; Brennan, M.; Blaskiewicz, M.; Fischer, W.; Hahn, H.; Huang, H.; Kling, N.; Lafky, M.; Marr, G.; Mernick, K.; Mi, J.; Minty, M.; Naylor, C.; Roser, T.; Shrey, T.; van Kuik, B.; Zelenski, A.

    2012-05-20

    Over the last few years, physicists have occasionally observed the presence of noise acting on the RHIC beams leading to emittance growth at high beam energies. While the noise was sporadic in the past, it became persistent during the Run-11 setup period. An investigation diagnosed the source as originating from the RHIC dump kicker system. Once identified the issue was quickly resolved. We report in this paper the investigation result, circuit analysis, measured and simulated waveforms, solutions, and future plans.

  17. The epidermis coordinates auxin-induced stem growth in response to shade.

    PubMed

    Procko, Carl; Burko, Yogev; Jaillais, Yvon; Ljung, Karin; Long, Jeff A; Chory, Joanne

    2016-07-01

    Growth of a complex multicellular organism requires coordinated changes in diverse cell types. These cellular changes generate organs of the correct size, shape, and functionality. In plants, the growth hormone auxin induces stem elongation in response to shade; however, which cell types of the stem perceive the auxin signal and contribute to organ growth is poorly understood. Here, we blocked the transcriptional response to auxin within specific tissues to show that auxin signaling is required in many cell types for correct hypocotyl growth in shade, with a key role for the epidermis. Combining genetic manipulations in Arabidopsis thaliana with transcriptional profiling of the hypocotyl epidermis from Brassica rapa, we show that auxin acts in the epidermis in part by inducing activity of the locally acting, growth-promoting brassinosteroid pathway. Our findings clarify cell-specific auxin function in the hypocotyl and highlight the complexity of cell type interactions within a growing organ. PMID:27401556

  18. Cortical Folding Pattern and its Consistency Induced by Biological Growth

    PubMed Central

    Jalil Razavi, Mir; Zhang, Tuo; Liu, Tianming; Wang, Xianqiao

    2015-01-01

    Cortical folding, characterized by convex gyri and concave sulci, has an intrinsic relationship to the brain’s functional organization. Understanding the mechanism of the brain’s convoluted patterns can provide useful clues into normal and pathological brain function. In this paper, the cortical folding phenomenon is interpreted both analytically and computationally, and, in some cases, the findings are validated with experimental observations. The living human brain is modeled as a soft structure with a growing outer cortex and inner core to investigate its developmental mechanism. Analytical interpretations of differential growth of the brain model provide preliminary insight into critical growth ratios for instability and crease formation of the developing brain. Since the analytical approach cannot predict the evolution of cortical complex convolution after instability, non-linear finite element models are employed to study the crease formation and secondary morphological folds of the developing brain. Results demonstrate that the growth ratio of the cortex to core of the brain, the initial thickness, and material properties of both cortex and core have great impacts on the morphological patterns of the developing brain. Lastly, we discuss why cortical folding is highly correlated and consistent by presenting an intriguing gyri-sulci formation comparison. PMID:26404042

  19. Nur77 inhibits androgen-induced bladder cancer growth.

    PubMed

    Wu, Jianping; Liu, Jun; Jia, Ruipeng; Song, Hongbin

    2013-12-01

    Currently, bladder cancer ranks as the second most common genitourinary malignancy which is exacting significant morbidity and mortality worldwide. Although there are abundant epidemiological and basic studies which strongly suggest the role of androgen hormone in bladder cancer, the underlying mechanism is not fully understood. In the current study, we sought to identify a new competitive inhibitor for androgen receptor in bladder cancer cells. Our results showed that Nur77 hyperexpression inhibits UM-UC-3 cell growth and cell cycle progression while Nur77 knockdown exerts the opposite effect. In our cell culture model, we also demonstrated that Nur77 competitively inhibits androgen-dependent transcription activity and more specifically, Nur77 competes with androgen receptor for binding to src-1, a well-known coactivator for steroids. More importantly, we also showed that a small molecule agonist for Nur77, Cytosporone B, significantly inhibits androgen-dependent bladder cancer cell growth in two different cell lines. These data provide a good proof-of-principle that Nur77 signaling machinery could be a new target for growth control of androgen-dependent bladder cancer cells. PMID:24299210

  20. Cortical Folding Pattern and its Consistency Induced by Biological Growth

    NASA Astrophysics Data System (ADS)

    Jalil Razavi, Mir; Zhang, Tuo; Liu, Tianming; Wang, Xianqiao

    2015-09-01

    Cortical folding, characterized by convex gyri and concave sulci, has an intrinsic relationship to the brain’s functional organization. Understanding the mechanism of the brain’s convoluted patterns can provide useful clues into normal and pathological brain function. In this paper, the cortical folding phenomenon is interpreted both analytically and computationally, and, in some cases, the findings are validated with experimental observations. The living human brain is modeled as a soft structure with a growing outer cortex and inner core to investigate its developmental mechanism. Analytical interpretations of differential growth of the brain model provide preliminary insight into critical growth ratios for instability and crease formation of the developing brain. Since the analytical approach cannot predict the evolution of cortical complex convolution after instability, non-linear finite element models are employed to study the crease formation and secondary morphological folds of the developing brain. Results demonstrate that the growth ratio of the cortex to core of the brain, the initial thickness, and material properties of both cortex and core have great impacts on the morphological patterns of the developing brain. Lastly, we discuss why cortical folding is highly correlated and consistent by presenting an intriguing gyri-sulci formation comparison.

  1. Antioxidative activity and growth regulation of Brassicaceae induced by oxygen radical irradiation

    NASA Astrophysics Data System (ADS)

    Hayashi, Nobuya; Ono, Reoto; Shiratani, Masaharu; Yonesu, Akira

    2015-06-01

    The growth regulation characteristics of plants are investigated when plant seeds are irradiated with atmospheric discharge plasma. Enhancement of the germination and lengths of the stem and root of plants are observed after seeding. The total length of the stem and root increases approximately 1.6 times after a cultivation period of 72 h. The growth regulation effect is found to be maintained for 80 h of cultivation after seeding. The growth regulation originates from the change in the antioxidative activity of plant cells induced by active oxygen species generated in the oxygen plasma, which leads to the production of growth factor in plants.

  2. Mo polyoxometalate nanoparticles inhibit tumor growth and vascular endothelial growth factor induced angiogenesis

    NASA Astrophysics Data System (ADS)

    Zheng, Wenjing; Yang, Licong; Liu, Ying; Qin, Xiuying; Zhou, Yanhui; Zhou, Yunshan; Liu, Jie

    2014-06-01

    Tumor growth depends on angiogenesis, which can furnish the oxygen and nutrients that proliferate tumor cells. Thus, blocking angiogenesis can be an effective strategy to inhibit tumor growth. In this work, three typical nanoparticles based on polyoxometalates (POMs) have been prepared; we investigated their capability as antitumor and anti-angiogenesis agents. We found that Mo POM nanoparticles, especially complex 3, inhibited the growth of human hepatocellular liver carcinoma cells (HepG2) through cellular reactive oxygen species levels’ elevation and mitochondrial membrane potential damage. Complex 3 also suppressed the proliferation, migration, and tube formation of endothelial cells in vitro and chicken chorioallantoic membrane development ex vivo. Furthermore, western blot analysis of cell signaling molecules indicated that Mo POMs blocked the vascular endothelial growth factor receptor 2-mediated ERK1/2 and AKT signaling pathways in endothelial cells. Using transmission electron microscopy, we demonstrated their cellular uptake and localization within the cytoplasm of HepG2 cells. These results indicate that, owing to the extraordinary physical and chemical properties, Mo POM nanoparticles can significantly inhibit tumor growth and angiogenesis, which makes them potential drug candidates in anticancer and anti-angiogenesis therapies.

  3. Gravity-induced asymmetric distribution of a plant growth hormone

    NASA Technical Reports Server (NTRS)

    Bandurski, R. S.; Schulze, A.; Momonoki, Y.

    1984-01-01

    Dolk (1936) demonstrated that gravistimulation induced an asymmetric distribution of auxin in a horizontally-placed shoot. An attempt is made to determine where and how that asymmetry arises, and to demonstrate that the endogenous auxin, indole-3-acetic acid, becomes asymmetrically distributed in the cortical cells of the Zea mays mesocotyl during 3 min of geostimulation. Further, indole-3-acetic acid derived by hydrolysis of an applied transport form of the hormone, indole-3-acetyl-myo-inositol, becomes asymmetrically distributed within 15 min of geostimulus time. From these and prior data is developed a working theory that the gravitational stimulus induces a selective leakage, or secretion, of the hormone from the vascular tissue to the cortical cells of the mesocotyl.

  4. Plant Growth Biophysics: the Basis for Growth Asymmetry Induced by Gravity

    NASA Technical Reports Server (NTRS)

    Cosgrove, D.

    1985-01-01

    The identification and quantification of the physical properties altered by gravity when plant stems grow upward was studied. Growth of the stem in vertical and horizontal positions was recorded by time lapse photography. A computer program that uses a cubic spline fitting algorithm was used to calculate the growth rate and curvature of the stem as a function of time. Plant stems were tested to ascertain whether cell osmotic pressure was altered by gravity. A technique for measuring the yielding properties of the cell wall was developed.

  5. Chloroplasts Are Central Players in Sugar-Induced Leaf Growth.

    PubMed

    Van Dingenen, Judith; De Milde, Liesbeth; Vermeersch, Mattias; Maleux, Katrien; De Rycke, Riet; De Bruyne, Michiel; Storme, Véronique; Gonzalez, Nathalie; Dhondt, Stijn; Inzé, Dirk

    2016-05-01

    Leaves are the plant's powerhouses, providing energy for all organs through sugar production during photosynthesis. However, sugars serve not only as a metabolic energy source for sink tissues but also as signaling molecules, affecting gene expression through conserved signaling pathways to regulate plant growth and development. Here, we describe an in vitro experimental assay, allowing one to alter the sucrose (Suc) availability during early Arabidopsis (Arabidopsis thaliana) leaf development, with the aim to identify the affected cellular and molecular processes. The transfer of seedlings to Suc-containing medium showed a profound effect on leaf growth by stimulating cell proliferation and postponing the transition to cell expansion. Furthermore, rapidly after transfer to Suc, mesophyll cells contained fewer and smaller plastids, which are irregular in shape and contain fewer starch granules compared with control mesophyll cells. Short-term transcriptional responses after transfer to Suc revealed the repression of well-known sugar-responsive genes and multiple genes encoded by the plastid, on the one hand, and up-regulation of a GLUCOSE-6-PHOSPHATE TRANSPORTER (GPT2), on the other hand. Mutant gpt2 seedlings showed no stimulation of cell proliferation and no repression of chloroplast-encoded transcripts when transferred to Suc, suggesting that GPT2 plays a critical role in the Suc-mediated effects on early leaf growth. Our findings, therefore, suggest that induction of GPT2 expression by Suc increases the import of glucose-6-phosphate into the plastids that would repress chloroplast-encoded transcripts, restricting chloroplast differentiation. Retrograde signaling from the plastids would then delay the transition to cell expansion and stimulate cell proliferation. PMID:26932234

  6. Fractured geothermal reservoir growth induced by heat extraction

    SciTech Connect

    Tester, J.W.; Murphy, H.D.; Grigsby, C.O.; Robinson, B.A.; Potter, R.M.

    1986-01-01

    Field testing of a hydraulically-stimulated, hot dry rock geothermal system at the Fenton Hill site in northern New Mexico has indicated that significant reservoir growth occurred as energy was extracted. Tracer, microseismic, and geochemical measurements provided the primary quantitative evidence for documenting the increases in accessible reservoir volume and fractured rock surface area that were observed during energy extraction operations which caused substantial thermal drawdown in portions of the reservoir. These temporal increases suggest that augmentation of reservoir heat production capacity in hot dry rock systems may be possible.

  7. Mucosal wrinkling in animal antra induced by volumetric growth

    NASA Astrophysics Data System (ADS)

    Li, Bo; Cao, Yan-Ping; Feng, Xi-Qiao; Yu, Shou-Wen

    2011-04-01

    Surface wrinkling of animal mucosas is crucial for the biological functions of some tissues, and the change in their surface patterns is a phenotypic characteristic of certain diseases. Here we develop a biomechanical model to study the relationship between morphogenesis and volumetric growth, either physiological or pathological, of mucosas. Theoretical analysis and numerical simulations are performed to unravel the critical characteristics of mucosal wrinkling in a spherical antrum. It is shown that the thicknesses and elastic moduli of mucosal and submucosal layers dictate the surface buckling morphology. The results hold clinical relevance for such diseases as inflammation and gastritis.

  8. In vitro growth factor-induced bio engineering of mature articular cartilage

    PubMed Central

    Khan, Ilyas M.; Francis, Lewis; Theobald, Peter S.; Perni, Stefano; Young, Robert D.; Prokopovich, Polina; Conlan, R. Steven; Archer, Charles W.

    2013-01-01

    Articular cartilage maturation is the postnatal development process that adapts joint surfaces to their site-specific biomechanical demands. Maturation involves gross morphological changes that occur through a process of synchronised growth and resorption of cartilage and generally ends at sexual maturity. The inability to induce maturation in biomaterial constructs designed for cartilage repair has been cited as a major cause for their failure in producing persistent cell-based repair of joint lesions. The combination of growth factors FGF2 and TGFβ1 induces accelerated articular cartilage maturation in vitro such that many molecular and morphological characteristics of tissue maturation are observable. We hypothesised that experimental growth factor-induced maturation of immature cartilage would result in a biophysical and biochemical composition consistent with a mature phenotype. Using native immature and mature cartilage as reference, we observed that growth factor-treated immature cartilages displayed increased nano-compressive stiffness, decreased surface adhesion, decreased water content, increased collagen content and smoother surfaces, correlating with a convergence to the mature cartilage phenotype. Furthermore, increased gene expression of surface structural protein collagen type I in growth factor-treated explants compared to reference cartilages demonstrates that they are still in the dynamic phase of the postnatal developmental transition. These data provide a basis for understanding the regulation of postnatal maturation of articular cartilage and the application of growth factor-induced maturation in vitro and in vivo in order to repair and regenerate cartilage defects. PMID:23182922

  9. Aerosol-induced mechanisms for cumulus congestus growth

    NASA Astrophysics Data System (ADS)

    Sheffield, Amanda M.; Saleeby, Stephen M.; Heever, Susan C.

    2015-09-01

    Tropical convection has been observed to contain three cloud modes, the middle of which is cumulus congestus clouds. Congestus clouds act to moisten the tropical atmosphere, may be mixed-phase, and on occasion surpass the freezing level inversion from where they may develop into deeper convection. This study investigates the impacts of enhanced aerosol concentrations on the growth of congestus clouds produced in idealized cloud-resolving model simulations run under a state of radiative convective equilibrium (RCE). High-resolution, long-duration simulations were completed using the Regional Atmospheric Modeling System (RAMS). Aerosol concentrations between 2 and 4 km above ground level were varied from clean to polluted conditions in order to represent the advection of Saharan dust over the Atlantic Ocean. The congestus populations within each aerosol simulation are statistically analyzed using 10 days of model output after the simulation reaches RCE. Results indicate that congestus in more polluted conditions produce greater amounts of cloud water and ice mass, enhanced updraft strengths, and an increase in the number of congestus cloud tops that extend above the freezing level. Enhanced vapor depositional growth on the populations of more numerous, smaller cloud droplets in the polluted conditions, and the subsequent increase in latent heat release in the warm phase regions of the cloud, is found to be important factors in convective invigoration of these cloud systems. Aerosol feedbacks associated with cold pools and condensate loading also influence the updraft strength and act in opposition to the warm phase invigoration processes.

  10. Proteasome dysfunction induces muscle growth defects and protein aggregation

    PubMed Central

    Kitajima, Yasuo; Tashiro, Yoshitaka; Suzuki, Naoki; Warita, Hitoshi; Kato, Masaaki; Tateyama, Maki; Ando, Risa; Izumi, Rumiko; Yamazaki, Maya; Abe, Manabu; Sakimura, Kenji; Ito, Hidefumi; Urushitani, Makoto; Nagatomi, Ryoichi; Takahashi, Ryosuke; Aoki, Masashi

    2014-01-01

    ABSTRACT The ubiquitin–proteasome and autophagy–lysosome pathways are the two major routes of protein and organelle clearance. The role of the proteasome pathway in mammalian muscle has not been examined in vivo. In this study, we report that the muscle-specific deletion of a crucial proteasomal gene, Rpt3 (also known as Psmc4), resulted in profound muscle growth defects and a decrease in force production in mice. Specifically, developing muscles in conditional Rpt3-knockout animals showed dysregulated proteasomal activity. The autophagy pathway was upregulated, but the process of autophagosome formation was impaired. A microscopic analysis revealed the accumulation of basophilic inclusions and disorganization of the sarcomeres in young adult mice. Our results suggest that appropriate proteasomal activity is important for muscle growth and for maintaining myofiber integrity in collaboration with autophagy pathways. The deletion of a component of the proteasome complex contributed to myofiber degeneration and weakness in muscle disorders that are characterized by the accumulation of abnormal inclusions. PMID:25380823

  11. Warming-Induced Decline of Picea crassifolia Growth in the Qilian Mountains in Recent Decades

    PubMed Central

    Yu, Li; Huang, Lei; Shao, Xuemei; Xiao, Fengjing; Wilmking, Martin; Zhang, Yongxiang

    2015-01-01

    Warming-induced drought has widely affected forest dynamics in most places of the northern hemisphere. In this study, we assessed how climate warming has affected Picea crassifolia (Qinghai spruce) forests using tree growth-climate relationships and the normalized difference vegetation index (NDVI) along the Qilian Mountains, northeastern Tibet Plateau (the main range of Picea crassifolia). Based on the analysis on trees radial growth data from the upper tree line and the regional NDVI data, we identified a pervasive growth decline in recent decades, most likely caused by warming-induced droughts. The drought stress on Picea crassifolia radial growth were expanding from northeast to southwest and the favorable moisture conditions for tree growth were retreating along the identical direction in the study area over the last half century. Compared to the historical drought stress on tree radial growth in the 1920s, recent warming-induced droughts display a longer-lasting stress with a broader spatial distribution on regional forest growth. If the recent warming continues without the effective moisture increasing, then a notable challenge is developed for Picea crassifolia in the Qilian Mountains. Elaborate forest management is necessary to counteract the future risk of climate change effects in this region. PMID:26121479

  12. Bone morphogenetic protein-4 strongly potentiates growth factor-induced proliferation of mammary epithelial cells

    SciTech Connect

    Montesano, Roberto Sarkoezi, Rita; Schramek, Herbert

    2008-09-12

    Bone morphogenetic proteins (BMPs) are multifunctional cytokines that elicit pleiotropic effects on biological processes such as cell proliferation, cell differentiation and tissue morphogenesis. With respect to cell proliferation, BMPs can exert either mitogenic or anti-mitogenic activities, depending on the target cells and their context. Here, we report that in low-density cultures of immortalized mammary epithelial cells, BMP-4 did not stimulate cell proliferation by itself. However, when added in combination with suboptimal concentrations of fibroblast growth factor (FGF)-2, FGF-7, FGF-10, epidermal growth factor (EGF) or hepatocyte growth factor (HGF), BMP-4 potently enhanced growth factor-induced cell proliferation. These results reveal a hitherto unsuspected interplay between BMP-4 and growth factors in the regulation of mammary epithelial cell proliferation. We suggest that the ability of BMP-4 to potentiate the mitogenic activity of multiple growth factors may contribute to mammary gland ductal morphogenesis as well as to breast cancer progression.

  13. P53-dependent upregulation of neutral sphingomyelinase-2: role in doxorubicin-induced growth arrest

    PubMed Central

    Shamseddine, A A; Clarke, C J; Carroll, B; Airola, M V; Mohammed, S; Rella, A; Obeid, L M; Hannun, Y A

    2015-01-01

    Neutral sphingomyelinase-2 (nSMase2) is a ceramide-generating enzyme that has been implicated in growth arrest, apoptosis and exosome secretion. Although previous studies have reported transcriptional upregulation of nSMase2 in response to daunorubicin, through Sp1 and Sp3 transcription factors, the role of the DNA damage pathway in regulating nSMase2 remains unclear. In this study, we show that doxorubicin induces a dose-dependent induction of nSMase2 mRNA and protein with concomitant increases in nSMase activity and ceramide levels. Upregulation of nSMase2 was dependent on ATR, Chk1 and p53, thus placing it downstream of the DNA damage pathway. Moreover, overexpression of p53 was sufficient to transcriptionally induce nSMase2, without the need for DNA damage. DNA-binding mutants as well as acetylation mutants of p53 were unable to induce nSMase2, suggesting a role of nSMase2 in growth arrest. Moreover, knockdown of nSMase2 prevented doxorubicin-induced growth arrest. Finally, p53-induced nSMase2 upregulation appears to occur via a novel transcription start site upstream of exon 3. These results identify nSMase2 as a novel p53 target gene, regulated by the DNA damage pathway to induce cell growth arrest. PMID:26512957

  14. An expandable, inducible hemangioblast state regulated by fibroblast growth factor.

    PubMed

    Vereide, David T; Vickerman, Vernella; Swanson, Scott A; Chu, Li-Fang; McIntosh, Brian E; Thomson, James A

    2014-12-01

    During development, the hematopoietic and vascular lineages are thought to descend from common mesodermal progenitors called hemangioblasts. Here we identify six transcription factors, Gata2, Lmo2, Mycn, Pitx2, Sox17, and Tal1, that "trap" murine cells in a proliferative state and endow them with a hemangioblast potential. These "expandable" hemangioblasts (eHBs) are capable, once released from the control of the ectopic factors, to give rise to functional endothelial cells, multilineage hematopoietic cells, and smooth muscle cells. The eHBs can be derived from embryonic stem cells, from fetal liver cells, or poorly from fibroblasts. The eHBs reveal a central role for fibroblast growth factor, which not only promotes their expansion, but also facilitates their ability to give rise to endothelial cells and leukocytes, but not erythrocytes. This study serves as a demonstration that ephemeral progenitor states can be harnessed in vitro, enabling the creation of tractable progenitor cell lines. PMID:25458896

  15. Nanowire growth by an electron beam induced massive phase transformation

    SciTech Connect

    Sood, Shantanu; Kisslinger, Kim; Gouma, Perena

    2014-11-15

    Tungsten trioxide nanowires of a high aspect ratio have been synthesized in-situ in a TEM under an electron beam of current density 14A/cm² due to a massive polymorphic reaction. Sol-gel processed pseudocubic phase nanocrystals of tungsten trioxide were seen to rapidly transform to one dimensional monoclinic phase configurations, and this reaction was independent of the substrate on which the material was deposited. The mechanism of the self-catalyzed polymorphic transition and accompanying radical shape change is a typical characteristic of metastable to stable phase transformations in nanostructured polymorphic metal oxides. A heuristic model is used to confirm the metastable to stable growth mechanism. The findings are important to the control electron beam deposition of nanowires for functional applications starting from colloidal precursors.

  16. Nanowire growth by an electron beam induced massive phase transformation

    DOE PAGESBeta

    Sood, Shantanu; Kisslinger, Kim; Gouma, Perena

    2014-11-15

    Tungsten trioxide nanowires of a high aspect ratio have been synthesized in-situ in a TEM under an electron beam of current density 14A/cm² due to a massive polymorphic reaction. Sol-gel processed pseudocubic phase nanocrystals of tungsten trioxide were seen to rapidly transform to one dimensional monoclinic phase configurations, and this reaction was independent of the substrate on which the material was deposited. The mechanism of the self-catalyzed polymorphic transition and accompanying radical shape change is a typical characteristic of metastable to stable phase transformations in nanostructured polymorphic metal oxides. A heuristic model is used to confirm the metastable to stablemore » growth mechanism. The findings are important to the control electron beam deposition of nanowires for functional applications starting from colloidal precursors.« less

  17. Growth hormone resistance exacerbates cholestasis-induced murine liver fibrosis

    PubMed Central

    Stiedl, Patricia; McMahon, Robert; Blaas, Leander; Stanek, Victoria; Svinka, Jasmin; Grabner, Beatrice; Zollner, Gernot; Kessler, Sonja M.; Claudel, Thierry; Müller, Mathias; Mikulits, Wolfgang; Bilban, Martin; Esterbauer, Harald; Eferl, Robert; Haybaeck, Johannes; Trauner, Michael; Casanova, Emilio

    2016-01-01

    Growth hormone (GH) resistance has been associated with liver cirrhosis in humans but its contribution to the disease remains controversial. In order to elucidate whether GH resistance plays a causal role in the establishment and development of liver fibrosis, or rather represents a major consequence thereof, we challenged mice lacking the Growth hormone receptor gene (Ghr-/-, a model for GH resistance) by crossing them with Mdr2 knockout mice (Mdr2-/-), a mouse model of inflammatory cholestasis and liver fibrosis. Ghr-/-;Mdr2-/- mice showed elevated serum markers associated with liver damage and cholestasis, extensive bile duct proliferation and increased collagen deposition relative to Mdr2 -/- mice, thus suggesting a more severe liver fibrosis phenotype. Additionally, Ghr-/-;Mdr2-/- mice had a pronounced down-regulation of hepato-protective genes Hnf6, Egfr and Igf-1, and significantly increased levels of ROS and apoptosis in hepatocytes, compared to control mice. Moreover, single knockout mice (Ghr-/-) fed with a diet containing 1% cholic acid displayed an increase in hepatocyte ROS production, hepatocyte apoptosis and bile infarcts compared to their wildtype littermates, indicating that loss of Ghr renders hepatocytes more susceptible to toxic bile acid accumulation. Surprisingly, and despite their severe fibrotic phenotype, Ghr-/-;Mdr2-/- mice displayed a significant decrease in tumour incidence compared to Mdr2-/- mice, indicating that loss of Ghr signaling may slow the progression from fibrosis/cirrhosis to cancer in the liver. Conclusion Our findings suggest that GH resistance dramatically exacerbates liver fibrosis in a mouse model of inflammatory cholestasis, therefore suggesting that GH resistance plays a causal role in the disease and provides a novel target for the development of liver fibrosis treatments. PMID:25179284

  18. Catalyst-induced growth of carbon nanotubes on tips of cantilevers and nanowires

    DOEpatents

    Lee, James Weifu; Lowndes, Douglas H.; Merkulov, Vladimir I.; Eres, Gyula; Wei, Yayi; Greenbaum, Elias; Lee, Ida

    2004-06-29

    A method is described for catalyst-induced growth of carbon nanotubes, nanofibers, and other nanostructures on the tips of nanowires, cantilevers, conductive micro/nanometer structures, wafers and the like. The method can be used for production of carbon nanotube-anchored cantilevers that can significantly improve the performance of scaning probe microscopy (AFM, EFM etc). The invention can also be used in many other processes of micro and/or nanofabrication with carbon nanotubes/fibers. Key elements of this invention include: (1) Proper selection of a metal catalyst and programmable pulsed electrolytic deposition of the desired specific catalyst precisely at the tip of a substrate, (2) Catalyst-induced growth of carbon nanotubes/fibers at the catalyst-deposited tips, (3) Control of carbon nanotube/fiber growth pattern by manipulation of tip shape and growth conditions, and (4) Automation for mass production.

  19. Calcium influences sensitivity to growth inhibition induced by a cell surface sialoglycopeptide

    NASA Technical Reports Server (NTRS)

    Betz, N. A.; Fattaey, H. K.; Johnson, T. C.; Spooner, B. S. (Principal Investigator)

    1994-01-01

    While studies concerning mitogenic factors have been an important area of research for many years, much less is understood about the mechanisms of action of cell surface growth inhibitors. We have purified an 18 kDa cell surface sialoglycopeptide growth inhibitor (CeReS-18) which can reversibly inhibit the proliferation of diverse cell types. The studies discussed in this article show that three mouse keratinocyte cell lines exhibit sixty-fold greater sensitivity than other fibroblasts and epithelial-like cells to CeReS-18-induced growth inhibition. Growth inhibition induced by CeReS-18 treatment is a reversible process, and the three mouse keratinocyte cell lines exhibited either single or multiple cell cycle arrest points, although a predominantly G0/G1 cell cycle arrest point was exhibited in Swiss 3T3 fibroblasts. The sensitivity of the mouse keratinocyte cell lines to CeReS-18-induced growth inhibition was not affected by the degree of tumorigenic progression in the cell lines and was not due to differences in CeReS-18 binding affinity or number of cell surface receptors per cell. However, the sensitivity of both murine fibroblasts and keratinocytes could be altered by changing the extracellular calcium concentration, such that increased extracellular calcium concentrations resulted in decreased sensitivity to CeReS-18-induced proliferation inhibition. Thus the increased sensitivity of the murine keratinocyte cell lines to CeReS-18 could be ascribed to the low calcium concentration used in their propagation. Studies are currently under way investigating the role of calcium in CeReS-18-induced growth arrest. The CeReS-18 may serve as a very useful tool to study negative growth control and the signal transduction events associated with cell cycling.

  20. Expression of transforming growth factor alpha and epidermal growth factor receptor in rat lung neoplasms induced by plutonium-239

    SciTech Connect

    Stegelmeier, B.L.; Gillett, N.A.; Hahn, F.F.; Kelly, G.; Rebar, A.H.

    1994-11-01

    Ninety-two rat lung proliferative lesions and neoplasms induced by inhaled {sup 239}PuO{sub 2} were evaluated for aberrant expression of transforming growth factor alpha (TGF-{alpha}) and epidermal growth factor receptor (EGFR). Expression of TGF-{alpha} protein, measured by immunohistochemistry, was higher in 94% of the squamous cell carcinomas and 87% of the foci of alveolar epithelial squamous metaplasia than that exhibited by the normal-appearing, adjacent lung parenchyma. In contrast, only 20% of adenocarcinomas and foci of epithelial hyperplasia expressed elevated levels of TGF-{alpha}. Many neoplasms expressing TGF-{alpha} also expressed excessive levels of EGFR mRNA. Southern and DNA slot blot analyses showed that the elevated EGFR expression was not due to amplification of the EGFR gene. These data suggest that increased amounts of TGF-{alpha} were early alterations in the progression of plutonium-induced squamous cell carcinoma, and these increases may occur in parallel with overexpression of the receptor for this growth factor. Together, these alterations create a potential autocrine loop for sustaining clonal expansion of cells initiated by high-LET radiation. 44 refs., 4 figs., 1 tab.

  1. Growth Enhancement of Radish Sprouts Induced by Low Pressure O2 Radio Frequency Discharge Plasma Irradiation

    NASA Astrophysics Data System (ADS)

    Kitazaki, Satoshi; Koga, Kazunori; Shiratani, Masaharu; Hayashi, Nobuya

    2012-01-01

    We studied growth enhancement of radish sprouts (Raphanus sativus L.) induced by low pressure O2 radio frequency (RF) discharge plasma irradiation. The average length of radish sprouts cultivated for 7 days after O2 plasma irradiation is 30-60% greater than that without irradiation. O2 plasma irradiation does not affect seed germination. The experimental results reveal that oxygen related radicals strongly enhance growth, whereas ions and photons do not.

  2. Ion-induced grain growth and texturing in refractory thin films-A low temperature process

    SciTech Connect

    Seita, M.; Reiser, A.; Spolenak, R.

    2012-12-17

    Selective grain growth can be promoted in thin films independently of the materials intrinsic properties, such as the melting temperature, by ion-irradiation. This enables the previously impossible evolution of large grain-sized microstructures with controlled crystallographic textures even in refractory metals, such as {alpha}-tantalum. Experimental results from materials with different crystal structure are compared on the basis of a theoretical model, which reveals the differences in ion-induced grain-growth dynamics.

  3. Ultrasmooth growth of amorphous silicon films through ion-induced long-range surface correlations

    SciTech Connect

    Redondo-Cubero, A.; Gago, R.; Vazquez, L.

    2011-01-03

    Ultrasmooth amorphous silicon films with a constant roughness below 0.2 nm were produced for film thickness up to {approx}1 {mu}m by magnetron sputtering under negative voltage substrate biasing (100-400 V). In contrast, under unbiased conditions the roughness of the resulting mounded films increased linearly with growth time due to shadowing effects. A detailed analysis of the amorphous film growth dynamics proves that the bias-induced ultrasmoothness is produced by a downhill mass transport process that leads to an extreme surface leveling inducing surface height correlations up to lateral distances close to 0.5 {mu}m.

  4. Exposure to Nerve Growth Factor Worsens Nephrotoxic Effect Induced by Cyclosporine A in HK-2 Cells

    PubMed Central

    Lofaro, Danilo; Toteda, Giuseppina; Lupinacci, Simona; Leone, Francesca; Gigliotti, Paolo; Papalia, Teresa; Bonofiglio, Renzo

    2013-01-01

    Nerve growth factor is a neurotrophin that promotes cell growth, differentiation, survival and death through two different receptors: TrkANTR and p75NTR. Nerve growth factor serum concentrations increase during many inflammatory and autoimmune diseases, glomerulonephritis, chronic kidney disease, end-stage renal disease and, particularly, in renal transplant. Considering that nerve growth factor exerts beneficial effects in the treatment of major central and peripheral neurodegenerative diseases, skin and corneal ulcers, we asked whether nerve growth factor could also exert a role in Cyclosporine A-induced graft nephrotoxicity. Our hypothesis was raised from basic evidence indicating that Cyclosporine A-inhibition of calcineurin-NFAT pathway increases nerve growth factor expression levels. Therefore, we investigated the involvement of nerve growth factor and its receptors in the damage exerted by Cyclosporine A in tubular renal cells, HK-2. Our results showed that in HK-2 cells combined treatment with Cyclosporine A + nerve growth factor induced a significant reduction in cell vitality concomitant with a down-regulation of Cyclin D1 and up-regulation of p21 levels respect to cells treated with Cyclosporine A alone. Moreover functional experiments showed that the co-treatment significantly up-regulated human p21promoter activity by involvement of the Sp1 transcription factor, whose nuclear content was negatively regulated by activated NFATc1. In addition we observed that the combined exposure to Cyclosporine A + nerve growth factor promoted an up-regulation of p75 NTR and its target genes, p53 and BAD leading to the activation of intrinsic apoptosis. Finally, the chemical inhibition of p75NTR down-regulated the intrinsic apoptotic signal. We describe two new mechanisms by which nerve growth factor promotes growth arrest and apoptosis in tubular renal cells exposed to Cyclosporine A. PMID:24244623

  5. Ion-induced grain growth in multilayer and coevaporated metal alloy thin films

    SciTech Connect

    Alexander, D.E.; Was, G.S. . Dept. of Nuclear Engineering); Rehn, L.E. )

    1990-09-01

    Irradiation experiments were conducted on multilayer (ML) and coevaporated (CO) thin films in order to examine the role that the heat of mixing ({Delta}H{sub mix}) has in ion-induced grain growth. Room temperature irradiations using 1.7 MeV Xe were performed in the High Voltage Electron Microscope at Argonne National Laboratory. The alloys studied (Pt-Ti, Pt-V, Pt-Ni, Au-Co and Ni-Al) spanned a large range of {Delta}H{sub mix} values. Comparison of grain growth rates between ML and CO films of a given alloy confirmed a heat of mixing effect. Differences in grain growth rates between ML and CO films scaled according to the sign and magnitude of {Delta}H{sub mix} of the system (with exception of the Pt-V system). Substantial variations in growth rates among CO alloy films experiencing similar irradiation damage demonstrated that a purely collisional approach is inadequate for describing ion-induced grain growth and consideration must also be given to material-specific properties. Results from CO alloy films were consistent with a thermal spike model of ion-induced grain growth. The grain boundary mobility was observed to be proportional to the thermal spike-related parameter, (F{sub D}{sup 2})/({Delta}H{sub coh}{sup 3}), where F{sub D} is the deposited damage energy and {Delta}H{sub coh} is the cohesive energy.

  6. Irradiation-induced grain growth and defect evolution in nanocrystalline zirconia with doped grain boundaries.

    PubMed

    Dey, Sanchita; Mardinly, John; Wang, Yongqiang; Valdez, James A; Holesinger, Terry G; Uberuaga, Blas P; Ditto, Jeff J; Drazin, John W; Castro, Ricardo H R

    2016-06-22

    Grain boundaries are effective sinks for radiation-induced defects, ultimately impacting the radiation tolerance of nanocrystalline materials (dense materials with nanosized grains) against net defect accumulation. However, irradiation-induced grain growth leads to grain boundary area decrease, shortening potential benefits of nanostructures. A possible approach to mitigate this is the introduction of dopants to target a decrease in grain boundary mobility or a reduction in grain boundary energy to eliminate driving forces for grain growth (using similar strategies as to control thermal growth). Here we tested this concept in nanocrystalline zirconia doped with lanthanum. Although the dopant is observed to segregate to the grain boundaries, causing grain boundary energy decrease and promoting dragging forces for thermally activated boundary movement, irradiation induced grain growth could not be avoided under heavy ion irradiation, suggesting a different growth mechanism as compared to thermal growth. Furthermore, it is apparent that reducing the grain boundary energy reduced the effectiveness of the grain boundary as sinks, and the number of defects in the doped material is higher than in undoped (La-free) YSZ. PMID:27282392

  7. GIDE is a mitochondrial E3 ubiquitin ligase that induces apoptosis and slows growth

    PubMed Central

    Zhang, Bicheng; Huang, Jun; Li, Hong-Liang; Liu, Ting; Wang, Yan-Yi; Waterman, Paul; Mao, Ai-Ping; Xu, Liang-Guo; Zhai, Zhonghe; Liu, Depei; Marrack, Philippa; Shu, Hong-Bing

    2011-01-01

    We report here the identification of GIDE, a mitochondrially located E3 ubiquitin ligase. GIDE contains a C-terminal Ring finger domain, which is mostly conserved with those of the IAP family members, and which is required for its E3 ligase activity. Overexpression of GIDE induces apoptosis via a pathway involving activation of caspases since the caspase inhibitors, XIAP and an inactive mutant of caspase-9 block GIDE-induced apoptosis. GIDE also activates JNK, and blockade of JNK activation inhibits GIDE-induced release of cytochrome c and Smac and apoptosis, suggesting that JNK activation precedes release of cytochrome c and Smac and is required for GIDE-induced apoptosis. These proapoptotic properties of GIDE require its E3 ligase activity. When somewhat over or underexpressed, GIDE slows or hastens cell growth respectively. These pro-apoptotic or growth rate effects of GIDE may account for its absence from tumor cells. PMID:18591963

  8. Thymosin β4 Prevents Angiotensin II-Induced Cardiomyocyte Growth by Regulating Wnt/WISP Signaling.

    PubMed

    Li, Li; Guleria, Rakeshwar S; Thakur, Suresh; Zhang, Cheng-Lin; Pan, Jing; Baker, Kenneth M; Gupta, Sudhiranjan

    2016-08-01

    Thymosin beta-4 (Tβ4) is a ubiquitous protein with many properties relating to cell proliferation and differentiation that promotes wound healing and modulates inflammatory mediators. However, the role of Tβ4 in cardiomyocyte hypertrophy is currently unknown. The purpose of this study was to determine the cardio-protective effect of Tβ4 in angiotensin II (Ang II)-induced cardiomyocyte growth. Neonatal rat ventricular cardiomyocytes (NRVM) were pretreated with Tβ4 followed by Ang II stimulation. Cell size, hypertrophy marker gene expression and Wnt signaling components, β-catenin, and Wnt-induced secreted protein-1 (WISP-1) were evaluated by quantitative real-time PCR, Western blotting and fluorescent microscopy. Pre-treatment of Tβ4 resulted in reduction of cell size, hypertrophy marker genes and Wnt-associated gene expression, and protein levels; induced by Ang II in cardiomyocyte. WISP-1 was overexpressed in NRVM and, the effect of Tβ4 in Ang II-induced cardiomyocyte growth was evaluated. WISP-1 overexpression promoted cardiomyocytes growth and was reversed by pretreatment with Tβ4. This is the first report which demonstrates that Tβ4 targets Wnt/WISP-1 to protect Ang II-induced cardiomyocyte growth. J. Cell. Physiol. 231: 1737-1744, 2016. © 2015 Wiley Periodicals, Inc. PMID:26627308

  9. Tumor Growth Suppression Induced by Biomimetic Silk Fibroin Hydrogels.

    PubMed

    Yan, Le-Ping; Silva-Correia, Joana; Ribeiro, Viviana P; Miranda-Gonçalves, Vera; Correia, Cristina; da Silva Morais, Alain; Sousa, Rui A; Reis, Rui M; Oliveira, Ana L; Oliveira, Joaquim M; Reis, Rui L

    2016-01-01

    Protein-based hydrogels with distinct conformations which enable encapsulation or differentiation of cells are of great interest in 3D cancer research models. Conformational changes may cause macroscopic shifts in the hydrogels, allowing for its use as biosensors and drug carriers. In depth knowledge on how 3D conformational changes in proteins may affect cell fate and tumor formation is required. Thus, this study reports an enzymatically crosslinked silk fibroin (SF) hydrogel system that can undergo intrinsic conformation changes from random coil to β-sheet conformation. In random coil status, the SF hydrogels are transparent, elastic, and present ionic strength and pH stimuli-responses. The random coil hydrogels become β-sheet conformation after 10 days in vitro incubation and 14 days in vivo subcutaneous implantation in rat. When encapsulated with ATDC-5 cells, the random coil SF hydrogel promotes cell survival up to 7 days, whereas the subsequent β-sheet transition induces cell apoptosis in vitro. HeLa cells are further incorporated in SF hydrogels and the constructs are investigated in vitro and in an in vivo chick chorioallantoic membrane model for tumor formation. In vivo, Angiogenesis and tumor formation are suppressed in SF hydrogels. Therefore, these hydrogels provide new insights for cancer research and uses of biomaterials. PMID:27485515

  10. Tumor Growth Suppression Induced by Biomimetic Silk Fibroin Hydrogels

    PubMed Central

    Yan, Le-Ping; Silva-Correia, Joana; Ribeiro, Viviana P.; Miranda-Gonçalves, Vera; Correia, Cristina; da Silva Morais, Alain; Sousa, Rui A.; Reis, Rui M.; Oliveira, Ana L.; Oliveira, Joaquim M.; Reis, Rui L.

    2016-01-01

    Protein-based hydrogels with distinct conformations which enable encapsulation or differentiation of cells are of great interest in 3D cancer research models. Conformational changes may cause macroscopic shifts in the hydrogels, allowing for its use as biosensors and drug carriers. In depth knowledge on how 3D conformational changes in proteins may affect cell fate and tumor formation is required. Thus, this study reports an enzymatically crosslinked silk fibroin (SF) hydrogel system that can undergo intrinsic conformation changes from random coil to β-sheet conformation. In random coil status, the SF hydrogels are transparent, elastic, and present ionic strength and pH stimuli-responses. The random coil hydrogels become β-sheet conformation after 10 days in vitro incubation and 14 days in vivo subcutaneous implantation in rat. When encapsulated with ATDC-5 cells, the random coil SF hydrogel promotes cell survival up to 7 days, whereas the subsequent β-sheet transition induces cell apoptosis in vitro. HeLa cells are further incorporated in SF hydrogels and the constructs are investigated in vitro and in an in vivo chick chorioallantoic membrane model for tumor formation. In vivo, Angiogenesis and tumor formation are suppressed in SF hydrogels. Therefore, these hydrogels provide new insights for cancer research and uses of biomaterials. PMID:27485515

  11. Shear induced collateral artery growth modulated by endoglin but not by ALK1

    PubMed Central

    Seghers, Leonard; de Vries, Margreet R; Pardali, Evangelia; Hoefer, Imo E; Hierck, Beerend P; ten Dijke, Peter ten; Goumans, Marie Jose; Quax, Paul HA

    2012-01-01

    Transforming growth factor-beta (TGF-β) stimulates both ischaemia induced angiogenesis and shear stress induced arteriogenesis by signalling through different receptors. How these receptors are involved in both these processes of blood flow recovery is not entirely clear. In this study the role of TGF-β receptors 1 and endoglin is assessed in neovascularization in mice. Unilateral femoral artery ligation was performed in mice heterozygous for either endoglin or ALK1 and in littermate controls. Compared with littermate controls, blood flow recovery, monitored by laser Doppler perfusion imaging, was significantly hampered by maximal 40% in endoglin heterozygous mice and by maximal 49% in ALK1 heterozygous mice. Collateral artery size was significantly reduced in endoglin heterozygous mice compared with controls but not in ALK1 heterozygous mice. Capillary density in ischaemic calf muscles was unaffected, but capillaries from endoglin and ALK1 heterozygous mice were significantly larger when compared with controls. To provide mechanistic evidence for the differential role of endoglin and ALK1 in shear induced or ischaemia induced neovascularization, murine endothelial cells were exposed to shear stress in vitro. This induced increased levels of endoglin mRNA but not ALK1. In this study it is demonstrated that both endoglin and ALK1 facilitate blood flow recovery. Importantly, endoglin contributes to both shear induced collateral artery growth and to ischaemia induced angiogenesis, whereas ALK1 is only involved in ischaemia induced angiogenesis. PMID:22436015

  12. Competition induces allelopathy but suppresses growth and anti-herbivore defence in a chemically rich seaweed

    PubMed Central

    Rasher, Douglas B.; Hay, Mark E.

    2014-01-01

    Many seaweeds and terrestrial plants induce chemical defences in response to herbivory, but whether they induce chemical defences against competitors (allelopathy) remains poorly understood. We evaluated whether two tropical seaweeds induce allelopathy in response to competition with a reef-building coral. We also assessed the effects of competition on seaweed growth and seaweed chemical defence against herbivores. Following 8 days of competition with the coral Porites cylindrica, the chemically rich seaweed Galaxaura filamentosa induced increased allelochemicals and became nearly twice as damaging to the coral. However, it also experienced significantly reduced growth and increased palatability to herbivores (because of reduced chemical defences). Under the same conditions, the seaweed Sargassum polycystum did not induce allelopathy and did not experience a change in growth or palatability. This is the first demonstration of induced allelopathy in a seaweed, or of competitors reducing seaweed chemical defences against herbivores. Our results suggest that the chemical ecology of coral–seaweed–herbivore interactions can be complex and nuanced, highlighting the need to incorporate greater ecological complexity into the study of chemical defence. PMID:24403332

  13. Hepatocyte growth factor protects human endothelial cells against advanced glycation end products-induced apoposis

    SciTech Connect

    Zhou Yijun . E-mail: zhou-yijun@hotmail.com; Wang Jiahe; Zhang Jin

    2006-06-02

    Advanced glycation end products (AGEs) form by a non-enzymatic reaction between reducing sugars and biological proteins, which play an important role in the pathogenesis of atherosclerosis. In this study, we assessed AGEs effects on human umbilical vein endothelial cells (HUVECs) growth, proliferation and apoptosis. Additionally, we investigated whether hepatocyte growth factor (HGF), an anti-apoptotic factor for endothelial cells, prevents AGEs-induced apoptosis of HUVECs. HUVECs were treated with AGEs in the presence or absence of HGF. Treatment of HUVECs with AGEs changed cell morphology, decreased cell viability, and induced DNA fragmentation, leading to apoptosis. Apoptosis was induced by AGEs in a dose- and time-dependent fashion. AGEs markedly elevated Bax and decreased NF-{kappa}B, but not Bcl-2 expression. Additionally, AGEs significantly inhibited cell growth through a pro-apoptotic action involving caspase-3 and -9 activations in HUVECs. Most importantly, pretreatment with HGF protected against AGEs-induced cytotoxicity in the endothelial cells. HGF significantly promoted the expression of Bcl-2 and NF-{kappa}B, while decreasing the activities of caspase-3 and -9 without affecting Bax level. Our data suggest that AGEs induce apoptosis in endothelial cells. HGF effectively attenuate AGEs-induced endothelial cell apoptosis. These findings provide new perspectives in the role of HGF in cardiovascular disease.

  14. Competition induces allelopathy but suppresses growth and anti-herbivore defence in a chemically rich seaweed.

    PubMed

    Rasher, Douglas B; Hay, Mark E

    2014-02-22

    Many seaweeds and terrestrial plants induce chemical defences in response to herbivory, but whether they induce chemical defences against competitors (allelopathy) remains poorly understood. We evaluated whether two tropical seaweeds induce allelopathy in response to competition with a reef-building coral. We also assessed the effects of competition on seaweed growth and seaweed chemical defence against herbivores. Following 8 days of competition with the coral Porites cylindrica, the chemically rich seaweed Galaxaura filamentosa induced increased allelochemicals and became nearly twice as damaging to the coral. However, it also experienced significantly reduced growth and increased palatability to herbivores (because of reduced chemical defences). Under the same conditions, the seaweed Sargassum polycystum did not induce allelopathy and did not experience a change in growth or palatability. This is the first demonstration of induced allelopathy in a seaweed, or of competitors reducing seaweed chemical defences against herbivores. Our results suggest that the chemical ecology of coral-seaweed-herbivore interactions can be complex and nuanced, highlighting the need to incorporate greater ecological complexity into the study of chemical defence. PMID:24403332

  15. Cancer drug troglitazone stimulates the growth and response of renal cells to hypoxia inducible factors.

    PubMed

    Taub, Mary

    2016-03-11

    Troglitazone has been used to suppress the growth of a number of tumors through apoptosis and autophagy. However, previous in vitro studies have employed very high concentrations of troglitazone (≥10(-5) M) in order to elicit growth inhibitory effects. In this report, when employing lower concentrations of troglitazone in defined medium, troglitazone was observed to stimulate the growth of primary renal proximal tubule (RPT) cells. Rosiglitazone, like troglitazone, is a thiazolidinedione (TZD) that is known to activate Peroxisome Proliferator Activated Receptor Υ (PPARΥ). Notably, rosiglitazone also stimulates RPT cell growth, as does Υ-linolenic acids, another PPARΥ agonist. The PPARΥ antagonist GW9662 inhibited the growth stimulatory effect of troglitazone. In addition, troglitazone stimulated transcription by a PPAR Response Element/Luciferase construct. These results are consistent with the involvement of PPARΥ as a mediator of the growth stimulatory effect of troglitazone. In a number of tumor cells, the expression of hypoxia inducible factor (HIF) is increased, promoting the expression of HIF inducible genes, and vascularization. Troglitazone was observed to stimulate transcription by a HIF/luciferase construct. These observations indicate that troglitazone not only promotes growth, also the survival of RPT cells under conditions of hypoxia. PMID:26869517

  16. Diacylglycerol production induced by growth hormone in Ob1771 preadipocytes arises from phosphatidylcholine breakdown

    SciTech Connect

    Catalioto, R.M.; Ailhaud, G.; Negrel, R. )

    1990-12-31

    Growth Hormone has recently been shown to stimulate the formation of diacylglycerol in Ob1771 mouse preadipocyte cells without increasing inositol lipid turnover. Addition of growth hormone to Ob1771 cells prelabelled with ({sup 3}H)glycerol or ({sup 3}H)choline led to a rapid, transient and stoechiometric formation of labelled diacylglycerol and phosphocholine, respectively. In contrast, no change was observed in the level of choline and phosphatidic acid whereas the release of water-soluble metabolites in ({sup 3}H)ethanolamine prelabelled cells exposed to growth hormone was hardly detectable. Stimulation by growth hormone of cells prelabelled with (2-palmitoyl 9, 10 ({sup 3}H))phosphatidylcholine also induced the production of labelled diacyglycerol. Pertussis toxin abolished both diacylglycerol and phosphocholine formation induced by growth hormone. It is concluded that growth hormone mediates diacylglycerol production in Ob1771 cells by means of phosphatidylcholine breakdown involving a phospholipase C which is likely coupled to the growth hormone receptor via a pertussis toxin-sensitive G-protein.

  17. A Histologically Distinctive Interstitial Pneumonia Induced by Overexpression of the Interleukin 6, Transforming Growth Factor β1, or Platelet-Derived Growth Factor B Gene

    NASA Astrophysics Data System (ADS)

    Yoshida, Mitsuhiro; Sakuma, Junko; Hayashi, Seiji; Abe, Kin'ya; Saito, Izumu; Harada, Shizuko; Sakatani, Mitsunoir; Yamamoto, Satoru; Matsumoto, Norinao; Kaneda, Yasufumi; Kishmoto, Tadamitsu

    1995-10-01

    Interstitial pneumonia is characterized by alveolitis with resulting fibrosis of the interstitium. To determine the relevance of humoral factors in the pathogenesis of interstitial pneumonia, we introduced expression vectors into Wistar rats via the trachea to locally overexpress humoral factors in the lungs. Human interleukin (IL) 6 and IL-6 receptor genes induced lymphocytic alveolitis without marked fibroblast proliferation. In contrast, overexpression of human transforming growth factor β1 or human platelet-derived growth factor B gene induced only mild or apparent cellular infiltration in the alveoli, respectively. However, both factors induced significant proliferation of fibroblasts and deposition of collagen fibrils. These histopathologic changes induced by the transforming growth factor β1 and platelet-derived growth factor B gene are partly akin to those changes seen in lung tissues from patients with pulmonary fibrosis and markedly contrast with the changes induced by overexpression of the IL-6 and IL-6 receptor genes that mimics lymphocytic interstitial pneumonia.

  18. Implications of epidermal growth factor (EGF) induced egf receptor aggregation.

    PubMed Central

    Wofsy, C; Goldstein, B; Lund, K; Wiley, H S

    1992-01-01

    To investigate the role of receptor aggregation in EGF binding, we construct a mathematical model describing receptor dimerization (and higher levels of aggregation) that permits an analysis of the influence of receptor aggregation on ligand binding. We answer two questions: (a) Can Scatchard plots of EGF binding data be analyzed productively in terms of two noninteracting receptor populations with different affinities if EGF induced receptor aggregation occurs? No. If two affinities characterize aggregated and monomeric EGF receptors, we show that the Scatchard plot should have curvature characteristic of positively cooperative binding, the opposite of that observed. Thus, the interpretation that the high affinity population represents aggregated receptors and the low affinity population nonaggregated receptors is wrong. If the two populations are interpreted without reference to receptor aggregation, an important determinant of Scatchard plot shape is ignored. (b) Can a model for EGF receptor aggregation and EGF binding be consistent with the "negative curvature" (i.e., curvature characteristic of negatively cooperative binding) observed in most Scatchard plots of EGF binding data? Yes. In addition, the restrictions on the model parameters required to obtain negatively curved Scatchard plots provide new information about binding and aggregation. In particular, EGF binding to aggregated receptors must be negatively cooperative, i.e., binding to a receptor in a dimer (or higher oligomer) having one receptor already bound occurs with lower affinity than the initial binding event. A third question we consider is whether the model we present can be used to detect the presence of mechanisms other than receptor aggregation that are contributing to Scatchard plot curvature. For the membrane and cell binding data we analyzed, the best least squares fits of the model to each of the four data sets deviate systematically from the data, indicating that additional factors are

  19. Role of calcium in growth inhibition induced by a novel cell surface sialoglycopeptide

    NASA Technical Reports Server (NTRS)

    Betz, N. A.; Westhoff, B. A.; Johnson, T. C.; Spooner, B. S. (Principal Investigator)

    1995-01-01

    Our laboratory has purified an 18 kDa cell surface sialoglycopeptide growth inhibitor (CeReS-18) from intact bovine cerebral cortex cells. Evidence presented here demonstrates that sensitivity to CeReS-18-induced growth inhibition in BALB-c 3T3 cells is influenced by calcium, such that a decrease in the calcium concentration in the growth medium results in an increase in sensitivity to CeReS-18. Calcium did not alter CeReS-18 binding to its cell surface receptor and CeReS-18 does not bind calcium directly. Addition of calcium, but not magnesium, to CeReS-18-inhibited 3T3 cells results in reentry into the cell cycle. A greater than 3-hour exposure to increased calcium is required for escape from CeReS-18-induced growth inhibition. The calcium ionophore ionomycin could partially mimic the effect of increasing extracellular calcium, but thapsigargin was ineffective in inducing escape from growth inhibition. Increasing extracellular calcium 10-fold resulted in an approximately 7-fold increase in total cell-associated 45Ca+2, while free intracellular calcium only increased approximately 30%. However, addition of CeReS-18 did not affect total cell-associated calcium or the increase in total cell-associated calcium observed with an increase in extracellular calcium. Serum addition induced mobilization of intracellular calcium and influx across the plasma membrane in 3T3 cells, and pretreatment of 3T3 cells with CeReS-18 appeared to inhibit these calcium mobilization events. These results suggest that a calcium-sensitive step exists in the recovery from CeReS-18-induced growth inhibition. CeReS-18 may inhibit cell proliferation through a novel mechanism involving altering the intracellular calcium mobilization/regulation necessary for cell cycle progression.

  20. Seismic characteristics of tensile fracture growth induced by hydraulic fracturing

    NASA Astrophysics Data System (ADS)

    Eaton, D. W. S.; Van der Baan, M.; Boroumand, N.

    2014-12-01

    Hydraulic fracturing is a process of injecting high-pressure slurry into a rockmass to enhance its permeability. Variants of this process are used for unconventional oil and gas development, engineered geothermal systems and block-cave mining; similar processes occur within volcanic systems. Opening of hydraulic fractures is well documented by mineback trials and tiltmeter monitoring and is a physical requirement to accommodate the volume of injected fluid. Numerous microseismic monitoring investigations acquired in the audio-frequency band are interpreted to show a prevalence of shear-dominated failure mechanisms surrounding the tensile fracture. Moreover, the radiated seismic energy in the audio-frequency band appears to be a miniscule fraction (<< 1%) of the net injected energy, i.e., the integral of the product of fluid pressure and injection rate. We use a simple penny-shaped crack model as a predictive framework to describe seismic characteristics of tensile opening during hydraulic fracturing. This model provides a useful scaling relation that links seismic moment to effective fluid pressure within the crack. Based on downhole recordings corrected for attenuation, a significant fraction of observed microseismic events are characterized by S/P amplitude ratio < 5. Despite the relatively small aperture of the monitoring arrays, which precludes both full moment-tensor analysis and definitive identification of nodal planes or axes, this ratio provides a strong indication that observed microseismic source mechanisms have a component of tensile failure. In addition, we find some instances of periodic spectral notches that can be explained by an opening/closing failure mechanism, in which fracture propagation outpaces fluid velocity within the crack. Finally, aseismic growth of tensile fractures may be indicative of a scenario in which injected energy is consumed to create new fracture surfaces. Taken together, our observations and modeling provide evidence that

  1. Reactive Oxygen Species are involved in BMP-Induced Dendritic Growth in Cultured Rat Sympathetic Neurons

    PubMed Central

    Chandrasekaran, Vidya; Lea, Charlotte; Sosa, Jose Carlo; Higgins, Dennis; Lein, Pamela J.

    2015-01-01

    Previous studies have shown that bone morphogenetic proteins (BMPs) promote dendritic growth in sympathetic neurons; however, the downstream signaling molecules that mediate the dendrite promoting activity of BMPs are not well characterized. Here we test the hypothesis that reactive oxygen species (ROS)-mediated signaling links BMP receptor activation to dendritic growth. In cultured rat sympathetic neurons, exposure to any of three mechanistically distinct antioxidants, diphenylene iodinium (DPI), nordihydroguiaretic acid (NGA) or desferroxamine (DFO), blocked de novo BMP-induced dendritic growth. Addition of DPI to cultures previously induced with BMP to extend dendrites caused dendritic retraction while DFO and NGA prevented further growth of dendrites. The inhibition of the dendrite promoting activity of BMPs by antioxidants was concentration-dependent and occurred without altering axonal growth or neuronal cell survival. Antioxidant treatment did not block BMP activation of SMAD 1,5 as determined by nuclear localization of these SMADs. While BMP treatment did not cause a detectable increase in intracellular ROS in cultured sympathetic neurons as assessed using fluorescent indicator dyes, BMP treatment increased the oxygen consumption rate in cultured sympathetic neurons as determined using the Seahorse XF24 Analyzer, suggesting increased mitochondrial activity. In addition, BMPs upregulated expression of NADPH oxidase 2 (NOX2) and either pharmacological inhibition or siRNA knockdown of NOX2 significantly decreased BMP-7 induced dendritic growth. Collectively, these data support the hypothesis that ROS are involved in the downstream signaling events that mediate BMP7-induced dendritic growth in sympathetic neurons, and suggest that ROS-mediated signaling positively modulates dendritic complexity in peripheral neurons. PMID:26079955

  2. Stress and the Hair Growth Cycle: Cortisol-Induced Hair Growth Disruption.

    PubMed

    Thom, Erling

    2016-08-01

    The stress hormone, cortisol, is known to affect the function and cyclic regulation of the hair follicle. When cortisol is present at high levels it has been demonstrated to reduce the synthesis and accelerate the degradation of important skin elements, namely hyaluronan and proteoglycans by approximately 40%. The following discussion outlines the relationship between stress, cortisol, and the effect on the normal function of the hair follicle. As a result of this connection, important correlations have been established in the literature to form a basis for novel, effective treatments of stress-related hair growth disorders.
    Amongst various treatment methods and substances, oral supplementation with a specific bioavailable proteoglycan stands out as a promising new therapeutic treatment method.

    J Drugs Dermatol. 2016;15(8):1001-1004. PMID:27538002

  3. Effect of growth hormone-releasing factor on growth hormone release in children with radiation-induced growth hormone deficiency

    SciTech Connect

    Lustig, R.H.; Schriock, E.A.; Kaplan, S.L.; Grumbach, M.M.

    1985-08-01

    Five male children who received cranial irradiation for extrahypothalamic intracranial neoplasms or leukemia and subsequently developed severe growth hormone (GH) deficiency were challenged with synthetic growth hormone-releasing factor (GRF-44), in an attempt to distinguish hypothalamic from pituitary dysfunction as a cause of their GH deficiency, and to assess the readily releasable GH reserve in the pituitary. In response to a pulse of GRF-44 (5 micrograms/kg intravenously), mean peak GH levels rose to values higher than those evoked by the pharmacologic agents L-dopa or arginine (6.4 +/- 1.3 ng/mL v 1.5 +/- 0.4 ng/mL, P less than .05). The peak GH value occurred at a mean of 26.0 minutes after administration of GRF-44. These responses were similar to those obtained in children with severe GH deficiency due to other etiologies (peak GH 6.3 +/- 1.7 ng/mL, mean 28.0 minutes). In addition, there was a trend toward an inverse relationship between peak GH response to GRF-44 and the postirradiation interval. Prolactin and somatomedin-C levels did not change significantly after the administration of a single dose of GRF-44. The results of this study support the hypothesis that cranial irradiation in children can lead to hypothalamic GRF deficiency secondary to radiation injury of hypothalamic GRF-secreting neurons. This study also lends support to the potential therapeutic usefulness of GRF-44 or an analog for GH deficiency secondary to cranial irradiation.

  4. Unfolded protein response is required for Aspergillus oryzae growth under conditions inducing secretory hydrolytic enzyme production.

    PubMed

    Tanaka, Mizuki; Shintani, Takahiro; Gomi, Katsuya

    2015-12-01

    Unfolded protein response (UPR) is an intracellular signaling pathway for adaptation to endoplasmic reticulum (ER) stress. In yeast UPR, Ire1 cleaves the unconventional intron of HAC1 mRNA, and the functional Hac1 protein translated from the spliced HAC1 mRNA induces the expression of ER chaperone genes and ER-associated degradation genes for the refolding or degradation of unfolded proteins. In this study, we constructed an ireA (IRE1 ortholog) conditionally expressing strain of Aspergillus oryzae, a filamentous fungus producing a large amount of amylolytic enzymes, and examined the contribution of UPR to ER stress adaptation under physiological conditions. Repression of ireA completely blocked A. oryzae growth under conditions inducing the production of hydrolytic enzymes, such as amylases and proteases. This growth defect was restored by the introduction of unconventional intronless hacA (hacA-i). Furthermore, UPR was observed to be induced by amylolytic gene expression, and the disruption of the transcriptional activator for amylolytic genes resulted in partial growth restoration of the ireA-repressing strain. In addition, a homokaryotic ireA disruption mutant was successfully generated using the strain harboring hacA-i as a parental host. These results indicated that UPR is required for A. oryzae growth to alleviate ER stress induced by excessive production of hydrolytic enzymes. PMID:26496881

  5. MECHANISMS OF ZN-INDUCED SIGNAL INITIATION THROUGH THE EPIDERMAL GROWTH FACTOR RECEPTOR (EGFR)

    EPA Science Inventory

    MECHANISMS OF Zn-INDUCED SIGNAL INITIATION THROUGH THE EPIDERMAL GROWTH FACTOR RECEPTOR (EGFR)
    James M. Samet*, Lee M. Graves? and Weidong Wu?. *Human Studies Division, NHEERL, ORD, Research Triangle Park, NC 27711, and ?Center for Environmental Medicine, University of North C...

  6. Arctiin induces cell growth inhibition through the down-regulation of cyclin D1 expression.

    PubMed

    Matsuzaki, Youichirou; Koyama, Makoto; Hitomi, Toshiaki; Yokota, Tomoya; Kawanaka, Mayumi; Nishikawa, Akiyoshi; Germain, Doris; Sakai, Toshiyuki

    2008-03-01

    Arctiin is a major lignan constituent of Arctium lappa and has anti-cancer properties in animal models. It was recently reported that arctiin induces growth inhibition in human prostate cancer PC-3 cells. However, the growth inhibitory mechanism of arctiin remains unknown. Herein we report that arctiin induces growth inhibition and dephosphorylates the tumor-suppressor retinoblastoma protein in human immortalized keratinocyte HaCaT cells. We also show that the growth inhibition caused by arctiin is associated with the down-regulation of cyclin D1 protein expression. Furthermore, the arctiin-induced suppression of cyclin D1 protein expression occurs in various types of human tumor cells, including osteosarcoma, lung, colorectal, cervical and breast cancer, melanoma, transformed renal cells and prostate cancer. Depletion of the cyclin D1 protein using small interfering RNA-rendered human breast cancer MCF-7 cells insensitive to the growth inhibitory effects of arctiin, implicates cyclin D1 as an important target of arctiin. Taken together, these results suggest that arctiin down-regulates cyclin D1 protein expression and that this at least partially contributes to the anti-proliferative effect of arctiin. PMID:18288407

  7. Growth-induced anisotropy in bismuth - Rare-earth iron garnets

    NASA Technical Reports Server (NTRS)

    Fratello, V. J.; Slusky, S. E. G.; Brandle, C. D.; Norelli, M. P.

    1986-01-01

    The bismuth-doped rare-earth iron garnets, (R3-x-yBixPby)Fe5O12 (Bi:RIG, R = Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, and Y), were prepared under constant growth conditions to investigate the influence of ionic species on the bismuth-based growth-induced uniaxial anisotropy K(u) exp g. The effect of ionic species on growth-induced anisotropy in Bi:RIG was not consistent with the ionic size model of site ordering. In particular, Bi:SmIG, Bi:EuIG, and Bi:TbIG displayed high growth-induced anisotropies, up to 331,000 erg/cu cm at room temperature for x of about 0.5. The temperature dependence of these K(u) exp gs was somewhat higher than that of the well studied Bi:YIG. The site ordering of Bi can be modeled by assuming that small, low-oxygen-coordination BiOw exp +3-2 w melt complexes have a strong site selectivity for small, high-oxygen coordination sites at the growth interface.

  8. Investigation of Buckling Phenomenon Induced by Growth of Vertebral Bodies Using a Mechanical Spine Model

    NASA Astrophysics Data System (ADS)

    Sasaoka, Ryu; Azegami, Hideyuki; Murachi, Shunji; Kitoh, Junzoh; Ishida, Yoshito; Kawakami, Noriaki; Makino, Mitsunori; Matsuyama, Yukihiro

    A hypothesis that idiopathic scoliosis is a buckling phenomenon of the fourth or sixth mode, which is the second or third lateral bending mode, induced by the growth of vertebral bodies was presented in a previous paper by the authors using numerical simulations with a finite-element model of the spine. This paper presents experimental proof of the buckling phenomenon using mechanical spine models constructed with the geometrical data of the finite-element model used in a previous work. Using three spine mechanical models with different materials at intervertebral joints, the change in the natural vibration eigenvalue of the second lateral bending mode with the growth of vertebral bodies was measured by experimental modal analysis. From the result, it was observed that natural vibration eigenvalue decreased with the growth of vertebral bodies. Since the increase in primary factor inducing the buckling phenomenon decreases natural vibration eigenvalue, the obtained result confirms the buckling hypothesis.

