Science.gov

Sample records for black chrome solar

  1. Black chrome solar selective coating

    SciTech Connect

    Pettit, R.B.; Sowell, R.R.

    1980-01-01

    Electrodeposited black chrome solar selective coatings have frequently experienced thermal stability problems when heated to temperatures above 250/sup 0/C (480/sup 0/F) in air. By reducing the trivalent chromium concentration in the standard black chrome plating bath, coatings on nickel substrates are obtained which are stable for thousands of hours at 350/sup 0/C (660/sup 0/F) and for hundreds of hours at 400/sup 0/C (750/sup 0/F). These results have been obtained consistently on a laboratory scale, but difficulty in reproducing the results has been encountered in a production environment. A current study of the effects of known plating variables on the optical properties and thermal stability of coatings is aimed at establishing an acceptable range for each plating parameter. A preliminary process specification for electroplating mild steel substrates with a stable black chrome coating is presented.

  2. Commercially available black chrome is an effective solar collector coating

    NASA Technical Reports Server (NTRS)

    Mcdonald, G. E.

    1974-01-01

    Black chrome, electroplated decorative finish, which absorbs and retains solar energy is readily available, easily applied, and low cost. It is indistinguishable from black nickel and is equally feasible on aluminum or steel.

  3. Selective coating for solar panels. [using black chrome and black nickel

    NASA Technical Reports Server (NTRS)

    Mcdonald, G. E. (Inventor)

    1977-01-01

    The energy absorbing properties of solar heating panels are improved by depositing a black chrome coating of controlled thickness on a specially prepared surface of a metal substrate. The surface is prepared by depositing a dull nickel on the substrate, and the black chrome is plated on this low emittance surface to a thickness between 0.5 micron and 2.5 microns.

  4. Performance evaluation of two black nickel and two black chrome solar collectors

    NASA Technical Reports Server (NTRS)

    Losey, R.

    1977-01-01

    The test program was based on the evaluation of four unique solar collectors described below: (1) black nickel collector surface with a desiccant drying bed, (2) black nickel collector surface without a desiccant drying bed, (3) black chrome collector surface with a dessicant drying bed, and (4) black chrome collector surface without a desiccant drying bed. The test program included three distinct phases: Initial performance evaluation, natural environmental aging, and post-aging performance evaluation. Results of Phase III testing conclusively indicated a higher normalized efficiency for Black Chrome surfaces when compared to Black Nickel.

  5. Fundamental studies of black chrome for solar collector use

    NASA Technical Reports Server (NTRS)

    Mcdonald, G.; Buzek, B.; Curtis, H.

    1976-01-01

    The thicknesses of black chrome plated for various times have been measured from electron photomicrographs and correlated with the solar spectrum absorptance and infrared emittance as calculated from spectral reflectance measurements. The maximum absorptance is reached at an average thickness of 0.5 micrometer. The emittance increases only slightly up to 1.0 micrometer but increases rapidly at thickness above 1.0 micrometer.

  6. Refinement in black chrome for use as a solar selective coating

    NASA Technical Reports Server (NTRS)

    Mcdonald, G. E.

    1974-01-01

    Black chrome is significant as a solar selective coating because the current extensive use of black chrome in the electroplating industry as a durable decorative finish makes black chrome widely available on a commercial scale and potentially low in cost as a solar selective coating. Black-chrome deposits were modified by underplating with dull nickel or by being plated on rough surfaces. Both of these procedures increased the visible absorptance. There was no change in the infrared reflectance for the dull-nickel - black-chrome combination from that reported for the bright-nickel - black-chrome combination. However, the bright-nickel - black-chrome coating plated on rough surfaces indicated a slight decrease in infrared reflectance. As integrated over the solar spectrum for air mass 2, the reflectance of the dull-nickel - black-chrome coating was 0.077, of the bright-nickel - black-chrome coating plated on a 0.75-micron (30-microinch) surface was 0.070, of the bright-nickel - black-chrome coating plated on a 2.5 micron (100-microinch) surface was 0.064. The corresponding values for the bright-nickel - black-chrome coating on a 0.0125-micron (0.5-microinch) surface, two samples of black nickel, and two samples of Nextrel black paint were 0.132, 0.123, 0.133, and 0.033, respectively.

  7. Black chrome on commercially electroplated tin as a solar selecting coating

    NASA Technical Reports Server (NTRS)

    Mcdonald, G. E.

    1977-01-01

    The reflectance properties of black chrome electroplated on commercially electroplated tin were measured for various black chrome plating times for both the solar and infrared spectrum. The values of absorptance and emittance were calculated from the measured reflectance values. The results indicate that the optimum combination of the highest absorptance in the solar region and the lowest emittance in the infrared of the black chrome plated on commercially electroplated tin is obtained for a black chrome plating time of between one and two minutes.

  8. Oxidation of electrodeposited black chrome selective solar absorber films

    SciTech Connect

    Holloway, P.H.; Shanker, K.; Pettit, R.B.; Sowell, R.R.

    1980-01-01

    X-ray photoelectron and Auger electron spectroscopies have been used to study the composition and oxidation of electrodeposited black chrome films. The outer layer of the film is Cr/sub 2/O/sub 3/ with the inner layer being a continuously changing mixture of Cr + Cr/sub 2/O/sub 3/. Initially, approximately 40% by volume of the film is combined as Cr/sub 2/O/sub 3/, and the volume percentage of Cr/sub 2/O/sub 3/ increases to greater than 60% after only 136 hours at 250/sup 0/C. After approximately 3600 hours at 400/sup 0/C, the volume percentage of Cr/sub 2/O/sub 3/ increased to as high as 80%. The thermal emittance decreased approximately linearly with increasing oxide content, while the solar absorptance remained constant until the percentage of Cr/sub 2/O/sub 3/ exceeded approximately 70%. Oxidation was slower when the Cr/sup +3/ concentration in the plating bath was reduced from 16 g/l to 8 g/l, and when black chrome was deposited on stainless steel rather than sulfamate nickel.

  9. Spectral reflectance properties of black chrome for use as a solar selective coating

    NASA Technical Reports Server (NTRS)

    Mcdonald, G. E.

    1974-01-01

    The NASA-Lewis Research Center has determined that a widely available commercially electroplated decorative finish known as black chrome has desirable solar selective properties. Black chrome electroplated coating has high absorbtance in the solar spectrum and low emissivity in the 250 F blackbody thermal spectrum. The spectral reflectance properties of a commercially prepared black chrome on steel have been measured. Values are presented for reflectance of the black chrome, and compared with the reflectance of black paint and with two available samples of black nickel which had been prepared for solar selective properties. The reflectance of black chrome, of the two black nickels, and of black paint integrated over the solar spectrum for air mass 2 were 0.132, 0.123, 0.133, and 0.033, respectively. The reflectance of the black chrome, two black nickels, and of the black paint integrated over the blackbody spectrum for 250 F from 3 to 15 microns are 0.912, 0.934, 0.891, and 0.033, respectively. These reflectance measurements indicate absorptivity-to-emissivity values of 9.8, 13.8, 8.0, and 1.00, respectively.

  10. Variation of solar-selective properties of black chrome with plating time

    NASA Technical Reports Server (NTRS)

    Mcdonald, G. E.; Curtis, H. B.

    1975-01-01

    The spectral reflectance properties of a commercially prepared black chrome over dull nickel, both plated on steel, for various plating times of the black chrome were measured. The plating current was 180 amperes per square foot. Values of absorptance integrated over the solar spectrum, and of infrared emittance integrated over black-body radiation at 250 F were obtained. It is shown that plating between one and two minutes produces the optimum combination of highest heat absorbed and lowest heat lost by radiation.

  11. Spectral reflectance properties of black chrome for use as a solar selective coating

    NASA Technical Reports Server (NTRS)

    Mcdonald, G. E.

    1974-01-01

    The NASA-Lewis Research Center has determined that a widely available commercially electroplated decorative finish known as black chrome has desirable solar selective properties. The spectral reflectance properties of a commercially prepared black chrome on steel were measured. Values are presented for reflectance of the black chrome, and compared with the reflectance of black paint (Nextel) and with two available samples of black nickel which had been prepared for solar selective properties. The reflectance of black chrome, of the two black nickels, and of black paint integrated over the solar spectrum for air mass 2 were 0.132, 0.123, 0.133, and 0.033, respectively. The reflectance of the black chrome, two black nickels, and of the black paint integrated over the blackbody spectrum for 250 F from 3 to 15 microns are 0.912, 0.934, 0.891, and 0.033, respectively. These reflectance measurements indicate absorptivity-to-emissivity values of 9.8, 13.8, 8.0, and 1.00, respectively.

  12. Surface structure and the optical properties of black chrome

    NASA Astrophysics Data System (ADS)

    Smith, G. B.; McPhedran, R. C.; Derrick, G. H.

    1985-04-01

    A new optical model is presented for solar-selective black chrome. Surface texture is shown to be the primary factor which gives thin films of black chrome a uniformly high absorptance in the visible and near-infrared regions. Internal composition of the films is a secondary influence on their optical properties. We present results consistent with experimental data obtained from films having widely varying structures and compositions, both before and after heat treatment. Our optical model does not rely on the quasistatic approximation, hitherto universally employed in theoretical studies of solar-selective black chrome. Instead, we use a rigorous diffraction formulation for doubly-periodic surfaces (bigratings). The key parameters of the surface morphology are determined from stereo-pair electronmicrographs, and are used in the bigrating model. We present the predicted variation of spectral absorptance with wavelength, as well as integrated absorptance and thermal emittance, for roughened chromium. We give results both for bare metal, and for the metal conformally overcoated either with a thin layer of Cr2O3 or with a Cr/Cr2O3 cermet. Various shapes of surface features are examined, and surface profile is shown not to be crucial in determining optical properties.

  13. Survey of coatings for solar collectors. [ceramic enamels and chromium

    NASA Technical Reports Server (NTRS)

    Mcdonald, G. E.

    1974-01-01

    Ceramic enamel is found to be more solar selective, (i.e., has high solar absorptance in combination with low infrared emittance) than organic enamel, but neither is as solar selective as black chrome, black copper, black zinc, or black nickel. Ceramic enamel is matched only by black chrome in durability and wide availability. Ceramic enamel and organic enamel have approximately the same cost, and both are currently slightly lower in cost than black chrome, black copper, or black zinc. Black nickel is relatively unavailable and, because of that, realistic cost comparisons are not possible.

  14. Black Liquid Solar Collector Demonstrator.

    ERIC Educational Resources Information Center

    Weichman, F. L.; Austen, D. J.

    1979-01-01

    Describes the details of constructing, and use of, a solar collector. Uses a black liquid to absorb the energy, the thermosyphon effect to drive the liquid through the collector, and a floodlamp as a surrogate sun. (GA)

  15. Solar energy absorption characteristics and the effects of heat on the optical properties of several coatings

    NASA Technical Reports Server (NTRS)

    Lowery, J. R.

    1981-01-01

    The solar energy absorption characteristics of several high temperature coatings were determined and effects of heat on these coatings were evaluated. Included in the investigation were an electroplated alloy of black chrome and vanadium, electroplated black chrome, and chemically colored 316 stainless steel. Each of the coatings possessed good selective solar energy absorption properties at laboratory ambient temperature. Measured at a temperature of 700 K (800 F), the emittances of black chrome, black chrome vanadium, and colored stainless steel were 0.11, 0.61, and 0.15, respectively. Black chrome and black chrome vanadium did not degrade optically in the presence of high heat (811 K (1000 F)). Chemically colored stainless steel showed slight optical degradation when exposed to moderately high heat (616 K (650 F)0, but showed more severe degradation at exposure temperatures beyond this level. Each of the coatings showed good corrosion resistance to a salt spray environment.

  16. Survey of coatings for solar collectors

    NASA Technical Reports Server (NTRS)

    Mcdonald, G. E.

    1975-01-01

    Optimum solar selective properties of black chrome require some tailoring of current and time for plating solution being used. Black zinc is produced from high zinc electroplate by subsequent conversion with chromate dip. Measurements have also been made of reflectance of previously known solar selective coatings of black copper and electroplated black nickel.

  17. Optimized Selective Coatings for Solar Collectors

    NASA Technical Reports Server (NTRS)

    Mcdonald, G.; Curtis, H. B.

    1967-01-01

    The spectral reflectance properties of black nickel electroplated over stainless steel and of black copper produced by oxidation of copper sheet were measured for various plating times of black nickel and for various lengths of time of oxidation of the copper sheet, and compared to black chrome over nickel and to converted zinc. It was determined that there was an optimum time for both plating of black nickel and for the oxidation of copper black. At this time the solar selective properties show high absorptance in the solar spectrum and low emittance in the infrared. The conditions are compared for production of optimum optical properties for black nickel, black copper, black chrome, and two black zinc conversions which at the same conditions had absorptances of 0.84, 0.90, 0.95, 0.84, and 0.92, respectively, and emittances of 0.18, 0.08, 0.09, 0.10, and 0.08, respectively.

  18. Solar absorption characteristics of several coatings and surface finishes. [for solar energy collectors

    NASA Technical Reports Server (NTRS)

    Lowery, J. R.

    1977-01-01

    Solar absorption characteristics are established for several films potentially favorable for use as receiving surfaces in solar energy collectors. Included in the investigation were chemically produced black films, black electrodeposits, and anodized coatings. It was found that black nickel exhibited the best combination of selective optical properties of any of the coatings studied. A serious drawback to black nickel was its high susceptibility to degradation in the presence of high moisture environments. Electroplated black chrome generally exhibited high solar absorptivities, but the emissivity varied considerably and was also relatively high under some conditions. The black chrome had the greatest moisture resistance of any of the coatings tested. Black oxide coatings on copper and steel substrates showed the best combination of selective optical properties of any of the chemical conversion films studied.

  19. Absorptive coating for aluminum solar panels

    NASA Technical Reports Server (NTRS)

    Desmet, D.; Jason, A.; Parr, A.

    1979-01-01

    Method for coating forming coating of copper oxide from copper component of sheet aluminum/copper alloy provides strong durable solar heat collector panels. Copper oxide coating has solar absorption characteristics similar to black chrome and is much simpler and less costly to produce.

  20. The CHROME Honors Program

    NASA Technical Reports Server (NTRS)

    Wilson, Eleanor

    2002-01-01

    The CHROME Honors Program was designed as a two-week residential program for 9th and 1Oth grade students participating in CHROME clubs. The curriculum focused on the health sciences with instruction from: (1) the science and health curriculum of the Dozoretz National Program for Minorities in Applied Sciences (DNIMAS) Program of Norfolk State University (NSU); (2) the humanities curriculum of the NSU Honors Program; (3) NASA-related curriculum in human physiology. An Advisory Committee was formed to work with the Project Coordinator in the design of the summer program.

  1. ALTERNATIVE TO CHROME ETCHING PROCESSES FOR METALS

    EPA Science Inventory

    Several industries, including the National Center for Manufacturing Science have initiated programs for chrome abatement. The programs, however, generally focus on chrome reduction by use of existing technologies and do not address the elimination of chrome in pretreatment proces...

  2. Thermal properties of carbon black aqueous nanofluids for solar absorption

    NASA Astrophysics Data System (ADS)

    Han, Dongxiao; Meng, Zhaoguo; Wu, Daxiong; Zhang, Canying; Zhu, Haitao

    2011-07-01

    In this article, carbon black nanofluids were prepared by dispersing the pretreated carbon black powder into distilled water. The size and morphology of the nanoparticles were explored. The photothermal properties, optical properties, rheological behaviors, and thermal conductivities of the nanofluids were also investigated. The results showed that the nanofluids of high-volume fraction had better photothermal properties. Both carbon black powder and nanofluids had good absorption in the whole wavelength ranging from 200 to 2,500 nm. The nanofluids exhibited a shear thinning behavior. The shear viscosity increased with the increasing volume fraction and decreased with the increasing temperature at the same shear rate. The thermal conductivity of carbon black nanofluids increased with the increase of volume fraction and temperature. Carbon black nanofluids had good absorption ability of solar energy and can effectively enhance the solar absorption efficiency.

  3. Solar absorber material stability under high solar flux

    NASA Astrophysics Data System (ADS)

    Ignatiev, A.; Zajac, G.; Smith, G. B.

    1982-04-01

    Solar absorbing Black Chrome coatings have been exposed to high temperatures (350-400 C) under high solar fluxes (0.4 to 2.0 MW/sq m) to test for their stability under actual operating conditions. Field tests at the White Sands Solar Furnace have shown higher stability than expected from oven tested samples. Laboratory studies utilizing spectrally selective concentrated solar simulated radiation have indicated that the cause of the higher stability under solar irradiation is photo-stimulated desorption of oxygen bearing species at the absorber surface and resultant reduced oxidation of the absorber.

  4. Dye sensitized solar cells with carbon black as counter electrodes

    NASA Astrophysics Data System (ADS)

    Lin, Chi-Feng; Chou, Yu-Chen; Haung, Jhang-Fu; Chen, Pin-Hung; Han, Hsieh-Cheng; Chiu, Kuo-Yuan; Su, Yuhlong Oliver

    2016-03-01

    In this experiment, we use carbon black as counter electrodes to replace the conventional platinum electrodes in dye sensitized solar cell (DSSC). The electrical properties and device efficiency with carbon black counter electrodes with various concentrations, and under the annealing temperature from 100 to 500 °C are discussed. After the proper annealing process, the conductivity and redoxing ability of the carbon black is improved, resulted in the enhancement of the electrical characteristics, especially fill factor, of the device. The highest device efficiency was 7.28% with the JSC of 14.70 mA/cm2, VOC of 0.75 V, and fill factor of 0.67 under 1-sun AM 1.5G solar illumination.

  5. Historically Black Colleges and Universities (HBCU) Solar Radiation Monitoring Network

    DOE Data Explorer

    The Historically Black Colleges and Universities (HBCU) Solar Radiation Monitoring Network operated from November 1985 through December 1996. The six-station network provided 5-minute averaged measurements of global and diffuse horizontal solar irradiance. The data were processed at the National Renewable Energy Laboratory (NREL) to improve the assessment of the solar radiation resources in the southeastern United States. Three of the stations also measured the direct-normal solar irradiance with a pyrheliometer mounted in an automatic sun tracker. All data are archived in the Standard Broadband Format (SBF) with quality-assessment indicators. Monthly data summaries and plots are also available for each month. In January 1997 the HBCU sites became part of the CONFRRM solar monitoring network.

  6. Orientation to solar radiation in black wildebeest (Connochaetes gnou).

    PubMed

    Maloney, Shane K; Moss, Graeme; Mitchell, Duncan

    2005-11-01

    We recorded the body axis orientation of free-living black wildebeest relative to incident solar radiation and wind. Observations were made on three consecutive days, on six occasions over the course of 1 year, in a treeless, predominantly cloudless habitat. Frequency of orientation parallel to incident solar radiation increased, and perpendicular to incident solar radiation decreased, as ambient dry-bulb temperature or solar radiation intensity increased, or wind speed decreased. We believe these changes were mediated via their effect on skin temperature. Parallel orientation behavior was more prominent when the wildebeest were standing without feeding than it was when they were feeding. We calculate that a black wildebeest adopting parallel orientation throughout the diurnal period would absorb 30% less radiant heat than the same animal adopting perpendicular orientation. Parallel orientation was reduced at times when water was freely available, possibly reflecting a shift from behavioral to autonomic thermoregulatory mechanisms. The use of orientation behavior by black wildebeest is well developed and forms part of the suite of adaptations that help them to maintain heat balance while living in a shadeless, often hot, environment. PMID:16075268

  7. Black metallurgical silicon for solar energy conversion

    NASA Astrophysics Data System (ADS)

    Li, Xiaopeng; Lee, Jung-Ho; Sprafke, Alexander N.; Wehrspohn, Ralf B.

    2016-01-01

    Metal impurities are known to create deep traps in the silicon (Si) bandgap, significantly reducing the minority carrier lifetime and consequently deteriorating the efficiency of a Si-based solar conversion system. Traditional purification methods via ‘Siemens’ and metallurgical routes involve complex and energy-intensive processes. Therefore, it is highly desirable to develop novel Si treatment technologies. With the radical evolution of nanotechnology in the past decades, new nano-approaches are offering opportunities to diminish the detrimental impacts of metal impurities or upgrade low quality Si in a cost-effective and energy-saving way. Here we review various recently developed dry and wet chemical etching methods including reactive ion etching, electrochemical etching, stain etching and metal assisted chemical etching. The current progress and the application prospects of those methods in nanostructure creation and Si upgrading are given and discussed in detail.

  8. Enhancement of solar absorption with black Cu2O Nanostructures

    NASA Astrophysics Data System (ADS)

    Xing, Hui; Hatch, John; Ji, Dengxin; Kort, Kenneth; Barman, Biplob; Tsai, Yu Tsung; Qin, Yueling; Banerjee, Sarbajit; Petrou, Athos; Gan, Qiaoqiang; Luo, Hong; Zeng, Hao

    2013-03-01

    Cu2O is a direct gap semiconductor with a band gap of 2.1 eV. It was considered to be a solar absorber material, while the application is hindered by its large band gap and weak stability. Here we report an electrochemical synthesis of Cu2O. By rationally control the synthetic parameters, we achieved two types of Cu2O: one of black color and the other ``normal'' red Cu2O. Both Cu2O films were in cubic phase and their crystal structures are almost identical as seen by X-ray diffraction. This is further corroborated by their nearly identical Raman spectra. The scanning tunneling spectrum (STS) revealed a gap in the red Cu2O around 2.1 eV and a significantly lowered gap of ~ 1.7 eV in the black Cu2O, indicating that the black color is caused by a change in the electronic structure. The reflectance and transmittance indicated a band gap of ~ 1.7 eV for the black Cu2O, with a significantly broadened absorption spectrum. While further effort is needed to understand the mechanism for the lowering of the band gap, we believe that our approach demonstrated means to promote earth abundant and nontoxic materials for potential photovoltaic applications through band gap engineering. Research supported by NSF DMR1104994.

  9. Recovery of energy and chrome from chrome tannery wastes

    SciTech Connect

    Muralidhara, H.S.; Maggin, B.; Phipps, H.

    1980-05-30

    An evaluation of the technical performance and cost effectiveness of a low temperature pyrolysis process which uses dry leather tanning wastes to provide energy and chrome tanning liquor for reuse in tanneries is presented. Presently, leather waste is disposed of in landfills, resulting not only in a considerable loss of potential energy (estimated to be 0.7 trillion Btus annually), but an even more significant loss of chromium (estimated to be 1.8 million pounds per year). The pyrolysis process is shown to be technically feasible, economically viable, and can alleviate a leather waste management problem that is becoming increasingly more difficult to handle because of more stringent environmental waste disposal requirements. Leather tanneries can save an estimated $7 to $8 million annually by employing this pyrolysis process to conserve energy and chrome in dry tanning wastes.

  10. Low-Chrome/Chrome Free Refractories for Slagging Gasifiers

    SciTech Connect

    Bennett, J.P.; Kwong, K.-S.; Powell, C.P.; Thomas, H.; Petty, A.V., Jr.

    2007-01-01

    Gasifiers are containment vessels used to react carbon-containing materials with oxygen and water, producing syngas (CO and H2) that is used in chemical and power production. It is also a potential source of H2 in a future hydrogen economy. Air cooled slagging gasifiers are one type of gasifier, operating at temperatures from 1275-1575º C and at pressures of 400 psi or higher. They typically use coal or petroleum coke as the carbon source, materials which contain ash impurities that liquefy at the gasification temperatures, producing liquid slag in quantities of 100 or more tons/day, depending on the carbon fed rate and the percent ash present in the feedstock. The molten slag is corrosive to refractory linings, causing chemical dissolution and spalling. The refractory lining is composed of chrome oxide, alumina, and zirconia; and is replaced every 3-24 months. Gasifier users would like greater on-line availability and reliability of gasifier liners, something that has impacted gasifier acceptance by industry. Research is underway at NETL to improve refractory service life and to develop a no-chrome or low-chrome oxide alternative refractory liner. Over 250 samples of no- or low-chrome oxide compositions have been evaluated for slag interactions by cup testing; with potential candidates for further studies including those with ZrO2, Al2O3, and MgO materials. The development of improved liner materials is necessary if technologies such as IGCC and DOE’s Near Zero Emissions Advanced Fossil Fuel Power Plant are to be successful and move forward in the marketplace.

  11. Optimization of black diamond films for solar energy conversion

    NASA Astrophysics Data System (ADS)

    Bellucci, Alessandro; Calvani, Paolo; Girolami, Marco; Orlando, Stefano; Polini, Riccardo; Trucchi, Daniele M.

    2016-09-01

    Black diamond, namely a surface textured diamond film able to absorb efficiently the sunlight, is developed by the use of ultrashort pulse laser treatments. With the aim of fabricating a 2D periodic surface structure, a double-step texturing process is implemented and compared to the single-step one, able to induce the formation of 1D periodic structures. Although the obtained sub-microstructure does not show a regular 2D periodicity, a solar absorptance of about 98% is achieved as well as a quantum efficiency enhanced of one order of magnitude with respect to the 1D periodic surface texturing.

  12. Chrome - Free Aluminum Coating System

    NASA Technical Reports Server (NTRS)

    Bailey, John H.; Gugel, Jeffrey D.

    2010-01-01

    This slide presentation concerns the program to qualify a chrome free coating for aluminum. The program was required due to findings by OSHA and EPA, that hexavalent chromium, used to mitigate corrosion in aerospace aluminum alloys, poses hazards for personnel. This qualification consisted of over 4,000 tests. The tests revealed that a move away from Cr+6, required a system rather than individual components and that the maximum corrosion protection required pretreatment, primer and topcoat.

  13. Hex Chrome Free Coatings for Electronics Overview

    NASA Technical Reports Server (NTRS)

    Kessel, Kurt

    2013-01-01

    The overall objective of the Hex Chrome Free Coatings for Electronics project is to evaluate and test pretreatment coating systems not containing hexavalent chrome in avionics and electronics housing applications. This objective will be accomplished by testing strong performing coating systems from prior NASA and DoD testing or new coating systems as determined by the stakeholders.

  14. Viscoelasticity Studies for Chrome-Free Leather

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Chrome-free leather such as glutaraldehyde-tanned leather behaves very differently from chrome-tanned leather. Information regarding its viscoelasticity has not been reported. Hysteresis and stress relaxation are two essential properties associated with viscoelasticity. We have designed a cyclic ...

  15. Black tungsten selective optical coatings for photothermal solar energy conversion

    NASA Astrophysics Data System (ADS)

    Gesheva, K. A.; Gogova, D. S.; Stoyanov, G.

    1992-08-01

    By pyrolytic decomposition of W(CO)6 in the presence of an oxygen bleed black tungsten solar selective coatings have been deposited on different substrates - quartz, silicon and stainless steel. Quartz substrates were used to check the opacity of the films deposited; the silicon substrates were used to study the possibility of obtaining low-resistance material when fully annealed and the steel substrates to study the properties of the films on substrates suitable for a large scale application. The films were obtained at a temperature of 400°C and further partially annealed in a reducing atmosphere. The dependence of the structure and chemical composition on the annealing temperature was studied, as well as reflectance measurements in the visible and in the infrared region.

  16. Gold-black as IR Absorber and Solar Cell Enhancer

    SciTech Connect

    Peale, Robert E.; Cleary, Justin W.; Ishimaru, Manabu; Smith, C. W.; Baillie, K.; Colwell, J. E.; Beck, Kenneth M.; Joly, Alan G.; Edwards, Oliver; Fredricksen, C. J.

    2010-03-01

    Infrared absorbance and visible/near-IR excited plasmon resonances are investigated in gold-black, a porous nano-structured conducting film. A two level full factorial optimization study with evaporation-chamber pressure, boat current, substrate temperature, and degree of polymer infusion (for hardening) was performed. Polymer infusion was found generally to reduce absorbance in the long wave IR but has little effect at THz wavelengths, although for samples with the highest absorbance there is a slight improvement in the absorbance figure of merit (FOM) in both wavelength regimes. The characteristic length scales of the structured films vary considerably as a function of deposition parameters, but the IR FOM is found to be only weakly correlated with these distributions, which are determined by wavelet analysis of scanning electron micrographs images. Initial investigations of gold-black by photoelectron emission microscopy (PEEM) reveal plasmon resonances, which have potential to enhance the efficiency of thin film solar cells. For films with different characteristic length scales, the plasmon resonances appear in portions of the film with similar length scales.

  17. Characterizations of the mirror attenuator mosaic - Solar diffuser plate

    NASA Technical Reports Server (NTRS)

    Lee, Robert B., III; Avis, Lee M.; Gibson, M. A.; Kopia, Leonard P.

    1992-01-01

    The mirror attenuator mosaic (MAM), a solar diffuser plate, was used for the flight calibration of the broadband shortwave (0.2-5-microns) and total (0.2 to greater than 200-microns) Earth Radiation Budget Experiment scanning thermistor bolometer radiometers. The MAM solar-reflecting surface consisted of a tightly packed array of vacuum-deposited aluminum, concave spherical mirrors, while its solar-absorbing surface consisted of black chrome. The effective reflectance of the MAM was constant to within +/- 2 percent after almost 2 years in orbit, a marked improvement over earlier solar diffusers.

  18. Evaluation of a Line-Concentrating Solar Collector

    NASA Technical Reports Server (NTRS)

    1982-01-01

    45-page report contains results of performance evaluation of line-concentrating solar collector. Collector employs parabolic trough to direct Sunlight to line along its focal axis, along which lies a black-chrome plated receiver tube covered by a glass tube containing still air. Reflective trough has aluminum-mirror surface covered with metallized acrylic film. Array of four collectors, positioned end to end was used for evaluation. Array was driven by single drive mechanism which was controlled by electronic tracking device.

  19. Two ten-billion-solar-mass black holes at the centres of giant elliptical galaxies.

    PubMed

    McConnell, Nicholas J; Ma, Chung-Pei; Gebhardt, Karl; Wright, Shelley A; Murphy, Jeremy D; Lauer, Tod R; Graham, James R; Richstone, Douglas O

    2011-12-01

    Observational work conducted over the past few decades indicates that all massive galaxies have supermassive black holes at their centres. Although the luminosities and brightness fluctuations of quasars in the early Universe suggest that some were powered by black holes with masses greater than 10 billion solar masses, the remnants of these objects have not been found in the nearby Universe. The giant elliptical galaxy Messier 87 hosts the hitherto most massive known black hole, which has a mass of 6.3 billion solar masses. Here we report that NGC 3842, the brightest galaxy in a cluster at a distance from Earth of 98 megaparsecs, has a central black hole with a mass of 9.7 billion solar masses, and that a black hole of comparable or greater mass is present in NGC 4889, the brightest galaxy in the Coma cluster (at a distance of 103 megaparsecs). These two black holes are significantly more massive than predicted by linearly extrapolating the widely used correlations between black-hole mass and the stellar velocity dispersion or bulge luminosity of the host galaxy. Although these correlations remain useful for predicting black-hole masses in less massive elliptical galaxies, our measurements suggest that different evolutionary processes influence the growth of the largest galaxies and their black holes. PMID:22158244

  20. Test results, Industrial Solar Technology parabolic trough solar collector

    SciTech Connect

    Dudley, V.E.; Evans, L.R.; Matthews, C.W.

    1995-11-01

    Sandia National Laboratories and Industrial Solar Technology are cost-sharing development of advanced parabolic trough technology. As part of this effort, several configurations of an IST solar collector were tested to determine the collector efficiency and thermal losses with black chrome and black nickel receiver selective coatings, combined with aluminized film and silver film reflectors, using standard Pyrex{reg_sign} and anti-reflective coated Pyrex{reg_sign} glass receiver envelopes. The development effort has been successful, producing an advanced collector with 77% optical efficiency, using silver-film reflectors, a black nickel receiver coating, and a solgel anti-reflective glass receiver envelope. For each receiver configuration, performance equations were empirically derived relating collector efficiency and thermal losses to the operating temperature. Finally, equations were derived showing collector performance as a function of input insolation value, incident angle, and operating temperature.

