Science.gov

Sample records for biscyanate ester resin

  1. Synthesis, characterization, and cure chemistry of renewable bis(cyanate) esters derived from 2-methoxy-4-methylphenol.

    PubMed

    Meylemans, Heather A; Harvey, Benjamin G; Reams, Josiah T; Guenthner, Andrew J; Cambrea, Lee R; Groshens, Thomas J; Baldwin, Lawrence C; Garrison, Michael D; Mabry, Joseph M

    2013-03-11

    A series of renewable bis(cyanate) esters have been prepared from bisphenols synthesized by condensation of 2-methoxy-4-methylphenol (creosol) with formaldehyde, acetaldehyde, and propionaldehyde. The cyanate esters have been fully characterized by infrared spectroscopy, (1)H and (13)C NMR spectroscopy, and single crystal X-ray diffraction. These compounds melt from 88 to 143 °C, while cured resins have glass transition temperatures from 219 to 248 °C, water uptake (96 h, 85 °C immersion) in the range of 2.05-3.21%, and wet glass transition temperatures from 174 to 193 °C. These properties suggest that creosol-derived cyanate esters may be useful for a wide variety of military and commercial applications. The cure chemistry of the cyanate esters has been studied with FTIR spectroscopy and differential scanning calorimetry. The results show that cyanate esters with more sterically demanding bridging groups cure more slowly, but also more completely than those with a bridging methylene group. In addition to the structural differences, the purity of the cyanate esters has a significant effect on both the cure chemistry and final Tg of the materials. In some cases, post-cure of the resins at 350 °C resulted in significant decomposition and off-gassing, but cure protocols that terminated at 250-300 °C generated void-free resin pucks without degradation. Thermogravimetric analysis revealed that cured resins were stable up to 400 °C and then rapidly degraded. TGA/FTIR and mass spectrometry results showed that the resins decomposed to phenols, isocyanic acid, and secondary decomposition products, including CO2. Char yields of cured resins under N2 ranged from 27 to 35%, while char yields in air ranged from 8 to 11%. These data suggest that resins of this type may potentially be recycled to parent phenols, creosol, and other alkylated creosols by pyrolysis in the presence of excess water vapor. The ability to synthesize these high temperature resins from a phenol

  2. Kinetic modelling of vinyl ester resin polymerization

    SciTech Connect

    Dhulipala, R.; Kreig. G.; Hawley, M.C.

    1993-12-31

    The study of kinetics offers a substantional incentive in the endeavor to manufacture polymer matrix composites at high speeds. The study enables one to optimize the curing cycle based on the specific curing characteristics of the resin and also makes it possible to simulate the curing process. This paper reports the results of the modelling of the thermal curing of the vinyl ester resin. The parameters for the proposed model have been calculated based on conversion-vs-data generated at various temperatures and Benzoyl peroxide (initiator) concentrations. The extent of cure of the resin mixture was determined using Fourier Transform Infrared Spectroscopy. In this model the termination rate constant is considered to drop with extent of cure until a limiting value is reached. The limiting value is a consequence of the active chain ends possessing a degree of mobility due to the propagation reaction even though the translational motion of the growing for radicals in increasingly restricted with conversion. Good agreements is observed between the model predictions and the experimental data.

  3. Optimized Mechanical Behavior of Vinyl Ester Resins

    NASA Astrophysics Data System (ADS)

    Ganglani, Manisha; Torkelson, John; Carr, Stephen

    2001-03-01

    The cure (polymerization and solidification) of thermoset systems has been proposed also to involve phase separation in cases where the reactants are strongly heterogeneous. Vinyl ester (VE) resins are multi-component, thermosetting systems that are suspected of undergoing such phase separation during cure, and this work seeks to investigate this possibility and how it might affect mechanical behavior of the resulting solids. The autocatalytic equation is used to describe the cure kinetics of these systems, and it is found to work only at high levels of conversion. Mechanical behavior, as studied by tensile and fracture toughness tests, is correlated to initial cure conditions and the presence or absence of initiator and accelerator species; property optima have been established. No evidence was found for a second phase formed during polymerization, explaining why excellent physical properties are realized in these materials.

  4. Characterization and Process Development of Cyanate Ester Resin and Composite

    SciTech Connect

    Frame, B.J.

    1998-03-01

    Cyanate ester (or polycyanate) resins offer advantages as composite matrices because of their high thermal stability, low outgassing, low water absorption and radiation resistance. This report describes the results of a processing study to develop high-strength hoop-wound composite by the wet-filament winding method using Toray T1000G carbon fiber and YLA RS-14A polycyanate resin as the constituent materials. Process trials, tests and analyses were conducted in order to gain insight into factors that can affect final properties of the cured cyanate ester resin and its composites. The study shows that the cyanate ester resin has a broad process envelope but that an inert-atmosphere cure is essential for obtaining optimum resin and composite properties. Minimizing moisture exposure prior to cure is also crucial as it affects the T{sub g} of the resin and composite. Recommendations for reducing moisture contact with the resin during wet-winding are presented. High fiber volume fraction ({approximately}80%) composites wound and cured with these methods yielded excellent hoop tensile strengths (660 to 670 ksi average with individual rings failing above 700 ksi), which are believed to be the highest recorded strengths for this class of materials. The measured transverse properties were also exceptional for these high fiber fraction composites. Based on the available data, this cyanate ester resin system and its composites are recommended for space and vacuum applications only. Further testing is required before these materials can be recommended for long term use at elevated temperatures in an ambient air environment. The results of all analyses and tests performed as part of this study are presented as well as baseline process for fabricating thick, stage-cured composites. The manufacture of a 1 in. thick composite cylinder made with this process is also described.

  5. 21 CFR 175.260 - Partial phosphoric acid esters of polyester resins.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Partial phosphoric acid esters of polyester resins... of polyester resins. Partial phosphoric acid esters of polyester resins identified in this section... prescribed conditions: (a) For the purpose of this section, partial phosphoric acid esters of...

  6. Characterization and Process Development of Cyanate Ester Resin Composites

    SciTech Connect

    Frame, B.J.

    1999-05-23

    Cyanate ester resins offer advantages as composite matrices because of their high thermal stability, low outgassing, low water absorption, and radiation resistance. This paper describes the results of a processing study to develop a high-strength hoop-wound composite by the wet-filament winding method using Toray TI 000G carbon fiber and YLA RS- 14A cyanate ester resin as the constituent materials. The study shows that the cyanate ester resin has a broad process envelope but that an inert-atmosphere cure is essential for obtaining optimum resin and composite properties. Minimizing moisture exposure prior to and during cure is also crucial as it affects the glass transition temperature of the resin and composite. Composite cylinders wound and cured with these methods yielded excellent ring tensile strengths both at room and elevated temperature. A summary of the measured mechanical and thermal property data for these composites is presented. Potential applications for these materials include flywheeI energy storage systems for space and satellite structures.

  7. Effect of ester impurities in PMR-polyimide resin

    NASA Technical Reports Server (NTRS)

    Lauver, R. W.

    1976-01-01

    Spectral and chomatographic studies were conducted which established the presence of tri- and tetraester impurities in aged monomer solutions employed in fabrication of PMR-polyimide resin composites. The equilibrium constant and apparent rate of the esterification were determined. It was demonstrated, using differential scanning calorimetry, that the ortho-ester moiety of these impurities does not completely react at typical cure conditions. It is concluded that voids formed in composites fabricated with aged monomer solution are due to gaseous decomposition products evolved by ester impurities and/or unreacted amine during elevated temperature post-cure treatment.

  8. Polymerization-Induced Phase Separation in Vinyl Ester Resins

    NASA Astrophysics Data System (ADS)

    Ganglani, Manisha; Torkelson, John; Carr, Stephen

    2000-03-01

    In certain multi-component, crosslinking polymer systems, phase separation is induced by polymerization, a process call polymerization-induced phase separation (PIPS) in which there exists a competition between reaction rate and phase separation rate. The final morphology and properties of a system that experiences PIPS depend on the outcome of this competition. Thus, by controlling these rates, it would be possible to control end properties. In fact, this theory has been applied for the creation of polymer-dispersed liquid crystals (PDLCs) where cure occurs via condensation reactions or via free radical polymerization initiated by UV light. This research examines PIPS in the vinyl ester (VE) resins, which are popular as matrix materials in polymer composites. Cure of the VE resins is more complicated because it uses initiators and therefore requires more time and offers less control than cure by photopolymerization. To better understand the PIPS process in the VE resins, this research separates the two competitive effects and examines each one in turn. Initial experiments use a model system to focus on the effect of PIPS in the absence of crosslinking.

  9. Magnetic and magnetoresistance behaviors of particulate iron/vinyl ester resin nanocomposites

    NASA Astrophysics Data System (ADS)

    Guo, Zhanhu; Hahn, H. Thomas; Lin, Hongfei; Karki, Amar B.; Young, David P.

    2008-07-01

    Magnetoresistance (MR) behavior of vinyl ester monomer stabilized iron nanoparticles and heat-treated vinyl ester resin nanocomposites reinforced with iron nanoparticles were investigated. Vinyl ester monomer serves as a coupling agent with one side covalently bound onto the nanoparticle surface by a displacement reaction and the other end copolymerized with extra vinyl ester resin to form a robust entity. The particle loading and type of material (polymer or carbonized polymer) have a significant effect on the magnetic and MR properties. The heat-treated nanocomposites follow a tunneling conduction. After reduction annealing, the obtained nanocomposites possess a room temperature MR of 8.3 % at a field of 90 kOe.

  10. A high-performance renewable thermosetting resin derived from eugenol.

    PubMed

    Harvey, Benjamin G; Sahagun, Christopher M; Guenthner, Andrew J; Groshens, Thomas J; Cambrea, Lee R; Reams, Josiah T; Mabry, Joseph M

    2014-07-01

    A renewable bisphenol, 4,4'-(butane-1,4-diyl)bis(2-methoxyphenol), was synthesized on a preparative scale by a solvent-free, Ru-catalyzed olefin metathesis coupling reaction of eugenol followed by hydrogenation. After purification, the bisphenol was converted to a new bis(cyanate) ester by standard techniques. The bisphenol and cyanate ester were characterized rigorously by NMR spectroscopy and single-crystal X-ray diffraction studies. After complete cure, the cyanate ester exhibited thermal stability in excess of 350 °C and a glass transition temperature (Tg ) of 186 °C. As a result of the four-carbon chain between the aromatic rings, the thermoset displayed a water uptake of only 1.8% after a four day immersion in 85 °C water. The wet Tg of the material (167 °C) was only 19 °C lower than the dry Tg , and the material showed no significant degradation as a result of the water treatment. These results suggest that this resin is well suited for maritime environments and provide further evidence that full-performance resins can be generated from sustainable feedstocks. PMID:24782220

  11. Kinetic behavior of a vinyl-ester resin within a thick-sectioned composite

    SciTech Connect

    Michaud, D.J.; Beris, A.N.; Dhurjati, P.S.

    1996-12-31

    The experimental fabrication of thick-sectioned parts by the resin transfer molding (RTM) process has uncovered many important issues. The low thermal conductivity of the composite and the highly exothermic nature of typical RTM resins results in large internal thermal gradients. At the lower processing temperatures required to produce quality parts, the kinetic behavior of the vinyl-ester resin system being studied is significantly different. The cure of the resin was found to not reach full conversion at temperatures lower than 120{degrees}C. The activation energy of the resin at the lower temperatures was found to be 20% less than previously reported values. Another result of lower processing temperatures was a substantial increase in cure time due to inhibitors within the resin system. A preliminary analysis of the inhibitor deactivation kinetics was performed.

  12. Injection repair of carbon fiber/bismaleimide composite panels with bisphenol E cyanate ester resin

    SciTech Connect

    Thunga, Mahendra; Bauer, Amy; Obusek, Kristine; Meilunas, Ray; Akinc, Mufit; Kessler, Michael R

    2014-08-01

    Resin injection of bisphenol E cyanate ester, a low viscosity resin that cures into a high temperature thermoset polymer, is investigated as a reliable repair method to restore strength and stiffness in delaminated carbon fiber/bismaleimide composites used in aircraft panels. The influence of temperature on the viscosity of the uncured resin was measured to optimize the injection conditions for high resin infiltration into the delaminations. The repair efficiency of the resin was evaluated by varying the panel thickness and the method by which the delamination damage was created in the composite specimens. Ultrasonic scanning (C-scan), flash thermography images, and cross-section analysis of repaired panels revealed excellent resin infiltration into the damaged region. Evaluation of mechanical repair efficiency using both bending stiffness and in-plain compressive strength of the composite panels as the repair metrics showed values exceeding 100%.

  13. Differential scanning calorimetry investigation on vinyl ester resin curing process for polymer nanocomposite fabrication.

    PubMed

    Guo, Zhanhu; Ng, Ho Wai; Yee, Gary L; Hahn, H Thomas

    2009-05-01

    Two different ceramic (cerium oxide and titanium oxide) nanoparticles were introduced into vinyl ester resin for nanocomposite fabrication. The curing process of the vinyl ester resin was investigated by a differential scanning calorimetery (DSC). The incorporation of nanoparticles in the resin affects the curing process due to the physicochemical interaction between the nanoparticles and the polymer matrix. The particle loading has a significant effect on the initial and peak curing temperatures, reaction heat and curing extent. The fully cured vinyl ester resin nanocomposites reinforced with cerium oxide nanoparticles were fabricated after a 24-hour room temperature curing and a one-hour postcuring at 85 degrees C. Particle functionalization favors the composite fabrication with a higher curing extent after room-temperature curing as compared to the as-received nanoparticle filled vinyl ester resin nanocomposites. The nanofiller materials were observed to significantly affect the curing process. In comparison to cerium oxide nanoparticles, titanium oxide nanoparticles prohibit the curing process with a much higher initiating curing temperatures. The fully cured nanocomposites reinforced with titanium oxide nanoparticles were fabricated by one-hour postcuring at 85 degrees C. PMID:19453004

  14. Epoxy resin composition containing metal tetrafluoroborate and boron ester

    SciTech Connect

    Morehead, G.T.

    1990-06-12

    This patent describes a curable composition. It comprises: a polyepoxide; a metal tetrafluoroborate; and at least one boron ester selected from the group consisting of triesters of boric acid and diesters of boronic acid.

  15. 21 CFR 175.260 - Partial phosphoric acid esters of polyester resins.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Partial phosphoric acid esters of polyester resins. 175.260 Section 175.260 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) INDIRECT FOOD ADDITIVES: ADHESIVES AND COMPONENTS OF COATINGS Substances for Use as Components of Coatings § 175.260...

  16. 21 CFR 175.260 - Partial phosphoric acid esters of polyester resins.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Partial phosphoric acid esters of polyester resins. 175.260 Section 175.260 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) INDIRECT FOOD ADDITIVES: ADHESIVES AND COMPONENTS OF COATINGS Substances for Use...

  17. 21 CFR 175.260 - Partial phosphoric acid esters of polyester resins.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Partial phosphoric acid esters of polyester resins. 175.260 Section 175.260 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) INDIRECT FOOD ADDITIVES: ADHESIVES AND COMPONENTS OF COATINGS Substances for Use...

  18. 21 CFR 175.260 - Partial phosphoric acid esters of polyester resins.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Partial phosphoric acid esters of polyester resins. 175.260 Section 175.260 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) INDIRECT FOOD ADDITIVES: ADHESIVES AND COMPONENTS OF COATINGS Substances for Use...

  19. Molecular dynamics simulations of neat vinyl ester and vapor-grown carbon nanofiber/vinyl ester resin composites

    NASA Astrophysics Data System (ADS)

    Jang, Changwoon

    Molecular dynamics (MD) simulations have been performed to investigate the system equilibrium through the atomic/molecular interactions of a liquid vinyl ester (VE) thermoset resin with the idealized surfaces of both pristine vapor-grown carbon nanofibers (VGCNFs) and oxidized VGCNFs. The VE resin has a mole ratio of styrene to bisphenol-A-diglycidyl dimethacrylate VE monomers consistent with a commercially available 33 wt% styrene VE resin (Derakane 441-400). The VGCNF-VE resin interactions may influence the distribution of the liquid VE monomers in the system and the formation of an interphase region. Such an interphase may possess a different mole ratio of VE resin monomers at the vicinity of the VGCNF surfaces compared to the rest of the system after resin curing. Bulk nano-reinforced material properties are highly dependent on the interphase features because of the high surface area to volume ratio of nano-reinforcements. For example, higher length scale micromechanical calculations suggest that the volume fraction and properties of the interphase can have a profound effect on bulk material properties. Interphase formation, microstructure, geometries, and properties in VGCNF-reinforced polymeric composites have not been well characterized experimentally, largely due to the small size of typical nano-reinforcements and interphases. Therefore, MD simulations offer an alternative means to probe the nano-sized formation of the interphase and to determine its properties, without having to perform fine-scale experiments. A robust crosslinking algorithm for VE resin was then developed as a key element of this research. VE resins are crosslinked via free radical copolymerization account for regioselectivity and monomer reactivity ratios. After the VE crosslinked network was created, the constitutive properties of the resin were calculated. This algorithm will be used to crosslink equilibrated VE resin systems containing both pristine and oxidized VGCNFs. An

  20. Interfacial engineering of the interphase between carbon fibers and vinyl ester resin

    NASA Astrophysics Data System (ADS)

    Xu, Lanhong

    Vinyl ester resins have been extensively used for the manufacture of low cost high performance composites. Carbon fibers are important reinforcement materials. The use of vinyl ester composites reinforced with carbon fibers requires an improvement in the fiber/matrix adhesion levels. The objectives of this study were to gain an understanding of the factors controlling interfacial adhesion between carbon fibers and vinyl ester resin; to model the contributions of the factors controlling fiber/matrix adhesion; and to provide an engineered and optimized interface between carbon fiber and vinyl ester for tailoring structurally efficient carbon fiber/vinyl ester composites. This work consists of three parts. Part I. A partially cross-linked DGEBA epoxy polymer sizing placed onto carbon fiber surface was found to be a beneficial interphase between the carbon fiber and vinyl ester resin resulting in an increase in fiber-matrix adhesion. The adhesion was evaluated as interfacial shear strength (IFSS) with micro-indentation. Nano-indentation and nano-scratch technique were used to investigate the gradient between this epoxy sizing and vinyl ester resin. An optimized thickness of this sizing was found and the mechanism by which this sizing improved adhesion was also investigated. A set of 2-D non-linear finite element models was set up for simulation of the micro-indentation process and consistent results were found between the experimental data and numerical results. It was found that the epoxy sizing formed more chemical bonds with the surface of the carbon fiber reinforcement and an interpenetrating interphase with the vinyl ester resin. The resulting interphase between vinyl ester matrix and epoxy sizing reduced the residual stress caused by the volume shrinkage of the vinyl ester after curing. Part II. Since it is known that the carbon fiber surface can interfere with the vinyl ester polymerization, the effects of preferential adsorption of the catalysts and styrene on

  1. Moisture absorption and mechanical properties for high-modulus Pitch 75 graphite-fiber-modified cyanate ester resin laminates

    NASA Astrophysics Data System (ADS)

    Blair, Christopher; Zakrzewski, Jerry

    1992-09-01

    Structural epoxy resins used in the fabrication of composite structures for spacecraft applications absorb significant amounts of water. This moisture absorption results in swelling of the structures during fabrication and assembly and subsequent desorption shrinkage in space. Reduction of this effect will be required for development of dimensionally stable large advanced space structures. In the last several years modified epoxy resins, cyanate esters and cyanate esters/epoxy resins have been developed with lower moisture absorption structures to address this issue. Work has continued for several years on the evaluation of high modulus Pitch 75 laminates made using modified low moisture absorption epoxy and cyanate systems to developed structural and thermophysical data for use in the design of stable structures. This paper describes the evaluation of moisture absorption and mechanical properties of unidirectional and quasi-isotropic Pitch 75 laminates made from selected cyanate esters and cyanate ester-epoxy resins.

  2. Free volume hole size of Cyanate ester resin/Epoxy resin interpenetrating networks and its correlations with physical properties

    NASA Astrophysics Data System (ADS)

    Zeng, Minfeng; Lu, Cuiyun; Wang, Baoyi; Qi, Chenze

    2010-09-01

    Cyanate ester (CE) resin was blended with epoxy resin (EP) at different mass ratios (CE/EP: 100/0, 90/10, 70/30, 50/50, 30/70, 10/90, and 0/100). The curing process of the blend system was characterized by Fourier transform infrared spectrometry (FTIR) and differential scanning calorimetry (DSC). Examination of the mechanical properties, thermal stability, and morphology of the blend systems showed that addition of epoxy resin resulted in improved toughness but a little sacrifice in thermal stability when compared with neat CE. The free volume size of the blend system determined by positron annihilation lifetime spectroscopy (PALS) decreased with the epoxy resin content, which is consistent with the chemical structure changes for the copolymerization between CE and EP. The crosslinking units of curing products (oxazoline, oxazolidinone, and polyether network) of the blends are all smaller in size than those of triazine ring structure from neat CE. Therefore, the free volume size of the blends decreases with increase of EP content. The correlations between the free volume properties and other physical properties (thermal stability and mechanical properties) have also been discussed.

  3. A positron annihilation study on the microstructure of the interpenetration polymer networks of cyanate ester resin/epoxy resin

    NASA Astrophysics Data System (ADS)

    Chenze, Qi; Chunqing, Li; Minfeng, Zeng; Baoyi, Wang; Jian, Zhang

    2010-04-01

    Cyanate ester (CE) resin was blended with epoxy resin (EP) at different mass ratios (CE/EP: 100/0, 90/10, 70/30, 50/50, 30/70, 10/90, 0/100). The free volume size of CE/EP IPNs has been determined by positron annihilation lifetime spectroscopy (PALS). The size decreased as the epoxy resin content increased. The PALS results are consistent with the chemical structure changes for the copolymerizing between CE and EP. The crosslinking units of curing products (oxazoline, oxazolidinone, and polyether network) of the blends are all smaller in size than those of triazine ring structure from neat CE. Therefore, the free volume size of the blends decreases with increase of EP content. Examination of the mechanical properties, thermal stability, and morphology of the blend systems showed that addition of epoxy resin resulted in improved toughness but a little sacrifice in thermal stability when compared with pure CE. The correlations between the free volume properties and physical properties (thermal stability and mechanical properties) have been discussed.

  4. Evaluation of bisphenol E cyanate ester for the resin-injection repair of advanced composites

    SciTech Connect

    Lio, Wilber Yaote

    2009-12-01

    This thesis is a compilation of a general introduction and literature review that ties together the subsequent chapters which consist of two journal articles that have yet to be submitted for publication. The overall topic relates to the evaluation and application of a new class of cyanate ester resin with unique properties that lend it applicable to use as a resin for injection repair of high glass transition temperature polymer matrix composites. The first article (Chapter 2) details the evaluation and optimization of adhesive properties of this cyanate ester and alumina nanocomposites under different conditions. The second article (Chapter 3) describes the development and evaluation of an injection repair system for repairing delaminations in polymer matrix composites.

  5. Influence of temperature on styrene emission from a vinyl ester resin thermoset composite material.

    PubMed

    Crawford, Shaun; Lungu, Claudiu T

    2011-08-15

    Composite materials made with vinyl ester resins are lighter, stronger and corrosion resistant compared to most metals, and are increasingly being used as building materials and in public transportation. Styrene monomer is used as both a diluent and strengthener in the production of vinyl ester resin (VER) composites. Some researchers contend that free styrene in VER composites is available to diffuse out of the material into air, perhaps leading to adverse health effects via inhalation exposures in humans, yet there is no known data on styrene emissions from these materials in the literature. In this study, a typical VER composite made with resin containing 38% by weight styrene, reinforced with E-glass fiber and formed using a vacuum assisted resin transfer method was characterized for styrene emissions by environmental test chamber (ETC) methodology. Styrene concentrations in the ETC were measured over a temperature range of 10 to 50 °C. Initial evaporative styrene emissions increase with increasing temperature. There is a nearly linear relationship in the total mass of styrene emitted and emission factor as emissions increase with increasing temperature. Styrene emission factors appear to vary for different materials, which could indicate more complex processes or the influence of material physical properties on emission rates. These results can be used to validate and improve mass transfer emission models for the prediction of volatile organic compound concentrations in indoor environments. PMID:21689842

  6. Evaluation of bisphenol E cyanate ester for the resin-injection repair of advanced composites

    NASA Astrophysics Data System (ADS)

    Lio, Wilber Yaote

    Polymer matrix composites (PMCs) are susceptible to impacts that often result in microcracks and delaminations that can greatly reduce their mechanical integrity. Current injection repair techniques are limited to low glass transition temperature (Tg) composites due to the temperature and viscosity limitations of current repair resins. Bisphenol E cyanate ester (BECy) has both a high Tg and low prepolymer viscosity that makes it an ideal resin for the injection repair of high temperature PMCs. In addition, alumina nanoparticles have been shown to increase the strengths of some adhesives as well as impart shear thinning properties in suspension; both of which are desirable effects for injection repair. Lap shear tests were performed to evaluate adhesive properties of BECy and BECy-alumina nanocomposites. Effects of substrate, temperature, nanoparticle loading, and moisture were investigated. A resin-injection process was developed and the efficiency of BECy in repairing bismaleimide-carbon fiber composite plates was studied through ultrasonic evaluation and compression-after-impact tests.

  7. PERFORMANCE ENHANCEMENT OF COMPRESSION MOLDED KENAF FIBER REINFORCED VINYL ESTER COMPOSITES THROUGH RESIN ADDITIVE

    SciTech Connect

    Fifield, Leonard S.; Simmons, Kevin L.; Laddha, Sachin; Kafentzis, Tyler A.

    2010-05-17

    Plant-based bio-fiber has the potential to achieve weight and cost savings over glass fiber in automotive polymer composites if moisture stability and fiber-resin compatibility issues can be solved. This paper describes the compression molding of 50vol% 2 inch random nonwoven mat kenaf fiber vinyl ester composites with and without chemical resin additives intended to improve moisture stability and resin compatibility. The 2wt% addition of n-undecanoyl chloride or 10-undecenoyl chloride to the styrene-based resin prior to molding of the kenaf composites was observed to decrease the 24hr, 25oC moisture uptake of the molded panels by more than 50%. The tensile stiffness and flexural stiffness of the soaked panels containing these additives were seen to increase by more than 30% and 70%, respectively, relative to panels made with no additives. While ‘dry’ panel (50% relative humidity at 25oC) strengths did not significantly change in the presence of the additives, tensile strength was observed to increase by more than 40% and flexural strength more than doubled for the soaked panels.

  8. Injection repair of advanced aircraft composites with a high temperature cyanate ester resin

    NASA Astrophysics Data System (ADS)

    Bauer, Amy Elizabeth

    Polymer matrix composites, especially those with carbon fiber reinforcement, are becoming increasingly common in aerospace applications due to their high stiffness to weight ratio, resulting in significant weight and fuel savings on commercial and military aircraft. Despite their excellent properties, carbon fiber composites are often susceptible to damage in the form of delaminations or interlaminar cracking caused by low energy impact or manufacturing defects. Often not easily detectable, delaminations are detrimental to the strength of the composite and can ultimately result in failure of the component. Therefore methods must be developed to repair damaged composites. Injection repair is a procedure that involves injecting a low viscosity resin into the damaged area and subjecting the composite to heat to cure the resin. Currently, injection repairs are rarely used in high temperature applications because of the lack of resins with both low viscosity and high thermal stability. Therefore demonstrating the use of a resin with satisfactory viscosity and Tg requirements would expand the application of injection repairs to more vigorous environments. In the present study, the injection repair method was developed to repair damaged bismaleimide carbon fiber composites that are similar to composites used on several high temperature weapon platforms. Bisphenol E cyanate ester (BECy) was chosen as the injection resin due to having the unique combination of low viscosity and a high glass transition temperature. Cure kinetic studies found an optimum undercure schedule to achieve the maximum T g while avoiding the high temperature postcure. Mechanical and adhesive tests revealed that partially cured BECy had properties superior to that of the fully cured resin. Following the evaluation of the resin, the injection repair procedure and set up were developed. Successful and reproducible repairs were performed on panels pre-damaged through static loading and drop tower impact

  9. Hydrothermal effects on the structural integrity of graphite fiber-cyanate ester resin composites

    SciTech Connect

    Lee, B.L.; Holl, M.W.