  9. Fufang Kushen injection inhibits sarcoma growth and tumor-induced hyperalgesia via TRPV1 signaling pathways.

    PubMed

    Zhao, Zhizheng; Fan, Huiting; Higgins, Tim; Qi, Jia; Haines, Diana; Trivett, Anna; Oppenheim, Joost J; Wei, Hou; Li, Jie; Lin, Hongsheng; Howard, O M Zack

    2014-12-28

    Cancer pain is a deleterious consequence of tumor growth and related inflammation. Opioids and anti-inflammatory drugs provide first line treatment for cancer pain, but both are limited by side effects. Fufang Kushen injection (FKI) is GMP produced, traditional Chinese medicine used alone or with chemotherapy to reduce cancer-associated pain. FKI limited mouse sarcoma growth both in vivo and in vitro, in part, by reducing the phosphorylation of ERK and AKT kinases and BAD. FKI inhibited TRPV1 mediated capsaicin-induced ERK phosphorylation and reduced tumor-induced proinflammatory cytokine production. Thus, FKI limited cancer pain both directly by blocking TRPV1 signaling and indirectly by reducing tumor growth. PMID:25242356

  10. Lattice-mismatch-induced twinning for seeded growth of anisotropic nanostructures.

    PubMed

    Wang, Zhenni; Chen, Zhengzheng; Zhang, Hui; Zhang, Zhaorui; Wu, Haijun; Jin, Mingshang; Wu, Chao; Yang, Deren; Yin, Yadong

    2015-03-24

    Synthesis of anisotropic nanostructures from materials with isotropic crystal structures often requires the use of seeds containing twin planes to break the crystalline symmetry and promote the preferential anisotropic growth. Controlling twinning in seeds is therefore critically important for high-yield synthesis of many anisotropic nanostructures. Here, we demonstrate a unique strategy to induce twinning in metal nanostructures for anisotropic growth by taking advantage of the large lattice mismatch between two metals. By using Au-Cu as an example, we show, both theoretically and experimentally, that deposition of Cu to the surface of single-crystalline Au seeds can build up strain energy, which effectively induces the formation of twin planes. Subsequent seeded growth allows the production of Cu nanorods with high shape anisotropy that is unachievable without the use of Au seeds. This work provides an effective strategy for the preparation of anisotropic metal nanostructures. PMID:25744113

  11. Growth signaling promotes chronological aging in budding yeast by inducing superoxide anions that inhibit quiescence

    PubMed Central

    Weinberger, Martin; Mesquita, Ana; Carroll, Timothy; Marks, Laura; Yang, Hui; Zhang, Zhaojie; Ludovico, Paula; Burhans, William C.

    2010-01-01

    Inhibition of growth signaling pathways protects against aging and age-related diseases in parallel with reduced oxidative stress. The relationships between growth signaling, oxidative stress and aging remain unclear. Here we report that in Saccharomyces cerevisiae, alterations in growth signaling pathways impact levels of superoxide anions that promote chronological aging and inhibit growth arrest of stationary phase cells in G0/G1. Factors that decrease intracellular superoxide anions in parallel with enhanced longevity and more efficient G0/G1 arrest include genetic inactivation of growth signaling pathways that inhibit Rim15p, which activates oxidative stress responses, and downregulation of these pathways by caloric restriction. Caloric restriction also reduces superoxide anions independently of Rim15p by elevating levels of H2O2, which activates superoxide dismutases. In contrast, high glucose or mutations that activate growth signaling accelerate chronological aging in parallel with increased superoxide anions and reduced efficiency of stationary phase G0/G1 arrest. High glucose also activates DNA damage responses and preferentially kills stationary phase cells that fail to arrest growth in G0/G1. These findings suggest that growth signaling promotes chronological aging in budding yeast by elevating superoxide anions that inhibit quiescence and induce DNA replication stress. A similar mechanism likely contributes to aging and age-related diseases in complex eukaryotes. PMID:21076178

  12. Prolyl oligopeptidase inhibition-induced growth arrest of human gastric cancer cells

    SciTech Connect

    Suzuki, Kanayo; Sakaguchi, Minoru; Tanaka, Satoshi; Yoshimoto, Tadashi; Takaoka, Masanori

    2014-01-03

    Highlights: •We examined the effects of prolyl oligopeptidase (POP) inhibition on p53 null gastric cancer cell growth. •POP inhibition-induced cell growth suppression was associated with an increase in a quiescent G{sub 0} state. •POP might regulate the exit from and/or reentry into the cell cycle. -- Abstract: Prolyl oligopeptidase (POP) is a serine endopeptidase that hydrolyzes post-proline peptide bonds in peptides that are <30 amino acids in length. We recently reported that POP inhibition suppressed the growth of human neuroblastoma cells. The growth suppression was associated with pronounced G{sub 0}/G{sub 1} cell cycle arrest and increased levels of the CDK inhibitor p27{sup kip1} and the tumor suppressor p53. In this study, we investigated the mechanism of POP inhibition-induced cell growth arrest using a human gastric cancer cell line, KATO III cells, which had a p53 gene deletion. POP specific inhibitors, 3-((4-[2-(E)-styrylphenoxy]butanoyl)-L-4-hydroxyprolyl)-thiazolidine (SUAM-14746) and benzyloxycarbonyl-thioprolyl-thioprolinal, or RNAi-mediated POP knockdown inhibited the growth of KATO III cells irrespective of their p53 status. SUAM-14746-induced growth inhibition was associated with G{sub 0}/G{sub 1} cell cycle phase arrest and increased levels of p27{sup kip1} in the nuclei and the pRb2/p130 protein expression. Moreover, SUAM-14746-mediated cell cycle arrest of KATO III cells was associated with an increase in the quiescent G{sub 0} state, defined by low level staining for the proliferation marker, Ki-67. These results indicate that POP may be a positive regulator of cell cycle progression by regulating the exit from and/or reentry into the cell cycle by KATO III cells.

  13. PGE{sub 2}-induced colon cancer growth is mediated by mTORC1

    SciTech Connect

    Dufour, Marc Faes, Seraina Dormond-Meuwly, Anne Demartines, Nicolas Dormond, Olivier

    2014-09-05

    Highlights: • PGE{sub 2} activates mTORC1 in colon cancer cells. • Inhibition of mTORC1 blocks PGE{sub 2} induced colon cancer cell growth. • mTORC1 is a signaling intermediary in PGE{sub 2} induced colon cancer cell responses. - Abstract: The inflammatory prostaglandin E{sub 2} (PGE{sub 2}) cytokine plays a key role in the development of colon cancer. Several studies have shown that PGE{sub 2} directly induces the growth of colon cancer cells and furthermore promotes tumor angiogenesis by increasing the production of the vascular endothelial growth factor (VEGF). The signaling intermediaries implicated in these processes have however not been fully characterized. In this report, we show that the mechanistic target of rapamycin complex 1 (mTORC1) plays an important role in PGE{sub 2}-induced colon cancer cell responses. Indeed, stimulation of LS174T cells with PGE{sub 2} increased mTORC1 activity as observed by the augmentation of S6 ribosomal protein phosphorylation, a downstream effector of mTORC1. The PGE{sub 2} EP{sub 4} receptor was responsible for transducing the signal to mTORC1. Moreover, PGE{sub 2} increased colon cancer cell proliferation as well as the growth of colon cancer cell colonies grown in matrigel and blocking mTORC1 by rapamycin or ATP-competitive inhibitors of mTOR abrogated these effects. Similarly, the inhibition of mTORC1 by downregulation of its component raptor using RNA interference blocked PGE{sub 2}-induced LS174T cell growth. Finally, stimulation of LS174T cells with PGE{sub 2} increased VEGF production which was also prevented by mTORC1 inhibition. Taken together, these results show that mTORC1 is an important signaling intermediary in PGE{sub 2} mediated colon cancer cell growth and VEGF production. They further support a role for mTORC1 in inflammation induced tumor growth.

  14. Growth-induced perpendicular magnetic anisotropy and clustering in Ni xPt 1- x alloys

    NASA Astrophysics Data System (ADS)

    Vasumathi, D.; Shapiro, A. L.; Maranville, B. B.; Hellman, F.

    2001-02-01

    Polycrystalline and epitaxial (1 0 0), (1 1 0), and (1 1 1)-oriented Ni 3Pt, NiPt, and NiPt 3 films were deposited over a range of growth temperatures from 80°C to 700°C. Films grown at moderate temperatures (200-400°C) exhibit growth-induced properties similar to Co-Pt alloys: enhanced and broadened Curie temperature, perpendicular magnetic anisotropy and large coercivity. As in Co-Pt, the magnetic properties suggest a clustering of Ni into platelets on the growth surface, as the films are being grown. Unlike Co-Pt, however, NiPt films exhibit a strong orientational dependence of anisotropy and enhanced Curie temperature, possibly resulting from different types of surface reconstructions which affect the growth surface.

  15. The Effect of Eectronic Energy Loss on Irradiation-Induced Grain Growth in Nanocrystalline Oxides

    SciTech Connect

    Zhang, Yanwen; Aidhy, Dilpuneet S.; Varga, Tamas; Moll, Sandra; Edmondson, P. D.; Namavar, Fereydoon; Jin, Ke; Ostrouchov, Christopher N.; Weber, William J.

    2014-01-01

    Grain growth of nanocrystalline materials is generally thermally activated, but can also be driven by irradiation at much lower temperature. In nanocrystalline ceria and zirconia, contributions from both displacement damage and ionization to the grain growth are identified. Our atomistic simulations have revealed fast grain boundary (GB) movements due to the high density of disorder near GBs. Our experimental results have shown that irradiation-induced grain growth is a function of total energy deposited, where the excitation of target electrons and displacement of lattice atoms both contribute to the overall disorder and both play important roles in grain growth. The coupling of energy deposition to the electronic and lattice structures should both be taken into consideration when engineering nanostructural materials.

  16. Hydrogen-induced effects on the CVD growth of high-quality graphene structures.

    PubMed

    Zhang, Xianfeng; Ning, Jing; Li, Xianglong; Wang, Bin; Hao, Long; Liang, Minghui; Jin, Meihua; Zhi, Linjie

    2013-09-21

    In this work, the hydrogen-induced effects on the CVD growth of high-quality graphene have been systematically studied by regulating the growth parameters mainly related to hydrogen. Experimental results demonstrate that under a high hydrogen flow rate, the competitive etching effect during the growth process is more prominent and even shows macroscopic selectivity. Based on these understandings, the hexagonal graphene domains with diverse edge modalities are controllably synthesized on a large scale by elaborately managing the competitive etching effect of hydrogen that existed during the formation of graphene. This study not only contributes to the understanding of the mechanism of CVD growth, especially the effects of hydrogen used in the system, but also provides a facile method to synthesize high-quality graphene structures with trimmed edge morphologies. PMID:23715011

  17. Thermodynamic Self-Limiting Growth of Heteroepitaxial Islands Induced by Nonlinear Elastic Effect.

    PubMed

    Hu, Hao; Niu, Xiaobin; Liu, Feng

    2016-06-01

    We investigate nonlinear elastic effect (NLEF) on the growth of heteroepitaxial islands, a topic of both scientific and technological significance for their applications as quantum dots. We show that the NLEF induces a thermodynamic self-limiting growth mechanism that hinders the strain relaxation of coherent island beyond a maximum size, which is in contrast to indefinite strain relaxation with increasing island size in the linear elastic regime. This self-limiting growth effect shows a strong dependence on the island facet angle, which applies also to islands inside pits patterned in a substrate surface with an additional dependence on the pit inclination angle. Consequently, primary islands nucleate and grow first in the pits and then secondary islands nucleate at the rim around the pits after the primary islands reach the self-limited maximum size. Our theory sheds new lights on understanding the heteroepitaxial island growth and explains a number of past and recent experimental observations. PMID:27203611

  18. Hypothyroxinemia induced by maternal mild iodine deficiency impairs hippocampal myelinated growth in lactational rats.

    PubMed

    Wei, Wei; Wang, Yi; Dong, Jing; Wang, Yuan; Min, Hui; Song, Binbin; Shan, Zhongyan; Teng, Weiping; Xi, Qi; Chen, Jie

    2015-11-01

    Hypothyroxinemia induced by maternal mild iodine deficiency causes neurological deficits and impairments of brain function in offspring. Hypothyroxinemia is prevalent in developing and developed countries alike. However, the mechanism underlying these deficits remains less well known. Given that the myelin plays an important role in learning and memory function, we hypothesize that hippocampal myelinated growth may be impaired in rat offspring exposed to hypothyroxinemia induced by maternal mild iodine deficiency. To test this hypothesis, the female Wistar rats were used and four experimental groups were prepared: (1) control; (2) maternal mild iodine deficiency diet inducing hypothyroxinemia; (3) hypothyroidism induced by maternal severe iodine deficiency diet; (4) hypothyroidism induced by maternal methimazole water. The rats were fed the diet from 3 months before pregnancy to the end of lactation. Our results showed that the physiological changes occuring in the hippocampal myelin were altered in the mild iodine deficiency group as indicated by the results of immunofluorescence of myelin basic proteins on postnatal day 14 and postnatal day 21. Moreover, hypothyroxinemia reduced the expressions of oligodendrocyte lineage transcription factor 2 and myelin-related proteins in the treatments on postnatal day 14 and postnatal day 21. Our data suggested that hypothyroxinemia induced by maternal mild iodine deficiency may impair myelinated growth of the offspring. PMID:24753110

  19. Evaluation of h secretion relative to zeatin-induced growth of detached cucumber cotyledons.

    PubMed

    Ross, C W; Rayle, D L

    1982-11-01

    Cytokinins promote expansion of cotyledons detached from seedlings of more than a dozen species. The zeatin-enhanced expansion of cucumber (Cucumis sativus L. cv Marketer) cotyledons was investigated. In addition, whether acid secretion is involved in wall loosening accompanying such accelerated growth was evaluated. For cotyledons abraded with carborundum or cut into either eight or 18 pieces, we detected no zeatin-enhanced acidification of the growth medium during growth periods of 3 days. Measurements of pH values on each surface of zeatin-treated, abraded cotyledons after 3 days of growth also showed no detectable acidification caused by the hormone. Furthermore, with several buffers at pH values ranging from 5 to 8, growth of nonabraded, abraded, or cut cotyledons with or without zeatin was independent of external pH. However, experiments restricted to about 12 hours indicated that certain acidic buffers enhanced growth of cotyledons cut into 18 pieces. Lastly, concentrations of fusicoccin that caused growth promotion equal to that of zeatin initiated substantial acidification of the medium. Collectively, these data suggest that zeatin-induced expansion of detached cucumber cotyledons is independent of H(+) secretion. PMID:16662700

  20. Control of Electron Beam-Induced Au Nanocrystal Growth Kinetics through Solution Chemistry.

    PubMed

    Park, Jeung Hun; Schneider, Nicholas M; Grogan, Joseph M; Reuter, Mark C; Bau, Haim H; Kodambaka, Suneel; Ross, Frances M

    2015-08-12

    Measurements of solution-phase crystal growth provide mechanistic information that is helpful in designing and synthesizing nanostructures. Here, we examine the model system of individual Au nanocrystal formation within a defined liquid geometry during electron beam irradiation of gold chloride solution, where radiolytically formed hydrated electrons reduce Au ions to solid Au. By selecting conditions that favor the growth of well-faceted Au nanoprisms, we measure growth rates of individual crystals. The volume of each crystal increases linearly with irradiation time at a rate unaffected by its shape or proximity to neighboring crystals, implying a growth process that is controlled by the arrival of atoms from solution. Furthermore, growth requires a threshold dose rate, suggesting competition between reduction and oxidation processes in the solution. Above this threshold, the growth rate follows a power law with dose rate. To explain the observed dose rate dependence, we demonstrate that a reaction-diffusion model is required that explicitly accounts for the species H(+) and Cl(-). The model highlights the necessity of considering all species present when interpreting kinetic data obtained from beam-induced processes, and suggest conditions under which growth rates can be controlled with higher precision. PMID:26207841

  1. Evaluation of H+ Secretion Relative to Zeatin-Induced Growth of Detached Cucumber Cotyledons 1

    PubMed Central

    Ross, Cleon W.; Rayle, David L.

    1982-01-01

    Cytokinins promote expansion of cotyledons detached from seedlings of more than a dozen species. The zeatin-enhanced expansion of cucumber (Cucumis sativus L. cv Marketer) cotyledons was investigated. In addition, whether acid secretion is involved in wall loosening accompanying such accelerated growth was evaluated. For cotyledons abraded with carborundum or cut into either eight or 18 pieces, we detected no zeatin-enhanced acidification of the growth medium during growth periods of 3 days. Measurements of pH values on each surface of zeatin-treated, abraded cotyledons after 3 days of growth also showed no detectable acidification caused by the hormone. Furthermore, with several buffers at pH values ranging from 5 to 8, growth of nonabraded, abraded, or cut cotyledons with or without zeatin was independent of external pH. However, experiments restricted to about 12 hours indicated that certain acidic buffers enhanced growth of cotyledons cut into 18 pieces. Lastly, concentrations of fusicoccin that caused growth promotion equal to that of zeatin initiated substantial acidification of the medium. Collectively, these data suggest that zeatin-induced expansion of detached cucumber cotyledons is independent of H+ secretion. PMID:16662700

  2. Pin1 promotes transforming growth factor-beta-induced migration and invasion.

    PubMed

    Matsuura, Isao; Chiang, Keng-Nan; Lai, Chen-Yu; He, Dongming; Wang, Guannan; Ramkumar, Romila; Uchida, Takafumi; Ryo, Akihide; Lu, Kunping; Liu, Fang

    2010-01-15

    Transforming growth factor-beta (TGF-beta) regulates a wide variety of biological activities. It induces potent growth-inhibitory responses in normal cells but promotes migration and invasion of cancer cells. Smads mediate the TGF-beta responses. TGF-beta binding to the cell surface receptors leads to the phosphorylation of Smad2/3 in their C terminus as well as in the proline-rich linker region. The serine/threonine phosphorylation sites in the linker region are followed by the proline residue. Pin1, a peptidyl-prolyl cis/trans isomerase, recognizes phosphorylated serine/threonine-proline motifs. Here we show that Smad2/3 interacts with Pin1 in a TGF-beta-dependent manner. We further show that the phosphorylated threonine 179-proline motif in the Smad3 linker region is the major binding site for Pin1. Although epidermal growth factor also induces phosphorylation of threonine 179 and other residues in the Smad3 linker region the same as TGF-beta, Pin1 is unable to bind to the epidermal growth factor-stimulated Smad3. Further analysis suggests that phosphorylation of Smad3 in the C terminus is necessary for the interaction with Pin1. Depletion of Pin1 by small hairpin RNA does not significantly affect TGF-beta-induced growth-inhibitory responses and a number of TGF-beta/Smad target genes analyzed. In contrast, knockdown of Pin1 in human PC3 prostate cancer cells strongly inhibited TGF-beta-mediated migration and invasion. Accordingly, TGF-beta induction of N-cadherin, which plays an important role in migration and invasion, is markedly reduced when Pin1 is depleted in PC3 cells. Because Pin1 is overexpressed in many cancers, our findings highlight the importance of Pin1 in TGF-beta-induced migration and invasion of cancer cells. PMID:19920136

  3. Insulin-like growth factor binding protein-3 induces apoptosis in MCF7 breast cancer cells.

    PubMed

    Nickerson, T; Huynh, H; Pollak, M

    1997-08-28

    Insulin-like growth factors (IGFs) are known to have potent antiapoptotic activity. The antiestrogen ICI 182,780 (ICI) is a potent inhibitor of MCF7 human breast cancer cell growth and has recently been reported to act as an antiproliferative agent in part via upregulation of expression of insulin-like growth factor binding proteins (IGFBPs) -3 and -5, which attenuate the bioactivity of IGFs in many experimental systems. We show here that ICI and IGFBP-3 induce apoptosis in MCF7 cells. Treatment of MCF7 cells with 10 nM ICI or 36 nM recombinant human IGFBP. 3 for 72 hours increased apoptosis approximately 3.5-fold relative to control as quantitated by a cell death ELISA which measures DNA fragmentation. Long R3 IGF-I, an IGF-I analogue with greatly reduced affinity for IGFBPs yet similar affinity for IGF-I receptors, was a more potent inhibitor of IGFBP-3-induced and ICI-induced apoptosis than IGF-I. These results suggest that IGFBP-3 enhances apoptosis by reducing bioavailability of ligands for the IGF-I receptor and suggest that modulation of IGFBP-3 expression by ICI contributes to apoptosis induced by this compound. More generally, the data suggest that IGFBPs are regulators of apoptosis. PMID:9299428

  4. Caloric Restriction Normalizes Obesity-Induced Alterations on Regulators of Skeletal Muscle Growth Signaling.

    PubMed

    Dungan, Cory M; Li, Ji; Williamson, David L

    2016-08-01

    The objective of this study was to establish the impact of caloric restriction on high fat diet-induced alterations on regulators of skeletal muscle growth. We hypothesized that caloric restriction would reverse the negative effects of high fat diet-induced obesity on REDD1 and mTOR-related signaling. Following an initial 8 week period of HF diet-induced obesity, caloric restriction (CR ~30 %) was employed while mice continued to consume either a low (LF) or high fat (HF) diet for 8 weeks. Western analysis of skeletal muscle showed that CR reduced (p < 0.05) the obesity-related effects on the lipogenic protein, SREBP1. Likewise, CR reduced (p < 0.05) the obesity-related effects on the hyperactivation of mTORC1 and ERK1/2 signaling to levels comparable to the LF mice. CR also reduced (p < 0.05) obesity-induced expression of negative regulators of growth, REDD1 and cleaved caspase 3. These findings have implications for on the reversibility of dysregulated growth signaling in obese skeletal muscle, using short-term caloric restriction. PMID:27289530

  5. Intracellular insulin-like growth factor-1 induces Bcl-2 expression in airway epithelial cells.

    PubMed

    Chand, Hitendra S; Harris, Jennifer Foster; Mebratu, Yohannes; Chen, Yangde; Wright, Paul S; Randell, Scott H; Tesfaigzi, Yohannes

    2012-05-01

    Bcl-2, a prosurvival protein, regulates programmed cell death during development and repair processes, and it can be oncogenic when cell proliferation is deregulated. The present study investigated what factors modulate Bcl-2 expression in airway epithelial cells and identified the pathways involved. Microarray analysis of mRNA from airway epithelial cells captured by laser microdissection showed that increased expression of IL-1β and insulin-like growth factor-1 (IGF-1) coincided with induced Bcl-2 expression compared with controls. Treatment of cultured airway epithelial cells with IL-1β and IGF-1 induced Bcl-2 expression by increasing Bcl-2 mRNA stability with no discernible changes in promoter activity. Silencing the IGF-1 expression using short hairpin RNA showed that intracellular IGF-1 (IC-IGF-1) was increasing Bcl-2 expression. Blocking epidermal growth factor receptor or IGF-1R activation also suppressed IC-IGF-1 and abolished the Bcl-2 induction. Induced expression and colocalization of IC-IGF-1 and Bcl-2 were observed in airway epithelial cells of mice exposed to LPS or cigarette smoke and of patients with cystic fibrosis and chronic bronchitis but not in the respective controls. These studies demonstrate that IC-IGF-1 induces Bcl-2 expression in epithelial cells via IGF-1R and epidermal growth factor receptor pathways, and targeting IC-IGF-1 could be beneficial to treat chronic airway diseases. PMID:22461702

  6. Stress-induced martensitic transformation in metastable austenitic stainless steels: Effect on fatigue crack growth rate

    NASA Astrophysics Data System (ADS)

    Khan, Z.; Ahmed, M.

    1996-04-01

    This paper addresses the influence of cyclic stress-induced martensitic transformation on fatigue crack growth rates in metastable austenitic stainless steels. At low applied stress and mean stress values in AISI type 301 stainless steel, fatigue crack growth rate is substantially retarded due to a cyclic stress-induced γ-α' and γ-ɛ martensitic transformation occurring at the crack-tip plastic zone. It is suggested that the transformation products produce a compressive residual stress at the tip of the fatigue crack, which essentially lowers the effective stress intensity and hence retards the fatigue crack growth rate. At high applied stress or mean stress values, fatigue crack growth rates in AISI type 301 steels become almost equal to those of stable AISI type 302 alloy. As the amount of transformed products increases (with an increase in applied or mean stress), the strain-hardening effect brought about by the transformed martensite phase appears to accelerate fatigue crack growth, offsetting the contribution from the compressive residual stress produced by the positive volume change of γ → α' or ɛ transformation.

  7. Molecular-Orientation-Induced Rapid Roughening and Morphology Transition in Organic Semiconductor Thin-Film Growth

    PubMed Central

    Yang, Junliang; Yim, Sanggyu; Jones, Tim S.

    2015-01-01

    We study the roughening process and morphology transition of organic semiconductor thin film induced by molecular orientation in the model of molecular semiconductor copper hexadecafluorophthalocyanine (F16CuPc) using both experiment and simulation. The growth behaviour of F16CuPc thin film with the thickness, D, on SiO2 substrate takes on two processes divided by a critical thickness: (1) D ≤ 40 nm, F16CuPc thin films are composed of uniform caterpillar-like crystals. The kinetic roughening is confirmed during this growth, which is successfully analyzed by Kardar-Parisi-Zhang (KPZ) model with scaling exponents α = 0.71 ± 0.12, β = 0.36 ± 0.03, and 1/z = 0.39 ± 0.12; (2) D > 40 nm, nanobelt crystals are formed gradually on the caterpillar-like crystal surface and the film growth shows anomalous growth behaviour. These new growth behaviours with two processes result from the gradual change of molecular orientation and the formation of grain boundaries, which conversely induce new molecular orientation, rapid roughening process, and the formation of nanobelt crystals. PMID:25801646

  8. Plant Pathogen-Induced Water-Soaking Promotes Salmonella enterica Growth on Tomato Leaves

    PubMed Central

    Potnis, Neha; Colee, James; Jones, Jeffrey B.

    2015-01-01

    Plant pathogen infection is a critical factor for the persistence of Salmonella enterica on plants. We investigated the mechanisms responsible for the persistence of S. enterica on diseased tomato plants by using four diverse bacterial spot Xanthomonas species that differ in disease severities. Xanthomonas euvesicatoria and X. gardneri infection fostered S. enterica growth, while X. perforans infection did not induce growth but supported the persistence of S. enterica. X. vesicatoria-infected leaves harbored S. enterica populations similar to those on healthy leaves. Growth of S. enterica was associated with extensive water-soaking and necrosis in X. euvesicatoria- and X. gardneri-infected plants. The contribution of water-soaking to the growth of S. enterica was corroborated by an increased growth of populations on water-saturated leaves in the absence of a plant pathogen. S. enterica aggregates were observed with bacterial spot lesions caused by either X. euvesicatoria or X. vesicatoria; however, more S. enterica aggregates formed on X. euvesicatoria-infected leaves as a result of larger lesion sizes per leaf area and extensive water-soaking. Sparsely distributed lesions caused by X. vesicatoria infection do not support the overall growth of S. enterica or aggregates in areas without lesions or water-soaking; S. enterica was observed as single cells and not aggregates. Thus, pathogen-induced water-soaking and necrosis allow S. enterica to replicate and proliferate on tomato leaves. The finding that the pathogen-induced virulence phenotype affects the fate of S. enterica populations in diseased plants suggests that targeting of plant pathogen disease is important in controlling S. enterica populations on plants. PMID:26386057

  9. Measurement of longitudinal emittance growth using a laser-induced neutralization method

    SciTech Connect

    Yuan, V.W.; Garcia, R.; Johnson, K.F.; Saadatmand, K.; Sander, O.R.; Sandoval, D.; Shinas, M.

    1991-01-01

    A laser-induced neutralization technique, LINDA, has been used to study the longitudinal emittance of the 5-MeV H{sup {minus}} beam exiting the drift-tube Linac (DTL) of the Los Alamos Accelerator Test Stand (ATS). By using multiple laser intersection points, longitudinal emittance growths over drift distances of 23.6 and 30.6 cm were measured. Subsequently, a beam transport line, which consisted of one arm of a beam funnel, was substituted for the drift space. Measurements show that the elements of the funnel constrain emittance growth while the H{sup {minus}} beam is contained within these transport elements.

  10. Testosterone-induced adult neurosphere growth is mediated by sexually-dimorphic aromatase expression

    PubMed Central

    Ransome, Mark I.; Boon, Wah Chin

    2015-01-01

    We derived adult neural stem/progenitor cells (NSPCs) from the sub-ventricular zone of male and female mice to examine direct responses to principal sex hormones. In the presence of epidermal growth factor (EGF) and fibroblast growth factor-2 (FGF2) NSPCs of both sexes expressed nestin and sox2, and could be maintained as neurospheres without addition of any sex hormones. The reverse was not observed; neither testosterone (T), 17β-estradiol (E2) nor progesterone (P4) was able to support neurosphere growth in the absence of EGF and FGF2. Ten nanomolar T, E2 or P4 induced nestin(+) cell proliferation within 20 min and enhanced neurosphere growth over 7 days irrespective of sex, which was abolished by Erk inhibition with 20 μM U0126. Maintaining neurospheres with each sex hormone did not affect subsequent neuronal differentiation. However, 10 nM T, E2 or P4 added during differentiation increased βIII tubulin(+) neuron production with E2 being more potent compared to T and P4 in both sexes. Androgen receptor (AR) inhibition with 20 μM flutamide but not aromatase inhibition with 10 μM letrozole reduced basal and T-induced neurosphere growth in females, while only concurrent inhibition of AR and aromatase produced the same effect in males. This sex-specific effect was supported by higher aromatase expression in male neurospheres compared to females measured by Western blot and green fluorescent protein (GFP) reporter. Ten micromolar menadione induced oxidative stress, impaired neurosphere growth and up-regulated aromatase expression in both sexes. However, under oxidative stress letrozole significantly exacerbated impaired neurosphere growth in males only. While both E2 and T could prevent oxidative stress-induced growth reduction in both sexes, the effects of T were dependent on innate aromatase activity. We show for the first time that intrinsic androgen and estrogen signaling may impact the capacity of NSPCs to produce neural progenitors under pathological

  11. The natural product peiminine represses colorectal carcinoma tumor growth by inducing autophagic cell death

    SciTech Connect

    Lyu, Qing; Tou, Fangfang; Su, Hong; Wu, Xiaoyong; Chen, Xinyi; Zheng, Zhi

    2015-06-19

    Autophagy is evolutionarily conservative in eukaryotic cells that engulf cellular long-lived proteins and organelles, and it degrades the contents through fusion with lysosomes, via which the cell acquires recycled building blocks for the synthesis of new molecules. In this study, we revealed that peiminine induces cell death and enhances autophagic flux in colorectal carcinoma HCT-116 cells. We determined that peiminine enhances the autophagic flux by repressing the phosphorylation of mTOR through inhibiting upstream signals. Knocking down ATG5 greatly reduced the peiminine-induced cell death in wild-type HCT-116 cells, while treating Bax/Bak-deficient cells with peiminine resulted in significant cell death. In summary, our discoveries demonstrated that peiminine represses colorectal carcinoma cell proliferation and cell growth by inducing autophagic cell death. - Highlights: • Peiminine induces autophagy and upregulates autophagic flux. • Peiminine represses colorectal carcinoma tumor growth. • Peiminine induces autophagic cell death. • Peiminine represses mTOR phosphorylation by influencing PI3K/Akt and AMPK pathway.

  12. NOVEL ATYPICAL PKC INHIBITORS PREVENT VASCULAR ENDOTHELIAL GROWTH FACTOR-INDUCED BLOOD-RETINAL BARRIER DYSFUNCTION

    PubMed Central

    Titchenell, Paul M.; Lin, Cheng-Mao; Keil, Jason M.; Sundstrom, Jeffrey M.; Smith, Charles D.; Antonetti, David A.

    2013-01-01

    SYNOPSIS Pro-inflammatory cytokines and growth factors such as vascular endothelial growth factor (VEGF) contribute to the loss of the blood-retinal barrier (BRB) and subsequent macular edema in various retinal pathologies. VEGF signaling requires conventional PKC (PKCβ) activity; however, PKCβ inhibition only partially prevents VEGF-induced endothelial permeability and does not affect pro-inflammatory cytokine-induced permeability suggesting the involvement of alternative signaling pathways. Here, we provide evidence for the involvement of atypical protein kinase C (aPKC) signaling in VEGF-induced endothelial permeability and identify a novel class of inhibitors of aPKC that prevent BRB breakdown in vivo. Genetic and pharmacological manipulations of aPKC isoforms were used to assess their contribution to endothelial permeability in culture. A chemical library was screened using an in vitro kinase assay to identify novel small molecule inhibitors and further medicinal chemistry was performed to delineate a novel pharmacophore. We demonstrate that aPKC isoforms are both sufficient and required for VEGF-induced endothelial permeability. Furthermore, these specific, potent, non-competitive, small molecule inhibitors prevented VEGF-induced tight junction internalization and retinal endothelial permeability in response to VEGF in both primary culture and in rodent retina. These data suggest that aPKC inhibition with 2-amino-4-phenyl-thiophene derivatives may be developed to preserve the BRB in retinal diseases such as diabetic retinopathy or uveitis and the blood-brain barrier (BBB) in the presence of brain tumors. PMID:22721706

  13. Heterogeneous nucleation and growth dynamics in the light-induced phase transition in vanadium dioxide

    DOE PAGESBeta

    Brady, Nathaniel F.; Appavoo, Kannatassen; Seo, Minah; Nag, Joyeeta; Prasankumar, Rohit P.; Haglund, Richard F.; Hilton, David J.

    2016-03-02

    Here we report on ultrafast optical investigations of the light-induced insulator-to-metal phase transition in vanadium dioxide with controlled disorder generated by substrate mismatch. These results reveal common dynamics of this optically-induced phase transition that are independent of this disorder. Lastly, above the fluence threshold for completing the transition to the rutile crystalline phase, we find a common time scale, independent of sample morphology, of 40.5 ± 2 ps that is consistent with nucleation and growth dynamics of the R phase from the parent M1 ground state.

  14. Heterogeneous nucleation and growth dynamics in the light-induced phase transition in vanadium dioxide.

    PubMed

    Brady, Nathaniel F; Appavoo, Kannatassen; Seo, Minah; Nag, Joyeeta; Prasankumar, Rohit P; Haglund, Richard F; Hilton, David J

    2016-03-31

    We report on ultrafast optical investigations of the light-induced insulator-to-metal phase transition in vanadium dioxide with controlled disorder generated by substrate mismatch. These results reveal common dynamics of this optically-induced phase transition that are independent of this disorder. Above the fluence threshold for completing the transition to the rutile crystalline phase, we find a common time scale, independent of sample morphology, of [Formula: see text] ps that is consistent with nucleation and growth dynamics of the R phase from the parent M1 ground state. PMID:26932975

  15. Heterogeneous nucleation and growth dynamics in the light-induced phase transition in vanadium dioxide

    NASA Astrophysics Data System (ADS)

    Brady, Nathaniel F.; Appavoo, Kannatassen; Seo, Minah; Nag, Joyeeta; Prasankumar, Rohit P.; Haglund, Richard F., Jr.; Hilton, David J.

    2016-03-01

    We report on ultrafast optical investigations of the light-induced insulator-to-metal phase transition in vanadium dioxide with controlled disorder generated by substrate mismatch. These results reveal common dynamics of this optically-induced phase transition that are independent of this disorder. Above the fluence threshold for completing the transition to the rutile crystalline phase, we find a common time scale, independent of sample morphology, of 40.5+/- 2 ps that is consistent with nucleation and growth dynamics of the R phase from the parent M1 ground state.

  16. Hyposmotic stress induces cell growth arrest via proteasome activation and cyclin/cyclin-dependent kinase degradation.

    PubMed

    Tao, Guo-Zhong; Rott, Lusijah S; Lowe, Anson W; Omary, M Bishr

    2002-05-31

    Ordered cell cycle progression requires the expression and activation of several cyclins and cyclin-dependent kinases (Cdks). Hyperosmotic stress causes growth arrest possibly via proteasome-mediated degradation of cyclin D1. We studied the effect of hyposmotic conditions on three colonic (Caco2, HRT18, HT29) and two pancreatic (AsPC-1 and PaCa-2) cell lines. Hyposmosis caused reversible cell growth arrest of the five cell lines in a cell cycle-independent fashion, although some cell lines accumulated at the G(1)/S interface. Growth arrest was followed by apoptosis or by formation of multinucleated giant cells, which is consistent with cell cycle catastrophe. Hyposmosis dramatically decreased Cdc2, Cdk2, Cdk4, cyclin B1, and cyclin D3 expression in a time-dependent fashion, in association with an overall decrease in cellular protein synthesis. However, some protein levels remained unaltered, including cyclin E and keratin 8. Selective proteasome inhibition prevented Cdk and cyclin degradation and reversed hyposmotic stress-induced growth arrest, whereas calpain and lysosome enzyme inhibitors had no measurable effect on cell cycle protein degradation. Therefore, hyposmotic stress inhibits cell growth and, depending on the cell type, causes cell cycle catastrophe with or without apoptosis. The growth arrest is due to decreased protein synthesis and proteasome activation, with subsequent degradation of several cyclins and Cdks. PMID:11897780

  17. Quantifying the Rates of Sn Whisker Growth and Plastic Strain Relaxation Using Thermally-Induced Stress

    NASA Astrophysics Data System (ADS)

    Pei, Fei; Bower, Allan F.; Chason, Eric

    2016-01-01

    Whiskers and hillocks that grow out of Sn-based coatings are a critical reliability issue in Pb-free electronics. Although their growth is widely regarded as a stress-relaxation mechanism, quantitative understanding of the relationship between the stress, growth kinetics, and strain relaxation is still lacking. In this work, the well-controlled strain induced by thermal-expansion mismatch was used to study the whiskering behavior of electroplated Sn films. Stress was quantified by monitoring wafer-curvature and the density of whiskers and hillocks was measured simultaneously by use of optical microscopy. Evolution of the volume of individual features was also measured by scanning electron microscopy after different periods of heating. The measurements were used to develop a model for temperature-dependent and stress-dependent growth kinetics of whiskers and hillocks and to determine the amount of strain relaxation which occurs as a result of their formation.

  18. Growth of gold nanoclusters and nanocrystals induced by lysozyme protein in thin film conformation

    NASA Astrophysics Data System (ADS)

    Bhowal, Ashim Chandra; Kundu, Sarathi

    2016-08-01

    Structures and growth behavior of gold nanoclusters and nanocrystals have been explored on thin films of globular protein lysozyme by using UV-vis and photoluminescence spectroscopy, X-ray diffraction (XRD) and atomic force microscopy (AFM). A simple and one-step environment friendly method has been used to grow nanocrystals on protein surface from HAuCl4 solution. It has been found that if different interaction times are provided between lysozyme films and HAuCl4 solution, then initially formed tiny gold nanoclusters on protein surface transform into nanocrystals with the passage of time. XRD analysis shows the formation of faced-centered cubic lattice along (1 1 1) crystalline direction and AFM images confirm the presence of circular, rod-like, triangular and hexagonal crystal structures. Langmuir-like growth behavior has been identified for both the gold nanoclusters and nanocrystals formation induced by the lysozyme films, however, nanocrystal growth is relatively slower than nanocluster.

  19. Diverse Nitrogen Sources in Seminal Fluid Act in Synergy To Induce Filamentous Growth of Candida albicans

    PubMed Central

    Alvarez, Francisco J.; Ryman, Kicki; Hooijmaijers, Cornelis; Bulone, Vincent

    2015-01-01

    The pathogenic fungus Candida albicans is the leading cause of vulvovaginal candidiasis (VVC). VVC represents a major quality-of-life issue for women during their reproductive years, a stage of life where the vaginal epithelium is subject to periodic hormonally induced changes associated with menstruation and concomitant exposure to serum as well as potential intermittent contact with seminal fluid. Seminal fluid potently triggers Candida albicans to switch from yeastlike to filamentous modes of growth, a developmental response tightly linked to virulence. Conversely, vaginal fluid inhibits filamentation. Here, we used artificial formulations of seminal and vaginal fluids that faithfully mimic genuine fluids to assess the contribution of individual components within these fluids to filamentation. The high levels of albumin, amino acids, and N-acetylglucosamine in seminal fluid act synergistically as potent inducers of filamentous growth, even at atmospheric levels of CO2 and reduced temperatures (30°C). Using a simplified in vitro model that mimics the natural introduction of seminal fluid into the vulvovaginal environment, a pulse of artificial seminal fluid (ASF) was found to exert an enduring potential to overcome the inhibitory efficacy of artificial vaginal fluid (AVF) on filamentation. These findings suggest that a transient but substantial change in the nutrient levels within the vulvovaginal environment during unprotected coitus can induce resident C. albicans cells to engage developmental programs associated with virulent growth. PMID:25662979

  20. Silibinin-mediated metabolic reprogramming attenuates pancreatic cancer-induced cachexia and tumor growth

    PubMed Central

    Shukla, Surendra K.; Dasgupta, Aneesha; Mehla, Kamiya; Gunda, Venugopal; Vernucci, Enza; Souchek, Joshua; Goode, Gennifer; King, Ryan; Mishra, Anusha; Rai, Ibha; Nagarajan, Sangeetha; Chaika, Nina V.; Yu, Fang; Singh, Pankaj K.

    2015-01-01

    Pancreatic ductal adenocarcinoma (PDAC) is the fourth leading cause of cancer-related deaths in the US. Cancer-associated cachexia is present in up to 80% of PDAC patients and is associated with aggressive disease and poor prognosis. In the present studies we evaluated an anti-cancer natural product silibinin for its effectiveness in targeting pancreatic cancer aggressiveness and the cachectic properties of pancreatic cancer cells and tumors. Our results demonstrate that silibinin inhibits pancreatic cancer cell growth in a dose-dependent manner and reduces glycolytic activity of cancer cells. Our LC-MS/MS based metabolomics data demonstrates that silibinin treatment induces global metabolic reprogramming in pancreatic cancer cells. Silibinin treatment diminishes c-MYC expression, a key regulator of cancer metabolism. Furthermore, we observed reduced STAT3 signaling in silibinin-treated cancer cells. Overexpression of constitutively active STAT3 was sufficient to substantially revert the silibinin-induced downregulation of c-MYC and the metabolic phenotype. Our in vivo investigations demonstrate that silibinin reduces tumor growth and proliferation in an orthotopic mouse model of pancreatic cancer and prevents the loss of body weight and muscle. It also improves physical activity including grip strength and latency to fall in tumor-bearing mice. In conclusion, silibinin-induced metabolic reprogramming diminishes cell growth and cachectic properties of pancreatic cancer cells and animal models. PMID:26510913

  1. Action Spectrum for Growth Delay Induced in Escherichia coli B/r by Far-Ultraviolet Radiation

    PubMed Central

    Takebe, Hiraku; Jagger, John

    1969-01-01

    An action spectrum for growth delay induced in Escherichia coli B/r by far-ultraviolet radiation (230 to 295 nm) was obtained. It resembles the action spectrum for killing obtained in the same experiments, indicating that the chromophore for growth delay is probably the same as the chromophore for killing. Another action spectrum for killing, obtained under conditions more suitable for chromophore identification, suggests that nucleic acid, either deoxyribonucleic acid or ribonucleic acid, is the chromophore for growth delay induced by far ultraviolet. Isoprenoid quinones, which seem to be important chromophores for growth delay induced by near-ultraviolet radiation (above 300 nm), appear to play a negligible role in growth delay induced by wavelengths below 300 nm. PMID:4891265

  2. Mechanical perturbation-induced ethylene releases apical dominance in Pharbitis nil by restricting shoot growth

    NASA Technical Reports Server (NTRS)

    Prasad, T. K.; Cline, M. G.

    1985-01-01

    Mechanical perturbation (MP, rubbing) or internodes of Pharbitis nil shoots initiates release of lateral buds (LB) from apical dominance within 48 h. Evidence is presented which suggests that MP promotion of LB outgrowth is mediated by ethylene-induced restriction of main shoot growth. Ethylene production in the internodes is stimulated by MP within 2 h. Effects of MP are mimicked by treatments with 1-aminocyclopropane-1-carboxylic acid (ACC) and are negated by the inhibitors of ethylene production or action, aminoethoxy vinylglycine (AVG) and AgNO3. The fact that effects of MP, ACC, and ethylene inhibitors are observed to occur on main shoot growth at least 24 h before they are observed to occur on LB growth suggests a possible cause and effect relationship. MP also causes an increase in internode diameter. MP stimulation of ethylene production appears to be mediated by ACC synthase. The results of this study and our previous studies suggest that apical dominance may be released by any mechanism which induces ethylene restriction of main shoot growth.

  3. BMP7-induced dendritic growth in sympathetic neurons requires p75(NTR) signaling.

    PubMed

    Courter, Lauren A; Shaffo, Frances C; Ghogha, Atefeh; Parrish, Diana J; Lorentz, Christina U; Habecker, Beth A; Lein, Pamela J

    2016-09-01

    Dendritic morphology is a critical determinant of neuronal connectivity, and in postganglionic sympathetic neurons, tonic activity correlates directly with the size of the dendritic arbor. Thus, identifying signaling mechanisms that regulate dendritic arborization of sympathetic neurons is important to understanding how functional neural circuitry is established and maintained in the sympathetic nervous system. Bone morphogenetic proteins (BMPs) promote dendritic growth in sympathetic neurons; however, downstream signaling events that link BMP receptor activation to dendritic growth are poorly characterized. We previously reported that BMP7 upregulates p75(NTR) mRNA in cultured sympathetic neurons. This receptor is implicated in controlling dendritic growth in central neurons but whether p75(NTR) regulates dendritic growth in peripheral neurons is not known. Here, we demonstrate that BMP7 increases p75(NTR) protein in cultured sympathetic neurons, and this effect is blocked by pharmacologic inhibition of signaling via BMP type I receptor. BMP7 does not trigger dendritic growth in sympathetic neurons dissociated from superior cervical ganglia (SCG) of p75(NTR) nullizygous mice, and overexpression of p75(NTR) in p75(NTR) -/- neurons is sufficient to cause dendritic growth even in the absence of BMP7. Morphometric analyses of SCG from wild-type versus p75(NTR) nullizygous mice at 3, 6, and 12 to 16 weeks of age indicated that genetic deletion of p75(NTR) does not prevent dendritic growth but does stunt dendritic maturation in sympathetic neurons. These data support the hypotheses that p75(NTR) is involved in downstream signaling events that mediate BMP7-induced dendritic growth in sympathetic neurons, and suggest that p75(NTR) signaling positively modulates dendritic complexity in sympathetic neurons in vivo. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 76: 1003-1013, 2016. PMID:26663679

  4. Hsp90 inhibitor celastrol reinstates growth plate angiogenesis in thiram-induced tibial dyschondroplasia.

    PubMed

    Nabi, Fazul; Shahzad, Muhammad; Liu, Jingying; Li, Kun; Han, Zhaoqing; Zhang, Ding; Iqbal, Muhammad Kashif; Li, Jiakui

    2016-04-01

    Tibial dyschondroplasia (TD) is an important long bone defect of broiler chickens that disturbs the proximal growth plate and is characterized by non-vascularized cartilage, a distended growth plate and lameness. Celastrol, a medicinal root extract from the plant Tripterygium wilfordii, is reported widely as a well-known heat-shock protein 90 (Hsp90) inhibitor. Recently, Hsp90 inhibition in chondrocyte differentiation and growth-plate vascularization were effective in restoring the morphology of the growth plate. The present study was aimed at investigating Hsp90 inhibition in TD using celastrol. The broiler chicks were divided into three groups; Control; TD induced (40 mg/kg thiram) and celastrol treatment. Hsp90, vascular endothelial growth factor and Flk-1 expressions were evaluated by quantitative real-time polymerase chain reaction and the protein levels of Hsp90 were measured by Western blot analysis. Antioxidant enzymes were determined to assess the liver damage caused by thiram and the protective effects of the medicine were evaluated by levels of serum biomarkers. The expression levels of Hsp90 and vascular endothelial growth factor mRNA transcripts were increased while Flk-1 receptor was decreased in TD-affected chicks. Celastrol therapy inhibited Hsp90 mRNA and protein levels and up-regulated the expressions of receptor Flk-1 in TD-affected tibial growth plates significantly (P < 0.05) in addition to rectifying the damaging effects of thiram on the liver by decreasing the levels of aspartate aminotransferase, alanine aminotransferase and malondialdehyde and correcting the oxidative imbalance. In conclusion, administering celastrol to dyschondroplastic chicks prevented un-vascularized growth plate, lameness and reinstated angiogenesis. Celastrol may be efficacious for the treatment of TD through the inhibition of Hsp90 expression and limiting the liver damage caused by thiram in broiler chickens. PMID:26760966

  5. Inhibition of dipeptidyl peptidase 4 regulates microvascular endothelial growth induced by inflammatory cytokines

    SciTech Connect

    Takasawa, Wataru; Ohnuma, Kei; Hatano, Ryo; Endo, Yuko; Dang, Nam H.

    2010-10-08

    Research highlights: {yields} TNF-{alpha} or IL-1{beta} induces EC proliferation with reduction of CD26 expression. {yields} CD26 siRNA or DPP-4 inhibition enhances TNF-{alpha} or IL-1{beta}-induced EC proliferation. {yields} Loss of CD26/DPP-4 enhances aortic sprouting induced by TNF-{alpha} or IL-1{beta}. {yields} Capillary formation induced by TNF-{alpha} or IL-1{beta} is enahced in the CD26{sup -/-} mice. -- Abstract: CD26/DPP-4 is abundantly expressed on capillary of inflamed lesion as well as effector T cells. Recently, CD26/dipeptidyl peptidase 4 (DPP-4) inhibition has been used as a novel oral therapeutic approach for patients with type 2 diabetes. While accumulating data indicate that vascular inflammation is a key feature of both micro- and macro-vascular complications in diabetes, the direct role of CD26/DPP-4 in endothelial biology is to be elucidated. We herein showed that proinflammatory cytokines such as tumor necrosis factor or interleukin-1 reduce expression of CD26 on microvascular endothelial cells, and that genetical or pharmacological inhibition of CD26/DPP-4 enhances endothelial growth both in vitro and in vivo. With DPP-4 inhibitors being used widely in the treatment of type 2 diabetes, our data strongly suggest that DPP-4 inhibition plays a pivotal role in endothelial growth and may have a potential role in the recovery of local circulation following diabetic vascular complications.

  6. A three-dimensional phase diagram of growth-induced surface instabilities

    NASA Astrophysics Data System (ADS)

    Wang, Qiming; Zhao, Xuanhe

    2015-03-01

    A variety of fascinating morphological patterns arise on surfaces of growing, developing or aging tissues, organs and microorganism colonies. These patterns can be classified into creases, wrinkles, folds, period-doubles, ridges and delaminated-buckles according to their distinctive topographical characteristics. One universal mechanism for the pattern formation has been long believed to be the mismatch strains between biological layers with different expanding or shrinking rates, which induce mechanical instabilities. However, a general model that accounts for the formation and evolution of these various surface-instability patterns still does not exist. Here, we take biological structures at their current states as thermodynamic systems, treat each instability pattern as a thermodynamic phase, and construct a unified phase diagram that can quantitatively predict various types of growth-induced surface instabilities. We further validate the phase diagram with our experiments on surface instabilities induced by mismatch strains as well as the reported data on growth-induced instabilities in various biological systems. The predicted wavelengths and amplitudes of various instability patterns match well with our experimental data. It is expected that the unified phase diagram will not only advance the understanding of biological morphogenesis, but also significantly facilitate the design of new materials and structures by rationally harnessing surface instabilities.

  7. ENDOGLIN is dispensable for vasculogenesis, but required for vascular endothelial growth factor-induced angiogenesis.

    PubMed

    Liu, Zhen; Lebrin, Franck; Maring, Janita A; van den Driesche, Sander; van der Brink, Stieneke; van Dinther, Maarten; Thorikay, Midory; Martin, Sabrina; Kobayashi, Kazuki; Hawinkels, Lukas J A C; van Meeteren, Laurens A; Pardali, Evangelia; Korving, Jeroen; Letarte, Michelle; Arthur, Helen M; Theuer, Charles; Goumans, Marie-José; Mummery, Christine; ten Dijke, Peter

    2014-01-01

    ENDOGLIN (ENG) is a co-receptor for transforming growth factor-β (TGF-β) family members that is highly expressed in endothelial cells and has a critical function in the development of the vascular system. Mutations in Eng are associated with the vascular disease known as hereditary hemorrhagic telangiectasia type l. Using mouse embryonic stem cells we observed that angiogenic factors, including vascular endothelial growth factor (VEGF), induce vasculogenesis in embryoid bodies even when Eng deficient cells or cells depleted of Eng using shRNA are used. However, ENG is required for the stem cell-derived endothelial cells to organize effectively into tubular structures. Consistent with this finding, fetal metatarsals isolated from E17.5 Eng heterozygous mouse embryos showed reduced VEGF-induced vascular network formation. Moreover, shRNA-mediated depletion and pharmacological inhibition of ENG in human umbilical vein cells mitigated VEGF-induced angiogenesis. In summary, we demonstrate that ENG is required for efficient VEGF-induced angiogenesis. PMID:24489709

  8. ENDOGLIN Is Dispensable for Vasculogenesis, but Required for Vascular Endothelial Growth Factor-Induced Angiogenesis

    PubMed Central

    van der Brink, Stieneke; van Dinther, Maarten; Thorikay, Midory; Martin, Sabrina; Kobayashi, Kazuki; Hawinkels, Lukas J. A. C.; van Meeteren, Laurens A.; Pardali, Evangelia; Korving, Jeroen; Letarte, Michelle; Arthur, Helen M.; Theuer, Charles; Goumans, Marie-José; Mummery, Christine; ten Dijke, Peter

    2014-01-01

    ENDOGLIN (ENG) is a co-receptor for transforming growth factor-β (TGF-β) family members that is highly expressed in endothelial cells and has a critical function in the development of the vascular system. Mutations in Eng are associated with the vascular disease known as hereditary hemorrhagic telangiectasia type l. Using mouse embryonic stem cells we observed that angiogenic factors, including vascular endothelial growth factor (VEGF), induce vasculogenesis in embryoid bodies even when Eng deficient cells or cells depleted of Eng using shRNA are used. However, ENG is required for the stem cell-derived endothelial cells to organize effectively into tubular structures. Consistent with this finding, fetal metatarsals isolated from E17.5 Eng heterozygous mouse embryos showed reduced VEGF-induced vascular network formation. Moreover, shRNA-mediated depletion and pharmacological inhibition of ENG in human umbilical vein cells mitigated VEGF-induced angiogenesis. In summary, we demonstrate that ENG is required for efficient VEGF-induced angiogenesis. PMID:24489709

  9. A three-dimensional phase diagram of growth-induced surface instabilities

    PubMed Central

    Wang, Qiming; Zhao, Xuanhe

    2015-01-01

    A variety of fascinating morphological patterns arise on surfaces of growing, developing or aging tissues, organs and microorganism colonies. These patterns can be classified into creases, wrinkles, folds, period-doubles, ridges and delaminated-buckles according to their distinctive topographical characteristics. One universal mechanism for the pattern formation has been long believed to be the mismatch strains between biological layers with different expanding or shrinking rates, which induce mechanical instabilities. However, a general model that accounts for the formation and evolution of these various surface-instability patterns still does not exist. Here, we take biological structures at their current states as thermodynamic systems, treat each instability pattern as a thermodynamic phase, and construct a unified phase diagram that can quantitatively predict various types of growth-induced surface instabilities. We further validate the phase diagram with our experiments on surface instabilities induced by mismatch strains as well as the reported data on growth-induced instabilities in various biological systems. The predicted wavelengths and amplitudes of various instability patterns match well with our experimental data. It is expected that the unified phase diagram will not only advance the understanding of biological morphogenesis, but also significantly facilitate the design of new materials and structures by rationally harnessing surface instabilities. PMID:25748825

  10. Hypoxia-Induced Vascular Endothelial Growth Factor Expression Precedes Neovascularization after Cerebral Ischemia

    PubMed Central

    Marti, Hugo J. H.; Bernaudin, Myriam; Bellail, Anita; Schoch, Heike; Euler, Monika; Petit, Edwige; Risau, Werner

    2000-01-01

    We investigated the hypothesis that hypoxia induces angiogenesis and thereby may counteract the detrimental neurological effects associated with stroke. Forty-eight to seventy-two hours after permanent middle cerebral artery occlusion we found a strong increase in the number of newly formed vessels at the border of the infarction. Using the hypoxia marker nitroimidazole EF5, we detected hypoxic cells in the ischemic border of the neocortex. Expression of vascular endothelial growth factor (VEGF), which is the main regulator of angiogenesis and is inducible by hypoxia, was strongly up-regulated in the ischemic border, at times between 6 and 24 hours after occlusion. In addition, both VEGF receptors (VEGFRs) were up-regulated at the border after 48 hours and later in the ischemic core. Finally, the two transcription factors, hypoxia-inducible factor-1 (HIF-1) and HIF-2, known to be involved in the regulation of VEGF and VEGFR gene expression, were increased in the ischemic border after 72 hours, suggesting a regulatory function for these factors. These results strongly suggest that the VEGF/VEGFR system, induced by hypoxia, leads to the growth of new vessels after cerebral ischemia. Exogenous support of this natural protective mechanism might lead to enhanced survival after stroke. PMID:10702412

  11. Activation of Nod1 Signaling Induces Fetal Growth Restriction and Death through Fetal and Maternal Vasculopathy

    PubMed Central

    Nishio, Hisanori; Takada, Hidetoshi; Sakai, Yasunari; Nanishi, Etsuro; Ochiai, Masayuki; Onimaru, Mitsuho; Chen, Si Jing; Matsui, Toshiro; Hara, Toshiro

    2016-01-01

    Intrauterine fetal growth restriction (IUGR) and death (IUFD) are both serious problems in the perinatal medicine. Fetal vasculopathy is currently considered to account for a pathogenic mechanism of IUGR and IUFD. We previously demonstrated that an innate immune receptor, the nucleotide-binding oligomerization domain-1 (Nod1), contributed to the development of vascular inflammations in mice at postnatal stages. However, little is known about the deleterious effects of activated Nod1 signaling on embryonic growth and development. We report that administration of FK565, one of the Nod1 ligands, to pregnant C57BL/6 mice induced IUGR and IUFD. Mass spectrometry analysis revealed that maternally injected FK565 was distributed to the fetal tissues across placenta. In addition, maternal injection of FK565 induced robust increases in the amounts of CCL2, IL-6, and TNF proteins as well as NO in maternal, placental and fetal tissues. Nod1 was highly expressed in fetal vascular tissues, where significantly higher levels of CCL2 and IL-6 mRNAs were induced with maternal injection of FK565 than those in other tissues. Using Nod1-knockout mice, we verified that both maternal and fetal tissues were involved in the development of IUGR and IUFD. Furthermore, FK565 induced upregulation of genes associated with immune response, inflammation, and apoptosis in fetal vascular tissues. Our data thus provided new evidence for the pathogenic role of Nod1 in the development of IUGR and IUFD at the maternal-fetal interface. PMID:26880761

  12. BMP2-Induced Inflammation Can Be Suppressed by the Osteoinductive Growth Factor NELL-1

    PubMed Central

    Shen, Jia; James, Aaron W.; Zara, Janette N.; Asatrian, Greg; Khadarian, Kevork; Zhang, James B.; Ho, Stephanie; Kim, Hyun Ju

    2013-01-01

    Bone-morphogenetic protein 2 (BMP2) is currently the only Food and Drug Administration-approved osteoinductive growth factor used in clinical settings for bone regeneration and repair. However, the use of BMP2 is encumbered by numerous clinical complications, including postoperative inflammation and life-threatening cervical swelling. Thus, methods to prevent BMP2-induced inflammation would have far-reaching clinical implications toward improving current BMP2-based methods for bone regeneration. For the first time, we investigate the potential role of the growth factor Nel-like molecule-1 (NELL-1) in inhibiting BMP2-induced inflammation. Adult rats underwent a femoral bone onlay procedure, treated with either BMP2 protein (4 mg/mL), NELL-1 protein (4 mg/mL), or both proteins combined. Animals were evaluated at 3, 7, and 14 days postoperatively by histology, histomorphometry, immunohistochemistry, and real-time PCR for markers of inflammation (TNFα, IL6). The relative levels of TNFα and IL6 in serum were also detected by ELISA. The mechanism for NELL-1's anti-inflammatory effect was further assessed through examining inflammatory markers and generation of reactive oxygen species (ROS) in the mouse embryonic fibroblast NIH3T3 cells. BMP2 significantly induced local inflammation, including an early and pronounced polymorphonuclear cell infiltration accompanied by increased expression of TNFα and IL6. Treatment with NELL-1 alone elicited no significant inflammatory response. However, NELL-1 significantly attenuated BMP2-induced inflammation by all markers and at all timepoints. These local findings were also confirmed using systemic serum inflammatory biomarkers (TNFα, IL6). In each case, NELL-1 fully reversed BMP2-induced systemic inflammation. Lastly, our findings were recapitulated in vitro, where NELL-1 suppressed BMP2 induced expression of inflammatory markers, as well as NF-κB transcriptional activity and generation of ROS. BMP2-induced inflammation is a

  13. Role for the epidermal growth factor receptor in chemotherapy-induced alopecia.

    PubMed

    Bichsel, Kyle J; Gogia, Navdeep; Malouff, Timothy; Pena, Zachary; Forney, Eric; Hammiller, Brianna; Watson, Patrice; Hansen, Laura A

    2013-01-01

    Treatment of cancer patients with chemotherapeutics like cyclophosphamide often causes alopecia as a result of premature and aberrant catagen. Because the epidermal growth factor receptor (EGFR) signals anagen hair follicles to enter catagen, we hypothesized that EGFR signaling may be involved in cyclophosphamide-induced alopecia. To test this hypothesis, skin-targeted Egfr mutant mice were generated by crossing floxed Egfr and Keratin 14 promoter-driven Cre recombinase mice. Cyclophosphamide treatment of control mice resulted in alopecia while Egfr mutant skin was resistant to cyclophosphamide-induced alopecia. Egfr mutant skin entered catagen normally, as indicated by dermal papilla condensation and decreased follicular proliferation, but did not progress to telogen as did Egfr wild type follicles. Egfr mutant follicles responded with less proliferation, apoptosis, and fewer p53-positive cells after cyclophosphamide. Treatment of control mice with the EGFR inhibitors erlotinib or gefitinib similarly suppressed alopecia and catagen progression by cyclophosphamide. Secondary analysis of clinical trials utilizing EGFR-targeted therapies and alopecia-inducing chemotherapy also revealed evidence for involvement of EGFR in chemotherapy-induced alopecia. Taken together, our results demonstrated the involvement of EGFR signaling in chemotherapy-induced alopecia, which will help in the design of novel therapeutic regimens to minimize chemotherapy-induced alopecia. PMID:23894460

  14. Paclitaxel induces vascular endothelial growth factor expression through reactive oxygen species production.

    PubMed

    Kim, Hyun Sun; Oh, Jin Mi; Jin, Dong Hoon; Yang, Kyu-Hwan; Moon, Eun-Yi

    2008-01-01

    The antineoplastic drug paclitaxel is known to block cells in the G2/M phase of the cell cycle through stabilization of microtubules. The development of paclitaxel resistance in tumors is one of the most significant obstacles to successful therapy. Vascular endothelial growth factor (VEGF) and hypoxia-inducible factor 1 (HIF-1) are important regulators of neovascularization. HIF-1 regulates VEGF expression at the transcriptional level. Here, we investigated whether paclitaxel treatment affects VEGF expression for the development of paclitaxel resistance. Paclitaxel treatment induced dose-dependent cell death and increased VEGF expression. Paclitaxel also induced nuclear factor-kappaB activation and stabilized HIF-1alpha, which stimulated luciferase activity of HIF-1alpha response element on VEGF gene. As paclitaxel treatment produced reactive oxygen species (ROS), VEGF expression was increased by H2O2 treatment and reduced by various ROS scavengers such as N-acetyl-L-cysteine, pyrrolidine dithiocarbamate and diphenylene iodonium. Paclitaxel-induced cell death was aggravated by incubation with those ROS scavengers. Collectively, this suggests that paclitaxel-induced VEGF expression could be mediated by paclitaxel-induced ROS production through nuclear factor-kappaB activation and HIF-1alpha stabilization, which could affect resistance induction to antitumor therapeutics during cancer treatment. PMID:18322419

  15. Knockdown of stromal interaction molecule 1 attenuates hepatocyte growth factor-induced endothelial progenitor cell proliferation.

    PubMed

    Shi, Yankun; Song, Mingbao; Guo, Ruiwei; Wang, Hong; Gao, Pan; Shi, Weibin; Huang, Lan

    2010-03-01

    Increased Ca(2+) entry through store-operated Ca(2+) channels (SOCCs) plays an essential role in the regulation of hepatocyte growth factor (HGF)-induced cell proliferation. Stromal interaction molecule 1 (STIM1) is thought to transmit endoplasmic reticulum (ER) Ca(2+) store depletion signals to the plasma membrane (PM), causing the opening of SOCCs in the PM. However, the relationship between HGF and STIM1 in endothelial progenitor cell (EPC) proliferation remains uncharacterized. The objective of this study was to evaluate the potential involvement of STIM1 in HGF-induced EPC proliferation. For this purpose, we used cultured rat bone marrow-derived EPCs and found that HGF-induced EPC proliferation at low concentrations. Store-operated Ca(2+) entry (SOCE) was elevated in HGF-treated EPCs, and the SOCC inhibitors 2-aminoethoxydiphenyl borate (2-APB) and BTP-2 inhibited the HGF-induced proliferation response. Moreover, STIM1 mRNA and protein expression levels were increased in response to HGF stimulation and knockdown of STMI1 decreased SOCE and prevented HGF-induced EPC proliferation. In conclusion, our data suggest that HGF-induced EPC proliferation is mediated partly via activation of STIM1. PMID:20404049

  16. NOS Inhibition Modulates Immune Polarization and Improves Radiation-Induced Tumor Growth Delay.

    PubMed

    Ridnour, Lisa A; Cheng, Robert Y S; Weiss, Jonathan M; Kaur, Sukhbir; Soto-Pantoja, David R; Basudhar, Debashree; Heinecke, Julie L; Stewart, C Andrew; DeGraff, William; Sowers, Anastasia L; Thetford, Angela; Kesarwala, Aparna H; Roberts, David D; Young, Howard A; Mitchell, James B; Trinchieri, Giorgio; Wiltrout, Robert H; Wink, David A

    2015-07-15

    Nitric oxide synthases (NOS) are important mediators of progrowth signaling in tumor cells, as they regulate angiogenesis, immune response, and immune-mediated wound healing. Ionizing radiation (IR) is also an immune modulator and inducer of wound response. We hypothesized that radiation therapeutic efficacy could be improved by targeting NOS following tumor irradiation. Herein, we show enhanced radiation-induced (10 Gy) tumor growth delay in a syngeneic model (C3H) but not immunosuppressed (Nu/Nu) squamous cell carcinoma tumor-bearing mice treated post-IR with the constitutive NOS inhibitor N(G)-nitro-l-arginine methyl ester (L-NAME). These results suggest a requirement of T cells for improved radiation tumor response. In support of this observation, tumor irradiation induced a rapid increase in the immunosuppressive Th2 cytokine IL10, which was abated by post-IR administration of L-NAME. In vivo suppression of IL10 using an antisense IL10 morpholino also extended the tumor growth delay induced by radiation in a manner similar to L-NAME. Further examination of this mechanism in cultured Jurkat T cells revealed L-NAME suppression of IR-induced IL10 expression, which reaccumulated in the presence of exogenous NO donor. In addition to L-NAME, the guanylyl cyclase inhibitors ODQ and thrombospondin-1 also abated IR-induced IL10 expression in Jurkat T cells and ANA-1 macrophages, which further suggests that the immunosuppressive effects involve eNOS. Moreover, cytotoxic Th1 cytokines, including IL2, IL12p40, and IFNγ, as well as activated CD8(+) T cells were elevated in tumors receiving post-IR L-NAME. Together, these results suggest that post-IR NOS inhibition improves radiation tumor response via Th1 immune polarization within the tumor microenvironment. PMID:25990221

  17. MAP kinase mediates epidermal growth factor- and phorbol ester-induced prostacyclin formation in cardiomyocytes.

    PubMed

    Braconi Quintaje, S; Rebsamen, M; Church, D J; Vallotton, M B; Lang, U

    1998-05-01

    We studied the role of protein kinase C (PKC) and mitogen-activated protein kinase (MAPK) in epidermal growth factor (EGF)-induced prostacyclin (PGI2) production in cultured, spontaneously-beating neonatal ventricular rat cardiomyocytes. To this purpose, the effect of EGF on cardiomyocyte MAPK phosphorylation, MAPK activity and PGI2-production were investigated, and compared to those induced by the PKC activator 4 beta phorbol 12-myristate 13-acetate (PMA). Both EGF (0.1 microM) and PMA (0.1 microM) induced the rapid and reversible phosphorylation of 42 KDa-MAPK in ventricular cardiomyocytes, responses that were accompanied by transient increases in MAPK activity (190-230% of control values within 5 min), and two- to three-fold increases in PGI2 formation. The tyrosine kinase inhibitors lavendustin (1 microM) and genistein (10 microM) strongly inhibited EGF-induced MAPK activation and PGI2-formation, but had no effect on PMA-stimulated responses. Experiments with the PKC inhibitor CGP 41251 (1 microM) or with PKC-downregulated cells demonstrated that in contrast to the PMA-stimulated responses, EGF-induced MAPK activation and PGI2-production were PKC-independent processes. Investigating the role of MAPK in EGF- and in PMA-promoted PGI2-formation, we found that the MAPK-inhibitor 6-thioguanine (500 microM), as well as the MAPK-kinase-inhibitor PD98059 (50 microM) abolished both EGF- and PMA-stimulated PGI2-production in cardiomyocytes. Our results indicate that MAPK-activation is at the basis of both growth factor receptor and PKC-dependent eicosanoid-formation in ventricular cardiomyocytes, where EGF-induced prostaglandin-production takes place via a PKC-independent pathway. PMID:9618234

  18. Growth factor induced proliferation, migration, and lumen formation of rat endometrial epithelial cells in vitro.

    PubMed

    Islam, Md Rashedul; Yamagami, Kazuki; Yoshii, Yuka; Yamauchi, Nobuhiko

    2016-06-17

    Endometrial modulation is essential for the preservation of normal uterine physiology, and this modulation is driven by a number of growth factors. The present study investigated the mitogenic, motogenic, and morphogenic effects of epidermal growth factor (EGF) and hepatocyte growth factor (HGF) on rat endometrial epithelial (REE) cells. The REE cells were isolated and cultured and then characterized based on their morphology and their expression of epithelial cell markers. The MTT assay revealed that EGF and HGF induce proliferation of REE cells. Consistent with increased proliferation, we found that the cell cycle regulatory factor Cyclin D1 was also upregulated upon EGF and HGF addition. REE cell migration was prompted by EGF, as observed with the Oris Cell Migration Assay. The morphogenic impact of growth factors on REE cells was studied in a three-dimensional BD Matrigel cell culture system, wherein these growth factors also increased the frequency of lumen formation. In summary, we show that EGF and HGF have a stimulatory effect on REE cells, promoting proliferation, cell migration, and lumen formation. Our findings provide important insights that further the understanding of endometrial regeneration and its regulation. PMID:26946922

  19. Large plasma-membrane depolarization precedes rapid blue-light-induced growth inhibition in cucumber

    NASA Technical Reports Server (NTRS)

    Spalding, E. P.; Cosgrove, D. J.