  1. Can we afford to replace chrome?

    NASA Astrophysics Data System (ADS)

    Shelden, Gilbert V.; He, Long; Hector, Scott D.; Trybula, Walt

    2004-12-01

    Chrome-based absorbers have been the mainstay of the photomask industry for three decades. While chrome is attractive because of its durability and opacity, it conversely poses challenges for etch and repair. Due to large capital investments, any new absorber must be designed to work with existing scanners, mask writers, and mask inspection tools. Furthermore changing absorber materials may not improve defect control in mask blank fabrication, which is a paramount concern in blank fabrication. Consequently, blank manufacturers are reluctant to change from chrome. In terms of return on investment (ROI), the only driver to switch technologies is achieving higher mask and wafer yields. This is a reasonable assumption as both etch and repair tool suppliers believe a non-chrome material like tantalum (Ta) compounds would significantly improve their capabilities with known technologies. A high level estimate shows that with even aggressive improvement assumptions, a 100% conversion from chrome does not save money. Based on the current International SEMATECH (ISMT) cost of ownership (COO) model and improved yields for critical dimension (CD) and defects, a case can be made for converting at and below 100 nm ground rules. An industry wide conversion from chrome to a non-chrome absorber is estimated to cost $100M. By contrast, blank suppliers are reportedly spending "multiple" millions of dollars to improve chrome per year. A widespread concern is whether binary optical masks have enough life left to provide sufficient ROI. Optical lithography will continue to be of use in the foreseeable future. Even as leading-edge production moves to new technology, the main manufacturing volumes will continue to create significant demand for masks for 100 nm to 45 nm for many years. With the industry currently pushing extreme ultraviolet lithography (EUVL), the best situation would be for EUVL and optical lithography to choose the same absorber material. This creates a winning situation

  2. Black wildebeest seek shade less and use solar orientation behavior more than do blue wildebeest.

    PubMed

    Lease, Hilary M; Murray, Ian W; Fuller, Andrea; Hetem, Robyn S

    2014-10-01

    Many ungulates, including wildebeest, seek shade and orient their bodies relative to incoming solar radiation in order to reduce environmental heat loads. Blue (Connochaetes taurinus) and black wildebeest (Connochaetes gnou), which co-exist artificially in some reserves in South Africa, are thought to adopt different thermoregulatory behaviors to mitigate high environmental heat loads. However, whether or not blue and black wildebeest use different behaviors to reduce heat loads in regions where they co-occur has never previously been examined. We compared the shade seeking and solar orientation behavior of free-ranging blue and black wildebeest in summer at three locations in South Africa where both species co-occur. We found that blue wildebeest exhibited more shade seeking behavior than did black wildebeest at all times of day, at all study sites. Black wildebeest remained in the sun but were more likely than blue wildebeest to orient their bodies parallel to the sun at all study sites, a behavior which reduces the amount of surface area exposed to incoming radiation. Black wildebeest were most likely to employ parallel solar orientation during the hottest times of the day when the sun was not directly overhead (i.e., solar noon ± 1 hour). We thus demonstrate that co-occurring blue and black wildebeest use different thermoregulatory behaviors to reduce high heat loads. It is possible that the lack of shade in the historical distribution of black wildebeest led to selective pressure for reliance on solar orientation. Differences in thermoregulatory behavior can affect species-specific heat loads, habitat use, body mass, fitness and grazing activity. Such differences may also allow blue and black wildebeest to inhabit separate microclimates within the same habitat, provided there is sufficient heterogeneity in vegetation structure, potentially facilitating reproductive isolation. PMID:25436964

  3. The use of trivalent chromium bath to obtain a solar selective black chromium coating

    NASA Astrophysics Data System (ADS)

    Survilienė, S.; Češūnienė, A.; Juškėnas, R.; Selskienė, A.; Bučinskienė, D.; Kalinauskas, P.; Juškevičius, K.; Jurevičiūtė, I.

    2014-06-01

    Black chromium coatings were electrodeposited from a trivalent chromium bath using a ZnO additive as a second main component. Black chromium was electrodeposited on steel and copper plates and substrates plated with bright nickel prior to black chromium electrodeposition. The black chromium coatings were characterized by XRD and SEM. The XRD data suggest that the phase structure of black chromium may be defined as a zinc solid solution in chromium or a chromium solid solution in zinc depending on the chromium/zinc ratio in the deposit. The role of substrate finish was evaluated through the corrosion resistance and reflectance of black chromium. According to corrosion tests the samples plated with bright nickel prior to black chromium deposition have shown the highest corrosion resistance. The electrodeposited black chromium possesses good optical properties for the absorption of solar energy. The absorption coefficient of black chromium was found to be over 0.99 for the samples obtained without the Ni undercoat and below 0.99 for those obtained with the use of Ni undercoat. However, the use of nickel undercoat before black chromium plating is recommended because it remarkably improves the corrosion resistance of samples.

  4. Photothermal Characteristics of Novel Flexible Black Silicon for Solar Thermal Receiver

    NASA Astrophysics Data System (ADS)

    Wei, Wei; Zhu, Yong; Wang, Ning; Mei, Hao; Yin, Stuart

    2012-11-01

    In this article, a novel type of flexible black silicon used for enhancing the absorption of a solar thermal receiver is reported. The optical absorption properties of this kind of flexible black silicon with three different sizes of conical microstructure are analyzed using the finite-difference time-domain (FDTD) method and the heat transfer properties are studied using the COMSOL multiphysics heat transfer solver. The results show that flexible black silicon with small-size microstructure has the highest optical absorptance and heat transfer speed. A commercial silicon-on-insulator wafer is irradiated by an auto-scanning femtosecond laser system and then split by etching out its middle layer in 52 % hydrofluoric acid to fabricate the flexible black silicon. The obtained flexible black silicon presents very good flexibility, and its photothermal characteristics are investigated. The optical absorption spectrum test results indicate that the absorptance of the flexible black silicon is as high as 97 % in the visible spectral region and is higher than that of anodized aluminum in a broad spectral range from 250 nm to 2500 nm. The light radiation heating experiment results show that the energy absorption efficiency of the water covered with flexible black silicon is improved 13 % compared with that of the water covered with anodized aluminum. It is confirmed that as a light-absorbing and heat-transferring layer the flexible black silicon has an important potential application in exploring solar energy.

  5. A chrome-free conversion coating for aluminum with the corrosion resistance of chrome

    SciTech Connect

    Bibber, J.W.

    1995-11-01

    The cleaning, deoxidization, and conversion coating of automotive aluminum alloys with a commercial non-toxic and chrome-free pretreatment system is described in detail. The results of paint adhesion and filiform testing with powder coatings, solvent and water borne epoxies and various urethane coatings is presented along with comparison data for chrome and other non-chrome systems. Neutral salt-spray data is presented. In addition, scanning electron micrographs of treated surfaces are shown along with data on the physical and chemical composition of the surfaces.

  6. HBCU (Historically Black Colleges and Universities) solar radiation network annual report: FY 1986

    SciTech Connect

    Stoffel, T.L.

    1987-07-01

    This report summarizes the development of the Historically Black Colleges and Universities (HBCU) Solar Radiation Network through fiscal year 1986. In operation since November 1985, the six-station network provides 5-minute averaged measurements of global ad diffuse horizontal solar irradiance that are processed at the Solar Energy Research Institute (SERI) to improve the assessment of the solar radiation resource in the southeastern United States. One of the stations also measures the direct-normal solar irradiance with a pyrheliometer mounted in an automatic sun tracker. The report also describes the HBCU project's technology transfer goals, which involve the dissemination of solar resource information, the establishment of academic research programs in solar energy, and the summer student and visiting faculty programs at SERI.

  7. Listening to the beat of a 400 solar-mass, middle-weight black hole

    NASA Astrophysics Data System (ADS)

    Pasham, Dheeraj R.; Strohmayer, Tod E.; Mushotzky, Richard

    2015-01-01

    Accreting X-ray point sources with luminosities exceeding the Eddington limit of a 20 solar mass black hole are referred to as ultraluminous X-ray sources. The brightest of these have long been suspected to host intermediate-mass black holes (mass range of a few 100-1000 solar masses). On such object is M82 X-1, thought to be an intermediate-mass black hole because of its extremely high X-ray luminosity and variability characteristics, although some models suggested that its mass may be only of the order of 20 solar masses. The previous mass estimates were based on scaling relations which used low-frequency characteristic timescales which have large intrinsic uncertainties. In stellar-mass black holes we know that the high frequency quasi-periodic oscillations that occur in a 3:2 frequency ratio (100-450 Hz) are stable and scale inversely with black hole mass with a reasonably small dispersion. The discovery of such stable oscillations thus potentially offers an alternative and less ambiguous mass determination for intermediate-mass black holes, but has hitherto not been realized. I will discuss the discovery of stable, twin-peak (3:2 frequency ratio) X-ray quasi-periodic oscillations from M82 X-1 at the frequencies of 3.32 Hz and 5.07 Hz and how this helps overcome the systematic uncertainties present in previous studies. Assuming we can extend the stellar-mass relationship, I estimate its black hole mass to be 428+-105 solar masses. This work was recently published in Nature (DOI:10.1038/nature13710). I will also discuss future prospects of detecting more of such oscillations to weigh other intermediate-mass black hole candidates.

  8. A 17-billion-solar-mass black hole in a group galaxy with a diffuse core.

    PubMed

    Thomas, Jens; Ma, Chung-Pei; McConnell, Nicholas J; Greene, Jenny E; Blakeslee, John P; Janish, Ryan

    2016-04-21

    Quasars are associated with and powered by the accretion of material onto massive black holes; the detection of highly luminous quasars with redshifts greater than z = 6 suggests that black holes of up to ten billion solar masses already existed 13 billion years ago. Two possible present-day 'dormant' descendants of this population of 'active' black holes have been found in the galaxies NGC 3842 and NGC 4889 at the centres of the Leo and Coma galaxy clusters, which together form the central region of the Great Wall--the largest local structure of galaxies. The most luminous quasars, however, are not confined to such high-density regions of the early Universe; yet dormant black holes of this high mass have not yet been found outside of modern-day rich clusters. Here we report observations of the stellar velocity distribution in the galaxy NGC 1600--a relatively isolated elliptical galaxy near the centre of a galaxy group at a distance of 64 megaparsecs from Earth. We use orbit superposition models to determine that the black hole at the centre of NGC 1600 has a mass of 17 billion solar masses. The spatial distribution of stars near the centre of NGC 1600 is rather diffuse. We find that the region of depleted stellar density in the cores of massive elliptical galaxies extends over the same radius as the gravitational sphere of influence of the central black holes, and interpret this as the dynamical imprint of the black holes. PMID:27049949

  9. Chrome pyrope: an inclusion in natural diamond.

    PubMed

    Meyer, H O

    1968-06-28

    Electron probe analyses of garnets that are rich in magnesium and that occur as inclusions in natural diamonds show that the chrome-garnet end member, Mg(3)Cr(2)Si(3)O(12), is a major constituent (30 percent). PMID:17817353

  10. NASA TEERM Hexavalent Chrome Alternatives Projects

    NASA Technical Reports Server (NTRS)

    Rothgeb, Matt

    2009-01-01

    This slide presentation reviews the NASA/DOD projects to select an alternative to hexavalent chrome in the aerospace industry. The Phase I process of the project performed: (1) Evaluation and testing of non-chromated coating systems as replacements for hexavalent chrome coatings in aircraft and aerospace applications. (2) Testing of coating systems to DoD and NASA specifications for corrosion resistance and adhesion. (3) Bare corrosion resistance and atmospheric exposure will be focus areas of Phase II Testing. The description includes a chart that summarizes the 3000 hour salt fog test results. The second phase of the project includes (1) Evaluation and testing of coating systems that do not contain hexavalent chrome as replacements for aerospace applications. (2) Evaluation of coatings at Beach Test Site and Launch Complex 39B (3) Evaluation of non-chrome coatings for electronic housings (bare corrosion resistance and electrical impedance) is a part of this round of testing. This project was performed for the Technology Evaluation for Environmental Risk Mitigation (TEERM)

  11. Control carrier recombination of multi-scale textured black silicon surface for high performance solar cells

    NASA Astrophysics Data System (ADS)

    Hong, M.; Yuan, G. D.; Peng, Y.; Chen, H. Y.; Zhang, Y.; Liu, Z. Q.; Wang, J. X.; Cai, B.; Zhu, Y. M.; Chen, Y.; Liu, J. H.; Li, J. M.

    2014-06-01

    We report an enhanced performance of multi-scale textured black silicon solar cell with power conversion efficiency of 15.5% by using anisotropic tetramethylammonium hydroxide etching to control the recombination. The multi-scale texture can effectively reduce the surface reflectance in a wide wavelength range, and both the surface and Auger recombination can be effectively suppressed by etching the samples after the n++ emitter formed. Our result shows that the reformed solar cell has higher conversion efficiency than that of conventional pyramid textured cell (15.3%). This work presents an effective method for improving the performance of nanostructured silicon solar cells.

  12. A 400-solar-mass black hole in the galaxy M82.

    PubMed

    Pasham, Dheeraj R; Strohmayer, Tod E; Mushotzky, Richard F

    2014-09-01

    M82 X-1, the brightest X-ray source in the galaxy M82, has been thought to be an intermediate-mass black hole (100 to 10,000 solar masses) because of its extremely high luminosity and variability characteristics, although some models suggest that its mass may be only about 20 solar masses. The previous mass estimates were based on scaling relations that use low-frequency characteristic timescales which have large intrinsic uncertainties. For stellar-mass black holes, we know that the high-frequency quasi-periodic oscillations (100-450 hertz) in the X-ray emission that occur in a 3:2 frequency ratio are stable and scale in frequency inversely with black hole mass with a reasonably small dispersion. The discovery of such stable oscillations thus potentially offers an alternative and less ambiguous means of mass determination for intermediate-mass black holes, but has hitherto not been realized. Here we report stable, twin-peak (3:2 frequency ratio) X-ray quasi-periodic oscillations from M82 X-1 at frequencies of 3.32 ± 0.06 hertz and 5.07 ± 0.06 hertz. Assuming that we can extrapolate the inverse-mass scaling that holds for stellar-mass black holes, we estimate the black hole mass of M82 X-1 to be 428 ± 105 solar masses. In addition, we can estimate the mass using the relativistic precession model, from which we get a value of 415 ± 63 solar masses. PMID:25132552

  13. Highly efficient industrial large-area black silicon solar cells achieved by surface nanostructured modification

    NASA Astrophysics Data System (ADS)

    Li, Ping; Wei, Yi; Zhao, Zengchao; Tan, Xin; Bian, Jiming; Wang, Yuxuan; Lu, Chunxi; Liu, Aimin

    2015-12-01

    Traditional black silicon solar cells show relatively low efficiencies due to the high surface recombination occurring at the front surfaces. In this paper, we present a surface modification process to suppress surface recombination and fabricate highly efficient industrial black silicon solar cells. The Ag-nanoparticle-assisted etching is applied to realize front surface nanostructures on silicon wafers in order to reduce the surface reflectance. Through a further tetramethylammonium hydroxide (TMAH) treatment, the carrier recombination at and near the surface is greatly suppressed, due to a lower surface dopant concentration after the surface modification. This modified surface presents a low reflectivity in a range of 350-1100 nm. Large-area solar cells with an average conversion efficiency of 19.03% are achieved by using the TMAH treatment of 30 s. This efficiency is 0.18% higher than that of standard silicon solar cells with pyramidal surfaces, and also a remarkable improvement compared with black silicon solar cells without TMAH modifications.

  14. Improvement of black nickel coatings. [product development for use in solar collectors

    NASA Technical Reports Server (NTRS)

    Peterson, R. E.; Lin, J. H.

    1976-01-01

    Selectively absorbing black nickel coatings are among the most optically efficient low cost coatings for use on flat plate solar collectors. However, a current Ni-Zn-S-O coating in use is quite susceptible to a humid environment, degrading badly in less than ten days at 38 C (100 F) at 95 percent relative humidity. Therefore, a black nickel formula was developed which can withstand such exposures with no loss of optical efficiency, solar absorption of 0.92 and an infrared emittance (at 100 C) of 1.00 were still present after 14 days of humidity exposure. This compares to a solar absorptance of only 0.72 for the previous formula after a similar time period. The electroplating bath and conditions were changed to obtain the more stable coating configuration. The effect of bath composition, temperature, pH, and plating current density and time on the coating composition, spectral optical properties and durability were investigated systematically.

  15. NASA TEERM Hexavalent Chrome Alternatives Projects

    NASA Technical Reports Server (NTRS)

    Kessel, Kurt; Rothgeb, Matt

    2011-01-01

    This slide presentation reviews the NASA project to select an alternative to hexavalent chrome in the aerospace industry. Included is a recent historic testing and research that the Agency has performed on (1) the external tank, (2) the shuttle orbiter, (3) the Shuttle Rocket Booster, and (4) the Space Shuttle Main Engine. Other related Technology Evaluation for Environmental Risk Mitigation (TEERM) projects are reviewed. The Phase I process of the project performed testing of alternatives the results are shown in a chart for different coating systems. International collaboration was also reviewed. Phase II involves further testing of pretreatment and primers for 6 and 12 months of exposure to conditions at Launch Pad and the beach. Further test were performed to characterize the life cycle corrosion of the space vehicles. A new task is described as a joint project with the Department of Defense to identify a Hex Chrome Free Coatings for Electronics.

  16. A 17-billion-solar-mass black hole in a group galaxy with a diffuse core

    NASA Astrophysics Data System (ADS)

    Thomas, Jens; Ma, Chung-Pei; McConnell, Nicholas J.; Greene, Jenny E.; Blakeslee, John P.; Janish, Ryan

    2016-04-01

    Quasars are associated with and powered by the accretion of material onto massive black holes; the detection of highly luminous quasars with redshifts greater than z = 6 suggests that black holes of up to ten billion solar masses already existed 13 billion years ago. Two possible present-day ‘dormant’ descendants of this population of ‘active’ black holes have been found in the galaxies NGC 3842 and NGC 4889 at the centres of the Leo and Coma galaxy clusters, which together form the central region of the Great Wall—the largest local structure of galaxies. The most luminous quasars, however, are not confined to such high-density regions of the early Universe; yet dormant black holes of this high mass have not yet been found outside of modern-day rich clusters. Here we report observations of the stellar velocity distribution in the galaxy NGC 1600—a relatively isolated elliptical galaxy near the centre of a galaxy group at a distance of 64 megaparsecs from Earth. We use orbit superposition models to determine that the black hole at the centre of NGC 1600 has a mass of 17 billion solar masses. The spatial distribution of stars near the centre of NGC 1600 is rather diffuse. We find that the region of depleted stellar density in the cores of massive elliptical galaxies extends over the same radius as the gravitational sphere of influence of the central black holes, and interpret this as the dynamical imprint of the black holes.

  17. Antireflection and SiO2 Surface Passivation by Liquid-Phase Chemistry for Efficient Black Silicon Solar Cells: Preprint

    SciTech Connect

    Yuan, H. C.; Oh, J.; Zhang, Y.; Kuznetsov, O. A.; Flood, D. J.; Branz, H. M.

    2012-06-01

    We report solar cells with both black Si antireflection and SiO2 surface passivation provided by inexpensive liquid-phase chemistry, rather than by conventional vacuum-based techniques. Preliminary cell efficiency has reached 16.4%. Nanoporous black Si antireflection on crystalline Si by aqueous etching promises low surface reflection for high photon utilization, together with lower manufacturing cost compared to vacuum-based antireflection coating. Ag-nanoparticle-assisted black Si etching and post-etching chemical treatment recently developed at NREL enables excellent control over the pore diameter and pore separation. Performance of black Si solar cells, including open-circuit voltage, short-circuit current density, and blue response, has benefited from these improvements. Prior to this study, our black Si solar cells were all passivated by thermal SiO2 produced in tube furnaces. Although this passivation is effective, it is not yet ideal for ultra-low-cost manufacturing. In this study, we report, for the first time, the integration of black Si with a proprietary liquid-phase deposition (LPD) passivation from Natcore Technology. The Natcore LPD forms a layer of <10-nm SiO2 on top of the black Si surface in a relatively mild chemical bath at room temperature. We demonstrate black Si solar cells with LPD SiO2 with a spectrum-weighted average reflection lower than 5%, similar to the more costly thermally grown SiO2 approach. However, LPD SiO2 provides somewhat better surface-passivation quality according to the lifetime analysis by the photo-conductivity decay measurement. Moreover, black Si solar cells with LPD SiO2 passivation exhibit higher spectral response at short wavelength compared to those passivated by thermally grown SiO2. With further optimization, the combination of aqueous black Si etching and LPD could provide a pathway for low-cost, high-efficiency crystalline Si solar cells.

  18. Development of a low-temperature, low-cost, black liquid solar collector, phase 2

    NASA Astrophysics Data System (ADS)

    Landstrom, D. K.; Talbert, S. G.; McGinniss, V. D.

    1980-03-01

    The long-term durability of various plastic materials and solar collector designs was evaluated and sufficient outdoor performance data to design a full-scale demonstration of a black-liquid solar collector for a commercial application were obtained. Besides conducting indoor weathering tests of various plastic materials, two outdoor automated test facilities were built. One unit was in use for about two winter months in Columbus, Ohio, and the other unit is ready for testing in Phoenix, Arizona. Extruded polycarbonate panels and extruded acrylic panel designs were investigated.

  19. Multi-scale surface texture to improve blue response of nanoporous black silicon solar cells

    NASA Astrophysics Data System (ADS)

    Toor, Fatima; Branz, Howard M.; Page, Matthew R.; Jones, Kim M.; Yuan, Hao-Chih

    2011-09-01

    We characterize the optical and carrier-collection physics of multi-scale textured p-type black Si solar cells with conversion efficiency of 17.1%. The multi-scale texture is achieved by combining density-graded nanoporous layer made by metal-assisted etching with micron-scale pyramid texture. We found that (1) reducing the thickness of nanostructured Si layer improves the short-wavelength spectral response and (2) multi-scale texture permits thinning of the nanostructured layer while maintaining low surface reflection. We have reduced the nanostructured layer thickness by 60% while retaining a solar-spectrum-averaged black Si reflectance of less than 2%. Spectral response at 450 nm has improved from 57% to 71%.

  20. Solar Hot Water Heater

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The solar panels pictured below, mounted on a Moscow, Idaho home, are part of a domestic hot water heating system capable of providing up to 100 percent of home or small business hot water needs. Produced by Lennox Industries Inc., Marshalltown, Iowa, the panels are commercial versions of a collector co-developed by NASA. In an effort to conserve energy, NASA has installed solar collectors at a number of its own facilities and is conducting research to develop the most efficient systems. Lewis Research Center teamed with Honeywell Inc., Minneapolis, Minnesota to develop the flat plate collector shown. Key to the collector's efficiency is black chrome coating on the plate developed for use on spacecraft solar cells, the coating prevents sun heat from "reradiating," or escaping outward. The design proved the most effective heat absorber among 23 different types of collectors evaluated in a Lewis test program. The Lennox solar domestic hot water heating system has three main components: the array of collectors, a "solar module" (blue unit pictured) and a conventional water heater. A fluid-ethylene glycol and water-is circulated through the collectors to absorb solar heat. The fluid is then piped to a double-walled jacket around a water tank within the solar module.

  1. Efficient Black Silicon Solar Cells with Multi-Scale Surface Texture

    NASA Astrophysics Data System (ADS)

    Toor, Fatima; Nemeth, William; Page, Matthew; Wang, Qi; Branz, Howard; Yuan, Hao-Chih

    2011-03-01

    A nanostructured, density-graded surface layer can replace conventional quarter-wavelength coatings as the anti-reflection layer in photovoltaics. If the layer is comprised of structures smaller than the wavelength of the incident light and the density is graded across more than about half the wavelength of the light, reflection is strongly suppressed (H. M. Branz et al., APL {94} 2009). We developed an inexpensive liquid etch technique for silicon to produce ``black Si'' based upon this physics. However, the problem of high carrier recombination within this nanostructured layer must be overcome to improve beyond the present best solar cell with its confirmed 16.8% black silicon sunlight-to-electricity conversion efficiency (H-C. Yuan et al., APL {95} 2009). In this work, we combine the black Si layer with conventional KOH-etched pyramidal surface texture (Y. Xiu et al., Langmuir {24 }2008) at micron-scale. Pyramids contribute anti-reflection based on geometric optics. Combining the pyramids with nanostructures only 100 nm deep provides reflectivity below 2% across a wavelength range from 350 - 1000 nm. To-date, we have obtained a solar cell efficiency of 17% with a Voc of 613 mV, Jsc of 35 mA/cm2 and fill-factor of 78%. These cells have improved blue response compared to the best planar black Si cells.

  2. Comparison under a simulated sun of two black-nickel-coated flat-plate solar collectors with a nonselective black-paint-coated collector

    NASA Technical Reports Server (NTRS)

    Simon, F. F.

    1975-01-01

    A performance evaluation was made of two, black nickel coated, flat plate solar collectors. Collector performance was determined under a simulated sun for a wide range of inlet temperatures, including the temperature required for solar powered absorption air conditioning. For a basis of comparison a performance test was made on a traditional, two glass, nonselective, black paint coated, flat plate collector. Performance curves and performance parameters are presented to point out the importance of the design variables which determine an efficient collector. A black nickel coated collector was found to be a good performer at the conditions expected for solar powered absorption air conditioning. This collector attained a thermal efficiency of 50 percent at an inlet temperature of 366 K (200 F) and an incident flux of 946 watts/sq m (300 Btu/hr-sq ft).

  3. Plasmonic enhancement of thin-film solar cells using gold-black coatings

    SciTech Connect

    Fredricksen, Christopher J.; Panjwani, D. R.; Arnold, J. P.; Figueiredo, P. N.; Rezaie, F. K.; Colwell, J. E.; Baillie, K.; Peppernick, Samuel J.; Joly, Alan G.; Beck, Kenneth M.; Hess, Wayne P.; Peale, Robert E.

    2011-08-11

    Coatings of conducting gold-black nano-structures on commercial thin-film amorphous-silicon solar cells enhance the short-circuit current by 20% over a broad spectrum from 400 to 800 nm wavelength. The efficiency, i.e. the ratio of the maximum electrical output power to the incident solar power, is found to increase 7% for initial un-optimized coatings. Metal blacks are produced cheaply and quickly in a low-vacuum process requiring no lithographic patterning. The inherently broad particle-size distribution is responsible for the broad spectrum enhancement in comparison to what has been reported for mono-disperse lithographically deposited or self-assembled metal nano-particles. Photoemission electron microscopy reveals the spatial-spectral distribution of hot-spots for plasmon resonances, where scattering of normally-incident solar flux into the plane increases the effective optical path in the thin film to enhance light harvesting. Efficiency enhancement is correlated with percent coverage and particle size distribution, which are determined from histogram and wavelet analysis of scanning electron microscopy images. Electrodynamic simulations reveal how the gold-black particles scatter the radiation and locally enhance the field strength.

  4. The effects of solar radiation and black body re-radiation on thermal comfort.

    PubMed

    Hodder, Simon; Parsons, Ken

    2008-04-01

    When the sun shines on people in enclosed spaces, such as in buildings or vehicles, it directly affects thermal comfort. There is also an indirect effect as surrounding surfaces are heated exposing a person to re-radiation. This laboratory study investigated the effects of long wave re-radiation on thermal comfort, individually and when combined with direct solar radiation. Nine male participants (26.0 +/- 4.7 years) took part in three experimental sessions where they were exposed to radiation from a hot black panel heated to 100 degrees C; direct simulated solar radiation of 600 Wm(-2) and the combined simulated solar radiation and black panel radiation. Exposures were for 30 min, during which subjective responses and mean skin temperatures were recorded. The results showed that, at a surface temperature of 100 degrees C (close to maximum in practice), radiation from the flat black panel provided thermal discomfort but that this was relatively small when compared with the effects of direct solar radiation. It was concluded that re-radiation, from a dashboard in a vehicle, for example, will not have a major direct influence on thermal comfort and that existing models of thermal comfort do not require a specific modification. These results showed that, for the conditions investigated, the addition of re-radiation from internal components has an effect on thermal sensation when combined with direct solar radiation. However, it is not considered that it will be a major factor in a real world situation. This is because, in practice, dashboards are unlikely to maintain very high surface temperatures in vehicles without an unacceptably high air temperature. This study quantifies the contribution of short- and long-wave radiation to thermal comfort. The results will aid vehicle designers to have a better understanding of the complex radiation environment. These include direct radiation from the sun as well as re-radiation from the dashboard and other internal surfaces

  5. Preliminary study of a solar selective coating system using black cobalt oxide for high temperature solar collectors

    NASA Technical Reports Server (NTRS)

    Mcdonald, G.

    1980-01-01

    Black cobalt oxide coatings were deposited on thin layers of silver or gold which had been deposited on oxidized stainless steel substrates. The reflectance properties of these coatings were measured at various thicknesses of cobalt oxide for integrated values of the solar and infrared spectrum. The values of absorptance and emittance were calculated from the measured reflectance values before and after exposure in air at 650 C for 1000 hours. Also, these cobalt oxide/noble metal/oxide diffusion barrier coatings have absorptances greater than 0.90 and emittances of approximately 0.20 even after about 1000 hours at 650 C.

  6. Black Nb2O5 nanorods with improved solar absorption and enhanced photocatalytic activity.

    PubMed

    Zhao, Wenli; Zhao, Wei; Zhu, Guilian; Lin, Tianquan; Xu, Fangfang; Huang, Fuqiang

    2016-03-01

    Black titania, with greatly improved solar absorption, has demonstrated its effectiveness in photocatalysis and photoelectrochemical cells (PEC), inspiring us to explore the blackening of other wide band-gap oxide materials for enhanced performance. Herein, we report the fabrication of black, reduced Nb2O5 nanorods (r-Nb2O5), with active exposed (001) surfaces, and their enhanced photocatalytic and PEC properties. Black r-Nb2O5 nanorods were obtained via reduction of pristine Nb2O5 by molten aluminum in a two-zone furnace. Unlike the black titania, r-Nb2O5 nanorods are well-crystallized, without a core-shell structure, which makes them outstanding in photocatalytic stability. Substantial Nb(4+) cation and oxygen vacancies (VO) were introduced into r-Nb2O5, resulting in the enhanced absorption in both the visible and near-infrared regions and improved charge separation and transport capability. The advantage of the r-Nb2O5 was also proved by its more efficient photoelectrochemical performance (138 times at 1.23 VRHE) and higher photocatalytic hydrogen-generation activity (13 times) than pristine Nb2O5. These results indicate that black r-Nb2O5 is a promising material for PEC application and photocatalysis. PMID:26906245

  7. Ultrasound assisted chrome tanning: Towards a clean leather production technology.

    PubMed

    Mengistie, Embialle; Smets, Ilse; Van Gerven, Tom

    2016-09-01

    Nowadays, there is a growing demand for a cleaner, but still effective alternative for production processes like in the leather industry. Ultrasound (US) assisted processing of leather might be promising in this sense. In the present paper, the use of US in the conventional chrome tanning process has been studied at different pH, temperature, tanning time, chrome dose and US exposure time by exposing the skin before tanning and during tanning operation. Both prior exposure of the skin to US and US during tanning improves the chrome uptake and reduces the shrinkage significantly. Prior exposure of the skin to US increase the chrome uptake by 13.8% or reduces the chrome dose from 8% to 5% (% based on skin weight) and shorten the process time by half while US during tanning increases the chrome uptake by 28.5% or reduces the chrome dose from 8% to 4% (half) and the tanning time to one third compared to the control without US. Concomitantly, the resulting leather quality (measured as skin shrinkage) improved from 5.2% to 3.2% shrinkage in the skin exposed to US prior tanning and to 1.3% in the skin exposed to US during the tanning experiment. This study confirms that US chrome tanning is an effective and eco-friendly tanning process which can produce a better quality leather product in a shorter process time with a lower chromium dose. PMID:27150762

  8. Hexavalent Chrome Free Coatings for Electronics Applications: Joint Test Report

    NASA Technical Reports Server (NTRS)

    Rothgeb, Matt; Kessel, Kurt

    2013-01-01

    The overall objective of the Hexavalent Chrome Free Coatings for Electronics Applications project is to evaluate and test pretreatments not containing hexavalent chrome in avionics and electronics housing applications. This objective will be accomplished by testing strong performing coating systems from prior NASA and DoD testing or new coating systems as determined by the stakeholders.

  9. Preliminary study of a solar selective coating system using black cobalt oxide for high temperature solar collectors

    NASA Technical Reports Server (NTRS)

    Mcdonald, G.

    1980-01-01

    Black cobalt oxide coatings (high solar absorptance layer) were deposited on thin layers of silver or gold (low emittance layer) which had been previously deposited on oxidized (diffusion barrier layer) stainless steel substrates. The reflectance properties of these coatings were measured at various thicknesses of cobalt for integrated values of the solar and infrared spectrum. The values of absorptance and emittance were calculated from the measured reflectance values, before and after exposure in air at 650 C for approximately 1000 hours. Absorptance and emittance were interdependent functions of the weight of cobalt oxide. Also, these cobalt oxide/noble metal/oxide diffusion barrier coatings have absorptances greater than 0.90 and emittances of approximately 0.20 even after about 1000 hours at 650 C.

  10. Post-black etching on emitter to improve performance of multi-scale texture silicon solar cells

    NASA Astrophysics Data System (ADS)

    Jiang, Yurong; Yang, Haigang; Cao, Weiwei; Wang, Guangna; Ma, Heng; Chang, Fanggao

    2014-09-01

    A simple, low-cost, post-black etching process atop the random pyramidal emitter has been proposed and investigated. The multi-scale texture is achieved by combining nanoporous layer formed by the post-black etching with micron-scale pyramid texture. Compared to the pre-black etched Si solar cells, our experiments clearly show the advantage of post-black etched texturing: it enables high blue response and improved conversion efficiency. As a result, the enhancement of 7.1 mA/cm2 on the short-circuit current density and improvement of 31 % in the conversion efficiency have been reached.

  11. NASA TEERM Hexavalent Chrome Alternatives Projects

    NASA Technical Reports Server (NTRS)

    Kessel, Kurt R.; Rothgeb, Matthew

    2011-01-01

    The overall objective of the Hex Chrome Free Coatings for Electronics project is to evaluate and test pretreatment coating systems not containing hexavalent chrome in avionics and electronics housing applications. This objective will be accomplished by testing strong performing coating systems from prior NASA and DoD testing or new coating systems as determined by the stakeholders. The technical stakeholders have agreed that this protocol will focus specifically on Class 3 coatings. Original Equipment Manufacturers (OEMs), depots, and support contractors have to be prepared to deal with an electronics supply chain that increasingly provides parts with lead-free finishes, some labeled no differently and intermingled with their SnPb counterparts. Allowance of lead-free components presents one of the greatest risks to the reliability of military and aerospace electronics. The introduction of components with lead-free terminations, termination finishes, or circuit boards presents a host of concerns to customers, suppliers, and maintainers of aerospace and military electronic systems such as: 1. Electrical shorting due to tin whiskers 2. Incompatibility of lead-free processes and parameters (including higher melting points of lead-free alloys) with other materials in the system 3. Unknown material properties and incompatibilities that could reduce solder joint reliability

  12. Long-term weathering effects on the thermal performance of the Lennox/Honeywell (liquid) solar collector

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The test procedures used and the results obtained during the evaluation test program of the Lennox/Honeywell double covered liquid solar collector. The tests were performed under simulated conditions, following long-term exposure to natural weathering conditions. The Lennox/Honeywell collector is a flat-plate solar collector. The absorber plate is steel with copper tubes bonded on the upper surface, and is coated with black chrome. Visual inspection of the collector indicated slight discoloration of the absorber plate. Results indicate that performance degradation had occurred. Absorptivity and/or transmissivity decreased as a result of the weathering.

