Fluctuating black hole horizons
NASA Astrophysics Data System (ADS)
Mei, Jianwei
2013-10-01
In this paper we treat the black hole horizon as a physical boundary to the spacetime and study its dynamics following from the Gibbons-Hawking-York boundary term. Using the Kerr black hole as an example we derive an effective action that describes, in the large wave number limit, a massless Klein-Gordon field living on the average location of the boundary. Complete solutions can be found in the small rotation limit of the black hole. The formulation suggests that the boundary can be treated in the same way as any other matter contributions. In particular, the angular momentum of the boundary matches exactly with that of the black hole, suggesting an interesting possibility that all charges (including the entropy) of the black hole are carried by the boundary. Using this as input, we derive predictions on the Planck scale properties of the boundary.
Black holes with bottle-shaped horizons
NASA Astrophysics Data System (ADS)
Chen, Yu; Teo, Edward
2016-06-01
We present a new class of four-dimensional AdS black holes with noncompact event horizons of finite area. The event horizons are topologically spheres with one puncture, with the puncture pushed to infinity in the form of a cusp. Because of the shape of their event horizons, we call such black holes "black bottles." The solution was obtained as a special case of the Plebański-Demiański solution, and may describe either static or rotating black bottles. For certain ranges of parameters, an acceleration horizon may also appear in the space-time. We study the full parameter space of the solution, and the various limiting cases that arise. In particular, we show how the rotating black hole recently discovered by Klemm arises as a special limit.
The horizon of the lightest black hole
NASA Astrophysics Data System (ADS)
Calmet, Xavier; Casadio, Roberto
2015-09-01
We study the properties of the poles of the resummed graviton propagator obtained by resumming bubble matter diagrams which correct the classical graviton propagator. These poles have been previously interpreted as black holes precursors. Here, we show using the horizon wave-function formalism that these poles indeed have properties which make them compatible with being black hole precursors. In particular, when modeled with a Breit-Wigner distribution, they have a well-defined gravitational radius. The probability that the resonance is inside its own gravitational radius, and thus that it is a black hole, is about one half. Our results confirm the interpretation of these poles as black hole precursors.
Black hole thermodynamics from Euclidean horizon constraints.
Carlip, S
2007-07-13
To explain black hole thermodynamics in quantum gravity, one must introduce constraints to ensure that a black hole is actually present. I show that for a large class of black holes, such "horizon constraints" allow the use of conformal field theory techniques to compute the density of states, reproducing the Bekenstein-Hawking entropy in a nearly model-independent manner. One standard string theory approach to black hole entropy arises as a special case, lending support to the claim that the mechanism may be "universal." I argue that the relevant degrees of freedom are Goldstone-boson-like excitations arising from the weak breaking of symmetry by the constraints. PMID:17678209
Apparent horizons in binary black hole spacetimes
NASA Astrophysics Data System (ADS)
Shoemaker, Deirdre Marie
Over the last decade, advances in computing technology and numerical techniques have lead to the possible theoretical prediction of astrophysically relevant waveforms in numerical simulations. With the building of gravitational wave detectors such as the Laser Interferometric Gravitational-Wave Observatory, we stand at the epoch that will usher in the first experimental study of strong field general relativity. One candidate source for ground based detection of gravitational waveforms, the orbit and merger of two black holes, is of great interest to the relativity community. The binary black hole problem is the two-body problem in general relativity. It is a stringent dynamical test of the theory. The problem involves the evolution of the Einstein equation, a complex system of non-linear, dynamic, elliptic-hyperbolic equations intractable in closed form. Numerical relativists are now developing the technology to evolve the Einstein equation using numerical simulations. The generation of these numerical I codes is a ``theoretical laboratory'' designed to study strong field phenomena in general relativity. This dissertation reports the successful development and application of the first multiple apparent horizon tracker applied to the generic binary black hole problem. I have developed a method that combines a level set of surfaces with a curvature flow method. This method, which I call the level flow method, locates the surfaces of any apparent horizons in the spacetime. The surface location then is used to remove the singularities from the computational domain in the evolution code. I establish the following set of criteria desired in an apparent horizon tracker: (1)The robustness of the tracker due to its lack of dependence on small changes to the initial guess; (2)The generality of the tracker in its applicability to generic spacetimes including multiple back hole spacetimes; and (3)The efficiency of the tracker algorithm in CPU time. I demonstrate the apparent
Black Hole Observations - Towards the Event Horizon
NASA Astrophysics Data System (ADS)
Britzen, Silke
Black Holes are probably the most elusive solutions of Einstein's theory of General Relativity. Despite numerous observations of the direct galactic environment and indirect influence of astrophysical black holes (e.g. jets, variable emission across the wavelength spectrum, feedback processes, etc.) -- a direct proof of their existence is still lacking. This article highlights some aspects deduced from many observations and concentrates on the experimental results with regard to black holes with masses from millions to billions of solar masses. The focus will be on the challenges and remaining questions. The Event Horizon Telescopce (EHT) project to image the photon sphere of Sgr A* and its potential is briefly sketched. This instrumental approach shall lead to highest resolution observations of the supermassive black hole at the center of the Milky Way (Sgr A*).
Perturbative string thermodynamics near black hole horizons
NASA Astrophysics Data System (ADS)
Mertens, Thomas G.; Verschelde, Henri; Zakharov, Valentin I.
2015-06-01
We provide further computations and ideas to the problem of near-Hagedorn string thermodynamics near (uncharged) black hole horizons, building upon our earlier work [1]. The relevance of long strings to one-loop black hole thermodynamics is emphasized. We then provide an argument in favor of the absence of α'-corrections for the (quadratic) heterotic thermal scalar action in Rindler space. We also compute the large k limit of the cigar orbifold partition functions (for both bosonic and type II superstrings) which allows a better comparison between the flat cones and the cigar cones. A discussion is made on the general McClain-Roth-O'Brien-Tan theorem and on the fact that different torus embeddings lead to different aspects of string thermodynamics. The black hole/string correspondence principle for the 2d black hole is discussed in terms of the thermal scalar. Finally, we present an argument to deal with arbitrary higher genus partition functions, suggesting the breakdown of string perturbation theory (in g s ) to compute thermodynam-ical quantities in black hole spacetimes.
Energy and information near black hole horizons
Freivogel, Ben
2014-07-01
The central challenge in trying to resolve the firewall paradox is to identify excitations in the near-horizon zone of a black hole that can carry information without injuring a freely falling observer. By analyzing the problem from the point of view of a freely falling observer, I arrive at a simple proposal for the degrees of freedom that carry information out of the black hole. An infalling observer experiences the information-carrying modes as ingoing, negative energy excitations of the quantum fields. In these states, freely falling observers who fall in from infinity do not encounter a firewall, but freely falling observers who begin their free fall from a location close to the horizon are ''frozen'' by a flux of negative energy. When the black hole is ''mined,'' the number of information-carrying modes increases, increasing the negative energy flux in the infalling frame without violating the equivalence principle. Finally, I point out a loophole in recent arguments that an infalling observer must detect a violation of unitarity, effective field theory, or free infall.
Cutoffs, stretched horizons, and black hole radiators
NASA Astrophysics Data System (ADS)
Kaloper, Nemanja
2012-11-01
We argue that if the UV cutoff of an effective field theory with many low energy degrees of freedom is of the order, or below, the scale of the stretched horizon in a black hole background, which in turn is significantly lower than the Planck scale, the black hole radiance rate may not be enhanced by the emission of all the light IR modes. Instead, there may be additional suppressions hidden in the UV completion of the field theory, which really control which light modes can be emitted by the black hole. It could turn out that many degrees of freedom cannot be efficiently emitted by the black hole, and so the radiance rate may be much smaller than its estimate based on the counting of the light IR degrees of freedom. If we apply this argument to the Randall-Sundrum II (RS2) brane world, it implies that the emission rates of the low energy conformal field theory modes will be dramatically suppressed: its UV completion is given by the bulk gravity on AdS5×S5, and the only bulk modes which could be emitted by a black hole are the 4-dimensional (4D) s waves of bulk modes with small 5-dimensional momentum, or equivalently, small 4D masses. Further, their emission is suppressed by bulk warping, which lowers the radiation rate much below the IR estimate, yielding a radiation flux ˜(TBHL)2LHawking˜(TBH/MPl)2NLHawking, where LHawking is the Hawking radiation rate of a single light species. This follows directly from low conformal field theory cutoff μ˜L-1≪MPl, a large number of modes N≫1 and the fact that 4D gravity in RS2 is induced, MPl2≃Nμ2.
Skyrme black holes in the isolated horizons formalism
Nielsen, Alex B.
2006-08-15
We study static, spherically symmetric, Skyrme black holes in the context of the assumption that they can be viewed as bound states between ordinary bare black holes and solitons. This assumption and results stemming from the isolated horizons formalism lead to several conjectures about the static black hole solutions. These conjectures are tested against the Skyrme black hole solutions. It is shown that, while there is in general good agreement with the conjectures, a crucial aspect seems to violate one of the conjectures.
Breaking an Abelian gauge symmetry near a black hole horizon
Gubser, Steven S.
2008-09-15
I argue that coupling the Abelian Higgs model to gravity plus a negative cosmological constant leads to black holes which spontaneously break the gauge invariance via a charged scalar condensate slightly outside their horizon. This suggests that black holes can superconduct.
Supertranslations and Superrotations at the Black Hole Horizon
NASA Astrophysics Data System (ADS)
Donnay, Laura; Giribet, Gaston; González, Hernán A.; Pino, Miguel
2016-03-01
We show that the asymptotic symmetries close to nonextremal black hole horizons are generated by an extension of supertranslations. This group is generated by a semidirect sum of Virasoro and Abelian currents. The charges associated with the asymptotic Killing symmetries satisfy the same algebra. When considering the special case of a stationary black hole, the zero mode charges correspond to the angular momentum and the entropy at the horizon.
Supertranslations and Superrotations at the Black Hole Horizon.
Donnay, Laura; Giribet, Gaston; González, Hernán A; Pino, Miguel
2016-03-01
We show that the asymptotic symmetries close to nonextremal black hole horizons are generated by an extension of supertranslations. This group is generated by a semidirect sum of Virasoro and Abelian currents. The charges associated with the asymptotic Killing symmetries satisfy the same algebra. When considering the special case of a stationary black hole, the zero mode charges correspond to the angular momentum and the entropy at the horizon. PMID:26991167
Black Hole Physics with the Event Horizon Telescope
NASA Astrophysics Data System (ADS)
Ozel, Feryal
2016-01-01
The Event Horizon Telescope is an experiment that is being performed on a large and ever-increasing array of radio telescopes that span the Earth from Hawaii to Chile and from the South Pole to Arizona. When data will be taken with the full array, it will image the event horizons of the supermassive black hole at the center of our Galaxy, Sagittarius A*, and the black hole at the center of M87, with an unprecedented 10 microarcssecond resolution. This will allow us to take the first ever pictures of black holes at 1.3 and 0.85 mm wavelengths and look for the shadow that is a direct evidence for a black hole predicted by the theory of General Relativity. In addition, the Event Horizon Telescope will also enable us to study the process by which black holes accrete matter and grow in mass. I will discuss the theoretical developments in simulating the properties of the black hole accretion flows and their expected images using state-of-the-art algorithms and high performance computing. Interpreting the upcoming observations within this theoretical framework will open new horizons in black hole astrophysics.
Complete single-horizon quantum corrected black hole spacetime
Peltola, Ari; Kunstatter, Gabor
2009-03-15
We show that a semiclassical polymerization of the interior of Schwarzschild black holes gives rise to a tantalizing candidate for a nonsingular, single-horizon black hole spacetime. The exterior has nonzero quantum stress energy but closely approximates the classical spacetime for macroscopic black holes. The interior exhibits a bounce at a microscopic scale and then expands indefinitely to a Kantowski-Sachs spacetime. Polymerization therefore removes the singularity and produces a scenario reminiscent of past proposals for universe creation via quantum effects inside a black hole.
Entanglement entropy of a black hole and isolated horizon
NASA Astrophysics Data System (ADS)
Shi, Jianhua; Hu, Shuangqi; Zhao, Ren
2013-02-01
Using Unruh-Verlinde temperature obtained by entropic force, we directly calculate partition functions of quantum field in Schwarzschild spacetime via quantum statistical method and derive the expression of the black hole statistical entropy. In our calculation the lower limit of integral is the location of isolated horizon introduced in loop quantum gravity and the upper limit of integral is infinity. So the obtained entropy is the statistical entropy from isolated horizon to the infinite. In our calculation there are not the cutoff and approximation. The results showed that, as long as proper Immirzi parameters are selected, the entropy obtained by loop quantum gravity is consistent with the quantum statistical entropy outside the black hole horizon. Therefore the black hole entropy is a quantum entanglement entropy outside the isolated horizon.
Horizons of description: Black holes and complementarity
NASA Astrophysics Data System (ADS)
Bokulich, Peter Joshua Martin
Niels Bohr famously argued that a consistent understanding of quantum mechanics requires a new epistemic framework, which he named complementarity . This position asserts that even in the context of quantum theory, classical concepts must be used to understand and communicate measurement results. The apparent conflict between certain classical descriptions is avoided by recognizing that their application now crucially depends on the measurement context. Recently it has been argued that a new form of complementarity can provide a solution to the so-called information loss paradox. Stephen Hawking argues that the evolution of black holes cannot be described by standard unitary quantum evolution, because such evolution always preserves information, while the evaporation of a black hole will imply that any information that fell into it is irrevocably lost---hence a "paradox." Some researchers in quantum gravity have argued that this paradox can be resolved if one interprets certain seemingly incompatible descriptions of events around black holes as instead being complementary. In this dissertation I assess the extent to which this black hole complementarity can be undergirded by Bohr's account of the limitations of classical concepts. I begin by offering an interpretation of Bohr's complementarity and the role that it plays in his philosophy of quantum theory. After clarifying the nature of classical concepts, I offer an account of the limitations these concepts face, and argue that Bohr's appeal to disturbance is best understood as referring to these conceptual limits. Following preparatory chapters on issues in quantum field theory and black hole mechanics, I offer an analysis of the information loss paradox and various responses to it. I consider the three most prominent accounts of black hole complementarity and argue that they fail to offer sufficient justification for the proposed incompatibility between descriptions. The lesson that emerges from this
Black hole thermodynamics from near-horizon conformal quantum mechanics
Camblong, Horacio E.; Ordonez, Carlos R.
2005-05-15
The thermodynamics of black holes is shown to be directly induced by their near-horizon conformal invariance. This behavior is exhibited using a scalar field as a probe of the black hole gravitational background, for a general class of metrics in D spacetime dimensions (with D{>=}4). The ensuing analysis is based on conformal quantum mechanics, within a hierarchical near-horizon expansion. In particular, the leading conformal behavior provides the correct quantum statistical properties for the Bekenstein-Hawking entropy, with the near-horizon physics governing the thermodynamics from the outset. Most importantly: (i) this treatment reveals the emergence of holographic properties; (ii) the conformal coupling parameter is shown to be related to the Hawking temperature; and (iii) Schwarzschild-like coordinates, despite their 'coordinate singularity', can be used self-consistently to describe the thermodynamics of black holes.
Universal Near-Horizon Conformal Structure and Black Hole Entropy
NASA Astrophysics Data System (ADS)
Chakrabarti, Sayan K.; Gupta, Kumar S.; Sen, Siddhartha
It is shown that a massless scalar probe reveals a universal near-horizon conformal structure for a wide class of black holes, including the BTZ. The central charge of the corresponding Virasoro algebra contains information about the black hole. With a suitable quantization condition on the central charge, the CFT associated with the black hole in our approach is consistent with the recent observation of Witten, where the dual theory for the BTZ in the AdS/CFT framework has been identified with the construction of Frenkel, Lepowsky and Meurman. This CFT admits the Fischer-Griess monster group as its symmetry. The logarithm of the dimension of a specific representation of the monster group has been identified by Witten as the entropy of the BTZ black hole. Our algebraic approach shows that a wide class of black holes share the same near-horizon conformal structure as that for the BTZ. With a suitable quantization condition, the CFT's for all these black holes in our formalism can be identified with the FLM model, although not through the AdS/CFT correspondence. The corresponding entropy for the BTZ provides a lower bound for the entropy of this entire class of black holes.
Exact event horizon of a black hole merger
NASA Astrophysics Data System (ADS)
Emparan, Roberto; Martínez, Marina
2016-08-01
We argue that the event horizon of a binary black hole merger, in the extreme-mass-ratio limit where one of the black holes is much smaller than the other, can be described in an exact analytic way. This is done by tracing in the Schwarzschild geometry a congruence of null geodesics that approaches a null plane at infinity. Its form can be given explicitly in terms of elliptic functions, and we use it to analyze and illustrate the time-evolution of the horizon along the merger. We identify features such as the line of caustics at which light rays enter the horizon, and the critical point at which the horizons touch. We also compute several quantities that characterize these aspects of the merger.
The Cauchy horizon singularity inside Kerr black holes
NASA Astrophysics Data System (ADS)
Burko, Lior M.; Khanna, Gaurav
2016-03-01
The numerical technology that allows for the careful evolution of linearized fields inside Kerr black holes and the study of their behavior approaching the Cauchy horizon singularity includes a number of interesting aspects. The latter include compactified hyperboloidal coordinates and foliation, mixed type hyperbolic-elliptic PDE, and initial data evolution where all equal-coordinate hypersurfaces are spacelike. We review the need for the numerical technology that allows for the solution of the spin-2 Teukolsky equation inside Kerr black holes, and discuss the main features thereof. We present new results about the numerical properties of the Cauchy horizon singularity and their correspondence with the predictions of perturbative analysis. We then discuss present directions of study, which include the sub-dominant azimuthal modes, approaching the Cauchy horizon singularity along timelike directions, approaching the Marolf-Ori (``outflying'') singularity and the studying the fields along the Cauchy horizon.
Gauss-Bonnet black holes with nonconstant curvature horizons
Maeda, Hideki
2010-06-15
We investigate static and dynamical n({>=}6)-dimensional black holes in Einstein-Gauss-Bonnet gravity of which horizons have the isometries of an (n-2)-dimensional Einstein space with a condition on its Weyl tensor originally given by Dotti and Gleiser. Defining a generalized Misner-Sharp quasilocal mass that satisfies the unified first law, we show that most of the properties of the quasilocal mass and the trapping horizon are shared with the case with horizons of constant curvature. It is shown that the Dotti-Gleiser solution is the unique vacuum solution if the warp factor on the (n-2)-dimensional Einstein space is nonconstant. The quasilocal mass becomes constant for the Dotti-Gleiser black hole and satisfies the first law of the black-hole thermodynamics with its Wald entropy. In the non-negative curvature case with positive Gauss-Bonnet constant and zero cosmological constant, it is shown that the Dotti-Gleiser black hole is thermodynamically unstable. Even if it becomes locally stable for the nonzero cosmological constant, it cannot be globally stable for the positive cosmological constant.
Chandra Uncovers New Evidence For Event Horizons Surrounding Black Holes
NASA Astrophysics Data System (ADS)
2001-01-01
SAN DIEGO -- Astronomers have used NASA's Chandra X-ray Observatory to study some of the darkest black holes yet observed. Their work strongly confirms the reality of the "event horizon," the one-way membrane around black holes predicted by Einstein's theory of relativity. The findings were presented today at the American Astronomical Society meeting by Drs. Michael Garcia, Jeffrey McClintock, Ramesh Narayan, and Stephen Murray of the Harvard-Smithsonian Center for Astrophysics and Dr. Paul Callanan of University College, Cork, Ireland. With results that fundamentally differ from earlier black hole studies, Garcia and his colleagues have shown that some recently discovered black holes are not only ultra-dense, but actually possess event horizons that "vacuum up" energy from their surroundings. "It is a bit odd to say we've discovered something by seeing almost nothing at all -- less than the smile of the Cheshire cat, so to speak," said Garcia, lead author on a paper submitted to the Astrophysical Journal, "but, in essence, this is what we have done." Using data from Chandra and previous X-ray satellites like ROSAT, the Chandra team studied a dozen "X-ray novas," so named because they occasionally erupt as brilliant X-ray sources then settle into decades of dormancy. The great outpouring of X rays is due to a stream of gas that is pulled from the surface of a Sun-like companion star onto a compact object, either a black hole or a neutron star. By comparing the energy output from the dormant X-ray novas, the team discovered that the sources with black holes emitted only one percent as much energy while dormant as did the X-ray novae with neutron stars. "The most straightforward explanation of these observations is that the black hole candidates we have studied have event horizons that swallow just about all of the energy that surrounds them," said Murray. "Indeed, one could even say that this work shows why black holes deserve to be called ‘black.’" "The event
Horizon of quantum black holes in various dimensions
NASA Astrophysics Data System (ADS)
Casadio, Roberto; Cavalcanti, Rogerio T.; Giugno, Andrea; Mureika, Jonas
2016-09-01
We adapt the horizon wave-function formalism to describe massive static spherically symmetric sources in a general (1 + D)-dimensional space-time, for D > 3 and including the D = 1 case. We find that the probability PBH that such objects are (quantum) black holes behaves similarly to the probability in the (3 + 1) framework for D > 3. In fact, for D ≥ 3, the probability increases towards unity as the mass grows above the relevant D-dimensional Planck scale mD. At fixed mass, however, PBH decreases with increasing D, so that a particle with mass m ≃mD has just about 10% probability to be a black hole in D = 5, and smaller for larger D. This result has a potentially strong impact on estimates of black hole production in colliders. In contrast, for D = 1, we find the probability is comparably larger for smaller masses, but PBH < 0.5, suggesting that such lower dimensional black holes are purely quantum and not classical objects. This result is consistent with recent observations that sub-Planckian black holes are governed by an effective two-dimensional gravitation theory. Lastly, we derive Generalised Uncertainty Principle relations for the black holes under consideration, and find a minimum length corresponding to a characteristic energy scale of the order of the fundamental gravitational mass mD in D > 3. For D = 1 we instead find the uncertainty due to the horizon fluctuations has the same form as the usual Heisenberg contribution, and therefore no fundamental scale exists.
Black Hole Event Horizons and Advection-Dominated Accretion
NASA Technical Reports Server (NTRS)
McClintock, Jeffrey; Mushotzky, Richard F. (Technical Monitor)
2001-01-01
The XMM data on black-hole X-ray novae are only now becoming available and they have so far not been included in any publications. This work is part of a larger project that makes use of both XMM and Chandra data. Our first publication on the Chandra results is the following: "New Evidence for Black Hole Event Horizons from Chandra" by M.R. Garcia, J.E. McClintock, R. Narayan, P. Callanan, D. Barret and S. Murray (2001, ApJ, 553, L47). Therein we present the luminosities of the two black-hole X-ray novae, GRO J0422+22 and 4U1 543-47, which were observed by Chandra. These results are combined with the luminosities of four additional black-hole X-ray novae, which were observed as part of a Chandra GTO program (PI: S. Murray). The very low, but nonzero, quiescent X-ray luminosities of these black hole binaries is very difficult to understand in the context of standard viscous accretion disk theory. The principal result of this work is that X-ray novae that contain black hole primaries are about 100 times fainter that X-ray novae that contain neutron star primaries. This result had been suggested in earlier work, but the present work very firmly establishes this large luminosity difference. The result is remarkable because the black-hole and the neutron-star systems are believed to be similar in many respects. Most importantly, the mass transfer rate from the secondary star is believed to be very comparable for the two kinds of systems for similar orbital periods. The advection-dominated accretion flow (ADAF) model provides a natural framework for understanding the extraordinarily low luminosities of the black hole systems and the hundred-fold greater luminosities of the neutron star systems. The chief feature of an ADAF is that the heat energy in the accreting gas is trapped in the gas and travels with it, rather than being radiated promptly. Thus the accreting gas reaches the central object with a huge amount of thermal energy. If the accretor is a black hole, the
Gravitational black hole hair from event horizon supertranslations
NASA Astrophysics Data System (ADS)
Averin, Artem; Dvali, Gia; Gomez, Cesar; Lüst, Dieter
2016-06-01
We discuss BMS supertranslations both at null-infinity BMS- and on the horizon {BMS}^{mathscr{H}} for the case of the Schwarzschild black hole. We show that both kinds of supertranslations lead to infinetly many gapless physical excitations. On this basis we construct a quotient algebra mathcal{A}equiv {BMS}^{mathscr{H}}/{BMS}- using suited superpositions of both kinds of transformations which cannot be compensated by an ordinary BMS-supertranslation and therefore are intrinsically due to the presence of an event horizon. We show that transformations in mathcal{A} are physical and generate gapless excitations on the horizon that can account for the gravitational hair as well as for the black hole entropy. We identify the physics of these modes as associated with Bogolioubov-Goldstone modes due to quantum criticality. Classically the number of these gapless modes is infinite. However, we show that due to quantum criticality the actual amount of information-carriers becomes finite and consistent with Bekenstein entropy. Although we only consider the case of Schwarzschild geometry, the arguments are extendable to arbitrary space-times containing event horizons.
Imaging Black Hole Magnetic Fields with the Event Horizon Telescope
NASA Astrophysics Data System (ADS)
Chael, Andrew; Doeleman, Sheperd; Johnson, Michael D.
2015-08-01
The Event Horizon Telescope is a global mm-wavelength Very Long Baseline Interferometry array which, when completed, will achieve a nominal resolution of 20 microarcseconds. Initial observations with three stations have detected Schwarzschild-radius-scale structure around the supermassive black holes in SgrA* and M87. Future, fully polarimetric EHT images of the synchrotron emission near supermassive black holes will reveal fine magnetic field structure, potentially illuminating the role of magnetic fields in driving black hole accretion and the connection between magnetic fields, black hole spin, and relativistic jets. I will review techniques for polarimetric VLBI imaging and present new image reconstruction techniques tailored for polarimetric EHT data. Application to synthetic data from simulations shows that the EHT will be able to image changing magnetic field structure on microarcsecond scales. I will also discuss applications to the variable magnetic fields that could power flares in Sgr A*. Finally, I will present initial results from application of these techniques to data from the 2013 EHT observing run.
Spherically Symmetric Trapping Horizons, the Misner-Sharp Mass and Black Hole Evaporation
NASA Astrophysics Data System (ADS)
Nielsen, Alex B.; Yeom, Dong-Han
We discuss some of the issues relating to information loss and black hole thermodynamics in the light of recent work on local black hole horizons. Understood in terms of pure states evolving into mixed states, the possibility of information loss in black holes is closely related to the global causal structure of space-time, as is the existence of event horizons. However, black holes need not be defined by event horizons, and in fact we argue that in order to have a fully unitary evolution for black holes, they should be defined in terms of something else, such as a trapping horizon. The Misner-Sharp mass in spherical symmetry shows very simply how trapping horizons can give rise to black hole thermodynamics, Hawking radiation and singularities. We show how the Misner-Sharp mass can also be used to give insights into the process of collapse and evaporation of locally defined black holes.
Entropy bound of horizons for accelerating, rotating and charged Plebanski-Demianski black hole
NASA Astrophysics Data System (ADS)
Debnath, Ujjal
2016-09-01
We first review the accelerating, rotating and charged Plebanski-Demianski (PD) black hole, which includes the Kerr-Newman rotating black hole and the Taub-NUT spacetime. The main feature of this black hole is that it has 4 horizons like event horizon, Cauchy horizon and two accelerating horizons. In the non-extremal case, the surface area, entropy, surface gravity, temperature, angular velocity, Komar energy and irreducible mass on the event horizon and Cauchy horizon are presented for PD black hole. The entropy product, temperature product, Komar energy product and irreducible mass product have been found for event horizon and Cauchy horizon. Also their sums are found for both horizons. All these relations are dependent on the mass of the PD black hole and other parameters. So all the products are not universal for PD black hole. The entropy and area bounds for two horizons have been investigated. Also we found the Christodoulou-Ruffini mass for extremal PD black hole. Finally, using first law of thermodynamics, we also found the Smarr relation for PD black hole.
N = 2 superparticle near horizon of a magnetized Kerr black hole
NASA Astrophysics Data System (ADS)
Orekhov, Kirill
2016-06-01
The Melvin-Kerr black hole represents a generalization of the Kerr black hole to the case of a non-vanishing external magnetic field via the Harrison transformation. Conformal mechanics related to the near-horizon limit of such a black hole configuration is studied and its unique N = 2 supersymmetric extension is constructed.
Inner horizon of the quantum Reissner-Nordström black holes
NASA Astrophysics Data System (ADS)
Casadio, Roberto; Micu, Octavian; Stojkovic, Dejan
2015-05-01
We study the nature of the inner Cauchy horizon of a Reissner-Nordström black hole in a quantum context by means of the horizon wave-function obtained from modelling the electrically charged source as a Gaussian wave-function. Our main finding is that there are significant ranges for the black hole mass (around the Planck scale) and specific charge for which the probability of realising the inner horizon is negligible. This result suggests that any semiclassical instability one expects near the inner horizon may not occur in quantum black holes.
Near-horizon description of extremal magnetized stationary black holes and Meissner effect
NASA Astrophysics Data System (ADS)
Bičák, Jiří; Hejda, Filip
2015-11-01
After a brief summary of the basic properties of stationary spacetimes representing rotating, charged black holes in strong axisymmetric magnetic fields, we concentrate on extremal cases, for which the horizon surface gravity vanishes. We investigate their properties by constructing simpler spacetimes that exhibit their geometries near degenerate horizons. Starting from the symmetry arguments we find that the near-horizon geometries of extremal magnetized Kerr-Newman black holes can be characterized by just one dimensionless parameter: "effective Kerr-Newman mixing angle." Employing the near-horizon geometries we demonstrate the Meissner effect of magnetic field expulsion from extremal black holes.
Schrodinger formalism, black hole horizons, and singularity behavior
Wang, John E.; Greenwood, Eric; Stojkovic, Dejan
2009-12-15
The Gauss-Codazzi method is used to discuss the gravitational collapse of a charged Reisner-Nordstroem domain wall. We solve the classical equations of motion of a thin charged shell moving under the influence of its own gravitational field and show that a form of cosmic censorship applies. If the charge of the collapsing shell is greater than its mass, then the collapse does not form a black hole. Instead, after reaching some minimal radius, the shell bounces back. The Schroedinger canonical formalism is used to quantize the motion of the charged shell. The limits near the horizon and near the singularity are explored. Near the horizon, the Schroedinger equation describing evolution of the collapsing shell takes the form of the massive wave equation with a position dependent mass. The outgoing and incoming modes of the solution are related by the Bogolubov transformation which precisely gives the Hawking temperature. Near the classical singularity, the Schroedinger equation becomes nonlocal, but the wave function describing the system is nonsingular. This indicates that while quantum effects may be able to remove the classical singularity, it may also introduce some new effects.
Entropy spectrum of the apparent horizon of Vaidya black holes via adiabatic invariance
NASA Astrophysics Data System (ADS)
Chen, Ge-Rui; Huang, Yong-Chang
2016-01-01
The spectroscopy of the apparent horizon of Vaidya black holes is investigated via adiabatic invariance. We obtain an equally spaced entropy spectrum with its quantum equal to the one given by Bekenstein [J. D. Bekenstein, Phys. Rev. D 7, 2333 (1973)]. We demonstrate that the quantization of entropy and area is a generic property of horizon, not only for stationary black holes, and the results also exit in a dynamical black hole. Our work also shows that the quantization of black hole is closely related to the tunneling formalism for deriving the Hawking effect, which is interesting.
Black hole complementarity with local horizons and Horowitz-Maldacena's proposal
NASA Astrophysics Data System (ADS)
Hong, Sungwook E.; Hwang, Dong-il; Yeom, Dong-han; Zoe, Heeseung
2008-12-01
To implement the consistent black hole complementarity principle, we need two assumptions: first, there exists a singularity near the center, and second, global horizons are the same as local horizons. However, these assumptions are not true in general. In this paper, the authors study a charged black hole in which the second assumption may not hold. From the previous simulations, we have argued that the event horizon is quite close to the outer horizon, and it seems not harmful to black hole complementarity; however, the Cauchy horizon can be different from the inner horizon, and a violation of complementarity will be possible. To maintain complementarity, we need to assume a selection principle between the singularity and the Hawking radiation generating surface; we suggest that Horowitz-Maldacena's proposal can be useful for this purpose. Finally, we discussed some conditions under which the selection principle may not work.
The absence of horizon in black-hole formation
NASA Astrophysics Data System (ADS)
Ho, Pei-Ming
2016-08-01
With the back-reaction of Hawking radiation taken into consideration, the work of Kawai, Matsuo and Yokokura [1] has shown that, under a few assumptions, the collapse of matter does not lead to event horizon nor apparent horizon. In this paper, we relax their assumptions and elaborate on the space-time geometry of a generic collapsing body with spherical symmetry. The geometry outside the collapsing sphere is found to be approximated by the geometry outside the white-hole horizon, hence the collapsing matter remains outside the Schwarzschild radius. As particles in Hawking radiation are created in the vicinity of the collapsing matter, the information loss paradox is alleviated. Assuming that the collapsing body evaporates within finite time, there is no event horizon.
Horizons of radiating black holes in Einstein-Gauss-Bonnet gravity
Ghosh, S. G.; Deshkar, D. W.
2008-02-15
A Vaidya-based model of a radiating black hole is studied in a 5-dimensional Einstein gravity with Gauss-Bonnet contribution of quadratic curvature terms. The structure and locations of the apparent and event horizons of the radiating black hole are determined.
Kimura, Masashi
2008-08-15
We show that there exist five-dimensional multi-black hole solutions which have analytic event horizons when the space-time has nontrivial asymptotic structure, unlike the case of five-dimensional multi-black hole solutions in asymptotically flat space-time.
NASA Astrophysics Data System (ADS)
Abramowicz, Marek A.
Three advanced instruments planned for a near future ( LOFT, GRAVITY, THE EVENT HORIZON TELESCOPE) provide unprecedented angular and time resolutions, which allow to probe regions in the immediate vicinity of black holes. We may soon be able to search for the signatures of the super-strong gravity that is characteristic to black holes: the event horizon, the ergosphere, the innermost stable circular orbit (ISCO), and the photon circle. This review discusses a few fundamental problems concerning these theoretical concepts.
Tortoise Coordinate Transformation on Apparent Horizon of a Dynamical Black Hole
NASA Astrophysics Data System (ADS)
Liu, Xianming; Zhao, Zheng; Liu, Wenbiao
Thinking of Hawking radiation calculation from a Schwarzschild black hole using Damour-Ruffini method, some key requirements of the tortoise coordinate transformation are pointed out. Extending these requirements to a dynamical black hole, a dynamical tortoise coordinate transformation is proposed. Under this new dynamical tortoise coordinate transformation, Hawking radiation from a Vaidya black hole can be got successfully using Damour-Ruffini method. Moreover, we also find that the radiation should be regarded as originating from the apparent horizon rather than the event horizon at least from the viewpoint of the first law of thermodynamics.
Near-horizon circular orbits and extremal limit for dirty rotating black holes
NASA Astrophysics Data System (ADS)
Zaslavskii, O. B.
2015-08-01
We consider generic rotating axially symmetric "dirty" (surrounded by matter) black holes. Near-horizon circular equatorial orbits are examined in two different cases of near-extremal (small surface gravity κ ) and exactly extremal black holes. This has a number of qualitative distinctions. In the first case, it is shown that such orbits can lie as close to the horizon as one wishes on suitably chosen slices of space-time when κ →0 . This generalizes the observation of T. Jacobson [Classical Quantum Gravity 28, 187001 (2011), 10.1088/0264-9381/28/18/187001] made for the Kerr metric. If a black hole is extremal (κ =0 ), circular on-horizon orbits are impossible for massive particles but, in general, are possible in its vicinity. The corresponding black hole parameters determine also the rate with which a fine-tuned particle on the noncircular near-horizon orbit asymptotically approaches the horizon. Properties of orbits under discussion are also related to the Bañados-Silk-West effect of high energy collisions near black holes. Impossibility of the on-horizon orbits in question is manifestation of kinematic censorship that forbids infinite energies in collisions.
Horizon structure and shadow of rotating Einstein-Born-Infeld black holes
NASA Astrophysics Data System (ADS)
Atamurotov, Farruh
2016-07-01
We investigate the horizon structure of the rotating Einstein-Born-Infeld solution which goes over to the Einstein-Maxwell's Kerr-Newman solution as the Born-Infeld parameter goes to innity ( ! 1). We nd that for a given , mass M and charge Q, there exist critical spinning parameter aE and rEH, which corresponds to an extremal Einstein-Born-Infeld black hole with degenerate horizons, and aE decreases and rEH increases with increase in the Born-Infeld parameter . While a < aE describe a non-extremal Einstein-Born- Infeld black hole with outer and inner horizons. Similarly, the effect of on innite redshift surface and in turn on ergoregion is also included. It is well known that a black hole can cast a shadow as an optical appearance due to its strong gravitational eld. We also investigate the shadow cast by the rotating Einstein- Born-Infeld black hole and demonstrate that the null geodesic equations can be integrated that allows us to investigate the shadow cast by a black hole which is found to be a dark zone covered by a circle. Interestingly, the shadows of Einstein-Born-Infeld black hole is slightly smaller than for the Reissner-Nordstrom black hole which are concentric circles, for different values of the Born-Infeld parameter , whose radius decreases with increase in the value of parameter . The shadows for the rotating Einstein-Born-Infeld solution are also included.
d⩾5 static black holes with S×S event horizon topology
NASA Astrophysics Data System (ADS)
Kleihaus, Burkhard; Kunz, Jutta; Radu, Eugen
2009-07-01
We present numerical evidence for the existence of new black hole solutions in d⩾6 spacetime dimensions. They approach asymptotically the Minkowski background and have an event horizon topology S×S. These static solutions share the basic properties of the nonrotating black rings in five dimensions, in particular the presence of a conical singularity.
Bousso, Raphael
2014-01-31
If information escapes from an evaporating black hole, then field modes just outside the horizon must be thermally entangled with distant Hawking radiation. But for an infalling observer to find empty space at the horizon, the same modes would have to be entangled with the black hole interior. Thus, unitarity appears to require a "firewall" at the horizon. Identifying the interior with the distant radiation promises to resolve the entanglement conflict and restore the vacuum. But the map must adjust for any interactions, or else the firewall will reappear if the Hawking radiation scatters off the cosmic microwave background. Such a map produces a "frozen vacuum," a phenomenon that is arguably worse than a firewall. An infalling observer is unable to excite the vacuum near the horizon. This allows the horizon to be locally detected and so violates the equivalence principle. PMID:24580432
NASA Astrophysics Data System (ADS)
Luminet, Jean-Pierre
1992-09-01
Foreword to the French edition; Foreword to the English edition; Acknowledgements; Part I. Gravitation and Light: 1. First fruits; 2. Relativity; 3. Curved space-time; Part II. Exquisite Corpses: 4. Chronicle of the twilight years; 5. Ashes and diamonds; 6. Supernovae; 7. Pulsars; 8. Gravitation triumphant; Part III. Light Assassinated: 9. The far horizon; 10. Illuminations; 11. A descent into the maelstrom; 12. Map games; 13. The black hole machine; 14. The quantum black hole; Part IV. Light Regained: 15. Primordial black holes; 16. The zoo of X-ray stars; 17. Giant black holes; 18. Gravitational light; 19. The black hole Universe; Appendices; Bibliography; Name index; Subject index.
Conformally coupled scalar black holes admit a flat horizon due to axionic charge
NASA Astrophysics Data System (ADS)
Bardoux, Yannis; Caldarelli, Marco M.; Charmousis, Christos
2012-09-01
Static, charged black holes in the presence of a negative cosmological constant and with a planar horizon are found in four dimensions. The solutions have scalar secondary hair. We claim that these constitute the planar version of the Martínez-Troncoso-Zanelli black holes, only known up to now for a curved event horizon in four dimensions. Their planar version is rendered possible due to the presence of two, equal and homogeneously distributed, axionic charges dressing the flat horizon. The solutions are presented in the conformal and minimal frame and their basic properties and thermodynamics analysed. Entertaining recent applications to holographic superconductors, we expose two branches of solutions: the undressed axionic Reissner-Nordström-AdS black hole, and the novel black hole carrying secondary hair. We show that there is a critical temperature at which the (bald) axionic Reissner-Nordström-AdS black hole undergoes a second order phase transition to the hairy black hole spontaneously acquiring scalar hair.
Stringy stability of charged dilaton black holes with flat event horizon
Ong, Yen Chin; Chen, Pisin
2015-01-15
Electrically charged black holes with flat event horizon in anti-de Sitter space have received much attention due to various applications in Anti-de Sitter/Conformal Field Theory (AdS/CFT) correspondence, from modeling the behavior of quark-gluon plasma to superconductor. Critical to the physics on the dual field theory is the fact that when embedded in string theory, black holes in the bulk may become vulnerable to instability caused by brane pair-production. Since dilation arises naturally in the context of string theory, we study the effect of coupling dilation to Maxwell field on the stability of flat charged AdS black holes.
Entanglement Entropy of d-DIMENSIONAL Black Hole and Quantum Isolated Horizon
NASA Astrophysics Data System (ADS)
Zhao, Hui-Hua; Li, Guang-Liang; Zhao, Ren; Ma, Meng-Sen; Zhang, Li-Chun
2013-09-01
Based on the works of Ghosh et al. who view the black hole entropy as the logarithm of the number of quantum states on the Quantum Isolated Horizon (QIH), the entropy of d-dimensional black hole is studied. According to the Unruh-Verlinde temperature deduced from the concept of entropic force, the statistical entropy of quantum fields under the background of d-dimensional spacetime is calculated by means of quantum statistics. The results reveal the relation between the entanglement entropy of black hole and the logarithm of the number of quantum states and display the effects of dimensions on the correction terms of the entanglement entropy.
Excised black hole spacetimes: Quasilocal horizon formalism applied to the Kerr example
Vasset, Nicolas; Novak, Jerome; Jaramillo, Jose Luis
2009-06-15
We present a numerical work aiming at the computation of excised initial data for black hole spacetimes in full general relativity, using the Dirac gauge in the context of a constrained formalism for the Einstein equations. Introducing the isolated horizon formalism for black hole excision, we especially solve the conformal metric part of the equations, and assess the boundary condition problem for it. In the stationary single black hole case, we present and justify a no-boundary treatment on the black hole horizon. We compare the data obtained with the well-known analytic Kerr solution in Kerr-Schild coordinates, and assess the widely used conformally flat approximation for simulating axisymmetric black hole spacetimes. Our method shows good concordance on physical and geometrical issues, with the particular application of the isolated horizon multipolar analysis to confirm that the solution obtained is indeed the Kerr spacetime. Finally, we discuss a previous suggestion in the literature for the boundary conditions for the conformal geometry on the horizon.
NASA Astrophysics Data System (ADS)
Lin, Kai; Satheeshkumar, V. H.; Wang, Anzhong
2016-06-01
In this paper, we show the existence of static and rotating universal horizons and black holes in gravitational theories with broken Lorentz invariance. We pay particular attention to the ultraviolet regime, and show that universal horizons and black holes exist not only in the low energy limit but also at the ultraviolet energy scales. This is realized by presenting various static and stationary exact solutions of the full theory of the projectable Hořava gravity with an extra U(1) symmetry in (2 +1 )-dimensions, which, by construction, is power-counting renormalizable.
Testing numerically the null Cauchy horizon singularity inside Kerr black holes
NASA Astrophysics Data System (ADS)
Burko, Lior; Khanna, Gaurav; Zenginoĝlu, Anil
2015-04-01
The Cauchy horizon inside a Kerr black hole develops an instability that transforms it into a curvature singularity. Perturbative analyses are consistent with the picture arising from fully nonlinear simulations of spherical charged black holes: this singularity is deformational weak and null for early retarded times. Despite much interest in this long-standing problem, no numerical simulations of the interior of a perturbed Kerr black hole have been done to date. Here, we report on preliminary results obtained from a linear simulation of the evolution of the fields under the collapse of a test wave packet. We use recent developments to a Teukolsky equation solver, which use (event) horizon-penetrating, hyperboloidal coordinates, which compactify null infinity and penetrate through both horizons. This numerical technology allows us to penetrate through the event horizon, and probe the fields on the approach to the Cauchy horizon singularity. We study the behavior of the Weyl scalars ψ0 and ψ4 and of the curvature scalar RαβγδRαβγδ , and confront our results with those of perturbation analysis. Our results may be useful when planning fully nonlinear numerical studies of rotating black hole interiors.
What happens to Petrov classification, on horizons of axisymmetric dirty black holes
Tanatarov, I. V.; Zaslavskii, O. B.
2014-02-15
We consider axisymmetric stationary dirty black holes with regular non-extremal or extremal horizons, and compute their on-horizon Petrov types. The Petrov type (PT) in the frame of the observer crossing the horizon can be different from that formally obtained in the usual (but singular in the horizon limit) frame of an observer on a circular orbit. We call this entity the boosted Petrov type (BPT), as the corresponding frame is obtained by a singular boost from the regular one. The PT off-horizon can be more general than PT on-horizon and that can be more general than the BPT on horizon. This is valid for all regular metrics, irrespective of the extremality of the horizon. We analyze and classify the possible relations between the three characteristics and discuss the nature and features of the underlying singular boost. The three Petrov types can be the same only for space-times of PT D and O off-horizon. The mutual alignment of principal null directions and the generator in the vicinity of the horizon is studied in detail. As an example, we also analyze a special class of metrics with utra-extremal horizons (for which the regularity conditions look different from the general case) and compare their off-horizon and on-horizon algebraic structure in both frames.
Horizon structure of rotating Einstein-Born-Infeld black holes and shadow
NASA Astrophysics Data System (ADS)
Atamurotov, Farruh; Ghosh, Sushant G.; Ahmedov, Bobomurat
2016-05-01
We investigate the horizon structure of the rotating Einstein-Born-Infeld solution which goes over to the Einstein-Maxwell's Kerr-Newman solution as the Born-Infeld parameter goes to infinity (β → ∞). We find that for a given β , mass M, and charge Q, there exist a critical spinning parameter aE and rHE, which corresponds to an extremal Einstein-Born-Infeld black hole with degenerate horizons, and aE decreases and rHE increases with increase of the Born-Infeld parameter β , while a
Entropy function from the gravitational surface action for an extremal near horizon black hole
NASA Astrophysics Data System (ADS)
Majhi, Bibhas Ranjan
2015-11-01
It is often argued that all the information of a gravitational theory is encoded in the surface term of the action; which means one can find several physical quantities just from the surface term without incorporating the bulk part of the action. This has been observed in various instances; e.g. the derivation of the Einstein's equations, the surface term calculated on the horizon leads to the entropy, etc. Here I investigate the role of it in the context of the entropy function and the entropy of extremal near horizon black holes. Considering only the Gibbons-Hawking-York (GHY) surface term to define an entropy function for the extremal near horizon black hole solution, it is observed that the extremization of such a function leads to the exact value of the horizon entropy. This analysis again supports the previous claim that the gravitational action is of a " holographic" nature - the surface term contains information of the bulk.
Liko, Tomas
2009-04-15
We study the mechanics of D-dimensional isolated horizons (IHs) for Einstein gravity in the presence of arbitrary p-form matter fields. This generalizes the analysis of Copsey and Horowitz to nonstationary spacetimes and therefore the local first law in D>4 dimensions to include nonmonopolar (dipole) charges. The only requirement for the local first law to hold is that the action has to be differentiable. The resulting conserved charges are all intrinsic to the horizon and are independent of the topology of the horizon cross sections. We explicitly calculate the local charges for five-dimensional black holes and black rings that are relevant within the context of superstring theory. We conclude with some comments on the black-hole/string correspondence principle and argue that IHs (or some other quasilocal variant) should play a fundamental role in superstring theory.
Local invariants vanishing on stationary horizons: a diagnostic for locating black holes.
Page, Don N; Shoom, Andrey A
2015-04-10
Inspired by the example of Abdelqader and Lake for the Kerr metric, we construct local scalar polynomial curvature invariants that vanish on the horizon of any stationary black hole: the squared norms of the wedge products of n linearly independent gradients of scalar polynomial curvature invariants, where n is the local cohomogeneity of the spacetime. PMID:25910105
Ansorg, Marcus; Hennig, Jörg
2009-06-01
We study the interior electrovacuum region of axisymmetric and stationary black holes with surrounding matter and find that there exists always a regular inner Cauchy horizon inside the black hole, provided the angular momentum J and charge Q of the black hole do not vanish simultaneously. In particular, we derive an explicit relation for the metric on the Cauchy horizon in terms of that on the event horizon. Moreover, our analysis reveals the remarkable universal relation (8piJ);{2}+(4piQ;{2});{2}=A;{+}A;{-}, where A+ and A- denote the areas of event and Cauchy horizon, respectively. PMID:19658851
Horizon structure and shadow of rotating Einstein-Born-Infeld black holes
NASA Astrophysics Data System (ADS)
Atamurotov, Farruh
2016-07-01
We investigate the horizon structure of the rotating Einstein-Born-Infeld solution which goes over to the Einstein-Maxwell's Kerr-Newman solution as the Born-Infeld parameter goes to innity ( ! 1). We nd that for a given , mass M and charge Q, there exist critical spinning parameter aE and rEH, which corresponds to an extremal Einstein-Born-Infeld black hole with degenerate horizons, and aE decreases and rEH increases with increase in the Born-Infeld parameter . While a < aE describe a non-extremal Einstein-Born- Infeld black hole with outer and inner horizons. Similarly, the e ect of on innite redshift surface and in turn on ergoregion is also included. It is well known that a black hole can cast a shadow as an optical appearance due to its strong gravitational eld. We also investigate the shadow cast by the rotating Einstein- Born-Infeld black hole and demonstrate that the null geodesic equations can be integrated that allows us to investigate the shadow cast by a black hole which is found to be a dark zone covered by a circle. Interestingly, the shadows of Einstein-Born-Infeld black hole is slightly smaller than for the Reissner-Nordstrom black hole which are concentric circles, for di erent values of the Born-Infeld parameter , whose radius decreases with increase in the value of parameter . The shadows for the rotating Einstein-Born-Infeld solution are also included.
Two canonical conjugate pairs at the horizon of a D 1 D 5 black hole
NASA Astrophysics Data System (ADS)
Hadad, Merav; Rosenblum, Levy
2015-12-01
The Euclidean opening angle at the r -tE surface, Θr -tE at the horizon of a black hole, is canonically conjugate to the black hole entropy. We prove that for a D 1 D 5 black hole there exists in addition to this pair, another canonical pair: the opening angle at the r -y surface, Θr -y, and a Wald-like term SW r -y. This leads to an uncertainty at Θr -y which suggests that the surface r -y is actually a superposition of surfaces with different conical singularities. This corresponds to the same type of singularities obtained by string theory excitations of a D 1 D 5 black hole.
Brown-York quasilocal energy in Lanczos-Lovelock gravity and black hole horizons
NASA Astrophysics Data System (ADS)
Chakraborty, Sumanta; Dadhich, Naresh
2015-12-01
A standard candidate for quasilocal energy in general relativity is the Brown-York energy, which is essentially a two dimensional surface integral of the extrinsic curvature on the two-boundary of a spacelike hypersurface referenced to flat spacetime. Several years back one of us had conjectured that the black hole horizon is defined by equipartition of gravitational and non-gravitational energy. By employing the above definition of quasilocal Brown-York energy, we have verified the equipartition conjecture for static charged and charged axi-symmetric black holes in general relativity. We have further generalized the Brown-York formalism to all orders in Lanczos-Lovelock theories of gravity and have verified the conjecture for pure Lovelock charged black hole in all even d = 2 m + 2 dimensions, where m is the degree of Lovelock action. It turns out that the equipartition conjecture works only for pure Lovelock, and not for Einstein-Lovelock black holes.
Quantum-gravity effects outside the horizon spark black to white hole tunneling
NASA Astrophysics Data System (ADS)
Haggard, Hal M.; Rovelli, Carlo
2015-11-01
We show that there is a classical metric satisfying the Einstein equations outside a finite spacetime region where matter collapses into a black hole and then emerges from a white hole. We compute this metric explicitly. We show how quantum theory determines the (long) time for the process to happen. A black hole can thus quantum tunnel into a white hole. For this to happen, quantum gravity should affect the metric also in a small region outside the horizon; we show that, contrary to what is commonly assumed, this is not forbidden by causality or by the semiclassical approximation, because quantum effects can pile up over a long time. This scenario alters radically the discussion on the black hole information puzzle.
Entropy of extremal black holes: Horizon limits through charged thin shells in a unified approach
NASA Astrophysics Data System (ADS)
Lemos, José P. S.; Quinta, Gonçalo M.; Zaslavskii, Oleg B.
2016-04-01
Using a unified approach, we study the entropy of extremal black holes through the entropy of an electrically charged thin shell. We encounter three cases in which a shell can be taken to its own gravitational or horizon radius and become an extremal spacetime. In case 1, we use a nonextremal shell, calculate all the thermodynamic quantities including the entropy, take it to the horizon radius, and then take the extremal limit. In case 2, we take the extremal limit and the horizon radius limit simultaneously; i.e., as the shell approaches its horizon radius, it also approaches extremality. In case 3, we take first an extremal shell, and then take its horizon radius. We find that the thermodynamic quantities, in general, have different expressions in the three different cases. The entropy is the Bekenstein-Hawking entropy S =A+/4 (where A+ is the horizon area) in cases 1 and 2, and in case 3 it can be any well-behaved function of A+. The contributions from the various thermodynamic quantities for the entropy in all three cases are distinct. Indeed, in cases 1 and 2, the limits agree in what concerns the entropy but they disagree in the behavior of all other thermodynamic quantities. Cases 2 and 3 disagree in what concerns the entropy but agree in the behavior of the local temperature and electric potential. Case 2 is, in a sense, intermediate between cases 1 and 3. Our approach sheds light on the extremal black hole entropy issue.
Area spectrum of extremal black holes with warped AdS near-horizon geometry
NASA Astrophysics Data System (ADS)
Wen, Wen-Yu
2014-06-01
In this paper, we provide an alternative method to study the area spectrum of certain classes of extremal black holes which have near-horizon geometry as warped AdS. We argue that previous methods which are based on the existence of quasinormal modes may not be applicable in the extremal limit. The topology difference of the near-horizon geometry between non-extremal and extremal black holes implies a separate treatment is needed to study the area discreteness in the extremal limit. To be specific, we will study area spectrum of supersymmetric BMPV black holes/black rings and Reissner-Nordström (RN) black holes at the extremal limit. Inspired by the recently established Kerr/CFT and RN/CFT correspondence, we propose a new way to quantize the area regardless of the (non-)existence of quasinormal modes or zero Hawking temperature. At last, we propose a dilute gas model and harmonic oscillator model which have same degrees of freedom as the dual CFT.