    1989-01-01

    Blue-light (BL)-induced suppression of elongation of etiolated Cucumis sativus L. hypocotyls began after a 30-s lag time, which was halved by increasing the fluence rate from 10 to 100 micromoles m-2 s-1. Prior to the growth suppression, the plasma-membrane of the irradiated cells depolarized by as much as 100 mV, then returned within 2-3 min to near its initial value. The potential difference measured with surface electrodes changed with an identical time course but opposite polarity. The lag time for the change in surface potential showed an inverse dependence on fluence rate, similar to the lag for the growth inhibition. Green light and red light caused neither the electrical response nor the rapid inhibition of growth. The depolarization by BL did not propagate to nonirradiated regions and exhibited a refractory period of about 10 min following a BL pulse. Fluence-response relationships for the electrical and growth responses provide correlational evidence that the plasma-membrane depolarization reflects an event in the transduction chain of this light-growth response.

  20. Laser induced chemical vapor phase epitaxial growth of III-V semiconductor films

    NASA Astrophysics Data System (ADS)

    Chu, Shirley S.; Chu, Ting L.

    1991-05-01

    The objective of this project is to investigate the homo- and hetero-epitaxial growth of device quality III-V semiconductor films by the free electron laser (FEL) induced growth at lower temperatures. An ArF excimer laser was used in this investigation. Metalorganic vapor phase epitaxy (MOVPE) is the commonly used technique in the growth of III-V compounds and alloys. The major concern to the use of MOVPE is the hazard involved in using highly toxic arsine and phosphine gases as the group V source materials. Efforts during this period have been focused to the homoepitaxial growth of GaAs and heteroepitaxial growth of InP on GaAs using alternate sources to eliminate the use of arsine and phosphine. Good quality epitaxial GaAs films have been prepared from elemental arsenic for the first time by either conventional substrate heating or laser enhanced processes. The epitaxial GaAs films grown from elemental arsenic are suitable for many GaAs based devices, particularly for large area devices such as solar cells. Significant cost reduction and less stringent safety requirements are major advantages.

  1. Mechanism of growth delay induced in Escherichia coli by near ultraviolet radiation.

    PubMed Central

    Ramabhadran, T V; Jagger, J

    1976-01-01

    Continuously growing cultures of E. coli B/r were irradiated with a fluence of broad-band near-ultraviolet radiation (315-405 nm) sufficient to cause extensive growth delay and complete cessation of net RNA synthesis. Chloramphenicol treatment was found to stimulate resumption of RNA synthesis, similar to that observed with chloramphenicol treatment after amino-acid starvation. E. coli strains in which amino-acid starvation does not result in cessation of RNA synthesis ("relaxed" or rel- strains) show no cessation of growth and only a slight effect on the rate of growth or of RNA synthesis. These findings show that such near-UV fluences do not inactivate the RNA synthetic machinery but affect the regulation of RNA synthesis, in a manner similat to that produced by amino-acid starvation. Such regulation is believed to be mediated through alterations in concentration of guanosine tetraphosphate (ppGpp), and our estimations of ppGpp after near-UV irradiation are consistent with such an interpretation. These data, combined with earlier published data, strongly suggest that the mechanism of near-UV-induced growth delay in E. coli involves partial inactivation of certain tRNA species, which is interpreted by the cell in a manner similar to that of amino-acid starvation, causing a rise in ppGpp levels, a shut-off of net RNA synthesis, and the induction of a growth delay. Images PMID:1108019

  2. Malathion exposure induces the endocrine disruption and growth retardation in the catfish, Clarias batrachus (Linn.).

    PubMed

    Lal, Bechan; Sarang, Mukesh Kumar; Kumar, Pankaj

    2013-01-15

    Many hormones are known for their role in the regulation of metabolic activities and somatic growth in fishes. The present study deals with the effects of malathion (an organophosphorous pesticide) on the levels of metabolic hormones that are responsible for promotion of somatic and ovarian growth of the freshwater catfish, Clarias batrachus. Malathion treatment for thirty days drastically reduced the food intake and body weight of fish. These fish also exhibited a great avoidance to food. Exposure of catfish to malathion reduced the levels of thyroxine (T(4)), triiodothyronine (T(3)), growth hormone (GH), insulin like growth factor-I (IGF-I), testosterone (T) and estradiol-17β (E(2)) in a dose dependent manner during all the studied reproductive phases, in general, except that malathion increased the level of GH during the quiescence phase. Significant reduction in muscle and hepatic protein content also occurred in the malathion-treated fish. Malathion exposure induced lipolysis too in the liver and muscle. The results thus support that malathion treatment disrupts the endocrine functions and the olfactory sensation responsible for food intake and gustatory feeding behavior, which ultimately leads to retardation of fish growth. PMID:23174696

  3. Growth factor induced proliferation, migration, and lumen formation of rat endometrial epithelial cells in vitro

    PubMed Central

    ISLAM, Md. Rashedul; YAMAGAMI, Kazuki; YOSHII, Yuka; YAMAUCHI, Nobuhiko

    2016-01-01

    Endometrial modulation is essential for the preservation of normal uterine physiology, and this modulation is driven by a number of growth factors. The present study investigated the mitogenic, motogenic, and morphogenic effects of epidermal growth factor (EGF) and hepatocyte growth factor (HGF) on rat endometrial epithelial (REE) cells. The REE cells were isolated and cultured and then characterized based on their morphology and their expression of epithelial cell markers. The MTT assay revealed that EGF and HGF induce proliferation of REE cells. Consistent with increased proliferation, we found that the cell cycle regulatory factor Cyclin D1 was also upregulated upon EGF and HGF addition. REE cell migration was prompted by EGF, as observed with the Oris Cell Migration Assay. The morphogenic impact of growth factors on REE cells was studied in a three-dimensional BD Matrigel cell culture system, wherein these growth factors also increased the frequency of lumen formation. In summary, we show that EGF and HGF have a stimulatory effect on REE cells, promoting proliferation, cell migration, and lumen formation. Our findings provide important insights that further the understanding of endometrial regeneration and its regulation. PMID:26946922

  4. RARalpha is a regulatory factor for Am-80-induced cell growth inhibition of hematologic malignant cells.

    PubMed

    Jimi, Shiro; Mashima, Kota; Matsumoto, Taichi; Hara, Shuji; Suzumiya, Junji; Tamura, Kazuo

    2007-08-01

    Retinoids are used for treatment of acute promyelocytic leukemia (APL). Am-80, Tamibarotene, binds to retinoic acid receptor alpha (RARalpha) more specifically than all-trans retinoic acid. We studied the tumor cell suppressive effects of Am-80, with respect to cytotoxicity and growth inhibition using eight myeloid and lymphoid malignant cells in culture (HL-60, HL-60R, K-562, Kasumi-1, MEG01, Raji, U266B1, and U937). The effects of Am-80 were examined during 9 days of incubation with 10(-7)-10(-5) M of Am-80 in culture medium, which was changed every 3 days. HL-60 were the only cells sensitive to Am-80-induced cytotoxicity; the latter reached more than 95% after 9 days of incubation, and death was primarily through apoptosis. The total mass of RARalpha in HL-60 was significantly greater (p<0.006) than in ATRA-resistant HL-60 (HL-60R) as well as all of other cells tested. However, in all cells excluding HL-60, Am-80 induced time- and dose-dependent cell growth inhibition without noticeable cytotoxicity. TGF-beta2 was released into the media containing cells incubated with Am-80 for 3 days. A dose-dependent increment of phosphorylation of Smad-2 was also detected. The relative amount of secreted TGF-beta2 correlated with the growth inhibition rates in all cells tested excluding HL-60, and with the total mass of RARalpha in the cells (p=0.0137). Our results indicate that Am-80-induced cell-type non-specific growth inhibition is mediated by TGF-beta2, where the total mass of RARalpha could be an important regulatory factor in hematologic malignant cells. PMID:17611697

  5. Restoration of XAF1 expression induces apoptosis and inhibits tumor growth in gastric cancer.

    PubMed

    Tu, Shui Ping; Liston, Peter; Cui, Jian Tao; Lin, Marie C M; Jiang, Xiao Hua; Yang, Yi; Gu, Qing; Jiang, Shi Hu; Lum, Ching Tung; Kung, Hsiang Fu; Korneluk, Robert G; Wong, Benjamin Chun-Yu

    2009-08-01

    XAF1 (XIAP-associated factor 1) is a novel XIAP binding protein that can antagonize XIAP and sensitize cells to other cell death triggers. Our previous results have shown that aberrant hypermethylation of the CpG sites in XAF1 promoter is strongly associated with lower expression of XAF1 in gastric cancers. In our study, we investigated the effect of restoration of XAF1 expression on growth of gastric cancers. We found that the restoration of XAF1 expression suppressed anchorage-dependent and -independent growth and increased sensitivity to TRAIL and drug-induced apoptosis. Stable cell clones expressing XAF1 exhibited delayed tumor initiation in nude mice. Restoration of XAF1 expression mediated by adenovirus vector greatly increased apoptosis in gastric cancer cell lines in a time- and dose-dependent manner and sensitized cancer cells to TRAIL and drugs-induced apoptosis. Adeno-XAF1 transduction induced cell cycle G2/M arrest and upregulated the expression of p21 and downregulated the expression of cyclin B1 and cdc2. Notably, adeno-XAF1 treatment significantly inhibited tumor growth, strongly enhanced the antitumor activity of TRAIL in a gastric cancer xenograft model in vivo, and significantly prolonged the survival time of animals bearing tumor xenografts. Complete eradication of established tumors was achieved on combined treatment with adeno-XAF1 and TRAIL. Our results document that the restoration of XAF1 inhibits gastric tumorigenesis and tumor growth and that XAF1 is a promising candidate for cancer gene therapy. PMID:19358264

  6. Topical Application of Oleuropein Induces Anagen Hair Growth in Telogen Mouse Skin

    PubMed Central

    Tong, Tao; Kim, Nahyun; Park, Taesun

    2015-01-01

    We observed that oleuropein, the main constituent of the leaves and unprocessed olive drupes of Olea europaea, protected mice from high-fat diet-induced adiposity by up-regulation of genes involved in Wnt10b-mediated signaling in adipose tissue. The activation of Wnt/β-catenin pathway is also well established to positively regulate the anagen phase of hair growth cycle in mice skin. Methodology and Principal Findings Oleuropein promoted cultured human follicle dermal papilla cell proliferation and induced LEF1 and Cyc-D1 mRNA expression and β-catenin protein expression in dermal papilla cells. Nuclear accumulation of β-catenin in dermal papilla cells was observed after oleuropein treatment. Topical application of oleuropein (0.4 mg/mouse/day) to C57BL/6N mice accelerated the hair-growth induction and increased the size of hair follicles in telogenic mouse skin. The oleuropein-treated mouse skin showed substantial upregulation of Wnt10b, FZDR1, LRP5, LEF1, Cyc-D1, IGF-1, KGF, HGF, and VEGF mRNA expression and β-catenin protein expression. Conclusions and Significance These results demonstrate that topical oleuroepin administration induced anagenic hair growth in telogenic C57BL/6N mouse skin. The hair-growth promoting effect of oleuropein in mice appeared to be associated with the stimulation of the Wnt10b/β-catenin signaling pathway and the upregulation of IGF-1, KGF, HGF, and VEGF gene expression in mouse skin tissue. PMID:26060936

  7. Bone quality is affected by food restriction and by nutrition-induced catch-up growth.

    PubMed

    Pando, Rakefet; Masarwi, Majdi; Shtaif, Biana; Idelevich, Anna; Monsonego-Ornan, Efrat; Shahar, Ron; Phillip, Moshe; Gat-Yablonski, Galia

    2014-12-01

    Growth stunting constitutes the most common effect of malnutrition. When the primary cause of malnutrition is resolved, catch-up (CU) growth usually occurs. In this study, we have explored the effect of food restriction (RES) and refeeding on bone structure and mechanical properties. Sprague-Dawley male rats aged 24 days were subjected to 10 days of 40% RES, followed by refeeding for 1 (CU) or 26 days long-term CU (LTCU). The rats fed ad libitum served as controls. The growth plates were measured, osteoclasts were identified using tartrate-resistant acid phosphatase staining, and micro-computed tomography (CT) scanning and mechanical testing were used to study structure and mechanical properties. Micro-CT analysis showed that RES led to a significant reduction in trabecular BV/TV and trabecular number (Tb.N), concomitant with an increase in trabecular separation (Tb.Sp). Trabecular BV/TV and Tb.N were significantly greater in the CU group than in the RES in both short- and long-term experiments. Mechanical testing showed that RES led to weaker and less compliant bones; interestingly, bones of the CU group were also more fragile after 1 day of CU. Longer term of refeeding enabled correction of the bone parameters; however, LTCU did not achieve full recovery. These results suggest that RES in young rats attenuated growth and reduced trabecular bone parameters. While nutrition-induced CU growth led to an immediate increase in epiphyseal growth plate height and active bone modeling, it was also associated with a transient reduction in bone quality. This should be taken into consideration when treating children undergoing CU growth. PMID:25248555

  8. Ado-Trastuzumab Emtansine Targets Hepatocytes Via Human Epidermal Growth Factor Receptor 2 to Induce Hepatotoxicity.

    PubMed

    Yan, Haoheng; Endo, Yukinori; Shen, Yi; Rotstein, David; Dokmanovic, Milos; Mohan, Nishant; Mukhopadhyay, Partha; Gao, Bin; Pacher, Pal; Wu, Wen Jin

    2016-03-01

    Ado-trastuzumab emtansine (T-DM1) is an antibody-drug conjugate (ADC) approved for the treatment of HER2-positive metastatic breast cancer. It consists of trastuzumab, a humanized mAb directed against HER2, and a microtubule inhibitor, DM1, conjugated to trastuzumab via a thioether linker. Hepatotoxicity is one of the serious adverse events associated with T-DM1 therapy. Mechanisms underlying T-DM1-induced hepatotoxicity remain elusive. Here, we use hepatocytes and mouse models to investigate the mechanisms of T-DM1-induced hepatotoxicity. We show that T-DM1 is internalized upon binding to cell surface HER2 and is colocalized with LAMP1, resulting in DM1-associated cytotoxicity, including disorganized microtubules, nuclear fragmentation/multiple nuclei, and cell growth inhibition. We further demonstrate that T-DM1 treatment significantly increases the serum levels of aspartate aminotransferase, alanine aminotransferase, and lactate dehydrogenase in mice and induces inflammation and necrosis in liver tissues, and that T-DM1-induced hepatotoxicity is dose dependent. Moreover, the gene expression of TNFα in liver tissues is significantly increased in mice treated with T-DM1 as compared with those treated with trastuzumab or vehicle. We propose that T-DM1-induced upregulation of TNFα enhances the liver injury that may be initially caused by DM1-mediated intracellular damage. Our proposal is underscored by the fact that T-DM1 induces the outer mitochondrial membrane rupture, a typical morphologic change in the mitochondrial-dependent apoptosis, and mitochondrial membrane potential dysfunction. Our work provides mechanistic insights into T-DM1-induced hepatotoxicity, which may yield novel strategies to manage liver injury induced by T-DM1 or other ADCs. PMID:26712117

  9. Tryptanthrin induces growth inhibition and neuronal differentiation in the human neuroblastoma LA-N-1 cells.

    PubMed

    Liao, Xuemei; Leung, Kwok Nam

    2013-04-25

    Neuroblastoma is one of the most common extracranial solid cancers found in young children. The prognosis of neuroblastoma patients in advanced stages having N-myc amplification remains poor despite intensive multimodal therapy. Agents that trigger neuroblastoma cells to undergo cellular differentiation and thereby stop proliferation have attracted considerable interest as an alternative therapy. Tryptanthrin (12-dihydro-6,12-dioxoindolo-(2,1-b)-quinazoline) is a weakly basic alkaloid isolated from the dried roots of medicinal indigo plants known as Banlangen. It has been shown to possess various biological activities, such as anti-microbial, anti-inflammatory and anti-tumor activities. However, its effects and mechanism(s) of action on human neuroblastoma cells remain poorly understood. Therefore, the objective of this study is to investigate the effects of tryptanthrin on the growth and differentiation of human neuroblastoma LA-N-1 cells with N-myc amplification. Our results show that tryptanthrin inhibited the growth of the human neuroblastoma cells in a dose- and time-dependent manner. Mechanistic studies indicated that tryptanthrin induced cell cycle arrest of the human neuroblastoma LA-N-1 cells at the G0/G1 phase. Tryptanthrin also induced neuronal differentiation of LA-N-1 cells, as assessed by morphological criteria, enhancement of acetylcholine esterase activity and up-regulation of various differentiation markers. Moreover, tryptanthrin treatment led to the significant reduction of N-myc expression in LA-N-1 cells while siRNA directed against N-myc induced morphological differentiation of LA-N-1 cells. These results, when taken together, suggest that tryptanthrin suppressed the growth and induced neuronal differentiation in the human neuroblastoma LA-N-1 cells and might be exploited as a potential therapeutic candidate for the treatment of high-risk neuroblastomas with N-myc-amplification. PMID:23500671

  10. Reduced susceptibility of mice overexpressing transforming growth factor α to dextran sodium sulphate induced colitis

    PubMed Central

    Egger, B; Carey, H; Procaccino, F; Chai, N; Sandgren, E; Lakshmanan, J; Buslon, V; French, S; Buchler, M; Eysselein, V

    1998-01-01

    Background—Transforming growth factor α (TGF-α) knockout mice have increased susceptibility to dextran sodium sulphate (DSS) induced colitis. 
Aim—To substantiate the findings that TGF-α is a key mediator of colonic mucosal protection and/or repair mechanisms by evaluating the susceptibility of mice overexpressing TGF-α to DSS induced colitis. 
Methods—TGF-α overexpression was induced in transgenic mice by ZnSO4 administration in drinking water (TG+). Three groups were used as controls: one transgenic group without ZnSO4 administration (TG−), and two non-transgenic littermate groups receiving ZnSO4 (Non-TG+) or only water (Non-TG−). Acute colitis was induced in all groups by administration of DSS (5%, w/v) in drinking water for six days ad libitum. 
Results—About 35-39% of the entire colonic mucosa was destroyed in Non-TG−, Non-TG+, and TG− animals compared with 9% in TG+ mice. The crypt damage score was 18.7 (0.9), 18.2 (1.0), 18.9(0.8), and 6.8 (1.5) (means (SEM)) in Non-TG−, Non-TG+, TG−, and TG+ mice respectively. Mucin and bromodeoxyuridine staining were markedly enhanced in colons of TG+ mice compared with controls, indicating increased mucosal protection and regeneration. 
Conclusions—The significantly reduced susceptibility of mice overexpressing TGF-α to DSS further substantiates that endogenous TGF-α is a pivotal mediator of protection and/or healing mechanisms in the colon. 

 Keywords: transforming growth factor α; epidermal growth factor; dextran sodium sulphate; colitis; inflammatory bowel disease; transgenic mice PMID:9771407

  11. Suppression of tumor growth by designed dimeric epidithiodiketopiperazine targeting hypoxia-inducible transcription factor complex.

    PubMed

    Dubey, Ramin; Levin, Michael D; Szabo, Lajos Z; Laszlo, Csaba F; Kushal, Swati; Singh, Jason B; Oh, Philip; Schnitzer, Jan E; Olenyuk, Bogdan Z

    2013-03-20

    Hypoxia is a hallmark of solid tumors, is associated with local invasion, metastatic spread, resistance to chemo- and radiotherapy, and is an independent, negative prognostic factor for a diverse range of malignant neoplasms. The cellular response to hypoxia is primarily mediated by a family of transcription factors, among which hypoxia-inducible factor 1 (HIF1) plays a major role. Under normoxia, the oxygen-sensitive α subunit of HIF1 is rapidly and constitutively degraded but is stabilized and accumulates under hypoxia. Upon nuclear translocation, HIF1 controls the expression of over 100 genes involved in angiogenesis, altered energy metabolism, antiapoptotic, and pro-proliferative mechanisms that promote tumor growth. A designed transcriptional antagonist, dimeric epidithiodiketopiperazine (ETP 2), selectively disrupts the interaction of HIF1α with p300/CBP coactivators and downregulates the expression of hypoxia-inducible genes. ETP 2 was synthesized via a novel homo-oxidative coupling of the aliphatic primary carbons of the dithioacetal precursor. It effectively inhibits HIF1-induced activation of VEGFA, LOX, Glut1, and c-Met genes in a panel of cell lines representing breast and lung cancers. We observed an outstanding antitumor efficacy of both (±)-ETP 2 and meso-ETP 2 in a fully established breast carcinoma model by intravital microscopy. Treatment with either form of ETP 2 (1 mg/kg) resulted in a rapid regression of tumor growth that lasted for up to 14 days. These results suggest that inhibition of HIF1 transcriptional activity by designed dimeric ETPs could offer an innovative approach to cancer therapy with the potential to overcome hypoxia-induced tumor growth and resistance. PMID:23448368

  12. Laminin-511, inducer of hair growth, is down-regulated and its suppressor in hair growth, laminin-332 up-regulated in chemotherapy-induced alopecia

    PubMed Central

    Imanishi, Hisayoshi; Tsuruta, Daisuke; Tateishi, Chiharu; Sugawara, Koji; Paus, Ralf; Tsuji, Tsutomu; Ishii, Masamitsu; Ikeda, Kazuo; Kunimoto, Hiroyuki; Nakajima, Koichi; Jones, Jonathan C.R.; Kobayashi, Hiromi

    2010-01-01

    Background Chemotherapy-induced alopecia (CIA) has a devastating cosmetic effect, especially in the young. Recent data indicate that two major basement membrane components (laminin-332 and -511) of the skin have opposing effects on hair growth. Objective In this study, we examined the role and localization of laminin-332 and -511 in CIA. Methods We examined the expression of laminin-332 and -511 during the dystrophic catagen form of CIA induced in C57BL/6 mice by cyclophosphamide (CYP) treatment. Results Our data indicate that both laminin-332 and its receptor α6β4 integrin are up-regulated (both quantitatively and spatially) after mid to late dystrophic catagen around the outer root sheath (ORS) in the lower third of hair follicles in CIA. This up-regulation also occurs at the transcriptional level. In contrast, laminin-511 is down-regulated after mid dystrophic catagen at the protein level, with transcriptional inactivation of laminin-511 occurring transiently at the early dystrophic catagen stage in both epidermal and ORS keratinocytes. Laminin-511 expression correlates with expression of α3 integrin in CIA and we also demonstrate that laminin-511 can up-regulate the activity of the α3 integrin promoter in cultured keratinocytes. Injection of a laminin-511 rich protein extract, but not recombinant laminin-332, in the back skin of mice delays hair loss in CYP-induced CIA. Conclusions We propose that abrupt hair loss in CIA is, at least in part, caused by down-regulation of laminin-511 and up-regulation of laminin-332 at the transcriptional and translational levels. PMID:20211547

  13. Netrin-1 induces local translation of down syndrome cell adhesion molecule in axonal growth cones.

    PubMed

    Jain, Shruti; Welshhans, Kristy

    2016-07-01

    Down syndrome cell adhesion molecule (DSCAM) plays an important role in many neurodevelopmental processes such as axon guidance, dendrite arborization, and synapse formation. DSCAM is located in the Down syndrome trisomic region of human chromosome 21 and may contribute to the Down syndrome brain phenotype, which includes a reduction in the formation of long-distance connectivity. The local translation of a select group of mRNA transcripts within growth cones is necessary for the formation of appropriate neuronal connectivity. Interestingly, we have found that Dscam mRNA is localized to growth cones of mouse hippocampal neurons, and is dynamically regulated in response to the axon guidance molecule, netrin-1. Furthermore, netrin-1 stimulation results in an increase in locally translated DSCAM protein in growth cones. Deleted in colorectal cancer (DCC), a netrin-1 receptor, is required for the netrin-1-induced increase in Dscam mRNA local translation. We also find that two RNA-binding proteins-fragile X mental retardation protein (FMRP) and cytoplasmic polyadenylation element binding protein (CPEB)-colocalize with Dscam mRNA in growth cones, suggesting their regulation of Dscam mRNA localization and translation. Finally, overexpression of DSCAM in mouse cortical neurons results in a severe stunting of axon outgrowth and branching, suggesting that an increase in DSCAM protein results in a structural change having functional consequences. Taken together, these results suggest that netrin-1-induced local translation of Dscam mRNA during embryonic development may be an important mechanism to regulate axon growth and guidance in the developing nervous system. © 2015 Wiley Periodicals, Inc. Develop Neurobiol 76: 799-816, 2016. PMID:26518186

  14. Bacterial sensing underlies artificial sweetener-induced growth of gut Lactobacillus.

    PubMed

    Daly, Kristian; Darby, Alistair C; Hall, Neil; Wilkinson, Mark C; Pongchaikul, Pisut; Bravo, David; Shirazi-Beechey, Soraya P

    2016-07-01

    Disruption in stable establishment of commensal gut microbiota by early weaning is an important factor in susceptibility of young animals to enteric disorders. The artificial sweetener SUCRAM [consisting of neohesperidin dihydrochalcone (NHDC) and saccharin] included in piglets' feed reduces incidence of enteric disease. Pyrosequencing of pig caecal 16S rRNA gene amplicons identified 25 major families encompassing seven bacterial classes with Bacteroidia, Clostridia and Bacilli dominating the microbiota. There were significant shifts in microbial composition in pigs maintained on a diet containing SUCRAM, establishing SUCRAM as a major influence driving bacterial community dynamics. The most notable change was a significant increase of Lactobacillaceae population abundance, almost entirely due to a single phylotype, designated Lactobacillus 4228. The sweetener-induced increase in Lactobacillaceae was observed in two different breeds of pigs signifying a general effect. We isolated Lactobacillus 4228, sequenced its genome and found it to be related to Lactobacillus amylovorus. In vitro analyses of Lactobacillus 4228 growth characteristics showed that presence of NHDC significantly reduces the lag phase of growth and enhances expression of specific sugar transporters, independently of NHDC metabolism. This study suggests that sensing of NHDC by a bacterial plasma membrane receptor underlies sweetener-induced growth of a health promoting gut bacterium. PMID:26058469

  15. THICK-DISK EVOLUTION INDUCED BY THE GROWTH OF AN EMBEDDED THIN DISK

    SciTech Connect

    Villalobos, Alvaro; Helmi, Amina; Kazantzidis, Stelios E-mail: ahelmi@astro.rug.n E-mail: villalobos@oats.inaf.i

    2010-07-20

    We perform collisionless N-body simulations to investigate the evolution of the structural and kinematical properties of simulated thick disks induced by the growth of an embedded thin disk. The thick disks used in the present study originate from cosmologically common 5:1 encounters between initially thin primary disk galaxies and infalling satellites. The growing thin disks are modeled as static gravitational potentials and we explore a variety of growing-disk parameters that are likely to influence the response of thick disks. We find that the final thick-disk properties depend strongly on the total mass and radial scale length of the growing thin disk, and much less sensitively on its growth timescale and vertical scale height as well as the initial sense of thick-disk rotation. Overall, the growth of an embedded thin disk can cause a substantial contraction in both the radial and vertical direction, resulting in a significant decrease in the scale lengths and scale heights of thick disks. Kinematically, a growing thin disk can induce a notable increase in the mean rotation and velocity dispersions of thick-disk stars. We conclude that the reformation of a thin disk via gas accretion may play a significant role in setting the structure and kinematics of thick disks, and thus it is an important ingredient in models of thick-disk formation.

  16. CXCR2 signaling regulates KRAS(G12D)-induced autocrine growth of pancreatic cancer

    PubMed Central

    Purohit, Abhilasha; Varney, Michelle; Rachagani, Satyanarayana; Ouellette, Michel M.; Batra, Surinder K.; Singh, Rakesh K.

    2016-01-01

    Pharmacological inhibition of RAS, the master regulator of pancreatic ductal adenocarcinoma (PDAC), continues to be a challenge. Mutations in various isoforms of RAS gene, including KRAS are known to upregulate CXC chemokines; however, their precise role in KRAS-driven pancreatic cancer remains unclear. In this report, we reveal a previously unidentified tumor cell-autonomous role of KRAS(G12D)-induced CXCR2 signaling in mediating growth of neoplastic PDAC cells. Progressively increasing expression of mCXCR2 and its ligands was detected in the malignant ductal cells of Pdx1-cre;LSL-Kras(G12D) mice. Knocking-down CXCR2 in KRAS(G12D)-bearing human pancreatic duct-derived cells demonstrated a significant decrease in the in vitro and in vivo tumor cell proliferation. Furthermore, CXCR2 antagonists showed selective growth inhibition of KRAS(G12D)-bearing cells in vitro. Intriguingly, both genetic and pharmacological inhibition of CXCR2 signaling in KRAS(G12D)-bearing pancreatic ductal cells reduced the levels of KRAS protein, strongly implying the presence of a KRAS-CXCR2 feed-forward loop. Together, these data demonstrate the role of CXCR2 signaling in KRAS(G12D)-induced growth transformation and progression in PDAC. PMID:26771140

  17. Growth control switch by a DNA-damage-inducible toxin-antitoxin system in Caulobacter crescentus.

    PubMed

    Kirkpatrick, Clare L; Martins, Daniel; Redder, Peter; Frandi, Antonio; Mignolet, Johann; Chapalay, Julien Bortoli; Chambon, Marc; Turcatti, Gerardo; Viollier, Patrick H

    2016-01-01

    Bacterial toxin-antitoxin systems (TASs) are thought to respond to various stresses, often inducing growth-arrested (persistent) sub-populations of cells whose housekeeping functions are inhibited. Many such TASs induce this effect through the translation-dependent RNA cleavage (RNase) activity of their toxins, which are held in check by their cognate antitoxins in the absence of stress. However, it is not always clear whether specific mRNA targets of orthologous RNase toxins are responsible for their phenotypic effect, which has made it difficult to accurately place the multitude of TASs within cellular and adaptive regulatory networks. Here, we show that the TAS HigBA of Caulobacter crescentus can promote and inhibit bacterial growth dependent on the dosage of HigB, a toxin regulated by the DNA damage (SOS) repressor LexA in addition to its antitoxin HigA, and the target selectivity of HigB's mRNA cleavage activity. HigB reduced the expression of an efflux pump that is toxic to a polarity control mutant, cripples the growth of cells lacking LexA, and targets the cell cycle circuitry. Thus, TASs can have outcome switching activity in bacterial adaptive (stress) and systemic (cell cycle) networks. PMID:27572440

  18. Electromigration induced Kirkendall void growth in Sn-3.5Ag/Cu solder joints

    SciTech Connect

    Jung, Yong; Yu, Jin

    2014-02-28

    Effects of electric current flow on the Kirkendall void formation at solder joints were investigated using Sn-3.5Ag/Cu joints specially designed to have localized nucleation of Kirkendall voids at the Cu{sub 3}Sn/Cu interface. Under the current density of 1 × 10{sup 4} A/cm{sup 2}, kinetics of Kirkendall void growth and intermetallic compound thickening were affected by the electromigration (EM), and both showed the polarity effect. Cu{sub 6}Sn{sub 5} showed a strong susceptibility to the polarity effect, while Cu{sub 3}Sn did not. The electromigration force induced additional tensile (or compressive) stress at the cathode (or anode), which accelerated (or decelerated) the void growth. From the measurements of the fraction of void at the Cu{sub 3}Sn/Cu interface on SEM micrographs and analysis of the kinetics of void growth, the magnitude of the local stress induced by EM was estimated to be 9 MPa at the anode and −7 MPa at the cathode.

  19. Nuclear localization of Src-family tyrosine kinases is required for growth factor-induced euchromatinization

    SciTech Connect

    Takahashi, Akinori; Obata, Yuuki; Fukumoto, Yasunori; Nakayama, Yuji; Kasahara, Kousuke; Kuga, Takahisa; Higashiyama, Yukihiro; Saito, Takashi; Yokoyama, Kazunari K.; Yamaguchi, Naoto

    2009-04-15

    Src-family kinases (SFKs), which participate in various signaling events, are found at not only the plasma membrane but also several subcellular compartments, including the nucleus. Nuclear structural changes are frequently observed during transcription, cell differentiation, senescence, tumorigenesis, and cell cycle. However, little is known about signal transduction in the alteration of chromatin texture. Here, we develop a pixel imaging method for quantitatively evaluating chromatin structural changes. Growth factor stimulation increases euchromatic hypocondensation and concomitant heterochromatic hypercondensation in G{sub 1} phase, and the levels reach a plateau by 30 min, sustain for at least 5 h and return to the basal levels after 24 h. Serum-activated SFKs in the nucleus were more frequently detected in the euchromatin areas than the heterochromatin areas. Nuclear expression of kinase-active SFKs, but not unrelated Syk kinase, drastically increases both euchromatinization and heterochromatinization in a manner dependent on the levels of nuclear tyrosine phosphorylation. However, growth factor stimulation does not induce chromatin structural changes in SYF cells lacking SFKs, and reintroduction of one SFK member into SYF cells can, albeit insufficiently, induce chromatin structural changes. These results suggest that nuclear tyrosine phosphorylation by SFKs plays an important role in chromatin structural changes upon growth factor stimulation.

  20. Puerariae radix isoflavones and their metabolites inhibit growth and induce apoptosis in breast cancer cells

    SciTech Connect

    Lin, Y.-J.; Hou, Y.C.; Lin, C.-H.; Hsu, Y.-A.; Sheu, Jim J.C.; Lai, C.-H.; Chen, B.-H.; Lee Chao, Pei-Dawn; Wan Lei Tsai, F.-J.

    2009-01-23

    Puerariae radix (PR) is a popular natural herb and a traditional food in Asia, which has antithrombotic and anti-allergic properties and stimulates estrogenic activity. In the present study, we investigated the effects of the PR isoflavones puerarin, daidzein, and genistein on the growth of breast cancer cells. Our data revealed that after treatment with PR isoflavones, a dose-dependent inhibition of cell growth occurred in HS578T, MDA-MB-231, and MCF-7 cell lines. Results from cell cycle distribution and apoptosis assays revealed that PR isoflavones induced cell apoptosis through a caspase-3-dependent pathway and mediated cell cycle arrest in the G2/M phase. Furthermore, we observed that the serum metabolites of PR (daidzein sulfates/glucuronides) inhibited proliferation of the breast cancer cells at a 50% cell growth inhibition (GI{sub 50}) concentration of 2.35 {mu}M. These results indicate that the daidzein constituent of PR can be metabolized to daidzein sulfates or daidzein glucuronides that exhibit anticancer activities. The protein expression levels of the active forms of caspase-9 and Bax in breast cancer cells were significantly increased by treatment with PR metabolites. These metabolites also increased the protein expression levels of p53 and p21. We therefore suggest that PR may act as a chemopreventive and/or chemotherapeutic agent against breast cancer by reducing cell viability and inducing apoptosis.

  1. Accommodating the cost of growth and swimming in fish-the applicability of exercise-induced growth to juvenile hapuku (Polyprion oxygeneios).

    PubMed

    Khan, Javed R; Trembath, Caroline; Pether, Steve; Bruce, Michael; Walker, Seumas P; Herbert, Neill A

    2014-01-01

    Induced-swimming can improve the growth and feed conversion efficiency of finfish aquaculture species, such as salmonids and Seriola sp., but some species, such as Atlantic cod, show no or a negative productivity response to exercise. As a possible explanation for these species-specific differences, a recent hypothesis proposed that the applicability of exercise training, as well as the exercise regime for optimal growth gain (ERopt growth), was dependent upon the size of available aerobic metabolic scope (AMS). This study aimed to test this hypothesis by measuring the growth and swimming metabolism of hapuku, Polyprion oxygeneios, to different exercise regimes and then reconciling the metabolic costs of swimming and specific dynamic action (SDA) against AMS. Two 8-week growth trials were conducted with ERs of 0.0, 0.25, 0.5, 0.75, 1, and 1.5 body lengths per second (BL s(-1)). Fish in the first trial showed a modest 4.8% increase in SGR over static controls in the region 0.5-0.75 BL s(-1) whereas the fish in trial 2 showed no significant effect of ER on growth performance. Reconciling the SDA of hapuku with the metabolic costs of swimming showed that hapuku AMS is sufficient to support growth and swimming at all ERs. The current study therefore suggests that exercise-induced growth is independent of AMS and is driven by other factors. PMID:25520662

  2. Accommodating the cost of growth and swimming in fish—the applicability of exercise-induced growth to juvenile hapuku (Polyprion oxygeneios)

    PubMed Central

    Khan, Javed R.; Trembath, Caroline; Pether, Steve; Bruce, Michael; Walker, Seumas P.; Herbert, Neill A.

    2014-01-01

    Induced-swimming can improve the growth and feed conversion efficiency of finfish aquaculture species, such as salmonids and Seriola sp., but some species, such as Atlantic cod, show no or a negative productivity response to exercise. As a possible explanation for these species-specific differences, a recent hypothesis proposed that the applicability of exercise training, as well as the exercise regime for optimal growth gain (ERopt growth), was dependent upon the size of available aerobic metabolic scope (AMS). This study aimed to test this hypothesis by measuring the growth and swimming metabolism of hapuku, Polyprion oxygeneios, to different exercise regimes and then reconciling the metabolic costs of swimming and specific dynamic action (SDA) against AMS. Two 8-week growth trials were conducted with ERs of 0.0, 0.25, 0.5, 0.75, 1, and 1.5 body lengths per second (BL s−1). Fish in the first trial showed a modest 4.8% increase in SGR over static controls in the region 0.5–0.75 BL s−1 whereas the fish in trial 2 showed no significant effect of ER on growth performance. Reconciling the SDA of hapuku with the metabolic costs of swimming showed that hapuku AMS is sufficient to support growth and swimming at all ERs. The current study therefore suggests that exercise-induced growth is independent of AMS and is driven by other factors. PMID:25520662

  3. Flavonoids from the leaves of Carya cathayensis Sarg. inhibit vascular endothelial growth factor-induced angiogenesis.

    PubMed

    Tian, Sha-Sha; Jiang, Fu-Sheng; Zhang, Kun; Zhu, Xue-Xin; Jin, Bo; Lu, Jin-Jian; Ding, Zhi-Shan

    2014-01-01

    The total flavonoids (TFs) were isolated from the leaves of Carya cathayensis Sarg. (LCC), a well-known Chinese medicinal herb commercially cultivated in Tianmu Mountain district, a cross area of Zhejiang and Anhui provinces in China. Five flavonoids, i.e. cardamonin, pinostrobin chalcone (PC), wogonin, chrysin, and pinocembrin were the main components of the TFs. The TFs and these pure compounds suppressed vascular endothelial growth factor (VEGF)-induced angiogenesis as detected in the mouse aortic ring assay, and cardamonin showed the best effect among them. To further elucidate the mechanisms for suppressing angiogenesis of these flavonoids, assays of VEGF-induced proliferation and migration in human umbilical vein endothelial cells (HUVECs) were performed. The TFs, cardamonin, pinocembrin, and chrysin obviously suppressed both VEGF-induced HUVEC proliferation and migration. However, PC and wogonin not only slightly inhibited VEGF-induced proliferation but also remarkably suppressed those of migration in HUVECs. Our further study showed that cardamonin decreased the phosphorylation of ERK and AKT induced by VEGF with a dose-dependent manner in HUVECs. Our findings indicate that the TFs and these pure flavonoids may become potential preventive and/or therapeutic agents against angiogenesis-related diseases. PMID:24096161

  4. Thyroid Hormone and Estrogen Regulate Exercise-Induced Growth Hormone Release

    PubMed Central

    Ignacio, Daniele Leão; da S. Silvestre, Diego H.; Cavalcanti-de-Albuquerque, João Paulo Albuquerque; Louzada, Ruy Andrade

    2015-01-01

    Growth hormone (GH) regulates whole body metabolism, and physical exercise is the most potent stimulus to induce its secretion in humans. The mechanisms underlying GH secretion after exercise remain to be defined. The aim of this study was to elucidate the role of estrogen and pituitary type 1 deiodinase (D1) activation on exercise-induced GH secretion. Ten days after bilateral ovariectomy, animals were submitted to 20 min of treadmill exercise at 75% of maximum aerobic capacity and tissues were harvested immediately or 30 min after exercise. Non-exercised animals were used as controls. A significant increase in D1 activity occurred immediately after exercise (~60%) in sham-operated animals and GH was higher (~6-fold) 30 min after exercise. Estrogen deficient rats exhibited basal levels of GH and D1 activity comparable to those found in control rats. However, after exercise both D1 activity and serum GH levels were blunted compared to sedentary rats. To understand the potential cause-effect of D1 activation in exercise-induced GH release, we pharmacologically blocked D1 activity by propylthiouracil (PTU) injection into intact rats and submitted them to the acute exercise session. D1 inhibition blocked exercise-induced GH secretion, although basal levels were unaltered. In conclusion, estrogen deficiency impairs the induction of thyroid hormone activating enzyme D1 in the pituitary, and GH release by acute exercise. Also, acute D1 activation is essential for exercise-induced GH response. PMID:25874614

  5. Thyroid hormone and estrogen regulate exercise-induced growth hormone release.

    PubMed

    Ignacio, Daniele Leão; da S Silvestre, Diego H; Cavalcanti-de-Albuquerque, João Paulo Albuquerque; Louzada, Ruy Andrade; Carvalho, Denise P; Werneck-de-Castro, João Pedro

    2015-01-01

    Growth hormone (GH) regulates whole body metabolism, and physical exercise is the most potent stimulus to induce its secretion in humans. The mechanisms underlying GH secretion after exercise remain to be defined. The aim of this study was to elucidate the role of estrogen and pituitary type 1 deiodinase (D1) activation on exercise-induced GH secretion. Ten days after bilateral ovariectomy, animals were submitted to 20 min of treadmill exercise at 75% of maximum aerobic capacity and tissues were harvested immediately or 30 min after exercise. Non-exercised animals were used as controls. A significant increase in D1 activity occurred immediately after exercise (~60%) in sham-operated animals and GH was higher (~6-fold) 30 min after exercise. Estrogen deficient rats exhibited basal levels of GH and D1 activity comparable to those found in control rats. However, after exercise both D1 activity and serum GH levels were blunted compared to sedentary rats. To understand the potential cause-effect of D1 activation in exercise-induced GH release, we pharmacologically blocked D1 activity by propylthiouracil (PTU) injection into intact rats and submitted them to the acute exercise session. D1 inhibition blocked exercise-induced GH secretion, although basal levels were unaltered. In conclusion, estrogen deficiency impairs the induction of thyroid hormone activating enzyme D1 in the pituitary, and GH release by acute exercise. Also, acute D1 activation is essential for exercise-induced GH response. PMID:25874614

  6. Epidermal growth factor receptor signaling mediates aldosterone-induced profibrotic responses in kidney.

    PubMed

    Sheng, Lili; Yang, Min; Ding, Wei; Zhang, Minmin; Niu, Jianying; Qiao, Zhongdong; Gu, Yong

    2016-08-01

    Aldosterone has been recognized as a risk factor for the development of chronic kidney disease (CKD). Studies have indicated that enhanced activation of epidermal growth factor receptor (EGFR) is associated with the development and progression of renal fibrosis. But if EGFR is involved in aldosterone-induced renal fibrosis is less investigated. In the present study, we examined the effect of erlotinib, an inhibitor of EGFR tyrosine kinase activity, on the progression of aldosterone-induced renal profibrotic responses in a murine model underwent uninephrectomy. Erlotinib-treated rats exhibited relieved structural lesion comparing with rats treated with aldosterone alone, as characterized by glomerular hypertrophy, mesangial cell proliferation and expansion. Also, erlotinib inhibited the expression of TGF-β, α-SMA and mesangial matrix proteins such as collagen Ⅳ and fibronectin. In cultured mesangial cells, inhibition of EGFR also abrogated aldosterone-induced expression of extracellular matrix proteins, cell proliferation and migration. We also demonstrated that aldosterone induced the phosphorylation of EGFR through generation of ROS. And the activation of EGFR resulted in the phosphorylation of ERK1/2, leading to the activation of profibrotic pathways. Taken together, we concluded that aldosterone-mediated tissue fibrosis relies on ROS induced EGFR/ERK activation, highlighting EGFR as a potential therapeutic target for modulating renal fibrosis. PMID:27317889

  7. Withaferin-A suppress AKT induced tumor growth in colorectal cancer cells

    PubMed Central

    Suman, Suman; Das, Trinath P.; Sirimulla, Suman; Alatassi, Houda; Ankem, Murali K.; Damodaran, Chendil

    2016-01-01

    The oncogenic activation of AKT gene has emerged as a key determinant of the aggressiveness of colorectal cancer (CRC); hence, research has focused on targeting AKT signaling for the treatment of advanced stages of CRC. In this study, we explored the anti-tumorigenic effects of withaferin A (WA) on CRC cells overexpressing AKT in preclinical (in vitro and in vivo) models. Our results indicated that WA, a natural compound, resulted in significant inhibition of AKT activity and led to the inhibition of cell proliferation, migration and invasion by downregulating the epithelial to mesenchymal transition (EMT) markers in CRC cells overexpressing AKT. The oral administration of WA significantly suppressed AKT-induced aggressive tumor growth in a xenograft model. Molecular analysis revealed that the decreased expression of AKT and its downstream pro-survival signaling molecules may be responsible for tumor inhibition. Further, significant inhibition of some important EMT markers, i.e., Snail, Slug, β-catenin and vimentin, was observed in WA-treated human CRC cells overexpressing AKT. Significant inhibition of micro-vessel formation and the length of vessels were evident in WA-treated tumors, which correlated with a low expression of the angiogenic marker RETIC. In conclusion, the present study emphasizes the crucial role of AKT activation in inducing cell proliferation, angiogenesis and EMT in CRC cells and suggests that WA may overcome AKT-induced cell proliferation and tumor growth in CRC. PMID:26883103

  8. Withaferin-A suppress AKT induced tumor growth in colorectal cancer cells.

    PubMed

    Suman, Suman; Das, Trinath P; Sirimulla, Suman; Alatassi, Houda; Ankem, Murali K; Damodaran, Chendil

    2016-03-22

    The oncogenic activation of AKT gene has emerged as a key determinant of the aggressiveness of colorectal cancer (CRC); hence, research has focused on targeting AKT signaling for the treatment of advanced stages of CRC. In this study, we explored the anti-tumorigenic effects of withaferin A (WA) on CRC cells overexpressing AKT in preclinical (in vitro and in vivo) models. Our results indicated that WA, a natural compound, resulted in significant inhibition of AKT activity and led to the inhibition of cell proliferation, migration and invasion by downregulating the epithelial to mesenchymal transition (EMT) markers in CRC cells overexpressing AKT. The oral administration of WA significantly suppressed AKT-induced aggressive tumor growth in a xenograft model. Molecular analysis revealed that the decreased expression of AKT and its downstream pro-survival signaling molecules may be responsible for tumor inhibition. Further, significant inhibition of some important EMT markers, i.e., Snail, Slug, β-catenin and vimentin, was observed in WA-treated human CRC cells overexpressing AKT. Significant inhibition of micro-vessel formation and the length of vessels were evident in WA-treated tumors, which correlated with a low expression of the angiogenic marker RETIC. In conclusion, the present study emphasizes the crucial role of AKT activation in inducing cell proliferation, angiogenesis and EMT in CRC cells and suggests that WA may overcome AKT-induced cell proliferation and tumor growth in CRC. PMID:26883103

  9. Genetic Analysis of Growth-Regulator-Induced Parthenocarpy in Arabidopsis1

    PubMed Central

    Vivian-Smith, Adam; Koltunow, Anna M.

    1999-01-01

    In Arabidopsis, seedless silique development or parthenocarpy can be induced by the application of various plant growth regulators (PGRs) to unfertilized pistils. Ecotype-specific responses were observed in the Arabidopsis ecotypes Columbia and Landsberg relative to the type of PGR and level applied. The parthenocarpic response was greatest in ecotype Landsberg, and comparisons of fruit growth and morphology were studied primarily in this ecotype. Gibberellic acid application (10 μmol pistil−1) caused development similar to that in pollinated pistils, while benzyladenine (1 μmol pistil−1) and naphthylacetic acid (10 μmol pistil−1) treatment produced shorter siliques. Naphthylacetic acid primarily modified mesocarp cell expansion. Arabidopsis mutants were employed to examine potential dependencies on gibberellin biosynthesis (ga1-3, ga4-1, and ga5-1) and perception (spy-4 and gai) during parthenocarpic silique development. Emasculated spy-4 pistils were neither obviously parthenocarpic nor deficient in PGR perception. By contrast, emasculated gai mutants did not produce parthenocarpic siliques following gibberellic acid application, but silique development occurred following pollination or application of auxin and cytokinin. Pollinated gai siliques had decreased cell numbers and morphologically resembled auxin-induced parthenocarpic siliques. This shows that a number of independent and possibly redundant pathways can direct hormone-induced parthenocarpy, and that endogenous gibberellins play a role in regulating cell expansion and promoting cell division in carpels. PMID:10517835

  10. alpha1B-Adrenergic receptor phosphorylation and desensitization induced by transforming growth factor-beta.

    PubMed Central

    Romero-Avila, M Teresa; Flores-Jasso, C Fabián; García-Sáinz, J Adolfo

    2002-01-01

    Transforming growth factor-beta (TGF-beta) induced alpha(1B)-adrenergic receptor phosphorylation in Rat-1 fibroblasts stably expressing these adrenoceptors. This effect of TGF-beta was rapid, reaching a maximum within 30 min and decreasing thereafter, and concentration-dependent (EC(50) 0.3 pM). The phosphoinositide 3-kinase inhibitors wortmannin and LY294002, and the protein kinase C inhibitors staurosporine, Ro 318220 and bisindolylmaleimide, blocked the effect of this growth factor. alpha(1B)-Adrenergic receptor phosphorylation was associated with desensitization, as indicated by a reduction in the adrenergic-mediated production of [(3)H]inositol phosphates. Phosphorylation of alpha(1B)-adrenergic receptors by TGF-beta was also observed in Cos-1 cells transfected with the receptor. Co-transfection of the dominant-negative mutant of the regulatory subunit of phosphoinositide 3-kinase (Deltap85) inhibited the phosphorylation of alpha(1B)-adrenergic receptors induced by TGF-beta. Our results indicate that activation of TGF-beta receptors induces alpha(1B)-adrenergic receptor phosphorylation and desensitization. The data suggest that phosphoinositide 3-kinase and protein kinase C play key roles in this effect of TGF-beta. PMID:12234252

  11. alpha1B-Adrenergic receptor phosphorylation and desensitization induced by transforming growth factor-beta.

    PubMed

    Romero-Avila, M Teresa; Flores-Jasso, C Fabián; García-Sáinz, J Adolfo

    2002-12-01

    Transforming growth factor-beta (TGF-beta) induced alpha(1B)-adrenergic receptor phosphorylation in Rat-1 fibroblasts stably expressing these adrenoceptors. This effect of TGF-beta was rapid, reaching a maximum within 30 min and decreasing thereafter, and concentration-dependent (EC(50) 0.3 pM). The phosphoinositide 3-kinase inhibitors wortmannin and LY294002, and the protein kinase C inhibitors staurosporine, Ro 318220 and bisindolylmaleimide, blocked the effect of this growth factor. alpha(1B)-Adrenergic receptor phosphorylation was associated with desensitization, as indicated by a reduction in the adrenergic-mediated production of [(3)H]inositol phosphates. Phosphorylation of alpha(1B)-adrenergic receptors by TGF-beta was also observed in Cos-1 cells transfected with the receptor. Co-transfection of the dominant-negative mutant of the regulatory subunit of phosphoinositide 3-kinase (Deltap85) inhibited the phosphorylation of alpha(1B)-adrenergic receptors induced by TGF-beta. Our results indicate that activation of TGF-beta receptors induces alpha(1B)-adrenergic receptor phosphorylation and desensitization. The data suggest that phosphoinositide 3-kinase and protein kinase C play key roles in this effect of TGF-beta. PMID:12234252

  12. Vascular Endothelial Growth Factor Inhibitor-Induced Hypertension: Basics for Primary Care Providers

    PubMed Central

    Escalante, Carmen P.; Zalpour, Ali

    2011-01-01

    Frequently, primary care providers continue to manage the overall medical care of cancer patients. With newer and often more potent antitumor agents, patients may present to their local physicians with drug-induced toxicities such as hypertension induced by vascular endothelial growth factor (VEGF) inhibitors. It is imperative that these healthcare providers are aware of basic aspects of this drug class, as its use has increased significantly in the last several years. Uncontrolled or malignant hypertension due to these agents should be recognized readily and treated early to prevent more severe outcomes. This overview provides a brief background on the role of VEGF and angiogenesis in tumor metabolism as well as theories of the mechanism of VEGF inhibitors and hypertension. Helpful clinical practice aspects including the types of inhibitors used in the United States and their pharmacologic characteristics will be discussed. Also, diagnosis and treatment of hypertension induced by vascular endothelial growth factors are reviewed. A summary of key aspects of this drug class and hypertension is included. PMID:21629798

  13. Ethanol-induced loss of brain cyclic AMP binding proteins: correlation with growth suppression

    SciTech Connect

    Pennington, S.; Kalmus, G.

    1987-05-01

    Brain hypoplasia secondary to maternal ethanol consumption is a common fetal defect observed in all models of fetal alcohol syndrome. The molecular mechanism by which ethanol inhibits growth is unknown but has been hypothesized to involve ethanol-induced changes in the activity of cyclic-AMP stimulated protein kinase. Acute and chronic alcohol exposure elevate cyclic AMP level in many tissues, including brain. This increase in cyclic AMP should increase the phosphorylating activity of kinase by increasing the amount of dissociated (active) kinase catalytic subunit. In 7-day embryonic chick brains, ethanol-induced growth suppression was correlated with increased brain cyclic AMP content but neither basal nor cyclic AMP stimulated kinase catalytic activity was increased. However, the levels of cyclic AMP binding protein (kinase regulatory subunit) were significantly lowered by ethanol exposure. Measured as either /sup 3/H cyclic AMP binding or as 8-azido cyclic AM/sup 32/P labeling, ethanol-exposed brains had significantly less cyclic AMP binding activity (51 +/- 14 versus 29 +/- 10 units/..mu..g protein for 8-azido cyclic AMP binding). These findings suggest that ethanol's effect on kinase activity may involve more than ethanol-induced activation of adenylate cyclase.

  14. Resveratrol Inhibits Hypoxia-Induced Vascular Endothelial Growth Factor Expression and Pathological Neovascularization

    PubMed Central

    Lee, Christopher Seungkyu; Choi, Eun Young; Lee, Sung Chul; Koh, Hyoung Jun; Lee, Joon Haeng

    2015-01-01

    Purpose To investigate the effects of resveratrol on the expression of hypoxia-inducible factor 1α (HIF-1α) and vascular endothelial growth factor (VEGF) in human adult retinal pigment epithelial (ARPE-19) cells, and on experimental choroidal neovascularization (CNV) in mice. Materials and Methods ARPE-19 cells were treated with different concentrations of resveratrol and then incubated under hypoxic conditions with subsequent evaluation of cell viability, expression of HIF-1α, and expression of VEGF. The effects of resveratrol on the synthesis and degradation of hypoxia-induced HIF-1α were evaluated using inhibitors of the PI3K/Akt/mTOR and the ubiquitin proteasome pathways. In animal studies, CNV lesions were induced in C57BL/6 mice by laser photocoagulation. After 7 days of oral administration of resveratrol or vehicle, which began one day after CNV induction, image analysis was used to measure CNV areas on choroidal flat mounts stained with isolectin IB4. Results In ARPE-19 cells, resveratrol significantly inhibited HIF-1α and VEGF in a dose-dependent manner, by blocking the PI3K/Akt/mTOR signaling pathway and by promoting proteasomal HIF-1α degradation. In mice experiments, orally administered resveratrol significantly inhibited CNV growth in a dose-dependent manner. Conclusion Resveratrol may have therapeutic value in the management of diseases involving pathological neovascularization. PMID:26446654

  15. The hypoxia-inducible factor-1α activates ectopic production of fibroblast growth factor 23 in tumor-induced osteomalacia

    PubMed Central

    Zhang, Qian; Doucet, Michele; Tomlinson, Ryan E; Han, Xiaobin; Quarles, L Darryl; Collins, Michael T; Clemens, Thomas L

    2016-01-01

    Tumor-induced osteomalacia (TIO) is a rare paraneoplastic syndrome in which ectopic production of fibroblast growth factor 23 (FGF23) by non-malignant mesenchymal tumors causes phosphate wasting and bone fractures. Recent studies have implicated the hypoxia-inducible factor-1α (HIF-1α) in other phosphate wasting disorders caused by elevated FGF23, including X-linked hypophosphatemic rickets and autosomal dominant hypophosphatemia. Here we provide evidence that HIF-1α mediates aberrant FGF23 in TIO by transcriptionally activating its promoter. Immunohistochemical studies in phosphaturic mesenchymal tumors resected from patients with documented TIO showed that HIF-1α and FGF23 were co-localized in spindle-shaped cells adjacent to blood vessels. Cultured tumor tissue produced high levels of intact FGF23 and demonstrated increased expression of HIF-1α protein. Transfection of MC3T3-E1 and Saos-2 cells with a HIF-1α expression construct induced the activity of a FGF23 reporter construct. Prior treatment of tumor organ cultures with HIF-1α inhibitors decreased HIF-1α and FGF23 protein accumulation and inhibited HIF-1α-induced luciferase reporter activity in transfected cells. Chromatin immunoprecipitation assays confirmed binding to a HIF-1α consensus sequence within the proximal FGF23 promoter, which was eliminated by treatment with a HIF-1α inhibitor. These results show for the first time that HIF-1α is a direct transcriptional activator of FGF23 and suggest that upregulation of HIF-1α activity in TIO contributes to the aberrant FGF23 production in these patients. PMID:27468359

  16. Sphingosine-1-phosphate mediates epidermal growth factor-induced muscle satellite cell activation

    SciTech Connect

    Nagata, Yosuke Ohashi, Kazuya; Wada, Eiji; Yuasa, Yuki; Shiozuka, Masataka; Nonomura, Yoshiaki; Matsuda, Ryoichi

    2014-08-01

    Skeletal muscle can regenerate repeatedly due to the presence of resident stem cells, called satellite cells. Because satellite cells are usually quiescent, they must be activated before participating in muscle regeneration in response to stimuli such as injury, overloading, and stretch. Although satellite cell activation is a crucial step in muscle regeneration, little is known of the molecular mechanisms controlling this process. Recent work showed that the bioactive lipid sphingosine-1-phosphate (S1P) plays crucial roles in the activation, proliferation, and differentiation of muscle satellite cells. We investigated the role of growth factors in S1P-mediated satellite cell activation. We found that epidermal growth factor (EGF) in combination with insulin induced proliferation of quiescent undifferentiated mouse myoblast C2C12 cells, which are also known as reserve cells, in serum-free conditions. Sphingosine kinase activity increased when reserve cells were stimulated with EGF. Treatment of reserve cells with the D-erythro-N,N-dimethylsphingosine, Sphingosine Kinase Inhibitor, or siRNA duplexes specific for sphingosine kinase 1, suppressed EGF-induced C2C12 activation. We also present the evidence showing the S1P receptor S1P2 is involved in EGF-induced reserve cell activation. Moreover, we demonstrated a combination of insulin and EGF promoted activation of satellite cells on single myofibers in a manner dependent on SPHK and S1P2. Taken together, our observations show that EGF-induced satellite cell activation is mediated by S1P and its receptor. - Highlights: • EGF in combination with insulin induces proliferation of quiescent C2C12 cells. • Sphingosine kinase activity increases when reserve cells are stimulated with EGF. • EGF-induced activation of reserve cells is dependent on sphingosine kinase and ERK. • The S1P receptor S1P2 is involved in EGF-induced reserve cell activation. • EGF-induced reserve cell activation is mediated by S1P and its

  17. Overload-Induced Skeletal Muscle Extracellular Matrix Remodeling And Myofiber Growth in Mice Lacking IL-6

    PubMed Central

    White, James P.; Reecy, James M.; Washington, Tyrone A.; Sato, Shuichi; Le, Michael E.; Davis, J. Mark; Wilson, L. Britt; Carson, James A.

    2011-01-01

    Aim Overloading healthy skeletal muscle produces myofiber hypertrophy and extracellular matrix remodeling, and these processes are thought to be interdependent for producing muscle growth. Inflammatory cytokine interleukin-6 (IL-6) gene expression is induced in overloaded skeletal muscle, and the loss of this IL-6 induction can attenuate the hypertrophic response to overload. Although the overload induction of IL-6 in skeletal muscle may be an important regulator of inflammatory processes and satellite cell proliferation, less is known about its role in the regulation of extracellular matrix remodeling. The purpose of the current study was to examine if overload-induced extracellular matrix remodeling, muscle growth, and associated gene expression were altered in mice that lack IL-6, when compared to wild-type mice. Methods Male C57/BL6 (WT) and C57/BL6 × IL-6-/- (IL-6-/-) mice (10 wks of age) were assigned to either a sham control or synergist ablation overload (OV) treatments for 3 or 21 days. Results Plantaris muscle mass increased 59% in WT and 116% in IL-6-/- mice after 21d OV. Myofiber CSA was also increased by 21d OV in both WT and IL-6-/- mice. Overload induced a 2-fold greater increase in the volume of non-contractile tissue in IL-6-/- muscle as compared to WT. Overload also induced a significantly greater accumulation of hydroxyproline and procollagen-1 mRNA in IL-6-/- muscle, when compared to WT muscle after 21d OV. TGF-β and IGF-1 mRNA expression were also induced to a greater extent in IL-6-/- muscle when compared to WT muscle after 21d OV. There was no effect of IL-6 loss on the induction of myogenin, and cyclin D1 mRNA expression after 3d OV. However, MyoD mRNA expression in 3d OV IL-6-/- muscle was attenuated when compared to WT overload mice. Conclusion IL-6 appears to be necessary for the normal regulation of extracellular matrix remodeling during overload-induced growth. PMID:19681796

  18. Zoledronic acid suppresses transforming growth factor-β-induced fibrogenesis by human gingival fibroblasts

    PubMed Central

    KOMATSU, YUKO; IBI, MIHO; CHOSA, NAOYUKI; KYAKUMOTO, SEIKO; KAMO, MASAHARU; SHIBATA, TOSHIYUKI; SUGIYAMA, YOSHIKI; ISHISAKI, AKIRA

    2016-01-01

    Bisphosphonates (BPs) are analogues of pyro-phosphate that are known to prevent bone resorption by inhibiting osteoclast activity. Nitrogen-containing BPs, such as zoledronic acid (ZA), are widely used in the treatment of osteoporosis and bone metastasis. However, despite having benefits, ZA has been reported to induce BP-related osteonecrosis of the jaw (BRONJ) in cancer patients. The molecular pathological mechanisms responsible for the development of BRONJ, including necrotic bone exposure after tooth extraction, remain to be elucidated. In this study, we examined the effects of ZA on the transforming growth factor-β (TGF-β)-induced myofibroblast (MF) differentiation of human gingival fibroblasts (hGFs) and the migratory activity of hGFs, which are important for wound closure by fibrous tissue formation. The ZA maximum concentration in serum (Cmax) was found to be approximately 1.47 µM, which clinically, is found after the intravenous administration of 4 mg ZA, and ZA at this dose is considered appropriate for the treatment of cancer bone metastasis or bone diseases, such as Erdheim-Chester disease. At Cmax, ZA significantly suppressed i) the TGF-β-induced promotion of cell viability, ii) the TGF-β-induced expression of MF markers such as α-smooth muscle actin (α-SMA) and type I collagen, iii) the TGF-β-induced migratory activity of hGFs and iv) the expression level of TGF-β type I receptor on the surfaces of hGFs, as well as the TGF-β-induced phosphorylation of Smad2/3. Thus, ZA suppresses TGF-β-induced fibrous tissue formation by hGFs, possibly through the inhibition of Smad-dependent signal transduction. Our findings partly elucidate the molecular mechanisms underlying BRONJ and may prove to be beneficial to the identification of drug targets for the treatment of this symptom at the molecular level. PMID:27176567

  19. α-Tomatine inhibits growth and induces apoptosis in HL-60 human myeloid leukemia cells.