  13. CdS and AgBr sensitized eriochrome black T (EBT) dye solar cells

    NASA Astrophysics Data System (ADS)

    Sharma, G. D.; Dube, D. C.; Mathur, S. C.

    1985-11-01

    The photovoltaic and rectification properties of CdS- and AgBr-sensitized Eriochrome Black T dye solar cells have been studied. The dependence of the short-circuit current and the open-circuit voltage on light intensity and electrode material are examined and the variations with electrode material are explained on the basis of the built-in potential developed at the metal-semiconductor interface. Conversion efficiency, fill factor, diode factor and reverse saturation current are also calculated for each cell.

  14. Quality Improvement of Chrome-Diamond Coatings on Flowing Chrome Plating

    NASA Astrophysics Data System (ADS)

    Belyaev, V. N.; Koslyuk, A. Yu; Lobunets, A. V.; Andreyev, A. S.

    2016-04-01

    The research results of the process of flowing chrome plating of internal surfaces of long-length cylindrical articles with the usage of electrolyte with ultra-dispersed diamonds when continuous article rotation, while chromium-plating, are presented. During experiments the following varying technological parameters: electrolyte temperature and article frequency rotation were chosen, and experimental samples were obtained. Estimation of porosity, micro-hardness, thickness of chrome coatings and uniformity were performed as well as the precipitation structure by the method of scanning electron microscopy. The results showed that the use of ultra-dispersed diamonds and realization of the scheme with rotation of detail-cathode when flowing chromium-plating allows one to increase servicing characteristics of the coating due to the decrease of grains size of chrome coating and porosity, and due to the increase of micro-hardness, so confirming the efficiency of using the suggested scheme of coating application and the given type of ultra-dispersed fillers when chromium-plating.

  15. Flexible thin-film black gold membranes with ultrabroadband plasmonic nanofocusing for efficient solar vapour generation

    NASA Astrophysics Data System (ADS)

    Bae, Kyuyoung; Kang, Gumin; Cho, Suehyun K.; Park, Wounjhang; Kim, Kyoungsik; Padilla, Willie J.

    2015-12-01

    Solar steam generation has been achieved by surface plasmon heating with metallic nanoshells or nanoparticles, which have inherently narrow absorption bandwidth. For efficient light-to-heat conversion from a wider solar spectrum, we employ adiabatic plasmonic nanofocusing to attain both polarization-independent ultrabroadband light absorption and high plasmon dissipation loss. Here we demonstrate large area, flexible thin-film black gold membranes, which have multiscale structures of varying metallic nanoscale gaps (0-200 nm) as well as microscale funnel structures. The adiabatic nanofocusing of self-aggregated metallic nanowire bundle arrays produces average absorption of 91% at 400-2,500 nm and the microscale funnel structures lead to average reflection of 7% at 2.5-17 μm. This membrane allows heat localization within the few micrometre-thick layer and continuous water provision through micropores. We efficiently generate water vapour with solar thermal conversion efficiency up to 57% at 20 kW m-2. This new structure has a variety of applications in solar energy harvesting, thermoplasmonics and related technologies.

  16. Flexible thin-film black gold membranes with ultrabroadband plasmonic nanofocusing for efficient solar vapour generation.

    PubMed

    Bae, Kyuyoung; Kang, Gumin; Cho, Suehyun K; Park, Wounjhang; Kim, Kyoungsik; Padilla, Willie J

    2015-01-01

    Solar steam generation has been achieved by surface plasmon heating with metallic nanoshells or nanoparticles, which have inherently narrow absorption bandwidth. For efficient light-to-heat conversion from a wider solar spectrum, we employ adiabatic plasmonic nanofocusing to attain both polarization-independent ultrabroadband light absorption and high plasmon dissipation loss. Here we demonstrate large area, flexible thin-film black gold membranes, which have multiscale structures of varying metallic nanoscale gaps (0-200 nm) as well as microscale funnel structures. The adiabatic nanofocusing of self-aggregated metallic nanowire bundle arrays produces average absorption of 91% at 400-2,500 nm and the microscale funnel structures lead to average reflection of 7% at 2.5-17 μm. This membrane allows heat localization within the few micrometre-thick layer and continuous water provision through micropores. We efficiently generate water vapour with solar thermal conversion efficiency up to 57% at 20 kW m(-2). This new structure has a variety of applications in solar energy harvesting, thermoplasmonics and related technologies. PMID:26657535

  17. Flexible thin-film black gold membranes with ultrabroadband plasmonic nanofocusing for efficient solar vapour generation

    PubMed Central

    Bae, Kyuyoung; Kang, Gumin; Cho, Suehyun K.; Park, Wounjhang; Kim, Kyoungsik; Padilla, Willie J.

    2015-01-01

    Solar steam generation has been achieved by surface plasmon heating with metallic nanoshells or nanoparticles, which have inherently narrow absorption bandwidth. For efficient light-to-heat conversion from a wider solar spectrum, we employ adiabatic plasmonic nanofocusing to attain both polarization-independent ultrabroadband light absorption and high plasmon dissipation loss. Here we demonstrate large area, flexible thin-film black gold membranes, which have multiscale structures of varying metallic nanoscale gaps (0–200 nm) as well as microscale funnel structures. The adiabatic nanofocusing of self-aggregated metallic nanowire bundle arrays produces average absorption of 91% at 400–2,500 nm and the microscale funnel structures lead to average reflection of 7% at 2.5–17 μm. This membrane allows heat localization within the few micrometre-thick layer and continuous water provision through micropores. We efficiently generate water vapour with solar thermal conversion efficiency up to 57% at 20 kW m−2. This new structure has a variety of applications in solar energy harvesting, thermoplasmonics and related technologies. PMID:26657535

  18. Molecular spectroscopic study for suggested mechanism of chrome tanned leather

    NASA Astrophysics Data System (ADS)

    Nashy, Elshahat H. A.; Osman, Osama; Mahmoud, Abdel Aziz; Ibrahim, Medhat

    2012-03-01

    Collagen represents the structural protein of the extracellular matrix, which gives strength of hides and/or skin under tanning process. Chrome tan is the most important tanning agent all over the world. The methods for production of leather evolved over several centuries as art and engineering with little understanding of the underlying science. The present work is devoted to suggest the most probable mechanistic action of chrome tan on hide proteins. First the affect of Cr upon hide protein is indicated by the studied mechanical properties. Then the spectroscopic characterization of the hide protein as well as chrome tanned leather was carried out with Horizontal Attenuated Total Reflection (HATR) FT-IR. The obtained results indicate how the chromium can attached with the active sites of collagen. Molecular modeling confirms that chromium can react with amino as well as carboxylate groups. Four schemes were obtained to describe the possible interactions of chrome tan with hide proteins.

  19. CAPSULE REPORT: HARD CHROME FUME SUPPRESSANTS & CONTROL TECHNOLOGIES

    EPA Science Inventory

    All existing information which includes the information extrapolated from the Hard Chrome Pollution Prevention Demonstration Project(s) and other sources derived from plating facilities and industry contacts, will be condensed and featured in this document. At least five chromium...

  20. Molecular spectroscopic study for suggested mechanism of chrome tanned leather.

    PubMed

    Nashy, Elshahat H A; Osman, Osama; Mahmoud, Abdel Aziz; Ibrahim, Medhat

    2012-03-01

    Collagen represents the structural protein of the extracellular matrix, which gives strength of hides and/or skin under tanning process. Chrome tan is the most important tanning agent all over the world. The methods for production of leather evolved over several centuries as art and engineering with little understanding of the underlying science. The present work is devoted to suggest the most probable mechanistic action of chrome tan on hide proteins. First the affect of Cr upon hide protein is indicated by the studied mechanical properties. Then the spectroscopic characterization of the hide protein as well as chrome tanned leather was carried out with Horizontal Attenuated Total Reflection (HATR) FT-IR. The obtained results indicate how the chromium can attached with the active sites of collagen. Molecular modeling confirms that chromium can react with amino as well as carboxylate groups. Four schemes were obtained to describe the possible interactions of chrome tan with hide proteins. PMID:22225606

  1. LABORATORY STUDY FOR THE REDUCTION OF CHROME (VI) TO CHROME (III) USING SODIUM METABISULFITE UNDER ACIDIC CONDITIONS

    SciTech Connect

    DUNCAM JB; GUTHRIE MD; LUECK KJ; AVILA M

    2007-07-18

    This report describes the results from RPP-PLAN-32738, 'Test Plan for the Effluent Treatment Facility to Reduce Chrome(VI) to Chrome(I1I) in the Secondary Waste Stream', using sodium metabisulfite. Appendix A presents the report as submitted by the Center for Laboratory Sciences (CLS) to CH2M HILL Hanford Group, Inc. The CLS carried out the laboratory effort under Contract Number 21065, release Number 30. This report extracts the more pertinent aspects of the laboratory effort.

  2. Performance of solar cells fabricated on black multicrystalline Si by nanowire decoration

    NASA Astrophysics Data System (ADS)

    Es, Firat; Ciftpinar, Emine Hande; Demircioglu, Olgu; Gunoven, Mete; Kulakci, Mustafa; Turan, Rasit

    2015-03-01

    Vertically aligned Si nanowire (NW) arrays fabricated by metal-assisted etching technique were applied to industrial sized (156 mm × 156 mm) multicrystalline Si cells as an anti-reflective (AR) medium. The NW lengths (between 0.15 and 2.2 μm) were controlled by etch duration from 5 to 50 min. A completely black surface could be observed, demonstrating excellent AR properties in the entire range of the solar spectrum, even without additional anti-reflective coating layer (e.g., SiNx:H). Standard Si solar cell fabrication protocols were followed for both samples with NW arrays and to reference samples textured in standard stain etch solution. Cell parameters have been studied as a function of NW length. Results show that Si NW arrays can be used on multicrystalline Si solar cells as an AR coating. Without applying a superior passivation technique, cell conversion efficiencies are observed to normally degrade with increasing lengths of NW's, such that the highest efficiency in NW samples was resulted from the shortest NW's. It is clear that an effective passivation eliminating recombination along the NW's and optimized doping could further improve the performance of the cell. Structuring the surface of the multi-crystalline wafers with metal assisted etching is shown to be a promising alternative to presently used acid-based texturing processes.

  3. Black silicon solar cell: analysis optimization and evolution towards a thinner and flexible future

    NASA Astrophysics Data System (ADS)

    Bardhan Roy, Arijit; Dhar, Arup; Choudhuri, Mrinmoyee; Das, Sonali; Minhaz Hossain, S.; Kundu, Avra

    2016-07-01

    Analysis and optimization of silicon nano-structured geometry (black silicon) for photovoltaic applications has been reported. It is seen that a unique class of geometry: micro-nanostructure has the potential to find a balance between the conflicting interests of reduced reflection for wide angles of incidence, reduced surface area enhancement due to the nano-structuring of the substrate and reduced material wastage due to the etching of the silicon substrate to realize the geometry itself. It is established that even optimally designed micro-nanostructures would not be useful for conventional wafer based approaches. The work presents computational studies on how such micro-nanostructures are more potent for future ultra-thin monocrystalline silicon absorbers. For such ultra-thin absorbers, the optimally designed micro-nanostructures provide additional advantages of advanced light management capabilities as it behaves as a lossy 2D photonic crystal making the physically thin absorber optically thick along with the ability to collect photo-generated carriers orthogonal to the direction of light (radial junction) for unified photon–electron harvesting. Most significantly, the work answers the key question on how thin the monocrystalline solar absorber should be so that optimum micro-nanostructure would be able to harness the incident photons ensuring proper collection so as to reach the well-known Shockley–Queisser limit of solar cells. Flexible ultra-thin monocrystalline silicon solar cells have been fabricated using nanosphere lithography and MacEtch technique along with a synergistic association of crystalline and amorphous silicon technologies to demonstrate its physical and technological flexibilities. The outcomes are relevant so that nanotechnology may be seamlessly integrated into the technology roadmap of monocrystalline silicon solar cells as the silicon thickness should be significantly reduced without compromising the efficiency within the next decade.

  4. Black silicon solar cell: analysis optimization and evolution towards a thinner and flexible future.

    PubMed

    Roy, Arijit Bardhan; Dhar, Arup; Choudhuri, Mrinmoyee; Das, Sonali; Hossain, S Minhaz; Kundu, Avra

    2016-07-29

    Analysis and optimization of silicon nano-structured geometry (black silicon) for photovoltaic applications has been reported. It is seen that a unique class of geometry: micro-nanostructure has the potential to find a balance between the conflicting interests of reduced reflection for wide angles of incidence, reduced surface area enhancement due to the nano-structuring of the substrate and reduced material wastage due to the etching of the silicon substrate to realize the geometry itself. It is established that even optimally designed micro-nanostructures would not be useful for conventional wafer based approaches. The work presents computational studies on how such micro-nanostructures are more potent for future ultra-thin monocrystalline silicon absorbers. For such ultra-thin absorbers, the optimally designed micro-nanostructures provide additional advantages of advanced light management capabilities as it behaves as a lossy 2D photonic crystal making the physically thin absorber optically thick along with the ability to collect photo-generated carriers orthogonal to the direction of light (radial junction) for unified photon-electron harvesting. Most significantly, the work answers the key question on how thin the monocrystalline solar absorber should be so that optimum micro-nanostructure would be able to harness the incident photons ensuring proper collection so as to reach the well-known Shockley-Queisser limit of solar cells. Flexible ultra-thin monocrystalline silicon solar cells have been fabricated using nanosphere lithography and MacEtch technique along with a synergistic association of crystalline and amorphous silicon technologies to demonstrate its physical and technological flexibilities. The outcomes are relevant so that nanotechnology may be seamlessly integrated into the technology roadmap of monocrystalline silicon solar cells as the silicon thickness should be significantly reduced without compromising the efficiency within the next decade

  5. Influence of black silicon surfaces on the performance of back-contacted back silicon heterojunction solar cells.

    PubMed

    Ziegler, Johannes; Haschke, Jan; Käsebier, Thomas; Korte, Lars; Sprafke, Alexander N; Wehrspohn, Ralf B

    2014-10-20

    The influence of different black silicon (b-Si) front side textures prepared by inductively coupled reactive ion etching (ICP-RIE) on the performance of back-contacted back silicon heterojunction (BCB-SHJ) solar cells is investigated in detail regarding their optical performance, black silicon surface passivation and internal quantum efficiency. Under optimized conditions the effective minority carrier lifetime measured on black silicon surfaces passivated with Al(2)O(3) can be higher than lifetimes measured for the SiO(2)/SiN(x) passivation stack used in the reference cells with standard KOH textures. However, to outperform the electrical current of silicon back-contact cells, the black silicon back-contact cell process needs to be optimized with aspect to chemical and thermal stability of the used dielectric layer combination on the cell. PMID:25607304

  6. Nanostructured photoelectrochemical solar cell for nitrogen reduction using plasmon-enhanced black silicon.

    PubMed

    Ali, Muataz; Zhou, Fengling; Chen, Kun; Kotzur, Christopher; Xiao, Changlong; Bourgeois, Laure; Zhang, Xinyi; MacFarlane, Douglas R

    2016-01-01

    Ammonia (NH3) is one of the most widely produced chemicals worldwide. It has application in the production of many important chemicals, particularly fertilizers. It is also, potentially, an important energy storage intermediate and clean energy carrier. Ammonia production, however, mostly uses fossil fuels and currently accounts for more than 1.6% of global CO2 emissions (0.57  Gt in 2015). Here we describe a solar-driven nanostructured photoelectrochemical cell based on plasmon-enhanced black silicon for the conversion of atmospheric N2 to ammonia producing yields of 13.3 mg m(-2) h(-1) under 2 suns illumination. The yield increases with pressure; the highest observed in this work was 60 mg m(-2) h(-1) at 7 atm. In the presence of sulfite as a reactant, the process also offers a direct solar energy route to ammonium sulfate, a fertilizer of economic importance. Although the yields are currently not sufficient for practical application, there is much scope for improvement in the active materials in this cell. PMID:27093916

  7. Nanostructured photoelectrochemical solar cell for nitrogen reduction using plasmon-enhanced black silicon

    NASA Astrophysics Data System (ADS)

    Ali, Muataz; Zhou, Fengling; Chen, Kun; Kotzur, Christopher; Xiao, Changlong; Bourgeois, Laure; Zhang, Xinyi; Macfarlane, Douglas R.

    2016-04-01

    Ammonia (NH3) is one of the most widely produced chemicals worldwide. It has application in the production of many important chemicals, particularly fertilizers. It is also, potentially, an important energy storage intermediate and clean energy carrier. Ammonia production, however, mostly uses fossil fuels and currently accounts for more than 1.6% of global CO2 emissions (0.57 Gt in 2015). Here we describe a solar-driven nanostructured photoelectrochemical cell based on plasmon-enhanced black silicon for the conversion of atmospheric N2 to ammonia producing yields of 13.3 mg m-2 h-1 under 2 suns illumination. The yield increases with pressure; the highest observed in this work was 60 mg m-2 h-1 at 7 atm. In the presence of sulfite as a reactant, the process also offers a direct solar energy route to ammonium sulfate, a fertilizer of economic importance. Although the yields are currently not sufficient for practical application, there is much scope for improvement in the active materials in this cell.

  8. Nanostructured photoelectrochemical solar cell for nitrogen reduction using plasmon-enhanced black silicon

    PubMed Central

    Ali, Muataz; Zhou, Fengling; Chen, Kun; Kotzur, Christopher; Xiao, Changlong; Bourgeois, Laure; Zhang, Xinyi; MacFarlane, Douglas R.

    2016-01-01

    Ammonia (NH3) is one of the most widely produced chemicals worldwide. It has application in the production of many important chemicals, particularly fertilizers. It is also, potentially, an important energy storage intermediate and clean energy carrier. Ammonia production, however, mostly uses fossil fuels and currently accounts for more than 1.6% of global CO2 emissions (0.57  Gt in 2015). Here we describe a solar-driven nanostructured photoelectrochemical cell based on plasmon-enhanced black silicon for the conversion of atmospheric N2 to ammonia producing yields of 13.3 mg m−2 h−1 under 2 suns illumination. The yield increases with pressure; the highest observed in this work was 60 mg m−2 h−1 at 7 atm. In the presence of sulfite as a reactant, the process also offers a direct solar energy route to ammonium sulfate, a fertilizer of economic importance. Although the yields are currently not sufficient for practical application, there is much scope for improvement in the active materials in this cell. PMID:27093916

  9. 40 CFR 415.340 - Applicability; description of the chrome pigments production subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... chrome pigments production subcategory. 415.340 Section 415.340 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Chrome Pigments Production Subcategory § 415.340 Applicability; description of the chrome pigments production subcategory. This subpart applies to discharges to waters of the United States...

  10. 40 CFR 415.340 - Applicability; description of the chrome pigments production subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... chrome pigments production subcategory. 415.340 Section 415.340 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Chrome Pigments Production Subcategory § 415.340 Applicability; description of the chrome pigments production subcategory. This subpart applies to discharges to waters of the United States...

  11. 40 CFR 415.340 - Applicability; description of the chrome pigments production subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... chrome pigments production subcategory. 415.340 Section 415.340 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Chrome Pigments Production Subcategory § 415.340 Applicability; description of the chrome pigments production subcategory. This subpart applies to discharges to waters of the United States...

  12. 40 CFR 415.340 - Applicability; description of the chrome pigments production subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... chrome pigments production subcategory. 415.340 Section 415.340 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Chrome Pigments Production Subcategory § 415.340 Applicability; description of the chrome pigments production subcategory. This subpart applies to discharges to waters of the United States...

  13. 40 CFR 415.340 - Applicability; description of the chrome pigments production subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... chrome pigments production subcategory. 415.340 Section 415.340 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Chrome Pigments Production Subcategory § 415.340 Applicability; description of the chrome pigments production subcategory. This subpart applies to discharges to waters of the United States...

  14. 17.1%-Efficient Multi-Scale-Textured Black Silicon Solar Cells without Dielectric Antireflection Coating: Preprint

    SciTech Connect

    Toor, F.; Page, M. R.; Branz, H. M.; Yuan, H. C.

    2011-07-01

    In this work we present 17.1%-efficient p-type single crystal Si solar cells with a multi-scale-textured surface and no dielectric antireflection coating. Multi-scale texturing is achieved by a gold-nanoparticle-assisted nanoporous etch after conventional micron scale KOH-based pyramid texturing (pyramid black etching). By incorporating geometric enhancement of antireflection, this multi-scale texturing reduces the nanoporosity depth required to make silicon 'black' compared to nanoporous planar surfaces. As a result, it improves short-wavelength spectral response (blue response), previously one of the major limiting factors in 'black-Si' solar cells. With multi-scale texturing, the spectrum-weighted average reflectance from 350- to 1000-nm wavelength is below 2% with a 100-nm deep nanoporous layer. In comparison, roughly 250-nm deep nanopores are needed to achieve similar reflectance on planar surface. Here, we characterize surface morphology, reflectivity and solar cell performance of the multi-scale textured solar cells.

  15. Discovery of a 12 billion solar mass black hole at redshift 6.3 and its challenge to the black hole/galaxy co-evolution at cosmic dawn

    NASA Astrophysics Data System (ADS)

    Wu, Xue-Bing; Wang, Feige; Fan, Xiaohui; Yi, Weimin; Zuo, Wenwen; Bian, Fuyan; Jiang, Linhua; McGreer, Ian; Wang, Ran; Yang, Jinyi; Yang, Qian; Thompson, David; Beletsky, Yuri

    2015-08-01

    To date about 40 quasars with redshifts z>6 have been discovered. Each quasar harbors a black hole with a mass of about one billion solar masses. The existence of such black holes when the Universe was less than one billion years after the Big Bang presents significant challenges to theories of the formation and growth of black holes and the black hole/galaxy co-evolution. I will report a recent discovery of an ultra-luminous quasar at redshift z=6.30, which has an observed optical and near-infrared luminosity a few times greater than those of previously known z>6 quasars. With near-infrared spectroscopy, we obtain a black hole mass of about 12 billion solar masses, which is well consistent with the mass derived by assuming an Eddington-limited accretion. This ultra-luminous quasar with a 12 billion solar mass black hole at z>6 provides a unique laboratory to the study of the mass assembly and galaxy formation around the most massive black holes in the early Universe. It raises further challenges to the black hole/galaxy co-evolution in the epoch of cosmic reionization because the black hole needs to grow much faster than the host galaxy.

  16. GSDO Program Hexavalent Chrome Alternatives: Final Pretreatments Test Report

    NASA Technical Reports Server (NTRS)

    Kessel, Kurt

    2013-01-01

    Hexavalent chrome free pretreatments should be considered for use on Ground Support Equipment (OSE) and Electrical Ground Support Equipment (EOSE). Both of the hexavalent chrome free pretreatments (Metalast TCP HF and SurTec 650C) evaluated by this project met, and in some instances exceeded, the requirements ofMIL-DTL-5541 "Chemical Conversion Coatings on Aluminum and Aluminum Alloys". For DC resistance measurements, both Metalast TCP HF and SurTec (!50C met initial requirements following assembly and in many cases continued to maintain passing readings for the duration of testing.

  17. PROCESSING CHROME TANNERY EFFLUENT TO MEET BEST AVAILABLE TREATMENT STANDARDS

    EPA Science Inventory

    To satisfy stream discharge requirements at its Winchester, N.H., chrome tan shearling tannery, the A. C. Lawrence Leather Co., Inc. selected primary and secondary systems that are unique as applied to tannery effluent treatment in the United States. Primary clarification is acco...

  18. REACTIONS OF CHROME TANNERY SLUDGE WITH ORGANIC AND MINERAL SOILS

    EPA Science Inventory

    Chrome tannery sludge applied to agricultural land may have benefits in terms of added N for crop growth. An experiment was designed to compare tannery waste with commercial N fertilizer and investigate the potential of the waste as an alternative or supplement to commercial fert...

  19. An ultraluminous quasar with a twelve-billion-solar-mass black hole at redshift 6.30.

    PubMed

    Wu, Xue-Bing; Wang, Feige; Fan, Xiaohui; Yi, Weimin; Zuo, Wenwen; Bian, Fuyan; Jiang, Linhua; McGreer, Ian D; Wang, Ran; Yang, Jinyi; Yang, Qian; Thompson, David; Beletsky, Yuri

    2015-02-26

    So far, roughly 40 quasars with redshifts greater than z = 6 have been discovered. Each quasar contains a black hole with a mass of about one billion solar masses (10(9) M Sun symbol). The existence of such black holes when the Universe was less than one billion years old presents substantial challenges to theories of the formation and growth of black holes and the coevolution of black holes and galaxies. Here we report the discovery of an ultraluminous quasar, SDSS J010013.02+280225.8, at redshift z = 6.30. It has an optical and near-infrared luminosity a few times greater than those of previously known z > 6 quasars. On the basis of the deep absorption trough on the blue side of the Lyman-α emission line in the spectrum, we estimate the proper size of the ionized proximity zone associated with the quasar to be about 26 million light years, larger than found with other z > 6.1 quasars with lower luminosities. We estimate (on the basis of a near-infrared spectrum) that the black hole has a mass of ∼1.2 × 10(10) M Sun symbol, which is consistent with the 1.3 × 10(10) M Sun symbol derived by assuming an Eddington-limited accretion rate. PMID:25719667

  20. A mass of less than 15 solar masses for the black hole in an ultraluminous X-ray source.

    PubMed

    Motch, C; Pakull, M W; Soria, R; Grisé, F; Pietrzyński, G

    2014-10-01

    Most ultraluminous X-ray sources have a typical set of properties not seen in Galactic stellar-mass black holes. They have luminosities of more than 3 × 10(39) ergs per second, unusually soft X-ray components (with a typical temperature of less than about 0.3 kiloelectronvolts) and a characteristic downturn in their spectra above about 5 kiloelectronvolts. Such puzzling properties have been interpreted either as evidence of intermediate-mass black holes or as emission from stellar-mass black holes accreting above their Eddington limit, analogous to some Galactic black holes at peak luminosity. Recently, a very soft X-ray spectrum was observed in a rare and transient stellar-mass black hole. Here we report that the X-ray source P13 in the galaxy NGC 7793 is in a binary system with a period of about 64 days and exhibits all three canonical properties of ultraluminous sources. By modelling the strong optical and ultraviolet modulations arising from X-ray heating of the B9Ia donor star, we constrain the black hole mass to be less than 15 solar masses. Our results demonstrate that in P13, soft thermal emission and spectral curvature are indeed signatures of supercritical accretion. By analogy, ultraluminous X-ray sources with similar X-ray spectra and luminosities of up to a few times 10(40) ergs per second can be explained by supercritical accretion onto massive stellar-mass black holes. PMID:25297432

  1. High Temperature Brush Seal Tuft Testing of Selected Nickel-Chrome and Cobalt-Chrome Superalloys

    NASA Technical Reports Server (NTRS)

    Fellenstein, James A.; DellaCorte, Christopher; Moore, Kenneth D.; Boyes, Esther

    1997-01-01

    The tribology of brush seals is of considerable interest to turbine engine designers because bristle wear continues to limit long term seal performance and life. To provide better materials characterization and foster the development of improved seals, NASA Lewis has developed a brush seal tuft tester. In this test, a 'paintbrush' sample tuft is loaded under constant contact pressure against the outside diameter of a rotating journal. With this configuration, load and friction are directly measured and accurate wear measurements are possible. Previously reported research using this facility showed excellent data repeatability and wear morphology similar to published seal data and dynamic rig tests. This paper is an update of the ongoing research into the tribology of brush seals. The effects of wire materials processing on seal wear and the tribological results for three journal coatings are discussed. Included in the materials processing were two nickel-chrome superalloys each processed to two different yield strengths. The results suggest that seal wear is dependent more on material composition than processing conditions.

  2. Flat-Plate Solar-Collector Performance Evaluation with a Solar Simulator as a Basis for Collector Selection and Performance Prediction

    NASA Technical Reports Server (NTRS)

    Simon, F. F.

    1975-01-01

    The use of a solar simulator for performance determination permits collector testing under standard conditions of wind, ambient temperature, flow rate and sun. The performance results determined with the simulator have been found to be in good agreement with outdoor performance results. The measured thermal efficiency and evaluation of 23 collectors are reported which differ according to absorber material (copper, aluminum, steel), absorber coating (nonselective black paint, selective copper oxide, selective black nickel, selective black chrome), type of glazing material (glass, Tedlar, Lexan, antireflection glass), the use of honeycomb material and the use of vacuum to prevent thermal convection losses. The collectors were given performance rankings based on noon-hour solar conditions and all-day solar conditions. The determination with the simulator of an all-day collector performance was made possible by tests at different incident angles. The solar performance rankings were made based on whether the collector is to be used for pool heating, hot water, absorption air conditioning, heating, or for a solar Rankine machine.

  3. Solar neutrinos and the influences of opacity, thermal instability, additional neutrino sources, and a central black hole on solar models

    NASA Technical Reports Server (NTRS)

    Stothers, R. B.; Ezer, D.

    1972-01-01

    Significant quantities that affect the internal structure of the sun are examined for factors that reduce the temperature near the sun's center. The four factors discussed are: opacity, central black hole, thermal instability, and additional neutrino sources.

  4. Oxides reactions with a high-chrome sesquioxide refractory

    SciTech Connect

    Rawers, James C.; Collins, W. Keith; Peck, M.

    2001-10-01

    In slagging coal-gasifier systems, the combination of oxides present as impurities in coal and combustion temperatures that can exceed 1650 degrees C restrict the use of liner materials in the coal combustion chambers to refractories. In this study, the slag-refractory interactions of a new high chrome sesquioxide refractory was characterized. High-temperature cup tests showed that the molten oxides infused into the refractory and that the sesquioxide refractory reacts with the oxides in a manner similar to spinel phase refractories. Studies of the coal slag’s individual oxide components showed CaO reacts with the chrome refractory to form a low melting Ca(CrO2)2. FeO reacts with the sesquioxide to form a interface layer of (Cr,Fe)3O4 spinel phase. Results of this study now make it possible to design studies for improving corrosion resistance to increase refractory life.

  5. Fatigue of alumina-based ceramics and chrome carbide composites

    NASA Astrophysics Data System (ADS)

    Kireitseu, Maksim V.; Yerakhavets, Liudmila; Nemerenco, Ion; Basenuk, Vladimir L.

    2003-10-01

    The paper was revealed a fatigue in the alumina-chrome carbide composite. The trapped crack front resembles a collinear array of microcracks interspersed by grains rich in transformable precipitates. This micromechanical model provides a reasonable explanation for the observed fatigue crack growth. A numerical procedure similar to the one used in the analysis of the array of collinear cracks, based on complex potentials and dislocation formalism is also used to simulate fatigue of composite coatings based on oxide ceramics and chrome carbide. Assuming power-law crack growth, it is found that the crack growth rate decreases with the applied stress intensity factor in the initial stage of fatigue crack growth. Depending on the applied load and the amount of transformation, the growth rate either goes through a minimum before increasing to the normal crack regime, or the rate continues to decrease until the crack is arrested. A detailed parametric study of the phenomenon of fatigue crack arrest in composite coatings based on oxide ceramics and chrome carbide reveals that the combination of transformation strength parameter and applied load determines whether or not crack arrest will occur, irrespective of the initial crack length. Based on the parametric study a simple linear relationship between the applied load and the minimum transformation strength parameter necessary to cause crack arrest has been developed. it will be found useful in the design against fatigue by predicting the maximum toad at which crack arrest can be expected.

  6. Optoelectronic properties of Black-Silicon generated through inductively coupled plasma (ICP) processing for crystalline silicon solar cells

    NASA Astrophysics Data System (ADS)

    Hirsch, Jens; Gaudig, Maria; Bernhard, Norbert; Lausch, Dominik

    2016-06-01

    The optoelectronic properties of maskless inductively coupled plasma (ICP) generated black silicon through SF6 and O2 are analyzed by using reflection measurements, scanning electron microscopy (SEM) and quasi steady state photoconductivity (QSSPC). The results are discussed and compared to capacitively coupled plasma (CCP) and industrial standard wet chemical textures. The ICP process forms parabolic like surface structures in a scale of 500 nm. This surface structure reduces the average hemispherical reflection between 300 and 1120 nm up to 8%. Additionally, the ICP texture shows a weak increase of the hemispherical reflection under tilted angles of incidence up to 60°. Furthermore, we report that the ICP process is independent of the crystal orientation and the surface roughness. This allows the texturing of monocrystalline, multicrystalline and kerf-less wafers using the same parameter set. The ICP generation of black silicon does not apply a self-bias on the silicon sample. Therefore, the silicon sample is exposed to a reduced ion bombardment, which reduces the plasma induced surface damage. This leads to an enhancement of the effective charge carrier lifetime up to 2.5 ms at 1015 cm-3 minority carrier density (MCD) after an atomic layer deposition (ALD) with Al2O3. Since excellent etch results were obtained already after 4 min process time, we conclude that the ICP generation of black silicon is a promising technique to substitute the industrial state of the art wet chemical textures in the solar cell mass production.

  7. Formation of artificial pores in nano-TiO2 photo-electrode films using acetylene-black for high-efficiency, dye-sensitized solar cells.