    1994-12-31

    The weight change and the retention of in-plane shear (+/{minus}45{degree}) strength of graphite fiber reinforced cyanate ester resin matrix composites have been estimated on the exposure to high humidity. Cyanate ester resin matrix composites absorbed a remarkably small amount of moisture on the exposure to 95% RH condition at 60 C up to 36 days. However, the degree of moisture absorption underwent a rather sudden increase to an equilibrium level of 1% after the prolonged exposure. The morphology study showed the occurrence of extensive cracking of matrix/interface region in the form of the delamination between the plies as well as translaminar cracking within the ply. The phenomenon is believed to be caused by weakening of the fiber-matrix interface which was confirmed by microscopic analysis of fracture surface. A sudden moisture gain associated with extensive matrix/interface cracking was found to reduce in-plane shear strength and fatigue lifetime at a given stress amplitude. From the assumed relationship between the slope of S-N curve and `m` factor of Paris` law, it was hypothesized that the rate of crack growth is higher for wet specimens already with extensive cracks initiated.

  10. 21 CFR 189.300 - Hydrogenated 4,4′-isopropyl-idene-diphenol-phosphite ester resins.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Hydrogenated 4,4â²-isopropyl-idene-diphenol-phosphite ester resins. 189.300 Section 189.300 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) SUBSTANCES PROHIBITED FROM USE IN HUMAN FOOD Substances Prohibited...

  11. 21 CFR 189.300 - Hydrogenated 4,4′-isopropyl-idene-diphenol-phosphite ester resins.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Hydrogenated 4,4â²-isopropyl-idene-diphenol-phosphite ester resins. 189.300 Section 189.300 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) SUBSTANCES PROHIBITED FROM USE IN HUMAN FOOD Substances Prohibited...

  12. 21 CFR 189.300 - Hydrogenated 4,4′-isopropyl-idene-diphenol-phosphite ester resins.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Hydrogenated 4,4â²-isopropyl-idene-diphenol-phosphite ester resins. 189.300 Section 189.300 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) SUBSTANCES PROHIBITED FROM USE IN HUMAN FOOD Substances Prohibited...

  13. Effects of gamma-ray irradiation on a cyanate ester/epoxy resin

    NASA Astrophysics Data System (ADS)

    Idesaki, Akira; Uechi, Hiroki; Hakura, Yoshihiko; Kishi, Hajime

    2014-05-01

    Effects of γ-ray irradiation on a cyanate ester/epoxy resin composed of dicyanate ester of bisphenol A (DCBA) and diglycidyl ether of bisphenol A (DGEBA) were investigated by changes in physicochemical and mechanical properties after the γ-ray irradiation with dose of 100 MGy as maximum at around 40 °C under vacuum. After the irradiation, gases of hydrogen, carbon monoxide and carbon dioxide were evolved, glass transition temperature decreased, and flexural strength also decreased. It was concluded that ether linkages bonded to cyanurate, isocyanurate and oxazolidinone structures are mainly decomposed by the irradiation. After 100 MGy irradiation, the flexural strength of DCBA/DGEBA was maintained more than 170 MPa which is 90% of initial value of 195 MPa. Flexural modulus and density slightly increased to the values of 3.9 GPa and 1.211 g/cm3 from initial values of 3.4 GPa and 1.199 g/cm3, respectively.

  14. Anti-flammable vinyl ester resin nano-composite with nano-titania

    NASA Astrophysics Data System (ADS)

    Das, Rajib

    Anti-flammable material is a common expectation for any industry and household applications to protect the material from fire accident. Polymer composites also play a significant role in preparing anti flammable materials. Vinyl ester resins (VERs) are thermosetting resins that have excellent mechanical and thermal properties of epoxy resins and Nanotitania is an inexpensive, nontoxic and biocompatible inorganic material. In this paper to investigate the flame retardency of polymer nanocomposites VER is used as polymer matrix and TiO2 is used as inorganic nanofiller.3-[2-(2-aminoethylamino) ethylamino]propyl-trimethoxysilane (TATMS), a kind of silane is used as a coupling agent to functionalize the surface of nanoTiO2 to improve its flame retardency by adding Si and N2 group. TGA test and FTIR test have been performed and different peaks for Si and N2 in the modified nanofiller and weight loss of fabricated nanofiller confirmed that fabrication method was successful. After that, nanocomposite sample of VERs reinforced with nano TiO2 prepared and the effects of different loadings on mechanical and flame retardant properties are investigated after and before the modification of nanofillers. From tensile test result it is found that up to 5% loading of modified nanofiller the tensile strength is 62 MPa that is almost as same as pure VER and the tensile strength of unmodified nanofiller based PNC is 68 MPa which is not significant improvement in its mechanical property. From MCC test of flame retardancy it is found that the normalized heat release capacity of modified nanofiller based nanocomposite is decreased by 27.7% than unmodified nanofiller based PNC that is 9.8%. Also the normalized total heat release of modified nanofiller based PNC is 21.4% than unmodified PNC that is 12.4%.

  15. The crust behavior of fiber composite rods with a vinyl ester resin matrix

    SciTech Connect

    Lokhandwala, K.K.; Peterson, R.C.; Roberston, R.E.

    1997-12-31

    Unidirectional fiber composites structures crushed along the fiber axis have been shown capable of absorbing large amounts of energy. There is, however, an intrinsic instability in the energy absorbing process with such materials, and the objective of the present study was to determine its causes in composite specimens made with vinyl ester resin matrix. Rod-shaped specimens were crushed against steel plates of different shape. The material variables studied were fiber volume fraction, fiber diameter, fiber-matrix interface strength, and matrix yield strength. Test variables included specimen diameter, trigger geometry, crush plate geometry, and compressive hoop stress. The instability was described by the standard deviation of the instantaneous crush load from the mean. The instability was found to be fairly insensitive to all of the above variables. The specific energy absorption, on the other hand, depended on a number of the above variables. A microscopic examination of crushed specimens suggested the following: Sudden large drops in load were related to the formation of large kink bands. The load drop depended on the width of the band and the fractional cross-sectional area over which the band propagated. Formation of large kink bands may be due to material heterogeneity, resulting from voids and local fiber misorientation, or nonuniform load transfer across the crushed material. Stable crush can be obtained by the formation of a large number of small kink bands near the crush interface.

  16. Polycyanurate ester resins with low loss and low birefringence for use in integrated optics

    NASA Astrophysics Data System (ADS)

    Dreyer, Christian J.; Bauer, Monika; Bauer, Joerg; Keil, Norbert; Yao, HuiHai; Zawadzki, Crispin

    2001-12-01

    In the age of information society and internet the requirements of fast transfers of large data streams for different applications are growing day by day. Killer-applications like teleconferencing, video-on-demand, online-games, virtual reality etc. are waiting in the wings. The optical network technology using the great bandwidth of glass fibre is the most suitable technology for these demands. Not only glass fibre is required, but also a broad range of optical components, such as multiplexers, demultiplexers, optical switches, optical attenuators, splitters and combiners, which are usually produced in silica technology. Polymeric materials are becoming more and more interesting for these applications, since they promise for instance lower power consumption and a reduction of production costs compared to their silica based pendants. Polycyanurate ester resins are a relatively new class of high-performance polymers with outstanding properties, for example high thermal stability, low optical loss, low dielectric constant, good adhesion and outstanding mechanical properties. This paper focuses on optical loss and birefringence of such materials at 1550 nm. The results lead the way to optimization for use in integrated optics and for the production of embedded waveguides and devices.

  17. Radiation effect on interlaminar shear strength of the electric insulation system with cyanate ester and epoxy blended resin

    NASA Astrophysics Data System (ADS)

    Nishimura, A.; Izumi, Y.; Imaizumi, M.; Nishijima, S.

    2012-06-01

    A fusion reactor will generate a lot of fast neutrons which will activate the materials in the reactor. Since fusion neutrons will reach superconducting magnets and the activated materials will emit a gamma ray, the materials in the reactor will be exposed by the neutron and the gamma ray at the same time. The weakest material against radiation exposure is an organic material for an electric insulation. Cyanate ester resin has been proposed as a candidate material for the insulation system of ITER and it is clarified that the blended resin with epoxy has a potential to survive a design period in the radiation environment. In this study, a molecular structure analysis of the blended resin was carried out and heat flux measurements by differential scanning calorimetry and interlaminar shear strength (ILSS) tests at 77 K were performed using irradiated samples with the gamma ray and neutrons. The results show that a triazine ring which has excellent resistance against radiation is formed during the curing process and the insulation composite material with 100% cyanate resin shows almost no degradation after irradiation of over 400 MGy.

  18. Ester-free Thiol-X Resins: New Materials with Enhanced Mechanical Behavior and Solvent Resistance

    PubMed Central

    Podgórski, Maciej; Becka, Eftalda; Chatani, Shunsuke; Claudino, Mauro

    2015-01-01

    A series of thiol-Michael and radical thiol-ene network polymers were successfully prepared from ester-free as well as ester-containing monomer formulations. Polymerization reaction rates, dynamic mechanical analysis, and solvent resistance experiments were performed and compared between compositions with varied ester loading. The incorporation of ester-free alkyl thiol, vinyl sulfone and allylic monomers significantly improved the mechanical properties when compared with commercial, mercaptopropionate-based thiol-ene or thiol-Michael networks. For polymers with no hydrolytically degradable esters, glass transition temperatures (Tg's) as high as 100 °C were achieved. Importantly, solvent resistance tests demonstrated enhanced stability of ester-free formulations over PETMP-based polymers, especially in concentrated basic solutions. Kinetic analysis showed that glassy step-growth polymers are readily formed at ambient conditions with conversions reaching 80% and higher. PMID:25893009

  19. Phosphoric acid esters cannot replace polyvinylphosphonic acid as phosphoprotein analogs in biomimetic remineralization of resin-bonded dentin.

    PubMed

    Mai, Sui; Kim, Young Kyung; Toledano, Manuel; Breschi, Lorenzo; Ling, Jun Qi; Pashley, David H; Tay, Franklin R

    2009-10-01

    Polyvinylphosphonic acid (PVPA), a biomimetic analog of phosphoproteins, is crucial for recruiting polyacrylic acid (PAA)-stabilized amorphous calcium phosphate nanoprecursors during biomimetic remineralization of dentin collagen matrices. This study tested the null hypothesis that phosphoric acid esters of methacrylates in dentin adhesives cannot replace PVPA during bimimetic remineralization of resin-dentin interfaces. Human dentin specimens were bonded with: (I) XP Bond, an etch-and-rinse adhesive using moist bonding; (II) XP Bond using dry bonding; (III) Adper Prompt L-Pop, a self-etching adhesive. The control medium contained only set Portland cement and a simulated body fluid (SBF) without any biomimetic analog. Two experimental Portland cement/SBF remineralization media were evaluated: the first contained PAA as the sole biomimetic analog, the second contained PAA and PVPA as dual biomimetic analogs. No remineralization of the resin-dentin interfaces could be identified from specimens immersed in the control medium. After 2-4 months in the first experimental medium, specimens exhibited either no remineralization or large crystal formation within hybrid layers. Only specimens immersed in the second remineralization medium produced nanocrystals that accounted for intrafibrillar remineralization within hybrid layers. The null hypothesis could not be rejected; phosphoric acid esters in dentin adhesives cannot replace PVPA during biomimetic remineralization of adhesive-bonded dentin. PMID:19481792

  20. FISSION NEUTRON IRRADIATION EFFECT ON INTERLAMINAR SHEAR STRENGTH OF CYANATE ESTER RESIN GFRP AT RT AND 77 K

    SciTech Connect

    Nishimura, A.; Izumi, Y.; Nishijima, S.; Hemmi, T.; Koizumi, K.; Takeuchi, T.; Shikama, T.

    2010-04-08

    A glass fiber reinforced plastic (GFRP) with cyanate ester resin was fabricated and neutron irradiation tests up to 1x10{sup 22} n/m{sup 2} of fast neutron with over 0.1 MeV energy were carried out in fission reactor. The fabrication process of cyanate ester GFRP was established and a collaboration network to perform investigations on irradiation effect of superconducting magnet materials was constructed. Three kinds of samples were fabricated. The first was CTD403 GFRP made by NIFS, the second was (cyanate ester+epoxy) GFRP provided by Toshiba, and the last was CTD403 GFRP made by Toshiba. The irradiation was carried out at JRR-3 in Japan Atomic Energy Agency using Rabbit capsules.After the irradiation, short beam tests were conducted at room temperature and 77 K and interlaminar shear strength (ILSS) was evaluated. The irradiation of 1x10{sup 21} n/m{sup 2} increased ILSS a little but 1x10{sup 22} n/m{sup 2} irradiation decreased ILSS to around 50 MPa. These tendencies were observed in all three kinds of GFRPs.

  1. Fission Neutron Irradiation Effect on Interlaminar Shear Strength of Cyanate Ester Resin Gfrp at RT and 77 K

    NASA Astrophysics Data System (ADS)

    Nishimura, A.; Izumi, Y.; Nishijima, S.; Hemmi, T.; Koizumi, K.; Takeuchi, T.; Shikama, T.

    2010-04-01

    A glass fiber reinforced plastic (GFRP) with cyanate ester resin was fabricated and neutron irradiation tests up to 1×1022 n/m2 of fast neutron with over 0.1 MeV energy were carried out in fission reactor. The fabrication process of cyanate ester GFRP was established and a collaboration network to perform investigations on irradiation effect of superconducting magnet materials was constructed. Three kinds of samples were fabricated. The first was CTD403 GFRP made by NIFS, the second was (cyanate ester+epoxy) GFRP provided by Toshiba, and the last was CTD403 GFRP made by Toshiba. The irradiation was carried out at JRR-3 in Japan Atomic Energy Agency using Rabbit capsules. After the irradiation, short beam tests were conducted at room temperature and 77 K and interlaminar shear strength (ILSS) was evaluated. The irradiation of 1×1021 n/m2 increased ILSS a little but 1×1022 n/m2 irradiation decreased ILSS to around 50 MPa. These tendencies were observed in all three kinds of GFRPs.

  2. Evaluation of inter-laminar shear strength of GFRP composed of bonded glass/polyimide tapes and cyanate-ester/epoxy blended resin for ITER TF coils

    NASA Astrophysics Data System (ADS)

    Hemmi, T.; Nishimura, A.; Matsui, K.; Koizumi, N.; Nishijima, S.; Shikama, T.

    2014-01-01

    The insulation system of the ITER TF coils consists of multi-layer glass/polyimide tapes impregnated a cyanate-ester/epoxy resin. The ITER TF coils are required to withstand an irradiation of 10 MGy from gamma-ray and neutrons since the ITER TF coils is exposed by fast neutron (>0.1 MeV) of 1022 n/m2 during the ITER operation. Cyanate-ester/epoxy blended resins and bonded glass/polyimide tapes are developed as insulation materials to realize the required radiation-hardness for the insulation of the ITER TF coils. To evaluate the radiation-hardness of the developed insulation materials, the inter-laminar shear strength (ILSS) of glass-fiber reinforced plastics (GFRP) fabricated using developed insulation materials is measured as one of most important mechanical properties before/after the irradiation in a fission reactor of JRR-3M. As a result, it is demonstrated that the GFRPs using the developed insulation materials have a sufficient performance to apply for the ITER TF coil insulation.

  3. Evaluation of inter-laminar shear strength of GFRP composed of bonded glass/polyimide tapes and cyanate-ester/epoxy blended resin for ITER TF coils

    SciTech Connect

    Hemmi, T.; Matsui, K.; Koizumi, N.; Nishimura, A.; Nishijima, S.; Shikama, T.

    2014-01-27

    The insulation system of the ITER TF coils consists of multi-layer glass/polyimide tapes impregnated a cyanate-ester/epoxy resin. The ITER TF coils are required to withstand an irradiation of 10 MGy from gamma-ray and neutrons since the ITER TF coils is exposed by fast neutron (>0.1 MeV) of 10{sup 22} n/m{sup 2} during the ITER operation. Cyanate-ester/epoxy blended resins and bonded glass/polyimide tapes are developed as insulation materials to realize the required radiation-hardness for the insulation of the ITER TF coils. To evaluate the radiation-hardness of the developed insulation materials, the inter-laminar shear strength (ILSS) of glass-fiber reinforced plastics (GFRP) fabricated using developed insulation materials is measured as one of most important mechanical properties before/after the irradiation in a fission reactor of JRR-3M. As a result, it is demonstrated that the GFRPs using the developed insulation materials have a sufficient performance to apply for the ITER TF coil insulation.

  4. 21 CFR 189.300 - Hydrogenated 4,4′-isopropyl-idene-diphenol-phosphite ester resins.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... weight in the range of 2,400 to 3,000. They are synthetic chemicals not found in natural products and have been used as antioxidants and as stabilizers in vinyl chloride polymer resins when such polymer resins are used in the manufacture of rigid vinyl chloride polymer bottles. (b) Food containing any...

  5. 21 CFR 189.300 - Hydrogenated 4,4′-isopropyl-idene-diphenol-phosphite ester resins.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...,400 to 3,000. They are synthetic chemicals not found in natural products and have been used as antioxidants and as stabilizers in vinyl chloride polymer resins when such polymer resins are used in the manufacture of rigid vinyl chloride polymer bottles. (b) Food containing any added or detectable levels...

  6. Characterization of cross-linking structures in UV-cured acrylic ester resin by MALDI-MS combined with supercritical methanolysis.

    PubMed

    Matsubara, Hideki; Hata, Shun-Ichiro; Kondo, Yosuke; Ishida, Yasuyuki; Takigawa, Hiroshi; Ohtani, Hajime

    2006-11-01

    The cross-linking structure of the ultra violet (UV)-cured resin prepared from dipentaerithritol hexacrylate (DPHA) was characterized by matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) combined with supercritical methanolysis. The MALDI-mass spectrum of the decomposition products obtained by supercritical methanolysis contained a series of peaks of sodium-cationized methyl acrylate (MA) oligomers up to around m/z = 4000 formed through selective cleavage and methylation occurred at ester linkages in UV-cured DPHA. Furthermore, in order to observe widely distributed sequence lengths in the cross-linking junctions, the decomposed products of the cured resin were then fractionated using size exclusion chromatography followed by the MALDI-MS measurements of the individual fractions. The MALDI-mass spectra of the lower molar mass fractions mainly consisted of a series of peaks of MA oligomers around m/z values of several thousands, whereas those of higher molecular weight showed a broad peak up to m/z ca. 180000. The observed distributions of the supercritical methanolysis products suggested that the network junctions in the given UV-cured resin were composed of up to around 2000 acrylate units. PMID:17099270

  7. The impact of ultra-low amounts of amino-modified MMT on dynamics and properties of densely cross-linked cyanate ester resins

    NASA Astrophysics Data System (ADS)

    Bershtein, Vladimir; Fainleib, Alexander; Egorova, Larisa; Gusakova, Kristina; Grigoryeva, Olga; Kirilenko, Demid; Konnikov, Semen; Ryzhov, Valery; Yakushev, Pavel; Lavrenyuk, Natalia

    2015-04-01

    Thermostable nanocomposites based on densely cross-linked cyanate ester resins (CER), derived from bisphenol E and doped by 0.01 to 5 wt. % amino-functionalized 2D montmorillonite (MMT) nanoparticles, were synthesized and characterized using Fourier transform infrared (FTIR), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDXS), wide-angle X-ray diffraction (WAXD), dynamic mechanical analysis (DMA), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), far-infrared (Far-IR), and creep rate spectroscopy (CRS) techniques. It was revealed that ultra-low additives, e.g., 0.025 to 0.1 wt. %, of amino-MMT nanolayers covalently embedded into CER network exerted an anomalously large impact on its dynamics and properties resulting, in particular, in some suppression of dynamics, increasing the onset of glass transition temperature by 30° to 40° and twofold rise of modulus in temperature range from 20°C to 200°C. Contrarily, the effects became negligibly small or even negative at increased amino-MMT contents, especially at 2 and 5 wt. %. That could be explained by TEM/EDXS data displaying predominance of individual amino-MMT nanolayers and their thin (2 to 3 nanolayers) stacks over more thick tactoids (5 to 10 nanolayers) and the large amino-MMT aggregates (100 to 500 nm in thickness) reversing the composite structure produced with increasing of amino-MMT content within CER matrix. The revealed effect of ultra-low amino-MMT content testifies in favor of the idea about the extraordinarily enhanced long-range action of the `constrained dynamics' effect in the case of densely cross-linked polymer networks.

  8. Allied, MGC link on cyanate esters

    SciTech Connect

    Wood, A.

    1993-02-24

    In the latest of a line of joint ventures in its plastics business, Allied Signal has reached agreement with Mitsubishi Gas Chemical (MGC) to jointly develop thermoset cyanate ester resins and blends. The deal will involve further development of Allied Signal's Primaset phenol-formaldehyde cyanate ester resins, a new entrant in the thermoset arena. Although the Primaset resins were discovered in the 1960s, this would be the first time they are available commercially. The deal will marry Primaset technology with MGC's Skylex bisphenol A cyanate ester resins, says Fred DiAntonis, director/advanced materials at Allied Signal. The two firms are looking at marketing blends of the two materials. The potential market for these resins, used commercially by the electronics industry in printed circuit boards and by the aerospace industry in composites, is significant, says Robert P. Viarengo, Allied Signal president/performance materials. By aligning ourselves with MGC, the world leader in cyanate ester resin, we anticipate moving forward aggressively. The main competitor is Ciba, which acquired bisphenol A cyanate ester resins with its purchase of Rhone-Poulenc's high temperature resins business. DiAntonis estimates the market for cyanate ester resins could be worth $150 million by the end of the decade, although development costs have been in the tens of millions of dollars range.

  9. The fabrication of monolithic capillary column based on poly (bisphenol A epoxy vinyl ester resin-co-ethylene glycol dimethacrylate) and its applications for the separation of small molecules in high performance liquid chromatography.

    PubMed

    Niu, Wenjing; Wang, Lijuan; Bai, Ligai; Yang, Gengliang

    2013-07-01

    A new polymeric monolith was synthesized in fused-silica capillary by in situ polymerization technique. In the polymerization, bisphenol A epoxy vinyl ester resin (VER) was used as the functional monomer, ethylene glycol dimethacrylate (EDMA) as the crosslinking monomer, 1,4-butanediol, 1-propanol and water as the co-porogens, and azobisisobutyronitrile (AIBN) as the initiator. The conditions of polymerization have been optimized. Morphology of the prepared poly (VER-co-EDMA) monolith was investigated by the scanning electron microscopy (SEM); pore properties were assayed by mercury porosimetry and nitrogen adsorption. The optimized poly (VER-co-EDMA) monolith showed a uniform structure, good permeability and mechanical stability. Then, the column was used as the stationary phase of high performance liquid chromatography (HPLC) to separate the mixture of benzene derivatives. The best column efficiency achieved for phenol was 235790 theoretical plates per meter. Baseline separations of benzene derivatives and halogenated benzene compounds under optimized isocratic mode conditions were achieved with high column efficiency. The column showed good reproducibility: the relative standard deviation (RSD) values based on the retention times (n=3) for run-to-run, column-to-column and batch-to-batch were less than 0.98, 1.68, 5.48%, respectively. Compared with poly (BMA-co-EDMA) monolithic column, the proposed monolith exhibited more efficiency in the separation of small molecules. PMID:23726080

  10. Synthesis of improved phenolic and polyester resins

    NASA Technical Reports Server (NTRS)

    Delano, C. B.

    1980-01-01

    Thirty-seven cured phenolic resin compositions were prepared and tested for their ability to provide improved char residues and moisture resistance over state of the art epoxy resin composite matrices. Cyanate, epoxy novolac and vinyl ester resins were investigated. Char promoter additives were found to increase the anaerobic char yield at 800 C of epoxy novolacs and vinyl esters. Moisture resistant cyanate and vinyl ester compositions were investigated as composite matrices with Thornel 300 graphite fiber. A cyanate composite matrix provided state of the art composite mechanical properties before and after humidity exposure and an anaerobic char yield of 46 percent at 800 C. The outstanding moisture resistance of the matrix was not completely realized in the composite. Vinyl ester resins showed promise as candidates for improved composite matrix systems.

  11. High-temperature resins

    NASA Technical Reports Server (NTRS)

    Serafini, T. T.

    1982-01-01

    The basic chemistry, cure processes, properties, and applications of high temperature resins known as polyimides are surveyed. Condensation aromatic polymides are prepared by reacting aromatic diamines with aromatic dianhydrides, aromatic tetracarboxylic acids, or with dialkyl esters of aromatic tetracarboxylic acids, depending on the intended end use. The first is for coatings or films while the latter two are more suitable for polyimide matrix resins. Prepreg solutions are made by dissolving reactants in an aprotic solvent, and advances in the addition of a diamine on the double bond and radical polymerization of the double bond are noted to have yielded a final cure product with void-free characteristics. Attention is given to properties of the Skybond, Pyralin, and NR-150B polyimide prepreg materials and characteristics of aging in the NP-150 polyimides. Finally, features of the NASA-developed PMR polyimides are reviewed.

  12. Liquid crystalline thermosets from ester, ester-imide, and ester-amide oligomers

    NASA Technical Reports Server (NTRS)

    Dingemans, Theodorous J. (Inventor); Weiser, Erik S. (Inventor); St. Clair, Terry L. (Inventor)

    2005-01-01

    Main chain thermotropic liquid crystal esters, ester-imides, and ester-amides were prepared from AA, BB, and AB type monomeric materials and were end-capped with phenylacetylene, phenylmaleimide, or nadimide reactive end-groups. The resulting reactive end-capped liquid crystal oligomers exhibit a variety of improved and preferred physical properties. The end-capped liquid crystal oligomers are thermotropic and have, preferably, molecular weights in the range of approximately 1000-15,000 grams per mole. The end-capped liquid crystal oligomers have broad liquid crystalline melting ranges and exhibit high melt stability and very low melt viscosities at accessible temperatures. The end-capped liquid crystal oligomers are stable for up to an hour in the melt phase. These properties make the end-capped liquid crystal oligomers highly processable by a variety of melt process shape forming and blending techniques including film extrusion, fiber spinning, reactive injection molding (RIM), resin transfer molding (RTM), resin film injection (RFI), powder molding, pultrusion, injection molding, blow molding, plasma spraying and thermo-forming. Once processed and shaped, the end-capped liquid crystal oligomers were heated to further polymerize and form liquid crystalline thermosets (LCT). The fully cured products are rubbers above their glass transition temperatures. The resulting thermosets display many properties that are superior to their non-end-capped high molecular weight analogs.