    PubMed

    Huang, Huarong; Chen, Shaohua; Van Doren, Jeremiah; Li, Dongli; Farichon, Chelsea; He, Yan; Zhang, Qiuyan; Zhang, Kun; Conney, Allan H; Goodin, Susan; Du, Zhiyun; Zheng, Xi

    2015-06-01

    α‑Tomatine is a glycoalkaloid that occurs naturally in tomatoes (Lycopersicon esculentum). In the present study, the effects of α‑tomatine on human myeloid leukemia HL‑60 cells were investigated. Treatment of HL‑60 cells with α‑tomatine resulted in growth inhibition and apoptosis in a concentration‑dependent manner. Tomatidine, the aglycone of tomatine had little effect on the growth and apoptosis of HL‑60 cells. Growth inhibition and apoptosis induced by α‑tomatine in HL‑60 cells was partially abrogated by addition of cholesterol indicating that interactions between α‑tomatine and cell membrane‑associated cholesterol may be important in mediating the effect of α‑tomatine. Activation of nuclear factor‑κB by the phorbol ester, 12‑O‑tetradecanoylphorbol‑13‑acetate failed to prevent apoptosis in HL‑60 cells treated with α‑tomatine. In animal experiments, it was found that treatment of mice with α‑tomatine inhibited the growth of HL‑60 xenografts in vivo. Results from the present study indicated that α‑tomatine may have useful anti‑leukemia activities. PMID:25625536

  20. Oridonin inhibits tumor growth in glioma by inducing cell cycle arrest and apoptosis.

    PubMed

    Zhang, X-H; Liu, Y-X; Jia, M; Han, J-S; Zhao, M; Ji, S-P; Li, A-M

    2014-01-01

    Glioma is the most common malignant intracranial tumors. Despite newly developed therapies, these treatments mainly target oncogenic signals, and unfortunately, fail to provide enough survival benefit in both human patients and mouse xenograft models, especially the first-generation therapies. Oridonin is purified from the Chinese herb Rabdosia rubescens and considered to exert extensive anti-cancer effects on human tumorigenesis. In this study, we systemically investigated the role of Oridonin in tumor growth and the underlying mechanisms in human glioma. We found that Oridonin inhibited cell proliferations in a dose- and time-dependent manner in both glioma U87 and U251 cells. Moreover, these anti-cancer effects were also confirmed in a mouse model bearing glioma. Furthermore, cell cycle arrest in S phase was observed in Oridonin-mediated growth inhibition by flow cytometry. Cell cycle arrest in S phase led to eventual cell apoptosis, as revealed by Hoechst 33342 staining and annexin V/PI double-staining. The cell apoptosis might be accomplished through a mitochondrial manner. In all, we were the first to our knowledge to report that Oridonin could exert anti-cancer effects on tumor growth in human glioma by inducing cell cycle arrest and eventual cell apoptosis. The identification of Oridonin as a critical mediator of glioma growth may potentiate Oridonin as a novel therapeutic strategies in glioma treatments. PMID:25553351

  1. Salt-induced modulation in growth, photosynthesis and antioxidant system in two varieties of Brassica juncea.

    PubMed

    Wani, Arif Shafi; Ahmad, Aqil; Hayat, Shamsul; Fariduddin, Qazi

    2013-04-01

    The present study was carried out to examine salt-induced modulation in growth, photosynthetic characteristics and antioxidant system in two cultivars of Brassica juncea Czern and Coss varieties (Varuna and RH-30). The surface sterilized seeds of these varieties were sown in the soil amended with different levels (2.8, 4.2 or 5.6 dsm(-1)) of sodium chloride under a simple randomized block design. The salt treatment significantly decreased growth, net photosynthetic rate and its related attributes, chlorophyll fluorescence, SPAD value of chlorophyll, leaf carbonic anhydrase activity and leaf water potential, whereas electrolyte leakage, proline content, and activity of catalase, peroxidase and superoxide dismutase enzymes increased in both the varieties at 30 d stage of growth. The variety Varuna was found more resistant than RH-30 to the salt stress and possessed higher values for growth, photosynthetic attributes and antioxidant enzymes. Out of the graded concentrations (2.8, 4.2 or 5.6 dsm(-1)) of sodium chloride, 2.8 sm(-1) was least toxic and 5.6 dsm(-1) was most harmful. The variation in the responses of these two varieties to salt stress is attributed to their differential photosynthetic traits, SPAD chlorophyll value and antioxidant capacity, which can be used as potential markers for screening mustard plants for salt tolerance. PMID:23961235

  2. Growth Decline Linked to Warming-Induced Water Limitation in Hemi-Boreal Forests

    PubMed Central

    Wu, Xiuchen; Liu, Hongyan; Guo, Dali; Anenkhonov, Oleg A.; Badmaeva, Natalya K.; Sandanov, Denis V.

    2012-01-01

    Hemi-boreal forests, which make up the transition from temperate deciduous forests to boreal forests in southern Siberia, have experienced significant warming without any accompanying increase in precipitation during the last 80 years. This climatic change could have a profound impact on tree growth and on the stability of forest ecosystems in this region, but at present evidence for these impacts is lacking. In this study, we report a recent dramatic decline in the growth of hemi-boreal forests, based on ring width measurements from three dominant tree-species (Pinus sylvestris, Larix sibirica and Larix gmelinii), sampled from eight sites in the region. We found that regional tree growth has become increasingly limited by low soil water content in the pre- and early-growing season (from October of the previous year to July of the current year) over the past 80 years. A warming-induced reduction in soil water content has also increased the climate sensitivity of these three tree species. Beginning in the mid-1980s, a clear decline in growth is evident for both the pine forests and the larch forests, although there are increasing trends in the proxy of soil water use efficiencies. Our findings are consistent with those from other parts of the world and provide valuable insights into the regional carbon cycle and vegetation dynamics, and should be useful for devising adaptive forest management strategies. PMID:22916142

  3. The Incompatibility of Living Systems: Characterizing Growth-Induced Incompatibilities in Expanded Skin.

    PubMed

    Buganza Tepole, Adrian; Gart, Michael; Purnell, Chad A; Gosain, Arun K; Kuhl, Ellen

    2016-05-01

    Skin expansion is a common surgical technique to correct large cutaneous defects. Selecting a successful expansion protocol is solely based on the experience and personal preference of the operating surgeon. Skin expansion could be improved by predictive computational simulations. Towards this goal, we model skin expansion using the continuum framework of finite growth. This approach crucially relies on the concept of incompatible configurations. However, aside from the classical opening angle experiment, our current understanding of growth-induced incompatibilities remains rather vague. Here we visualize and characterize incompatibilities in living systems using skin expansion in a porcine model: We implanted and inflated two expanders, crescent, and spherical, and filled them to 225 cc throughout a period of 21 days. To quantify the residual strains developed during this period, we excised the expanded skin patches and subdivided them into smaller pieces. Skin growth averaged 1.17 times the original area for the spherical and 1.10 for the crescent expander, and displayed significant regional variations. When subdivided into smaller pieces, the grown skin patches retracted heterogeneously and confirmed the existence of incompatibilities. Understanding skin growth through mechanical stretch will allow surgeons to improve-and ultimately personalize-preoperative treatment planning in plastic and reconstructive surgery. PMID:26416721

  4. Telomerase expression abrogates rapamycin-induced irreversible growth arrest of uterine fibroid smooth muscle cells.

    PubMed

    Suo, Guangli; Sadarangani, Anil; Tang, Wingchung; Cowan, Bryan D; Wang, Jean Y J

    2014-09-01

    Uterine fibroids are the most common solid tumors found in women of reproductive age. It has been reported that deregulation of the mammalian target of rapamycin (mTOR) pathway plays an important role in the etiology of leiomyoma. Here, we investigated the effect of rapamycin, an inhibitor of mTORC1, on the growth of primary fibroid smooth muscle cells (fSMCs) and human telomerase reverse transcriptase (hTERT)-transduced and immortalized fSMCs. With the primary fSMCs, a 24-hour treatment with rapamycin was sufficient to trigger a growth arrest that was not reversible upon drug removal. By contrast, the growth inhibitory effect of rapamycin on the hTERT-transduced fSMCs was readily reversible, as these cells resumed proliferation upon the withdrawal of the drug. These results suggest that rapamycin-induced irreversible growth arrest of fSMCs is dependent on the senescence barrier that is abrogated by the ectopic expression of telomerase. PMID:24784716

  5. Vapor-Induced Solid-Liquid-Solid Process for Silicon-based Nanowire Growth

    SciTech Connect

    Zhang, Jiguang; Liu, Jun; Wang, Donghai; Choi, Daiwon; Fifield, Leonard S.; Wang, Chong M.; Xia, Guanguang; Nie, Zimin; Yang, Zhenguo; Pederson, Larry R.; Graff, Gordon L.

    2010-03-10

    Silicon based nanowires have been grown from commercial silicon powders under conditions of differing oxygen and carbon activities. Nanowires grown in the presence of carbon sources consisted of a crystalline SiC core with an amorphous SiOx shell. The thickness of SiOx shell decreased as the oxygen concentration in the precursor gases was lowered. Nanowires grown in a carbon-free environment consisted of amorphous silicon oxide with a typical composition of SiO1.8. The growth rate of nanowires decreased with decreasing oxygen content in the precursor gases. SiO1.8 nanowires exhibited an initial discharge capacity of ~ 1,300 mAh/g and better stability than those of silicon powders. A Vapor Induced Solid-Liquid-Solid (VI-SLS) mechanism is proposed to explain the nanowire growth (including silicon and other metal based nanowires) from powder sources. In this approach, both a gas source and a solid powder source are required for nanowire growth. This mechanism is consistent with experimental observations and can also be used to guide the design and growth of other nanowires.

  6. A Model for Surface Induced Growth of Inert Gas Bubbles in Irradiated Copper-Boron Alloys

    SciTech Connect

    Tiwari, G.P.; Ramadasan, E.

    2006-07-01

    A matrix containing inert gas bubbles dilates in direct proportion to the growth experienced by the gas bubbles. This phenomenon is termed as swelling. A model for the swelling induced by the growth of the helium gas bubbles in irradiated copper-boron alloys is presented. The bubbles grow by acquiring vacancies from the external surface, which acts as a source of vacancies. The vacancies reach the surface of the bubbles mainly via lattice diffusion and to a limited extent via diffusion through short-circuiting paths such as grain boundaries and dislocation pipes. The model predicts that overall swelling of the matrix varies as 1.5 power of time. Another consequence of the present model is that the growth rate of a gas bubble varies inversely as the cube of its distance from the external surface. The model has been applied to the data on irradiated copper-boron alloys and found to be in accord with the experimental results. The model is general and can be applied to the growth of all kinds of stationary inert gas bubbles trapped within a crystalline matrix. (authors)

  7. Chrysanthemum zawadskii extract induces hair growth by stimulating the proliferation and differentiation of hair matrix.

    PubMed

    Li, Zheng; Li, Jingjie; Gu, Lijuan; Begum, Shahnaz; Wang, Yunbo; Sun, Baishen; Lee, Mira; Sung, Changkeun

    2014-07-01

    Chrysanthemum zawadskii has been proven to possess hair growth activity and has been used as treatment for hair loss. The aim of this study was to provide a novel explanation of the mechanism by which Chrysanthemum zawadskii extracts (CZe) promote hair growth and to characterize the affected hair follicle (HF) regions and the progression of growth. The n-butanol and water fractions of CZe were used for hair growth induction by topical application to the backs of C57BL/6 mice for up to 30 days. To investigate cell development during HF morphogenesis, bromodeoxyuridine-labeled skin sections were detected using immunohistochemistry. The results showed that the water fraction of CZe promoted hair shaft production and induced premature entry of telogen HFs into the anagen. Subsequently, immunohistochemical studies indicated that the water fraction of CZe stimulated the differentiation and proliferation of pluripotent epidermal matrix cells in the matrix region and epithelial stem cells in the basal layer of the epidermis. Additionally, flavonoids were identified as effective constituents. Therefore, the findings of this study suggested that the water fraction of CZe may be developed as a therapeutic agent for the prevention of hair loss. PMID:24807783

  8. Growth decline linked to warming-induced water limitation in hemi-boreal forests.

    PubMed

    Wu, Xiuchen; Liu, Hongyan; Guo, Dali; Anenkhonov, Oleg A; Badmaeva, Natalya K; Sandanov, Denis V

    2012-01-01

    Hemi-boreal forests, which make up the transition from temperate deciduous forests to boreal forests in southern Siberia, have experienced significant warming without any accompanying increase in precipitation during the last 80 years. This climatic change could have a profound impact on tree growth and on the stability of forest ecosystems in this region, but at present evidence for these impacts is lacking. In this study, we report a recent dramatic decline in the growth of hemi-boreal forests, based on ring width measurements from three dominant tree-species (Pinus sylvestris, Larix sibirica and Larix gmelinii), sampled from eight sites in the region. We found that regional tree growth has become increasingly limited by low soil water content in the pre- and early-growing season (from October of the previous year to July of the current year) over the past 80 years. A warming-induced reduction in soil water content has also increased the climate sensitivity of these three tree species. Beginning in the mid-1980s, a clear decline in growth is evident for both the pine forests and the larch forests, although there are increasing trends in the proxy of soil water use efficiencies. Our findings are consistent with those from other parts of the world and provide valuable insights into the regional carbon cycle and vegetation dynamics, and should be useful for devising adaptive forest management strategies. PMID:22916142

  9. Salt-induced modulation in growth, photosynthesis and antioxidant system in two varieties of Brassica juncea

    PubMed Central

    Wani, Arif Shafi; Ahmad, Aqil; Hayat, Shamsul; Fariduddin, Qazi

    2013-01-01

    The present study was carried out to examine salt-induced modulation in growth, photosynthetic characteristics and antioxidant system in two cultivars of Brassica juncea Czern and Coss varieties (Varuna and RH-30). The surface sterilized seeds of these varieties were sown in the soil amended with different levels (2.8, 4.2 or 5.6 dsm−1) of sodium chloride under a simple randomized block design. The salt treatment significantly decreased growth, net photosynthetic rate and its related attributes, chlorophyll fluorescence, SPAD value of chlorophyll, leaf carbonic anhydrase activity and leaf water potential, whereas electrolyte leakage, proline content, and activity of catalase, peroxidase and superoxide dismutase enzymes increased in both the varieties at 30 d stage of growth. The variety Varuna was found more resistant than RH-30 to the salt stress and possessed higher values for growth, photosynthetic attributes and antioxidant enzymes. Out of the graded concentrations (2.8, 4.2 or 5.6 dsm−1) of sodium chloride, 2.8 sm−1 was least toxic and 5.6 dsm−1 was most harmful. The variation in the responses of these two varieties to salt stress is attributed to their differential photosynthetic traits, SPAD chlorophyll value and antioxidant capacity, which can be used as potential markers for screening mustard plants for salt tolerance. PMID:23961235

  10. Unraveling irradiation induced grain growth with in situ transmission electron microscopy and coordinated modeling

    SciTech Connect

    Bufford, D. C.; Abdeljawad, F. F.; Foiles, S. M.; Hattar, K.

    2015-11-09

    Nanostructuring has been proposed as a method to enhance radiation tolerance, but many metallic systems are rejected due to significant concerns regarding long term grain boundary and interface stability. This work utilized recent advancements in transmission electron microscopy (TEM) to quantitatively characterize the grain size, texture, and individual grain boundary character in a nanocrystalline gold model system before and after in situ TEM ion irradiation with 10 MeV Si. The initial experimental measurements were fed into a mesoscale phase field model, which incorporates the role of irradiation-induced thermal events on boundary properties, to directly compare the observed and simulated grain growth with varied parameters. The observed microstructure evolution deviated subtly from previously reported normal grain growth in which some boundaries remained essentially static. In broader terms, the combined experimental and modeling techniques presented herein provide future avenues to enhance quantification and prediction of the thermal, mechanical, or radiation stability of grain boundaries in nanostructured crystalline systems.

  11. Unraveling irradiation induced grain growth with in situ transmission electron microscopy and coordinated modeling

    NASA Astrophysics Data System (ADS)

    Bufford, D. C.; Abdeljawad, F. F.; Foiles, S. M.; Hattar, K.

    2015-11-01

    Nanostructuring has been proposed as a method to enhance radiation tolerance, but many metallic systems are rejected due to significant concerns regarding long term grain boundary and interface stability. This work utilized recent advancements in transmission electron microscopy (TEM) to quantitatively characterize the grain size, texture, and individual grain boundary character in a nanocrystalline gold model system before and after in situ TEM ion irradiation with 10 MeV Si. The initial experimental measurements were fed into a mesoscale phase field model, which incorporates the role of irradiation-induced thermal events on boundary properties, to directly compare the observed and simulated grain growth with varied parameters. The observed microstructure evolution deviated subtly from previously reported normal grain growth in which some boundaries remained essentially static. In broader terms, the combined experimental and modeling techniques presented herein provide future avenues to enhance quantification and prediction of the thermal, mechanical, or radiation stability of grain boundaries in nanostructured crystalline systems.

  12. Predator-induced changes in the growth of eyes and false eyespots

    PubMed Central

    Lönnstedt, Oona M.; McCormick, Mark I.; Chivers, Douglas P.

    2013-01-01

    The animal world is full of brilliant colours and striking patterns that serve to hide individuals or attract the attention of others. False eyespots are pervasive across a variety of animal taxa and are among nature's most conspicuous markings. Understanding the adaptive significance of eyespots has long fascinated evolutionary ecologists. Here we show for the first time that the size of eyespots is plastic and increases upon exposure to predators. Associated with the growth of eyespots there is a corresponding reduction in growth of eyes in juvenile Ambon damselfish, Pomacentrus amboinensis. These morphological changes likely direct attacks away from the head region. Exposure to predators also induced changes in prey behaviour and morphology. Such changes could prevent or deter attacks and increase burst speed, aiding in escape. Damselfish exposed to predators had drastically higher survival suffering only 10% mortality while controls suffered 60% mortality 72 h after release. PMID:23887772

  13. Concentration gradient induced morphology evolution of silica nanostructure growth on photoresist-derived carbon micropatterns

    PubMed Central

    2012-01-01

    The evolution of silica nanostructure morphology induced by local Si vapor source concentration gradient has been investigated by a smart design of experiments. Silica nanostructure or their assemblies with different morphologies are obtained on photoresist-derived three-dimensional carbon microelectrode array. At a temperature of 1,000°C, rope-, feather-, and octopus-like nanowire assemblies can be obtained along with the Si vapor source concentration gradient flow. While at 950°C, stringlike assemblies, bamboo-like nanostructures with large joints, and hollow structures with smaller sizes can be obtained along with the Si vapor source concentration gradient flow. Both vapor–liquid-solid and vapor-quasiliquid-solid growth mechanisms have been applied to explain the diverse morphologies involving branching, connecting, and batch growth behaviors. The present approach offers a potential method for precise design and controlled synthesis of nanostructures with different features. PMID:22938090

  14. Concentration gradient induced morphology evolution of silica nanostructure growth on photoresist-derived carbon micropatterns

    NASA Astrophysics Data System (ADS)

    Liu, Dan; Shi, Tielin; Xi, Shuang; Lai, Wuxing; Liu, Shiyuan; Li, Xiaoping; Tang, Zirong

    2012-09-01

    The evolution of silica nanostructure morphology induced by local Si vapor source concentration gradient has been investigated by a smart design of experiments. Silica nanostructure or their assemblies with different morphologies are obtained on photoresist-derived three-dimensional carbon microelectrode array. At a temperature of 1,000°C, rope-, feather-, and octopus-like nanowire assemblies can be obtained along with the Si vapor source concentration gradient flow. While at 950°C, stringlike assemblies, bamboo-like nanostructures with large joints, and hollow structures with smaller sizes can be obtained along with the Si vapor source concentration gradient flow. Both vapor-liquid-solid and vapor-quasiliquid-solid growth mechanisms have been applied to explain the diverse morphologies involving branching, connecting, and batch growth behaviors. The present approach offers a potential method for precise design and controlled synthesis of nanostructures with different features.

  15. A review on radiation-induced nucleation and growth of colloidal metallic nanoparticles

    PubMed Central

    2013-01-01

    This review presents an introduction to the synthesis of metallic nanoparticles by radiation-induced method, especially gamma irradiation. This method offers some benefits over the conventional methods because it provides fully reduced and highly pure nanoparticles free from by-products or chemical reducing agents, and is capable of controlling the particle size and structure. The nucleation and growth mechanism of metallic nanoparticles are also discussed. The competition between nucleation and growth process in the formation of nanoparticles can determine the size of nanoparticles which is influenced by certain parameters such as the choice of solvents and stabilizer, the precursor to stabilizer ratio, pH during synthesis, and absorbed dose. PMID:24225302

  16. A novel fusionless vertebral physeal device inducing spinal growth modulation for the correction of spinal deformities

    PubMed Central

    Schmid, Eliane C.; Moreau, Alain; Sarwark, John; Parent, Stefan

    2008-01-01

    Current fusionless scoliosis surgical techniques span the intervertebral disc. This alters the spine stiffness, disc pressure equilibrium and possibly may lead to disc degeneration. A new fusionless physeal device was developed that locally modulates vertebral growth by compressing the physeal ring, while maintaining maximum segmental spinal mobility without spanning the intervertebral disc. This study’s objective was to test the feasibility of the device on a small animal model by inducing a scoliotic deformity (inverse approach) while analyzing the growth modifications. This study was conducted on caudal vertebrae of 21 rats (26-day-old) divided into 3 groups: (1) “experimental” (n = 11) with 4 instrumented vertebrae, (2) sham (n = 5) and (3) control (n = 5). Radiographs were taken at regular intervals during the 7-week experimental period. Tissues were embedded in methyl metacrylate (MMA), prepared by the cutting/grinding method, and then stained (Toluidine blue). The discs physiological alterations were qualitatively assessed and classified by inspection of the histological sections. A mean maximum Cobb angle of 30º (±6º) and a mean maximum vertebral wedge angle of 10º (±3º) were obtained between the 23rd and 35th day postoperative in the subgroup that underwent a long-term response from the device. The sham group underwent no growth alterations when compared to the control group. Descriptive histological analyses of the operated segments showed that 69% had no alterations to the intervertebral disc. This study presents experimental evidence that the device induces a significant and controlled wedging of the vertebrae while maintaining regular flexibility. In most discs, there were no visible morphological alterations induced. Further analysis of the discs and testing of this device on a larger animal is recommended with the long-term objective of developing an early treatment of progressive idiopathic scoliosis. PMID:18712419

  17. Analysis of Epithelial-Mesenchymal Transition Induced by Transforming Growth Factor β.

    PubMed

    Valcourt, Ulrich; Carthy, Jonathon; Okita, Yukari; Alcaraz, Lindsay; Kato, Mitsuyasu; Thuault, Sylvie; Bartholin, Laurent; Moustakas, Aristidis

    2016-01-01

    In recent years, the importance of the cell biological process of epithelial-mesenchymal transition (EMT) has been established via an exponentially growing number of reports. EMT has been documented during embryonic development, tissue fibrosis, and cancer progression in vitro, in animal models in vivo and in human specimens. EMT relates to many molecular and cellular alterations that occur when epithelial cells undergo a switch in differentiation that generates mesenchymal-like cells with newly acquired migratory and invasive properties. In addition, EMT relates to a nuclear reprogramming similar to the one occurring in the generation of induced pluripotent stem cells. Via such a process, EMT is gradually established to promote the generation and maintenance of adult tissue stem cells which under disease states such as cancer, are known as cancer stem cells. EMT is induced by developmental growth factors, oncogenes, radiation, and hypoxia. A prominent growth factor that causes EMT is transforming growth factor β (TGF-β).A series of molecular and cellular techniques can be applied to define and characterize the state of EMT in diverse biological samples. These methods range from DNA and RNA-based techniques that measure the expression of key EMT regulators and markers of epithelial or mesenchymal differentiation to functional assays of cell mobility, invasiveness and in vitro stemness. This chapter focuses on EMT induced by TGF-β and provides authoritative protocols and relevant reagents and citations of key publications aiming at assisting newcomers that enter this prolific area of biomedical sciences, and offering a useful reference tool to pioneers and aficionados of the field. PMID:26520123

  18. Cadmium-induced fetal growth retardation: protective effect of excess dietary zinc

    SciTech Connect

    Ahokas, R.A.; Dilts, P.V. Jr.; LaHaye, E.B.

    1980-01-15

    Reproductive performance and fetal cellular growth and development were investigated in laboratory rats chronically fed low drinking water levels (0, 1.0, 10.0, and 100 ..mu..g/ml) of cadmium (Cd), a known embryotoxic trace element, through gestation. Maternal daily food and water consumption, total weight gain, maternal weight gain, and feed efficiency all decreased with increasing Cd consumption. Term fetal weight was significantly less than that of control subjects only in the group fed 100 ..mu..g Cd/ml drinking water. Total litter weight, however, gradually decreased with increasing Cd concentration due to reduced litter size. Fetal growth retardation was a result of decreased cell division (DNA) and cell growth (protein/DNA ratio). When dams were pair-fed the average daily amount of food consumed by those fed 100 ..mu..g Cd/ml drinking water, maternal weight gain and fetal weight, DNA, and protein/DNA ratio were increased, but not to control levels. Dietary zinc (Zn) supplementation (5.0 ..mu..g/ml drinking water) of Cd-fed dams increased maternal food consumption and fetal weight, DNA, and protein/DNA ratio to control levels. Fetal levels of Cd were extremely low (0.038 to 0.095 ..mu..g/gm fetus) and did not increase with increasing Cd consumption, while placental Cd increased more than 10-fold. Fetal Zn was decreased in Cd-fed dams, and Zn supplementation increased fetal Zn levels, but not to control levels.These results suggest that Cd-induced fetal growth retardation is an indirect rather than a direct effect, resulting from reduced maternal food consumption and metabolism. Since dietary Zn blocks these effects, Cd may be a result of induced Zn deficiency.

  19. Cabozantinib inhibits prostate cancer growth and prevents tumor-induced bone lesions

    PubMed Central

    Dai, Jinlu; Zhang, Honglai; Karatsinides, Andreas; Keller, Jill M.; Kozloff, Kenneth M.; Aftab, Dana T.; Schimmoller, Frauke; Keller, Evan T.

    2013-01-01

    Purpose Cabozantinib, an orally available multi-tyrosine kinase inhibitor with activity against MET and vascular endothelial growth factor receptor 2 (VEGFR2), induces resolution of bone scan lesions in men with castration-resistant prostate cancer bone metastases. The purpose of this study was to determine whether cabozantinib elicited a direct anti-tumor effect, an indirect effect through modulating bone, or both. Experimental Design Using human prostate cancer xenograft studies in mice we determined cabozantinib's impact on tumor growth in soft tissue and bone. In vitro studies with cabozantinib were performed using (1) prostate cancer cell lines to evaluate its impact on cell growth, invasive ability and MET and (2) osteoblast cell lines to evaluate its impact on viability and differentiation and VEGFR2. Results Cabozantinib inhibited progression of multiple prostate cancer cell lines (Ace-1,C4-2B, and LuCaP 35) in bone metastatic and soft tissue murine models of prostate cancer, except for PC-3 prostate cancer cells in which it inhibited only subcutaneous growth. Cabozantinib directly inhibited prostate cancer cell viability and induced apoptosis in vitro and in vivo and inhibited cell invasion in vitro. Cabozantinib had a dose-dependent biphasic effect on osteoblast activity and inhibitory effect on osteoclast production in vitro, that was reflected in vivo. It blocked MET and VEGFR2 phosphorylation in prostate cancer cells and osteoblast-like cells, respectively. Conclusion These data indicate that cabozantinib has direct anti-tumor activity; and that its ability to modulate osteoblast activity may contribute to its anti-tumor efficacy. PMID:24097861

  20. Thrombin induces endothelial cell growth via both a proteolytic and a non-proteolytic pathway.

    PubMed Central

    Herbert, J M; Dupuy, E; Laplace, M C; Zini, J M; Bar Shavit, R; Tobelem, G

    1994-01-01

    Binding of 125I-thrombin to human umbilical vein endothelial cells (HUVECs) was specifically displaced by the synthetic tetradecapeptide SFLLRNPNDKYEPF, named thrombin receptor agonist peptide (TRAP), which has recently been described as a peptide mimicking the new N-terminus created by cleavage of the thrombin receptor, and F-14, a tetradecapeptide representing residues 365-378 of the human alpha-thrombin B chain. Binding of 125I-TRAP to HUVECs was time-dependent, reversible and saturable, showing high affinity (KD = 1.5 +/- 0.4 microM) and high binding capacity (Bmax. = 7.1 +/- 0.6 x 10(6) sites/cell) (n = 3). Unlabelled thrombin and TRAP competitively and selectively inhibited the specific binding of 125I-TRAP with IC50 values of 5.8 +/- 0.7 nM and 2.8 +/- 0.4 microM respectively, whereas F-14 remained ineffective at displacing 125I-TRAP from its binding sites, suggesting the presence of at least two different types of thrombin-binding sites on HUVECs. TRAP was a potent mitogen for HUVECs in culture. Both TRAP and alpha-thrombin stimulated the proliferation of HUVECs with half-maximum mitogenic responses between 1 and 10 nM. F-14 also promoted HUVEC growth. The mitogenic effects of F-14 and TRAP were additive. N alpha-(2-Naphthylsulphonylglycyl)-DL-p-amidinophenylalanylpiper idine (NAPAP) and hirudin (two specific inhibitors of the enzyme activity of thrombin) specifically inhibited thrombin-induced HUVEC growth (IC50 values 400 +/- 60 and 52 +/- 8 nM respectively) but remained without effect on the mitogenic effect of TRAP or F-14. This demonstrated that the mitogenic effect of alpha-thrombin for HUVECs was intimately linked to its esterolytic activity but also showed that thrombin can stimulate HUVEC growth via another non-enzymic pathway. This hypothesis was further reinforced by the fact that F-14-induced proliferation of HUVECs remained unaltered by two antibodies directed against TRAP or the cleavage site on the extracellular portion of the thrombin

  1. Inert gas jets for growth control in electron beam induced deposition

    SciTech Connect

    Henry, M. R.; Kim, S.; Rykaczewski, K.; Fedorov, A. G.

    2011-06-27

    An inert, precursor free, argon jet is used to control the growth rate of electron beam induced deposition. Adjustment of the jet kinetic energy/inlet temperature can selectively increase surface diffusion to greatly enhance the deposition rate or deplete the surface precursor due to impact-stimulated desorption to minimize the deposition or completely clean the surface. Physical mechanisms for this process are described. While the electron beam is also observed to generate plasma upon interaction with an argon jet, our results indicate that plasma does not substantially contribute to the enhanced deposition rate.

  2. Irradiation-induced grain growth in nanocrystalline reduced activation ferrite/martensite steel

    SciTech Connect

    Liu, W. B.; Chen, L. Q.; Zhang, C. Yang, Z. G.; Ji, Y. Z.; Zang, H.; Shen, T. L.

    2014-09-22

    In this work, we investigate the microstructure evolution of surface-nanocrystallized reduced activation ferrite/martensite steels upon high-dose helium ion irradiation (24.3 dpa). We report a significant irradiation-induced grain growth in the irradiated buried layer at a depth of 300–500 nm, rather than at the peak damage region (at a depth of ∼840 nm). This phenomenon can be explained by the thermal spike model: minimization of the grain boundary (GB) curvature resulting from atomic diffusion in the cascade center near GBs.

  3. Space-charged-induced emittance growth in the transport of high-brightness electron beams

    SciTech Connect

    Jones, M.E.; Carlsten, B.E.

    1987-03-01

    The emittance induced by space charge in a drifting beam of finite length has been investigated, and a scaling law has been obtained from simple considerations of the different rates of expansion of different portions of the beam. The scaling law predicts the initial rate of emittance growth, before the beam shape has distorted significantly, and thus represents an upper bound on the rate of emittance increase. This scaling law has been substantiated by particle-in-cell simulation and the dependence on geometric factors evaluated for specific choices of the beam profile. For long, axially nonuniform beams, the geometric factors have been evaluated explicitly for Gaussian profiles, and other shapes.

  4. Cultured dermal papilla cells induce follicle formation and hair growth by transdifferentiation of an adult epidermis.

    PubMed

    Reynolds, A J; Jahoda, C A

    1992-06-01

    Adult rat pelage follicle dermal papilla cells induced follicle neogenesis and external hair growth when associated with adult footpad skin epidermis. They thus demonstrated a capacity to completely change the structural arrangement and gene expression of adult epidermis--an ability previously undocumented for cultured adult cells. Isolation chambers ensured that de novo follicle formation must have occurred by eliminating the possibility of cellular contributions, and/or inductive influences, from local skin follicles. These findings argue against previous suggestions of vibrissa follicle specificity, and imply that the potential for hair follicle induction may be common to all adult papilla cells. PMID:1425341

  5. Southwestern Tropical Atlantic coral growth response to atmospheric circulation changes induced by ozone depletion in Antarctica

    NASA Astrophysics Data System (ADS)

    Evangelista, H.; Wainer, I.; Sifeddine, A.; Corrège, T.; Cordeiro, R. C.; Lamounier, S.; Godiva, D.; Shen, C.-C.; Le Cornec, F.; Turcq, B.; Lazareth, C. E.; Hu, C.-Y.

    2015-08-01

    Climate changes induced by stratospheric ozone depletion over Antarctica have been recognized as an important consequence of the recently observed Southern Hemisphere atmospheric circulation. Here we present evidences that the Brazilian coast (Southwestern Atlantic) may have been impacted from both winds and sea surface temperature changes derived from this process. Skeleton analysis of massive coral species living in shallow waters off Brazil are very sensitive to air-sea interactions, and seem to record this impact. Growth rates of Brazilian corals show a trend reversal that fits the ozone depletion evolution, confirming that ozone impacts are far reaching and potentially affect coastal ecosystems in tropical environments.

  6. Phase field modelling of strain induced crystal growth in an elastic matrix.

    PubMed

    Laghmach, Rabia; Candau, Nicolas; Chazeau, Laurent; Munch, Etienne; Biben, Thierry

    2015-06-28

    When a crystal phase grows in an amorphous matrix, such as a crystallisable elastomer, containing cross-links and/or entanglements, these "topological constraints" need to be pushed away from the crystal phase to allow further crystallization. The accumulation of these topological constraints in the vicinity of the crystal interface may store elastic energy and affect the phase transition. To evaluate the consequences of such mechanism, we introduce a phase field model based on the Flory theory of entropic elasticity. We show that the growth process is indeed sensibly affected, in particular, an exponential increase of the surface energy with the displacement of the interface is induced. This explains the formation of stable nano-crystallites as it is observed in the Strain Induced Crystallization (SIC) of natural rubber. Although simple, the model developed here is able to account for many interesting features of SIC, for instance, the crystallite shapes and their sizes which depend on the applied deformation. PMID:26133455

  7. Phase field modelling of strain induced crystal growth in an elastic matrix

    NASA Astrophysics Data System (ADS)

    Laghmach, Rabia; Candau, Nicolas; Chazeau, Laurent; Munch, Etienne; Biben, Thierry

    2015-06-01

    When a crystal phase grows in an amorphous matrix, such as a crystallisable elastomer, containing cross-links and/or entanglements, these "topological constraints" need to be pushed away from the crystal phase to allow further crystallization. The accumulation of these topological constraints in the vicinity of the crystal interface may store elastic energy and affect the phase transition. To evaluate the consequences of such mechanism, we introduce a phase field model based on the Flory theory of entropic elasticity. We show that the growth process is indeed sensibly affected, in particular, an exponential increase of the surface energy with the displacement of the interface is induced. This explains the formation of stable nano-crystallites as it is observed in the Strain Induced Crystallization (SIC) of natural rubber. Although simple, the model developed here is able to account for many interesting features of SIC, for instance, the crystallite shapes and their sizes which depend on the applied deformation.

  8. Changes in glycosidase activities during galactoglucomannan oligosaccharide inhibition of auxin induced growth.

    PubMed

    Bilisics, Ladislav; Vojtassák, Jozef; Capek, Peter; Kollárová, Karin; Lisková, Desana

    2004-07-01

    The inhibition of 2,4-D-induced elongation growth by galactoglucomannan oligosaccharides (GGMOs) in pea stem segments (Pisum sativum L. cv. Tyrkys) after 18 h of incubation results in changes of extracellular, intracellular and cell wall glycosidase activities (beta-D-glucosidase, beta-D-mannosidase, beta-D-galactosidase, beta-D-xylosidase, alpha-D-galactosidase, and alpha-L-arabinosidase). GGMOs lowered the glycosidase activities in the extracellular fraction, while in the cell wall fractions their activities were markedly increased. The intracellular enzyme alpha-d-galactosidase increased while the beta-d-galactosidase decreased in activity in response to the GGMO treatment. Extracellular enzymes showed low values of activities in comparison with intracellular and cell wall glycosidases. It is evident that GGMOs can alter auxin induced elongation and glycosidase activities in different compartments of the cell, however, the mode and site of their action remains unclear. PMID:15279996

  9. A Homeobox Gene Related to Drosophila Distal-Less Promotes Ovarian Tumorigenicity by Inducing Expression of Vascular Endothelial Growth Factor and Fibroblast Growth Factor-2

    PubMed Central

    Hara, Fumikata; Samuel, Shaija; Liu, Jinsong; Rosen, Daniel; Langley, Robert R.; Naora, Honami

    2007-01-01

    Homeobox genes control developmental patterning and are increasingly being found to be deregulated in tumors. The DLX4 homeobox gene maps to the 17q21.3-q22 region that is amplified in some epithelial ovarian cancers. Because amplification of this region correlates with poor prognosis, we investigated whether DLX4 overexpression contributes to aggressive behavior of this disease. DLX4 was not detected in normal ovary and cystadenomas, whereas its expression in ovarian carcinomas was strongly associated with high tumor grade and advanced disease stage. Overexpression of DLX4 in ovarian cancer cells promoted growth in low serum and colony formation. Imaging of mice bearing intraperitoneal tumors revealed that DLX4 overexpression substantially increased tumor burden. Tumors that overexpressed DLX4 were more vascularized than vector-control tumors. Conditioned medium of DLX4-overexpressing tumor cells was more effective than medium conditioned by vector-control cells in stimulating endothelial cell growth. These observations were associated with the ability of DLX4 to induce expression of vascular endothelial growth factor as well as intracellular and secreted isoforms of fibroblast growth factor-2. Moreover, increased levels of these fibroblast growth factor-2 isoforms induced vascular endothelial growth factor expression in tumor cells. This study reveals a novel role for a homeobox gene in ovarian tumorigenicity by its induction of a proangiogenic, growth-stimulatory molecular program. PMID:17456765

  10. A homeobox gene related to Drosophila distal-less promotes ovarian tumorigenicity by inducing expression of vascular endothelial growth factor and fibroblast growth factor-2.

    PubMed

    Hara, Fumikata; Samuel, Shaija; Liu, Jinsong; Rosen, Daniel; Langley, Robert R; Naora, Honami

    2007-05-01

    Homeobox genes control developmental patterning and are increasingly being found to be deregulated in tumors. The DLX4 homeobox gene maps to the 17q21.3-q22 region that is amplified in some epithelial ovarian cancers. Because amplification of this region correlates with poor prognosis, we investigated whether DLX4 overexpression contributes to aggressive behavior of this disease. DLX4 was not detected in normal ovary and cystadenomas, whereas its expression in ovarian carcinomas was strongly associated with high tumor grade and advanced disease stage. Overexpression of DLX4 in ovarian cancer cells promoted growth in low serum and colony formation. Imaging of mice bearing intraperitoneal tumors revealed that DLX4 overexpression substantially increased tumor burden. Tumors that overexpressed DLX4 were more vascularized than vector-control tumors. Conditioned medium of DLX4-overexpressing tumor cells was more effective than medium conditioned by vector-control cells in stimulating endothelial cell growth. These observations were associated with the ability of DLX4 to induce expression of vascular endothelial growth factor as well as intracellular and secreted isoforms of fibroblast growth factor-2. Moreover, increased levels of these fibroblast growth factor-2 isoforms induced vascular endothelial growth factor expression in tumor cells. This study reveals a novel role for a homeobox gene in ovarian tumorigenicity by its induction of a proangiogenic, growth-stimulatory molecular program. PMID:17456765

  11. Hypoxia induces expression of connective tissue growth factor in scleroderma skin fibroblasts

    PubMed Central

    Hong, K-H; Yoo, S-A; Kang, S-S; Choi, J-J; Kim, W-U; Cho, C-S

    2006-01-01

    Connective tissue growth factor (CTGF) plays a role in the fibrotic process of systemic sclerosis (SSc). Because hypoxia is associated with fibrosis in several profibrogenic conditions, we investigated whether CTGF expression in SSc fibroblasts is regulated by hypoxia. Dermal fibroblasts from patients with SSc and healthy controls were cultured in the presence of hypoxia or cobalt chloride (CoCl2), a chemical inducer of hypoxia-inducible factor (HIF)-1α. Expression of CTGF was evaluated by Northern and Western blot analyses. Dermal fibroblasts exposed to hypoxia (1% O2) or CoCl2 (1–100 µM) enhanced expression of CTGF mRNA. Skin fibroblasts transfected with HIF-1α showed the increased levels of CTGF protein and mRNA, as well as nuclear staining of HIF-1α, which was enhanced further by treatment of CoCl2. Simultaneous treatment of CoCl2 and transforming growth factor (TGF)-β additively increased CTGF mRNA in dermal fibroblasts. Interferon-γ inhibited the TGF-β-induced CTGF mRNA expression dose-dependently in dermal fibroblasts, but they failed to hamper the CoCl2-induced CTGF mRNA expression. In addition, CoCl2 treatment increased nuclear factor (NF)-κB binding activity for CTGF mRNA, while decreasing IκBα expression in dermal fibroblasts. Our data suggest that hypoxia, caused possibly by microvascular alterations, up-regulates CTGF expression through the activation of HIF-1α in dermal fibroblasts of SSc patients, and thereby contributes to the progression of skin fibrosis. PMID:17034590

  12. Activation of vascular endothelial growth factor gene transcription by hypoxia-inducible factor 1.

    PubMed Central

    Forsythe, J A; Jiang, B H; Iyer, N V; Agani, F; Leung, S W; Koos, R D; Semenza, G L

    1996-01-01

    Expression of vascular endothelial growth factor (VEGF) is induced in cells exposed to hypoxia or ischemia. Neovascularization stimulated by VEGF occurs in several important clinical contexts, including myocardial ischemia, retinal disease, and tumor growth. Hypoxia-inducible factor 1 (HIF-1) is a heterodimeric basic helix-loop-helix protein that activates transcription of the human erythropoietin gene in hypoxic cells. Here we demonstrate the involvement of HIF-1 in the activation of VEGF transcription. VEGF 5'-flanking sequences mediated transcriptional activation of reporter gene expression in hypoxic Hep3B cells. A 47-bp sequence located 985 to 939 bp 5' to the VEGF transcription initiation site mediated hypoxia-inducible reporter gene expression directed by a simian virus 40 promoter element that was otherwise minimally responsive to hypoxia. When reporters containing VEGF sequences, in the context of the native VEGF or heterologous simian virus 40 promoter, were cotransfected with expression vectors encoding HIF-1alpha and HIF-1beta (ARNT [aryl hydrocarbon receptor nuclear translocator]), reporter gene transcription was much greater in both hypoxic and nonhypoxic cells than in cells transfected with the reporter alone. A HIF-1 binding site was demonstrated in the 47-bp hypoxia response element, and a 3-bp substitution eliminated the ability of the element to bind HIF-1 and to activate transcription in response to hypoxia and/or recombinant HIF-1. Cotransfection of cells with an expression vector encoding a dominant negative form of HIF-1alpha inhibited the activation of reporter transcription in hypoxic cells in a dose-dependent manner. VEGF mRNA was not induced by hypoxia in mutant cells that do not express the HIF-1beta (ARNT) subunit. These findings implicate HIF-1 in the activation of VEGF transcription in hypoxic cells. PMID:8756616

  13. Keratinocyte growth factor protects against elastase-induced pulmonary emphysema in mice.

    PubMed

    Plantier, Laurent; Marchand-Adam, Sylvain; Antico Arciuch, Valeria G; Antico, Valeria G; Boyer, Laurent; De Coster, Cécile; Marchal, Joëlle; Bachoual, Rafik; Mailleux, Arnaud; Boczkowski, Jorge; Crestani, Bruno

    2007-11-01

    Pulmonary emphysema is characterized by persistent inflammation and progressive alveolar destruction. The keratinocyte growth factor (KGF) favorably influences alveolar maintenance and repair and possesses anti-inflammatory properties. We aimed to determine whether exogenous KGF prevented or corrected elastase-induced pulmonary emphysema in vivo. Treatment with 5 mg x kg(-1) x day(-1) KGF before elastase instillation prevented pulmonary emphysema. This effect was associated with 1) a sharp reduction in bronchoalveolar lavage fluid total protein and inflammatory cell recruitment, 2) a reduction in the pulmonary expression of the chemokines CCL2 (or monocyte chemoattractant protein-1) and CXCL2 (or macrophage inflammatory protein-2alpha) and of the adhesion molecules ICAM-1 and VCAM-1, 3) a reduction in matrix metalloproteinase (MMP)-2 and MMP-9 activity at day 3, and 4) a major reduction in DNA damage detected by terminal deoxynucleotidyltransferase-mediated dUTP nick end labeling (TUNEL) in alveolar cells at day 7. Treatment with KGF after elastase instillation had no effect on elastase-induced emphysema despite the conserved expression of the KGF receptor in the lungs of elastase-instilled animals as determined by immunohistochemistry. In vitro, KGF abolished the elastase-induced increase in CCL2, CXCL2, and ICAM-1 mRNA in the MLE-12 murine alveolar epithelial cell line. We conclude that KGF pretreatment protected against elastase-induced pulmonary inflammation, activation of MMPs, alveolar cell DNA damage, and subsequent emphysema in mice. PMID:17766584

  14. Cardamonin Regulates miR-21 Expression and Suppresses Angiogenesis Induced by Vascular Endothelial Growth Factor

    PubMed Central

    Jiang, Fu-Sheng; Tian, Sha-Sha; Lu, Jin-Jian; Ding, Xing-Hong; Qian, Chao-Dong; Ding, Bin; Ding, Zhi-Shan; Jin, Bo

    2015-01-01

    Cardamonin has promising potential in cancer prevention and therapy by interacting with proteins and modifying the expressions and activities, including factors of cell survival, proliferation, and angiogenesis. In our precious study, we have demonstrated that cardamonin suppressed vascular endothelial growth factor- (VEGF-) induced angiogenesis as evaluated in the mouse aortic ring assay. It is also known that microRNAs (miRNAs) play important roles in angiogenesis. Herein, we hypothesized whether antiangiogenesis effect of cardamonin in human umbilical vein endothelial cells (HUVECs) triggered by VEGF was associated with miRNAs. We found that cardamonin reduced the miR-21 expression induced by VEGF in HUVECs. Treatment with miR-21 mimics abolished the effects of cardamonin on VEGF-induced cell proliferation, migration, and angiogenesis in HUVECs. However, treatment with miR-21 inhibitors presented the opposite effects, indicating the vital role of miR-21 in this process. Our study provides a new insight of the preliminary mechanism of anti-VEGF-induced angiogenesis by cardamonin in HUVECs. PMID:26266258

  15. Transforming growth factor β1 inhibition protects from noise-induced hearing loss

    PubMed Central

    Murillo-Cuesta, Silvia; Rodríguez-de la Rosa, Lourdes; Contreras, Julio; Celaya, Adelaida M.; Camarero, Guadalupe; Rivera, Teresa; Varela-Nieto, Isabel

    2015-01-01

    Excessive exposure to noise damages the principal cochlear structures leading to hearing impairment. Inflammatory and immune responses are central mechanisms in cochlear defensive response to noise but, if unregulated, they contribute to inner ear damage and hearing loss. Transforming growth factor β (TGF-β) is a key regulator of both responses and high levels of this factor have been associated with cochlear injury in hearing loss animal models. To evaluate the potential of targeting TGF-β as a therapeutic strategy for preventing or ameliorating noise-induced hearing loss (NIHL), we studied the auditory function, cochlear morphology, gene expression and oxidative stress markers in mice exposed to noise and treated with TGF-β1 peptidic inhibitors P17 and P144, just before or immediately after noise insult. Our results indicate that systemic administration of both peptides significantly improved both the evolution of hearing thresholds and the degenerative changes induced by noise-exposure in lateral wall structures. Moreover, treatments ameliorated the inflammatory state and redox balance. These therapeutic effects were dose-dependent and more effective if the TGF-β1 inhibitors were administered prior to inducing the injury. In conclusion, inhibition of TGF-β1 actions with antagonistic peptides represents a new, promising therapeutic strategy for the prevention and repair of noise-induced cochlear damage. PMID:25852546

  16. Transforming growth factor β1 inhibition protects from noise-induced hearing loss.

    PubMed

    Murillo-Cuesta, Silvia; Rodríguez-de la Rosa, Lourdes; Contreras, Julio; Celaya, Adelaida M; Camarero, Guadalupe; Rivera, Teresa; Varela-Nieto, Isabel

    2015-01-01

    Excessive exposure to noise damages the principal cochlear structures leading to hearing impairment. Inflammatory and immune responses are central mechanisms in cochlear defensive response to noise but, if unregulated, they contribute to inner ear damage and hearing loss. Transforming growth factor β (TGF-β) is a key regulator of both responses and high levels of this factor have been associated with cochlear injury in hearing loss animal models. To evaluate the potential of targeting TGF-β as a therapeutic strategy for preventing or ameliorating noise-induced hearing loss (NIHL), we studied the auditory function, cochlear morphology, gene expression and oxidative stress markers in mice exposed to noise and treated with TGF-β1 peptidic inhibitors P17 and P144, just before or immediately after noise insult. Our results indicate that systemic administration of both peptides significantly improved both the evolution of hearing thresholds and the degenerative changes induced by noise-exposure in lateral wall structures. Moreover, treatments ameliorated the inflammatory state and redox balance. These therapeutic effects were dose-dependent and more effective if the TGF-β1 inhibitors were administered prior to inducing the injury. In conclusion, inhibition of TGF-β1 actions with antagonistic peptides represents a new, promising therapeutic strategy for the prevention and repair of noise-induced cochlear damage. PMID:25852546

  17. Requirement of HDAC6 for Transforming Growth Factor-β1-induced Epithelial-Mesenchymal Transition*

    PubMed Central

    Shan, Bin; Yao, Tso-pang; Nguyen, Hong T.; Zhuo, Ying; Levy, Dawn R.; Klingsberg, Ross C.; Tao, Hui; Palmer, Michael L.; Holder, Kevin N.; Lasky, Joseph A.

    2008-01-01

    The aberrant expression of transforming growth factor (TGF)-β1 in the tumor microenvironment and fibrotic lesions plays a critical role in tumor progression and tissue fibrosis by inducing epithelial-mesenchymal transition (EMT). EMT promotes tumor cell motility and invasiveness. How EMT affects motility and invasion is not well understood. Here we report that HDAC6 is a novel modulator of TGF-β1-induced EMT. HDAC6 is a microtubule-associated deacetylase that predominantly deacetylates nonhistone proteins, including α-tubulin, and regulates cell motility. We showed that TGF-β1-induced EMT is accompanied by HDAC6-dependent deacetylation of α-tubulin. Importantly, inhibition of HDAC6 by small interfering RNA or the small molecule inhibitor tubacin attenuated the TGF-β1-induced EMT markers, such as the aberrant expression of epithelial and mesenchymal peptides, as well as the formation of stress fibers. Reduced expression of HDAC6 also impaired the activation of SMAD3 in response to TGF-β1. Conversely, inhibition of SMAD3 activation substantially impaired HDAC6-dependent deacetylation of α-tubulin as well as the expression of EMT markers. These findings reveal a novel function of HDAC6 in EMT by intercepting the TGF-β-SMAD3 signaling cascade. Our results identify HDAC6 as a critical regulator of EMT and a potential therapeutic target against pathological EMT, a key event for tumor progression and fibrogenesis. PMID:18499657

  18. Ventilation-induced lung injury is not exacerbated by growth restriction in preterm lambs.

    PubMed

    Allison, Beth J; Hooper, Stuart B; Coia, Elise; Zahra, Valerie A; Jenkin, Graham; Malhotra, Atul; Sehgal, Arvind; Kluckow, Martin; Gill, Andrew W; Sozo, Foula; Miller, Suzanne L; Polglase, Graeme R

    2016-02-01

    Intrauterine growth restriction (IUGR) and preterm birth are frequent comorbidities and, combined, increase the risk of adverse respiratory outcomes compared with that in appropriately grown (AG) infants. Potential underlying reasons for this increased respiratory morbidity in IUGR infants compared with AG infants include altered fetal lung development, fetal lung inflammation, increased respiratory requirements, and/or increased ventilation-induced lung injury. IUGR was surgically induced in preterm fetal sheep (0.7 gestation) by ligation of a single umbilical artery. Four weeks later, preterm lambs were euthanized at delivery or delivered and ventilated for 2 h before euthanasia. Ventilator requirements, lung inflammation, early markers of lung injury, and morphological changes in lung parenchymal and vascular structure and surfactant composition were analyzed. IUGR preterm lambs weighed 30% less than AG preterm lambs, with increased brain-to-body weight ratio, indicating brain sparing. IUGR did not induce lung inflammation or injury or alter lung parenchymal and vascular structure compared with AG fetuses. IUGR and AG lambs had similar oxygenation and respiratory requirements after birth and had significant, but similar, increases in proinflammatory cytokine expression, lung injury markers, gene expression, and surfactant phosphatidylcholine species compared with unventilated controls. IUGR does not induce pulmonary structural changes in our model. Furthermore, IUGR and AG preterm lambs have similar ventilator requirements in the immediate postnatal period. This study suggests that increased morbidity and mortality in IUGR infants is not due to altered lung tissue or vascular structure, or to an altered response to early ventilation. PMID:26608532

  19. Warfarin-induced artery calcification is accelerated by growth and vitamin D.

    PubMed

    Price, P A; Faus, S A; Williamson, M K

    2000-02-01

    The present studies demonstrate that growth and vitamin D treatment enhance the extent of artery calcification in rats given sufficient doses of Warfarin to inhibit gamma-carboxylation of matrix Gla protein, a calcification inhibitor known to be expressed by smooth muscle cells and macrophages in the artery wall. The first series of experiments examined the influence of age and growth status on artery calcification in Warfarin-treated rats. Treatment for 2 weeks with Warfarin caused massive focal calcification of the artery media in 20-day-old rats and less extensive focal calcification in 42-day-old rats. In contrast, no artery calcification could be detected in 10-month-old adult rats even after 4 weeks of Warfarin treatment. To directly examine the importance of growth to Warfarin-induced artery calcification in animals of the same age, 20-day-old rats were fed for 2 weeks either an ad libitum diet or a 6-g/d restricted diet that maintains weight but prevents growth. Concurrent treatment of both dietary groups with Warfarin produced massive focal calcification of the artery media in the ad libitum-fed rats but no detectable artery calcification in the restricted-diet, growth-inhibited group. Although the explanation for the association between artery calcification and growth status cannot be determined from the present study, there was a relationship between higher serum phosphate and susceptibility to artery calcification, with 30% higher levels of serum phosphate in young, ad libitum-fed rats compared with either of the groups that was resistant to Warfarin-induced artery calcification, ie, the 10-month-old rats and the restricted-diet, growth-inhibited young rats. This observation suggests that increased susceptibility to Warfarin-induced artery calcification could be related to higher serum phosphate levels. The second set of experiments examined the possible synergy between vitamin D and Warfarin in artery calcification. High doses of vitamin D are known to

  20. Thyrotropin (TSH)-induced production of vascular endothelial growth factor in thyroid cancer cells in vitro: evaluation of TSH signal transduction and of angiogenesis-stimulating growth factors.

    PubMed

    Hoffmann, Sebastian; Hofbauer, Lorenz C; Scharrenbach, Vera; Wunderlich, Anette; Hassan, Iyad; Lingelbach, Susanne; Zielke, Andreas

    2004-12-01

    induce VEGF production in TSHr-positive HTC cells, whereas they did induce VEGF production in TSHr-negative HTC cells. In thyroid cancer cell lines, TSH induces VEGF production involving the PKC, rather than the PKA, pathway. However, EGF and TGF-beta increase the capacity of thyroid cancer cells to provide VEGF more effectively than TSH. In the absence of a functioning TSHr, additional growth factors, such as TGF-alpha, increase capacity for VEGF stimulation. PMID:15579770

  1. Developmental hypothyroxinaemia induced by maternal mild iodine deficiency delays hippocampal axonal growth in the rat offspring.

    PubMed

    Wei, W; Wang, Y; Wang, Y; Dong, J; Min, H; Song, B; Teng, W; Xi, Q; Chen, J

    2013-09-01

    Iodine is essential for the biosynthesis of thyroid hormones, including triiodothyronine and thyroxine. Thyroid hormones are important for central nervous system development. Mild maternal iodine deficiency (ID)-induced hypothyroxinaemia causes neurological deficits and mental retardation of the foetus. However, the detailed mechanism underlying these deficits is still largely unknown. Given that the growth-associated protein of 43 kDa (GAP-43), semaphorin 3A (Sema3A) and the glycogen synthase kinase 3β (GSK3β)/collapsin response mediator protein 2 (CRMP2) pathway are essential for axonal development, we hypothesise that hippocampal axonal growth-related proteins may be impaired, which may contribute to hippocampal axonal growth delay in rat offspring exposed to maternal hypothyroxinaemia. To test this hypothesis, maternal hypothyroxinaemia models were established in Wistar rats using a mild ID diet. Besides a negative control group, two maternal hypothyroidism models were created with either a severe ID diet or methimazole in the water. Our results showed that maternal hypothyroxinaemia exposure delayed offspring axonal growth on gestational day 19, postnatal day (PN) 7, PN14 and PN21. Consistent with this, the mean intensity of hippocampal CRMP2 and Tau1 immunofluorescence axonal protein was reduced in the mild ID group. Moreover, maternal hypothyroxinaemia disrupted expressions of GAP-43 and Sema3A. Furthermore, the phosphorylation of GSK3β and CRMP2 was also affected in the treated offspring, implying a potential mechanism by which hypothyroxinaemia-exposure affects neurodevelopment. Taken together, our data support the hypothesis that maternal hypothyroxinaemia may impair axonal growth of the offspring. PMID:23763342

  2. Integrated modeling and parallel computation of laser-induced axisymmetric rod growth

    NASA Astrophysics Data System (ADS)

    Lan, Hong

    2005-07-01

    To fully investigate a pyrolytic Laser-induced chemical vapor deposition (LCVD) system for growing an axisymmetric rod, a novel integrated three-dimensional mathematical model was developed not only to describe the heat transport in the deposit and substrate, but also to simulate the gas-phase in the heated reaction zone and its effect on growth rate. The integrated model consists of three components: the substrate, rod, and gas-phase domains. Each component is a separate model and the three components are dynamically integrated into one model for simulating the iterative and complex process of rod deposition. The gas-phase reaction is modeled by the gas-phase component, an adaptive domain attached on the top part of the rod. Its size and mesh decomposition is dynamically determined by the rod temperature distribution and the chosen threshold. The temperature and molar ratio are predicted and used to adjust the growth rate, by taking into account the diffusion limited growth regime, and to improve the simulation of entire deposition process. The substrate component describes the heat flow into the substrate, and the substrate surface temperature can be used to predict the initial rod growth which may affect the successive growth of the rod. The rod growth process is simulated using a layer-by-layer axisymmetric model. For each layer, the rod grows along the outward normal direction at each point on the rod surface. This simplified model makes the process more predictable and easier to control by specifying the height of the rod and the number of total iterations. Finite difference schemes, iterative numerical methods, and parallel algorithms were developed for solving the model. The numerical computation is stable, convergent, and efficient. The model and numerical methods are implemented sequentially and in parallel using a standard C++ code and Message Passing Interface (MPI). The program can be easily installed and executed on different platforms, such as Unix

  3. Growth hormone secretagogue receptor deficiency in mice protects against obesity‐induced hypertension

    PubMed Central

    Harris, Louise E.; Morgan, David G.; Balthasar, Nina

    2014-01-01

    Abstract Growth hormone secretagogue receptor (GHS‐R) signaling has been associated with growth hormone release, increases in food intake and pleiotropic cardiovascular effects. Recent data demonstrated that acute GHS‐R antagonism leads to increases in mean arterial pressure mediated by the sympathetic nervous system in rats; a highly undesirable effect if GHS‐R antagonism was to be used as a therapeutic approach to reducing food intake in an already obese, hypertensive patient population. However, our data in conscious, freely moving GHS‐R deficient mice demonstrate that chronic absence of GHS‐R signaling is protective against obesity‐induced hypertension. GHS‐R deficiency leads to reduced systolic blood pressure variability (SBPV); in response to acute high‐fat diet (HFD)‐feeding, increases in the sympathetic control of SBPV are suppressed in GHS‐R KO mice. Our data further suggest that GHS‐R signaling dampens the immediate HFD‐mediated increase in spontaneous baroreflex sensitivity. In diet‐induced obesity, absence of GHS‐R signaling leads to reductions in obesity‐mediated hypertension and tachycardia. Collectively, our findings thus suggest that chronic blockade of GHS‐R signaling may not result in adverse cardiovascular effects in obesity. PMID:24760503

  4. Green tea (-)-epigallocatechin gallate induced growth inhibition of human placental choriocarcinoma cells.

    PubMed

    Shih, Li-Jane; Lin, Yu-Ren; Lin, Cheng-Kuo; Liu, Hang-Shen; Kao, Yung-Hsi

    2016-05-01

    This study investigated the pathways involved in the effect of green tea epigallocatechin gallate (EGCG) on mitogenesis in BeWo, JEG-3, and JAR placental choriocarcinoma cells. EGCG inhibited cell proliferation in dose-dependent and time-dependent manners, as indicated by the number of cells and incorporation of bromodeoxyuridine (BrdU). A catechin-specific effect of green tea was evident; EGCG was more effective than epicatechin, epicatechin gallate, and epigallocatechin in suppressing cell growth. When all three of the mitogen-activated protein kinase (MAPK) subfamilies, i.e., ERK, p38, and JNK, were examined, EGCG significantly increased levels of phospho-ERK1/2 (pERK1/2) and phospho-p38 (pp38) and did not alter the total protein levels of ERK1/2, p38 MAPK, JNK, and phospho-JNK. EGCG-induced increases in the levels of pERK1/2 and pp38 proteins were prevented by pre-treatment with specific inhibitors of ERK1/2 MAPK and p38 MAPK, respectively. These inhibitors also suppressed EGCG-induced decreases in both cell number and BrdU incorporation. Moreover, pre-treatment with an AMP-activated protein kinase (AMPK) inhibitor prevented the actions of EGCG on proliferation and AMPK phosphorylation. These data suggest that EGCG mediates choriocarcinoma cell growth via the AMPK, ERK, and p38 pathways, but not JNK pathway. PMID:27208402

  5. Hypoxia-induced fibroblast growth factor 11 stimulates capillary-like endothelial tube formation.

    PubMed

    Yang, Jimin; Kim, Woo Jean; Jun, Hyoung Oh; Lee, Eun Ju; Lee, Kyeong Won; Jeong, Jae-Yeon; Lee, Sae-Won

    2015-11-01

    Low oxygen or hypoxia can be observed in the central region of solid tumors. Hypoxia is a strong stimulus for new blood vessel formation or angiogenesis, which is essential for tumor growth and progression. Fibroblast growth factor 11 (FGF11) is an intracellular non-secretory FGF whose function has not yet been fully characterized. In the present study, we demonstrated that FGF11 expression is upregulated under hypoxic conditions in human umbilical vein endothelial cells (HUVECs). FGF11 overexpression stimulated capillary-like tube formation, yet did not affect cell migration. Notably, FGF11 markedly increased the levels of tight junction proteins including occludin, zonula occludens-1 (ZO-1) and claudin-5 in HUVECs. The FGF11 promoter contains hypoxia response elements (HREs), and hypoxia-inducible factor-1 (HIF-1) binds to HREs to activate hypoxia-related genes. We demonstrated that hypoxia or HIF-1 expression under normoxic conditions increased the luciferase activity driven by the FGF11 promoter. However, deletion of the HREs from the FGF11 promoter rendered reporter gene activity unresponsive to hypoxia or HIF-1. Taken together, we propose that FGF11 may be involved in the stabilization of capillary-like tube structures associated with angiogenesis and may act as a modulator of hypoxia-induced pathological processes such as tumorigenesis. PMID:26323829

  6. [Study on exogenous hormones inducing parthenocarpy fruit growth and development and quality of Siraitia grosvenorii].

    PubMed

    Huang, Jie; Tu, Dong-ping; Ma, Xiao-jun; Mo, Chang-ming; Pan, Li-mei; Bai, Long-hua; Feng, Shi-xin

    2015-09-01

    To explore the growth and development and analyze the quality of the parthenocarpy fruit induced by exogenous hormones of Siraitia grosvenorii. the horizontal and vertical diameter, volume of the fruit were respectively measured by morphological and the content of endogenous hormones were determined by ELISA. The size and seed and content of mogrosides of mature fruit were determined. The results showed that the fruit of parthenocarpy was seedless and its growth and development is similar to the diploid fruit by hand pollination and triploid fruit by hand pollination or hormones. But the absolute value of horizontal and vertical diameter, volume of parthenocarpy fruit was less than those of fruit by hand pollination, while triploid was opposite. The content of IAA, ABA and ratio of ABA/GA was obviously wavy. At 0-30 d the content of IAA and ABA of parthenocarpy fruit first reduced then increased, content of IAA and GA parthenocarpy fruit was higher than that of fruit by hand pollination. Mogrosides of parthenocarpy fruit was close to pollination fruit. Hormones can induce S. grosvenorii parthenocarpy to get seedless fruit and the fruit shape and size and quality is close to normal diploid fruit by hand pollination and better than triploid fruit by hormone or hand pollination. PMID:26983201

  7. Mutant forms of growth factor-binding protein-2 reverse BCR-ABL-induced transformation.

    PubMed Central

    Gishizky, M L; Cortez, D; Pendergast, A M

    1995-01-01

    Growth factor-binding protein 2 (Grb2) is an adaptor protein that links tyrosine kinases to Ras. BCR-ABL is a tyrosine kinase oncoprotein that is implicated in the pathogenesis of Philadelphia chromosome (Ph1)-positive leukemias. Grb2 forms a complex with BCR-ABL and the nucleotide exchange factor Sos that leads to the activation of the Ras protooncogene. In this report we demonstrate that Grb2 mutant proteins lacking amino- or carboxyl-terminal src homology SH3 domains suppress BCR-ABL-induced Ras activation and reverse the oncogenic phenotype. The Grb2 SH3-deletion mutant proteins bind to BCR-ABL and do not impair tyrosine kinase activity. Expression of the Grb2 SH3-deletion mutant proteins in BCR-ABL-transformed Rat-1 fibroblasts and in the human Ph1-positive leukemic cell line K562 inhibits their ability to grow as foci in soft agar and form tumors in nude mice. Furthermore, expression of the Grb2 SH3-deletion mutants in K562 cells induced their differentiation. Because Ras plays an important role in signaling by receptor and nonreceptor tyrosine kinases, the use of interfering mutant Grb2 proteins may be applied to block the proliferation of other cancers that depend in part on activated tyrosine kinases for growth. Images Fig. 1 Fig. 2 Fig. 3 PMID:7479904

  8. Injectable gelatin derivative hydrogels with sustained vascular endothelial growth factor release for induced angiogenesis.

    PubMed

    Li, Zhe; Qu, Tiejun; Ding, Chen; Ma, Chi; Sun, Hongchen; Li, Shirong; Liu, Xiaohua

    2015-02-01

    Injectable biomaterials are attractive for soft tissue regeneration because they are handled in a minimally invasive manner and can easily adapt to complex defects. However, inadequate vascularization of the injectable constructs has long been a barrier, leading to necrosis or volume reduction after implantation. In this work, we developed a three-step process to synthesize injectable gelatin-derived hydrogels that are capable of controlling growth factor delivery to induce angiogenesis. In our approach, tyramine was first introduced into gelatin chains to provide enzymatic crosslinking points for gel formation after injection. Next, heparin, a polysaccharide with binding domains to many growth factors, was covalently linked to the tyramine-modified gelatin. Finally, vascular endothelial growth factor (VEGF) was incorporated into the gelatin derivative by binding with the heparin in the gelatin derivative, and an injectable gel with controlled VEGF release was formed by an enzymatic catalytic reaction with hydrogen peroxide (H2O2) and horseradish peroxidase (HRP). The gelation time, mechanical properties and degradation of the gel was readily tailored by the gelatin concentration and the ratio of H2O2/HRP. Binding VEGF to heparin stabilizes this growth factor, protects it from denaturation and proteolytic degradation and subsequently prolongs the sustained release. An in vitro release study and bioactivity assay indicated that the VEGF was released in a sustained manner with high bioactivity for over 3 weeks. Furthermore, a chicken chorioallantoic membrane (CAM) assay and animal experiments were performed to evaluate in vivo bioactivity of the VEGF released from the hydrogels. After 5 days of incubation on CAM, the number of blood vessels surrounding the heparin-modified hydrogels was increased by 2.4-fold compared with that of the control group. Deeper and denser cell infiltration and angiogenesis in the heparin-modified gelatin/VEGF gels were observed compared to

  9. Injectable gelatin derivative hydrogels with sustained vascular endothelial growth factor release for induced angiogenesis

    PubMed Central

    Li, Zhe; Qu, Tiejun; Ding, Chen; Ma, Chi; Sun, Hongchen; Li, Shirong; Liu, Xiaohua

    2014-01-01

    Injectable biomaterials are attractive for soft tissue regeneration because they are handled in a minimally invasive manner and can easily adapt to complex defects. However, inadequate vascularization of the injectable constructs has long been a barrier, leading to necrosis or volume reduction after implantation. In this work, we developed a three-step process to synthesize injectable gelatin-derived hydrogels that are capable of controlling growth factor delivery to induce angiogenesis. In our approach, tyramine was first introduced into gelatin chains to provide enzymatical crosslinking points for gel formation after injection. Next, heparin, a polysaccharide with binding domains to many growth factors, was covalently linked to the tyramine-modified gelatin. Finally, vascular endothelial growth factor (VEGF) was incorporated into the gelatin derivative by binding with the heparin in the gelatin derivative, and an injectable gel with controlled VEGF release was formed by an enzymatic catalytic reaction with hydrogen peroxide (H2O2) and horseradish peroxidase (HRP). The gelation time, mechanical properties and degradation of the gel was readily tailored by the gelatin concentration and the ratio of H2O2/HRP. Binding VEGF to heparin stabilizes this growth factor, protects it from denaturation and proteolytic degradation, and subsequently prolongs the sustained release. An in vitro release study and bioactivity assay indicated that the VEGF was released in a sustained manner with high bioactivity for over 3 weeks. Furthermore, a chicken chorioallantoic membrane (CAM) assay and animal experiments were performed to evaluate in vivo bioactivity of the VEGF released from the hydrogels. After 5 days of incubation on CAM, the number of blood vessels surrounding the heparin-modified hydrogels was 2.4-fold increase than that of the control group. Deeper and denser cell infiltration and angiogenesis in the heparin-modified gelatin/VEGF gels were observed than in the controls

  10. A new model for the spectral induced polarization signature of bacterial growth in porous media

    NASA Astrophysics Data System (ADS)

    Zhang, C.; Revil, A.; Atekwana, E. A.; Jardani, A.; Smith, S.