Acceleration of a static observer near the event horizon of a static isolated black hole
NASA Astrophysics Data System (ADS)
Doughty, Noel A.
1981-05-01
The magnitude of the proper acceleration of a static observer (or test particle) in a static, isolated, spherically symmetric space-time region is compared with the Newtonian result including the situation in the interior of a perfect-fluid star. The calculation shows that the proper acceleration diverges on the event horizon of a spherically symmetric black hole. The 'surface gravity' of a spherically symmetric black hole, as used in descriptions of the Hawking radiation, is then explicitly related to the accelerations of such static observers, thus providing a simple physical interpretation of the surface gravity and illustrating the global (nonlocal) nature of the event horizon. The calculations are presented in the SI physical equations used almost exclusively by many students and teachers of physics.
Highly damped quasinormal modes of generic single-horizon black holes
NASA Astrophysics Data System (ADS)
Daghigh, Ramin G.; Kunstatter, Gabor
2005-10-01
We calculate analytically the highly damped quasinormal mode spectra of generic single-horizon black holes using the rigorous WKB techniques of Andersson and Howls (2004 Class. Quantum Grav. 21 1623). We thereby provide a firm foundation for previous analysis, and point out some of their possible limitations. The numerical coefficient in the real part of the highly damped frequency is generically determined by the behaviour of coupling of the perturbation to the gravitational field near the origin, as expressed in tortoise coordinates. This fact makes it difficult to understand how the famous ln(3) could be related to the quantum gravitational microstates near the horizon.
Schwarzschild-Hawking Plasmas near the Horizon of an Isolated Black Hole
NASA Astrophysics Data System (ADS)
Chou, W.; Tajima, T.
1997-11-01
Very close to the horizon of a black hole, the gravitational acceleration becomes so large that vacuum can begin to radiate (Hawking radiation). The temperature of this radiation can exceed (twice of) the rest mass of electrons and positrons at the distance to the horizon on the order of the Compton wavelength. It is demonstrated that in this vicinity an electron-positron plasma is realized and self-sustained even within 3Rs (Rs is the Schwarzschild radius). This plasma is studied in the 3+1 paradigm of general relativistic magnetohydrodynamics and various equilibrium and dynamical solutions of such a plasma in Rindler's coordinates are presented.
Horizon wave function for single localized particles: GUP and quantum black-hole decay
NASA Astrophysics Data System (ADS)
Casadio, Roberto; Scardigli, Fabio
2014-01-01
A localized particle in Quantum Mechanics is described by a wave packet in position space, regardless of its energy. However, from the point of view of General Relativity, if the particle's energy density exceeds a certain threshold, it should be a black hole. To combine these two pictures, we introduce a horizon wave function determined by the particle wave function in position space, which eventually yields the probability that the particle is a black hole. The existence of a minimum mass for black holes naturally follows, albeit not in the form of a sharp value around the Planck scale, but rather like a vanishing probability that a particle much lighter than the Planck mass may be a black hole. We also show that our construction entails an effective generalized uncertainty principle (GUP), simply obtained by adding the uncertainties coming from the two wave functions associated with a particle. Finally, the decay of microscopic (quantum) black holes is also described in agreement with what the GUP predicts.
Statistical Entropy of Four-Dimensional Rotating Black Holes from Near-Horizon Geometry
Cvetic, M.; Larsen, F.; Cvetic, M.
1999-01-01
We show that a class of four-dimensional rotating black holes allow five-dimensional embeddings as black rotating strings. Their near-horizon geometry factorizes locally as a product of the three-dimensional anti{endash}de Sitter space-time and a two-dimensional sphere (AdS{sub 3}{times}S{sup 2} ), with angular momentum encoded in the global space-time structure. Following the observation that the isometries on the AdS{sub 3} space induce a two-dimensional (super)conformal field theory on the boundary, we reproduce the microscopic entropy with the correct dependence on the black hole angular momentum. {copyright} {ital 1999} {ital The American Physical Society }
Small black holes on branes: Is the horizon regular or singular?
NASA Astrophysics Data System (ADS)
Karasik, D.; Sahabandu, C.; Suranyi, P.; Wijewardhana, L. C.
2004-09-01
We investigate the following question: Consider a small mass, with ɛ (the ratio of the Schwarzschild radius and the bulk curvature length) much smaller than 1, that is confined to the TeV brane in the Randall-Sundrum I scenario. Does it form a black hole with a regular horizon, or a naked singularity? The metric is expanded in ɛ and the asymptotic form of the metric is given by the weak field approximation (linear in the mass). In first order of ɛ we show that the iteration of the weak field solution, which includes only integer powers of the mass, leads to a solution that has a singular horizon. We find a solution with a regular horizon but its asymptotic expansion in the mass also contains half integer powers.
Renormalized stress-energy tensor near the horizon of a slowly evolving, rotating black hole
NASA Astrophysics Data System (ADS)
Frolov, Valery P.; Thorne, Kip S.
1989-04-01
The renormalized expectation value of the stress-energy tensor
Horizon growth of supermassive black hole seeds fed with collisional dark matter
NASA Astrophysics Data System (ADS)
Lora-Clavijo, F. D.; Gracia-Linares, M.; Guzmán, F. S.
2014-09-01
We present the accretion of collisional dark matter on a supermassive black hole (SMBH) seed. The analysis is based on the numerical solution of the fully coupled system of Einstein-Euler equations for spherically symmetric flow, where the dark matter is modelled as a perfect fluid that obeys an ideal gas equation of state. As the black hole actually grows, the accretion rate of dark matter corresponds to the black hole apparent horizon growth rate. We analyse cases with infall velocity as high as 0.5c and an environment density of 100 M⊙ pc-3, which are rather extreme conditions. Being the radial flux the maximum accretion case, our results show that the accretion of an ideal gas, eventually collisional dark matter, does not contribute significantly to SMBH masses. This result favours models predicting SMBHs were formed already with supermasses. We show that despite the fact that we are solving the full general relativistic system, for the parameter space studied our results are surprisingly similar to those obtained using the Bondi formula, which somehow certifies its use as a good approximation of a fully evolving space-time with spherical symmetry at short scales at least for dark matter densities. Additionally, we study the density profile of the gas and find that the presence of SMBHs redistributes the gas near the event horizon with a cuspy profile, whereas beyond a small fraction of a parsec it is not cuspy anymore.
NASA Astrophysics Data System (ADS)
Setare, M. R.; Adami, H.
2016-09-01
We consider the Generalized Minimal Massive Gravity (GMMG) model in the first order formalism. We show that all the solutions of the Einstein gravity with negative cosmological constants solve the equations of motion of considered model. Then we find an expression for the off-shell conserved charges of this model. By considering the near horizon geometry of a three dimensional black hole in the Gaussian null coordinates, we find near horizon conserved charges and their algebra. The obtained algebra is centrally extended. By writing the algebra of conserved charges in terms of Fourier modes and considering the BTZ black hole solution as an example, one can see that the charge associated with rotations along Y0 coincides exactly with the angular momentum, and the charge associated with time translations T0 is the product of the black hole entropy and its temperature. As we expect, in the limit when the GMMG tends to the Einstein gravity, all the results we obtain in this paper reduce to the results of the paper [1].
Perturbations of near-horizon geometries and instabilities of Myers-Perry black holes
Durkee, Mark N.; Reall, Harvey S.
2011-05-15
It is shown that the equations governing linearized gravitational (or electromagnetic) perturbations of the near-horizon geometry of any known extreme vacuum black hole (allowing for a cosmological constant) can be Kaluza-Klein reduced to give the equation of motion of a charged scalar field in AdS{sub 2} with an electric field. One can define an effective Breitenloehner-Freedman bound for such a field. We conjecture that if a perturbation preserves certain symmetries then a violation of this bound should imply an instability of the full black hole solution. Evidence in favor of this conjecture is provided by the extreme Kerr solution and extreme cohomogeneity-1 Myers-Perry solution. In the latter case, we predict an instability in seven or more dimensions and, in five dimensions, we present results for operator conformal weights assuming the existence of a conformal field theory dual. We sketch a proof of our conjecture for scalar field perturbations.
NASA Astrophysics Data System (ADS)
Dadras, Pouria; Firouzjaee, J. T.; Mansouri, Reza
2012-11-01
We propose a special solution of Einstein equations in the general Vaidya form representing a dynamical black hole having horizon cross-sections with toroidal topology. The concrete model enables us to study for the first time dynamical horizons with toroidal topology, its area law, and the question of matter flux inside the horizon, without using a cut-and-paste technology to construct the solution.
NASA Astrophysics Data System (ADS)
Hutchinson, John; Stojkovic, Dejan
2016-07-01
We examine the basic assumptions in the original setup of the firewall paradox. The main claim is that a single mode of the lathe radiation is maximally entangled with the mode inside the horizon and simultaneously with the modes of early Hawking radiation. We argue that this situation never happens during the evolution of a black hole. Quantum mechanics tells us that while the black hole exists, unitary evolution maximally entangles a late mode located just outside the horizon with a combination of early radiation and black hole states, instead of either of them separately. One of the reasons for this is that the black hole radiation is not random and strongly depends on the geometry and charge of the black hole, as detailed numerical calculations of Hawking evaporation clearly show. As a consequence, one can not factor out the state of the black hole. However, this extended entanglement between the black hole and modes of early and late radiation indicates that, as the black hole ages, the local Rindler horizon is modified out to macroscopic distances from the black hole. Fundamentally non-local physics nor firewalls are not necessary to explain this result. We propose an infrared mechanism called icezone that is mediated by low energy interacting modes and acts near any event horizon to entangle states separated by long distances. These interactions at first provide small corrections to the thermal Hawking radiation. At the end of evaporation however the effect of interactions is as large as the Hawking radiation and information is recovered for an outside observer. We verify this in an explicit construction and calculation of the density matrix of a spin model.
Spherically symmetric systems of fields and black holes. II. Apparent horizon in canonical formalism
Hajicek, P.
1984-09-15
We study the action of a two-dimensional model of gravity found in the preceding paper. We transform the action to the first-order Arnowitt-Deser-Misner form, and work out the generalized momenta and super-Hamiltonians. We propose to foliate the spacetime in such a way that the inside of the apparent horizon will be cut away. In the classical theory, no loss of information for the development of states from scrI/sup -/ to scrI/sup +/ can result, but in the corresponding quantum theory, some such losses could occur if a black hole evaporates. We study the boundary conditions for the fields at the apparent horizon which are implied by such a foliation, and calculate the corresponding surface correction to the Hamiltonian by the method of Regge and Teitelboim. We generalize the so-called Berger-Chitre-Moncrief-Nutku gauge in such a way that the fields cannot violate the boundary conditions. In this gauge, we perform an explicit total reduction of the canonical formalism so that only the true dynamical variables appear in the Hamiltonian. The reduced Hamiltonian splits into a black hole and a field part.
Spherically symmetric systems of fields and black holes. II. Apparent horizon in canonical formalism
NASA Astrophysics Data System (ADS)
Hajicek, P.
1984-09-01
We study the action of a two-dimensional model of gravity found in the preceding paper. We transform the action to the first-order Arnowitt-Deser-Misner form, and work out the generalized momenta and super-Hamiltonians. We propose to foliate the spacetime in such a way that the inside of the apparent horizon will be cut away. In the classical theory, no loss of information for the development of states from I- to I+ can result, but in the corresponding quantum theory, some such losses could occur if a black hole evaporates. We study the boundary conditions for the fields at the apparent horizon which are implied by such a foliation, and calculate the corresponding surface correction to the Hamiltonian by the method of Regge and Teitelboim. We generalize the socalled Berger-Chitre-Moncrief-Nutku gauge in such a way that the fields cannot violate the boundary conditions. In this gauge, we perform an explicit total reduction of the canonical formalism so that only the true dynamical variables appear in the Hamiltonian. The reduced Hamiltonian splits into a black hole and a field part.
NASA Astrophysics Data System (ADS)
Chen, Shi-Wu; Liu, Xiong-Wei; Lin, Kai; Zeng, Xiao-Xiong; Yang, Shu-Zheng
2008-08-01
Hawking radiation from cosmological horizon and event horizon of the Reissner Nordström de Sitter black hole with a global monopole is studied via a new method that was propounded by Robinson and Wilzek and elaborated by Banerjee and Kulkarni. The results show that the gauge current and energy-momentum tensor fluxes, which required keeping gauge covariance and general coordinate invariance at the quantum level in the effective field theory, are exactly equivalent to those of Hawking radiation from the event horizon and the cosmological horizon, respectively.
Bambi, Cosimo
2013-01-01
Black holes have the peculiar and intriguing property of having an event horizon, a one-way membrane causally separating their internal region from the rest of the Universe. Today, astrophysical observations provide some evidence for the existence of event horizons in astrophysical black hole candidates. In this short paper, I compare the constraint we can infer from the nonobservation of electromagnetic radiation from the putative surface of these objects with the bound coming from the ergoregion instability, pointing out the respective assumptions and limitations. PMID:23853532
NASA Astrophysics Data System (ADS)
Fischetti, Sebastian; Marolf, Donald; Santos, Jorge E.
2013-04-01
We construct stationary non-equilibrium black funnels locally asymptotic to global AdS4 in vacuum Einstein-Hilbert gravity with a negative cosmological constant. These are non-compactly-generated black holes in which a single connected bulk horizon extends to meet the conformal boundary. Thus the induced (conformal) boundary metric has smooth horizons as well. In our examples, the boundary spacetime contains a pair of black holes connected through the bulk by a tubular bulk horizon. Taking one boundary black hole to be hotter than the other (ΔT ≠ 0) prohibits equilibrium. The result is a so-called flowing funnel, a stationary bulk black hole with a non-Killing horizon that may be said to transport heat toward the cooler boundary black hole. While generators of the bulk future horizon evolve toward zero expansion in the far future, they begin at finite affine parameter with infinite expansion on a singular past horizon characterized by power-law divergences with universal exponents. We explore both the horizon generators and the boundary stress tensor in detail. While most of our results are numerical, a semi-analytic fluid/gravity description can be obtained by passing to a one-parameter generalization of the above boundary conditions. The new parameter detunes the temperatures Tbulk BH and Tbndy BH of the bulk and boundary black holes, and we may then take α = {T_{bndy \\ BH}/{T_{bulk \\ BH}} and ΔT small to control the accuracy of the fluid-gravity approximation. In the small α, ΔT regime, we find excellent agreement with our numerical solutions. For our cases the agreement also remains quite good even for α ˜ 0.8. In terms of a dual CFT, our α = 1 solutions describe heat transport via a large N version of Hawking radiation through a deconfined plasma that couples efficiently to both boundary black holes.
NASA Astrophysics Data System (ADS)
Fischetti, Sebastian; Marolf, Donald; Santos, Jorge
2013-04-01
We construct stationary non-equilibrium black funnels locally asymptotic to global AdS4 in vacuum Einstein-Hilbert gravity with negative cosmological constant. These are non-compactly-generated black holes in which a single connected bulk horizon extends to meet the conformal boundary. Thus the induced (conformal) boundary metric has smooth horizons as well. In our examples, the boundary spacetime contains a pair of black holes connected through the bulk by a tubular bulk horizon. Taking one boundary black hole to be hotter than the other (δT !=0) prohibits equilibrium. The result is a so-called flowing funnel, a stationary bulk black hole with a non-Killing horizon that may be said to transport heat toward the cooler boundary black hole. While most of our results are numerical, a semi-analytic fluid/gravity description can be obtained by passing to a one-parameter generalization of the above boundary conditions. In the fluid regime, we find excellent agreement with our numerical solutions. In terms of a dual CFT, our solutions describe heat transport via a large N version of Hawking radiation through a deconfined plasma that couples efficiently to both boundary black holes.
A Connection between Plasma Conditions near Black Hole Event Horizons and Outflow Properties
NASA Astrophysics Data System (ADS)
Koljonen, K. I. I.; Russell, D. M.; Fernández-Ontiveros, J. A.; Markoff, Sera; Russell, T. D.; Miller-Jones, J. C. A.; van der Horst, A. J.; Bernardini, F.; Casella, P.; Curran, P. A.; Gandhi, P.; Soria, R.
2015-12-01
Accreting black holes are responsible for producing the fastest, most powerful outflows of matter in the universe. The formation process of powerful jets close to black holes is poorly understood, and the conditions leading to jet formation are currently hotly debated. In this paper, we report an unambiguous empirical correlation between the properties of the plasma close to the black hole and the particle acceleration properties within jets launched from the central regions of accreting stellar-mass and supermassive black holes. In these sources the emission of the plasma near the black hole is characterized by a power law at X-ray energies during times when the jets are produced. We find that the photon index of this power law, which gives information on the underlying particle distribution, correlates with the characteristic break frequency in the jet spectrum, which is dependent on magnetohydrodynamical processes in the outflow. The observed range in break frequencies varies by five orders of magnitude in sources that span nine orders of magnitude in black hole mass, revealing a similarity of jet properties over a large range of black hole masses powering these jets. This correlation demonstrates that the internal properties of the jet rely most critically on the conditions of the plasma close to the black hole, rather than other parameters such as the black hole mass or spin, and will provide a benchmark that should be reproduced by the jet formation models.
Brügmann, B.; Ghez, A. M.; Greiner, J.
2001-01-01
Recent progress in black hole research is illustrated by three examples. We discuss the observational challenges that were met to show that a supermassive black hole exists at the center of our galaxy. Stellar-size black holes have been studied in x-ray binaries and microquasars. Finally, numerical simulations have become possible for the merger of black hole binaries. PMID:11553801
Circular geodesic of Bardeen and Ayon-Beato-Garcia regular black-hole and no-horizon spacetimes
NASA Astrophysics Data System (ADS)
Stuchlík, Zdeněk; Schee, Jan
2015-12-01
In this paper, we study circular geodesic motion of test particles and photons in the Bardeen and Ayon-Beato-Garcia (ABG) geometry describing spherically symmetric regular black-hole or no-horizon spacetimes. While the Bardeen geometry is not exact solution of Einstein's equations, the ABG spacetime is related to self-gravitating charged sources governed by Einstein's gravity and nonlinear electrodynamics. They both are characterized by the mass parameter m and the charge parameter g. We demonstrate that in similarity to the Reissner-Nordstrom (RN) naked singularity spacetimes an antigravity static sphere should exist in all the no-horizon Bardeen and ABG solutions that can be surrounded by a Keplerian accretion disc. However, contrary to the RN naked singularity spacetimes, the ABG no-horizon spacetimes with parameter g/m > 2 can contain also an additional inner Keplerian disc hidden under the static antigravity sphere. Properties of the geodesic structure are reflected by simple observationally relevant optical phenomena. We give silhouette of the regular black-hole and no-horizon spacetimes, and profiled spectral lines generated by Keplerian rings radiating at a fixed frequency and located in strong gravity region at or nearby the marginally stable circular geodesics. We demonstrate that the profiled spectral lines related to the regular black-holes are qualitatively similar to those of the Schwarzschild black-holes, giving only small quantitative differences. On the other hand, the regular no-horizon spacetimes give clear qualitative signatures of their presence while compared to the Schwarschild spacetimes. Moreover, it is possible to distinguish the Bardeen and ABG no-horizon spacetimes, if the inclination angle to the observer is known.
NASA Astrophysics Data System (ADS)
Liang, Jun
2014-01-01
By employing an adiabatic invariant and implementing the Bohr-Sommerfield quantization rule, I study the quantization of a regular black hole inspired by noncommutative geometry in AdS3 spacetime. The entropy spectrum as well as the horizon area spectrum of the black hole is obtained. It is shown that the spectra are discrete, and the spacing of the entropy spectrum is equidistant; in the limit , the area spectrum depends on the noncommutative parameter and the cosmological constant, but the spacing of the area spectrum is equidistant up to leading order in θ, and is independent of the noncommutative parameter and the cosmological constant.
NASA Astrophysics Data System (ADS)
Livio, Mario; Koekemoer, Anton M.
2011-02-01
Participants; Preface Mario Livio and Anton Koekemoer; 1. Black holes, entropy, and information G. T. Horowitz; 2. Gravitational waves from black-hole mergers J. G. Baker, W. D. Boggs, J. M. Centrella, B. J. Kelley, S. T. McWilliams and J. R. van Meter; 3. Out-of-this-world physics: black holes at future colliders G. Landsberg; 4. Black holes in globular clusters S. L. W. McMillan; 5. Evolution of massive black holes M. Volonteri; 6. Supermassive black holes in deep multiwavelength surveys C. M. Urry and E. Treister; 7. Black-hole masses from reverberation mapping B. M. Peterson and M. C. Bentz; 8. Black-hole masses from gas dynamics F. D. Macchetto; 9. Evolution of supermassive black holes A. Müller and G. Hasinger; 10. Black-hole masses of distant quasars M. Vestergaard; 11. The accretion history of supermassive black holes K. Brand and the NDWFS Boötes Survey Teams; 12. Strong field gravity and spin of black holes from broad iron lines A. C. Fabian; 13. Birth of massive black-hole binaries M. Colpi, M. Dotti, L. Mayer and S. Kazantzidis; 14. Dynamics around supermassive black holes A. Gualandris and D. Merritt; 15. Black-hole formation and growth: simulations in general relativity S. L. Shapiro; 16. Estimating the spins of stellar-mass black holes J. E. McClintock, R. Narayan and R. Shafee; 17. Stellar relaxation processes near the Galactic massive black hole T. Alexander; 18. Tidal disruptions of stars by supermassive black holes S. Gezari; 19. Where to look for radiatively inefficient accretion flows in low-luminosity AGN M. Chiaberge; 20. Making black holes visible: accretion, radiation, and jets J. H. Krolik.
NASA Astrophysics Data System (ADS)
Ghosh, Kaushik
2016-01-01
In this article, we will discuss a Lorentzian sector calculation of the entropy of a minimally coupled scalar field in the Schwarzschild black hole background using the brick wall model of 't Hooft. In the original article, the Wentzel-Kramers-Brillouin (WKB) approximation was used for the modes that are globally stationary. In a previous article, we found that the WKB quantization rule together with a proper counting of the states, leads to a new expression of the scalar field entropy which is not proportional to the area of the horizon. The expression of the entropy is logarithmically divergent in the brick wall cut-off parameter in contrast to an inverse power divergence obtained earlier. In this article, we will consider the entropy for a thin shell of matter field of a given thickness surrounding the black hole horizon. The thickness is chosen to be large compared with the Planck length and is of the order of the atomic scale. We will discuss the corresponding boundary conditions and the appropriateness of the WKB approximation using the Regge-Wheeler tortoise coordinates. When expressed in terms of a covariant cut-off parameter, the entropy of a thin shell of matter field of a given thickness and surrounding the horizon in the Schwarzschild black hole background is given by an expression proportional to the area of the black hole horizon. This leading order divergent term in the cut-off parameter remains to be logarithmically divergent. The logarithmic divergence is expected from the nature of the near-horizon geometry and is discussed in detail at the end of Sect. 2. We will find that these discussions are significant in the context of the continuation to the Euclidean sector and the corresponding regularization schemes used to evaluate the thermodynamical properties of matter fields in curved spaces. These are related with to geometric aspects of curved spaces.
Mandel, Ilya
2005-10-15
The most promising way to compute the gravitational waves emitted by binary black holes (BBHs) in their last dozen orbits, where post-Newtonian techniques fail, is a quasistationary approximation introduced by Detweiler and being pursued by Price and others. In this approximation the outgoing gravitational waves at infinity and downgoing gravitational waves at the holes' horizons are replaced by standing waves so as to guarantee that the spacetime has a helical Killing vector field. Because the horizon generators will not, in general, be tidally locked to the holes' orbital motion, the standing waves will destroy the horizons, converting the black holes into naked singularities that resemble black holes down to near the horizon radius. This paper uses a spherically symmetric, scalar-field model problem to explore in detail the following BBH issues: (i) The destruction of a horizon by the standing waves. (ii) The accuracy with which the resulting naked singularity resembles a black hole. (iii) The conversion of the standing-wave spacetime (with a destroyed horizon) into a spacetime with downgoing waves by the addition of a 'radiation-reaction field'. (iv) The accuracy with which the resulting downgoing waves agree with the downgoing waves of a true black-hole spacetime (with horizon). The model problem used to study these issues consists of a Schwarzschild black hole endowed with spherical standing waves of a scalar field, whose wave frequency and near-horizon energy density are chosen to match those of the standing gravitational waves of the BBH quasistationary approximation. It is found that the spacetime metric of the singular, standing-wave spacetime, and its radiation-reaction-field-constructed downgoing waves are quite close to those for a Schwarzschild black hole with downgoing waves--sufficiently close to make the BBH quasistationary approximation look promising for non-tidally-locked black holes.
NASA Astrophysics Data System (ADS)
Xie, Zhi-Kun; Pan, Wei-Zhen; Yang, Xue-Jun
2013-03-01
Using a new tortoise coordinate transformation, we discuss the quantum nonthermal radiation characteristics near an event horizon by studying the Hamilton-Jacobi equation of a scalar particle in curved space-time, and obtain the event horizon surface gravity and the Hawking temperature on that event horizon. The results show that there is a crossing of particle energy near the event horizon. We derive the maximum overlap of the positive and negative energy levels. It is also found that the Hawking temperature of a black hole depends not only on the time, but also on the angle. There is a problem of dimension in the usual tortoise coordinate, so the present results obtained by using a correct-dimension new tortoise coordinate transformation may be more reasonable.
The cosmic evolution of massive black holes in the Horizon-AGN simulation
NASA Astrophysics Data System (ADS)
Volonteri, M.; Dubois, Y.; Pichon, C.; Devriendt, J.
2016-08-01
We analyse the demographics of black holes (BHs) in the large-volume cosmological hydrodynamical simulation Horizon-AGN. This simulation statistically models how much gas is accreted on to BHs, traces the energy deposited into their environment and, consequently, the back-reaction of the ambient medium on BH growth. The synthetic BHs reproduce a variety of observational constraints such as the redshift evolution of the BH mass density and the mass function. Strong self-regulation via AGN feedback, weak supernova feedback, and unresolved internal processes result in a tight BH-galaxy mass correlation. Starting at z ˜ 2, tidal stripping creates a small population of BHs over-massive with respect to the halo. The fraction of galaxies hosting a central BH or an AGN increases with stellar mass. The AGN fraction agrees better with multi-wavelength studies, than single-wavelength ones, unless obscuration is taken into account. The most massive haloes present BH multiplicity, with additional BHs gained by ongoing or past mergers. In some cases, both a central and an off-centre AGN shine concurrently, producing a dual AGN. This dual AGN population dwindles with decreasing redshift, as found in observations. Specific accretion rate and Eddington ratio distributions are in good agreement with observational estimates. The BH population is dominated in turn by fast, slow, and very slow accretors, with transitions occurring at z = 3 and z = 2, respectively.
The cosmic evolution of massive black holes in the Horizon-AGN simulation
NASA Astrophysics Data System (ADS)
Volonteri, M.; Dubois, Y.; Pichon, C.; Devriendt, J.
2016-08-01
We analyse the demographics of black holes (BHs) in the large-volume cosmological hydrodynamical simulation Horizon-AGN. This simulation statistically models how much gas is accreted onto BHs, traces the energy deposited into their environment and, consequently, the back-reaction of the ambient medium on BH growth. The synthetic BHs reproduce a variety of observational constraints such as the redshift evolution of the BH mass density and the mass function. Strong self-regulation via AGN feedback, weak supernova feedback, and unresolved internal processes result in a tight BH-galaxy mass correlation. Starting at z~2, tidal stripping creates a small population of BHs over-massive with respect to the halo. The fraction of galaxies hosting a central BH or an AGN increases with stellar mass. The AGN fraction agrees better with multi-wavelength studies, than single-wavelength ones, unless obscuration is taken into account. The most massive halos present BH multiplicity, with additional BHs gained by ongoing or past mergers. In some cases, both a central and an off-centre AGN shine concurrently, producing a dual AGN. This dual AGN population dwindles with decreasing redshift, as found in observations. Specific accretion rate and Eddington ratio distributions are in good agreement with observational estimates. The BH population is dominated in turn by fast, slow, and very slow accretors, with transitions occurring at z=3 and z=2 respectively.
NASA Astrophysics Data System (ADS)
Nakamura, Takashi; Nakano, Hiroyuki
2016-04-01
Using the Wentzel-Kramers-Brillouin method, we show that the peak location (r_peak) of the potential, which determines the quasinormal mode frequency of the Kerr black hole, obeys an accurate empirical relation as a function of the specific angular momentum a and the gravitational mass M. If the quasinormal mode with a/M ˜ 1 is observed by gravitational wave detectors, we can confirm the black-hole space-time around the event horizon, r_peak=r_+ +O(√ {1-q}), where r_+ is the event horizon radius. However, if the quasinormal mode is different from that of general relativity, we are forced to seek the true theory of gravity and/or face the existence of the naked singularity.
NASA Astrophysics Data System (ADS)
Nakamura, Takashi; Nakano, Hiroyuki
2016-04-01
Using the Wentzel-Kramers-Brillouin method, we show that the peak location (r_peak) of the potential, which determines the quasinormal mode frequency of the Kerr black hole, obeys an accurate empirical relation as a function of the specific angular momentum a and the gravitational mass M. If the quasinormal mode with a/M ˜ 1 is observed by gravitational wave detectors, we can confirm the black-hole space-time around the event horizon, r_peak=r_+ +O(√{1-q}), where r_+ is the event horizon radius. However, if the quasinormal mode is different from that of general relativity, we are forced to seek the true theory of gravity and/or face the existence of the naked singularity.
NASA Astrophysics Data System (ADS)
Gold, Roman; McKinney, Jonathan; Johnson, Michael; Doeleman, Sheperd; Event Horizon Telescope Collaboration
2016-03-01
Accreting black holes (BHs) are at the core of relativistic astrophysics as messengers of the strong-field regime of General Relativity and prime targets of several observational campaigns, including imaging the black hole shadow in SagA* and M87 with the Event Horizon Telescope. I will present results from general-relativistic, polarized radiatiative transfer models for the inner accretion flow in Sgr A*. The models use time dependent, global GRMHD simulations of hot accretion flows including standard-and-normal-evolution (SANE) and magnetically arrested disks (MAD). I present comparisons of these synthetic data sets to the most recent observations with the Event Horizon Telescope and show how the data distinguishes the models and probes the magnetic field structure.
The long string at the stretched horizon and the entropy of large non-extremal black holes
NASA Astrophysics Data System (ADS)
Mertens, Thomas G.; Verschelde, Henri; Zakharov, Valentin I.
2016-02-01
We discuss how long strings can arise at the stretched horizon and how they can account for the Bekenstein-Hawking entropy. We use the thermal scalar field theory to derive the asymptotic density of states and corresponding stress tensor of a microcanonical long string gas in Rindler space. We show that the equality of the Hagedorn and Hawking temperatures gives rise to the tree-level entropy of large black holes in accordance with the Bekenstein-Hawking-Wald formula.
Quasinormal modes for single horizon black holes in generic 2D dilaton gravity
NASA Astrophysics Data System (ADS)
Kettner, Joanne; Kunstatter, Gabor; Medved, A. J. M.
2004-12-01
There has been some recent speculation that a connection may exist between the quasinormal-mode spectra of highly damped black holes and the fundamental theory of quantum gravity. This notion follows from a conjecture by Hod that the real part of the highly damped mode frequencies can be used to calibrate the semi-classical level spacing in the black-hole quantum area spectrum. However, even if the level spacing can be fixed in this manner, it still remains unclear whether this implies a physically significant 'duality' or merely a numerical coincidence. This tapestry of ideas serves as the motivation for the current paper. We utilize the 'monodromy approach' to calculate the quasinormal-mode spectra for a generic class of black holes in two-dimensional dilatonic gravity. Our results agree with the prior literature whenever a direct comparison is possible and provide the analysis of a much more diverse class of black-hole models than previously considered.
Horizon quantum mechanics: A hitchhiker’s guide to quantum black holes
NASA Astrophysics Data System (ADS)
Casadio, Roberto; Giugno, Andrea; Micu, Octavian
2016-01-01
It is congruous with the quantum nature of the world to view the spacetime geometry as an emergent structure that shows classical features only at some observational level. One can thus conceive the spacetime manifold as a purely theoretical arena, where quantum states are defined, with the additional freedom of changing coordinates like any other symmetry. Observables, including positions and distances, should then be described by suitable operators acting on such quantum states. In principle, the top-down (canonical) quantization of Einstein-Hilbert gravity falls right into this picture, but is notoriously very involved. The complication stems from allowing all the classical canonical variables that appear in the (presumably) fundamental action to become quantum observables acting on the “superspace” of all metrics, regardless of whether they play any role in the description of a specific physical system. On can instead revisit the more humble “minisuperspace” approach and choose the gravitational observables not simply by imposing some symmetry, but motivated by their proven relevance in the (classical) description of a given system. In particular, this review focuses on compact, spherically symmetric, quantum mechanical sources, in order to determine the probability that they are black holes (BHs) rather than regular particles. The gravitational radius is therefore lifted to the status of a quantum mechanical operator acting on the “horizon wave function (HWF),” the latter being determined by the quantum state of the source. This formalism is then applied to several sources with a mass around the fundamental scale, which are viewed as natural candidates of quantum BHs.
NASA Astrophysics Data System (ADS)
Emparan, Roberto; Figueras, Pau; Martínez, Marina
2014-12-01
We study six-dimensional rotating black holes with bumpy horizons: these are topologically spherical, but the sizes of symmetric cycles on the horizon vary nonmonotonically with the polar angle. We construct them numerically for the first three bumpy families, and follow them in solution space until they approach critical solutions with localized singularities on the horizon. We find strong evidence of the conical structures that have been conjectured to mediate the transitions to black rings, to black Saturns, and to a novel class of bumpy black rings. For a different, recently identified class of bumpy black holes, we find evidence that this family ends in solutions with a localized singularity that exhibits apparently universal properties, and which does not seem to allow for transitions to any known class of black holes.
NASA Astrophysics Data System (ADS)
Psaltis, Dimitrios; Özel, Feryal; Chan, Chi-Kwan; Marrone, Daniel P.
2015-12-01
The half opening angle of a Kerr black hole shadow is always equal to (5 ± 0.2)GM/Dc2, where M is the mass of the black hole and D is its distance from the Earth. Therefore, measuring the size of a shadow and verifying whether it is within this 4% range constitutes a null hypothesis test of general relativity. We show that the black hole in the center of the Milky Way, Sgr A*, is the optimal target for performing this test with upcoming observations using the Event Horizon Telescope (EHT). We use the results of optical/IR monitoring of stellar orbits to show that the mass-to-distance ratio for Sgr A* is already known to an accuracy of ∼4%. We investigate our prior knowledge of the properties of the scattering screen between Sgr A* and the Earth, the effects of which will need to be corrected for in order for the black hole shadow to appear sharp against the background emission. Finally, we explore an edge detection scheme for interferometric data and a pattern matching algorithm based on the Hough/Radon transform and demonstrate that the shadow of the black hole at 1.3 mm can be localized, in principle, to within ∼9%. All these results suggest that our prior knowledge of the properties of the black hole, of scattering broadening, and of the accretion flow can only limit this general relativistic null hypothesis test with EHT observations of Sgr A* to ≲10%.
Psaltis, Dimitrios; Narayan, Ramesh; Loeb, Abraham; Doeleman, Sheperd S.; Fish, Vincent L.; Broderick, Avery E. E-mail: rnarayan@cfa.harvard.edu
2015-01-01
Observations of the black hole in the center of the Milky Way with the Event Horizon Telescope at 1.3 mm have revealed a size of the emitting region that is smaller than the size of the black-hole shadow. This can be reconciled with the spectral properties of the source, if the accretion flow is seen at a relatively high inclination (50°-60°). Such an inclination makes the angular momentum of the flow, and perhaps of the black hole, nearly aligned with the angular momenta of the orbits of stars that lie within ≅ 3'' from the black hole. We discuss the implications of such an alignment for the properties of the black hole and of its accretion flow. We argue that future Event Horizon Telescope observations will not only refine the inclination of Sgr A* but also measure precisely its orientation on the plane of the sky.
Imaging the supermassive black hole shadow and jet base of M87 with the event horizon telescope
Lu, Ru-Sen; Fish, Vincent L.; Doeleman, Sheperd S.; Pankratius, Victor; Broderick, Avery E.; Baron, Fabien; Monnier, John D.
2014-06-20
The Event Horizon Telescope (EHT) is a project to assemble a Very Long Baseline Interferometry (VLBI) network of millimeter wavelength dishes that can resolve strong field general relativistic signatures near a supermassive black hole. As planned, the EHT will include enough dishes to enable imaging of the predicted black hole 'shadow', a feature caused by severe light bending at the black hole boundary. The center of M87, a giant elliptical galaxy, presents one of the most interesting EHT targets as it exhibits a relativistic jet, offering the additional possibility of studying jet genesis on Schwarzschild radius scales. Fully relativistic models of the M87 jet that fit all existing observational constraints now allow horizon-scale images to be generated. We perform realistic VLBI simulations of M87 model images to examine the detectability of the black shadow with the EHT, focusing on a sequence of model images with a changing jet mass load radius. When the jet is launched close to the black hole, the shadow is clearly visible both at 230 and 345 GHz. The EHT array with a resolution of 20-30 μas resolution (∼2-4 Schwarzschild radii) is able to image this feature independent of any theoretical models and we show that imaging methods used to process data from optical interferometers are applicable and effective for EHT data sets. We demonstrate that the EHT is also capable of tracing real-time structural changes on a few Schwarzschild radii scales, such as those implicated by very high-energy flaring activity of M87. While inclusion of ALMA in the EHT is critical for shadow imaging, the array is generally robust against loss of a station.
NASA Astrophysics Data System (ADS)
Ordonez, Carlos
2010-10-01
A review and the latest results on the near-horizon expansion (conformal) approach to `t Hooft's brick-wall model calculation of Black Hole entropy developed recently by the speaker and his collaborators will be given in this talk. With mainly a graduate student audience in mind, the seminar will be pedagogical in nature, with emphasis on the ideas and logic of the methods and the insights gained with this approach more than on details. If time permits, possible future directions will also be mentioned.
NASA Astrophysics Data System (ADS)
Hartman, Thomas Edward
The connection between black holes in four dimensions and conformal field theories (CFTs) in two dimensions is explored, focusing on zero temperature (extreme) black holes and their low-temperature cousins. It is shown that extreme black holes in a theory of quantum gravity are holographically dual to field theories living in two dimensions without gravity, and that the field theory reproduces a variety of black hole phenomena in detail. The extreme black hole/CFT correspondence is derived from a symmetry analysis near the horizon of a Kerr black hole with mass M and maximal angular momentum J=M 2. The asymptotic symmetry generators form one copy of the Virasoro algebra with central charge c=12J, which implies that the near-horizon quantum states are identical to those of a two-dimensional CFT. We discuss extensions of this result to near-extreme black holes and cosmological horizons. Astrophysical black holes are never exactly extremal, but the black hole GRS1915+105 observed through X-ray and radio telescopy is likely within 1% of the extremal spin, suggesting that this extraordinary and well studied object is approximately dual to a two-dimensional CFT with c˜1079. As evidence for the correspondence, microstate counting in the CFT is used to derive the Bekenstein-Hawking area law for the Kerr entropy, S=Horizon area/4. Furthermore, the correlators in the dual CFT are shown to reproduce the scattering amplitudes of a charged scalar or spin-½ field by a near-extreme Kerr-Newman black hole, and a neutral spin-1 or spin-2 field by a near-extreme Kerr black hole. Scattering amplitudes probe the vacuum of fields living on the black hole background. For scalars, bound superradiant modes lead to an instability, while for fermions, it is shown that the bound superradiant modes condense and form a Fermi sea which extends well outside the ergosphere. Assuming no further instabilities, the low energy effective theory near the black hole is described by ripples in the
NASA Technical Reports Server (NTRS)
Dowker, Fay; Gregory, Ruth; Traschen, Jennie
1991-01-01
We argue the existence of solutions of the Euclidean Einstein equations that correspond to a vortex sitting at the horizon of a black hole. We find the asymptotic behaviors, at the horizon and at infinity, of vortex solutions for the gauge and scalar fields in an abelian Higgs model on a Euclidean Schwarzschild background and interpolate between them by integrating the equations numerically. Calculating the backreaction shows that the effect of the vortex is to cut a slice out of the Schwarzschild geometry. Consequences of these solutions for black hole thermodynamics are discussed.
Rotating black hole and quintessence
NASA Astrophysics Data System (ADS)
Ghosh, Sushant G.
2016-04-01
We discuss spherically symmetric exact solutions of the Einstein equations for quintessential matter surrounding a black hole, which has an additional parameter (ω ) due to the quintessential matter, apart from the mass ( M). In turn, we employ the Newman-Janis complex transformation to this spherical quintessence black hole solution and present a rotating counterpart that is identified, for α =-e^2 ne 0 and ω =1/3, exactly as the Kerr-Newman black hole, and as the Kerr black hole when α =0. Interestingly, for a given value of parameter ω , there exists a critical rotation parameter (a=aE), which corresponds to an extremal black hole with degenerate horizons, while for a
NASA Astrophysics Data System (ADS)
Chung, Hyeyoun
2015-10-01
This thesis explores the evolution of different types of black holes, and the ways in which black hole dynamics can be used to answer questions about other physical systems. We first investigate the differences in observable gravitational effects between a four-dimensional Randall-Sundrum (RS) braneworld universe compared to a universe without the extra dimension, by considering a black hole solution to the braneworld model that is localized on the brane. When the brane has a negative cosmological constant, then for a certain range of parameters for the black hole, the intersection of the black hole with the brane approximates a Banados-Teitelboim-Zanelli (BTZ) black hole on the brane with corrections that fall off exponentially outside the horizon. We compute the quasinormal modes of the braneworld black hole, and compare them to the known quasinormal modes of the three-dimensional BTZ black hole. We find that there are two distinct regions for the braneworld black hole solutions that are reflected in the dependence of the quasinormal modes on the black hole mass. The imaginary parts of the quasinormal modes display phenomenological similarities to the quasinormal modes of the three-dimensional BTZ black hole, indicating that nonlinear gravitational effects may not be enough to distinguish between a lower-dimensional theory and a theory derived from a higher-dimensional braneworld. Secondly, we consider the evolution of non-extremal black holes in N=4, d=2 supergravity, and investigate how such black holes might evolve over time if perturbed away from extremality. We study this problem in the probe limit by finding tunneling amplitudes for a Dirac field in a single-centered background, which gives the decay rates for the emission of charged probe black holes from the central black hole. We find that there is no minimum to the potential for the probe particles at a finite distance from the central black hole, so any probes that are emitted escape to infinity. If
Dain, Sergio
2010-11-15
We present a formula that relates the variations of the area of extreme throat initial data with the variation of an appropriate defined mass functional. From this expression we deduce that the first variation, with fixed angular momentum, of the area is zero and the second variation is positive definite evaluated at the extreme Kerr throat initial data. This indicates that the area of the extreme Kerr throat initial data is a minimum among this class of data. And hence the area of generic throat initial data is bounded from below by the angular momentum. Also, this result strongly suggests that the inequality between area and angular momentum holds for generic asymptotically flat axially symmetric black holes. As an application, we prove this inequality in the nontrivial family of spinning Bowen-York initial data.
NASA Astrophysics Data System (ADS)
De, Sanchari; Ghosh, Sutapa; Chakrabarty, Somenath
2015-11-01
In the conventional scenario, the Hawking radiation is believed to be a tunneling process at the event horizon of the black hole. In the quantum field theoretic approach the Schwinger's mechanism is generally used to give an explanation of this tunneling process. It is the decay of quantum vacuum into particle anti-particle pairs near the black hole surface. However, in a reference frame undergoing a uniform accelerated motion in an otherwise flat Minkowski space-time geometry, in the non-relativistic approximation, the particle production near the event horizon of a black hole may be treated as a kind of Fowler-Nordheim field emission, which is the typical electron emission process from a metal surface under the action of an external electrostatic field. This type of emission from metal surface is allowed even at extremely low temperature. It has been noticed that in one-dimensional scenario, the Schrödinger equation satisfied by the created particle (anti-particle) near the event horizon, can be reduced to a differential form which is exactly identical with that obeyed by an electron immediately after the emission from the metal surface under the action of a strong electrostatic field. The mechanism of particle production near the event horizon of a black hole is therefore identified with Schwinger process in relativistic quantum field theory, whereas in the non-relativistic scenario it may be interpreted as Fowler-Nordheim emission process, when observed from a uniformly accelerated frame.
Lyutikov, Maxim; McKinney, Jonathan C.
2011-10-15
The 'no-hair' theorem, a key result in general relativity, states that an isolated black hole is defined by only three parameters: mass, angular momentum, and electric charge; this asymptotic state is reached on a light-crossing time scale. We find that the no-hair theorem is not formally applicable for black holes formed from the collapse of a rotating neutron star. Rotating neutron stars can self-produce particles via vacuum breakdown forming a highly conducting plasma magnetosphere such that magnetic field lines are effectively ''frozen in'' the star both before and during collapse. In the limit of no resistivity, this introduces a topological constraint which prohibits the magnetic field from sliding off the newly-formed event horizon. As a result, during collapse of a neutron star into a black hole, the latter conserves the number of magnetic flux tubes N{sub B}=e{Phi}{sub {infinity}}/({pi}c({h_bar}/2{pi})), where {Phi}{sub {infinity}}{approx_equal}2{pi}{sup 2}B{sub NS}R{sub NS}{sup 3}/(P{sub NS}c) is the initial magnetic flux through the hemispheres of the progenitor and out to infinity. We test this theoretical result via 3-dimensional general relativistic plasma simulations of rotating black holes that start with a neutron star dipole magnetic field with no currents initially present outside the event horizon. The black hole's magnetosphere subsequently relaxes to the split-monopole magnetic field geometry with self-generated currents outside the event horizon. The dissipation of the resulting equatorial current sheet leads to a slow loss of the anchored flux tubes, a process that balds the black hole on long resistive time scales rather than the short light-crossing time scales expected from the vacuum no-hair theorem.
NASA Astrophysics Data System (ADS)
Bak, Dongsu; Gutperle, Michael; Janik, Romuald A.
2011-10-01
In this paper Janus black holes in A dS 3 are considered. These are static solutions of an Einstein-scalar system with broken translation symmetry along the horizon. These solutions are dual to interface conformal field theories at finite temperature. An approximate solution is first constructed using perturbation theory around a planar BTZ blackhole. Numerical and exact solutions valid for all sets of parameters are then found and compared. Using the exact solution the thermodynamics of the system is analyzed. The entropy associated with the Janus black hole is calculated and it is found that the entropy of the black Janus is the sum of the undeformed black hole entropy and the entanglement entropy associated with the defect.
NASA Astrophysics Data System (ADS)
Babichev, Eugeny; Charmousis, Christos; Hassaine, Mokhtar
2015-05-01
We consider an Abelian gauge field coupled to a particular truncation of Horndeski theory. The Galileon field has translation symmetry and couples non minimally both to the metric and the gauge field. When the gauge-scalar coupling is zero the gauge field reduces to a standard Maxwell field. By taking into account the symmetries of the action, we construct charged black hole solutions. Allowing the scalar field to softly break symmetries of spacetime we construct black holes where the scalar field is regular on the black hole event horizon. Some of these solutions can be interpreted as the equivalent of Reissner-Nordstrom black holes of scalar tensor theories with a non trivial scalar field. A self tuning black hole solution found previously is extended to the presence of dyonic charge without affecting whatsoever the self tuning of a large positive cosmological constant. Finally, for a general shift invariant scalar tensor theory we demonstrate that the scalar field Ansatz and method we employ are mathematically compatible with the field equations. This opens up the possibility for novel searches of hairy black holes in a far more general setting of Horndeski theory.
NASA Technical Reports Server (NTRS)
Garcia, M.
1998-01-01
Our UV/VIS work concentrates on black hole X-ray nova. These objects consist of two stars in close orbit, one of which we believe is a black hole - our goal is to SHOW that one is a black hole. In order to reach this goal we carry out observations in the Optical, UV, IR and X-ray bands, and compare the observations to theoretical models. In the past year, our UV/VIS grant has provided partial support (mainly travel funds and page charges) for work we have done on X-ray nova containing black holes and neutron stars. We have been very successful in obtaining telescope time to support our project - we have completed approximately a dozen separate observing runs averaging 3 days each, using the MMT (5M), Lick 3M, KPNO 2.1M, CTIO 4M, CTIO 1.5M, and the SAO/WO 1.2M telescopes. These observations have allowed the identification of one new black hole (Nova Oph 1977), and allowed the mass of another to be measured (GS2000+25). Perhaps our most exciting new result is the evidence we have gathered for the existence of 'event horizons' in black hole X-ray nova.
Acceleration of a Static Observer Near the Event Horizon of a Static Isolated Black Hole.
ERIC Educational Resources Information Center
Doughty, Noel A.
1981-01-01
Compares the magnitude of the proper acceleration of a static observer in a static, isolated, spherically symmetric space-time region with the Newtonian result including the situation in the interior of a perfect-fluid star. This provides a simple physical interpretation of surface gravity and illustrates the global nature of the event horizon.…
NASA Astrophysics Data System (ADS)
Lyutikov, Maxim; McKinney, Jonathan C.
2011-10-01
The “no-hair” theorem, a key result in general relativity, states that an isolated black hole is defined by only three parameters: mass, angular momentum, and electric charge; this asymptotic state is reached on a light-crossing time scale. We find that the no-hair theorem is not formally applicable for black holes formed from the collapse of a rotating neutron star. Rotating neutron stars can self-produce particles via vacuum breakdown forming a highly conducting plasma magnetosphere such that magnetic field lines are effectively “frozen in” the star both before and during collapse. In the limit of no resistivity, this introduces a topological constraint which prohibits the magnetic field from sliding off the newly-formed event horizon. As a result, during collapse of a neutron star into a black hole, the latter conserves the number of magnetic flux tubes NB=eΦ∞/(πcℏ), where Φ∞≈2π2BNSRNS3/(PNSc) is the initial magnetic flux through the hemispheres of the progenitor and out to infinity. We test this theoretical result via 3-dimensional general relativistic plasma simulations of rotating black holes that start with a neutron star dipole magnetic field with no currents initially present outside the event horizon. The black hole’s magnetosphere subsequently relaxes to the split-monopole magnetic field geometry with self-generated currents outside the event horizon. The dissipation of the resulting equatorial current sheet leads to a slow loss of the anchored flux tubes, a process that balds the black hole on long resistive time scales rather than the short light-crossing time scales expected from the vacuum no-hair theorem.
Gravitational polarizability of black holes
Damour, Thibault; Lecian, Orchidea Maria
2009-08-15
The gravitational polarizability properties of black holes are compared and contrasted with their electromagnetic polarizability properties. The 'shape' or 'height' multipolar Love numbers h{sub l} of a black hole are defined and computed. They are then compared to their electromagnetic analogs h{sub l}{sup EM}. The Love numbers h{sub l} give the height of the lth multipolar 'tidal bulge' raised on the horizon of a black hole by faraway masses. We also discuss the shape of the tidal bulge raised by a test-mass m, in the limit where m gets very close to the horizon.
Global embedding of the Kerr black hole event horizon into hyperbolic 3-space
Gibbons, G. W.; Herdeiro, C. A. R.; Rebelo, C.
2009-08-15
An explicit global and unique isometric embedding into hyperbolic 3-space, H{sup 3}, of an axi-symmetric 2-surface with Gaussian curvature bounded below is given. In particular, this allows the embedding into H{sup 3} of surfaces of revolution having negative, but finite, Gaussian curvature at smooth fixed points of the U(1) isometry. As an example, we exhibit the global embedding of the Kerr-Newman event horizon into H{sup 3}, for arbitrary values of the angular momentum. For this example, considering a quotient of H{sup 3} by the Picard group, we show that the hyperbolic embedding fits in a fundamental domain of the group up to a slightly larger value of the angular momentum than the limit for which a global embedding into Euclidean 3-space is possible. An embedding of the double-Kerr event horizon is also presented, as an example of an embedding that cannot be made global.
Black Holes in Higher Dimensions
NASA Astrophysics Data System (ADS)
Horowitz, Gary T.
2012-04-01
List of contributors; Preface; Part I. Introduction: 1. Black holes in four dimensions Gary Horowitz; Part II. Five Dimensional Kaluza-Klein Theory: 2. The Gregory-Laflamme instability Ruth Gregory; 3. Final state of Gregory-Laflamme instability Luis Lehner and Frans Pretorius; 4. General black holes in Kaluza-Klein theory Gary Horowitz and Toby Wiseman; Part III. Higher Dimensional Solutions: 5. Myers-Perry black holes Rob Myers; 6. Black rings Roberto Emparan and Harvey Reall; Part IV. General Properties: 7. Constraints on the topology of higher dimensional black holes Greg Galloway; 8. Blackfolds Roberto Emparan; 9. Algebraically special solutions in higher dimensions Harvey Reall; 10. Numerical construction of static and stationary black holes Toby Wiseman; Part V. Advanced Topics: 11. Black holes and branes in supergravity Don Marolf; 12. The gauge/gravity duality Juan Maldacena; 13. The fluid/gravity correspondence Veronika Hubeny, Mukund Rangamani and Shiraz Minwalla; 14. Horizons, holography and condensed matter Sean Hartnoll; Index.
Black holes as antimatter factories
NASA Astrophysics Data System (ADS)
Bambi, Cosimo; Dolgov, Alexander D.; Petrov, Alexey A.
2009-09-01
We consider accretion of matter onto a low mass black hole surrounded by ionized medium. We show that, because of the higher mobility of protons than electrons, the black hole would acquire positive electric charge. If the black hole's mass is about or below 1020 g, the electric field at the horizon can reach the critical value which leads to vacuum instability and electron-positron pair production by the Schwinger mechanism. Since the positrons are ejected by the emergent electric field, while electrons are back-captured, the black hole operates as an antimatter factory which effectively converts protons into positrons.