  13. Liquid Crystalline Thermosets from Ester, Ester-Imide, and Ester-Amide Oligomers

    NASA Technical Reports Server (NTRS)

    Dingemans, Theodornus J. (Inventor); Weiser, Erik S. (Inventor); SaintClair, Terry L. (Inventor)

    2005-01-01

    Main chain thermotropic liquid crystal esters, ester-imides, and ester-amides were prepared from AA, BB, and AB type monomeric materials and were end-capped with phenylacetylene, phenylmaleimide, or nadimide reactive end-groups. The resulting reactive end-capped liquid crystal oligomers exhibit a variety of improved and preferred physical properties. The end-capped liquid crystal oligomers are thermotropic and have, preferably, molecular weights in the range of approximately 1000-15,OOO grams per mole. The end-capped liquid crystal oligomers have broad liquid crystalline melting ranges and exhibit high melt stability and very low melt viscosities at accessible temperatures. The end-capped liquid crystal oligomers are stable for up to an hour in the melt phase. These properties make the end-capped liquid crystal oligomers highly processable by a variety of melt process shape forming and blending techniques including film extrusion, fiber spinning, reactive injection molding (RIM), resin transfer molding (RTM), resin film injection (RFI), powder molding, pultrusion, injection molding, blow molding, plasma spraying and thermo-forming. Once processed and shaped, the end- capped liquid crystal oligomers were heated to further polymerize and form liquid crystalline thermosets (LCT). The fully cured products are rubbers above their glass transition temperatures. The resulting thermosets display many properties that are superior to their non-end-capped high molecular weight analogs.

  14. Cyanate Ester and Phthalonitrile Impregnated Carbon Ablative TPS

    NASA Technical Reports Server (NTRS)

    Boghozian, Tane; Stackpoole, Margaret M.; Gasch, Matt

    2016-01-01

    Phenolic resin has extensive heritage as a TPS (Thermal Protection Systems) material, however, alternative resin systems such as Cyanate Ester and Phthalonitrile may offer improved performance compared to state-of-the-art phenolic resin. These alternative resin systems may have higher char yield, higher char strength, lower thermal conductivity and improved mechanical properties. In current work at NASA Ames alternative resin systems were uniformly infused into fibrous substrates and preliminary properties characterized. The density of the cyanate ester infused in fibrous substrate ranged from 0.25-0.3 grams per cubic centimeter compared to PICA (Phenolic resin impregnated carbon ablative) having a density of approximately 0.25 grams per cubic centimeter. The density of Phthalonitrile varies from 0.22-0.25 grams per cubic centimeter. Initial formulations of these new resin systems were recently tested at the LARC HyMETs (Hypersonic Materials Environmental Test System) facility to evaluate their performance and data such as back face temperature, char yield, and recession are compared to PICA. Cyanate Ester and Phthalonitrile impregnated carbon ablative samples showed comparable performance to phenolic resin impregnated carbon ablative samples.

  15. Comparison of XAD macroporous resins for the concentration of fulvic acid from aqueous solution

    USGS Publications Warehouse

    Aiken, G.R.

    1979-01-01

    Five macroreticular, nonlonlc AmberlHe XAD resins were evaluated for concentration and Isolation of fulvlc acid from aqueous solution. The capacity of each resin for fulvlc acid was measured by both batch and column techniques. Elution efficiencies were determined by desorptlon with 0.1 N NaOH. Highest recoveries were obtained with the acrylic ester resins which proved to be most efficient for both adsorption and elution of fulvlc acid. Compared to the acrylic ester resins, usefulness of the styrene dvlnybenzene resins to remove fulvlc acid is limited because of slow diffusion-controlled adsorption and formation of charge-transfer complexes, which hinders elution. ?? 1979 American Chemical Society.

  16. IONIC DOPING OF LOW-CONDUCTIVITY STRUCTURAL RESINS FOR IMPROVED DIRECT-CURRENT SENSING

    EPA Science Inventory

    This investigation developed a methodology for doping high-resistivity vinyl-ester (VE) resins with an organic dopant. The polymeric resin system investigated was a Dow Derakane 411-C50 VE resin. A number of potential dopants were studied, and two in particular, tetrabutylammoniu...

  17. Preparation and cured properties of novel cycloaliphatic epoxy resins

    SciTech Connect

    Tokizawa, Makoto; Okada, Hiroyoshi; Wakabayashi, Nobukatsu; Kimura, Tomiaki . Research Center)

    1993-10-20

    Preparation and characterization of novel cycloaliphatic epoxy resins, which are derived from octadienyl compounds, were studied. From a model peracetic acid epoxidation reaction using 2,7-octadienyl acetate-1, the structure of the liquid resins is estimated to be mainly terminal epoxides and some amount of inner epoxide depending on the epoxide content. The epoxy resins offer lower toxicity and lower vapor pressure. The reactivity of the resin with acid anhydrides is moderate but faster than that of traditional cyclohexane epoxide-type resins and slower than that of the glycidyl ester-type resins. This reactivity was also examined using model compounds. The heat deflection temperature of the hexahydro-phthalic anhydride-cured resins is shown to be directly proportional to the number of epoxy groups in the molecules. The flexural strength of the cured resins is nearly equivalent to that of the commercial resins, although the flexural elongation of the resins is larger than that of the rigid cyclohexane epoxide-type resins. The thermal stability of the cured resins is compared to typical rigid cycloaliphatic resins; furthermore, high water resistance of the cured resins is suggested to be attributed to the hydrophobic character of the C[sub 8] chain by cross-linking.

  18. Solidification of ion exchange resin wastes

    SciTech Connect

    Not Available

    1982-08-01

    Solidification media investigated included portland type I, portland type III and high alumina cements, a proprietary gypsum-based polymer modified cement, and a vinyl ester-styrene thermosetting plastic. Samples formulated with hydraulic cement were analyzed to investigate the effects of resin type, resin loading, waste-to-cement ratio, and water-to-cement ratio. The solidification of cation resin wastes with portland cement was characterized by excessive swelling and cracking of waste forms, both after curing and during immersion testing. Mixed bed resin waste formulations were limited by their cation component. Additives to improve the mechanical properties of portland cement-ion exchange resin waste forms were evaluated. High alumina cement formulations dislayed a resistance to deterioration of mechanical integrity during immersion testing, thus providing a significant advantage over portland cements for the solidification of resin wastes. Properties of cement-ion exchange resin waste forms were examined. An experiment was conducted to study the leachability of /sup 137/Cs, /sup 85/Sr, and /sup 60/Co from resins modified in portland type III and high alumina cements. The cumulative /sup 137/Cs fraction release was at least an order of magnitude greater than that of either /sup 85/Sr or /sup 60/Co. Release rates of /sup 137/Cs in high alumina cement were greater than those in portland III cement by a factor of two.Compressive strength and leach testing were conducted for resin wastes solidified with polymer-modified gypsum based cement. /sup 137/Cs, /sup 85/Sr, and /sup 60/Co fraction releases were about one, two and three orders of magnitude higher, respectively, than in equivalent portland type III cement formulations. As much as 28.6 wt % dry ion exchange resin was successfully solidified using vinyl ester-styrene compared with a maximum of 25 wt % in both portland and gypsum-based cement.

  19. Derivatives of iminomalonic ester

    SciTech Connect

    Prosyanik, A.V.; Fedoseenko, D.V.; Markov, V.I.

    1986-01-10

    The synthesis of (alkylimino)malonic esters was realized by the reaction of alkylamines with mesoxalic or dibromomalonic ester. (Halogenoimino)malonic esters were obtained for the first time by the reaction of aminomalonic ester with tert-butyl hypochlorite or sodium hypobromite. A new method was developed for the synthesis of (acylimino)malonic esters by the successive bromination and dehydrobromination of (acylamino)malonic esters. The addition of various nucleophiles (water, amines, formamide) at the C=N bond of (acylimino)malonic esters was studied.

  20. Benzonorbornadiene end caps for PMR resins

    NASA Technical Reports Server (NTRS)

    Panigot, Michael J.; Waters, John F.; Varde, Uday; Sutter, James K.; Sukenik, Chaim N.

    1992-01-01

    Several ortho-disubstituted benzonorbornadiene derivatives are described. These molecules contain acid, ester, or anhydride functionality permitting their use as end caps in PMR (polymerization of monomer reactants) polyimide systems. The replacement of the currently used norbornenyl end caps with benzonorbornadienyl end caps affords resins of increased aromatic content. It also allows evaluation of some mechanistic aspects of PMR cross-linking. Initial testing of N-phenylimide model compounds and of actual resin formulations using the benzonorbornadienyl end cap reveals that they undergo efficient thermal crosslinking to give oligomers with physical properties and thermal stability comparable to commercial norbornene-end-capped PMR systems.

  1. Structural investigation of resin glycosides from Ipomoea lonchophylla.

    PubMed

    MacLeod, J K; Ward, A; Oelrichs, P B

    1997-05-01

    A fraction from Ipomoea lonchophylla, which was toxic to mice, contained an inseparable mixture of resin glycosides with differing numbers of C5 ester groups on the hexasaccharide chain. After alkaline hydrolysis of the esters, the structure of the major component (1) was elucidated using high-field NMR spectroscopy, mass spectrometry, chemical studies, and comparison with known resin glycosides. Compound 1 was identified as 3,11-dihydroxytetradecanoic acid 11-O-beta-quinovopyranosyl-(1-->2)-beta-glucopyranosyl-(1-->3)- [alpha-rhamnopyranosyl- (1-->4)]-quinovopyranosyl-(1-->2)-beta-glucopyranosyl-(1-->2)-beta -fucopyranoside. PMID:9170289

  2. Cyanate Ester-Based Encapsulation Material for High-Temperature Applications

    NASA Astrophysics Data System (ADS)

    Chidambaram, Vivek; Rong, Eric Phua Jian; Lip, Gan Chee; Daniel, Rhee Min Woo

    2013-09-01

    Cyanate ester resin-based composite materials have been proposed as potential encapsulants for high-temperature applications. The objective of this study is to develop a cyanate ester-based encapsulant, which can also serve as a flip-chip underfill as well as for traditional encapsulation. Two different materials, quartz and alumina fillers, have been studied. The impact of shapes and sizes of the fillers on the overall thermomechanical properties has been investigated. The adhesion strengths of the materials to the ceramic substrate, Kovar lid, and silicon die have also been characterized. The modulus of the resin and the shape of the fillers play a pivotal role in minimizing thermal stress, generated by coefficient of thermal expansion mismatches. Smaller filler particles were found to have better adhesion to the cyanate ester resin. The high-temperature performance of the cyanate ester-based encapsulants was evaluated by thermal aging at 300°C for up to 500 h.

  3. Process for encapsulating radioactive organic liquids in a resin

    SciTech Connect

    Drake, S.S.; Filter, H.E.

    1983-05-03

    Radioactive organic liquids are converted to a form suitable for burial by the process wherein the liquid is contacted with insoluble, swellable polymer particles to form swollen gelled particles which are dispersed in an unsaturated polyester, vinyl ester resin or mixture thereof which is then cured to a solid state with the gelled particles encased therein.

  4. EVALUATION OF METHODS FOR THE ISOLATION OR CONCENTRATION OF ORGANIC SUBSTANCES FROM WATER USING XAD-4 QUATERNARY RESIN

    EPA Science Inventory

    A synthetic resin (Amberlite XAD-4 Quaternary in the OH- form) was evaluated as an adsorption medium for the concentration/isolation of acids, amines, aldehydes, carbohydrates, chlorobiphenyls, esters, hydrocarbons, ketones, phenols, polynuclear aromatic hydrocarbons, and trihalo...

  5. The chemistry of dimethacrylate-styrene networks, and, Development of flame retardant, halogen-free fiber reinforced vinyl ester composites

    NASA Astrophysics Data System (ADS)

    Rosario, Astrid Christa

    One of the major classes of polymer matrix resins under consideration for structural composite applications in the infrastructure and construction industries is vinyl ester resin. Vinyl ester resin is comprised of low molecular weight poly(hydroxyether) oligomers with methacrylate endgroups diluted with styrene monomer. The methacrylate endgroups cure with styrene via free radical copolymerization to yield thermoset networks. The copolymerization behavior of these networks was monitored by Fourier Transform Infrared Spectroscopy (FTIR) at various cure conditions. Reactions of the carbon-carbon double bonds of the methacrylate (943 cm-1) and styrene (910 cm-1 ) were followed independently. Oligomers possessing number average molecular weights of 700 g/mole were studied with systematically increasing levels of styrene. The Mortimer-Tidwell reactivity ratios indicated that at low conversion more styrene was incorporated into the network at lower cure temperatures. The experimental vinyl ester-styrene network compositions deviated significantly from those predicted by the Meyer-Lowry integrated copolymer equation at higher conversion, implying that the reactivity ratios for these networks may change with conversion. The kinetic data were used to provide additional insight into the physical and mechanical properties of these materials. In addition to establishing the copolymerization kinetics of these materials, the development of halogen free fiber reinforced vinyl ester composites exhibiting good flame properties was of interest. Flame retardant vinyl ester resins are used by many industries for applications requiring good thermal resistance. The current flame-retardant technology is dependent on brominated vinyl esters, which generate high levels of smoke and carbon monoxide. A series of halogen free binder systems has been developed and dispersed in the vinyl ester to improve flame retardance. The binder approach enables the vinyl ester resin to maintain its low

  6. Resin/graphite fiber composites

    NASA Technical Reports Server (NTRS)

    Cavano, P. J.

    1974-01-01

    Techniques were developed that provided thermo-oxidatively stable A-type polyimide/graphite fiber composites using the approach of in situ polymerization of monomeric reactants directly on reinforcing fibers, rather than employing separately prepared prepolymer varnish. This was accomplished by simply mixing methylene dianiline and two ester-acids and applying this solution to the fibers for subsequent molding. Five different formulated molecular weight resins were examined, and an optimized die molding procedure established for the 1500 formulated molecular weight system. Extensive ultrasonic inspection of composites was successfully utilized as a technique for monitoring laminate quality. Composite mechanical property studies were conducted with this polyimide resin at room temperature and after various time exposures in a thermo-oxidative environment at 561 K (550 F), 589 K (600 F) and 617 K (650 F). It was determined that such composites have a long term life in the temperature range of 561 K to 589 K. The final phase involved the fabrication and evaluation of a series of demonstration airfoil specimens.

  7. Lignin model compounds as bio-based reactive diluents for liquid molding resins.

    PubMed

    Stanzione, Joseph F; Sadler, Joshua M; La Scala, John J; Wool, Richard P

    2012-07-01

    Lignin is a copious paper and pulping waste product that has the potential to yield valuable, low molecular weight, single aromatic chemicals when strategically depolymerized. The single aromatic lignin model compounds, vanillin, guaiacol, and eugenol, were methacrylated by esterification with methacrylic anhydride and a catalytic amount of 4-dimethylaminopyridine. Methacrylated guaiacol (MG) and methacrylated eugenol (ME) exhibited low viscosities at room temperature (MG: 17 cP and ME: 28 cP). When used as reactive diluents in vinyl ester resins, they produced resin viscosities higher than that of vinyl ester-styrene blends. The relative volatilities of MG (1.05 wt% loss in 18 h) and ME (0.96 wt% loss in 18 h) measured by means of thermogravimetric analysis (TGA) were considerably lower than that of styrene (93.7 wt% loss in 3 h) indicating the potential of these chemicals to be environmentally friendly reactive diluents. Bulk polymerization of MG and ME generated homopolymers with glass transition temperatures (T(g)s) of 92 and 103 °C, respectively. Blends of a standard vinyl ester resin with MG and ME (50 wt % reactive diluent) produced thermosets with T(g)s of 127 and 153 °C, respectively, which are comparable to vinyl ester-styrene resins, thus demonstrating the ability of MG and ME to completely replace styrene as reactive diluents in liquid molding resins without sacrificing cured-resin thermal performance. PMID:22517580

  8. Maximization of fructose esters synthesis by response surface methodology.

    PubMed

    Neta, Nair Sampaio; Peres, António M; Teixeira, José A; Rodrigues, Ligia R

    2011-07-01

    Enzymatic synthesis of fructose fatty acid ester was performed in organic solvent media, using a purified lipase from Candida antartica B immobilized in acrylic resin. Response surface methodology with a central composite rotatable design based on five levels was implemented to optimize three experimental operating conditions (temperature, agitation and reaction time). A statistical significant cubic model was established. Temperature and reaction time were found to be the most significant parameters. The optimum operational conditions for maximizing the synthesis of fructose esters were 57.1°C, 100 rpm and 37.8 h. The model was validated in the identified optimal conditions to check its adequacy and accuracy, and an experimental esterification percentage of 88.4% (±0.3%) was obtained. These results showed that an improvement of the enzymatic synthesis of fructose esters was obtained under the optimized conditions. PMID:21356336

  9. Composition and method for making polyimide resin-reinforced fabric

    NASA Technical Reports Server (NTRS)

    Serafini, T. T.; Delvigs, P. (Inventor)

    1981-01-01

    A composition for making polyimide resin reinforced fibers or fabric is discussed. The composition includes a polyfunctional ester, a polyfunctional amine, and an end capping agent. The composition is impregnated into fibers or fabric and heated to form prepreg material. The tack retention characteristics of this prepreg material are improved by incorporating into the composition a liquid olefinic material compatible with the other ingredients of the composition. The prepreg material is heated at a higher temperature to effect formation of the polyimide resin and the monomeric additive is incorporated in the polyimide polymer structure.

  10. Properties of halloysite nanotube epoxy resin hybrids and the interfacial reactions in the systems

    NASA Astrophysics Data System (ADS)

    Liu, Mingxian; Guo, Baochun; Du, Mingliang; Cai, Xiaojia; Jia, Demin

    2007-11-01

    A naturally occurred microtubullar silicate, halloysite nanotubes (HNTs), was co-cured with epoxy/cyanate ester resin to form organic-inorganic hybrids. The coefficient of thermal expansion (CTE) of the hybrids with low HNT concentration was found to be substantially lower than that of the plain cured resin. The moduli of the hybrids in the glassy state and rubbery state were significantly higher than those for the plain cured resin. The dispersion of HNTs in the resin matrix was very uniform as revealed by the transmission electron microscopy (TEM) results. The interfacial reactions between the HNTs and cyanate ester (CE) were revealed by the results of Fourier transform infrared spectroscopy (FTIR) and x-ray photoelectron spectroscopy (XPS). The substantially increased properties of the hybrids were attributed to the covalent bonding between the nanotubes and the matrix.

  11. Effect of solution concentration and aging conditions on PMR-15 resin

    NASA Technical Reports Server (NTRS)

    Roberts, G. D.; Vannucci, R. D.

    1986-01-01

    High performance liquid chromatography is utilized to evaluate the effect of temperature, solution concentration, and aging time on PMR-15 resin solutions. Fifty- and 70-wt percent PMR-15 resin solutions were prepared from the mixture of 5-norbornene-2,3-dicarboxylic ester (NE) acid, 4.4'-methylenedianiline (MDA), methanol, and 3,3',4.4.-benzophenonetetracarboxylic dimethyl ester (BTDE) acid solution. It is observed that in PMR-15 resin solution aged for 35 days at room temperature NE and MDA react to form amide and imide intermediates. The precipitation data reveal that in the 70-wt percent solution precipitation occurs after 12 days and in the 50-wt percent solution after 20 days; however, at lower temperatures (-11 C, and 2 C) no precipitation is detected. It is concluded that storage of resin solutions and powders at reduced temperatures extends shelf life by reducing the rate of imide formation.

  12. A New Resin Glycoside, Muricatin IX, from the Seeds of Ipomoea muricata.

    PubMed

    Ono, Masateru; Taketomi, Saki; Kakiki, Yuichi; Yasuda, Shin; Okawa, Masafumi; Kinjo, Junei; Yoshimitsu, Hitoshi; Nohara, Toshihiro

    2016-01-01

    A new resin glycoside, named muricatin IX (1), was isolated from the seeds of Ipomoea muricata (L.) JACQ. (Convolvulaceae). The structure of 1 was determined on the basis of spectroscopic data as well as chemical evidence. Compound 1 is the first representative of resin glycosides in which an organic acid connects the sugar moiety and the aglycone moiety to form macrocyclic ester ring. PMID:27581646

  13. meso-Ester Corroles.

    PubMed

    Canard, Gabriel; Gao, Di; D'Aléo, Anthony; Giorgi, Michel; Dang, Florian-Xuan; Balaban, Teodor Silviu

    2015-05-18

    The introduction of ester groups on the 5- and 15-meso positions of corroles stabilizes them against oxidation and induces a redshift of their absorption and emission spectra. These effects are studied through the photophysical and electrochemical characterization of up to 16 different 5,15-diester corroles, in which the third meso position is free or occupied by an aryl group, a long alkyl chain, or an ester moiety. Single-crystal X-ray structure analysis of five 5,15-diestercorroles and DFT and time-dependent DFT calculations show that the strong electron-withdrawing character of the 5,15 ester substituents is reinforced by their π overlap with the macrocyclic aromatic system. The crystal packing of corroles 2, 4, 6, 9, and 15 features short distances between chromophores that are stacked into columns thanks to the low steric hindrance of meso-ester groups. This close packing is partially due to intermolecular interactions that involve inner hydrogen and nitrogen atoms, and thereby, stabilize a single, identical corrole tautomeric form. PMID:25786789

  14. Kenaf methyl esters

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Additional or alternative feedstocks are one of the major areas of interest regarding biodiesel. In this paper, for the first time, the fuel properties of kenaf (Hibiscus cannabinus L.) seed oil methyl esters are comprehensively reported. This biodiesel is also relatively unique by containing small ...

  15. Kapok oil methyl esters

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The increased need for biodiesel feedstocks has caused various vegetable oils to be examined for this purpose. In the present work, the methyl esters of kapok (Ceiba pentandra) oil were prepared. The essential fuel properties were comprehensively determined and evaluated in comparison to specificati...

  16. Review of glycol ether and glycol ether ester solvents used in the coating industry.

    PubMed Central

    Smith, R L

    1984-01-01

    Ethylene oxide-based glycol ether and glycol ether ester solvents have been used in the coatings industry for the past fifty years. Because of their excellent performance properties (evaporation rate, blush resistance, flow-out and leveling properties, solubility for coating resins, solvent activity, mild odor, good coupling ability, good solvent release) a complete line of ethylene oxide-based solvents of various molecular weights has been developed. These glycol ether and glycol ether ester solvents have better solvent activity for coating resin than ester or ketone solvents in their evaporation rate range. The gloss, flow and leveling, and general performance properties of many coating systems are dependent on the use of these products in the coating formula. Because of the concern about the toxicity of certain ethylene oxide-based solvents, other products are being evaluated as replacements in coating formulas. PMID:6499793

  17. Incombustible resin composition

    NASA Technical Reports Server (NTRS)

    Akima, T.

    1982-01-01

    Incombustible resin compositions composed of aromatic compounds were obtained through (1) combustion polymer material and (2) bisphenol A or halogenated bisphenol A and bisphenol A diglycidl ether or halogenated bisphenol A diglycidyl ether. The aromatic compound is an adduct of bifunctional phenols and bifunctional epoxy resins.

  18. Delayed cure bismaleimide resins

    DOEpatents

    Not Available

    1982-08-12

    Prior art polybismaleimides begin to polymerize at or just above the melting point of the monomer. This patent describes new bismaleimide resins which have an increased pot life and provide longer time periods in which the monomer remains fluid. The resins can be polymerized into molded articles with a high uniformity of properties. (DLC)

  19. Solidification of EPICOR-II resin waste forms

    SciTech Connect

    Neilson, Jr, R M; McConnell, Jr, J W

    1984-08-01

    One goal of the EPICOR-II Research and Disposition Program is to investigate methods of immobilizing ion exchange resin wastes by solidification. Formulations were developed for the solidification of EPICOR-II prefilter wastes from Three Mile Island Unit-2 using Portland type I-II cement and vinyl ester-styrene. In developing formulations, ion exchange resins and zeolite simulating those in EPICOR-II prefilters were used. Once suitable formulations were defined, radioactive wastes from EPICOR-II prefilters PF-7 (organic ion exchange resins) and PF-24 (organic ion exchange resins with zeolite) were solidified. A total of 267 radioactive waste form specimens were prepared in hot cell solidification operations. That total includes 136 Portland cement specimens (72 incorporating prefilter PF-7 waste and 64 with prefilter PF-24 waste) and 131 vinyl ester-styrene specimens (71 incorporating prefilter PF-7 waste and 60 with prefilter PF-24 waste). The methodologies used and products produced are described and evaluated in this report.

  20. Development of resins for composites by resin transfer molding

    NASA Technical Reports Server (NTRS)

    Woo, Edmund P.; Puckett, Paul M.; Maynard, Shawn J.

    1991-01-01

    Designed to cover a wide range of resin technology and to meet the near-term and long-term needs of the aircraft industry, this research has three objectives: to produce resin transfer molding (RES) resins with improved processability, to produce prepreg systems with high toughness and service temperature, and to produce new resin systems. Progress on reaching the objectives is reported.

  1. The ESTER project

    NASA Astrophysics Data System (ADS)

    Rieutord, M.; Dintrans, B.; Lignières, F.; Corbard, T.; Pichon, B.

    2005-12-01

    The ESTER project aims at building a stellar evolution code in two dimensions of space for the study of effects of rotation. The numerical scheme is based on spectral methods with a spherical harmonic decomposition in the horizontal direction and a Chebyshev polynomial expansion in the vertical direction. Coordinates adapted to the centrifugally distorted shape are mapped to spherical coordinates. First tests on rotating polytropes are presented.

  2. Biocompatibility of composite resins

    PubMed Central

    Mousavinasab, Sayed Mostafa

    2011-01-01

    Dental materials that are used in dentistry should be harmless to oral tissues, so they should not contain any leachable toxic and diffusible substances that can cause some side effects. Reports about probable biologic hazards, in relation to dental resins, have increased interest to this topic in dentists. The present paper reviews the articles published about biocompatibility of resin-restorative materials specially resin composites and monomers which are mainly based on Bis-GMA and concerns about their degradation and substances which may be segregated into oral cavity. PMID:23372592

  3. Biocidal quaternary ammonium resin

    NASA Technical Reports Server (NTRS)

    Janauer, G. E.

    1983-01-01

    Activated carbon (charcoal) and polymeric resin sorbents are widely used in the filtration and treatment of drinking water, mainly to remove dissolved organic and inorganic impurities and to improve the taste. Earlier hopes that activated carbon might "disinfect' water proved to be unfounded. The feasibility of protecting against microbial infestation in charcoal and resin beds such as those to be incorporated into total water reuse systems in spacecraft was investigated. The biocidal effect of IPCD (insoluable polymeric contact disinfectants) in combination with a representative charcoal was assessed. The ion exchange resins (IPCD) were shown to adequately protect charcoal and ion exchange beds.

  4. New semisynthetic antimicrobial labdane-type diterpenoids derived from the resin "ladano" of Cistus creticus.

    PubMed

    Kalpoutzakis, E; Aligiannis, N; Mitaku, S; Chinou, I; Harvala, C; Skaltsounis, A L

    2001-01-01

    The antimicrobial activity of fifteen semisynthetic labdane-type diterpenes derived from the two major natural compounds 3 and 4 of the resin "ladano" of Cistus creticus is reported. The chloroethyl carbamidic esters 15 and 20 showed the strongest antimicrobial activity against Gram(+), Gram(-) bacteria and pathogenic fungi. PMID:11302213

  5. Method of making alkyl esters

    DOEpatents

    Elliott, Brian

    2010-09-14

    Methods of making alkyl esters are described herein. The methods are capable of using raw, unprocessed, low-cost feedstocks and waste grease. Generally, the method involves converting a glyceride source to a fatty acid composition and esterifying the fatty acid composition to make alkyl esters. In an embodiment, a method of making alkyl esters comprises providing a glyceride source. The method further comprises converting the glyceride source to a fatty acid composition comprising free fatty acids and less than about 1% glyceride by mass. Moreover, the method comprises esterifying the fatty acid composition in the presence of a solid acid catalyst at a temperature ranging firm about 70.degree. C. to about 120.degree. C. to produce alkyl esters, such that at least 85% of the free fatty acids are converted to alkyl esters. The method also incorporates the use of packed bed reactors for glyceride conversion and/or fatty acid esterification to make alkyl esters.