    2012-12-01

    Recent biogeophysics studies demonstrated the sensitivity of complex conductivity to bacterial growth and microbial mediated mineral transformations in porous media. Frequency-domain induced polarization is a minimally invasive manner to measure the complex conductivity of a material over a broad range of frequencies. The real component of complex conductivity is associated with electromigration of the charge carriers, and the imaginary component represents reversible energy storage of charge carriers at polarization length scales. Quantitative relationship between frequency-domain induced polarization responses and bacterial growth and decay in porous media is analyzed in this study using a new developed model. We focus on the direct contribution of bacteria themselves to the complex conductivity in porous media in the absence of biomineralization. At low frequencies, the induced polarization of bacteria (α-polarization) is related to the properties of the electrical double layer surrounding the membrane surface of bacteria. Surface conductivity and α-polarization are due to the Stern layer of the counterions occurring in a brush of polymers coating the surface of the bacteria, and can be related to the cation exchange capacity of the bacteria. From the modeling results, at low frequencies (< 10 Hz), the mobility of the counterions (K+) in the Stern layer of bacteria is found to be extremely small (4.7×10-10 m2s-1 V-1 at 25°C), and is close to the mobility of the same counterions along the surface of clay minerals (Na+, 1.5×10-10 m2s-1 V-1 at 25°C). This result is in agreement with experimental observations and it indicates a very low relaxation frequency for the α-polarization of the bacteria cells (typically around 0.1 to 5 Hertz). By coupling this new model with reactive transport modeling in which the evolution of bacterial populations are usually described by Monod kinetics, we show that the changes in imaginary conductivity with time can be used to

  11. Auxin-Induced Ethylene Triggers Abscisic Acid Biosynthesis and Growth Inhibition1

    PubMed Central

    Hansen, Hauke; Grossmann, Klaus

    2000-01-01

    The growth-inhibiting effects of indole-3-acetic acid (IAA) at high concentration and the synthetic auxins 7-chloro-3-methyl-8-quinolinecarboxylic acid (quinmerac), 2-methoxy-3,6-dichlorobenzoic acid (dicamba), 4-amino-3,6,6-trichloropicolinic acid (picloram), and naphthalene acetic acid, were investigated in cleavers (Galium aparine). When plants were root treated with 0.5 mm IAA, shoot epinasty and inhibition of root and shoot growth developed during 24 h. Concomitantly, 1-aminocyclopropane-1-carboxylic acid (ACC) synthase activity, and ACC and ethylene production were transiently stimulated in the shoot tissue within 2 h, followed by increases in immunoreactive (+)-abscisic acid (ABA) and its precursor xanthoxal (xanthoxin) after 5 h. After 24 h of treatment, levels of xanthoxal and ABA were elevated up to 2- and 24-fold, relative to control, respectively. In plants treated with IAA, 7-chloro-3-methyl-8-quinolinecarboxylic acid, naphthalene acetic acid, 2-methoxy-3,6-dichlorobenzoic acid, and 4-amino-3,6,6-trichloropicolinic acid, levels of ethylene, ACC, and ABA increased in close correlation with inhibition of shoot growth. Aminoethoxyvinyl-glycine and cobalt ions, which inhibit ethylene synthesis, decreased ABA accumulation and growth inhibition, whereas the ethylene-releasing ethephon promoted ABA levels and growth inhibition. In accordance, tomato mutants defective in ethylene perception (never ripe) did not produce the xanthoxal and ABA increases and growth inhibition induced by auxins in wild-type plants. This suggests that auxin-stimulated ethylene triggers ABA accumulation and the consequent growth inhibition. Reduced catabolism most probably did not contribute to ABA increase, as indicated by immunoanalyses of ABA degradation and conjugation products in shoot tissue and by pulse experiments with [3H]-ABA in cell suspensions of G. aparine. In contrast, studies using inhibitors of ABA biosynthesis (fluridone, naproxen, and tungstate), ABA

  12. Expression of cyr61, a growth factor-inducible immediate-early gene.

    PubMed Central

    O'Brien, T P; Yang, G P; Sanders, L; Lau, L F

    1990-01-01

    A set of immediate-early genes that are rapidly activated by serum or purified platelet-derived growth factor in mouse 3T3 fibroblasts has been previously identified. Among these genes, several are related to known or putative transcription factors and growth factors, supporting the notion that some of these genes encode regulatory molecules important to cell growth. We show here that a member of this set of genes, cyr61 (originally identified by its cDNA 3CH61), encodes a 379-amino-acid polypeptide rich in cysteine residues. cyr61 can be induced through protein kinase C-dependent and -independent pathways. Unlike many immediate-early genes that are transiently expressed, the cyr61 mRNA is accumulated from the G0/G1 transition through mid-G1. This expression pattern is due to persistent transcription, while the mRNA is rapidly turned over during the G0/G1 transition and in mid-G1 at the same rate. In logarithmically growing cells, the cyr61 mRNA level is constant throughout the cell cycle. Cyr61 contains an N-terminal secretory signal sequence; however, it is not detected in the culture medium by immunoprecipitation. Cyr61 is synthesized maximally at 1 to 2 h after serum stimulation and has a short half-life within the cell. Images PMID:2355916

  13. Troglitazone enhances tamoxifen-induced growth inhibitory activity of MCF-7 cells

    SciTech Connect

    Yu, Hong-Nu; Noh, Eun-Mi; Lee, Young-Rae; Roh, Si-Gyun; Song, Eun-Kyung; Han, Myung-Kwan; Lee, Yong-Chul; Shim, In Kyong; Lee, Seung Jin; Jung, Sung Hoo; Kim, Jong-Suk Youn, Hyun Jo

    2008-12-05

    Peroxisome proliferator-activated receptor {gamma} (PPAR{gamma}) ligands have been identified as a potential source of therapy for human cancers. However, PPAR{gamma} ligands have a limitation for breast cancer therapy, since estrogen receptor {alpha} (ER{sub {alpha}}) negatively interferes with PPAR{gamma} signaling in breast cancer cells. Here we show that ER{sub {alpha}} inhihits PPAR{gamma} transactivity and ER{sub {alpha}}-mediated inhibition of PPAR{gamma} transactivity is blocked by tamoxifen, an estrogen receptor blocker. The activation of ER{sub {alpha}} with 17-{beta}-estradiol blocked PPRE transactivity induced by troglitazone, a PPAR{gamma} ligand, indicating the resistance of ER{sub {alpha}}-positive breast cancer cells to troglitazone. Indeed, troglitazone inhibited the growth of ER{sub {alpha}}-negative MDA-MB-231 cells more than that of ER{sub {alpha}}-positive MCF-7 cells. Combination of troglitazone with tamoxifen led to a marked increase in growth inhibition of ER{sub {alpha}}-positive MCF-7 cells compared to either agent alone. Our data indicates that troglitazone enhances the growth inhibitory activity of tamoxifen in ER{sub {alpha}}-positive MCF-7 cells.

  14. VEGF-B-induced vascular growth leads to metabolic reprogramming and ischemia resistance in the heart

    PubMed Central

    Kivelä, Riikka; Bry, Maija; Robciuc, Marius R; Räsänen, Markus; Taavitsainen, Miia; Silvola, Johanna MU; Saraste, Antti; Hulmi, Juha J; Anisimov, Andrey; Mäyränpää, Mikko I; Lindeman, Jan H; Eklund, Lauri; Hellberg, Sanna; Hlushchuk, Ruslan; Zhuang, Zhen W; Simons, Michael; Djonov, Valentin; Knuuti, Juhani; Mervaala, Eero; Alitalo, Kari

    2014-01-01

    Angiogenic growth factors have recently been linked to tissue metabolism. We have used genetic gain- and loss-of function models to elucidate the effects and mechanisms of action of vascular endothelial growth factor-B (VEGF-B) in the heart. A cardiomyocyte-specific VEGF-B transgene induced an expanded coronary arterial tree and reprogramming of cardiomyocyte metabolism. This was associated with protection against myocardial infarction and preservation of mitochondrial complex I function upon ischemia-reperfusion. VEGF-B increased VEGF signals via VEGF receptor-2 to activate Erk1/2, which resulted in vascular growth. Akt and mTORC1 pathways were upregulated and AMPK downregulated, readjusting cardiomyocyte metabolic pathways to favor glucose oxidation and macromolecular biosynthesis. However, contrasting with a previous theory, there was no difference in fatty acid uptake by the heart between the VEGF-B transgenic, gene-targeted or wildtype rats. Importantly, we also show that VEGF-B expression is reduced in human heart disease. Our data indicate that VEGF-B could be used to increase the coronary vasculature and to reprogram myocardial metabolism to improve cardiac function in ischemic heart disease. Subject Categories Cardiovascular System; Metabolism See also: C Kupatt and R Hinkel (March 2014) PMID:24448490

  15. Small regulatory RNA-induced growth rate heterogeneity of Bacillus subtilis.

    PubMed

    Mars, Ruben A T; Nicolas, Pierre; Ciccolini, Mariano; Reilman, Ewoud; Reder, Alexander; Schaffer, Marc; Mäder, Ulrike; Völker, Uwe; van Dijl, Jan Maarten; Denham, Emma L

    2015-03-01

    Isogenic bacterial populations can consist of cells displaying heterogeneous physiological traits. Small regulatory RNAs (sRNAs) could affect this heterogeneity since they act by fine-tuning mRNA or protein levels to coordinate the appropriate cellular behavior. Here we show that the sRNA RnaC/S1022 from the Gram-positive bacterium Bacillus subtilis can suppress exponential growth by modulation of the transcriptional regulator AbrB. Specifically, the post-transcriptional abrB-RnaC/S1022 interaction allows B. subtilis to increase the cell-to-cell variation in AbrB protein levels, despite strong negative autoregulation of the abrB promoter. This behavior is consistent with existing mathematical models of sRNA action, thus suggesting that induction of protein expression noise could be a new general aspect of sRNA regulation. Importantly, we show that the sRNA-induced diversity in AbrB levels generates heterogeneity in growth rates during the exponential growth phase. Based on these findings, we hypothesize that the resulting subpopulations of fast- and slow-growing B. subtilis cells reflect a bet-hedging strategy for enhanced survival of unfavorable conditions. PMID:25790031

  16. Quantitative observations of hydrogen-induced, slow crack growth in a low alloy steel

    NASA Technical Reports Server (NTRS)

    Nelson, H. G.; Williams, D. P.

    1973-01-01

    Hydrogen-induced slow crack growth, da/dt, was studied in AISI-SAE 4130 low alloy steel in gaseous hydrogen and distilled water environments as a function of applied stress intensity, K, at various temperatures, hydrogen pressures, and alloy strength levels. At low values of K, da/dt was found to exhibit a strong exponential K dependence (Stage 1 growth) in both hydrogen and water. At intermediate values of K, da/dt exhibited a small but finite K dependence (Stage 2), with the Stage 2 slope being greater in hydrogen than in water. In hydrogen, at a constant K, (da/dt) sub 2 varied inversely with alloy strength level and varied essentially in the same complex manner with temperature and hydrogen pressure as noted previously. The results of this study provide support for most of the qualitative predictions of the lattice decohesion theory as recently modified by Oriani. The lack of quantitative agreement between data and theory and the inability of theory to explain the observed pressure dependence of slow crack growth are mentioned and possible rationalizations to account for these differences are presented.

  17. Partial Proteasome Inhibitors Induce Hair Follicle Growth by Stabilizing β-catenin

    PubMed Central

    Yucel, Gozde; Van Arnam, John; Means, Paula Casey; Huntzicker, Erik; Altindag, Banu; Lara, Maria Fernanda; Yuan, Jenny; Kuo, Calvin; Oro, Anthony E.

    2014-01-01

    The activation of tissue stem cells from their quiescent state represents the initial step in the complex process of organ regeneration and tissue repair. While the identity and location of tissue stem cells are becoming known, how key regulators control the balance of activation and quiescence remains mysterious. The vertebrate hair is an ideal model system where hair cycling between growth and resting phases is precisely regulated by morphogen signaling pathways, but how these events are coordinated to promote orderly signaling in a spatial and temporal manner remains unclear. Here, we show that hair cycle timing depends on regulated stability of signaling substrates by the ubiquitin-proteasome system. Topical application of partial proteasomal inhibitors (PaPIs) inhibits epidermal and dermal proteasome activity throughout the hair cycle. PaPIs prevent the destruction of the key anagen signal β-catenin, resulting in more rapid hair growth and dramati cally shortened telogen. We show that PaPIs induce excess β-catenin, act similarly to the GSK3β antagonist LiCl, and antagonize Dickopf-related protein-mediated inhibition of anagen. PaPIs thus represent a novel class of hair growth agents that act through transiently modifying the balance of stem cell activation and quiescence pathways. PMID:23963711

  18. Partial proteasome inhibitors induce hair follicle growth by stabilizing β-catenin.

    PubMed

    Yucel, Gozde; Van Arnam, John; Means, Paula Casey; Huntzicker, Erik; Altindag, Banu; Lara, Maria Fernanda; Yuan, Jenny; Kuo, Calvin; Oro, Anthony E

    2014-01-01

    The activation of tissue stem cells from their quiescent state represents the initial step in the complex process of organ regeneration and tissue repair. While the identity and location of tissue stem cells are becoming known, how key regulators control the balance of activation and quiescence remains mysterious. The vertebrate hair is an ideal model system where hair cycling between growth and resting phases is precisely regulated by morphogen signaling pathways, but how these events are coordinated to promote orderly signaling in a spatial and temporal manner remains unclear. Here, we show that hair cycle timing depends on regulated stability of signaling substrates by the ubiquitin-proteasome system. Topical application of partial proteasomal inhibitors (PaPIs) inhibits epidermal and dermal proteasome activity throughout the hair cycle. PaPIs prevent the destruction of the key anagen signal β-catenin, resulting in more rapid hair growth and dramatically shortened telogen. We show that PaPIs induce excess β-catenin, act similarly to the GSK3β antagonist LiCl, and antagonize Dickopf-related protein-mediated inhibition of anagen. PaPIs thus represent a novel class of hair growth agents that act through transiently modifying the balance of stem cell activation and quiescence pathways. PMID:23963711

  19. Nerve growth factor partially recovers inflamed skin from stress-induced worsening in allergic inflammation.

    PubMed

    Peters, Eva M J; Liezmann, Christiane; Spatz, Katharina; Daniltchenko, Maria; Joachim, Ricarda; Gimenez-Rivera, Andrey; Hendrix, Sven; Botchkarev, Vladimir A; Brandner, Johanna M; Klapp, Burghard F

    2011-03-01

    Neuroimmune dysregulation characterizes atopic disease, but its nature and clinical impact remain ill-defined. Induced by stress, the neurotrophin nerve growth factor (NGF) may worsen cutaneous inflammation. We therefore studied the role of NGF in the cutaneous stress response in a mouse model for atopic dermatitis-like allergic dermatitis (AlD). Combining several methods, we found that stress increased cutaneous but not serum or hypothalamic NGF in telogen mice. Microarray analysis showed increased mRNAs of inflammatory and growth factors associated with NGF in the skin. In stress-worsened AlD, NGF-neutralizing antibodies markedly reduced epidermal thickening together with NGF, neurotrophin receptor (tyrosine kinase A and p75 neurotrophin receptor), and transforming growth factor-β expression by keratinocytes but did not alter transepidermal water loss. Moreover, NGF expression by mast cells was reduced; this corresponded to reduced cutaneous tumor necrosis factor-α (TNF-α) mRNA levels but not to changes in mast cell degranulation or in the T helper type 1 (Th1)/Th2 cytokine balance. Also, eosinophils expressed TNF receptor type 2, and we observed reduced eosinophil infiltration after treatment with NGF-neutralizing antibodies. We thus conclude that NGF acts as a local stress mediator in perceived stress and allergy and that increased NGF message contributes to worsening of cutaneous inflammation mainly by enhancing epidermal hyperplasia, pro-allergic cytokine induction, and allergy-characteristic cellular infiltration. PMID:21085186

  20. Involvement of reactive oxygen species in stimuli-induced shedding of heparin-binding epidermal growth factor-like growth factor.

    PubMed

    Umata, Toshiyuki

    2014-06-01

    Heparin-binding epidermal growth factor-like growth factor (HB-EGF) is a critical growth factor for a number of physiological and pathological processes, such as wound healing, atherosclerosis and cancer proliferation. HB-EGF is synthesized as a membrane form (proHB-EGF), and is shedded at the cell surface to yield soluble HB-EGF, resulting in making it active. In this study, the involvement of reactive oxygen species (ROS) in stimuli-induced shedding of HB-EGF was investigated using monkey kidney Vero cells overexpressing HB-EGF (Vero-H cells). 12-O-tetradecanoylphorbol-13-acetate (TPA), lysophosphatidic acid (LPA) as a ligand for seventransmembrane G protein coupled receptors (GPCR) and sorbitol as stress induced shedding of HB-EGF mediated protein kinase C (PKC)-δ, mitogen-activated protein kinase (MAPK) and p38MAPK, respectively. These stimuli-induced sheddings of HB-EGF were inhibited by N-acetyl-L-cysteine (NAC), suggesting the involvement of ROS. As specific inhibitors of these protein kinases inhibited the shedding of HB-EGF, these signaling pathways seem to be independent, respectively. In contrast, γ-ray irradiation did not induce shedding although it did increase intracellular ROS levels. Taken together, these results suggest that the synergistic generation of ROS and the activation of protein kinase are required to promote stimuli-induced shedding of HB-EGF. PMID:24930874

  1. Keratinocyte growth factor induces proliferation of hepatocytes and epithelial cells throughout the rat gastrointestinal tract.

    PubMed Central

    Housley, R M; Morris, C F; Boyle, W; Ring, B; Biltz, R; Tarpley, J E; Aukerman, S L; Devine, P L; Whitehead, R H; Pierce, G F

    1994-01-01

    Keratinocyte growth factor (KGF), a member of the fibroblast growth factor (FGF) family, was identified as a specific keratinocyte mitogen after isolation from a lung fibroblast line. Recently, recombinant (r)KGF was found to influence proliferation and differentiation patterns of multiple epithelial cell lineages within skin, lung, and the reproductive tract. In the present study, we designed experiments to identify additional target tissues, and focused on the rat gastrointestinal (GI) system, since a putative receptor, K-sam, was originally identified in a gastric carcinoma. Expression of KGF receptor and KGF mRNA was detected within the entire GI tract, suggesting the gut both synthesized and responded to KGF. Therefore, rKGF was administered to adult rats and was found to induce markedly increased proliferation of epithelial cells from the foregut to the colon, and of hepatocytes, one day after systemic treatment. Daily treatment resulted in the marked selective induction of mucin-producing cell lineages throughout the GI tract in a dose-dependent fashion. Other cell lineages were either unaffected (e.g., Paneth cells), or relatively decreased (e.g., parietal cells, enterocytes) in rKGF-treated rats. The direct effect of rKGF was confirmed by demonstrating markedly increased carcinoembryonic antigen production in a human colon carcinoma cell line, LIM1899. Serum levels of albumin were specifically and significantly elevated after daily treatment. These results demonstrate rKGF can induce epithelial cell activation throughout the GI tract and liver. Further, endogenous KGF may be a normal paracrine mediator of growth within the gut. Images PMID:7962522

  2. Keratin 17 Is Induced in Oral Cancer and Facilitates Tumor Growth

    PubMed Central

    Khanom, Rumana; Nguyen, Chi Thi Kim; Kayamori, Kou; Zhao, Xin; Morita, Keiichi; Miki, Yoshio; Katsube, Ken-ichi; Yamaguchi, Akira; Sakamoto, Kei

    2016-01-01

    Keratin subtypes are selectively expressed depending on the cell type. They not only provide structural support, but regulate the metabolic processes and signaling pathways that control the growth of the epithelium. KRT17 (keratin 17) is induced in the regenerative epithelium and acts on diverse signaling pathways. Here, we demonstrate that KRT17 is invariably and permanently induced in oral squamous cell carcinoma (OSCC), as revealed by immunohistochemistry and cDNA microarray analysis. Two representative OSCC cell lines; KRT17-weakly expressing Ca9-22 and KRT17-highly expressing HSC3 were used to establish KRT17-overexpressing Ca9-22 and KRT17-knockdown HSC3 cells. Analysis of these cells revealed that KRT17 promoted cell proliferation and migration by stimulating the Akt/mTOR pathway. KRT17 also upregulated the expression of SLC2A1 (solute carrier family 2 member 1/Glut1) and glucose uptake. To further investigate the effect of KRT17 on tumorigenesis, KRT17-knockout HSC3 cells were established and were transplanted to the cephalic skin of nude mice. The tumors that developed from KRT17-knockout HSC3 cells had a lower Ki-67 labeling index and were significantly smaller compared to the controls. These results indicate that KRT17 stimulates the Akt/mTOR pathway and glucose uptake, thereby facilitating tumor growth. We could not confirm the relationship between KRT17 and SFN (stratifin) in the cells examined in this study. However, our study reinforces the concept that the cellular properties of cancer are regulated by a series of molecules similar to those found in wound healing. In OSCC, KRT17 acts as a pathogenic keratin that facilitates tumor growth through the stimulation of multiple signaling pathways, highlighting the importance of KRT17 as a multifunctional promoter of tumorigenesis. PMID:27512993

  3. Coccidia-induced mucogenesis promotes the onset of necrotic enteritis by supporting Clostridium perfringens growth.

    PubMed

    Collier, C T; Hofacre, C L; Payne, A M; Anderson, D B; Kaiser, P; Mackie, R I; Gaskins, H R

    2008-03-15

    This study tested the hypothesis that a host mucogenic response to an intestinal coccidial infection promotes the onset of necrotic enteritis (NE). A chick NE model was used in which birds were inoculated with Eimeria acervulina and E. maxima and subsequently with Clostridium perfringens (EAM/CP). A second group of EAM/CP-infected birds was treated with the ionophore narasin (NAR/EAM/CP). These groups were compared to birds that were either non-infected (NIF), or infected only with E. acervulina and E. maxima (EAM), or C. perfringens (CP). The impact of intestinal coccidial infection and anti-coccidial treatment on host immune responses and microbial community structure were evaluated with histochemical-, cultivation- and molecular-based techniques. Barrier function was compromised in EAM/CP-infected birds as indicated by elevated CFUs for anaerobic bacteria and C. perfringens in the spleen when compared to NIF controls at day 20, with a subsequent increase in intestinal NE lesions and mortality at day 22. These results correlate positively with a host inflammatory response as evidenced by increased ileal interleukin (IL)-4, IL-10 and IFN-gamma RNA expression. Concurrent increases in chicken intestinal mucin RNA expression, and goblet cell number and theca size indicate that EAM/CP induced an intestinal mucogenic response. Correspondingly, the growth of mucolytic bacteria and C. perfringens as well as alpha toxin production was greatest in EAM/CP-infected birds. The ionophore narasin, which directly eliminates coccidia, reduced goblet cell theca size, IL-10 and IFN-gamma expression, the growth of mucolytic bacteria including C. perfringens, coccidial and NE lesions and mortality in birds that were co-infected with coccidia and C. perfringens. Collectively the data support the hypothesis that coccidial infection induces a host mucogenic response providing a growth advantage to C. perfringens, the causative agent of NE. PMID:18068809

  4. Blocking rpS6 Phosphorylation Exacerbates Tsc1 Deletion-Induced Kidney Growth.

    PubMed

    Wu, Huijuan; Chen, Jianchun; Xu, Jinxian; Dong, Zheng; Meyuhas, Oded; Chen, Jian-Kang

    2016-04-01

    The molecular mechanisms underlying renal growth and renal growth-induced nephron damage remain poorly understood. Here, we report that in murine models, deletion of the tuberous sclerosis complex protein 1 (Tsc1) in renal proximal tubules induced strikingly enlarged kidneys, with minimal cystogenesis and occasional microscopic tumorigenesis. Signaling studies revealed hyperphosphorylation of eukaryotic translation initiation factor 4E-binding protein 1 (4E-BP1) and increased phosphorylation of ribosomal protein S6 (rpS6) in activated renal tubules. Notably, knockin of a nonphosphorylatable rpS6 in these Tsc1-mutant mice exacerbated cystogenesis and caused drastic nephron damage and renal fibrosis, leading to kidney failure and a premature death rate of 67% by 9 weeks of age. In contrast, Tsc1 single-mutant mice were all alive and had far fewer renal cysts at this age. Mechanistic studies revealed persistent activation of mammalian target of rapamycin complex 1 (mTORC1) signaling causing hyperphosphorylation and consequent accumulation of 4E-BP1, along with greater cell proliferation, in the renal tubules of Tsc1 and rpS6 double-mutant mice. Furthermore, pharmacologic treatment of Tsc1 single-mutant mice with rapamycin reduced hyperphosphorylation and accumulation of 4E-BP1 but also inhibited phosphorylation of rpS6. Rapamycin also exacerbated cystic and fibrotic lesions and impaired kidney function in these mice, consequently leading to a premature death rate of 40% within 2 weeks of treatment, despite destroying tumors and decreasing kidney size. These findings indicate that Tsc1 prevents aberrant renal growth and tumorigenesis by inhibiting mTORC1 signaling, whereas phosphorylated rpS6 suppresses cystogenesis and fibrosis in Tsc1-deleted kidneys. PMID:26296742

  5. Hydrogen Sulfide Inhibits Transforming Growth Factor-β1-Induced EMT via Wnt/Catenin Pathway

    PubMed Central

    Tao, Jie; Lan, Zhen; Hei, Hongya; Tian, Lulu; Pan, Wanma; Wang, Li; Zhang, Xuemei

    2016-01-01

    Hydrogen sulfide (H2S) has anti-fibrotic potential in lung, kidney and other organs. The exogenous H2S is released from sodium hydrosulfide (NaHS) and can influence the renal fibrosis by blocking the differentiation of quiescent renal fibroblasts to myofibroblasts. But whether H2S affects renal epithelial-to-mesenchymal transition (EMT) and the underlying mechanisms remain unknown. Our study is aimed at investigating the in vitro effects of H2S on transforming growth factor-β1 (TGF-β1)-induced EMT in renal tubular epithelial cells (HK-2 cells) and the associated mechanisms. The induced EMT is assessed by Western blotting analysis on the expressions of α-SMA, E-cadherin and fibronectin. HK-2 cells were treated with NaHS before incubating with TGF-β1 to investigate its effect on EMT and the related molecular mechanism. Results demonstrated that NaHS decreased the expression of α-SMA and fibronectin, and increased the expression of E-cadherin. NaHS reduced the expression of TGF-β receptor type I (TβR I) and TGF-β receptor type II (TβR II). In addition, NaHS attenuated TGF-β1-induced increase of β-catenin expression and ERK phosphorylation. Moreover, it inhibited the TGF-β1-induced nuclear translocation of ββ-catenin. These effects of NaHS on fibronectin, E-cadherin and TβR I were abolished by the ERK inhibitor U0126 or β-catenin inhibitor XAV939, or β-catenin siRNA interference. We get the conclusion that NaHS attenuated TGF-β1-induced EMT in HK-2 cells through both ERK-dependent and β-catenin-dependent pathways. PMID:26760502

  6. Expression and function of fibroblast growth factor-inducible 14 in human corneal myofibroblasts.

    PubMed

    Ebihara, Nobuyuki; Nakayama, Masafumi; Tokura, Tomoko; Ushio, Hiroko; Murakami, Akira

    2009-08-01

    The interaction of fibroblast growth factor-inducible 14 (Fn14) and, its ligand tumor necrosis factor-like weak inducer of apoptosis (TWEAK) is known to be important in wound healing of tissues. However, to our knowledge, expression and function of Fn14 in corneal myofibroblasts, which have a crucial role in wound healing of corneal stroma, has not been investigated. In this study, we investigated the expression and function of Fn14 in corneal myofibroblasts. Expression of Fn14 protein was assessed by flow cytometry. Corneal myofibroblasts showed strong expression of Fn14 protein, while keratocytes did not. TGF-beta(1) promoted the differentiation of keratocytes into corneal myofibroblasts, and induced Fn14 expression. These data reveal that keratocytes phenotype determines the level of Fn14 expression. ELISA was used to detect chemokines and matrix metalloproteinases in the supernatant of corneal myofibroblasts cultured with or without stimulation by TWEAK and/or TGF-beta(1). TWEAK increased the production of IL-8, MCP-1, and RANTES by corneal myofibroblasts via Fn14. TGF-beta(1) augmented the TWEAK-induced production of these chemokines. TWEAK also increased the production of MMP-1 and -3 by corneal myofibroblasts via Fn14, while TGF-beta(1) inhibited this effect of TWEAK on MMP production. TWEAK-induced phosphorylation of NF-kappaB and MAP kinase in corneal myofibroblasts. Furthermore, TWEAK partially inhibited the differentiation of keratocytes into corneal myofibroblasts promoted by TGF-beta(1). These data suggest that the Fn14/TWEAK system may have several roles in wound healing by corneal myofibroblasts. In the future, modulation of the TWEAK/Fn14 system may become a novel approach for control corneal wound healing. PMID:19344712

  7. Potassium Inhibits Dietary Salt-Induced Transforming Growth Factor-β Production

    PubMed Central

    Ying, Wei-Zhong; Aaron, Kristal; Wang, Pei-Xuan; Sanders, Paul W.

    2009-01-01

    Human and animal studies demonstrate an untoward effect of excess dietary NaCl (salt) intake on cardiovascular function and life span. The endothelium in particular augments the production of transforming growth factor (TGF)-β, a fibrogenic growth factor, in response to excess dietary salt intake. This study explored the initiating mechanism that regulates salt-induced endothelial cell production of TGF-β. Male Sprague-Dawley rats were given diets containing different amounts of NaCl and potassium for 4 days. A bioassay for TGF-β demonstrated increased (35.2%) amounts of active TGF-β in the medium of aortic ring segments from rats on the high-salt diet compared with rats maintained on a 0.3% NaCl diet. Inhibition of the large-conductance, calcium-activated potassium channel inhibited dietary salt-induced vascular production of TGF-β but did not affect production of TGF-β by ring segments from rats on the low-salt diet. Immunohistochemical and Western analyses demonstrated the α subunit of the calcium-activated potassium channel in endothelial cells. Increasing medium [K+] inhibited production of dietary salt-induced vascular production levels of total and active TGF-β but did not alter TGF-β production by aortic rings from rats on the 0.3% NaCl diet. Increasing dietary potassium content decreased urinary active TGF-β in animals receiving the high-salt diet but did not change urinary active TGF-β in animals receiving the low-salt diet. The findings demonstrated an interesting interaction between the dietary intake of potassium and excess NaCl and further showed the fundamental role of the endothelial calcium-activated potassium channel in the vascular response to excess salt intake. PMID:19738156

  8. Neuromedin-U inhibits unilateral adrenalectomy-induced compensatory adrenal growth in the rat.

    PubMed

    Malendowicz, Ludwik K; Guidolin, Diego; Trejter, Marcin; Rucinski, Marcin; Porzionato, Andrea; de Caro, Raffaele; Nowak, Magdalena

    2009-05-01

    Neuromedin-U (NMU) is a brain-gut peptide, which has been previously found to stimulate hypothalamic-pituitary-adrenal axis in the rat and to control the growth of the rat adrenal cortex. The present study aimed to investigate the possible involvement of NMU in the regulation of unilateral adrenalectomy-induced compensatory adrenal growth, a phenomenon known to be neurally mediated. The right adrenal gland of mature female rats was removed, the contralateral gland was then analyzed at 24 and 72h following surgery. Groups of rats were given 3 subcutaneous injections (24, 16 and 8h before decapitation) of NMU8 (1.5 or 3.0 nmol/100g/per injection). Three hours before sacrifice all rats received an intraperitoneal injection of 0.1mg/100g body weight of vincristin. By means of RT-PCR the presence of NMUR1 mRNA was detected in adrenal cortex of both intact and hemiadrenalectomized rats. As expected, unilateral adrenalectomy-induced an increase in adrenal weight, associated with increased plasma ACTH, aldosterone and corticosterone levels. The administration of NMU to hemiadrenalectomized rats did not significantly affect these parameters. NMU administration, however, notably inhibited the unilateral adrenalectomy-induced adrenocortical cell proliferation in both zona glomerulosa and zona fasciculata, as assessed by the metaphase index and the number of parenchymal cell nuclei per unit area of the tissue. When compared to hemiadrenalectomized animals receiving saline, a significant decrease of blood corticosterone levels was observed after 24h in rats treated with the highest dose of NMU. Since these effects were independent on changes in blood ACTH, they could reflect an interaction of NMU with the neural system innervating the adrenal gland. PMID:19428772

  9. Exploring bacteria-induced growth and morphogenesis in the green macroalga order Ulvales (Chlorophyta)

    PubMed Central

    Wichard, Thomas

    2015-01-01

    Green macroalgae, such as Ulvales, lose their typical morphology completely when grown under axenic conditions or in the absence of the appropriate microbiome. As a result, slow growing aberrant phenotypes or even callus-like morphotypes are observed in Ulvales. The cross-kingdom interactions between marine algae and microorganisms are hence not only restricted by the exchange of macronutrients, including vitamins and nutrients, but also by infochemicals such as bacterial morphogenetic compounds. The latter are a fundamental trait mediating the mutualism within the chemosphere where the organisms interact with each other via compounds in their surroundings. Approximately 60 years ago, pilot studies demonstrated that certain bacteria promote growth, whereas other bacteria induce morphogenesis; this is particularly true for the order of Ulvales. However, only slow progress was made towards the underlying mechanism due to the complexity of, for example, algal cultivation techniques, and the lack of standardized experiments in the laboratory. A breakthrough in this research was the discovery of the morphogenetic compound thallusin, which was isolated from an epiphytic bacterium and induces normal germination restoring the foliaceous morphotypes of Monostroma. Owing to the low concentration, the purification and structure elucidation of highly biologically active morphogenetic compounds are still challenging. Recently, it was found that only the combination of two specific bacteria from the Rhodobacteraceae and Flavobacteriaceae can completely recover the growth and morphogenesis of axenic Ulva mutabilis cultures forming a symbiotic tripartite community by chemical communication. This review combines literature detailing evidences of bacteria-induced morphogenesis in Ulvales. A set of standardized experimental approaches is further proposed for the preparation of axenic algal tissues, bacteria isolation, co-cultivation experiments, and the analysis of the chemosphere

  10. Vitamin K2-induced cell growth inhibition via autophagy formation in cholangiocellular carcinoma cell lines.

    PubMed

    Enomoto, Masanobu; Tsuchida, Akihiko; Miyazawa, Keisuke; Yokoyama, Tomohisa; Kawakita, Hideaki; Tokita, Hiromi; Naito, Munekazu; Itoh, Masahiro; Ohyashiki, Kazuma; Aoki, Tatsuya

    2007-12-01

    Vitamin K2 (MK4) has antitumor effects on various types of cancer cell lines in vitro, and its efficacy has also been reported in clinical applications for patients with leukemia, myelodysplastic syndrome, and hepatocellular carcinoma (HCC). However, details of the mechanism of the antitumor effects of MK4 remain unclear. In the present study, we examined the antitumor effects of MK4 on cholangiocellular carcinoma (CCC) cell lines and its mechanism of action using the HL-60 leukemia cell line that exerts MK4-induced cell growth inhibition via apoptosis induction and cell cycle arrest as a control. MK4 exerted dose-dependent antitumor effects on all three types of CCC cell lines. However, apoptosis occurred in a smaller percentage of cells and there was less cell cycle arrest compared with other cancer cell lines studied previously, which suggested slight MK4-induced cell growth inhibition via apoptosis induction and cell cycle arrest. On the contrary, histopathological fidings showed a large number of cells containing vacuoles in their cytoplasm, and electron microscopic findings showed a large number of cytoplasmic autophagosomes and autolysosomes. These findings suggested evidence of autophagy-related cell death. Fluorescence microscopy following acridine orange staining revealed an increase in the number of cytoplasmic acidic vesicular organelles characteristic of autophagy. Moreover, there were few cells forming autophagic vesicles in the control group, while the percentage of cells containing vacuoles in the MK4-treated group increased with the duration of culture. These results suggested that, unlike in leukemia, gastric cancer, HCC, and other cancer cells, the antitumor effects of MK4 on CCC cells are induced via autophagy formation. PMID:17982686

  11. Fibroblast growth factor 21 deficiency exacerbates chronic alcohol-induced hepatic steatosis and injury

    PubMed Central

    Liu, Yanlong; Zhao, Cuiqing; Xiao, Jian; Liu, Liming; Zhang, Min; Wang, Cuiling; Wu, Guicheng; Zheng, Ming-Hua; Xu, Lan-Man; Chen, Yong-Ping; Mohammadi, Moosa; Chen, Shao-Yu; Cave, Matthew; McClain, Craig; Li, Xiaokun; Feng, Wenke

    2016-01-01

    Fibroblast growth factor 21 (FGF21) is a hepatokine that regulates glucose and lipid metabolism in the liver. We sought to determine the role of FGF21 in hepatic steatosis in mice exposed to chronic alcohol treatment and to discern underlying mechanisms. Male FGF21 knockout (FGF21 KO) and control (WT) mice were divided into groups that were fed either the Lieber DeCarli diet containing 5% alcohol or an isocaloric (control) diet for 4 weeks. One group of WT mice exposed to alcohol received recombinant human FGF21 (rhFGF21) in the last 5 days. Liver steatosis and inflammation were assessed. Primary mouse hepatocytes and AML-12 cells were incubated with metformin or rhFGF21. Hepatic genes and the products involved in in situ lipogenesis and fatty acid β-oxidation were analyzed. Alcohol exposure increased circulating levels and hepatic expression of FGF21. FGF21 depletion exacerbated alcohol-induced hepatic steatosis and liver injury, which was associated with increased activation of genes involved in lipogenesis mediated by SREBP1c and decreased expression of genes involved in fatty acid β-oxidation mediated by PGC1α. rhFGF21 administration reduced alcohol-induced hepatic steatosis and inflammation in WT mice. These results reveal that alcohol-induced FGF21 expression is a hepatic adaptive response to lipid dysregulation. Targeting FGF21 signaling could be a novel treatment approach for alcoholic steatohepatitis. PMID:27498701

  12. Fibroblast growth factor 21 deficiency exacerbates chronic alcohol-induced hepatic steatosis and injury.

    PubMed

    Liu, Yanlong; Zhao, Cuiqing; Xiao, Jian; Liu, Liming; Zhang, Min; Wang, Cuiling; Wu, Guicheng; Zheng, Ming-Hua; Xu, Lan-Man; Chen, Yong-Ping; Mohammadi, Moosa; Chen, Shao-Yu; Cave, Matthew; McClain, Craig; Li, Xiaokun; Feng, Wenke

    2016-01-01

    Fibroblast growth factor 21 (FGF21) is a hepatokine that regulates glucose and lipid metabolism in the liver. We sought to determine the role of FGF21 in hepatic steatosis in mice exposed to chronic alcohol treatment and to discern underlying mechanisms. Male FGF21 knockout (FGF21 KO) and control (WT) mice were divided into groups that were fed either the Lieber DeCarli diet containing 5% alcohol or an isocaloric (control) diet for 4 weeks. One group of WT mice exposed to alcohol received recombinant human FGF21 (rhFGF21) in the last 5 days. Liver steatosis and inflammation were assessed. Primary mouse hepatocytes and AML-12 cells were incubated with metformin or rhFGF21. Hepatic genes and the products involved in in situ lipogenesis and fatty acid β-oxidation were analyzed. Alcohol exposure increased circulating levels and hepatic expression of FGF21. FGF21 depletion exacerbated alcohol-induced hepatic steatosis and liver injury, which was associated with increased activation of genes involved in lipogenesis mediated by SREBP1c and decreased expression of genes involved in fatty acid β-oxidation mediated by PGC1α. rhFGF21 administration reduced alcohol-induced hepatic steatosis and inflammation in WT mice. These results reveal that alcohol-induced FGF21 expression is a hepatic adaptive response to lipid dysregulation. Targeting FGF21 signaling could be a novel treatment approach for alcoholic steatohepatitis. PMID:27498701

  13. Skeletal unloading induces selective resistance to the anabolic actions of growth hormone on bone

    NASA Technical Reports Server (NTRS)

    Halloran, B. P.; Bikle, D. D.; Harris, J.; Autry, C. P.; Currier, P. A.; Tanner, S.; Patterson-Buckendahl, P.; Morey-Holton, E.

    1995-01-01

    Loss of skeletal weight bearing or physical unloading of bone in the growing animal inhibits bone formation and induces a bone mineral deficit. To determine whether the inhibition of bone formation induced by skeletal unloading in the growing animal is a consequence of diminished sensitivity to growth hormone (GH) we studied the effects of skeletal unloading in young hypophysectomized rats treated with GH (0, 50, 500 micrograms/100 g body weight/day). Skeletal unloading reduced serum osteocalcin, impaired uptake of 3H-proline into bone, decreased proximal tibial mass, and diminished periosteal bone formation at the tibiofibular junction. When compared with animals receiving excipient alone, GH administration increased bone mass in all animals. The responses in serum osteocalcin, uptake of 3H-proline and 45Ca into the proximal tibia, and proximal tibial mass in non-weight bearing animals were equal to those in weight bearing animals. The responses in trabecular bone volume in the proximal tibia and bone formation at the tibiofibular junction to GH, however, were reduced significantly by skeletal unloading. Bone unloading prevented completely the increase in metaphyseal trabecular bone normally induced by GH and severely dampened the stimulatory effect (158% vs. 313%, p < 0.002) of GH on periosteal bone formation. These results suggest that while GH can stimulate the overall accumulation of bone mineral in both weight bearing and non-weight bearing animals, skeletal unloading selectively impairs the response of trabecular bone and periosteal bone formation to the anabolic actions of GH.

  14. Activating CAR and β-Catenin Induces Uncontrolled Liver Growth and Tumorigenesis

    PubMed Central

    Dong, Bingning; Lee, Ju-Seog; Park, Yun-Yong; Yang, Feng; Xu, Ganyu; Huang, Wendong; Finegold, Milton; Moore, David D.

    2014-01-01

    Aberrant β-catenin activation contributes to a third or more of human hepatocellular carcinoma (HCC), but β-catenin activation alone is not sufficient to induce liver cancer in mice. Differentiated hepatocytes proliferate upon acute activation of either β-catenin or the nuclear xenobiotic receptor CAR. These responses are strictly limited and are tightly linked, since β-catenin is activated in nearly all of the CAR-dependent tumors generated by the tumor promoter phenobarbital. Here we show that full activation of β-catenin in the liver induces senescence and growth arrest, which is overcome by combined CAR activation, resulting in uncontrolled hepatocyte proliferation, hepatomegaly, and rapid lethality despite maintenance of normal liver function. Combining CAR activation with limited β-catenin activation induces tumorigenesis, and the tumors share a conserved gene expression signature with β-catenin positive human HCC. These results reveal an unexpected route for hepatocyte proliferation and define a murine model of hepatocarcinogenesis with direct relevance to human HCC. PMID:25661872

  15. Live cell imaging shows hepatocyte growth factor-induced Met dimerization.

    PubMed

    Koschut, David; Richert, Ludovic; Pace, Giuseppina; Niemann, Hartmut H; Mély, Yves; Orian-Rousseau, Véronique

    2016-07-01

    The canonical model of receptor tyrosine kinase (RTK) activation assumes that ligand-induced dimerization of inactive receptor monomers is a prerequisite for autophosphorylation. For several RTK families, recent results of fluorescence microscopy provided evidence for preformed receptor dimers that may or may not require ligand binding for kinase activity. Here we report, for the first time, the application of advanced quantitative fluorescence microscopy techniques to study changes in the oligomerization state of the RTK Met in response to stimulation by its endogenous ligand hepatocyte growth factor (HGF). We used inducible C-terminal fusions between Met and enhanced green fluorescent protein (EGFP) or red fluorescent protein (RFP) in combination with fluorescence resonance energy transfer (FRET)-based fluorescence-lifetime imaging microscopy (FLIM) and fluorescence correlation spectroscopy (FCS). A small fraction of HGF-independent Met dimers appeared to be present in cells even at low receptor density. At high receptor density, both the fraction of Met dimers and the level of Met autophosphorylation increased in the absence of HGF. Stimulation with HGF at low receptor density significantly increased the fraction of Met dimers on live cells. We found no indications of Met oligomers larger than dimers. Our findings thus confirm a model of Met activation through HGF-induced dimerization and at the same time they support previous reports of Met dimers in unstimulated cells. The tools established in this work will be useful to further characterize the mechanism of Met activation and to define the contribution of co-receptors. PMID:27094128

  16. Metformin Inhibits the IL-6-Induced Epithelial-Mesenchymal Transition and Lung Adenocarcinoma Growth and Metastasis

    PubMed Central

    Wang, Yubo; Han, Rui; Li, Li; Xiang, Tong; He, Luhang; Long, Haixia; Zhu, Bo; He, Yong

    2014-01-01

    Objective Epithelial-mesenchymal transition (EMT) plays an important role in cancer tumorigenesis. However, the underlying mechanisms of EMT in lung adenocarcinoma, and how this process might be inhibited, remain to be explored. This study investigated the role of IL-6 in lung adenocarcinoma cell EMT and explored the potential effects of metformin on this process. Methods Invasion assay and MTT assay was performed to determine cell invasion and cell proliferation. Western blotting, immunofluorescence, real-time PCR, ELISA, and immunohistochemistry were performed to detect the expression of IL-6, E-cadherin, Vimentin, and p-STAT3. Results We discovered that IL-6, via STAT3 phosphorylation, could promote lung adenocarcinoma cell invasion via EMT in vitro. This was supported by the inverse correlation between E-cadherin and IL-6 expression, positive correlation between IL-6 and vimentin mRNA expression and between STAT3 phosphorylation and IL-6 expression in tumor tissues. Importantly, metformin inhibited tumor growth and distant metastases in tumor-bearing nude mice and reversed IL-6-induced EMT both in vitro and in vivo. Furthermore, we found that blockade of STAT3 phosphorylation might be the underlying mechanism of metformin inhibition of IL-6-induced EMT. Conclusions Collectively, our present results show that enhanced IL-6 expression, via STAT3 phosphorylation, is a mechanism of EMT in lung adenocarcinoma. We found that metformin could inhibit IL-6-induced EMT possibly by blocking STAT3 phosphorylation. PMID:24789104

  17. Induced carbon reallocation and compensatory growth as root herbivore tolerance mechanisms.

    PubMed

    Robert, Christelle A M; Ferrieri, Richard A; Schirmer, Stefanie; Babst, Benjamin A; Schueller, Michael J; Machado, Ricardo A R; Arce, Carla C M; Hibbard, Bruce E; Gershenzon, Jonathan; Turlings, Ted C J; Erb, Matthias

    2014-11-01

    Upon attack by leaf herbivores, many plants reallocate photoassimilates below ground. However, little is known about how plants respond when the roots themselves come under attack. We investigated induced resource allocation in maize plants that are infested by the larvae Western corn rootworm Diabrotica virgifera virgifera. Using radioactive (11) CO(2), we demonstrate that root-attacked maize plants allocate more new (11) C carbon from source leaves to stems, but not to roots. Reduced meristematic activity and reduced invertase activity in attacked maize root systems are identified as possible drivers of this shoot reallocation response. The increased allocation of photoassimilates to stems is shown to be associated with a marked thickening of these tissues and increased growth of stem-borne crown roots. A strong quantitative correlation between stem thickness and root regrowth across different watering levels suggests that retaining photoassimilates in the shoots may help root-attacked plants to compensate for the loss of belowground tissues. Taken together, our results indicate that induced tolerance may be an important strategy of plants to withstand belowground attack. Furthermore, root herbivore-induced carbon reallocation needs to be taken into account when studying plant-mediated interactions between herbivores. PMID:24762051

  18. Occludin S490 Phosphorylation Regulates Vascular Endothelial Growth Factor-Induced Retinal Neovascularization.

    PubMed

    Liu, Xuwen; Dreffs, Alyssa; Díaz-Coránguez, Monica; Runkle, E Aaron; Gardner, Thomas W; Chiodo, Vince A; Hauswirth, William W; Antonetti, David A

    2016-09-01

    Occludin is a transmembrane tight junction protein that contributes to diverse cellular functions, including control of barrier properties, cell migration, and proliferation. Vascular endothelial growth factor (VEGF) induces phosphorylation of occludin at S490, which is required for VEGF-induced endothelial permeability. Herein, we demonstrate that occludin S490 phosphorylation also regulates VEGF-induced retinal endothelial cell proliferation and neovascularization. Using a specific antibody, phospho-occludin was located in centrosomes in endothelial cell cultures, animal models, and human surgical samples of retinal neovessels. Occludin S490 phosphorylation was found to increase with endothelial tube formation in vitro and in vivo during retinal neovascularization after induction of VEGF expression. More important, expression of occludin mutated at S490 to Ala, completely inhibited angiogenesis in cell culture models and in vivo. Collectively, these data suggest a novel role for occludin in regulation of endothelial proliferation and angiogenesis in a phosphorylation-dependent manner. These findings may lead to methods of regulating pathological neovascularization by specifically targeting endothelial cell proliferation. PMID:27423695

  19. Relationship of chromosomal damage induced by caffeine to growth temperature and ATP level in proliferating cells.

    PubMed

    Hernández, P; Mingo, R; González-Fernández, A; López-Sáez, J F

    1986-10-01

    Caffeine is known to induce chromosomal aberrations in proliferating cells when they are incubated during G2 and mitotic prophase. In the present paper, this caffeine effect has been analyzed in Allium cepa root meristems growing at different culture temperatures under steady-state kinetics. Caffeine (1-10 mM) induces chromosomal aberrations in a dose-dependent manner, and the treatment efficiency correlates linearly with the square of caffeine concentration. The efficiency of caffeine incubations, within the range 5-25 degrees C during equivalent cycle time periods has also been studied. It has been found that the lower the culture temperature, the higher the level of chromosomal aberrations. Moreover, at different temperatures, the level of chromosomal aberrations is a simple function of caffeine concentration and the ATP level. Therefore, the efficiency of caffeine treatment appears to be determined by some interaction between caffeine concentration and cellular ATP level. Our present results demonstrate that the influence of growth temperature on the chromosome-breaking effect of caffeine can be, at least partially, explained by the ATP levels during the incubation periods. In short, under different kinetics of plant cell proliferation, the ATP level, and/or something correlating with it, could explain the efficiency of caffeine in inducing chromosomal aberrations: the lower the ATP level, the higher the caffeine efficiency. PMID:3773927

  20. Basic Fibroblast Growth Factor Ameliorates Endothelial Dysfunction in Radiation-Induced Bladder Injury

    PubMed Central

    Zhang, Shiwei; Qiu, Xuefeng; Zhang, Yanting; Fu, Kai; Zhao, Xiaozhi; Wu, Jinhui; Hu, Yiqiao; Zhu, Weiming; Guo, Hongqian

    2015-01-01

    This study was designed to explore the effect of basic fibroblast growth factor (bFGF) on radiation-induced endothelial dysfunction and histological changes in the urinary bladder. bFGF was administrated to human umbilical vein cells (HUVEC) or urinary bladder immediately after radiation. Reduced expression of thrombomodulin (TM) was indicated in the HUVEC and urinary bladder after treatment with radiation. Decreased apoptosis was observed in HUVEC treated with bFGF. Administration of bFGF increased the expression of TM in HUVEC medium, as well as in the urinary bladder at the early and delayed phases of radiation-induced bladder injury (RIBI). At the early phase, injection of bFGF increased the thickness of urothelium and reduced inflammation within the urinary bladder. At the delayed phase, bFGF was effective in reducing fibrosis within the urinary bladder. Our results indicate that endothelial dysfunction is a prominent feature of RIBI. Administration of bFGF can ameliorate radiation-induced endothelial dysfunction in urinary bladder and preserve bladder histology at early and delayed phases of RIBI. PMID:26351640

  1. Equol inhibits growth, induces atresia, and inhibits steroidogenesis of mouse antral follicles in vitro.

    PubMed

    Mahalingam, Sharada; Gao, Liying; Gonnering, Marni; Helferich, William; Flaws, Jodi A

    2016-03-15

    Equol is a non-steroidal estrogen metabolite produced by microbial conversion of daidzein, a major soy isoflavone, in the gut of some humans and many animal species. Isoflavones and their metabolites can affect endogenous estradiol production, action, and metabolism, potentially influencing ovarian follicle function. However, no studies have examined the effects of equol on intact ovarian antral follicles, which are responsible for sex steroid synthesis and further development into ovulatory follicles. Thus, the present study tested the hypothesis that equol inhibits antral follicle growth, increases follicle atresia, and inhibits steroidogenesis in the adult mouse ovary. To test this hypothesis, antral follicles isolated from adult CD-1 mice were cultured with vehicle control (dimethyl sulfoxide; DMSO) or equol (600 nM, 6 μM, 36 μM, and 100 μM) for 48 and 96 h. Every 24h, follicle diameters were measured to monitor growth. At 48 and 96 h, the culture medium was subjected to measurement of hormone levels, and the cultured follicles were subjected to gene expression analysis. Additionally, follicles were histologically evaluated for signs of atresia after 96 h of culture. The results indicate that equol (100 μM) inhibited follicle growth, altered the mRNA levels of bcl2-associated X protein and B cell leukemia/lymphoma 2, and induced follicle atresia. Further, equol decreased the levels of estradiol, testosterone, androstenedione, and progesterone, and it decreased mRNA levels of cholesterol side-chain cleavage, steroid 17-α-hydroxalase, and aromatase. Collectively, these data indicate that equol inhibits growth, increases atresia, and inhibits steroidogenesis of cultured mouse antral follicles. PMID:26876617

  2. Acetate supplementation as a means of inducing glioblastoma stem-like cell growth arrest.

    PubMed

    Long, Patrick M; Tighe, Scott W; Driscoll, Heather E; Fortner, Karen A; Viapiano, Mariano S; Jaworski, Diane M

    2015-08-01

    Glioblastoma (GBM), the most common primary adult malignant brain tumor, is associated with a poor prognosis due, in part, to tumor recurrence mediated by chemotherapy and radiation resistant glioma stem-like cells (GSCs). The metabolic and epigenetic state of GSCs differs from their non-GSC counterparts, with GSCs exhibiting greater glycolytic metabolism and global hypoacetylation. However, little attention has been focused on the potential use of acetate supplementation as a therapeutic approach. N-acetyl-l-aspartate (NAA), the primary storage form of brain acetate, and aspartoacylase (ASPA), the enzyme responsible for NAA catalysis, are significantly reduced in GBM tumors. We recently demonstrated that NAA supplementation is not an appropriate therapeutic approach since it increases GSC proliferation and pursued an alternative acetate source. The FDA approved food additive Triacetin (glyceryl triacetate, GTA) has been safely used for acetate supplementation therapy in Canavan disease, a leukodystrophy due to ASPA mutation. This study characterized the effects of GTA on the proliferation and differentiation of six primary GBM-derived GSCs relative to established U87 and U251 GBM cell lines, normal human cerebral cortical astrocytes, and murine neural stem cells. GTA reduced proliferation of GSCs greater than established GBM lines. Moreover, GTA reduced growth of the more aggressive mesenchymal GSCs greater than proneural GSCs. Although sodium acetate induced a dose-dependent reduction of GSC growth, it also reduced cell viability. GTA-mediated growth inhibition was not associated with differentiation, but increased protein acetylation. These data suggest that GTA-mediated acetate supplementation is a novel therapeutic strategy to inhibit GSC growth. PMID:25573156

  3. Acetate supplementation as a means of inducing glioblastoma stem-like cell growth arrest

    PubMed Central

    Long, Patrick M.; Tighe, Scott W.; Driscoll, Heather E.; Fortner, Karen A.; Viapiano, Mariano S.; Jaworski, Diane M.

    2015-01-01

    Glioblastoma (GBM), the most common primary adult malignant brain tumor, is associated with a poor prognosis due, in part, to tumor recurrence mediated by chemotherapy and radiation resistant glioma stem-like cells (GSCs). The metabolic and epigenetic state of GSCs differs from their non-GSC counterparts, with GSCs exhibiting greater glycolytic metabolism and global hypoacetylation. However, little attention has been focused on the potential use of acetate supplementation as a therapeutic approach. N-acetyl-L-aspartate (NAA), the primary storage form of brain acetate, and aspartoacylase (ASPA), the enzyme responsible for NAA catalysis, are significantly reduced in GBM tumors. We recently demonstrated that NAA supplementation is not an appropriate therapeutic approach since it increases GSC proliferation and pursued an alternative acetate source. The FDA approved food additive Triacetin (glyceryl triacetate, GTA) has been safely used for acetate supplementation therapy in Canavan disease, a leukodystrophy due to ASPA mutation. This study characterized the effects of GTA on the proliferation and differentiation of six primary GBM-derived GSCs relative to established U87 and U251 GBM cell lines, normal human cerebral cortical astrocytes, and murine neural stem cells. GTA reduced proliferation of GSCs greater than established GBM lines. Moreover, GTA reduced growth of the more aggressive mesenchymal GSCs greater than proneural GSCs. Although sodium acetate induced a dose-dependent reduction of GSC growth, it also reduced cell viability. GTA-mediated growth inhibition was not associated with differentiation, but increased protein acetylation. These data suggest that GTA-mediated acetate supplementation is a novel therapeutic strategy to inhibit GSC growth. PMID:25573156

  4. Disrupting Hypoxia-Induced Bicarbonate Transport Acidifies Tumor Cells and Suppresses Tumor Growth.

    PubMed

    McIntyre, Alan; Hulikova, Alzbeta; Ledaki, Ioanna; Snell, Cameron; Singleton, Dean; Steers, Graham; Seden, Peter; Jones, Dylan; Bridges, Esther; Wigfield, Simon; Li, Ji-Liang; Russell, Angela; Swietach, Pawel; Harris, Adrian L

    2016-07-01

    Tumor hypoxia is associated clinically with therapeutic resistance and poor patient outcomes. One feature of tumor hypoxia is activated expression of carbonic anhydrase IX (CA9), a regulator of pH and tumor growth. In this study, we investigated the hypothesis that impeding the reuptake of bicarbonate produced extracellularly by CA9 could exacerbate the intracellular acidity produced by hypoxic conditions, perhaps compromising cell growth and viability as a result. In 8 of 10 cancer cell lines, we found that hypoxia induced the expression of at least one bicarbonate transporter. The most robust and frequent inductions were of the sodium-driven bicarbonate transporters SLC4A4 and SLC4A9, which rely upon both HIF1α and HIF2α activity for their expression. In cancer cell spheroids, SLC4A4 or SLC4A9 disruption by either genetic or pharmaceutical approaches acidified intracellular pH and reduced cell growth. Furthermore, treatment of spheroids with S0859, a small-molecule inhibitor of sodium-driven bicarbonate transporters, increased apoptosis in the cell lines tested. Finally, RNAi-mediated attenuation of SLC4A9 increased apoptosis in MDA-MB-231 breast cancer spheroids and dramatically reduced growth of MDA-MB-231 breast tumors or U87 gliomas in murine xenografts. Our findings suggest that disrupting pH homeostasis by blocking bicarbonate import might broadly relieve the common resistance of hypoxic tumors to anticancer therapy. Cancer Res; 76(13); 3744-55. ©2016 AACR. PMID:27197160

  5. Topical minoxidil counteracts stress-induced hair growth inhibition in mice.

    PubMed

    Arck, Petra Clara; Handjiski, Bori; Peters, Eva M J; Hagen, Evelin; Klapp, Burghard F; Paus, Ralf

    2003-10-01

    Stress has long been suspected as a possible cause of hair loss in various species, even though convincing experimental evidence has not been available. Recently, we have shown in a murine model that sonic stress alters hair growth and cycling in vivo, and have postulated the existence of a 'brain-hair follicle axis' (BHA). In order to study whether a clinically available and widely used topically active hair growth stimulator mitigates stress-triggered hair growth inhibition in this stress model, we have applied a 5% minoxidil solution. Female CBA/J mice were depilated and randomized in to two groups: control (n = 20) and sonic stress (n = 20). These groups were further divided and either treated daily with 5% minoxidil solution or vehicle alone. The stress group was exposed to sonic stress for 24 h starting 14 days after anagen induction by depilation. All mice were sacrificed 16 days after the depilation and assessed by quantitative histomorphometry. Sonic stress significantly increased the number of hair follicles with apoptotic cells and inhibited intrafollicular keratinocyte proliferation. In addition, the number of clusters of perifollicular MHC class II+ cells and degranulated perifollicular mast cells was significantly enhanced in the stressed mice. In accordance with previous findings, all stressed mice showed an advanced hair cycle progression towards catagen. All of these stress-induced hair growth inhibitory changes along the BHA were down-regulated by topical minoxidil application. This encourages one to explore clinically whether topical minoxidil is a safe and effective pharmacologic tool for the management of stress-associated telogen effluvium in humans. PMID:14705798

  6. Zoledronic acid suppresses transforming growth factor-β-induced fibrogenesis by human gingival fibroblasts.

    PubMed

    Komatsu, Yuko; Ibi, Miho; Chosa, Naoyuki; Kyakumoto, Seiko; Kamo, Masaharu; Shibata, Toshiyuki; Sugiyama, Yoshiki; Ishisaki, Akira

    2016-07-01

    Bisphosphonates (BPs) are analogues of pyrophosphate that are known to prevent bone resorption by inhibiting osteoclast activity. Nitrogen-containing BPs, such as zoledronic acid (ZA), are widely used in the treatment of osteoporosis and bone metastasis. However, despite having benefits, ZA has been reported to induce BP-related osteonecrosis of the jaw (BRONJ) in cancer patients. The molecular pathological mechanisms responsible for the development of BRONJ, including necrotic bone exposure after tooth extraction, remain to be elucidated. In this study, we examined the effects of ZA on the transforming growth factor-β (TGF‑β)-induced myofibroblast (MF) differentiation of human gingival fibroblasts (hGFs) and the migratory activity of hGFs, which are important for wound closure by fibrous tissue formation. The ZA maximum concentration in serum (Cmax) was found to be approximately 1.47 µM, which clinically, is found after the intravenous administration of 4 mg ZA, and ZA at this dose is considered appropriate for the treatment of cancer bone metastasis or bone diseases, such as Erdheim-Chester disease. At Cmax, ZA significantly suppressed i) the TGF‑β-induced promotion of cell viability, ii) the TGF‑β-induced expression of MF markers such as α-smooth muscle actin (α-SMA) and type I collagen, iii) the TGF‑β-induced migratory activity of hGFs and iv) the expression level of TGF‑β type I receptor on the surfaces of hGFs, as well as the TGF‑β-induced phosphorylation of Smad2/3. Thus, ZA suppresses TGF‑β-induced fibrous tissue formation by hGFs, possibly through the inhibition of Smad‑dependent signal transduction. Our findings partly elucidate the molecular mechanisms underlying BRONJ and may prove to be beneficial to the identification of drug targets for the treatment of this symptom at the molecular level. PMID:27176567

  7. Evolution of Residual-Strain Distribution through an Overload-Induced Retardation Period during Fatigue Crack Growth

    SciTech Connect

    Lee, S. Y.; Sun, Yinan; An, Ke; Choo, Hahn; Hubbard, Camden R; Liaw, Peter K

    2010-01-01

    Neutron diffraction was employed to investigate the crack-growth retardation phenomenon after a single tensile overload by mapping both one-dimensional and two-dimensional residual-strain distributions around the crack tip in a series of compact-tension specimens representing various crack-growth stages through an overload-induced retardation period. The results clearly show a large compressive residual-strain field near the crack tip immediately after the overload. As the fatigue crack propagates through the overload-induced plastic zone, the compressive residual strains are gradually relaxed, and a new compressive residual-strain field is developed around the propagating crack tip, illustrating that the subsequent fatigue-induced plastic zone grows out of the large plastic zone caused by the overloading. The relationship between the overload-induced plastic zone and subsequent fatigue-induced plastic zone, and its influence on the residual-strain distributions in the perturbed plastic zone are discussed.

  8. Involvement of autophagy in recombinant human arginase-induced cell apoptosis and growth inhibition of malignant melanoma cells.

    PubMed

    Wang, Ziyu; Shi, Xunlong; Li, Yubin; Zeng, Xian; Fan, Jiajun; Sun, Yun; Xian, Zongshu; Zhang, Guoping; Wang, Shaofei; Hu, Haifeng; Ju, Dianwen

    2014-03-01

    Recombinant human arginase (rhArg) has been developed for arginine derivation therapy of cancer and is currently in clinical trials for a variety of malignant solid tumors. In this study, we reported for the first time that rhArg could induce obvious autophagy in human melanoma cells; inhibition of autophagy by chloroquine (CQ) significantly increased rhArg-induced cell apoptosis and growth inhibition of A375 cells. A significant increase in mitochondrial membrane potential loss and elevated intracellular reactive oxygen species (ROS) levels were detected in A375 cells after rhArg treatment when compared with control. Membrane transition inhibitor cyclosporine A blocked autophagy and accelerated cell death induced by rhArg, indicating that rhArg induced autophagy via mitochondria pathway. Furthermore, antioxidant N-acetyl-L-cysteine suppressed rhArg-induced autophagy and rescued cells from cell growth inhibition, suggesting that ROS played an important role in rhArg-induced A375 cell growth inhibition and autophagy. Akt/mTOR signaling pathway was involved in autophagy induced by rhArg in a time-dependent manner. Moreover, rhArg could induce ERK1/2 activation in a dose- and time-dependent manner and rhArg-induced autophagy was attenuated when p-ERK1/2 was inhibited by MEK 1/2 inhibitor, U0126. Taken together, this study provides new insight into the molecular mechanism of autophagy involved in rhArg-induced cell apoptosis and growth inhibition, which facilitates the development of rhArg in combination with CQ as a potential therapy for malignant melanoma. PMID:23917632

  9. Agonist of growth hormone-releasing hormone reduces pneumolysin-induced pulmonary permeability edema

    PubMed Central

    Lucas, Rudolf; Sridhar, Supriya; Rick, Ferenc G.; Gorshkov, Boris; Umapathy, Nagavedi S.; Yang, Guang; Oseghale, Aluya; Verin, Alexander D.; Chakraborty, Trinad; Matthay, Michael A.; Zemskov, Evgeny A.; White, Richard; Block, Norman L.; Schally, Andrew V.

    2012-01-01

    Aggressive treatment with antibiotics in patients infected with Streptococcus pneumoniae induces release of the bacterial virulence factor pneumolysin (PLY). Days after lungs are sterile, this pore-forming toxin can still induce pulmonary permeability edema in patients, characterized by alveolar/capillary barrier dysfunction and impaired alveolar liquid clearance (ALC). ALC is mainly regulated through Na+ transport by the apically expressed epithelial sodium channel (ENaC) and the basolaterally expressed Na+/K+-ATPase in type II alveolar epithelial cells. Because no standard treatment is currently available to treat permeability edema, the search for novel therapeutic candidates is of high priority. We detected mRNA expression for the active receptor splice variant SV1 of the hypothalamic polypeptide growth hormone-releasing hormone (GHRH), as well as for GHRH itself, in human lung microvascular endothelial cells (HL-MVEC). Therefore, we have evaluated the effect of the GHRH agonist JI-34 on PLY-induced barrier and ALC dysfunction. JI-34 blunts PLY-mediated endothelial hyperpermeability in monolayers of HL-MVEC, in a cAMP-dependent manner, by means of reducing the phosphorylation of myosin light chain and vascular endothelial (VE)-cadherin. In human airway epithelial H441 cells, PLY significantly impairs Na+ uptake, but JI-34 restores it to basal levels by means of increasing cAMP levels. Intratracheal instillation of PLY into C57BL6 mice causes pulmonary alveolar epithelial and endothelial hyperpermeability as well as edema formation, all of which are blunted by JI-34. These findings point toward a protective role of the GHRH signaling pathway in PLY-induced permeability edema. PMID:22308467

  10. Increased transforming growth factor beta 1 expression mediates ozone-induced airway fibrosis in mice

    PubMed Central

    Katre, Ashwini; Ballinger, Carol; Akhter, Hasina; Fanucchi, Michelle; Kim, Dae-Kee; Postlethwait, Edward; Liu, Rui-Ming

    2013-01-01

    Ozone (O3), a commonly encountered environmental pollutant, has been shown to induce pulmonary fibrosis in different animal models; the underlying mechanism, however, remains elusive. To investigate the molecular mechanism underlying O3-induced pulmonary fibrosis, 6- to 8-week-old C57BL/6 male mice were exposed to a cyclic O3 exposure protocol consisting of 2 days of filtered air and 5 days of O3 exposure (0.5 ppm, 8 h/day) for 5 and 10 cycles with or without intraperitoneal injection of IN-1233, a specific inhibitor of the type 1 receptor of transforming growth factor beta (TGF-β), the most potent profibrogenic cytokine. The results showed that O3 exposure for 5 or 10 cycles increased the TGF-β protein level in the epithelial lining fluid (ELF), associated with an increase in the expression of plasminogen activator inhibitor 1 (PAI-1), a TGF-β-responsive gene that plays a critical role in the development of fibrosis under various pathological conditions. Cyclic O3 exposure also increased the deposition of collagens and alpha smooth muscle actin (α-SMA) in airway walls. However, these fibrotic changes were not overt until after 10 cycles of O3 exposure. Importantly, blockage of the TGF-β signaling pathway with IN-1233 suppressed O3-induced Smad2/3 phosphorylation, PAI-1 expression, as well as collagens and α-SMA deposition in the lung. Our data demonstrate for the first time that O3 exposure increases TGF-β expression and activates TGF-β signaling pathways, which mediates O3-induced lung fibrotic responses in vivo. PMID:21689010

  11. Scaling of laser-induced contamination growth at 266nm and 355nm

    NASA Astrophysics Data System (ADS)

    Ließmann, M.; Jensen, L.; Balasa, I.; Hunnekuhl, M.; Büttner, A.; Weßels, P.; Neumann, J.; Ristau, D.