NASA Astrophysics Data System (ADS)
Genzel, Reinhard
1998-01-01
The dimness of the black holes located at the center of galaxies surprises astrophysicists, but a possible explanation has been found in the behavior of the plasma they consume. In a hot accretion flow, the gas is ionized to form a plasma. The heavy ions carry most of the mass, and thus of the energy, whereas the electrons produce most of the radiation. But, crucially, in a low-density flow the temperatures of the ions and of the electrons may decouple. Consequently, most of the gravitational energy would be viscously converted into thermal energy of the ions and not radiated away by the electrons. Instead, the gravitational energy is carried with the flow across the event horizon of the black hole. Such a flow leads to a low radiation efficiency even in a highly dissipative accretion disk.
Black hole mimickers: Regular versus singular behavior
Lemos, Jose P. S.; Zaslavskii, Oleg B.
2008-07-15
Black hole mimickers are possible alternatives to black holes; they would look observationally almost like black holes but would have no horizon. The properties in the near-horizon region where gravity is strong can be quite different for both types of objects, but at infinity it could be difficult to discern black holes from their mimickers. To disentangle this possible confusion, we examine the near-horizon properties, and their connection with far away asymptotic properties, of some candidates to black mimickers. We study spherically symmetric uncharged or charged but nonextremal objects, as well as spherically symmetric charged extremal objects. Within the uncharged or charged but nonextremal black hole mimickers, we study nonextremal {epsilon}-wormholes on the threshold of the formation of an event horizon, of which a subclass are called black foils, and gravastars. Within the charged extremal black hole mimickers we study extremal {epsilon}-wormholes on the threshold of the formation of an event horizon, quasi-black holes, and wormholes on the basis of quasi-black holes from Bonnor stars. We elucidate whether or not the objects belonging to these two classes remain regular in the near-horizon limit. The requirement of full regularity, i.e., finite curvature and absence of naked behavior, up to an arbitrary neighborhood of the gravitational radius of the object enables one to rule out potential mimickers in most of the cases. A list ranking the best black hole mimickers up to the worst, both nonextremal and extremal, is as follows: wormholes on the basis of extremal black holes or on the basis of quasi-black holes, quasi-black holes, wormholes on the basis of nonextremal black holes (black foils), and gravastars. Since in observational astrophysics it is difficult to find extremal configurations (the best mimickers in the ranking), whereas nonextremal configurations are really bad mimickers, the task of distinguishing black holes from their mimickers seems to
Scalar field radiation from dilatonic black holes
NASA Astrophysics Data System (ADS)
Gohar, H.; Saifullah, K.
2012-12-01
We study radiation of scalar particles from charged dilaton black holes. The Hamilton-Jacobi method has been used to work out the tunneling probability of outgoing particles from the event horizon of dilaton black holes. For this purpose we use WKB approximation to solve the charged Klein-Gordon equation. The procedure gives Hawking temperature for these black holes as well.
Entropy, area, and black hole pairs
NASA Astrophysics Data System (ADS)
Hawking, S. W.; Horowitz, Gary T.; Ross, Simon F.
1995-04-01
We clarify the relation between gravitational entropy and the area of horizons. We first show that the entropy of an extreme Reissner-Nordström black hole is zero, despite the fact that its horizon has nonzero area. Next, we consider the pair creation of extremal and nonextremal black holes. It is shown that the action which governs the rate of this pair creation is directly related to the area of the acceleration horizon and (in the nonextremal case) the area of the black hole event horizon. This provides a simple explanation of the result that the rate of pair creation of nonextreme black holes is enhanced by precisely the black hole entropy. Finally, we discuss black hole annihilation, and argue that Planck scale remnants are not sufficient to preserve unitarity in quantum gravity.
Probability for primordial black holes
NASA Astrophysics Data System (ADS)
Bousso, R.; Hawking, S. W.
1995-11-01
We consider two quantum cosmological models with a massive scalar field: an ordinary Friedmann universe and a universe containing primordial black holes. For both models we discuss the complex solutions to the Euclidean Einstein equations. Using the probability measure obtained from the Hartle-Hawking no-boundary proposal we find that the only unsuppressed black holes start at the Planck size but can grow with the horizon scale during the roll down of the scalar field to the minimum.
Tomograms of spinning black holes
NASA Astrophysics Data System (ADS)
Krishnan, Chethan
2009-12-01
The classical internal structure of spinning black holes is vastly different from that of static black holes. We consider spinning Banados-Teitelboim-Zanelli black holes, and probe their interior from the gauge theory. Utilizing the simplicity of the geometry and reverse engineering from the geodesics, we propose a thermal correlator construction which can be interpreted as arising from two entangled conformal field theories. By analytic continuation of these correlators, we can probe the Cauchy horizon. Correlators that capture the Cauchy horizon in our work have a structure closely related to those that capture the singularity in a nonrotating Banados-Teitelboim-Zanelli. As expected, the regions beyond the Cauchy horizon are not probed in this picture, protecting cosmic censorship.
NASA Astrophysics Data System (ADS)
Bena, Iosif; Chowdhury, Borun D.; de Boer, Jan; El-Showk, Sheer; Shigemori, Masaki
2012-03-01
We find a family of novel supersymmetric phases of the D1-D5 CFT, which in certain ranges of charges have more entropy than all known ensembles. We also find bulk BPS configurations that exist in the same range of parameters as these phases, and have more entropy than a BMPV black hole; they can be thought of as coming from a BMPV black hole shedding a "hair" condensate outside of the horizon. The entropy of the bulk configurations is smaller than that of the CFT phases, which indicates that some of the CFT states are lifted at strong coupling. Neither the bulk nor the boundary phases are captured by the elliptic genus, which makes the coincidence of the phase boundaries particularly remarkable. Our configurations are supersymmetric, have non-Cardy-like entropy, and are the first instance of a black hole entropy enigma with a controlled CFT dual. Furthermore, contrary to common lore, these objects exist in a region of parameter space (between the "cosmic censorship bound" and the "unitarity bound") where no black holes were thought to exist.
Black hole final state conspiracies
NASA Astrophysics Data System (ADS)
McInnes, Brett
2009-01-01
The principle that unitarity must be preserved in all processes, no matter how exotic, has led to deep insights into boundary conditions in cosmology and black hole theory. In the case of black hole evaporation, Horowitz and Maldacena were led to propose that unitarity preservation can be understood in terms of a restriction imposed on the wave function at the singularity. Gottesman and Preskill showed that this natural idea only works if one postulates the presence of “conspiracies” between systems just inside the event horizon and states at much later times, near the singularity. We argue that some AdS black holes have unusual internal thermodynamics, and that this may permit the required “conspiracies” if real black holes are described by some kind of sum over all AdS black holes having the same entropy.
Orbital resonances around black holes.
Brink, Jeandrew; Geyer, Marisa; Hinderer, Tanja
2015-02-27
We compute the length and time scales associated with resonant orbits around Kerr black holes for all orbital and spin parameters. Resonance-induced effects are potentially observable when the Event Horizon Telescope resolves the inner structure of Sgr A*, when space-based gravitational wave detectors record phase shifts in the waveform during the resonant passage of a compact object spiraling into the black hole, or in the frequencies of quasiperiodic oscillations for accreting black holes. The onset of geodesic chaos for non-Kerr spacetimes should occur at the resonance locations quantified here. PMID:25768747
Tunnelling from black holes and tunnelling into white holes
NASA Astrophysics Data System (ADS)
Chatterjee, Bhramar; Ghosh, A.; Mitra, P.
2008-03-01
Hawking radiation is nowadays being understood as tunnelling through black hole horizons. Here, the extension of the Hamilton-Jacobi approach to tunnelling for non-rotating and rotating black holes in different non-singular coordinate systems not only confirms this quantum emission from black holes but also reveals the new phenomenon of absorption into white holes by quantum mechanical tunnelling. The rôle of a boundary condition of total absorption or emission is also clarified.
NASA Astrophysics Data System (ADS)
Punsly, Brian
This chapter compares and contrasts winds and jets driven by the two distinct components of the black magnetosphere: the event horizon magnetosphere (the large scale magnetic field lines that thread the event horizon) and the ergospheric disk magnetosphere associated with poloidal magnetic flux threading plasma near the equatorial plane of the ergosphere. The power of jets from the two components as predicted from single-fluid, perfect MHD numerical simulations are compared. The decomposition of the magnetosphere into these two components depends on the distribution of large scale poloidal magnetic flux in the ergosphere. However, the final distribution of magnetic flux in a black hole magnetosphere depends on physics beyond these simple single-fluid treatments, non-ideal MHD (eg, the dynamics of magnetic field reconnection and radiation effects) and two-fluid effects (eg, ion coupled waves and instabilities in the inner accretion flow). In this chapter, it is emphasized that magnetic field line reconnection is the most important of these physical elements. Unfortunately, in single-fluid perfect MHD simulations, reconnection is a mathematical artifact of numerical diffusion and is not determined by physical processes. Consequently, considerable calculational progress is required before we can reliably assess the role of each of these components of black hole magnetospheres in astrophysical systems.
Bizon, P. )
1990-06-11
We analyze the static spherically symmetric Einstein-Yang-Mills equations with SU(2) gauge group and show numerically that the equations possess asymptotically flat solutions with regular event horizon and nontrivial Yang-Mills (YM) connection. The solutions have zero global YM charges and asymptotically approximate the Schwarzschild solution with quantized values of the Arnowitt-Deser-Misner mass. Our result questions the validity of the no-hair'' conjecture for YM black holes. This work complements the recent study of Bartnik and McKinnon on static spherically symmetric Einstein-Yang-Mills soliton solutions.
Coleman, S. ); Preskill, J. ); Wilczek, F. )
1991-10-07
A black hole can carry quantum numbers that are {ital not} associated with massless gauge fields, contrary to the spirit of the no-hair'' theorems. In the Higgs phase of a gauge theory, electric charge on a black hole generates a nonzero electric field outside the event horizon. This field is nonperturbative in {h bar} and is exponentially screened far from the hole. It arises from the cloud of virtual cosmic strings that surround the black hole. In the confinement phase, a magnetic charge on a black hole generates a {ital classical} field that is screened at long range by nonperturbative effects. Despite the sharp difference in their formal descriptions, the electric and magnetic cases are closely similar physically.
On black hole spectroscopy via adiabatic invariance
NASA Astrophysics Data System (ADS)
Jiang, Qing-Quan; Han, Yan
2012-12-01
In this Letter, we obtain the black hole spectroscopy by combining the black hole property of adiabaticity and the oscillating velocity of the black hole horizon. This velocity is obtained in the tunneling framework. In particular, we declare, if requiring canonical invariance, the adiabatic invariant quantity should be of the covariant form Iadia = ∮pi dqi. Using it, the horizon area of a Schwarzschild black hole is quantized independently of the choice of coordinates, with an equally spaced spectroscopy always given by ΔA = 8 π lp2 in the Schwarzschild and Painlevé coordinates.
Hawking radiation from fluctuating black holes
NASA Astrophysics Data System (ADS)
Takahashi, Tomohiro; Soda, Jiro
2010-09-01
Classically, black holes have a rigid event horizon. However, quantum mechanically, the event horizon of black holes becomes fuzzy due to quantum fluctuations. We study Hawking radiation of a real scalar field from a fluctuating black hole. To quantize metric perturbations, we derive the quadratic action for those in the black hole background. Then, we calculate cubic interaction terms in the action for the scalar field. Using these results, we obtain the spectrum of Hawking radiation in the presence of the interaction between the scalar field and the metric. It turns out that the spectrum deviates from the Planck spectrum due to quantum fluctuations of the metric.
Mass inflation inside black holes revisited
NASA Astrophysics Data System (ADS)
Dokuchaev, Vyacheslav I.
2014-03-01
The mass inflation phenomenon implies that black hole interiors are unstable due to a back-reaction divergence of the perturbed black hole mass function at the Cauchy horizon. The mass inflation was initially derived by using the generalized Dray-’t Hooft-Redmount (DTR) relation in the linear approximation of the Einstein equations near the perturbed Cauchy horizon of the Reissner-Nordström black hole. However, this linear approximation for the DTR relation is improper for the highly nonlinear behavior of back-reaction perturbations at the black hole horizons. An additional weak point in the standard mass inflation calculations is in a fallacious using of the global Cauchy horizon as a place for the maximal growth of the back-reaction perturbations instead of the local inner apparent horizon. It is derived the new spherically symmetric back-reaction solution for two counter-streaming light-like fluxes near the inner apparent horizon of the charged black hole by taking into account its separation from the Cauchy horizon. In this solution the back-reaction perturbations of the background metric are truly the largest at the inner apparent horizon, but, nevertheless, remain small. The back reaction, additionally, removes the infinite blue-shift singularity at the inner apparent horizon and at the Cauchy horizon.
BTZ black holes inspired by noncommutative geometry
NASA Astrophysics Data System (ADS)
Rahaman, Farook; Kuhfittig, P. K. F.; Bhui, B. C.; Rahaman, Mosiur; Ray, Saibal; Mondal, U. F.
2013-04-01
In this paper, a Bañados-Teitelboim-Zanelli (BTZ) black hole [Phys. Rev. Lett. 69, 1849 (1992)] is constructed from an exact solution of the Einstein field equations in a (2+1)—dimensional anti—de Sitter spacetime in the context of noncommutative geometry. The BTZ black hole turns out to have either two horizons, no horizon, or a single horizon corresponding to a minimal mass. Certain thermodynamical properties are investigated, including Hawking temperature, entropy, and heat capacity. Also discussed is the geodesic structure of BTZ black holes for both massless and massive particles. In particular, it is shown that bound orbits for test particles are possible.
Thermal corpuscular black holes
NASA Astrophysics Data System (ADS)
Casadio, Roberto; Giugno, Andrea; Orlandi, Alessio
2015-06-01
We study the corpuscular model of an evaporating black hole consisting of a specific quantum state for a large number N of self-confined bosons. The single-particle spectrum contains a discrete ground state of energy m (corresponding to toy gravitons forming the black hole), and a gapless continuous spectrum (to accommodate for the Hawking radiation with energy ω >m ). Each constituent is in a superposition of the ground state and a Planckian distribution at the expected Hawking temperature in the continuum. We first find that, assuming the Hawking radiation is the leading effect of the internal scatterings, the corresponding N -particle state can be collectively described by a single-particle wave function given by a superposition of a total ground state with energy M =N m and a Planckian distribution for E >M at the same Hawking temperature. From this collective state, we compute the partition function and obtain an entropy which reproduces the usual area law with a logarithmic correction precisely related with the Hawking component. By means of the horizon wave function for the system, we finally show the backreaction of modes with ω >m reduces the Hawking flux. Both corrections, to the entropy and to the Hawking flux, suggest the evaporation properly stops for vanishing mass, if the black hole is in this particular quantum state.
NASA Astrophysics Data System (ADS)
Fukue, Jun
2000-08-01
A black hole falling into the Earth would syndrome toward the center, while it would shine through mass accretion. The author has re-examined the dynamics of such a black hole in the Earth. In the case of a non-radiating black hole, the timescale of the syndrome is inversely proportional to the initial mass of the black hole. In the case of a radiating black hole, on the other hand, the syndrome time is of the order of the Eddington time. The radiating black hole in the Earth would act as a strong heat source.
NASA Astrophysics Data System (ADS)
Casadio, Roberto; Giugno, Andrea; Micu, Octavian; Orlandi, Alessio
2015-10-01
We review some features of BEC models of black holes obtained by means of the HWF formalism. We consider the KG equation for a toy graviton field coupled to a static matter current in spherical symmetry. The classical field reproduces the Newtonian potential generated by the matter source, while the corresponding quantum state is given by a coherent superposition of scalar modes with continuous occupation number. An attractive self-interaction is needed for bound states to form, so that (approximately) one mode is allowed, and the system of N bosons can be self-confined in a volume of the size of the Schwarzschild radius. The HWF is then used to show that the radius of such a system corresponds to a proper horizon. The uncertainty in the size of the horizon is related to the typical energy of Hawking modes: it decreases with the increasing of the black hole mass (larger number of gravitons), in agreement with semiclassical calculations and different from a single very massive particle. The spectrum contains a discrete ground state of energy $m$ (the bosons forming the black hole), and a continuous spectrum with energy $\\omega > m$ (representing the Hawking radiation and modelled with a Planckian distribution at the expected Hawking temperature). The $N$-particle state can be collectively described by a single-particle wave-function given by a superposition of a total ground state with energy $M = N m$ and a Planckian distribution for $E > M$ at the same Hawking temperature. The partition function is then found to yield the usual area law for the entropy, with a logarithmic correction related with the Hawking component. The backreaction of modes with $\\omega > m$ is also shown to reduce the Hawking flux and the evaporation properly stops for vanishing mass.
In this NASA Now episode, Dr. Daniel Patnaude talks about how his team discovered a baby black hole, why this is important and how black holes create tidal forces. Throughout his discussion, Patnau...
Black holes in magnetic monopoles
NASA Technical Reports Server (NTRS)
Lee, Kimyeong; Nair, V. P.; Weinberg, Erick J.
1991-01-01
We study magnetically charged classical solutions of a spontaneously broken gauge theory interacting with gravity. We show that nonsingular monopole solutions exist only if the Higgs field vacuum expectation value v is less than or equal to a critical value v sub cr, which is of the order of the Planck mass. In the limiting case, the monopole becomes a black hole, with the region outside the horizon described by the critical Reissner-Nordstrom solution. For v less than v sub cr, we find additional solutions which are singular at f = 0, but which have this singularity hidden within a horizon. These have nontrivial matter fields outside the horizon, and may be interpreted as small black holes lying within a magnetic monopole. The nature of these solutions as a function of v and of the total mass M and their relation to the Reissner-Nordstrom solutions is discussed.
Black holes and the positive cosmological constant
NASA Astrophysics Data System (ADS)
Bhattacharya, Sourav
2013-02-01
We address some aspects of black hole spacetimes endowed with a positive cosmological constant, i.e. black holes located inside a cosmological event horizon. First we establish a general criterion for existence of cosmological event horizons. Using the geometrical set up built for this, we study classical black hole no hair theorems for both static and stationary axisymmetric spacetimes. We discuss cosmic Nielsen-Olesen strings as hair in Schwarzschild-de Sitter spacetime. We also give a general calculation for particle creation by a Killing horizon using complex path analysis and using this we study particle creation in Schwarzschild-de Sitter spacetime by both black hole and the cosmological event horizons.
Quantum radiation of general nonstationary black holes
NASA Astrophysics Data System (ADS)
Hua, Jia-Chen; Huang, Yong-Chang
2009-02-01
Quantum radiation of general nonstationary black holes is investigated by using the method of generalized tortoise-coordinate transformation (GTT). It is shown in general that the temperature and the shape of the event horizon of this kind of black holes depend on time and angle. Further, we find that the chemical potential in the thermal-radiation spectrum is equal to the highest energy of the negative-energy state of particles in nonthermal radiation for general nonstationary black holes.
Test fields cannot destroy extremal black holes
NASA Astrophysics Data System (ADS)
Natário, José; Queimada, Leonel; Vicente, Rodrigo
2016-09-01
We prove that (possibly charged) test fields satisfying the null energy condition at the event horizon cannot overspin/overcharge extremal Kerr–Newman or Kerr–Newman–anti de Sitter black holes, that is, the weak cosmic censorship conjecture cannot be violated in the test field approximation. The argument relies on black hole thermodynamics (without assuming cosmic censorship), and does not depend on the precise nature of the fields. We also discuss generalizations of this result to other extremal black holes.
NASA Astrophysics Data System (ADS)
Levin, Janna; D'Orazio, Daniel
2016-03-01
Black holes are dark dead stars. Neutron stars are giant magnets. As the neutron star orbits the black hole, an electronic circuit forms that generates a blast of power just before the black hole absorbs the neutron star whole. The black hole battery conceivably would be observable at cosmological distances. Possible channels for luminosity include synchro-curvature radiation, a blazing fireball, or even an unstable, short-lived black hole pulsar. As suggested by Mingarelli, Levin, and Lazio, some fraction of the battery power could also be reprocessed into coherent radio emission to populate a subclass of fast radio bursts.
A Different Reason Why Black Holes are Black
NASA Astrophysics Data System (ADS)
Farghal, Noha S.
2009-11-01
Although it is true that black holes appear to be black on the outside due to the fact that the escape velocity from the event horizon is even higher than that of light, black holes may be black on the inside as well. A recent paper by Zach Adams (2009) presents a new model which provides evidence of gravitons actually being a result of a fusion of 2 photons, which manifests in 4-D space. In fact, the duality between gravitons and photons has been suggested in earlier works as well. Falling Photon Experiment shows that as photons approach a massive body, their energies increase, and their wavelengths decrease. Photon-graviton conversions occur when the wavelengths of photons decrease to Planck's length. As a result, the photons approaching the event horizon of a black hole may gain energy enough for photon pairs to fuse and become gravitons. Therefore, as we will discuss in this work, there exists a probability that photons cannot survive within the event horizon of a black hole. It is true that nothing can escape a black hole, which is the reason why it looks black on the outside, but also the possibility that photons may not be able to survive on a black hole means that black holes may be black on the inside as well.
Thermodynamic product formula for a Taub-NUT black hole
NASA Astrophysics Data System (ADS)
Pradhan, P.
2016-01-01
We derive various important thermodynamic relations of the inner and outer horizons in the background of the Taub-NUT (Newman-Unti-Tamburino) black hole in four-dimensional Lorentzian geometry. We compare these properties with the properties of the Reissner-Nordström black hole. We compute the area product, area sum, area subtraction, and area division of black hole horizons. We show that they all are not universal quantities. Based on these relations, we compute the area bound of all horizons. From the area bound, we derive an entropy bound and an irreducible mass bound for both horizons. We further study the stability of such black holes by computing the specific heat for both horizons. It is shown that due to the negative specific heat, the black hole is thermodynamically unstable. All these calculations might be helpful in understanding the nature of the black hole entropy (both interior and exterior) at the microscopic level.
Kerr Black Hole Entropy and its Quantization
NASA Astrophysics Data System (ADS)
Jiang, Ji-Jian; Li, Chuan-An; Cheng, Xie-Feng
2016-08-01
By constructing the four-dimensional phase space based on the observable physical quantity of Kerr black hole and gauge transformation, the Kerr black hole entropy in the phase space was obtained. Then considering the corresponding mechanical quantities as operators and making the operators quantized, entropy spectrum of Kerr black hole was obtained. Our results show that the Kerr black hole has the entropy spectrum with equal intervals, which is in agreement with the idea of Bekenstein. In the limit of large event horizon, the area of the adjacent event horizon of the black hole have equal intervals. The results are in consistent with the results based on the loop quantum gravity theory by Dreyer et al.
Black hole thermodynamics in MOdified Gravity (MOG)
NASA Astrophysics Data System (ADS)
Mureika, Jonas R.; Moffat, John W.; Faizal, Mir
2016-06-01
We analyze the thermodynamical properties of black holes in a modified theory of gravity, which was initially proposed to obtain correct dynamics of galaxies and galaxy clusters without dark matter. The thermodynamics of non-rotating and rotating black hole solutions resembles similar solutions in Einstein-Maxwell theory with the electric charge being replaced by a new mass dependent gravitational charge Q =√{ αGN } M. This new mass dependent charge modifies the effective Newtonian constant from GN to G =GN (1 + α), and this in turn critically affects the thermodynamics of the black holes. We also investigate the thermodynamics of regular solutions, and explore the limiting case when no horizons forms. So, it is possible that the modified gravity can lead to the absence of black hole horizons in our universe. Finally, we analyze corrections to the thermodynamics of a non-rotating black hole and obtain the usual logarithmic correction term.
NASA Astrophysics Data System (ADS)
He, Xiao-Gang; Ma, Bo-Qiang
We show that black holes can be quantized in an intuitive and elegant way with results in agreement with conventional knowledge of black holes by using Bohr's idea of quantizing the motion of an electron inside the atom in quantum mechanics. We find that properties of black holes can also be derived from an ansatz of quantized entropy Δ S = 4π k Δ R/{{-{λ }}}, which was suggested in a previous work to unify the black hole entropy formula and Verlinde's conjecture to explain gravity as an entropic force. Such an Ansatz also explains gravity as an entropic force from quantum effect. This suggests a way to unify gravity with quantum theory. Several interesting and surprising results of black holes are given from which we predict the existence of primordial black holes ranging from Planck scale both in size and energy to big ones in size but with low energy behaviors.
NASA Astrophysics Data System (ADS)
Sciama, D. W.
A physical account of the processes of black hole explosions is presented. Black holes form when the degeneracy pressure in a neutron star can no longer balance gravitational forces because the mass of the star is too large. Although black holes absorb surrounding matter through the action of a gravitational field, quantum fluctuations have been theoretically demonstrated to occur in the vacuum, and feature a thermal character. The temperature field decreases outwards, in accordance with the nonuniformity of the gravitational field, but does allow thermal radiation, i.e., Hawking radiation, to escape the black hole. The time scale for the radiation shortens as the mass of the black hole decreases, until a time scale is reached which is short enough for the process to be called an explosion. Observations of electron-positron Hawking radiation are suggested to offer proof of a black hole explosion.
Gamma ray bursts of black hole universe
NASA Astrophysics Data System (ADS)
Zhang, T. X.
2015-07-01
Slightly modifying the standard big bang theory, Zhang recently developed a new cosmological model called black hole universe, which has only a single postulate but is consistent with Mach's principle, governed by Einstein's general theory of relativity, and able to explain existing observations of the universe. In the previous studies, we have explained the origin, structure, evolution, expansion, cosmic microwave background radiation, quasar, and acceleration of black hole universe, which grew from a star-like black hole with several solar masses through a supermassive black hole with billions of solar masses to the present state with hundred billion-trillions of solar masses by accreting ambient matter and merging with other black holes. This study investigates gamma ray bursts of black hole universe and provides an alternative explanation for the energy and spectrum measurements of gamma ray bursts according to the black hole universe model. The results indicate that gamma ray bursts can be understood as emissions of dynamic star-like black holes. A black hole, when it accretes its star or merges with another black hole, becomes dynamic. A dynamic black hole has a broken event horizon and thus cannot hold the inside hot (or high-frequency) blackbody radiation, which flows or leaks out and produces a GRB. A star when it collapses into its core black hole produces a long GRB and releases the gravitational potential energy of the star as gamma rays. A black hole that merges with another black hole produces a short GRB and releases a part of their blackbody radiation as gamma rays. The amount of energy obtained from the emissions of dynamic star-like black holes are consistent with the measurements of energy from GRBs. The GRB energy spectra derived from this new emission mechanism are also consistent with the measurements.
Begelman, Mitchell C
2003-06-20
Black holes are common objects in the universe. Each galaxy contains large numbers-perhaps millions-of stellar-mass black holes, each the remnant of a massive star. In addition, nearly every galaxy contains a supermassive black hole at its center, with a mass ranging from millions to billions of solar masses. This review discusses the demographics of black holes, the ways in which they interact with their environment, factors that may regulate their formation and growth, and progress toward determining whether these objects really warp spacetime as predicted by the general theory of relativity. PMID:12817138
NASA Astrophysics Data System (ADS)
Hawking, Stephen W.; Perry, Malcolm J.; Strominger, Andrew
2016-06-01
It has recently been shown that Bondi-van der Burg-Metzner-Sachs supertranslation symmetries imply an infinite number of conservation laws for all gravitational theories in asymptotically Minkowskian spacetimes. These laws require black holes to carry a large amount of soft (i.e., zero-energy) supertranslation hair. The presence of a Maxwell field similarly implies soft electric hair. This Letter gives an explicit description of soft hair in terms of soft gravitons or photons on the black hole horizon, and shows that complete information about their quantum state is stored on a holographic plate at the future boundary of the horizon. Charge conservation is used to give an infinite number of exact relations between the evaporation products of black holes which have different soft hair but are otherwise identical. It is further argued that soft hair which is spatially localized to much less than a Planck length cannot be excited in a physically realizable process, giving an effective number of soft degrees of freedom proportional to the horizon area in Planck units.
Hawking, Stephen W; Perry, Malcolm J; Strominger, Andrew
2016-06-10
It has recently been shown that Bondi-van der Burg-Metzner-Sachs supertranslation symmetries imply an infinite number of conservation laws for all gravitational theories in asymptotically Minkowskian spacetimes. These laws require black holes to carry a large amount of soft (i.e., zero-energy) supertranslation hair. The presence of a Maxwell field similarly implies soft electric hair. This Letter gives an explicit description of soft hair in terms of soft gravitons or photons on the black hole horizon, and shows that complete information about their quantum state is stored on a holographic plate at the future boundary of the horizon. Charge conservation is used to give an infinite number of exact relations between the evaporation products of black holes which have different soft hair but are otherwise identical. It is further argued that soft hair which is spatially localized to much less than a Planck length cannot be excited in a physically realizable process, giving an effective number of soft degrees of freedom proportional to the horizon area in Planck units. PMID:27341223
Black hole as a wormhole factory
NASA Astrophysics Data System (ADS)
Kim, Sung-Won; Park, Mu-In
2015-12-01
There have been lots of debates about the final fate of an evaporating black hole and the singularity hidden by an event horizon in quantum gravity. However, on general grounds, one may argue that a black hole stops radiation at the Planck mass (ħc / G) 1 / 2 ∼10-5 g, where the radiated energy is comparable to the black hole's mass. And also, it has been argued that there would be a wormhole-like structure, known as "spacetime foam", due to large fluctuations below the Planck length (ħG /c3) 1 / 2 ∼10-33 cm. In this paper, as an explicit example, we consider an exact classical solution which represents nicely those two properties in a recently proposed quantum gravity model based on different scaling dimensions between space and time coordinates. The solution, called "Black Wormhole", consists of two different states, depending on its mass parameter M and an IR parameter ω: For the black hole state (with ωM2 > 1 / 2), a non-traversable wormhole occupies the interior region of the black hole around the singularity at the origin, whereas for the wormhole state (with ωM2 < 1 / 2), the interior wormhole is exposed to an outside observer as the black hole horizon is disappearing from evaporation. The black hole state becomes thermodynamically stable as it approaches the merging point where the interior wormhole throat and the black hole horizon merges, and the Hawking temperature vanishes at the exact merge point (with ωM2 = 1 / 2). This solution suggests the "Generalized Cosmic Censorship" by the existence of a wormhole-like structure which protects the naked singularity even after the black hole evaporation. One could understand the would-be wormhole inside the black hole horizon as the result of microscopic wormholes created by "negative" energy quanta which have entered the black hole horizon in Hawking radiation process; the quantum black hole could be a wormhole factory! It is found that this speculative picture may be consistent with the recent " ER
Are black holes with hair a normal state of matter?
Nieuwenhuizen, Th. M.
2011-03-28
Recent observations put forward that quasars are black holes with a magnetic dipole moment and no event horizon. To model hairy black holes a quantum field for hydrogen is considered in curved space, coupled to the scalar curvature. An exact, regular solution for the interior metric occurs for supermassive black holes. The equation of state is p = -{rho}c{sup 2}/3.
Erratic Black Hole Regulates Itself
NASA Astrophysics Data System (ADS)
2009-03-01
New results from NASA's Chandra X-ray Observatory have made a major advance in explaining how a special class of black holes may shut off the high-speed jets they produce. These results suggest that these black holes have a mechanism for regulating the rate at which they grow. Black holes come in many sizes: the supermassive ones, including those in quasars, which weigh in at millions to billions of times the mass of the Sun, and the much smaller stellar-mass black holes which have measured masses in the range of about 7 to 25 times the Sun's mass. Some stellar-mass black holes launch powerful jets of particles and radiation, like seen in quasars, and are called "micro-quasars". The new study looks at a famous micro-quasar in our own Galaxy, and regions close to its event horizon, or point of no return. This system, GRS 1915+105 (GRS 1915 for short), contains a black hole about 14 times the mass of the Sun that is feeding off material from a nearby companion star. As the material swirls toward the black hole, an accretion disk forms. This system shows remarkably unpredictable and complicated variability ranging from timescales of seconds to months, including 14 different patterns of variation. These variations are caused by a poorly understood connection between the disk and the radio jet seen in GRS 1915. Chandra, with its spectrograph, has observed GRS 1915 eleven times since its launch in 1999. These studies reveal that the jet in GRS 1915 may be periodically choked off when a hot wind, seen in X-rays, is driven off the accretion disk around the black hole. The wind is believed to shut down the jet by depriving it of matter that would have otherwise fueled it. Conversely, once the wind dies down, the jet can re-emerge. "We think the jet and wind around this black hole are in a sort of tug of war," said Joseph Neilsen, Harvard graduate student and lead author of the paper appearing in the journal Nature. "Sometimes one is winning and then, for reasons we don
Superextremal spinning black holes via accretion
NASA Astrophysics Data System (ADS)
Bode, Tanja; Laguna, Pablo; Matzner, Richard
2011-09-01
A Kerr black hole with mass M and angular momentum J satisfies the extremality inequality |J|≤M2. In the presence of matter and/or gravitational radiation, this bound needs to be reformulated in terms of local measurements of the mass and the angular momentum directly associated with the black hole. The isolated and dynamical horizon framework provides such quasilocal characterization of black hole mass and angular momentum. With this framework, it is possible in axisymmetry to reformulate the extremality limit as |J|≤2MH2, with MH the irreducible mass of the black hole computed from its apparent horizon area and J obtained using a rotational Killing vector field on the apparent horizon. The |J|≤2MH2 condition is also equivalent to requiring a non-negative black hole surface gravity. We present numerical experiments of an accreting black hole that temporarily violates this extremality inequality. The initial configuration consists of a single, rotating black hole surrounded by a thick, shell cloud of negative energy density. For these numerical experiments, we introduce a new matter-without-matter evolution method.
Charged spinning black holes as particle accelerators
Wei Shaowen; Liu Yuxiao; Guo Heng; Fu Chune
2010-11-15
It has recently been pointed out that the spinning Kerr black hole with maximal spin could act as a particle collider with arbitrarily high center-of-mass energy. In this paper, we will extend the result to the charged spinning black hole, the Kerr-Newman black hole. The center-of-mass energy of collision for two uncharged particles falling freely from rest at infinity depends not only on the spin a but also on the charge Q of the black hole. We find that an unlimited center-of-mass energy can be approached with the conditions: (1) the collision takes place at the horizon of an extremal black hole; (2) one of the colliding particles has critical angular momentum; (3) the spin a of the extremal black hole satisfies (1/{radical}(3)){<=}(a/M){<=}1, where M is the mass of the Kerr-Newman black hole. The third condition implies that to obtain an arbitrarily high energy, the extremal Kerr-Newman black hole must have a large value of spin, which is a significant difference between the Kerr and Kerr-Newman black holes. Furthermore, we also show that, for a near-extremal black hole, there always exists a finite upper bound for center-of-mass energy, which decreases with the increase of the charge Q.
Black Holes and Quasiblack Holes in Einstein-Maxwell Theory
NASA Astrophysics Data System (ADS)
Meinel, Reinhard; Breithaupt, Martin; Liu, Yu-Chun
2015-01-01
Continuous sequences of asymptotically flat solutions to the Einstein-Maxwell equations describing regular equilibrium configurations of ordinary matter can reach a black hole limit. For a distant observer, the spacetime becomes more and more indistinguishable from the metric of an extreme Kerr-Newman black hole outside the horizon when approaching the limit. From an internal perspective, a still regular but non-asymptotically flat spacetime with the extreme Kerr-Newman near-horizon geometry at spatial infinity forms at the limit. Interesting special cases are sequences of Papapetrou-Majumdar distributions of electrically counterpoised dust leading to extreme Reissner-Nordström black holes and sequences of rotating uncharged fluid bodies leading to extreme Kerr black holes.
Noncommutative Singular Black Holes
NASA Astrophysics Data System (ADS)
Hamid Mehdipour, S.
2010-11-01
In this paper, applying the method of coordinate coherent states to describe a noncommutative model of Vaidya black holes leads to an exact (t — r) dependence of solution in terms of the noncommutative parameter σ. In this setup, there is no black hole remnant at long times.
NASA Astrophysics Data System (ADS)
Bousso, R.; Hawking, S. W.
1997-08-01
We summarise recent work on the quantum production of black holes in the inflationary era. We describe, in simple terms, the Euclidean approach used, and the results obtained both for the pair creation rate and for the evolution of the black holes.
NASA Astrophysics Data System (ADS)
Gabach-Clement, Maria E.; Reiris, Martin
2013-08-01
We give a thorough description of the shape of rotating axisymmetric stable black-hole (apparent) horizons applicable in dynamical or stationary regimes. It is found that rotation manifests in the widening of their central regions (rotational thickening), limits their global shapes to the extent that stable holes of a given area A and angular momentum J≠0 form a precompact family (rotational stabilization) and enforces their whole geometry to be close to the extreme-Kerr horizon geometry at almost maximal rotational speed (enforced shaping). The results, which are based on the stability inequality, depend only on A and J. In particular they are entirely independent of the surrounding geometry of the space-time and of the presence of matter satisfying the strong energy condition. A complete set of relations between A, J, the length L of the meridians and the length R of the greatest axisymmetric circle, is given. We also provide concrete estimations for the distance between the geometry of horizons and that of the extreme Kerr, in terms only of A and J. Besides its own interest, the work has applications to the Hoop conjecture as formulated by Gibbons in terms of the Birkhoff invariant, to the Bekenstein-Hod entropy bounds and to the study of the compactness of classes of stationary black-hole space-times.
Thermodynamic phase transition in the rainbow Schwarzschild black hole
Gim, Yongwan; Kim, Wontae E-mail: wtkim@sogang.ac.kr
2014-10-01
We study the thermodynamic phase transition in the rainbow Schwarzschild black hole where the metric depends on the energy of the test particle. Identifying the black hole temperature with the energy from the modified dispersion relation, we obtain the modified entropy and thermodynamic energy along with the modified local temperature in the cavity to provide well defined black hole states. It is found that apart from the conventional critical temperature related to Hawking-Page phase transition there appears an additional critical temperature which is of relevance to the existence of a locally stable tiny black hole; however, the off-shell free energy tells us that this black hole should eventually tunnel into the stable large black hole. Finally, we discuss the reason why the temperature near the horizon is finite in the rainbow black hole by employing the running gravitational coupling constant, whereas it is divergent near the horizon in the ordinary Schwarzschild black hole.
NASA Astrophysics Data System (ADS)
2002-10-01
. PR Photo 23b/02 : NACO image of the central region of the Milky Way (close-up) . PR Photo 23c/02 : Orbit of the star "S2" around the central Black Hole. PR Video Clip 02/02 : Motion of "S2" and other stars around the central Black Hole. Quasars and Black Holes Ever since the discovery of the quasars (quasi-stellar radio sources) in 1963, astrophysicists have searched for an explanation of the energy production in these most luminous objects in the Universe. Quasars reside at the centres of galaxies, and it is believed that the enormous energy emitted by these objects is due to matter falling onto a supermassive Black Hole, releasing gravitational energy through intense radiation before that material disappears forever into the hole (in physics terminology: "passes beyond the event horizon" [4]). To explain the prodigious energy production of quasars and other active galaxies, one needs to conjecture the presence of black holes with masses of one million to several billion times the mass of the Sun. Much evidence has been accumulating during the past years in support of the above "accreting black hole" model for quasars and other galaxies, including the detection of dark mass concentrations in their central regions. However, an unambiguous proof requires excluding all possible other, non-black hole configurations of the central mass concentration. For this, it is imperative to determine the shape of the gravitational field very close to the central object - and this is not possible for the distant quasars due to technological limitations of the currently available telescopes. The centre of the Milky Way ESO PR Photo 23a/02 ESO PR Photo 23a/02 [Preview - JPEG: 400 x 427 pix - 95k [Normal - JPEG: 800 x 853 pix - 488k] Caption : PR Photo 23a/02 is a reproduction of an image of the innermost area of the Milky Way, only a few light-years across, obtained in mid-2002 with the NACO instrument [3] at the 8.2-m VLT YEPUN telescope. It combines frames in three infrared
Holographic interpretation of acoustic black holes
NASA Astrophysics Data System (ADS)
Ge, Xian-Hui; Sun, Jia-Rui; Tian, Yu; Wu, Xiao-Ning; Zhang, Yun-Long
2015-10-01
With the attempt to find the holographic description of the usual acoustic black holes in fluid, we construct an acoustic black hole formed in the d -dimensional fluid located at the timelike cutoff surface of a neutral black brane in asymptotically AdSd +1 spacetime; the bulk gravitational dual of the acoustic black hole is presented at the first order of the hydrodynamic fluctuation. Moreover, the Hawking-like temperature of the acoustic black hole horizon is showed to be connected to the Hawking temperature of the real anti-de Sitter (AdS) black brane in the bulk, and the duality between the phonon scattering in the acoustic black hole and the sound channel quasinormal mode propagating in the bulk perturbed AdS black brane is extracted. We thus point out that the acoustic black hole appearing in fluid, which was originally proposed as an analogous model to simulate Hawking radiation of the real black hole, is not merely an analogy, it can indeed be used to describe specific properties of the real AdS black holes, in the spirit of the fluid/gravity duality.
Black hole evaporation rates without spacetime.
Braunstein, Samuel L; Patra, Manas K
2011-08-12
Verlinde recently suggested that gravity, inertia, and even spacetime may be emergent properties of an underlying thermodynamic theory. This vision was motivated in part by Jacobson's 1995 surprise result that the Einstein equations of gravity follow from the thermodynamic properties of event horizons. Taking a first tentative step in such a program, we derive the evaporation rate (or radiation spectrum) from black hole event horizons in a spacetime-free manner. Our result relies on a Hilbert space description of black hole evaporation, symmetries therein which follow from the inherent high dimensionality of black holes, global conservation of the no-hair quantities, and the existence of Penrose processes. Our analysis is not wedded to standard general relativity and so should apply to extended gravity theories where we find that the black hole area must be replaced by some other property in any generalized area theorem. PMID:21902381
Erratic Black Hole Regulates Itself
NASA Astrophysics Data System (ADS)
2009-03-01
New results from NASA's Chandra X-ray Observatory have made a major advance in explaining how a special class of black holes may shut off the high-speed jets they produce. These results suggest that these black holes have a mechanism for regulating the rate at which they grow. Black holes come in many sizes: the supermassive ones, including those in quasars, which weigh in at millions to billions of times the mass of the Sun, and the much smaller stellar-mass black holes which have measured masses in the range of about 7 to 25 times the Sun's mass. Some stellar-mass black holes launch powerful jets of particles and radiation, like seen in quasars, and are called "micro-quasars". The new study looks at a famous micro-quasar in our own Galaxy, and regions close to its event horizon, or point of no return. This system, GRS 1915+105 (GRS 1915 for short), contains a black hole about 14 times the mass of the Sun that is feeding off material from a nearby companion star. As the material swirls toward the black hole, an accretion disk forms. This system shows remarkably unpredictable and complicated variability ranging from timescales of seconds to months, including 14 different patterns of variation. These variations are caused by a poorly understood connection between the disk and the radio jet seen in GRS 1915. Chandra, with its spectrograph, has observed GRS 1915 eleven times since its launch in 1999. These studies reveal that the jet in GRS 1915 may be periodically choked off when a hot wind, seen in X-rays, is driven off the accretion disk around the black hole. The wind is believed to shut down the jet by depriving it of matter that would have otherwise fueled it. Conversely, once the wind dies down, the jet can re-emerge. "We think the jet and wind around this black hole are in a sort of tug of war," said Joseph Neilsen, Harvard graduate student and lead author of the paper appearing in the journal Nature. "Sometimes one is winning and then, for reasons we don
ULTRAMASSIVE BLACK HOLE COALESCENCE
Khan, Fazeel Mahmood; Holley-Bockelmann, Kelly; Berczik, Peter E-mail: k.holley@vanderbilt.edu
2015-01-10
Although supermassive black holes (SMBHs) correlate well with their host galaxies, there is an emerging view that outliers exist. Henize 2-10, NGC 4889, and NGC 1277 are examples of SMBHs at least an order of magnitude more massive than their host galaxy suggests. The dynamical effects of such ultramassive central black holes is unclear. Here, we perform direct N-body simulations of mergers of galactic nuclei where one black hole is ultramassive to study the evolution of the remnant and the black hole dynamics in this extreme regime. We find that the merger remnant is axisymmetric near the center, while near the large SMBH influence radius, the galaxy is triaxial. The SMBH separation shrinks rapidly due to dynamical friction, and quickly forms a binary black hole; if we scale our model to the most massive estimate for the NGC 1277 black hole, for example, the timescale for the SMBH separation to shrink from nearly a kiloparsec to less than a parsec is roughly 10 Myr. By the time the SMBHs form a hard binary, gravitational wave emission dominates, and the black holes coalesce in a mere few Myr. Curiously, these extremely massive binaries appear to nearly bypass the three-body scattering evolutionary phase. Our study suggests that in this extreme case, SMBH coalescence is governed by dynamical friction followed nearly directly by gravitational wave emission, resulting in a rapid and efficient SMBH coalescence timescale. We discuss the implications for gravitational wave event rates and hypervelocity star production.
Renyi Entropies of a Black Hole
NASA Astrophysics Data System (ADS)
Bialas, A.; Czyz, W.
2008-08-01
The Renyi entropies, Hl, of Hawking radiation contained in a thin shell surrounding the black hole are evaluated. When the width of the shell is adjusted to the energy content corresponding to the mass defect, the Bekenstein-Hawking formula for the Shannon (S=H1) entropy of a black hole is reproduced. This result does not depend on the distance of the shell from the horizon. The Renyi entropies of higher order, however, are sensitive to it.
Local temperature for dynamical black holes
NASA Astrophysics Data System (ADS)
Hayward, Sean A.; di Criscienzo, R.; Nadalini, M.; Vanzo, L.; Zerbini, S.
2009-05-01
A local Hawking temperature was recently derived for any future outer trapping horizon in spherical symmetry, using a Hamilton-Jacobi tunneling method, and is given by a dynamical surface gravity as defined geometrically. Descriptions are given of the operational meaning of the temperature, in terms of what observers measure, and its relation to the usual Hawking temperature for static black holes. Implications for the final fate of an evaporating black hole are discussed.
Mathur, Samir D.
2012-11-15
The black hole information paradox forces us into a strange situation: we must find a way to break the semiclassical approximation in a domain where no quantum gravity effects would normally be expected. Traditional quantizations of gravity do not exhibit any such breakdown, and this forces us into a difficult corner: either we must give up quantum mechanics or we must accept the existence of troublesome 'remnants'. In string theory, however, the fundamental quanta are extended objects, and it turns out that the bound states of such objects acquire a size that grows with the number of quanta in the bound state. The interior of the black hole gets completely altered to a 'fuzzball' structure, and information is able to escape in radiation from the hole. The semiclassical approximation can break at macroscopic scales due to the large entropy of the hole: the measure in the path integral competes with the classical action, instead of giving a subleading correction. Putting this picture of black hole microstates together with ideas about entangled states leads to a natural set of conjectures on many long-standing questions in gravity: the significance of Rindler and de Sitter entropies, the notion of black hole complementarity, and the fate of an observer falling into a black hole. - Highlights: Black-Right-Pointing-Pointer The information paradox is a serious problem. Black-Right-Pointing-Pointer To solve it we need to find 'hair' on black holes. Black-Right-Pointing-Pointer In string theory we find 'hair' by the fuzzball construction. Black-Right-Pointing-Pointer Fuzzballs help to resolve many other issues in gravity.
NASA Astrophysics Data System (ADS)
Garmire, Gordon
1999-09-01
WE PROPOSE TO CARRY OUT A SYSTEMATIC STUDY OF EMISSION AND ABSORPTION SPECTRAL FEATURES THAT ARE OFTEN SEEN IN X-RAY SPECTRA OF BLACK HOLE BINARIES. THE EXCELLENT SENSITIVITY AND ENERGY RESOLUTION OF THE ACIS/HETG COMBINATION WILL NOT ONLY HELP RESOLVE AMBIGUITIES IN INTERPRETING THESE FEATURES, BUT MAY ALLOW MODELLING OF THE EMISSION LINE PROFILES IN DETAIL. THE PROFILES MAY CONTAIN INFORMATION ON SUCH FUNDAMENTAL PROPERTIES AS THE SPIN OF BLACK HOLES. THEREFORE, THIS STUDY COULD LEAD TO A MEASUREMENT OF BLACK HOLE SPIN FOR SELECTED SOURCES. THE RESULT CAN THEN BE DIRECTLY COMPARED WITH THOSE FROM PREVIOUS STUDIES BASED ON INDEPENDENT METHODS.
NASA's Chandra Finds Black Holes Are "Green"
NASA Astrophysics Data System (ADS)
2006-04-01
Black holes are the most fuel efficient engines in the Universe, according to a new study using NASA's Chandra X-ray Observatory. By making the first direct estimate of how efficient or "green" black holes are, this work gives insight into how black holes generate energy and affect their environment. The new Chandra finding shows that most of the energy released by matter falling toward a supermassive black hole is in the form of high-energy jets traveling at near the speed of light away from the black hole. This is an important step in understanding how such jets can be launched from magnetized disks of gas near the event horizon of a black hole. Illustration of Fuel for a Black Hole Engine Illustration of Fuel for a Black Hole Engine "Just as with cars, it's critical to know the fuel efficiency of black holes," said lead author Steve Allen of the Kavli Institute for Particle Astrophysics and Cosmology at Stanford University, and the Stanford Linear Accelerator Center. "Without this information, we cannot figure out what is going on under the hood, so to speak, or what the engine can do." Allen and his team used Chandra to study nine supermassive black holes at the centers of elliptical galaxies. These black holes are relatively old and generate much less radiation than quasars, rapidly growing supermassive black holes seen in the early Universe. The surprise came when the Chandra results showed that these "quiet" black holes are all producing much more energy in jets of high-energy particles than in visible light or X-rays. These jets create huge bubbles, or cavities, in the hot gas in the galaxies. Animation of Black Hole in Elliptical Galaxy Animation of Black Hole in Elliptical Galaxy The efficiency of the black hole energy-production was calculated in two steps: first Chandra images of the inner regions of the galaxies were used to estimate how much fuel is available for the black hole; then Chandra images were used to estimate the power required to produce
Cosmological production of noncommutative black holes
NASA Astrophysics Data System (ADS)
Mann, Robert B.; Nicolini, Piero
2011-09-01
We investigate the pair creation of noncommutative black holes in a background with a positive cosmological constant. As a first step we derive the noncommutative geometry inspired Schwarzschild-de Sitter solution. By varying the mass and the cosmological constant parameters, we find several spacetimes compatible with the new solution: positive-mass spacetimes admit one cosmological horizon and two, one, or no black hole horizons, while negative-mass spacetimes have just a cosmological horizon. These new black holes share the properties of the corresponding asymptotically flat solutions, including the nonsingular core and thermodynamic stability in the final phase of the evaporation. As a second step we determine the action which generates the matter sector of gravitational field equations and we construct instantons describing the pair production of black holes and the other admissible topologies. As a result we find that for current values of the cosmological constant the de Sitter background is quantum mechanically stable according to experience. However, positive-mass noncommutative black holes and solitons would have plentifully been produced during inflationary times for Planckian values of the cosmological constant. As a special result we find that, in these early epochs of the Universe, Planck size black holes production would have been largely disfavored. We also find a potential instability for production of negative-mass solitons.
NASA Astrophysics Data System (ADS)
Rahaman, Farook; Bhar, Piyali; Sharma, Ranjan; Tiwari, Rishi Kumar
2015-03-01
We report a -D charged black hole solution in an anti-de Sitter space inspired by noncommutative geometry. In this construction, the black hole exhibits two horizons, which turn into a single horizon in the extreme case. We investigate the impacts of electromagnetic field on the location of the event horizon, mass and thermodynamic properties such as Hawking temperature, entropy, and heat capacity of the black hole. The geodesics of the charged black hole are also analyzed.
Rotating black holes can have short bristles
NASA Astrophysics Data System (ADS)
Hod, Shahar
2014-12-01
The elegant 'no short hair' theorem states that, if a spherically-symmetric static black hole has hair, then this hair must extend beyond 3/2 the horizon radius. In the present paper we provide evidence for the failure of this theorem beyond the regime of spherically-symmetric static black holes. In particular, we show that rotating black holes can support extremely short-range stationary scalar configurations (linearized scalar 'clouds') in their exterior regions. To that end, we solve analytically the Klein-Gordon-Kerr-Newman wave equation for a linearized massive scalar field in the regime of large scalar masses.
The innermost extremes of black hole accretion
NASA Astrophysics Data System (ADS)
Fabian, A. C.
2016-05-01
The inner 20 gravitational radii around the black hole at the centre of luminous active galactic nuclei and stellar mass black hole binaries are now being routinely mapped by X-ray spectral-timing techniques. Spectral blurring and reverberation of the reflection spectrum are key tools in this work. In the most extreme AGN cases with high black hole spin, when the source appears in a low state, observations probe the region within 1 gravitational radius of the event horizon. The location, size, and operation of the corona which generates the power-law X-ray continuum is also being revealed.
Quantum production of black holes at colliders
NASA Astrophysics Data System (ADS)
Arsene, Nicusor; Casadio, Roberto; Micu, Octavian
2016-07-01
We investigate black hole production in p p collisions at the Large Hadron Collider by employing the horizon quantum mechanics for models of gravity with extra spatial dimensions. This approach can be applied to processes around the fundamental gravitational scale and naturally yields a suppression below the fundamental gravitational scale and for increasing number of extra dimensions. The results of numerical simulations performed with the black hole event generator BLACKMAX are here reported in order to illustrate the main differences in the numbers of expected black hole events and mass distributions.
Entropy Inequality Violations from Ultraspinning Black Holes.
Hennigar, Robie A; Mann, Robert B; Kubizňák, David
2015-07-17
We construct a new class of rotating anti-de Sitter (AdS) black hole solutions with noncompact event horizons of finite area in any dimension and study their thermodynamics. In four dimensions these black holes are solutions to gauged supergravity. We find that their entropy exceeds the maximum implied from the conjectured reverse isoperimetric inequality, which states that for a given thermodynamic volume, the black hole entropy is maximized for Schwarzschild-AdS space. We use this result to suggest more stringent conditions under which this conjecture may hold. PMID:26230779
ERIC Educational Resources Information Center
Ruffini, Remo; Wheeler, John A.
1971-01-01
discusses the cosmology theory of a black hole, a region where an object loses its identity, but mass, charge, and momentum are conserved. Include are three possible formation processes, theorized properties, and three way they might eventually be detected. (DS)
NASA Astrophysics Data System (ADS)
Barr, Ian A.; Bull, Anne; O’Brien, Eileen; Drillsma-Milgrom, Katy A.; Milgrom, Lionel R.