  6. Processing and properties of SiC/vinyl ester nanocomposites

    NASA Astrophysics Data System (ADS)

    Yong, Virginia; Hahn, H. Thomas

    2004-09-01

    The feasibility of improving polymer composites was investigated using 30 nm SiC nanoparticles in a vinyl ester resin. Even when the particle loading was less than 4% by weight, the viscosity of the nanoparticle suspension was found to increase much higher than that of microparticle suspension. This phenomenon may be the result of association between nanoparticles and polymer molecules, effectively making the nanoparticles larger. The resulting reduction in the mobility of polymer molecules also led to delayed curing. Ultrasonic mixing did not fully disperse the particles. As a result, the composite strength did not improve although the modulus increased. The use of a dispersant, methacryloxy propyl trimethoxy silane (MPS), improved the dispersion quality and hence the composite strength. The paper discusses the issues involved with processing, characterization and properties of SiC/vinyl ester nanocomposites. Methods of improving the nanocomposite quality are proposed in the paper as well.

  7. Interphase properties of carbon fiber-vinyl ester composites

    SciTech Connect

    Rich, M.J.; Weitzsacker, C.W.; Xie, M.; Corbin, S.; Drzal, L.T.

    1997-12-31

    The decline in price of carbon fibers gives an economic incentive to reconsider the use of these reinforcements in markets previously deemed too expensive, such as the automotive industry. Additionally, it would be advantageous if carbon fibers could be immediately used with polymers and manufacturing methods currently used for the production of fiberglass composites, and thus minimize development and startup costs. Of particular interest is the use of carbon fibers in vinyl esters manufactured by resin transfer molding, a leading manufacturing technology for the production of large and complex shaped composite parts. However, carbon fiber-vinyl ester composites have inferior mechanical properties as a result of poor bonding between fiber and matrix. The objective of this program was to evaluate the physical and chemical mechanisms currently thought responsible for adhesion in order to improve the performance of carbon fiber-vinyl ester composites. The effect of carbon fiber surface treatment on fiber chemistry and topography was evaluated to uncover the fundamental mechanisms governing carbon fiber to vinyl ester adhesion.

  8. Thermally stable laminating resins

    NASA Technical Reports Server (NTRS)

    Jones, R. J.; Vaughan, R. W.; Burns, E. A.

    1972-01-01

    Improved thermally stable laminating resins were developed based on the addition-type pyrolytic polymerization. Detailed monomer and polymer synthesis and characterization studies identified formulations which facilitate press molding processing and autoclave fabrication of glass and graphite fiber reinforced composites. A specific resin formulation, termed P10P was utilized to prepare a Courtaulds HMS reinforced simulated airfoil demonstration part by an autoclave molding process.

  9. Acetylene terminated matrix resins

    NASA Technical Reports Server (NTRS)

    Goldfarb, I. J.; Lee, Y. C.; Arnold, F. E.; Helminiak, T. E.

    1985-01-01

    The synthesis of resins with terminal acetylene groups has provided a promising technology to yield high performance structural materials. Because these resins cure through an addition reaction, no volatile by-products are produced during the processing. The cured products have high thermal stability and good properties retention after exposure to humidity. Resins with a wide variety of different chemical structures between the terminal acetylene groups are synthesized and their mechanical properties studied. The ability of the acetylene cured polymers to give good mechanical properties is demonstrated by the resins with quinoxaline structures. Processibility of these resins can be manipulated by varying the chain length between the acetylene groups or by blending in different amounts of reactive deluents. Processing conditions similar to the state-of-the-art epoxy can be attained by using backbone structures like ether-sulfone or bis-phenol-A. The wide range of mechanical properties and processing conditions attainable by this class of resins should allow them to be used in a wide variety of applications.

  10. A new ester isolated from Ferula assa-foetida L.

    PubMed

    Abd El-Razek, Mohamed H

    2007-09-01

    A new caffeic acid cinnamyl ester (1) was isolated from the n-hexane-soluble fraction of an MeOH extract of the gum resin of Ferula assa-foetida L. The structure was determined to be (2E)-3,4-dimethoxycinnamyl-3-(3,4 diacetoxyphenyl) acrylate on the basis of spectroscopic data including 1D- and 2D-NMR. Compound 1 showed moderate activity for inhibiting LPS-induced nitric oxide production in murine macrophage RAW264.7 cells, with an IC50 value of 54.9 microm. PMID:17690448

  11. Semisynthesis of the antiviral abietane diterpenoid jiadifenoic acid C from callitrisic acid (4-epidehydroabietic acid) isolated from sandarac resin.

    PubMed

    González, Miguel A; Zaragozá, Ramón J

    2014-09-26

    The semisynthesis of the antiviral abietane diterpenoid (+)-jiadifenoic acid C starting from the available methyl ester of callitrisic acid (4-epidehydroabietic acid) isolated from sandarac resin is reported. A protocol for the isolation of methyl callitrisate (methyl 4-epidehydroabietate) in gram quantities from sandarac resin is also described. Allylic C-17 oxygenation was introduced by regioselective dehydrogenation of the isopropyl group of methyl callitrisate with DDQ followed by selenium-catalyzed allylic oxidation. Ester hydrolysis afforded (+)-jiadifenoic acid C in 22% overall yield from methyl callitrisate. This semisynthetic route provides a convenient source of this anti-Coxsackie virus B natural product for further biological studies. PMID:25166492

  12. Lipoate ester multifunctional lubricant additives

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Seven lipoate esters were synthesized by esterification of lipoic acid with different structures of alcohols in the presence of a solid acid catalyst and without solvent. The esters were obtained in good yield, characterized using 1H NMR and GPC; and their physical properties investigated. Four of t...

  13. Synthesis of pyromellitic acid esters

    NASA Technical Reports Server (NTRS)

    Fedorova, V. A.; Donchak, V. A.; Martynyuk-Lototskaya, A. N.

    1985-01-01

    The ester acids necessary for studyng the thermochemical properties of pyromellitic acid (PMK)-based peroxides were investigated. Obtaining a tetramethyl ester of a PMK was described. The mechanism of an esterification reaction is discussed, as is the complete esterification of PMK with primary alcohol.

  14. Graphite fiber reinforced thermoplastic resins

    NASA Technical Reports Server (NTRS)

    Novak, R. C.

    1975-01-01

    Mechanical properties of neat resin samples and graphite fiber reinforced samples of thermoplastic resins were characterized with particular emphasis directed to the effects of environmental exposure (humidity, temperature and ultraviolet radiation). Tensile, flexural, interlaminar shear, creep and impact strengths were measured for polysulfone, polyarylsulfone and a state-of-the-art epoxy resin samples. In general, the thermoplastic resins exhibited environmental degradation resistance equal to or superior to the reference epoxy resin. Demonstration of the utility and quality of a graphite/thermoplastic resin system was accomplished by successfully thermoforming a simulated compressor blade and a fan exit guide vane.

  15. Devices using resin wafers and applications thereof

    DOEpatents

    Lin, YuPo J.; Henry, Michael P.; Snyder, Seth W.; St. Martin, Edward; Arora, Michelle; de la Garza, Linda

    2009-03-24

    Devices incorporating a thin wafer of electrically and ionically conductive porous material made by the method of introducing a mixture of a thermoplastic binder and one or more of anion exchange moieties or cation exchange moieties or mixtures thereof and/or one or more of a protein capture resin and an electrically conductive material into a mold. The mixture is subjected to temperatures in the range of from about 60.degree. C. to about 170.degree. C. at pressures in the range of from about 0 to about 500 psig for a time in the range of from about 1 to about 240 minutes to form thin wafers. Devices include electrodeionization and separative bioreactors in the production of organic and amino acids, alcohols or esters for regenerating cofactors in enzymes and microbial cells.

  16. New lipophilic tyrosyl esters. Comparative antioxidant evaluation with hydroxytyrosyl esters.

    PubMed

    Mateos, Raquel; Trujillo, Mariana; Pereira-Caro, Gema; Madrona, Andrés; Cert, Arturo; Espartero, José Luis

    2008-11-26

    New lipophilic esters of tyrosol, a naturally occurring phenol with interesting biological properties, have been synthesized in good yields by a chemoselective procedure, using lipase from Candida antarctica or p-toluenesulfonic acid as catalysts. Their antioxidant activities have been evaluated by the Rancimat test in lipophilic food matrices, as well as by FRAP and ABTS assays in methanolic solutions, and compared with those of previously synthesized hydroxytyrosyl esters. Free tyrosol, hydroxytyrosol, butylhydroxytoluene, and alpha-tocopherol were used as standards. All methods used for the antioxidant activity evaluation emphasized the high influence of the ortho-diphenolic structure on the antioxidant capacity, tyrosol and its derivatives being less active than hydroxytyrosol and its analogues and even less than BHT and alpha-tocopherol. In addition, the Rancimat test revealed a lower activity for ester derivatives than for their respective reference compounds (HTy or Ty), in agreement with the polar paradox. On the other hand, FRAP and ABTS methods reported an opposite behavior between the synthetic esters and their respective references. Thus, hydroxytyrosyl esters were more active than HTy, whereas tyrosyl esters were less active than Ty. The length and nature of the acyl side chain did not seem to play an important role in the antioxidant activity of either the hydroxytyrosyl or tyrosyl ester series, since no significant differences were observed among them. PMID:18983160

  17. Method for removing contaminants from plastic resin

    DOEpatents

    Bohnert, George W.; Hand, Thomas E.; DeLaurentiis, Gary M.

    2008-12-09

    A resin recycling method that produces essentially contaminant-free synthetic resin material in an environmentally safe and economical manner. The method includes receiving the resin in container form. The containers are then ground into resin particles. The particles are exposed to a solvent, the solvent contacting the resin particles and substantially removing contaminants on the resin particles. After separating the particles and the resin, a solvent removing agent is used to remove any residual solvent remaining on the resin particles after separation.

  18. Phosphonic acid based exchange resins

    DOEpatents

    Horwitz, E.P.; Alexandratos, S.D.; Gatrone, R.C.; Chiarizia, R.

    1995-09-12

    An ion exchange resin is described for extracting metal ions from a liquid waste stream. An ion exchange resin is prepared by copolymerizing a vinylidene diphosphonic acid with styrene, acrylonitrile and divinylbenzene. 10 figs.

  19. Phosphonic acid based exchange resins

    DOEpatents

    Horwitz, E. Philip; Alexandratos, Spiro D.; Gatrone, Ralph C.; Chiarizia, Ronato

    1995-01-01

    An ion exchange resin for extracting metal ions from a liquid waste stream. An ion exchange resin is prepared by copolymerizing a vinylidene diphosphonic acid with styrene, acrylonitrile and divinylbenzene.

  20. Epoxy resin holograms

    NASA Astrophysics Data System (ADS)

    Ruiz-Limón, B.; Wetzel, G. B. J.; Olivares Pérez, A.; Ponce-Lee, E. L.; Ramos-Garcia, R.; Toxqui López, S.; Hernández-Garay, M. P.; Fuentes-Tapia, I.

    2006-02-01

    We observed that a commercial epoxy resin (Comex (R) is enable to record images by means of lithography techniques. We can generate a hologram using a digital image and a computer simulation program and transferred it on our resin by microlithography techniques to get a phase hologram and increase its efficiency. The exposition to the heat produce temperature gradients and the information in the mask is transferred to the material by the refraction index changes, thus the film is recorded. At the same time the hologram is cured.

  1. Resin impregnation process for producing a resin-fiber composite

    NASA Technical Reports Server (NTRS)

    Palmer, Raymond J. (Inventor); Moore, William E. (Inventor)

    1994-01-01

    Process for vacuum impregnation of a dry fiber reinforcement with a curable resin to produce a resin-fiber composite, by drawing a vacuum to permit flow of curable liquid resin into and through a fiber reinforcement to impregnate same and curing the resin-impregnated fiber reinforcement at a sufficient temperature and pressure to effect final curing. Both vacuum and positive pressure, e.g. autoclave pressure, are applied to the dry fiber reinforcement prior to application of heat and prior to any resin flow to compact the dry fiber reinforcement, and produce a resin-fiber composite of reduced weight, thickness and resin content, and improved mechanical properties. Preferably both a vacuum and positive pressure, e.g. autoclave pressure, are also applied during final curing.

  2. Nontoxic Resins Advance Aerospace Manufacturing

    NASA Technical Reports Server (NTRS)

    2009-01-01

    The 2008 NASA Commercial Invention of the Year, PETI-330, is a polyimide matrix resin that performs well at high temperatures and is easily processed into composites in a simple, short curing cycle. Invented by scientists at Langley Research Center, PETI-330 is now licensed to Ube Industries, based in Japan with its American headquarters in New York. In addition to being durable and lightweight, the resin is also nontoxic, which makes it safe for workers to handle. PETI-330 was created specifically for heat-resistant composites formed with resin transfer molding and resin infusion, which formerly could only be used with low temperature resin systems.

  3. Acrylic esters in radiation polymerization

    SciTech Connect

    Fomina, N.V.; Khoromskaya, V.A.; Shiryaeva, G.V.

    1988-03-01

    The radiation behavior of (meth)acrylic esters of varying structure was studied. It was shown that in radiation polymerization, in contrast to thermal polymerization, the structure of the ester part can significantly affect the reaction rate and capacity for polymerization in the presence of oxygen. The experimental data are explained from the point of view of consideration of nonvalence effects of the substitutent on the reactivity of the double bond.

  4. Flame Retardant Epoxy Resins

    NASA Technical Reports Server (NTRS)

    Thompson, C. M.; Smith, J. G., Jr.; Connell, J. W.; Hergenrother, P. M.; Lyon, R. E.

    2004-01-01

    As part of a program to develop fire resistant exterior composite structures for future subsonic commercial aircraft, flame retardant epoxy resins are under investigation. Epoxies and their curing agents (aromatic diamines) containing phosphorus were synthesized and used to prepare epoxy formulations. Phosphorus was incorporated within the backbone of the epoxy resin and not used as an additive. The resulting cured epoxies were characterized by thermogravimetric analysis, propane torch test, elemental analysis and microscale combustion calorimetry. Several formulations showed excellent flame retardation with phosphorous contents as low as 1.5% by weight. The fracture toughness of plaques of several cured formulations was determined on single-edge notched bend specimens. The chemistry and properties of these new epoxy formulations are discussed.

  5. Bismaleimide Copolymer Matrix Resins

    NASA Technical Reports Server (NTRS)

    Parker, John A.; Heimbuch, Alvin H.; Hsu, Ming-Ta S.; Chen, Timothy S.

    1987-01-01

    Graphite composites, prepared from 1:1 copolymer of two new bismaleimides based on N,N'-m-phenylene-bis(m-amino-benzamide) structure have mechanical properties superior to those prepared from other bismaleimide-type resins. New heat-resistant composites replace metal in some structural applications. Monomers used to form copolymers with superior mechanical properties prepared by reaction of MMAB with maleic or citraconic anhydride.

  6. System for removing contaminants from plastic resin

    DOEpatents

    Bohnert, George W.; Hand, Thomas E.; DeLaurentiis, Gary M.

    2010-11-23

    A resin recycling system that produces essentially contaminant-free synthetic resin material in an environmentally safe and economical manner. The system includes receiving the resin in container form. A grinder grinds the containers into resin particles. The particles are exposed to a solvent in one or more solvent wash vessels, the solvent contacting the resin particles and substantially removing contaminants on the resin particles. A separator is used to separate the resin particles and the solvent. The resin particles are then placed in solvent removing element where they are exposed to a solvent removing agent which removes any residual solvent remaining on the resin particles after separation.

  7. Advanced thermoplastic resins, phase 1

    NASA Technical Reports Server (NTRS)

    Hendricks, C. L.; Hill, S. G.; Falcone, A.; Gerken, N. T.

    1991-01-01

    Eight thermoplastic polyimide resin systems were evaluated as composite matrix materials. Two resins were selected for more extensive mechanical testing and both were versions of LaRC-TPI (Langley Research Center - Thermoplastic Polyimide). One resin was made with LaRC-TPI and contained 2 weight percent of a di(amic acid) dopant as a melt flow aid. The second system was a 1:1 slurry of semicrystalline LaRC-TPI powder in a polyimidesulfone resin diglyme solution. The LaRC-TPI powder melts during processing and increases the melt flow of the resin. Testing included dynamic mechanical analysis, tension and compression testing, and compression-after-impact testing. The test results demonstrated that the LaRC-TPI resins have very good properties compared to other thermoplastics, and that they are promising matrix materials for advanced composite structures.

  8. Vitrification of ion exchange resins

    DOEpatents

    Cicero-Herman, Connie A.; Workman, Rhonda Jackson

    2001-01-01

    The present invention relates to vitrification of ion exchange resins that have become loaded with hazardous or radioactive wastes, in a way that produces a homogenous and durable waste form and reduces the disposal volume of the resin. The methods of the present invention involve directly adding borosilicate glass formers and an oxidizer to the ion exchange resin and heating the mixture at sufficient temperature to produce homogeneous glass.

  9. Investigate the morphology and chemical properties of nanoengineered vinyl ester clay nanocomposite

    NASA Astrophysics Data System (ADS)

    Yebassa, Desta L.

    In recent years the area of nanocomposites has received considerable attention with the expectation that nanoclay filled polymers can be useful as matrix materials for composite applications. Although considerable progress has been made in understanding structure-property relationship of nanocomposites, consistent improvement in properties of nanocomposites remains elusive. This is because the addition of hydrophilic clay sheets to a hydrophobic polymeric resin can cause aggregation of clay sheets with and the aggregated clay sheets acting as stress concentration sites in the polymer matrix. The primary objective of this study was to improve the clay platelet separation in vinyl ester resin matrix by organically modifying the nanoclay platelet with a partially reactive onium salt. An approach to improving the compatibility of hydrophilic clay with the polymeric resin, is to chemically functionalize the clay with short and long chain cations, so as to increase the organophilicity of the clay surface layer and provide sufficient layer separation for polymer chains to infiltrate during curing. For our research purpose we selected medium and long chain length alkyl ammonium salts to functionalize clay. The medium chain length reactive onium salt (o-undecylenyl amine hydrochloride) was synthesized from commercial o-undecylenyl alcohol through a series of synthetic conversions which include bromination, azide formation, and azide reduction. The clay was ion exchanged with both reactive and non-reactive medium and long chain onium salts to form partially reactive clay. When the partially reactive clay and vinyl ester resin was sonicated with styrene, we obtained a variety of exfoliated/intercalated vinyl ester nanocomposite. Monomer styrene and high intensity ultrasonic mixing produces vinyl ester nanocomposite with the highest degree of clay platelet exfoliation. We also investigated the degradation of filled and unfilled polymer film exposed in alkali medium at various

  10. Phosphorus-containing bisimide resins

    NASA Technical Reports Server (NTRS)

    Varma, I. K.; Fohlen, G. M.; Parker, J. A. (Inventor)

    1981-01-01

    The production of fire-resistant resins particularly useful for making laminates with inorganic fibers such as graphite fibers is discussed. The resins are by (1) condensation of an ethylenically unsaturated cyclic anhydride with a bis(diaminophenyl) phosphine oxide, and (2) by addition polymerization of the bisimide so obtained. Up to about 50%, on a molar basis, of benzophenonetetracarboxylic acid anhydride can be substituted for some of the cyclic anhydride to alter the properties of the products. Graphite cloth laminates made with these resins show 800 C char yields greater than 70% by weight in nitrogen. Limiting oxygen indexes of more than 100% are determined for these resins.

  11. A new polyimide laminatine resin

    NASA Technical Reports Server (NTRS)

    Barrick, J. D. W.; Jewell, R. A.; Stclair, T. L.

    1977-01-01

    Addition polyimide for composite materials is based on liquid monomers and has significant advantages over most existing high-temperature resins. Essentially solventless prepreg has improved drape, tack.

  12. Fiberite 954: cyanate ester systems

    NASA Astrophysics Data System (ADS)

    Almen, G. R.; Mackenzie, P. D.; Malhotra, Vinay; Maskell, R. K.

    1992-09-01

    Cost and weight savings achieved by the use of composites have allowed these materials to displace their metal counterparts in space applications. Epoxy matrix based carbon fiber reinforced composites, such as Fiberite 934, have been used for a number of years. Relative to these systems, cyanate esters offer a number of unique attributes such as excellent hydrophobicity and electrical properties, reduced residual stress and better microcrack resistance, and improved radiation resistance. The significant reduction in water sorption and the low response to uptake make it possible to achieve much improved dimensional stability and reduced outgassing. These features may be used to advantage in electro-optical applications in space. ICI Fiberite has developed cyanate ester based prepreg systems that are penetrating the satellite, military radome and structural aerospace markets. Features of these systems will be presented and the properties of the cyanate ester based prepreg, Fiberite 954- 3, will be compared to those of Fiberite 934.

  13. An Evaluation of Fracture Toughness of Vinyl Ester Composites Cured under Microwave Conditions

    NASA Astrophysics Data System (ADS)

    Ku, H.; Chan, W. L.; Trada, M.; Baddeley, D.

    2007-12-01

    The shrinkage of vinyl ester particulate composites has been reduced by curing the resins under microwave conditions. The reduction in the shrinkage of the resins by microwaves will enable the manufacture of large vinyl ester composite items possible (H.S. Ku, G. Van Erp, J.A.R. Ball, and S. Ayers, Shrinkage Reduction of Thermoset Fibre Composites during Hardening using Microwaves Irradiation for Curing, Proceedings, Second World Engineering Congress, Kuching, Malaysia, 2002a, 22-25 July, p 177-182; H.S. Ku, Risks Involved in Curing Vinyl Ester Resins Using Microwaves Irradiation. J. Mater. Synth. Proces. 2002b, 10(2), p 97-106; S.H. Ku, Curing Vinyl Ester Particle Reinforced Composites Using Microwaves. J. Comp. Mater., (2003a), 37(22), p 2027-2042; S.H. Ku and E. Siores, Shrinkage Reduction of Thermoset Matrix Particle Reinforced Composites During Hardening Using Microwaves Irradiation, Trans. Hong Kong Inst. Eng., 2004, 11(3), p 29-34). In tensile tests, the yield strengths of samples cured under microwave conditions obtained are within 5% of those obtained by ambient curing; it is also found that with 180 W microwave power, the tensile strengths obtained for all duration of exposure to microwaves are also within the 5% of those obtained by ambient curing. While, with 360 W microwave power, the tensile strengths obtained for all duration of exposure to microwaves are 5% higher than those obtained by ambient curing. Whereas, with 540 W microwave power, the tensile strengths obtained for most samples are 5% below those obtained by ambient curing (H. Ku, V.C. Puttgunta, and M. Trada, Young’s Modulus of Vinyl Ester Composites Cured by Microwave Irradiation: Preliminary Results, J. Electromagnet. Waves Appl., 2007, 20(14), p. 1911-1924). This project, using 33% by weight fly ash reinforced vinyl ester composite [VE/FLYSH (33%)], is to further investigate the difference in fracture toughness between microwave cured vinyl ester particulate composites and those cured

  14. Synthesis and Utility of Dihydropyridine Boronic Esters.

    PubMed

    Panda, Santanu; Coffin, Aaron; Nguyen, Q Nhu; Tantillo, Dean J; Ready, Joseph M

    2016-02-01

    When activated by an acylating agent, pyridine boronic esters react with organometallic reagents to form a dihydropyridine boronic ester. This intermediate allows access to a number of valuable substituted pyridine, dihydropyridine, and piperidine products. PMID:26694785

  15. Liquid Crystalline Thermosets from Ester, Ester-imide, and Ester-amide Oligomers

    NASA Technical Reports Server (NTRS)

    Dingemans, Theodorus J. (Inventor); Weiser, Erik S. (Inventor); St. Clair, Terry L. (Inventor)

    2009-01-01

    Main chain thermotropic liquid crystal esters, ester-imides, and ester-amides were prepared from AA, BB, and AB type monomeric materials and end-capped with phenylacetylene, phenylmaleimide, or nadimide reactive end-groups. The end-capped liquid crystal oligomers are thermotropic and have, preferably, molecular weights in the range of approximately 1000-15,000 grams per mole. The end-capped liquid crystaloligomers have broad liquid crystalline melting ranges and exhibit high melt stability and very low melt viscosities at accessible temperatures. The end-capped liquid crystal oli-gomers are stable forup to an hour in the melt phase. They are highly processable by a variety of melt process shape forming and blending techniques. Once processed and shaped, the end-capped liquid crystal oigomers were heated to further polymerize and form liquid crystalline thermosets (LCT). The fully cured products are rubbers above their glass transition temperatures.

  16. 40 CFR 414.50 - Applicability; description of the thermosetting resins subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... the products classified under SIC 28214 thermosetting resins including those resins and resin groups listed below. Product groups are indicated with an asterisk (*). *Alkyd Resins Dicyanodiamide Resin *Epoxy Resins *Fumaric Acid Polyesters *Furan Resins Glyoxal-Urea Formaldehyde Textile Resin...

  17. 40 CFR 414.50 - Applicability; description of the thermosetting resins subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... the products classified under SIC 28214 thermosetting resins including those resins and resin groups listed below. Product groups are indicated with an asterisk (*). *Alkyd Resins Dicyanodiamide Resin *Epoxy Resins *Fumaric Acid Polyesters *Furan Resins Glyoxal-Urea Formaldehyde Textile Resin...

  18. 40 CFR 414.50 - Applicability; description of the thermosetting resins subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... the products classified under SIC 28214 thermosetting resins including those resins and resin groups listed below. Product groups are indicated with an asterisk (*). *Alkyd Resins Dicyanodiamide Resin *Epoxy Resins *Fumaric Acid Polyesters *Furan Resins Glyoxal-Urea Formaldehyde Textile Resin...

  19. 40 CFR 414.50 - Applicability; description of the thermosetting resins subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... the products classified under SIC 28214 thermosetting resins including those resins and resin groups listed below. Product groups are indicated with an asterisk (*). *Alkyd Resins Dicyanodiamide Resin *Epoxy Resins *Fumaric Acid Polyesters *Furan Resins Glyoxal-Urea Formaldehyde Textile Resin...

  20. 40 CFR 414.50 - Applicability; description of the thermosetting resins subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... the products classified under SIC 28214 thermosetting resins including those resins and resin groups listed below. Product groups are indicated with an asterisk (*). *Alkyd Resins Dicyanodiamide Resin *Epoxy Resins *Fumaric Acid Polyesters *Furan Resins Glyoxal-Urea Formaldehyde Textile Resin...

  1. Effect of chemical structure and network formation on physical properties of di(cyanate ester) thermosets.

    PubMed

    Reams, Josiah T; Guenthner, Andrew J; Lamison, Kevin R; Vij, Vandana; Lubin, Lisa M; Mabry, Joseph M

    2012-02-01

    Key physical properties of three dicyanate ester monomers, bisphenol A dicyanate (BADCy), bisphenol E dicyanate (LECy), and the dicyanate of a silicon-containing analogue of bisphenol A (SiMCy) were investigated as a function of cyanurate conversion at conversions ranging from approximately 70% to greater than 90% in order to assess the range of applicability of both traditional and more unusual structure-property-process relationships known for cyanate ester resins. A more complete understanding of these relationships is essential for the continued development of cyanate ester resins and their composites for a wide variety of aerospace applications. The degree of cure in each system was determined by differential scanning calorimetry (DSC). The degree of conversion achieved at a given temperature was dependent on the structure of the repeat unit, with SiMCy displaying the highest relative ease of cure. The density at room temperature was found to decrease monotonically with increasing conversion for all monomer types studied. In contrast, the water uptake decreased with increasing cure for all three materials over most or all of the conversion range studied, but leveled off or began to increase with increasing conversion at conversions of approximately 90%. The T(g) decreased after exposure to hot water in resins with greater than 85% conversion, but unexpectedly increased in samples with lower conversions. An investigation of the effect of hot water exposure on network chemistry via infrared spectroscopy indicated that carbamate formation varied with both monomer chemistry and extent of cure, but was greatest for the BADCy polycyanurates. On the other hand, the unreacted cyanate ester band tended to disappear uniformly, suggesting that reactions other than carbamate formation (such as cyclotrimerization) may also take place during exposure to hot water, possibly giving rise to the observed unusual increases in T(g) upon exposure. PMID:22311550

  2. Trimerization of Phenyl Cyanate Ester

    NASA Astrophysics Data System (ADS)

    Pallaka, Madhusudhan Reddy; Simon, Sindee L.