    2015-11-01

    The growth of laser-induced contamination (LIC) on optical components in extraterrestrial missions is a known issue especially for the UV spectral region. The Laser Zentrum Hannover e.V. is responsible for the development of a pulsed laser-system operating at a wavelength of 266 nm for the ExoMars mission and for the qualification of used optics and materials regarding LIC. In this context, toluene was utilized which is an often used model contaminant in LIC studies. Test cycles based on the application of the two UV wavelengths 355 nm and 266 nm on fused silica substrates and ARcoated optics are conducted and the observed contamination effects are compared. This scaling allows for a rough estimate of the destructive influence of LIC on space optics degradation at 266 nm. Further tests will be performed with materials integrated into the ExoMars-laser-head under near-operation environmental conditions.

  12. Morphology-controlled growth of perylene derivative induced by double-hydrophilic block copolymers

    NASA Astrophysics Data System (ADS)

    Huang, Minghua; Antonietti, Markus; Cölfen, Helmut

    2016-01-01

    Controlled growth of technically relevant perylene derivative 3, 4, 9, 10-perylenetetracarboxylic acid potassium salt (PTCAPS), with tuneable morpologies, has been successfully realized by a recrystallization method using a double-hydrophilic block copolymer poly (ethylene glycol)-block poly (ethyleneimine) (PEG-b-PEI) as the structure directing agent. The {001} faces of PTCAPS are most polar and adsorb the oppositively charged polymer additive PEG-b-PEI well by electrostatic attraction. By simply adjusting the PEG-b-PEI concentration, systematic morphogenesis of PTCAPS from plates to microparticles composed of various plates splaying outwards could be realized. Furthermore, the variation of pH value of the recrystallization solution could induce the change of the interaction strength between PEG-b-PEI additive and PTCAPS and thus modify the morphology of PTCAPS from microparticles composed of various plates to ultralong microbelts.

  13. Detection of Gold Nanoparticles Aggregation Growth Induced by Nucleic Acid through Laser Scanning Confocal Microscopy

    PubMed Central

    Gary, Ramla; Carbone, Giovani; Petriashvili, Gia; De Santo, Maria Penelope; Barberi, Riccardo

    2016-01-01

    The gold nanoparticle (GNP) aggregation growth induced by deoxyribonucleic acid (DNA) is studied by laser scanning confocal and environmental scanning electron microscopies. As in the investigated case the direct light scattering analysis is not suitable, we observe the behavior of the fluorescence produced by a dye and we detect the aggregation by the shift and the broadening of the fluorescence peak. Results of laser scanning confocal microscopy images and the fluorescence emission spectra from lambda scan mode suggest, in fact, that the intruding of the hydrophobic moiety of the probe within the cationic surfactants bilayer film coating GNPs results in a Förster resonance energy transfer. The environmental scanning electron microscopy images show that DNA molecules act as template to assemble GNPs into three-dimensional structures which are reminiscent of the DNA helix. This study is useful to design better nanobiotechnological devices using GNPs and DNA. PMID:26907286

  14. Polydatin Induces Apoptosis and Inhibits Growth of Acute Monocytic Leukemia Cells.

    PubMed

    Wang, Chunmei; Luo, Yuan; Lu, Jie; Wang, Yingchao; Sheng, Guangyao

    2016-04-01

    Polydatin (PD), a component isolated from Polygonum cuspidatum, has various activities such as inhibiting platelet aggregation, lowering level of blood lipid, reducing lipid peroxidation, and so on. However, the antitumor activity of PD has been poorly reported. In the present study, effect of PD on cell proliferation was evaluated by Cell Counting Kit-8, and cell cycle and apoptosis were investigated by flow cytometry. Meanwhile, the protein expression level of Bc1-2, Bax, cyclin A, cyclin B, and cyclin D1, which associated with apoptosis and cell cycle were analyzed by Western blotting. Results show that PD could effectively inhibit the growth, arrest cells in S phase, and induce apoptosis of acute monocytic leukemia cell line THP-1; meanwhile, expression of cyclin D1 and Bc1-2 decreased significantly, and expression of Bax and cyclin A increased notably. All results suggest that PD maybe a potential therapeutic strategy for acute monocytic leukemia. PMID:26616494

  15. Polydatin inhibits growth of lung cancer cells by inducing apoptosis and causing cell cycle arrest.

    PubMed

    Zhang, Yusong; Zhuang, Zhixiang; Meng, Qinghui; Jiao, Yang; Xu, Jiaying; Fan, Saijun

    2014-01-01

    Polydatin (PD), a small natural compound from Polygonum cuspidatum, has a number of biological functions. However, the anticancer activity of PD has been poorly investigated. In the present study, thiazolyl blue tetrazolium bromide assay was used to evaluate the inhibitory effect of PD on cell growth. Cell cycle distribution and apoptosis were investigated by flow cytometry. In addition, the expression of several proteins associated with apoptosis and cell cycle were analyzed by western blot analysis. The results demonstrated that PD significantly inhibits the proliferation of A549 and NCI-H1975 lung cancer cell lines and causes dose-dependent apoptosis. Cell cycle analysis revealed that PD induces S phase cell cycle arrest. Western blot analysis showed that the expression of Bcl-2 decreased as that of Bax increased, and the expression of cyclin D1 was also suppressed. The results suggest that PD has potential therapeutic applications in the treatment of lung cancer. PMID:24348867

  16. PARD3 induces TAZ activation and cell growth by promoting LATS1 and PP1 interaction

    PubMed Central

    Lv, Xian-Bo; Liu, Chen-Ying; Wang, Zhen; Sun, Yi-Ping; Xiong, Yue; Lei, Qun-Ying; Guan, Kun-Liang

    2015-01-01

    The Hippo pathway plays a major role in organ size control, and its dysregulation contributes to tumorigenesis. The major downstream effectors of the Hippo pathway are the YAP/TAZ transcription co-activators, which are phosphorylated and inhibited by the Hippo pathway kinase LATS1/2. Here, we report a novel mechanism of TAZ regulation by the tight junction protein PARD3. PARD3 promotes the interaction between PP1A and LATS1 to induce LATS1 dephosphorylation and inactivation, therefore leading to dephosphorylation and activation of TAZ. The cytoplasmic, but not the tight junction complex associated, PARD3 is responsible for TAZ regulation. Our study indicates a potential molecular basis for cell growth-promoting function of PARD3 by modulating the Hippo pathway signaling in response to cell contact and cell polarity signals. PMID:26116754

  17. Detection of Gold Nanoparticles Aggregation Growth Induced by Nucleic Acid through Laser Scanning Confocal Microscopy.

    PubMed

    Gary, Ramla; Carbone, Giovani; Petriashvili, Gia; De Santo, Maria Penelope; Barberi, Riccardo

    2016-01-01

    The gold nanoparticle (GNP) aggregation growth induced by deoxyribonucleic acid (DNA) is studied by laser scanning confocal and environmental scanning electron microscopies. As in the investigated case the direct light scattering analysis is not suitable, we observe the behavior of the fluorescence produced by a dye and we detect the aggregation by the shift and the broadening of the fluorescence peak. Results of laser scanning confocal microscopy images and the fluorescence emission spectra from lambda scan mode suggest, in fact, that the intruding of the hydrophobic moiety of the probe within the cationic surfactants bilayer film coating GNPs results in a Förster resonance energy transfer. The environmental scanning electron microscopy images show that DNA molecules act as template to assemble GNPs into three-dimensional structures which are reminiscent of the DNA helix. This study is useful to design better nanobiotechnological devices using GNPs and DNA. PMID:26907286

  18. Measurements and models of synchronous growth of fission yeast induced by temperature oscillations. [Schizosaccharomyces pombe

    SciTech Connect

    Agar, D.W.; Bailey, J.E.

    1982-01-01

    Pulsing of temperature in a fermentor at intervals coincident with cell generation time was used to induce synchrony in a population of the fission yeast Schizosaccharomyces pombe. Measurements of culture protein, RNA, and DNA during synchronous growth confirm continuous synthesis of protein and RNA and discontinuous synthesis of DNA as previously reported. Flow microfluorometry of populations at different times during the synchrony cycle was used to monitor the changes in single-cell protein, RNA, and DNA frequency functions. These measurements illustrate very clearly the degree of synchrony and patterns of macromolecular synthesis and also confirm previous estimates of the cellular protein contents characteristic of dividing cells. Additional insights into single-cell kinetics and division controls are provided by two-parameter flow microfluorometry measurements and by mathematical modeling of population dynamics. Such data are necessary foundations for robust population balance models of microbial processes. (Refs. 31).

  19. Ritually induced growth disturbances and deformities of the orofacial system--a contribution to cranial morphogenesis.

    PubMed

    Dietze, S; Winkelmann, D; Garve, R; Blens, T; Fanghänel, J; Proff, P; Gedrange, T; Maile, S

    2007-01-01

    Numerous ritual acts involving the skull result in orofacial changes. The present study focuses on ritual acts of Brazilian Zoé Indians. A distinct deformation effect of the ritual act (wearing a lip-plug) on the morphology of the orofacial system is demonstrated and documented using jaw models. The studies show that the lip-plug significantly influences tooth position and jaw growth. While the maxilla displays palatal displacement of the lateral incisors and elevation of the palate, retraction occurs in the mandible depending upon plug size. Additionally, both the plug and the nutritional habits of the Indians induce marked abrasion of all teeth. Moreover, it is shown that the duration of lip-plug wear is an essential determinant of sustained orofacial changes. PMID:17534041

  20. Milk-derived ribonuclease 5 preparations induce myogenic differentiation in vitro and muscle growth in vivo.

    PubMed

    Knight, Matthew I; Tester, Angus M; McDonagh, Matthew B; Brown, Andrew; Cottrell, Jeremy; Wang, Jianghui; Hobman, Peter; Cocks, Benjamin G

    2014-12-01

    Ribonuclease 5, also known as angiogenin, is a stable and abundant ribonuclease in milk whey protein, which is able to regulate several cellular functions, including capillary formation, neuron survival, and epithelial cell growth. Ribonuclease 5 is important for protein synthesis directly stimulating rRNA synthesis in the nucleolus. Here, we show that biologically active RNase5 can be purified from bovine milk. Furthermore, we show that milk-derived RNase5 directly stimulates muscle cell differentiation in vitro, inducing C2C12 cell differentiation and myogenesis. When supplemented into the diet of healthy adult mice, milk-derived RNase5 preparations promoted muscle weight gain and grip strength. Collectively, these data indicate that milk-derived RNase5 preparations exhibit a novel role in skeletal muscle cell function. PMID:25282415

  1. Self-induced growth of vertical GaN nanowires on silica

    NASA Astrophysics Data System (ADS)

    Kumaresan, V.; Largeau, L.; Oehler, F.; Zhang, H.; Mauguin, O.; Glas, F.; Gogneau, N.; Tchernycheva, M.; Harmand, J.-C.

    2016-04-01

    We study the self-induced growth of GaN nanowires on silica. Although the amorphous structure of this substrate offers no possibility of an epitaxial relationship, the nanowires are remarkably aligned with the substrate normal whereas, as expected, their in-plane orientation is random. Their structural and optical characteristics are compared to those of GaN nanowires grown on standard crystalline Si (111) substrates. The polarity inversion domains are much less frequent, if not totally absent, in the nanowires grown on silica, which we find to be N-polar. This work demonstrates that high-quality vertical GaN nanowires can be elaborated without resorting to bulk crystalline substrates.

  2. Self-induced growth of vertical GaN nanowires on silica.

    PubMed

    Kumaresan, V; Largeau, L; Oehler, F; Zhang, H; Mauguin, O; Glas, F; Gogneau, N; Tchernycheva, M; Harmand, J-C

    2016-04-01

    We study the self-induced growth of GaN nanowires on silica. Although the amorphous structure of this substrate offers no possibility of an epitaxial relationship, the nanowires are remarkably aligned with the substrate normal whereas, as expected, their in-plane orientation is random. Their structural and optical characteristics are compared to those of GaN nanowires grown on standard crystalline Si (111) substrates. The polarity inversion domains are much less frequent, if not totally absent, in the nanowires grown on silica, which we find to be N-polar. This work demonstrates that high-quality vertical GaN nanowires can be elaborated without resorting to bulk crystalline substrates. PMID:26895252

  3. Growth factor independence-1 antagonizes a p53-induced DNA damage response pathway in lymphoblastic leukemia

    PubMed Central

    Khandanpour, Cyrus; Phelan, James D.; Vassen, Lothar; Schütte, Judith; Chen, Riyan; Horman, Shane R.; Gaudreau, Marie-Claude; Krongold, Joseph; Zhu, Jinfang; Paul, William E.; Dührsen, Ulrich; Göttgens, Bertie; Grimes, H. Leighton; Möröy, Tarik

    2013-01-01

    Summary Most patients with acute lymphoblastic leukemia (ALL) fail current treatments highlighting the need for better therapies. Since oncogenic signaling activates a p53-dependent DNA-damage response and apoptosis, leukemic cells must devise appropriate countermeasures. We show here that growth factor independence 1 (Gfi1) can serve such a function, since Gfi1 ablation exacerbates p53 responses, and lowers the threshold for p53-induced cell death. Specifically, Gfi1 restricts p53 activity and expression of pro-apoptotic p53 targets such as Bax, Noxa (Pmaip1) and Puma (Bbc3). Subsequently, Gfi1 ablation cures mice from leukemia and limits the expansion of primary human T-ALL xenografts in mice. This suggests that targeting Gfi1 could improve the prognosis of patients with T-ALL or other lymphoid leukemias. PMID:23410974

  4. Monitoring microbial growth and activity using spectral induced polarization and low-field nuclear magnetic resonance

    NASA Astrophysics Data System (ADS)

    Zhang, Chi; Keating, Kristina; Revil, Andre

    2015-04-01

    Microbes and microbial activities in the Earth's subsurface play a significant role in shaping subsurface environments and are involved in environmental applications such as remediation of contaminants in groundwater and oil fields biodegradation. Stimulated microbial growth in such applications could cause wide variety of changes of physical/chemical properties in the subsurface. It is critical to monitor and determine the fate and transportation of microorganisms in the subsurface during such applications. Recent geophysical studies demonstrate the potential of two innovative techniques, spectral induced polarization (SIP) and low-field nuclear magnetic resonance (NMR), for monitoring microbial growth and activities in porous media. The SIP measures complex dielectric properties of porous media at low frequencies of exciting electric field, and NMR studies the porous structure of geologic media and characterizes fluids subsurface. In this laboratory study, we examined both SIP and NMR responses from bacterial growth suspension as well as suspension mixed with silica sands. We focus on the direct contribution of microbes to the SIP and NMR signals in the absence of biofilm formation or biomineralization. We used Zymomonas mobilis and Shewanella oneidensis (MR-1) for SIP and NMR measurements, respectively. The SIP measurements were collected over the frequency range of 0.1 - 1 kHz on Z. mobilis growth suspension and suspension saturated sands at different cell densities. SIP data show two distinct peaks in imaginary conductivity spectra, and both imaginary and real conductivities increased as microbial density increased. NMR data were collected using both CPMG pulse sequence and D-T2 mapping to determine the T2-distribution and diffusion properties on S. oneidensis suspension, pellets (live and dead), and suspension mixed with silica sands. NMR data show a decrease in the T2-distribution in S. oneidensis suspension saturated sands as microbial density increase. A

  5. Role of inducer exclusion in preferential utilization of glucose over melibiose in diauxic growth of Escherichia coli.

    PubMed Central

    Okada, T; Ueyama, K; Niiya, S; Kanazawa, H; Futai, M; Tsuchiya, T

    1981-01-01

    The role of inducer exclusion in diauxic growth of Escherichia coli on glucose and melibiose was investigated. The amounts of glucose and melibiose in the culture medium were determined during the diauxie. Glucose was consumed during the first growth cycle of the diauxie, and melibiose was consumed during the second cycle. The addition of adenosine 3',5'-cyclic monophosphate to the culture medium released both transient and catabolite repressions on the melibiose operon by glucose. Biphasic growth without a transient lag phase was observed in the presence of adenosine 3',5'-cyclic monophosphate. Preferential utilization of glucose over melibiose was observed even under such conditions. Thus, it is clear that inducer exclusion alone is sufficient to ensure the preferential utilization of glucose over melibiose. Similar results were obtained from a glucose-lactose diauxie. Inducer exclusion itself was not affected by adenosine 3',5'-cyclic monophosphate. PMID:6263854

  6. Involvement of hepatocyte growth factor-induced epithelial-mesenchymal transition in human adenomyosis.

    PubMed

    Khan, Khaleque Newaz; Kitajima, Michio; Hiraki, Koichi; Fujishita, Akira; Nakashima, Masahiro; Masuzaki, Hideaki

    2015-02-01

    Adenomyosis is commonly believed to arise from the basalis endometrium. As an estromedin growth factor, hepatocyte growth factor (HGF) exhibits multiple functions in endometriosis, a disease commonly believed to arise from the functionalis endometrium. Here, we investigated the role of HGF in the occurrence of epithelial-mesenchymal transition (EMT) in adenomyosis. Full-thickness-biopsy specimens from endometrium to myometrium were collected after hysterectomy from women with and without adenomyosis. The relationship between HGF and E-cadherin (epithelial cell marker) and N-cadherin (mesenchymal cell markers) was examined at the gene and protein levels using endometrial epithelial cells (EECs) in culture and tissues by quantitative RT-PCR and immunohistochemistry. The gene and protein expressions of two transcriptional repressors of E-cadherin, SLUG and SNAIL, were examined using Ishikawa cells and in response to HGF and estrogen (E2). HGF down-regulated E-cadherin and up-regulated N-cadherin mRNA expression in EECs, and an inverse relationship in protein expression between HGF and E-cadherin was observed in basalis endometria derived from women with diffuse and focal adenomyosis. HGF induced morphological changes of EECs from a cobblestone-like appearance to spindle-shaped cells and promoted migration of EECs. Ishikawa cells exhibited up-regulation of SLUG/SNAIL gene expression in response to both HGF and E2 with an additive effect between them. HGF- and E2-promoted SLUG/SNAIL gene expression was significantly abrogated after pretreatment of cells with anti-HGF antibody or ICI 182720, an estrogen receptor antagonist. HGF may be involved in gland invagination deep into the myometrium by inducing EMT at the endo-myometrial junction in women with adenomyosis. PMID:25505196

  7. Pulsed Helium Ion Beam Induced Deposition: A Means to High Growth Rates

    SciTech Connect

    Alkemade, Paul F. A.; Miro, Hozanna; Van Veldhoven, Emile; Maas, Diederick; Smith, Daryl; Rack, P. D.

    2011-01-01

    The sub-nanometer beam of a helium ion microscope was used to study and optimize helium-ion beam induced deposition of PtC nanopillars with the (CH{sub 3}){sub 3}Pt(CPCH{sub 3}) precursor. The beam current, beam dwell time, precursor refresh time, and beam focus have been independently varied. Continuous beam exposure resulted in narrow but short pillars, while pulsed exposure resulted in thinner and higher ones. Furthermore, at short dwell times the deposition efficiency was very high, especially for a defocused beam. Efficiencies were measured up to 20 times the value for continuous exposure conditions. The interpretation of the experimental data was aided by a Monte Carlo simulation of the deposition. The results indicate that two regimes are operational in ion beam induced deposition (IBID). In the first one, the adsorbed precursor molecules originally present in the beam interaction region decompose. After the original precursor layer is consumed, further depletion is averted and growth continues by the supply of molecules via adsorption and surface diffusion. Depletion around the beam impact site can be distinguished from depletion on the flanges of the growing pillars. The Monte Carlo simulations for low precursor surface coverage reproduce measured growth rates, but predict considerably narrower pillars, especially at short dwell times. Both the experiments and the simulations show that the pillar width rapidly increases with increasing beam diameter. Optimal writing strategy, good beam focusing, and rapid beam positioning are needed for efficient and precise fabrication of extended and complex nanostructures by He-IBID.

  8. INSULIN INDUCED EPIDERMAL GROWTH FACTOR ACTIVATION IN VASCULAR SMOOTH MUSCLE CELLS IS ADAM-DEPENDENT

    PubMed Central

    Roztocil, Elisa; Nicholl, Suzanne M.; Davies, Mark G.

    2008-01-01

    Background With the rise in metabolic syndrome, understanding the role of insulin signaling within the cells of vasculature has become more important but yet remains poorly defined. The study examines the role of insulin actions on a pivotal cross-talk receptor, Epidermal Growth Factor Receptor (EGFR). EGFR is transactivated by both G-protein-coupled receptors and receptor linked tyrosine kinases and is key to many of their responses. Objective To determine the pathway of EGFR transactivation by insulin in human coronary smooth muscle cells (VSMC) Methods VSMC were cultured in vitro. Assays of EGFR phosphorylation were examined in response to insulin in the presence and absence of the plasmin inhibitors (e-aminocaproic acid and aprotinin) matrix metalloprotease (MMP) inhibitor GM6001, the ADAM (A Disintegrin And Metalloproteinase Domain) inhibitors TAPI-0 and TAPI-1, Heparin binding epidermal growth factor (HB-EGF) inhibitor, CRM197, HB-EGF inhibitory antibodies, EGF inhibitory antibodies and the EGFR inhibitor AG1478. Results Insulin induced time-dependent EGFR phosphorylation, which was inhibited by AG1478 in a concentration dependent manner. Application of the plasmin inhibitors did not block the response. EGFR phosphorylation by insulin was blocked by inhibition of MMP activity and the ligand HB-EGF. The presence of the ADAM inhibitors, TAPI-0 and TAPI-1 significantly decreased EGFR activation. EGFR phosphorylation by EGF was not interrupted by inhibition of plasmin, MMPs TAPIs, or HB-EGF. Direct blockade of the EGFR prevented activation by both insulin and EGF. Conclusion Insulin can induce transactivation of EGFR by an ADAM-mediated, HB-EGF dependent process. This is the first description of crosstalk via ADAM between insulin and EGFR in vascular SMC. Targeting a pivotal cross-talk receptor such as EGFR, which can be transactivated by both G-protein-coupled receptors and receptor tyrosine kinases is an attractive molecular target. PMID:18656632

  9. Genistein targets the cancerous inhibitor of PP2A to induce growth inhibition and apoptosis in breast cancer cells.

    PubMed

    Zhao, Qingxia; Zhao, Ming; Parris, Amanda B; Xing, Ying; Yang, Xiaohe

    2016-09-01

    Genistein is a soy isoflavone with phytoestrogen and tyrosine kinase inhibitory properties. High intake of soy/genistein has been associated with reduced breast cancer risk. Despite the advances in genistein-mediated antitumor studies, the underlying mechanisms remain unclear. In the present study, we investigated genistein-induced regulation of the cancerous inhibitor of protein phosphatase 2A (CIP2A), a novel oncogene frequently overexpressed in breast cancer, and its functional impact on genistein-induced growth inhibition and apoptosis. We demonstrated that genistein induced downregulation of CIP2A in MCF-7-C3 and T47D breast cancer cells, which was correlated with its growth inhibition and apoptotic activities. Overexpression of CIP2A attenuated, whereas CIP2A knockdown sensitized, genistein-induced growth inhibition and apoptosis. We further showed that genistein-induced downregulation of CIP2A involved both transcriptional suppression and proteasomal degradation. In particular, genistein at higher concentrations induced concurrent downregulation of E2F1 and CIP2A. Overexpression of E2F1 attenuated genistein-induced downregulation of CIP2A mRNA, indicating the role of E2F1 in genistein-induced transcriptional suppression of CIP2A. Taken together, our results identified CIP2A as a functional target of genistein and demonstrated that modulation of E2F1-mediated transcriptional regulation of CIP2A contributes to its downregulation. These data advance our understanding of genistein-induced growth inhibition and apoptosis, and support further investigation on CIP2A as a therapeutic target of relevant anticancer agents. PMID:27574003

  10. Genistein targets the cancerous inhibitor of PP2A to induce growth inhibition and apoptosis in breast cancer cells

    PubMed Central

    Zhao, Qingxia; Zhao, Ming; Parris, Amanda B.; Xing, Ying; Yang, Xiaohe

    2016-01-01

    Genistein is a soy isoflavone with phytoestrogen and tyrosine kinase inhibitory properties. High intake of soy/genistein has been associated with reduced breast cancer risk. Despite the advances in genistein-mediated antitumor studies, the underlying mechanisms remain unclear. In the present study, we investigated genistein-induced regulation of the cancerous inhibitor of protein phosphatase 2A (CIP2A), a novel oncogene frequently overexpressed in breast cancer, and its functional impact on genistein-induced growth inhibition and apoptosis. We demonstrated that genistein induced downregulation of CIP2A in MCF-7-C3 and T47D breast cancer cells, which was correlated with its growth inhibition and apoptotic activities. Overexpression of CIP2A attenuated, whereas CIP2A knockdown sensitized, genistein-induced growth inhibition and apoptosis. We further showed that genistein-induced downregulation of CIP2A involved both transcriptional suppression and proteasomal degradation. In particular, genistein at higher concentrations induced concurrent downregulation of E2F1 and CIP2A. Overexpression of E2F1 attenuated genistein-induced downregulation of CIP2A mRNA, indicating the role of E2F1 in genistein-induced transcriptional suppression of CIP2A. Taken together, our results identified CIP2A as a functional target of genistein and demonstrated that modulation of E2F1-mediated transcriptional regulation of CIP2A contributes to its downregulation. These data advance our understanding of genistein-induced growth inhibition and apoptosis, and support further investigation on CIP2A as a therapeutic target of relevant anticancer agents.

  11. Pressure–Induced Cell Wall Instability and Growth Oscillations in Pollen Tubes

    PubMed Central

    Pietruszka, Mariusz

    2013-01-01

    In the seed plants, the pollen tube is a cellular extension that serves as a conduit through which male gametes are transported to complete fertilization of the egg cell. It consists of a single elongated cell which exhibits characteristic oscillations in growth rate until it finally bursts, completing its function. The mechanism behind the periodic character of the growth has not been fully understood. In this paper we show that the mechanism of pressure – induced symmetry frustration occurring in the wall at the transition-perimeter between the cylindrical and approximately hemispherical parts of the growing pollen tube, together with the addition of cell wall material, is sufficient to release and sustain mechanical self-oscillations and cell extension. At the transition zone, where symmetry frustration occurs and one cannot distinguish either of the involved symmetries, a kind of ‘superposition state’ appears where either single or both symmetry(ies) can be realized by the system. We anticipate that testifiable predictions made by the model () may deliver, after calibration, a new tool to estimate turgor pressure from oscillation frequency of the periodically growing cell. Since the mechanical principles apply to all turgor regulated walled cells including those of plant, fungal and bacterial origin, the relevance of this work is not limited to the case of the pollen tube. PMID:24260097

  12. MTRR silencing inhibits growth and cisplatin resistance of ovarian carcinoma via inducing apoptosis and reducing autophagy

    PubMed Central

    Chen, Jia; Wang, Qi; Yin, Fu-Qiang; Zhang, Wei; Yan, Lin-Hai; Li, Li

    2015-01-01

    Methionine synthase reductase (MTRR) is involved in the DNA synthesis and production of S-adenosylmethionine (SAM) and plays an important role in the carcinogenesis. However, the role of MTRR in the resistance of ovarian cancer (OC) to chemotherapy has yet to be elucidated. In order to investigate the clinical significance of MTRR in OC, MTRR expression was reduced by using the RNA interference technique, and therefore, and the tumor growth and cisplatin-resistance were evaluated in vitro and in vivo. Results showed MTRR expression increased orderly from normal tissues, benign ovarian tumor to OC tissue. MTRR over-expression in OC tissue was correlated with pathologic type (P=0.005), grade (P=0.037), FIGO stage (P=0.001), organ metastasis (P=0.009) and platinum resistance (P=0.038). MTRR silencing inhibited cell proliferation, cisplatin resistance and autophagy, and induced apoptosis of OC cells. In addition, MTRR silencing also affected the caspase expression as well as mTOR signaling pathway. Further, the tumor volume in MTRR-suppressed SKOV3/DDP mice treated with cisplatin significantly decreased when compared with controls (P<0.05). In summary, MTRR expression, which is increased in human OC, is related to the differentiation and cisplatin resistance of OC cells. MTRR silencing inhibits cell growth and cisplatin resistance by regulating caspase expression and mTOR signaling pathway in OC cells. It is suggested that MTRR may be a potential target for the therapy of OC. PMID:26550452

  13. Analysis and significance of gravity-induced asymmetric growth in the grass leaf-sheath pulvinus

    NASA Technical Reports Server (NTRS)

    Dayanandan, P.; Kaufman, P. B.

    1984-01-01

    The negative gravitropic response in the grass leaf-sheath pulvinus is a consequence of cell elongation involving all cells except those of the uppermost region of the upper flank of an horizontally oriented pulvinus. The lowermost layer of cells elongate maximally, and the regions in between elongate to intermediate extents. The resulting curvatures of a responding pulvinus can be expressed mathematically by relating the angle of curvature (theta) to the original length (L0) and the maximal length of the lower surface (L1) and the diameter of the organ (D), using the equation, theta = (L1-L0)/D, where theta is in radians. The elongation response (S) of any individual cells within the pulvinus can be expressed by the equation, S = 0.5 - r cos theta, where r is the radius of the pulvinus and theta is in degrees. Microscopic measurement of cell lengths in different regions of the pulvinus supports the mathematical predictions. Indirect support is also obtained from the use of colchicine, coumarin, dichlorobenzonitrile (DCBN) and isopropyl N-chlorophenyl carbamate which exaggerate the inherent asymmetry during gravitropic response. Coumarin and DCBN also induce thickenings in the radial walls which appear first in the statenchyma, and later, in cells located towards the outer periphery of the pulvinus. The distribution patterns of these thickenings suggest that the asymmetric growth response of the pulvinus may be due to a differential and radial, centrifugal transport of growth promotors from the central statenchyma region.

  14. Optimizing pentacene thin-film transistor performance: Temperature and surface condition induced layer growth modification

    PubMed Central

    Lassnig, R.; Hollerer, M.; Striedinger, B.; Fian, A.; Stadlober, B.; Winkler, A.

    2015-01-01

    In this work we present in situ electrical and surface analytical, as well as ex situ atomic force microscopy (AFM) studies on temperature and surface condition induced pentacene layer growth modifications, leading to the selection of optimized deposition conditions and entailing performance improvements. We prepared p++-silicon/silicon dioxide bottom-gate, gold bottom-contact transistor samples and evaluated the pentacene layer growth for three different surface conditions (sputtered, sputtered + carbon and unsputtered + carbon) at sample temperatures during deposition of 200 K, 300 K and 350 K. The AFM investigations focused on the gold contacts, the silicon dioxide channel region and the highly critical transition area. Evaluations of coverage dependent saturation mobilities, threshold voltages and corresponding AFM analysis were able to confirm that the first 3–4 full monolayers contribute to the majority of charge transport within the channel region. At high temperatures and on sputtered surfaces uniform layer formation in the contact–channel transition area is limited by dewetting, leading to the formation of trenches and the partial development of double layer islands within the channel region instead of full wetting layers. By combining the advantages of an initial high temperature deposition (well-ordered islands in the channel) and a subsequent low temperature deposition (continuous film formation for low contact resistance) we were able to prepare very thin (8 ML) pentacene transistors of comparably high mobility. PMID:26543442

  15. Tumour-induced neoneurogenesis and perineural tumour growth: a mathematical approach

    NASA Astrophysics Data System (ADS)

    Lolas, Georgios; Bianchi, Arianna; Syrigos, Konstantinos N.

    2016-02-01

    It is well-known that tumours induce the formation of a lymphatic and a blood vasculature around themselves. A similar but far less studied process occurs in relation to the nervous system and is referred to as neoneurogenesis. The relationship between tumour progression and the nervous system is still poorly understood and is likely to involve a multitude of factors. It is therefore relevant to study tumour-nerve interactions through mathematical modelling: this may reveal the most significant factors of the plethora of interacting elements regulating neoneurogenesis. The present work is a first attempt to model the neurobiological aspect of cancer development through a system of differential equations. The model confirms the experimental observations that a tumour is able to promote nerve formation/elongation around itself, and that high levels of nerve growth factor and axon guidance molecules are recorded in the presence of a tumour. Our results also reflect the observation that high stress levels (represented by higher norepinephrine release by sympathetic nerves) contribute to tumour development and spread, indicating a mutually beneficial relationship between tumour cells and neurons. The model predictions suggest novel therapeutic strategies, aimed at blocking the stress effects on tumour growth and dissemination.

  16. Effects of Salinity on growth and osmotic regulation substances of callus induced from Reaumuria soongorica

    NASA Astrophysics Data System (ADS)

    Tan, Huijuan; Li, Xinrong; Liu, Yubing; Zhao, Xin

    2014-05-01

    Reaumuria soongorica (Pall.) Maxim is the strong xerophils plant in the northwest arid and semiarid regions in China. It plays very important roles in stabilizing sand dunes and in construction of agricultural shelter belts in north-west China.The present study aimed to evaluate the response to salinity of R. soongorica, which is more salt-resistant than other valuable shrub species used for afforestation on saline and alkaline desert, at the cellular level. To this purpose, callus was induced from shoot segments of R. soongorica on Murashige and Skoog (MS) medium supplemented with 0.2 mgL-16-benzyladenine (BA) and 2.0 mg mgL-1 2,4-Dichlorophenoxyacetic acid (2 ,4-D). The relative growth rate of callus reached a maximum in the presence of 100 mmol L-1NaCl and growth was inhibited with increasing NaCl concentrations. Examination of the changes of osmotic substances under salt stress showed that accumulation of proline, trehalose, Glycine betain and flavonoids increased with increasing salt concentrations. The results indicate that the response of the callus of R. soongorica to salt stress is similar to that of the whole plant. .

  17. Submergence-Induced Ethylene Synthesis, Entrapment, and Growth in Two Plant Species with Contrasting Flooding Resistances.

    PubMed

    Voesenek, LACJ.; Banga, M.; Thier, R. H.; Mudde, C. M.; Harren, FJM.; Barendse, GWM.; Blom, CWPM.

    1993-11-01

    Submergence-induced ethylene synthesis and entrapment were studied in two contrasting Rumex species, one flood-resistant (Rumex palustris) and the other flood-sensitive (Rumex acetosa). The application of a photoacoustic method to determine internal ethylene concentrations in submerged plants is discussed. A comparison with an older technique (vacuum extraction) is described. For the first time ethylene production before, during, and after submergence and the endogenous concentration during submergence were continuously measured on a single intact plant without physical perturbation. Both Rumex species were characterized by enhanced ethylene concentrations in the shoot after 24 h of submergence. This was not related to enhanced synthesis but to continued production and physical entrapment. In R. palustris, high endogenous ethylene levels correlated with enhanced petiole and lamina elongation. No dramatic change in leaf growth rate was observed in submerged R. acetosa shoots. After desubmergence both species showed an increase in ethylene production, the response being more pronounced in R. palustris. This increase was linked to the enhanced postsubmergence growth rate of leaves of R. palustris. Due to the very rapid escape of ethylene out of desubmerged plants to the atmosphere (90% disappeared within 1 min), substantial underestimation of internal ethylene concentrations can be expected using more conventional vacuum extraction techniques. PMID:12231979

  18. Targeting hedgehog signalling by arsenic trioxide reduces cell growth and induces apoptosis in rhabdomyosarcoma.

    PubMed

    Boehme, Karen A; Zaborski, Julian J; Riester, Rosa; Schweiss, Sabrina K; Hopp, Ulrike; Traub, Frank; Kluba, Torsten; Handgretinger, Rupert; Schleicher, Sabine B

    2016-02-01

    Rhabdomyosarcomas (RMS) are soft tissue tumours treated with a combination of surgery and chemotherapy. However, mortality rates remain high in case of recurrences and metastatic disease due to drug resistance and failure to undergo apoptosis. Therefore, innovative approaches targeting specific signalling pathways are urgently needed. We analysed the impact of different hedgehog (Hh) pathway inhibitors on growth and survival of six RMS cell lines using MTS assay, colony formation assay, 3D spheroid cultures, flow cytometry and western blotting. Especially the glioma-associated oncogene family (GLI) inhibitor arsenic trioxide (ATO) effectively reduced viability as well as clonal growth and induced cell death in RMS cell lines of embryonal, alveolar and sclerosing, spindle cell subtype, whereas normal skeletal muscle cells were hardly compromised by ATO. Combination of ATO with itraconazole potentiated the reduction of colony formation and spheroid size. These results show that ATO is a promising substance for treatment of relapsed and refractory RMS by directly targeting GLI transcription factors. The combination with itraconazole or other chemotherapeutic drugs has the opportunity to enforce the treatment efficiency of resistant and recurrent RMS. PMID:26676886

  19. Growth hormone protects human lymphocytes from irradiation-induced cell death

    PubMed Central

    Lempereur, Laurence; Brambilla, Daria; Maria Scoto, Giovanna; D'Alcamo, Maria; Goffin, Vincent; Crosta, Lucia; Palmucci, Tullio; Rampello, Liborio; Bernardini, Renato; Cantarella, Giuseppina

    2003-01-01

    Undesired effects of cancer radiotherapy mainly affect the hematopoietic system. Growth hormone (GH) participates in both hematopoiesis and modulation of the immune response. We report both r-hGH cell death prevention and restoration of secretory capacities of irradiated human peripheral blood lymphocytes (PBL) in vitro. r-hGH induced cell survival and increased proliferation of irradiated cells. Western blot analysis indicated that these effects of GH were paralleled by increased expression of the antiapoptotic protein Bcl-2. r-hGH restored mitogen-stimulated release of IL-2 by PBL. Preincubation of irradiated lymphocytes with the growth hormone receptor (GHR) antagonists B2036 and G120 K abrogated r-hGH-dependent IL-2 release. These results demonstrate that r-hGH protects irradiated PBL from death in a specific, receptor-mediated manner. Such effect of r-hGH on PBL involves activation of the antiapoptotic gene bcl-2 and prevention of cell death, associated with preserved functional cell capacity. Finally, potential use of GH as an immunopotentiating agent could be envisioned during radiation therapy of cancer. PMID:12721095

  20. Trade-offs between biomass growth and inducible biosynthesis of polyhydroxybutyrate in transgenic poplar.

    PubMed

    Dalton, David A; Ma, Cathleen; Shrestha, Shreya; Kitin, Peter; Strauss, Steven H

    2011-09-01

    Polyhydroxybutyrate (PHB) is a bioplastic that can be produced in transgenic plants by the coexpression of three bacterial genes for its biosynthesis. PHB yields from plants have been constrained by the negative impacts on plant health that result from diversion of resources into PHB production; thus, we employed an ecdysone analogue-based system for induced gene expression. We characterized 49 insertion events in hybrid transgenic poplar (Populus tremula x alba) that were produced using Agrobacterium transformation and studied two high-producing events in detail. Regenerated plants contained up to 1-2% PHB (dry weight) in leaves after 6-8 weeks of induction. Strong induction was observed with 1-10 mm Intrepid and limited direct toxicity observed. Confocal fluorescence microscopy was used to visualize PHB granules in chloroplasts after chemical treatment to reduce autofluorescence. A greenhouse study indicated that there were no negative consequences of PHB production on growth unless the PHB content exceeded 1% of leaf weight; at PHB levels above 1%, growth (height, diameter and total mass) decreased by 10%-34%. PMID:21265995

  1. Succession-inducing disturbances and the old-growth forest mosaic of a Central Amazon landscape

    NASA Astrophysics Data System (ADS)

    Chambers, J. Q.; Negron Juarez, R. I.; Marra, D.; Roberts, D. A.; Di Vittorio, A. V.; Higuchi, N.; Trumbore, S.

    2011-12-01

    Old-growth forest ecosystems comprise a mosaic of patches in different successional stages, with the fraction of the landscape in any particular state relatively constant over large temporal and spatial scales. Tropical forest studies commonly assume that plots covering only a small fraction of the landscape representatively sample this mosaic, and that departures from steady-state represent trends. Here a critical test of this equilibrium assumption for a Central Amazon old-growth forest landscape is carried out by combining extensive forest field plot data, remote sensing analysis to generate disturbance probability distribution functions, and simulation modeling to place plot-level results into a landscape context. Results show that succession-inducing disturbances had a return frequency of ~100 years, and that these episodic events have been poorly sampled by existing forest sample plots. Overall, key ecosystem attributes of small patches are expected to constantly change in the Central Amazon, and long significant trends can result from purely stochastic processes. The role of episodic disturbances will be discussed in terms of Amazon forest carbon balance, and regional tree diversity patterns.

  2. Numerical Simulation of Roughness-Induced Transient Growth in a Laminar Boundary Layer

    NASA Technical Reports Server (NTRS)

    Fischer, Paul; Choudhari, Meelan

    2004-01-01

    Numerical simulations are used to examine the roughness-induced transient growth in a laminar boundary-layer flow. Based on the spectral element method, these simulations model the stationary disturbance field associated with a nonsmooth roughness geometry, such as the spanwise periodic array of circular disks used by White and co-workers during a series of wind tunnel experiments at Case Western Reserve University. Besides capturing the major trends from the recent measurements by White and Ergin, the simulations provide additional information concerning the relative accuracy of the experimental findings derived from two separate wall-finding procedures. The paper also explores the dependence of transient growth on geometric characteristics of the roughness distribution, including the height and planform shape of the roughness element and the ratio of roughness due to spacing between an adjacent pair of elements. Results are used for a preliminary assessment of the differences between recently reported theoretical results of Tumin and Reshotko and the measurements by White and Ergin.

  3. Tumour-induced neoneurogenesis and perineural tumour growth: a mathematical approach

    PubMed Central

    Lolas, Georgios; Bianchi, Arianna; Syrigos, Konstantinos N.

    2016-01-01

    It is well-known that tumours induce the formation of a lymphatic and a blood vasculature around themselves. A similar but far less studied process occurs in relation to the nervous system and is referred to as neoneurogenesis. The relationship between tumour progression and the nervous system is still poorly understood and is likely to involve a multitude of factors. It is therefore relevant to study tumour-nerve interactions through mathematical modelling: this may reveal the most significant factors of the plethora of interacting elements regulating neoneurogenesis. The present work is a first attempt to model the neurobiological aspect of cancer development through a system of differential equations. The model confirms the experimental observations that a tumour is able to promote nerve formation/elongation around itself, and that high levels of nerve growth factor and axon guidance molecules are recorded in the presence of a tumour. Our results also reflect the observation that high stress levels (represented by higher norepinephrine release by sympathetic nerves) contribute to tumour development and spread, indicating a mutually beneficial relationship between tumour cells and neurons. The model predictions suggest novel therapeutic strategies, aimed at blocking the stress effects on tumour growth and dissemination. PMID:26861829

  4. Advanced Glycation End-Products Induce Connective Tissue Growth Factor-Mediated Renal Fibrosis Predominantly through Transforming Growth Factor β-Independent Pathway

    PubMed Central

    Zhou, Guihua; Li, Cai; Cai, Lu

    2004-01-01

    Advanced glycation end-products (AGEs) play a critical role in diabetic nephropathy by stimulating extracellular matrix (ECM) synthesis. Connective tissue growth factor (CTGF) is a potent inducer of ECM synthesis and increases in the diabetic kidneys. To determine the critical role of CTGF in AGE-induced ECM accumulation leading to diabetic nephropathy, rats were given AGEs by intravenous injection for 6 weeks. AGE treatment induced a significant renal ECM accumulation, as shown by increases in periodic acid-Schiff-positive materials, fibronectin, and type IV collagen (Col IV) accumulation in glomeruli, and a mild renal dysfunction, as shown by increases in urinary volume and protein content. AGE treatment also caused significant increases in renal CTGF and transforming growth factor (TGF)-β1 mRNA and protein expression. Direct exposure of rat mesangial cells to AGEs in vitro significantly induced increases in fibronectin and Col IV production, which could be completely prevented by pretreatment with anti-CTGF antibody. AGE treatment also significantly increased both TGF-β1 and CTGF mRNA expression; however, inhibition of TGF-β1 mRNA expression by shRNA or neutralization of TGF-β1 protein by anti-TGF-β1 antibody did not significantly prevent AGE-increased expression of CTGF mRNA and protein. These results suggest that AGE-induced CTGF expression, predominantly through a TGF-β1-independent pathway, plays a critical role in renal ECM accumulation leading to diabetic nephropathy. PMID:15579446

  5. The Acid Growth Theory of auxin-induced cell elongation is alive and well

    NASA Technical Reports Server (NTRS)

    Rayle, D. L.; Cleland, R. E.

    1992-01-01

    Plant cells elongate irreversibly only when load-bearing bonds in the walls are cleaved. Auxin causes the elongation of stem and coleoptile cells by promoting wall loosening via cleavage of these bonds. This process may be coupled with the intercalation of new cell wall polymers. Because the primary site of auxin action appears to be the plasma membrane or some intracellular site, and wall loosening is extracellular, there must be communication between the protoplast and the wall. Some "wall-loosening factor" must be exported from auxin-impacted cells, which sets into motion the wall loosening events. About 20 years ago, it was suggested that the wall-loosening factor is hydrogen ions. This idea and subsequent supporting data gave rise to the Acid Growth Theory, which states that when exposed to auxin, susceptible cells excrete protons into the wall (apoplast) at an enhanced rate, resulting in a decrease in apoplastic pH. The lowered wall pH then activates wall-loosening processes, the precise nature of which is unknown. Because exogenous acid causes a transient (1-4 h) increase in growth rate, auxin must also mediate events in addition to wall acidification for growth to continue for an extended period of time. These events may include osmoregulation, cell wall synthesis, and maintenance of the capacity of walls to undergo acid-induced wall loosening. At present, we do not know if these phenomena are tightly coupled to wall acidification or if they are the products of multiple independent signal transduction pathways.

  6. Farnesyltransferase inhibitor R115777 inhibits cell growth and induces apoptosis in mantle cell lymphoma

    PubMed Central

    Rolland, Delphine; Camara-Clayette, Valérie; Barbarat, Aurélie; Salles, Gilles; Coiffier, Bertrand; Ribrag, Vincent; Thieblemont, Catherine

    2008-01-01

    The cytotoxic activity of the farnesyltranseferase inhibitor R115777 was evaluated in cell lines representative of mantle cell lymphoma (MCL). Cell growth, proliferation, and apoptosis were analyzed in four human MCL cell lines (Granta, NCEB, REC, and UPN1) in presence of R115777, alone or in combination with vincristin, doxorubicin, bortezomib, cisplatin and cytarabine. Inhibition of farnesylation was determined by the appearance of prelamin A. The antitumor activity of R115777, administered p.o. at 100, 250 and 500mg/kg, was determined in vivo in nude mice xenografted with UPN1 cells. R115777 inhibited the growth of MCL cell lines in vitro with inhibitory concentrations ranging between 2 and 15nM. A fifty percent decrease of cell viability was observed at concentrations comprised between 0.08 and 17μM. Apoptosis, evaluated by annexin V and activated caspase 3 staining, was induced in all cell lines, in 40 to 71% of the cells depending on the cell lines. In addition, R115777 significantly increased the cytotoxic effect of vincristine, doxorubicin, bortezomib, cisplatin and cytarabine (p=0.001, p=0.016, p=0.006, p=0.014 and p=0.007 respectively). Exposure of MCL cell lines to R115777 during 72 hours resulted in inhibition of protein farnesylation. R115777 administered p.o. twice daily for 8 consecutive days to mice bearing established s.c. UPN1 xenograft displayed cytostatic activity at the 500 mg/kg dosage. We have demonstrated that inhibition of farnesyltransferase by R115777 was associated with growth inhibition and apoptosis of MCL cell lines in vitro and tumor xenograft stability in vivo. PMID:17639395

  7. Growth

    NASA Astrophysics Data System (ADS)

    Waag, Andreas

    This chapter is devoted to the growth of ZnO. It starts with various techniques to grow bulk samples and presents in some detail the growth of epitaxial layers by metal organic chemical vapor deposition (MOCVD), molecular beam epitaxy (MBE), and pulsed laser deposition (PLD). The last section is devoted to the growth of nanorods. Some properties of the resulting samples are also presented. If a comparison between GaN and ZnO is made, very often the huge variety of different growth techniques available to fabricate ZnO is said to be an advantage of this material system. Indeed, growth techniques range from low cost wet chemical growth at almost room temperature to high quality MOCVD growth at temperatures above 1, 000∘C. In most cases, there is a very strong tendency of c-axis oriented growth, with a much higher growth rate in c-direction as compared to other crystal directions. This often leads to columnar structures, even at relatively low temperatures. However, it is, in general, not straight forward to fabricate smooth ZnO thin films with flat surfaces. Another advantage of a potential ZnO technology is said to be the possibility to grow thin films homoepitaxially on ZnO substrates. ZnO substrates are mostly fabricated by vapor phase transport (VPT) or hydrothermal growth. These techniques are enabling high volume manufacturing at reasonable cost, at least in principle. The availability of homoepitaxial substrates should be beneficial to the development of ZnO technology and devices and is in contrast to the situation of GaN. However, even though a number of companies are developing ZnO substrates, only recently good quality substrates have been demonstrated. However, these substrates are not yet widely available. Still, the situation concerning ZnO substrates seems to be far from low-cost, high-volume production. The fabrication of dense, single crystal thin films is, in general, surprisingly difficult, even when ZnO is grown on a ZnO substrate. However

  8. Drought Induces Distinct Growth Response, Protection, and Recovery Mechanisms in the Maize Leaf Growth Zone1[OPEN

    PubMed Central

    Avramova, Viktoriya; AbdElgawad, Hamada; Zhang, Zhengfeng; Fotschki, Bartosz; Casadevall, Romina; Vergauwen, Lucia; Knapen, Dries; Taleisnik, Edith; Guisez, Yves; Asard, Han; Beemster, Gerrit T.S.

    2015-01-01

    Drought is the most important crop yield-limiting factor, and detailed knowledge of its impact on plant growth regulation is crucial. The maize (Zea mays) leaf growth zone offers unique possibilities for studying the spatiotemporal regulation of developmental processes by transcriptional analyses and methods that require more material, such as metabolite and enzyme activity measurements. By means of a kinematic analysis, we show that drought inhibits maize leaf growth by inhibiting cell division in the meristem and cell expansion in the elongation zone. Through a microarray study, we observed the down-regulation of 32 of the 54 cell cycle genes, providing a basis for the inhibited cell division. We also found evidence for an up-regulation of the photosynthetic machinery and the antioxidant and redox systems. This was confirmed by increased chlorophyll content in mature cells and increased activity of antioxidant enzymes and metabolite levels across the growth zone, respectively. We demonstrate the functional significance of the identified transcriptional reprogramming by showing that increasing the antioxidant capacity in the proliferation zone, by overexpression of the Arabidopsis (Arabidopsis thaliana) iron-superoxide dismutase gene, increases leaf growth rate by stimulating cell division. We also show that the increased photosynthetic capacity leads to enhanced photosynthesis upon rewatering, facilitating the often-observed growth compensation. PMID:26297138

  9. Redox signalling to nuclear regulatory proteins by reactive oxygen species contributes to oestrogen-induced growth of breast cancer cells

    PubMed Central

    Okoh, V O; Garba, N A; Penney, R B; Das, J; Deoraj, A; Singh, K P; Sarkar, S; Felty, Q; Yoo, C; Jackson, R M; Roy, D

    2015-01-01

    Background: 17β-Oestradiol (E2)-induced reactive oxygen species (ROS) have been implicated in regulating the growth of breast cancer cells. However, the underlying mechanism of this is not clear. Here we show how ROS through a novel redox signalling pathway involving nuclear respiratory factor-1 (NRF-1) and p27 contribute to E2-induced growth of MCF-7 breast cancer cells. Methods: Chromatin immunoprecipitation, qPCR, mass spectrometry, redox western blot, colony formation, cell proliferation, ROS assay, and immunofluorescence microscopy were used to study the role of NRF-1. Results: The major novel finding of this study is the demonstration of oxidative modification of phosphatases PTEN and CDC25A by E2-generated ROS along with the subsequent activation of AKT and ERK pathways that culminated in the activation of NRF-1 leading to the upregulation of cell cycle genes. 17β-Oestradiol-induced ROS by influencing nuclear proteins p27 and Jab1 also contributed to the growth of MCF-7 cells. Conclusions: Taken together, our results present evidence in the support of E2-induced ROS-mediated AKT signalling leading to the activation of NRF-1-regulated cell cycle genes as well as the impairment of p27 activity, which is presumably necessary for the growth of MCF-7 cells. These observations are important because they provide a new paradigm by which oestrogen may contribute to the growth of breast cancer. PMID:25965299

  10. Phytochrome induces changes in the immunodetectable level of a wall peroxidase that precede growth changes in maize seedlings

    NASA Technical Reports Server (NTRS)

    Kim, S. H.; Shinkle, J. R.; Roux, S. J.

    1989-01-01

    The regulatory pigment phytochrome induces rapid and opposite growth changes in different regions of etiolated maize seedlings: it stimulates the elongation rate of coleoptiles and inhibits that of mesocotyls. As measured by a quantitative immunoassay, phytochrome also promotes rapid and opposite changes in the extractable content of a Mr 98,000 anionic isoperoxidase in the cell walls of these same organs: it induces a decrease of this peroxidase in coleoptiles and an increase in mesocotyls. The peroxidase changes precede the growth changes. As measured by video stereomicroscopy or a position transducer, red light (R), which photoactivates phytochrome, stimulates coleoptile elongation with a lag of about 15-20 min and suppresses mesocotyl growth with a lag of 45-50 min. R also induces a 50% reduction in the extractable level of the anionic peroxidase in coleoptile walls in less than 10 min and a 40% increase in the level of this peroxidase in mesocotyl walls within 30 min. Ascorbic acid, an inhibitor of peroxidase activity, blocks the effects of R on mesocotyl section growth. These results are relevant to hypotheses that postulate that certain wall peroxidases can participate in light-induced changes in growth rate by their effects on wall extensibility.

  11. Vacancy-Induced Formation and Growth of Inversion Domains in Transition-Metal Dichalcogenide Monolayer

    SciTech Connect

    Lin, Junhao; Pantelides, Sokrates T.; Zhou, Wu

    2015-04-23

    Sixty degree grain boundaries in semiconducting transition-metal dichalcogenide (TMDC) monolayers have been shown to act as conductive channels that have profound influence on both the transport properties and exciton behavior of the monolayers. We show that annealing TMDC monolayers at high temperature induces the formation of large-scale inversion domains surrounded by such 60° grain boundaries. To study the formation mechanism of such inversion domains, we use the electron beam in a scanning transmission electron microscope to activate the dynamic process within pristine TMDC monolayers. Moreover, the electron beam acts to generate chalcogen vacancies in TMDC monolayers and provide energy for them to undergo structural evolution. We directly visualize the nucleation and growth of such inversion domains and their 60° grain boundaries atom-by-atom within a MoSe2 monolayer and explore their formation mechanism. Combined with density functional theory, we conclude that the nucleation of the inversion domains and migration of their 60° grain boundaries are driven by the collective evolution of Se vacancies and subsequent displacement of Mo atoms, where such a dynamical process reduces the vacancy-induced lattice shrinkage and stabilizes the system. Our results can help to understand the performance of such materials under severe conditions (e.g., high temperature).

  12. Val66Met Polymorphism of BDNF Alters Prodomain Structure to Induce Neuronal Growth Cone Retraction

    PubMed Central

    Anastasia, Agustin; Deinhardt, Katrin; Chao, Moses V.; Will, Nathan E.; Irmady, Krithi; Lee, Francis S.; Hempstead, Barbara L.; Bracken, Clay

    2013-01-01

    A common single-nucleotide polymorphism in the human brain-derived neurotrophic factor (BDNF) gene results in a Val66Met substitution in the BDNF prodomain region. This single-nucleotide polymorphism is associated with alterations in memory and with enhanced risk to develop depression and anxiety disorders in humans. Here we show that the isolated BDNF prodomain is detected in the hippocampus and that it can be secreted from neurons in an activity-dependent manner. Using nuclear magnetic resonance spectroscopy and circular dichroism we find that the prodomain is intrinsically disordered, and the Val66Met substitution induces structural changes. Surprisingly, application of Met66 (but not Val66) BDNF prodomain induces acute growth cone retraction and a decrease in Rac activity in hippocampal neurons. Expression of p75NTR and differential engagement of the Met66 prodomain to the SorCS2 receptor are required for this effect. These results identify the Met66 prodomain as a new active ligand which modulates neuronal morphology. PMID:24048383

  13. Naked gene therapy of hepatocyte growth factor for dextran sulfate sodium-induced colitis in mice

    SciTech Connect

    Kanbe, Takamasa |; Murai, Rie; Mukoyama, Tomoyuki; Murawaki, Yoshiyuki |; Hashiguchi, Ko-ichi; Yoshida, Yoko; Tsuchiya, Hiroyuki; Kurimasa, Akihiro; Harada, Ken-ichi; Yashima, Kazuo; Nishimuki, Eiji; Shabana, Noriko; Kishimoto, Yukihiro; Kojyo, Haruhiko; Miura, Kunihiko; Kawasaki, Hironaka; Murawaki, Yoshikazu; Shiota, Goshi . E-mail: gshiota@grape.med.tottori-u.ac.jp

    2006-07-14

    Ulcerative colitis (UC) is progressive and relapsing disease. To explore the therapeutic effects of naked gene therapy of hepatocyte growth factor (HGF) on UC, the SR{alpha} promoter driving HGF gene was intrarectally administered to the mice in which colitis was induced by dextran sulfate sodium (DSS). Expression of the transgene was seen in surface epithelium, lamina propria, and muscularis mucosae. The HGF-treated mice showed reduced colonic mucosal damage and increased body weights, compared with control mice (P < 0.01 and P < 0.05, respectively). The HGF-treated mice displayed increased number of PCNA-positive cells and decreased number of apoptotic cells than in control mice (P < 0.01, each). Phosphorylated AKT was dramatically increased after HGF gene administration, however, phosphorylated ERK1/2 was not altered. Microarray analysis revealed that HGF induced expression of proliferation- and apoptosis-associated genes. These data suggest that naked HGF gene delivery causes therapeutic effects through regulation of many downstream genes.

  14. Vascular Normalization Induced by Sinomenine Hydrochloride Results in Suppressed Mammary Tumor Growth and Metastasis

    PubMed Central

    Zhang, Huimin; Ren, Yu; Tang, Xiaojiang; Wang, Ke; Liu, Yang; Zhang, Li; Li, Xiao; Liu, Peijun; Zhao, Changqi; He, Jianjun

    2015-01-01

    Solid tumor vasculature is characterized by structural and functional abnormality and results in a hostile tumor microenvironment that mediates several deleterious aspects of tumor behavior. Sinomenine is an alkaloid extracted from the Chinese medicinal plant, Sinomenium acutum, which has been utilized to treat rheumatism in China for over 2000 years. Though sinomenine has been demonstrated to mediate a wide range of pharmacological actions, few studies have focused on its effect on tumor vasculature. We showed here that intraperitoneally administration of 100 mg/kg sinomenine hydrochloride (SH, the hydrochloride chemical form of sinomenine) in two orthotopic mouse breast cancer models for 14 days, delayed mammary tumor growth and decreased metastasis by inducing vascular maturity and enhancing tumor perfusion, while improving chemotherapy and tumor immunity. The effects of SH on tumor vessels were caused in part by its capability to restore the balance between pro-angiogenic factor (bFGF) and anti-angiogenic factor (PF4). However 200 mg/kg SH didn't exhibit the similar inhibitory effect on tumor progression due to the immunosuppressive microenvironment caused by excessive vessel pruning, G-CSF upregulation, and GM-CSF downregulation. Altogether, our findings suggest that SH induced vasculature normalization contributes to its anti-tumor and anti-metastasis effect on breast cancer at certain dosage. PMID:25749075

  15. Histone deacetylase inhibitors induce growth arrest and differentiation in uveal melanoma

    PubMed Central

    Landreville, Solange; Agapova, Olga A.; Matatall, Katie A.; Kneass, Zachary T.; Onken, Michael D.; Lee, Ryan S.; Bowcock, Anne M.; Harbour, J. William

    2011-01-01

    Purpose Metastasis is responsible for the death of most cancer patients, yet few therapeutic agents are available which specifically target the molecular events that lead to metastasis. We recently showed that inactivating mutations in the tumor suppressor gene BAP1 are closely associated with loss of melanocytic differentiation in uveal melanoma and metastasis (UM). The purpose of this study was to identify therapeutic agents that reverse the phenotypic effects of BAP1 loss in UM. Experimental Design In silico screens were performed to identify therapeutic compounds predicted to differentiate UM cells using Gene Set Enrichment Analysis and Connectivity Map databases. Valproic acid, trichostatin A, LBH-589 and suberoylanilide hydroxamic acid were evaluated for their effects on UM cells using morphologic evaluation, MTS viability assays, BrdU incorporation, flow cytometry, clonogenic assays, gene expression profiling, histone acetylation and ubiquitination assays, and a murine xenograft tumorigenicity model. Results HDAC inhibitors induced morphologic differentiation, cell cycle exit, and a shift to a differentiated, melanocytic gene expression profile in cultured UM cells. Valproic acid inhibited the growth of UM tumors in vivo. Conclusions These findings suggest that HDAC inhibitors may have therapeutic potential for inducing differentiation and prolonged dormancy of micrometastatic disease in UM. PMID:22038994

  16. Vacancy-Induced Formation and Growth of Inversion Domains in Transition-Metal Dichalcogenide Monolayer

    DOE PAGESBeta

    Lin, Junhao; Pantelides, Sokrates T.; Zhou, Wu

    2015-04-23

    Sixty degree grain boundaries in semiconducting transition-metal dichalcogenide (TMDC) monolayers have been shown to act as conductive channels that have profound influence on both the transport properties and exciton behavior of the monolayers. We show that annealing TMDC monolayers at high temperature induces the formation of large-scale inversion domains surrounded by such 60° grain boundaries. To study the formation mechanism of such inversion domains, we use the electron beam in a scanning transmission electron microscope to activate the dynamic process within pristine TMDC monolayers. Moreover, the electron beam acts to generate chalcogen vacancies in TMDC monolayers and provide energy formore » them to undergo structural evolution. We directly visualize the nucleation and growth of such inversion domains and their 60° grain boundaries atom-by-atom within a MoSe2 monolayer and explore their formation mechanism. Combined with density functional theory, we conclude that the nucleation of the inversion domains and migration of their 60° grain boundaries are driven by the collective evolution of Se vacancies and subsequent displacement of Mo atoms, where such a dynamical process reduces the vacancy-induced lattice shrinkage and stabilizes the system. Our results can help to understand the performance of such materials under severe conditions (e.g., high temperature).« less

  17. Novel analogs targeting histone deacetylase suppress aggressive thyroid cancer cell growth and induce re-differentiation.

    PubMed

    Jang, S; Yu, X-M; Odorico, S; Clark, M; Jaskula-Sztul, R; Schienebeck, C M; Kupcho, K R; Harrison, A D; Winston-McPherson, G N; Tang, W; Chen, H

    2015-08-01

    To develop novel therapies for aggressive thyroid cancers, we have synthesized a collection of histone deacetylase (HDAC) inhibitor analogs named AB1 to AB13, which have different linkers between a metal chelating group and a hydrophobic cap. The purpose of this study was to screen out the most effective compounds and evaluate the therapeutic efficacy. AB2, AB3 and AB10 demonstrated the lowest half-maximal inhibitory concentration (IC50) values in one metastatic follicular and two anaplastic thyroid cancer cell lines. Treatment with each of the three ABs resulted in an increase in apoptosis markers, including cleaved poly adenosine diphosphate ribose polymerase (PARP) and cleaved caspase 3. Additionally, the expression of cell-cycle regulatory proteins p21(WAF1) and p27(Kip1) increased with the treatment of ABs while cyclin D1 decreased. Furthermore, AB2, AB3 and AB10 were able to induce thyrocyte-specific genes in the three thyroid cancer cell lines indicated by increased expression levels of sodium iodide symporter, paired box gene 8, thyroid transcription factor 1 (TTF1), TTF2 and thyroid-stimulating hormone receptors. AB2, AB3 and AB10 suppress thyroid cancer cell growth via cell-cycle arrest and apoptosis. They also induce cell re-differentiation, which could make aggressive cancer cells more susceptible to radioactive iodine therapy. PMID:26251030

  18. Suppression of KSHV-induced angiopoietin-2 inhibits angiogenesis, infiltration of inflammatory cells, and tumor growth.

    PubMed

    Yu, Xiaolan; Sha, Jingfeng; Xiang, Shao; Qin, Sanhai; Conrad, Patricia; Ghosh, Santosh K; Weinberg, Aaron; Ye, Fengchun

    2016-08-01

    Kaposi's sarcoma (KS) is a highly angiogenic and inflammatory neoplasia. The angiogenic and inflammatory cytokine angiopoietin-2 (Ang-2) is strongly expressed in KS due to Kaposi's sarcoma-associated herpesvirus (KSHV) infection. In the present study, we determined how Ang-2 contributes to development of KS by using telomerase-immortalized human umbilical vein endothelial cells (TIVE) as a model, which become malignantly transformed and express increased levels of Ang-2 following KSHV infection. Ang-2 released from TIVE-KSHV cells induces tyrosine phosphorylation of Tie-2 receptor from both human and mouse endothelial cells and promotes angiogenesis in nude mice. Functional inhibition or expressional "knock-down" of Ang-2 in these cells blocks angiogenesis and inhibits tumor growth. Ang-2 suppression also reduces the numbers of infiltrating monocytes/macrophages in tumors. In transwell-based cell migration assays, Ang-2 indeed enhances migration of human monocytes in a dose-dependent manner. These results underscore a pivotal role of KSHV-induced Ang-2 in KS tumor development by promoting both angiogenesis and inflammation. Our data also suggest that selective drug targeting of Ang-2 may be used for treatment of KS. PMID:27294705

  19. Retinal hypoxia induces vascular endothelial growth factor through induction of estrogen-related receptor γ.

    PubMed

    Do, Ji Yeon; Choi, Young Keun; Kook, Hyun; Suk, Kyoungho; Lee, In-Kyu; Park, Dong Ho

    2015-05-01

    Ischemic retinopathies causing overexpression of pro-angiogenic factors, including vascular endothelial growth factor (VEGF), are the most common cause of blindness. Thus, understanding the pathophysiology of targetable pathways that regulate retinal VEGF is of great interest. A conserved binding site for estrogen-related receptor γ (ERRγ) has been identified in the promoter of the Vegfa gene. ERRγ is a constitutively active orphan nuclear receptor and its expression is increased by hypoxic stimuli in metabolically active tissues. This study evaluated the role of ERRγ in the ischemic retina and the anti-VEGF potential of GSK5182, a selective inverse agonist of ERRγ. In an oxygen-induced retinopathy (OIR) mouse model, immunohistochemistry showed significantly increased ERRγ expression in the ganglion cell layer at postnatal day (P) 17. In a ganglion cell line (RGC-5), mRNA and protein levels of ERRγ were increased by desferrioxamine treatment and hypoxic conditions (1% O2). Transient transfection of RGC-5 cells revealed that ERRγ regulated Vegfa expression and this was inhibited by GSK5182. Intravitreal injection of GSK5182 into the OIR model at P14 inhibited retinal Vegfa mRNA expression at P17. GSK5182 suppresses hypoxia-induced VEGF expression via ERRγ; therefore, ERRγ could be a treatment target for ischemic retinopathies. PMID:25796334

  20. Effect of epidermal growth factor against radiotherapy-induced oral mucositis in rats

    SciTech Connect

    Lee, Sang-wook; Jung, Kwon Il; Kim, Yeun Wha B.S.; Jung, Heun Don; Kim, Hyun Sook; Hong, Joon Pio . E-mail: joonphong@amc.seoul.kr

    2007-03-15

    Purpose: We tested the efficacy of oral recombinant human epidermal growth factor (rhEGF) against radiation-induced oral mucositis in a rat model. Methods and Materials: Each of 35 Sprague-Dawley rats, 7 to 8 weeks of age and weighing 178 {+-} 5 grams, was irradiated once in the head region with 25 Gy, using a 4-MV therapeutic linear accelerator at a rate of 2 Gy/min. The irradiated rats were randomly divided into four groups: those receiving no treatment (Group 1), those treated with vehicle only three times per day (Group 2), and those treated with 50 {mu}g/mL (Group 3), or 100 {mu}g/mL (Group 4) rhEGF three times per day. Results: Rats were monitored for survival rate and daily activity, including hair loss, sensitivity, and anorexia. We found that survival rate and oral intake were significantly increased and histologic changes were significantly decreased in the rhEGF-treated rats. There was no difference, however, between rats treated with 50 {mu}g/mL or 100 {mu}g/mL rhEGF. Conclusion: These findings suggest that orally administered rhEGF decreased radiation-induced oral mucositis in rats.