    PubMed

    Cho, Tae-Yeon; Han, Chi-Whan; Jun, Yongseok; Yoon, Soon-Gil

    2013-01-01

    Acetylene-black paste without a light scattering layer was applied to meso-porous TiO2 photo-electrode films with a crystalline framework, a low residual carbon, and a tunable morphological pore size. The thermal-treated TiO2 photo-electrode films had an increased acetylene-black concentration with an increase in artificial pores and a decrease in residual carbon. The performance of dye-sensitized solar cells (DSSCs) was enhanced by the use of the TiO2 photo-anode pastes at various acetylene-black concentrations. The photo-conversion efficiency of the DSSCs using TiO2 photo-electrode films with 1.5 wt% acetylene-black was enhanced from 7.98 (no acetylene-black) to 9.75% without the integration of a light- scattering layer. PMID:23511122

  8. Green route for the utilization of chrome shavings (chromium-containing solid waste) in tanning industry.

    PubMed

    Rao, Jonnalagadda Raghava; Thanikaivelan, Palanisamy; Sreeram, Kalarical Janardhanan; Nair, Balachandran Unni

    2002-03-15

    Chromium-containing wastes from various industrial sectors are under critical review. Leather processing is one such industrial activity that generates chromium-bearing wastes in different forms. One of them is chrome shavings, and this contributes to an extent of 10% of the quantum of raw skins/hides processed, amounting to 0.8 million ton globally. In this study, the high protein content of chrome shavings has been utilized for reduction of chromium(VI) in the preparation of chrome tanning agent. This approach has been exploited for the development of two products: one with chrome shavings alone as reducing agent and the other with equal proportion of chrome shavings and molasses. The developed products exhibit more masking due to the formation of intermediate organic oligopeptides. This has been corroborated through the spectral, hydrolysis, and species-wise distribution studies. The formation of these organic masking agents helps in chrome tanning by shifting the precipitation point of chromium to relatively higher pH levels. Hence, the developed products find use as chrome tanning agents for leather processing, thus providing a means for better utilization of chrome shaving wastes. PMID:11944695

  9. Hysteresis and Stress Relaxation Studies for a Fibrous Collagen Material: Chrome-free Leather

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Animal hides are the most valuable coproduct of the meat industry, and most of those hides are converted into leather. Due to concerns over the use and disposal of chrome-tanned leather, the leather industry is now facing increasing scrutiny over its use of chrome as a tanning agent. The use of no...

  10. Treatments to enhance properties of chrome-free (wet white) leather

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Production of chrome-free or wet white leather, predominantly for upholstery leather, is fast approaching that which has been traditionally tanned with chrome. Recycling of auto parts, specifically the car seats, is driving the momentum towards this type of leather. Wet white leathers are sometime...

  11. Polymeric Coatings Containing Antioxidants to Improve UV- and Heat Resistance of Chrome-Free Leather

    Technology Transfer Automated Retrieval System (TEKTRAN)

    For automotive upholstery leather, UV and heat resistance are very important qualities, particularly for non-chrome-tanned (chrome-free) leather. One of our research endeavors has focused on an environmentally friendly finishing process that will improve the UV and heat resistance of automobile uph...

  12. FINAL REPORT FOR THE REDUCTION OF CHROME (VI) TO CHROME (III) IN THE SECONDARY WASTE STREAM OF THE EFFLUENT TREATMENT FACILITY

    SciTech Connect

    DUNCAN JB; GUTHRIE MD

    2008-08-29

    This report documents the laboratory results of RPP-PLAN-35958, Test Plan for the Effluent Treatment Facility to Reduce Chrome (VI) to Chrome (III) in the Secondary Waste Stream With the exception of the electrochemical corrosion scans, all work was carried out at the Center for Laboratory Science (CLS) located at the Columbia Basin College. This document summarizes the work carried out at CLS and includes the electrochemical scans and associated corrosion rates for 304 and 316L stainless steel.

  13. HVOF thermal spraying: An alternative to hard chrome plating

    SciTech Connect

    Bolles, D.C.

    1995-10-01

    In recent years pressure to find alternatives to chromium electroplating has accelerated dramatically. While it is not likely that the process will be banned completely, the trend points to severe limitations. Industries must now look closely at their applications, and actively consider alternatives to hard chrome plaint. One of the most viable alternatives in thermal spraying. Recent advances in high-velocity oxygen fuel (HVOF) technology offer an environmentally safer, cleaner and less-expensive alternative to chromium plating. It has been shown here that HVOF coatings can be used as chromium plating alternatives for many different applications. The HVOF process offers several advantages over chromium plaint including thicker coating capability, no part size restrictions and no hazardous waste products. A number of HVOF coatings have had excellent results in laboratory and field testing, and can be considered as effective replacements for hard chrome. The choice for a suitable replacement can only be made after careful assessment of the conditions associated with the application in question.

  14. The effect of chrome adhesion layer on quartz resonator aging.

    SciTech Connect

    Wessendorf, Kurt O.; Ohlhausen, James Anthony

    2011-03-01

    This SAND report documents a late start LDRD designed to determine the possible aging effects of a quartz resonator gold adhesion layer. Sandia uses quartz resonators for applications. These applications require a very stable frequency source with excellent aging (low drift) characteristics. These parts are manufactured by one of our qualified vendors outside Sandia Laboratories, Statek Corp. Over the years we, Sandia and the vendor, have seen aging variations that have not been completely explained by the typical mechanisms known in the industry. One theory was that the resonator metallization may be contributing to the resonator aging. This LDRD would allow us to test and analyze a group of resonators with known differentiating metallization and via accelerated aging determine if a chrome adhesion layer used to accept the final gold plating may contribute to poor aging. We worked with our main vendor to design and manufacture a set of quartz resonators with a wide range of metallization thickness ratios between the chrome and gold that will allow us determine the cause of this aging and which plating thickness ratios provide the best aging performance while not degrading other key characteristics.

  15. GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence

    NASA Astrophysics Data System (ADS)

    Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allocca, A.; Altin, P. A.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Babak, S.; Bacon, P.; Bader, M. K. M.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.; Bazzan, M.; Bejger, M.; Bell, A. S.; Berger, B. K.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Birney, R.; Birnholtz, O.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Boer, M.; Bogaert, G.; Bogan, C.; Bohe, A.; Bond, C.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Broida, J. E.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Brunett, S.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T.; Calloni, E.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerboni Baiardi, L.; Cerretani, G.; Cesarini, E.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Cheeseboro, B. D.; Chen, H. Y.; Chen, Y.; Cheng, C.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, S.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Collette, C. G.; Cominsky, L.; Constancio, M.; Conte, A.; Conti, L.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J.-P.; Countryman, S. T.; Couvares, P.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Cripe, J.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Darman, N. S.; Dasgupta, A.; Da Silva Costa, C. F.; Dattilo, V.; Dave, I.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; De, S.; DeBra, D.; Debreczeni, G.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; DeSalvo, R.; Devine, R. C.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Girolamo, T.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Virgilio, A.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Ducrot, M.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Engels, W.; Essick, R. C.; Etzel, T.; Evans, M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Fenyvesi, E.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fong, H.; Fournier, J.-D.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H. A. G.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gaur, G.; Gehrels, N.; Gemme, G.; Geng, P.; Genin, E.; Gennai, A.; George, J.; Gergely, L.; Germain, V.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glaefke, A.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gordon, N. A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Grado, A.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Hall, B. R.; Hall, E. D.; Hamilton, H.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C.-J.; Haughian, K.; Healy, J.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Henry, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hofman, D.; Holt, K.; Holz, D. E.; Hopkins, P.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huang, S.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Indik, N.; Ingram, D. R.; Inta, R.; Isa, H. N.; Isac, J.-M.; Isi, M.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jang, H.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jian, L.; Jiménez-Forteza, F.; Johnson, W. W.; Johnson-McDaniel, N. K.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; K, Haris; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Kapadia, S. J.; Karki, S.; Karvinen, K. S.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kéfélian, F.; Kehl, M. S.; Keitel, D.; Kelley, D. B.; Kells, W.; Kennedy, R.; Key, J. S.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, Chi-Woong; Kim, Chunglee; Kim, J.; Kim, K.; Kim, N.; Kim, W.; Kim, Y.-M.; Kimbrell, S. J.; King, E. J.; King, P. J.; Kissel, J. S.; Klein, B.; Kleybolte, L.; Klimenko, S.; Koehlenbeck, S. M.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Kringel, V.; Krishnan, B.; Królak, A.; Krueger, C.; Kuehn, G.; Kumar, P.; Kumar, R.; Kuo, L.; Kutynia, A.; Lackey, B. D.; Landry, M.; Lange, J.; Lantz, B.; Lasky, P. D.; Laxen, M.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, K.; Lenon, A.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Lewis, J. B.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Lockerbie, N. A.; Lombardi, A. L.; London, L. T.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lousto, C. O.; Lück, H.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña-Sandoval, F.; Magaña Zertuche, L.; Magee, R. M.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandel, I.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martynov, D. V.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni, S.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McRae, T.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Melatos, A.; Mendell, G.; Mercer, R. A.; Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Metzdorff, R.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, A. L.; Miller, A.; Miller, B. B.; Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B. C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Murphy, D. J.; Murray, P. G.; Mytidis, A.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Nedkova, K.; Nelemans, G.; Nelson, T. J. N.; Neri, M.; Neunzert, A.; Newton, G.; Nguyen, T. T.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; O'Shaughnessy, R.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Patrick, Z.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perreca, A.; Perri, L. M.; Pfeiffer, H. P.; Phelps, M.; Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poe, M.; Poggiani, R.; Popolizio, P.; Post, A.; Powell, J.; Prasad, J.; Predoi, V.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prix, R.; Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Qin, J.; Qiu, S.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rajan, C.; Rakhmanov, M.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Read, J.; Reed, C. M.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Reyes, S. D.; Ricci, F.; Riles, K.; Rizzo, M.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, J. D.; Romano, R.; Romanov, G.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Sakellariadou, M.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sanchez, E. J.; Sandberg, V.; Sandeen, B.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O. E. S.; Savage, R. L.; Sawadsky, A.; Schale, P.; Schilling, R.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schutz, B. F.; Scott, J.; Scott, S. M.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Setyawati, Y.; Shaddock, D. A.; Shaffer, T.; Shahriar, M. S.; Shaltev, M.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sieniawska, M.; Sigg, D.; Silva, A. D.; Singer, A.; Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, J. R.; Smith, N. D.; Smith, R. J. E.; Son, E. J.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stevenson, S. P.; Stone, R.; Strain, K. A.; Straniero, N.; Stratta, G.; Strauss, N. A.; Strigin, S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sunil, S.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tápai, M.; Tarabrin, S. P.; Taracchini, A.; Taylor, R.; Theeg, T.; Thirugnanasambandam, M. P.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Toland, K.; Tomlinson, C.; Tonelli, M.; Tornasi, Z.; Torres, C. V.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trifirò, D.; Tringali, M. C.; Trozzo, L.; Tse, M.; Turconi, M.; Tuyenbayev, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; Vallisneri, M.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Vass, S.; Vasúth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Verkindt, D.; Vetrano, F.; Viceré, A.; Vinciguerra, S.; Vine, D. J.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D. V.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, M.; Wang, X.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Weßels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; Whiting, B. F.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Woehler, J.; Worden, J.; Wright, J. L.; Wu, D. S.; Wu, G.; Yablon, J.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yu, H.; Yvert, M.; ZadroŻny, A.; Zangrando, L.; Zanolin, M.; Zendri, J.-P.; Zevin, M.; Zhang, L.; Zhang, M.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, X. J.; Zucker, M. E.; Zuraw, S. E.; Zweizig, J.; Boyle, M.; Hemberger, D.; Kidder, L. E.; Lovelace, G.; Ossokine, S.; Scheel, M.; Szilagyi, B.; Teukolsky, S.; LIGO Scientific Collaboration; Virgo Collaboration

    2016-06-01

    We report the observation of a gravitational-wave signal produced by the coalescence of two stellar-mass black holes. The signal, GW151226, was observed by the twin detectors of the Laser Interferometer Gravitational-Wave Observatory (LIGO) on December 26, 2015 at 03:38:53 UTC. The signal was initially identified within 70 s by an online matched-filter search targeting binary coalescences. Subsequent off-line analyses recovered GW151226 with a network signal-to-noise ratio of 13 and a significance greater than 5 σ . The signal persisted in the LIGO frequency band for approximately 1 s, increasing in frequency and amplitude over about 55 cycles from 35 to 450 Hz, and reached a peak gravitational strain of 3. 4-0.9+0.7×10-22 . The inferred source-frame initial black hole masses are 14.2-3.7+8.3 M⊙ and 7. 5-2.3+2.3 M⊙, and the final black hole mass is 20.8-1.7+6.1 M⊙. We find that at least one of the component black holes has spin greater than 0.2. This source is located at a luminosity distance of 44 0-190+180 Mpc corresponding to a redshift of 0.0 9-0.04+0.03. All uncertainties define a 90% credible interval. This second gravitational-wave observation provides improved constraints on stellar populations and on deviations from general relativity.

  16. GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence.

    PubMed

    Abbott, B P; Abbott, R; Abbott, T D; Abernathy, M R; Acernese, F; Ackley, K; Adams, C; Adams, T; Addesso, P; Adhikari, R X; Adya, V B; Affeldt, C; Agathos, M; Agatsuma, K; Aggarwal, N; Aguiar, O D; Aiello, L; Ain, A; Ajith, P; Allen, B; Allocca, A; Altin, P A; Anderson, S B; Anderson, W G; Arai, K; Araya, M C; Arceneaux, C C; Areeda, J S; Arnaud, N; Arun, K G; Ascenzi, S; Ashton, G; Ast, M; Aston, S M; Astone, P; Aufmuth, P; Aulbert, C; Babak, S; Bacon, P; Bader, M K M; Baker, P T; Baldaccini, F; Ballardin, G; Ballmer, S W; Barayoga, J C; Barclay, S E; Barish, B C; Barker, D; Barone, F; Barr, B; Barsotti, L; Barsuglia, M; Barta, D; Bartlett, J; Bartos, I; Bassiri, R; Basti, A; Batch, J C; Baune, C; Bavigadda, V; Bazzan, M; Bejger, M; Bell, A S; Berger, B K; Bergmann, G; Berry, C P L; Bersanetti, D; Bertolini, A; Betzwieser, J; Bhagwat, S; Bhandare, R; Bilenko, I A; Billingsley, G; Birch, J; Birney, R; Birnholtz, O; Biscans, S; Bisht, A; Bitossi, M; Biwer, C; Bizouard, M A; Blackburn, J K; Blair, C D; Blair, D G; Blair, R M; Bloemen, S; Bock, O; Boer, M; Bogaert, G; Bogan, C; Bohe, A; Bond, C; Bondu, F; Bonnand, R; Boom, B A; Bork, R; Boschi, V; Bose, S; Bouffanais, Y; Bozzi, A; Bradaschia, C; Brady, P R; Braginsky, V B; Branchesi, M; Brau, J E; Briant, T; Brillet, A; Brinkmann, M; Brisson, V; Brockill, P; Broida, J E; Brooks, A F; Brown, D A; Brown, D D; Brown, N M; Brunett, S; Buchanan, C C; Buikema, A; Bulik, T; Bulten, H J; Buonanno, A; Buskulic, D; Buy, C; Byer, R L; Cabero, M; Cadonati, L; Cagnoli, G; Cahillane, C; Calderón Bustillo, J; Callister, T; Calloni, E; Camp, J B; Cannon, K C; Cao, J; Capano, C D; Capocasa, E; Carbognani, F; Caride, S; Casanueva Diaz, J; Casentini, C; Caudill, S; Cavaglià, M; Cavalier, F; Cavalieri, R; Cella, G; Cepeda, C B; Cerboni Baiardi, L; Cerretani, G; Cesarini, E; Chamberlin, S J; Chan, M; Chao, S; Charlton, P; Chassande-Mottin, E; Cheeseboro, B D; Chen, H Y; Chen, Y; Cheng, C; Chincarini, A; Chiummo, A; Cho, H S; Cho, M; Chow, J H; Christensen, N; Chu, Q; Chua, S; Chung, S; Ciani, G; Clara, F; Clark, J A; Cleva, F; Coccia, E; Cohadon, P-F; Colla, A; Collette, C G; Cominsky, L; Constancio, M; Conte, A; Conti, L; Cook, D; Corbitt, T R; Cornish, N; Corsi, A; Cortese, S; Costa, C A; Coughlin, M W; Coughlin, S B; Coulon, J-P; Countryman, S T; Couvares, P; Cowan, E E; Coward, D M; Cowart, M J; Coyne, D C; Coyne, R; Craig, K; Creighton, J D E; Cripe, J; Crowder, S G; Cumming, A; Cunningham, L; Cuoco, E; Dal Canton, T; Danilishin, S L; D'Antonio, S; Danzmann, K; Darman, N S; Dasgupta, A; Da Silva Costa, C F; Dattilo, V; Dave, I; Davier, M; Davies, G S; Daw, E J; Day, R; De, S; DeBra, D; Debreczeni, G; Degallaix, J; De Laurentis, M; Deléglise, S; Del Pozzo, W; Denker, T; Dent, T; Dergachev, V; De Rosa, R; DeRosa, R T; DeSalvo, R; Devine, R C; Dhurandhar, S; Díaz, M C; Di Fiore, L; Di Giovanni, M; Di Girolamo, T; Di Lieto, A; Di Pace, S; Di Palma, I; Di Virgilio, A; Dolique, V; Donovan, F; Dooley, K L; Doravari, S; Douglas, R; Downes, T P; Drago, M; Drever, R W P; Driggers, J C; Ducrot, M; Dwyer, S E; Edo, T B; Edwards, M C; Effler, A; Eggenstein, H-B; Ehrens, P; Eichholz, J; Eikenberry, S S; Engels, W; Essick, R C; Etzel, T; Evans, M; Evans, T M; Everett, R; Factourovich, M; Fafone, V; Fair, H; Fairhurst, S; Fan, X; Fang, Q; Farinon, S; Farr, B; Farr, W M; Favata, M; Fays, M; Fehrmann, H; Fejer, M M; Fenyvesi, E; Ferrante, I; Ferreira, E C; Ferrini, F; Fidecaro, F; Fiori, I; Fiorucci, D; Fisher, R P; Flaminio, R; Fletcher, M; Fong, H; Fournier, J-D; Frasca, S; Frasconi, F; Frei, Z; Freise, A; Frey, R; Frey, V; Fritschel, P; Frolov, V V; Fulda, P; Fyffe, M; Gabbard, H A G; Gair, J R; Gammaitoni, L; Gaonkar, S G; Garufi, F; Gaur, G; Gehrels, N; Gemme, G; Geng, P; Genin, E; Gennai, A; George, J; Gergely, L; Germain, V; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S; Giaime, J A; Giardina, K D; Giazotto, A; Gill, K; Glaefke, A; Goetz, E; Goetz, R; Gondan, L; González, G; Gonzalez Castro, J M; Gopakumar, A; Gordon, N A; Gorodetsky, M L; Gossan, S E; Gosselin, M; Gouaty, R; Grado, A; Graef, C; Graff, P B; Granata, M; Grant, A; Gras, S; Gray, C; Greco, G; Green, A C; Groot, P; Grote, H; Grunewald, S; Guidi, G M; Guo, X; Gupta, A; Gupta, M K; Gushwa, K E; Gustafson, E K; Gustafson, R; Hacker, J J; Hall, B R; Hall, E D; Hamilton, H; Hammond, G; Haney, M; Hanke, M M; Hanks, J; Hanna, C; Hannam, M D; Hanson, J; Hardwick, T; Harms, J; Harry, G M; Harry, I W; Hart, M J; Hartman, M T; Haster, C-J; Haughian, K; Healy, J; Heidmann, A; Heintze, M C; Heitmann, H; Hello, P; Hemming, G; Hendry, M; Heng, I S; Hennig, J; Henry, J; Heptonstall, A W; Heurs, M; Hild, S; Hoak, D; Hofman, D; Holt, K; Holz, D E; Hopkins, P; Hough, J; Houston, E A; Howell, E J; Hu, Y M; Huang, S; Huerta, E A; Huet, D; Hughey, B; Husa, S; Huttner, S H; Huynh-Dinh, T; Indik, N; Ingram, D R; Inta, R; Isa, H N; Isac, J-M; Isi, M; Isogai, T; Iyer, B R; Izumi, K; Jacqmin, T; Jang, H; Jani, K; Jaranowski, P; Jawahar, S; Jian, L; Jiménez-Forteza, F; Johnson, W W; Johnson-McDaniel, N K; Jones, D I; Jones, R; Jonker, R J G; Ju, L; K, Haris; Kalaghatgi, C V; Kalogera, V; Kandhasamy, S; Kang, G; Kanner, J B; Kapadia, S J; Karki, S; Karvinen, K S; Kasprzack, M; Katsavounidis, E; Katzman, W; Kaufer, S; Kaur, T; Kawabe, K; Kéfélian, F; Kehl, M S; Keitel, D; Kelley, D B; Kells, W; Kennedy, R; Key, J S; Khalili, F Y; Khan, I; Khan, S; Khan, Z; Khazanov, E A; Kijbunchoo, N; Kim, Chi-Woong; Kim, Chunglee; Kim, J; Kim, K; Kim, N; Kim, W; Kim, Y-M; Kimbrell, S J; King, E J; King, P J; Kissel, J S; Klein, B; Kleybolte, L; Klimenko, S; Koehlenbeck, S M; Koley, S; Kondrashov, V; Kontos, A; Korobko, M; Korth, W Z; Kowalska, I; Kozak, D B; Kringel, V; Krishnan, B; Królak, A; Krueger, C; Kuehn, G; Kumar, P; Kumar, R; Kuo, L; Kutynia, A; Lackey, B D; Landry, M; Lange, J; Lantz, B; Lasky, P D; Laxen, M; Lazzarini, A; Lazzaro, C; Leaci, P; Leavey, S; Lebigot, E O; Lee, C H; Lee, H K; Lee, H M; Lee, K; Lenon, A; Leonardi, M; Leong, J R; Leroy, N; Letendre, N; Levin, Y; Lewis, J B; Li, T G F; Libson, A; Littenberg, T B; Lockerbie, N A; Lombardi, A L; London, L T; Lord, J E; Lorenzini, M; Loriette, V; Lormand, M; Losurdo, G; Lough, J D; Lousto, C O; Lück, H; Lundgren, A P; Lynch, R; Ma, Y; Machenschalk, B; MacInnis, M; Macleod, D M; Magaña-Sandoval, F; Magaña Zertuche, L; Magee, R M; Majorana, E; Maksimovic, I; Malvezzi, V; Man, N; Mandel, I; Mandic, V; Mangano, V; Mansell, G L; Manske, M; Mantovani, M; Marchesoni, F; Marion, F; Márka, S; Márka, Z; Markosyan, A S; Maros, E; Martelli, F; Martellini, L; Martin, I W; Martynov, D V; Marx, J N; Mason, K; Masserot, A; Massinger, T J; Masso-Reid, M; Mastrogiovanni, S; Matichard, F; Matone, L; Mavalvala, N; Mazumder, N; McCarthy, R; McClelland, D E; McCormick, S; McGuire, S C; McIntyre, G; McIver, J; McManus, D J; McRae, T; McWilliams, S T; Meacher, D; Meadors, G D; Meidam, J; Melatos, A; Mendell, G; Mercer, R A; Merilh, E L; Merzougui, M; Meshkov, S; Messenger, C; Messick, C; Metzdorff, R; Meyers, P M; Mezzani, F; Miao, H; Michel, C; Middleton, H; Mikhailov, E E; Milano, L; Miller, A L; Miller, A; Miller, B B; Miller, J; Millhouse, M; Minenkov, Y; Ming, J; Mirshekari, S; Mishra, C; Mitra, S; Mitrofanov, V P; Mitselmakher, G; Mittleman, R; Moggi, A; Mohan, M; Mohapatra, S R P; Montani, M; Moore, B C; Moore, C J; Moraru, D; Moreno, G; Morriss, S R; Mossavi, K; Mours, B; Mow-Lowry, C M; Mueller, G; Muir, A W; Mukherjee, Arunava; Mukherjee, D; Mukherjee, S; Mukund, N; Mullavey, A; Munch, J; Murphy, D J; Murray, P G; Mytidis, A; Nardecchia, I; Naticchioni, L; Nayak, R K; Nedkova, K; Nelemans, G; Nelson, T J N; Neri, M; Neunzert, A; Newton, G; Nguyen, T T; Nielsen, A B; Nissanke, S; Nitz, A; Nocera, F; Nolting, D; Normandin, M E N; Nuttall, L K; Oberling, J; Ochsner, E; O'Dell, J; Oelker, E; Ogin, G H; Oh, J J; Oh, S H; Ohme, F; Oliver, M; Oppermann, P; Oram, Richard J; O'Reilly, B; O'Shaughnessy, R; Ottaway, D J; Overmier, H; Owen, B J; Pai, A; Pai, S A; Palamos, J R; Palashov, O; Palomba, C; Pal-Singh, A; Pan, H; Pankow, C; Pannarale, F; Pant, B C; Paoletti, F; Paoli, A; Papa, M A; Paris, H R; Parker, W; Pascucci, D; Pasqualetti, A; Passaquieti, R; Passuello, D; Patricelli, B; Patrick, Z; Pearlstone, B L; Pedraza, M; Pedurand, R; Pekowsky, L; Pele, A; Penn, S; Perreca, A; Perri, L M; Pfeiffer, H P; Phelps, M; Piccinni, O J; Pichot, M; Piergiovanni, F; Pierro, V; Pillant, G; Pinard, L; Pinto, I M; Pitkin, M; Poe, M; Poggiani, R; Popolizio, P; Post, A; Powell, J; Prasad, J; Predoi, V; Prestegard, T; Price, L R; Prijatelj, M; Principe, M; Privitera, S; Prix, R; Prodi, G A; Prokhorov, L; Puncken, O; Punturo, M; Puppo, P; Pürrer, M; Qi, H; Qin, J; Qiu, S; Quetschke, V; Quintero, E A; Quitzow-James, R; Raab, F J; Rabeling, D S; Radkins, H; Raffai, P; Raja, S; Rajan, C; Rakhmanov, M; Rapagnani, P; Raymond, V; Razzano, M; Re, V; Read, J; Reed, C M; Regimbau, T; Rei, L; Reid, S; Reitze, D H; Rew, H; Reyes, S D; Ricci, F; Riles, K; Rizzo, M; Robertson, N A; Robie, R; Robinet, F; Rocchi, A; Rolland, L; Rollins, J G; Roma, V J; Romano, J D; Romano, R; Romanov, G; Romie, J H; Rosińska, D; Rowan, S; Rüdiger, A; Ruggi, P; Ryan, K; Sachdev, S; Sadecki, T; Sadeghian, L; Sakellariadou, M; Salconi, L; Saleem, M; Salemi, F; Samajdar, A; Sammut, L; Sanchez, E J; Sandberg, V; Sandeen, B; Sanders, J R; Sassolas, B; Sathyaprakash, B S; Saulson, P R; Sauter, O E S; Savage, R L; Sawadsky, A; Schale, P; Schilling, R; Schmidt, J; Schmidt, P; Schnabel, R; Schofield, R M S; Schönbeck, A; Schreiber, E; Schuette, D; Schutz, B F; Scott, J; Scott, S M; Sellers, D; Sengupta, A S; Sentenac, D; Sequino, V; Sergeev, A; Setyawati, Y; Shaddock, D A; Shaffer, T; Shahriar, M S; Shaltev, M; Shapiro, B; Shawhan, P; Sheperd, A; Shoemaker, D H; Shoemaker, D M; Siellez, K; Siemens, X; Sieniawska, M; Sigg, D; Silva, A D; Singer, A; Singer, L P; Singh, A; Singh, R; Singhal, A; Sintes, A M; Slagmolen, B J J; Smith, J R; Smith, N D; Smith, R J E; Son, E J; Sorazu, B; Sorrentino, F; Souradeep, T; Srivastava, A K; Staley, A; Steinke, M; Steinlechner, J; Steinlechner, S; Steinmeyer, D; Stephens, B C; Stevenson, S P; Stone, R; Strain, K A; Straniero, N; Stratta, G; Strauss, N A; Strigin, S; Sturani, R; Stuver, A L; Summerscales, T Z; Sun, L; Sunil, S; Sutton, P J; Swinkels, B L; Szczepańczyk, M J; Tacca, M; Talukder, D; Tanner, D B; Tápai, M; Tarabrin, S P; Taracchini, A; Taylor, R; Theeg, T; Thirugnanasambandam, M P; Thomas, E G; Thomas, M; Thomas, P; Thorne, K A; Thrane, E; Tiwari, S; Tiwari, V; Tokmakov, K V; Toland, K; Tomlinson, C; Tonelli, M; Tornasi, Z; Torres, C V; Torrie, C I; Töyrä, D; Travasso, F; Traylor, G; Trifirò, D; Tringali, M C; Trozzo, L; Tse, M; Turconi, M; Tuyenbayev, D; Ugolini, D; Unnikrishnan, C S; Urban, A L; Usman, S A; Vahlbruch, H; Vajente, G; Valdes, G; Vallisneri, M; van Bakel, N; van Beuzekom, M; van den Brand, J F J; Van Den Broeck, C; Vander-Hyde, D C; van der Schaaf, L; van Heijningen, J V; van Veggel, A A; Vardaro, M; Vass, S; Vasúth, M; Vaulin, R; Vecchio, A; Vedovato, G; Veitch, J; Veitch, P J; Venkateswara, K; Verkindt, D; Vetrano, F; Viceré, A; Vinciguerra, S; Vine, D J; Vinet, J-Y; Vitale, S; Vo, T; Vocca, H; Vorvick, C; Voss, D V; Vousden, W D; Vyatchanin, S P; Wade, A R; Wade, L E; Wade, M; Walker, M; Wallace, L; Walsh, S; Wang, G; Wang, H; Wang, M; Wang, X; Wang, Y; Ward, R L; Warner, J; Was, M; Weaver, B; Wei, L-W; Weinert, M; Weinstein, A J; Weiss, R; Wen, L; Weßels, P; Westphal, T; Wette, K; Whelan, J T; Whiting, B F; Williams, R D; Williamson, A R; Willis, J L; Willke, B; Wimmer, M H; Winkler, W; Wipf, C C; Wittel, H; Woan, G; Woehler, J; Worden, J; Wright, J L; Wu, D S; Wu, G; Yablon, J; Yam, W; Yamamoto, H; Yancey, C C; Yu, H; Yvert, M; Zadrożny, A; Zangrando, L; Zanolin, M; Zendri, J-P; Zevin, M; Zhang, L; Zhang, M; Zhang, Y; Zhao, C; Zhou, M; Zhou, Z; Zhu, X J; Zucker, M E; Zuraw, S E; Zweizig, J; Boyle, M; Hemberger, D; Kidder, L E; Lovelace, G; Ossokine, S; Scheel, M; Szilagyi, B; Teukolsky, S

    2016-06-17

    We report the observation of a gravitational-wave signal produced by the coalescence of two stellar-mass black holes. The signal, GW151226, was observed by the twin detectors of the Laser Interferometer Gravitational-Wave Observatory (LIGO) on December 26, 2015 at 03:38:53 UTC. The signal was initially identified within 70 s by an online matched-filter search targeting binary coalescences. Subsequent off-line analyses recovered GW151226 with a network signal-to-noise ratio of 13 and a significance greater than 5σ. The signal persisted in the LIGO frequency band for approximately 1 s, increasing in frequency and amplitude over about 55 cycles from 35 to 450 Hz, and reached a peak gravitational strain of 3.4_{-0.9}^{+0.7}×10^{-22}. The inferred source-frame initial black hole masses are 14.2_{-3.7}^{+8.3}M_{⊙} and 7.5_{-2.3}^{+2.3}M_{⊙}, and the final black hole mass is 20.8_{-1.7}^{+6.1}M_{⊙}. We find that at least one of the component black holes has spin greater than 0.2. This source is located at a luminosity distance of 440_{-190}^{+180}  Mpc corresponding to a redshift of 0.09_{-0.04}^{+0.03}. All uncertainties define a 90% credible interval. This second gravitational-wave observation provides improved constraints on stellar populations and on deviations from general relativity. PMID:27367379

  17. Calculations of Solar Shortwave Heating Rates due to Black Carbon and Ozone Absorption Using in Situ Measurements

    NASA Technical Reports Server (NTRS)

    Gao, R. S.; Hall, S. R.; Swartz, W. H.; Spackman, J. R.; Watts, L. A.; Fahey, D. W.; Aikin, K. C.; Shetter, R. E.; Bui, T. P.

    2008-01-01

    Results for the solar heating rates in ambient air due to absorption by black-carbon (BC) containing particles and ozone are presented as calculated from airborne observations made in the tropical tropopause layer (TTL) in January-February 2006. The method uses airborne in situ observations of BC particles, ozone and actinic flux. Total BC mass is obtained along the flight track by summing the masses of individually detected BC particles in the range 90 to 600-nm volume-equivalent diameter, which includes most of the BC mass. Ozone mixing ratios and upwelling and partial downwelling solar actinic fluxes were measured concurrently with BC mass. Two estimates used for the BC wavelength-dependent absorption cross section yielded similar heating rates. For mean altitudes of 16.5, 17.5, and 18.5 km (0.5 km) in the tropics, average BC heating rates were near 0.0002 K/d. Observed BC coatings on individual particles approximately double derived BC heating rates. Ozone heating rates exceeded BC heating rates by approximately a factor of 100 on average and at least a factor of 4, suggesting that BC heating rates in this region are negligible in comparison.

  18. Floatable, Self-Cleaning, and Carbon-Black-Based Superhydrophobic Gauze for the Solar Evaporation Enhancement at the Air-Water Interface.