    2015-03-01

    The kinetics of phenyl cyanate ester trimerization is studied in the bulk using differential scanning calorimetry. Dynamic experiments for different heating rates are analyzed for the activation energy using the model-free Kissinger-Akahira-Sunose(KAS) isoconversion method. The activation energy and other kinetic parameters are also obtained by fitting the dynamic data to a first order autocatalytic reaction model, which well describes the experimental data. The activation energy obtained from the KAS isoconversion method (70.1 kJ/mol) is in good agreement with that obtained from the kinetic model (73.2 kJ/mol) and is much lower than the more bulky cyanate esters studied in our laboratory, which have activation energies of approximately 95 kJ/mol. In addition, the rate constant for the phenyl cyanate ester is one to two orders higher than the bulkier cyanate esters in the temperature range of 200 to 300°C. Further elucidation of the dynamic experiments revealed a strong dependence of the reaction kinetics on the sample weight. Future work aims to understand this finding.

  3. REPRODUCTIVE TOXICITY OF PHTHALATE ESTERS

    EPA Science Inventory

    Phthalate esters display several modes of toxicity in mammalian species. In the rat, in utero exposure at relatively low dosage levels disrupts development of the reproductive system of the male rat by altering fetal testis hormone production. This presentation is a review of t...

  4. Imide modified epoxy matrix resins

    NASA Technical Reports Server (NTRS)

    Scola, D. A.; Pater, R. H.

    1981-01-01

    High char yield epoxy using novel bisimide amines (BIA's) as curing agents with a state of the art epoxy resin was developed. Stoichiometric quantities of the epoxy resin and the BIA's were studied to determine the cure cycle required for preparation of resin specimens. The bisimide cured epoxies were designated IME's (imide modified epoxy). The physical, thermal and mechanical properties of these novel resins were determined. The levels of moisture absorption exhibited by the bisimide amine cured expoxies (IME's) were considerably lower than the state of the art epoxies. The strain-to-failure of the control resin system was improved 25% by replacement of DDS with 6F-DDS. Each BIA containing resin exhibited twice the char yield of the control resin MY 720/DDS. Graphite fiber reinforced control (C) and IME resins were fabricated and characterized. Two of the composite systems showed superior properties compared to the other Celion 6000/IME composite systems and state of the art graphite epoxy systems. The two systems exhibited excellent wet shear and flexural strengths and moduli at 300 and 350 F.

  5. 40 CFR 721.2805 - Acrylate ester.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Acrylate ester. 721.2805 Section 721... Acrylate ester. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as an acrylate ester (PMN P-96-824) is subject to reporting under...

  6. 40 CFR 721.3034 - Methylamine esters.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Methylamine esters. 721.3034 Section... Substances § 721.3034 Methylamine esters. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as methylamine esters (PMN P-94-982) is...

  7. 40 CFR 721.3034 - Methylamine esters.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Methylamine esters. 721.3034 Section... Substances § 721.3034 Methylamine esters. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as methylamine esters (PMN P-94-982) is...

  8. 40 CFR 721.2805 - Acrylate ester.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Acrylate ester. 721.2805 Section 721... Acrylate ester. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as an acrylate ester (PMN P-96-824) is subject to reporting under...

  9. Biodiesel With Optimized Fatty Ester Composition

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biodiesel is largely composed of the mono-alkyl esters, usually methyl esters, of vegetable oils or animal fats with its fatty acid profile corresponding to that of the parent oil or fat. The different fatty esters have varying properties of relevance to biodiesel. The feedstock-dependent variatio...

  10. Performance testing of grout-based waste forms for the solidification of anion exchange resins

    SciTech Connect

    Morgan, I.L.; Bostick, W.D.

    1990-10-01

    The solidification of spent ion exchanges resins in a grout matrix as a means of disposing of spent organic resins produced in the nuclear fuel cycle has many advantages in terms of process simplicity and economy, but associated with the process is the potential for water/cement/resins to interact and degrade the integrity of the waste form solidified. Described in this paper is one possible solution to preserving the integrity of these solidified waste forms: the encapsulation of beaded anion exchange resins in grout formulations containing ground granulated blast furnace slag, Type I-II (mixed) portland cement, and additives (clays, amorphous silica, silica fume, and fly ash). The results of the study reported herein show the cured waste form tested has a low leach rate for nitrate ion from the resin (and a low leach rate is inferred for Tc-99) and acceptable durability as assessed by the water immersion and freezing/thawing test protocols. The results also suggest a tested surrogate waste form prepared in vinyl ester styrene binder performs satisfactorily against the wetting/drying criterion, and it should offer additional insight into future work on the solidification of spent organic resins. 26 refs., 4 figs., 5 tabs.

  11. Process study of polycyanate resin for wet-filament wound high-strength composites

    SciTech Connect

    Frame, B.J.

    1997-12-31

    Polycyanate (or cyanate ester) resins offer advantages as composite matrices because of their high thermal stability, low outgassing, low water absorption and radiation resistance. This report describes the results of a processing study to develop high-strength hoop-wound composite by the wet-filament winding method using Toray T1000G carbon fiber and YLA RS-14 polycyanate resin as the constituent materials. T1000G/RS-14 composite cylinders were wet-wound and cured using different process schedules and then evaluated for hoop tensile strength and modulus, transverse flexural strength and short beam shear strength. The results of material characterization tests performed on the T1000G carbon fiber and RS-14 resin constituents used in this study are also presented.

  12. Resin composite repair: Quantitative microleakage evaluation of resin-resin and resin-tooth interfaces with different surface treatments

    PubMed Central

    Celik, Cigdem; Cehreli, Sevi Burcak; Arhun, Neslihan

    2015-01-01

    Objective: The aim was to evaluate the effect of different adhesive systems and surface treatments on the integrity of resin-resin and resin-tooth interfaces after partial removal of preexisting resin composites using quantitative image analysis for microleakage testing protocol. Materials and Methods: A total of 80 human molar teeth were restored with either of the resin composites (Filtek Z250/GrandioSO) occlusally. The teeth were thermocycled (1000×). Mesial and distal 1/3 parts of the restorations were removed out leaving only middle part. One side of the cavity was finished with course diamond bur and the other was air-abraded with 50 μm Al2O3. They were randomly divided into four groups (n = 10) to receive: Group 1: Adper Single Bond 2; Group 2: All Bond 3; Group 3: ClearfilSE; Group 4: BeautiBond, before being repaired with the same resin composite (Filtek Z250). The specimens were re-thermocycled (1000×), sealed with nail varnish, stained with 0.5% basic fuchsin, sectioned mesiodistally and photographed digitally. The extent of dye penetration was measured by image analysis software (ImageJ) for both bur-finished and air-abraded surfaces at resin-tooth and resin-resin interfaces. The data were analyzed statistically. Results: BeautiBond exhibited the most microleakage at every site. Irrespective of adhesive and initial composite type, air-abrasion showed less microleakage except for BeautiBond. The type of initial repaired restorative material did not affect the microleakage. BeautiBond adhesive may not be preferred in resin composite repair in terms of microleakage prevention. Conclusions: Surface treatment with air-abrasion produced the lowest microleakage scores, independent of the adhesive systems and the pre-existing resin composite type. Pre-existing composite type does not affect the microleakage issue. All-in-one adhesive resin (BeautiBond) may not be preferred in resin composite repair in terms of microleakage prevention. PMID:25713491

  13. Antiallergic Phorbol Ester from the Seeds of Aquilaria malaccensis.

    PubMed

    Korinek, Michal; Wagh, Vitthal D; Lo, I-Wen; Hsu, Yu-Ming; Hsu, Hsue-Yin; Hwang, Tsong-Long; Wu, Yang-Chang; Cheng, Yuan-Bin; Chen, Bing-Hung; Chang, Fang-Rong

    2016-01-01

    The Aquilaria malaccensis (Thymelaeaceae) tree is a source of precious fragrant resin, called agarwood, which is widely used in traditional medicines in East Asia against diseases such as asthma. In our continuous search for active natural products, A. malaccensis seeds ethanolic extract demonstrated antiallergic effect with an IC50 value less than 1 µg/mL. Therefore, the present research aimed to purify and identify the antiallergic principle of A. malaccensis through a bioactivity-guided fractionation approach. We found that phorbol ester-rich fraction was responsible for the antiallergic activity of A. malaccensis seeds. One new active phorbol ester, 12-O-(2Z,4E,6E)-tetradeca-2,4,6-trienoylphorbol-13-acetate, aquimavitalin (1) was isolated. The structure of 1 was assigned by means of 1D and 2D NMR data and high-resolution mass spectrometry (HR-MS). Aquimavitalin (1) showed strong inhibitory activity in A23187- and antigen-induced degranulation assay with IC50 values of 1.7 and 11 nM, respectively, with a therapeutic index up to 71,000. The antiallergic activities of A. malaccensis seeds and aquimavitalin (1) have never been revealed before. The results indicated that A. malaccensis seeds and the pure compound have the potential for use in the treatment of allergy. PMID:27007372

  14. Antiallergic Phorbol Ester from the Seeds of Aquilaria malaccensis

    PubMed Central

    Korinek, Michal; Wagh, Vitthal D.; Lo, I-Wen; Hsu, Yu-Ming; Hsu, Hsue-Yin; Hwang, Tsong-Long; Wu, Yang-Chang; Cheng, Yuan-Bin; Chen, Bing-Hung; Chang, Fang-Rong

    2016-01-01

    The Aquilaria malaccensis (Thymelaeaceae) tree is a source of precious fragrant resin, called agarwood, which is widely used in traditional medicines in East Asia against diseases such as asthma. In our continuous search for active natural products, A. malaccensis seeds ethanolic extract demonstrated antiallergic effect with an IC50 value less than 1 µg/mL. Therefore, the present research aimed to purify and identify the antiallergic principle of A. malaccensis through a bioactivity-guided fractionation approach. We found that phorbol ester-rich fraction was responsible for the antiallergic activity of A. malaccensis seeds. One new active phorbol ester, 12-O-(2Z,4E,6E)-tetradeca-2,4,6-trienoylphorbol-13-acetate, aquimavitalin (1) was isolated. The structure of 1 was assigned by means of 1D and 2D NMR data and high-resolution mass spectrometry (HR-MS). Aquimavitalin (1) showed strong inhibitory activity in A23187- and antigen-induced degranulation assay with IC50 values of 1.7 and 11 nM, respectively, with a therapeutic index up to 71,000. The antiallergic activities of A. malaccensis seeds and aquimavitalin (1) have never been revealed before. The results indicated that A. malaccensis seeds and the pure compound have the potential for use in the treatment of allergy. PMID:27007372

  15. Chromatography resin support

    DOEpatents

    Dobos, James G.

    2002-01-01

    An apparatus and method of using an improved chromatography resin support is disclosed. The chromatography support platform is provided by a stainless steel hollow cylinder adapted for being inserted into a chromatography column. An exterior wall of the stainless steel cylinder defines a groove for carrying therein an "O"-ring. The upper surface of the stainless steel column is covered by a fine stainless steel mesh welded to the edges of the stainless steel cylinder. When placed upon a receiving ledge defined within a chromatography column, the "O"-ring provides a fluid tight seal with the inner edge wall of the chromatography cylinder. The stainless steel mesh supports the chromatography matrix and provides a back flushable support which is economical and simple to construct.

  16. Indirect resin composites

    PubMed Central

    Nandini, Suresh

    2010-01-01

    Aesthetic dentistry continues to evolve through innovations in bonding agents, restorative materials, and conservative preparation techniques. The use of direct composite restoration in posterior teeth is limited to relatively small cavities due to polymerization stresses. Indirect composites offer an esthetic alternative to ceramics for posterior teeth. This review article focuses on the material aspect of the newer generation of composites. This review was based on a PubMed database search which we limited to peer-reviewed articles in English that were published between 1990 and 2010 in dental journals. The key words used were ‘indirect resin composites,’ composite inlays,’ and ‘fiber-reinforced composites.’ PMID:21217945

  17. Multifunctional properties of multi-wall carbon nanotubes/cyanate-ester nanocomposites and CFRPs

    NASA Astrophysics Data System (ADS)

    Baltopoulos, A.; Fiamegkou, E.; Vavouliotis, A.; Karapappas, P.; Athanasopoulos, N.; Fotiou, I.; Kostopoulos, V.; Maagt, P. D.; Rohr, T.

    2009-07-01

    The incorporation of multi-wall carbon nanotubes at weight fractions of 0.5% wt. and 1% wt. in a PRIMASET cyanate ester system (PT-30) was examined. The thermo-mechanical and electrical properties of the developed nanopolymers were investigated and were compared with the neat matrix properties. A preparation method was developed for the incorporation of the fillers in the resin system. The phenomenon of re-agglomeration of nanotubes took place in the first stages of curing schedule but nevertheless according to the SEM images a good dispersion was generally achieved. DSC, DMA, TGA and thermal conductivity tests were performed for the thermal characterization. For the electrical characterization, AC and DC measurements took place. No significant change in the glass transition temperature (Tg), thermal conductivity and mass loss values was observed in comparison with the neat resin systems. However, in both cases the improvement of electrical conductivity was about nine orders of magnitude, indicating that percolation had been achieved. The elastic modulus in bending was examined and a slight increase was observed in direct comparison with the neat resin. Finally, the developed doped nanopolymer was used as matrix for the CFRPs manufacturing. A full manufacturing protocol was developed in order to overcome the challenging issues concerning the cyanate esters' handling and manufacturing processes. Moreover AC and DC measurements were performed along with thermal conductivity measurements and TMA. The produced modified composites were tested for short beam strength.

  18. Comparison of fatigue and static physical properties of plaques made with various resins constructed using a vacuum infusion process and conventional lay-up method

    SciTech Connect

    Herzog, D.J.; Ross, L.R.; Brown, T.B.; Kastl, M.C.

    1996-11-01

    The resin infusion molding process is one of the new techniques used to reduce VOC emissions and manufacture a composite typically with 60--80% reinforcement. A database of the physical performance of these new composites and a comparison to the more common hand lay-up manufacturing techniques is lacking. This paper will compare the fatigue and static physical properties of plaques made with various resins using a vacuum assisted method and conventional lay-up method. Three resins were selected: a typical bisphenol A epichlorohydrin vinyl ester, a flexible isophthalic polyester, and a high performance modified vinyl ester resin. Static physical property data and fatigue data run on the three resins will be discussed. Included is a statistical analysis of the flexural and tensile fatigue performance of the panels with a high loading of reinforcement and constructed from the three resins. An analysis of the fatigue data compared to previous work at lower reinforcement levels will be done. A model will be generated to predict the fatigue performance of resins at various levels and types of reinforcements.

  19. 21 CFR 178.3930 - Terpene resins.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Terpene resins. 178.3930 Section 178.3930 Food and... and Production Aids § 178.3930 Terpene resins. The terpene resins identified in paragraph (a) of this... the terpene resins identified in paragraph (b) of this section may be safely used as components...

  20. 21 CFR 178.3930 - Terpene resins.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Terpene resins. 178.3930 Section 178.3930 Food and... and Production Aids § 178.3930 Terpene resins. The terpene resins identified in paragraph (a) of this... the terpene resins identified in paragraph (b) of this section may be safely used as components...

  1. 21 CFR 178.3930 - Terpene resins.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Terpene resins. 178.3930 Section 178.3930 Food and... and Production Aids § 178.3930 Terpene resins. The terpene resins identified in paragraph (a) of this... the terpene resins identified in paragraph (b) of this section may be safely used as components...

  2. 21 CFR 178.3930 - Terpene resins.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Terpene resins. 178.3930 Section 178.3930 Food and... and Production Aids § 178.3930 Terpene resins. The terpene resins identified in paragraph (a) of this... the terpene resins identified in paragraph (b) of this section may be safely used as components...

  3. 21 CFR 178.3930 - Terpene resins.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Terpene resins. 178.3930 Section 178.3930 Food and... Terpene resins. The terpene resins identified in paragraph (a) of this section may be safely used as components of polypropylene film intended for use in contact with food, and the terpene resins identified...

  4. Resin polymerization problems--are they caused by resin curing lights, resin formulations, or both?

    PubMed

    Christensen, R P; Palmer, T M; Ploeger, B J; Yost, M P

    1999-01-01

    Negative effects of rapid, high-intensity resin curing have been predicted for both argon lasers and plasma-arc curing lights. To address these questions, six different resin restorative materials were cured with 14 different resin curing lights representing differences in intensities ranging from 400 mW/cm2 to 1,900 mW/cm2; delivery modes using constant, ramped, and stepped methods; cure times ranging from 1 second to 40 seconds; and spot sizes of 6.7 mm to 10.9 mm. Two lasers, five plasma-arc lights, and seven halogen lights were used. Shrinkage, modulus, heat generation, strain, and physical changes on the teeth and resins during strain testing were documented. Results showed effects associated with lights were not statistically significant, but resin formulation was highly significant. Microfill resins had the least shrinkage and the lowest modulus. An autocure resin had shrinkage and modulus as high as or higher than the light-cured hybrid resins. Lasers and plasma-arc lights produced the highest heat increases on the surface (up to 21 degrees C) and within the resin restorations (up to 14 degrees C), and the halogen lights produced the most heat within the pulp chamber (up to 2 degrees C). Strain within the tooth was least with Heliomolar and greatest with Z100 Restorative and BISFIL II autocure resin. Clinical effects of strain relief were evident as white lines at the tooth-resin interface and cracks in enamel adjacent to the margins. This work implicates resin formulation, rather than light type or curing mode, as the important factor in polymerization problems. Lower light intensity and use of ramped and stepped curing modes did not provide significant lowering of shrinkage, modulus, or strain, and did not prevent enamel cracking adjacent to margins and formation of "white line" defects at the margins. Until materials with lower shrinkage and modulus are available, use of low-viscosity surface sealants as a final step in resin placement is suggested to

  5. Flammability screening tests of resins

    NASA Technical Reports Server (NTRS)

    Arhart, R. W.; Farrar, D. G.; Hughes, B. M.

    1979-01-01

    Selected flammability characteristics of glass cloth laminates of thermosetting resins are evaluated. A protocol for the evaluation of the flammability hazards presented by glass cloth laminates of thermosetting resins and the usefulness of that protocol with two laminates are presented. The glass laminates of an epoxy resin, M-751 are evaluated for: (1) determination of smoke generation from the laminates; (2) analysis of products of oxidative degradation of the laminates; (3) determination of minimum oxygen necessary to maintain flaming oxidation; (4) evaluation of toxicological hazards.

  6. Grafted methylenediphosphonate ion exchange resins

    DOEpatents

    Trochimcznk, A.W.; Gatrone, R.C.; Alexandratos, S.; Horwitz, E.P.

    1997-04-08

    An ion exchange resin is disclosed that is comprised of an insoluble copolymer onto which are grafted pendent groups that provide 1.0 to about 10 mmol/g dry weight phosphorus. The pendent groups have the formula as shown in the patent wherein R is hydrogen, a cation or mixtures thereof; and R{sup 1} is hydrogen or an C{sub 1}-C{sub 2} alkyl group. The resin also contains zero to about 5 mmol/g dry weight of pendent aromatic sulfonate groups. Processes for making and using an ion exchange resin are also disclosed.

  7. Grafted methylenediphosphonate ion exchange resins

    DOEpatents

    Trochimcznk, Andrzej W.; Gatrone, Ralph C.; Alexandratos, Spiro; Horwitz, E. Philip

    1997-01-01

    An ion exchange resin is disclosed that is comprised of an insoluble copolymer onto which are grafted pendent groups that provide 1.0 to about 10 mmol/g dry weight phosphorous. The pendent groups have the formula ##STR1## wherein R is hydrogen, a cation or mixtures thereof; and R.sup.1 is hydrogen or an C.sub.1 -C.sub.2 alkyl group. The resin also contains zero to about 5 mmol/g dry weight of pendent aromatic sulfonate groups. Processes for making and using an ion exchange resin are also disclosed.

  8. Grafted methylenediphosphonate ion exchange resins

    DOEpatents

    Trochimcznk, Andrzej W.; Gatrone, Ralph C.; Alexandratos, Spiro; Horwitz, E. Philip

    1998-01-27

    An ion exchange resin is disclosed that is comprised of an insoluble copolymer onto which are grafted pendent groups that provide 1.0 to about 10 mmol/g dry weight phosphorous. The pendent groups have the formula ##STR1## wherein R is hydrogen, a cation or mixtures thereof; and R.sup.1 is hydrogen or an C.sub.1 -C.sub.2 alkyl group. The resin also contains zero to about 5 mmol/g dry weight of pendent aromatic sulfonate groups. Processes for making and using an ion exchange-resin are also disclosed.

  9. Resin/graphite fiber composites

    NASA Technical Reports Server (NTRS)

    Cavano, P. J.; Jones, R. J.; Vaughan, R. W.

    1972-01-01

    High temperature resin matrices suitable for use in advanced graphite fiber composites for jet engine applications were evaluated. A series of planned, sequential screening experiments with resin systems in composite form were performed to reduce the number of candidates to a single A-type polyimide resin that repetitively produced void-free, high strength and modulus composites acceptable for use in the 550 F range for 1000 hours. An optimized processing procedure was established for this system. Extensive mechanical property studies characterized this single system, at room temperature, 500 F, 550 F and 600 F, for various exposure times.

  10. Dispersion of carbon nanotubes in vinyl ester polymer composites

    NASA Astrophysics Data System (ADS)

    Pena-Paras, Laura

    This work focused on a parametric study of dispersions of different types of carbon nanotubes in a polymer resin. Single-walled (SWNTs), double-walled (DWNTs), multi-walled (MWNTs) and XD-grade carbon nanotubes (XD-CNTs) were dispersed in vinyl ester (VE) using an ultra-sonic probe at a fixed frequency. The power, amplitude, and mixing time parameters of sonication were correlated to the electrical and mechanical properties of the composite materials in order to optimize dispersion. The quality of dispersion was quantified by Raman spectroscopy and verified through optical and scanning electron microscopy. By Raman, the CNT distribution, unroping, and damage was monitored and correlated with the composite properties for dispersion optimization. Increasing the ultrasonication energy was found to improve the distribution of all CNT materials and to decrease the size of nanotube ropes, enhancing the electrical conductivity and storage modulus. However, excessive amounts of energy were found to damage CNTs, which negatively affected the properties of the composite. Based on these results the optimum dispersion energy inputs were determined for the different composite materials. The electrical resistivity was lowered by as much as 14, 13, 13, and 11 orders of magnitude for SWNT/VE, DWNT/VE, MWNT/VE, and XD-CNT/VE respectively, compared to the neat resin. The storage modulus was also increased compared to the neat resin by 77%, 82%, 45%, 40% and 85% in SWNT, SAP-f-SWNT, DWNT, MWNT and XD-CNT/VE composites, respectively. This study provides a detailed understanding of how the properties of, nanocomposites are determined by the composite mixing parameters and the distribution, concentration, shape and size of the CNTs. Importantly, it indicates the importance of the need for dispersion metrics to correlate and understand these properties.

  11. Enantiospecific Alkynylation of Alkylboronic Esters

    PubMed Central

    Wang, Yahui; Noble, Adam; Myers, Eddie L.

    2016-01-01

    Abstract Enantioenriched secondary and tertiary alkyl pinacolboronic esters undergo enantiospecific deborylative alkynylation through a Zweifel‐type alkenylation followed by a 1,2‐elimination reaction. The process involves use of α‐lithio vinyl bromide or vinyl carbamate species, for which application to Zweifel‐type reactions has not previously been explored. The resulting functionalized 1,1‐disubstituted alkenes undergo facile base‐mediated elimination to generate terminal alkyne products in high yield and excellent levels of enantiospecificity over a wide range of pinacolboronic ester substrates. Furthermore, along with terminal alkynes, internal and silyl‐protected alkynes can be formed by simply introducing a suitable carbon‐ or silicon‐based electrophile after the base‐mediated 1,2‐elimination reaction. PMID:26934427

  12. ESTER: Evolution STEllaire en Rotation

    NASA Astrophysics Data System (ADS)

    Rieutord, Michel

    2013-05-01

    The ESTER code computes the steady state of an isolated star of mass larger than two solar masses. The only convective region computed as such is the core where isentropy is assumed. ESTER provides solutions of the partial differential equations, for the pressure, density, temperature, angular velocity and meridional velocity for the whole volume. The angular velocity (differential rotation) and meridional circulation are computed consistently with the structure and are driven by the baroclinic torque. The code uses spectral methods, both radially and horizontally, with spherical harmonics and Chebyshev polynomials. The iterations follow Newton's algorithm. The code is object-oriented and is written in C++; a python suite allows an easy visualization of the results. While running, PGPLOT graphs are displayed to show evolution of the iterations.

  13. Methods of making alkyl esters

    DOEpatents

    Elliott, Brian

    2010-08-03

    A method comprising contacting an alcohol, a feed comprising one or more glycerides and equal to or greater than 2 wt % of one or more free fatty acids, and a solid acid catalyst, a nanostructured polymer catalyst, or a sulfated zirconia catalyst in one or more reactors, and recovering from the one or more reactors an effluent comprising equal to or greater than about 75 wt % alkyl ester and equal to or less than about 5 wt % glyceride.

  14. Segmented polyether-ester copolymers

    SciTech Connect

    Souffie, R.D.

    1982-08-01

    This article touches on the chemistry of manufacture and structure of thermoplastic elastomers. The physical properties and environmental resistance characteristics of these copolymers are related to their molecular makeup. Results indicate that segmented polyether esters, because of their basic chemical structure, are resistant to a wide range of oils, solvents and chemicals. They are also highly elastic, resilient polymers which can be both cost and performance effective when used in a number of industrial applications.

  15. Liquid monobenzoxazine based resin system

    DOEpatents

    Tietze, Roger; Nguyen, Yen-Loan; Bryant, Mark

    2014-10-07

    The present invention provides a liquid resin system including a liquid monobenzoxazine monomer and a non-glycidyl epoxy compound, wherein the weight ratio of the monobenzoxazine monomer to the non-glycidyl epoxy compound is in a range of about 25:75 to about 60:40. The liquid resin system exhibits a low viscosity and exceptional stability over an extended period of time making its use in a variety of composite manufacturing methods highly advantageous.

  16. Regenerating Water-Sterilizing Resins

    NASA Technical Reports Server (NTRS)

    Colombo, G. V.; Putnam, D. F.

    1982-01-01

    Iodine-dispensing resin can be regenerated after iodine content has been depleted, without being removed from water system. Resin is used to make water potable by killing bacteria, fungi, and viruses. Regeneration technique may be come basis of water purifier for very long space missions. Enough crystalline iodine for multiple regenerations during mission can be stored in one small cartridge. Cartridge could be inserted in waterline as necessary on signal from iodine monitor or timer.