2016-07-01
Two-dimensional shadows formed by illuminating vortices are shown to be visually analogous to the gravitational action of black holes on light and surrounding matter. They could be useful teaching aids demonstrating some of the consequences of general relativity.
(Anti-)evaporation of Schwarzschild-de Sitter black holes
NASA Astrophysics Data System (ADS)
Bousso, Raphael; Hawking, Stephen W.
1998-02-01
We study the quantum evolution of black holes immersed in a de Sitter background space. For black holes whose size is comparable to that of the cosmological horizon, this process differs significantly from the evaporation of asymptotically flat black holes. Our model includes the one-loop effective action in the s-wave and large N approximation. Black holes of the maximal mass are in equilibrium. Unexpectedly, we find that nearly maximal quantum Schwarzschild-de Sitter black holes anti-evaporate. However, there is a different perturbative mode that leads to evaporation. We show that this mode will always be excited when a pair of cosmological holes nucleates.
ERIC Educational Resources Information Center
Science Teacher, 2005
2005-01-01
Scientists using NASA's Swift satellite say they have found newborn black holes, just seconds old, in a confused state of existence. The holes are consuming material falling into them while somehow propelling other material away at great speeds. "First comes a blast of gamma rays followed by intense pulses of x-rays. The energies involved are much…
A Geometric Crescent Model for Black Hole Images
NASA Astrophysics Data System (ADS)
Kamruddin, Ayman Bin; Dexter, J.
2013-01-01
The Event Horizon Telescope (EHT), a global very long baseline interferometry array operating at millimeter wavelengths, is spatially resolving the immediate environment of black holes for the first time. The current observations of the Galactic center black hole, Sagittarius A* (Sgr A*), have been interpreted in terms of unmotivated geometric models (e.g., a symmetric Gaussian) or detailed calculations involving accretion onto a black hole. The latter are subject to large systematic uncertainties. Motivated by relativistic effects around black holes, we propose a geometric crescent model for black hole images. We show that this simple model provides an excellent statistical description of the existing EHT data of Sgr A*, superior to the Gaussian. It also closely matches physically predicted models, bridging accretion theory and observation. Based on our results, we make predictions for future observations for the accessibility of the black hole shadow, direct evidence for a black hole event horizon.
Quasinormal modes of extremal black holes
NASA Astrophysics Data System (ADS)
Richartz, Maurício
2016-03-01
The continued fraction method (also known as Leaver's method) is one of the most effective techniques used to determine the quasinormal modes of a black hole. For extremal black holes, however, the method does not work (since, in such a case, the event horizon is an irregular singular point of the associated wave equation). Fortunately, there exists a modified version of the method, devised by Onozawa et al. [Phys. Rev. D 53, 7033 (1996)], which works for neutral massless fields around an extremal Reissner-Nordström black hole. In this paper, we generalize the ideas of Onozawa et al. to charged massless perturbations around an extremal Reissner-Nordström black hole and to neutral massless perturbations around an extremal Kerr black hole. In particular, the existence of damped modes is analyzed in detail. Similarities and differences between the results of the original continued fraction method for near extremal black holes and the results of the new continued fraction method for extremal black holes are discussed. Mode stability of extremal black holes is also investigated.
NASA Astrophysics Data System (ADS)
Hawking, S. W.
1996-03-01
One would expect spacetime to have a foamlike structure on the Planck scale with a very high topology. If spacetime is simply connected (which is assumed in this paper), the nontrivial homology occurs in dimension two, and spacetime can be regarded as being essentially the topological sum of S2×S2 and K3 bubbles. Comparison with the instantons for pair creation of black holes shows that the S2×S2 bubbles can be interpreted as closed loops of virtual black holes. It is shown that scattering in such topological fluctuations leads to loss of quantum coherence, or in other words, to a superscattering matrix S/ that does not factorize into an S matrix and its adjoint. This loss of quantum coherence is very small at low energies for everything except scalar fields, leading to the prediction that we may never observe the Higgs particle. Another possible observational consequence may be that the θ angle of QCD is zero without having to invoke the problematical existence of a light axion. The picture of virtual black holes given here also suggests that macroscopic black holes will evaporate down to the Planck size and then disappear in the sea of virtual black holes.
NASA Astrophysics Data System (ADS)
Centrella, Joan
2009-05-01
The final merger of two black holes is expected to be the strongest gravitational wave source for ground-based interferometers such as LIGO, VIRGO, and GEO600, as well as the space-based LISA. Observing these sources with gravitational wave detectors requires that we know the radiation waveforms they emit. And, when the black holes merge in the presence of gas and magnetic fields, various types of electromagnetic signals may also be produced. Since these mergers take place in regions of extreme gravity, we need to solve Einstein's equations of general relativity on a computer. For more than 30 years, scientists have tried to compute black hole mergers using the methods of numerical relativity. The resulting computer codes have been plagued by instabilities, causing them to crash well before the black holes in the binary could complete even a single orbit. Within the past few years, however, this situation has changed dramatically, with a series of remarkable breakthroughs. This talk will focus on new simulations that are revealing the dynamics and waveforms of binary black hole mergers, and their applications in gravitational wave detection, testing general relativity, and astrophysics.
NASA Technical Reports Server (NTRS)
Centrella, John
2009-01-01
The final merger of two black holes is expected to be the strongest gravitational wave source for ground-based interferometers such as LIGO, VIRGO, and GEO600, as well as the space-based LISA. Observing these sources with gravitational wave detectors requires that we know the radiation waveforms they emit. And, when the black holes merge in the presence of gas and magnetic fields, various types of electromagnetic signals may also be produced. Since these mergers take place in regions of extreme gravity, we need to solve Einstein's equations of general relativity on a computer. For more than 30 years, scientists have tried to compute black hole mergers using the methods of numerical relativity. The resulting computer codes have been plagued by instabilities, causing them to crash well before the black holes in the binary could complete even a single orbit. Within the past few years, however, this situation has changed dramatically, with a series of remarkable breakthroughs. This talk will focus on new simulations that are revealing the dynamics and waveforms of binary black hole mergers, and their applications in gravitational wave detection, testing general relativity, and astrophysics.
Non-Abelian magnetic black strings versus black holes
NASA Astrophysics Data System (ADS)
Mazharimousavi, S. Habib; Halilsoy, M.
2016-05-01
We present d+1 -dimensional pure magnetic Yang-Mills (YM) black strings (or 1-branes) induced by the d -dimensional Einstein-Yang-Mills-Dilaton black holes. The Born-Infeld version of the YM field makes our starting point which goes to the standard YM field through a limiting procedure. The lifting from black holes to black strings (with less number of fields) is done by adding an extra, compact coordinate. This amounts to the change of horizon topology from S^{d-2} to a product structure. Our black string in 5 dimensions is a rather special one, with uniform Hawking temperature and non-asymptotically flat structure. As the YM charge becomes large the string gets thinner to tend into a breaking point and transform into a 4-dimensional black hole.
A Particle Probing Thermodynamics in Rotating AdS Black Hole
NASA Astrophysics Data System (ADS)
Gwak, Bogeun; Lee, Bum-Hoon
2016-07-01
We briefly review the thermodynamics of a probe particle absorption to a black hole in this proceeding. The particle energy has a relation to its momenta at the horizon of the black hole. Following this relation, the particle infinitesimally changes the black hole mass and momenta. Under these changes, the changes of properties of the black hole are consistent with the laws of thermodynamics.
Spacetime Noncommutative Effect on Black Hole as Particle Accelerators
NASA Astrophysics Data System (ADS)
Ding, Chikun; Liu, Changqing; Quo, Qian
2013-03-01
We study the spacetime noncommutative effect on black hole as particle accelerators and, find that the particles falling from infinity with zero velocity cannot collide with unbound energy, either near the horizon or on the prograde ISCO when the noncommutative Kerr black hole is exactly extremal. Our results also show that the bigger of the spinning black hole's mass is the higher of center of mass energy that the particles obtain. For small and medium noncommutative Schwarzschild black hole, the collision energy depends on the black hole's mass.
Cosmic censorship of rotating Anti-de Sitter black hole
NASA Astrophysics Data System (ADS)
Gwak, Bogeun; Lee, Bum-Hoon
2016-02-01
We test the validity of cosmic censorship in the rotating anti-de Sitter black hole. For this purpose, we investigate whether the extremal black hole can be overspun by the particle absorption. The particle absorption will change the mass and angular momentum of the black hole, which is analyzed using the Hamilton-Jacobi equations consistent with the laws of thermodynamics. We have found that the mass of the extremal black hole increases more than the angular momentum. Therefore, the outer horizon of the black hole still exists, and cosmic censorship is valid.
Exact solutions of Lovelock-Born-Infeld black holes
Aiello, Matias; Ferraro, Rafael; Giribet, Gaston
2004-11-15
The exact five-dimensional charged black hole solution in Lovelock gravity coupled to Born-Infeld electrodynamics is presented. This solution interpolates between the Hoffmann black hole for the Einstein-Born-Infeld theory and other solutions in the Lovelock theory previously studied in the literature. It is shown how the conical singularity of the metric around the origin can be removed by a proper choice of the black hole parameters. The differences existing with the Reissner-Nordstroem black holes are discussed. In particular, we show the existence of charged black holes with a unique horizon.
Hawking Temperature of Acoustic Black Hole
NASA Astrophysics Data System (ADS)
Xie, Zhi Kun
2014-09-01
Using a new tortoise coordinate transformation, the Hawking radiation of the acoustic black hole was discussed by studying the Klein-Gordon equation of scalar particles in the curve space-time. It was found that the Hawking temperature is connected with time and position on the event horizon.
Phonon Emission from Acoustic Black Hole
NASA Astrophysics Data System (ADS)
Fang, Hengzhong; Zhou, Kaihu; Song, Yuming
2012-08-01
We study the phonon tunneling through the horizon of an acoustic black hole by solving the Hamilton-Jacobi equation. We also make use of the closed-path integral to calculate the tunneling probability, and an improved way to determine the temporal contribution is used. Both the results from the two methods agree with Hawking's initial analysis.
NASA Astrophysics Data System (ADS)
Yang, Huan; Zimmerman, Aaron; Lehner, Luis
2015-02-01
We demonstrate that rapidly spinning black holes can display a new type of nonlinear parametric instability—which is triggered above a certain perturbation amplitude threshold—akin to the onset of turbulence, with possibly observable consequences. This instability transfers from higher temporal and azimuthal spatial frequencies to lower frequencies—a phenomenon reminiscent of the inverse cascade displayed by (2 +1 )-dimensional fluids. Our finding provides evidence for the onset of transitory turbulence in astrophysical black holes and predicts observable signatures in black hole binaries with high spins. Furthermore, it gives a gravitational description of this behavior which, through the fluid-gravity duality, can potentially shed new light on the remarkable phenomena of turbulence in fluids.
NASA Astrophysics Data System (ADS)
Vaz, Cenalo; Wijewardhana, L. C. R.
2013-12-01
General consensus on the nature of the degrees of freedom responsible for the black hole entropy remains elusive despite decades of effort dedicated to the problem. Different approaches to quantum gravity disagree in their description of the microstates and, more significantly, in the statistics used to count them. In some approaches (string theory, AdS/CFT) the elementary degrees of freedom are indistinguishable, whereas they must be treated as distinguishable in other approaches to quantum gravity (eg., LQG) in order to recover the Bekenstein-Hawking area-entropy law. However, different statistics will imply different behaviors of the black hole outside the thermodynamic limit. We illustrate this point by quantizing the Bañados-Teitelboim-Zanelli (BTZ) black hole, for which we argue that Bose condensation will occur leading to a "cold", stable remnant.
NASA Technical Reports Server (NTRS)
Centrella, Joan
2012-01-01
The final merger of two black holes is expected to be the strongest source of gravitational waves for both ground-based detectors such as LIGO and VIRGO, as well as future. space-based detectors. Since the merger takes place in the regime of strong dynamical gravity, computing the resulting gravitational waveforms requires solving the full Einstein equations of general relativity on a computer. For many years, numerical codes designed to simulate black hole mergers were plagued by a host of instabilities. However, recent breakthroughs have conquered these instabilities and opened up this field dramatically. This talk will focus on.the resulting 'gold rush' of new results that is revealing the dynamics and waveforms of binary black hole mergers, and their applications in gravitational wave detection, testing general relativity, and astrophysics
NASA Technical Reports Server (NTRS)
Centrella, Joan
2010-01-01
The final merger of two black holes is expected to be the strongest source of gravitational waves for both ground-based detectors such as LIGO and VIRGO, as well as the space-based LISA. Since the merger takes place in the regime of strong dynamical gravity, computing the resulting gravitational waveforms requires solving the full Einstein equations of general relativity on a computer. For many years, numerical codes designed to simulate black hole mergers were plagued by a host of instabilities. However, recent breakthroughs have conquered these instabilities and opened up this field dramatically. This talk will focus on the resulting gold rush of new results that are revealing the dynamics and waveforms of binary black hole mergers, and their applications in gravitational wove detection, testing general relativity, and astrophysics.
Yang, Huan; Zimmerman, Aaron; Lehner, Luis
2015-02-27
We demonstrate that rapidly spinning black holes can display a new type of nonlinear parametric instability-which is triggered above a certain perturbation amplitude threshold-akin to the onset of turbulence, with possibly observable consequences. This instability transfers from higher temporal and azimuthal spatial frequencies to lower frequencies-a phenomenon reminiscent of the inverse cascade displayed by (2+1)-dimensional fluids. Our finding provides evidence for the onset of transitory turbulence in astrophysical black holes and predicts observable signatures in black hole binaries with high spins. Furthermore, it gives a gravitational description of this behavior which, through the fluid-gravity duality, can potentially shed new light on the remarkable phenomena of turbulence in fluids. PMID:25768746
Noncommutative solitonic black hole
NASA Astrophysics Data System (ADS)
Chang-Young, Ee; Kimm, Kyoungtae; Lee, Daeho; Lee, Youngone
2012-05-01
We investigate solitonic black hole solutions in three-dimensional noncommutative spacetime. We do this in gravity with a negative cosmological constant coupled to a scalar field. Noncommutativity is realized with the Moyal product which is expanded up to first order in the noncommutativity parameter in two spatial directions. With numerical simulation we study the effect of noncommutativity by increasing the value of the noncommutativity parameter starting from commutative solutions. We find that even a regular soliton solution in the commutative case becomes a black hole solution when the noncommutativity parameter reaches a certain value.
Characterizing Black Hole Mergers
NASA Technical Reports Server (NTRS)
Baker, John; Boggs, William Darian; Kelly, Bernard
2010-01-01
Binary black hole mergers are a promising source of gravitational waves for interferometric gravitational wave detectors. Recent advances in numerical relativity have revealed the predictions of General Relativity for the strong burst of radiation generated in the final moments of binary coalescence. We explore features in the merger radiation which characterize the final moments of merger and ringdown. Interpreting the waveforms in terms of an rotating implicit radiation source allows a unified phenomenological description of the system from inspiral through ringdown. Common features in the waveforms allow quantitative description of the merger signal which may provide insights for observations large-mass black hole binaries.
NASA Technical Reports Server (NTRS)
Centrella, Joan; Baker, John G.; Kelly, Bernard J.; vanMeter, James R.
2010-01-01
Black-hole mergers take place in regions of very strong and dynamical gravitational fields, and are among the strongest sources of gravitational radiation. Probing these mergers requires solving the full set of Einstein's equations of general relativity numerically. For more than 40 years, progress towards this goal has been very slow, as numerical relativists encountered a host of difficult problems. Recently, several breakthroughs have led to dramatic progress, enabling stable and accurate calculations of black-hole mergers. This article presents an overview of this field, including impacts on astrophysics and applications in gravitational wave data analysis.
CFT duals for accelerating black holes
NASA Astrophysics Data System (ADS)
Astorino, Marco
2016-09-01
The near horizon geometry of the rotating C-metric, describing accelerating Kerr-Newman black holes, is analysed. It is shown that, at extremality, even though it is not isomorphic to the extremal Kerr-Newman, it remains a warped and twisted product of AdS2 ×S2. Therefore the methods of the Kerr/CFT correspondence can successfully be applied to build a CFT dual model, whose entropy reproduces, through the Cardy formula, the Bekenstein-Hawking entropy of the accelerating black hole. The mass of accelerating Kerr-Newman black hole, which fulfils the first law of thermodynamics, is presented. Further generalisation in presence of an external Melvin-like magnetic field, used to regularise the conical singularity characteristic of the C-metrics, shows that the Kerr/CFT correspondence can be applied also for the accelerating and magnetised extremal black holes.
Mass of a black hole firewall.
Abramowicz, M A; Kluźniak, W; Lasota, J-P
2014-03-01
Quantum entanglement of Hawking radiation has been supposed to give rise to a Planck density "firewall" near the event horizon of old black holes. We show that Planck density firewalls are excluded by Einstein's equations for black holes of mass exceeding the Planck mass. We find an upper limit of 1/(8πM) to the surface density of a firewall in a Schwarzschild black hole of mass M, translating for astrophysical black holes into a firewall density smaller than the Planck density by more than 30 orders of magnitude. A strict upper limit on the firewall density is given by the Planck density times the ratio M(Pl)/(8πM). PMID:24655237
Spectral line broadening in magnetized black holes
Frolov, Valeri P.; Shoom, Andrey A.; Tzounis, Christos E-mail: ashoom@ualberta.ca
2014-07-01
We consider weakly magnetized non-rotating black holes. In the presence of a regular magnetic field the motion of charged particles in the vicinity of a black hole is modified. As a result, the position of the innermost stable circular orbit (ISCO) becomes closer to the horizon. When the Lorentz force is repulsive (directed from the black hole) the ISCO radius can reach the gravitational radius. In the process of accretion charged particles (ions) of the accreting matter can be accumulated near their ISCO, while neutral particles fall down to the black hole after they reach 6M radius. The sharp spectral line Fe α, emitted by iron ions at such orbits, is broadened when the emission is registered by a distant observer. In this paper we study this broadening effect and discuss how one can extract information concerning the strength of the magnetic field from the observed spectrum.
Energy conservation for dynamical black holes.
Hayward, Sean A
2004-12-17
An energy conservation law is described, expressing the increase in mass-energy of a general black hole in terms of the energy densities of the infalling matter and gravitational radiation. This first law of black-hole dynamics describes how a black hole grows and is regular in the limit where it ceases to grow. An effective gravitational-radiation energy tensor is obtained, providing measures of both ingoing and outgoing, transverse and longitudinal gravitational radiation on and near a black hole. Corresponding energy-tensor forms of the first law involve a preferred time vector which plays the role of a stationary Killing vector. Identifying an energy flux, vanishing if and only if the horizon is null, allows a division into energy supply and work terms. The energy supply can be expressed in terms of area increase and a newly defined surface gravity, yielding a Gibbs-like equation. PMID:15697889
Black holes in a cubic Galileon universe
NASA Astrophysics Data System (ADS)
Babichev, E.; Charmousis, C.; Lehébel, A.; Moskalets, T.
2016-09-01
We find and study the properties of black hole solutions for a subclass of Horndeski theory including the cubic Galileon term. The theory under study has shift symmetry but not reflection symmetry for the scalar field. The Galileon is assumed to have linear time dependence characterized by a velocity parameter. We give analytic 3-dimensional solutions that are akin to the BTZ solutions but with a non-trivial scalar field that modifies the effective cosmological constant. We then study the 4-dimensional asymptotically flat and de Sitter solutions. The latter present three different branches according to their effective cosmological constant. For two of these branches, we find families of black hole solutions, parametrized by the velocity of the scalar field. These spherically symmetric solutions, obtained numerically, are different from GR solutions close to the black hole event horizon, while they have the same de-Sitter asymptotic behavior. The velocity parameter represents black hole primary hair.
Energy extremum principle for charged black holes
NASA Astrophysics Data System (ADS)
Fraser, Scott; Funkhouser, Shaker Von Price
2015-11-01
For a set of N asymptotically flat black holes with arbitrary charges and masses, all initially at rest and well separated, we prove the following extremum principle: the extremal charge configuration (|qi|=mi for each black hole) can be derived by extremizing the total energy, for variations of the black hole apparent horizon areas, at fixed charges and fixed Euclidean separations. We prove this result through second order in an expansion in the inverse separations. If all charges have the same sign, this result is a variational principle that reinterprets the static equilibrium of the Majumdar-Papapetrou-Hartle-Hawking solution as an extremum of total energy, rather than as a balance of forces; this result augments a list of related variational principles for other static black holes, and is consistent with the independently known Bogomol'nyi-Prasad-Sommerfield (BPS) energy minimum.
Spherical polytropic balls cannot mimic black holes
NASA Astrophysics Data System (ADS)
Saida, Hiromi; Fujisawa, Atsuhito; Yoo, Chul-Moon; Nambu, Yasusada
2016-04-01
The so-called black hole shadow is a dark region which is expected to appear in a fine image of optical observation of black holes. It is essentially an absorption cross section of the black hole, and the boundary of shadow is determined by unstable circular orbits of photons (UCOP). If there exists a compact object possessing UCOP but no black hole horizon, it can provide us with the same shadow image as black holes, and detection of a shadow image cannot be direct evidence of black hole existence. This paper examines whether or not such compact objects can exist under some suitable conditions. We investigate thoroughly the static spherical polytropic ball of perfect fluid with single polytrope index, and then investigate a representative example of a piecewise polytropic ball. Our result is that the spherical polytropic ball which we have investigated cannot possess UCOP, if the speed of sound at the center is subluminal (slower than light). This means that, if the polytrope treated in this paper is a good model of stellar matter in compact objects, the detection of a shadow image can be regarded as good evidence of black hole existence. As a by-product, we have found the upper bound of the mass-to-radius ratio of a polytropic ball with single index, M_{ast }/R_{ast } < 0.281, under the condition of subluminal sound speed.
Quantum Statistical Entropy of Five-Dimensional Black Hole
NASA Astrophysics Data System (ADS)
Zhao, Ren; Wu, Yue-Qin; Zhang, Sheng-Li
2006-05-01
The generalized uncertainty relation is introduced to calculate quantum statistic entropy of a black hole. By using the new equation of state density motivated by the generalized uncertainty relation, we discuss entropies of Bose field and Fermi field on the background of the five-dimensional spacetime. In our calculation, we need not introduce cutoff. There is not the divergent logarithmic term as in the original brick-wall method. And it is obtained that the quantum statistic entropy corresponding to black hole horizon is proportional to the area of the horizon. Further it is shown that the entropy of black hole is the entropy of quantum state on the surface of horizon. The black hole's entropy is the intrinsic property of the black hole. The entropy is a quantum effect. It makes people further understand the quantum statistic entropy.
Anabalón, Andrés; Astefanesei, Dumitru
2015-03-26
We review the existence of exact hairy black holes in asymptotically flat, anti-de Sitter and de Sitter space-times. We briefly discuss the issue of stability and the charging of the black holes with a Maxwell field.
Nonstationary dark energy around a black hole
Akhoury, Ratindranath; Saotome, Ryo; Garfinkle, David; Vikman, Alexander
2011-04-15
Numerical simulations of the accretion of test scalar fields with nonstandard kinetic terms (of the k-essence type) onto a Schwarzschild black hole are performed. We find a full dynamical solution for the spherical accretion of a Dirac-Born-Infeld type scalar field. The simulations show that the accretion eventually settles down to a well-known stationary solution. This particular analytical steady state solution maintains two separate horizons. The standard horizon is for the usual particles propagating with the limiting speed of light, while the other sonic horizon is for the k-essence perturbations propagating with the speed of sound around this accreting background. For the case where the k-essence perturbations propagate superluminally, we show that one can send signals from within a black hole during the approach to the stationary solution. We also find that a ghost condensate model settles down to a stationary solution during the accretion process.
Chandra Sees Remarkable Eclipse of Black Hole
NASA Astrophysics Data System (ADS)
2007-04-01
A remarkable eclipse of a supermassive black hole and the hot gas disk around it has been observed with NASA's Chandra X-ray Observatory. This eclipse has allowed two key predictions about the effects of supermassive black holes to be tested. Just as eclipses of the Sun and moon give astronomers rare opportunities to learn about those objects, an alignment in a nearby galaxy has provided a rare opportunity to investigate a supermassive black hole. Illustrations of Black Hole Eclipse Illustrations of Black Hole Eclipse The supermassive black hole is located in NGC 1365, a galaxy 60 million light years from Earth. It contains a so called active galactic nucleus, or AGN. Scientists believe that the black hole at the center of the AGN is fed by a steady stream of material, presumably in the form of a disk. Material just about to fall into a black hole should be heated to millions of degrees before passing over the event horizon, or point of no return. The disk of gas around the central black hole in NGC 1365 produces copious X-rays but is much too small to resolve directly with a telescope. However, the disk was eclipsed by an intervening cloud, so observation of the time taken for the disk to go in and out of eclipse allowed scientists to estimate the size of the disk. Black Hole Animation Black Hole Animation "For years we've been struggling to confirm the size of this X-ray structure," said Guido Risaliti of the Harvard-Smithsonian Center for Astrophysics (CfA) in Cambridge, Mass, and the Italian Institute of Astronomy (INAF). "This serendipitous eclipse enabled us to make this breakthrough." The Chandra team directly measured the size of the X-ray source as about seven times the distance between the Sun and the Earth. That means the source of X-rays is about 2 billion times smaller than the host galaxy and only about 10 times larger than the estimated size of the black hole's event horizon, consistent with theoretical predictions. Chandra X-ray Image of NGC 1365
Nathanail, Antonios; Contopoulos, Ioannis
2014-06-20
We investigate the structure of the steady-state force-free magnetosphere around a Kerr black hole in various astrophysical settings. The solution Ψ(r, θ) depends on the distributions of the magnetic field line angular velocity ω(Ψ) and the poloidal electric current I(Ψ). These are obtained self-consistently as eigenfunctions that allow the solution to smoothly cross the two singular surfaces of the problem, the inner light surface inside the ergosphere, and the outer light surface, which is the generalization of the pulsar light cylinder. Magnetic field configurations that cross both singular surfaces (e.g., monopole, paraboloidal) are uniquely determined. Configurations that cross only one light surface (e.g., the artificial case of a rotating black hole embedded in a vertical magnetic field) are degenerate. We show that, similar to pulsars, black hole magnetospheres naturally develop an electric current sheet that potentially plays a very important role in the dissipation of black hole rotational energy and in the emission of high-energy radiation.
NASA Technical Reports Server (NTRS)
Baker, John
2010-01-01
Among the fascinating phenomena predicted by General Relativity, Einstein's theory of gravity, black holes and gravitational waves, are particularly important in astronomy. Though once viewed as a mathematical oddity, black holes are now recognized as the central engines of many of astronomy's most energetic cataclysms. Gravitational waves, though weakly interacting with ordinary matter, may be observed with new gravitational wave telescopes, opening a new window to the universe. These observations promise a direct view of the strong gravitational dynamics involving dense, often dark objects, such as black holes. The most powerful of these events may be merger of two colliding black holes. Though dark, these mergers may briefly release more energy that all the stars in the visible universe, in gravitational waves. General relativity makes precise predictions for the gravitational-wave signatures of these events, predictions which we can now calculate with the aid of supercomputer simulations. These results provide a foundation for interpreting expect observations in the emerging field of gravitational wave astronomy.
Tensile strength and the mining of black holes.
Brown, Adam R
2013-11-22
There are a number of important thought experiments that involve raising and lowering boxes full of radiation in the vicinity of black hole horizons. This Letter looks at the limitations placed on these thought experiments by the null energy condition, which imposes a fundamental bound on the tensile-strength-to-weight ratio of the materials involved, makes it impossible to build a box near the horizon that is wider than a single wavelength of the Hawking quanta, and puts a severe constraint on the operation of "space elevators" near black holes. In particular, it is shown that proposals for mining black holes by lowering boxes near the horizon, collecting some Hawking radiation, and dragging it out to infinity cannot proceed nearly as rapidly as has previously been claimed. As a consequence of this limitation, the boxes and all the moving parts are superfluous and black holes can be destroyed equally rapidly by threading the horizon with strings. PMID:24313473
Generic features of Einstein-Aether black holes
Tamaki, Takashi; Miyamoto, Umpei
2008-01-15
We reconsider spherically symmetric black hole solutions in Einstein-Aether theory with the condition that this theory has identical parametrized post-Newtonian parameters as those for general relativity, which is the main difference from the previous research. In contrast with previous study, we allow superluminal propagation of a spin-0 Aether-gravity wave mode. As a result, we obtain black holes having a spin-0 'horizon' inside an event horizon. We allow a singularity at a spin-0 horizon since it is concealed by the event horizon. If we allow such a configuration, the kinetic term of the Aether field can be large enough for black holes to be significantly different from Schwarzschild black holes with respect to Arnowitt-Deser-Misner mass, innermost stable circular orbit, Hawking temperature, and so on. We also discuss whether or not the above features can be seen in more generic vector-tensor theories.
Bender, P.; Bloom, E.; Cominsky, L.
1995-07-01
Black-hole astrophysics is not just the investigation of yet another, even if extremely remarkable type of celestial body, but a test of the correctness of the understanding of the very properties of space and time in very strong gravitational fields. Physicists` excitement at this new prospect for testing theories of fundamental processes is matched by that of astronomers at the possibility to discover and study a new and dramatically different kind of astronomical object. Here the authors review the currently known ways that black holes can be identified by their effects on their neighborhood--since, of course, the hole itself does not yield any direct evidence of its existence or information about its properties. The two most important empirical considerations are determination of masses, or lower limits thereof, of unseen companions in binary star systems, and measurement of luminosity fluctuations on very short time scales.
Gauge-Gravity Duality and the Black Hole Interior
NASA Astrophysics Data System (ADS)
Marolf, Donald; Polchinski, Joseph
2013-10-01
We present a further argument that typical black holes with field theory duals have firewalls at the horizon. This argument makes no reference to entanglement between the black hole and any distant system, and so is not evaded by identifying degrees of freedom inside the black hole with those outside. We also address the Einstein-Rosen=Einstein-Podolsky-Rosen conjecture of Maldacena and Susskind, arguing that the correlations in generic highly entangled states cannot be geometrized as a smooth wormhole.
Gauge-gravity duality and the black hole interior.
Marolf, Donald; Polchinski, Joseph
2013-10-25
We present a further argument that typical black holes with field theory duals have firewalls at the horizon. This argument makes no reference to entanglement between the black hole and any distant system, and so is not evaded by identifying degrees of freedom inside the black hole with those outside. We also address the Einstein-Rosen=Einstein-Podolsky-Rosen conjecture of Maldacena and Susskind, arguing that the correlations in generic highly entangled states cannot be geometrized as a smooth wormhole. PMID:24206473
Weighing supermassive black holes
NASA Astrophysics Data System (ADS)
Rafiee, Alireza
We calculate the black hole masses for a sample of 27728 quasars selected from the Sloan Digital Sky Survey (SDSS) Data Release 3 (DR3). To ensure a high signal-to-noise ratio, we reconstruct quasar spectra for this large sample of quasars using the eigenspectra method (Yip et al., 2004). This method reduces the uncertainty of the measurements for even noisy original spectra, making almost all the SDSS quasar spectra usable for our study. A few applications for black hole mass estimates are presented here. Wang et al. (2006) estimated an average radiative efficiency of 30%-35% for quasars at moderate redshift, which implies that most supermassive black holes are rotating very rapidly. Using our black hole mass estimates, we have found that their method is not independent of quasar lifetimes and thus that quasars do not necessarily have such high efficiencies. As a second application, we have investigated a claim by Steinhardt and Elvis (2009) that there exists a sub-Eddington boundary in the quasar mass-luminosity plane using the Shen et al. (2008) mass estimates. We re-calibrate the mass-scaling relations following Wang et al. (2009) with the most up-to-date reverberation estimates of black hole masses. We compare results from the original data sets with the new re-calibrated estimates of the mass-luminosity plane. We conclude that the presence of the sub-Eddington boundary in the original data of Shen et al. (2008) is likely due to biases in the mass-scaling relation and not to any physical process.
Final remnant of binary black hole mergers: Multipolar analysis
Owen, Robert
2009-10-15
Methods are presented to define and compute source multipoles of dynamical horizons in numerical relativity codes, extending previous work in the isolated and dynamical horizon formalisms to allow for horizons that are not axisymmetric. These methods are then applied to a binary black hole merger simulation, providing evidence that the final remnant is a Kerr black hole, both through the (spatially) gauge-invariant recovery of the geometry of the apparent horizon, and through a detailed extraction of quasinormal ringing modes directly from the strong-field region.
Uniqueness of extremal Kerr and Kerr-Newman black holes
Amsel, Aaron J.; Horowitz, Gary T.; Marolf, Donald; Roberts, Matthew M.
2010-01-15
We prove that the only four-dimensional, stationary, rotating, asymptotically flat (analytic) vacuum black hole with a single degenerate horizon is given by the extremal Kerr solution. We also prove a similar uniqueness theorem for the extremal Kerr-Newman solution. This closes a long-standing gap in the black hole uniqueness theorems.
Construction of Penrose Diagrams for Dynamic Black Holes
NASA Technical Reports Server (NTRS)
Brown, Beth A.; Lindesay, James
2008-01-01
A set of Penrose diagrams is constructed in order to examine the large-scale causal structure of black holes with dynamic horizons. Coordinate dependencies of significant features, such as the event horizon and radial mass scale, are demonstrated on the diagrams. Unlike in static Schwarzschild geometries, the radial mass scale is clearly seen to differ from the horizon. Trajectories for photons near the horizon are briefly discussed.
Supersymmetric black holes with lens-space topology.
Kunduri, Hari K; Lucietti, James
2014-11-21
We present a new supersymmetric, asymptotically flat, black hole solution to five-dimensional supergravity. It is regular on and outside an event horizon of lens-space topology L(2,1). It is the first example of an asymptotically flat black hole with lens-space topology. The solution is characterized by a charge, two angular momenta, and a magnetic flux through a noncontractible disk region ending on the horizon, with one constraint relating these. PMID:25479484
Scaling Limit of the Noncommutative Black Hole
NASA Astrophysics Data System (ADS)
Majid, Shahn
2011-03-01
We show that the 'quantum' black hole wave operator in the κ-Minkowski or bicrossproduct model quantum spacetime introduced in [1] has a natural scaling limit λp → 0 at the event horizon. Here λp is the Planck time and the geometry at the event horizon in Planck length is maintained at the same time as the limit is taken, resulting in a classical theory with quantum gravity remnants. Among the features is a frequency-dependent 'skin' of some Planck lengths just inside the event horizon for ω > 0 and just outside for ω < 0, where v is the frequency associated to the Schwarzschild radius. We use bessel and hypergeometric functions to analyse propagation through the event horizon and skin in both directions. The analysis confirms a finite redshift at the horizon for positive frequency modes in the exterior.
Pair creation of black holes during inflation
NASA Astrophysics Data System (ADS)
Bousso, Raphael; Hawking, Stephen W.
1996-11-01
Black holes came into existence together with the universe through the quantum process of pair creation in the inflationary era. We present the instantons responsible for this process and calculate the pair creation rate from the no boundary proposal for the wave function of the universe. We find that this proposal leads to physically sensible results, which fit in with other descriptions of pair creation, while the tunneling proposal makes unphysical predictions. We then describe how the pair-created black holes evolve during inflation. In the classical solution, they grow with the horizon scale during the slow roll down of the inflaton field; this is shown to correspond to the flux of field energy across the horizon according to the first law of black hole mechanics. When quantum effects are taken into account, however, it is found that most black holes evaporate before the end of inflation. Finally, we consider the pair creation of magnetically charged black holes, which cannot evaporate. In standard Einstein-Maxwell theory we find that their number in the presently observable universe is exponentially small. We speculate how this conclusion may change if dilatonic theories are applied.
Black-hole evaporation and ultrashort distances
Jacobson, T. )
1991-09-15
The role played by ultrahigh frequencies of ultrashort distances in the usual derivations of the Hawking effect is discussed and criticized. The question would a blackhole radiate if there were a Planck scale cutoff in the rest frame of the hole '' is posed. Guidance is sought from Unruh's fluid-flow analogue of black-hole radiation, by taking into account the atomic nature of the fluid. Two arguments for black-hole radiation are given which assume a Planck length cutoff. One involves the response of static accelerated detectors outside the horizon, and the other involves conservation of the expectation value of the stress tensor. Neither argument is conclusive, but they do strongly suggest that, in spite of reasonable doubt about the usual derivations of black-hole radiation, a safe'' derivation which avoids our ignorance of ultrashort-distance physics can likely be formulated. Remaining open questions are discussed.
Improved black hole fireworks: Asymmetric black-hole-to-white-hole tunneling scenario
NASA Astrophysics Data System (ADS)
De Lorenzo, Tommaso; Perez, Alejandro
2016-06-01
A new scenario for gravitational collapse has been recently proposed by Haggard and Rovelli. Presenting the model under the name of black hole fireworks, they claim that the accumulation of quantum gravitational effects outside the horizon can cause the tunneling of geometry from a black hole to a white hole, allowing a bounce of the collapsing star which can eventually go back to infinity. In this paper, we discuss the instabilities of this model and propose a simple minimal modification which eliminates them, as well as other related instabilities discussed in the literature. The new scenario is a time-asymmetric version of the original model with a time scale for the final explosion that is shorter than m log m in Planck units. Our analysis highlights the importance of irreversibility in gravitational collapse which, in turn, uncovers important issues that cannot be addressed in detail without a full quantum gravity treatment.
Distorted five-dimensional electrically charged black holes
NASA Astrophysics Data System (ADS)
Abdolrahimi, Shohreh; Shoom, Andrey A.
2014-01-01
In this paper, we study distorted, five-dimensional, electrically charged (nonextremal) black holes on the example of a static and "axisymmetric" black hole distorted by external, electrically neutral matter. Such a black hole is represented by the solution derived here of the Einstein-Maxwell equations which admits an R1×U(1)×U(1) isometry group. The external matter, which is "located" at the asymptotic infinity, is not included in the solution. The space-time singularities are located behind the black hole's inner (Cauchy) horizon, provided that the sources of the distortion satisfy the strong energy condition. The inner (Cauchy) horizon remains regular if the distortion fields are finite and smooth at the outer horizon. The solution has some remarkable properties. There exists a certain duality transformation between the inner and the outer horizon surfaces which links surface gravity, electrostatic potential, and space-time curvature invariants calculated at the black hole horizons. The product of the inner and outer horizon areas depends only on the black hole's electric charge, and the geometric mean of the areas is the upper (lower) limit for the inner (outer) horizon area. The electromagnetic field invariant calculated at the horizons is proportional to the squared surface gravity of the horizons. The horizon areas, electrostatic potential, and surface gravity satisfy the Smarr formula. We formulated the zeroth and the first laws of mechanics and thermodynamics of the distorted black hole and found a correspondence between the global and local forms of the first law. To illustrate the effect of distortion, we consider the dipole-monopole and quadrupole-quadrupole distortion fields. The relative change in the Kretschmann scalar due to the distortion is greater at the outer horizon than at the inner one. By calculating the maximal proper time of free fall from the outer to the inner horizons, we show that the distortion can noticeably change the black hole
Constructing black hole entropy from gravitational collapse
NASA Astrophysics Data System (ADS)
Acquaviva, Giovanni; Ellis, George F. R.; Goswami, Rituparno; Hamid, Aymen I. M.
2015-03-01
Based on a recent proposal for the gravitational entropy of free gravitational fields, we investigate the thermodynamic properties of black hole formation through gravitational collapse in the framework of the semitetrad 1 +1 +2 covariant formalism. In the simplest case of an Oppenheimer-Snyder-Datt collapse, we prove that the change in gravitational entropy outside a collapsing body is related to the variation of the surface area of the body itself, even before the formation of horizons. As a result, we are able to relate the Bekenstein-Hawking entropy of the black hole end state to the variation of the vacuum gravitational entropy outside the collapsing body.
Prisons of light : black holes
NASA Astrophysics Data System (ADS)
Ferguson, Kitty
What is a black hole? Could we survive a visit to one -- perhaps even venture inside? Have we yet discovered any real black holes? And what do black holes teach us about the mysteries of our Universe? These are just a few of the tantalizing questions examined in this tour-de-force, jargon-free review of one of the most fascinating topics in modern science. In search of the answers, we trace a star from its birth to its death throes, take a hypothetical journey to the border of a black hole and beyond, spend time with some of the world's leading theoretical physicists and astronomers, and take a whimsical look at some of the wild ideas black holes have inspired. Prisons of Light - Black Holes is comprehensive and detailed. Yet Kitty Ferguson's lightness of touch and down-to-earth analogies set this book apart from all others on black holes and make it a wonderfully stimulating and entertaining read.
Effective theory of black holes in the 1/D expansion
NASA Astrophysics Data System (ADS)
Emparan, Roberto; Shiromizu, Tetsuya; Suzuki, Ryotaku; Tanabe, Kentaro; Tanaka, Takahiro
2015-06-01
The gravitational field of a black hole is strongly localized near its horizon when the number of dimensions D is very large. In this limit, we can effectively replace the black hole with a surface in a background geometry (e.g. Minkowski or Anti-deSitter space). The Einstein equations determine the effective equations that this `black hole surface' (or membrane) must satisfy. We obtain them up to next-to-leading order in 1/ D for static black holes of the Einstein-(A)dS theory. To leading order, and also to next order in Minkowski backgrounds, the equations of the effective theory are the same as soap-film equations, possibly up to a redshift factor. In particular, the Schwarzschild black hole is recovered as a spherical soap bubble. Less trivially, we find solutions for `black droplets', i.e. black holes localized at the boundary of AdS, and for non-uniform black strings.
BLACK HOLE AURORA POWERED BY A ROTATING BLACK HOLE
Takahashi, Masaaki; Takahashi, Rohta
2010-05-15
We present a model for high-energy emission sources generated by a standing magnetohydrodynamical (MHD) shock in a black hole magnetosphere. The black hole magnetosphere would be constructed around a black hole with an accretion disk, where a global magnetic field could be originated by currents in the accretion disk and its corona. Such a black hole magnetosphere may be considered as a model for the central engine of active galactic nuclei, some compact X-ray sources, and gamma-ray bursts. The energy sources of the emission from the magnetosphere are the gravitational and electromagnetic energies of magnetized accreting matters and the rotational energy of a rotating black hole. When the MHD shock generates in MHD accretion flows onto the black hole, the plasma's kinetic energy and the black hole's rotational energy can convert to radiative energy. In this Letter, we demonstrate the huge energy output at the shock front by showing negative energy postshock accreting MHD flows for a rapidly rotating black hole. This means that the extracted energy from the black hole can convert to the radiative energy at the MHD shock front. When an axisymmetric shock front is formed, we expect a ring-shaped region with very hot plasma near the black hole; this would look like an 'aurora'. The high-energy radiation generated from there would carry to us the information for the curved spacetime due to the strong gravity.
NASA Astrophysics Data System (ADS)
Marka, Zsuzsa; Bartos, Imre; Marka, Szabolcs; LIGO Collaboration; Virgo Collaboration
2016-03-01
We explore the advantage of focusing on regions of the parameter space in gravitational-wave searches for the binary mergers of neutron stars and black holes. For neutron star binaries, we show that taking advantage of their narrow observed mass distribution could improve detection rates, in some cases by more than 50%. A reduced template bank can also represent significant improvement in technical cost. We present a detailed search method using binary mass distribution to incorporate information on the mass distribution.
Anisotropic Expansion of the Black Hole Universe
NASA Astrophysics Data System (ADS)
Zhang, Tianxi
2009-01-01
Recently, Zhang proposed a new cosmological model called black hole universe. According to this model, the universe originated from a hot star-like black hole with several solar masses, and grew up through a supermassive black hole with billion solar masses to the present state of temperature and density with hundred billion-trillion solar masses due to continuously inhaling matter from its outside. The structure of the entire space is similarly hierarchical or layered and the evolution is iterative. In each of iteration a universe passes through birth, growth, and death. The entire life of a universe roughly divides into three periods with different rates of expansion: slowly growing child universe, fast expanding adult universe, and gradually dying aged universe. When one universe expands to die out, a new universe grows up from its inside. On the AAS 211th meeting, the black hole universe model was shown to be consistent with Mach's principle, observations, and Einstein's general relativity. This new cosmological model can explain the cosmic microwave background radiation, quasars, and element abundances with the well-developed physics. Dark energy is not required for the universe to accelerate. Inflation is not necessary because the black hole universe does not have the horizon problem. In this presentation, the author will explain why the expansion of the universe is anisotropic as shown by the observed anisotropy of the Hubble constant. He will also compare the significant differences between the black hole universe and the big bang cosmology.
Attractors, Black Holes and Multiqubit Entanglement
NASA Astrophysics Data System (ADS)
Lévay, Péter
Recently a striking correspondence has been established between quantum information theory and black hole solutions in string theory. For the intriguing mathematical coincidences underlying this correspondence the term "Black Hole Analogy" has been coined. The basic correspondence of the analogy is the one between the entropy formula of certain stringy black hole solutions on one hand and entanglement measures for qubit and qutrit systems on the other. In these lecture notes we develop the basic concepts of multiqubit entanglement needed for a clear exposition of the Black Hole Analogy. We show that using this analogy we can rephrase some of the well-known results and awkward looking expressions of supergravity in a nice form by employing some multiqubit entangled states depending on the quantized charges and the moduli. It is shown that the attractor mechanism in this picture corresponds to a distillation procedure of highly entangled graph states at the black hole horizon. As a further insight we also find a very interesting connection between error correcting codes, designs and the classification of extremal BPS and non-BPS black hole solutions.
NASA Astrophysics Data System (ADS)
Chamblin, A.; Hawking, S. W.; Reall, H. S.
2000-03-01
Gravitational collapse of matter trapped on a brane will produce a black hole on the brane. We discuss such black holes in the models of Randall and Sundrum where our universe is viewed as a domain wall in five-dimensional anti-de Sitter space. We present evidence that a non-rotating uncharged black hole on the domain wall is described by a ``black cigar'' solution in five dimensions.
NASA Technical Reports Server (NTRS)
Dolan, Joseph F.; Fisher, Richard R. (Technical Monitor)
2001-01-01
When asked to discuss Cyg XR-1, E. E. Salpeter once concluded, 'A black hole in Cyg X(R)-1 is the most conservative hypothesis.' Recent observations now make it likely that a black hole in Cyg XR-1 is the only hypothesis tenable. Chandrasekhar first showed that compact stars - those with the inward force of gravity on their outer layers balanced by the pressure generated by the Pauli exclusion principle acting on its electrons (in white dwarfs) or nucleons (in neutron stars) - have a maximum mass. Equilibrium is achieved at a minimum of the total energy of the star, which is the sum of the positive Fermi energy and the negative gravitational energy. The maximum mass attainable in equilibrium is found by setting E = 0: M(max) = 1.5 M(Sun). If the mass of the star is larger than this, then E can be decreased without bound by decreasing the star's radius and increasing its (negative) gravitational energy. No equilibrium value of the radius exist, and general relativity predicts that gravitational collapse to a point occurs. This point singularity is a black hole.
NASA Astrophysics Data System (ADS)
Contopoulos, I.
2013-09-01
We revisit the Blandford & Znajek (1977) process and solve the fundamental equation that governs the structure of the steady-state force-free magnetosphere around a Kerr black hole. The solution depends on the distributions of the magnetic field angular velocity and the poloidal electric current I. These are not arbitrary. They are determined self-consistently by requiring that magnetic field lines cross smoothly the two singular surfaces of the problem, the inner `light surface' located inside the ergosphere, and the outer `light surface' which is the generalization of the pulsar light cylinder. We obtain the rate of electromagnetic extraction of energy and confirm the results of Blanford & Znajek. Unless the black hole is surrounded by a thick disk and/or extended disk outflows, the asymptotic solution is very similar to the asymptotic pulsar magnetosphere which has no collimation and no significant plasma acceleration. We discuss the role of the surrounding disk and of pair production in the generation of black hole jets.
Entropy of a radiating rotating charged black hole
NASA Astrophysics Data System (ADS)
Wu, Yue-Jiang; Zhao, Zheng; Yang, Xue-Jun
2004-06-01
The Hawking radiation temperature and the entropy of a radiating rotating charged black hole are calculated by employing the method of tortoise coordinate transformation and the improved brick-wall model. A new tortoise coordinate transformation is introduced which simplifies the cut-off factor and more satisfying results are obtained. The results show that the temperature of the event horizon depends on time and angle, and the entropy of a non-stationary black hole is exactly proportional to its horizon area as in the case of a stationary black hole.
Back reaction on a Reissner-Nordstro''m black hole
Wang, Bobo; Huang, Chao-guang
2001-06-15
The perturbed (''dressed'') metric of the conformally invariant scalar field in a Reissner-Nordstroem (RN) black hole is given by solving the semiclassical Einstein and Maxwell equations according to York's back-reaction approach. Some properties of the ''dressed'' black hole are obtained, such as its ''dressed'' mass, the location of the event horizon, and its surface gravity. It will also be found that the hypersurfaces of r{sub +} and r{sub {minus}} which are the event and Cauchy horizons in the ''naked'' RN black hole, become spacelike in the perturbed geometry.
Internal structure of charged AdS black holes
NASA Astrophysics Data System (ADS)
Bhattacharjee, Srijit; Sarkar, Sudipta; Virmani, Amitabh
2016-06-01
When an electrically charged black hole is perturbed, its inner horizon becomes a singularity, often referred to as the Poisson-Israel mass inflation singularity. Ori constructed a model of this phenomenon for asymptotically flat black holes, in which the metric can be determined explicitly in the mass inflation region. In this paper we implement the Ori model for charged AdS black holes. We find that the mass function inflates faster than the flat space case as the inner horizon is approached. Nevertheless, the mass inflation singularity is still a weak singularity: Although spacetime curvature becomes infinite, tidal distortions remain finite on physical objects attempting to cross it.
Soft Heisenberg hair on black holes in three dimensions
NASA Astrophysics Data System (ADS)
Afshar, Hamid; Detournay, Stephane; Grumiller, Daniel; Merbis, Wout; Perez, Alfredo; Tempo, David; Troncoso, Ricardo
2016-05-01
Three-dimensional Einstein gravity with a negative cosmological constant admits stationary black holes that are not necessarily spherically symmetric. We propose boundary conditions for the near-horizon region of these black holes that lead to a surprisingly simple near-horizon symmetry algebra consisting of two affine u ^(1 ) current algebras. The symmetry algebra is essentially equivalent to the Heisenberg algebra. The associated charges give a specific example of "soft hair" on the horizon, as defined by Hawking, Perry and Strominger. We show that soft hair does not contribute to the Bekenstein-Hawking entropy of Bañados-Teitelboim-Zanelli black holes and "black flower" generalizations. From the near-horizon perspective the conformal generators at asymptotic infinity appear as composite operators, which we interpret in the spirit of black hole complementarity. Another remarkable feature of our boundary conditions is that they are singled out by requiring that the whole spectrum is compatible with regularity at the horizon, regardless of the value of the global charges like mass or angular momentum. Finally, we address black hole microstates and generalizations to cosmological horizons.
Phenomenological loop quantum geometry of the Schwarzschild black hole
Chiou, D.-W.
2008-09-15
The interior of a Schwarzschild black hole is investigated at the level of phenomenological dynamics with the discreteness corrections of loop quantum geometry implemented in two different improved quantization schemes. In one scheme, the classical black hole singularity is resolved by the quantum bounce, which bridges the black hole interior with a white hole interior. In the other scheme, the classical singularity is resolved and the event horizon is also diffused by the quantum bounce. Jumping over the quantum bounce, the black hole gives birth to a baby black hole with a much smaller mass. This lineage continues as each classical black hole brings forth its own descendant in the consecutive classical cycle, giving the whole extended spacetime fractal structure, until the solution eventually descends into the deep Planck regime, signaling a breakdown of the semiclassical description. The issues of scaling symmetry and no-hair theorem are also discussed.
Gravitational lensing by black holes: The case of Sgr A*
Bozza, V.
2014-01-14
The strong gravitational fields created by black holes dramatically affect the propagation of photons by bending their trajectories. Gravitational lensing thus stands as the main source of information on the space-time structure in such extreme regimes. We will review the theory and phenomenology of gravitational lensing by black holes, with the generation of higher order images and giant caustics by rotating black holes. We will then focus on Sgr A*, the black hole at the center of the Milky Way, for which next-to-come technology will be able to reach resolutions of the order of the Schwarzschild radius and ultimately test the existence of an event horizon.
Excluding black hole firewalls with extreme cosmic censorship
Page, Don N.
2014-06-01
The AMPS argument for black hole firewalls seems to arise not only from the assumption of local effective field theory outside the stretched horizon but also from an overcounting of internal black hole states that include states that are singular in the past. Here I propose to exclude such singular states by Extreme Cosmic Censorship (the conjectured principle that the universe is entirely nonsingular, except for transient singularities inside black and/or white holes). I argue that the remaining set of nonsingular realistic states do not have firewalls but yet preserve information in Hawking radiation from black holes that form from nonsingular initial states.
Statistical description of the black hole degeneracy spectrum
Barbero G, J. Fernando; Villasenor, Eduardo J. S.
2011-05-15
We use mathematical methods based on generating functions to study the statistical properties of the black hole degeneracy spectrum in loop quantum gravity. In particular we will study the persistence of the observed effective quantization of the entropy as a function of the horizon area. We will show that this quantization disappears as the area increases despite the existence of black hole configurations with a large degeneracy. The methods that we describe here can be adapted to the study of the statistical properties of the black hole degeneracy spectrum for all the existing proposals to define black hole entropy in loop quantum gravity.
Energy decomposition within Einstein-Born-Infeld black holes
NASA Astrophysics Data System (ADS)
Pereira, Jonas P.; Rueda, Jorge A.
2015-03-01
We analyze the consequences of the recently found generalization of the Christodoulou-Ruffini black hole mass decomposition for Einstein-Born-Infeld black holes [characterized by the parameters (Q ,M ,b ), where M =M (Mirr,Q ,b ) , b scale field, Q charge, Mirr "irreducible mass," physically meaning the energy of a black hole when its charge is null] and their interactions. We show in this context that their description is largely simplified and can basically be split into two families depending upon the parameter b |Q |. If b |Q |≤1 /2 , then black holes could have even zero irreducible masses and they always exhibit single nondegenerated horizons. If b |Q |>1 /2 , then an associated black hole must have a minimum irreducible mass (related to its minimum energy) and has two horizons up to a transitional irreducible mass. For larger irreducible masses, single horizon structures raise again. By assuming that black holes emit thermal uncharged scalar particles, we further show in light of the black hole mass decomposition that one satisfying b |Q |>1 /2 takes an infinite amount of time to reach the zero temperature, settling down exactly at its minimum energy. Finally, we argue that depending on the fundamental parameter b , the radiation (electromagnetic and gravitational) coming from Einstein-Born-Infeld black holes could differ significantly from Einstein-Maxwell ones. Hence, it could be used to assess such a parameter.