    PubMed

    Liu, Yiming; Chen, Jingwei; Guo, Dawei; Cao, Moyuan; Jiang, Lei

    2015-06-24

    Efficient solar evaporation plays an indispensable role in nature as well as the industry process. However, the traditional evaporation process depends on the total temperature increase of bulk water. Recently, localized heating at the air-water interface has been demonstrated as a potential strategy for the improvement of solar evaporation. Here, we show that the carbon-black-based superhydrophobic gauze was able to float on the surface of water and selectively heat the surface water under irradiation, resulting in an enhanced evaporation rate. The fabrication process of the superhydrophobic black gauze was low-cost, scalable, and easy-to-prepare. Control experiments were conducted under different light intensities, and the results proved that the floating black gauze achieved an evaporation rate 2-3 times higher than that of the traditional process. A higher temperature of the surface water was observed in the floating gauze group, revealing a main reason for the evaporation enhancement. Furthermore, the self-cleaning ability of the superhydrophobic black gauze enabled a convenient recycling and reusing process toward practical application. The present material may open a new avenue for application of the superhydrophobic substrate and meet extensive requirements in the fields related to solar evaporation. PMID:26027770

  19. Film stress and geometry effects in chrome photomask cleaning damage

    NASA Astrophysics Data System (ADS)

    Alpay, H. Ufuk; Wood, James L.; Kalk, Franklin D.

    1997-02-01

    As design rules shrink, photomask blank material characteristics play a more significant role in successful mask fabrication. Chromium-based absorber film stress is a key material attribute in determining mask quality. A photomask is cleaned several times during manufacture by various techniques incorporating part or all of the following processes: strong acids, bases, high pressure sprays, mechanical brushes, sonic agitation. In such aggressive environments, electrostatic discharge damage (ESD) and mechanical damage can occur. Chromium-based film dependence on sputter deposition parameters was studied here. Photoblank flatness, measured by optical interferometry, was used to quantify the stress. Blanks with various chrome film stresses were patterned with features combining different geometry types. The masks were then subjected to multiple cleaning cycles and inspected after each cycle. The results demonstrate how mask damage is related to the film mechanical properties (which are controllable by sputter deposition parameters) and the pattern itself (which is not controllable).

  20. Failure Mechanisms in High Chrome Oxide Gasifier Refractories

    NASA Astrophysics Data System (ADS)

    Bennett, James P.; Kwong, Kyei-Sing

    2011-04-01

    Gasification is a high-temperature, high-pressure chemical process used to convert a carbon feedstock into CO and H2 (syngas) for use in power generation and the production of chemicals. It is also a leading candidate as a source of hydrogen in a hydrogen economy and is one of several technologies expected to see increased use in advanced fossil fuel power systems in the future. Gasification is being evaluated because of its high efficiency, its ability to capture CO2 for sequestration or reuse in other applications, and its potential for carbon feedstock fuel flexibility. At the heart of the gasification process is a gasifier, a high pressure chemical reaction vessel used to contain the interactions between carbon and water in a shortage of oxygen, producing syngas. The gasifier is lined with high chrome oxide materials to protect the containment vessel. Gasifiers are complex systems, and failure of the refractories used to line them was identified by industry as a limitation to their reliability and availability and to their increased use. NETL researchers have examined spent high-Cr2O3 (over 90 pct Cr2O3) refractories from numerous gasifiers to determine in-service failure mechanisms. This analysis revealed that premature failure of the high chrome oxide refractories was related to ash in the carbon feedstock, which liquefies during gasification and interacts with the refractories, leading to wear by chemical dissolution or spalling (structural and chemical). A discussion of this postmortem wear of spent refractory materials and of thermodynamic modeling used to explain microstructural changes leading to wear are explained in this article. This information will serve the basis to develop improved performance refractory materials.

  1. Hexavalent Chrome Free Coatings for Electronics Applications: Joint Test Report

    NASA Technical Reports Server (NTRS)

    Kessel, Kurt

    2012-01-01

    Regardless of the corrosivity of the environment, all metals require periodic maintenance activity to guard against the insidious effects of corrosion and thus ensure that alloys meet or exceed design or performance life. The standard practice for protecting metallic substrates is the application of a coating system. Applied coating systems work via a variety of methods (barrier, galvanic, and/or inhibitor) and adhere to the substrate through a combination of chemical and physical bonds. For years hexavalent chromium has been a widely used element within applied coating systems because of its self healing and corrosion resistant properties. Occupational Safety and Health Administration (OSHA) studies have concluded that hexavalent chromium (hex chrome) is carcinogenic and poses significant risk to human health. On May 5, 2011 amendments to the Defense Federal Acquisition Regulation Supplement (DFARS) were issued in the Federal Register. Subpart 223.73 prohibits contracts from requiring hexavalent chromium in deliverables unless certain exceptions apply. These exceptions include authorization from a general or flag officer and members of the Senior Executive Service from a Program Executive Office, and unmodified legacy systems. Otherwise, Subpart 252.223-7008 provides the contract clause prohibiting contractors from using or delivering hexavalent chromium in a concentration greater than 0.1 percent by weight for all new contracts and to be included down to subcontractors for supplies, maintenance and repair services, and construction materials. National Aeronautics and Space Administration (NASA), Department of Defense (DoD), and industry stakeholders continue to search for alternatives to hex chrome in coatings applications that meet their performance requirements in corrosion protection, cost, operability, and health and safety, while typically specifying that performance must be equal to or greater than existing systems.

  2. Experimental investigation of a nanofluid absorber employed in a low-profile, concentrated solar thermal collector

    NASA Astrophysics Data System (ADS)

    Li, Qiyuan; Zheng, Cheng; Mesgari, Sara; Hewakuruppu, Yasitha L.; Hjerrild, Natasha; Crisostomo, Felipe; Morrison, Karl; Woffenden, Albert; Rosengarten, Gary; Scott, Jason A.; Taylor, Robert A.

    2015-12-01

    Recent studies [1-3] have demonstrated that nanotechnology, in the form of nanoparticles suspended in water and organic liquids, can be employed to enhance solar collection via direct volumetric absorbers. However, current nanofluid solar collector experimental studies are either relevant to low-temperature flat plate solar collectors (<100 °C) [4] or higher temperature (>100 °C) indoor laboratory-scale concentrating solar collectors [1, 5]. Moreover, many of these studies involve in thermal properties of nanofluid (such as thermal conductivity) enhancement in solar collectors by using conventional selective coated steel/copper tube receivers [6], and no full-scale concentrating collector has been tested at outdoor condition by employing nanofluid absorber [2, 6]. Thus, there is a need of experimental researches to evaluate the exact performance of full-scale concentrating solar collector by employing nanofluids absorber at outdoor condition. As reported previously [7-9], a low profile (<10 cm height) solar thermal concentrating collector was designed and analysed which can potentially supply thermal energy in the 100-250 °C range (an application currently met by gas and electricity). The present study focuses on the design and experimental investigation of a nanofluid absorber employed in this newly designed collector. The nanofluid absorber consists of glass tubes used to contain chemically functionalized multi-walled carbon nanotubes (MWCNTs) dispersed in DI water. MWCNTs (average diameter of 6-13 nm and average length of 2.5-20 μm) were functionalized by potassium persulfate as an oxidant. The nanofluids were prepared with a MCWNT concentration of 50 +/- 0.1 mg/L to form a balance between solar absorption depth and viscosity (e.g. pumping power). Moreover, experimentally comparison of the thermal efficiency between two receivers (a black chrome-coated copper tube versus a MWCNT nanofluid contained within a glass tubetube) is investigated. Thermal

  3. Flight solar calibrations using the Mirror Attenuator Mosaic (MAM): Low scattering mirror

    NASA Technical Reports Server (NTRS)

    Lee, Robert B., III

    1992-01-01

    Measurements of solar radiances reflected from the mirror attenuator mosaic (MAM) were used to calibrate the shortwave portions of the Earth Radiation Budget Experiment (ERBE) thermistor bolometer scanning radiometers. The MAM is basically a low scattering mirror which has been used to attenuate and reflect solar radiation into the fields of view for the broadband shortwave (0.2 to 5 micrometers) and total (0.2 to 50.0+ micrometers) ERBE scanning radiometers. The MAM assembly consists of a tightly packed array of aluminum, 0.3175-cm diameter concave spherical mirrors and field of view limiting baffles. The spherical mirrors are masked by a copper plate, electro-plated with black chrome. Perforations (0.14 centimeter in diameter) in the copper plate serve as apertures for the mirrors. Black anodized aluminum baffles limit the MAM clear field of view to 7.1 degrees. The MAM assemblies are located on the Earth Radiation Budget Satellite (ERBS) and on the National Oceanic and Atmospheric Administration NOAA-9 and NOAA-10 spacecraft. The 1984-1985 ERBS and 1985-1986 NOAA-9 solar calibration datasets are presented. Analyses of the calibrations indicate that the MAM exhibited no detectable degradation in its reflectance properties and that the gains of the shortwave scanners did not change. The stability of the shortwave radiometers indicates that the transmission of the Suprasil W1 filters did not degrade detectably when exposed to Earth/atmosphere-reflected solar radiation.

  4. Comparison of selective transmitters for solar thermal applications.

    PubMed

    Taylor, Robert A; Hewakuruppu, Yasitha; DeJarnette, Drew; Otanicar, Todd P

    2016-05-10

    Solar thermal collectors are radiative heat exchangers. Their efficacy is dictated predominantly by their absorption of short wavelength solar radiation and, importantly, by their emission of long wavelength thermal radiation. In conventional collector designs, the receiver is coated with a selectively absorbing surface (Black Chrome, TiNOx, etc.), which serves both of these aims. As the leading commercial absorber, TiNOx consists of several thin, vapor deposited layers (of metals and ceramics) on a metal substrate. In this technology, the solar absorption to thermal emission ratio can exceed 20. If a solar system requires an analogous transparent component-one which transmits the full AM1.5 solar spectrum, but reflects long wavelength thermal emission-the technology is much less developed. Bespoke "heat mirrors" are available from optics suppliers at high cost, but the closest mass-produced commercial technology is low-e glass. Low-e glasses are designed for visible light transmission and, as such, they reflect up to 50% of available solar energy. To address this technical gap, this study investigated selected combinations of thin films that could be deposited to serve as transparent, selective solar covers. A comparative numerical analysis of feasible materials and configurations was investigated using a nondimensional metric termed the efficiency factor for selectivity (EFS). This metric is dependent on the operation temperature and solar concentration ratio of the system, so our analysis covered the practical range for these parameters. It was found that thin films of indium tin oxide (ITO) and ZnS-Ag-ZnS provided the highest EFS. Of these, ITO represents the more commercially viable solution for large-scale development. Based on these optimized designs, proof-of-concept ITO depositions were fabricated and compared to commercial depositions. Overall, this study presents a systematic guide for creating a new class of selective, transparent

  5. Magnetic microphases in chrome-spinels from alpine-type ultramafic rocks, Central Urals

    NASA Astrophysics Data System (ADS)

    Sherendo, T. A.; Mitrofanov, V. Ya.; Martyshko, P. S.; Vazhenin, V. A.; Pamyatnykh, L. A.; Alekseev, A. V.

    2014-05-01

    The ore and accessory chrome-spinels from metamorphosed dunites of the Cr-bearing Klyuchevskoi alpine-type ultramafic massif are studied. As a result of use of thermomagnetic analysis in the range of 4-900 K, magnetic resonance spectroscopy, and magnetic-force microscopy, secondary magnetic Fe3+-enriched microphases chaotically distributed in the primary nonmagnetic mineral were revealed for the first time in accessory chrome-spinels. It was established that the metamorphosed accessory chrome-spinels produce the magnetic properties of the host rocks and the primary nonmagnetic chrome-spinels forming ore bodies remains almost unaltered. This originates the contrast of magnetic properties between the ore body and host rocks and provides the geomagnetic anomaly in the ore-hosting zone.

  6. Investigation of Ceramic, Graphite, and Chrome-plated Graphite Nozzles on Rocket Engine

    NASA Technical Reports Server (NTRS)

    Kinney, George R; Lidman, William G

    1949-01-01

    The use of ceramic material for rocket nozzles and the effectiveness of preventing oxidation and erosion of graphite nozzles by chrome-plating the internal surface were investigated. A supported ceramic nozzle, cracked by initial operation, was operated a second time without further cracking or damage. Chrome-plating the internal surface of graphite nozzles effectively prevented oxidation and erosion that occurred during operation with unprotected graphite.

  7. Solar-collector-materials exposure to the IPH site environment. Volume 1. Final report

    SciTech Connect

    Morris, V.L.

    1982-01-01

    In-situ environmental exposure tests were conducted at nine proposed intermediate-temperature Industrial Process Heat (IPH) sites. Three types of reflector materials were evaluated for survivability at the nine sites: second-surface silvered glass, aluminized acrylic FEK-244 film on aluminumsubstrate and Alzak (electropolished aluminum) on aluminium substrate. Black chrome absorber material and low-iron float glass were evaluated for thermal, photochemical, and environmental degradation. The reflector specimens were monitored for decreases in specular and hemispherical reflectance due to soil buildup. The absorber material was evaluated for changes in solar absorptivity and emissivity, and the float glass was monitored for changes in transmissivity. Surface and subsurface defects on all materials were examined microscopically and, where deemed of note, were documented photographically.

  8. Solar-collector materials exposure to the IPH site environment. Final report

    SciTech Connect

    Morris, V.L.

    1982-01-01

    In-situ environmental exposure tests were conducted at nine proposed intermediate-temperature Industrial Process Heat (IPH) sites. Three types of reflector materials were evaluated for survivability at the nine sites: second-surface silvered glass, aluminized acrylic FEK-244 film on aluminum substrate, and Alzak (electropolished aluminum) on aluminum substrate. Black chrome absorber material and low-iron float glass were evaluated for thermal, photochemical, and environmental degradation. The reflector specimens were monitored for decreases in specular and hemispherical reflectance due to soil buildup. The absorber material was evaluated for changes in solar absorptivity and emissivity, and the float glass was monitored for changes in transmissivity. Surface and subsurface defects on all materials were examined microscopically and, where deemed of note, were documented photographically.

  9. The X-Ray Properties of Million Solar Mass Black Holes

    NASA Astrophysics Data System (ADS)

    Plotkin, Richard. M.; Gallo, Elena; Haardt, Francesco; Miller, Brendan P.; Wood, Callum J. L.; Reines, Amy E.; Wu, Jianfeng; Greene, Jenny E.

    2016-07-01

    We present new Chandra X-ray observations of seven low-mass black holes ({M}{{BH}}≈ {10}6 {M}ȯ ) accreting at low-bolometric Eddington ratios between -2.0≲ {log}{L}{{bol}}/{L}{{Edd}}≲ -1.5. We compare the X-ray properties of these seven low-mass active galactic nuclei (AGNs) to a total of 73 other low-mass AGNs in the literature with published Chandra observations (with Eddington ratios extending from -2.0≲ {log}{L}{{bol}}/{L}{{Edd}}≲ -0.1). We do not find any statistical differences between the low and high Eddington ratio low-mass AGNs in the distributions of their X-ray to ultraviolet luminosity ratios ({α }{{ox}}), or in their X-ray spectral shapes. Furthermore, the {α }{{ox}} distribution of low-{L}{{bol}}/{L}{{Edd}} AGNs displays an X-ray weak tail that is also observed within high-{L}{{bol}}/{L}{{Edd}} objects. Our results indicate that between -2≲ {log}{L}{{bol}}/{L}{{Edd}}≲ -0.1, there is no systematic change in the structure of the accretion flow for active galaxies hosting {10}6 {M}ȯ black holes. We examine the accuracy of current bolometric luminosity estimates for our low-{L}{{bol}}/{L}{{Edd}} objects with new Chandra observations, and it is plausible that their Eddington ratios could be underestimated by up to an order of magnitude. If so, then in analogy with weak emission line quasars, we suggest that accretion from a geometrically thick, radiatively inefficient “slim disk” could explain their diverse properties in {α }{{ox}}. Alternatively, if current Eddington ratios are correct (or overestimated), then the X-ray weak tail would imply that there is diversity in disk/corona couplings among individual low-mass objects. Finally, we conclude by noting that the {α }{{ox}} distribution for low-mass black holes may have favorable consequences for the epoch of cosmic reionization being driven by AGN.

  10. Nondestructive detection of lead chrome green in tea by Raman spectroscopy.

    PubMed

    Li, Xiao-Li; Sun, Chan-Jun; Luo, Liu-Bin; He, Yong

    2015-01-01

    Raman spectroscopy was first adopted for rapid detecting a hazardous substance of lead chrome green in tea, which was illegally added to tea to disguise as high-quality. 160 samples of tea infusion with different concentrations of lead chrome green were prepared for Raman spectra acquirement in the range of 2804 cm(-1)-230 cm(-1) and the spectral intensities were calibrated with relative intensity standards. Then wavelet transformation (WT) was adopted to extract information in different time and frequency domains from Raman spectra, and the low-frequency approximation signal (ca4) was proved as the most important information for establishment of lead chrome green measurement model, and the corresponding partial least squares (PLS) regression model obtained good performance in prediction with Rp and RMSEP of 0.936 and 0.803, respectively. To further explore the important wavenumbers closely related to lead chrome green, successive projections algorithm (SPA) was proposed. Finally, 8 characteristic wavenumbers closely related to lead chrome green were obtained and a more convenient and fast model was also developed. These results proved the feasibility of Raman spectroscopy for nondestructive detection of lead chrome green in tea quality control. PMID:26508516

  11. Nondestructive detection of lead chrome green in tea by Raman spectroscopy

    PubMed Central

    Li, Xiao-Li; Sun, Chan-Jun; Luo, Liu-Bin; He, Yong

    2015-01-01

    Raman spectroscopy was first adopted for rapid detecting a hazardous substance of lead chrome green in tea, which was illegally added to tea to disguise as high-quality. 160 samples of tea infusion with different concentrations of lead chrome green were prepared for Raman spectra acquirement in the range of 2804 cm−1–230 cm−1 and the spectral intensities were calibrated with relative intensity standards. Then wavelet transformation (WT) was adopted to extract information in different time and frequency domains from Raman spectra, and the low-frequency approximation signal (ca4) was proved as the most important information for establishment of lead chrome green measurement model, and the corresponding partial least squares (PLS) regression model obtained good performance in prediction with Rp and RMSEP of 0.936 and 0.803, respectively. To further explore the important wavenumbers closely related to lead chrome green, successive projections algorithm (SPA) was proposed. Finally, 8 characteristic wavenumbers closely related to lead chrome green were obtained and a more convenient and fast model was also developed. These results proved the feasibility of Raman spectroscopy for nondestructive detection of lead chrome green in tea quality control. PMID:26508516

  12. Toward a planar black silicon technology for 50 μm-thin crystalline silicon solar cells.

    PubMed

    Song, Jae-Won; Nam, Yoon-Ho; Park, Min-Joon; Yoo, Bongyoung; Cho, Jun-Sik; Wehrspohn, Ralf B; Lee, Jung-Ho

    2016-09-01

    Auger and surface recombinations are major drawbacks that deteriorate a photon-to-electron conversion efficiencies in nanostructured (NS) Si solar cells. As an alternative to conventional frontside nanostructuring, we report how backside nanostructuring is beneficial for carrier collection during photovoltaic operation that utilizes a 50-μm-thin wafer. Ultrathin (4.3-nm-thin) zinc oxide was also effective for providing passivated tunneling contacts at the nanostructured backsides, which led to the enhancement of 24% in power conversion efficiency. PMID:27607725

  13. Efficient Nanostructured 'Black' Silicon Solar Cell by Copper-Catalyzed Metal-Assisted Etching

    SciTech Connect

    Toor, Fatima; Oh, Jihun; Branz, Howard M.

    2014-09-13

    Here, we produce low-reflectivity nanostructured ‘black’ silicon (bSi) using copper (Cu) nanoparticles as the catalyst for metal-assisted etching and demonstrate a 17.0%-efficient Cu-etched bSi solar cell without any vacuum-deposited anti-reflection coating. We found that the concentration ratio of HF to H2O2 in the etch solution provides control of the nanostructure morphology. The solar-spectrum-weighted average reflection (Rave) for bSi is as low as 3.1% on Cu-etched planar samples; we achieve lower reflectivity by nanostructuring of micron-scale pyramids. Successful Cu-based anti-reflection etching requires a concentration ratio [HF]/[H2O2] ≥ 3. Our 17.0%-efficient Cu-etched bSi photovoltaic cell with a pyramid-texture has a Rave of 3% and an open circuit voltage (Voc) of 616 mV that might be further improved by reducing near-surface phosphorus (P) densities.

  14. Development of a low-temperature, low-cost, black liquid solar collector. Phase II. Semi-annual report, September 1, 1979-February 29, 1980

    SciTech Connect

    Landstrom, D. K.; Talbert, S. G.; McGinniss, V. D.

    1980-03-20

    The research efforts during these first 6 months of Phase II have been directed toward (1) evaluating the long-term durability of various plastic materials and solar collector designs, (2) obtaining sufficient outdoor performance data to design a full-scale demonstration of a black-liquid solar collector for a commercial application, (3) teaming with a company willing to commercialize black liquid plastic collectors, and (4) incorporating improved black liquids with the identified plastic collector designs. Besides conducting indoor weathering tests of various plastic materials, two outdoor automated test facilities have been built. One unit has been in use for about 2 winter months at Battelle in Columbus, Ohio, and the other unit is ready for testing in Phoenix, Arizona, by Ramada Energy Systems, Inc., a collector manufacturing company. Since Ramada Energy Systems has been working with extruded polycarbonate panels, Battelle has been working to date with extruded acrylic panel designs. Other potential plastics for solar collectors will be evaluated later in this program.

  15. Solar Success Story at Moanalua Terrace

    SciTech Connect

    Not Available

    1999-03-01

    Solar systems prove to be the environmentally and economically sound choice for heating water in U.S. Navy housing at Moanalua Terrace in Pearl Harbor, Hawaii. Hawaii is a perfect environment for solar water heating,'' according to Alan Ikeda, a Housing Management Specialist with the Pacific Naval Facility Engineering Command Housing Department in Pearl Harbor, Hawaii. ''The sun shines most of the time, we don't have to worry about freezing, the state offers a 35% solar tax credit, and our local utility supports the purchase and installation of solar systems with generous rebates.'' The Hawaiian Electric Company's (HECO's) $1,500 per unit rebate for solar water heaters installed on new construction helped persuade the Navy to take advantage of Hawaii's solar resource and install solar water heaters on family housing units. At Moanalua Terrace, the Navy had demolished 752 units of family housing, which they are rebuilding in four phases. Designers decided to use the opportunity to give the solar systems a try. When the 100 homes in Phase I were built, money was not available for solar water heaters. However, Ikeda subsequently secured a $130,000 grant from the U.S. Department of Energy's (DOE's) Federal Energy Management Program (FEMP) to retrofit the Phase I homes with solar systems. In retrofit applications, HECO rebates $800 per unit ($80,000 total) on approved equipment, and Pearl Harbor Family Housing will pay the difference of the estimated $340,000 total cost, or about $130,000. The 136 units built during Phase II of the Moanalua Terrace project included solar systems in their specifications, so the Navy was able to take advantage of the $1,500 per system HECO rebate for approved solar water heaters in new construction. The Navy chose direct (open-loop) active systems that circulate potable water through flat-plate collectors coated with a black chrome selective surface. Each system consists of a 4-foot by 8-foot (1.2-m by 2.4-m) collector made by American

  16. Thermal model of solar absorption HVAC systems

    SciTech Connect

    Bergquam, J.B.; Brezner, J.M. |

    1995-11-01

    This paper presents a thermal model that describes the performance of solar absorption HVAC systems. The model considers the collector array, the building cooling and heating loads, the absorption chiller and the high temperature storage. Heat losses from the storage tank and piping are included in the model. All of the results presented in the paper are for an array of flat plate solar collectors with black chrome (selective surface) absorber plates. The collector efficiency equation is used to calculate the useful heat output from the array. The storage is modeled as a non-stratified tank with polyurethane foam insulation. The system is assumed to operate continuously providing air conditioning during the cooling season, space heating during the winter and hot water throughout the year. The amount of heat required to drive the chiller is determined from the coefficient of performance of the absorption cycle. Results are presented for a typical COP of 0.7. The cooling capacity of the chiller is a function of storage (generator) temperature. The nominal value is 190 F (88 C) and the range of values considered is 180 F (82 C) to 210 F (99 C). Typical building cooling and heating loads are determined as a function of ambient conditions. Performance results are presented for Sacramento, CA and Washington, D.C. The model described in the paper makes use of National Solar Radiation Data Base (NSRDB) data and results are presented for these two locations. The uncertainties in the NSRDB are estimated to be in a range of 6% to 9%. This is a significant improvement over previously available data. The model makes it possible to predict the performance of solar HVAC systems and calculate quantities such as solar fraction, storage temperature, heat losses and parasitic power for every hour of the period for which data are available.

  17. SUPERFUND TREATABILITY CLEARINGHOUSE: SOIL STABILIZATION PILOT STUDY, UNITED CHROME NPL SITE PILOT STUDY AND HEALTH AND SAFETY PROGRAM, UNITED CHROME NPL SITE PILOT STUDY

    EPA Science Inventory

    This document is a project plan for a pilot study at the United Chrome NPL site, Corvallis, Oregon and includes the health and safety and quality assurance/quality control plans. The plan reports results of a bench-scale study of the treatment process as iieasured by the ...

  18. Nitrogen and boron ion implantation into electrodeposited hard chrome

    SciTech Connect

    Walter, K.C.; Tesmer, J.R.; Scarborough, W.K.; Woodring, J.S.; Nastasi, M.; Kern, K.T.

    1996-10-01

    Electrodeposited hard chrome was ion implanted with N alone, B alone, and a combination. Separate N and B implantation was done at 75 keV and incident doses of 2, 4, and 8x10{sup 17} at/cm{sup 2}. Samples with both N/B implants used 75 keV and incident dose levels of 4x10{sup 17} N- and B-at/cm{sup 2}. Beam-line system was used. Retained dose was measured using ion beam analysis, which indicated most of the incident dose was retained. Surface hardness, wear coefficient, and friction coefficient were determined by nanohardness indentation and pin-on-disk wear. At a depth of 50 nm, surface hardness increased from 18{+-}1 GPa (unimplanted) to a max of 23{+-}4 GPa for B implant and 26{+-}1 GPa for N implant. the wear coefficient was reduced by 1.3x to 7.4x, depending on implantation. N implant results in lower wear coefficients than B implant.

  19. Recycling of Chrome Tanned Leather Dust in Acrylonitrile Butadiene Rubber

    NASA Astrophysics Data System (ADS)

    El-Sabbagh, Salwa H.; Mohamed, Ola A.

    2010-06-01

    Concerns on environmental waste problem caused by chrome tanned leather wastes in huge amount have caused an increasing interest in developing this wastes in many composite formation. This leather dust was used as filler in acrylonitrile butadiene rubber (NBR) before treatment and after treatment with ammonia solution and sod. formate. Different formulations of NBR/ leather dust (untreated-treated with ammonia solution—treated with sod. formate) composites are prepared. The formed composite exhibit a considerable improvement in some of their properties such as rheometric characteristics especially with composites loaded with treated leather dust. Tensile strength, modulus at 100% elongation, hardness and youngs modulus were improved then by further loading start to be steady or decrease. Cross linking density in toluene were increased by incorporation of leather dust treated or untreated resulting in decreases in equilibrium swelling. Distinct increase in the ageing coefficient of both treated and untreated leather with drop in NBR vulcanizates without leather dust. Addition of leather dust treated or untreated exhibit better thermal stability.

  20. Black light visualized solar lentigines on the shoulders and upper back are associated with objectively measured UVR exposure and cutaneous malignant melanoma.

    PubMed

    Idorn, Luise Winkel; Datta, Pameli; Heydenreich, Jakob; Philipsen, Peter Alshede; Wulf, Hans Christian

    2015-02-01

    Previous studies on the association of solar lentigines with ultraviolet radiation (UVR) exposure have been based on retrospective questionnaires about UVR exposure. We aimed to investigate the association between solar lentigines and UVR exposure in healthy individuals using objective measurements, and to investigate the association between solar lentigines and cutaneous malignant melanoma (CMM). Forty-eight patients with CMM and 48 controls that matched the patients individually by age, sex, constitutive skin type and occupation participated. Solar lentigines on the shoulders and upper back were counted and graded into 3 categories using black light photographs to show sun damage. Current UVR exposure in healthy controls was assessed by personal electronic UVR dosimeters that measured time-related UVR and by corresponding exposure diaries during a summer season. Sunburn history was assessed by interviews. Among controls, the number of solar lentigines was positively associated with daily hours spent outdoors between noon and 3 pm on holidays (P = 0.027), days at the beach (P = 0.048) and reported number of life sunburns (P < 0.001). Compared with matched controls CMM patients had a higher number of solar lentigines (P = 0.044). There was a positive association between CMM and higher solar lentigines grade; Category III versus Category I (P = 0.002) and Category II versus Category I (P = 0.014). Our findings indicate that solar lentigines in healthy individuals are associated with number of life sunburns, as well as time spent outdoors around noon on holidays and beach trips during a summer season, most likely reflecting past UVR exposure, and that solar lentigines are a risk factor for CMM. PMID:25410723

  1. Enhanced Solar Energy Absorption by Internally-mixed Black Carbon in Snow Grains

    SciTech Connect

    Flanner, M. G.; Liu, Xiaohong; Zhou, Cheng; Penner, Joyce E.; Jiao, C.

    2012-05-30

    Here we explore light absorption by snowpack containing black carbon (BC) particles residing within ice grains. Basic considerations of particle volumes and BC/snow mass concentrations show that there are generally 0:05-109 BC particles for each ice grain. This suggests that internal BC is likely distributed as multiple inclusions within ice grains, and thus the dynamic effective medium approximation (DEMA) (Chylek and Srivastava, 1983) is a more appropriate optical representation for BC/ice composites than coated-sphere or standard mixing approximations. DEMA calculations show that the 460 nm absorption cross-section of BC/ice composites, normalized to the mass of BC, is typically enhanced by factors of 1.8-2.1 relative to interstitial BC. BC effective radius is the dominant cause of variation in this enhancement, compared with ice grain size and BC volume fraction. We apply two atmospheric aerosol models that simulate interstitial and within-hydrometeor BC lifecycles. Although only {approx}2% of the atmospheric BC burden is cloud-borne, 71-83% of the BC deposited to global snow and sea-ice surfaces occurs within hydrometeors. Key processes responsible for within-snow BC deposition are development of hydrophilic coatings on BC, activation of liquid droplets, and subsequent snow formation through riming or ice nucleation by other species and aggregation/accretion of ice particles. Applying deposition fields from these aerosol models in offline snow and sea-ice simulations, we calculate that 32-73% of BC in global surface snow resides within ice grains. This fraction is smaller than the within-hydrometeor deposition fraction because meltwater flux preferentially removes internal BC, while sublimation and freezing within snowpack expose internal BC. Incorporating the DEMA into a global climate model, we simulate increases in BC/snow radiative forcing of 43-86%, relative to scenarios that apply external optical properties to all BC. We show that snow metamorphism

  2. A conceptual model for determining career choice of CHROME alumna based on farmer's conceptual models

    NASA Astrophysics Data System (ADS)

    Moore, Lisa Simmons

    This qualitative program evaluation examines the career decision-making processes and career choices of nine, African American women who participated in the Cooperating Hampton Roads Organization for Minorities in Engineering (CHROME) and who graduated from urban, rural or suburban high schools in the year 2000. The CHROME program is a nonprofit, pre-college intervention program that encourages underrepresented minority and female students to enter science, technically related, engineering, and math (STEM) career fields. The study describes career choices and decisions made by each participant over a five-year period since high school graduation. Data was collected through an Annual Report, Post High School Questionnaires, Environmental Support Questionnaires, Career Choice Questionnaires, Senior Reports, and standardized open-ended interviews. Data was analyzed using a model based on Helen C. Farmer's Conceptual Models, John Ogbu's Caste Theory and Feminist Theory. The CHROME program, based on its stated goals and tenets, was also analyzed against study findings. Findings indicated that participants received very low levels of support from counselors and teachers to pursue STEM careers and high levels of support from parents and family, the CHROME program and financial backing. Findings of this study also indicated that the majority of CHROME alumna persisted in STEM careers. The most successful participants, in terms of undergraduate degree completion and occupational prestige, were the African American women who remained single, experienced no critical incidents, came from a middle class to upper middle class socioeconomic background, and did not have children.

  3. Hexavalent Chrome Free Coatings for Electronics: Electromagnetic Interference (EMI) Shielding Effectiveness (SE)

    NASA Technical Reports Server (NTRS)

    Kessel, Kurt R.

    2016-01-01

    Determine the suitability of trivalent chromium conversion coatings that meet the requirements of MIL-DTL-5541, Type II, for use in applications where high-frequency electrical performance is important. Evaluate the ability of hexavalent chrome free pretreated aluminum to form adequate EMI seals, and maintain that seal while being subjected to harsh environmental conditions. Assess the performance of trivalent chromium pretreatments against a known control hexavalent chrome pretreatment before and after they have been exposed to a set of environmental conditions. It is known that environmental testing causes a decrease in shielding effectiveness when hexavalent chrome pretreatments are used (Alodine 1200s). Need to determine how shielding effectiveness will be affected with the use of hexavalent chrome free pretreatments. Performance will be assessed by evaluating shielding effectiveness (SE) test data from a variety of test samples comprised of different aluminum types and/or conversion coatings. The formation of corrosion will be evaluated between the mating surfaces and gasket to assess the corrosion resistant properties of the pretreatments, comparing the hexavalent control to the hexavalent chrome free pretreatments.