  17. Study on the resistance performance of TiO2/cyanate ester nano-composites exposed to electron radiation

    NASA Astrophysics Data System (ADS)

    Qin, Wei; Peng, Dequn; Wu, Xiaohong; Liao, Junhai

    2014-04-01

    TiO2 nano-particles were incorporated into cyanate ester (CE) resin to form TiO2/CE nano-composites. The effects of electron radiation on CE resin and on TiO2/CE nano-composites were investigated in a ground-based simulator that simulates space radiation conditions. Compared with CE resin, the addition of TiO2 nano-particles to the CE resin increased the bend strength and it improved the toughness before and after the electron radiation. The electron radiation damage mainly occurred in the CE resin matrix. The electric discharging resulted in the ablation of the CE resin surface when the charges were cumulated to a certain extent. The results of the mass loss and infrared (IR) experiments indicated that the electron irradiation in high vacuum broke the surface chemical bonds and that a cross-linking process occurred in the surface layer. The results of the electron paramagnetic resonance (EPR) showed that nano-TiO2 particles contribute a better resistance performance under 160-keV electron radiation.

  18. Maleimide Functionalized Siloxane Resins

    SciTech Connect

    Loy, D.A.; Shaltout, R.M.

    1999-04-01

    Polyorganosiloxanes are a commercially important class of compounds. They exhibit many important properties, including very low glass transition temperatures, making them useful over a wide temperature range. In practice, the polysiloxane polymer is often mixed with a filler material to help improve its mechanical properties. An alternative method for increasing polymer mechanical strength is through the incorporation of certain substituents on the polymer backbone. Hard substituents such as carbonates and imides generally result in improved mechanical properties of polysiloxanes. In this paper, we present the preparation of novel polysiloxane resins modified with hard maleimide substituents. Protected ethoxysilyl-substituted propyl-maleimides were prepared. The maleimide substituent was protected with a furanyl group and the monomer polymerized under aqueous acidic conditions. At elevated temperatures (>120 C), the polymer undergoes retro Diels-Alder reaction with release of foran (Equation 1). The deprotected polymer can then be selectively crosslinked by a forward Diels-Alder reaction (in the presence of a co-reactant having two or more dime functionalities).

  19. 21 CFR 172.859 - Sucrose fatty acid esters.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Sucrose fatty acid esters. 172.859 Section 172.859... CONSUMPTION Multipurpose Additives § 172.859 Sucrose fatty acid esters. Sucrose fatty acid esters identified...) Sucrose fatty acid esters are the mono-, di-, and tri-esters of sucrose with fatty acids and are...

  20. Chemoselective Boronic Ester Synthesis by Controlled Speciation**

    PubMed Central

    Fyfe, James W B; Seath, Ciaran P; Watson, Allan J B

    2014-01-01

    Control of boronic acid solution speciation is presented as a new strategy for the chemoselective synthesis of boronic esters. Manipulation of the solution equilibria within a cross-coupling milieu enables the formal homologation of aryl and alkenyl boronic acid pinacol esters. The generation of a new, reactive boronic ester in the presence of an active palladium catalyst also facilitates streamlined iterative catalytic C=C bond formation and provides a method for the controlled oligomerization of sp2-hybridized boronic esters. PMID:25267096

  1. Carboxylic Acid Esters as Substrates of Cholinesterases

    NASA Astrophysics Data System (ADS)

    Brestkin, A. P.; Rozengart, E. V.; Abduvakhabov, A. A.; Sadykov, A. A.

    1983-10-01

    Data on the kinetics of the hydrolysis of various carboxylic acid esters by two main types of cholinesterases — acetylcholinesterase from human erythrocytes and butyrylcholinesterase from horse blood serum — are surveyed. It is shown that the rate of enzyme hydrolysis depends significantly on the structure of the acyl part of the ester molecule, the nature of the ester heteroatom, the structure of the alcohol component, and particularly the structure of the onium group. Esters based on natural products are of special interest as specific substrates of these enzymes. The role of the productive and non-productive sorption of the substrates in enzyme catalysis is demonstrated. The bibliography includes 81 references.

  2. Fumaric acid esters in dermatology

    PubMed Central

    Wollina, Uwe

    2011-01-01

    Fumaric acid esters (FAE) are substances of interest in dermatology. FAE exert various activities on cutaneous cells and cytokine networks. So far only a mixture of dimethylfumarate (DMF) and three salts of monoethylfumarate (MEF) have gained approval for the oral treatment of moderate-to-severe plaque-type psoriasis in Germany. DMF seems to be the major active component. There is evidence that FAE are not only effective and safe in psoriasis but granulomatous non-infectious diseases like granuloma annulare, necrobiosis lipoidica and sarcoidosis. In vitro and animal studies suggest some activity in malignant melanoma as well. PMID:23130241

  3. Steroidal esters from Ferula sinkiangensis.

    PubMed

    Li, Guangzhi; Li, Xiaojin; Cao, Li; Shen, Liangang; Zhu, Jun; Zhang, Jing; Wang, Junchi; Zhang, Lijing; Si, Jianyong

    2014-09-01

    Two new steroidal esters with an unusual framework, Sinkiangenorin A and B, a new organic acid glycoside, Sinkiangenorin C, and four known lignin compounds were isolated from the seeds of Ferula sinkiangensis. The structures of these compounds were established by spectroscopic analysis and single-crystal X-ray diffraction. All of the isolated compounds were tested against Hela, K562 and AGS human cancer cell lines. Sinkiangenorin C showed cytotoxic activity against AGS cells with an IC50 of 36.9 μM. PMID:24979220

  4. Structure-property relationships in addition polyimides. 1: Resins from four-ring aromatic diamines containing carbonyl and methylene groups

    NASA Technical Reports Server (NTRS)

    Delvigs, Peter; Klopotek, David L.; Cavano, Paul J.

    1994-01-01

    In an effort to improve the processing characteristics of addition-type polyimide resins the use of flexibilized four-ring aromatic diamine moieties was investigated. A series of 12 diamines containing carbonyl and methylene, as well as oxo and thio bridging groups, was synthesized. The diamines were polymerized with the dimethyl ester of 3.3', 4.4' - benzophenonetetracarboxylic acid (BTDE), using the monomethyl ester of nadic acid (NE) as an end-cap. The effect of diamine structure on the solubility and rheological properties during cure was determined. This paper also describes the effect of diamine structure and formulated molecular weight on the glass transition temperature and thermo-oxidative stability at elevated temperatures after various post-cure regimes. The results indicate that polyimides from some of the diamines containing methylene connecting groups have potential as matrix resins for long-term applications at temperatures up to 300 C.

  5. Effect of different grades of gum rosins and hydrogenated resins on the solubility, disintegration, and dimensional alterations of Grossman cement.

    PubMed

    Sousa-Neto, M D; Guimarães, L F; Saquy, P C; Pécora, J D

    1999-07-01

    In the present study, we investigated the effect of the addition of different grades of gum rosins and hydrogenated resins to Grossman cement on dimensional stability, solubility and disintegration. pH and conductivity, which may affect these properties, were also determined. The experiments were performed according to Specification 57 of the American Dental Association for root canal cements using Grossman cements containing three gum rosins (grades X, WW, and WG) and two hydrogenated resins (Staybelite and Staybelite ester 10). The results showed that the solubility, disintegration, and dimensional stability of Grossman cement containing Staybelite and Staybelite ester 10 were inferior to the values considered acceptable by the American Dental Association Specification 57. PMID:10687510

  6. Low Melt Viscosity Resins for Resin Transfer Molding

    NASA Technical Reports Server (NTRS)

    Harris, Frank W.

    2002-01-01

    In recent years, resin transfer molding (RTM) has become one of the methods of choice for high performance composites. Its cost effectiveness and ease of fabrication are major advantages of RTM. RTM process usually requires resins with very low melt viscosity (less than 10 Poise). The optimum RTM resins also need to display high thennal-oxidative stability, high glass transition temperature (T(sub g)), and good toughness. The traditional PMR-type polyimides (e.g. PMR-15) do not fit this requirement, because the viscosities are too high and the nadic endcap cures too fast. High T(sub g), low-melt viscosity resins are highly desirable for aerospace applications and NASA s Reusable Launch Vehicle (RLV) program. The objective of this work is to prepare low-melt viscosity polyimide resins for RTM or resin film infusion (RFI) processes. The approach involves the synthesis of phenylethynyl-terminated imide oligomers. These materials have been designed to minimize their melt viscosity so that they can be readily processed. During the cure, the oligomers undergo both chain extension and crosslinking via the thermal polymerization of the phenylethynyl groups. The Phenylethynyl endcap is preferred over the nadic group due to its high curing temperature, which provides broader processing windows. This work involved the synthesis and polymerization of oligomers containing zig-zag backbones and twisted biphenyl structures. Some A-B type precursors which possessed both nitro and anhydride functionality, or both nitro and amine functionality, were also synthesized in order to obtain the well defined oligomers. The resulting zig-zag structured oligomers were then end-capped with 4-phenylethynylphthalic anhydride (PEPA) for further cure. The properties of these novel imide oligomers are evaluated.

  7. Radiation-resistant vinyl halide resin compositions and a process for their production

    SciTech Connect

    Ejk, A.J.; Jachym, M.A.

    1988-02-23

    A method of sterilizing a packaging material is described comprising (I) providing a packaging material comprising a resinous composition consisting essentially of a mixture of: (a) a vinyl halide resin; (b) an organotin mercaptoacid ester having the formula R/sub x/Sn(SR'COOR'')/sub y/ wherein: R represents an alkyl group having 1-8 carbon atoms, R' represents an alkylene group having 1 to 4 carbon atoms; R'' represents an alkyl, aryl, alkaryl or aralkyl group having 1 to 18 carbon atoms, and x and y represent numbers in the range of 1 to 3 whose total is 4; and (c) an epoxy compound; the organotin mercaptoacid ester and the epoxy compound being present in an amount effective to stabilize the composition against the deteriorative effects of ionizing radiation wherein the epoxy compound is present in an amount of from about 3 to about 5 parts by weight percent by weight of the organotion mercaptoacid ester; and (II) subjecting the material to ionizing radiation for a period of time sufficient to substantially sterilize the packaging.

  8. Synthesis of biodiesel from pongamia oil using heterogeneous ion-exchange resin catalyst.

    PubMed

    Jaya, N; Selvan, B Karpanai; Vennison, S John

    2015-11-01

    Biodiesel is a clean-burning renewable substitute fuel for petroleum. Biodiesel could be effectively produced by transesterification reaction of triglycerides of vegetable oils with short-chain alcohols in the presence of homogeneous or heterogeneous catalysts. Conventionally, biodiesel manufacturing processes employ strong acids or bases as catalysts. But, separation of the catalyst and the by-product glycerol from the product ester is too expensive to justify the product use as an automobile fuel. Hence heterogeneous catalysts are preferred. In this study, transesterification of pongamia oil with ethanol was performed using a solid ion-exchange resin catalyst. It is a macro porous strongly basic anion exchange resin. The process parameters affecting the ethyl ester yield were investigated. The reaction conditions were optimized for the maximum yield of fatty acid ethyl ester (FAEE) of pongamia oil. The properties of FAEE were compared with accepted standards of biodiesel. Engine performance was also studied with pongamia oil diesel blend and engine emission characteristics were observed. PMID:26254204

  9. Sugar Ester Compounds for Arthropod Control

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sugar esters, also known as acyl sugars or polyol esters, are a class of compounds that are internationally recognized as food additives. They are commonly used in bakery goods, drugs, cosmetics, food packaging plastics, and in other applications because of their surfactant and emulsifying properti...

  10. IMPROVED OXIDATIVE STABILITY OF ESTOLIDE ESTERS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A wide range of commercial and vegetable-based materials were evaluated for their oxidative stability by the rotating bomb oxidative test (RBOT). RBOT values ranged from 13 to 552 minutes. Two estolides, coconut-oleic estolide 2-ethylhexyl ester and oleic estolide 2-ethylhexyl ester, were evaluate...

  11. New cycloartenol esters from Ixora coccinea.

    PubMed

    Ragasa, Consolacion Y; Tiu, Floren; Rideout, John A

    2004-08-01

    The air-dried flowers of Ixora coccinea L. afforded two new cycloartenol esters (1a and 1b), lupeol fatty ester, lupeol, ursolic acid, oleanolic acid, and sitosterol. The structures of 1a and 1b were elucidated by extensive 1D and 2D NMR spectroscopy and MS. PMID:15214483

  12. Ethanolysis of rapeseed oil - distribution of ethyl esters, glycerides and glycerol between ester and glycerol phases.

    PubMed

    Cernoch, Michal; Hájek, Martin; Skopal, Frantisek

    2010-04-01

    The distribution of ethyl esters, triglycerides, diglycerides, monoglycerides, and glycerol between the ester and glycerol phase was investigated after the ethanolysis of rapeseed oil at various reaction conditions. The determination of these substances in the ester and glycerol phases was carried out by the GC method. The amount of ethyl esters in the glycerol phase was unexpectedly high and therefore the possibility of the reduction of this amount was investigated. The distribution coefficients and the weight distributions of each investigated substance were calculated and compared mutually. The distribution coefficients between the ester and glycerol phase increase in this sequence: glycerol, monoglycerides, diglycerides, ethyl esters, and triglycerides. Soaps and monoglycerides in the reaction mixture cause a worse separation of ethyl esters from the reaction mixture. The existence of a non-separable reaction mixture was observed also, and its composition was determined. PMID:20005094

  13. Phosphonic acid based ion exchange resins

    DOEpatents

    Horwitz, E.P.; Alexandratos, S.D.; Gatrone, R.C.; Chiarizia, R.

    1994-01-25

    An ion exchange resin is described for extracting metal ions from a liquid waste stream. An ion exchange resin is prepared by copolymerizing a vinylidene diphosphonic acid with styrene, acrylonitrile and divinylbenzene. 9 figures.

  14. Phosphonic acid based ion exchange resins

    DOEpatents

    Horwitz, E.P.; Alexandratos, S.D.; Gatrone, R.C.; Chiarizia, R.

    1996-07-23

    An ion exchange resin is described for extracting metal ions from a liquid waste stream. An ion exchange resin is prepared by copolymerizing a vinylidene diphosphonic acid with styrene, acrylonitrile and divinylbenzene. 10 figs.

  15. Phosphonic acid based ion exchange resins

    DOEpatents

    Horwitz, E. Philip; Alexandratos, Spiro D.; Gatrone, Ralph C.; Chiarizia, Ronato

    1996-01-01

    An ion exchange resin for extracting metal ions from a liquid waste stream. An ion exchange resin is prepared by copolymerizing a vinylidene diphosphonic acid with styrene, acrylonitrile and divinylbenzene.

  16. Phosphonic acid based ion exchange resins

    DOEpatents

    Horwitz, E. Philip; Alexandratos, Spiro D.; Gatrone, Ralph C.; Chiarizia, Ronato

    1994-01-01

    An ion exchange resin for extracting metal ions from a liquid waste stream. An ion exchange resin is prepared by copolymerizing a vinylidene disphosphonic acid with styrene, acrylonitrile and divinylbenzene.

  17. Soluble high molecular weight polyimide resins

    NASA Technical Reports Server (NTRS)

    Jones, R. J.; Lubowitz, H. R.

    1970-01-01

    High molecular weight polyimide resins have greater than 20 percent /by weight/ solubility in polar organic solvents. They permit fabrication into films, fibers, coatings, reinforced composite, and adhesive product forms. Characterization properties for one typical polyimide resin are given.

  18. Solid-phase peptide synthesis of endothelin receptor antagonists on novel flexible, styrene-acryloyloxyhydroxypropyl methacrylate-tripropyleneglycol diacrylate [SAT] resin.

    PubMed

    Siyad, M A; Nair, Arun S V; Kumar, G S Vinod

    2010-03-01

    Novel cross-linked polymeric support by the copolymerization of styrene and 3-(acryloyloxy)-2-hydroxypropyl methacrylate with Tri(propyleneglycol) diacryalte (SAT) for solid-phase peptide synthesis is presented here. The synthesis of SAT is based on the cross-linking of 3-(acryloyloxy)-2-hydroxypropyl methacrylate with styrene by free-radical suspension polymerization, consisting of an ester and a secondary hydroxyl group. An additional cross-linker tri(propyleneglycol) diacryalte provides a hydrophilic environment throughout the resin, which will enhance the physicochemical properties of the resin toward organic synthesis. The resins were synthesized in various cross-linking densities to check the swelling property, mechanical stability, and functional loading capacity. The resin was characterized by the IR, (13)C NMR, and SEM techniques. The extent of swelling properties of the polymer of different cross-linking densities were studied and compared with Merrifield resin and TentaGel. To demonstrate the efficiency of SAT support was proved by synthesizing the challenging peptide sequence of acyl carrier protein (ACP) and compared with commercially available Merrifield resin. It was further tested by synthesizing endothelial receptor antagonist peptides using SAT resin and compared with commercially available TentaGel resin. The standard Fmoc strategy was adopted for peptide synthesis and was characterized by MALDI-TOF MS and analyzed the purity of peptides by HPLC. PMID:20175557

  19. Method for loading resin beds

    DOEpatents

    Notz, Karl J.; Rainey, Robert H.; Greene, Charles W.; Shockley, William E.

    1978-01-01

    An improved method of preparing nuclear reactor fuel by carbonizing a uranium loaded cation exchange resin provided by contacting a H.sup.+ loaded resin with a uranyl nitrate solution deficient in nitrate, comprises providing the nitrate deficient solution by a method comprising the steps of reacting in a reaction zone maintained between about 145.degree.-200.degree. C, a first aqueous component comprising a uranyl nitrate solution having a boiling point of at least 145.degree. C with a second aqueous component to provide a gaseous phase containing HNO.sub.3 and a reaction product comprising an aqueous uranyl nitrate solution deficient in nitrate.

  20. 21 CFR 177.1550 - Perfluorocarbon resins.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    .... Perfluorocarbon resins can be identified by their characteristic infrared spectra. (2) Melt-viscosity. (i) The per-fluoro-carbon resins identified in paragraph (a)(1) of this section shall have a melt viscosity of not... viscosity of the perfluorocarbon resins identified in paragraph (a)(1) of this section shall not vary...

  1. 21 CFR 177.1550 - Perfluorocarbon resins.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    .... Perfluorocarbon resins can be identified by their characteristic infrared spectra. (2) Melt-viscosity. (i) The per-fluoro-carbon resins identified in paragraph (a)(1) of this section shall have a melt viscosity of not... viscosity of the perfluorocarbon resins identified in paragraph (a)(1) of this section shall not vary...

  2. 21 CFR 177.1550 - Perfluorocarbon resins.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    .... Perfluorocarbon resins can be identified by their characteristic infrared spectra. (2) Melt-viscosity. (i) The per-fluoro-carbon resins identified in paragraph (a)(1) of this section shall have a melt viscosity of not... viscosity of the perfluorocarbon resins identified in paragraph (a)(1) of this section shall not vary...

  3. Method for removing contaminants from plastic resin

    DOEpatents

    Bohnert, George W.; Hand, Thomas E.; DeLaurentiis, Gary M.

    2008-12-30

    A method for removing contaminants from synthetic resin material containers using a first organic solvent system and a second carbon dioxide system. The organic solvent is utilized for removing the contaminants from the synthetic resin material and the carbon dioxide is used to separate any residual organic solvent from the synthetic resin material.

  4. Method of removing contaminants from plastic resins

    DOEpatents

    Bohnert,George W.; Hand,Thomas E.; Delaurentiis,Gary M.

    2007-08-07

    A method for removing contaminants from synthetic resin material containers using a first organic solvent system and a second carbon dioxide system. The organic solvent is utilized for removing the contaminants from the synthetic resin material and the carbon dioxide is used to separate any residual organic solvent from the synthetic resin material.

  5. Method of removing contaminants from plastic resins

    DOEpatents

    Bohnert, George W.; Hand, Thomas E.; DeLaurentiis, Gary M.

    2008-11-18

    A method for removing contaminants from synthetic resin material containers using a first organic solvent system and a second carbon dioxide system. The organic solvent is utilized for removing the contaminants from the synthetic resin material and the carbon dioxide is used to separate any residual organic solvent from the synthetic resin material.

  6. 21 CFR 172.280 - Terpene resin.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Terpene resin. 172.280 Section 172.280 Food and... Terpene resin. The food additive terpene resin may be safely used in accordance with the following prescribed conditions: (a) The food additive is the betapinene polymer obtained by polymerizing...

  7. 21 CFR 172.280 - Terpene resin.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Terpene resin. 172.280 Section 172.280 Food and..., Films and Related Substances § 172.280 Terpene resin. The food additive terpene resin may be safely used... polymer obtained by polymerizing terpene hydrocarbons derived from wood. It has a softening point of...

  8. 21 CFR 172.280 - Terpene resin.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Terpene resin. 172.280 Section 172.280 Food and..., Films and Related Substances § 172.280 Terpene resin. The food additive terpene resin may be safely used... polymer obtained by polymerizing terpene hydrocarbons derived from wood. It has a softening point of...

  9. 21 CFR 172.280 - Terpene resin.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Terpene resin. 172.280 Section 172.280 Food and..., Films and Related Substances § 172.280 Terpene resin. The food additive terpene resin may be safely used... polymer obtained by polymerizing terpene hydrocarbons derived from wood. It has a softening point of...

  10. 21 CFR 172.280 - Terpene resin.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Terpene resin. 172.280 Section 172.280 Food and..., Films and Related Substances § 172.280 Terpene resin. The food additive terpene resin may be safely used... polymer obtained by polymerizing terpene hydrocarbons derived from wood. It has a softening point of...

  11. Mitochondrial toxicity of phthalate esters.

    PubMed Central

    Melnick, R L; Schiller, C M

    1982-01-01

    The effects of mono- and dibutyl phthalate and mono- and di(2-ethylhexyl) phthalate on energy-dependent K+ uptake, respiration rates, and succinate cytochrome c reductase activities of isolated rat liver mitochondria were evaluated. The energy-coupling processes, active K+ transport and oxidative phosphorylation, were affected most by di-n-butyl phthalate and mono(2-ethylhexyl) phthalate. Mono-n-butyl phthalate had a moderate effect on energy coupling and di(2-ethylhexyl) phthalate had no apparent effect. The potency of inhibition of succinate cytochrome c reductase activity was mono(2-ethylhexyl) phthalate greater than di-n-butyl phthalate greater than mono-n-butyl phthalate = di(2-ethylhexyl) phthalate. It is concluded that phthalate esters affect mitochondrial activities by altering the permeability properties of the inner membrane and by inhibiting succinate dehydrogenase activity. PMID:7140696

  12. Process for curing bismaleimide resins

    NASA Technical Reports Server (NTRS)

    Parker, John A. (Inventor); OTHY S.imides alone. (Inventor)

    1986-01-01

    This invention relates to vinyl pyridine group containing compounds and oligomers, their advantageous copolymerization with bismaleimide resins, and the formation of reinforced composites based on these copolymers. When vinyl pyridines including vinyl stilbazole materials and vinyl styrylpyridine oligomer materials are admixed with bismaleimides and cured to form copolymers the cure temperatures of the copolymers are substantially below the cure temperatures of the bismaleimides alone.

  13. Synthesis of improved phenolic resins

    NASA Technical Reports Server (NTRS)

    Delano, C. B.; Mcleod, A. H.

    1979-01-01

    Twenty seven addition cured phenolic resin compositions were prepared and tested for their ability to give char residues comparable to state-of-the-art phenolic resins. Cyanate, epoxy, allyl, acrylate, methacrylate and ethynyl derivatized phenolic oligomers were investigated. The novolac-cyanate and propargyl-novolac resins provided anaerobic char yields at 800 C of 58 percent. A 59 percent char yield was obtained from modified epoxy novolacs. A phosphonitrilic derivative was found to be effective as an additive for increasing char yields. The novolac-cyanate, epoxy-novolac and methacrylate-epoxy-novolac systems were investigated as composite matrices with Thornel 300 graphite fiber. All three resins showed good potential as composite matrices. The free radical cured methacrylate-epoxy-novolac graphite composite provided short beam shear strengths at room temperature of 93.3 MPa (13.5 ksi). The novolac-cyanate graphite composite produced a short beam shear strength of 74 MPa (10.7 ksi) and flexural strength of 1302 MPa (189 ksi) at 177 C. Air heat aging of the novolac-cyanate and epoxy novolac based composites for 12 weeks at 204 C showed good property retention.

  14. Wax ester-synthesizing activity of lipases.

    PubMed

    Tsujita, T; Sumiyoshi, M; Okuda, H

    1999-11-01

    The synthesis/hydrolysis of wax esters was studied in an aqueous solution using purified rat pancreatic lipase, porcine pancreatic carboxylester lipase, and Pseudomonas fluorescens lipase. The equilibrium between wax ester synthesis and hydrolysis favored ester formation at neutral pH. The synthesizing activities were measured using free fatty acid or triacylglycerol as the acyl donor and an equimolar amount of long-chain alcohol as the acyl acceptor. When oleic acid and hexadecanol emulsified with gum arabic were incubated with these lipases, wax ester was synthesized, in a dose- and time-dependent manner, and the apparent equilibrium ratio of palmityl oleate/free oleic acid was about 0.9/0.1. These lipases catalyzed the hydrolysis of palmityl oleate emulsified with gum arabic, and the apparent equilibrium ratio of palmityl oleate/free oleic acid was also about 0.9/0.1. The apparent equilibrium ratio of wax ester/free fatty acid catalyzed by lipase depended on incubation pH and fatty alcohol chain length. When equimolar amounts of trioleoylglycerol and fatty acyl alcohol were incubated with pancreatic lipase, carboxylester lipase, or P. fluorescens lipase, wax esters were synthesized dose-dependently. These results suggest that lipases can catalyze the synthesis of wax esters from free fatty acids or through degradation of triacylglycerol in an aqueous medium. PMID:10606038

  15. Application of 2-chlorotrityl resin in solid phase synthesis of (Leu15)-gastrin I and unsulfated cholecystokinin octapeptide. Selective O-deprotection of tyrosine.

    PubMed

    Barlos, K; Gatos, D; Kapolos, S; Poulos, C; Schäfer, W; Yao, W Q

    1991-12-01

    The carboxyl terminal dipeptide amide, Fmoc-Asp-Phe-NH2, of gastrin and cholecystokinin (CCK) has been attached in high yield through its free side chain carboxyl group to the acid labile 2-chlorotrityl resin. The obtained peptide resin ester has been applied in the solid phase synthesis of partially protected (Leu15)-gastrin I utilising Fmoc-amino acids. Quantitative cleavage of this peptide from resin, with the t-butyl type side chain protection intact is achieved using mixtures of acetic acid/trifluoroethanol/dichloromethane. Under the same conditions complete detritylation of the tyrosine phenoxy function occurs simultaneously. Thus, the solid-phase synthesis of peptides selectively deprotected at the side chain of tyrosine is rendered possible by the use of 2-chlorotrityl resin and Fmoc-Tyr(Trt)-OH. The efficiency of this approach has been proved by the subsequent high-yield synthesis of three model peptides and the CCK-octapeptide. PMID:1819590

  16. Fiber reinforced composite resin systems.

    PubMed

    Giordano, R

    2000-01-01

    The Targis/Vectris and Sculpture/FibreKor systems were devised to create a translucent maximally reinforced resin framework for fabrication of crowns, bridges, inlays, and onlays. These materials are esthetic, have translucency similar to castable glass-ceramics such as OPC and Empress, and have fits that are reported to be acceptable in clinical and laboratory trials. These restorations rely on proper bonding to the remaining tooth structure; therefore, careful attention to detail must be paid to this part of the procedure. Cementation procedures should involve silane treatment of the cleaned abraded internal restoration surface, application of bonding agent to the restoration as well as the etched/primed tooth, and finally use of a composite resin. Each manufacturer has a recommended system which has been tested for success with its resin system. These fiber reinforced resins are somewhat different than classical composites, so not all cementation systems will necessarily work with them. Polishing of the restoration can be accomplished using diamond or alumina impregnated rubber wheels followed by diamond paste. The glass fibers can pose a health risk. They are small enough to be inhaled and deposited in the lungs, resulting in a silicosis-type problem. Therefore, if fibers are exposed and ground on, it is extremely important to wear a mask. Also, the fibers can be a skin irritant, so gloves also should be worn. If the fibers become exposed intraorally, they can cause gingival inflammation and may attract plaque. The fibers should be covered with additional composite resin. If this cannot be accomplished, the restoration should be replaced. The bulk of these restorations are formed using a particulate filled resin, similar in structure to conventional composite resins. Therefore, concerns as to wear resistance, color stability, excessive expansion/contraction, and sensitivity remain until these materials are proven in long-term clinical trials. They do hold the

  17. Oxygen index tests of thermosetting resins

    NASA Technical Reports Server (NTRS)

    Gilwee, W. J., Jr.; Parker, J. A.; Kourtides, D. A.