Fundamental Dynamics of Black Hole Physics
NASA Astrophysics Data System (ADS)
Haramein, Nassim
2002-04-01
The dynamics of rotating, charged black holes, obeying the Kerr-Newman metric is presented. These dynamical high-density, gravitationally collapsing, black hole systems for stellar, galactic, intergalactic and cosmogenesis appear to obey similar constraints on their mass, apparent density and radius. Under these extreme conditions, the gravitational force becomes "balanced" with the larger coupling constant of the electromagnetic force. Thus, the gravitational attraction forms dynamic pseudo equilibrium with the plasma dynamics surrounding the black holes. Thermodynamic-type processes occupy a role in energy transfer between gravitational attraction and electro-dynamic repulsion. Solving the modified Einstein-Maxwell's equations under high magnetic field conditions, with additional thermodynamic conditions, leads to a good description of the processes occurring externally, near and in the event horizons of the Kerr-Newman geometry and leads to a unification possibility. Reference; N. Haramein, Bull. Amer. Phys. Soc. AB06, 1154(2001)
Evolution of near-extremal black holes
NASA Astrophysics Data System (ADS)
Hawking, S. W.; Taylor-Robinson, M. M.
1997-06-01
Near-extreme black holes can lose their charge and decay by the emission of massive Bogomol'ni-Prasad-Sommerfield charged particles. We calculate the greybody factors for low-energy charged and neutral scalar emission from four- and five-dimensional near extremal Reissner-Nordström black holes. We use the corresponding emission rates to obtain ratios of the rates of loss of excess energy by charged and neutral emission, which are moduli independent, depending only on the integral charges and the horizon potentials. We consider scattering experiments, finding that evolution towards a state in which the integral charges are equal is favored, but neutral emission will dominate the decay back to extremality except when one charge is much greater than the others. The implications of our results for the agreement between black hole and D-brane emission rates and for the information loss puzzle are then discussed.
Hologram of a pure state black hole
NASA Astrophysics Data System (ADS)
Roy, Shubho R.; Sarkar, Debajyoti
2015-12-01
In this paper, we extend the Hamilton-Kabat-Lifschytz-Lowe (HKLL) holographic smearing function method to reconstruct (quasi)local anti-de Sitter bulk scalar observables in the background of a large anti-de Sitter black hole formed by null shell collapse (a "pure state" black hole), from the dual conformal field theory which is undergoing a sudden quench. In particular, we probe the near horizon and subhorizon bulk locality. First, we construct local bulk operators from the conformal field theory in the leading semiclassical limit, N →∞ . Then, we look at effects due to the finiteness of N , where we propose a suitable coarse-graining prescription involving early and late time cutoffs to define semiclassical bulk observables which are approximately local, their departure from locality being nonperturbatively small in N . Our results have important implications on the black hole information problem.
Instability of the noncommutative geometry inspired black hole
NASA Astrophysics Data System (ADS)
Brown, Eric; Mann, Robert
2011-01-01
Noncommutative geometries have been proposed as an approach to quantum gravity and have led to the construction of noncommutative black holes, whose interior singularities are purportedly eliminated due to quantum effects. Here we find evidence that these black holes are in fact unstable, with infalling matter near the Cauchy (inner) horizon being subject to an infinite blueshift of the type that has been repeatedly demonstrated for the Reissner-Nordström black hole. This instability is present even when an ultraviolet cutoff (induced by anticipated noncommutative geometric effects) to a field propagating in that spacetime is included. We demonstrate this by following an analogous argument made for Reissner-Nordström black holes, and conclude that stability is dependent on the surface gravities κ- and κ+ of the inner and outer horizons respectively. In general if κ- >κ+, as we show to be the case here, then the stability of the Cauchy horizon becomes highly questionable, contrary to recent claims.
Super-Extremal Spinning Black Holes via Accretion
NASA Astrophysics Data System (ADS)
Laguna, Pablo; Bode, Tanja; Matzner, Richard
2011-04-01
A Kerr black hole with mass M and angular momentum J satisfies the extremality inequality J <=M2 . In the presence of matter and/or gravitational radiation, the bound needs to be reformulated in terms of local measurements of M and J directly associated with the black hole. The isolated and dynamical horizons framework provides such natural quasi-local characterization of M and J, making possible in axi-symmetry to reformulate the extremality limit as J <= 2M2 , with M the irreducible mass computed from the apparent horizon area and J obtained using approximate rotational Killing vectors on the apparent horizon. This condition is also equivalent to requiring a non-negative black hole surface gravity. We present numerical experiments of an accreting black hole that temporarily violates this extremality inequality.
Kerr black holes as accelerators of spinning test particles
NASA Astrophysics Data System (ADS)
Guo, Minyong; Gao, Sijie
2016-04-01
It has been shown that ultraenergetic collisions can occur near the horizon of an extremal Kerr black hole. Previous studies mainly focused on geodesic motions of particles. In this paper, we consider spinning test particles whose orbits are nongeodesic. By employing the Mathisson-Papapetrou-Dixon equation, we find the critical angular momentum satisfies J =2 E for extremal Kerr black holes. Although the conserved angular momentum J and energy E have been redefined in the presence of spin, the critical condition remains the same form. If a particle with this angular momentum collides with another particle arbitrarily close to the horizon of the black hole, the center-of-mass energy can be arbitrarily high. We also prove that arbitrarily high energies cannot be obtained for spinning particles near the horizons of nonextremal Kerr black holes.
Greybody factors for a black hole in massive gravity
NASA Astrophysics Data System (ADS)
Dong, Ruifeng; Stojkovic, Dejan
2015-10-01
An exact solution was recently found in the massive gravity theory having the form of Schwarzschild-de Sitter (dS) black holes with some additional background fields. Hawking radiation will occur at the event and cosmological horizons having the blackbody spectrum, which will be modified by the geometry outside the black hole. In this paper, we study the greybody factors of a test scalar, considering its minimal coupling with the background geometry. The case of small black holes with a horizon radius much smaller than the cosmological dS radius is studied numerically. The case of near-extremal black holes with the horizon radius comparable to the cosmological dS radius is studied analytically. In addition, we considered the coupling of the test field with the background Stückelberg fields, which in turn leads to reductions in particle emission and some nontrivial features (resonances) in the greybody factors.
Black Holes and The Information Paradox
NASA Astrophysics Data System (ADS)
Hawking, Stephen
2005-11-01
The Euclidean path integral over all topologically trivial metrics can be done by time slicing and so is unitary when analytically continued to the Lorentzian. On the other hand, the path integral over all topologically non-trivial metrics is asymptotically independent of the initial state. Thus the total path integral is unitary and information is not lost in the formation and evaporation of black holes. The way the information gets out seems to be that a true event horizon never forms, just an apparent horizon.
NASA Astrophysics Data System (ADS)
Kocsis, Bence; Loeb, Abraham
2014-09-01
Black holes are the ultimate prisons of the Universe, regions of spacetime where the enormous gravity prohibits matter or even light to escape to infinity. Yet, matter falling toward the black holes may shine spectacularly, generating the strongest source of radiation. These sources provide us with astrophysical laboratories of extreme physical conditions that cannot be realized on Earth. This chapter offers a review of the basic menus for feeding matter onto black holes and discusses their observational implications.
Vacuum polarization near a distorted black hole
NASA Astrophysics Data System (ADS)
Frolov, V. P.; Alberto García, D.
1983-12-01
The vacuum polarization near a black hole distorted by the axially symmetric gravitational field of external matter is studied. The explicit expression for <φ2> at the pole of the distorted horizon is obtained. Also at Sección de Graduados, Escuela Superior de Ingeniería Mecánica y Eléctrica del IPN, México DF, México.
New solutions of exotic charged black holes and their stability
NASA Astrophysics Data System (ADS)
Farhangkhah, N.
2016-01-01
We find a class of charged black hole solutions in third-order Lovelock Gravity. To obtain this class of solutions, we are not confined to the usual assumption of maximal symmetry on the horizon and will consider the solution whose boundary is Einstein space with supplementary conditions on its Weyl tensor. The Weyl tensor of such exotic horizons exposes two chargelike parameter to the solution. These parameters in addition with the electric charge, cause different features in comparison with the charged solution with constant-curvature horizon. For this class of asymptotically (A)dS solutions, the electric charge dominates the behavior of the metric as r goes to zero, and thus the central singularity is always timelike. We also compute the thermodynamic quantities for these solutions and will show that the first law of thermodynamics is satisfied. We also show that the extreme black holes with nonconstant-curvature horizons whose Ricci scalar are zero or a positive constant could exist depending on the value of the electric charge and chargelike parameters. Finally, we investigate the stability of the black holes by analyzing the behavior of free energy and heat capacity specially in the limits of small and large horizon radius. We will show that in contrast with charged solution with constant-curvature horizon, a phase transition occurs between very small and small black holes from a stable phase to an unstable one, while the large black holes show stability to both perturbative and nonperturbative fluctuations.
Quasilocal linear momentum in black-hole binaries
Krishnan, Badri; Lousto, Carlos O.; Zlochower, Yosef
2007-10-15
We propose a quasilocal formula for the linear momentum of black-hole horizons inspired by the formalism of quasilocal horizons. We test this formula using two complementary configurations: (i) by calculating the large orbital linear momentum of the two black holes in an unequal-mass, zero-spin, quasicircular binary and (ii) by calculating the very small recoil momentum imparted to the remnant of the head-on collision of an equal-mass, anti-aligned-spin binary. We obtain results consistent with the horizon trajectory in the orbiting case, and consistent with the net radiated linear momentum for the much smaller head-on recoil velocity.
H-theorem for a relativistic plasma around black holes
Nicolini, P.; Tessarotto, M.
2006-05-15
A statistical description of matter, formed by a relativistic plasma infalling into a black hole, is formulated, adopting a covariant kinetic approach in terms of classical point particles. By assuming that the charged particles are described by the collisionless Vlasov equation and the event horizon can be treated as a classical porous wall, the theory permits us to evaluate the entropy production rate of classical matter in the presence of an event horizon. As a result, an H-theorem is established for the classical (Shannon) kinetic entropy of the infalling matter, which holds for arbitrary models of black holes and is valid also in the presence of contracting (or expanding) event horizons.
McVittie's legacy: Black holes in an expanding universe
Kaloper, Nemanja; Martin, Damien; Kleban, Matthew
2010-05-15
We prove that a class of solutions to Einstein's equations--originally discovered by McVittie in 1933--includes regular black holes embedded in Friedmann-Robertson-Walker cosmologies. If the cosmology is dominated at late times by a positive cosmological constant, the metric is regular everywhere on and outside the black hole horizon and away from the big-bang singularity, and the solutions asymptote in the future and near the horizon to the Schwarzschild-de Sitter geometry. For solutions without a positive cosmological constant the would-be horizon is a weak null singularity.
Acceleration of black hole universe
NASA Astrophysics Data System (ADS)
Zhang, T. X.; Frederick, C.
2014-01-01
Recently, Zhang slightly modified the standard big bang theory and developed a new cosmological model called black hole universe, which is consistent with Mach's principle, governed by Einstein's general theory of relativity, and able to explain all observations of the universe. Previous studies accounted for the origin, structure, evolution, expansion, and cosmic microwave background radiation of the black hole universe, which grew from a star-like black hole with several solar masses through a supermassive black hole with billions of solar masses to the present state with hundred billion-trillions of solar masses by accreting ambient matter and merging with other black holes. This paper investigates acceleration of the black hole universe and provides an alternative explanation for the redshift and luminosity distance measurements of type Ia supernovae. The results indicate that the black hole universe accelerates its expansion when it accretes the ambient matter in an increasing rate. In other words, i.e., when the second-order derivative of the mass of the black hole universe with respect to the time is positive . For a constant deceleration parameter , we can perfectly explain the type Ia supernova measurements with the reduced chi-square to be very close to unity, χ red˜1.0012. The expansion and acceleration of black hole universe are driven by external energy.
Black holes and the multiverse
NASA Astrophysics Data System (ADS)
Garriga, Jaume; Vilenkin, Alexander; Zhang, Jun
2016-02-01
Vacuum bubbles may nucleate and expand during the inflationary epoch in the early universe. After inflation ends, the bubbles quickly dissipate their kinetic energy; they come to rest with respect to the Hubble flow and eventually form black holes. The fate of the bubble itself depends on the resulting black hole mass. If the mass is smaller than a certain critical value, the bubble collapses to a singularity. Otherwise, the bubble interior inflates, forming a baby universe, which is connected to the exterior FRW region by a wormhole. A similar black hole formation mechanism operates for spherical domain walls nucleating during inflation. As an illustrative example, we studied the black hole mass spectrum in the domain wall scenario, assuming that domain walls interact with matter only gravitationally. Our results indicate that, depending on the model parameters, black holes produced in this scenario can have significant astrophysical effects and can even serve as dark matter or as seeds for supermassive black holes. The mechanism of black hole formation described in this paper is very generic and has important implications for the global structure of the universe. Baby universes inside super-critical black holes inflate eternally and nucleate bubbles of all vacua allowed by the underlying particle physics. The resulting multiverse has a very non-trivial spacetime structure, with a multitude of eternally inflating regions connected by wormholes. If a black hole population with the predicted mass spectrum is discovered, it could be regarded as evidence for inflation and for the existence of a multiverse.
How black holes saved relativity
NASA Astrophysics Data System (ADS)
Prescod-Weinstein, Chanda
2016-02-01
While there have been many popular-science books on the historical and scientific legacy of Albert Einstein's general theory of relativity, a gap exists in the literature for a definitive, accessible history of the theory's most famous offshoot: black holes. In Black Hole, the science writer Marcia Bartusiak aims for a discursive middle ground, writing solely about black holes at a level suitable for both high-school students and more mature readers while also giving some broader scientific context for black-hole research.
NASA Astrophysics Data System (ADS)
Bastos, C.; Bertolami, O.; Dias, N. C.; Prata, J. N.
2010-04-01
One considers phase-space noncommutativity in the context of a Kantowski-Sachs cosmological model to study the interior of a Schwarzschild black hole. It is shown that the potential function of the corresponding quantum cosmology problem has a local minimum. One deduces the thermodynamics and show that the Hawking temperature and entropy exhibit an explicit dependence on the momentum noncommutativity parameter, η. Furthermore, the t = r = 0 singularity is analysed in the noncommutative regime and it is shown that the wave function vanishes in this limit.
Black supernovae and black holes in non-local gravity
NASA Astrophysics Data System (ADS)
Bambi, Cosimo; Malafarina, Daniele; Modesto, Leonardo
2016-04-01
In a previous paper, we studied the interior solution of a collapsing body in a non-local theory of gravity super-renormalizable at the quantum level. We found that the classical singularity is replaced by a bounce, after which the body starts expanding. A black hole, strictly speaking, never forms. The gravitational collapse does not create an event horizon but only an apparent one for a finite time. In this paper, we solve the equations of motion assuming that the exterior solution is static. With such an assumption, we are able to reconstruct the solution in the whole spacetime, namely in both the exterior and interior regions. Now the gravitational collapse creates an event horizon in a finite comoving time, but the central singularity is approached in an infinite time. We argue that these black holes should be unstable, providing a link between the scenarios with and without black holes. Indeed, we find a non catastrophic ghost-instability of the metric in the exterior region. Interestingly, under certain conditions, the lifetime of our black holes exactly scales as the Hawking evaporation time.
Kerr black holes with scalar hair.
Herdeiro, Carlos A R; Radu, Eugen
2014-06-01
We present a family of solutions of Einstein's gravity minimally coupled to a complex, massive scalar field, describing asymptotically flat, spinning black holes with scalar hair and a regular horizon. These hairy black holes (HBHs) are supported by rotation and have no static limit. Besides mass M and angular momentum J, they carry a conserved, continuous Noether charge Q measuring the scalar hair. HBHs branch off from the Kerr metric at the threshold of the superradiant instability and reduce to spinning boson stars in the limit of vanishing horizon area. They overlap with Kerr black holes for a set of (M, J) values. A single Killing vector field preserves the solutions, tangent to the null geodesic generators of the event horizon. HBHs can exhibit sharp physical differences when compared to the Kerr solution, such as J/M^{2}>1, a quadrupole moment larger than J^{2}/M, and a larger orbital angular velocity at the innermost stable circular orbit. Families of HBHs connected to the Kerr geometry should exist in scalar (and other) models with more general self-interactions. PMID:24949750
Inner mechanics of three-dimensional black holes.
Detournay, Stéphane
2012-07-20
We investigate properties of the inner horizons of certain black holes in higher-derivative three-dimensional gravity theories. We focus on Bañados-Teitelboim-Zanelli and spacelike warped anti-de Sitter black holes, as well as on asymptotically warped de Sitter solutions exhibiting both a cosmological and a black hole horizon. We verify that a first law is satisfied at the inner horizon, in agreement with the proposal of Castro and Rodriguez [arXiv:1204.1284]. We then show that, in topologically massive gravity, the product of the areas of the inner and outer horizons fails to be independent on the mass, and we trace this to the diffeomorphism anomaly of the theory. PMID:22861835
Tunneling Radiation of Massive Vector Bosons from Dilaton Black Holes
NASA Astrophysics Data System (ADS)
Li, Ran; Zhao, Jun-Kun; Wu, Xing-Hua
2016-07-01
It is well known that Hawking radiation can be treated as a quantum tunneling process of particles from the event horizon of black hole. In this paper, we attempt to apply the massive vector bosons tunneling method to study the Hawking radiation from the non-rotating and rotating dilaton black holes. Starting with the Proca field equation that govern the dynamics of massive vector bosons, we derive the tunneling probabilities and radiation spectrums of the emitted vector bosons from the static spherical symmetric dilatonic black hole, the rotating Kaluza—Klein black hole, and the rotating Kerr—Sen black hole. Comparing the results with the blackbody spectrum, we satisfactorily reproduce the Hawking temperatures of these dilaton black holes, which are consistent with the previous results in the literature. Supported by National Natural Science Foundation of China under Grant No. 11205048
Fermion tunneling from higher-dimensional black holes
NASA Astrophysics Data System (ADS)
Lin, Kai; Yang, Shu-Zheng
2009-03-01
Via the semiclassical approximation method, we study the 1/2-spin fermion tunneling from a higher-dimensional black hole. In our work, the Dirac equations are transformed into a simple form, and then we simplify the fermion tunneling research to the study of the Hamilton-Jacobi equation in curved space-time. Finally, we get the fermion tunneling rates and the Hawking temperatures at the event horizon of higher-dimensional black holes. We study fermion tunneling of a higher-dimensional Schwarzschild black hole and a higher-dimensional spherically symmetric quintessence black hole. In fact, this method is also applicable to the study of fermion tunneling from four-dimensional or lower-dimensional black holes, and we will take the rainbow-Finsler black hole as an example in order to make the fact explicit.
Fermion tunneling from higher-dimensional black holes
Lin Kai; Yang Shuzheng
2009-03-15
Via the semiclassical approximation method, we study the 1/2-spin fermion tunneling from a higher-dimensional black hole. In our work, the Dirac equations are transformed into a simple form, and then we simplify the fermion tunneling research to the study of the Hamilton-Jacobi equation in curved space-time. Finally, we get the fermion tunneling rates and the Hawking temperatures at the event horizon of higher-dimensional black holes. We study fermion tunneling of a higher-dimensional Schwarzschild black hole and a higher-dimensional spherically symmetric quintessence black hole. In fact, this method is also applicable to the study of fermion tunneling from four-dimensional or lower-dimensional black holes, and we will take the rainbow-Finsler black hole as an example in order to make the fact explicit.
Interior of black holes and information recovery
NASA Astrophysics Data System (ADS)
Kawai, Hikaru; Yokokura, Yuki
2016-02-01
We analyze time evolution of a spherically symmetric collapsing matter from a point of view that black holes evaporate by nature. We first consider a spherical thin shell that falls in the metric of an evaporating Schwarzschild black hole of which the radius a (t ) decreases in time. The important point is that the shell can never reach a (t ) but it approaches a (t )-a (t )d/a (t ) d t . This situation holds at any radius because the motion of a shell in a spherically symmetric system is not affected by the outside. In this way, we find that the collapsing matter evaporates without forming a horizon. Nevertheless, a Hawking-like radiation is created in the metric, and the object looks the same as a conventional black hole from the outside. We then discuss how the information of the matter is recovered. We also consider a black hole that is adiabatically grown in the heat bath and obtain the interior metric. We show that it is the self-consistent solution of Gμ ν=8 π G ⟨Tμ ν⟩ and that the four-dimensional Weyl anomaly induces the radiation and a strong angular pressure. Finally, we analyze the internal structures of the charged and the slowly rotating black holes.
Asymptotically flat black holes in 2 +1 dimensions
NASA Astrophysics Data System (ADS)
Alkaç, Gökhan; Kilicarslan, Ercan; Tekin, Bayram
2016-04-01
Asymptotically flat black holes in 2 +1 dimensions are a rarity. We study the recently found black flower solutions (asymptotically flat black holes with deformed horizons), static black holes, rotating black holes and the dynamical black flowers (black holes with radiative gravitons) of the purely quadratic version of new massive gravity. We show how they appear in this theory and we also show that they are also solutions to the infinite order extended version of the new massive gravity, that is the Born-Infeld extension of new massive gravity with an amputated Einsteinian piece. The same metrics also solve the topologically extended versions of these theories, with modified conserved charges and the thermodynamical quantities, such as the Wald entropy. Besides these we find new conformally flat radiating type solutions to these extended gravity models. We also show that these metrics do not arise in Einstein's gravity coupled to physical perfect fluids.
General Tortoise Coordinate Transformation in a Dynamical Kerr-Newman Black Hole
NASA Astrophysics Data System (ADS)
Liu, Xian-Ming; Cheng, Su-Jun; Liu, Wen-Biao
2012-02-01
Under the extended dynamical tortoise coordinate transformation, Damour-Ruffini method has been applied to calculate the charged particles' Hawking radiation from the apparent horizon of a dynamical Kerr-Newman black hole. It is shown that Hawking radiation is still purely thermal black body spectrum. Moreover, the temperature of Hawking radiation is corresponding to the apparent horizon surface gravity and the first law of thermodynamics can also be constructed successfully on the apparent horizon in the dynamical Kerr-Newman black hole.
BLACK HOLES: ONE SIZE DOESN'T FIT ALL
NASA Technical Reports Server (NTRS)
2002-01-01
This comparison of the hearts of four elliptical galaxies shows that the more massive a galaxy's central bulge of stars, the heftier its black hole. The galaxies are part of a census of 30 galaxies conducted by astronomers using NASA's Hubble Space Telescope. Black holes are dense, compact objects possessing such strong gravitational forces that not even light can escape them. The column of black-and-white pictures at left, taken by ground-based telescopes, shows the galaxies. The inset boxes define the central regions of stars. Close-up images of these regions, as seen by Hubble's Wide Field and Planetary Camera 2, are in the middle column. The column at right lists the masses of the black holes and illustrates the respective diameters of the event horizons. An event horizon defines a black hole's boundary. Any material that crosses that boundary becomes ensnared in a black hole's grasp and cannot escape. The event horizons cannot be seen in the Hubble images because they are 25 million times smaller than the scale of the pictures. Astronomers determined the mass of each black hole by measuring the motion of stars swirling around it: the closer the stars approach the black hole, the faster their velocity. Only through observations with Hubble's superior vision could astronomers probe to the core of the galaxy where these effects are easily measured. They discovered a remarkable new correlation between a black hole's mass and the average speed of the stars in a galaxy's central bulge. The faster the stars are moving, the more massive the black hole. This information suggests that the galaxy and the black hole grew simultaneously. Credit: NASA and Karl Gebhardt (Lick Observatory)
Black hole non-uniqueness via spacetime topology in five dimensions
NASA Astrophysics Data System (ADS)
Kunduri, Hari K.; Lucietti, James
2014-10-01
The domain of outer communication of five-dimensional asymptotically flat stationary spacetimes may possess non-trivial 2-cycles. We discuss how this may lead to a gross violation of black hole uniqueness, beyond the existence of black rings, even for solutions with two commuting rotational symmetries. We illustrate this with a simple example in minimal supergravity; a four parameter family of supersymmetric black hole solutions, with spherical horizon topology and a 2-cycle in the exterior. We show there are black holes in this family with identical conserved changes to the BMPV black hole, thereby demonstrating black hole non-uniqueness in this context. We find a decoupling limit of this family of black holes that yields spacetimes asymptotic to the near-horizon geometry of a BMPV black hole which contain a black hole and an exterior 2-cycle.
Do we know the mass of a black hole? Mass of some cosmological black hole models
NASA Astrophysics Data System (ADS)
Firouzjaee, J. T.; Mood, M. Parsi; Mansouri, Reza
2012-03-01
Using a cosmological black hole model proposed recently, we have calculated the quasi-local mass of a collapsing structure within a cosmological setting due to different definitions put forward in the last decades to see how similar or different they are. It has been shown that the mass within the horizon follows the familiar Brown-York behavior. It increases, however, outside the horizon again after a short decrease, in contrast to the Schwarzschild case. Further away, near the void, outside the collapsed region, and where the density reaches the background minimum, all the mass definitions roughly coincide. They differ, however, substantially far from it. Generically, we are faced with three different Brown-York mass maxima: near the horizon, around the void between the overdensity region and the background, and another at cosmological distances corresponding to the cosmological horizon. While the latter two maxima are always present, the horizon mass maxima is absent before the onset of the central singularity.
Black holes in binary stellar systems and galactic nuclei
NASA Astrophysics Data System (ADS)
Cherepashchuk, A. M.
2014-04-01
In the last 40 years, following pioneering papers by Ya B Zeldovich and E E Salpeter, in which a powerful energy release from nonspherical accretion of matter onto a black hole (BH) was predicted, many observational studies of black holes in the Universe have been carried out. To date, the masses of several dozen stellar-mass black holes (M_BH = (4{-}20) M_\\odot) in X-ray binary systems and of several hundred supermassive black holes (M_BH = (10^{6}{-}10^{10}) M_\\odot) in galactic nuclei have been measured. The estimated radii of these massive and compact objects do not exceed several gravitational radii. For about ten stellar-mass black holes and several dozen supermassive black holes, the values of the dimensionless angular momentum a_* have been estimated, which, in agreement with theoretical predictions, do not exceed the limiting value a_* = 0.998. A new field of astrophysics, so-called black hole demography, which studies the birth and growth of black holes and their evolutionary connection to other objects in the Universe, namely stars, galaxies, etc., is rapidly developing. In addition to supermassive black holes, massive stellar clusters are observed in galactic nuclei, and their evolution is distinct from that of supermassive black holes. The evolutionary relations between supermassive black holes in galactic centers and spheroidal stellar components (bulges) of galaxies, as well as dark-matter galactic haloes are brought out. The launch into Earth's orbit of the space radio interferometer RadioAstron opened up the real possibility of finally proving that numerous discovered massive and highly compact objects with properties very similar to those of black holes make up real black holes in the sense of Albert Einstein's General Relativity. Similar proofs of the existence of black holes in the Universe can be obtained by intercontinental radio interferometry at short wavelengths \\lambda \\lesssim 1 mm (the international program, Event Horizon Telescope).
Black-Hole Feedback in Quasars
This animation illustrates how black-hole feedback works in quasars. Dense gas and dust in the center simultaneously fuels the black hole and shrouds it from view. The black-hole wind propels large...
Stationary solutions of the Dirac equation in the gravitational field of a charged black hole
Dokuchaev, V. I. Eroshenko, Yu. N.
2013-07-15
A stationary solution of the Dirac equation in the metric of a Reissner-Nordstroem black hole has been found. Only one stationary regular state outside the black hole event horizon and only one stationary regular state below the Cauchy horizon are shown to exist. The normalization integral of the wave functions diverges on both horizons if the black hole is non-extremal. This means that the solution found can be only the asymptotic limit of a nonstationary solution. In contrast, in the case of an extremal black hole, the normalization integral is finite and the stationary regular solution is physically self-consistent. The existence of quantum levels below the Cauchy horizon can affect the final stage of Hawking black hole evaporation and opens up the fundamental possibility of investigating the internal structure of black holes using quantum tunneling between external and internal states.
Prisons of Light - Black Holes
NASA Astrophysics Data System (ADS)
Ferguson, Kitty
1998-05-01
In this jargon-free review of one of the most fascinating topics in modern science, acclaimed science writer Kitty Ferguson examines the discovery of black holes, their nature, and what they can teach us about the mysteries of the universe. In search of the answers, we trace a star from its birth to its death throes, take a hypothetical journey to the border of a black hole and beyond, spend time with some of the world's leading theoretical physicists and astronomers, and take a whimsical look at some of the wild ideas black holes have inspired. Prisons of Light--Black Holes is comprehensive and detailed. Yet Kitty Ferguson's lightness of touch and down-to-earth analogies set this book apart from all others on black holes and make it a wonderfully stimulating and entertaining read.
When Charged Black Holes Merge
NASA Astrophysics Data System (ADS)
Kohler, Susanna
2016-08-01
Most theoretical models assume that black holes arent charged. But a new study shows that mergers of charged black holes could explain a variety of astrophysical phenomena, from fast radio bursts to gamma-ray bursts.No HairThe black hole no hair theorem states that all black holes can be described by just three things: their mass, their spin, and their charge. Masses and spins have been observed and measured, but weve never measured the charge of a black hole and its widely believed that real black holes dont actually have any charge.That said, weve also never shown that black holes dont have charge, or set any upper limits on the charge that they might have. So lets suppose, for a moment, that its possible for a black hole to be charged. How might that affect what we know about the merger of two black holes? A recent theoretical study by Bing Zhang (University of Nevada, Las Vegas) examines this question.Intensity profile of a fast radio burst, a sudden burst of radio emission that lasts only a few milliseconds. [Swinburne Astronomy Productions]Driving TransientsZhangs work envisions a pair of black holes in a binary system. He argues that if just one of the black holes carries charge possibly retained by a rotating magnetosphere then it may be possible for the system to produce an electromagnetic signal that could accompany gravitational waves, such as a fast radio burst or a gamma-ray burst!In Zhangs model, the inspiral of the two black holes generates a global magnetic dipole thats perpendicular to the plane of the binarys orbit. The magnetic flux increases rapidly as the separation between the black holes decreases, generating an increasingly powerful magnetic wind. This wind, in turn, can give rise to a fast radio burst or a gamma-ray burst, depending on the value of the black holes charge.Artists illustration of a short gamma-ray burst, thought to be caused by the merger of two compact objects. [ESO/A. Roquette]Zhang calculates lower limits on the charge
Instabilities of Extremal Rotating Black Holes in Higher Dimensions
NASA Astrophysics Data System (ADS)
Hollands, Stefan; Ishibashi, Akihiro
2015-11-01
Recently, Durkee and Reall have conjectured a criterion for linear instability of rotating, extremal, asymptotically Minkowskian black holes in dimensions, such as the Myers-Perry black holes. They considered a certain elliptic operator, , acting on symmetric trace-free tensors intrinsic to the horizon. Based in part on numerical evidence, they suggested that if the lowest eigenvalue of this operator is less than the critical value -1/4 ( called "effective BF-bound"), then the black hole is linearly unstable. In this paper, we prove an extended version of their conjecture. Our proof uses a combination of methods such as (1) the "canonical energy method" of Hollands-Wald, (2) algebraically special properties of the near horizon geometries associated with the black hole, (3) the Corvino-Schoen technique, and (4) semiclassical analysis. Our method of proof is also applicable to rotating, extremal asymptotically Anti-deSitter black holes. In that case, we find additional instabilities for ultra-spinning black holes. Although we explicitly discuss in this paper only extremal black holes, we argue that our results can be generalized to near extremal black holes.
Properties of the distorted Kerr black hole
NASA Astrophysics Data System (ADS)
Abdolrahimi, Shohreh; Kunz, Jutta; Nedkova, Petya; Tzounis, Christos
2015-12-01
We investigate the properties of the ergoregion and the location of the curvature singularities for the Kerr black hole distorted by the gravitational field of external sources. The particular cases of quadrupole and octupole distortion are studied in detail. We also investigate the scalar curvature invariants of the horizon and compare their behaviour with the case of the isolated Kerr black hole. In a certain region of the parameter space the ergoregion consists of a compact region encompassing the horizon and a disconnected part extending to infinity. The curvature singularities in the domain of outer communication, when they exist, are always located on the boundary of the ergoregion. We present arguments that they do not lie on the compact ergosurface. For quadrupole distortion the compact ergoregion size is negatively correlated with the horizon angular momentum when the external sources are varied. For octupole distortion infinitely many ergoregion configurations can exist for a certain horizon angular momentum. For some special cases we can have J2/M4 > 1 and yet avoid a naked singularity.
Gravity, black holes, and the universe
Nicolson, I.
1981-01-01
The book treats current understandings of the nature and properties of gravity, with particular emphasis on its role in the physics of black holes and the structure and evolution of the universe as a whole. The development of modern ideas on force, motion and gravity is traced from the systems of Aristotle and Ptolemy through the work of Copernicus, Galileo and Kepler to Newton's law of universal gravitation and Einstein's general theory of relativity. Particular attention is then given to the role of gravity in stellar motions and to the phenomena determined by the immense gravitational forces associated with bodies of such great density, including relativistic effects, tidal forces, space-time effects, event horizons, rotation, mass and electrical charge, the existence of naked singularities and white holes, and black-hole thermodynamics. The existence of actual black holes in the universe is considered, and various black-hole candidates in the Galaxy, quasars and galactic nuclei are indicated. The role of gravity in cosmology is then examined, with attention given to the implications of general relativity, the Hubble law, the age of the universe, the density of the universe and its eventual fate. Possible alternative to general relativity as a theory of gravitation are considered, including theories of variable gravitational constant, grand unified theories, and quantum gravity.
Gamma -bursts by primordial Black Holes
NASA Astrophysics Data System (ADS)
Gaina, Alex
holes density is overestimated in the most popular Big Bang scenarios? (PBH's cannot form at all?!). We pass now an epoch of relative absence of PBH's masses spectrum and particle physics, or the expectations for PBH's explosions are unbiased? Page (1975, 1976) investigated the powers and spectral densities for scalar massive and massles particles, massles neutrinos and gravitons. The numerical computations for electrons was realised later, since no analytical solutions for Dirac equation were known in the Kerr background. I have obtained such solutions, in collaboration with I.M. Ternov and G.A. Chizov in 1980 (Soviet Physics Journal, Volume 23, Issue 8, pp.695-700). Therefore I have calculated the transmission probabilities, absorption cross section and the spectral mass and momentum rate lost in the long wavelength limit for spin 1/2 particles) . It is very interesting that the absorption cross section averaged on the black hole and coincides with the cross section computed earlier by Unruh (1976). I have shown also that the extremely highly rotating black hole is stable against the formation of a naked singularity in spite of the horizon surface of a hole will increase temporarily due to classical generation of particles (Gaina, PHD work, Moscow, 1981; Soviet Physics Journal, Volume 28, Issue 8, pp.682-685). The higher spins particles radiation dominates if the black hole is highly rotating. For a/m<0.6 the emission of lower spin (spin 1/2) particles becomes dominant. The detection of quanta of ~1 Gev is of very great interest.
NASA Astrophysics Data System (ADS)
Bini, Donato; Bittencourt, Eduardo; Geralico, Andrea; Jantzen, Robert T.
2015-04-01
A general framework is developed to investigate the properties of useful choices of stationary spacelike slicings of stationary spacetimes whose congruences of timelike orthogonal trajectories are interpreted as the world lines of an associated family of observers, the kinematical properties of which in turn may be used to geometrically characterize the original slicings. On the other hand, properties of the slicings themselves can directly characterize their utility motivated instead by other considerations like the initial value and evolution problems in the 3-plus-1 approach to general relativity. An attempt is made to categorize the various slicing conditions or "time gauges" used in the literature for the most familiar stationary spacetimes: black holes and their flat spacetime limit.
Ultraspinning instability of rotating black holes
Dias, Oscar J. C.; Figueras, Pau; Monteiro, Ricardo; Santos, Jorge E.
2010-11-15
Rapidly rotating Myers-Perry black holes in d{>=}6 dimensions were conjectured to be unstable by Emparan and Myers. In a previous publication, we found numerically the onset of the axisymmetric ultraspinning instability in the singly spinning Myers-Perry black hole in d=7, 8, 9. This threshold also signals a bifurcation to new branches of axisymmetric solutions with pinched horizons that are conjectured to connect to the black ring, black Saturn and other families in the phase diagram of stationary solutions. We firmly establish that this instability is also present in d=6 and in d=10, 11. The boundary conditions of the perturbations are discussed in detail for the first time, and we prove that they preserve the angular velocity and temperature of the original Myers-Perry black hole. This property is fundamental to establishing a thermodynamic necessary condition for the existence of this instability in general rotating backgrounds. We also prove a previous claim that the ultraspinning modes cannot be pure gauge modes. Finally we find new ultraspinning Gregory-Laflamme instabilities of rotating black strings and branes that appear exactly at the critical rotation predicted by the aforementioned thermodynamic criterium. The latter is a refinement of the Gubser-Mitra conjecture.
String theory effects on black hole physics
NASA Astrophysics Data System (ADS)
Castro, Alejandra
2009-09-01
This thesis focuses on recent developments in black hole physics in the context of string theory. The two main topics discussed here are: the effects of quantum/string corrections to five dimensional black holes; and the holographic description of two dimensional black holes. In the gravitational theory the quantum/string corrections are encoded in higher derivative terms in the supergravity action, which are governed by the mixed gauge-gravitational Chern-Simons term. We describe the full asymptotically flat solution of black strings and black holes, and construct the near horizon attractor geometries. With these solutions in hand, we study the thermodynamic properties of black holes beyond the leading order. One important achievement was finding the corrected attractor geometries that contain a three dimensional Anti-de Sitter factor. This allows us to verify that the space-time central charge and the anomaly based derivation of it exactly agree. Another motivation to study higher derivative corrections is to resolve the singularities of small black strings. These objects correspond to classical solutions with a naked singularity and vanishing entropy. Once the stringy corrections are included, we obtain completely smooth geometries with the correct asymptotic behavior. We also studied the effect of the Taub-NUT geometry on the sub-leading corrections to the black hole entropy. This space contains a contractible circle that allows one to lift a four dimensional black hole to a five dimensional black hole by tuning the size of the circle. In the microscopic theory, due to the presence of Taub-NUT, the spectrum of states acquires additional modes. These states exactly account for the shift between 5D and 4D corrections to the entropy. Finally, we develop holographic renormalization for two dimensional gravity on Anti-de Sitter space. The transformation properties of the stress tensor indicate that the asymptotic SL(2,R) conformal symmetry of the theory is enhanced
Black hole evaporation in a noncommutative charged Vaidya model
NASA Astrophysics Data System (ADS)
Sharif, M.; Javed, W.
2012-06-01
We study the black hole evaporation and Hawking radiation for a noncommutative charged Vaidya black hole. For this purpose, we determine a spherically symmetric charged Vaidya model and then formulate a noncommutative Reissner-Nordström-like solution of this model, which leads to an exact ( t - r)-dependent metric. The behavior of the temporal component of this metric and the corresponding Hawking temperature are investigated. The results are shown in the form of graphs. Further, we examine the tunneling process of charged massive particles through the quantum horizon. We find that the tunneling amplitude is modified due to noncommutativity. Also, it turns out that the black hole evaporates completely in the limits of large time and horizon radius. The effect of charge is to reduce the temperature from a maximum value to zero. We note that the final stage of black hole evaporation is a naked singularity.
Radiation of charged black holes and modified dispersion relation
NASA Astrophysics Data System (ADS)
Kamali, A. D.; Pedram, P.
2016-05-01
We investigate the effects of a modified dispersion relation proposed by Majhi and Vagenas on the Reissner-Nordström black hole thermodynamics in a universe with large extra dimensions. It is shown that entropy, temperature and heat capacity receive new corrections and charged black holes in this framework have less degrees of freedom and decay faster compared to black holes in the Hawking picture. We also study the emission rate of black hole and compare our results with other quantum gravity approaches. In this regard, the existence of the logarithmic prefactor and the relation between dimensions and charge are discussed. This procedure is not only valid for a single horizon spacetime but it is also valid for the spacetimes with inner and outer horizons.
Black hole evaporation in a noncommutative charged Vaidya model
Sharif, M. Javed, W.
2012-06-15
We study the black hole evaporation and Hawking radiation for a noncommutative charged Vaidya black hole. For this purpose, we determine a spherically symmetric charged Vaidya model and then formulate a noncommutative Reissner-Nordstroem-like solution of this model, which leads to an exact (t - r)-dependent metric. The behavior of the temporal component of this metric and the corresponding Hawking temperature are investigated. The results are shown in the form of graphs. Further, we examine the tunneling process of charged massive particles through the quantum horizon. We find that the tunneling amplitude is modified due to noncommutativity. Also, it turns out that the black hole evaporates completely in the limits of large time and horizon radius. The effect of charge is to reduce the temperature from a maximum value to zero. We note that the final stage of black hole evaporation is a naked singularity.
Black hole entropy in canonical quantum gravity and superstring theory
Susskind, L.; Uglum, J. )
1994-08-15
In this paper the entropy of an eternal Schwarzschild black hole is studied in the limit of an infinite black hole mass. The problem is addressed from the point of view of both canonical quantum gravity and superstring theory. The entropy per unit area of a free scalar field propagating in a fixed black hole background is shown to be quadratically divergent near the horizon. It is shown that such quantum corrections to the entropy per unit area are equivalent to the quantum corrections to the gravitational coupling. Unlike field theory, superstring theory provides a set of identifiable configurations which give rise to the classical contribution to the entropy per unit area. These configurations can be understood as open superstrings with both ends attached to the horizon. The entropy per unit area is shown to be finite to all orders in superstring perturbation theory. The importance of these conclusions to the resolution of the problem of black hole information loss is reiterated.
Counting the microstates of a Kerr black hole in M theory.
Horowitz, Gary T; Roberts, Matthew M
2007-11-30
We show that an extremal Kerr black hole, appropriately lifted to M theory, can be transformed to a Kaluza-Klein black hole in M theory, or a D0-D6 charged black hole in string theory. Since all the microstates of the latter have recently been identified, one can exactly reproduce the entropy of an extremal Kerr black hole. We also show that the topology of the event horizon is not well defined in M theory. PMID:18233277
Rotating Kaluza-Klein multi-black holes with Goedel parameter
Matsuno, Ken; Ishihara, Hideki; Nakagawa, Toshiharu; Tomizawa, Shinya
2008-09-15
We obtain new five-dimensional supersymmetric rotating multi-Kaluza-Klein black hole solutions with the Goedel parameter in the Einstein-Maxwell system with a Chern-Simons term. These solutions have no closed timelike curve outside the black hole horizons. At infinity, the space-time is effectively four-dimensional. Each horizon admits various lens space topologies L(n;1)=S{sup 3}/Z{sub n} in addition to a round S{sup 3}. The space-time can have outer ergoregions disjointed from the black hole horizons, as well as inner ergoregions attached to each horizon. We discuss the rich structures of ergoregions.
Thermodynamics of three-dimensional black holes via charged particle absorption
NASA Astrophysics Data System (ADS)
Gwak, Bogeun; Lee, Bum-Hoon
2016-04-01
We have shown that changes occur in a (2 + 1)-dimensional charged black hole by adding a charged probe. The particle increases the entropy of the black hole and guarantees the second law of thermodynamics. The first law of thermodynamics is derived from the change in the black hole mass. Using the particle absorption, we test the extremal black hole and find out that the mass of the extremal black hole increases more than the electric charge. Therefore, the outer horizon of the black hole still exists. However, the extremal condition becomes non-extremal.
Inside black holes with synchronized hair
NASA Astrophysics Data System (ADS)
Brihaye, Yves; Herdeiro, Carlos; Radu, Eugen
2016-09-01
Recently, various examples of asymptotically flat, rotating black holes (BHs) with synchronized hair have been explicitly constructed, including Kerr BHs with scalar or Proca hair, and Myers-Perry BHs with scalar hair and a mass gap, showing there is a general mechanism at work. All these solutions have been found numerically, integrating the fully non-linear field equations of motion from the event horizon outwards. Here, we address the spacetime geometry of these solutions inside the event horizon. Firstly, we provide arguments, within linear theory, that there is no regular inner horizon for these solutions. Then, we address this question fully non-linearly, using as a tractable model five dimensional, equal spinning, Myers-Perry hairy BHs. We find that, for non-extremal solutions: (1) the inside spacetime geometry in the vicinity of the event horizon is smooth and the equations of motion can be integrated inwards; (2) before an inner horizon is reached, the spacetime curvature grows (apparently) without bound. In all cases, our results suggest the absence of a smooth Cauchy horizon, beyond which the metric can be extended, for hairy BHs with synchronized hair.
Acceleration of Black Hole Universe
NASA Astrophysics Data System (ADS)
Zhang, Tianxi
2012-05-01
An alternative cosmological model called black hole universe has been recently proposed by the author. According to this model, the universe originated from a hot star-like black hole, and gradually grew up through a supermassive black hole to the present state by accreting ambient materials and merging with other black holes. The entire space is structured with an infinite number of layers hierarchically. The innermost three layers are the universe that we live, the outside space called mother universe, and the inside star-like and supermassive black holes called child universes. The outermost layer has an infinite radius and limits to zero for both the mass density and absolute temperature. All layers or universes are governed by the same physics, the Einstein general theory of relativity with the Robertson-Walker metric of space-time, and tend to expand outward physically. The evolution of the space structure is iterative. When one universe expands out, a new similar universe grows up from its inside. In this study. we will analyze the acceleration of black hole universe that accretes its ambient matter in an increasing rate. We will also compare the result obtained from the black hole universe model with the measurement of type Ia supernova and the result from the big bang cosmology.
A nonsingular rotating black hole
NASA Astrophysics Data System (ADS)
Ghosh, Sushant G.
2015-11-01
The spacetime singularities in classical general relativity are inevitable, as predicated by the celebrated singularity theorems. However, it is a general belief that singularities do not exist in Nature and that they are the limitations of the general relativity. In the absence of a well-defined quantum gravity, models of regular black holes have been studied. We employ a probability distribution inspired mass function m( r) to replace the Kerr black hole mass M to represent a nonsingular rotating black hole that is identified asymptotically (r ≫ k, k>0 constant) exactly as the Kerr-Newman black hole, and as the Kerr black hole when k=0. The radiating counterpart renders a nonsingular generalization of Carmeli's spacetime as well as Vaidya's spacetime, in the appropriate limits. The exponential correction factor changing the geometry of the classical black hole to remove the curvature singularity can also be motivated by quantum arguments. The regular rotating spacetime can also be understood as a black hole of general relativity coupled to nonlinear electrodynamics.
NASA Technical Reports Server (NTRS)
2006-01-01
[figure removed for brevity, see original site] Poster Version
This artist's concept shows a supermassive black hole at the center of a remote galaxy digesting the remnants of a star. NASA's Galaxy Evolution Explorer had a 'ringside' seat for this feeding frenzy, using its ultraviolet eyes to study the process from beginning to end.
The artist's concept chronicles the star being ripped apart and swallowed by the cosmic beast over time. First, the intact sun-like star (left) ventures too close to the black hole, and its own self-gravity is overwhelmed by the black hole's gravity. The star then stretches apart (middle yellow blob) and eventually breaks into stellar crumbs, some of which swirl into the black hole (cloudy ring at right). This doomed material heats up and radiates light, including ultraviolet light, before disappearing forever into the black hole. The Galaxy Evolution Explorer was able to watch this process unfold by observing changes in ultraviolet light.
The area around the black hole appears warped because the gravity of the black hole acts like a lens, twisting and distorting light.
More Hidden Black Hole Dangers
NASA Technical Reports Server (NTRS)
Wanjek, Christopher
2003-01-01
Black holes such as GRO J1655-40 form from collapsed stars. When stars at least eight times more massive than our Sun exhaust their fuel supply, they no longer have the energy to support their tremendous bulk. These stars explode as supernovae, blasting their outer envelopes into space. If the core is more than three times the mass of the Sun, it will collapse into a singularity, a single point of infinite density.Although light cannot escape black holes, astronomers can see black holes by virtue of the hot, glowing gas often stolen from a neighboring star that orbits these objects. From our vantage point, the light seems to flicker. The Rossi Explorer has recorded this flickering (called quasiperiodic oscillations, or QPOs) around many black holes. QPOs are produced by gas very near the innermost stable orbit the closest orbit a blob of gas can maintain before falling pell-mell into the black hole. As gas whips around the black hole at near light speed, gravity pulls the gas in one direction, then another, adding to the flickering. The QPO is related to the speed and size of this orbit and the mass of the black hole.
Emergent flux from particle collisions near a Kerr black hole
Banados, Maximo; Hassanain, Babiker; Silk, Joseph; West, Stephen M.
2011-01-15
The escape fraction at infinity is evaluated for massless particles produced in collisions of weakly interacting particles accreted into a density spike near the particle horizon of an extremal Kerr black hole, for the case of equatorial orbits. We compare with the Schwarzschild case, and argue that in the case of extremal black holes, redshifted signatures can be produced that could potentially explore the physics of particle collisions at center of mass energies that extend beyond those of any feasible terrestrial accelerator.
A new explanation for statistical entropy of charged black hole
NASA Astrophysics Data System (ADS)
Zhao, Ren; Zhang, LiChun
2013-09-01
Using the Unruh-Verlinde temperature obtained by the idea of entropy force, we directly calculated the partition functions of Boson field in Reissner-Nordström spacetime with quantum statistical method. We obtain the expression of the black hole quantum statistical entropy. We find that the term is proportional to the area of black hole horizon and the logarithmic correction term appears. Our result is valid for flat spacetime.
Non-existence of stationary two-black-hole configurations
NASA Astrophysics Data System (ADS)
Neugebauer, Gernot; Hennig, Jörg
2009-09-01
We resume former discussions of the question, whether the spin-spin repulsion and the gravitational attraction of two aligned black holes can balance each other. To answer the question we formulate a boundary value problem for two separate (Killing-) horizons and apply the inverse (scattering) method to solve it. Making use of results of Manko, Ruiz and Sanabria-Gómez and a novel black hole criterion, we prove the non-existence of the equilibrium situation in question.
Thermodynamics of Lifshitz black holes
NASA Astrophysics Data System (ADS)
Devecioǧlu, Deniz Olgu; Sarıoǧlu, Özgür
2011-06-01
We apply the recently extended conserved Killing charge definition of Abbott-Deser-Tekin formalism to compute, for the first time, the energies of analytic Lifshitz black holes in higher dimensions. We then calculate the temperature and the entropy of this large family of solutions, and study and discuss the first law of black hole thermodynamics. Along the way we also identify the possible critical points of the relevant quadratic curvature gravity theories. Separately, we also apply the generalized Killing charge definition to compute the energy and the angular momentum of the warped AdS3 black hole solution of the three-dimensional new massive gravity theory.
Black Holes: A Traveler's Guide
NASA Astrophysics Data System (ADS)
Pickover, Clifford A.
1998-03-01
BLACK HOLES A TRAVELER'S GUIDE Clifford Pickover's inventive and entertaining excursion beyond the curves of space and time. "I've enjoyed Clifford Pickover's earlier books . . . now he has ventured into the exploration of black holes. All would-be tourists are strongly advised to read his traveler's guide." -Arthur C. Clarke. "Many books have been written about black holes, but none surpass this one in arousing emotions of awe and wonder towards the mysterious structure of the universe." -Martin Gardner. "Bucky Fuller thought big. Arthur C. Clarke thinks big, but Cliff Pickover outdoes them both." -Wired. "The book is fun, zany, in-your-face, and refreshingly addictive." -Times Higher Education Supplement.
Quantum mechanics of black holes.
Witten, Edward
2012-08-01
The popular conception of black holes reflects the behavior of the massive black holes found by astronomers and described by classical general relativity. These objects swallow up whatever comes near and emit nothing. Physicists who have tried to understand the behavior of black holes from a quantum mechanical point of view, however, have arrived at quite a different picture. The difference is analogous to the difference between thermodynamics and statistical mechanics. The thermodynamic description is a good approximation for a macroscopic system, but statistical mechanics describes what one will see if one looks more closely. PMID:22859480
Dynamics of Charged Black Holes
NASA Astrophysics Data System (ADS)
Zilhão, Miguel; Cardoso, Vitor; Herdeiro, Carlos; Lehner, Luis; Sperhake, Ulrich
2015-01-01
We report on numerical simulations of charged-black-hole collisions.We focus on head-on collisions of non-spinning black holes, starting from rest and with the same charge to mass ratio. The addition of charge to black holes introduces a new interesting channel of radiation and dynamics. The amount of gravitational-wave energy generated throughout the collision decreases by about three orders of magnitude as the charge-to-mass ratio is increased from 0 to 0.98. This is a consequence of the smaller accelerations present for larger values of the charge.
Evaporation of primordial black holes
NASA Astrophysics Data System (ADS)
Hawking, S. W.
The usual explanation of the isotropy of the universe is that inflation would have smoothed out any inhomogeneities. However, if the universe was initially fractal or in a foam like state, an overall inflation would have left it in the same state. I suggest that the universe did indeed begin with a tangled web of wormholes connecting pairs of black holes but that the inflationary expansion was unstable: wormholes that are slightly smaller correspond to black holes that are hotter than the cosmological background and evaporate away. This picture is supported by calculations with Raphael Bousso of the evaporation of primordial black holes in the s-wave and large N approximations.