  4. Inline detection of Chrome degradation on binary 193nm photomasks

    NASA Astrophysics Data System (ADS)

    Dufaye, Félix; Sippel, Astrid; Wylie, Mark; García-Berríos, Edgardo; Crawford, Charles; Hess, Carl; Sartelli, Luca; Pogliani, Carlo; Miyashita, Hiroyuki; Gough, Stuart; Sundermann, Frank; Brochard, Christophe

    2013-09-01

    193nm binary photomasks are still used in the semiconductor industry for the lithography of some critical layers for the nodes 90nm and 65nm, with high volumes and over long periods. However, these 193nm binary photomasks can be impacted by a phenomenon of chrome oxidation leading to critical dimensions uniformity (CDU) degradation with a pronounced radial signature. If not detected early enough, this CDU degradation may cause defectivity issues and lower yield on wafers. Fortunately, a standard cleaning and repellicle service at the mask shop has been demonstrated as efficient to remove the grown materials and get the photomask CD back on target.Some detection methods have been already described in literature, such as wafer CD intrafield monitoring (ACLV), giving reliable results but also consuming additional SEM time with less precision than direct photomask measurement. In this paper, we propose another approach, by monitoring the CDU directly on the photomask, concurrently with defect inspection for regular requalification to production for wafer fabs. For this study, we focused on a Metal layer in a 90nm technology node. Wafers have been exposed with production conditions and then measured by SEM-CD. Afterwards, this photomask has been measured with a SEM-CD in mask shop and also inspected on a KLA-Tencor X5.2 inspection system, with pixels 125 and 90nm, to evaluate the Intensity based Critical Dimension Uniformity (iCDU) option. iCDU was firstly developed to provide feed-forward CDU maps for scanner intrafield corrections, from arrayed dense structures on memory photomasks. Due to layout complexity and differing feature types, CDU monitoring on logic photomasks used to pose unique challenges.The selection of suitable feature types for CDU monitoring on logic photomasks is no longer an issue, since the transmitted intensity map gives all the needed information, as shown in this paper. In this study, the photomask was heavily degraded after more than 18,000 300

  5. 40 CFR 425.10 - Applicability; description of the hair pulp, chrome tan, retan-wet finishing subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 31 2013-07-01 2013-07-01 false Applicability; description of the hair... FINISHING POINT SOURCE CATEGORY Hair Pulp, Chrome Tan, Retan-Wet Finish Subcategory § 425.10 Applicability; description of the hair pulp, chrome tan, retan-wet finishing subcategory. The provisions of this subpart...

  6. 40 CFR 425.20 - Applicability; description of the hair save, chrome tan, retan-wet finish subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 30 2011-07-01 2011-07-01 false Applicability; description of the hair... POINT SOURCE CATEGORY Hair Save, Chrome Tan, Retan-Wet Finish Subcategory § 425.20 Applicability; description of the hair save, chrome tan, retan-wet finish subcategory. The provisions of this subpart...

  7. 40 CFR 425.10 - Applicability; description of the hair pulp, chrome tan, retan-wet finishing subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 31 2012-07-01 2012-07-01 false Applicability; description of the hair... FINISHING POINT SOURCE CATEGORY Hair Pulp, Chrome Tan, Retan-Wet Finish Subcategory § 425.10 Applicability; description of the hair pulp, chrome tan, retan-wet finishing subcategory. The provisions of this subpart...

  8. 40 CFR 425.20 - Applicability; description of the hair save, chrome tan, retan-wet finish subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 31 2012-07-01 2012-07-01 false Applicability; description of the hair... FINISHING POINT SOURCE CATEGORY Hair Save, Chrome Tan, Retan-Wet Finish Subcategory § 425.20 Applicability; description of the hair save, chrome tan, retan-wet finish subcategory. The provisions of this subpart...

  9. 40 CFR 425.20 - Applicability; description of the hair save, chrome tan, retan-wet finish subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 29 2010-07-01 2010-07-01 false Applicability; description of the hair... POINT SOURCE CATEGORY Hair Save, Chrome Tan, Retan-Wet Finish Subcategory § 425.20 Applicability; description of the hair save, chrome tan, retan-wet finish subcategory. The provisions of this subpart...

  10. 40 CFR 425.10 - Applicability; description of the hair pulp, chrome tan, retan-wet finishing subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 30 2011-07-01 2011-07-01 false Applicability; description of the hair... POINT SOURCE CATEGORY Hair Pulp, Chrome Tan, Retan-Wet Finish Subcategory § 425.10 Applicability; description of the hair pulp, chrome tan, retan-wet finishing subcategory. The provisions of this subpart...

  11. 40 CFR 425.20 - Applicability; description of the hair save, chrome tan, retan-wet finish subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 31 2013-07-01 2013-07-01 false Applicability; description of the hair... FINISHING POINT SOURCE CATEGORY Hair Save, Chrome Tan, Retan-Wet Finish Subcategory § 425.20 Applicability; description of the hair save, chrome tan, retan-wet finish subcategory. The provisions of this subpart...

  12. 40 CFR 425.10 - Applicability; description of the hair pulp, chrome tan, retan-wet finishing subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 29 2010-07-01 2010-07-01 false Applicability; description of the hair... POINT SOURCE CATEGORY Hair Pulp, Chrome Tan, Retan-Wet Finish Subcategory § 425.10 Applicability; description of the hair pulp, chrome tan, retan-wet finishing subcategory. The provisions of this subpart...

  13. 40 CFR 425.10 - Applicability; description of the hair pulp, chrome tan, retan-wet finishing subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 30 2014-07-01 2014-07-01 false Applicability; description of the hair... FINISHING POINT SOURCE CATEGORY Hair Pulp, Chrome Tan, Retan-Wet Finish Subcategory § 425.10 Applicability; description of the hair pulp, chrome tan, retan-wet finishing subcategory. The provisions of this subpart...

  14. 40 CFR 425.20 - Applicability; description of the hair save, chrome tan, retan-wet finish subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 30 2014-07-01 2014-07-01 false Applicability; description of the hair... FINISHING POINT SOURCE CATEGORY Hair Save, Chrome Tan, Retan-Wet Finish Subcategory § 425.20 Applicability; description of the hair save, chrome tan, retan-wet finish subcategory. The provisions of this subpart...

  15. Preliminary Results on the Use of Leather Chrome Shavings for Air Passive Sampling

    PubMed Central

    Sanjuán-Herráez, D.; Chabaane, L.; Tahiri, S.; Pastor, A.; de la Guardia, M.

    2012-01-01

    A new passive sampler based on low-density polyethylene (LDPE) layflat tube filled with chrome shavings from tannery waste residues was evaluated to determine volatile organic compounds (VOCs) in indoor and outdoor areas. VOCs were directly determined by head space-gas chromatography-mass spectrometry (HS-GC-MS) without any pretreatment of the sampler and avoiding the use of solvents. Limit of detection values ranging from 20 to 75 ng sampler−1 and good repeatability values were obtained for VOCs under study with relative standard deviation values from 2.8 to 9.6% except for carbon disulfide for which it was 22.5%. The effect of the amount of chrome shavings per sampler was studied and results were compared with those obtained using empty LDPE tubes, to demonstrate the capacity of chrome shavings to adsorb VOCs. PMID:22900233

  16. Enhanced photovoltaic performance of inverted pyramid-based nanostructured black-silicon solar cells passivated by an atomic-layer-deposited Al2O3 layer.

    PubMed

    Chen, Hong-Yan; Lu, Hong-Liang; Ren, Qing-Hua; Zhang, Yuan; Yang, Xiao-Feng; Ding, Shi-Jin; Zhang, David Wei

    2015-10-01

    Inverted pyramid-based nanostructured black-silicon (BS) solar cells with an Al2O3 passivation layer grown by atomic layer deposition (ALD) have been demonstrated. A multi-scale textured BS surface combining silicon nanowires (SiNWs) and inverted pyramids was obtained for the first time by lithography and metal catalyzed wet etching. The reflectance of the as-prepared BS surface was about 2% lower than that of the more commonly reported upright pyramid-based SiNW BS surface over the whole of the visible light spectrum, which led to a 1.7 mA cm(-2) increase in short circuit current density. Moreover, the as-prepared solar cells were further passivated by an ALD-Al2O3 layer. The effect of annealing temperature on the photovoltaic performance of the solar cells was investigated. It was found that the values of all solar cell parameters including short circuit current, open circuit voltage, and fill factor exhibit a further increase under an optimized annealing temperature. Minority carrier lifetime measurements indicate that the enhanced cell performance is due to the improved passivation quality of the Al2O3 layer after thermal annealing treatments. By combining these two refinements, the optimized SiNW BS solar cells achieved a maximum conversion efficiency enhancement of 7.6% compared to the cells with an upright pyramid-based SiNWs surface and conventional SiNx passivation. PMID:26243694

  17. South Dakota School of Mines, Keystone, South Dakota solar-energy-system performanceevaluation, June 1980-April 1981

    SciTech Connect

    Eck, T.F.

    1981-01-01

    The South Dakota School of Mines site is the Mount Rushmore National Memorial Visitor's Center in Keystone, South Dakota. The active solar energy system is a retrofit designed to supply 45% of the heating load and 53% of the observation room cooling load. The system is equipped with 2000 square feet of flat-plate collector panels double-glazed with a black chrome absorber surface; 3000 gallons of water in an insulated tank for sensible heat storage; a two-stage fuel oil furnace for auxiliary heating; and direct expansion electric air conditioning units for auxiliary cooling. The actual heating and cooling provided are 42% and 12% respectively. The solar fraction, solar savings ratio, conventional fueld savings, electrical energy expense, system performance factor, and solar system coefficient of performance are among the performance data listed. A control problem is reported that kept the collector pump running 24 hours a day for 18 days. Performance data are given for each subsystem as well as for the overall system. Typical system operation and the system operating sequence for a day are given. The system's use of solar energy and the percentage of losses are given. Also included are a system description, performance evaluation techniques and equations, long-term weather data, chemical analysis of the antifreeze solutions, sensor technology, and typical weather and performance data for a month. (LEW)

  18. A 15.65-solar-mass black hole in an eclipsing binary in the nearby spiral galaxy M 33.

    PubMed

    Orosz, Jerome A; McClintock, Jeffrey E; Narayan, Ramesh; Bailyn, Charles D; Hartman, Joel D; Macri, Lucas; Liu, Jiefeng; Pietsch, Wolfgang; Remillard, Ronald A; Shporer, Avi; Mazeh, Tsevi

    2007-10-18

    Stellar-mass black holes are found in X-ray-emitting binary systems, where their mass can be determined from the dynamics of their companion stars. Models of stellar evolution have difficulty producing black holes in close binaries with masses more than ten times that of the Sun (>10; ref. 4), which is consistent with the fact that the most massive stellar black holes known so far all have masses within one standard deviation of 10. Here we report a mass of (15.65 +/- 1.45) for the black hole in the recently discovered system M 33 X-7, which is located in the nearby galaxy Messier 33 (M 33) and is the only known black hole that is in an eclipsing binary. To produce such a massive black hole, the progenitor star must have retained much of its outer envelope until after helium fusion in the core was completed. On the other hand, in order for the black hole to be in its present 3.45-day orbit about its (70.0 +/- 6.9) companion, there must have been a 'common envelope' phase of evolution in which a significant amount of mass was lost from the system. We find that the common envelope phase could not have occurred in M 33 X-7 unless the amount of mass lost from the progenitor during its evolution was an order of magnitude less than what is usually assumed in evolutionary models of massive stars. PMID:17943124

  19. A 15.65-solar-mass black hole in an eclipsing binary in the nearby spiral galaxy M 33

    NASA Astrophysics Data System (ADS)

    Orosz, Jerome A.; McClintock, Jeffrey E.; Narayan, Ramesh; Bailyn, Charles D.; Hartman, Joel D.; Macri, Lucas; Liu, Jiefeng; Pietsch, Wolfgang; Remillard, Ronald A.; Shporer, Avi; Mazeh, Tsevi

    2007-10-01

    Stellar-mass black holes are found in X-ray-emitting binary systems, where their mass can be determined from the dynamics of their companion stars. Models of stellar evolution have difficulty producing black holes in close binaries with masses more than ten times that of the Sun (>10; ref. 4), which is consistent with the fact that the most massive stellar black holes known so far all have masses within one standard deviation of 10. Here we report a mass of (15.65+/-1.45) for the black hole in the recently discovered system M 33 X-7, which is located in the nearby galaxy Messier 33 (M 33) and is the only known black hole that is in an eclipsing binary. To produce such a massive black hole, the progenitor star must have retained much of its outer envelope until after helium fusion in the core was completed. On the other hand, in order for the black hole to be in its present 3.45-day orbit about its (70.0+/-6.9) companion, there must have been a `common envelope' phase of evolution in which a significant amount of mass was lost from the system. We find that the common envelope phase could not have occurred in M 33 X-7 unless the amount of mass lost from the progenitor during its evolution was an order of magnitude less than what is usually assumed in evolutionary models of massive stars.

  20. CHROME: An Approach to Teaching the Concept of Inter-Functional Cooperation in Services Organizations

    ERIC Educational Resources Information Center

    Johnson, Lester W.

    2010-01-01

    When teaching a services course (e.g., Services Marketing) it is essential that students understand that marketing/management, operations and human resource management within the service organization be fully coordinated. One useful acronym used to remind students of this need is "CHROME", standing for Communications, Human Resources,…

  1. Changes Found on Run-In and Scuffed Surfaces of Steel Chrome Plate, and Cast Iron

    NASA Technical Reports Server (NTRS)

    Good, J. N.; Godfrey, Douglas

    1947-01-01

    A study was made of run-in and scuffed steel, chrome-plate, and cast-iron surfaces. X-ray and electron diffraction techniques, micro-hardness determinations, and microscopy were used. Surface changes varied and were found to include three classes: chemical reaction, hardening, and crystallite-size alteration. The principal chemical reactions were oxidation and carburization.

  2. Bioaccumulation of chromium from tannery wastewater: an approach for chrome recovery and reuse.

    PubMed

    Aravindhan, Rathinam; Madhan, Balaraman; Rao, Jonnalagadda Raghava; Nair, Balachandran Unni; Ramasami, Thirumalachari

    2004-01-01

    The presence of chromium in the effluent is a major concern for the tanning industry. Currently, chemical precipitation methods are practiced for the removal of chromium from the effluent, but that leads to the formation of chrome-bearing solid wastes. The other membrane separation and ion exchange methods available are unfeasible due to their cost. In this study, the removal of chromium from tannery effluent has been carried out using abundantly available brown seaweed Sargassum wightii. Simulated chrome tanning solution was used for the standardization of experimental trials. Various factors influencing the uptake of chromium, viz., quantity of seaweed, concentrations of chromium, pH of the chrome-bearing wastewater, and duration of treatment, have been studied. Chemical modification of the seaweed through pretreatment with sulfuric acid, magnesium chloride, and calcium chloride showed improved uptake of chromium. Langmuir and Freundlich isotherms have been fitted for various quantities of seaweed. The dynamic method of treatment of protonated seaweed with simulated chrome tanning solution at a pH of 3.5-3.8 for a duration of 6 h gave the maximum uptake of about 83%. A similar uptake has been established for commercial chrome tanning wastewater containing the same concentration of chromium. The Sargassum species exhibited a maximum uptake of 35 mg of chromium per gram of seaweed. Fourier transform infrared spectroscopy, energy-dispersive X-ray analysis, and flame photometry studies have been carried out to understand the mechanistic pathway for the removal of chromium. The potential reuse of chromium-containing seaweed for the preparation of basic chromium sulfate (tanning agent) has been demonstrated. PMID:14740751

  3. Low-mass black holes as the remnants of primordial black hole formation

    NASA Astrophysics Data System (ADS)

    Greene, Jenny E.

    2012-12-01

    Bridging the gap between the approximately ten solar mass `stellar mass' black holes and the `supermassive' black holes of millions to billions of solar masses are the elusive `intermediate-mass' black holes. Their discovery is key to understanding whether supermassive black holes can grow from stellar-mass black holes or whether a more exotic process accelerated their growth soon after the Big Bang. Currently, tentative evidence suggests that the progenitors of supermassive black holes were formed as ~104-105Msolar black holes via the direct collapse of gas. Ongoing searches for intermediate-mass black holes at galaxy centres will help shed light on this formation mechanism.

  4. Enhancement of Efficiency of a Solar Cell Fabricated on Black Si Made by Inductively Coupled Plasma-Reactive Ion Etching Process: A Case Study of a n-CdS/p-Si Heterojunction Cell.

    PubMed

    Katiyar, Ajit K; Mukherjee, S; Zeeshan, M; Ray, Samit K; Raychaudhuri, A K

    2015-10-28

    We show that a significant enhancement of solar cell efficiency can be achieved in cells fabricated on black Si made using inductively coupled plasma-reactive ion etching (ICP-RIE). The ICP-RIE-fabricated black Si results in an array of vertically oriented defect-free Si nanocones (average height ∼150 nm; apex diameter ∼25 nm) exhibiting an average reflectance ≤2% over most of the relevant solar spectral range. The enabling role of the ultralow reflectance of the nanostructured black Si has been demonstrated using a heterojunction solar cell fabricated by depositing a n-type CdS film on p-Si nanocones followed by a transparent conducting coating of Al-doped ZnO (AZO). The fabricated n-CdS/p-Si heterojunction exhibits promising power conversion efficiency close to 3%, up from a mere efficient 0.15% for a similar cell fabricated on a planar Si. The effect of the fabrication process for the black Si on solar cell performance has been investigated through the measurements of carrier lifetime and surface recombination velocity. The accompanying model and simulation analysis shows that the conical structure leads to the effective dielectric constant varying smoothly from the value of the air at the top to the value of Si at the base over the length of the nanocone, leading to a substantial reduction of its reflectance. PMID:26451949

  5. Evidence for black holes.

    PubMed

    Begelman, Mitchell C

    2003-06-20

    Black holes are common objects in the universe. Each galaxy contains large numbers-perhaps millions-of stellar-mass black holes, each the remnant of a massive star. In addition, nearly every galaxy contains a supermassive black hole at its center, with a mass ranging from millions to billions of solar masses. This review discusses the demographics of black holes, the ways in which they interact with their environment, factors that may regulate their formation and growth, and progress toward determining whether these objects really warp spacetime as predicted by the general theory of relativity. PMID:12817138

  6. Evaluation of Experimental Ni-Base and Fe-Base Alloys Containing Lower Chrome:

    SciTech Connect

    Jablonski, P.D.; Alman, D.E

    2006-10-01

    Metallic interconnects are one of the key cost enabling technologies for SOFC in temperatures below about 800°C. Further cost advantages may be realized by the use of alloys with lower chromium than the more typical ~22 weight percent found in interconnect candidate alloys such as Crofer 22APU. Lower chrome commercial alloys typically contain silicon or aluminum as aids against oxidation. These elements can form electrically insulating layers within the oxide scale and are thus avoided in this effort. Iron and nickel based alloys with 6-22 weight percent chrome with very low levels of “tramp” elements were melted and fabricated into sheet form. To accommodate the low Cr, surface treatments are explored to provide an engineered solution to the interconnect question. Oxidation tests in moist air were conducted at 800oC to evaluate the corrosion resistance of the alloys. The results were compared to the behavior of Crofer 22APU and Haynes 230.

  7. NASA and ESA Collaboration on Hexavalent Chrome Alternatives: Pretreatments Only Final Test Report

    NASA Technical Reports Server (NTRS)

    Kessel, Kurt R.

    2015-01-01

    Hexavalent chromium (hex chrome or CR(VI)) is a widely used element within applied coating systems because of its self-healing and corrosion-resistant properties. The replacement of hex chrome in the processing of aluminum for aviation and aerospace applications remains a goal of great significance. Aluminum is the major manufacturing material of structures and components in the space flight arena. The National Aeronautics and Space Administration (NASA) and the European Space Agency (ESA) are engaged in a collaborative effort to test and evaluate alternatives to hexavalent chromium containing corrosion coating systems. NASA and ESA share common risks related to material obsolescence associated with hexavalent chromium used in corrosion-resistant coatings.

  8. Deposition of Hard Chrome Coating onto Heat Susceptible Substrates by Low Power Microwave Plasma Spray

    NASA Astrophysics Data System (ADS)

    Redza, Ahmad; Yasui, Toshiaki; Fukumoto, Masahiro

    2016-02-01

    Microwave plasma spray requires relatively low power, which is lower than 1 kW in comparison to other plasma spraying method. Until now, we are able to deposit Cu and Hydroxyapatite coating onto heat susceptible substrate, CFRP which are difficult for conventional plasma spray due to the excessive heat input. In this paper, a hard chromium coating was deposited onto SUS304 and CFRP by a low power microwave plasma spray technique. By controlling the working gas flow rate and spraying distance, a hard chrome coating with thickness of approximately 30 μm was successfully deposited onto CFRP substrate with hardness of 1110 Hv0.05. Furthermore, the coating produced here is higher than that produced by hard chrome plating.

  9. Photocatalytic degradation of the diazo dye naphthol blue black in water using MWCNT/Gd,N,S-TiO2 nanocomposites under simulated solar light.

    PubMed

    Mamba, Gcina; Mbianda, Xavier Yangkou; Mishra, Ajay Kumar

    2015-07-01

    A simple sol-gel method was employed to prepare gadolinium, nitrogen and sulphur tridoped titania decorated on oxidised multiwalled carbon nanotubes (MWCNT/Gd,N,S-TiO2), using titanium (IV) butoxide and thiourea as titanium and nitrogen and sulphur source, respectively. Samples of varying gadolinium loadings (0.2%, 0.6%, 1.0% and 3.0% Gd3+) relative to titania were prepared to investigate the effect of gadolinium loading and the amounts of carbon nanotubes, nitrogen and sulphur were kept constant for all the samples. Furthermore, the prepared nanocomposites were evaluated for the degradation of naphthol blue black (NBB) in water under simulated solar light irradiation. Higher degradation efficiency (95.7%) was recorded for the MWCNT/Gd,N,S-TiO2 (0.6% Gd) nanocomposites. The higher photocatalytic activity is attributed to the combined effect of improved visible light absorption and charge separation due to the synergistic effect of Gd, MWCNTs, N, S and TiO2. Total organic carbon (TOC) analysis revealed a higher degree of complete mineralisation of naphthol blue black (78.0% TOC removal) which minimises the possible formation of toxic degradation by-products such as the aromatic amines. The MWCNT/Gd,N,S-TiO2 (0.6% Gd) was fairly stable and could be re-used for five times, reaching a maximum degradation efficiency of 91.8% after the five cycles. PMID:26141896

  10. A simple method for the use of gallocyanin-chrome alum as an electron strain.

    PubMed

    Sandritter, W; Riede, U; Kiefer, G

    1981-03-01

    A method has been elaborated for the demonstration of DNA in the electron microscope. The method uses glutaraldehyde fixed tissue pieces from which RNA has been removed by incubation with RNase. DNA is stained by gallocyanin-chrome alum in the tissue block. Embedding and cutting is done in the usual manner. The method is based on histochemical observations at the light microscope level which show sufficient specificity and a good stoichiometry of the staining reaction. PMID:6163861

  11. Chemometrics models for assessment of oxidative stress risk in chrome-electroplating workers.

    PubMed

    Zendehdel, Rezvan; Shetab-Boushehri, Seyed Vahid; Azari, Mansoor R; Hosseini, Vajihe; Mohammadi, Hamidreza

    2015-04-01

    Oxidative stress is the main cause of hexavalant chromium-induced damage in chrome electroplating workers. The main goal of this study is toxicity analysis and the possibility of toxicity risk categorizing in the chrome electroplating workers based on oxidative stress parameters as prognostic variables. We assessed blood chromium levels and biomarkers of oxidative stress such as lipid peroxidation, thiol (SH) groups and antioxidant capacity of plasma. Data were subjected to principle component analysis (PCA) and artificial neuronal network (ANN) to obtain oxidative stress pattern for chrome electroplating workers. Blood chromium levels increased from 4.42 ppb to 10.6 ppb. Induction of oxidative stress was observed by increased in lipid peroxidation (22.38 ± 10.47 μM versus 14.74 ± 4.82 μM, p < 0.0008), decreased plasma antioxidant capacity (3.17 ± 1.35 μM versus 7.74 ± 4.45 μM, p < 0.0001) and plasma total thiol (SH groups) (0.21 ± 0.07 μM versus 0.45 ± 0.41 μM, p < 0.0042) in comparison to controls. Based on the oxidative parameters, two groups were identified by PCA methods. One category is workers with the risk of oxidative stress and second group is subjects with probable risk of oxidative stress induction. ANN methods can predict oxidative-risk category for assessment of toxicity induction in chrome electroplaters. The result showed multivariate modeling can be interpreted as the induced biochemical toxicity in the workers exposed to hexavalent chromium. Different occupation groups were assessed on the basis of risk level of oxidative stress which could further justify proceeding engineering control measures. PMID:24896654

  12. Ni-Mo-Co ternary alloy as a replacement for hard chrome

    NASA Astrophysics Data System (ADS)

    Srivastava, Meenu; Anandan, C.; Grips, V. K. William

    2013-11-01

    Hard chrome is the most extensively used electroplated coating in the aerospace and automotive industries due to its attractive properties such as high hardness and excellent wear resistance. However, due to the health risks associated with the use of hexavalent chromium baths during electroplating, there is a need to identify an alternative to this coating. In this study a nickel-molybdenum alloy with cobalt as the alloying element has been developed. The coating was characterized for its micro hardness, wear resistance, coefficient of friction and corrosion resistance. The coating was also subjected to heat treatment at temperatures in the range of 200°-600 °C. It was observed that the micro hardness of Ni-Mo-Co (730 KHN) alloy coating under optimized conditions is apparently quiet similar to that of the most probable substitute Co-P (745 VHN) and hard chrome (800 VHN) coatings. The tribological properties like the wear rate and coefficient of friction of the 400 °C heat treated Ni-Mo-Co coating were noticed to be better compared to hard chrome coating. The electrochemical impedance and polarization studies showed that the corrosion resistance of heat treated Ni-Mo-Co alloy was better than as-deposited Ni-Mo-Co and Ni-Mo coating.

  13. Comparison of wet and dry chrome etching with the CORE-2564

    NASA Astrophysics Data System (ADS)

    Buck, Peter D.; Grenon, Brian J.

    1994-02-01

    Chrome masks have traditionally been wet etched in an acidic solution of cerric ammonium nitrate. The etchant is commonly sprayed on the mask while the mask is slowly rotated, using an APT-914 or equivalent processor. While this process is well-understood, relatively trouble- free and inexpensive, the isotropic nature of wet etching results in an undercut of the chrome relative to the resist etch mask of approximately equals 150 nm per edge. Compensation for the undercut, in order to maintain control of the mean critical dimension (CD), is done by adjusting the printed feature size such that the undercut grows the printed feature to the desired final size. This sizing can be performed by manipulating the computer aided design database, which can be expensive and time consuming. In this paper, we present a comparison of wet and dry chrome etch processes using plates printed with the CORE-2564 in OCG-895 i resist. The differences in CD performance and resolution are illustrated.

  14. High temperature brush seal tuft testing of metallic bristles versus chrome carbide

    NASA Technical Reports Server (NTRS)

    Fellenstein, James A.; DellaCorte, Christopher; Moore, Kenneth D.; Boyes, Esther

    1996-01-01

    The tribology of brush seals is of considerable interest to turbine engine designers because bristle wear continues to limit long term seal performance and life. To provide better materials characterization and foster the development of improved seals, NASA Lewis has developed a brush seal tuft tester. In this test, a 'paintbrush' sample tuft is loaded under constant contact pressure against the outside diameter of a rotating journal. With this configuration a direct measurement of load and friction is made. Accurate wear rate measurements are possible due to the known contact pressure. Previously reported baseline research using this facility showed good data repeatability and wear morphology similar to published seal data. This paper extends and expands the database for candidate brush seal materials. A series of tuft tests were completed to evaluate the performance of five high temperature superalloy wires sliding against plasma sprayed nichrome-bonded chrome carbide. Wire materials were either nickel-chrome or cobalt-chrome based superalloys. Good corroboration of the tuft results with dynamic seal rig tests was observed; giving additional confidence in the tuft test as a screening and development tool.

  15. Fabrication and comparison of selective, transparent optics for concentrating solar systems

    NASA Astrophysics Data System (ADS)

    Taylor, Robert A.; Hewakuruppu, Yasitha; DeJarnette, Drew; Otanicar, Todd P.

    2015-09-01

    Concentrating optics enable solar thermal energy to be harvested at high temperature (<100oC). As the temperature of the receiver increases, radiative losses can become dominant. In many concentrating systems, the receiver is coated with a selectively absorbing surface (TiNOx, Black Chrome, etc.) to obtain higher efficiency. Commercial absorber coatings are well-developed to be highly absorbing for short (solar) wavelengths, but highly reflective at long (thermal emission) wavelengths. If a solar system requires an analogous transparent, non-absorbing optic - i.e. a cover material which is highly transparent at short wavelengths, but highly reflective at long wavelengths - the technology is simply not available. Low-e glass technology represents a commercially viable option for this sector, but it has only been optimized for visible light transmission. Optically thin metal hole-arrays are another feasible solution, but are often difficult to fabricate. This study investigates combinations of thin film coatings of transparent conductive oxides and nanoparticles as a potential low cost solution for selective solar covers. This paper experimentally compares readily available materials deposited on various substrates and ranks them via an `efficiency factor for selectivity', which represents the efficiency of radiative exchange in a solar collector. Out of the materials studied, indium tin oxide and thin films of ZnS-Ag-ZnS represent the most feasible solutions for concentrated solar systems. Overall, this study provides an engineering design approach and guide for creating scalable, selective, transparent optics which could potentially be imbedded within conventional low-e glass production techniques.

  16. Study of skin and mucous membrane disorders among workers engaged in the sodium dichromate manufacturing industry and chrome plating industry

    PubMed Central

    Singhal, Vijay Kumar; Deswal, Balbir Singh; Singh, Bachu Narayan

    2015-01-01

    Background: Inhalation of dusts and fumes arising during the manufacture of sodium dichromate from chrome ore, chromic acid mist emitted during electroplating, and skin contact with chromate produce hazards to workers. Objectives: (1) To elucidate the prevalence of skin and mucous membrane disorders among the workers engaged in the sodium dichromate manufacturing industry and chrome plating industry. (2) To know the relationship of prevalence with the duration of exposure to chrome mist, dust, and fumes. Settings and Design: A cross-sectional study was conducted among all the workers engaged in sodium dichromate manufacturing and chrome plating from several industries situated near the Delhi-Haryana border in the districts of Faridabad and Sonepat of Haryana, India from January 01, 2014 to December 31, 2014. Materials and Methods: All the workers available from the concerned industries for the study were interviewed and medically examined after obtaining their informed consent. A total of 130 workers comprising 66 workers from the sodium dichromate manufacturing industry and 64 workers from the chrome plating industry were examined on a pretested schedule. Statistical Analysis: Descriptive statistical methods (proportions, relative risk, and Chi-square test of significance with P value analyzed using Epi Info version 7). Results: All the workers were found to be males and of the adult age group. Out of the total examined, 69.69% and 56.22% of the workers had disorders of the nasal mucous membrane in the sodium dichromate manufacturing industry and the chrome plating industry, respectively. 42.42% and 28.22% of the workers had perforation of the nasal septum in the sodium dichromate manufacturing industry and chrome plating industry, respectively. 6.06% and 3.12% workers had skin ulcers in the sodium dichromate manufacturing industry and chrome plating industry, respectively. Nasal irritation and rhinorrhea were the most commonly found symptoms in both the processes

  17. 40 CFR 425.30 - Applicability; description of the hair save or pulp, non-chrome tan, retan-wet finish subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 30 2014-07-01 2014-07-01 false Applicability; description of the hair... TANNING AND FINISHING POINT SOURCE CATEGORY Hair Save or Pulp, Non-Chrome Tan, Retan-Wet Finish Subcategory § 425.30 Applicability; description of the hair save or pulp, non-chrome tan, retan-wet...

  18. 40 CFR 425.30 - Applicability; description of the hair save or pulp, non-chrome tan, retan-wet finish subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 31 2012-07-01 2012-07-01 false Applicability; description of the hair... TANNING AND FINISHING POINT SOURCE CATEGORY Hair Save or Pulp, Non-Chrome Tan, Retan-Wet Finish Subcategory § 425.30 Applicability; description of the hair save or pulp, non-chrome tan, retan-wet...

  19. 40 CFR 425.30 - Applicability; description of the hair save or pulp, non-chrome tan, retan-wet finish subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 31 2013-07-01 2013-07-01 false Applicability; description of the hair... TANNING AND FINISHING POINT SOURCE CATEGORY Hair Save or Pulp, Non-Chrome Tan, Retan-Wet Finish Subcategory § 425.30 Applicability; description of the hair save or pulp, non-chrome tan, retan-wet...

  20. 40 CFR 425.30 - Applicability; description of the hair save or pulp, non-chrome tan, retan-wet finish subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 29 2010-07-01 2010-07-01 false Applicability; description of the hair... FINISHING POINT SOURCE CATEGORY Hair Save or Pulp, Non-Chrome Tan, Retan-Wet Finish Subcategory § 425.30 Applicability; description of the hair save or pulp, non-chrome tan, retan-wet finish subcategory....

  1. 40 CFR 425.30 - Applicability; description of the hair save or pulp, non-chrome tan, retan-wet finish subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 30 2011-07-01 2011-07-01 false Applicability; description of the hair... FINISHING POINT SOURCE CATEGORY Hair Save or Pulp, Non-Chrome Tan, Retan-Wet Finish Subcategory § 425.30 Applicability; description of the hair save or pulp, non-chrome tan, retan-wet finish subcategory....

  2. Soybean plant growth study conducted using purified protein hydrolysate-based fertilizer made from chrome-tanned leather waste.