  1. Salmonella Modulates Metabolism during Growth under Conditions that Induce Expression of Virulence Genes

    PubMed Central

    Kim, Young-Mo; Schmidt, Brian J.; Kidwai, Afshan S.; Jones, Marcus B.; Deatherage Kaiser, Brooke L.; Brewer, Heather M.; Mitchell, Hugh D.; Palsson, Bernhard O.; McDermott, Jason E.; Heffron, Fred; Smith, Richard D.; Peterson, Scott N.; Ansong, Charles; Hyduke, Daniel R.; Metz, Thomas O.; Adkins, Joshua N.

    2013-01-01

    Salmonella enterica serovar Typhimurium (S. Typhimurium) is a facultative pathogen that uses complex mechanisms to invade and proliferate within mammalian host cells. To investigate possible contributions of metabolic processes to virulence in S. Typhimurium grown under conditions known to induce expression of virulence genes, we used a metabolomics-driven systems biology approach coupled with genome scale modeling. First, we identified distinct metabolite profiles associated with bacteria grown in either rich or virulence-inducing media and report the most comprehensive coverage of the S. Typhimurium metabolome to date. Second, we applied an omics-informed genome scale modeling analysis of the functional consequences of adaptive alterations in S. Typhimurium metabolism during growth under our conditions. Modeling efforts highlighted a decreased cellular capability to both produce and utilize intracellular amino acids during stationary phase culture in virulence conditions, despite significant abundance increases for these molecules as observed by our metabolomics measurements. Furthermore, analyses of omics data in the context of the metabolic model indicated rewiring of the metabolic network to support pathways associated with virulence. For example, cellular concentrations of polyamines were perturbed, as well as the predicted capacity for secretion and uptake. PMID:23559334

  2. Houttuynia cordata Thunb extract inhibits cell growth and induces apoptosis in human primary colorectal cancer cells.

    PubMed

    Lai, Kuang-Chi; Chiu, Yu-Jen; Tang, Yih-Jing; Lin, Kuei-Li; Chiang, Jo-Hua; Jiang, Yi-Lin; Jen, Hsiu-Fang; Kuo, Yueh-Hsiung; Agamaya, Sakae; Chung, Jing-Gung; Yang, Jai-Sing

    2010-09-01

    It is reported that Houttuynia cordata Thunb. (HCT), a traditional Chinese herbal medicine, has many biological properties such as antiviral, antibacterial and antileukemic activities. However, the molecular mechanisms of cytotoxicity and apoptosis in human primary colorectal cancer cells are not clear. In this study, whether HCT induced cytotoxicity in primary colorectal cancer cells obtained from three patients was investigated. The results indicated that HCT inhibited growth of cancer cells in a dose-dependent manner. After treatment with HCT (250 μg/ml) for 24 h, cells exhibited chromatin condensation (an apoptotic characteristic). HCT increased reactive oxygen species (ROS) production and decreased the mitochondrial membrane potential (ΔΨ(m)) in examined cells. Mitochondria-dependent apoptotic signaling pathway was shown to be involved as determined by increase in the levels of cytochrome c, Apaf-1, and caspase-3 and -9. The decrease in the level of ΔΨ(m) was associated with an increase in the BAX/BCL-2 ratio which led to activation of caspase-9 and -3. Based on our results, HCT induced apoptotic cell death in human primary colorectal cancer cells through a mitochondria-dependent signaling pathway. PMID:20944136

  3. Salmonella Modulates Metabolism During Growth under Conditions that Induce Expression of Virulence Genes

    SciTech Connect

    Kim, Young-Mo; Schmidt, Brian; Kidwai, Afshan S.; Jones, Marcus B.; Deatherage, Brooke L.; Brewer, Heather M.; Mitchell, Hugh D.; Palsson, Bernhard O.; McDermott, Jason E.; Heffron, Fred; Smith, Richard D.; Peterson, Scott N.; Ansong, Charles; Hyduke, Daniel R.; Metz, Thomas O.; Adkins, Joshua N.

    2013-04-05

    Salmonella enterica serovar Typhimurium (S. Typhimurium) is a facultative pathogen that uses complex mechanisms to invade and proliferate within mammalian host cells. To investigate possible contributions of metabolic processes in S. Typhimurium grown under conditions known to induce expression of virulence genes, we used a metabolomics-driven systems biology approach coupled with genome scale modeling. First, we identified distinct metabolite profiles associated with bacteria grown in either rich or virulence-inducing media and report the most comprehensive coverage of the S. Typhimurium metabolome to date. Second, we applied an omics-informed genome scale modeling analysis of the functional consequences of adaptive alterations in S. Typhimurium metabolism during growth under our conditions. Excitingly, we observed possible sequestration of metabolites recently suggested to have immune modulating roles. Modeling efforts highlighted a decreased cellular capability to both produce and utilize intracellular amino acids during stationary phase culture in virulence conditions, despite significant abundance increases for these molecules as observed by our metabolomics measurements. Model-guided analysis suggested that alterations in metabolism prioritized other activities necessary for pathogenesis instead, such as lipopolysaccharide biosynthesis.

  4. Phellinus linteus extract induces autophagy and synergizes with 5-fluorouracil to inhibit breast cancer cell growth.

    PubMed

    Lee, Wen-Ying; Hsu, Keng-Fu; Chiang, Tai-An; Chen, Chee-Jen

    2015-01-01

    Phellinus linteus (PL) is a medicinal mushroom due to its several biological properties, including anticancer activity. However, the mechanisms of its anticancer effect remain to be elucidated. We evaluated the inhibitory effects of the ethanolic extract from the PL combined with 5-FU on MDA-MB-231 breast cancer cell line and to determine the mechanism of cell death. Individually, PL extract and 5-FU significantly inhibited the proliferation of MDA-MB-231 cells in a dose-dependent manner. PL extract (30 mg/mL) in combination with 5-FU (10 μg/mL) synergistically inhibited MDA-MB-231 cells by 1.8-fold. PL did not induce apoptosis, as demonstrated by the DNA fragmentation assay, the sub-G1 population, and staining with annexin V-FITC and propidium iodide. The exposure of MDA-MB-231 cells to PL extracts resulted in several confirmed characteristics of autophagy, including the appearance of autophagic vacuoles revealed by monodansylcadaverine staining, the formation of acidic vesicular organelles, autophagosome membrane association of microtubule-associated protein light chain 3 (LC3) characterized by cleavage of LC3 and its punctuate redistribution, and ultrastructural observation of autophagic vacuoles by transmission electron microscopy. We concluded that PL extracts synergized with low doses of 5-FU to inhibit triple-negative breast cancer cell growth and demonstrated that PL extract can induce autophagy-related cell death. PMID:25622112

  5. Role of vascular endothelial growth factor signaling in Schistosoma-induced experimental pulmonary hypertension

    PubMed Central

    2014-01-01

    Abstract There is significant evidence that Th2 (T helper 2)-mediated inflammation supports the pathogenesis of both human and experimental animal models of pulmonary hypertension (PH). A key immune regulator is vascular endothelial growth factor (VEGF), which is produced by Th2 inflammation and can itself contribute to Th2 pulmonary responses. In this study, we interrogated the role of VEGF signaling in a murine model of schistosomiasis-induced PH with a phenotype of significant intrapulmonary Th2 inflammation, vascular remodeling, and elevated right ventricular pressures. We found that VEGF receptor blockade partially suppressed the levels of the Th2 inflammatory cytokines interleukin (IL)-4 and IL-13 in both the lung and the liver after Schistosoma mansoni exposure and suppressed pulmonary vascular remodeling. These findings suggest that VEGF positively contributes to schistosomiasis-induced vascular inflammation and remodeling, and they also provide evidence for a VEGF-dependent signaling pathway necessary for pulmonary vascular remodeling and inflammation in this model. PMID:25006448

  6. Central injection of fibroblast growth factor 1 induces sustained remission of diabetic hyperglycemia in rodents.

    PubMed

    Scarlett, Jarrad M; Rojas, Jennifer M; Matsen, Miles E; Kaiyala, Karl J; Stefanovski, Darko; Bergman, Richard N; Nguyen, Hong T; Dorfman, Mauricio D; Lantier, Louise; Wasserman, David H; Mirzadeh, Zaman; Unterman, Terry G; Morton, Gregory J; Schwartz, Michael W

    2016-07-01

    Type 2 diabetes (T2D) is among the most common and costly disorders worldwide. The goal of current medical management for T2D is to transiently ameliorate hyperglycemia through daily dosing of one or more antidiabetic drugs. Hypoglycemia and weight gain are common side effects of therapy, and sustained disease remission is not obtainable with nonsurgical approaches. On the basis of the potent glucose-lowering response elicited by activation of brain fibroblast growth factor (FGF) receptors, we explored the antidiabetic efficacy of centrally administered FGF1, which, unlike other FGF peptides, activates all FGF receptor subtypes. We report that a single intracerebroventricular injection of FGF1 at a dose one-tenth of that needed for antidiabetic efficacy following peripheral injection induces sustained diabetes remission in both mouse and rat models of T2D. This antidiabetic effect is not secondary to weight loss, does not increase the risk of hypoglycemia, and involves a novel and incompletely understood mechanism for increasing glucose clearance from the bloodstream. We conclude that the brain has an inherent potential to induce diabetes remission and that brain FGF receptors are potential pharmacological targets for achieving this goal. PMID:27213816

  7. The ETHYLENE RESPONSE FACTORs ERF6 and ERF11 Antagonistically Regulate Mannitol-Induced Growth Inhibition in Arabidopsis1[OPEN

    PubMed Central

    Dubois, Marieke; Van den Broeck, Lisa; Claeys, Hannes; Van Vlierberghe, Kaatje; Matsui, Minami; Inzé, Dirk

    2015-01-01

    Leaf growth is a tightly regulated and complex process, which responds in a dynamic manner to changing environmental conditions, but the mechanisms that reduce growth under adverse conditions are rather poorly understood. We previously identified a growth inhibitory pathway regulating leaf growth upon exposure to a low concentration of mannitol and characterized the ETHYLENE RESPONSE FACTOR (ERF)/APETALA2 transcription factor ERF6 as a central activator of both leaf growth inhibition and induction of stress tolerance genes. Here, we describe the role of the transcriptional repressor ERF11 in relation to the ERF6-mediated stress response in Arabidopsis (Arabidopsis thaliana). Using inducible overexpression lines, we show that ERF6 induces the expression of ERF11. ERF11 in turn molecularly counteracts the action of ERF6 and represses at least some of the ERF6-induced genes by directly competing for the target gene promoters. As a phenotypical consequence of the ERF6-ERF11 antagonism, the extreme dwarfism caused by ERF6 overexpression is suppressed by overexpression of ERF11. Together, our data demonstrate that dynamic mechanisms exist to fine-tune the stress response and that ERF11 counteracts ERF6 to maintain a balance between plant growth and stress defense. PMID:25995327

  8. Retinal hypoxia induces vascular endothelial growth factor through induction of estrogen-related receptor γ

    SciTech Connect

    Do, Ji Yeon; Choi, Young Keun; Kook, Hyun; Suk, Kyoungho; Lee, In-Kyu; Park, Dong Ho

    2015-05-01

    Ischemic retinopathies causing overexpression of pro-angiogenic factors, including vascular endothelial growth factor (VEGF), are the most common cause of blindness. Thus, understanding the pathophysiology of targetable pathways that regulate retinal VEGF is of great interest. A conserved binding site for estrogen-related receptor γ (ERRγ) has been identified in the promoter of the Vegfa gene. ERRγ is a constitutively active orphan nuclear receptor and its expression is increased by hypoxic stimuli in metabolically active tissues. This study evaluated the role of ERRγ in the ischemic retina and the anti-VEGF potential of GSK5182, a selective inverse agonist of ERRγ. In an oxygen-induced retinopathy (OIR) mouse model, immunohistochemistry showed significantly increased ERRγ expression in the ganglion cell layer at postnatal day (P) 17. In a ganglion cell line (RGC-5), mRNA and protein levels of ERRγ were increased by desferrioxamine treatment and hypoxic conditions (1% O{sub 2}). Transient transfection of RGC-5 cells revealed that ERRγ regulated Vegfa expression and this was inhibited by GSK5182. Intravitreal injection of GSK5182 into the OIR model at P14 inhibited retinal Vegfa mRNA expression at P17. GSK5182 suppresses hypoxia-induced VEGF expression via ERRγ; therefore, ERRγ could be a treatment target for ischemic retinopathies. - Highlights: • OIR mice exhibited increased ERRγ expression in the ganglion cell layer. • Hypoxia-induced ERRγ expression was observed in retinal ganglion cells. • ERRγ overexpression increased VEGFA expression in retinal ganglion cells. • An ERRγ inverse agonist suppressed VEGFA expression in retinal ganglion cells. • Intravitreal injection of an ERRγ inverse agonist suppressed VEGFA in OIR mice.

  9. Nerve growth factor induces sensitization of nociceptors without evidence for increased intraepidermal nerve fiber density.

    PubMed

    Hirth, Michael; Rukwied, Roman; Gromann, Alois; Turnquist, Brian; Weinkauf, Benjamin; Francke, Klaus; Albrecht, Philip; Rice, Frank; Hägglöf, Björn; Ringkamp, Matthias; Engelhardt, Maren; Schultz, Christian; Schmelz, Martin; Obreja, Otilia

    2013-11-01

    Nerve growth factor (NGF) is involved in the long-term sensitization of nociceptive processing linked to chronic pain. Functional and structural ("sprouting") changes can contribute. Thus, humans report long-lasting hyperalgesia to mechanical and electrical stimulation after intradermal NGF injection and NGF-induced sprouting has been reported to underlie cancer bone pain and visceral pain. Using a human-like animal model we investigated the relationship between the structure and function of unmyelinated porcine nociceptors 3 weeks after intradermal NGF treatment. Axonal and sensory characteristics were studied by in vivo single-fiber electrophysiology and immunohistochemistry. C fibers recorded extracellularly were classified based on mechanical response and activity-dependent slowing (ADS) of conduction velocity. Intraepidermal nerve fiber (IENF) densities were assessed by immunohistochemistry in pigs and in human volunteers using the same NGF model. NGF increased conduction velocity and reduced ADS and propagation failure in mechano-insensitive nociceptors. The proportion of mechano-sensitive C nociceptors within NGF-treated skin areas increased from 45.1% (control) to 71% and their median mechanical thresholds decreased from 40 to 20 mN. After NGF application, the mechanical receptive fields of nociceptors increased from 25 to 43 mm(2). At the structural level, however, IENF density was not increased by NGF. In conclusion, intradermal NGF induces long-lasting axonal and mechanical sensitization in porcine C nociceptors that corresponds to hyperalgesia observed in humans. Sensitization is not accompanied by increased IENF density, suggesting that NGF-induced hyperalgesia might not depend on changes in nerve fiber density but could be linked to the recruitment of previously silent nociceptors. PMID:23891896

  10. Oroxin A inhibits breast cancer cell growth by inducing robust endoplasmic reticulum stress and senescence.

    PubMed

    He, Jun; Du, Longsheng; Bao, Meimei; Zhang, Bin; Qian, Haixin; Zhou, Quansheng; Cao, Zhifei

    2016-03-01

    Breast cancer is a major cause of cancer death among women. Although various anticancer drugs have been used in clinics, drugs that are effective against advanced and metastatic breast cancer are still lacking and in great demand. In this study, we found that oroxin A, an active component isolated from the herb Oroxylum indicum (L.) Kurz, effectively inhibited the growth of human breast cancer cells MDA-MB-231 and MCF7 by inducing endoplasmic reticulum (ER) stress-mediated senescence. Oroxin A caused breast cancer cell cycle arrest at the G2/M stage, and reorganization of microtubules and actin cytoskeleton accompanied by a decrease in cellular mitosis. ER-specific probe ER-Tracker Red and confocal microscope imaging showed that ER-Tracker Red-positive cells increased in an oroxin A dosage-dependent manner. In addition, oroxin A increased cell population with high β-Gal activity and SAHF-positive staining; these data suggest that oroxin A induces breast cancer cell ER stress and senescence. Mechanistic studies showed that oroxin A led to a significant increase in intracellular reactive oxygen species levels, promoted expression of ER stress markers ATF4 and GRP78, and increased the phosphorylation of a key stress-response signaling protein p38, resulting in an ER stress-mediated senescence. Taken together, our data indicate that oroxin A exerts its antibreast cancer effects by inducing ER stress-mediated senescence, activating the key stress p38 signaling pathway, and increasing key ER stress genes ATF4 and GRP78 expression levels. PMID:26599214

  11. Transforming Growth Factor-β2 Induces Bronchial Epithelial Mucin Expression in Asthma

    PubMed Central

    Chu, Hong Wei; Balzar, Silvana; Seedorf, Gregory J.; Westcott, Jay Y.; Trudeau, John B.; Silkoff, Phil; Wenzel, Sally E.

    2004-01-01

    The transforming growth factor (TGF)-β family is important for tissue repair in pathological conditions including asthma. However, little is known about the impact of either TGF-β1 or TGF-β2 on asthmatic airway epithelial mucin expression. We evaluated bronchial epithelial TGF-β1 and TGF-β2 expression and their effects on mucin expression, and the role of TGF-β1 or TGF-β2 in interleukin (IL)-13-induced mucin expression. Epithelial TGF-β1, TGF-β2, and mucin expression were evaluated in endobronchial biopsies from asthmatics and normal subjects. The effects of TGF-β1 or TGF-β2 on mucin MUC5AC protein and mRNA expression, and the impact of IL-13 on epithelial TGF-β1, TGF-β2, and MUC5AC were determined in cultured bronchial epithelial cells from endobronchial brushings of both subject groups. In biopsy tissue, epithelial TGF-β2 expression levels were higher than TGF-β1 in both asthmatics and normals. TGF-β2, but not TGF-β1, was increased in asthmatics compared with normals, and significantly correlated with mucin expression. TGF-β2, but not TGF-β1, increased mucin expression in cultured epithelial cells from both subject groups. IL-13 increased the release of TGF-β2, but not TGF-β1, from epithelial cells. A neutralizing TGF-β2 antibody partially inhibited IL-13-induced mucin expression. These data suggest that TGF-β2 production by asthmatic bronchial epithelial cells may increase airway mucin expression. IL-13-induced mucin expression may occur in part through TGF-β2 up-regulation. PMID:15466377

  12. Transforming growth factor-beta2 induces bronchial epithelial mucin expression in asthma.

    PubMed

    Chu, Hong Wei; Balzar, Silvana; Seedorf, Gregory J; Westcott, Jay Y; Trudeau, John B; Silkoff, Phil; Wenzel, Sally E

    2004-10-01

    The transforming growth factor (TGF)-beta family is important for tissue repair in pathological conditions including asthma. However, little is known about the impact of either TGF-beta1 or TGF-beta2 on asthmatic airway epithelial mucin expression. We evaluated bronchial epithelial TGF-beta1 and TGF-beta2 expression and their effects on mucin expression, and the role of TGF-beta1 or TGF-beta2 in interleukin (IL)-13-induced mucin expression. Epithelial TGF-beta1, TGF-beta2, and mucin expression were evaluated in endobronchial biopsies from asthmatics and normal subjects. The effects of TGF-beta1 or TGF-beta2 on mucin MUC5AC protein and mRNA expression, and the impact of IL-13 on epithelial TGF-beta1, TGF-beta2, and MUC5AC were determined in cultured bronchial epithelial cells from endobronchial brushings of both subject groups. In biopsy tissue, epithelial TGF-beta2 expression levels were higher than TGF-beta1 in both asthmatics and normals. TGF-beta2, but not TGF-beta1, was increased in asthmatics compared with normals, and significantly correlated with mucin expression. TGF-beta2, but not TGF-beta1, increased mucin expression in cultured epithelial cells from both subject groups. IL-13 increased the release of TGF-beta2, but not TGF-beta1, from epithelial cells. A neutralizing TGF-beta2 antibody partially inhibited IL-13-induced mucin expression. These data suggest that TGF-beta2 production by asthmatic bronchial epithelial cells may increase airway mucin expression. IL-13-induced mucin expression may occur in part through TGF-beta2 up-regulation. PMID:15466377

  13. Induction of fibroblast apolipoprotein E expression during apoptosis, starvation-induced growth arrest and mitosis.

    PubMed Central

    Quinn, Carmel M; Kågedal, Katarina; Terman, Alexei; Stroikin, Uri; Brunk, Ulf T; Jessup, Wendy; Garner, Brett

    2004-01-01

    Apolipoprotein E (apoE) mediates the hepatic clearance of plasma lipoproteins, facilitates cholesterol efflux from macrophages and aids neuronal lipid transport. ApoE is expressed at high levels in hepatocytes, macrophages and astrocytes. In the present study, we identify nuclear and cytosolic pools of apoE in human fibroblasts. Fibroblast apoE mRNA and protein levels were up-regulated during staurosporine-induced apoptosis and this was correlated with increased caspase-3 activity and apoptotic morphological alterations. Because the transcription of apoE and specific pro-apoptotic genes is regulated by the nuclear receptor LXR (liver X receptor) alpha, we analysed LXRalpha mRNA expression by quantitative real-time PCR and found it to be increased before apoE mRNA induction. The expression of ABCA1 (ATP-binding cassette transporter A1) mRNA, which is also regulated by LXRalpha, was increased in parallel with apoE mRNA, indicating that LXRalpha probably promotes apoE and ABCA1 transcription during apoptosis. Fibroblast apoE levels were increased under conditions of serum-starvation-induced growth arrest and hyperoxia-induced senescence. In both cases, an increased nuclear apoE level was observed, particularly in cells that accumulated lipofuscin. Nuclear apoE was translocated to the cytosol when mitotic nuclear disassembly occurred and this was associated with an increase in total cellular apoE levels. ApoE amino acid sequence analysis indicated several potential sites for phosphorylation. In vivo studies, using 32P-labelling and immunoprecipitation, revealed that fibroblast apoE can be phosphorylated. These studies reveal novel associations and potential roles for apoE in fundamental cellular processes. PMID:14656220

  14. Stable Pseudohyphal Growth in Budding Yeast Induced by Synergism between Septin Defects and Altered MAP-kinase Signaling

    PubMed Central

    Kim, Junwon; Rose, Mark D.

    2015-01-01

    Upon nutrient limitation, budding yeasts like Saccharomyces cerevisiae can be induced to adopt alternate filament-like growth patterns called diploid pseudohyphal or invasive haploid growth. Here, we report a novel constitutive pseudohyphal growth state, sharing some characteristics with classic forms of filamentous growth, but differing in crucial aspects of morphology, growth conditions and genetic regulation. The constitutive pseudohyphal state is observed in fus3 mutants containing various septin assembly defects, which we refer to as sadF growth (septin assembly defect induced filamentation) to distinguish it from classic filamentation pathways. Similar to other filamentous states, sadF cultures comprise aggregated chains of highly elongated cells. Unlike the classic pathways, sadF growth occurs in liquid rich media, requiring neither starvation nor the key pseudohyphal proteins, Flo8p and Flo11p. Moreover sadF growth occurs in haploid strains of S288C genetic background, which normally cannot undergo pseudohyphal growth. The sadF cells undergo highly polarized bud growth during prolonged G2 delays dependent on Swe1p. They contain septin structures distinct from classical pseudo-hyphae and FM4-64 labeling at actively growing tips similar to the Spitzenkörper observed in true hyphal growth. The sadF growth state is induced by synergism between Kss1p-dependent signaling and septin assembly defects; mild disruption of mitotic septins activates Kss1p-dependent gene expression, which exacerbates the septin defects, leading to hyper-activation of Kss1p. Unlike classical pseudo-hyphal growth, sadF signaling requires Ste5, Ste4 and Ste18, the scaffold protein and G-protein β and γ subunits from the pheromone response pathway, respectively. A swe1 mutation largely abolished signaling, breaking the positive feedback that leads to amplification of sadF signaling. Taken together, our findings show that budding yeast can access a stable constitutive pseudohyphal growth

  15. Stable Pseudohyphal Growth in Budding Yeast Induced by Synergism between Septin Defects and Altered MAP-kinase Signaling.

    PubMed

    Kim, Junwon; Rose, Mark D

    2015-12-01

    Upon nutrient limitation, budding yeasts like Saccharomyces cerevisiae can be induced to adopt alternate filament-like growth patterns called diploid pseudohyphal or invasive haploid growth. Here, we report a novel constitutive pseudohyphal growth state, sharing some characteristics with classic forms of filamentous growth, but differing in crucial aspects of morphology, growth conditions and genetic regulation. The constitutive pseudohyphal state is observed in fus3 mutants containing various septin assembly defects, which we refer to as sadF growth (septin assembly defect induced filamentation) to distinguish it from classic filamentation pathways. Similar to other filamentous states, sadF cultures comprise aggregated chains of highly elongated cells. Unlike the classic pathways, sadF growth occurs in liquid rich media, requiring neither starvation nor the key pseudohyphal proteins, Flo8p and Flo11p. Moreover sadF growth occurs in haploid strains of S288C genetic background, which normally cannot undergo pseudohyphal growth. The sadF cells undergo highly polarized bud growth during prolonged G2 delays dependent on Swe1p. They contain septin structures distinct from classical pseudo-hyphae and FM4-64 labeling at actively growing tips similar to the Spitzenkörper observed in true hyphal growth. The sadF growth state is induced by synergism between Kss1p-dependent signaling and septin assembly defects; mild disruption of mitotic septins activates Kss1p-dependent gene expression, which exacerbates the septin defects, leading to hyper-activation of Kss1p. Unlike classical pseudo-hyphal growth, sadF signaling requires Ste5, Ste4 and Ste18, the scaffold protein and G-protein β and γ subunits from the pheromone response pathway, respectively. A swe1 mutation largely abolished signaling, breaking the positive feedback that leads to amplification of sadF signaling. Taken together, our findings show that budding yeast can access a stable constitutive pseudohyphal growth

  16. Trpv4 induces collateral vessel growth during regeneration of the arterial circulation.

    PubMed

    Troidl, Christian; Troidl, Kerstin; Schierling, Wilma; Cai, Wei-Jun; Nef, Holger; Möllmann, Helge; Kostin, Sava; Schimanski, Sylvia; Hammer, Linda; Elsässer, Albrecht; Schmitz-Rixen, Thomas; Schaper, Wolfgang

    2009-08-01

    The development of a collateral circulation (arteriogenesis), bypassing an arterial occlusion, is important for tissue survival, but it remains functionally defective. Micro array data of growing collateral vessels, exposed to chronically elevated fluid shear stress (FSS), showed increased transcription of the transient receptor potential cation channel, subfamily V, member 4 (Trpv4). Thus, the aim of this study was to investigate the role of the shear stress sensitive Trpv4 in transmitting this physical stimulus into an active growth response. qRT-PCR at different time points during the growth of collateral vessels after femoral artery ligature (FAL) in rats showed a strong positive correlation of Trpv4 transcription and the intensity of FSS. An increased protein expression of Trpv4 was localized in the FSS-sensing endothelium by means of confocal immunohistochemistry. Cultured porcine endothelial cells showed a dose-dependent expression of Trpv4 and an increased level of Ki67-positive cells upon treatment with 4alpha-Phorbol 12,13-didecanoate (4alphaPDD), a specific Trpv4 activator. This was also demonstrated by flow culture experiments. These results were confirmed by in vivo application of 4alphaPDD in rabbit hind limb circulation via an osmotic mini-pump after FAL. Trpv4 expression as well as Ki67-positive staining was significantly increased in collateral vessels. Finally, 4alphaPDD treatment after FAL led to a 61% (215.5 ml/min/mmHg versus 350 ml/min/mmHg) recovery of conductance when compared with the non-occluded artery. Cell culture and in vivo studies demonstrate that an FSS- or a 4alphaPDD-induced activation of Trpv4 leads to an active proliferation of vascular cells and finally triggers collateral growth. Trpv4, a well-known FSS-sensitive vasodilator, has hitherto not been implicated in active growth processes of collateral arteries. This new function may lead to new therapeutic strategies for the treatment of arterial occlusive diseases. PMID:19017361

  17. COI1, a jasmonate receptor, is involved in ethylene-induced inhibition of Arabidopsis root growth in the light

    PubMed Central

    Adams, Eri; Turner, John

    2010-01-01

    Plant response to stress is orchestrated by hormone signalling pathways including those activated by jasmonates (JAs) and by ethylene, both of which stunt root growth. COI1 is a JA receptor and is required for the known responses to this hormone. It was observed that the coi1 mutant, which is largely unresponsive to growth inhibition by JAs, was also partially unresponsive to growth inhibition by ethylene and by its immediate precursor, 1-aminocyclopropane-1-carboxylic acid (ACC), in the light but not in the dark. Although COI1 was required for this response to ACC, other components of the JA signal perception pathway were not. Mutants selected for insensitivity to ethylene, including etr1, ein2, and ein3, showed greater ACC-induced root growth inhibition in the light than in the dark. However, the double mutants etr1;coi1, ein2;coi1, and ein3;coi1, and coi1 seedlings treated with silver ions to block the ethylene receptors showed almost complete unresponsiveness to ACC-induced root growth inhibition in the light. The light requirement for the COI1-mediated growth inhibition by ACC was for long photoperiods, and the ACC response was not abolished by mutations in the known photoreceptors. The complementation assay indicated that SCF complex assembly was not required for COI1 function in the ACC response, in contrast to the JA response. It is concluded that COI1 is required for the light-dependent, JA-independent, root growth inhibition by ethylene. PMID:20699268

  18. Natural variation in small molecule-induced TIR-NB-LRR signaling induces root growth arrest via EDS1- and PAD4-complexed R protein VICTR in Arabidopsis.

    PubMed

    Kim, Tae-Houn; Kunz, Hans-Henning; Bhattacharjee, Saikat; Hauser, Felix; Park, Jiyoung; Engineer, Cawas; Liu, Amy; Ha, Tracy; Parker, Jane E; Gassmann, Walter; Schroeder, Julian I

    2012-12-01

    In a chemical genetics screen we identified the small-molecule [5-(3,4-dichlorophenyl)furan-2-yl]-piperidine-1-ylmethanethione (DFPM) that triggers rapid inhibition of early abscisic acid signal transduction via PHYTOALEXIN DEFICIENT4 (PAD4)- and ENHANCED DISEASE SUSCEPTIBILITY1 (EDS1)-dependent immune signaling mechanisms. However, mechanisms upstream of EDS1 and PAD4 in DFPM-mediated signaling remain unknown. Here, we report that DFPM generates an Arabidopsis thaliana accession-specific root growth arrest in Columbia-0 (Col-0) plants. The genetic locus responsible for this natural variant, VICTR (VARIATION IN COMPOUND TRIGGERED ROOT growth response), encodes a TIR-NB-LRR (for Toll-Interleukin1 Receptor-nucleotide binding-Leucine-rich repeat) protein. Analyses of T-DNA insertion victr alleles showed that VICTR is necessary for DFPM-induced root growth arrest and inhibition of abscisic acid-induced stomatal closing. Transgenic expression of the Col-0 VICTR allele in DFPM-insensitive Arabidopsis accessions recapitulated the DFPM-induced root growth arrest. EDS1 and PAD4, both central regulators of basal resistance and effector-triggered immunity, as well as HSP90 chaperones and their cochaperones RAR1 and SGT1B, are required for the DFPM-induced root growth arrest. Salicylic acid and jasmonic acid signaling pathway components are dispensable. We further demonstrate that VICTR associates with EDS1 and PAD4 in a nuclear protein complex. These findings show a previously unexplored association between a TIR-NB-LRR protein and PAD4 and identify functions of plant immune signaling components in the regulation of root meristematic zone-targeted growth arrest. PMID:23275581

  19. Endotoxin-Induced Endothelial Fibrosis Is Dependent on Expression of Transforming Growth Factors β1 and β2

    PubMed Central

    Echeverría, César; Montorfano, Ignacio; Tapia, Pablo; Riedel, Claudia; Cabello-Verrugio, Claudio

    2014-01-01

    During endotoxemia-induced inflammatory disease, bacterial endotoxins circulate in the bloodstream and interact with endothelial cells (ECs), inducing dysfunction of the ECs. We previously reported that endotoxins induce the conversion of ECs into activated fibroblasts. Through endotoxin-induced endothelial fibrosis, ECs change their morphology and their protein expression pattern, thereby suppressing endothelial markers and upregulating fibrotic proteins. The most commonly used fibrotic inducers are transforming growth factor β1 (TGF-β1) and TGF-β2. However, whether TGF-β1 and TGF-β2 participate in endotoxin-induced endothelial fibrosis remains unknown. We have shown that the endotoxin-induced endothelial fibrosis process is dependent on the TGF-β receptor, ALK5, and the activation of Smad3, a protein that is activated by ALK5 activation, thus suggesting that endotoxin elicits TGF-β production to mediate endotoxin-induced endothelial fibrosis. Therefore, we investigated the dependence of endotoxin-induced endothelial fibrosis on the expression of TGF-β1 and TGF-β2. Endotoxin-treated ECs induced the expression and secretion of TGF-β1 and TGF-β2. TGF-β1 and TGF-β2 downregulation inhibited the endotoxin-induced changes in the endothelial marker VE-cadherin and in the fibrotic proteins α-SMA and fibronectin. Thus, endotoxin induces the production of TGF-β1 and TGF-β2 as a mechanism to promote endotoxin-induced endothelial fibrosis. To the best of our knowledge, this is the first report showing that endotoxin induces endothelial fibrosis via TGF-β secretion, which represents an emerging source of vascular dysfunction. These findings contribute to understanding the molecular mechanism of endotoxin-induced endothelial fibrosis, which could be useful in the treatment of inflammatory diseases. PMID:24935972

  20. Irradiated fibroblast-induced bystander effects on invasive growth of squamous cell carcinoma under cancer-stromal cell interaction.

    PubMed

    Kamochi, Noriyuki; Nakashima, Masahiro; Aoki, Shigehisa; Uchihashi, Kazuyoshi; Sugihara, Hajime; Toda, Shuji; Kudo, Sho

    2008-12-01

    The irradiated fibroblast-induced response of non-irradiated neighboring cells is called 'radiation-induced bystander effect', but it is unclear in non-irradiated human squamous cell carcinoma (SCC) cells. The present study shows that irradiated fibroblasts promoted the invasive growth of T3M-1 SCC cells, but not their apoptosis, more greatly than non-irradiated fibroblasts, using collagen gel invasion assay, immunohistochemistry and Western blot. The number of irradiated fibroblasts decreased to about 30% of that of non-irradiated fibroblasts, but irradiated fibroblasts increased the growth marker ki-67 display of SCC cells more greatly than non-irradiated fibroblasts. Irradiated fibroblasts did not affect the apoptosis marker ss-DNA expression of SCC cells. Irradiated fibroblasts enhanced the display of the following growth-, invasion- and motility-related molecules in SCC cells more greatly than non-irradiated fibroblasts: c-Met, Ras, mitogen-activated protein kinase (MAPK) cascade (Raf-1, MEK-1 and ERK-1/2), matrix metalloproteinase-1 and -9, laminin 5 and filamin A. Irradiated fibroblasts, but not non-irradiated ones, formed irradiation-induced foci (IRIF) of the genomic instability marker p53-binding protein 1 (53BP1) and expressed transforming growth factor-beta1 (TGF- beta1). Irradiated fibroblasts in turn enabled SCC cells to enhance 53BP1 IRIF formation more extensively than non-irradiated fibroblasts. Finally, effects of irradiated fibroblasts on growth and apoptosis of another HEp-2 SCC cell type were similar to those of T3M-1. These results suggest that irradiated fibroblasts promotes invasion and growth of SCC cells by enhancement of invasive growth-related molecules above through TGF- beta1-mediated bystander mechanism, in which irradiated fibroblast-induced genomic instability of SCC cells may be involved. PMID:19018771

  1. Belinostat-induced apoptosis and growth inhibition in pancreatic cancer cells involve activation of TAK1-AMPK signaling axis

    SciTech Connect

    Wang, Bing Wang, Xin-bao; Chen, Li-yu; Huang, Ling; Dong, Rui-zen

    2013-07-19

    Highlights: •Belinostat activates AMPK in cultured pancreatic cancer cells. •Activation of AMPK is important for belinostat-induced cytotoxic effects. •ROS and TAK1 are involved in belinostat-induced AMPK activation. •AMPK activation mediates mTOR inhibition by belinostat. -- Abstract: Pancreatic cancer accounts for more than 250,000 deaths worldwide each year. Recent studies have shown that belinostat, a novel pan histone deacetylases inhibitor (HDACi) induces apoptosis and growth inhibition in pancreatic cancer cells. However, the underlying mechanisms are not fully understood. In the current study, we found that AMP-activated protein kinase (AMPK) activation was required for belinostat-induced apoptosis and anti-proliferation in PANC-1 pancreatic cancer cells. A significant AMPK activation was induced by belinostat in PANC-1 cells. Inhibition of AMPK by RNAi knockdown or dominant negative (DN) mutation significantly inhibited belinostat-induced apoptosis in PANC-1 cells. Reversely, AMPK activator AICAR and A-769662 exerted strong cytotoxicity in PANC-1 cells. Belinostat promoted reactive oxygen species (ROS) production in PANC-1 cells, increased ROS induced transforming growth factor-β-activating kinase 1 (TAK1)/AMPK association to activate AMPK. Meanwhile, anti-oxidants N-Acetyl-Cysteine (NAC) and MnTBAP as well as TAK1 shRNA knockdown suppressed belinostat-induced AMPK activation and PANC-1 cell apoptosis. In conclusion, we propose that belinostat-induced apoptosis and growth inhibition require the activation of ROS-TAK1-AMPK signaling axis in cultured pancreatic cancer cells.

  2. The hypoxia-inducible factor-responsive proteins semaphorin 4D and vascular endothelial growth factor promote tumor growth and angiogenesis in oral squamous cell carcinoma

    SciTech Connect

    Zhou, Hua; Yang, Ying-Hua; Binmadi, Nada O.; Proia, Patrizia; Basile, John R.

    2012-08-15

    Growth and metastasis of solid tumors requires induction of angiogenesis to ensure the delivery of oxygen, nutrients and growth factors to rapidly dividing transformed cells. Through either mutations, hypoxia generated by cytoreductive therapies, or when a malignancy outgrows its blood supply, tumor cells undergo a change from an avascular to a neovascular phenotype, a transition mediated by the hypoxia-inducible factor (HIF) family of transcriptional regulators. Vascular endothelial growth factor (VEGF) is one example of a gene whose transcription is stimulated by HIF. VEGF plays a crucial role in promoting tumor growth and survival by stimulating new blood vessel growth in response to such stresses as chemotherapy or radiotherapy-induced hypoxia, and it therefore has become a tempting target for neutralizing antibodies in the treatment of advanced neoplasms. Emerging evidence has shown that the semaphorins, proteins originally associated with control of axonal growth and immunity, are regulated by changes in oxygen tension as well and may play a role in tumor-induced angiogenesis. Through the use of RNA interference, in vitro and in vivo angiogenesis assays and tumor xenograft experiments, we demonstrate that expression of semaphorin 4D (SEMA4D), which is under the control of the HIF-family of transcription factors, cooperates with VEGF to promote tumor growth and vascularity in oral squamous cell carcinoma (OSCC). We use blocking antibodies to show that targeting SEMA4D function along with VEGF could represent a novel anti-angiogenic therapeutic strategy for the treatment of OSCC and other solid tumors. -- Highlights: Black-Right-Pointing-Pointer Similar to VEGF, SEMA4D promotes angiogenesis in vitro and in vivo. Black-Right-Pointing-Pointer Both VEGF and SEMA4D are produced by OSCC cells in a HIF-dependent manner. Black-Right-Pointing-Pointer These factors combine to elicit a robust pro-angiogenic phenotype in OSCC. Black-Right-Pointing-Pointer Anti-SEMA4D

  3. Marked diversity in the action of growth factors on N-methyl-D-aspartate-induced neuronal degeneration.

    PubMed

    Prehn, J H

    1996-06-13

    Neuronal degeneration was induced in cultured rat hippocampal neurons by a 20-min exposure to the glutamatergic agonist, N-methyl-D-aspartate (NMDA; 100 microM), and the neuroprotective activity of a set growth factors and cytokines was compared. During the early stages of degeneration, NMDA induced changes that were characteristic of neuronal necrosis, including swelling and darkening of the neuronal soma and swelling of neurites, leading to the formation of beaded varicosities ('blebs'). These changes were followed by nuclear pyknosis, formation of double-stranded DNA breaks and loss of membrane integrity. Only transforming growth factor-beta 1 (TGF-beta 1; 1-10 ng/ml) and tumor necrosis factor-alpha (TNF-alpha; 30 ng/ml) protected the hippocampal neurons against NMDA neurotoxicity after short-term (60 min) pre-treatments. Interleukin-1 beta (10-100 ng/ml) and fibroblast growth factor-2 (FGF-2; 50 ng/ml) were clearly effective when administered 24 h prior to the NMDA exposure, but not when given 60 min before the insult. Interestingly, the protective effect of interleukin-1 beta was significantly reduced in the presence of a neutralizing antibody to TGF-beta. Of note, short-term pre-treatment with brain-derived neurotrophic factor (BDNF; 5-50 ng/ml) significantly potentiated NMDA-induced neurodegeneration. These experiments demonstrate marked diversity in the actions of growth factors on NMDA-induced neuronal degeneration. PMID:8813618

  4. Growth performance comparison of intercross-triploid, induced-triploid, and diploid female rainbow trout Oncorhynchus mykiss

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Triploidy is used in rainbow trout aquaculture as a means of inducing sterility to avoid the negative impacts of gonadal maturation on growth, fillet quality, and disease resistance; and for genetic isolation. Numerous studies have shown physiological differences between triploid (3N) and diploid (...

  5. GAP JUNCTION COMMUNICATION MEDIATES TRANSFORMING GROWTH FACTOR-BETA ACTIVATION AND ENDOTHELIAL-INDUCED MURAL CELL DIFFERENTIATION

    Technology Transfer Automated Retrieval System (TEKTRAN)

    During blood vessel assembly, endothelial cells recruit mesenchymal progenitors and induce their differentiation into mural cells via contact-dependent transforming growth factor-beta (TGF-beta) activation. We investigated whether gap junction channels are formed between endothelial cells and recrui...

  6. MELATONIN-INDUCED SUPPRESSION OF PC12 CELL GROWTH IS MEDIATED BY ITS GI COUPLED TRANSMEMBRANE RECEPTORS. (R826248)

    EPA Science Inventory

    The effects of pertussis toxin, an uncoupler of Gi protein from adenylate cyclase, and luzindole, a competitive inhibitor of melatonin receptor binding, were examined for their ability to inhibit melatonin-induced suppression of PC12 cell growth. Both agents inhibited the mela...

  7. Rapidly induced chemical defenses in maize stems and their effects on short-term growth of Ostrinia nubilalis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plants damaged by insect herbivory often respond by inducing a suite of defenses that can negatively affect an insect’s growth and fecundity. Ostrinia nubilalis (European corn borer, ECB) is one of the most devastating insect pests of maize and in the current study, we examined the early biochemical...

  8. R-Type Calcium Channels Are Crucial for Semaphorin 3A–Induced DRG Axon Growth Cone Collapse

    PubMed Central

    Jover, Emmanuel; Bagnard, Dominique; Šatkauskas, Saulius

    2014-01-01

    Semaphorin 3A (Sema3A) is a secreted protein involved in axon path-finding during nervous system development. Calcium signaling plays an important role during axonal growth in response to different guidance cues; however it remains unclear whether this is also the case for Sema3A. In this study we used intracellular calcium imaging to figure out whether Sema3A-induced growth cone collapse is a Ca2+ dependent process. Intracellular Ca2+ imaging results using Fura-2 AM showed Ca2+ increase in E15 mice dorsal root ganglia neurons upon Sema3A treatment. Consequently we analyzed Sema3A effect on growth cones after blocking or modifying intracellular and extracellular Ca2+ channels that are expressed in E15 mouse embryos. Our results demonstrate that Sema3A increased growth cone collapse rate is blocked by the non-selective R- and T- type Ca2+ channel blocker NiCl2 and by the selective R-type Ca2+ channel blocker SNX482. These Ca2+ channel blockers consistently decreased the Sema3A-induced intracellular Ca2+ concentration elevation. Overall, our results demonstrate that Sema3A-induced growth cone collapses are intimately related with increase in intracellular calcium concentration mediated by R-type calcium channels. PMID:25032951

  9. ROLE OF CELLULAR BIOENERGETICS IN SMOOTH MUSCLE CELL PROLIFERATION INDUCED BY PLATELET-DERIVED GROWTH FACTOR

    PubMed Central

    Perez, Jessica; Hill, Bradford G.; Benavides, Gloria A.; Dranka, Brian P.; Darley-Usmar, Victor M.

    2013-01-01

    SYNOPSIS Abnormal smooth muscle cell proliferation is a hallmark of vascular disease. Although growth factors are known to contribute to cell hyperplasia, the changes in metabolism associated with this response, particularly mitochondrial respiration, remain unclear. Given the increased energy requirements for proliferation, we hypothesized that platelet-derived growth factor (PDGF) would stimulate glycolysis and mitochondrial respiration and that this elevated bioenergetic capacity is required for smooth muscle cell hyperplasia. To test this hypothesis, cell proliferation, glycolytic flux, and mitochondrial oxygen consumption were measured after treatment of primary rat aortic smooth muscle cells with PDGF. PDGF increased basal and maximal rates of glycolytic flux and mitochondrial oxygen consumption; enhancement of these bioenergetic pathways led to a substantial increase in the mitochondrial reserve capacity. Interventions with the PI3K inhibitor LY-294002 or the glycolysis inhibitor 2-deoxy-D-glucose abrogated PDGF-stimulated proliferation and prevented augmentation of glycolysis and mitochondrial reserve capacity. Similarly, when L-glucose was substituted for D-glucose, PDGF-dependent proliferation was abolished, as were changes in glycolysis and mitochondrial respiration. Interestingly, lactate dehydrogenase protein levels and activity were significantly increased after PDGF treatment. Moreover, L-lactate substitution for D-glucose was sufficient for increasing the mitochondrial reserve capacity and cell proliferation after treatment with PDGF; these effects were inhibited by the lactate dehydrogenase inhibitor, oxamate. These data suggest that glycolysis, by providing substrates that enhance the mitochondrial reserve capacity, plays an essential role in PDGF-induced cell proliferation, underscoring the integrated metabolic response required for proliferation of VSMC in the diseased vasculature. PMID:20331438

  10. Momordica cochinchinensis Spreng. seed extract suppresses breast cancer growth by inducing cell cycle arrest and apoptosis.

    PubMed

    Zheng, Lei; Zhang, Yanmin; Liu, Yanping; Yang, Xiaoyan Ou; Zhan, Yingzhuan

    2015-10-01

    The herb Momordica cochinchinensis has been used for a variety of purposes, and been shown to have anti‑cancer properties. The present study assessed the potency and the underlying mechanisms of action of the ethyl acetate extract of seeds of Momordica cochinchinensis (ESMC2) on breast cancer cells. Therefore, the effects of ESMC2 on the cell viability, cell cycle and apoptosis of MDA‑MB‑231 cells were investigated. The results showed that ESMC2 exerted a marked growth inhibitory effect on the cells. Cell cycle arrest in G2 phase following treatment with ESMC2 was associated with a marked increase in the protein levels of cyclin B1, cyclin E and cyclin-dependent kinase 1 and a decrease in cyclin D1 expression. In addition, ESMC2 dose‑dependently induced cell apoptosis, which was mediated via upregulation of the apoptosis-associated proteins p53, B-cell lymphoma 2 (Bcl‑2)‑associated X protein, Bcl-2 homologous antagonist killer and Bcl-2-associated death promoter expression, as well as downregulation of nuclear factor kappa B, Bcl‑2 and myeloid cell leukemia‑1. Furthermore, the activation of extracellular signal-regulated kinase 1/2, p38, c-Jun N-terminal kinase (JNK) and Akt phosphorylation were decreased by ESMC2 in a dose‑dependent manner, indicating that ESMC2 exerted its effects via the mitogen-activated protein kinase/JNK pathway. Furthermore, nude mouse xenotransplant models were used to evaluate the tumor growth inhibitory effects of ESMC2. The possible chemical components of ESMC2 were analyzed by gas chromatography-mass spectrometry, and 12 compounds were detected from the major peaks based on the similarity index with entries of a compound database. The results of the present study may aid in the development of novel therapies for breast cancer. PMID:26252798

  11. Crystalline silicon growth in the aluminium-induced glass texturing process

    NASA Astrophysics Data System (ADS)

    Huang, Ying; Law, Felix; Widenborg, Per I.; Aberle, Armin G.

    2012-12-01

    Aluminium-induced texturing (AIT) is a method to texture glass surfaces by utilising the reaction between aluminium (Al) and glass at high temperature (above 500 °C) and a subsequent wet-chemical treatment that removes the reaction products. In this work, we studied the solid state reaction between a sputtered Al layer and a borosilicate glass sheet during AIT annealing. Raman spectroscopy showed that crystalline silicon (c-Si) is formed during the AIT process. An optical microscope was used to visualise the evolution of the c-Si growth. Plan-view scanning electron microscopy (SEM) investigations performed on samples after completed AIT reaction showed that separate c-Si clusters formed at the glass surface. Atomic force microscopy revealed that the c-Si clusters grew upwards and were on top of the glass surface. Cross-sectional SEM examination showed that the c-Si layer is not uniform and that crater-shaped nodules are embedded into the glass. The widths and depths of the nodules are in the micrometre range. Energy-dispersive X-ray spectroscopy showed that the nodules consist mainly of aluminium oxide (Al2O3). X-ray diffraction analysis showed that the c-Si grains are preferentially (111) oriented. The activation energy of the reaction between Al and borosilicate glass is 3.0±0.2 eV based on in-situ XRD analysis of the c-Si growth. Finally, a phenomenological model of the AIT process is proposed and we suggest that the topology of the glass texture strongly depends on the size, depth and lateral separation of the Al2O3 nodules embedded in the glass.

  12. Targeting receptor for advanced glycation end products (RAGE) expression induces apoptosis and inhibits prostate tumor growth

    SciTech Connect

    Elangovan, Indira; Thirugnanam, Sivasakthivel; Chen, Aoshuang; Zheng, Guoxing; Bosland, Maarten C.; Kajdacsy-Balla, Andre; Gnanasekar, Munirathinam

    2012-01-27

    Highlights: Black-Right-Pointing-Pointer Targeting RAGE by RNAi induces apoptosis in prostate cancer cells. Black-Right-Pointing-Pointer Silencing RAGE expression abrogates rHMGB1 mediated cell proliferation. Black-Right-Pointing-Pointer Down regulation of RAGE by RNAi inhibits PSA secretion of prostate cancer cells. Black-Right-Pointing-Pointer Knock down of RAGE abrogates prostate tumor growth in vivo. Black-Right-Pointing-Pointer Disruption of RAGE expression in prostate tumor activates death receptors. -- Abstract: Expression of receptor for advanced glycation end products (RAGE) plays a key role in the progression of prostate cancer. However, the therapeutic potential of targeting RAGE expression in prostate cancer is not yet evaluated. Therefore in this study, we have investigated the effects of silencing the expression of RAGE by RNAi approach both in vitro and in vivo. The results of this study showed that down regulation of RAGE expression by RNAi inhibited the cell proliferation of androgen-dependent (LNCaP) and androgen-independent (DU-145) prostate cancer cells. Furthermore, targeting RAGE expression resulted in apoptotic elimination of these prostate cancer cells by activation of caspase-8 and caspase-3 death signaling. Of note, the levels of prostate specific antigen (PSA) were also reduced in LNCaP cells transfected with RAGE RNAi constructs. Importantly, the RAGE RNAi constructs when administered in nude mice bearing prostate tumors, inhibited the tumor growth by targeting the expression of RAGE, and its physiological ligand, HMGB1 and by up regulating death receptors DR4 and DR5 expression. Collectively, the results of this study for the first time show that targeting RAGE by RNAi may be a promising alternative therapeutic strategy for treating prostate cancer.

  13. Diet-Induced Obesity Model: Abnormal Oocytes and Persistent Growth Abnormalities in the Offspring

    PubMed Central

    Jungheim, Emily S.; Schoeller, Erica L.; Marquard, Kerri L.; Louden, Erica D.; Schaffer, Jean E.; Moley, Kelle H.

    2010-01-01

    Associations between maternal obesity and adverse fetal outcomes are well documented, but the mechanisms involved are largely unknown. Most previous work has focused on postconceptional events, however, our laboratory has shown pre- and periconceptional aberrations in maternal glucose metabolism have adverse effects on oocytes and embryos that carry on to the fetus. To demonstrate effects of maternal obesity in the pre- and periconceptional periods, we compared reproductive tissues from diet-induced obese female mice to those of control mice. Ovaries were either stained for follicular apoptosis or dissected and evaluated for oocyte size and meiotic maturation. Mice were also mated and followed for reproductive outcomes including preimplantation embryonic IGF-I receptor (IGF-IR) immunostaining, midgestation fetal growth, and midgestational placental IGF receptor 2 (Igf2r) mRNA. Delivered pups were followed for growth and development of markers of metabolic syndrome. Compared with controls, obese mice had significantly more apoptotic ovarian follicles, smaller and fewer mature oocytes, decreased embryonic IGF-IR staining, smaller fetuses, increased placental Igf2r mRNA, and smaller pups. All weaned pups were fed a regular diet. At 13 wk pups delivered from obese mice were significantly larger, and these pups demonstrated glucose intolerance and increased cholesterol and body fat suggesting early development of a metabolic-type syndrome. Together, our findings suggest maternal obesity has adverse effects as early as the oocyte and preimplantation embryo stage and that these effects may contribute to lasting morbidity in offspring, underscoring the importance of optimal maternal weight and nutrition before conception. PMID:20573727

  14. The organochlorine p,p'-dichlorodiphenyltrichloroethane induces colorectal cancer growth through Wnt/β-catenin signaling.

    PubMed

    Song, Li; Zhao, Junyu; Jin, Xiaoting; Li, Zhuoyu; Newton, Ian P; Liu, Weiping; Xiao, Hong; Zhao, Meirong

    2014-08-17

    Dichlorodiphenyltrichloroethane (DDT), an organochlorine pollutant, is associated with several types of cancer. However, the relationship between DDT and colorectal cancer is uncertain. In this study, the impact of p,p'-DDT on colorectal cancer growth was evaluated using both in vitro and in vivo models. Our results indicated that the proliferation of human colorectal adenocarcinoma DLD1 cells was significantly promoted after exposed to low concentrations of p,p'-DDT ranging from 10(-12) to 10(-7) M for 96 h. Exposure to p,p'-DDT from 10(-10) to 10(-8) M led to upregulation of phospho-GSK3β (Ser9), β-catenin, c-Myc and cyclin D1 in DLD1 cells. RNA interference of β-catenin inhibited the proliferation of DLD1 cells stimulated by p,p'-DDT. Inhibiting of estrogen receptors (ERs) had no significant effect on the action of p,p'-DDT. Treatment with p,p'-DDT induced production of intracellular reactive oxygen species (ROS) and inhibited superoxide dismutase (SOD) activity in DLD1 cells. Treatment with N-acetyl-L-cysteine (NAC), a ROS inhibitor, suppressed the induction of Wnt/β-catenin signaling and DLD1 cell proliferation by p,p'-DDT. Moreover, in a mouse xenograft model, 5 nmol/kg p,p'-DDT resulted in increased tumor size, oxidative stress and Wnt/β-catenin signaling. These results indicated that low concentrations of p,p'-DDT promoted colorectal cancer growth through Wnt/β-catenin signaling, which was mediated by oxidative stress. The finding suggests an association between low concentrations of p,p'-DDT exposure and colorectal cancer progression. PMID:24968063

  15. Novel derivatives of spirohydantoin induce growth inhibition followed by apoptosis in leukemia cells.

    PubMed

    Kavitha, C V; Nambiar, Mridula; Ananda Kumar, C S; Choudhary, Bibha; Muniyappa, K; Rangappa, Kanchugarakoppal S; Raghavan, Sathees C

    2009-02-01

    Hydantoin derivatives possess a variety of biochemical and pharmacological properties and consequently are used to treat many human diseases. However, there are only few studies focusing on their potential as cancer therapeutic agents. In the present study, we have examined anticancer properties of two novel spirohydantoin compounds, 8-(3,4-difluorobenzyl)-1'-(pent-4-enyl)-8-azaspiro[bicyclo[3.2.1] octane-3,4'-imidazolidine]-2',5'-dione (DFH) and 8-(3,4-dichlorobenzyl)-1'-(pent-4-enyl)-8-azaspiro[bicyclo[3.2.1]octane-3,4'-imidazolidine]-2',5'-dione (DCH). Both the compounds exhibited dose- and time-dependent cytotoxic effect on human leukemic cell lines, K562, Reh, CEM and 8E5. Incorporation of tritiated thymidine ([(3)H] thymidine) in conjunction with cell cycle analysis suggested that DFH and DCH inhibited the growth of leukemic cells. Downregulation of PCNA and p-histone H3 further confirm that the growth inhibition could be at the level of DNA replication. Flow cytometric analysis indicated the accumulation of cells at subG1 phase suggesting induction of apoptosis, which was further confirmed and quantified both by fluorescence-activated cell sorting (FACS) and confocal microscopy following annexin V-FITC/propidium iodide (PI) staining. Mechanistically, our data support the induction of apoptosis by activation of the mitochondrial pathway. Results supporting such a model include, elevated levels of p53, and BAD, decreased level of BCL2, activation and cleavage of caspase 9, activation of procaspase 3, poly (ADP-ribosyl) polymerase (PARP) cleavage, downregulation of Ku70, Ku80 and DNA fragmentation. Based on these results we discuss the mechanism of apoptosis induced by DFH and its implications in leukemia therapy. PMID:19014909

  16. Spatial and temporal aspects of muscle hyperalgesia induced by nerve growth factor in humans.

    PubMed

    Andersen, Helle; Arendt-Nielsen, Lars; Svensson, Peter; Danneskiold-Samsøe, Bente; Graven-Nielsen, Thomas

    2008-11-01

    Intramuscular injection of nerve growth factor (NGF) has been shown to induce long-term sensitisation and time-dependent hyperalgesia indicating potential involvement of both central and peripheral pain mechanisms. This double-blind placebo-controlled study was designed to describe the spatial distribution of muscle hyperalgesia over time (immediately after, 3 h, 1, 4, 7 and 21 days) after injecting NGF (5 mug) into the tibialis anterior (TA) muscle, to explore possibly involved central pain mechanisms and to investigate the effect of gender on development of hyperalgesia. Totally 20 healthy volunteers (10 men and 10 women) participated in the study. An isotonic saline injection into the contralateral TA muscle served as a control condition for the NGF injection. Pressure pain thresholds (PPT) were used to test for muscle hyperalgesia along the TA (seven sites) muscle at the extensor digitorum longus and at the web between 1st and 2nd metatarsal (central involvement). One day after the NGF/control injections, hypertonic saline (0.5 ml, 5.8%) was injected into the left and right TA to study the pain response to chemical stimulation of the hyperalgesic muscle tissue. Scores on a modified Likert scale were used to assess soreness during muscle function. An area of hyperalgesia was observed locally at the injected site 3 h after injection of NGF, which expanded both proximally and distally on day 1; this effect subsided on day 4. Decreased PPT was also found between 1st and 2nd metatarsal on day 1. Hypertonic saline evoked more pain in men when injected in the NGF treated TA compared to the control leg. Injection of NGF increased muscle soreness during muscle activity for 7 days. In this material there was no gender effect of NGF-induced muscle hyperalgesia. The expansion of muscle hyperalgesia to distant areas indicates that central mechanisms are involved. PMID:18813917

  17. Cellular localization of transforming growth factor-beta expression in bleomycin-induced pulmonary fibrosis.

    PubMed Central

    Zhang, K.; Flanders, K. C.; Phan, S. H.

    1995-01-01

    Bleomycin-induced pulmonary fibrosis is associated with increased lung transforming growth factor-beta (TGF-beta) gene expression, but cellular localization of the source of this expression has not been unequivocally established. In this study, lung fibrosis was induced in rats by endotracheal bleomycin injection on day 0 and, on selected days afterwards, lungs were harvested for in situ hybridization, immunohistochemical and histochemical analyses for TGF-beta 1 mRNA and protein expression, and cell identification. The results show that control lungs express essentially no detectable TGF-beta 1 mRNA or protein in the parenchyma. Before day 3 after bleomycin treatment, scattered bronchiolar epithelial cells, mononuclear cells, and eosinophils expressed elevated levels of TGF-beta 1. Between days 3 and 14, there was a major increase in the number of eosinophils, myofibroblasts, and fibroblasts strongly expressing TGF-beta 1 mRNA and protein. TGF-beta 1-producing cells were predominantly localized within areas of injury and active fibrosis. After day 14, the intensity and number of TGF-beta 1-expressing cells significantly declined and were predominantly found in fibroblasts in fibrotic areas. The expression of TGF-beta 1 protein was generally coincident with that for mRNA with the exception of bronchiolar epithelial cells in which strong protein expression was unaccompanied by a commensurate increase in mRNA. The study demonstrates that myofibroblasts, fibroblasts, and eosinophils represent the major sources of increased lung TGF-beta 1 expression in this model of pulmonary fibrosis. Images Figure 2 Figure 3 Figure 4 PMID:7543734

  18. Sequestration of Vascular Endothelial Growth Factor (VEGF) Induces Late Restrictive Lung Disease

    PubMed Central

    Wieck, Minna M.; Spurrier, Ryan G.; Levin, Daniel E.; Mojica, Salvador Garcia; Hiatt, Michael J.; Reddy, Raghava; Hou, Xiaogang; Navarro, Sonia; Lee, Jooeun; Lundin, Amber; Driscoll, Barbara; Grikscheit, Tracy C.

    2016-01-01

    Rationale Neonatal respiratory distress syndrome is a restrictive lung disease characterized by surfactant deficiency. Decreased vascular endothelial growth factor (VEGF), which demonstrates important roles in angiogenesis and vasculogenesis, has been implicated in the pathogenesis of restrictive lung diseases. Current animal models investigating VEGF in the etiology and outcomes of RDS require premature delivery, hypoxia, anatomically or temporally limited inhibition, or other supplemental interventions. Consequently, little is known about the isolated effects of chronic VEGF inhibition, started at birth, on subsequent developing lung structure and function. Objectives To determine whether inducible, mesenchyme-specific VEGF inhibition in the neonatal mouse lung results in long-term modulation of AECII and whole lung function. Methods Triple transgenic mice expressing the soluble VEGF receptor sFlt-1 specifically in the mesenchyme (Dermo-1/rtTA/sFlt-1) were generated and compared to littermate controls at 3 months to determine the impact of neonatal downregulation of mesenchymal VEGF expression on lung structure, cell composition and function. Reduced tissue VEGF bioavailability has previously been demonstrated with this model. Measurements and Main Results Triple transgenic mice demonstrated restrictive lung pathology. No differences in gross vascular development or protein levels of vascular endothelial markers was noted, but there was a significant decrease in perivascular smooth muscle and type I collagen. Mutants had decreased expression levels of surfactant protein C and hypoxia inducible factor 1-alpha without a difference in number of type II pneumocytes. Conclusions These data show that mesenchyme-specific inhibition of VEGF in neonatal mice results in late restrictive disease, making this transgenic mouse a novel model for future investigations on the consequences of neonatal RDS and potential interventions. PMID:26863115

  19. Effects of angiopoietin-1 on vascular endothelial growth factor-induced angiogenesis in the mouse brain.

    PubMed

    Zhu, Y; Shwe, Y; Du, R; Chen, Y; Shen, F X; Young, W L; Yang, G Y

    2006-01-01

    A better understanding of angiogenic factors and their effects on angiogenesis in brain is necessary to treat cerebral vascular disorders such as ischemic brain injury. Vascular endothelial growth factor (VEGF) induces angiogenesis and increases blood-brain barrier (BBB) permeability in adult mouse brain. The effect of angiopoietin-1 on BBB leakage during the angiogenesis process is unclear. We sought to identify the effects of combining VEGF with angiopoietin-1 on cerebral angiogenesis and BBB. Adult male CD-1 mice underwent AdFc (adenoviral vector control), AdAng-1, VEGF protein, VEGF protein plus AdAng-1, or saline (negative control) injection. Brain microvessels were counted using lectin staining on tissue sections after 2 weeks of adenoviral gene transfer. The presence of zonula occludens-1 (ZO-1) was determined by Western blot analysis and immunohistochemistry. Microvessel count and augmented capillary diameter increased in mice treated with either VEGF protein or AdAng-1 plus VEGF protein compared to saline, AdFc, or AdAng-1 alone (p < 0.05). Double-labeled immunostaining demonstrated that ZO-1-positive staining was more complete on the microvessel wall in the AdAng-1 and AdAng-1 plus VEGF protein treated group compared to VEGF protein group. The results of ZO-1 expression from Western blot analysis paralleled that from immunohistochemistry (p < 0.05). We conclude that focal VEGF and angiopoietin-1 hyperstimulation in mouse brain increases microvessel density while maintaining ZO-1 protein expression, suggesting that angiopoietin-1 plays a role in synergistically inducing angiogenesis and BBB integrity. PMID:16671501

  20. Detection of expressional changes induced by intrauterine growth restriction in the developing rat pancreas.

    PubMed

    Zhang, Lin; Chen, Wei; Dai, Yuee; Zhu, Ziyang; Liu, Qianqi

    2016-07-01

    Intrauterine growth retardation (IUGR) is a disorder that can result in permanent changes in the physiology and metabolism of the newborn, which increased the risk of disease in adulthood. Evidence supports IUGR as a risk factor for the development of diabetes mellitus, which could reflect changes in pancreas developmental pathways. We sought to characterize the IUGR-induced alterations of the complex pathways of pancreas development in a rat model of IUGR. We analyzed the pancreases of Sprague Dawley rats after inducing IUGR by feeding a maternal low calorie diet from gestational day 1 until term. IUGR altered the pancreatic structure, islet areas, and islet quantities and resulted in abnormal morphological changes during pancreatic development, as determined by HE staining and light microscopy. We identified multiple differentially expressed genes in the pancreas by RT-PCR. The genes of the insulin/FoxO1/Pdx1/MafA signaling pathway were first expressed at embryonic day 14 (E14). The expressions of insulin and MafA increased as the fetus grew while the expressions of FoxO1 and Pdx1 decreased. Compared with the control rats, the expressions of FoxO1, Pdx1, and MafA were lower in the IUGR rats, whereas insulin levels showed no change. Microarray profiling, in combination with quantitative real-time PCR, uncovered a subset of microRNAs that changed in their degree of expression throughout pancreatic development. In conclusion, our data support the hypothesis that IUGR influences the development of the rat pancreas. We also identified new pathways that appear to be programmed by IUGR. PMID:27190278

  1. Autofluorescence Imaging of Living Pancreatic Islets Reveals Fibroblast Growth Factor-21 (FGF21)-Induced Metabolism

    PubMed Central

    Sun, Mark Y.; Yoo, Eunjong; Green, Brenda J.; Altamentova, Svetlana M.; Kilkenny, Dawn M.; Rocheleau, Jonathan V.