"Iron-Clad" Evidence For Spinning Black Hole
NASA Astrophysics Data System (ADS)
2003-09-01
competing explanations that do not require extreme gravitational effects, and provide the best look yet at the geometry of the space-time around a stellar black hole created by the death of a massive star." The orbit of a particle near a black hole depends on the curvature of space around the black hole, which also depends on how fast the black hole is spinning. A spinning black hole drags space around with it and allows atoms to orbit closer to the black hole than is possible for a non-spinning black hole. The latest Chandra data from Cygnus X-1, the first stellar-size black hole discovered, show that the gravitational effects on the signal from the iron atoms can only be due to relativistic effects, and that some of the atoms are no closer than 100 miles to the black hole. There was no evidence that the Cygnus X-1 black hole is spinning. The XMM-Newton data from the black hole, XTE J1650-500, show a very similar distribution of iron atom X-rays with one important exception. More low energy X-rays from iron atoms are observed, an indication that some X-rays are coming from deep in the gravitational well around the black hole, as close as 20 miles to the black hole event horizon. This black hole must be spinning rapidly. Chandra observations of a third stellar black hole, GX 339-4, have revealed that it is also spinning rapidly, and clouds of warm absorbing gas appear to be flowing away from the black hole at speeds of about three hundred thousand miles per hour. Such warm gas flows have been observed in the vicinity of supermassive black holes. Previous observations of some supermassive black holes by Japan's ASCA satellite, XMM-Newton and Chandra have indicated that they may also be rotating rapidly. The latest results presented by Miller indicate that the peculiar geometry of space around spinning stellar-mass black holes and supermassive black holes is remarkably similar. Stellar and supermassive black holes may be similar in other ways. Powerful jets of high
Semiclassical S-matrix for black holes
Bezrukov, Fedor; Levkov, Dmitry; Sibiryakov, Sergey
2015-12-01
In this study, we propose a semiclassical method to calculate S-matrix elements for two-stage gravitational transitions involving matter collapse into a black hole and evaporation of the latter. The method consistently incorporates back-reaction of the collapsing and emitted quanta on the metric. We illustrate the method in several toy models describing spherical self-gravitating shells in asymptotically flat and AdS space-times. We find that electrically neutral shells reflect via the above collapse-evaporation process with probability exp(–B), where B is the Bekenstein-Hawking entropy of the intermediate black hole. This is consistent with interpretation of exp(B) as the number of black hole states.more » The same expression for the probability is obtained in the case of charged shells if one takes into account instability of the Cauchy horizon of the intermediate Reissner-Nordström black hole. As a result, our semiclassical method opens a new systematic approach to the gravitational S-matrix in the non-perturbative regime.« less
Semiclassical S-matrix for black holes
NASA Astrophysics Data System (ADS)
Bezrukov, Fedor; Levkov, Dmitry; Sibiryakov, Sergey
2015-12-01
We propose a semiclassical method to calculate S -matrix elements for two-stage gravitational transitions involving matter collapse into a black hole and evaporation of the latter. The method consistently incorporates back-reaction of the collapsing and emitted quanta on the metric. We illustrate the method in several toy models describing spherical self-gravitating shells in asymptotically flat and AdS space-times. We find that electrically neutral shells reflect via the above collapse-evaporation process with probability exp(- B), where B is the Bekenstein-Hawking entropy of the intermediate black hole. This is consistent with interpretation of exp( B) as the number of black hole states. The same expression for the probability is obtained in the case of charged shells if one takes into account instability of the Cauchy horizon of the intermediate Reissner-Nordström black hole. Our semiclassical method opens a new systematic approach to the gravitational S -matrix in the non-perturbative regime.
Semiclassical S-matrix for black holes
Bezrukov, Fedor; Levkov, Dmitry; Sibiryakov, Sergey
2015-12-01
In this study, we propose a semiclassical method to calculate S-matrix elements for two-stage gravitational transitions involving matter collapse into a black hole and evaporation of the latter. The method consistently incorporates back-reaction of the collapsing and emitted quanta on the metric. We illustrate the method in several toy models describing spherical self-gravitating shells in asymptotically flat and AdS space-times. We find that electrically neutral shells reflect via the above collapse-evaporation process with probability exp(–B), where B is the Bekenstein-Hawking entropy of the intermediate black hole. This is consistent with interpretation of exp(B) as the number of black hole states. The same expression for the probability is obtained in the case of charged shells if one takes into account instability of the Cauchy horizon of the intermediate Reissner-Nordström black hole. As a result, our semiclassical method opens a new systematic approach to the gravitational S-matrix in the non-perturbative regime.
NASA Astrophysics Data System (ADS)
Costa, Miguel S.; Greenspan, Lauren; Oliveira, Miguel; Penedones, João; Santos, Jorge E.
2016-06-01
We consider solutions in Einstein-Maxwell theory with a negative cosmological constant that asymptote to global AdS 4 with conformal boundary {S}2× {{{R}}}t. At the sphere at infinity we turn on a space-dependent electrostatic potential, which does not destroy the asymptotic AdS behaviour. For simplicity we focus on the case of a dipolar electrostatic potential. We find two new geometries: (i) an AdS soliton that includes the full backreaction of the electric field on the AdS geometry; (ii) a polarised neutral black hole that is deformed by the electric field, accumulating opposite charges in each hemisphere. For both geometries we study boundary data such as the charge density and the stress tensor. For the black hole we also study the horizon charge density and area, and further verify a Smarr formula. Then we consider this system at finite temperature and compute the Gibbs free energy for both AdS soliton and black hole phases. The corresponding phase diagram generalizes the Hawking-Page phase transition. The AdS soliton dominates the low temperature phase and the black hole the high temperature phase, with a critical temperature that decreases as the external electric field increases. Finally, we consider the simple case of a free charged scalar field on {S}2× {{{R}}}t with conformal coupling. For a field in the SU(N ) adjoint representation we compare the phase diagram with the above gravitational system.
Constant crunch coordinates for black hole simulations
NASA Astrophysics Data System (ADS)
Gentle, Adrian P.; Holz, Daniel E.; Kheyfets, Arkady; Laguna, Pablo; Miller, Warner A.; Shoemaker, Deirdre M.
2001-03-01
We reinvestigate the utility of time-independent constant mean curvature foliations for the numerical simulation of a single spherically symmetric black hole. Each spacelike hypersurface of such a foliation is endowed with the same constant value of the trace of the extrinsic curvature tensor K. Of the three families of K-constant surfaces possible (classified according to their asymptotic behaviors), we single out a subfamily of singularity-avoiding surfaces that may be particularly useful, and provide an analytic expression for the closest approach such surfaces make to the singularity. We then utilize a nonzero shift to yield families of K-constant surfaces which (1) avoid the black hole singularity, and thus the need to excise the singularity, (2) are asymptotically null, aiding in gravity wave extraction, (3) cover the physically relevant part of the spacetime, (4) are well behaved (regular) across the horizon, and (5) are static under evolution, and therefore have no ``grid stretching/ sucking'' pathologies. Preliminary numerical runs demonstrate that we can stably evolve a single spherically symmetric static black hole using this foliation. We wish to emphasize that this coordinatization produces K-constant surfaces for a single black hole spacetime that are regular, static, and stable throughout their evolution.
Bunster, Claudio; Henneaux, Marc
2007-01-01
A striking property of an electric charge near a magnetic pole is that the system possesses angular momentum even when both the electric and the magnetic charges are at rest. The angular momentum is proportional to the product of the charges and independent of their distance. We analyze the effect of bringing gravitation into this remarkable system. To this end, we study an electric charge held at rest outside a magnetically charged black hole. We find that even if the electric charge is treated as a perturbation on a spherically symmetric magnetic Reissner–Nordstrom hole, the geometry at large distances is that of a magnetic Kerr–Newman black hole. When the charge approaches the horizon and crosses it, the exterior geometry becomes that of a Kerr–Newman hole, with electric and magnetic charges and with total angular momentum given by the standard value for a charged monopole pair. Thus, in accordance with the “no-hair theorem,” once the charge is captured by the black hole, the angular momentum associated with the charge monopole system loses all traces of its exotic origin and is perceived from the outside as common rotation. It is argued that a similar analysis performed on Taub–NUT space should give the same result. PMID:17626789
NASA Astrophysics Data System (ADS)
Chen, Pisin; Ong, Yen Chin; Page, Don N.; Sasaki, Misao; Yeom, Dong-han
2016-04-01
In the firewall proposal, it is assumed that the firewall lies near the event horizon and should not be observable except by infalling observers, who are presumably terminated at the firewall. However, if the firewall is located near where the horizon would have been, based on the spacetime evolution up to that time, later quantum fluctuations of the Hawking emission rate can cause the "teleological" event horizon to have migrated to the inside of the firewall location, rendering the firewall naked. In principle, the firewall can be arbitrarily far outside the horizon. This casts doubt about the notion that firewalls are the "most conservative" solution to the information loss paradox.
Chen, Pisin; Ong, Yen Chin; Page, Don N; Sasaki, Misao; Yeom, Dong-Han
2016-04-22
In the firewall proposal, it is assumed that the firewall lies near the event horizon and should not be observable except by infalling observers, who are presumably terminated at the firewall. However, if the firewall is located near where the horizon would have been, based on the spacetime evolution up to that time, later quantum fluctuations of the Hawking emission rate can cause the "teleological" event horizon to have migrated to the inside of the firewall location, rendering the firewall naked. In principle, the firewall can be arbitrarily far outside the horizon. This casts doubt about the notion that firewalls are the "most conservative" solution to the information loss paradox. PMID:27152788
Regular black holes and noncommutative geometry inspired fuzzy sources
NASA Astrophysics Data System (ADS)
Kobayashi, Shinpei
2016-05-01
We investigated regular black holes with fuzzy sources in three and four dimensions. The density distributions of such fuzzy sources are inspired by noncommutative geometry and given by Gaussian or generalized Gaussian functions. We utilized mass functions to give a physical interpretation of the horizon formation condition for the black holes. In particular, we investigated three-dimensional BTZ-like black holes and four-dimensional Schwarzschild-like black holes in detail, and found that the number of horizons is related to the space-time dimensions, and the existence of a void in the vicinity of the center of the space-time is significant, rather than noncommutativity. As an application, we considered a three-dimensional black hole with the fuzzy disc which is a disc-shaped region known in the context of noncommutative geometry as a source. We also analyzed a four-dimensional black hole with a source whose density distribution is an extension of the fuzzy disc, and investigated the horizon formation condition for it.
Interior dynamics of neutral and charged black holes
NASA Astrophysics Data System (ADS)
Guo, Jun-Qi; Joshi, Pankaj S.
2015-09-01
In this paper, we explore the interior dynamics of neutral and charged black holes. Scalar collapses in flat, Schwarzschild, and Reissner-Nordström background geometries are simulated. We examine the dynamics in the vicinities of the central singularity of a Schwarzschild black hole and of the inner horizon of a Reissner-Nordström black hole. In simulating scalar collapses in Schwarzschild and Reissner-Nordström geometries, Kruskal and Kruskal-like coordinates are used, respectively, with the presence of a scalar field being taken into account. It is found that, besides near the inner horizons of Reissner-Nordström and Kerr black holes, mass inflation also takes place near the central singularity in neutral scalar collapse. Approximate analytic expressions for different types of mass inflation are partially obtained via a close interplay between numerical and analytical approaches and an examination of the connections between Schwarzschild black holes, Reissner-Nordström black holes, neutral collapse, and charge scattering. We argue that the mass inflations near the central singularity and the inner horizon are related to the localness of the dynamics in strong gravity regions. This is in accord with the Belinskii, Khalatnikov, and Lifshitz conjecture.
Radial geodesics as a microscopic origin of black hole entropy
Kiselev, V.V.
2005-12-15
Causal radial geodesics with a positive interval in the Schwarzschild metric include a subset of trajectories completely confined behind a horizon, which compose a thermal statistical ensemble with the Hawking-Gibbons temperature. The Bekenstein-Hawking entropy is given by an action at corresponding geodesics of particles with a summed mass equal to that of the black hole in the limit of a large mass. The entropy of a charged black hole is calculated in this way by using the partition function evaluated at radial geodesics confined behind horizons. We establish two quantum phase states inside the black hole and a transition between them. For the Kerr-Newman black hole we specify an angular motion on geodesics to reduce the problem to the case of radial motion elaborated on in previous papers. An appropriate value of entropy for a charged and rotating black hole is obtained by calculating the partition function on thermal geodesics confined behind horizons. The quantum aggregation is classified in a similar way to the Reissner-Nordstroem black hole.
Black hole spectroscopy from loop quantum gravity models
NASA Astrophysics Data System (ADS)
Barrau, Aurelien; Cao, Xiangyu; Noui, Karim; Perez, Alejandro
2015-12-01
Using Monte Carlo simulations, we compute the integrated emission spectra of black holes in the framework of loop quantum gravity (LQG). The black hole emission rates are governed by the entropy whose value, in recent holographic loop quantum gravity models, was shown to agree at leading order with the Bekenstein-Hawking entropy. Quantum corrections depend on the Barbero-Immirzi parameter γ . Starting with black holes of initial horizon area A ˜102 in Planck units, we present the spectra for different values of γ . Each spectrum clearly decomposes into two distinct parts: a continuous background which corresponds to the semiclassical stages of the evaporation and a series of discrete peaks which constitutes a signature of the deep quantum structure of the black hole. We show that γ has an effect on both parts that we analyze in detail. Finally, we estimate the number of black holes and the instrumental resolution required to experimentally distinguish between the considered models.
Better late than never: information retrieval from black holes.
Braunstein, Samuel L; Pirandola, Stefano; Życzkowski, Karol
2013-03-01
We show that, in order to preserve the equivalence principle until late times in unitarily evaporating black holes, the thermodynamic entropy of a black hole must be primarily entropy of entanglement across the event horizon. For such black holes, we show that the information entering a black hole becomes encoded in correlations within a tripartite quantum state, the quantum analogue of a one-time pad, and is only decoded into the outgoing radiation very late in the evaporation. This behavior generically describes the unitary evaporation of highly entangled black holes and requires no specially designed evolution. Our work suggests the existence of a matter-field sum rule for any fundamental theory. PMID:23521247
Thermodynamics and luminosities of rainbow black holes
NASA Astrophysics Data System (ADS)
Mu, Benrong; Wang, Peng; Yang, Haitang
2015-11-01
Doubly special relativity (DSR) is an effective model for encoding quantum gravity in flat spacetime. As result of the nonlinearity of the Lorentz transformation, the energy-momentum dispersion relation is modified. One simple way to import DSR to curved spacetime is ``Gravity's rainbow'', where the spacetime background felt by a test particle would depend on its energy. Focusing on the ``Amelino-Camelia dispersion relation'' which is E2 = m2+p2[1-η(E/mp)n] with n > 0, we investigate the thermodynamical properties of a Schwarzschild black hole and a static uncharged black string for all possible values of η and n in the framework of rainbow gravity. It shows that there are non-vanishing minimum masses for these two black holes in the cases with η < 0 and n >= 2. Considering effects of rainbow gravity on both the Hawking temperature and radius of the event horizon, we use the geometric optics approximation to compute luminosities of a 2D black hole, a Schwarzschild one and a static uncharged black string. It is found that the luminosities can be significantly suppressed or boosted depending on the values of η and n.
Asymptotic Reissner–Nordström black holes
Hendi, S.H.
2013-06-15
We consider two types of Born–Infeld like nonlinear electromagnetic fields and obtain their interesting black hole solutions. The asymptotic behavior of these solutions is the same as that of a Reissner–Nordström black hole. We investigate the geometric properties of the solutions and find that depending on the value of the nonlinearity parameter, the singularity covered with various horizons. -- Highlights: •We investigate two types of the BI-like nonlinear electromagnetic fields in the Einsteinian gravity. •We analyze the effects of nonlinearity on the electromagnetic field. •We examine the influences of the nonlinearity on the geometric properties of the black hole solutions.
Hot accretion flows onto binary and single black holes
NASA Astrophysics Data System (ADS)
Gold, Roman; Paschalidis, Vasileios; Ruiz, Milton; Shapiro, Stuart; Etienne, Zachariah; Pfeiffer, Harald; McKinney, Jonathan
2015-04-01
Accreting black holes (BHs) are at the core of relativistic astrophysics as messengers of the strong-field regime of General Relativity and prime targets of several observational campaigns, including imaging the black hole shadow in SagA* and M87 with the Event Horizon Telescope. Binary Black Holes are one of the most promising gravitational wave sources for adLIGO and Pulsar Timing Arrays and - if accreting - can provide a strong electromagnetic counterpart. I will present results from global GRMHD simulations of both single and binary BHs embedded in a hot, magnetized disk, highlighting differences in their observational appearance including their gravitational and electromagnetic radiation.
Tunnelling, temperature, and Taub-NUT black holes
NASA Astrophysics Data System (ADS)
Kerner, Ryan; Mann, R. B.
2006-05-01
We investigate quantum tunnelling methods for calculating black hole temperature, specifically the null-geodesic method of Parikh and Wilczek and the Hamilton-Jacobi Ansatz method of Angheben et al. We consider application of these methods to a broad class of spacetimes with event horizons, inlcuding Rindler and nonstatic spacetimes such as Kerr-Newman and Taub-NUT. We obtain a general form for the temperature of Taub-NUT-AdS black holes that is commensurate with other methods. We examine the limitations of these methods for extremal black holes, taking the extremal Reissner-Nordstrom spacetime as a case in point.
Thermodynamic instability of black holes of third order Lovelock gravity
Dehghani, M. H.; Pourhasan, R.
2009-03-15
In this paper, we compute the mass and the temperature of the uncharged black holes of third order Lovelock gravity as well as the entropy using the first law of thermodynamics. We perform a stability analysis by studying the curves of the temperature versus the mass parameter, and find that an intermediate thermodynamically unstable phase exists for black holes with a hyperbolic horizon. This unstable phase for the uncharged topological black holes of third order Lovelock gravity does not exist in lower order Lovelock gravity. We also perform a stability analysis for a spherical, seven-dimensional black hole of Lovelock gravity and find that, while these kinds of black holes for small values of Lovelock coefficients have an intermediate unstable phase, they are stable for large values of Lovelock coefficients. We also find that an intermediate unstable phase exists for these black holes in higher dimensions. This analysis shows that the thermodynamic stability of black holes with curved horizons is not a robust feature of all the generalized theories of gravity.
Superradiant instabilities of asymptotically anti-de Sitter black holes
NASA Astrophysics Data System (ADS)
Green, Stephen R.; Hollands, Stefan; Ishibashi, Akihiro; Wald, Robert M.
2016-06-01
We study the linear stability of asymptotically anti-de Sitter black holes in general relativity in spacetime dimension d≥slant 4. Our approach is an adaptation of the general framework of Hollands and Wald, which gives a stability criterion in terms of the sign of the canonical energy, { E }. The general framework was originally formulated for static or stationary and axisymmetric black holes in the asymptotically flat case, and the stability analysis for that case applies only to axisymmetric perturbations. However, in the asymptotically anti-de Sitter case, the stability analysis requires only that the black hole have a single Killing field normal to the horizon and there are no restrictions on the perturbations (apart from smoothness and appropriate behavior at infinity). For an asymptotically anti-de Sitter black hole, we define an ergoregion to be a region where the horizon Killing field is spacelike; such a region, if present, would normally occur near infinity. We show that for black holes with ergoregions, initial data can be constructed such that { E }\\lt 0, so all such black holes are unstable. To obtain such initial data, we first construct an approximate solution to the constraint equations using the WKB method, and then we use the Corvino–Schoen technique to obtain an exact solution. We also discuss the case of charged asymptotically anti-de Sitter black holes with generalized ergoregions.
Analysis of the Sultana-Dyer cosmological black hole solution of the Einstein equations
Faraoni, Valerio
2009-08-15
The Sultana-Dyer solution of general relativity representing a black hole embedded in a special cosmological background is analyzed. We find an expanding (weak) spacetime singularity instead of the reported conformal Killing horizon, which is covered by an expanding black hole apparent horizon (internal to a cosmological apparent horizon) for most of the history of the Universe. This singularity was naked early on. The global structure of the solution is studied as well.
Semiclassical geons as solitonic black hole remnants
Lobo, Francisco S.N.; Olmo, Gonzalo J.; Rubiera-Garcia, D. E-mail: gonzalo.olmo@csic.es
2013-07-01
We find that the end state of black hole evaporation could be represented by non-singular and without event horizon stable solitonic remnants with masses of the order the Planck scale and up to ∼ 16 units of charge. Though these objects are locally indistinguishable from spherically symmetric, massive electric (or magnetic) charges, they turn out to be sourceless geons containing a wormhole generated by the electromagnetic field. Our results are obtained by interpreting semiclassical corrections to Einstein's theory in the first-order (Palatini) formalism, which yields second-order equations and avoids the instabilities of the usual (metric) formulation of quadratic gravity. We also discuss the potential relevance of these solutions for primordial black holes and the dark matter problem.
Black hole lasers, a mode analysis
Coutant, Antonin; Parentani, Renaud
2010-04-15
We show that the black hole laser effect discovered by Corley and Jacobson should be described in terms of frequency eigenmodes that are spatially bound. The spectrum contains a discrete and finite set of complex frequency modes, which appear in pairs and which encode the laser effect. In addition, it contains real frequency modes that form a continuous set when space is infinite, and which are only elastically scattered, i.e., not subject to any Bogoliubov transformation. The quantization is straightforward, but the calculation of the asymptotic fluxes is rather involved. When the number of complex frequency modes is small, our expressions differ from those given earlier. In particular, when the region between the horizons shrinks, there is a minimal distance under which no complex frequency mode exists, and no radiation is emitted. Finally, we relate this effect to other dynamical instabilities found for rotating black holes and in electric fields, and we give the conditions to get this type of instability.
Formation and evaporation of nonsingular black holes.
Hayward, Sean A
2006-01-27
Regular (nonsingular) space-times are given that describe the formation of a (locally defined) black hole from an initial vacuum region, its quiescence as a static region, and its subsequent evaporation to a vacuum region. The static region is Bardeen-like, supported by finite density and pressures, vanishing rapidly at large radius and behaving as a cosmological constant at small radius. The dynamic regions are Vaidya-like, with ingoing radiation of positive-energy flux during collapse and negative-energy flux during evaporation, the latter balanced by outgoing radiation of positive-energy flux and a surface pressure at a pair creation surface. The black hole consists of a compact space-time region of trapped surfaces, with inner and outer boundaries that join circularly as a single smooth trapping horizon. PMID:16486679
Black Hole Entropy: From Shannon to Bekenstein
NASA Astrophysics Data System (ADS)
Ghosh, Subir
2011-11-01
In this note we have applied directly the Shannon formula for information theory entropy to derive the Black Hole (Bekenstein-Hawking) entropy. Our analysis is semi-classical in nature since we use the (recently proposed Banerjee in Int. J. Mod. Phys. D 19:2365-2369, 2010 and Banerjee and Majhi in Phys. Rev. D 81:124006, 2010; Phys. Rev. D 79:064024, 2009; Phys. Lett. B 675:243, 2009) quantum mechanical near horizon mode functions to compute the tunneling probability that goes in to the Shannon formula, following the general idea of Brillouin (Science and Information Theory, Dover, New York, 2004). Our framework conforms to the information theoretic origin of Black Hole entropy, as originally proposed by Bekenstein.
Hybrid Black-Hole Binary Initial Data
NASA Technical Reports Server (NTRS)
Mundim, Bruno C.; Kelly, Bernard J.; Nakano, Hiroyuki; Zlochower, Yosef; Campanelli, Manuela
2010-01-01
"Traditional black-hole binary puncture initial data is conformally flat. This unphysical assumption is coupled with a lack of radiation signature from the binary's past life. As a result, waveforms extracted from evolutions of this data display an abrupt jump. In Kelly et al. [Class. Quantum Grav. 27:114005 (2010)], a new binary black-hole initial data with radiation contents derived in the post-Newtonian (PN) calculations was adapted to puncture evolutions in numerical relativity. This data satisfies the constraint equations to the 2.5PN order, and contains a transverse-traceless "wavy" metric contribution, violating the standard assumption of conformal flatness. Although the evolution contained less spurious radiation, there were undesired features; the unphysical horizon mass loss and the large initial orbital eccentricity. Introducing a hybrid approach to the initial data evaluation, we significantly reduce these undesired features."
Black holes, quasars, and the universe /2nd edition/
NASA Technical Reports Server (NTRS)
Shipman, H. L.
1980-01-01
Topics of astronomy are discussed in terms of black holes, galaxies, quasars, and models of the universe. Black holes are approached through consideration of stellar evolution, white dwarfs, supernovae, neutron stars, pulsars, the event horizon, Cygnus X-1, white holes, and worm holes. Attention is also given to radio waves from high speed electrons, the radiation emitted by quasars, active galaxies, galactic energy sources, and interpretations of the redshift. Finally, the life cycle of the universe is deliberated, along with the cosmic time scale, evidence for the Big Bang, and the future of the universe.
Black holes and Newtonian physics
NASA Astrophysics Data System (ADS)
Raychaudhuri, A. K.
1992-03-01
It is argued that one-way passage is inconsistent with Newtonian physics and thus the dark bodies as thought of by Michell and Laplace cannot be considered as exact analogues of relativistic black holes.
Black hole accretion disc impacts
NASA Astrophysics Data System (ADS)
Pihajoki, P.
2016-04-01
We present an analytic model for computing the luminosity and spectral evolution of flares caused by a supermassive black hole impacting the accretion disc of another supermassive black hole. Our model includes photon diffusion, emission from optically thin regions and relativistic corrections to the observed spectrum and time-scales. We test the observability of the impact scenario with a simulated population of quasars hosting supermassive black hole binaries. The results indicate that for a moderate binary mass ratio of 0.3, and impact distances of 100 primary Schwarzschild radii, the accretion disc impacts can be expected to equal or exceed the host quasar in brightness at observed wavelength λ = 510 nm up to z = 0.6. We conclude that accretion disc impacts may function as an independent probe for supermassive black hole binaries. We release the code used for computing the model light curves to the community.
a Self-Consistent Model of the Black Hole Evaporation
NASA Astrophysics Data System (ADS)
Kawai, Hikaru; Matsuo, Yoshinori; Yokokura, Yuki
2013-06-01
We construct a self-consistent model which describes a black hole from formation to evaporation including the backreaction from the Hawking radiation. In the case where a null shell collapses, at the beginning the evaporation occurs, but it stops eventually, and a horizon and singularity appear. On the other hand, in the generic collapse process of a continuously distributed null matter, the black hole evaporates completely without forming a macroscopically large horizon nor singularity. We also find a stationary solution in the heat bath, which can be regarded as a normal thermodynamic object.
Neutrino Tunneling from NUT Kerr Newman de Sitter Black Hole
NASA Astrophysics Data System (ADS)
Yang, Nan; Yang, Juan; Li, Jin
2013-08-01
In this paper, the method of semi-classical is applied to explore the Hawking radiation of a NUT-Kerr-Newman de Sitter Black Hole from tunneling point of view. The Hamilton-Jacobi equation in NUT-Kerr-Newman de Sitter space time is derived by the method presented by Lin and Yang (Chin. Phys. B, 20:110403, 2011). We obtain the Hawking temperatures at the event horizon and cosmological horizon and we also obtain the tunneling probability of neutrino following the semi-classical quantum equation. The results show the common features of NUT-Kerr-Newman de Sitter Black Hole.
NASA Astrophysics Data System (ADS)
van Herck, Walter; Wyder, Thomas
2010-04-01
The enumeration of BPS bound states in string theory needs refinement. Studying partition functions of particles made from D-branes wrapped on algebraic Calabi-Yau 3-folds, and classifying states using split attractor flow trees, we extend the method for computing a refined BPS index, [1]. For certain D-particles, a finite number of microstates, namely polar states, exclusively realized as bound states, determine an entire partition function (elliptic genus). This underlines their crucial importance: one might call them the ‘chromosomes’ of a D-particle or a black hole. As polar states also can be affected by our refinement, previous predictions on elliptic genera are modified. This can be metaphorically interpreted as ‘crossing-over in the meiosis of a D-particle’. Our results improve on [2], provide non-trivial evidence for a strong split attractor flow tree conjecture, and thus suggest that we indeed exhaust the BPS spectrum. In the D-brane description of a bound state, the necessity for refinement results from the fact that tachyonic strings split up constituent states into ‘generic’ and ‘special’ states. These are enumerated separately by topological invariants, which turn out to be partitions of Donaldson-Thomas invariants. As modular predictions provide a check on many of our results, we have compelling evidence that our computations are correct.
NASA Astrophysics Data System (ADS)
Zhang, Tianxi
2014-06-01
The black hole universe model is a multiverse model of cosmology recently developed by the speaker. According to this new model, our universe is a fully grown extremely supermassive black hole, which originated from a hot star-like black hole with several solar masses, and gradually grew up from a supermassive black hole with million to billion solar masses to the present state with trillion-trillion solar masses by accreting ambient matter or merging with other black holes. The entire space is structured with infinite layers or universes hierarchically. The innermost three layers include the universe that we live, the inside star-like and supermassive black holes called child universes, and the outside space called mother universe. The outermost layer is infinite in mass, radius, and entropy without an edge and limits to zero for both the matter density and absolute temperature. All layers are governed by the same physics and tend to expand physically in one direction (outward or the direction of increasing entropy). The expansion of a black hole universe decreases its density and temperature but does not alter the laws of physics. The black hole universe evolves iteratively and endlessly without a beginning. When one universe expands out, a new similar one is formed from inside star-like and supermassive black holes. In each of iterations, elements are resynthesized, matter is reconfigurated, and the universe is renewed rather than a simple repeat. The black hole universe is consistent with the Mach principle, observations, and Einsteinian general relativity. It has only one postulate but is able to explain all phenomena occurred in the universe with well-developed physics. The black hole universe does not need dark energy for acceleration and an inflation epoch for flatness, and thus has a devastating impact on the big bang model. In this talk, I will present how this new cosmological model explains the various aspects of the universe, including the origin
Charged rotating noncommutative black holes
NASA Astrophysics Data System (ADS)
Modesto, Leonardo; Nicolini, Piero
2010-11-01
In this paper we complete the program of the noncomutative geometry inspired black holes, providing the richest possible solution, endowed with mass, charge and angular momentum. After providing a prescription for employing the Newman-Janis algorithm in the case of nonvanishing stress tensors, we find regular axisymmetric charged black holes in the presence of a minimal length. We study also the new thermodynamics and we determine the corresponding higher-dimensional solutions. As a conclusion we make some consideration about possible applications.
Charged rotating noncommutative black holes
Modesto, Leonardo; Nicolini, Piero
2010-11-15
In this paper we complete the program of the noncomutative geometry inspired black holes, providing the richest possible solution, endowed with mass, charge and angular momentum. After providing a prescription for employing the Newman-Janis algorithm in the case of nonvanishing stress tensors, we find regular axisymmetric charged black holes in the presence of a minimal length. We study also the new thermodynamics and we determine the corresponding higher-dimensional solutions. As a conclusion we make some consideration about possible applications.
A note on entropy of de Sitter black holes
NASA Astrophysics Data System (ADS)
Bhattacharya, Sourav
2016-03-01
A de Sitter black hole or a black hole spacetime endowed with a positive cosmological constant has two Killing horizons—a black hole and a cosmological event horizon surrounding it. It is natural to expect that the total Bekenstein-Hawking entropy of such spacetimes should be the sum of the two horizons' areas. In this work we apply the recently developed formalism using the Gibbons-Hawking-York boundary term and the near horizon symmetries to derive the total entropy of such two horizon spacetimes. We construct a suitable general geometric set up for general stationary axisymmetric spacetimes with two or more than two commuting Killing vector fields in an arbitrary spacetime dimensions. This framework helps us to deal with both horizons on an equal footing. We show that in order to obtain the total entropy of such spacetimes, the near horizon mode functions for the diffeomorphism generating vector fields have to be restricted in a certain manner, compared to the single horizon spacetimes. We next discuss specific known exact solutions belonging to the Kerr-Newman or the Plebanski-Demianski-de Sitter families to show that they fall into the category of our general framework. We end with a sketch of further possible extensions of this work.
Black hole in the expanding universe from intersecting branes
Maeda, Kei-ichi; Nozawa, Masato
2010-02-15
We study physical properties and global structures of a time-dependent, spherically symmetric solution obtained via the dimensional reduction of intersecting M-branes. We find that the spacetime describes a maximally charged black hole which asymptotically tends to the Friedmann-Lemaitre-Robertson-Walker universe filled by a stiff matter. The metric solves the field equations of the Einstein-Maxwell-dilaton system, in which four Abelian gauge fields couple to the dilation with different coupling constants. The spacetime satisfies the dominant energy condition and is characterized by two parameters, Q and {tau}, related to the Maxwell charge and the relative ratio of black-hole horizon radii, respectively. In spite of the nontrivial time dependence of the metric, it turns out that the black-hole event horizon is a Killing horizon. This unexpected symmetry may be ascribed to the fact that the 11-dimensional brane configurations are supersymmetric in the static limit. Finally, combining with laws of the trapping horizon, we discuss the thermodynamic properties of the black hole. It is shown that the horizon possesses a nonvanishing temperature, contrary to the extremal Reissner-Nordstroem solution.
NASA Astrophysics Data System (ADS)
Saremi, Omid
Various aspects of gravitational physics from a string theory perspective are examined in this thesis. In string theory, a statistical description of the thermodynamics of neutral black holes is still lacking. Such a microphysical picture would involve field theories in limits difficult to analyze. In the second chapter, a brane-antibrane model for neutral black D p-branes, based on an earlier proposal for conformal branes only, is developed. The black hole entropy is reproduced by the strongly coupled field theory, up to a power of two. Using a toy model containing a tachyon arid bosonic degrees of freedom of the quantum mechanics of D0-branes and anti-D0-branes, our results show that strong-coupling finite-temperature stabilization of the tachyon is indeed possible. The third chapter concerns itself with the classical dynamics of a probe ("test") Dp-brane moving in a gravitational background sourced by a stack of Dp-branes. The physics is qualitatively similar to that of the effective action for open-string tachyon condensation, with a power-law runaway potential. We show that small inhomogeneous ripples of the probe brane grow with time, leading to folding of the brane as it moves. We notice and comment on the application of brane folding to the theory of cosmological fluctuations in string theory inflation. In the fourth chapter, we elaborate on the correspondence between the quantum Hall system with filling factor unity and the N = 4 SYM theory in the half-BPS sector. We present an extension of the rioncommutative Chern-Simons Matrix theory which contains independent degrees of freedom (fields) for particles arid quasiholes. The BPS configurations of our model are in one-to-one correspondence with the half-BPS states in the N = 4 SYM. Within our model, we clarify the symmetry between giant and dual-giant configurations, among others. The fifth chapter is devoted to a check of the "viscosity bound conjecture" by Kovtun, Son and Starinets. The KSS conjecture is
Temperature and Energy of 4-Dimensional Axisymmetric Black Holes from Entropic Force
NASA Astrophysics Data System (ADS)
Zhao, Ren; Zhang, Li-Chun; Wu, Yue-Qin; Li, Huai-Fan
2011-01-01
We investigate the temperature and energy on holographic screens for 4-dimensional axisymmetric black holes with the entropic force idea proposed by Verlinde. According to the principle of thermal equilibrium, the location of holographic screen outside the axisymmetric black hole horizon is not a equivalent radius surface. The location of isothermal holographic screen outside the axisymmetric black hole horizon is obtained. Using the equipartition rule, we derive the correction expression of energy of isothermal holographic screen. When holographic screens are far away the black hole horizon, the entropic force of charged rotating particles can be expressed as Newton's law of gravity. When the screen crosses the event horizon, the temperature of the screen agrees with the Hawking temperature and the entropic force gives rise to the surface gravity for both of the black holes.
The Klein-Gordon equation of a rotating charged hairy black hole in (2 + 1) dimensions
NASA Astrophysics Data System (ADS)
Pourhassan, B.
2016-03-01
In this paper, we consider the Klein-Gordon equation in a 3D charged rotating hairy black hole background to study behavior of a massive scalar field. In the general case, we find periodic-like behavior for the scalar field which may vanish at the black hole horizon or far from the black hole horizon. For the special cases of non-rotating or near horizon approximation, we find radial solution of Klein-Gordon equation in terms of hypergeometric and Kummer functions. Also for the case of uncharged black hole, we find numerical solution of the Klein-Gordon equation as periodic function which may enhance out of the black hole or vanish at horizon. We find allowed boundary conditions which may yield to the identical bosons described by scalar field.
Thermodynamic products for Sen black hole
NASA Astrophysics Data System (ADS)
Pradhan, Parthapratim
2016-03-01
We investigate the properties of inner and outer horizon thermodynamics of Sen black hole (BH) both in Einstein frame (EF) and string frame (SF). We also compute area (or entropy) product, area (or entropy) sum of the said BH in EF as well as SF. In the EF, we observe that the area (or entropy) product is universal, whereas area (or entropy) sum is not universal. On the other hand, in the SF, area (or entropy) product and area (or entropy) sum don't have any universal behaviour because they all are depends on Arnowitt-Deser-Misner (ADM) mass parameter. We also verify that the first law is satisfied at the Cauchy horizon as well as event horizon (EH). In addition, we also compute other thermodynamic products and sums in the EF as well as in the SF. We further compute the Smarr mass formula and Christodoulou's irreducible mass formula for Sen BH. Moreover, we compute the area bound and entropy bound for both the horizons. The upper area bound for EH is actually the Penrose like inequality, which is the first geometric inequality in BHs. Furthermore, we compute the central charges of the left and right moving sectors of the dual CFT in Sen/CFT correspondence using thermodynamic relations. These thermodynamic relations on the multi-horizons give us further understanding the microscopic nature of BH entropy (both interior and exterior).
Black hole phase transitions in Horava-Lifshitz gravity
Cao Qiaojun; Chen Yixin; Shao Kainan
2011-03-15
We study black hole phase transitions in (deformed) Horava-Lifshitz (H-L) gravity, including the charged/uncharged topological black holes and KS black hole. Stability analysis and state space geometry are both used. We find interesting phase structures in these black holes, some of the properties are never observed in Einstein gravity. Particularly, the stability properties of black holes in H-L gravity with small radius change dramatically, which can be considered as a leak of information about the small scale behavior of spacetime. A new black hole local phase transition in H-L gravity which cannot be revealed by thermodynamical metrics has been found. There is an infinite discontinuity at the specific heat curve for charged black hole in H-L gravity with hyperbolic event horizon. However, this discontinuity does not have a corresponding curvature singularity of thermodynamical metrics. Our results may provide new insights towards a better understanding of the H-L gravity, as well as black hole thermodynamics.
New solutions of charged regular black holes and their stability
NASA Astrophysics Data System (ADS)
Uchikata, Nami; Yoshida, Shijun; Futamase, Toshifumi
2012-10-01
We construct new regular black hole solutions by matching the de Sitter solution and the Reissner-Nordström solution with a timelike thin shell. The thin shell is assumed to have mass but no pressure and obeys an equation of motion derived from Israel’s junction conditions. By investigating the equation of motion for the shell, we obtain stationary solutions of charged regular black holes and examine stability of the solutions. Stationary solutions are found in limited ranges of 0.87L≤m≤1.99L, and they are stable against small radial displacement of the shell with fixed values of m, M, and Q if M>0, where L is the de Sitter horizon radius, m the black hole mass, M the proper mass of the shell, and Q the black hole charge. All the solutions obtained are highly charged in the sense of Q/m>23≈0.866. By taking the massless limit of the shell in the present regular black hole solutions, we obtain the charged regular black hole with a massless shell obtained by Lemos and Zanchin and investigate stability of the solutions. It is found that Lemos and Zanchin’s regular black hole solutions given by the massless limit of the present regular black hole solutions permit stable solutions, which are obtained by the limit of M→0.
Formation and decay of Einstein-Yang-Mills black holes
NASA Astrophysics Data System (ADS)
Rinne, Oliver
2014-12-01
We study various aspects of black holes and gravitational collapse in Einstein-Yang-Mills theory under the assumption of spherical symmetry. Numerical evolution on hyperboloidal surfaces extending to future null infinity is used. We begin by constructing colored and Reissner-Nordström black holes on surfaces of constant mean curvature and analyze their perturbations. These linearly perturbed black holes are then evolved into the nonlinear regime and the masses of the final Schwarzschild black holes are computed as a function of the initial horizon radius. We compare with an information-theoretic bound on the lifetime of unstable hairy black holes derived by Hod. Finally we study critical phenomena in gravitational collapse at the threshold between different Yang-Mills vacuum states of the final Schwarzschild black holes, where the n =1 colored black hole forms the critical solution. The work of Choptuik et al. [Phys. Rev. D 60, 124011 (1999)] is extended by using a family of initial data that includes another region in parameter space where the colored black hole with the opposite sign of the Yang-Mills potential forms the critical solution. We investigate the boundary between the two regions and discover that the Reissner-Nordström solution appears as a new approximate codimension-two attractor.
Particle motion and Penrose processes around rotating regular black hole
NASA Astrophysics Data System (ADS)
Abdujabbarov, Ahmadjon
2016-07-01
The neutral particle motion around rotating regular black hole that was derived from the Ayón-Beato-García (ABG) black hole solution by the Newman-Janis algorithm in the preceding paper (Toshmatov et al., Phys. Rev. D, 89:104017, 2014) has been studied. The dependencies of the ISCO (innermost stable circular orbits along geodesics) and unstable orbits on the value of the electric charge of the rotating regular black hole have been shown. Energy extraction from the rotating regular black hole through various processes has been examined. We have found expression of the center of mass energy for the colliding neutral particles coming from infinity, based on the BSW (Baňados-Silk-West) mechanism. The electric charge Q of rotating regular black hole decreases the potential of the gravitational field as compared to the Kerr black hole and the particles demonstrate less bound energy at the circular geodesics. This causes an increase of efficiency of the energy extraction through BSW process in the presence of the electric charge Q from rotating regular black hole. Furthermore, we have studied the particle emission due to the BSW effect assuming that two neutral particles collide near the horizon of the rotating regular extremal black hole and produce another two particles. We have shown that efficiency of the energy extraction is less than the value 146.6 % being valid for the Kerr black hole. It has been also demonstrated that the efficiency of the energy extraction from the rotating regular black hole via the Penrose process decreases with the increase of the electric charge Q and is smaller in comparison to 20.7 % which is the value for the extreme Kerr black hole with the specific angular momentum a= M.
Hawking radiation from Elko particles tunnelling across black-strings horizon
NASA Astrophysics Data System (ADS)
da Rocha, R.; Hoff da Silva, J. M.
2014-09-01
We apply the tunnelling method for the emission and absorption of Elko particles in the event horizon of a black-string solution. We show that Elko particles are emitted at the expected Hawking temperature from black strings, but with a quite different signature with respect to the Dirac particles. We employ the Hamilton-Jacobi technique to black-hole tunnelling, by applying the WKB approximation to the coupled system of Dirac-like equations governing the Elko particle dynamics. As a typical signature, different Elko particles are shown to produce the same standard Hawking temperature for black strings. However, we prove that they present the same probability irrespectively of outgoing or ingoing the black-hole horizon. This provides a typical signature for mass-dimension-one fermions, that is different from the mass-dimension-three halves fermions inherent to Dirac particles, as different Dirac spinor fields have distinct inward and outward probability of tunnelling.
CFTs in rotating black hole backgrounds
NASA Astrophysics Data System (ADS)
Figueras, Pau; Tunyasuvunakool, Saran
2013-06-01
We use AdS/CFT to construct the gravitational dual of a 5D CFT in the background of a non-extremal rotating black hole. Our boundary conditions are such that the vacuum state of the dual CFT corresponds to the Unruh state. We extract the expectation value of the stress tensor of the dual CFT using holographic renormalization and show that it is stationary and regular on both the future and the past event horizons. The energy density of the CFT is found to be negative everywhere in our domain and we argue that this can be understood as a vacuum polarization effect. We construct the solutions by numerically solving the elliptic Einstein-DeTurck equation for stationary Lorentzian spacetimes with Killing horizons. Communicated by H Reall
Modelling the evaporation of nonsingular black holes
NASA Astrophysics Data System (ADS)
Taves, Tim; Kunstatter, Gabor
2014-12-01
We present a model for studying the formation and evaporation of nonsingular (quantum corrected) black holes. The model is based on a generalized form of the dimensionally reduced, spherically symmetric Einstein-Hilbert action and includes a suitably generalized Polyakov action to provide a mechanism for radiation backreaction. The equations of motion describing self-gravitating scalar field collapse are derived in local form both in null co-ordinates and in Painleve-Gullstrand (flat slice) co-ordinates. They provide the starting point for numerical studies of complete spacetimes containing dynamical horizons that bound a compact trapped region. Such spacetimes have been proposed in the past as solutions to the information loss problem because they possess neither an event horizon nor a singularity. Since the equations of motion in our model are derived from a diffeomorphism invariant action they preserve the constraint algebra and the resulting energy momentum tensor is manifestly conserved.
Low-mass black holes as the remnants of primordial black hole formation
NASA Astrophysics Data System (ADS)
Greene, Jenny E.
2012-12-01
Bridging the gap between the approximately ten solar mass `stellar mass' black holes and the `supermassive' black holes of millions to billions of solar masses are the elusive `intermediate-mass' black holes. Their discovery is key to understanding whether supermassive black holes can grow from stellar-mass black holes or whether a more exotic process accelerated their growth soon after the Big Bang. Currently, tentative evidence suggests that the progenitors of supermassive black holes were formed as ~104-105Msolar black holes via the direct collapse of gas. Ongoing searches for intermediate-mass black holes at galaxy centres will help shed light on this formation mechanism.
Stellar black holes and the origin of cosmic acceleration
Prescod-Weinstein, Chanda; Afshordi, Niayesh; Balogh, Michael L.
2009-08-15
The discovery of cosmic acceleration has presented a unique challenge for cosmologists. As observational cosmology forges ahead, theorists have struggled to make sense of a standard model that requires extreme fine-tuning. This challenge is known as the cosmological constant problem. The theory of gravitational aether is an alternative to general relativity that does not suffer from this fine-tuning problem, as it decouples the quantum field theory vacuum from geometry, while remaining consistent with other tests of gravity. In this paper, we study static black hole solutions in this theory and show that it manifests a UV-IR coupling: Aether couples the space-time metric close to the black hole horizon, to metric at infinity. We then show that using the trans-Planckian ansatz (as a quantum gravity effect) close to the black hole horizon, leads to an accelerating cosmological solution, far from the horizon. Interestingly, this acceleration matches current observations for stellar-mass black holes. Based on our current understanding of the black hole accretion history in the Universe, we then make a prediction for how the effective dark energy density should evolve with redshift, which can be tested with future dark energy probes.
Multicentered black holes with a negative cosmological constant
NASA Astrophysics Data System (ADS)
Chimento, Samuele; Klemm, Dietmar
2014-01-01
We present a recipe that allows us to construct multicentered black holes embedded in an arbitrary Friedmann-Lemaître-Robertson-Walker (FLRW) universe. These solutions are completely determined by a function satisfying the conformal Laplace equation on the spatial slices E3, S3, or H3. Since anti-de Sitter (AdS) space can be written in FLRW coordinates, this includes as a special case multicentered black holes in AdS, in the sense that, far away from the black holes, the energy density and the pressure approach the values given by a negative cosmological constant. We study in some detail the physical properties of the single-centered asymptotically AdS case, which does not coincide with the usual Reissner-Nordström-AdS black hole, but is highly dynamical. In particular, we determine the curvature singularities and trapping horizons of this solution, compute the surface gravity of the trapping horizons, and show that the generalized first law of black hole dynamics proposed by Hayward holds in this case. It turns out that the spurious big bang/big crunch singularities that appear when one writes AdS in FLRW form become real in the presence of these dynamical black holes. This implies that actually only one point of the usual conformal boundary of AdS survives in the solutions that we construct. Finally, a generalization to arbitrary dimension is also presented.
Geometry of deformed black holes. I. Majumdar-Papapetrou binary
NASA Astrophysics Data System (ADS)
Semerák, O.; Basovník, M.
2016-08-01
Although black holes are eminent manifestations of very strong gravity, the geometry of space-time around and even inside them can be significantly affected by additional bodies present in their surroundings. We study such an influence within static and axially symmetric (electro)vacuum space-times described by exact solutions of Einstein's equations, considering astrophysically motivated configurations (such as black holes surrounded by rings) as well as those of pure academic interest (such as specifically "tuned" systems of multiple black holes). The geometry is represented by the simplest invariants determined by the metric (the lapse function) and its gradient (gravitational acceleration), with special emphasis given to curvature (the Kretschmann and Ricci-square scalars). These quantities are analyzed and their level surfaces plotted both above and below the black-hole horizons, in particular near the central singularities. Estimating that the black hole could be most strongly affected by the other black hole, we focus, in this first paper, on the Majumdar-Papapetrou solution for a binary black hole and compare the deformation caused by "the other" hole (and the electrostatic field) with that induced by rotational dragging in the well-known Kerr and Kerr-Newman solutions.
Black Hole Unitarity and Antipodal Entanglement
NASA Astrophysics Data System (ADS)
't Hooft, Gerard
2016-05-01
Hawking particles emitted by a black hole are usually found to have thermal spectra, if not exactly, then by a very good approximation. Here, we argue differently. It was discovered that spherical partial waves of in-going and out-going matter can be described by unitary evolution operators independently, which allows for studies of space-time properties that were not possible before. Unitarity dictates space-time, as seen by a distant observer, to be topologically non-trivial. Consequently, Hawking particles are only locally thermal, but globally not: we explain why Hawking particles emerging from one hemisphere of a black hole must be 100 % entangled with the Hawking particles emerging from the other hemisphere. This produces exclusively pure quantum states evolving in a unitary manner, and removes the interior region for the outside observer, while it still completely agrees locally with the laws of general relativity. Unitarity is a starting point; no other assumptions are made. Region I and the diametrically opposite region II of the Penrose diagram represent antipodal points in a PT or CPT relation, as was suggested before. On the horizon itself, antipodal points are identified. A candidate instanton is proposed to describe the formation and evaporation of virtual black holes of the type described here.
Black Hole Unitarity and Antipodal Entanglement
NASA Astrophysics Data System (ADS)
't Hooft, Gerard
2016-09-01
Hawking particles emitted by a black hole are usually found to have thermal spectra, if not exactly, then by a very good approximation. Here, we argue differently. It was discovered that spherical partial waves of in-going and out-going matter can be described by unitary evolution operators independently, which allows for studies of space-time properties that were not possible before. Unitarity dictates space-time, as seen by a distant observer, to be topologically non-trivial. Consequently, Hawking particles are only locally thermal, but globally not: we explain why Hawking particles emerging from one hemisphere of a black hole must be 100 % entangled with the Hawking particles emerging from the other hemisphere. This produces exclusively pure quantum states evolving in a unitary manner, and removes the interior region for the outside observer, while it still completely agrees locally with the laws of general relativity. Unitarity is a starting point; no other assumptions are made. Region I and the diametrically opposite region II of the Penrose diagram represent antipodal points in a PT or CPT relation, as was suggested before. On the horizon itself, antipodal points are identified. A candidate instanton is proposed to describe the formation and evaporation of virtual black holes of the type described here.
Inside the Schwarzschild-Tangherlini black holes
NASA Astrophysics Data System (ADS)
Matyjasek, Jerzy; Sadurski, Paweł
2015-08-01
The first-order semiclassical Einstein field equations are solved in the interior of the Schwarzschild-Tangherlini black holes. The source term is taken to be the stress-energy tensor of the quantized massive scalar field with arbitrary curvature coupling calculated within the framework of the Schwinger-DeWitt approximation. It is shown that for the minimal coupling the quantum effects tend to isotropize the interior of the black hole (which can be interpreted as an anisotropic collapsing universe) for D =4 and 5, whereas for D =6 and 7 the spacetime becomes more anisotropic. Similar behavior is observed for the conformal coupling with the reservation that for D =5 isotropization of the spacetime occurs during (approximately) the first 1 /3 of the lifetime of the interior universe. On the other hand, we find that regardless of the dimension, the quantum perturbations initially strengthen the growth of curvature and its later behavior depends on the dimension and the coupling. It is shown that the Karlhede's scalar can still be used as a useful device for locating the horizon of the quantum-corrected black hole, as expected.
Black hole initial data in Gauss-Bonnet gravity: Momentarily static case
Yoshino, Hirotaka
2011-05-15
We study the method for generating the initial data of black hole systems in Gauss-Bonnet gravity. The initial data are assumed to be momentarily static and conformally flat. Although the equation for the conformal factor is highly nonlinear, it is successfully solved by numerical relaxation for one-black-hole and two-black-hole systems. The common apparent horizon is studied in the two-black-hole initial data, and the result suggests that the Penrose inequalities are satisfied in this system. This is the first step for simulating black hole collisions in higher-curvature theories.
NASA Astrophysics Data System (ADS)
2010-07-01
Combining observations made with ESO's Very Large Telescope and NASA's Chandra X-ray telescope, astronomers have uncovered the most powerful pair of jets ever seen from a stellar black hole. This object, also known as a microquasar, blows a huge bubble of hot gas, 1000 light-years across, twice as large and tens of times more powerful than other known microquasars. The discovery is reported this week in the journal Nature. "We have been astonished by how much energy is injected into the gas by the black hole," says lead author Manfred Pakull. "This black hole is just a few solar masses, but is a real miniature version of the most powerful quasars and radio galaxies, which contain black holes with masses of a few million times that of the Sun." Black holes are known to release a prodigious amount of energy when they swallow matter. It was thought that most of the energy came out in the form of radiation, predominantly X-rays. However, the new findings show that some black holes can release at least as much energy, and perhaps much more, in the form of collimated jets of fast moving particles. The fast jets slam into the surrounding interstellar gas, heating it and triggering an expansion. The inflating bubble contains a mixture of hot gas and ultra-fast particles at different temperatures. Observations in several energy bands (optical, radio, X-rays) help astronomers calculate the total rate at which the black hole is heating its surroundings. The astronomers could observe the spots where the jets smash into the interstellar gas located around the black hole, and reveal that the bubble of hot gas is inflating at a speed of almost one million kilometres per hour. "The length of the jets in NGC 7793 is amazing, compared to the size of the black hole from which they are launched," says co-author Robert Soria [1]. "If the black hole were shrunk to the size of a soccer ball, each jet would extend from the Earth to beyond the orbit of Pluto." This research will help
NASA Astrophysics Data System (ADS)
2010-07-01
Combining observations made with ESO's Very Large Telescope and NASA's Chandra X-ray telescope, astronomers have uncovered the most powerful pair of jets ever seen from a stellar black hole. This object, also known as a microquasar, blows a huge bubble of hot gas, 1000 light-years across, twice as large and tens of times more powerful than other known microquasars. The discovery is reported this week in the journal Nature. "We have been astonished by how much energy is injected into the gas by the black hole," says lead author Manfred Pakull. "This black hole is just a few solar masses, but is a real miniature version of the most powerful quasars and radio galaxies, which contain black holes with masses of a few million times that of the Sun." Black holes are known to release a prodigious amount of energy when they swallow matter. It was thought that most of the energy came out in the form of radiation, predominantly X-rays. However, the new findings show that some black holes can release at least as much energy, and perhaps much more, in the form of collimated jets of fast moving particles. The fast jets slam into the surrounding interstellar gas, heating it and triggering an expansion. The inflating bubble contains a mixture of hot gas and ultra-fast particles at different temperatures. Observations in several energy bands (optical, radio, X-rays) help astronomers calculate the total rate at which the black hole is heating its surroundings. The astronomers could observe the spots where the jets smash into the interstellar gas located around the black hole, and reveal that the bubble of hot gas is inflating at a speed of almost one million kilometres per hour. "The length of the jets in NGC 7793 is amazing, compared to the size of the black hole from which they are launched," says co-author Robert Soria [1]. "If the black hole were shrunk to the size of a soccer ball, each jet would extend from the Earth to beyond the orbit of Pluto." This research will help
Black Hole Thermodynamic Products in Einstein Gauss Bonnet Gravity
NASA Astrophysics Data System (ADS)
Biswas, Ritabrata
2016-07-01
By now, there are many hints from string theory that collective excitations of solitonic objects can be described by effective low energy theories. The entropy of general rotating black holes in five dimensions may be interpreted as an indication that, it derives from two independent microscopic contributions and each of these may be attributed to a gas of strings. In the present work, we consider a charged black hole in five dimensional Einstein Gauss Bonnet gravity. In spite of presenting the thermodynamic quantities' product as summation/ subtraction of two independent integers, our motive is to check whether the product of the same quantity for event horizon and Cauchy horizon is free of mass, i.e., global, or not. We derive the thermodynamic products of characteristic parameters to mark which are global. We further interpret the stability of the black holes by computing the specific heat for both horizons. Stable and unstable phases of horizons are pointed out. The phase transitions with respect to the charge in nature of specific heat are also observed. All these calculation might be helpful to understand the microscopic nature of such black holes.