    PubMed

    Pati, Anupama; Chaudhary, Rubina

    2015-12-01

    Leather processing discharges enormous amount of chrome containing leather solid waste which creates a major disposal problem. Chrome-tanned leather solid waste is a complex of collagen and chromium. The presence of chromium limits protein application in fertilizer industry. The purified protein hydrolysate with zero chromium could be used as a nitrogen source for fertilizer formulation. In this study, an attempt has been made to employ purified protein hydrolysate derived from chrome-tanned leather shavings (CTLS) in formulation of fertilizer. The formulated fertilizer (1–3 t ha(-1)) is employed as nitrogen source in production of soybean. Plant growth study demonstrates that formulated fertilizer dosage 3 t ha(-1) produced similar effects of commercial fertilizer-treated plants. Application of formulated fertilizer yielded higher seed in plant than commercial fertilizer. PMID:26498969

  3. CORROSION STUDY FOR THE EFFLUENT TREATMENT FACILITY (ETF) CHROME (VI) REDUCTANT SOLUTION USING 304 & 316L STAINLESS STEEL

    SciTech Connect

    DUNCAN, J.B.

    2007-06-27

    The Effluent Treatment Facility has developed a method to regenerate spent resin from the groundwater pump and treat intercepting chrome(VI) plumes (RPP-RPT-32207, Laboratory Study on Regeneration of Spent DOWEX 21K 16-20 Mesh Ion Exchange Resin). Subsequent laboratory studies have shown that the chrome(VI) may be reduced to chrome(III) by titrating with sodium metabisulfite to an oxidation reduction potential (ORP) of +280 mV at a pH of 2. This test plan describes the use of cyclic potentiodynamic polarization and linear polarization techniques to ascertain the electrochemical corrosion and pitting propensity of the 304 and 316L stainless steel in the acidified reducing the solution that will be contained in either the secondary waste receiver tank or concentrate tank.

  4. Chrome-tanned leather shavings as a filler of butadiene-acrylonitrile rubber.

    PubMed

    Przepiórkowska, A; Chrońska, K; Zaborski, M

    2007-03-01

    The noxious wastes from the tanning industry such as chrome-tanned leather shavings were used as the only filler of rubber mixes containing carboxylated butadiene-acrylonitrile rubber (XNBR) or butadiene-acrylonitrile rubber (NBR), and a dispersing agent Limanol PEV (Schill & Seilacher). The best form addition of leather powder to the rubber mixes is mixed the waste protein with zinc oxide. The leather powder added to the rubber mixes improves the mechanical properties: tensile strength (T(s)), elongation at break (epsilon(b)) and increase the cross-linking density of carboxylated XNBR and NBR rubber mixes. Satisfactory results of these studies are presented in this work. PMID:16942836

  5. Interstitial pneumonia caused by inhalation of fumes of nickel and chrome.

    PubMed

    Hisatomi, Keiko; Ishii, Hiroshi; Hashiguchi, Koji; Seki, Masafumi; Ide, Mioko; Sugiyama, Kanako; Ishimoto, Hiroshi; Nakayama, Seiko; Mukae, Hiroshi; Kohno, Shigeru

    2006-11-01

    Two male industrial painters were admitted to hospital with dry cough and dyspnoea on exertion following a tank coating operation using a high-temperature spray paint consisting of a nickel-chromium alloy. Both patients showed hypoxaemia, peripheral leukocytosis, high levels of serum cytokines and bilateral ground-glass opacities on a chest CT scan. They were diagnosed with interstitial pneumonia caused by inhalation of nickel and chrome fumes and successfully treated with corticosteroid. These are rare cases of interstitial pneumonia associated with nickel/chromium inhalation. PMID:17052314

  6. The preparation of cervical scrape material for automated cytology using gallocyanin chrome-alum stain.

    PubMed

    Eason, P J; Tucker, J H

    1979-01-01

    A method is described for preparing cervical scrape specimens for automated analysis on the Cerviscan prescreening system. In order to reduce the cellular clumping found in cervical scrape material, cells are collected in suspension, syringed to disaggregate the cell clumps, and then pipetted onto a glass to give a monolayer of cells. The cells are then stained with gallocyanin chrome-alum to give the required quantitation of nucleic acid content, using a rapid staining procedure. Experimental results are given which show that specimens prepared by this method are more suitable for automated analysis than the conventional Papanicolaou stained preparation. PMID:86562

  7. A mathematical model of ionic transport in a porous diaphragm of a chrome-alum cell

    NASA Astrophysics Data System (ADS)

    Vidal, Roberto; Duby, Paul; West, Alan C.

    1994-06-01

    A model of the homogeneous chemistry and transport processes within the separator of a chrome-alum electrowinning cell is introduced, discussed, and compared to experiment. The influences of diffusion, electromigration, and convection are included; it is found that convection was the dominant mode of transport for the experimental conditions. Simulation results explain experimental observations concerning an apparent disappearance of dichromate ions produced at the cell anode. The relation between potential drop across the diaphragm and the current and fluid flow is also illustrated. The model is used to recommend future experimental and theoretical work.

  8. Infrared, spectral, directional-hemispherical reflectance of fused silica, Teflon polytetrafluoroethylene polymer, chrome oxide ceramic particle surface, Pyromark 2500 paint, Krylon 1602 paint, and Duraflect coating.

    PubMed

    Persky, Merle J; Szczesniak, Martin

    2008-04-01

    Infrared, spectral, directional-hemispherical reflectivity measurements of polished fused silica, Teflon polytetrafluoroethylene polymer, chrome oxide ceramic particle surface, Pyromark 2500 paint, Krylon 1602 paint, and Duraflect coating are provided. The reflectance was measured with an estimated accuracy of 0.01 to 0.02 units and a precision of 0.005 units. All the surfaces were measured at ambient temperatures. Additionally, the chrome oxide ceramic particle surface was measured at 486 K and the Pyromark 2500 at four temperatures to 877 K. Polarization measurements are also provided for fused silica, Duraflect, chrome oxide ceramic particle surface, and Pyromark 2500 paint. Separate diffuse and specular reflectance components for the Duraflect and chrome oxide ceramic surfaces are included. Fresnel-based predictions for fused silica parallel and perpendicular polarized reflections are compared to measurements. It is notable that the Pyromark 2500 and chrome oxide ceramic particle surfaces exhibit a significant lack of manufacturing repeatability. PMID:18382562

  9. Evidence for High-frequency QPOs with a 3:2 Frequency Ratio from a 5000 Solar Mass Black Hole

    NASA Astrophysics Data System (ADS)

    Pasham, Dheeraj R.; Cenko, S. Bradley; Zoghbi, Abderahmen; Mushotzky, Richard F.; Miller, Jon; Tombesi, Francesco

    2015-09-01

    Following the discovery of 3:2 resonance quasi-periodic oscillations (QPOs) in M82X-1, we have constructed power density spectra (PDS) of all 15 (sufficiently long) XMM-Newton observations of the ultraluminous X-ray source NGC 1313 X-1 (LX ≈ 2 × 1040 erg s-1). We detect a strong QPO at a frequency of 0.29 ± 0.01 Hz in data obtained on 2012 December 16. Subsequent searching of all the remaining observations for a 3:2/2:3 frequency pair revealed a feature at 0.46 ± 0.02 Hz on 2003 December 13 (frequency ratio of 1.59 ± 0.09). The global significance of the 0.29 Hz feature considering all frequencies between 0.1 and 4 Hz is >3.5σ. The significance of the 0.46 ± 0.02 Hz QPO is >3.5σ for a search at 2/3 and 3/2 of 0.29 Hz. We also detect lower-frequency QPOs (32.9 ± 2.6 and 79.7 ± 1.2 mHz). All the QPOs are superimposed on a continuum consisting of flat-topped, band-limited noise, breaking into a power law at a frequency of 16 ± 3 mHz and white noise at ≳0.1 Hz. NGC 1313 X-1's PDS is analogous to stellar-mass black holes’ (StMBHs) PDS in the so-called steep power-law state, but with the respective frequencies (both QPOs and break frequencies) scaled down by a factor of ˜1000. Using the inverse mass-to-high-frequency QPO scaling of StMBHs, we estimate NGC 1313 X-1's black hole mass to be 5000 ± 1300 M⊙, consistent with an inference from the scaling of the break frequency. However, the implied Eddington ratio, LEdd > 0.03 ± 0.01, is significantly lower compared to that of StMBHs in the steep power-law state (LEdd ≳ 0.2).

  10. Acceleration of black hole universe

    NASA Astrophysics Data System (ADS)

    Zhang, T. X.; Frederick, C.

    2014-01-01

    Recently, Zhang slightly modified the standard big bang theory and developed a new cosmological model called black hole universe, which is consistent with Mach's principle, governed by Einstein's general theory of relativity, and able to explain all observations of the universe. Previous studies accounted for the origin, structure, evolution, expansion, and cosmic microwave background radiation of the black hole universe, which grew from a star-like black hole with several solar masses through a supermassive black hole with billions of solar masses to the present state with hundred billion-trillions of solar masses by accreting ambient matter and merging with other black holes. This paper investigates acceleration of the black hole universe and provides an alternative explanation for the redshift and luminosity distance measurements of type Ia supernovae. The results indicate that the black hole universe accelerates its expansion when it accretes the ambient matter in an increasing rate. In other words, i.e., when the second-order derivative of the mass of the black hole universe with respect to the time is positive . For a constant deceleration parameter , we can perfectly explain the type Ia supernova measurements with the reduced chi-square to be very close to unity, χ red˜1.0012. The expansion and acceleration of black hole universe are driven by external energy.

  11. Recovery of Cr(III) from tannery spent chrome liquor for reuse

    SciTech Connect

    Khwaja, A.R.; Singh, R.; Tandon, S.N.

    2000-04-01

    This paper embodies details on the extraction behavior of Cr(III) along with Al(III), Fe(III), Mg(II), Mn(II), Co(II), Ni(II), and Cu(II) from hydrochloric acid media employing the Cyanex 301-toluene system. All of these metals, except Cr(III), Mg(II), and Mn(II), are extracted into the organic phase. This property of the extractant has been used to separate Cr(III) from the binary mixtures. The partition data have been extended onto spent chrome liquor, and this waste has been treated in such a manner so that it becomes suitable for use in trivalent plating baths. The hydrolytic stability and recycling capacity has been reported. Because the concentration of Cr(III) in the waste is much lower than that required for chromium depositions in Cr(III) plating baths, a concentration step using MgO as a precipitating agent has been appended. To summarize, this paper envisages a new approach to tannery waste management that focuses on treating spent chrome liquors using a solvent extraction technique in such a manner that the waste becomes suitable for use in trivalent plating baths. This would not only help abate pollution but also recover the metal in a pure form.

  12. Effects of High Temperature on Collector Coatings

    NASA Technical Reports Server (NTRS)

    Lowery, J. R.

    1982-01-01

    Report reveals electroplated black chrome is good coating for concentrating collectors in which temperatures are in the 650 degrees-800 degrees F (340 degrees - 430 degrees C) range. Black chrome thermal emittance is low and solar-absorption properties are not seriously degraded at high temperatures. Black coatings are used to increase absorption of solar energy by base metal while decreasing emission of infrared energy. Coatings are intended to improve efficiency of solar collectors.

  13. Elevated Frequencies of Micronuclei and other Nuclear Abnormalities of Chrome Plating Workers Occupationally Exposed to Hexavalent Chromium

    PubMed Central

    Sudha, S; Kripa, SK; Shibily, P; Shyn, J

    2011-01-01

    Background Biomonitoring provides a useful tool to estimate the genetic risk from exposure to genotoxic agents. The aim of this study was to assess the potential cytogenetic damage associated with occupational exposure to hexavalent chromium by using micronuclei (MN) as a biomarker. Methods This was a cross-sectional study and all participants were males. Both the exposed and control individuals were selected from Coimbatore, Southern India. Exfoliated buccal cells from 44 chrome plating workers and 40 age and sex matched control subjects were examined for MN frequency and nuclear abnormalities (NA) other than micronuclei, such as binucleates, broken eggs, karyorrhexis, karyolysis and pyknosis. Results Results showed statistically significant difference between chrome plating workers and control groups. MN and NA frequencies in chrome plating workers were significantly higher than those in control groups (p < 0.05) and also significantly related to smoking habit (P < 0.05). A significant difference in NA was observed in workers exposed to chromium for longer duration. In addition to this, a higher degree of NA was observed among smokers. Conclusion MN and other NA reflect genetic changes, events associated with carcinogenesis. Therefore the results of this study indicate that chrome plating workers are under risk of significant cytogenetic damage. Therefore, there is a need to educate those who work with heavy metals about the potential hazard of occupational exposure and the importance of using protective measures. PMID:26328050

  14. Black holes

    PubMed Central

    Brügmann, B.; Ghez, A. M.; Greiner, J.

    2001-01-01

    Recent progress in black hole research is illustrated by three examples. We discuss the observational challenges that were met to show that a supermassive black hole exists at the center of our galaxy. Stellar-size black holes have been studied in x-ray binaries and microquasars. Finally, numerical simulations have become possible for the merger of black hole binaries. PMID:11553801

  15. Black Consciousness

    ERIC Educational Resources Information Center

    Hraba, Joseph; Siegman, Jack

    1974-01-01

    Black militancy is treated as an instance of class consciousness with criteria and scales developed to measure black consciousness and "self-placement" into black consciousness. These dimensions are then investigated with respect to the social and symbolic participation in the ideology of the black movement on the part of a sample of black…

  16. Chrome-free Samarium-based Protective Coatings for Magnesium Alloys

    NASA Astrophysics Data System (ADS)

    Hou, Legan; Cui, Xiufang; Yang, Yuyun; Lin, Lili; Xiao, Qiang; Jin, Guo

    The microstructure of chrome-free samarium-based conversion coating on magnesium alloy was investigated and the corrosion resistance was evaluated as well. The micro-morphology, transverse section, crystal structure and composition of the coating were observed by scanning electron microscopy (SEM), X-ray diffraction (XRD), energy dispersive spectroscopy (EDS) and X- ray photoelectron spectroscopy (XPS), respectively. The corrosion resistance was evaluated by potentiodynamic polarization curve and electrochemical impedance spectroscopy (EIS). The results reveal that the morphology of samarium conversion coating is of crack-mud structure. Tiny cracks distribute in the compact coating deposited by samarium oxides. XRD, EDS and XPS results characterize that the coating is made of amorphous and trivalent-samarium oxides. The potentiodynamic polarization curve, EIS and OCP indicate that the samarium conversion coating can improve the corrosion resistance of magnesium alloys.

  17. NASA and ESA Collaboration on Hexavalent Chrome Alternatives Pretreatments Only Interim Test Report

    NASA Technical Reports Server (NTRS)

    Kessel, Kurt R.

    2015-01-01

    NASA and ESA continue to search for an alternative to hexavalent chromium in coatings applications that meet their performance requirements in corrosion protection, cost, operability, and health and safety, while typically specifying that performance must be equal to or greater than existing systems. The overall objective of the collaborative effort between NASA TEERM and ESA is to test and evaluate coating systems (pretreatments, pretreatments with primer, and pretreatments with primer and topcoat) as replacements for hexavalent chrome coatings in aerospace applications. This objective will be accomplished by testing promising coatings identified from previous NASA, ESA, Department of Defense (DOD), and other project experience. Additionally, several new materials will be analyzed according to ESA-identified specifications.

  18. Determination of hexavalent chromium in exhaled breath condensate and environmental air among chrome plating workers

    PubMed Central

    Goldoni, Matteo; Caglieri, Andrea; Poli, Diana; Vettori, Maria Vittoria; Corradi, Massimo; Apostoli, Pietro; Mutti, Antonio

    2006-01-01

    Chromium speciation has attracted attention because of the different toxicity of Cr(III), which is considered relatively non-toxic, and Cr(VI), which can cross cell membranes mainly as a chromate anion and has been classified as a class I human carcinogen. The aims of the present study were to measure soluble Cr(VI) levels in environmental samples, to develop a simple method of quantifying Cr(VI) in exhaled breath condensate (EBC), and to follow the kinetics of EBC Cr(VI) in chrome plating workers. Personal air samples were collected from 10 chrome platers; EBC was collected from the same workers immediately after the work shift on Tuesday and before the work shift on the following Wednesday. Environmental and EBC Cr(VI) levels were determined by means of colorimetry and electrothermal absorption atomic spectrometry, respectively. The method of detecting Cr(VI) in environmental air was based on the extraction of the Cr(VI)-diphenylcarbazide (Cr(VI)–DPC) complex in 1-butanol, whereas EBC Cr(VI) was determined using a solvent extraction of Cr(VI) as an ion pair with tetrabutylammonium ion, and subsequent direct determination of the complex (Cr(VI)–DPC) in EBC. Kinetic data showed that airborne Cr(VI) was reduced by 50% in airway lining fluid sampled at the end of exposure and that there was a further 50% reduction after about 15 h. The persistence of Cr(VI) in EBC supports the use of EBC in assessing target tissue levels of Cr(VI). PMID:17047732

  19. Black Holes

    NASA Astrophysics Data System (ADS)

    Livio, Mario; Koekemoer, Anton M.

    2011-02-01

    Participants; Preface Mario Livio and Anton Koekemoer; 1. Black holes, entropy, and information G. T. Horowitz; 2. Gravitational waves from black-hole mergers J. G. Baker, W. D. Boggs, J. M. Centrella, B. J. Kelley, S. T. McWilliams and J. R. van Meter; 3. Out-of-this-world physics: black holes at future colliders G. Landsberg; 4. Black holes in globular clusters S. L. W. McMillan; 5. Evolution of massive black holes M. Volonteri; 6. Supermassive black holes in deep multiwavelength surveys C. M. Urry and E. Treister; 7. Black-hole masses from reverberation mapping B. M. Peterson and M. C. Bentz; 8. Black-hole masses from gas dynamics F. D. Macchetto; 9. Evolution of supermassive black holes A. Müller and G. Hasinger; 10. Black-hole masses of distant quasars M. Vestergaard; 11. The accretion history of supermassive black holes K. Brand and the NDWFS Boötes Survey Teams; 12. Strong field gravity and spin of black holes from broad iron lines A. C. Fabian; 13. Birth of massive black-hole binaries M. Colpi, M. Dotti, L. Mayer and S. Kazantzidis; 14. Dynamics around supermassive black holes A. Gualandris and D. Merritt; 15. Black-hole formation and growth: simulations in general relativity S. L. Shapiro; 16. Estimating the spins of stellar-mass black holes J. E. McClintock, R. Narayan and R. Shafee; 17. Stellar relaxation processes near the Galactic massive black hole T. Alexander; 18. Tidal disruptions of stars by supermassive black holes S. Gezari; 19. Where to look for radiatively inefficient accretion flows in low-luminosity AGN M. Chiaberge; 20. Making black holes visible: accretion, radiation, and jets J. H. Krolik.

  20. Review of black surfaces for space-borne infrared systems

    NASA Astrophysics Data System (ADS)

    Persky, M. J.

    1999-05-01

    Low reflectivity (``black'') surface treatments for space-borne infrared systems are reviewed. The uses of black surfaces in general, as well as for specific space-borne applications are discussed. Compositions of a wide variety of surface treatments with examples of experimental data to characterize performances are provided. Specific treatments included are: Ames 24E paint; AZKO 463 (Sikkens, Cat-A-Lac) paint; Ball IR black paint; Chemglaze (Aeroglaze) Z306 and Z302 paints; Eccosorb 268E paint; Parsons Black paint; black anodize; black Hardlub; black Hardcoat; Martin Black; InfraBlack; Enhanced Martin Black; Ebonal C; Teflon; ion beam textured; appliqués black chrome; black etched beryllium on beryllium; plasma sprayed boron on beryllium; plasma sprayed beryllium on beryllium; boron carbide on POCO graphite; and Kapton. Data presented for some but not all of the surfaces include: spectrally integrated, 5-25 μm hemispherical-directional reflectance; spectral reflectance at wavelengths between 2 and 500 μm for a variety of incident angles from 5° to 80° and bidirectional reflectance at a number of wavelengths between 5 and 300 μm for a variety of incident angles from 0° to 80°. The instrumentation employed to obtain these data is briefly described. Long term stability of optical performance, as well as manufacturing reproducibility is demonstrated for several of the surfaces. Outgassing and atomic oxygen interaction information is also included. Methodology for calorimetric measurement of hemispherical emittance as an alternative to optical measurements is given.

  1. Low-mass black holes as the remnants of primordial black hole formation.

    PubMed

    Greene, Jenny E

    2012-01-01

    Bridging the gap between the approximately ten solar mass 'stellar mass' black holes and the 'supermassive' black holes of millions to billions of solar masses are the elusive 'intermediate-mass' black holes. Their discovery is key to understanding whether supermassive black holes can grow from stellar-mass black holes or whether a more exotic process accelerated their growth soon after the Big Bang. Currently, tentative evidence suggests that the progenitors of supermassive black holes were formed as ∼10(4)-10(5) M(⊙) black holes via the direct collapse of gas. Ongoing searches for intermediate-mass black holes at galaxy centres will help shed light on this formation mechanism. PMID:23250434

  2. Black Art.

    ERIC Educational Resources Information Center

    Baraka, Amiri

    1987-01-01

    Discusses black art as not only an expression of black life but as revolutionary art. It must be collective, functional, and committing. It must also be anti-racist, anti-capitalist, and anti-imperialist. (LHW)

  3. Black tea

    MedlinePlus

    ... that the caffeine in black tea might slow blood clotting, though this hasn’t been shown in people. ... Talk with your health provider.Medications that slow blood clotting (Anticoagulant / Antiplatelet drugs)Black tea contains caffeine. Caffeine ...

  4. Black Ageism

    ERIC Educational Resources Information Center

    Golden, Herbert M.

    1976-01-01

    Notes that attempts to apply research findings based on undifferentiated comparisons between black and white elderly toward the solution of problems faced by black elderly are doomed to ineffectiveness. (Author/AM)

  5. Black psyllium

    MedlinePlus

    Black psyllium is a weed that grows aggressively throughout the world. The plant was spread with the ... to make medicine. Be careful not to confuse black psyllium with other forms of psyllium including blond ...

  6. Black tea

    MedlinePlus

    Black tea is a product made from the Camellia sinesis plant. The aged leaves and stems are ... of the same plant, has some different properties. Black tea is used for improving mental alertness as ...

  7. Black Cohosh

    MedlinePlus

    ... gov Key References Black cohosh. Natural Medicines Comprehensive Database Web site. Accessed at www.naturaldatabase.com on April ... Black cohosh ( Cimicifuga racemosa [L.] Nutt. ). Natural Standard Database Web site. Accessed at www.naturalstandard.com on April ...

  8. Black Students.

    ERIC Educational Resources Information Center

    Edwards, Harry

    The black student revolt did not start with the highly publicized activities of the black students at San Francisco State College. The roots of the revolt lie deeply imbedded within the history and structure of the overall black liberation struggle in America. The beginnings of this revolt can be found in the students of Southern Negro colleges in…

  9. Talking Black.

    ERIC Educational Resources Information Center

    Abrahams, Roger D.

    This book contains essays which focus on the systems of communication that operate within and between various social segments of Afro-American communities in the United States. The essays are presented under the following headings: (1) "Getting Into It: Black Talk, Black Life and the Academic," (2) "'Talking My Talk': Black Talk Varieties and…

  10. Black Appalachians.

    ERIC Educational Resources Information Center

    Waage, Fred, Ed.; Cabbell, Ed, Ed.

    1986-01-01

    This issue of "Now and Then" focuses on black Appalachians, their culture, and their history. It contains local histories, articles, and poems and short stories by Appalachian blacks. Articles include: "A Mountain Artist's Landscape," a profile of artist Rita Bradley by Pat Arnow; "A Part and Apart," a profile of black historian Ed Cabbell by Pat…

  11. Black Psychology.

    ERIC Educational Resources Information Center

    Jones, Reginald L., Ed.

    The contents of the present volume, designed to bring together in a single place writings by the new black psychologists and other black social and behavioral scientists, are organized in seven parts, as follows: Part I, "Black Psychology: Perspectives," includes articles by Cedric Clark, Wade W. Nobles, Doris P. Mosby, Joseph White, and William…

  12. Green chemistry approaches to leather tanning process for making chrome-free leather by unnatural amino acids.

    PubMed

    Krishnamoorthy, G; Sadulla, S; Sehgal, P K; Mandal, Asit Baran

    2012-05-15

    In the present study, green and sustainable method or eco-friendly approaches to tanning process based on unnatural D-amino acids (D-AA)-aldehyde (Ald) as a substitute for chrome-free tanning has been attempted. The distribution of optically active D-AA in tanned leather, the hydrothermal stability, the mechanical properties and resistance to collagenolytic activity of tanned leather, the evaluation of eco-friendly characteristics were investigated. Scanning electron microscopic (SEM) and Atomic force microscopic (AFM) analyses indicate the surface morphology and roughness, respectively, of the tanned leather collagen matrix. Shrinkage and Differential scanning calorimetric (DSC) analyses shows that the shrinkage temperature (T(s)) and denaturation temperature (T(d)) of tanned leather are related to the content of D-AA+Ald present in the leather matrix. It has been found that the T(s) of D-AA tanned leather is more than that of Ald tanned leather and also more or less equal to chrome tanned leather. Environmental impact assessment (EIA) shows that the developed process results in significant reduction in total solids content (TSC) and improves better biodegradability of organic compound present in the effluent compared to chrome tanning. PMID:22421341

  13. Gamma ray bursts of black hole universe

    NASA Astrophysics Data System (ADS)

    Zhang, T. X.

    2015-07-01

    Slightly modifying the standard big bang theory, Zhang recently developed a new cosmological model called black hole universe, which has only a single postulate but is consistent with Mach's principle, governed by Einstein's general theory of relativity, and able to explain existing observations of the universe. In the previous studies, we have explained the origin, structure, evolution, expansion, cosmic microwave background radiation, quasar, and acceleration of black hole universe, which grew from a star-like black hole with several solar masses through a supermassive black hole with billions of solar masses to the present state with hundred billion-trillions of solar masses by accreting ambient matter and merging with other black holes. This study investigates gamma ray bursts of black hole universe and provides an alternative explanation for the energy and spectrum measurements of gamma ray bursts according to the black hole universe model. The results indicate that gamma ray bursts can be understood as emissions of dynamic star-like black holes. A black hole, when it accretes its star or merges with another black hole, becomes dynamic. A dynamic black hole has a broken event horizon and thus cannot hold the inside hot (or high-frequency) blackbody radiation, which flows or leaks out and produces a GRB. A star when it collapses into its core black hole produces a long GRB and releases the gravitational potential energy of the star as gamma rays. A black hole that merges with another black hole produces a short GRB and releases a part of their blackbody radiation as gamma rays. The amount of energy obtained from the emissions of dynamic star-like black holes are consistent with the measurements of energy from GRBs. The GRB energy spectra derived from this new emission mechanism are also consistent with the measurements.

  14. Black Holes

    NASA Astrophysics Data System (ADS)

    Luminet, Jean-Pierre

    1992-09-01

    Foreword to the French edition; Foreword to the English edition; Acknowledgements; Part I. Gravitation and Light: 1. First fruits; 2. Relativity; 3. Curved space-time; Part II. Exquisite Corpses: 4. Chronicle of the twilight years; 5. Ashes and diamonds; 6. Supernovae; 7. Pulsars; 8. Gravitation triumphant; Part III. Light Assassinated: 9. The far horizon; 10. Illuminations; 11. A descent into the maelstrom; 12. Map games; 13. The black hole machine; 14. The quantum black hole; Part IV. Light Regained: 15. Primordial black holes; 16. The zoo of X-ray stars; 17. Giant black holes; 18. Gravitational light; 19. The black hole Universe; Appendices; Bibliography; Name index; Subject index.

  15. Mid-term survivorship and clinical outcomes of cobalt-chrome and oxidized zirconium on highly crosslinked polyethylene

    PubMed Central

    Petis, Stephen M.; Vasarhelyi, Edward M.; Lanting, Brent A.; Howard, James L.; Naudie, Douglas D.R.; Somerville, Lyndsay E.; McCalden, Richard W.

    2016-01-01

    Background The choice of bearing articulation for total hip arthroplasty in younger patients is amenable to debate. We compared mid-term patient-reported outcomes and survivorship across 2 different bearing articulations in a young patient cohort. Methods We reviewed patients with cobalt-chrome or oxidized zirconium on highly crosslinked polyethylene who were followed prospectively between 2004 and 2012. Kaplan–Meier analysis was used to determine predicted cumulative survivorship at 5 years with all-cause and aseptic revisions as the outcome. We compared patient-reported outcomes, including the Harris hip score (HHS), Western Ontario and McMaster University Osteoarthritis Index (WOMAC) and Short-form 12 (SF-12) scores. Results A total of 622 patients were followed during the study period. Mean follow-up was 8.2 (range 2.0–10.6) years for cobalt-chrome and 7.8 (range 2.1–10.7) years for oxidized zirconium. Mean age was 54.9 ± 10.6 years for cobalt-chrome and 54.8 ± 10.7 years for oxidized zirconium. Implant survivorship was 96.0% (95% confidence interval [CI] 94.9%–97.1%) for cobalt-chrome and 98.7% (95% CI 98.0%–99.4%) for oxidized zirconium on highly crosslinked polyethylene for all-cause revisions, and 97.2% (95% CI 96.2%–98.2%) for cobalt-chrome and 99.0% (95% CI 98.4%–99.6%) for oxidized zirconium for aseptic revisions. An age-, sex- and diagnosis-matched comparison of the HHS, WOMAC and SF-12 scores demonstrated no significant changes in clinical outcomes across the groups. Conclusion Both bearing surface couples demonstrated excellent mid-term survivorship and outcomes in young patient cohorts. Future analyses on wear and costs are warranted to elicit differences between the groups at long-term follow-up. PMID:26812409

  16. Pulse electrodeposition of cobalt-tungsten and its composite coatings for hard chrome replacements

    NASA Astrophysics Data System (ADS)

    Mulukutla, Mrinalini

    Replacement of hard chromium plating has been of particular interest to many industrial applications, including automotive, aircraft, and machinery parts that require high hardness and wear/corrosion resistance. Electrodeposition is chosen as it is one of the most common, relatively simple, and economical coating technologies capable of depositing metal and alloy coatings with improved surface properties and microstructures. Efforts are directed towards electrodeposition of an amorphous alloy/composite coatings that present the potential for replacing conventional hard chrome coatongs. Co-W alloy coatings, owing to their eco-friendly processing and high hardness/wear resistance, are promising for electrolytic chromium replacement. In this study, pulsed electrodeposition of amorphous and crystalline Co-W coatings is performed. Systematic investigations on the effect of pulse duty cycle and pulse frequency on development of surface microstructure, phases, composition, surface roughness, and micro-hardness are conducted to optimize the parameters of the deposition process. Furthermore, an attempt is made to fabricate composite coatings of Co-W alloys with nano alumina particles as reinforcement. Codeposition of alumina particles in the Co-W alloy matrix has enhanced the mechanical as well as tribological properties of the coating significantly.

  17. Facile preparation of black Nb4+ self-doped K4Nb6O17 microspheres with high solar absorption and enhanced photocatalytic activity.

    PubMed

    Zhou, Chao; Zhao, Yufei; Shang, Lu; Cao, Yinhu; Wu, Li-Zhu; Tung, Chen-Ho; Zhang, Tierui

    2014-08-28

    Black Nb(4+) self-doped K4Nb6O17 microspheres were prepared for the first time through a facile UV light photoreduction method. By the introduction of Nb(4+), the defective K4Nb6O17 can harvest the full spectrum of visible light as well as near-infrared light. The black K4Nb6O17 microspheres showed improved visible-light-driven photocatalytic H2 production activity. Importantly, the present synthetic approach is also applicable to the preparation of other Nb(4+) self-doped niobates. PMID:25011611

  18. Environmental Durability of Electroplated Black Chromium

    NASA Technical Reports Server (NTRS)

    Lowery, J. R.

    1983-01-01

    Report describes tests of durability of electroplated black chromium coatings on solar-collector panels in rural, industrial, and seacoast environments for 60, 36, and 13 months, respectively. Black-chromium coating showed exceptionally-good optical durability in all three environments.

  19. Black carbon contribution to global warming

    SciTech Connect

    Chylek, P.; Johnson, B.; Kou, L.; Wong, J.

    1996-12-31

    Before the onset of industrial revolution the only important source of black carbon in the atmosphere was biomass burning. Today, black carbon production is divided between the biomass and fossil fuel burning. Black carbon is a major agent responsible for absorption of solar radiation by atmospheric aerosols. Thus black carbon makes other aerosols less efficient in their role of reflecting solar radiation and cooling the earth-atmosphere system. Black carbon also contributes to the absorption of solar radiation by clouds and snow cover. The authors present the results of black carbon concentrations measurements in the atmosphere, in cloud water, in rain and snow melt water collected during the 1992--1996 time period over the southern Nova Scotia. Their results are put into the global and historical perspective by comparing them with the compilation of past measurements at diverse locations and with their measurements of black carbon concentrations in the Greenland and Antarctic ice cores. Black carbon contribution to the global warming is estimated, and compared to the carbon dioxide warming, using the radiative forcing caused by the black carbon at the top of the atmosphere.