    2012-01-01

    Fibroblast growth factor-21 (FGF21) has therapeutic potential for metabolic syndrome due to positive effects on fatty acid metabolism in liver and white adipose tissue. FGF21 also improves pancreatic islet survival in excess palmitate; however, much less is known about FGF21-induced metabolism in this tissue. We first confirmed FGF21-dependent activity in islets by identifying expression of the cognate coreceptor Klothoβ, and by measuring a ligand-stimulated decrease in acetyl-CoA carboxylase expression. To further reveal the effect of FGF21 on metabolism, we employed a unique combination of two-photon and confocal autofluorescence imaging of the NAD(P)H and mitochondrial NADH responses while holding living islets stationary in a microfluidic device. These responses were further correlated to mitochondrial membrane potential and insulin secretion. Glucose-stimulated responses were relatively unchanged by FGF21. In contrast, responses to glucose in the presence of palmitate were significantly reduced compared to controls showing diminished NAD(P)H, mitochondrial NADH, mitochondrial membrane potential, and insulin secretion. Consistent with the glucose-stimulated responses being smaller due to continued fatty acid oxidation, mitochondrial membrane potential was increased in FGF21-treated islets by using the fatty acid transport inhibitor etomoxir. Citrate-stimulated NADPH responses were also significantly larger in FGF21-treated islets suggesting preference for citrate cycling rather than acetyl-CoA carboxylase-dependent fatty acid synthesis. Overall, these data show a reduction in palmitate-induced potentiation of glucose-stimulated metabolism and insulin secretion in FGF21-treated islets, and establish the use of autofluorescence imaging and microfluidic devices to investigate cell metabolism in a limited amount of living tissue. PMID:23283237

  2. Assessment of carbon layer growth induced by resists outgassing in multi e-beams lithography

    NASA Astrophysics Data System (ADS)

    Marusic, JC; Pourteau, ML; Cêtre, S.; Pain, L.; Mebiene-Engohang, AP; David, S.; Labau, S.; Boussey, J.

    2014-10-01

    The development of multiple e-beam lithography equipment is seen as an alternative for next generation lithography. However, similarly to EUV lithography, this technology faces important challenges in controlling the contamination of the optics due to deposition of carbon layer induced by the outgassed chemical species from resist under electron bombardment. An experimental setup was designed and built at LETI to study the outgassed species and observe the carbon layer. In this setup, resist coated wafers 100 mm size are exposed under a 5 kV e-beam gun. During exposure, byproducts from outgassed species are monitored with a Residual Gas Analyzer (RGA). The identification of outgassed chemical species is done with an ex-situ TD-GC-MS analysis (ThermoDesorption-Gaz Chromatography-Mass Spectrometry). In a second part of this investigation, we observed the contamination carbon layer growth induced by the outgassing. Thereby, we fabricated a device which consists of a silicon membrane with micro-machined apertures. During e-beam exposure, this device simulates the multiple parallel beams of the optic system of a maskless lithography tool. The deposited contamination layer on device is then observed and thickness measured under SEM. In this paper, we present the results of outgassing and contamination on 3 chemically amplified resists showing that contamination is not directly dependent of the overall outgassing rate but on first order of the outgassing from Photo Acid Generator (PAG). It also reports on the performance in reducing outgassing and contamination of applying a top-coat layer on top of the resist and shows that reduction is more important for contamination than for outgassing.

  3. Epidermal growth factor protects against carbon tetrachloride-induced hepatic injury.

    PubMed

    Berlanga, J; Caballero, M E; Ramirez, D; Torres, A; Valenzuela, C; Lodos, J; Playford, R J

    1998-03-01

    1. Epidermal growth factor (EGF) is known to protect the gastrointestinal tract against various noxious agents. Its potential value in preventing/ treating hepatic injury is, however, largely unexplored. We therefore examined whether EGF could influence CCl4-induced hepatic injury. 2. Female Sprague-Dawley rats (8 per group) received saline or recombinant EGF (500 or 750 micrograms/kg, intraperitoneal) 30 min before CCl4 (20% v/v, in olive oil, intraperitoneal). Eighteen hours later, animals were killed, serum was collected for assay of biochemical markers of hepatic injury and livers were removed for histological analyses. 3. Administration of CCl4 resulted in severe hepatic necrosis and caused a 10-fold rise in plasma alanine aminotransferase levels compared with levels seen in control animals (218 +/- 15 compared with 23 +/- 9 mumol/l in controls, mean +/- SEM, P < 0.01). Serum malondialdehyde levels, used as a marker of lipid peroxidation, showed a 2-fold rise in response to CCl4 treatment (median 4.0, quartile range 3.3-5.8 units/l compared with median 2.3, quartile range 2.1-2.5 units/l in controls, P < 0.05). Administration of EGF at 500 micrograms/kg, before the CCl4, did not protect against injury, as assessed by histology or rise in plasma alanine aminotransferase levels. In contrast, animals given EGF at 750 micrograms/kg, before the CCl4, had only minimal changes in histology, with only a minor rise in alanine aminotransferase levels (37 +/- 4 compared with 23 +/- 9 mumol/l in animals not given CCl4) and had no significant rise in malondialdehyde levels. 4. EGF protects against CCl4-induced hepatic injury and may provide a novel approach to the treatment of liver damage. PMID:9616254

  4. Phenotypic Screening Identifies Protein Synthesis Inhibitors as H-Ras-Nanocluster-Increasing Tumor Growth Inducers.

    PubMed

    Najumudeen, Arafath K; Posada, Itziar M D; Lectez, Benoit; Zhou, Yong; Landor, Sebastian K-J; Fallarero, Adyary; Vuorela, Pia; Hancock, John; Abankwa, Daniel

    2015-12-15

    Ras isoforms H-, N-, and K-ras are each mutated in specific cancer types at varying frequencies and have different activities in cell fate control. On the plasma membrane, Ras proteins are laterally segregated into isoform-specific nanoscale signaling hubs, termed nanoclusters. As Ras nanoclusters are required for Ras signaling, chemical modulators of nanoclusters represent ideal candidates for the specific modulation of Ras activity in cancer drug development. We therefore conducted a chemical screen with commercial and in-house natural product libraries using a cell-based H-ras-nanoclustering FRET assay. Next to established Ras inhibitors, such as a statin and farnesyl-transferase inhibitor, we surprisingly identified five protein synthesis inhibitors as positive regulators. Using commonly employed cycloheximide as a representative compound, we show that protein synthesis inhibition increased nanoclustering and effector recruitment specifically of active H-ras but not of K-ras. Consistent with these data, cycloheximide treatment activated both Erk and Akt kinases and specifically promoted H-rasG12V-induced, but not K-rasG12V-induced, PC12 cell differentiation. Intriguingly, cycloheximide increased the number of mammospheres, which are enriched for cancer stem cells. Depletion of H-ras in combination with cycloheximide significantly reduced mammosphere formation, suggesting an exquisite synthetic lethality. The potential of cycloheximide to promote tumor cell growth was also reflected in its ability to increase breast cancer cell tumors grown in ovo. These results illustrate the possibility of identifying Ras-isoform-specific modulators using nanocluster-directed screening. They also suggest an unexpected feedback from protein synthesis inhibition to Ras signaling, which might present a vulnerability in certain tumor cell types. PMID:26568031

  5. p53 is required for metformin-induced growth inhibition, senescence and apoptosis in breast cancer cells.

    PubMed

    Li, Puyu; Zhao, Ming; Parris, Amanda B; Feng, Xiaoshan; Yang, Xiaohe

    2015-09-01

    The p53 tumor repressor gene is commonly mutated in human cancers. The tumor inhibitory effect of metformin on p53-mutated breast cancer cells remains unclear. Data from the present study demonstrated that p53 knockdown or mutation has a negative effect on metformin or phenformin-induced growth inhibition, senescence and apoptosis in breast cancer cells. We also found that p53 reactivating agent nutlin-3α and CP/31398 promoted metformin-induced growth inhibition, senescence and apoptosis in MCF-7 (wt p53) and MDA-MB-231 (mt p53) cells, respectively. Treatment of MCF-7 cells with metformin or phenformin induced increase in p53 protein levels and the transcription of its downstream target genes, Bax and p21, in a dose-dependent manner. Moreover, we demonstrated that AMPK-mTOR signaling played a role in metformin-induced p53 up-regulation. The present study showed that p53 is required for metformin or phenformin-induced growth inhibition, senescence and apoptosis in breast cancer cells. The combination of metformin with p53 reactivating agents, like nutlin-3α and CP/31398, is a promising strategy for improving metformin-mediated anti-cancer therapy, especially for tumors with p53 mutations. PMID:26225749

  6. P21 Activated Kinase-1 Mediates Transforming Growth Factor β1-Induced Prostate Cancer Cell Epithelial to Mesenchymal Transition

    PubMed Central

    Al-Azayzih, Ahmad; Gao, Fei; Somanath, Payaningal R.

    2015-01-01

    Transforming growth factor beta (TGFβ) is believed to play a dual role in prostate cancer. Molecular mechanism by which TGFβ1 suppresses early prostate tumor growth and induces epithelial-to-mesenchymal transition (EMT) in advanced stages is not known. We determined if P21-activated kinase1 (Pak1), which mediates cytoskeletal remodeling is necessary for the TGFβ1 induced prostate cancer EMT. Effects of TGFβ1 on control prostate cancer PC3 and DU145 cells and those with IPA 3 and siRNA mediated Pak1 inhibition were tested for prostate tumor xenograft in vivo and EMT in vitro. TGFβ1 inhibited PC3 tumor xenograft growth via activation of P38-MAPK and caspase-3, 9. Long-term stimulation with TGFβ1 induced PC3 and DU145 cell scattering and increased expression of EMT markers such as Snail and N-cadherin through tumor necrosis factor receptor-associated factor-6 (TRAF6)-mediated activation of Rac1/Pak1 pathway. Selective inhibition of Pak1 using IPA 3 or knockdown using siRNA both significantly inhibited TGFβ1-induced prostate cancer cell EMT and expression of mesenchymal markers. Our study demonstrated that TGFβ1 induces apoptosis and EMT in prostate cancer cells via activation of P38-MAPK and Rac1/Pak1 respectively. Our results reveal the potential therapeutic benefits of targeting TGFβ1-Pak1 pathway for advanced-stage prostate cancer. PMID:25746720

  7. O-induced modification of growth of thin Cu films on Ru(0001)

    SciTech Connect

    Wolter, H.; Meinel, K.; Ammer, C.; Wandelt, K.; Neddermeyer, H.

    1997-12-01

    The film growth of Cu on clean and O-precovered Ru(0001) substrates at temperatures between 300 and 450 K is studied by means of scanning tunneling microscopy. On clean Ru(0001), the Cu films grow in a multilayer mode. For an O precoverage, ({Theta}{sub O}){lt}0.1 monolayer (ML), O remains trapped at the Cu/Ru interface and the Cu film grows similarly as on clean Ru(0001). Precovering the Ru(0001) substrate with more than 0.1 ML of O strongly modifies the film morphology. The excess O migrates to the surface of the growing film and acts as a surfactant. Domains of an O/Cu structure are formed, the lateral extension of which linearly increases with {Theta}{sub O}. For 0.4{lt}{Theta}{sub O}{le}0.5ML, the O/Cu structure covers the film surface completely. For 0.2{le}{Theta}{sub O}{le}0.5ML, a perfect layer-by-layer growth with a relatively high nucleation density is forced at temperatures around 400 K. Decreasing the temperature and/or {Theta}{sub O} yields multilayer growth. For 0.4{lt}{Theta}{sub O}{le}0.5ML, temperatures above 430 K, and substrate terrace widths below 100 nm, step-flow growth is observed. Two different types of O/Cu surfactant structures (A- and B-type) are identified. The A-type structure is established for 0.1{lt}{Theta}{sub O}{le}0.4ML, and displays some ordering on a local scale (distorted hexagonal lattice). It causes heterogeneous nucleation at surface sites formed by a misfit-induced moire-like relaxation of the Cu film. Its surfactant effect can be described by the concept of two mobilities, which is based on a low adatom mobility during nucleation, and a high adatom mobility on top of small islands. This implies an increase of the attempt rate of Cu adatoms for step descent, enhancing interlayer diffusion. The B-type structure is established for 0.4{lt}{Theta}{sub O}{le}0.5ML, and contains a more irregular arrangement of O atoms. We assume that it behaves like a continuous O/Cu layer, on top of which the adatoms migrate. Its surfactant

  8. Phytohormone profiles induced by trichoderma isolates correspond with their biocontrol and plant growth-promoting activity on melon plants.

    PubMed

    Martínez-Medina, Ainhoa; Del Mar Alguacil, Maria; Pascual, Jose A; Van Wees, Saskia C M

    2014-07-01

    The application of Trichoderma strains with biocontrol and plant growth-promoting capacities to plant substrates can help reduce the input of chemical pesticides and fertilizers in agriculture. Some Trichoderma isolates can directly affect plant pathogens, but they also are known to influence the phytohormonal network of their host plant, thus leading to an improvement of plant growth and stress tolerance. In this study, we tested whether alterations in the phytohormone signature induced by different Trichoderma isolates correspond with their ability for biocontrol and growth promotion. Four Trichoderma isolates were collected from agricultural soils and were identified as the species Trichoderma harzianum (two isolates), Trichoderma ghanense, and Trichoderma hamatum. Their antagonistic activity against the plant pathogen Fusarium oxysporum f. sp. melonis was tested in vitro, and their plant growth-promoting and biocontrol activity against Fusarium wilt on melon plants was examined in vivo, and compared to that of the commercial strain T. harzianum T-22. Several growth- and defense-related phytohormones were analyzed in the shoots of plants that were root-colonized by the different Trichoderma isolates. An increase in auxin and a decrease in cytokinins and abscisic acid content were induced by the isolates that promoted the plant growth. Principal component analysis (PCA) was used to evaluate the relationship between the plant phenotypic and hormonal variables. PCA pointed to a strong association of auxin induction with plant growth stimulation by Trichoderma. Furthermore, the disease-protectant ability of the Trichoderma strains against F. oxysporum infection seems to be more related to their induced alterations in the content of the hormones abscisic acid, ethylene, and the cytokinin trans-zeatin riboside than to the in vitro antagonism activity against F. oxysporum. PMID:25023078

  9. The Paradox of Oestradiol-Induced Breast Cancer Cell Growth and Apoptosis

    PubMed Central

    Maximov, Philipp Y.; Lewis-Wambi, Joan S.; Jordan, V. Craig

    2009-01-01

    High dose oestrogen therapy was used as a treatment for postmenopausal patients with breast cancer from the 1950s until the introduction of the safer antioestrogen, tamoxifen in the 1970s. The anti-tumour mechanism of high dose oestrogen therapy remained unknown. There was no enthusiasm to study these signal transduction pathways as oestrogen therapy has almost completely been eliminated from the treatment paradigm. Current use of tamoxifen and the aromatase inhibitors seek to create oestrogen deprivation that prevents the growth of oestrogen stimulated oestrogen receptor (ER) positive breast cancer cells. However, acquired resistance to antihormonal therapy does occur, but it is through investigation of laboratory models that a vulnerability of the cancer cell has been discovered and is being investigated to provide new opportunities in therapy with the potential for discovering new cancer-specific apoptotic drugs. Laboratory models of resistance to raloxifene and tamoxifen, the selective oestrogen receptor modulators (SERMs) and aromatase inhibitors demonstrate an evolution of drug resistance so that after many years of oestrogen deprivation, the ER positive cancer cell reconfigures the survival signal transduction pathways so oestrogen now becomes an apoptotic trigger rather than a survival signal. Current efforts are evaluating the mechanisms of oestrogen-induced apoptosis and how this new biology of oestrogen action can be amplified and enhanced, thereby increasing the value of this therapeutic opportunity for the treatment of breast cancer. Several synergistic approaches to therapeutic enhancement are being advanced which involve drug combinations to impair survival signaling with the use of specific agents and to impair bcl-2 that protects the cancer cell from apoptosis. We highlight the historical understanding of oestrogen’s role in cell survival and death and specifically illustrate the progress that has been made in the last five years to understand

  10. Growth inhibition and oxidative damage of Microcystis aeruginosa induced by crude extract of Sagittaria trifolia tubers.

    PubMed

    Li, Jiang; Liu, Yunguo; Zhang, Pingyang; Zeng, Guangming; Cai, Xiaoxi; Liu, Shaobo; Yin, Yicheng; Hu, Xinjiang; Hu, Xi; Tan, Xiaofei

    2016-05-01

    Aquatic macrophytes are considered to be promising in controlling harmful cyanobacterial blooms. In this research, an aqueous extract of Sagittaria trifolia tubers was prepared to study its inhibitory effect on Microcystis aeruginosa in the laboratory. Several physiological indices of M. aeruginosa, in response to the environmental stress, were analyzed. Results showed that S. trifolia tuber aqueous extract significantly inhibited the growth of M. aeruginosa in a concentration-dependent way. The highest inhibition rate reached 90% after 6 day treatment. The Chlorophyll-a concentration of M. aeruginosa cells decreased from 343.1 to 314.2μg/L in the treatment group. The activities of superoxide dismutase and peroxidase and the content of reduced glutathione in M. aeruginosa cells initially increased as a response to the oxidative stress posed by S. trifolia tuber aqueous extract, but then decreased as time prolonged. The lipid peroxidation damage of the cyanobacterial cell membranes was reflected by the malondialdehyde level, which was notably higher in the treatment group compared with the controls. It was concluded that the oxidative damage of M. aeruginosa induced by S. trifolia tuber aqueous extract might be one of the mechanisms for the inhibitory effects. PMID:27155407

  11. Exogenous vascular endothelial growth factor induces malformed and hyperfused vessels during embryonic neovascularization.

    PubMed Central

    Drake, C J; Little, C D

    1995-01-01

    Vascular endothelial growth factor (VEGF) is a potent and specific endothelial mitogen that is able to induce angiogenesis in vivo [Leung, D. W., Cachianes, G., Kuang, W.-J., Goeddel, D. V. & Ferrara, N. (1989) Science 246 1306-1309]. To determine if VEGF also influences the behavior of primordial endothelial cells, we used an in vivo vascular assay based on the de novo formation of vessels. Japanese quail embryos injected with nanomolar quantities of the 165-residue form of VEGF at the onset of vasculogenesis exhibited profoundly altered vessel development. In fact, the overall patterning of the vascular network was abnormal in all VEGF-injected embryos. The malformations were attributable to two specific endothelial cell activities: (i) inappropriate neovascularization in normally avascular areas and (ii) the unregulated, excessive fusion of vessels. In the first instance, supernumerary vessels directly linked the inflow channel of the heart to the aortic outflow channel. The second aberrant activity led to the formation of vessels with abnormally large lumens. Ultimately, unregulated vessel fusion generated massive vascular sacs that obliterated the identity of individual vessels. These observations show that exogenous VEGF has an impact on the behavior of primordial endothelial cells engaged in vasculogenesis, and they strongly suggest that endogenous VEGF is important in vascular patterning and regulation of vessel size (lumen formation). Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:7543999

  12. Skeletal unloading induces resistance to insulin-like growth factor I

    NASA Technical Reports Server (NTRS)

    Bikle, D. D.; Harris, J.; Halloran, B. P.; Morey-Holton, E. R.

    1994-01-01

    In previous studies with a hindlimb elevation model, we demonstrated that skeletal unloading transiently inhibits bone formation. This effect is limited to the unloaded bones (the normally loaded humerus does not cease growing), suggesting that local factors are of prime importance. IGF-I is one such factor; it is produced in bone and stimulates bone formation. To determine the impact of skeletal unloading on IGF-I production and function, we assessed the mRNA levels of IGF-I and its receptor (IGF-IR) in the proximal tibia and distal femur of growing rats during 2 weeks of hindlimb elevation. The mRNA levels for IGF-I and IGF-IR rose during hindlimb elevation, returning toward control values during recovery. This was accompanied by a 77% increase in IGF-I levels in the bone, peaking at day 10 of unloading. Changes in IGF binding protein levels were not observed. Infusion of IGF-I (200 micrograms/day) during 1 week of hindlimb elevation doubled the increase in bone mass of the control animals but failed to reverse the cessation of bone growth in the hindlimb-elevated animals. We conclude that skeletal unloading induces resistance to IGF-I, which may result secondarily in increased local production of IGF-I.

  13. Dose dependency of time of onset of radiation-induced growth hormone deficiency

    SciTech Connect

    Clayton, P.E.; Shalet, S.M. )

    1991-02-01

    Growth hormone (GH) secretion during insulin-induced hypoglycemia was assessed on 133 occasions in 82 survivors of childhood malignant disease. All had received cranial irradiation with a dose range to the hypothalamic-pituitary axis of 27 to 47.5 Gy (estimated by a schedule of 16 fractions over 3 weeks) and had been tested on one or more occasions between 0.2 and 18.9 years after treatment. Results of one third of the GH tests were defined as normal (GH peak response, greater than 15 mU/L) within the first 5 years, in comparison with 16% after 5 years. Stepwise multiple linear regression analysis showed that dose (p = 0.007) and time from irradiation (p = 0.03), but not age at therapy, had a significant influence on peak GH responses. The late incidence of GH deficiency was similar over the whole dose range (4 of 26 GH test results normal for less than 30 Gy and 4 of 25 normal for greater than or equal to 30 Gy after 5 years), but the speed of onset over the first years was dependent on dose. We conclude that the requirement for GH replacement therapy and the timing of its introduction will be influenced by the dose of irradiation received by the hypothalamic-pituitary axis.

  14. Withaferin-A induces mitotic catastrophe and growth arrest in prostate cancer cells

    PubMed Central

    Roy, Ram V; Suman, Suman; Das, Trinath P.; Luevano, Joe; Damodaran, Chendil

    2014-01-01

    Cell cycle deregulation is strongly associated with the pathogenesis of prostate cancer (CaP). Clinical trials of cell cycle regulators that target either the G0/G1 or G2/M phase to inhibit the growth of cancers including CaP are increasing. In this study, we determined the cell-cycle regulatory potential of the herbal molecule Withaferin-A (WA) on CaP cells. WA induced irreversible G2/M arrest in both CaP cell lines (PC3 and DU145) for 48 h. The G2/M arrest was accompanied by upregulation of phosphorylated Wee1, phophorylated histone H3, p21 and Aurora-B. On the other hand, downregulation of cyclins (E2, A, and B1) and phorphorylated Cdc2 (Tyr15) was observed in WA-treated CaP cells. In addition, decreased levels of phosphorylated Chk1 (Ser345) and Chk2 (Thr68) were evident in WA-treated CaP cells. Our results suggest that activation of Cdc2 leads to accumulation in M-phase, with abnormal duplication, and initiation of mitotic catastrophe that results in cell death. In conclusion, these results clearly highlight the potential of WA as a regulator of the G2/M phase of the cell cycle and as a therapeutic agent for CaP. PMID:24079846

  15. Chromium-induced modulation in the antioxidant defense system during phenological growth stages of Indian mustard.

    PubMed

    Diwan, Hema; Ahmad, Altaf; Iqbal, Muhammad

    2010-02-01

    Chromium-induced modulation in the enzymes and metabolites of antioxidants was investigated at various phenological stages of Indian mustard (Brassica juncea (L.) Czern. & Coss. cv Pusa Jai Kisan)], grown with various levels of chromium (Cr) in pots under natural environmental conditions. Chromium accumulation in the root, stem and leaves increased with the advancement in the age of the plants. Growth of Indian mustard was not affected significantly by the supply of Cr up to the levels of 400 mg kg(-1) soil. Activities of superoxide dismutase (SOD), ascorbate peroxide (APX), catalase (CAT), and glutathione reductase (GR) increased in the leaves of Cr-treated plants, when compared with control. High activities of antioxidant enzymes supported by high Cr concentrations in roots and aerial parts (except seeds) established the Indian mustard as a potential hyperaccumulator anda hypertolerant species to Cr stress. For this study, an edible crop was chosen intentionally so as to tap maximum benefit by remediating the contaminated site on one hand and getting uncontaminated seeds to raise the next generation, on the other. PMID:20734612

  16. Insulin-like growth factor I/somatomedin C: a potent inducer of oligodendrocyte development

    SciTech Connect

    McMorris, F.A.; Smith, T.M.; DeSalvo, S.; Furlanetto, R.W.

    1986-02-01

    Cell cultures established from cerebrum of 1-day-old rats were used to investigate hormonal regulation of the development of oligodendrocytes, which synthesize myelin in the central nervous system. The number of oligodendrocytes that developed was preferentially increased by insulin, or by insulin-like growth factor I (IGF-I), also known as somatomedin C. High concentrations of insulin were required for substantial induction of oligodendrocyte development, whereas only 3.3 ng of IGF-I per ml was needed for a 2-fold increase in oligodendrocyte numbers. At an IGF-I concentration of 100 ng/ml, oligodendrocyte numbers were increased 6-fold in cultures grown in the presence of 10% fetal bovine serum, or up to 60-fold in cultures maintained in serum-free medium. IGF-I produced less than a 2-fold increase in the number of nonoligodendroglial cells in the same cultures. Type I IGF receptors were identified on oligodendrocytes and on a putative oligodendrocyte precursor cell population identified by using mouse monoclonal antibody A2B5. Radioligand binding assays were done. These results indicate that IGF-I is a potent inducer of oligodendrocyte development and suggest a possible mechanism based on IGF deficiency for the hypomyelination that results from early postnatal malnutrition.

  17. Suppression of the emittance growth induced by coherent synchrotron radiation in triple-bend achromats

    NASA Astrophysics Data System (ADS)

    Huang, Xi-Yang; Jiao, Yi; Xu, Gang; Cui, Xiao-Hao

    2015-05-01

    The coherent synchrotron radiation (CSR) effect in a bending path plays an important role in transverse emittance dilution in high-brightness light sources and linear colliders, where the electron beams are of short bunch length and high peak current. Suppression of the emittance growth induced by CSR is critical to preserve the beam quality and help improve the machine performance. It has been shown that the CSR effect in a double-bend achromat (DBA) can be analyzed with the two-dimensional point-kick analysis method. In this paper, this method is applied to analyze the CSR effect in a triple-bend achromat (TBA) with symmetric layout, which is commonly used in the optics designs of energy recovery linacs (ERLs). A condition of cancelling the CSR linear effect in such a TBA is obtained, and is verified through numerical simulations. It is demonstrated that emittance preservation can be achieved with this condition, and to a large extent, has a high tolerance to the fluctuation of the initial transverse phase space distribution of the beam. Supported by National Natural Science Foundation of China (11475202, 11405187) and Youth Innovation Promotion Association of Chinese Academy of Sciences (2015009)

  18. [Use of translational medicine in the early diagnosis of xenobiotic-induced intrauterine growth retardation].

    PubMed

    Liu, Yan-Song; Wang, Hui

    2011-01-01

    Translational medicine is an emerging idea in current medical research area. Typically, for the purpose of bridging the gap between basic and clinical research, it not only emphasizes the urgency and necessity to break the traditional working formats, including single subject centered research team and limited cooperation among different scientific groups, but also highlights a more close and frequent interaction between basic scientist and clinician. In order to reach this goal, the theory and method of systems biology should be employed. This paper mainly focused on a central issue that how to carry out an investigation on early clinical diagnosis of xenobiotic-induced intrauterine growth retardation (IUGR) by using research concept of translational medicine and method of systems biology. Briefly, a hypothesis of common mechanism of IUGR was first proposed and subsequent validation was performed via integrating--omics (e.g. genomics, proteomics, cytomics, metabonomics/metabolomics) and molecular biology techniques. Metabonomics was further utilized to explore IUGR biomarker and establish preliminary forecasting model by bioinformatics and computational biology, which is available for early diagnosis of IUGR and make a complement to current evaluation criteria. PMID:21465805

  19. Hepatic nerve growth factor induced by iron overload triggers defenestration in liver sinusoidal endothelial cells.

    PubMed

    Addo, Lynda; Tanaka, Hiroki; Yamamoto, Masayo; Toki, Yasumichi; Ito, Satoshi; Ikuta, Katsuya; Sasaki, Katsunori; Ohtake, Takaaki; Torimoto, Yoshihiro; Fujiya, Mikihiro; Kohgo, Yutaka

    2015-01-01

    The fenestrations of liver sinusoidal endothelial cells (LSECs) play important roles in the exchange of macromolecules, solutes, and fluid between blood and surrounding liver tissues in response to hepatotoxic drugs, toxins, and oxidative stress. As excess iron is a hepatotoxin, LSECs may be affected by excess iron. In this study, we found a novel link between LSEC defenestration and hepatic nerve growth factor (NGF) in iron-overloaded mice. By Western blotting, NGF was highly expressed, whereas VEGF and HGF were not, and hepatic NGF mRNA levels were increased according to digital PCR. Immunohistochemically, NGF staining was localized in hepatocytes, while TrkA, an NGF receptor, was localized in LSECs. Scanning electron microscopy revealed LSEC defenestration in mice overloaded with iron as well as mice treated with recombinant NGF. Treatment with conditioned medium from iron-overloaded primary hepatocytes reduced primary LSEC fenestrations, while treatment with an anti-NGF neutralizing antibody or TrkA inhibitor, K252a, reversed this effect. However, iron-loaded medium itself did not reduce fenestration. In conclusion, iron accumulation induces NGF expression in hepatocytes, which in turn leads to LSEC defenestration via TrkA. This novel link between iron and NGF may aid our understanding of the development of chronic liver disease. PMID:25460199

  20. Fibroblast growth factor 21 is induced upon cardiac stress and alters cardiac lipid homeostasis

    PubMed Central

    Brahma, Manoja K.; Adam, Rene C.; Pollak, Nina M.; Jaeger, Doris; Zierler, Kathrin A.; Pöcher, Nadja; Schreiber, Renate; Romauch, Matthias; Moustafa, Tarek; Eder, Sandra; Ruelicke, Thomas; Preiss-Landl, Karina; Lass, Achim; Zechner, Rudolf; Haemmerle, Guenter

    2014-01-01

    Fibroblast growth factor 21 (FGF21) is a PPARα-regulated gene elucidated in the liver of PPARα-deficient mice or PPARα agonist-treated mice. Mice globally lacking adipose triglyceride lipase (ATGL) exhibit a marked defect in TG catabolism associated with impaired PPARα-activated gene expression in the heart and liver, including a drastic reduction in hepatic FGF21 mRNA expression. Here we show that FGF21 mRNA expression is markedly increased in the heart of ATGL-deficient mice accompanied by elevated expression of endoplasmic reticulum (ER) stress markers, which can be reversed by reconstitution of ATGL expression in cardiac muscle. In line with this assumption, the induction of ER stress increases FGF21 mRNA expression in H9C2 cardiomyotubes. Cardiac FGF21 expression was also induced upon fasting of healthy mice, implicating a role of FGF21 in cardiac energy metabolism. To address this question, we generated and characterized mice with cardiac-specific overexpression of FGF21 (CM-Fgf21). FGF21 was efficiently secreted from cardiomyocytes of CM-Fgf21 mice, which moderately affected cardiac TG homeostasis, indicating a role for FGF21 in cardiac energy metabolism. Together, our results show that FGF21 expression is activated upon cardiac ER stress linked to defective lipolysis and that a persistent increase in circulating FGF21 levels interferes with cardiac and whole body energy homeostasis. PMID:25176985

  1. WT1 suppresses synthesis of the epidermal growth factor receptor and induces apoptosis.

    PubMed Central

    Englert, C; Hou, X; Maheswaran, S; Bennett, P; Ngwu, C; Re, G G; Garvin, A J; Rosner, M R; Haber, D A

    1995-01-01

    The Wilms tumor suppressor gene WT1 encodes a developmentally regulated transcription factor that is mutated in a subset of embryonal tumors. To test its functional properties, we developed osteosarcoma cell lines expressing WT1 under an inducible tetracycline-regulated promoter. Induction of WT1 resulted in programmed cell death. This effect, which was differentially mediated by the alternative splicing variants of WT1, was independent of p53. WT1-mediated apoptosis was associated with reduced synthesis of the epidermal growth factor receptor (EGFR), but not of other postulated WT1-target genes, and it was abrogated by constitutive expression of EGFR. WT1 repressed transcription from the EGFR promoter, binding to two TC-rich repeat sequences. In the developing kidney, EGFR expression in renal precursor cells declined with the onset of WT1 expression. Repression of EGFR and induction of apoptosis by mechanism that may contribute to its critical role in normal kidney development and to the immortalization of tumor cells with inactivated WT1 alleles. Images PMID:7588596

  2. Roles of transforming growth factor β in hyperoxia-induced lung injury.

    PubMed

    Liu, Y; Mao, Y F; Zheng, J; Liu, K; Han, C H; Liu, W W

    2016-01-01

    Hyperoxia induced lung injury (HILI) refers to the acute lung injury secondary to prolonged exposure to hyperoxia at elevated partial pressure. With the advent of efficient systems for delivery of high concentrations of oxygen in hospitals, the population at risk for this condition has been markedly increased. Although numerous studies have been conducted to investigate the pathogenesis of HILI, the specific mechanism is still poorly understood and some hypotheses have been proposed. Transforming growth factor β (TGF-β) is a secreted protein that controls proliferation, cellular differentiation and other functions in most cells and is a type of cytokine that plays a role in many diseases. In this mini-review, we summarize the role of TGF-β in HILI according to its relationships with reactive oxygen species (ROS), pro-inflammatory cytokines, cell apoptosis and pulmonary fibrosis. We hope it may help the understanding of pathogenesis of HILI and provide a greater understanding for the target therapy of HILI. PMID:27416690

  3. Dimethyl sulphoxide modifies growth and senescence and induces the non-revertible petite phenotype in yeast.

    PubMed

    Kakolyri, Maria; Margaritou, Aikaterini; Tiligada, Ekaterini

    2016-03-01

    Dimethyl sulphoxide is extensively used in chemical, pharmaceutical and biomedical applications, but its specific biological actions remain largely elusive. The aim of this study was to comprehensively explore the effects of dimethyl sulphoxide on eukaryotic growth and senescence by using the budding yeast Saccharomyces cerevisiae as a reliable model organism. Rather than focusing on single cells or on either the replicative or the chronological lifespan approach, well-established microbiological procedures were integrated to monitor a combination of physiological parameters. Cell proliferation, survival, reproductive competence and morphology were recorded at various time points during incubation of asynchronous yeast populations with increasing concentrations of dimethyl sulphoxide. The findings demonstrated a dose-dependent inhibitory effect of the compound on yeast proliferation, survival and reproduction. In parallel, dimethyl sulphoxide induced the acquisition of the non-revertible petite phenotype and promoted morphological alterations that characterize senescence, driving the yeast populations towards the reproductive incompetent state. These findings point to the need for the investigation of the complex cellular and/or molecular mechanisms underlying the actions of dimethyl sulphoxide in eukaryotic cells and for the evaluation of their exploitation potential. PMID:26833420

  4. In vitro growth characteristics of asbestos-induced diffused malignant mesotheliomas

    SciTech Connect

    Akley, N.; Mackay, A.; Craighead, J.

    1986-03-05

    After long latency periods, DMM develop in rat inoculated into the pleural or peritoneal cavity with either chrysotile or crocidolite asbestos. Histologically, the tumors resemble the human lesion being either fibrosarcomatous or epithelial (or mixtures of the two cell types). Tumor tissue from most, but not all, lesions grow in serum containing medium in vitro. These tumor cells consistently are tetroploid or aneuploid; occasionally marker chromosomes are found. After a series of passages chemically defined serum-free medium maintains the growth of cells from many tumors in vitro. Cells in culture usually grow in monolayers but nodular masses of proliferating tumor cells develop from the cell sheet and readily float free in the medium. These seemingly spherical balls of cells can be used to establish fresh cultures, allowing the initial monolayers to grow indefinitely. The fine structural features of the nodular tumor masses have now been studied in detail. They consist of vacuolated epithelial cells which are replete with vellumentous villi. Experimentally-induced DMM in animals have characteristics similar to their human counterparts; implantation of metastases may develop from foci similar to those observed to form in cultures.

  5. Hormones and Obesity: Changes in Insulin and Growth Hormone Secretion Following Surgically Induced Weight Loss

    PubMed Central

    Crockford, P. M.; Salmon, P. A.

    1970-01-01

    Ten obese patients were subjected to insulin tolerance tests (0.2 unit per kg. regular insulin intravenously) and/or treadmill exercise tolerance testing (2.6 m.p.h. at 11° angulation) before and after surgically induced weight reduction. Immunoreactive growth hormone (IRGH) responses returned to normal with weight reduction in all but one—a grossly obese woman studied relatively early in the postoperative period when still far from the ideal body weight. Five of these patients and two additional subjects had intravenous glucose tolerance tests (0.5 g. per kg.) before and after weight reduction. In all, there was a significant diminution in immunoreactive insulin (IRI) values, accompained by little or no change in the glucose disappearance rate (KG) and a significant improvement in insulin effectiveness as indicated by the calculated “insulinogenic index”. It was concluded that the abnormalities in IRGH and IRI secretion, as well as the insulin resistance in obesity, are probably secondary and not of primary importance in the etiology of this disorder. PMID:5430052

  6. Growth arrest specific protein 6 participates in DOCA-induced target-organ damage.

    PubMed

    Park, Joon-Keun; Theuer, Stefanie; Kirsch, Torsten; Lindschau, Carsten; Klinge, Uwe; Heuser, Arnd; Plehm, Ralph; Todiras, Mihai; Carmeliet, Peter; Haller, Hermann; Luft, Friedrich C; Muller, Dominik N; Fiebeler, Anette

    2009-08-01

    Growth arrest-specific protein 6 (Gas 6) is involved in inflammatory kidney diseases, vascular remodeling, cell adhesion, and thrombus formation. We explored a role for Gas 6 in aldosterone-induced target organ damage. We observed that Gas 6 was upregulated in rats with high aldosterone levels. Mineralocorticoid receptor blockade prevented target organ damage and decreased the elevated Gas 6 expression. Vascular smooth muscle cells given aldosterone increased their Gas 6 expression in vitro. To test the pathophysiological relevance, we investigated the effects of deoxycorticosterone acetate (DOCA) on Gas 6 gene-deleted ((-/-)) mice. After 6 weeks DOCA, Gas 6(-/-) mice developed similar telemetric blood pressure elevations compared to wild-type mice but were protected from cardiac hypertrophy. Cardiac expression of interleukin 6 and collagen IV was blunted in Gas 6(-/-) mice, indicating reduced inflammation and fibrosis. Gas 6(-/-) mice also had an improved renal function with reduced albuminuria, compared to wild-type mice. Renal fibrosis and fibronectin deposition in the kidney were also reduced. Gas 6 deficiency reduces the detrimental effects of aldosterone on cardiac and renal remodeling independent of blood pressure reduction. Gas 6 appears to play a role in mineralocorticoid receptor-mediated target organ damage. Furthermore, because warfarin interferes with Gas 6 protein expression, the findings could be of clinical relevance for anticoagulant choices. PMID:19564549

  7. Effects of PEG-induced osmotic stress on growth and dhurrin levels of forage sorghum.

    PubMed

    O'Donnell, Natalie H; Møller, Birger Lindberg; Neale, Alan D; Hamill, John D; Blomstedt, Cecilia K; Gleadow, Roslyn M

    2013-12-01

    Sorghum (Sorghum bicolor L. Moench) is a valuable forage crop in regions with low soil moisture. Sorghum may accumulate high concentrations of the cyanogenic glucoside dhurrin when drought stressed resulting in possible cyanide (HCN) intoxication of grazing animals. In addition, high concentrations of nitrate, also potentially toxic to ruminants, may accumulate during or shortly after periods of drought. Little is known about the degree and duration of drought-stress required to induce dhurrin accumulation, or how changes in dhurrin concentration are influenced by plant size or nitrate metabolism. Given that finely regulating soil moisture under controlled conditions is notoriously difficult, we exposed sorghum plants to varying degrees of osmotic stress by growing them for different lengths of time in hydroponic solutions containing polyethylene glycol (PEG). Plants grown in medium containing 20% PEG (-0.5 MPa) for an extended period had significantly higher concentrations of dhurrin in their shoots but lower dhurrin concentrations in their roots. The total amount of dhurrin in the shoots of plants from the various treatments was not significantly different on a per mass basis, although a greater proportion of shoot N was allocated to dhurrin. Following transfer from medium containing 20% PEG to medium lacking PEG, shoot dhurrin concentrations decreased but nitrate concentrations increased to levels potentially toxic to grazing ruminants. This response is likely due to the resumption of plant growth and root activity, increasing the rate of nitrate uptake. Data presented in this article support a role for cyanogenic glucosides in mitigating oxidative stress. PMID:24080394

  8. Novel ALK inhibitor AZD3463 inhibits neuroblastoma growth by overcoming crizotinib resistance and inducing apoptosis

    PubMed Central

    Wang, Yongfeng; Wang, Long; Guan, Shan; Cao, Wenming; Wang, Hao; Chen, Zhenghu; Zhao, Yanling; Yu, Yang; Zhang, Huiyuan; Pang, Jonathan C.; Huang, Sophia L.; Akiyama, Yo; Yang, Yifan; Sun, Wenjing; Xu, Xin; Shi, Yan; Zhang, Hong; Kim, Eugene S.; Muscal, Jodi A.; Lu, Fengmin; Yang, Jianhua

    2016-01-01

    ALK receptor tyrosine kinase has been shown to be a therapeutic target in neuroblastoma. Germline ALK activating mutations are responsible for the majority of hereditary neuroblastoma and somatic ALK activating mutations are also frequently observed in sporadic cases of advanced NB. Crizotinib, a first-line therapy in the treatment of advanced non-small cell lung cancer (NSCLC) harboring ALK rearrangements, demonstrates striking efficacy against ALK-rearranged NB. However, crizotinib fails to effectively inhibit the activity of ALK when activating mutations are present within its kinase domain, as with the F1174L mutation. Here we show that a new ALK inhibitor AZD3463 effectively suppressed the proliferation of NB cell lines with wild type ALK (WT) as well as ALK activating mutations (F1174L and D1091N) by blocking the ALK-mediated PI3K/AKT/mTOR pathway and ultimately induced apoptosis and autophagy. In addition, AZD3463 enhanced the cytotoxic effects of doxorubicin on NB cells. AZD3463 also exhibited significant therapeutic efficacy on the growth of the NB tumors with WT and F1174L activating mutation ALK in orthotopic xenograft mouse models. These results indicate that AZD3463 is a promising therapeutic agent in the treatment of NB. PMID:26786851

  9. Growth hormone reverses excitotoxic damage induced by kainic acid in the green iguana neuroretina.

    PubMed

    Ávila-Mendoza, José; Mora, Janeth; Carranza, Martha; Luna, Maricela; Arámburo, Carlos

    2016-08-01

    It is known that growth hormone (GH) is expressed in extrapituitary tissues, including the nervous system and ocular tissues, where it is involved in autocrine/paracrine actions related to cell survival and anti-apoptosis in several vertebrates. Little is known, however, in reptiles, so we analyzed the expression and distribution of GH in the eye of green iguana and its potential neuroprotective role in retinas that were damaged by the intraocular administration of kainic acid (KA). It was found, by Western blotting, that GH-immunoreactivity (GH-IR) was expressed as two isoforms (15 and 26kDa, under reducing conditions) in cornea, vitreous, retina, crystalline, iris and sclera, in varying proportions. Also, two bands for the growth hormone receptor (GHR)-IR were observed (70 and 44kDa, respectively) in the same tissues. By immunofluorescence, GH-IR was found in neurons present in several layers of the neuroretina (inner nuclear [INL], outer nuclear [ONL] and ganglion cell [GCL] layers) as determined by its co-existence with NeuN, but not in glial cells. In addition, GH and GHR co-expression was found in the same cells, suggesting paracrine/autocrine interactions. KA administration induced retinal excitotoxic damage, as determined by a significant reduction of the cell density and an increase in the appearance of apoptotic cells in the INL and GCL. In response to KA injury, both endogenous GH and Insulin-like Growth Factor I (IGF-I) expression were increased by 70±1.8% and 33.3±16%, respectively. The addition of exogenous GH significantly prevented the retinal damage produced by the loss of cytoarchitecture and cell density in the GCL (from 4.9±0.79 in the control, to 1.45±0.2 with KA, to 6.35±0.49cell/mm(2) with KA+GH) and in the INL (19.12±1.6, 10.05±1.9, 21.0±0.8cell/mm(2), respectively) generated by the long-term effect of 1mM KA intraocular administration. The co-incubation with a specific anti-GH antibody, however, blocked the protective effect of GH

  10. Characterization of burden on growth due to the nutritional state of media and pre-induced gene expression.

    PubMed

    Malakar, Pushkar; Venkatesh, K V

    2013-04-01

    Studies have shown that the production of unnecessary proteins burdens the cellular growth mainly due to allocation of cellular resources to unnecessary protein synthesis, thereby limiting the resources available for growth. In the current study, we focus on the effect of pre-induction and nutritional status of the medium on the burden imposed on growth due to the synthesis of unnecessary protein. Escherichia coli cells with different history were grown in a glycerol media with and without IPTG to characterize the burden imposed due to the synthesis of β-galactosidase. Effect of pre-induced lac operon on growth and β-galactosidase expression on lactose milieu was also investigated. The study demonstrates that pre-induction has a strong influence on the extent of burden and is sustained in several generations. Further, the burden was much lower in a rich media relative to that observed in a minimal media. PMID:23354326

  11. Electrospun silk fibroin/poly (L-lactide-ε-caplacton) graft with platelet-rich growth factor for inducing smooth muscle cell growth and infiltration

    PubMed Central

    Yin, Anlin; Bowlin, Gary L.; Luo, Rifang; Zhang, Xingdong; Wang, Yunbing; Mo, Xiumei

    2016-01-01

    The construction of a smooth muscle layer for blood vessel through electrospinning method plays a key role in vascular tissue engineering. However, smooth muscle cells (SMCs) penetration into the electrospun graft to form a smooth muscle layer is limited due to the dense packing of fibers and lack of inducing factors. In this paper, silk fibroin/poly (L-lactide-ε-caplacton) (SF/PLLA-CL) vascular graft loaded with platelet-rich growth factor (PRGF) was fabricated by electrospinning. The in vitro results showed that SMCs cultured in the graft grew fast, and the incorporation of PRGF could induce deeper SMCs infiltrating compared to the SF/PLLA-CL graft alone. Mechanical properties measurement showed that PRGF-incorporated graft had proper tensile stress, suture retention strength, burst pressure and compliance which could match the demand of native blood vessel. The success in the fabrication of PRGF-incorporated SF/PLLA-CL graft to induce fast SMCs growth and their strong penetration into graft has important application for tissue-engineered blood vessels. PMID:27482466

  12. Electrospun silk fibroin/poly (L-lactide-ε-caplacton) graft with platelet-rich growth factor for inducing smooth muscle cell growth and infiltration.

    PubMed

    Yin, Anlin; Bowlin, Gary L; Luo, Rifang; Zhang, Xingdong; Wang, Yunbing; Mo, Xiumei

    2016-12-01

    The construction of a smooth muscle layer for blood vessel through electrospinning method plays a key role in vascular tissue engineering. However, smooth muscle cells (SMCs) penetration into the electrospun graft to form a smooth muscle layer is limited due to the dense packing of fibers and lack of inducing factors. In this paper, silk fibroin/poly (L-lactide-ε-caplacton) (SF/PLLA-CL) vascular graft loaded with platelet-rich growth factor (PRGF) was fabricated by electrospinning. The in vitro results showed that SMCs cultured in the graft grew fast, and the incorporation of PRGF could induce deeper SMCs infiltrating compared to the SF/PLLA-CL graft alone. Mechanical properties measurement showed that PRGF-incorporated graft had proper tensile stress, suture retention strength, burst pressure and compliance which could match the demand of native blood vessel. The success in the fabrication of PRGF-incorporated SF/PLLA-CL graft to induce fast SMCs growth and their strong penetration into graft has important application for tissue-engineered blood vessels. PMID:27482466

  13. Insulin-like growth factor-binding protein-5 inhibits growth and induces differentiation of mouse osteosarcoma cells.

    PubMed

    Schneider, M R; Zhou, R; Hoeflich, A; Krebs, O; Schmidt, J; Mohan, S; Wolf, E; Lahm, H

    2001-10-26

    The precise role of insulin-like growth factor-binding protein-5 (IGFBP-5) in regulating the growth of tumor cells, especially of bone-derived malignant cells, is not well understood. We have investigated the biological activity of IGFBP-5 by transfecting OS/50-K8 mouse osteosarcoma cells with an expression vector containing the osteocalcin promoter and the complete mouse IGFBP-5 cDNA (OC-IGFBP-5). Overexpression of IGFBP-5 mRNA and secretion of increased amounts of bioactive protein in conditioned media were demonstrated in different clones. For the analysis of cell proliferation, three clones exhibiting high levels of IGFBP-5 expression were selected and compared to a mock clone and to nontransfected parental cells. IGFBP-5-secreting clones displayed reduced proliferation under both anchorage-dependent and -independent conditions (P < 0.05). The increase in proliferation observed in IGFBP-5-secreting clones after addition of exogenous IGF was significantly lower than that observed in mock-transfected or parental cells. A similar result was obtained with long[R3]IGF-I which has a low affinity for all IGFBPs, suggesting that the inhibitory effect of IGFBP-5 is only partially IGF-dependent. OC-IGFBP-5-transfected clones expressed significantly higher amounts of osteocalcin mRNA (P < 0.05) and secreted more osteocalcin protein than a mock clone or parental OS-50/K8 cells. Thus, part of the growth-inhibiting effect of IGFBP-5 may be due to an induction of differentiation in these cells. PMID:11606061

  14. Hypothalamic expression of human growth hormone induces post-pubertal hypergonadotrophism in male transgenic growth retarded rats.

    PubMed

    Davies, J S; Thompson, N M; Christian, H C; Pinilla, L; Ebling, F J P; Tena-Sempere, M; Wells, T

    2006-10-01

    Growth hormone (GH) is known to regulate peripheral components of the hypothalamo-pituitary gonadal (HPG) axis, but it remains unclear whether GH exerts a significant influence on the activity of the hypothalamo-pituitary components of the HPG axis. In this study, we investigated the development of HPG axis function in the male transgenic growth retarded (Tgr) rat, a model of moderate systemic GH deficiency caused by hypothalamic expression of human (h)GH. Impaired postnatal somatotroph expansion and moderate GH deficiency in male Tgr rats were accompanied by a two- to three-fold increase in pituitary gonadotrophin content, but without a significant change in the pituitary gonadotroph population. A three- to nine-fold elevation in basal circulating luteinising hormone concentration was seen in postpubertal Tgr rats, with a smaller increase in follicle-stimulating hormone. Despite this hypergonadotrophism, there was no corresponding increase in steroidogenic (circulating testosterone and seminal vesicle weights) or gametogenic (spermatozoa counts in seminiferous tubules) activity in the postpubertal Tgr testis. Following puberty, the plasma leptin concentration also became progressively elevated in Tgr males. Circulating gonadotrophin and leptin levels were normalised in Tgr rats by peripheral physiological replacement of rat GH, but plasma testosterone concentration was unaffected. These results confirm that hGH exerts a positive influence on the central control of gonadotrophin secretion in the Tgr rat, but the absence of a corresponding elevation in the steroidogenic or gametogenic function of the Tgr testis implies that the peripheral GH/insulin-like growth factor I axis may also exert a permissive influence on testicular function. The relative contribution of somatogenic and lactogenic mechanisms and the potential influence of elevated leptin and decreased sensitivity to androgen feedback to the development of postpubertal hypergonadotrophism in Tgr males

  15. MECHANISMS OF FLUID SHEAR-INDUCED INHIBITION OF POPULATION GROWTH IN A RED-TIDE DINOFLAGELLATE

    EPA Science Inventory

    Net population growth of some dinoflagellates is inhibited by fluid shear at shear stresses comparable with those generated during oceanic turbulence. Decreased net growth may occur through lowered cell division, increased mortality, or both. The dominant mechanism under various ...

  16. A Glycine-rich RNA-binding Protein Mediating Cold-inducible Suppression of Mammalian Cell Growth

    PubMed Central

    Nishiyama, Hiroyuki; Itoh, Katsuhiko; Kaneko, Yoshiyuki; Kishishita, Masamichi; Yoshida, Osamu; Fujita, Jun

    1997-01-01

    In response to low ambient temperature, mammalian cells as well as microorganisms change various physiological functions, but the molecular mechanisms underlying these adaptations are just beginning to be understood. We report here the isolation of a mouse cold-inducible RNA-binding protein (cirp) cDNA and investigation of its role in cold-stress response of mammalian cells. The cirp cDNA encoded an 18-kD protein consisting of an amino-terminal RNAbinding domain and a carboxyl-terminal glycine-rich domain and exhibited structural similarity to a class of stress-induced RNA-binding proteins found in plants. Immunofluorescence microscopy showed that CIRP was localized in the nucleoplasm of BALB/3T3 mouse fibroblasts. When the culture temperature was lowered from 37 to 32°C, expression of CIRP was induced and growth of BALB/3T3 cells was impaired as compared with that at 37°C. By suppressing the induction of CIRP with antisense oligodeoxynucleotides, this impairment was alleviated, while overexpression of CIRP resulted in impaired growth at 37°C with prolongation of G1 phase of the cell cycle. These results indicate that CIRP plays an essential role in cold-induced growth suppression of mouse fibroblasts. Identification of CIRP may provide a clue to the regulatory mechanisms of cold responses in mammalian cells. PMID:9151692

  17. Fisheries-induced evolution in growth, maturation and reproductive investment of the sexually dimorphic North Sea plaice ( Pleuronectes platessa L.)

    NASA Astrophysics Data System (ADS)

    van Walraven, L.; Mollet, F. M.; van Damme, C. J. G.; Rijnsdorp, A. D.

    2010-07-01

    Changes in the onset of sexual maturation, reproductive investment and growth of North Sea plaice are studied between three periods: 1900s, 1980s and 2000s. Probabilistic maturation reaction norms of both males and females, describing the probability of becoming mature conditional on age and size, shifted towards smaller sizes and younger ages, indicating a fisheries-induced evolutionary change. A higher rate of change was observed during the past 20 years, which may be related to higher temperature conditions. Reproductive investment was estimated from the decrease in lipid, protein, dry weight content and condition factor of the whole body between pre- and post-spawning adults. Reproductive investment expressed as the energy loss over the spawning period increased with body size from 19% at 20 cm to 30% at 40 cm in males and from 35% at 30 cm to 48% at 50 cm in females. No change in reproductive investment could be detected between the 1980s and the 2000s. Von Bertalanffy (VB) growth parameters showed a decrease in L∞ the asymptotic size and an increase in K, the velocity to reach L∞, in both males and females. The changes in VB growth are consistent with an increase in energy acquisition and reproductive investment. The observed changes in maturation, reproductive investment and growth are consistent with fisheries-induced evolution, but the changes in reproductive investment and growth need further investigation to disentangle the role of phenotypic plasticity.

  18. Multiple direct and indirect mechanisms drive estrogen-induced tumor growth in high grade serous ovarian cancers

    PubMed Central

    Ciucci, Alessandra; Zannoni, Gian Franco; Buttarelli, Marianna; Lisi, Lucia; Travaglia, Daniele; Martinelli, Enrica; Scambia, Giovanni; Gallo, Daniela

    2016-01-01

    The notion that menopausal estrogen replacement therapy increases ovarian cancer risk, but only for the two more common types (i.e. serous and endometrioid), while possibly decreasing risk for clear cell tumors, is strongly suggestive of causality. However, whether estradiol (E2) is tumorigenic or promotes development of occult preexisting disease is unknown. The present study investigated molecular and cellular mechanisms by which E2 modulates the growth of high grade serous ovarian cancer (HGSOC). Results showed that ERα expression was necessary and sufficient to induce the growth of HGSOC cells in in vitro models. Conversely, in vivo experimental studies demonstrated that increasing the levels of circulating estrogens resulted in a significant growth acceleration of ERα-negative HGSOC xenografts, as well. Tumors from E2-treated mice had significantly higher proliferation rate, angiogenesis, and density of tumor-associated macrophage (TAM) compared to ovariectomized females. Accordingly, immunohistochemical analysis of ERα-negative tissue specimens from HGSOC patients showed a significantly greater TAM infiltration in premenopausal compared to postmenopausal women. This study describes novel insights into the impact of E2 on tumor microenvironment, independently of its direct effect on tumor cell growth, thus supporting the idea that multiple direct and indirect mechanisms drive estrogen-induced tumor growth in HGSOC. PMID:26797759

  19. Depletion of the transcriptional coactivators megakaryoblastic leukaemia 1 and 2 abolishes hepatocellular carcinoma xenograft growth by inducing oncogene-induced senescence

    PubMed Central

    Hampl, Veronika; Martin, Claudia; Aigner, Achim; Hoebel, Sabrina; Singer, Stephan; Frank, Natalie; Sarikas, Antonio; Ebert, Oliver; Prywes, Ron; Gudermann, Thomas; Muehlich, Susanne

    2013-01-01

    Megakaryoblastic leukaemia 1 and 2 (MKL1/2) are coactivators of the transcription factor serum response factor (SRF). Here, we provide evidence that depletion of MKL1 and 2 abolishes hepatocellular carcinoma (HCC) xenograft growth. Loss of the tumour suppressor deleted in liver cancer 1 (DLC1) and the subsequent activation of RhoA were prerequisites for MKL1/2 knockdown-mediated growth arrest. We identified oncogene-induced senescence as the molecular mechanism underlying the anti-proliferative effect of MKL1/2 knockdown. MKL1/2 depletion resulted in Ras activation, elevated p16 expression and hypophosphorylation of the retinoblastoma (Rb) protein in DLC1-deficient HCC cells. Interestingly, reconstitution of HuH7 HCC cells with DLC1 also induced senescence. Evaluation of the therapeutic efficacy of MKL1/2 knockdown in vivo revealed that systemic treatment of nude mice bearing HuH7 tumour xenografts with MKL1/2 siRNAs complexed with polyethylenimine (PEI) completely abolished tumour growth. The regression of the xenografts was associated with senescence. Importantly, PEI-complexed MKL1 siRNA alone was sufficient for complete abrogation of HCC xenograft growth. Thus, MKL1/2 represent promising novel therapeutic targets for the treatment of HCCs characterized by DLC1 loss. PMID:23853104

  20. Light-induced growth of various silver seed nanoparticles: A simple method of synthesis of different silver colloidal SERS substrates

    NASA Astrophysics Data System (ADS)

    Krajczewski, Jan; Kołątaj, Karol; Kudelski, Andrzej

    2015-04-01

    Plasmon-driven growth of various silver seed nanoparticles (spherical, flat and elongated) has been carried out in the solution containing silver cations and citrate. Although the growth of different seed nanoparticles has been carried out in the same conditions, the initial difference in the shape of seed nanoparticles leads to formation of different structures, which give significantly different surface-enhanced Raman scattering (SERS) spectra of adsorbed pyridine. Differences between measured SERS spectra are probably due to different efficiency of oxidation of various nanoparticles by ambient air. Light-induced transformation of silver sols may be also used to significantly increase their SERS activity.

  1. Autoantibodies in dilated cardiomyopathy induce vascular endothelial growth factor expression in cardiomyocytes

    SciTech Connect

    Saygili, Erol; Noor-Ebad, Fawad; Schröder, Jörg W.; Mischke, Karl; Saygili, Esra; Rackauskas, Gediminas; Marx, Nikolaus; Kelm, Malte; Rana, Obaida R.

    2015-09-11

    Background: Autoantibodies have been identified as major predisposing factors for dilated cardiomyopathy (DCM). Patients with DCM show elevated serum levels of vascular endothelial growth factor (VEGF) whose source is unknown. Besides its well-investigated effects on angiogenesis, evidence is present that VEGF signaling is additionally involved in fibroblast proliferation and cardiomyocyte hypertrophy, hence in cardiac remodeling. Whether autoimmune effects in DCM impact cardiac VEGF signaling needs to be elucidated. Methods: Five DCM patients were treated by the immunoadsorption (IA) therapy on five consecutive days. The eluents from the IA columns were collected and prepared for cell culture. Cardiomyocytes from neonatal rats (NRCM) were incubated with increasing DCM-immunoglobulin-G (IgG) concentrations for 48 h. Polyclonal IgG (Venimmun N), which was used to restore IgG plasma levels in DCM patients after the IA therapy was additionally used for control cell culture purposes. Results: Elevated serum levels of VEGF decreased significantly after IA (Serum VEGF (ng/ml); DCM pre-IA: 45 ± 9.1 vs. DCM post–IA: 29 ± 6.7; P < 0.05). In cell culture, pretreatment of NRCM by DCM-IgG induced VEGF expression in a time and dose dependent manner. Biologically active VEGF that was secreted by NRCM significantly increased BNP mRNA levels in control cardiomyocytes and induced cell-proliferation of cultured cardiac fibroblast (Fibroblast proliferation; NRCM medium/HC-IgG: 1 ± 0.0 vs. NRCM medium/DCM-IgG 100 ng/ml: 5.6 ± 0.9; P < 0.05). Conclusion: The present study extends the knowledge about the possible link between autoimmune signaling in DCM and VEGF induction. Whether this observation plays a considerable role in cardiac remodeling during DCM development needs to be further elucidated. - Highlights: • Mechanisms of remodeling in dilated cardiomyopathy (DCM) are not fully understood. • Autoantibodies have been identified as major predisposing factors

  2. Dopamine induces growth inhibition and vascular normalization through reprogramming M2-polarized macrophages in rat C6 glioma

    SciTech Connect

    Qin, Tian; Wang, Chenlong; Chen, Xuewei; Duan, Chenfan; Zhang, Xiaoyan; Zhang, Jing; Chai, Hongyan; Tang, Tian; Chen, Honglei; Yue, Jiang; Li, Ying; Yang, Jing

    2015-07-15

    Dopamine (DA), a monoamine catecholamine neurotransmitter with antiangiogenic activity, stabilizes tumor vessels in colon, prostate and ovarian cancers, thus increases chemotherapeutic efficacy. Here, in the rat C6 glioma models, we investigated the vascular normalization effects of DA and its mechanisms of action. DA (25, 50 mg/kg) inhibited tumor growth, while a precursor of DA (levodopa) prolonged the survival time of rats bearing orthotopic C6 glioma. DA improved tumor perfusion, with significant effects from day 3, and a higher level at days 5 to 7. In addition, DA decreased microvessel density and hypoxia-inducible factor-1α expression in tumor tissues, while increasing the coverage of pericyte. Conversely, an antagonist of dopamine receptor 2 (DR2) (eticlopride) but not DR1 (butaclamol) abrogated DA-induced tumor regression and vascular normalization. Furthermore, DA improved the delivery and efficacy of temozolomide therapy. Importantly, DA increased representative M1 markers (iNOS, CXCL9, etc.), while decreasing M2 markers (CD206, arginase-1, etc.). Depletion of macrophages by clodronate or zoledronic acid attenuated the effects of DA. Notably, DA treatment induced M2-to-M1 polarization in RAW264.7 cells and mouse peritoneal macrophages, and enhanced the migration of pericyte-like cells (10T1/2), which was reversed by eticlopride or DR2-siRNA. Such changes were accompanied by the downregulation of VEGF/VEGFR2 signaling. In summary, DA induces growth inhibition and vascular normalization through reprogramming M2-polarized macrophages. Thus, targeting the tumor microvasculature by DA represents a promising strategy for human glioma therapy. - Highlights: • Dopamine induces tumor growth inhibition and vascular normalization in rat C6 glioma. • Dopamine switches macrophage phenotype from M2 to M1. • Dopamine-induced vascular normalization is mediated by macrophage polarization. • Dopamine is a promising agent targeting the microvasculature in tumor

  3. Mechanism of Growth Enhancement of Plants Induced by Active Species in Plasmas

    NASA Astrophysics Data System (ADS)

    Watanabe, Satoshi; Ono, Reoto; Hayashi, Nobuya

    2015-09-01

    Plant growth enhances when seeds are irradiated by plasma. However the mechanism of the growth enhancement by plasma has not been clarified. In this study, growth enhancement of plants using various active species and variation of plant cells are investigated. RF plasma is generated under conditions where pressure is 60 Pa and input electrical power is 60 W. Irradiation period varies from 0 (control) to 75 min. Air plasma shows maximum growth of plants with irradiation period of 60 min on the other hand, oxygen plasma shows the maximum growth with irradiation period of 15 min. From change of gaseous species and pressure dependence, growth enhancing factor is expected to be active oxygen species produced in plasma. According to gene expression analysis of Arabidopsis, there are two speculated mechanism of plant growth enhancement. The first is acceleration of cell cycle by gene expressions of photosynthesis and glycolytic pathway, and the second is increase of cell size via plant hormone production.

  4. Silencing of survivin by YM155 induces apoptosis and growth arrest in hepatocellular carcinoma cells

    PubMed Central

    ZHANG, CHANGHE; CAO, XIAOFEI; GEI, YONGXIANG; WANG, YONG; LIU, GUIYUAN; CHENG, GUOCHANG; LIU, QINGHONG

    2015-01-01

    Survivin overactivation is a frequent event in human hepatocellular carcinoma (HCC), due to its function in the induction of hepatocyte proliferation and apoptotic dysfunction. Recently, a novel survivin inhibitor named YM155, has demonstrated broad antitumor effects against various malignant tumors. Therefore, the present study aimed to explore how this agent may impact on HCC and elucidate its underlying mechanism of action. Immunohistochemical analysis was performed on 8 specimens of human HCC, to assess the protein expression of survivin and phosphorylated retinoblastoma tumor suppressor (p-Rb). In addition, in vitro, HepG2 and Huh7 human HCC cell lines were exposed to 100 µM YM155 for up to 72 h and the cell viability was subsequently determined using MTT assay. Furthermore, the apoptotic status of YM155-treated HCC cells was investigated by flow cytometry, and the protein levels of survivin, procaspase-3 and p-Rb in YM155-treated HCC cells were assessed by immunoblotting analysis. The results demonstrated that HCC specimens expressed high levels of survivin and p-Rb protein compared with those of adjacent noncancerous liver tissues. In vitro, YM155 significantly induced HCC cell apoptosis and growth arrest. At the protein level, YM155 markedly inhibited survivin and p-Rb expression, and elevated procaspase-3. YM155 demonstrated significant antitumor effects on HCC cells in the present study. These effects were associated with its anti-proliferative and apoptosis-induction activities. YM155 requires further investigation as a novel agent for potential use as a therapeutic strategy for the treatment of HCC. PMID:26622722

  5. The nest site lottery: how selectively neutral density dependent growth suppression induces frequency dependent selection.

    PubMed

    Argasinski, K; Broom, M

    2013-12-01

    Modern developments in population dynamics emphasize the role of the turnover of individuals. In the new approaches stable population size is a dynamic equilibrium between different mortality and fecundity factors instead of an arbitrary fixed carrying capacity. The latest replicator dynamics models assume that regulation of the population size acts through feedback driven by density dependent juvenile mortality. Here, we consider a simplified model to extract the properties of this approach. We show that at the stable population size, the structure of the frequency dependent evolutionary game emerges. Turnover of individuals induces a lottery mechanism where for each nest site released by a dead adult individual a single newborn is drawn from the pool of newborn candidates. This frequency dependent selection leads towards the strategy maximizing the number of newborns per adult death. However, multiple strategies can maximize this value. Among them, the strategy with the greatest mortality (which implies the greatest instantaneous growth rate) is selected. This result is important for the discussion about universal fitness measures and which parameters are maximized by natural selection. This is related to the fitness measures R0 and r, because the number of newborns per single dead individual equals the lifetime production of newborn R0 in models without aging. We thus have a two-stage procedure, instead of a single fitness measure, which is a combination of R0 and r. According to the nest site lottery mechanism, at stable population size, selection favors strategies with the greatest r, i.e. those with the highest turnover, from those with the greatest R0. PMID:24071631

  6. Oral oestrogen reverses ovariectomy-induced morning surge hypertension in growth-restricted mice.

    PubMed

    Haskell, Sarah E; Peotta, Veronica; Reinking, Benjamin E; Zhang, Catherine; Zhu, Vivian; Kenkel, Elizabeth J; Roghair, Robert D

    2016-04-01

    Perinatal growth restriction (GR) is associated with heightened sympathetic tone and hypertension. We have previously shown that naturally occurring neonatal GR programmes hypertension in male but not female mice. We therefore hypothesized that intact ovarian function or post-ovariectomy (OVX) oestrogen administration protects GR female mice from hypertension. Utilizing a non-interventional model that categorizes mice with weanling weights below the tenth percentile as GR, control and GR adult mice were studied at three distinct time points: baseline, post-OVX and