Gauge field back reaction on a black hole
Hochberg, D.; Kephart, T.W. )
1993-02-15
The order-[h bar] fluctuations of gauge fields in the vicinity of a black hole can create a repulsive antigravity region extending out beyond the renormalized Schwarzschild horizon. If the strength of this repulsive force increases as higher orders in the back reaction are included, the formation of a wormholelike object could occur.
Power law corrections to BTZ black hole entropy
NASA Astrophysics Data System (ADS)
Singh, Dharm Veer
2015-11-01
We study the quantum scalar field in the background of BTZ black hole and evaluate the entanglement entropy of the nonvacuum states. The entropy is proportional to the area of event horizon for the ground state, but the area law is violated in the case of nonvacuum states (first excited state and mixed states) and the corrections scale as power law.
Global structure of exact scalar hairy dynamical black holes
NASA Astrophysics Data System (ADS)
Fan, Zhong-Ying; Chen, Bin; Lü, H.
2016-05-01
We study the global structure of some exact scalar hairy dynamical black holes which were constructed in Einstein gravity either minimally or non-minimally coupled to a scalar field. We find that both the apparent horizon and the local event horizon (measured in luminosity coordinate) monotonically increase with the advanced time as well as the Vaidya mass. At late advanced times, the apparent horizon approaches the event horizon and gradually becomes future outer. Correspondingly, the space-time arrives at stationary black hole states with the relaxation time inversely proportional to the 1/( n-1) power of the final black hole mass, where n is the space-time dimension. These results strongly support the solutions describing the formation of black holes with scalar hair. We also obtain new charged dynamical solutions in the non-minimal theory by introducing an Maxwell field which is non-minimally coupled to the scalar. The presence of the electric charge strongly modifies the dynamical evolution of the space-time.
Stationarity of Extremum Entropy Stars and Black Holes
NASA Astrophysics Data System (ADS)
Schiffrin, Joshua
2015-04-01
For axisymmetric perfect-fluid stars in general relativity, we show that extrema of total entropy at fixed mass, angular momentum, and particle number are stationary. For axisymmetric vacuum black holes, we show that extrema of apparent-horizon area at fixed mass and angular momentum are stationary.
Thermodynamics of a Bardeen black hole in noncommutative space
NASA Astrophysics Data System (ADS)
Sharif, M.; Javed, Wajiha
2011-10-01
In this paper, we examine the effects of space noncommutativity on the thermodynamics of a Bardeen charged regular black hole. For a suitable choice of sets of parameters, the behavior of the singularity, horizon, mass function, black hole mass, temperature, entropy and its differential, area and energy distribution of the Bardeen solution have been discussed graphically for both noncommutative and commutative spaces. Graphs show that the commutative coordinates extrapolate all such quantities (except temperature) for a given set of parameters. It is interesting to mention here that these sets of parameters provide the singularity (essential for $r_h>0$) and horizon ($f(r_h)=0$ for $r_h>0$) for the black hole solution in noncommutative space, while for commutative space no such quantity exists.
Holographic shell model: Stack data structure inside black holes?
NASA Astrophysics Data System (ADS)
Davidson, Aharon
2014-03-01
Rather than tiling the black hole horizon by Planck area patches, we suggest that bits of information inhabit, universally and holographically, the entire black core interior, a bit per a light sheet unit interval of order Planck area difference. The number of distinguishable (tagged by a binary code) configurations, counted within the context of a discrete holographic shell model, is given by the Catalan series. The area entropy formula is recovered, including Cardy's universal logarithmic correction, and the equipartition of mass per degree of freedom is proven. The black hole information storage resembles, in the count procedure, the so-called stack data structure.
Quantum Criticality and Black Holes
Sachdev, Subir [Harvard University, Cambridge, Massachusetts, United States
2009-09-01
I will describe the behavior of a variety of condensed matter systems in the vicinity of zero temperature quantum phase transitions. There is a remarkable analogy between the hydrodynamics of such systems and the quantum theory of black holes. I will show how insights from this analogy have shed light on recent experiments on the cuprate high temperature superconductors. Studies of new materials and trapped ultracold atoms are yielding new quantum phases, with novel forms of quantum entanglement. Some materials are of technological importance: e.g. high temperature superconductors. Exact solutions via black hole mapping have yielded first exact results for transport coefficients in interacting many-body systems, and were valuable in determining general structure of hydrodynamics. Theory of VBS order and Nernst effect in cuprates. Tabletop 'laboratories for the entire universe': quantum mechanics of black holes, quark-gluon plasma, neutrons stars, and big-bang physics.
Scrambling with matrix black holes
NASA Astrophysics Data System (ADS)
Brady, Lucas; Sahakian, Vatche
2013-08-01
If black holes are not to be dreaded sinks of information but rather fully described by unitary evolution, they must scramble in-falling data and eventually leak it through Hawking radiation. Sekino and Susskind have conjectured that black holes are fast scramblers; they generate entanglement at a remarkably efficient rate, with the characteristic time scaling logarithmically with the entropy. In this work, we focus on Matrix theory—M-theory in the light-cone frame—and directly probe the conjecture. We develop a concrete test bed for quantum gravity using the fermionic variables of Matrix theory and show that the problem becomes that of chains of qubits with an intricate network of interactions. We demonstrate that the black hole system evolves much like a Brownian quantum circuit, with strong indications that it is indeed a fast scrambler. We also analyze the Berenstein-Maldacena-Nastase model and reach the same tentative conclusion.
Quantum Criticality and Black Holes
Sachdev, Subir
2007-08-22
I will describe the behavior of a variety of condensed matter systems in the vicinity of zero temperature quantum phase transitions. There is a remarkable analogy between the hydrodynamics of such systems and the quantum theory of black holes. I will show how insights from this analogy have shed light on recent experiments on the cuprate high temperature superconductors. Studies of new materials and trapped ultracold atoms are yielding new quantum phases, with novel forms of quantum entanglement. Some materials are of technological importance: e.g. high temperature superconductors. Exact solutions via black hole mapping have yielded first exact results for transport coefficients in interacting many-body systems, and were valuable in determining general structure of hydrodynamics. Theory of VBS order and Nernst effect in cuprates. Tabletop 'laboratories for the entire universe': quantum mechanics of black holes, quark-gluon plasma, neutrons stars, and big-bang physics.
Liouvillian perturbations of black holes
NASA Astrophysics Data System (ADS)
Couch, W. E.; Holder, C. L.
2007-10-01
We apply the well-known Kovacic algorithm to find closed form, i.e., Liouvillian solutions, to the differential equations governing perturbations of black holes. Our analysis includes the full gravitational perturbations of Schwarzschild and Kerr, the full gravitational and electromagnetic perturbations of Reissner-Nordstrom, and specialized perturbations of the Kerr-Newman geometry. We also include the extreme geometries. We find all frequencies ω, in terms of black hole parameters and an integer n, which allow Liouvillian perturbations. We display many classes of black hole parameter values and their corresponding Liouvillian perturbations, including new closed-form perturbations of Kerr and Reissner-Nordstrom. We also prove that the only type 1 Liouvillian perturbations of Schwarzschild are the known algebraically special ones and that type 2 Liouvillian solutions do not exist for extreme geometries. In cases where we do not prove the existence or nonexistence of Liouvillian perturbations we obtain sequences of Diophantine equations on which decidability rests.
The lamppost model of accreting black holes
NASA Astrophysics Data System (ADS)
Zdziarski, A.
2016-06-01
Niedzwiecki, Zdziarski & Szanecki (2016, ApJL, submitted) have studied the lamppost model, in which the X-ray source in accreting black-hole systems is located on the rotation axis close to the horizon. We point out a number of inconsistencies in the widely used lamppost model relxilllp. They appear to invalidate those model fitting results for which the source distances from the horizon are within several gravitational radii. Furthermore, we note that if those results were correct, most of the photons produced in the lamppost would be trapped by the black hole, and the source luminosity as measured at infinity would be much larger than that observed. This appears to be in conflict with the observed smooth state transitions between the hard and soft states of X-ray binaries. The required increase of the accretion rate and the associated efficiency reduction present also a problem for AGNs. Then, those models imply the luminosity measured in the local frame much higher than the dissipated power due to time dilation and redshift, and the electron temperature significantly higher than that observed. We show that these conditions imply that the fitted sources would be out of the pair equilibrium.
Angular momentum conservation for dynamical black holes
Hayward, Sean A.
2006-11-15
Angular momentum can be defined by rearranging the Komar surface integral in terms of a twist form, encoding the twisting around of space-time due to a rotating mass, and an axial vector. If the axial vector is a coordinate vector and has vanishing transverse divergence, it can be uniquely specified under certain generic conditions. Along a trapping horizon, a conservation law expresses the rate of change of angular momentum of a general black hole in terms of angular momentum densities of matter and gravitational radiation. This identifies the transverse-normal block of an effective gravitational-radiation energy tensor, whose normal-normal block was recently identified in a corresponding energy conservation law. Angular momentum and energy are dual, respectively, to the axial vector and a previously identified vector, the conservation equations taking the same form. Including charge conservation, the three conserved quantities yield definitions of an effective energy, electric potential, angular velocity and surface gravity, satisfying a dynamical version of the so-called first law of black-hole mechanics. A corresponding zeroth law holds for null trapping horizons, resolving an ambiguity in taking the null limit.
Charged dilation black holes as particle accelerators
NASA Astrophysics Data System (ADS)
Pradhan, Parthapratim
2015-03-01
We examine the possibility of arbitrarily high energy in the center-of-mass (CM) frame of colliding neutral particles in the vicinity of the horizon of a charged dilation black hole (BH). We show that it is possible to achieve the infinite energy in the background of the dilation black hole without fine-tuning of the angular momentum parameter. It is found that the CM energy (Ecm) of collisions of particles near the infinite red-shift surface of the extreme dilation BHs are arbitrarily large while the non-extreme charged dilation BHs have the finite energy. We have also compared the Ecm at the horizon with the ISCO (Innermost Stable Circular Orbit) and MBCO (Marginally Bound Circular Orbit) for extremal Reissner-Nordstrøm (RN) BH and Schwarzschild BH. We find that for extreme RN BH the inequality becomes Ecm|r+ >Ecm|rmb >Ecm|rISCO i.e. Ecm|r+=M :Ecm | rmb =(3 +√{ 5 }/2) M :Ecm| rISCO = 4 M = ∞ : 3.23 : 2.6 . While for Schwarzschild BH the ratio of CM energy is Ecm| r+ = 2 M :Ecm| rmb = 4 M :Ecm| rISCO = 6 M =√{ 5 } :√{ 2 } :√{ 13 }/3 . Also for Gibbons-Maeda-Garfinkle-Horowitz-Strominger (GMGHS) BHs the ratio is being Ecm| r+ = 2 M :Ecm| rmb = 2 M :Ecm| rISCO = 2 M = ∞ : ∞ : ∞ .
Close encounters of three black holes
Campanelli, Manuela; Lousto, Carlos O.; Zlochower, Yosef
2008-05-15
We present the first fully relativistic long-term numerical evolutions of three equal-mass black holes in a system consisting of a third black hole in a close orbit about a black-hole binary. These close-three-black-hole systems have very different merger dynamics from black-hole binaries; displaying complex trajectories, a redistribution of energy that can impart substantial kicks to one of the holes, distinctive waveforms, and suppression of the emitted gravitational radiation. In one configuration the binary is quickly disrupted and the individual holes follow complicated trajectories and merge with the third hole in rapid succession, while in another, the binary completes a half-orbit before the initial merger of one of the members with the third black hole, and the resulting two-black-hole system forms a highly elliptical, well separated binary that shows no significant inspiral for (at least) the first t{approx}1000M of evolution.
Building Black Holes: Supercomputer Cinema
NASA Astrophysics Data System (ADS)
Shapiro, Stuart L.; Teukolsky, Saul A.
1988-07-01
A new computer code can solve Einstein's equations of general relativity for the dynamical evolution of a relativistic star cluster. The cluster may contain a large number of stars that move in a strong gravitational field at speeds approaching the speed of light. Unstable star clusters undergo catastrophic collapse to black holes. The collapse of an unstable cluster to a supermassive black hole at the center of a galaxy may explain the origin of quasars and active galactic nuclei. By means of a supercomputer simulation and color graphics, the whole process can be viewed in real time on a movie screen.
Information loss in black holes
NASA Astrophysics Data System (ADS)
Hawking, S. W.
2005-10-01
The question of whether information is lost in black holes is investigated using Euclidean path integrals. The formation and evaporation of black holes is regarded as a scattering problem with all measurements being made at infinity. This seems to be well formulated only in asymptotically AdS spacetimes. The path integral over metrics with trivial topology is unitary and information preserving. On the other hand, the path integral over metrics with nontrivial topologies leads to correlation functions that decay to zero. Thus at late times only the unitary information preserving path integrals over trivial topologies will contribute. Elementary quantum gravity interactions do not lose information or quantum coherence.
NASA Astrophysics Data System (ADS)
2010-07-01
Combining observations made with ESO's Very Large Telescope and NASA's Chandra X-ray telescope, astronomers have uncovered the most powerful pair of jets ever seen from a stellar black hole. This object, also known as a microquasar, blows a huge bubble of hot gas, 1000 light-years across, twice as large and tens of times more powerful than other known microquasars. The discovery is reported this week in the journal Nature. "We have been astonished by how much energy is injected into the gas by the black hole," says lead author Manfred Pakull. "This black hole is just a few solar masses, but is a real miniature version of the most powerful quasars and radio galaxies, which contain black holes with masses of a few million times that of the Sun." Black holes are known to release a prodigious amount of energy when they swallow matter. It was thought that most of the energy came out in the form of radiation, predominantly X-rays. However, the new findings show that some black holes can release at least as much energy, and perhaps much more, in the form of collimated jets of fast moving particles. The fast jets slam into the surrounding interstellar gas, heating it and triggering an expansion. The inflating bubble contains a mixture of hot gas and ultra-fast particles at different temperatures. Observations in several energy bands (optical, radio, X-rays) help astronomers calculate the total rate at which the black hole is heating its surroundings. The astronomers could observe the spots where the jets smash into the interstellar gas located around the black hole, and reveal that the bubble of hot gas is inflating at a speed of almost one million kilometres per hour. "The length of the jets in NGC 7793 is amazing, compared to the size of the black hole from which they are launched," says co-author Robert Soria [1]. "If the black hole were shrunk to the size of a soccer ball, each jet would extend from the Earth to beyond the orbit of Pluto." This research will help
NASA Astrophysics Data System (ADS)
2010-07-01
Combining observations made with ESO's Very Large Telescope and NASA's Chandra X-ray telescope, astronomers have uncovered the most powerful pair of jets ever seen from a stellar black hole. This object, also known as a microquasar, blows a huge bubble of hot gas, 1000 light-years across, twice as large and tens of times more powerful than other known microquasars. The discovery is reported this week in the journal Nature. "We have been astonished by how much energy is injected into the gas by the black hole," says lead author Manfred Pakull. "This black hole is just a few solar masses, but is a real miniature version of the most powerful quasars and radio galaxies, which contain black holes with masses of a few million times that of the Sun." Black holes are known to release a prodigious amount of energy when they swallow matter. It was thought that most of the energy came out in the form of radiation, predominantly X-rays. However, the new findings show that some black holes can release at least as much energy, and perhaps much more, in the form of collimated jets of fast moving particles. The fast jets slam into the surrounding interstellar gas, heating it and triggering an expansion. The inflating bubble contains a mixture of hot gas and ultra-fast particles at different temperatures. Observations in several energy bands (optical, radio, X-rays) help astronomers calculate the total rate at which the black hole is heating its surroundings. The astronomers could observe the spots where the jets smash into the interstellar gas located around the black hole, and reveal that the bubble of hot gas is inflating at a speed of almost one million kilometres per hour. "The length of the jets in NGC 7793 is amazing, compared to the size of the black hole from which they are launched," says co-author Robert Soria [1]. "If the black hole were shrunk to the size of a soccer ball, each jet would extend from the Earth to beyond the orbit of Pluto." This research will help
Aspects of noncommutative (1+1)-dimensional black holes
NASA Astrophysics Data System (ADS)
Mureika, Jonas R.; Nicolini, Piero
2011-08-01
We present a comprehensive analysis of the spacetime structure and thermodynamics of (1+1)-dimensional black holes in a noncommutative framework. It is shown that a wider variety of solutions are possible than the commutative case considered previously in the literature. As expected, the introduction of a minimal length θ cures singularity pathologies that plague the standard two-dimensional general relativistic case, where the latter solution is recovered at large length scales. Depending on the choice of input parameters (black hole mass M, cosmological constant Λ, etc.), black hole solutions with zero, up to six, horizons are possible. The associated thermodynamics allows for the either complete evaporation, or the production of black hole remnants.
Vortex hair on AdS black holes
NASA Astrophysics Data System (ADS)
Gregory, Ruth; Gustainis, Peter C.; Kubizňák, David; Mann, Robert B.; Wills, Danielle
2014-11-01
We analyse vortex hair for charged rotating asymptotically AdS black holes in the abelian Higgs model. We give analytical and numerical arguments to show how the vortex interacts with the horizon of the black hole, and how the solution extends to the boundary. The solution is very close to the corresponding asymptotically flat vortex, once one transforms to a frame that is non-rotating at the boundary. We show that there is a Meissner effect for extremal black holes, with the vortex flux being expelled from sufficiently small black holes. The phase transition is shown to be first order in the presence of rotation, but second order without rotation. We comment on applications to holography.
The superradiant instability regime of the spinning Kerr black hole
NASA Astrophysics Data System (ADS)
Hod, Shahar
2016-07-01
Spinning Kerr black holes are known to be superradiantly unstable to massive scalar perturbations. We here prove that the instability regime of the composed Kerr-black-hole-massive-scalar-field system is bounded from above by the dimensionless inequality Mμ < m ṡ√{2 (1 + γ)/(1 -√1 -γ2 ) -γ2 4γ2 , where { μ , m } are respectively the proper mass and azimuthal harmonic index of the scalar field and γ ≡r- /r+ is the dimensionless ratio between the horizon radii of the black hole. It is further shown that this analytically derived upper bound on the superradiant instability regime of the spinning Kerr black hole agrees with recent numerical computations of the instability resonance spectrum.
Conformally invariant thermodynamics of a Maxwell-Dilaton black hole
NASA Astrophysics Data System (ADS)
Lopez-Monsalvo, C. S.; Nettel, F.; Quevedo, H.
2013-12-01
The thermodynamics of Maxwell-Dilaton black holes has been extensively studied. It has served as a fertile ground to test ideas about temperature through various definitions of surface gravity. In this paper, we make an independent analysis of this black hole solution in both, Einstein and Jordan, frames. We explore a set of definitions for the surface gravity and observe the different predictions they make for the near extremal configuration of this black hole. Finally, motivated by the singularity structure in the interior of the event horizon, we use a holographic argument to remove the micro-states from the disconnected region of this solution. In this manner, we construct a frame independent entropy from which we obtain a temperature which agrees with the standard results in the non-extremal regime, and has a desirable behaviour around the extremal configurations according to the third law of black hole mechanics.
Understanding the "antikick" in the merger of binary black holes.
Rezzolla, Luciano; Macedo, Rodrigo P; Jaramillo, José Luis
2010-06-01
The generation of a large recoil velocity from the inspiral and merger of binary black holes represents one of the most exciting results of numerical-relativity calculations. While many aspects of this process have been investigated and explained, the "antikick," namely, the sudden deceleration after the merger, has not yet found a simple explanation. We show that the antikick can be understood in terms of the radiation from a deformed black hole where the anisotropic curvature distribution on the horizon correlates with the direction and intensity of the recoil. Our analysis is focused on Robinson-Trautman spacetimes and allows us to measure both the energies and momenta radiated in a gauge-invariant manner. At the same time, this simpler setup provides the qualitative and quantitative features of merging black holes, opening the way to a deeper understanding of the nonlinear dynamics of black-hole spacetimes. PMID:20867159
The geometry of singularities and the black hole information paradox
NASA Astrophysics Data System (ADS)
Stoica, O. C.
2015-07-01
The information loss occurs in an evaporating black hole only if the time evolution ends at the singularity. But as we shall see, the black hole solutions admit analytical extensions beyond the singularities, to globally hyperbolic solutions. The method used is similar to that for the apparent singularity at the event horizon, but at the singularity, the resulting metric is degenerate. When the metric is degenerate, the covariant derivative, the curvature, and the Einstein equation become singular. However, recent advances in the geometry of spacetimes with singular metric show that there are ways to extend analytically the Einstein equation and other field equations beyond such singularities. This means that the information can get out of the singularity. In the case of charged black holes, the obtained solutions have nonsingular electromagnetic field. As a bonus, if particles are such black holes, spacetime undergoes dimensional reduction effects like those required by some approaches to perturbative Quantum Gravity.
A New Way To Weigh Giant Black Holes
NASA Astrophysics Data System (ADS)
2008-07-01
... Milky Way’s Giant Black Hole Awoke from Slumber 300 Years Ago Black Holes Are The Rhythm at The Heart of Galaxies Discovery of Most Recent Supernova in Our Galaxy Ghost Remains After Black Hole Eruption This effect was predicted by two of the co-authors -- Fabrizio Brighenti from the University of Bologna, Italy, and William Mathews from the University of California at Santa Cruz -- almost 10 years ago, but this is the first time it has been seen and used. "It was wonderful to finally see convincing evidence of the effects of the huge black hole that we expected," said Brighenti. "We were thrilled that our new technique worked just as well as the more traditional approach for weighing the black hole." The black hole in NGC 4649 is in a state where it does not appear to be rapidly pulling in material towards its event horizon, nor generating copious amounts of light as it grows. So, the presence and mass of the central black hole has to be studied more indirectly by tracking its effects on stars and gas surrounding it. This technique is well suited to black holes in this condition. "Monster black holes like this one power spectacular light shows in the distant, early universe, but not in the local universe," said Humphrey. "So, we can’t wait to apply our new method to other nearby galaxies harboring such inconspicuous black holes." These results will appear in an upcoming issue of The Astrophysical Journal. NASA's Marshall Space Flight Center, Huntsville, Ala., manages the Chandra program for the agency's Science Mission Directorate. The Smithsonian Astrophysical Observatory controls science and flight operations from the Chandra X-ray Center in Cambridge, Mass.
Late-time evolution of a charged massless scalar field in the spacetime of a dilaton black hole
NASA Astrophysics Data System (ADS)
Moderski, Rafał; Rogatko, Marek
2001-04-01
We investigate the power-law tails in the evolution of a charged massless scalar field around a fixed background of a dilaton black hole. Using both analytical and numerical methods we find the inverse power-law relaxation of charged fields at future timelike infinity, future null infinity, and along the outer horizon of the considered black hole. We envisage that a charged hair decays slower than neutral ones. The oscillatory inverse power law along the outer horizon of the dilaton black hole is of great importance for a mass inflation scenario along the Cauchy horizon of a dynamically formed dilaton black hole.
Geometry of deformed black holes. II. Schwarzschild hole surrounded by a Bach-Weyl ring
NASA Astrophysics Data System (ADS)
Basovník, M.; Semerák, O.
2016-08-01
We continue to study the response of black-hole space-times on the presence of additional strong sources of gravity. Restricting ourselves to static and axially symmetric (electro)vacuum exact solutions of Einstein's equations, we first considered the Majumdar-Papapetrou solution for a binary of extreme black holes in a previous paper, while here we deal with a Schwarzschild black hole surrounded by a concentric thin ring described by the Bach-Weyl solution. The geometry is again revealed on the simplest invariants determined by the metric (lapse function) and its gradient (gravitational acceleration), and by curvature (Kretschmann scalar). Extending the metric inside the black hole along null geodesics tangent to the horizon, we mainly focus on the black-hole interior (specifically, on its sections at constant Killing time) where the quantities behave in a way indicating a surprisingly strong influence of the external source. Being already distinct on the level of potential and acceleration, this is still more pronounced on the level of curvature: for a sufficiently massive and/or nearby (small) ring, the Kretschmann scalar even becomes negative in certain toroidal regions mostly touching the horizon from inside. Such regions have been interpreted as those where magnetic-type curvature dominates, but here we deal with space-times which do not involve rotation and the negative value is achieved due to the electric-type components of the Riemann/Weyl tensor. The Kretschmann scalar also shapes rather nontrivial landscapes outside the horizon.
Varying fine structure 'constant' and charged black holes
Bekenstein, Jacob D.; Schiffer, Marcelo
2009-12-15
Speculation that the fine-structure constant {alpha} varies in spacetime has a long history. We derive, in 4-D general relativity and in isotropic coordinates, the solution for a charged spherical black hole according to the framework for dynamical {alpha} J. D. Bekenstein, Phys. Rev. D 25, 1527 (1982).. This solution coincides with a previously known one-parameter extension of the dilatonic black hole family. Among the notable properties of varying-{alpha} charged black holes are adherence to a 'no hair' principle, the absence of the inner (Cauchy) horizon of the Reissner-Nordstroem black holes, the nonexistence of precisely extremal black holes, and the appearance of naked singularities in an analytic extension of the relevant metric. The exteriors of almost extremal electrically (magnetically) charged black holes have simple structures which makes their influence on applied magnetic (electric) fields transparent. We rederive the thermodynamic functions of the modified black holes; the otherwise difficult calculation of the electric potential is done by a shortcut. We confirm that variability of {alpha} in the wake of expansion of the universe does not threaten the generalized second law.
Primordial black holes: pair creation, Lorentzian condition, and evaporation.
NASA Astrophysics Data System (ADS)
Bousso, R.; Hawking, S. W.
1999-04-01
The wave function of the universe is usually taken to be a functional of the three-metric on a spacelike section, Σ, which is measured. It is sometimes better, however, to work in the conjugate representation, where the wave function depends on a quantity related to the second fundamental form of Σ. This makes it possible to ensure that Σ is part of a Lorentzian universe by requiring that the argument of the wave function be purely imaginary. The authors demonstrate the advantages of this formalism first in the well-known examples of the nucleation of a de Sitter or a Nariai universe. They then use it to calculate the pair creation rate for submaximal black holes in de Sitter space, which had been thought to vanish semiclassically. They also study the quantum evolution of asymptotically de Sitter black holes. For black holes whose size is comparable to that of the cosmological horizon, this process differs significantly from the evaporation of asymptotically flat black holes. The model includes the one-loop effective action in the s-wave and large-N approximation. Black holes of the maximal mass are in equilibrium. Unexpectedly, the authors find that nearly maximal quantum Schwarzschild-de Sitter black holes antievaporate. However, there is a different perturbative mode that leads to evaporation. They show that this mode will always be excited when a pair of maximal cosmological black holes nucleates.
Two Monster Black Holes at Work
Zoom into Markarian 739, a nearby galaxy hosting two monster black holes. Using NASA's Swift and Chandra, astronomers have shown that both black holes are producing energy as gas falls into them. T...
Superradiance from a charged dilation black hole
Shiraishi, K. )
1992-12-07
In this paper, the authors study the behavior of the wave function of charged Klein-Gordon field around a charge dilaton black hole. The rate of spontaneous charge loss is estimated for large black hole case.
Does the mass of a black hole decrease due to the accretion of phantom energy?
Gao Changjun; Chen Xuelei; Faraoni, Valerio; Shen Yougen
2008-07-15
According to Babichev et al., the accretion of a phantom test fluid onto a Schwarzschild black hole will induce the mass of the black hole to decrease, however the backreaction was ignored in their calculation. Using new exact solutions describing black holes in a background Friedmann-Robertson-Walker universe, we find that the physical black hole mass may instead increase due to the accretion of phantom energy. If this is the case, and the future universe is dominated by phantom dark energy, the black hole apparent horizon and the cosmic apparent horizon will eventually coincide and, after that, the black hole singularity will become naked in finite comoving time before the big rip occurs, violating the cosmic censorship conjecture.
Small Black Holes in Randall-Sundrum i Scenario
NASA Astrophysics Data System (ADS)
Karasik, D.; Sahabandu, C.; Suranyi, P.; Wijewardhana, L. C. R.
2004-10-01
An approximation method to study the properties of a small black hole located on the TeV brane in Randall-Sundrum I scenario is presented. The method enables us to find the form of the metric close to the matter distribution when its asymptotic form is given. The short range solution is found as an expansion in the ratio between the Schwarzschild radius of the black hole and the curvature length of the bulk. Long range properties are introduced using the linearized gravity solution as an asymptotic boundary condition. The solution is found up to first order. It is valid in the region close to the horizon but is not valid on the horizon. The regularity of the horizon is still under study.
5D extremal rotating black holes and CFT duals
NASA Astrophysics Data System (ADS)
Loran, Farhang; Soltanpanahi, Hesam
2009-08-01
Kerr/CFT correspondence has been recently applied to various types of 5D extremal rotating black holes. A common feature of all such examples is the existence of two chiral CFT duals corresponding to the U(1) symmetries of the near horizon geometry. In this paper, by studying the moduli space of the near horizon metric of five-dimensional extremal black holes which are asymptotically flat or AdS, we realize an SL(2, {\\mathbb Z} ) modular group which is a symmetry of the near horizon geometry. We show that there is a lattice of chiral CFT duals corresponding to the moduli points identified under the action of the modular group. The microscopic entropy corresponding to all such CFTs is equivalent and is in agreement with the Bekenstein-Hawking entropy.
Semiclassical methods in curved spacetime and black hole thermodynamics
Camblong, Horacio E.; Ordonez, Carlos R.
2005-06-15
Improved semiclassical techniques are developed and applied to a treatment of a real scalar field in a D-dimensional gravitational background. This analysis, leading to a derivation of the thermodynamics of black holes, is based on the simultaneous use of (i) a near-horizon description of the scalar field in terms of conformal quantum mechanics; (ii) a novel generalized WKB framework; and (iii) curved-spacetime phase-space methods. In addition, this improved semiclassical approach is shown to be asymptotically exact in the presence of hierarchical expansions of a near-horizon type. Most importantly, this analysis further supports the claim that the thermodynamics of black holes is induced by their near-horizon conformal invariance.
Fenimore, Edward E.
2014-10-06
Pinhole photography has made major contributions to astrophysics through the use of “coded apertures”. Coded apertures were instrumental in locating gamma-ray bursts and proving that they originate in faraway galaxies, some from the birth of black holes from the first stars that formed just after the big bang.
Gravitational Collapse and Black Holes
ERIC Educational Resources Information Center
Ryder, Lewis
1973-01-01
The newest and most exotic manner in which stars die is investigated. A brief outline is presented, along with a discussion of the role supernova play, followed by a description of how the black holes originate, exist, and how they might be detected. (DF)
'Black holes': escaping the void.
Waldron, Sharn
2013-02-01
The 'black hole' is a metaphor for a reality in the psyche of many individuals who have experienced complex trauma in infancy and early childhood. The 'black hole' has been created by an absence of the object, the (m)other, so there is no internalized object, no (m)other in the psyche. Rather, there is a 'black hole' where the object should be, but the infant is drawn to it, trapped by it because of an intrinsic, instinctive need for a 'real object', an internalized (m)other. Without this, the infant cannot develop. It is only the presence of a real object that can generate the essential gravity necessary to draw the core of the self that is still in an undeveloped state from deep within the abyss. It is the moving towards a real object, a (m)other, that relativizes the absolute power of the black hole and begins a reformation of its essence within the psyche. PMID:23351000
Prisons of Light - Black Holes
NASA Astrophysics Data System (ADS)
Ferguson, Kitty
1998-02-01
Prologue; 1. A cosmic case of burnout; 2. Matters of gravity: Newton and Einstein; 3. The capture of light; 4. Tripping the theoretical fantastic; 5. Crossing the bar; 6. Contemplating an enormous nothing; 7. Evidence in the case; 8. Hearts of darkness; 9. The search goes on; 10. Passages into the labyrinth; 11. Black hole legends and far out ideas; Epilogue.
Black Holes: A Selected Bibliography.
ERIC Educational Resources Information Center
Fraknoi, Andrew
1991-01-01
Offers a selected bibliography pertaining to black holes with the following categories: introductory books; introductory articles; somewhat more advanced articles; readings about Einstein's general theory of relativity; books on the death of stars; articles on the death of stars; specific articles about Supernova 1987A; relevant science fiction…
Hawking evaporation time scale of topological black holes in anti-de Sitter spacetime
NASA Astrophysics Data System (ADS)
Ong, Yen Chin
2016-02-01
It was recently pointed out that if an absorbing boundary condition is imposed at infinity, an asymptotically anti-de Sitter Schwarzschild black hole with a spherical horizon takes only a finite amount of time to evaporate away even if its initial mass is arbitrarily large. We show that this is a rather generic property in AdS spacetimes: regardless of their horizon topologies, neutral AdS black holes in general relativity take about the same amount of time to evaporate down to the same size of order L, the AdS length scale. Our discussion focuses on the case in which the black hole has toral event horizon. A brief comment is made on the hyperbolic case, i.e. for black holes with negatively curved horizons.
Signatures of black holes at the LHC
NASA Astrophysics Data System (ADS)
Cavaglià, Marco; Godang, Romulus; Cremaldi, Lucien M.; Summers, Donald J.
2007-06-01
Signatures of black hole events at CERN's Large Hadron Collider are discussed. Event simulations are carried out with the Fortran Monte Carlo generator CATFISH. Inelasticity effects, exact field emissivities, color and charge conservation, corrections to semiclassical black hole evaporation, gravitational energy loss at formation and possibility of a black hole remnant are included in the analysis.
Compensating Scientism through "The Black Hole."
ERIC Educational Resources Information Center
Roth, Lane
The focal image of the film "The Black Hole" functions as a visual metaphor for the sacred, order, unity, and eternal time. The black hole is a symbol that unites the antinomic pairs of conscious/unconscious, water/fire, immersion/emersion, death/rebirth, and hell/heaven. The black hole is further associated with the quest for transcendent…
Resource Letter BH-1: Black Holes.
ERIC Educational Resources Information Center
Detweiler, Steven
1981-01-01
Lists resources on black holes, including: (1) articles of historical interest; (2) books and journal articles on elementary expositions; (3) elementary and advanced textbooks; and (4) research articles on analytic structure of black holes, black hole dynamics, and astrophysical processes. (SK)
Tortoise coordinate and Hawking effect in a dynamical Kerr black hole
NASA Astrophysics Data System (ADS)
Yang, Jian; Zhao, Zheng; Liu, Wenbiao
2011-02-01
Hawking effect from a dynamical Kerr black hole is investigated using the improved Damour-Ruffini method with a new tortoise coordinate transformation. Hawking temperature of the black hole can be obtained point by point at the event horizon. It is found that Hawking temperatures of different points on the surface are different. Moreover, the temperature does not turn to zero while the dynamical black hole turns to an extreme one.
Hawking radiation of scalars from accelerating and rotating black holes with NUT parameter
NASA Astrophysics Data System (ADS)
Jan, Khush; Gohar, H.
2014-03-01
We study the quantum tunneling of scalars from charged accelerating and rotating black hole with NUT parameter. For this purpose we use the charged Klein-Gordon equation. We apply WKB approximation and the Hamilton-Jacobi method to solve charged Klein-Gordon equation. We find the tunneling probability of outgoing charged scalars from the event horizon of this black hole, and hence the Hawking temperature for this black hole
Non-existence of stationary two-black-hole configurations: the degenerate case
NASA Astrophysics Data System (ADS)
Hennig, Jörg; Neugebauer, Gernot
2011-11-01
In a preceding paper we examined the question whether the spin-spin repulsion and the gravitational attraction of two aligned sub-extremal black holes can balance each other. Based on the solution of a boundary value problem for two separate (Killing-) horizons and a novel black hole criterion we were able to prove the non-existence of the equilibrium configuration in question. In this paper we extend the non-existence proof to extremal black holes.
Fuzzy spaces topology change as a possible solution to the black hole information loss paradox
NASA Astrophysics Data System (ADS)
Silva, C. A. S.
2009-06-01
The black hole information loss paradox is one of the most intricate problems in modern theoretical physics. A proposal to solve this is one related with topology change. However it has found some obstacles related to unitarity and cluster decomposition (locality). In this Letter we argue that modelling the black hole's event horizon as a noncommutative manifold - the fuzzy sphere - we can solve the problems with topology change, getting a possible solution to the black hole information loss paradox.
Hairy black holes in N = 2 gauged supergravity
NASA Astrophysics Data System (ADS)
Faedo, Federico; Klemm, Dietmar; Nozawa, Masato
2015-11-01
We construct black holes with scalar hair in a wide class of four-dimensional N =2 Fayet-Iliopoulosgaugedsupergravitytheoriesthatarecharacterizedbyaprepotential containing one free parameter. Considering the truncated model in which only a single real scalar survives, the theory is reduced to an Einstein-scalar system with a potential, which admits at most two AdS critical points and is expressed in terms of a real superpotential. Our solution is static, admits maximally symmetric horizons, asymptotically tends to AdS space corresponding to an extremum of the superpotential, but is disconnected from the Schwarzschild-AdS family. The condition under which the spacetime admits an event horizon is addressed for each horizon topology. It turns out that for hyperbolic horizons the black holes can be extremal. In this case, the near-horizon geometry is AdS2 × H2, where the scalar goes to the other, non-supersymmetric, critical point of the potential. Our solution displays fall-off behaviours different from the standard one, due to the fact that the mass parameter m 2 = -2 ℓ -2 at the supersymmetric vacuum lies in a characteristic range m BF 2 ≤ m 2 < m BF 2 + ℓ - 2 for which the slowly decaying scalar field is also normalizable ( m BF 2 = - 9/(4 ℓ 2) denotes the Breitenlohner-Freedman bound). Nevertheless, we identify a well-defined mass for our spacetime, following the prescription of Hertog and Maeda. Quite remarkably, the product of all horizon areas is not given in terms of the asymptotic cosmological constant alone, as one would expect in absence of electromagnetic charges and angular momentum. Our solution shows qualitatively the same thermodynamic behaviour as the Schwarzschild-AdS black hole, but the entropy is always smaller for a given mass and AdS curvature radius. We also find that our spherical black holes are unstable against radial perturbations.
Extremal higher spin black holes
NASA Astrophysics Data System (ADS)
Bañados, Máximo; Castro, Alejandra; Faraggi, Alberto; Jottar, Juan I.
2016-04-01
The gauge sector of three-dimensional higher spin gravities can be formulated as a Chern-Simons theory. In this context, a higher spin black hole corresponds to a flat connection with suitable holonomy (smoothness) conditions which are consistent with the properties of a generalized thermal ensemble. Building on these ideas, we discuss a definition of black hole extremality which is appropriate to the topological character of 3 d higher spin theories. Our definition can be phrased in terms of the Jordan class of the holonomy around a non-contractible (angular) cycle, and we show that it is compatible with the zero-temperature limit of smooth black hole solutions. While this notion of extremality does not require supersymmetry, we exemplify its consequences in the context of sl(3|2) ⊕ sl(3|2) Chern-Simons theory and show that, as usual, not all extremal solutions preserve supersymmetries. Remarkably, we find in addition that the higher spin setup allows for non-extremal supersymmetric black hole solutions. Furthermore, we discuss our results from the perspective of the holographic duality between sl(3|2) ⊕ sl(3|2) Chern-Simons theory and two-dimensional CFTs with W (3|2) symmetry, the simplest higher spin extension of the N = 2 super-Virasoro algebra. In particular, we compute W (3|2) BPS bounds at the full quantum level, and relate their semiclassical limit to extremal black hole or conical defect solutions in the 3 d bulk. Along the way, we discuss the role of the spectral flow automorphism and provide a conjecture for the form of the semiclassical BPS bounds in general N = 2 two-dimensional CFTs with extended symmetry algebras.
How to Recover a Qubit That Has Fallen into a Black Hole.
Chatwin-Davies, Aidan; Jermyn, Adam S; Carroll, Sean M
2015-12-31
We demonstrate an algorithm for the retrieval of a qubit, encoded in spin angular momentum, that has been dropped into a no-firewall black hole. Retrieval is achieved analogously to quantum teleportation by collecting Hawking radiation and performing measurements on the black hole. Importantly, these methods require only the ability to perform measurements from outside the event horizon. PMID:26764984
How to Recover a Qubit That Has Fallen into a Black Hole
NASA Astrophysics Data System (ADS)
Chatwin-Davies, Aidan; Jermyn, Adam S.; Carroll, Sean M.
2015-12-01
We demonstrate an algorithm for the retrieval of a qubit, encoded in spin angular momentum, that has been dropped into a no-firewall black hole. Retrieval is achieved analogously to quantum teleportation by collecting Hawking radiation and performing measurements on the black hole. Importantly, these methods require only the ability to perform measurements from outside the event horizon.
Hawking radiation of scalar particles from accelerating and rotating black holes
Gillani, Usman A.; Rehman, Mudassar; Saifullah, K. E-mail: mudassar051@yahoo.com
2011-06-01
Hawking radiation of uncharged and charged scalar particles from accelerating and rotating black holes is studied. We calculate the tunneling probabilities of these particles from the rotation and acceleration horizons of these black holes. Using this method we recover the correct Hawking temperature as well.
Energy loss of a heavy particle near 3D charged rotating hairy black hole
NASA Astrophysics Data System (ADS)
Naji, Jalil
2014-01-01
In this paper we consider a charged rotating black hole in three dimensions with a scalar charge and discuss the energy loss of a heavy particle moving near the black-hole horizon. We also study quasi-normal modes and find the dispersion relations. We find that the effect of scalar charge and electric charge increases the energy loss.
W∞ algebras, Hawking radiation, and information retention by stringy black holes
NASA Astrophysics Data System (ADS)
Ellis, John; Mavromatos, Nick E.; Nanopoulos, D. V.
2016-07-01
We have argued previously, based on the analysis of two-dimensional stringy black holes, that information in stringy versions of four-dimensional Schwarzschild black holes (the singular regions of which are represented by appropriate Wess-Zumino-Witten models) is retained by quantum W symmetries when the horizon area is not preserved due to Hawking radiation. It is key that the exactly marginal conformal world-sheet operator representing a massless stringy particle interacting with the black hole requires a contribution from W∞ generators in its vertex function. The latter correspond to delocalized, nonpropagating, string excitations that guarantee the transfer of information between the string black hole and external particles. When infalling matter crosses the horizon, these topological states are excited via a process: (stringy black hole) + infalling matter → (stringy black hole)⋆ , where the black hole is viewed as a stringy state with a specific configuration of W∞ charges that are conserved. Hawking radiation is then the reverse process, with conservation of the W∞ charges retaining information. The Hawking radiation spectrum near the horizon of a Schwarzschild or Kerr black hole is specified by matrix elements of higher-order currents that form a phase-space W1 +∞ algebra. We show that an appropriate gauging of this algebra preserves the horizon two-dimensional area classically, as expected because the latter is a conserved Noether charge.
Spacetime Non-Commutativity Corrections to the Cardy-Verlinde Formula of Achúcarro-Ortiz Black Hole
NASA Astrophysics Data System (ADS)
Setare, M. R.
2007-02-01
In this letter we compute the corrections to the Cardy-Verlinde formula of Achúcarro-Ortiz black hole, which is the most general two-dimensional black hole derived from the three-dimensional rotating Banados-Teitelboim-Zanelli black hole. These corrections stem from the space non-commutativity. We show that in non-commutative case, non-rotating Achúcarro-Ortiz black hole in contrast with commutative case has two horizons.
NASA Astrophysics Data System (ADS)
Zhang, Tianxi
2014-01-01
Slightly modifying the standard big bang theory, the author has recently developed a new cosmological model called black hole universe, which is consistent with Mach’s principle, governed by Einstein’s general theory of relativity, and able to explain all observations of the universe. Previous studies accounted for the origin, structure, evolution, expansion, cosmic microwave background radiation, and acceleration of the black hole universe, which grew from a star-like black hole with several solar masses through a supermassive black hole with billions of solar masses to the present state with hundred billion-trillions of solar masses by accreting ambient matter and merging with other black holes. This study investigates the emissions of dynamic black holes according to the black hole universe model and provides a self-consistent explanation for the observations of gamma ray bursts (GRBs), X-ray flares, and quasars as emissions of dynamic star-like, massive, and supermassive black holes. It is shown that a black hole, when it accretes its ambient matter or merges with other black holes, becomes dynamic. Since the event horizon of a dynamic black hole is broken, the inside hot (or high-frequency) blackbody radiation leaks out. The leakage of the inside hot blackbody radiation leads to a GRB if it is a star-like black hole, an X-ray flare if it is a massive black hole like the one at the center of the Milky Way, or a quasar if it is a supermassive black hole like an active galactic nucleus (AGN). The energy spectra and amount of emissions produced by the dynamic star-like, massive, and supermassive black holes can be consistent with the measurements of GRBs, X-ray flares, and quasars.
Electromagnetic wave propagation with negative phase velocity in regular black holes
Sharif, M. Manzoor, R.
2012-12-15
We discuss the propagation of electromagnetic plane waves with negative phase velocity in regular black holes. For this purpose, we consider the Bardeen model as a nonlinear magnetic monopole and the Bardeen model coupled to nonlinear electrodynamics with a cosmological constant. It turns out that the region outside the event horizon of each regular black hole does not support negative phase velocity propagation, while its possibility in the region inside the event horizon is discussed.
Instability and new phases of higher-dimensional rotating black holes
Dias, Oscar J. C.; Monteiro, Ricardo; Santos, Jorge E.; Figueras, Pau; Emparan, Roberto
2009-12-01
It has been conjectured that higher-dimensional rotating black holes become unstable at a sufficiently large value of the rotation, and that new black holes with pinched horizons appear at the threshold of the instability. We search numerically and find the stationary axisymmetric perturbations of Myers-Perry black holes with a single spin that mark the onset of the instability and the appearance of the new black hole phases. We also find new ultraspinning Gregory-Laflamme instabilities of rotating black strings and branes.
Black hole perturbation theory in a light cone gauge
NASA Astrophysics Data System (ADS)
Preston, Brent
The metric of a Schwarzschild black hole immersed in a uniform magnetic field is studied using black hole perturbation theory in a light crone coordinate system that penetrates the event horizon and possesses a clear geometrical meaning. The magnetic field, which is distorted due to the presence of the black hole, has strength B which is assumed to be small compared to the curvature of the spacetime which allows the perturbed metric to be calculated to order B 2 only. The coordinates allow for an easy identification of the event horizon and the properties of the perturbed black hole are studied. To interpret this perturbed metric, the advanced coordinates are decomposed into irreducible parts which yields the metric of a perturbed black hole in the limit r >> 2 M . Finally we compare our perturbed solution to an exact solution. We show that our perturbed solution is able to match the exact solution but has the freedom to describe a larger class of physically relevant solutions.
A comparison of remnants in noncommutative Bardeen black holes
NASA Astrophysics Data System (ADS)
Mehdipour, S. Hamid; Ahmadi, M. H.
2016-09-01
We derive the mass term of the Bardeen metric in the presence of a noncommutative geometry induced minimal length. In this setup, the proposal of a stable black hole remnant as a candidate to store information is confirmed. We consider the possibility of having an extremal configuration with one degenerate event horizon and compare different sizes of black hole remnants. As a result, once the magnetic charge g of the noncommutative Bardeen solution becomes larger, both the minimal nonzero mass M0 and the minimal nonzero horizon radius r0 get larger. This means, subsequently, under the condition of an adequate amount of g, the three parameters g, M0, and r0 are in a connection with each other linearly. According to our results, a noncommutative Bardeen black hole is colder than the noncommutative Schwarzschild black hole and its remnant is bigger, so the minimum required energy for the formation of such a black hole at particle colliders will be larger. We also find a closely similar result for the Hayward solution.
Unveiling quantum entanglement degradation near a Schwarzschild black hole
NASA Astrophysics Data System (ADS)
Martín-Martínez, Eduardo; Garay, Luis J.; León, Juan
2010-09-01
We analyze the entanglement degradation provoked by the Hawking effect in a bipartite system Alice-Rob when Rob is in the proximities of a Schwarzschild black hole while Alice is free falling into it. We will obtain the limit in which the tools imported from the Unruh entanglement degradation phenomenon can be used properly, keeping control on the approximation. As a result, we will be able to determine the degree of entanglement as a function of the distance of Rob to the event horizon, the mass of the black hole, and the frequency of Rob’s entangled modes. By means of this analysis we will show that all the interesting phenomena occur in the vicinity of the event horizon and that the presence of event horizons do not effectively degrade the entanglement when Rob is far off the black hole. The universality of the phenomenon is presented: There are not fundamental differences for different masses when working in the natural unit system adapted to each black hole. We also discuss some aspects of the localization of Alice and Rob states. All this study is done without using the single mode approximation.
Where do Accretion Disks Around Black Holes End?
NASA Astrophysics Data System (ADS)
Asmus, D.; Duschl, W. J.
2010-10-01
Accretion disks around (supermassive) black holes act as "machines" which extract gravitational energy. In fact, the observed radiation allows to sample the physical conditions very close to the event horizon. For a test particle, the innermost stable circular orbit (ISCO) is located at 3 rS for a non-rotating hole (Schwarzschild metrics; at smaller radii for a rotating black hole). This ISCO is usually identified with the inner edge of the accretion disk. For a given black hole mass, it allows, in principle, to determine the Kerr parameter. In "real life," however, we deal not with test particles but with a viscous flow, which introduces additional forces. We have calculated the location of the inner edge in a more realistic environment. The results show that the true inner edge of the disk is no longer located at the ISCO, when radial advection of energy is taken into account with a careful treatment of the transonic nature of the flow.
Chandra Catches "Piranha" Black Holes
NASA Astrophysics Data System (ADS)
2007-07-01
Supermassive black holes have been discovered to grow more rapidly in young galaxy clusters, according to new results from NASA's Chandra X-ray Observatory. These "fast-track" supermassive black holes can have a big influence on the galaxies and clusters that they live in. Using Chandra, scientists surveyed a sample of clusters and counted the fraction of galaxies with rapidly growing supermassive black holes, known as active galactic nuclei (or AGN). The data show, for the first time, that younger, more distant galaxy clusters contained far more AGN than older, nearby ones. Galaxy clusters are some of the largest structures in the Universe, consisting of many individual galaxies, a few of which contain AGN. Earlier in the history of the universe, these galaxies contained a lot more gas for star formation and black hole growth than galaxies in clusters do today. This fuel allows the young cluster black holes to grow much more rapidly than their counterparts in nearby clusters. Illustration of Active Galactic Nucleus Illustration of Active Galactic Nucleus "The black holes in these early clusters are like piranha in a very well-fed aquarium," said Jason Eastman of Ohio State University (OSU) and first author of this study. "It's not that they beat out each other for food, rather there was so much that all of the piranha were able to really thrive and grow quickly." The team used Chandra to determine the fraction of AGN in four different galaxy clusters at large distances, when the Universe was about 58% of its current age. Then they compared this value to the fraction found in more nearby clusters, those about 82% of the Universe's current age. The result was the more distant clusters contained about 20 times more AGN than the less distant sample. AGN outside clusters are also more common when the Universe is younger, but only by factors of two or three over the same age span. "It's been predicted that there would be fast-track black holes in clusters, but we never
Charged black holes in expanding Einstein-de Sitter universes
NASA Astrophysics Data System (ADS)
Rodrigues, Manuela G.; Zanchin, Vilson T.
2015-06-01
Inspired by a previous work by McClure and Dyer (2006) (Class. Quantum Grav. 23 1971), we analyze some solutions of the Einstein-Maxwell equations that were originally written to describe charged black holes in cosmological backgrounds. A detailed analysis of the electromagnetic sources for a sufficiently general metric is performed, and we then focus on deriving the electromagnetic four-current as well as the conserved electric charge of each metric. The charged McVittie solution is revisited, and a brief study of its causal structure is performed, showing that it may represent a charged black hole in an expanding universe, with the black hole horizon being formed at infinite late times. Charged versions of solutions originally put forward by Vaidya (Vd) and Sultana and Dyer (SD) are also analyzed. It is shown that the charged SD metric requires a global electric current, besides a central (spherically symmetric) electric charge. With the aim of comparing to the charged McVittie metric, new charged solutions of Vd and SD types are considered. In these cases, the original mass and charge parameters are replaced by particular functions of the cosmological time. In the new generalized charged Vaidya metric, the black hole horizon never forms, whereas in the new generalized SD case, both the Cauchy and the black hole horizons develop at infinite late times. A charged version of the Thakurta metric is also studied here. It is also a new solution. As in the charged SD case, the natural source of the electromagnetic field is a central electric charge with an additional global electric current. The global structure is briefly studied, and it is verified that the corresponding spacetime may represent a charged black hole in a cosmological background. All the solutions present initial singularities as found in the McVittie metric.