    1980-01-01

    The flammability characteristics of nine thermosetting resins under evaluation for use in aircraft interiors are described. These resins were evaluated using the Oxygen Index (ASTM 2863) testing procedure. The test specimens consisted of both neat resin and glass reinforced resin. When testing glass-reinforced samples it was observed that Oxygen Index values varied inversely with resin content. Oxygen values were also obtained on specimens exposed to temperatures up to 300 C. All specimens experienced a decline in Oxygen Index when tested at an elevated temperature.

  18. Commercial Ion Exchange Resin Vitrification Studies

    SciTech Connect

    Cicero-Herman, C.A

    2002-06-28

    In the nuclear industry, ion exchange resins are used for purification of aqueous streams. The major contaminants of the resins are usually the radioactive materials that are removed from the aqueous streams. The use of the ion exchange resins creates a waste stream that can be very high in both organic and radioactive constituents. Therefore, disposal of the spent resin often becomes an economic problem because of the large volumes of resin produced and the relatively few technologies that are capable of economically stabilizing this waste. Vitrification of this waste stream presents a reasonable disposal alternative because of its inherent destruction capabilities, the volume reductions obtainable, and the durable product that it produces.

  19. Sunflower oil methyl ester as diesel fuel

    SciTech Connect

    Hassett, D.J.; Hasan, R.A.

    1982-01-01

    Methyl ester formation represents one approach to overcome the problems associated with the relatively high viscosity of sunflower oil when used as a diesel fuel replacement. Sunflower oil methyl ester is being prepared at the University of North Dakota Engieering Experiment Station. Physical and chemical properties of this material at varying levels of refinement and purity will be used to define fuel properties. Engine testing is being carried out to determine if the fouling characteristics of methyl ester are significantly less than those of sunflower oil. 1 figure, 1 table.

  20. Phenoxy resins containing pendent ethynyl groups

    NASA Technical Reports Server (NTRS)

    Hergenrother, P. M.; Jensen, B. J.; Havens, S. J.

    1984-01-01

    As part of an effort on tougher/solvent resistant matrix resins for composites, research was directed towards exploring methods to improve the solvent resistance of linear amorphous thermoplastics. Ethyl reactive groups were placed on the ends of oligomers and pendent along the polymer chain and subsequently thermally reacted to provide crosslinking and thus improvement in solvent resistance. This concept is extended to another thermoplastic, a phenoxy resin. A commercially available phenoxy resin (PKHH) was systematically modified by reaction of the pendent hydroxyl groups on the phenoxy resin with various amounts of 4-ethynylbenzoyl chloride. As the pendent ethynyl group content in the phenoxy resin increased, the cured resin exhibited a higher glass transition temperature, better solvent resistance and less flexibility. The solvent resistance was further improved by correcting a low molecular weight diethynyl compound, 2,2-bis(4-ethynylbenzoyloxy-4'-phenyl)propane, with a phenoxy resin containing pendent ethynyl groups.

  1. Seasonal variation and resin composition in the Andean tree Austrocedrus chilensis.

    PubMed

    Olate, Verónica Rachel; Soto, Alex; Schmeda-Hirschmann, Guillermo

    2014-01-01

    Little is known about the changes in resin composition in South American gymnosperms associated with the different seasons of the year. The diterpene composition of 44 resin samples from seven Austrocedrus chilensis (Cupressaceae) trees, including male and female individuals, was investigated in three different seasons of the year (February, June and November). Twelve main diterpenes were isolated by chromatographic means and identified by gas chromatography-mass spectrometry and nuclear magnetic resonance (NMR). The diterpene composition was submitted to multivariate analysis to find possible associations between chemical composition and season of the year. The principal component analysis showed a clear relation between diterpene composition and season. The most characteristic compounds in resins collected in summer were Z-communic acid (9) and 12-oxo-labda-8(17),13E-dien-19 oic acid methyl ester (10) for male trees and 8(17),12,14-labdatriene (7) for female trees. For the winter samples, a clear correlation of female trees with torulosic acid (6) was observed. In spring, E-communic acid (8) and Z-communic acid (9) were correlated with female trees and 18-hydroxy isopimar-15-ene (1) with male tree resin. A comparison between percent diterpene composition and collection time showed p < 0.05 for isopimara-8(9),15-diene (2), sandaracopimaric acid (4), compound (7) and ferruginol (11). PMID:24853713

  2. Radiolabeled cholesteryl ethers trace LDL cholesteryl esters but not HDL cholesteryl esters in the rat.

    PubMed

    Terpstra, A H

    1995-01-01

    The intravascular metabolism of cholesteryl [1-14C]oleoyl ester and [1,2-3H(N)]cholesteryl palmityl ether was compared in the rat, an animal species without plasma cholesteryl ester transfer activity (CETA). The tracers had identical plasma disappearance rates when they were incorporated into human or rat low density lipoproteins (LDL). Fractional catabolic rates (FCR) were 0.081 +/- 0.014 h-1 and 0.080 +/- 0.013 h-1 for human LDL ester and ether and 0.098 +/- 0.007 h-1 and 0.101 +/- 0.007 h-1 for rat LDL ester and ether, respectively. In contrast, the ether had plasma disappearance rates that were 24%-25% lower than the ester when they were incorporated into human or rat high density lipoproteins (HDL). FCR were 0.230 +/- 0.020 and 0.173 +/- 0.030 h-1 for human HDL ester and ether and 0.131 +/- 0.020 h-1 and 0.100 +/- 0.017 h-1 for rat HDL ester and ether respectively. Biological screening of the rat HDL preparations did not affect these differences. The results of these studies indicate that in the absence of plasma CETA, cholesteryl ethers can be used to trace LDL cholesteryl esters but not to trace HDL cholesteryl esters. PMID:7772060

  3. Preparation of glycerol carbonate esters by using hybrid Nafion-silica catalyst.

    PubMed

    Climent, María J; Corma, Avelino; Iborra, Sara; Martínez-Silvestre, Sergio; Velty, Alexandra

    2013-07-01

    Glycerol carbonate esters (GCEs), which are valuable biomass-derivative compounds, have been prepared through the direct esterification of glycerol carbonate and long organic acids with different chain lengths, in the absence of solvent, and with heterogeneous catalysts, including acidic-organic resins, zeolites, and hybrid organic-inorganic acids. The best results, in terms of activity and selectivity towards GCEs, were obtained using a Nafion-silica composite. A full reaction scheme has been established, and it has been demonstrated that an undesired competing reaction results in the generation of glycerol and esters derived from a secondary hydrolysis of the endocyclic ester group, which is attributed to water formed during the esterification reaction. The influence of temperature, substrate ratio, catalyst-to-substrate ratio, and the use of solvent has been studied and, under optimized reaction conditions and with the adequate catalyst, it was possible to achieve 95% selectivity for the desired product at 98% conversion. It was demonstrated that the reaction rate decreased as the number of carbon atoms in the linear alkyl chain of the carboxylic acid increased for both p-toluenesulfonic acid and Nafion-silica nanocomposite (Nafion SAC-13) catalysts. After fitting the experimental data to a mechanistically based kinetic model, the reaction kinetic parameters for Nafion SAC-13 catalysis were determined and compared for reactions involving different carboxylic acids. A kinetic study showed that the reduced reactivity of carboxylic acids with increasing chain lengths could be explained by inductive as well as steric effects. PMID:23754795

  4. Antioxidant activity of oligosaccharide ester extracted from Polygala tenuifolia roots in senescence-accelerated mice.

    PubMed

    Liu, Ping; Hu, Yuan; Guo, Dai-Hong; Lu, Bao-Rong; Rahman, Khalid; Mu, Li-Hua; Wang, Dong-Xiao

    2010-07-01

    The constituents of the ethanol extract from the root of Polygala tenuifolia Willd. (Polygalaceae) were investigated for antioxidant activity in senescence-accelerated mice. Consequently, two relevant samples were obtained, a fraction separated by macroporous resin (YZ-OE), and a major pure crystal of 3,6'-disinapoyl sucrose (DISS). Based on HPLC-ESI-MS analysis, the most constituents in the YZ-OE fraction from the extract of P. tenuifolia were oligosaccharide esters. The antioxidant activities of these two samples were evaluated using the accelerated senescence-prone, short-lived mice (SAMP) in vivo. The activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-PX) were increased significantly in SAMP mice fed oligosaccharide esters (YZ-OE 50 mg/kg) and its constituents (DISS 50 mg/kg). However, the content of malondialdehyde (MDA) was increased in the blood and liver of SAMP mice. But when given YZ-OE, it could be decreased, by 44.3% and 47.5%, respectively, compared with the SAMP model. Results from the analyses indicated that the oligosaccharide esters (YZ-OE) from roots of P. tenuifolia had a high in vivo antioxidant activity. PMID:20645784

  5. Synthesis of a new energetic nitrate ester

    SciTech Connect

    Chavez, David E

    2008-01-01

    Nitrate esters have been known as useful energetic materials since the discovery of nitroglycerin by Ascanio Sobrero in 1846. The development of methods to increase the safety and utility of nitroglycerin by Alfred Nobel led to the revolutionary improvement in the utility of nitroglycerin in explosive applications in the form of dynamite. Since then, many nitrate esters have been prepared and incorporated into military applications such as double-based propellants, detonators and as energetic plasticizers. Nitrate esters have also been shown to have vasodilatory effects in humans and thus have been studied and used for treatments of ailments such as angina. The mechanism of the biological response towards nitrate esters has been elucidated recently. Interestingly, many of the nitrate esters used for military purposes are liquids (ethylene glycol dinitrate, propylene glycol dinitrate, etc). Pentaerythritol tetranitrate (PETN) is one of the only solid nitrate esters, besides nitrocellulose, that is used in any application. Unfortunately, PETN melting point is above 100 {sup o}C, and thus must be pressed as a solid for detonator applications. A more practical material would be a melt-castable explosive, for potential simplification of manufacturing processes. Herein we describe the synthesis of a new energetic nitrate ester (1) that is a solid at ambient temperatures, has a melting point of 85-86 {sup o}C and has the highest density of any known nitrate ester composed only of carbon, hydrogen, nitrogen and oxygen. We also describe the chemical, thermal and sensitivity properties of 1 as well as some preliminary explosive performance data.

  6. 5-formylfurfuryl esters from Duabanga grandiflora.

    PubMed

    Kaweetripob, Wirongrong; Mahidol, Chulabhorn; Prachyawarakorn, Vilailak; Prawat, Hunsa; Ruchirawat, Somsak

    2012-04-01

    5-Formylfurfuryl esters, duabanganals A-D, together with sixteen known compounds, a known 5-formylfurfuryl ester, latifolinal, eight pentacyclic triterpenes, a benzofuran derivative, an ellagic acid derivative, vanillin, β-sitosterol, β-sitosterol glucoside, 3-hydroxy-4-methoxycinnamaldehyde, and 5-formylfurfurol, were isolated from the stem bark of Duabanga grandiflora. The structures of these compounds were elucidated on the basis of spectroscopic analysis. Several of these metabolites were evaluated for cytotoxic activities against six cancer cell lines. PMID:22317905

  7. Foam, Foam-resin composite and method of making a foam-resin composite

    NASA Technical Reports Server (NTRS)

    Cranston, John A. (Inventor); MacArthur, Doug E. (Inventor)

    1995-01-01

    This invention relates to a foam, a foam-resin composite and a method of making foam-resin composites. The foam set forth in this invention comprises a urethane modified polyisocyanurate derived from an aromatic amino polyol and a polyether polyol. In addition to the polyisocyanurate foam, the composite of this invention further contains a resin layer, wherein the resin may be epoxy, bismaleimide, or phenolic resin. Such resins generally require cure or post-cure temperatures of at least 350.degree. F.

  8. Low Temperature Mechanical Properties of Cyanate Ester Insulation Systems After Irradiation

    NASA Astrophysics Data System (ADS)

    Fabian, P. E.; Munshi, N. A.; Feucht, S. W.; Bittner-Rohrhofer, K.; Humer, K.; Weber, H. W.

    2004-06-01

    Recent development of alternative resin chemistries has resulted in new, fiber-reinforced, insulation systems for use in superconducting and fusion magnet applications. When compared to traditional epoxy resins, these insulation systems, based on cyanate ester resin chemistry, offer increased radiation resistance and higher operating temperatures that are demanded by new fusion reactor designs, such as the Fusion Ignition Research Experiment (FIRE). The design parameters for FIRE Toroidal Field (TF) coils call for an insulation system capable of withstanding a combined gamma and neutron radiation dose greater than 108 Gy (1010 Rad) and operate at temperatures ranging from cryogenic (77 K) to elevated temperatures up to 373 K. Several of these newly developed composite insulation systems, suitable for the vacuum impregnation, pre-preg, and high-pressure laminate fabrication processes, were irradiated in the TRIGA reactor (Vienna) to varying levels of radiation to gauge their radiation resistance. The insulation materials' shear and compression properties measured at cryogenic temperatures before and after irradiation are presented.

  9. High Temperature Transfer Molding Resins

    NASA Technical Reports Server (NTRS)

    Connell, John W. (Inventor); Smith, Joseph G., Jr. (Inventor); Hergenrother, Paul M. (Inventor)

    2000-01-01

    High temperature resins containing phenylethynyl groups that are processable by transfer molding have been prepared. These phenylethynyl containing oligomers were prepared from aromatic diamines containing phenylethynyl groups and various ratios of phthalic anhydride and 4-phenylethynlphthalic anhydride in glacial acetic acid to form a mixture of imide compounds in one step. This synthetic approach is advantageous since the products are a mixture of compounds and consequently exhibit a relatively low melting temperature. In addition, these materials exhibit low melt viscosities which are stable for several hours at 210-275 C, and since the thermal reaction of the phenylethynyl group does not occur to any appreciable extent at temperatures below 300 C, these materials have a broad processing window. Upon thermal cure at approximately 300-350 C, the phenylethynyl groups react to provide a crosslinked resin system. These new materials exhibit excellent properties and are potentially useful as adhesives, coatings, films, moldings and composite matrices.

  10. Advanced thermoplastic resins, phase 2

    NASA Technical Reports Server (NTRS)

    Brown, A. M.; Hill, S. G.; Falcone, A.

    1991-01-01

    High temperature structural resins are required for use on advanced aerospace vehicles as adhesives and composite matrices. NASA-Langley developed polyimide resins were evaluated as high temperature structural adhesives for metal to metal bonding and as composite matrices. Adhesive tapes were prepared on glass scrim fabric from solutions of polyamide acids of the semicrystalline polyimide LARC-CPI, developed at the NASA-Langley Research Center. Using 6Al-4V titanium adherends, high lap shear bond strengths were obtained at ambient temperature (45.2 MPa, 6550 psi) and acceptable strengths were obtained at elevated temperature (14.0 MPa, 2030 psi) using the Pasa-Jell 107 conversion coating on the titanium and a bonding pressure of 1.38 MPa (200 psi). Average zero degree composite tensile and compressive strengths of 1290 MPa (187 ksi) and 883 MPa (128 ksi) respectively were obtained at ambient temperature with unsized AS-4 carbon fiber reinforcement.

  11. Pharmaceutical Applications of Ion-Exchange Resins

    NASA Astrophysics Data System (ADS)

    Elder, David P.

    2005-04-01

    The historical uses of ion-exchange resins and a summary of the basic chemical principles involved in the ion-exchange process are discussed. Specific applications of ion-exchange resins are provided. The utility of these agents to stabilize drugs are evaluated. Commonly occurring chemical and physical incompatibilities are reviewed. Ion-exchange resins have found applicability as inactive pharmaceutical constituents, particularly as disintegrants (inactive tablet ingredient whose function is to rapidly disrupt the tablet matrix on contact with gastric fluid). One of the more elegant approaches to improving palatability of ionizable drugs is the use of ion-exchange resins as taste-masking agents. The selection, optimization of drug:resin ratio and particle size, together with a review of scaleup of typical manufacturing processes for taste-masked products are provided. Ion-exchange resins have been extensively utilized in oral sustained-release products. The selection, optimization of drug:resin ratio and particle size, together with a summary of commonly occurring commercial sustained-release products are discussed. Ion-exchange resins have also been used in topical products for local application to the skin, including those where drug flux is controlled by a differential electrical current (ionotophoretic delivery). General applicability of ion-exchange resins, including ophthalmic delivery, nasal delivery, use as drugs in their own right (e.g., colestyramine, formerly referred to as cholestyramine), as well as measuring gastrointestinal transit times, are discussed. Finally, pharmaceutical monographs for ion-exchange resins are reviewed.

  12. Phosphorus-containing imide resins

    NASA Technical Reports Server (NTRS)

    Varma, I. K.; Fohlen, G. M.; Parker, J. A. (Inventor)

    1984-01-01

    Flame-resistant reinforced bodies are disclosed which are composed of reinforcing fibers, filaments or fabrics in a cured body of bis- and tris-imide resins derived from tris(m-aminophenyl) phosphine oxides by reaction with maleic anhydride or its derivatives, or of addition polymers of such imides, including a variant in which a mono-imide is condensed with a dianhydride and the product is treated with a further quantity of maleic anhydride.

  13. High-Temperature Polyimide Resin

    NASA Technical Reports Server (NTRS)

    Vanucci, Raymond D.; Malarik, Diane C.

    1990-01-01

    Improved polyimide resin used at continuous temperatures up to 700 degrees F (371 degrees C). PMR-II-50, serves as matrix for fiber-reinforced composites. Material combines thermo-oxidative stability with autoclave processability. Used in such turbine engine components as air-bypass ducts, vanes, bearings, and nozzle flaps. Other potential applications include wing and fuselage skins on high-mach-number aircraft and automotive engine blocks and pistons.

  14. Synthesis of improved polyester resins

    NASA Technical Reports Server (NTRS)

    Mcleod, A. H.; Delano, C. B.

    1979-01-01

    Eighteen aromatic unsaturated polyester prepolymers prepared by a modified interfacial condensation technique were investigated for their solubility in vinyl monomers and ability to provide high char yield forming unsaturated polyester resins. The best resin system contained a polyester prepolymer of phthalic, fumaric and diphenic acids reacted with 2,7-naphthalene diol and 9,9-bis(4-hydroxyphenyl)fluorene. This prepolymer is very soluble in styrene, divinyl benzene, triallyl cyanurate, diallyl isophthalate and methylvinylpyridine. It provided anaerobic char yields as high as 41 percent at 800 C. The combination of good solubility and char yield represents a significant improvement over state-of-the-art unsaturated polyester resins. The majority of the other prepolymers had only low or no solubility in vinyl monomers. Graphite composites from this prepolymer with styrene were investigated. The cause for the observed low shear strengths of the composites was not determined, however 12-week aging of the composites at 82 C showed that essentially no changes in the composites had occurred.

  15. ELUTION OF URANIUM FROM RESIN

    DOEpatents

    McLEan, D.C.

    1959-03-10

    A method is described for eluting uranium from anion exchange resins so as to decrease vanadium and iron contamination and permit recycle of the major portion of the eluats after recovery of the uranium. Diminution of vanadium and iron contamination of the major portion of the uranium is accomplished by treating the anion exchange resin, which is saturated with uranium complex by adsorption from a sulfuric acid leach liquor from an ore bearing uranium, vanadium and iron, with one column volume of eluant prepared by passing chlorine into ammonium hydroxide until the chloride content is about 1 N and the pH is about 1. The resin is then eluted with 8 to 9 column volumes of 0.9 N ammonium chloride--0.1 N hydrochloric acid solution. The eluants are collected separately and treated with ammonia to precipitate ammonium diuranate which is filtered therefrom. The uranium salt from the first eluant is contaminated with the major portion of ths vanadium and iron and is reworked, while the uranium recovered from the second eluant is relatively free of the undesirable vanadium and irons. The filtrate from the first eluant portion is discarded. The filtrate from the second eluant portion may be recycled after adding hydrochloric acid to increase the chloride ion concentration and adjust the pH to about 1.

  16. 21 CFR 177.2510 - Polyvinylidene fluoride resins.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Polyvinylidene fluoride resins. 177.2510 Section... Repeated Use § 177.2510 Polyvinylidene fluoride resins. Polyvinylidene fluoride resins may be safely used... fluoride resins consist of basic resins produced by the polymerization of vinylidene fluoride. (b)...

  17. Scintillating 99Tc Selective Ion Exchange Resins

    SciTech Connect

    Mitchell Greenhalgh; Richard D. Tillotson

    2012-07-01

    Scintillating technetium (99Tc) selective ion exchange resins have been developed and evaluated for equilibrium capacities and detection efficiencies. These resins can be utilized for the in-situ concentration and detection of low levels of pertechnetate anions (99TcO4-) in natural waters. Three different polystyrene type resin support materials were impregnated with varying amounts of tricaprylmethylammonium chloride (Aliquat 336) extractant, several different scintillating fluors and wavelength shifters. The prepared resins were contacted batch-wise to equilibrium over a wide range of 99TcO4- concentrations in natural water. The measured capacities were used to develop Langmuir adsorption isotherms for each resin. 99Tc detection efficiencies were determined and up to 71.4 ± 2.6% was achieved with some resins. The results demonstrate that a low level detection limit for 99TcO4- in natural waters can be realized.

  18. Development of tough, moisture resistant laminating resins

    NASA Technical Reports Server (NTRS)

    Brand, R. A.; Harrison, E. S.

    1982-01-01

    Tough, moisture resistant laminating resins for employment with graphite fibers were developed. The new laminating resins exhibited cost, handleability and processing characteristics equivalent to 394K (250 F) curing epoxies. The laminating resins were based on bisphenol A dicyanate and monofunctional cyanates with hydrophobic substituents. These resins sorb only small quantities of moisture at equilibrium (0.5% or less) with minimal glass transition temperature depression and represent an improvement over epoxies which sorb around 2% moisture at equilibrium. Toughening was accomplished by the precipitation of small diameter particles of butadiene nitrile rubber throughout the resin matrix. The rubber domains act as microcrack termini and energy dissipation sites, allowing increased stress accommodation prior to catastrophic failure. A unique blend of amine terminated butadiene nitrile elastomer (MW 2,000) and a high nitrile content butadiene nitrile rubber yielded the desired resin morphology.

  19. New modified hydrocarbon resins; An alternative to styrenated terpene resins in hot melts

    SciTech Connect

    Carper, J.D. )

    1990-06-01

    This paper reports on the development of two hydrocarbon-based resin formulations that could be used with different thermoplastic block copolymers to formulate pressure-sensitive adhesives. Results are examined with one of these resins in formulations with styrene-isoprene-styrene (SIS) and styrene-butadiene (SB) compounds. The new modified hydrocarbon resin, with a softening point of 98{degrees} C, matches the adhesive performance of a terpene resin with a softening point of 105{degrees} C. The resin performs as well as the modified terpene in SIS-, SB-, and EVA-based adhesives. The new hydrocarbon resin is especially well suited for hot-melt adhesives. It exhibits low volatility, good color stability, and excellent melt viscosity stability. Since the new resin is based on petroleum hydrocarbon feedstocks, it should be available at moderate, stable prices. The other hydrocarbon resin, with a softening point of 85{degrees} C, produced comparable results.

  20. Methyl esters from vegetable oils with hydroxy fatty acids: Comparison of lesquerella and castor methyl esters

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The search for alternative feedstocks for biodiesel as partial replacement for petrodiesel has recently extended to castor oil. In this work, the castor oil methyl esters were prepared and their properties determined in comparison to the methyl esters of lesquerella oil, which in turn is seen as alt...

  1. Detection of testosterone esters in blood.

    PubMed

    Forsdahl, Guro; Erceg, Damir; Geisendorfer, Thomas; Turkalj, Mirjana; Plavec, Davor; Thevis, Mario; Tretzel, Laura; Gmeiner, Günter

    2015-01-01

    Injections of synthetic esters of testosterone are among the most common forms of testosterone application. In doping control, the detection of an intact ester of testosterone in blood gives unequivocal proof of the administration of exogenous testosterone. The aim of the current project was to investigate the detection window for injected testosterone esters as a mixed substance preparation and as a single substance preparation in serum and plasma. Furthermore, the suitability of different types of blood collection devices was evaluated. Collection tubes with stabilizing additives, as well as non-stabilized serum separation tubes, were tested. A clinical study with six participants was carried out, comprising a single intramuscular injection of either 1000 mg testosterone undecanoate (Nebido(®)) or a mixture of 30 mg testosterone propionate, 60 mg testosterone phenylpropionate, 60 mg testosterone isocaproate, and 100 mg testosterone decanoate (Sustanon(®)). Blood was collected throughout a testing period of 60 days. The applied analytical method for blood analysis included liquid-liquid extraction and preparation of oxime derivatives, prior to TLX-sample clean-up and liquid chromatography-tandem mass spectrometry (LC-MS/MS) detection. All investigated testosterone esters could be detected in post-administration blood samples. The detection time depended on the type of ester administered. Furthermore, results from the study show that measured blood concentrations of especially short-chained testosterone esters are influenced by the type of blood collection device applied. The testosterone ester detection window, however, was comparable. PMID:26695486

  2. Potential problems associated with ion-exchange resins used in the decontamination of light-water reactor systems

    SciTech Connect

    Soo, P.; Adams, J.W.; Kempf, C.R.

    1987-01-01

    During a typical decontamination event, ion-exchange resin beds are used to remove corrosion products (radioactive and nonradioactive) and excess decontamination reagents from waste streams. The spent resins may be solidified in a binder, such as cement, or sealed in a high-integrity container (HIC) in order to meet waste stability requirements specified by the Nuclear Regulatory Commission. Lack of stability of low-level waste in a shallow land burial trench may lead to trench subsidence, enhanced water infiltration and waste leaching, which would result in accelerated transport of radionuclides and the complexing agents used for decontamination. The current program is directed at investigating safety problems associated with the handling, solidification and containerization of decontamination resin wastes. The three tasks currently underway include freeze-thaw cycling of cementitious and vinyl ester-styrene forms to determine if mechanical integrity is compromised, a study of the corrosion of container materials by spent decontamination waste resins, and investigations of resin degradation mechanisms.