  20. Formation of a black hole in the dark.

    PubMed

    Mirabel, I Félix; Rodrigues, Irapuan

    2003-05-16

    We show that the black hole in the x-ray binary Cygnus X-1 was formed in situ and did not receive an energetic trigger from a nearby supernova. The progenitor of the black hole had an initial mass greater than 40 solar masses, and during the collapse to form the approximately 10-solar mass black hole of Cygnus X-1, the upper limit for the mass that could have been suddenly ejected is approximately 1 solar mass, much less than the mass ejected in a supernova. The observations suggest that high-mass stellar black holes may form promptly, when massive stars disappear silently. PMID:12714674

  1. Development of environmentally friendly non-chrome conversion coatings for cold-rolled steel

    NASA Astrophysics Data System (ADS)

    Zhang, Jinming

    Steel producers use various organic and inorganic coatings to protect cold-rolled steel (CRS) sheets from corrosion during shipment and storage. It is well known that CRS sheets can be protected from corrosion by galvanizing, phosphating, chromating, topcoating with organic, or their combinations. The chromate rinsing is particularly effective for preventing white rusting of galvanized steel. But there is an increasing interest in a replacement for the chromating process because of environmental and health concerns. The objective of the present work is to develop a chrome-free conversion coating for steel sheets. Various carboxylic acids and their salts have been studied for coating phosphated electrogalvanized (EG) steel sheets, including 10-undecenoic acid (UA), oleic acid (OA), and other fatty acids such as stearic acid (SA) and palmitic acid (PA). When they were used alone, or subsequently coated with resin, they could produce a highly hydrophobic surface and improve the corrosion resistance. Thiols such as 1-octadecanethiol (ODT) can form a self-assembled monolayer on metal substrates. This close-packed monolayer could provide an excellent corrosion resistance for EG steel sheets. It was capable of withstanding 50˜60 hours of salt spray test (SST) although its thickness was only a few nanometers. The EG steel itself usually started rusting only after 2˜4 hours of salt spray. In another coating system, thiols were mixed with a conventional resin to improve the corrosion resistance of EG steel. This new technique gave 100˜120 hours of corrosion resistance. When the resin was applied directly on EG steel surface, its corrosion resistance was less than 72 hours. It was shown that further optimization of this technique increased the corrosion resistance to 200 hours and more in the standard SST.

  2. Quantitative mineralogical characterization of chrome ore beneficiation plant tailing and its beneficiated products

    NASA Astrophysics Data System (ADS)

    Das, S. K.

    2015-04-01

    Mineralogical characterization and liberation of valuable minerals are primary concerns in mineral processing industries. The present investigation focuses on quantitative mineralogy, elemental deportment, and locking-liberation characteristics of the beneficiation of tailings from a chrome ore beneficiation plant in the Sukinda region, Odisha; methods used for the study of the beneficiated tailings are QEMSCAN®, X-ray diffraction (XRD), and mineral chemistry by a scanning electron microscope equipped with an energy-dispersive spectrometer (SEM-EDS). The tailing sample was fine grained (69.48wt% below 45 μm size), containing 20.25wt% Cr2O3 and 39.19wt% Fe2O3, with a Cr:Fe mass ratio of 0.51. Mineralogical investigations using QEMSCAN studies revealed that chromite, goethite, and gibbsite are the dominant mineral phases with minor amounts of hematite, kaolinite, and quartz. The sample contained 34.22wt% chromite, and chromite liberation is more than 80% for grains smaller than 250 μm in size. Based on these results, it was predicted that liberated chromite and high-grade middling chromite particles could be separated from the gangue by various concentration techniques. The tailing sample was beneficiated by hydrocyclone, tabling, wet high-intensity magnetic separation (WHIMS), and flotation in order to recover the chromite. A chromite concentrate with 45.29wt% Cr2O3 and a Cr:Fe mass ratio of 1.85 can be produced from these low-grade chromite ore beneficiation plant rejects.

  3. Poultry feed based on protein hydrolysate derived from chrome-tanned leather solid waste: creating value from waste.

    PubMed

    Chaudhary, Rubina; Pati, Anupama

    2016-04-01

    Leather industry generates huge amount of chrome-containing leather solid waste which creates major environment problems to tanners worldwide. Chrome-tanned leather solid waste is primarily chromium complex of collagen protein. The presence of chromium limits its protein application in animal feed industry. The purified protein hydrolysate with zero chromium could be used in poultry feed. In this study, an attempt has been made to assess performance of poultry with purified protein hydrolysate as a feed derived from chrome-tanned leather waste as partial replacement of soyabean meal as a sole source of protein for growing broiler chickens. Growth study was conducted to evaluate the effect of feeding protein hydrolysate on performance and physiochemical characteristics of meat of broiler chickens. Two experimental diets containing various levels of protein hydrolysate (EI-20 % and EII-30 %) were evaluated. The comparative study was performed as control with soyabean meal. Daily feed intake, body weight gain and feed conversion ratio were measured from day 8 to day 35. At the end of the study, birds were randomly selected and slaughtered to evaluate for physiochemical characteristics of meat. Diet had significant effects on feed intake and body weight gain. Birds fed with 20 and 30 % protein hydrolysate consumed 9.5 and 17.5 % higher amount of feed and gained 6.5 and 16.6 % higher than soyabean meal-fed birds. The current study produced evidence that protein hydrolysate can replace up to 75 % of soyabean meal in broiler diets without affecting either growth performance or meat characteristics. PMID:26931657

  4. Evidence for Degradation of the Chrome Yellows in Van Gogh's Sunflowers: A Study Using Noninvasive In Situ Methods and Synchrotron-Radiation-Based X-ray Techniques.

    PubMed

    Monico, Letizia; Janssens, Koen; Hendriks, Ella; Vanmeert, Frederik; Van der Snickt, Geert; Cotte, Marine; Falkenberg, Gerald; Brunetti, Brunetto Giovanni; Miliani, Costanza

    2015-11-16

    This paper presents firm evidence for the chemical alteration of chrome yellow pigments in Van Gogh's Sunflowers (Van Gogh Museum, Amsterdam). Noninvasive in situ spectroscopic analysis at several spots on the painting, combined with synchrotron-radiation-based X-ray investigations of two microsamples, revealed the presence of different types of chrome yellow used by Van Gogh, including the lightfast PbCrO4 and the sulfur-rich PbCr1-x Sx O4 (x≈0.5) variety that is known for its high propensity to undergo photoinduced reduction. The products of this degradation process, i.e., Cr(III) compounds, were found at the interface between the paint and the varnish. Selected locations of the painting with the highest risk of color modification by chemical deterioration of chrome yellow are identified, thus calling for careful monitoring in the future. PMID:26482035

  5. Black Men.

    ERIC Educational Resources Information Center

    Gary, Lawrence E., Ed.

    The essays in this book examine some of the major issues affecting the behavior and status of black men in the United States. The volume is divided into four sections. Part one compares black and white men on such indicators as sex ratio, age distribution, marital and family status, educational attainment, employment, income, social and political…

  6. No allergic reaction after TKA in a chrome-cobalt-nickel-sensitive patient: case report and review of the literature.

    PubMed

    Thienpont, Emmanuel; Berger, Yorick

    2013-03-01

    Hypersensitivity to metallic implants remains relatively unpredictable and poorly understood. Although 20-25 % of total joint arthroplasty patients develop metal sensitivity, only a few highly susceptible persons (<1 %) exhibit symptoms. We present a case report of a fifty-two-year-old woman with a preoperatively documented metal allergy who underwent bilateral total knee arthroplasty using a titanium-niobium-coated implant on one side and a chrome-cobalt implant on the other side because of a logistics problem. At 2-year follow-up, no clinical symptoms of allergy or loosening of the implant were observed. Level of evidence IV. PMID:22488014

  7. Green microwave switching from oxygen rich yellow anatase to oxygen vacancy rich black anatase TiO₂ solar photocatalyst using Mn(II) as 'anatase phase purifier'.

    PubMed

    Ullattil, Sanjay Gopal; Periyat, Pradeepan

    2015-12-01

    Green and rapid microwave syntheses of 'yellow oxygen rich' (YAT-150) and 'black oxygen vacancy rich' (BAT-150) anatase TiO2 nanoparticles are reported for the first time. YAT-150 was synthesized using only titanium(iv) butoxide and water as precursors. The in situ precursor modification by Mn(ii) acetate switched anatase TiO2 from YAT-150 to BAT-150. The entry of Mn(2+) into the crystal lattice of anatase TiO2 paved the way for peak texturing in the existing peak orientations along with the origin of three new anatase TiO2 peaks in the (103), (213) and (105) directions. The as synthesized ultra-small (∼5 nm) yellow and black anatase TiO2 nanoparticles were found to be two fold and four fold more photoactive than the commercially available photocatalyst Degussa-P25 under sunlight illumination. PMID:26523536

  8. The Black Hole Universe Model

    NASA Astrophysics Data System (ADS)

    Zhang, Tianxi

    2014-06-01

    The black hole universe model is a multiverse model of cosmology recently developed by the speaker. According to this new model, our universe is a fully grown extremely supermassive black hole, which originated from a hot star-like black hole with several solar masses, and gradually grew up from a supermassive black hole with million to billion solar masses to the present state with trillion-trillion solar masses by accreting ambient matter or merging with other black holes. The entire space is structured with infinite layers or universes hierarchically. The innermost three layers include the universe that we live, the inside star-like and supermassive black holes called child universes, and the outside space called mother universe. The outermost layer is infinite in mass, radius, and entropy without an edge and limits to zero for both the matter density and absolute temperature. All layers are governed by the same physics and tend to expand physically in one direction (outward or the direction of increasing entropy). The expansion of a black hole universe decreases its density and temperature but does not alter the laws of physics. The black hole universe evolves iteratively and endlessly without a beginning. When one universe expands out, a new similar one is formed from inside star-like and supermassive black holes. In each of iterations, elements are resynthesized, matter is reconfigurated, and the universe is renewed rather than a simple repeat. The black hole universe is consistent with the Mach principle, observations, and Einsteinian general relativity. It has only one postulate but is able to explain all phenomena occurred in the universe with well-developed physics. The black hole universe does not need dark energy for acceleration and an inflation epoch for flatness, and thus has a devastating impact on the big bang model. In this talk, I will present how this new cosmological model explains the various aspects of the universe, including the origin

  9. Observational Evidences of Black Hole Universe

    NASA Astrophysics Data System (ADS)

    Zhang, Tianxi

    2010-01-01

    Recently, the author has proposed an alternative cosmological model called black hole universe. According to this model, the universe originated from a hot star-like black hole with several solar masses, and gradually grew up through a supermassive black hole with billion solar masses to the present state with hundred billion-trillion solar masses by accreting ambient materials and merging with other black holes. The entire space is structured with an infinite number of layers hierarchically. The innermost three layers are the universe that we are living, the outside called mother universe, and the inside star-like and supermassive black holes called child universes. The outermost layer has an infinite radius and a zero limit for both the mass density and absolute temperature. The relationships among all layers or universes can be connected by a universe family tree. The entire space can be represented as a set of all universes. All layers or universes are governed by the same physics, the Einstein general theory of relativity with the Robertson-Walker metric of spacetime, and tend to expand outward physically. The evolution of the space structure is iterative. When one universe expands out, a new similar universe grows up from its inside. This presentation will demonstrate the observational evidences of the black hole universe in terms of the universe expansion, star-like and supermassive black holes, galactic evolutions, quasars, background radiation, and large scale structure. We will also compare the black hole universe with the big bang cosmology.

  10. The fatigue life of contoured cobalt chrome posterior spinal fusion rods.

    PubMed

    Nguyen, T-Q; Buckley, J M; Ames, C; Deviren, V

    2011-02-01

    Intraoperative contouring of posterior rods in lumbar arthrodesis constructs introduces stress concentrations that can substantially reduce fatigue life. The sensitivity of titanium (Ti) and stainless steel (SS) to intraoperative contouring has been established in the literature; however, notch sensitivity has yet to be quantified for cobalt chrome (CoCr), which is now being advocated for use in posterior arthrodesis constructs. The goal of this study is to evaluate the sensitivity of CoCr rods to intraoperative contouring for posterior lumbar screwrod arthrodesis constructs. In this paper lumbar bilateral vertebrectomy models are constructed based on ASTM F1717-01 with curved rods (26-30 degrees total curvature) and poly-axial pedicle screws. Three types of constructs are assembled: first, 5.5 mm SS rods with SS screws (6.5 x 35 mm), second, 6.0 mm Ti rods with Ti screws (7.5 x 35 mm), and third, 6.0 mm CoCr rods with Ti screws (7.5 x 35 mm). All specimens are tested at 4 Hz in dynamic axial compression-bending with a load ratio of ten and maximum load levels of 250, 400, and 700 N until run-out at 2 000 000 cycles. Results are presented that show that the fatigue life of CoCr constructs tend to be greater than Ti constructs at all levels. At the 400 N maximum loading, CoCr lasts an average of 350 000 cycles longer than the Ti constructs. The CoCr constructs are able to sustain the 250 N load until run-out at 2 000 000 cycles but they fail at high load levels (maximum 700 N). The CoCr constructs fail at the neck of the Ti screw at high loads whereas Ti screws fail at the notch induced by contouring. Since CoCr is compatible with magnetic resonance imaging and has high static strength characteristics, the results of this study suggest that it may be an appropriate substitute for Ti. PMID:21428153

  11. Black Hills

    Atmospheric Science Data Center

    2014-05-15

    ... surfaces with lower absorption appear as green, yellow, orange or red. Black pixels indicate areas where albedo could not be derived, ... notably reduced in extent, and higher albedo areas (yellow, orange and red pixels) have increased. Because incoming sunlight is ...

  12. REDSHIFT 6.4 HOST GALAXIES OF 10{sup 8} SOLAR MASS BLACK HOLES: LOW STAR FORMATION RATE AND DYNAMICAL MASS

    SciTech Connect

    Willott, Chris J.; Omont, Alain; Bergeron, Jacqueline

    2013-06-10

    We present Atacama Large Millimeter Array observations of rest-frame far-infrared continuum and [C II] line emission in two z = 6.4 quasars with black hole masses of Almost-Equal-To 10{sup 8} M{sub Sun }. CFHQS J0210-0456 is detected in the continuum with a 1.2 mm flux of 120 {+-} 35 {mu}Jy, whereas CFHQS J2329-0301 is undetected at a similar noise level. J2329-0301 has a star formation rate limit of <40 M{sub Sun} yr{sup -1}, considerably below the typical value at all redshifts for this bolometric luminosity. Through comparison with hydro simulations, we speculate that this quasar is observed at a relatively rare phase where quasar feedback has effectively shut down star formation in the host galaxy. [C II] emission is also detected only in J0210-0456. The ratio of [C II] to far-infrared luminosity is similar to that of low-redshift galaxies of comparable luminosity, suggesting that the previous finding of an offset in the relationships between this ratio and far-infrared luminosity at low and high redshifts may be partially due to a selection effect due to the limited sensitivity of previous continuum data. The [C II] line of J0210-0456 is relatively narrow (FWHM = 189 {+-} 18 km s{sup -1}), indicating a dynamical mass substantially lower than expected from the local black hole-velocity dispersion correlation. The [C II] line is marginally resolved at 0.''7 resolution with the blue and red wings spatially offset by 0.''5 (3 kpc) and a smooth velocity gradient of 100 km s{sup -1} across a scale of 6 kpc, possibly due to the rotation of a galaxy-wide disk. These observations are consistent with the idea that stellar mass growth lags black hole accretion for quasars at this epoch with respect to more recent times.

  13. Green microwave switching from oxygen rich yellow anatase to oxygen vacancy rich black anatase TiO2 solar photocatalyst using Mn(ii) as `anatase phase purifier'

    NASA Astrophysics Data System (ADS)

    Ullattil, Sanjay Gopal; Periyat, Pradeepan

    2015-11-01

    Green and rapid microwave syntheses of `yellow oxygen rich' (YAT-150) and `black oxygen vacancy rich' (BAT-150) anatase TiO2 nanoparticles are reported for the first time. YAT-150 was synthesized using only titanium(iv) butoxide and water as precursors. The in situ precursor modification by Mn(ii) acetate switched anatase TiO2 from YAT-150 to BAT-150. The entry of Mn2+ into the crystal lattice of anatase TiO2 paved the way for peak texturing in the existing peak orientations along with the origin of three new anatase TiO2 peaks in the (103), (213) and (105) directions. The as synthesized ultra-small (~5 nm) yellow and black anatase TiO2 nanoparticles were found to be two fold and four fold more photoactive than the commercially available photocatalyst Degussa-P25 under sunlight illumination.Green and rapid microwave syntheses of `yellow oxygen rich' (YAT-150) and `black oxygen vacancy rich' (BAT-150) anatase TiO2 nanoparticles are reported for the first time. YAT-150 was synthesized using only titanium(iv) butoxide and water as precursors. The in situ precursor modification by Mn(ii) acetate switched anatase TiO2 from YAT-150 to BAT-150. The entry of Mn2+ into the crystal lattice of anatase TiO2 paved the way for peak texturing in the existing peak orientations along with the origin of three new anatase TiO2 peaks in the (103), (213) and (105) directions. The as synthesized ultra-small (~5 nm) yellow and black anatase TiO2 nanoparticles were found to be two fold and four fold more photoactive than the commercially available photocatalyst Degussa-P25 under sunlight illumination. Electronic supplementary information (ESI) available: Photographs of YAT-150 and BAT-150, wide range XPS and SEM images, EDX and UV-Visible absorption spectra of the degradation of methylene blue using as synthesized samples and Degussa-P25 are included. See DOI: 10.1039/c5nr05975e

  14. An Ultra-luminous Quasar at z = 5.363 with a Ten Billion Solar Mass Black Hole and a Metal-rich DLA at z ∼ 5

    NASA Astrophysics Data System (ADS)

    Wang, Feige; Wu, Xue-Bing; Fan, Xiaohui; Yang, Jinyi; Cai, Zheng; Yi, Weimin; Zuo, Wenwen; Wang, Ran; McGreer, Ian D.; Ho, Luis C.; Kim, Minjin; Yang, Qian; Bian, Fuyan; Jiang, Linhua

    2015-07-01

    We report the discovery of an ultra-luminous quasar J030642.51+185315.8 (hereafter J0306+1853) at redshift 5.363, which hosts a supermassive black hole with {M}{BH}=(1.07+/- 0.27)× {10}10 {M}ȯ . With an absolute magnitude {M}1450=-28.92 and a bolometric luminosity {L}{bol}∼ 3.4× {10}14{L}ȯ , J0306+1853 is one of the most luminous objects in the early universe. It is not likely to be a beamed source based on its small flux variability, low radio loudness, and normal broad emission lines. In addition, a z=4.986 damped Lyα system (DLA) with [{{M}}/{{H}}]=-1.3+/- 0.1, among the most metal-rich DLAs at z≳ 5, is detected in the absorption spectrum of this quasar. This ultra-luminous quasar puts strong constraints on the bright end of the quasar luminosity function and massive end of the black hole mass function. It will provide a unique laboratory for the study of BH growth and the co-evolution between a BH and the host galaxy with multi-wavelength follow-up observations. The future high-resolution spectra will give more insight into the DLA and other absorption systems along the line of sight of J0306+1853.

  15. Titanium dioxide nanostructure synthesized by sol-gel for organic solar cells using natural dyes extracted from black and red sticky rice

    NASA Astrophysics Data System (ADS)

    Ramelan, A. H.; Harjana, H.; Sakti, L. S.

    2012-06-01

    Nanocrystalline semiconductor metal oxides have achieved a great importance in our industrial world today. They may be defined as metal oxides with crystal size between 1 and 100 nm. TiO2 nanosize particles have attracted significant interest of materials scientists and physicists due to their special properties and have attained a great importance in several technological applications such as photocatalysis, sensors, solar cells and memory devices. TiO2 nanoparticles can be produced by a variety of techniques ranging from simple chemical to mechanical to vacuum methods, including many variants of physical and chemical vapour deposition techniques. In the present research work we report the synthesis of TiO2 nanoparticles by Sol-Gel technique. The characterization of particles was carried out by XRD and XRF techniques. The importance and applications of these nanoparticles for solar cells are also discussed in this work.

  16. TOXICITY BIOASSAY AND ELUATE HEAVY METALS ANALYSIS RESULTS OF THE BENCH SCALE STABILIZATION STUDY OF SOILS FROM THE UNITED CHROME SUPERFUND NFL SITE CORVALLIS, OREGON

    EPA Science Inventory

    In support of Environmental Protection Agency Region 10 and their United Chrome studies the staff at Environmental Research Laboratory-Corvallis performed toxicity bioassays and selected chemical analyses. Direct toxicity tests (i.e. using soil as the medium) and indirect toxicit...

  17. Effects of alpha-tocopherol addition to polymeric coatings on the UV and heat resistance of a fibrous collagen material--chrome-free leather

    Technology Transfer Automated Retrieval System (TEKTRAN)

    UV and heat resistance are very important qualities of leather because most leather products are constantly exposed to outdoor environments. In recent years, we have focused on using environmentally friendly antioxidants that will improve the UV and heat resistance of chrome-free leather. Tocopher...

  18. The Crisis in Black and Black.

    ERIC Educational Resources Information Center

    Hutchinson, Earl Ofari

    These essays explore why the historic conflict between blacks and whites in the United States has become a crisis that divides many African Americans. The changing racial dynamic is not marked by conflicts. between the black middle class and the poor, black men and women, the black intellectual elite and rappers, black politicians and the urban…

  19. When Charged Black Holes Merge

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-08-01

    necessary to produce each phenomenon. For a 10-solar-mass black hole, he finds that the merger can generate a fast radio burst if the black holes charge is more than ~1012 Coulombs (roughly one billion times the charge that travels through a AA battery from full to empty). If its charge is more than ~1016 Coulombs, it can generate a gamma-ray burst.Limits on ChargeZhangs calculations are not just useful in the hypothetical scenario where black holes are charged. They could, in fact, be a way of testing whether black holes are charged.As we accumulate future gravitational-wave observations (and with two observations by LIGO already announced, it seems likely that there will be many more), we will grow a larger sample of follow-up observations in radio through gamma-ray wavelengths. Our detections or our lack of detections of fast radio bursts or gamma-ray bursts associated with these black-hole mergers will allow us to set some of the first real limits on the charge of black holes.CitationBing Zhang 2016 ApJ 827 L31. doi:10.3847/2041-8205/827/2/L31

  20. Evidences for Black Hole Formation by Complete Stellar Collapse

    NASA Astrophysics Data System (ADS)

    Mirabel, Igor Felix

    2016-07-01

    One of the most critical parameters that determines the formation of binary black holes is the range of masses of black holes that may form by direct collapse, namely, with no energetic supernova kicks that would unbound the stellar binary. Theoretical models set mass ranges and limits for black hole formation through the complete collapse of the stellar progenitor. However, observational constraints for those mass limits have been elusive. Since the velocity of a stellar black hole encodes the history of its formation and evolution, it may provide observational constraints on the strength of kicks by natal supernova explosions in the formation of the black hole. Based on the motion in three dimensions of five black hole binaries in our Galaxy it is found that the three black holes with < 10 solar masses are runaway black hole binaries due to kicks from natal supernovae, whereas the two black holes with 10 to 15 solar masses remained in their birth place and must have been form by complete or almost complete collapse of the progenitor star. These observations show that there may be binary black holes with components having masses as low as 10 solar masses, which suggests that a significant fraction of massive stellar binaries would end as black hole binaries that would produce a large stochastic gravitational-wave background.

  1. Twelve Year Outcomes of Oxinium Total Knee Arthroplasty Compared to the Same Cobalt Chrome Prosthesis

    PubMed Central

    Vertullo, Christopher; Lewis, Peter; Graves, Stephen; Kelly, Lan; Myers, Peter

    2016-01-01

    Introduction: Alternative bearings surfaces to Cobalt Chrome (Co-Cr), such as Oxidised have been introduced in an attempt to reduce polyethylene wear and hence decrease TKA loosening and lysis. While non-comparative reports have been described as promising, no short or long term clinical studies exists showing the superiority of Oxinium on a polyethylene bearing surfaces. In this study, we investigate the long-term outcomes of Oxinium and Co-Cr TKR in a “like for like” or matched cohort analysis of the Genesis II design (Smith & Nephew, Memphis, TN, USA). Using data from a large national joint replacement registry we selected cohorts that used only the cruciate retaining design, with the same method of fixation and polyethylene type, differing only in the femoral component bearing surfaces. Our primary hypothesis was that Oxinium TKA would have a lower cumulative percent revision than the same Co-Cr prosthesis at 12 years for all causes of revision. Our secondary hypothesis was that Oxinium TKA would have a lower loosening/ lysis rate and lower rate of non-infective revision than the same Co-Cr prosthesis at 12 years. Methods: Cumulative percent revision and revision diagnosis data were obtained from the Australian Orthopaedic Association National Joint Replacement Registry (AOANJRR) from 1 September 1999, until 31 December 2013. Results: At 12 years the cumulative percent revision of the Co-Cr Genesis II of 4.8 % (95%: CI 4.2, 5.4) for all causes was not statistically different to the Oxinium Genesis II CPR of 7.7 % (95%: CI 6.2, 9.5) (For the entire period, Hazard Ratio = 1.09 (95%: CI 0.92, 1.29), p = 0.329). The CPR for all causes was not different in the under 55 years old age group (Figure 3) (HR= 1.06 (0.68, 1.66) p=0.798).). Subgroup analysis of the CPR for loosening /lysis in both groups overall was not different (HR= 0.87 (95%: CI 0.61, 1.26), p = 0.461) Subgroup analysis of all causes of revisions excluding infection in both groups overall was not

  2. The Evaluation of a Modified Chrome Oxide Based High Temperature Solid Lubricant Coating for Foil Gas Bearings

    NASA Technical Reports Server (NTRS)

    DellaCorte, Chris

    1998-01-01

    This paper describes the friction and wear performance of PS304, a modified chrome oxide based coating, for foil gas bearings. PS304 contains 60 wt% NiCr binder, 20 wt% Cr2O3 hardener, and 10 wt% each Ag, and BaF2/CaF2 lubricants. For evaluation, the coating is plasma spray deposited onto test journals which are slid against a superalloy partial arc foil bearing. The test load was 10 KPa (1.5 psi) and the bearings were run under start/stop cyclic conditions. The data show good wear performance of the bearing, especially at temperatures above 25 deg. C. Bearing friction was moderate (micron approx. or equal to 0.4) over the entire temperature range. Based upon the results obtained, the PS304 coating has promise for high temperature, oil-free turbomachinery applications.

  3. Thermodynamic Assessment of Chrome-Spinel Formation in Laser-Sintered Coatings with Cr2O3 Particles

    NASA Astrophysics Data System (ADS)

    Krivilyov, Mikhail; Kharanzhevskiy, Evgeny; Reshetnikov, Sergey; Beyers, Lesley J.

    2016-06-01

    Formation of a thin passive layer has been performed using short pulse laser dispersion of Cr2O3 particles in a C22 steel substrate. As a result, the coating's corrosion resistance is substantially improved compared to unprocessed samples. Microstructure analysis by TEM, XPS, and XRD showed that laser processing leads to dissolution of Cr2O3 with formation of Cr and Fe oxides, chrome-spinel, and metallic Cr dispersed in alpha and gamma Fe. Thermodynamic assessment revealed that the formation of pure chromium is caused by reduction of Cr2O3 and oxidation of iron. This reaction is promoted by shifting of chemical equilibrium at elevated temperatures in the molten zone under short pulse laser processing.

  4. Solar thermoelectric generator

    DOEpatents

    Toberer, Eric S.; Baranowski, Lauryn L.; Warren, Emily L.

    2016-05-03

    Solar thermoelectric generators (STEGs) are solid state heat engines that generate electricity from concentrated sunlight. A novel detailed balance model for STEGs is provided and applied to both state-of-the-art and idealized materials. STEGs can produce electricity by using sunlight to heat one side of a thermoelectric generator. While concentrated sunlight can be used to achieve extremely high temperatures (and thus improved generator efficiency), the solar absorber also emits a significant amount of black body radiation. This emitted light is the dominant loss mechanism in these generators. In this invention, we propose a solution to this problem that eliminates virtually all of the emitted black body radiation. This enables solar thermoelectric generators to operate at higher efficiency and achieve said efficient with lower levels of optical concentration. The solution is suitable for both single and dual axis solar thermoelectric generators.

  5. Removal of Cr(III) from chrome tanning wastewater by adsorption using two natural carbonaceous materials: Eggshell and powdered marble.

    PubMed

    Elabbas, Saliha; Mandi, Laila; Berrekhis, Fatima; Pons, Marie Noelle; Leclerc, Jean Pierre; Ouazzani, Naaila

    2016-01-15

    In the present paper, eggshell and powdered marble, two carbonaceous materials, were used to remove Cr(III) ions from a real chrome tanning wastewater. The effects of initial effluent pH, adsorbent dose, contact time and temperature were studied. The maximum uptake of chromium ions was obtained at pH 5.0 with the dose 20 g L(-1) and 12 g L(-1) for eggshell and powdered marble respectively. Adsorption equilibrium was reached after 14 h contact time for eggshell and only after 30 min for powdered marble. Under these conditions, almost 99% Cr(III) was removed from chrome tanning wastewater having an initial concentration of chromium of 3.21 g L(-1). Kinetic data were satisfactorily described by a pseudo-second order chemical sorption model. The equilibrium rate constant was notably greater for powdered marble than for eggshell with 1.142·10(-3) (g mg(-1) min(-1)) and 0.041·10(-3) (g mg(-1) min(-1)) respectively. The adsorption isotherm were well described by a Langmuir model and showed that the interaction of chromium with the two adsorbents surface is a localized monolayer adsorption with a smaller energy constant for the powdered marble than for eggshell (0.020 (L mg(-1)) and 0.083 (L mg(-1)) respectively). The powdered marble was able to adsorb faster a large amount of Cr (III) in comparison to eggshell. The use of a standardized lettuce seed bioassay allowed evaluating a better effectiveness of the Cr adsorption on the powdered marble, removing up to 40% of the treated effluent toxicity than by eggshell 25%. The powdered marble could be considered as an effective, low cost carbonaceous material to be used for chromium removal from tanning wastewater. PMID:26598282

  6. Selective coating for solar collectors

    SciTech Connect

    Schardein, D.J.

    1983-03-15

    A selective solar coating for solar collectors is disclosed. The coating is characterized by its high absorptance and low emittance. The coating comprises an organic compound or substance having a high molecular weight and a high carbon content, such as a petroleum, vegetable or animal oil, fat or wax, which is pyrolyzed to produce a carbon black pigmented varnish.

  7. Radio Detections During Two State Transitions of the Intermediate-Mass Black Hole HLX-1

    NASA Technical Reports Server (NTRS)

    Webb, Natalie; Cseh, David; Lenc, Emil; Godet, Olivier; Barret, Didier; Corbel, Stephane; Farrell, Sean; Fender, Robert; Gehrels, Neil; Heywood, Ian

    2012-01-01

    Relativistic jets are streams of plasma moving at appreciable fractions of the speed of light. They have been observed from stellar-mass black holes (approx. 3 to 20 solar masses) as well as supermassive black holes (approx.. 10(exp 6) to 10(exp 9) Solar Mass) found in the centers of most galaxies. Jets should also be produced by intermediate-mass black holes (approx. 10(exp 2) to 10(exp 5) Solar Mass), although evidence for this third class of black hole has, until recently, been weak. We report the detection of transient radio emission at the location of the intermediate-mass black hole candidate ESO 243-49 HLX-1, which is consistent with a discrete jet ejection event. These observations also allow us to refine the mass estimate of the black hole to be between approx. 9 × 10(exp 3) Solar Mass and approx. 9 × 10(exp 4) Solar Mass.

  8. Anisotropic Expansion of the Black Hole Universe

    NASA Astrophysics Data System (ADS)

    Zhang, Tianxi

    2009-01-01

    Recently, Zhang proposed a new cosmological model called black hole universe. According to this model, the universe originated from a hot star-like black hole with several solar masses, and grew up through a supermassive black hole with billion solar masses to the present state of temperature and density with hundred billion-trillion solar masses due to continuously inhaling matter from its outside. The structure of the entire space is similarly hierarchical or layered and the evolution is iterative. In each of iteration a universe passes through birth, growth, and death. The entire life of a universe roughly divides into three periods with different rates of expansion: slowly growing child universe, fast expanding adult universe, and gradually dying aged universe. When one universe expands to die out, a new universe grows up from its inside. On the AAS 211th meeting, the black hole universe model was shown to be consistent with Mach's principle, observations, and Einstein's general relativity. This new cosmological model can explain the cosmic microwave background radiation, quasars, and element abundances with the well-developed physics. Dark energy is not required for the universe to accelerate. Inflation is not necessary because the black hole universe does not have the horizon problem. In this presentation, the author will explain why the expansion of the universe is anisotropic as shown by the observed anisotropy of the Hubble constant. He will also compare the significant differences between the black hole universe and the big bang cosmology.

  9. The primordial black hole mass range

    NASA Astrophysics Data System (ADS)

    Frampton, Paul H.

    2016-04-01

    We investigate Primordial Black Hole (PBH) formation by which we mean black holes produced in the early Universe during radiation domination. After discussing the range of PBH mass permitted in the original mechanism of Carr and Hawking, hybrid inflation with parametric resonance is presented as an existence theorem for PBHs of arbitrary mass. As proposed in arXiv:1510.00400, PBHs with many solar masses can provide a solution to the dark matter problem in galaxies. PBHs can also explain dark matter observed in clusters and suggest a primordial origin for Supermassive Black Holes (SMBHs) in galactic cores.

  10. Cosmic Microwave Background Radiation of Black Hole Universe

    NASA Astrophysics Data System (ADS)

    Zhang, Tianxi

    2009-05-01

    Recently, the author has proposed an alternative cosmological model called black hole universe. According to this model, the universe originated from a hot star-like black hole with several solar masses, and gradually grew up through a supermassive black hole with billion solar masses to the present state with hundred billion-trillion solar masses by accreting ambient materials and merging with other black holes. The entire space is structured with infinite layers hierarchically. The innermost three layers are the universe that we are living, the outside called mother universe, and the inside star-like and supermassive black holes called child universes. The outermost layer is infinite in radius and limits to zero for both the mass density and absolute temperature. The observed cosmic microwave background radiation can be explained as the black body radiation of the black hole universe. When a hot and dense star-like black hole accretes its ambient matter and radiation or merges with other black holes, it expands and cools down. In terms of the Planck law of the black body radiation, a possible thermal history of the black hole universe is obtained. The result shows that the temperature of the present universe can be 3 K as observed if the universe originated from a hot star-like black hole. The initial properties (e.g., temperature, angular momentum, etc.) of the star-like black hole are not critical to the present universe, because most matter and radiation are from the mother universe. Therefore, the black hole universe model is also consistent with the observation of the cosmic microwave background radiation.