Noncritical superstring-black hole transition
Parnachev, Andrei; Sahakyan, David A.
2006-04-15
An interesting case of string/black hole transition occurs in two-dimensional noncritical string theory dressed with a compact CFT. In these models the high energy densities of states of perturbative strings and black holes have the same leading behavior when the Hawking temperature of the black hole is equal to the Hagedorn temperature of perturbative strings. We compare the first subleading terms in the black hole and closed string entropies in this setting and argue that the entropy interpolates between these expressions as the energy is varied. We compute the subleading correction to the black hole entropy for a specific simple model.
Mechanism of quasistabilization of primordial black holes
NASA Astrophysics Data System (ADS)
Torres, R.
2013-06-01
It is argued that primordial black holes with initial masses satisfying M<1015g, instead of having explode, might currently be in a quasistable phase contributing to a tiny fraction of the measured dark matter. This statement is based on a computation of black hole evaporation in which energy conservation is taken into account that shows that the backreaction to Hawking radiation favors the quasistabilization of the black hole. The result is specifically shown for general spherically symmetric quantum black holes described by an effective metric independently of the specific framework from which it is derived. The quintessential primordial black hole is fully analyzed as an example.
Black Holes Shed Light on Galaxy Formation
NASA Technical Reports Server (NTRS)
2000-01-01
This videotape is comprised of several segments of animations on black holes and galaxy formation, and several segments of an interview with Dr. John Kormendy. The animation segments are: (1) a super massive black hole, (2) Centarus A active black hole found in a collision, (3) galaxy NGC-4261 (active black hole and jet model), (4) galaxy M-32 (orbits of stars are effected by the gravity of the black hole), (5) galaxy M-37 (motion of stars increases as mass of black hole increases), (6) Birth of active galactic nuclei, (7) the collision of two galaxy leads to merger of the black holes, (8) Centarus A and simulation of the collision of 2 galaxies. There are also several segments of an interview with John Kormendy. In these segments he discusses the two most important aspects of his recent black hole work: (1) the correlations between galaxies speed and the mass of the black holes, and (2) the existence of black holes and galactic formation. He also discusses the importance of the Hubble Space Telescope and the Space Telescope Imaging Spectrograph to the study of black holes. He also shows the methodology of processing images from the spectrograph in his office.
Statistics, holography, and black hole entropy in loop quantum gravity
NASA Astrophysics Data System (ADS)
Ghosh, Amit; Noui, Karim; Perez, Alejandro
2014-04-01
In loop quantum gravity the quantum states of a black hole horizon consist of pointlike discrete quantum geometry excitations (or punctures) labeled by spin j. The excitations possibly carry other internal degrees of freedom, and the associated quantum states are eigenstates of the area A operator. The appropriately scaled area operator A/(8πℓ) can also be interpreted as the physical Hamiltonian associated with the quasilocal stationary observers located at a small distance ℓ from the horizon. Thus, the local energy is entirely accounted for by the geometric operator A. Assuming that: Close to the horizon the quantum state has a regular energy momentum tensor and hence the local temperature measured by stationary observers is the Unruh temperature. Degeneracy of matter states is exponential with the area exp(λA/ℓp2), which is supported by the well-established results of QFT in curved spacetimes, which do not determine λ but assert an exponential behavior. The geometric excitations of the horizon (punctures) are indistinguishable. And finally that the semiclassical limit the area of the black hole horizon is large in Planck units. It follows that: Up to quantum corrections, matter degrees of freedom saturate the holographic bound, viz., λ must be equal to 1/4. Up to quantum corrections, the statistical black hole entropy coincides with Bekenstein-Hawking entropy S =A/(4ℓp2). The number of horizon punctures goes like N∝√A/ℓp2 ; i.e., the number of punctures N remains large in the semiclassical limit. Fluctuations of the horizon area are small ΔA/A ∝(ℓp2/A)1/4, while fluctuations of the area of an individual puncture are large (large spins dominate). A precise notion of local conformal invariance of the thermal state is recovered in the A→∞ limit where the near horizon geometry becomes Rindler. We also show how the present model (constructed from loop quantum gravity) provides a regularization of (and gives a concrete meaning to) the formal
Perturbative charged rotating 5D Einstein-Maxwell black holes
NASA Astrophysics Data System (ADS)
Navarro-Lérida, Francisco
2010-12-01
We present perturbative charged rotating 5D Einstein-Maxwell black holes with spherical horizon topology. The electric charge Q is the perturbative parameter, the perturbations being performed up to 4th order. The expressions for the relevant physical properties of these black holes are given. The gyromagnetic ratio g, in particular, is explicitly shown to be non-constant in higher order, and thus to deviate from its lowest order value, g = 3. Comparison of the perturbative analytical solutions with their non-perturbative numerical counterparts shows remarkable agreement.
Quantum hoop conjecture: Black hole formation by particle collisions
NASA Astrophysics Data System (ADS)
Casadio, Roberto; Micu, Octavian; Scardigli, Fabio
2014-05-01
We address the issue of (quantum) black hole formation by particle collision in quantum physics. We start by constructing the horizon wave-function for quantum mechanical states representing two highly boosted non-interacting particles that collide in flat one-dimensional space. From this wave-function, we then derive a probability that the system becomes a black hole as a function of the initial momenta and spatial separation between the particles. This probability allows us to extend the hoop conjecture to quantum mechanics and estimate corrections to its classical counterpart.
Detailed black hole state counting in loop quantum gravity
Agullo, Ivan; Barbero G, J. Fernando; Borja, Enrique F.; Diaz-Polo, Jacobo; Villasenor, Eduardo J. S.
2010-10-15
We give a complete and detailed description of the computation of black hole entropy in loop quantum gravity by employing the most recently introduced number-theoretic and combinatorial methods. The use of these techniques allows us to perform a detailed analysis of the precise structure of the entropy spectrum for small black holes, showing some relevant features that were not discernible in previous computations. The ability to manipulate and understand the spectrum up to the level of detail that we describe in the paper is a crucial step toward obtaining the behavior of entropy in the asymptotic (large horizon area) regime.
Exact solution for two unequal counter-rotating black holes
NASA Astrophysics Data System (ADS)
Cabrera-Munguia, I.; Macías, Alfredo
2013-07-01
The full analytical form of the metric describing two unequal counter-rotating black holes with a massless strut (conical singularity) in between is derived explicitly. It is characterized by means of physical parameters like the two Komar masses M1 and M2, Komar angular momenta J1 and J2 (having J1 and J2 opposite sign) and the separation distance R between the centers of the black hole horizons. This solution belongs to a 4-parameter subclass of the double-Kerr-NUT problem, in which the five physical parameters satisfy an algebraic relationship and the interaction force can be observed as Schwarzschild type.
FAST TRACK COMMUNICATION: Local Hawking temperature for dynamical black holes
NASA Astrophysics Data System (ADS)
Hayward, S. A.; Di Criscienzo, R.; Nadalini, M.; Vanzo, L.; Zerbini, S.
2009-03-01
A local Hawking temperature is derived for any future outer trapping horizon in spherical symmetry, using a Hamilton Jacobi variant of the Parikh Wilczek tunneling method. It is given by a dynamical surface gravity as defined geometrically. The operational meaning of the temperature is that Kodama observers just outside the horizon measure an invariantly redshifted temperature, diverging at the horizon itself. In static, asymptotically flat cases, the Hawking temperature as usually defined by the Killing vector agrees in standard cases, but generally differs by a relative redshift factor between the horizon and infinity, this being the temperature measured by static observers at infinity. Likewise, the geometrical surface gravity reduces to the Newtonian surface gravity in the Newtonian limit, while the Killing definition instead reflects measurements at infinity. This may resolve a long-standing puzzle concerning the Hawking temperature for the extremal limit of the charged stringy black hole, namely that it is the local temperature which vanishes. In general, this confirms the quasi-stationary picture of black-hole evaporation in early stages. However, the geometrical surface gravity is generally not the surface gravity of a static black hole with the same parameters.
Black holes in an expanding universe from fake supergravity
NASA Astrophysics Data System (ADS)
Chimento, Samuele; Klemm, Dietmar
2013-04-01
In arXiv:0902.4814, a general recipe to construct fake supersymmetric solutions to fake N = 2, d = 4 gauged supergravity coupled to abelian vector multiplets was presented. We use these results to find new multi-centered black hole solutions in an asymptotically FLRW universe. These satisfy the weak energy condition and are maximally charged under two U(1) gauge fields coupled to a scalar, which drives the cosmic expansion while rolling down its potential. As a special subcase, our black holes include the ones constructed previously by Gibbons and Maeda in arXiv:0912.2809. The latter contain two non-negative real numbers n S , n T obeying the constraint n S + n T = 4, with the cases n T = 4 and n T = 1 corresponding to the Kastor-Traschen and the Maeda-Ohta-Uzawa solution respectively. We show that n S , n T arise directly as exponents in the prepotential of the fake supergravity theory, and that the above constraint stems from the fact that the prepotential must be a homogeneous function of degree two. Finally, some physical properties of the black holes, like asymptotic behaviour, curvature singularities and trapping horizons, are also discussed. Similar to other solutions that appeared previously in the literature, there is a symmetry enhancement near the event horizon, which becomes therefore a Killing horizon, in spite of the highly dynamical nature of the original spacetime. The temperature associated to this Killing horizon turns out to be nonvanishing.
World-volume effective theory for higher-dimensional black holes.
Emparan, Roberto; Harmark, Troels; Niarchos, Vasilis; Obers, Niels A
2009-05-15
We argue that the main feature behind novel properties of higher-dimensional black holes, compared to four-dimensional ones, is that their horizons can have two characteristic lengths of very different size. We develop a long-distance world-volume effective theory that captures the black hole dynamics at scales much larger than the short scale. In this limit the black hole is regarded as a blackfold: a black brane (possibly boosted locally) whose world volume spans a curved submanifold of the spacetime. This approach reveals black objects with novel horizon geometries and topologies more complex than the black ring, but more generally it provides a new organizing framework for the dynamics of higher-dimensional black holes. PMID:19518938
Absorption by dirty black holes: Null geodesics and scalar waves
NASA Astrophysics Data System (ADS)
Macedo, Caio F. B.; Leite, Luiz C. S.; Crispino, Luís C. B.
2016-01-01
Black holes are a paradigm in physics nowadays and are expected to be hosted at the centers of galaxies. Supermassive galactic black holes are not isolated, and their surroundings play crucial roles in many observational features. The absorption and scattering of fields by isolated black holes have been vastly studied, allowing the understanding of many phenomenological features. However, as far as we are aware, a study of the influence of the presence of matter surrounding black holes in their planar wave scattering and absorption spectrum is still lacking in the literature. This may be important in the analysis of, for instance, the accretion of dark matter by black holes. We consider planar massless scalar waves incident upon a Schwarzschild black hole surrounded by a thin spherical shell. We use the partial-wave method to determine the absorption cross section and present a selection of numerical results. In the low-frequency regime, we show that the absorption cross section is equal to the horizon area. At the high-frequency regime, we show that the absorption cross section approaches the geodesic capture cross section.
Eternal higher spin black holes: a thermofield Interpretation
NASA Astrophysics Data System (ADS)
Castro, Alejandra; Iqbal, Nabil; Llabrés, Eva
2016-08-01
We study Lorentzian eternal black holes in the Chern-Simons sector of AdS3 higher spin gravity. We probe such black holes using bulk Wilson lines and motivate new regularity conditions that must be obeyed by the bulk connections in order for the geometry to be consistent with an interpretation as a thermofield state in the dual CFT2. We demonstrate that any higher spin black hole may be placed in a gauge that satisfies these conditions: this is the Chern-Simons analogue of the construction of Kruskal coordinates that permit passage through the black hole horizon. We also argue that the Wilson line provides a higher-spin notion of causality in higher spin gravity that can be used to associate a Penrose diagram with the black hole. We present some applications of the formalism, including a study of the time-dependent entanglement entropy arising from the higher spin black hole interior and evidence for an emergent AdS2 region in the extremal limit.
Black hole with quantum potential
NASA Astrophysics Data System (ADS)
Ali, Ahmed Farag; Khalil, Mohammed M.
2016-08-01
In this work, we investigate black hole (BH) physics in the context of quantum corrections. These quantum corrections were introduced recently by replacing classical geodesics with quantal (Bohmian) trajectories and hence form a quantum Raychaudhuri equation (QRE). From the QRE, we derive a modified Schwarzschild metric, and use that metric to investigate BH singularity and thermodynamics. We find that these quantum corrections change the picture of Hawking radiation greatly when the size of BH approaches the Planck scale. They prevent the BH from total evaporation, predicting the existence of a quantum BH remnant, which may introduce a possible resolution for the catastrophic behavior of Hawking radiation as the BH mass approaches zero. Those corrections also turn the spacelike singularity of the black hole to be timelike, and hence this may ameliorate the information loss problem.
Symmetries of supergravity black holes
NASA Astrophysics Data System (ADS)
Chow, David D. K.
2010-10-01
We investigate Killing tensors for various black hole solutions of supergravity theories. Rotating black holes of an ungauged theory, toroidally compactified heterotic supergravity, with NUT parameters and two U(1) gauge fields are constructed. If both charges are set equal, then the solutions simplify, and then there are concise expressions for rank-2 conformal Killing-Stäckel tensors. These are induced by rank-2 Killing-Stäckel tensors of a conformally related metric that possesses a separability structure. We directly verify the separation of the Hamilton-Jacobi equation on this conformally related metric and of the null Hamilton-Jacobi and massless Klein-Gordon equations on the 'physical' metric. Similar results are found for more general solutions; we mainly focus on those with certain charge combinations equal in gauged supergravity but also consider some other solutions.
Complexity, action, and black holes
Brown, Adam R.; Roberts, Daniel A.; Susskind, Leonard; Swingle, Brian; Zhao, Ying
2016-04-18
In an earlier paper "Complexity Equals Action" we conjectured that the quantum computational complexity of a holographic state is given by the classical action of a region in the bulk (the `Wheeler-DeWitt' patch). We provide calculations for the results quoted in that paper, explain how it fits into a broader (tensor) network of ideas, and elaborate on the hypothesis that black holes are the fastest computers in nature.
Complexity, action, and black holes
NASA Astrophysics Data System (ADS)
Brown, Adam R.; Roberts, Daniel A.; Susskind, Leonard; Swingle, Brian; Zhao, Ying
2016-04-01
Our earlier paper "Complexity Equals Action" conjectured that the quantum computational complexity of a holographic state is given by the classical action of a region in the bulk (the "Wheeler-DeWitt" patch). We provide calculations for the results quoted in that paper, explain how it fits into a broader (tensor) network of ideas, and elaborate on the hypothesis that black holes are the fastest computers in nature.
Hydrodynamics of primordial black hole formation
NASA Technical Reports Server (NTRS)
Nadezhin, D. K.; Novikov, I. D.; Polnarev, A. G.
1979-01-01
The hydrodynamic picture of the formation of primordial black holes (PBH) at the early stages of expansion of the Universe is considered. It is assumed that close to singularity, expansion occurs in a quasi-isotropic way. Using an EVM, a spherically symmetrical nonlinear problem of the evolution of primary strong deviation from the Fridman solution was solved. What these deviations must be, so that the formation of PBH occurred was clarified. Attention was devoted to the role of pressure gradients. It is pointed out that at the moment of formation of PBH, only a small part of matter enters into it, primarily the component of perturbation. It is also pointed out that at this moment, the mass of PBH essentially is smaller than the mass considered within the cosmic horizon. The possibility of changing the mass of the PBH as a result of accretion is analyzed.
Glory scattering by black holes
Matzner, R.A.; DeWitte-Morette, C.; Nelson, B.; Zhang, T.
1985-04-15
We present a physically motivated derivation of the JWKB backward glory-scattering cross section of massless waves by Schwarzschild black holes. The angular dependence of the cross section is identical with the one derived by path integration, namely, dsigma/d..cap omega.. = 4..pi../sup 2/lambda/sup -1/B/sub g/ /sup 2/(dB mW..pi.., where lambda is the wavelength, B(theta) is the inverse of the classical deflection function CTHETA(B), B/sub g/ is the glory impact parameter, s is the helicity of the scattered wave, and J/sub 2s/ is the Bessel function of order 2s. The glory rings formed by scalar waves are bright at the center; those formed by polarized waves are dark at the center. For scattering of massless particles by a spherical black hole of mass M, B(theta)/Mapprox.3 ..sqrt..3 + 3.48 exp(-theta), theta > owig..pi... The numerical values of dsigma/d..cap omega.. for this deflection function are found to agree with earlier computer calculations of glory cross sections from black holes.
Accretion disks around black holes
NASA Technical Reports Server (NTRS)
Abramowicz, M. A.
1994-01-01
The physics of accretion flow very close to a black hole is dominated by several general relativistic effects. It cannot be described by the standard Shakura Sunyaev model or by its relativistic version developed by Novikov and Thome. The most important of these effects is a dynamical mass loss from the inner edge of the disk (Roche lobe overflow). The relativistic Roche lobe overflow induces a strong advective cooling, which is sufficient to stabilize local, axially symmetric thermal and viscous modes. It also stabilizes the non-axially-symmetric global modes discovered by Papaloizou and Pringle. The Roche lobe overflow, however, destabilizes sufficiently self-gravitating accretion disks with respect to a catastrophic runaway of mass due to minute changes of the gravitational field induced by the changes in the mass and angular momentum of the central black hole. One of the two acoustic modes may become trapped near the inner edge of the disk. All these effects, absent in the standard model, have dramatic implications for time-dependent behavior of the accretion disks around black holes.
Constraints on black hole remnants
Giddings, S.B. )
1994-01-15
One possible fate of information lost to black holes is its preservation in black hole remnants. It is argued that a type of effective field theory describes such remnants (generically referred to as informons). The general structure of such a theory is investigated and the infinite pair production problem is revisited. A toy model for remnants clarifies some of the basic issues; in particular, infinite remnant production is not suppressed simply by the large internal volumes as proposed in cornucopion scenarios. Criteria for avoiding infinite production are stated in terms of couplings in the effective theory. Such instabilities remain a problem barring what would be described in that theory as a strong coupling conspiracy. The relation to Euclidean calculations of cornucopion production is sketched, and potential flaws in that analysis are outlined. However, it is quite plausible that pair production of ordinary black holes (e.g., Reissner-Noerdstrom or others) is suppressed due to strong effective couplings. It also remains an open possibility that a microsopic dynamics can be found yielding an appropriate strongly coupled effective theory of neutral informons without infinite pair production.
Black hole binaries and microquasars
NASA Astrophysics Data System (ADS)
Zhang, Shuang-Nan
2013-12-01
This is a general review on the observations and physics of black hole X-ray binaries and microquasars, with the emphasize on recent developments in the high energy regime. The focus is put on understanding the accretion flows and measuring the parameters of black holes in them. It includes mainly two parts: i) Brief review of several recent review article on this subject; ii) Further development on several topics, including black hole spin measurements, hot accretion flows, corona formation, state transitions and thermal stability of standard think disk. This is thus not a regular bottom-up approach, which I feel not necessary at this stage. Major effort is made in making and incorporating from many sources useful plots and illustrations, in order to make this article more comprehensible to non-expert readers. In the end I attempt to make a unification scheme on the accretion-outflow (wind/jet) connections of all types of accreting BHs of all accretion rates and all BH mass scales, and finally provide a brief outlook.
Massive Binary Black Holes in the Cosmic Landscape
NASA Astrophysics Data System (ADS)
Colpi, Monica; Dotti, Massimo
2011-02-01
Binary black holes occupy a special place in our quest for understanding the evolution of galaxies along cosmic history. If massive black holes grow at the center of (pre-)galactic structures that experience a sequence of merger episodes, then dual black holes form as inescapable outcome of galaxy assembly, and can in principle be detected as powerful dual quasars. But, if the black holes reach coalescence, during their inspiral inside the galaxy remnant, then they become the loudest sources of gravitational waves ever in the universe. The Laser Interferometer Space Antenna is being developed to reveal these waves that carry information on the mass and spin of these binary black holes out to very large look-back times. Nature seems to provide a pathway for the formation of these exotic binaries, and a number of key questions need to be addressed: How do massive black holes pair in a merger? Depending on the properties of the underlying galaxies, do black holes always form a close Keplerian binary? If a binary forms, does hardening proceed down to the domain controlled by gravitational wave back reaction? What is the role played by gas and/or stars in braking the black holes, and on which timescale does coalescence occur? Can the black holes accrete on flight and shine during their pathway to coalescence? After outlining key observational facts on dual/binary black holes, we review the progress made in tracing their dynamics in the habitat of a gas-rich merger down to the smallest scales ever probed with the help of powerful numerical simulations. N-Body/hydrodynamical codes have proven to be vital tools for studying their evolution, and progress in this field is expected to grow rapidly in the effort to describe, in full realism, the physics of stars and gas around the black holes, starting from the cosmological large scale of a merger. If detected in the new window provided by the upcoming gravitational wave experiments, binary black holes will provide a deep view
NASA Astrophysics Data System (ADS)
Zhenfeng, Niu; Wenbiao, Liu
2006-07-01
After a new tortoise coordinate transformation is adopted, the entropy and non-thermal radiation of an arbitrarily accelerating charged black hole are discussed as an example of non-stationary black holes. The same cut-off relation is chosen as static case, which is independent of space-time, and then the entropy of the non-stationary black hole is also proportional to the area of its event horizon. Meanwhile, the crossing of the particle energy levels near the event horizon is studied, the representative of the maximum value of the crossing energy levels is the same as the usual tortoise coordinate transformation.
Stationary black hole metrics and inverse problems in two space dimensions
NASA Astrophysics Data System (ADS)
Eskin, Gregory; Hall, Michael
2016-09-01
We study the wave equation for a stationary Lorentzian metric in the case of two space dimensions. Assuming that the metric has a singularity of the appropriate form, surrounded by an ergosphere which is a smooth Jordan curve, we prove the existence of a black hole with a boundary (called the event horizon) that is piecewise smooth, generally having corners. We consider a physical model of acoustic black hole whose event horizon has corners. Finally we consider the determination of a black hole by the boundary measurements.
Wiggling throat of extremal black holes
NASA Astrophysics Data System (ADS)
Compère, G.; Hajian, K.; Seraj, A.; Sheikh-Jabbari, M. M.
2015-10-01
We construct the classical phase space of geometries in the near-horizon region of vacuum extremal black holes as announced in [arXiv:1503.07861]. Motivated by the uniqueness theorems for such solutions and for perturbations around them, we build a family of metrics depending upon a single periodic function defined on the torus spanned by the U(1) isometry directions. We show that this set of metrics is equipped with a consistent symplectic structure and hence defines a phase space. The phase space forms a representation of an infinite dimensional algebra of so-called symplectic symmetries. The symmetry algebra is an extension of the Virasoro algebra whose central extension is the black hole entropy. We motivate the choice of diffeomorphisms leading to the phase space and explicitly derive the symplectic structure, the algebra of symplectic symmetries and the corresponding conserved charges. We also discuss a formulation of these charges with a Liouville type stress-tensor on the torus defined by the U(1) isometries and outline possible future directions.
Imaging black holes with sparse modeling
NASA Astrophysics Data System (ADS)
Honma, Mareki; Akiyama, Kazunori; Tazaki, Fumie; Kuramochi, Kazuki; Ikeda, Shiro; Hada, Kazuhiro; Uemura, Makoto
2016-03-01
We introduce a new imaging method for radio interferometry based on sparse- modeling. The direct observables in radio interferometry are visibilities, which are Fourier transformation of an astronomical image on the sky-plane, and incomplete sampling of visibilities in the spatial frequency domain results in an under-determined problem, which has been usually solved with 0 filling to un-sampled grids. In this paper we propose to directly solve this under-determined problem using sparse modeling without 0 filling, which realizes super resolution, i.e., resolution higher than the standard refraction limit. We show simulation results of sparse modeling for the Event Horizon Telescope (EHT) observations of super-massive black holes and demonstrate that our approach has significant merit in observations of black hole shadows expected to be realized in near future. We also present some results with the method applied to real data, and also discuss more advanced techniques for practical observations such as imaging with closure phase as well as treating the effect of interstellar scattering effect.
Quantum state of the black hole interior
NASA Astrophysics Data System (ADS)
Brustein, Ram; Medved, A. J. M.
2015-08-01
If a black hole (BH) is initially in an approximately pure state and it evaporates by a unitary process, then the emitted radiation will be in a highly quantum state. As the purifier of this radiation, the state of the BH interior must also be in some highly quantum state. So that, within the interior region, the mean-field approximation cannot be valid and the state of the BH cannot be described by some semiclassical metric. On this basis, we model the state of the BH interior as a collection of a large number of excitations that are packed into closely spaced but single-occupancy energy levels; a sort-of "Fermi sea" of all light-enough particles. This highly quantum state is surrounded by a semiclassical region that lies close to the horizon and has a non-vanishing energy density. It is shown that such a state looks like a BH from the outside and decays via gravitational pair production in the near-horizon region at a rate that agrees with the Hawking rate. We also consider the fate of a classical object that has passed through to the BH interior and show that, once it has crossed over the near-horizon threshold, the object meets its demise extremely fast. This result cannot be attributed to a "firewall", as the trauma to the in-falling object only begins after it has passed through the near-horizon region and enters a region where semiclassical spacetime ends but the energy density is still parametrically smaller than Planckian.
Charged Dilation Black Holes as Particle Accelerators
NASA Astrophysics Data System (ADS)
Pradhan, Parthapratim
2016-07-01
We examine the possibility of arbitrarily high energy in the Center-of-mass frame of colliding neutral particles in the vicinity of the horizon of a charged dilation black hole(BH). We show that it is possible to achieve the infinite energy in the background of the dilation black hole without fine-tuning of the angular momentum parameter. It is found that the center-of-mass energy (E_{cm}) of collisions of particles near the infinite red-shift surface of the extreme dilation BHs are arbitrarily large while the non-extreme charged dilation BHs have the finite energy. We have also compared the E_{cm} at the horizon with the ISCO(Innermost Stable Circular Orbit) and MBCO (Marginally Bound Circular Orbit) for extremal RN BH and Schwarzschild BH. We find that for extreme RN BH the inequality becomes E_{cm}mid_{r_{+}}>E_{cm}mid_{r_{mb}}> E_{cm}mid_{r_{ISCO}} i.e. E_{cm}mid_{r_{+}=M}: E_{cm}mid_{r_{mb}= ({3+√{5}}/{2})M} : E_{cm}mid_{r_{ISCO}=4M} =∞ : 3.23 : 2.6 . While for Schwarzschild BH the ratio of CM energy is E_{cm}mid_{r_{+}=2M}: E_{cm}mid_{r_{mb}=4M} : E_{cm}mid_{r_{ISCO}=6M} = √{5} : √{2} : {√{13}}/{3}. Also for Gibbons-Maeda-Garfinkle-Horowitz-Strominger (GMGHS) BHs the ratio is being E_{cm}mid_{r_{+}=2M}: E_{cm}mid_{r_{mb}=2M} : E_{cm}mid_{r_{ISCO}=2M}=∞ : ∞ : ∞.
Shapes of rotating nonsingular black hole shadows
NASA Astrophysics Data System (ADS)
Amir, Muhammed; Ghosh, Sushant G.
2016-07-01
It is believed that curvature singularities are a creation of general relativity and, hence, in the absence of a quantum gravity, models of nonsingular black holes have received significant attention. We study the shadow (apparent shape), an optical appearance because of its strong gravitational field, cast by a nonsingular black hole which is characterized by three parameters, i.e., mass (M ), spin (a ), and a deviation parameter (k ). The nonsingular black hole under consideration is a generalization of the Kerr black hole that can be recognized asymptotically (r ≫k ,k >0 ) explicitly as the Kerr-Newman black hole, and in the limit k →0 as the Kerr black hole. It turns out that the shadow of a nonsingular black hole is a dark zone covered by a deformed circle. Interestingly, it is seen that the shadow of a black hole is affected due to the parameter k . Indeed, for a given a , the size of a shadow reduces as the parameter k increases, and the shadow becomes more distorted as we increase the value of the parameter k when compared with the analogous Kerr black hole shadow. We also investigate, in detail, how the ergoregion of a black hole is changed due to the deviation parameter k .
Black Holes, Worm Holes, and Future Space Propulsion
NASA Technical Reports Server (NTRS)
Barret, Chris
2000-01-01
NASA has begun examining the technologies needed for an Interstellar Mission. In 1998, a NASA Interstellar Mission Workshop was held at the California Institute of Technology to examine the technologies required. Since then, a spectrum of research efforts to support such a mission has been underway, including many advanced and futuristic space propulsion concepts which are being explored. The study of black holes and wormholes may provide some of the breakthrough physics needed to travel to the stars. The first black hole, CYGXI, was discovered in 1972 in the constellation Cygnus X-1. In 1993, a black hole was found in the center of our Milky Way Galaxy. In 1994, the black hole GRO J1655-40 was discovered by the NASA Marshall Space Flight center using the Gamma Ray Observatory. Today, we believe we have found evidence to support the existence of 19 black holes, but our universe may contain several thousands. This paper discusses the dead star states - - both stable and unstable, white dwarfs, neutron stars, pulsars, quasars, the basic features and types of black holes: nonspinning, nonspinning with charge, spinning, and Hawking's mini black holes. The search for black holes, gravitational waves, and Laser Interferometer Gravitational Wave Observatory (LIGO) are reviewed. Finally, concepts of black hole powered space vehicles and wormhole concepts for rapid interstellar travel are discussed in relation to the NASA Interstellar Mission.
Grazing Collision of Binary Black Holes II: From Merger Towards Ringdown
NASA Astrophysics Data System (ADS)
Shoemaker, Deirdre
2000-04-01
One of the great challenges in gravitational physics is to simulate the collision of two black holes in order to study the resulting gravitational radiation. The Agave collaboration has successfully collided two spinning black holes in a grazing merger. The eventual goal of this work is to simulate the orbit, merger and ringdown stages of an astrophysical binary black hole system. The success of the grazing collision has proven to be strongly dependent on predicting the dynamics of the apparent horizons during the evolution. This is due to the fact that the region inside the apparent horizon containing the singularity is removed from the computational domain. Once the black holes have merged, one is left with a single black hole horizon. The spacetime is of a highly distorted black hole. We present results from simulations of the merged to ringdown stage in the life of a binary black hole collision. We show not only how crucial a role the dynamics of the apparent horizon plays in extending the lifetime of the simulation towards ringdown, but also the vital role the appropriate prescription of gauge conditions plays.
Quantum electron levels in the field of a charged black hole
NASA Astrophysics Data System (ADS)
Dokuchaev, V. I.; Eroshenko, Yu. N.
2015-12-01
Stationary solutions of the Dirac equation in the metric of the charged Reissner-Nordstrom black hole are found. In the case of an extremal black hole, the normalization integral of the wave functions is finite, and the regular stationary solution is physically self-consistent. The presence of quantum electron levels under the Cauchy horizon can have an impact on the final stage of the Hawking evaporation of the black hole, as well as on the particle scattering in the field of the black hole.
Quantum electron levels in the field of a charged black hole
Dokuchaev, V. I.; Eroshenko, Yu. N.
2015-12-15
Stationary solutions of the Dirac equation in the metric of the charged Reissner–Nordstrom black hole are found. In the case of an extremal black hole, the normalization integral of the wave functions is finite, and the regular stationary solution is physically self-consistent. The presence of quantum electron levels under the Cauchy horizon can have an impact on the final stage of the Hawking evaporation of the black hole, as well as on the particle scattering in the field of the black hole.
5D radiating black holes in Einstein-Yang-Mills-Gauss-Bonnet gravity
NASA Astrophysics Data System (ADS)
Ghosh, S. G.
2011-10-01
We derive nonstatic spherically symmetric solutions of a null fluid, in five dimension (5D), to Einstein-Yang-Mills (EYM) equations with the coupling of Gauss-Bonnet (GB) combination of quadratic curvature terms, namely, 5D EYMGB radiating black hole solution. It is shown that, in the limit, we can recover known radiating black hole solutions. The spherically symmetric known 5D static black hole solutions are also retrieved. The effect of the GB term and Yang-Mills (YM) gauge charge on the structure and location of horizons, of the 5D radiating black hole, is also discussed.
A Chandra survey of quiescent black hole X-ray binaries
NASA Astrophysics Data System (ADS)
Kong, Albert
2009-09-01
We propose to detect quiescent X-ray emission and jets from three quiescent black holes, H 1705-250, GRS 1009-45, 4U 1543-47, with ACIS-S observations. Our proposed observations will allow us: 1) to test the prediction of the ADAF model to distinguish black hole and neutron star systems, and strengthen the evidence of the existence of event horizon; 2) to provide strong proof that accretion continues in quiescent black hole, and 3) to test if black hole systems require outflows.
A lower bound on the Bekenstein-Hawking temperature of black holes
NASA Astrophysics Data System (ADS)
Hod, Shahar
2016-08-01
We present evidence for the existence of a quantum lower bound on the Bekenstein-Hawking temperature of black holes. The suggested bound is supported by a gedanken experiment in which a charged particle is dropped into a Kerr black hole. It is proved that the temperature of the final Kerr-Newman black-hole configuration is bounded from below by the relation TBH ×rH >(ħ /rH) 2, where rH is the horizon radius of the black hole.
Supermassive Black Hole Mimics Smaller Cousins
NASA Astrophysics Data System (ADS)
2002-06-01
shooting away perpendicularly from the plane of a black hole's accretion disk, moving at 98 percent of the speed of light. In microquasars, radio-emitting features become visible in a jet shortly after X rays from the accretion disk get dimmer -- as if the accretion disk suddenly flushes into the black hole and disappears, fueling the jet. These radio "blobs" then appear to move at faster-than- light speeds, an illusion caused by their ultra-high speeds and their orientation with respect to Earth. Now the team of scientists sees this same phenomenon in 3C120. Roughly every ten months, the X-ray-emitting accretion disk around its supermassive black hole becomes suddenly dim, and a month later the telltale bright spot of radio emission appears in the jet. Over a three-year period, the team observed a series of radio blobs floating along the particle jet like smoke puffs, each time following a dip in the brightness of X rays from the accretion disk. "What we are likely seeing is the inner part of the accretion disk becoming unstable and suddenly plunging into the black hole," said Marscher. "We detect a 'dip' in the X-ray flux as the hot gas in the disk disappears after it passes the event horizon. The remainder of the disk is channeled into the jets, which we see as a knot of radio emission bubbling away from the black hole. Slowly the accretion disk fills with more interstellar gas until about ten months later, when something disturbs the accretion disk orbit, and the whole thing flushes and blows again." Joining Marscher on this observation and analysis are Svetlana Jorstad of Boston University; Jose-Luis Gomez of the Astrophysical Institute of Andalucia in Granada, Spain; Margo Aller of the University of Michigan; Harri Terasranta of the Helsinki University of Technology; Matthew Lister of NRAO; and Alastair Stirling of the University of Central Lancashire, England. The VLBA is a continent-wide radio-telescope system, with one telescope on Hawaii, another on St. Croix in
Effects of nearly extremal black-hole spin in numerical-relativity simulations
NASA Astrophysics Data System (ADS)
Lovelace, Geoffrey
2012-03-01
There is a significant possibility that nearly extremal black holes (i.e., holes spinning nearly as rapidly as possible) exist and thus are among the compact-binary mergers that could be observed by Advanced LIGO. Numerical-relativity simulations of merging compact objects---necessary for predicting the gravitational waveforms that Advanced LIGO could detect---are particularly challenging when they contain nearly extremal black-hole spins. In this talk, I will discuss results from recent simulations [performed using the SpEC code (black-holes.org/SpEC)] that contain nearly extremal black holes, including a simulation of merging black holes with the highest spins (and among the most gravitational-wave cycles) simulated to date. In particular, I will compare the numerical gravitational waveforms and the holes' masses and spins with analytic predictions. I will also discuss the behavior of the strongly warped spacetime near the holes' horizons.
A Black Hole in Our Galactic Center
ERIC Educational Resources Information Center
Ruiz, Michael J.
2008-01-01
An introductory approach to black holes is presented along with astronomical observational data pertaining to the presence of a supermassive black hole at the center of our galaxy. Concepts of conservation of energy and Kepler's third law are employed so students can apply formulas from their physics class to determine the mass of the black hole…
A note on physical mass and the thermodynamics of AdS-Kerr black holes
NASA Astrophysics Data System (ADS)
McInnes, Brett; Ong, Yen Chin
2015-11-01
As with any black hole, asymptotically anti-de Sitter Kerr black holes are described by a small number of parameters, including a ``mass parameter'' M that reduces to the AdS-Schwarzschild mass in the limit of vanishing angular momentum. In sharp contrast to the asymptotically flat case, the horizon area of such a black hole increases with the angular momentum parameter a if one fixes M; this appears to mean that the Penrose process in this case would violate the Second Law of black hole thermodynamics. We show that the correct procedure is to fix not M but rather the ``physical'' mass E=M/(1-a2/L2)2 this is motivated by the First Law. For then the horizon area decreases with a. We recommend that E always be used as the mass in physical processes: for example, in attempts to ``over-spin'' AdS-Kerr black holes.
Magnetic and electric black holes in arbitrary dimensions
Belhaj, Adil; Diaz, Pablo; Segui, Antonio
2009-08-15
In this work, we compare two different objects: electric black holes and magnetic black holes in arbitrary dimension. The comparison is made in terms of the corresponding moduli space and their extremal geometries. We treat parallelly the magnetic and the electric cases. Specifically, we discuss the gravitational solution of these spherically symmetric objects in the presence of a positive cosmological constant. Then, we find the bounded region of the moduli space allowing the existence of black holes. After identifying it in both the electric and the magnetic case, we calculate the geometry that comes out between the horizons at the coalescence points. Although the electric and magnetic cases are both very different (only dual in four dimensions), gravity solutions seem to clear up most of the differences and lead to very similar geometries.
Do all BPS black hole microstates carry zero angular momentum?
NASA Astrophysics Data System (ADS)
Chowdhury, Abhishek; Garavuso, Richard S.; Mondal, Swapnamay; Sen, Ashoke
2016-04-01
From the analysis of the near horizon geometry and supersymmetry algebra it has been argued that all the microstates of single centered BPS black holes with four unbroken supersymmetries carry zero angular momentum in the region of the moduli space where the black hole description is valid. A stronger form of the conjecture would be that the result holds for any sufficiently generic point in the moduli space. In this paper we set out to test this conjecture for a class of black hole microstates in type II string theory on T 6, represented by four stacks of D-branes wrapped on various cycles of T 6. For this system the above conjecture translates to the statement that the moduli space of classical vacua must be a collection of points. Explicit analysis of systems carrying a low number of D-branes supports this conjecture.
Hawking Temperature of a Static Black Hole in Harmonic Coordinates
NASA Astrophysics Data System (ADS)
He, Guan-Sheng; Lin, Wei-Bin
2015-12-01
Hawking radiation is usually studied in standard coordinates. In this paper, we calculate the Hawking temperature of a Schwarzschild black hole in harmonic coordinates, as well as that of a Reissner-Nordström black hole. The action of a scalar field near the event horizon can be formulated exactly without omitting some high-order terms. We show dimensional reduction for Hawking temperature is also valid for harmonic coordinates, and verify further that the results are independent on concrete coordinates. With the help of Lorentz transformation, our work might also serve as a basis to investigate the thermal radiation from a moving black hole. Supported in part by the Ph.D. Programs Foundation of Ministry of Education of China under Grant No. 20110184110016, the National Basic Research Program of China (973 Program) Grant No. 2013CB328904, and the Fundamental Research Funds for the Central Universities under Grant No. 2682014ZT32
Rapid variability, dying pulse trains and black holes
NASA Technical Reports Server (NTRS)
Stoeger, W. R.
1980-01-01
After reviewing the general model and arguments by which rapid temporal variability and quasi-periodicities are considered indicative of a compact source's possible black hole character, the paper presents a scenario for 'dying pulse trains'. These originate inside the inner edge of accretion disks encircling black holes from accreting flares or other self-luminous entities executing their final few revolutions before reaching the event horizon. Confirmed detection of such phenomena with time scales in the range 0.01 (M/solar mass) to 0.5 (M/solar mass)ms, where M is the mass of the compact source, would provide much better support for its black hole candidacy. Variability on time-scales larger than this by itself places few constraints on the nature of the compact object.
Quantum tunneling of the non-stationary BTZ black hole
NASA Astrophysics Data System (ADS)
Yang, Juan; Yang, Shu Zheng
2009-07-01
The semi-classical tunneling method is extended to study the Hawking tunneling radiation from the non-stationary BTZ black hole via general tortoise coordination transformation and WKB approximation. In this paper, we simplify the spin-0 scalar field equation and the spin-1/2 Dirac equation at the event horizon of this black hole, and then the quantum tunneling probability and Hawking temperature are obtained. Finally, the correctional tunneling rate is researched, and the results show that after considering the changed background space-time of the non-stationary BTZ black hole, the tunneling rate depends not only on the entropy change but also on the integral about {\\dot r}_H .
Black Holes Versus Firewalls and Thermo-Field Dynamics
NASA Astrophysics Data System (ADS)
Chowdhury, Borun D.
2013-09-01
In this paper, we examine the implications of the ongoing black holes versus firewalls debate for the thermo-field dynamics of black holes by analyzing a conformal field theory (CFT) in a thermal state in the context of anti-de Sitter/CFT. We argue that the thermo-field doubled copy of the thermal CFT should be thought of not as a fictitious system, but as the image of the CFT in the heat bath. In case of strong coupling between the CFT and the heat bath, this image allows for free infall through the horizon and the system is described by a black hole. Conversely, firewalls are the appropriate dual description in case of weak interaction of the CFT with its heat bath.
Thermodynamics of black holes from equipartition of energy and holography
Tian Yu; Wu Xiaoning
2010-05-15
A gravitational potential in the relativistic case is introduced as an alternative to Wald's potential used by Verlinde, which reproduces the familiar entropy/area relation S=A/4 (in the natural units) when Verlinde's idea is applied to the black hole case. Upon using the equipartition rule, the correct form of the Komar mass (energy) can also be obtained, which leads to the Einstein equations. It is explicitly shown that our entropy formula agrees with Verlinde's entropy variation formula in spherical cases. The stationary space-times, especially the Kerr-Newman black hole, are then discussed, where it is shown that the equipartition rule involves the reduced mass, instead of the Arnowitt-Deser-Misner mass, on the horizon of the black hole.
Black Holes, Hidden Symmetry and Complete Integrability: Brief Review
NASA Astrophysics Data System (ADS)
Frolov, Valeri P.
This chapter contains a brief review of the remarkable properties of higher dimensional rotating black holes with the spherical topology of the horizon. We demonstrate that these properties are connected with and generated by a special geometrical object, the Principal Conformal Killing-Yano tensor (PCKYT). The most general solution, describing such black holes, Kerr-NUT-ADS metric, admits this structure. Moreover a solution of the Einstein Equations with (or without) a cosmological constant which possesses PCKYT is the Kerr-NUT-ADS metric. This object (PCKYT) is responsible for such remarkable properties of higher dimensional rotating black holes as: (i) complete integrability of geodesic equations and (ii) complete separation of variables of the important field equations.
Dynamically important magnetic fields near accreting supermassive black holes.
Zamaninasab, M; Clausen-Brown, E; Savolainen, T; Tchekhovskoy, A
2014-06-01
Accreting supermassive black holes at the centres of active galaxies often produce 'jets'--collimated bipolar outflows of relativistic particles. Magnetic fields probably play a critical role in jet formation and in accretion disk physics. A dynamically important magnetic field was recently found near the Galactic Centre black hole. If this is common and if the field continues to near the black hole event horizon, disk structures will be affected, invalidating assumptions made in standard models. Here we report that jet magnetic field and accretion disk luminosity are tightly correlated over seven orders of magnitude for a sample of 76 radio-loud active galaxies. We conclude that the jet-launching regions of these radio-loud galaxies are threaded by dynamically important fields, which will affect the disk properties. These fields obstruct gas infall, compress the accretion disk vertically, slow down the disk rotation by carrying away its angular momentum in an outflow and determine the directionality of jets. PMID:24899311
Holographic dual of the dyonic Reissner-Nordstroem black hole
Chen, C.-M.; Huang, Y.-M.; Sun, J.-R.; Wu, M.-F.; Zou, S.-J.
2010-09-15
It is shown that the hidden conformal symmetry, namely SO(2,2){approx}SL(2,R){sub L}xSL(2,R){sub R} symmetry, of the nonextremal dyonic Reissner-Nordstroem black hole can be probed by a charged massless scalar field at low frequencies. The existence of such hidden conformal symmetry suggests that the field theory holographically dual to the four-dimensional Reissner-Nordstroem black hole indeed should be a two-dimensional conformal field theory (CFT). Although the associated AdS{sub 3} structure does not explicitly appear in the near horizon geometry, the primary parameters of the dual CFT{sub 2} can be exactly obtained without the necessity of embedding the four-dimensional Reissner-Nordstroem black hole into five-dimensional spacetime. The duality is further supported by comparing the absorption cross sections and real-time correlators obtained from both the CFT and the gravity sides.
Neutral and charged matter in equilibrium with black holes
NASA Astrophysics Data System (ADS)
Bronnikov, K. A.; Zaslavskii, O. B.
2011-10-01
We study the conditions of a possible static equilibrium between spherically symmetric, electrically charged or neutral black holes and ambient matter. The following kinds of matter are considered: (1) neutral and charged matter with a linear equation of state pr=wρ (for neutral matter the results of our previous work are reproduced), (2) neutral and charged matter with pr˜ρm, m>1, and (3) the possible presence of a “vacuum fluid” (the cosmological constant or, more generally, anything that satisfies the equality T00=T11 at least at the horizon). We find a number of new cases of such an equilibrium, including those generalizing the well-known Majumdar-Papapetrou conditions for charged dust. It turns out, in particular, that ultraextremal black holes cannot be in equilibrium with any matter in the absence of a vacuum fluid; meanwhile, matter with w>0, if it is properly charged, can surround an extremal charged black hole.
Entropy of Non-stationary and Slowly Changing Reissner-Nordström Black Hole
NASA Astrophysics Data System (ADS)
Yan, Han
2014-01-01
Simplifying Dirac equation near the horizon, Hawking temperature is obtained by applying a new tortoise coordinate transformation. Using the improved thin film brick-wall model and WKB approximation, the entropy of Dirac field in the non-stationary and slowly changing Reissner-Nordström black hole is calculated. The result shows that the entropy of the black hole is still proportional to the horizon area, and black hole entropy is just identical to the entropy of the quantum state at the horizon. In addition, the new tortoise coordinate transformation can make the cut-off parameter introduced in solving the entropy of non-stationary black hole simplified to the same as that in the static and stationary cases.
Particle collisions near a Kerr-like black hole in Brans-Dicke theory
NASA Astrophysics Data System (ADS)
Sultana, Joseph; Bose, Benjamin
2015-11-01
A recent discovery in 2009 by Bañados, Silk and West (BSW), which generated a lot of interest, involves the arbitrary high center-of-mass (c.m.) energies for free particle collisions at the horizon of an extreme kerr black hole when one of the free particles has a critical value of the angular momentum. In light of this we consider the rotating Kerr-like black hole solution in Brans-Dicke theory and study the motion of scalar test charges in the vicinity of the black hole horizon. We show that the interaction of the test scalar charges with the background scalar field in this spacetime suppresses the c.m. energy for collisions occurring near the event horizon, and the value of the c.m. energy there, is finite irrespective of whether the black hole is extreme or not and its value is also independent of the angular momenta of the colliding test charges.
BOOK REVIEW: Black Holes, Cosmology and Extra Dimensions Black Holes, Cosmology and Extra Dimensions
NASA Astrophysics Data System (ADS)
Frolov, Valeri P.
2013-10-01
flatness of the Universe, the horizon problem and isotropy of cosmological microwave background. All this material is covered in chapter seven. Chapter eight contains brief discussion of several popular inflation models. Chapter nine is devoted to the problem of the large-scale structure formation from initial quantum vacuum fluctuation during the inflation and the spectrum of the density fluctuations. It also contains remarks on the baryonic asymmetry of the Universe, baryogenesis and primordial black holes. Part III covers the material on extra dimensions. It describes how Einstein gravity is modified in the presence of one or more additional spatial dimensions and how these extra dimensions are compactified in the Kaluza-Klein scheme. The authors also discuss how extra dimensions may affect low energy physics. They present examples of higher-dimensional generalizations of the gravity with higher-in-curvature corrections and discuss a possible mechanism of self-stabilization of an extra space. A considerable part of the chapter 10 is devoted to cosmological models with extra dimensions. In particular, the authors discuss how extra dimensions can modify 'standard' inflation models. At the end of this chapter they make several remarks on a possible relation of the value of fundamental constants in our universe with the existence of extra dimensions. Finally, in chapter 11 they demonstrate that several observable properties of the Universe are closely related with the special value of the fundamental physical constants and their fine tuning. They give interesting examples of such fine tuning and summarize many other cases. The book ends with discussion of a so-called 'cascade birth of universes in multidimensional spaces' model, proposed by one of the authors. As is evident from this brief summary of topics presented in the book, many interesting areas of modern gravity and cosmology are covered. However, since the subject is so wide, this inevitably implies that the
Laws of black hole mechanics from the Holst action
Chatterjee, Ayan; Ghosh, Amit
2009-09-15
The formulation of weak isolated horizons (WIH) based on the standard isolated horizon formulation of black hole horizons has been reconsidered in the context of the Holst action. Both the zeroth and the first laws of WIH mechanics have been derived. While the zeroth law follows directly from the WIH boundary conditions, first law depends on the action chosen. We construct the covariant phase space of the Holst action for a space-time having WIH as the inner boundary. This requires the introduction of new potential functions so that the symplectic structure is foliation independent. We show that a precise cancellation among various terms leads to the usual first law. Subsequently, we show from the same covariant phase space that for spherically symmetric horizons, the effective theory on the inner boundary is a U(1) Chern-Simons theory.
Fermions Tunneling from Bardeen-Vaidya Black Hole via General Tortoise Coordinate Transformation
NASA Astrophysics Data System (ADS)
Kai, Lin; Shuzheng, Yang
In this paper, we research on the scalar field particles and 1/2 spin fermions tunneling from the event horizon of Bardeen-Vaidya black hole by semiclassical method and general tortoise coordinate transformation, and obtain the Hawking temperature and tunneling rate near the event horizon.
A new method of researching fermion tunneling from the Vaidya-Bonner de Sitter black hole
NASA Astrophysics Data System (ADS)
Lin, Kai; Yang, Shu-Zheng
2009-06-01
Using the general tortoise coordinate transformation, we research the fermion tunneling of the Vaidya-Bonner de Sitter black hole via a semi-classical method and finally obtain the right surface gravity, Hawking temperature and tunneling rate near the event horizon and cosmical horizon.
A new method dealing with hawking effects of evaporating black holes
Zhao, Z.; Dai, X. )
1992-06-28
This paper reports that, both the location and the temperature of event horizons of evaporating black holes can be easily given if one proposes the Klein-Gordon equation approaches the standard form of wave equation near event horizons by using tortoise-type coordinates.
Surface properties of Kerr-Newman black holes
NASA Astrophysics Data System (ADS)
Doughty, Noel A.
1981-08-01
The magnitude of the proper acceleration of a stationary observer in the exterior Kerr-Newman geometry is used to determine an elementary property of the event horizon of a rotating charged black hole and to give a simple physical interpretation of its ''surface gravity'' as used in descriptions of the Hawking radiation. The global (nonlocal) nature of a black hole event horizon is also simply illustrated. The Kerr-Newman metric and the calculations based on it are presented in SI equations for the benefit of the many students and teachers in physics who rarely use any other system. To minimize the mathematical tools required we carry out the calculations in the well-understood Boyer-Lindquist coordinates.
Flux-area operator and black hole entropy
Barbero G, J. Fernando; Lewandowski, Jerzy; Villasenor, Eduardo J. S.
2009-08-15
We show that, for space-times with inner boundaries, there exists a natural area operator different from the standard one used in loop quantum gravity. This new flux-area operator has equidistant eigenvalues. We discuss the consequences of substituting the standard area operator in the Ashtekar-Baez-Corichi-Krasnov definition of black hole entropy by the new one. Our choice simplifies the definition of the entropy and allows us to consider only those areas that coincide with the one defined by the value of the level of the Chern-Simons theory describing the horizon degrees of freedom. We give a prescription to count the number of relevant horizon states by using spin components and obtain exact expressions for the black hole entropy. Finally we derive its asymptotic behavior, discuss several issues related to the compatibility of our results with the Bekenstein-Hawking area law and the relation with Schwarzschild quasinormal modes.
Destroying Kerr-Sen black holes
NASA Astrophysics Data System (ADS)
Siahaan, Haryanto M.
2016-03-01
By neglecting the self-force, self-energy, and radiative effects, it has been shown that an extremal or near-extremal Kerr-Newman black hole can turn into a naked singularity when it captures charged and spinning massive particles. A straightforward question then arises: do charged and rotating black holes in string theory possess the same property? In this paper we apply Wald's gedanken experiment, in his study on the possibility of destroying extremal Kerr-Newman black holes, to the case of (near-)extremal Kerr-Sen black holes. We find that feeding a test particle into a (near-)extremal Kerr-Sen black hole could lead to a violation of the extremal bound for the black hole.
Binary black hole merger dynamics and waveforms
NASA Technical Reports Server (NTRS)
Baker, John G.; Centrella, Joan; Choi, Dae-II; Koppitz, Michael; vanMeter, James
2006-01-01
We apply recently developed techniques for simulations of moving black holes to study dynamics and radiation generation in the last few orbits and merger of a binary black hole system. Our analysis produces a consistent picture from the gravitational wave forms and dynamical black hole trajectories for a set of simulations with black holes beginning on circular-orbit trajectories at a variety of initial separations. We find profound agreement at the level of 1% among the simulations for the last orbit, merger and ringdown, resulting in a final black hole with spin parameter a/m = 0.69. Consequently, we are confident that this part of our waveform result accurately represents the predictions from Einstein's General Relativity for the final burst of gravitational radiation resulting from the merger of an astrophysical system of equal-mass non-spinning black holes. We also find good agreement at a level of roughly 10% for the radiation generated in the preceding few orbits.