  3. Sub-0.25-μm i-line photoresist: the role of advanced resin technology

    NASA Astrophysics Data System (ADS)

    Xu, Cheng-Bai; Zampini, Anthony; Sandford, Harold F.; Lachowski, Joseph; Carmody, Judy

    1999-06-01

    The use of di-functional monomers such as 2,6- Bis(hydroxymethyl)-p-cresol has allowed the design of novolak resins having alternating architecture with enhanced o,o'-bonding order, specific end-groups and narrow molecular weight distribution. When compared with a conventional m-/p- cresol formaldehyde novolak, the new resins have a lower molecular weight and molecular weight distribution with no p-cresol enriched oligomer fractions. Generally, these resins are used without further processing. With the proper monomer selection novolak resins can be made with the appropriate hydrophilic balance and dissolution characteristics essential for advanced resist development and optimization. By coupling the resin properties with the properties of diazonaphthoquinone sulfonate esters that have a high resolution potential, two advanced sub 0.25 micrometers i- line resist prototypes were developed. With annular illumination, Resist Prototype I demonstrated excellent linear resolution of 0.22 micrometers and an exceptional focus latitude of 1.4 micrometers and 1.7 micrometers for the 0.23 micrometers and 0.25 micrometers dense L/S, respectively; while Resist Prototype II showed linear resolution of 0.18 micrometers L/S and outstanding focus latitudes of 1.6 micrometers and 1.7 micrometers for the 0.21 micrometers L/S and the 0.23 micrometers L/S, respectively.

  4. Porous Ceramic Spheres from Ion Exchange Resin

    NASA Technical Reports Server (NTRS)

    Dynys, Fred

    2005-01-01

    A commercial cation ion exchange resin, cross-linked polystyrene, has been successfully used as a template to fabricate 20 to 50 micron porous ceramic spheres. Ion exchange resins have dual template capabilities. Pore architecture of the ceramic spheres can be altered by changing the template pattern. Templating can be achieved by utilizing the internal porous structure or the external surface of the resin beads. Synthesis methods and chemical/physical characteristics of the ceramic spheres will be reported.

  5. Resin selection criteria for tough composite structures

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.; Smith, G. T.

    1983-01-01

    Resin selection criteria are derived using a structured methodology consisting of an upward integrated mechanistic theory and its inverse (top-down structured theory). These criteria are expressed in a "criteria selection space" which are used to identify resin bulk properties for improved composite "toughness". The resin selection criteria correlate with a variety of experimental data including laminate strength, elevated temperature effects and impact resistance.

  6. Production and biological function of volatile esters in Saccharomyces cerevisiae

    PubMed Central

    Saerens, Sofie M. G.; Delvaux, Freddy R.; Verstrepen, Kevin J.; Thevelein, Johan M.

    2010-01-01

    Summary The need to understand and control ester synthesis is driven by the fact that esters play a key role in the sensorial quality of fermented alcoholic beverages like beer, wine and sake. As esters are synthesized in yeast via several complex metabolic pathways, there is a need to gain a clear understanding of ester metabolism and its regulation. The individual genes involved, their functions and regulatory mechanisms have to be identified. In alcoholic beverages, there are two important groups of esters: the acetate esters and the medium‐chain fatty acid (MCFA) ethyl esters. For acetate ester synthesis, the genes involved have already been cloned and characterized. Also the biochemical pathways and the regulation of acetate ester synthesis are well defined. With respect to the molecular basis of MCFA ethyl ester synthesis, however, significant progress has only recently been made. Next to the characterization of the biochemical pathways and regulation of ester synthesis, a new and more important question arises: what is the advantage for yeast to produce these esters? Several hypotheses have been proposed in the past, but none was satisfactorily. This paper reviews the current hypotheses of ester synthesis in yeast in relation to the complex regulation of the alcohol acetyl transferases and the different factors that allow ester formation to be controlled during fermentation. PMID:21255318

  7. Novel silica-based ion exchange resin

    SciTech Connect

    1997-11-01

    Eichrom`s highly successful Diphonixo resin resembles a conventional ion exchange resin in its use of sulfonic acid ligands on a styrene- divinylbenzene matrix. Diphonix resin exhibits rapid exchange kinetics that allow economical operation of ion exchange systems. Unlike conventional resins, Diphonix resin contains chelating ligands that are diphosphonic acid groups that recognize and remove the targeted metals and reject the more common elements such as sodium, calcium and magnesium. This latter property makes Diphonix ideal for many industrial scale applications, including those involving waste treatment. For treatment of low-level, transuranic (TRU) and high- level radioactive wastes, Diphonix`s polystyrene backbone hinders its application due to radiolytic stability of the carbon-hydrogen bonds and lack of compatibility with expected vitrification schemes. Polystyrene-based Diphonix is approximately 60% carbon- hydrogen. In response to an identified need within the Department of Energy for a resin with the positive attributes of Diphonix that also exhibits greater radiolytic stability and final waste form compatibility, Eichrom has successfully developed a new, silica-based resin version of Diphonix. Target application for this new resin is for use in environmental restoration and waste management situations involving the processing of low-level, transuranic and high-level radioactive wastes. The resin can also be used for processing liquid mixed waste (waste that contains low level radioactivity and hazardous constituents) including mixed wastes contaminated with organic compounds. Silica-based Diphonix is only 10% carbon-hydrogen, with the bulk of the matrix silica.

  8. Characterization of PMR polyimide resin and prepreg

    NASA Technical Reports Server (NTRS)

    Lindenmeyer, P. H.; Sheppard, C. H.

    1984-01-01

    Procedures for the chemical characterization of PMR-15 resin solutions and graphite-reinforced prepregs were developed, and a chemical data base was established. In addition, a basic understanding of PMR-15 resin chemistry was gained; this was translated into effective processing procedures for the production of high quality graphite composites. During the program the PMR monomers and selected model compounds representative of postulated PMR-15 solution chemistry were acquired and characterized. Based on these data, a baseline PMR-15 resin was formulated and evaluated for processing characteristics and composite properties. Commercially available PMR-15 resins were then obtained and chemically characterized. Composite panels were fabricated and evaluated.

  9. 21 CFR 177.1550 - Perfluorocarbon resins.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... for repeated use in contact with food. (d) Specifications—(1) Infrared identification. Perfluorocarbon resins can be identified by their characteristic infrared spectra. (2) Melt-viscosity. (i) The...

  10. Bending rigidity of composite resin coating clasps.

    PubMed

    Ikebe, K; Kibi, M; Ono, T; Nokubi, T

    1993-12-01

    The purpose of this study is to examine the bending profiles of composite resin coating cast clasps. The cobalt-chromium alloy cast clasps were made using tapered wax pattern. Silane coupling method (Silicoater MD, Kulzer Co.) was used to attach composite resin to metal surface. The breakage and the bending rigidity of composite resin coating clasps were evaluated. Results were as follows: 1) After the repeated bending test to the tips of clasp arm at 10,000 times in 0.25 mm deflection, neither crack on composite resin surface nor separation at resin/metal interface was observed in any specimen. 2) There was no significant difference in the bending rigidity of clasp arms between before and after composite resin coating. From these results, it was demonstrated that the composite resin coating cast clasp was available in clinical cases and coating with composite resin had little influence on the bending rigidity of clasp arms. Therefore, it was suggested that our clasp designing and fabricating system to control the bending rigidity of clasp arms could be applied to composite resin coating clasps. PMID:8935086

  11. Sand control with resin and explosive

    SciTech Connect

    Dees, J.M.; Begnaud, W.J.; Sahr, N.L.

    1992-09-08

    This patent describes a method for treating a well having perforated casing to prevent solids movement through the perforations and into the wellbore. It comprises positioning a quantity of liquid resin solution such that the solution occupies the interval of the casing having perforations; positioning an explosive in proximity with the liquid resin solution; detonating the explosive; displacing the liquid resin solution remaining in the wellbore after step (c) through the perforations with a displacing fluid; and injecting a chemical solution through the perforations to cause the resin to polymerize to form a consolidated permeable matrix.

  12. Synthesis of bioreductive esters from fungal compounds.

    PubMed

    Weerapreeyakul, Natthida; Anorach, Rutchayaporn; Khuansawad, Thidarut; Yenjai, Chavi; Isaka, Masahiko

    2007-06-01

    Four new bioreductive esters (7-10) have been synthesized. Their structures composed of trimethyl lock containing quinone propionic acid with an ester linkage to the fungal cytotoxic compounds; preussomerin G (1), preussomerin I (2), phaseolinone (3) and phomenone (4). The synthesized esters are aimed to act via reductive activation specifically at the cancer cells, resulting from hypoxia and overexpression of reductases. Hence, the toxicity will be lessened during distribution across the normal cells. The anticancer activity was determined in cancer cell lines with reported reductase i.e., BC-1 cells and NCI-H187 as well as in non-reductase containing cancer cells; KB cells. When considering each cell lines, result showed that structure modification giving to 7-10 led to less cytotoxicity than their parent compounds (1-4). Both 7 and 8 were strongly cytotoxic (IC50 < or = 5 microg/ml) to NCI-H187, whereas 9 and 10 were moderately cytotoxic (IC50 = 6-10 microg/ml) to BC-1 cells. Additional study of stability of represented phenolic ester (8) and an alcoholic ester (9) were performed. Result illustrated that both 8 and 9 were stable in the presence of esterase. Therefore, the cytotoxicity of the synthesized compounds (8-10) might be due to partial bioreductive activation in the cancer cells. PMID:17541198

  13. Anaerobic degradation kinetics of a cholesteryl ester.

    PubMed

    Gutiérrez, S; Viñas, M

    2003-01-01

    The most important components of wool scouring effluent grease are esters of sterols. Cholesteryl palmitate (CP) is the main ester in this grease. In this paper, the influence of the ester concentration in the anaerobic digestion and the relative rate of the different degradation steps, are studied. The experiment was carried out to measure methane production in the anaerobic degradation of acetate, palmitic acid (PA) and CP. A first-order kinetic model was assumed for hydrolysis and Monod models were assumed for both the methanogenic and acetogenic steps. Maximum hydrolysis rate was found to be around 20 times faster than the maximum methanogenic reaction rate during the experience. The lanolin emulsion drop size effect was also evaluated employing fine and coarse stock lanolin emulsions and no adapted sludge. Concentrations of 13.7 to 4.6 gCOD x l(-1) were employed. In a previous study, the effect of palmitic acid emulsion size was found important when similar sludge was tested. When esters are degraded, a significant effect of drop size on the degradation rate was not found. The difference between CP and PA emulsions behavior could be due to the fact that cholesterol produced during the ester degradation has a protective effect on the sludge. PMID:14640211

  14. Assessment of flow and cure monitoring using direct current and alternating current sensing in vacuum-assisted resin transfer molding

    NASA Astrophysics Data System (ADS)

    Vaidya, Uday K.; Jadhav, Nitesh C.; Hosur, Mahesh V.; Gillespie, John W., Jr.; Fink, Bruce K.

    2000-12-01

    Vacuum-assisted resin transfer molding (VARTM) is an emerging manufacturing technique that holds promise as an affordable alternative to traditional autoclave molding and automated fiber placement for producing large-scale structural parts. In VARTM, the fibrous preform is laid on a single-sided tool, which is then bagged along with the infusion and vacuum lines. The resin is then infused through the preform, which causes simultaneous wetting in its in-plane and transverse directions. An effective sensing technique is essential so that comprehensive information pertaining to the wetting of the preform, arrival of resin at various locations, cure gradients associated with thickness and presence of dry spots may be monitored. In the current work, direct current (dc) and alternating current sensing/monitoring techniques were adopted for developing a systematic understanding of the resin position and cure on plain weave S2-glass preforms with Dow Derakane vinyl ester VE 411-350, Shell EPON RSL 2704/2705 and Si-AN epoxy as the matrix systems. A SMARTweave dc sensing system was utilized to conduct parametric studies: (a) to compare the flow and cure of resin through the stitched and non-stitched preforms; (b) to investigate the influence of sensor positioning, i.e. top, middle and bottom layers; and (c) to investigate the influence of positioning of the process accessories, i.e. resin infusion point and vacuum point on the composite panel. The SMARTweave system was found to be sensitive to all the parametric variations introduced in the study. Furthermore, the results obtained from the SMARTweave system were compared to the cure monitoring studies conducted by using embedded interdigitated (IDEX) dielectric sensors. The results indicate that SMARTweave sensing was a viable alternative to obtaining resin position and cure, and was more superior in terms of obtaining global information, in contrast to the localized dielectric sensing approach.

  15. Imide modified epoxy matrix resins

    NASA Technical Reports Server (NTRS)

    Scola, D. A.

    1982-01-01

    Results of a program designed to develop tough imide modified epoxy (IME) resins cured by bisimide amine (BIA) hardeners are presented. State of the art epoxy resin, MY720, was used. Three aromatic bisimide amines and one aromatic aliphatic BIA were evaluated. BIA's derived from 6F anhydride (3,3 prime 4,4 prime-(hexafluoro isopropyl idene) bis (phthalic anhydride) and diamines, 3,3 prime-diam nodiphenyl sulfone (3,3 prime-DDS), 4,4 prime-diamino diphenyl sulfone (4,4 prime-DDS), 1.12-dodecane diamine (1,12-DDA) were used. BIA's were abbreviated 6F-3,3 prime-DDS, 6F-4,4 prime-DDS, 6F-3,3 prime-DDS-4,4 prime DDS, and 6F-3,3 prime-DDS-1,12-DDA corresponding to 6F anhydride and diamines mentioned. Epoxy resin and BIA's (MY720/6F-3,3 prime-DDS, MY720/6F-3,3 prime-DDS-4,4 prime-DDS, MY720/6F-3,3 prime-DDS-1,12-DDA and a 50:50 mixture of a BIA and parent diamine, MY720/6F-3,3 prime-DDS/3,3 prime-DDS, MY720/6F-3,3 prime-DDS-4,4 prime-DDS/3,3 prime-DDS, MY720/6F-3,3 prime-DDS-1,12-DDA/3,3 prime-DDS were studied to determine effect of structure and composition. Effect of the addition of two commercial epoxies, glyamine 200 and glyamine 100 on the properties of several formulations was evaluated. Bisimide amine cured epoxies were designated IME's (imide modified epoxy). Physical, thermal and mechanical properties of these resins were determined. Moisture absorption in boiling water exhibited by several of the IME's was considerably lower than the state of the art epoxies (from 3.2% for the control and state of the art to 2.0 wt% moisture absorption). Char yields are increased from 20% for control and state of the art epoxies to 40% for IME resins. Relative toughness characteristics of IME resins were measured by 10 deg off axis tensile tests of Celion 6000/IME composites. Results show that IME's containing 6F-3,3 prime-DDS or 6F-3,3 prime-DDS-1,12-DDA improved the "toughness" characteristics of composites by about 35% (tensile strength), about 35% (intralaminar shear

  16. Bismaleimide and cyanate ester based sequential interpenetrating polymer networks for high temperature application

    NASA Astrophysics Data System (ADS)

    Geng, Xing

    2005-07-01

    A research area of high activity in connection with aerospace engineering has been the development of polymer thermosetting resins that can withstand temperature as high as 300°C while maintaining adequate toughness and providing ease of processing to enable low temperature and low cost composite fabrication methods. In order to meet such requirements, sequential interpenetrating polymer networks (IPNs) based on bismaleimide (BMI) and cyanate ester (CE) monomers were investigated. In these systems, a polycyanurate network is first formed in the presence of BMI and appropriate reactive diluent monomers and, in a second step, a network based on the BMI is created in the presence of a fully formed polycyanurate network. The materials developed can be processed at relatively low temperature (<150°C) and with the aid of electron beam (EB) curing. Of major importance to the success of this work was the identification of a reactive diluent that improves ease of processing and has tailored reactivity to allow for the controlled synthesis of CE-BMI sequential IPNs. Based on solubility and reactivity of a number of reactive diluents, N-acryloylmorpholine (AMP) was selected as a co-monomer for BMI copolymerization. A donor-acceptor reaction mechanism was suggested to explain the relative reactivity of a variety of reactive diluents towards maleimide functionality. The optimum processing parameters for the formation of the first network were determined through the study of metal catalyzed cure and hydrolysis of cyanate esters, whereas the reaction behavior for second network formation in terms of the influence of EB dose rate and temperature was elucidated through an in-situ kinetics study of maleimide and AMP copolymerization. Structure-property relationships were developed which allowed for the design of improved resin systems. In particular, an appropriate network coupler possessing cyanate ester and maleimide functionality was synthesized to link the polycyanurate first

  17. High refractive index photocurable resins

    NASA Astrophysics Data System (ADS)

    Morford, Robert V.; Mercado, Ramil L.; Planje, Curtis E.; Flaim, Tony D.

    2005-04-01

    The performance of optoelectronic devices can be increased by incorporating a high refractive index layer into the system. This paper describes several potential high refractive index resin candidates. Our materials include the added advantages over other systems because the new materials are cationically photocurable and free flowing, have low shrinkage upon cure, have no (or little) volatile organic components, are applicable by a variety of methods (dip coating, roller coating, injection molding, or film casting), can be applied in a variety of thicknesses (10-100 m), are fast-curing, and possess robust physical properties. Particular attention focuses on the refractive index in the visible spectrum, light transmission, and formulation viscosity.

  18. Polyimide Resins Resist Extreme Temperatures

    NASA Technical Reports Server (NTRS)

    2009-01-01

    Spacecraft and aerospace engines share a common threat: high temperature. The temperatures experienced during atmospheric reentry can reach over 2,000 F, and the temperatures in rocket engines can reach well over 5,000 F. To combat the high temperatures in aerospace applications, Dr. Ruth Pater of Langley Research Center developed RP-46, a polyimide resin capable of withstanding the most brutal temperatures. The composite material can push the service temperature to the limits of organic materials. Designed as an environmentally friendly alternative to other high-temperature resins, the RP-46 polyimide resin system was awarded a 1992 "R&D 100" award, named a "2001 NASA Technology of the Year," and later, due to its success as a spinoff technology, "2004 NASA Commercial Invention of the Year." The technology s commercial success also led to its winning the Langley s "Paul F. Holloway Technology Transfer Award" as well as "Richard T. Whitcom Aerospace Technology Transfer Award" both for 2004. RP-46 is relatively inexpensive and it can be readily processed for use as an adhesive, composite, resin molding, coating, foam, or film. Its composite materials can be used in temperatures ranging from minus 150 F to 2,300 F. No other organic materials are known to be capable of such wide range and extreme high-temperature applications. In addition to answering the call for environmentally conscious high-temperature materials, RP-46 provides a slew of additional advantages: It is extremely lightweight (less than half the weight of aluminum), chemical and moisture resistant, strong, and flexible. Pater also developed a similar technology, RP-50, using many of the same methods she used with RP-46, and very similar in composition to RP-46 in terms of its thermal capacity and chemical construction, but it has different applications, as this material is a coating as opposed to a buildable composite. A NASA license for use of this material outside of the Space Agency as well as

  19. Phosphorus-containing imide resins

    NASA Technical Reports Server (NTRS)

    Varma, I. K.; Fohlen, G. M.; Parker, J. A. (Inventor)

    1985-01-01

    Cured polymers of bis and tris-imides derived from tris(m-aminophenyl) phosphine oxides by reaction with maleic anhydride or its derivatives, and addition polymers of such imides, including a variant in which a monoimide is condensed with a dianhydride and the product is treated with a further quantity of maleic anhydride prior to curing are disclosed and claimed. Such polymers are flame resistant. Also disclosed are an improved method of producing tris(m-aminophenyl) phosphine oxides from the nitro analogues by reduction with hydrazine hydrate using palladized charcoal or Raney nickel as the catalyst and fiber reinforced cured resin composites.

  20. Phthalate esters as peroxisome proliferator carcinogens.

    PubMed Central

    Warren, J R; Lalwani, N D; Reddy, J K

    1982-01-01

    The phthalate ester di(2-ethylhexyl) phthalate is both a peroxisome proliferator and a hepatic carcinogen. Peroxisome proliferators as a class are hepatocarcinogenic in rodent species. However, none of the peroxisome proliferators tested to date including the phthalate esters and related alcohol and acid analogs have demonstrated mutagenic or DNA-damaging activity in the in vitro Salmonella typhimurium/microsomal or the lymphocyte 3H-thymidine assays. A working hypothesis is proposed that peroxisome proliferation itself initiates neoplastic transformation of hepatic parenchymal cells by increasing intracellular rates of DNA-damaging reactive oxygen production. Evidence which supports such a hypothesis includes increased fatty acid beta-oxidation, elevated H2O2 levels, accumulation of peroxidized lipofuscin, disproportionately small increase in catalase, and elevated peroxisomal uricase activity which accompany peroxisome proliferation in hepatocytes. Direct testing of this hypothesis will provide insight into mechanisms of phthalate ester carcinogenicity and cytotoxicity. Images FIGURE 1. PMID:6754363

  1. Trimerization of monocyanate ester in nanopores.

    PubMed

    Koh, Yung P; Simon, Sindee L

    2010-06-17

    The effects of nanoconfinement on the reaction kinetics and properties of a monocyanate ester and the resulting cyanurate trimer are studied using differential scanning calorimetry (DSC). On the basis of both dynamic heating scans and isothermal reaction studies, the reaction rate is found to increase with decreasing nanopore size without a change in reaction mechanism. Both the monocyanate ester reactant and cyanurate product show reduced glass transition temperatures (T(g)s) as compared to the bulk; the T(g) depression increases with conversion and is more pronounced for the fully reacted product, suggesting that molecular stiffness influences the magnitude of nanoconfinement effects. Our results are consistent with the accelerated reaction and the T(g) depression found previously for the nanoconfined difunctional cyanate ester, supporting the supposition that intracyclization is not the origin of these effects. PMID:20496921

  2. Electrical properties of resin monomers used in restorative dentistry

    PubMed Central

    Breschi, Marco; Fabiani, Davide; Sandrolini, Leonardo; Colonna, Martino; Sisti, Laura; Vannini, Micaela; Mazzoni, Annalisa; Ruggeri, Alessandra; Pashley, David H.; Breschi, Lorenzo

    2013-01-01

    Objectives The application of an electric field has been shown to positively influence the impregnation of the resin monomers currently used in dentin bonding systems during hybrid layer formation. This study presents an experimental characterization of the electrical properties of these monomers with the aim of both correlating them to their chemical structures and seeking an insight into the mechanisms of the monomer migration under an applied electric field. Methods Some common monomers examined were TEGDMA (triethyleneglycol dimethacrylate), HEMA (2-hydroxyethyl methacrylate), UDMA (urethane dimethacrylate), 2-MP (bis[2-(methacryloyloxy)ethyl] phosphate, TCDM di(hydroxyethyl methacrylate) ester of 5-(2,5-dioxotetrahydrofurfuryl)-3-methyl-3-cyclohexenyl-1,2-dicarboxylic anhydride) and Bis-GMA [2,2-bis(4-2-hydroxy-3-methacryloyloxypropoxyphenyl)propane]. A customized cell produced for the measurement of the electrical properties of monomers was manufactured and electrical conductivity and permittivity of resin monomers were measured. Results The permittivity of the tested monomers is largely affected by electrical frequency. The large values of permittivity and dielectric losses observed as frequency decreased, indicate a dominant effect of ionic polarization, particularly evident in materials showing the highest conductivity. Permittivity and conductivity of the tested monomers showed a similar behavior, i.e. materials with the lowest permittivity also show small values of conductivity and vice versa. Significance The results of the present study revealed a good correlation between electrical properties and Hoy solubility parameters and, in particular, the higher the polar contribution (polar forces plus hydrogen bonding) the higher the permittivity and conductivity. The most relevant outcome of this study is that the electrophoretic mechanism prevails on the electroendoosmotic effect in determining the monomer migration under the application of electric fields

  3. 21 CFR 175.380 - Xylene-formaldehyde resins condensed with 4,4′-isopropylidenediphenol-epichlorohydrin epoxy resins.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... condensation of xylene-formaldehyde resin and 4,4′-isopropylidenediphenol-epichlorohydrin epoxy resins, to... include resins produced by the condensation of allyl ether of mono-, di-, or trimethylol phenol and...

  4. Routine patch testing with paraben esters.

    PubMed

    Menné, T; Hjorth, N

    1988-09-01

    Paraben esters are the most widely used preservatives in cosmetics and topical medicaments. Their sensitization potential is low, based on both experimental and human experience. A paraben mixture is included in the ICDRG standard series, and in patch test studies, approximately 1% of eczema patients react to it. The present study confirms this frequency in 8020 patients patch tested consecutively. Testing with the individual paraben esters was employed as confirmation, which makes it unlikely that the excited skin syndrome is a significant problem in this context. It remains undetermined whether the present paraben mixture is the optimal patch test material for diagnosing paraben sensitivity. PMID:3191679

  5. Phthalate esters: Testing for ecological effects

    SciTech Connect

    Brown, D.; Thompson, R.; Croudace, C.; Stewart, K.; Williams, N.

    1995-12-31

    Ortho-phthalate esters are produced in high tonnages for use as plasticizers, in particular for PVC. Their physical chemical properties are typically very low water solubility and high octanol/water partition coefficient. This combination of properties presents a number of experimental difficulties in the design and interpretation of ecological effect studies. These difficulties are described and results presented showing techniques for the performance of reproduction studies with the water flea, Daphnia magna, in aqueous solution and with the midge, Chironomus riparius, in sediments. The results which showed no effect for the phthalate esters tested are discussed in the context of other ecotoxicity data obtained on these products.

  6. TMI-2 purification demineralizer resin study

    SciTech Connect

    Thompson, J D; Osterhoudt, T R

    1984-05-01

    Study of the Makeup and Purification System demineralizers at TMI-2 has established that fuel quantities in the vessels are low, precluding criticality, that the high radioactive cesium concentration on the demineralizer resins can be chemically removed, and that the demineralizer resins can probably be removed from the vessels by sluicing through existing plant piping. Radiation measurements from outside the demineralizers establishing that there is between 1.5 and 5.1 (probably 3.3) lb of fuel in the A vessel and less than that amount in the B vessel. Dose rates up to 2780 R per hour were measured on contact with the A demineralizer. Remote visual observation of the A demineralizer showed a crystalline crust overlaying amber-colored resins. The cesium activity in solid resin samples ranged from 220 to 16,900 ..mu..Ci/g. Based on this information, researchers concluded that the resins cannot be removed through the normal pathway in their present condition. Studies do show that the resins will withstand chemical processing designed to rinse and elute cesium from the resins. The process developed should work on the TMI-2 resins.

  7. Modified resins for solid-phase extraction

    DOEpatents

    Fritz, James S.; Sun, Jeffrey J.

    1993-07-27

    A process of treating aqueous solutions to remove organic solute contaminants by contacting an aqueous solution containing polar organic solute contaminants with a functionalized polystyrene-divinyl benzene adsorbent resin, with the functionalization of said resin being accomplished by organic hydrophilic groups such as hydroxymethyl, acetyl and cyanomethyl.

  8. Modified resins for solid-phase extraction

    DOEpatents

    Fritz, James S.; Sun, Jeffrey J.

    1991-12-10

    A process of treating aqueous solutions to remove organic solute contaminants by contacting an aqueous solution containing polar organic solute contaminants with a functionalized polystyrene-divinyl benzene adsorbent resin, with the functionalization of said resin being accomplished by organic hydrophilic groups such as hydroxymethyl, acetyl and cyanomethyl.

  9. Fluorinated diamond bonded in fluorocarbon resin

    DOEpatents

    Taylor, Gene W.

    1982-01-01

    By fluorinating diamond grit, the grit may be readily bonded into a fluorocarbon resin matrix. The matrix is formed by simple hot pressing techniques. Diamond grinding wheels may advantageously be manufactured using such a matrix. Teflon fluorocarbon resins are particularly well suited for using in forming the matrix.

  10. Silicone modified resins for graphite fiber laminates

    NASA Technical Reports Server (NTRS)

    Frost, L. W.; Bower, G. M.

    1980-01-01

    Six silicone modified resins were selected for evaluation in unidirectional filament wound graphite laminates. Neat samples of these resins had 1,000 C char residues of 6-63%. The highest flexural values measured for the laminates were a strength of 1,220 MPa and a modulus of 105 GPa. The highest interlaminar shear strength was 72 MPa.