Science.gov

Sample records for black liquor sprays

  1. Kraft black liquor delivery systems

    SciTech Connect

    Adams, T.N.; Empie, H.L.; Obuskovic, N.; Spielbauer, T.M.

    1990-02-01

    Improvement of spray nozzles for black liquor injection into kraft recovery furnaces is expected to result from obtaining a controlled, well-defined droplet size distribution. Work this year has centered on defining the capabilities of commercial black liquor nozzles currently in use. Considerations of the observed mechanism of droplet formation suggest a major revision is needed in the theory of how droplets form from these nozzles. High resolution, high sensitivity video has been shown to be superior to flash x-ray as a technique for measuring the droplet size distribution as well as the formation history. An environmentally sound spray facility capable of spraying black liquor at temperatures up to normal firing conditions is being constructed before data acquisition continues. Preliminary correlations have been developed between liquor properties, nozzle design, and droplet size. Three aspects of nozzle design have been investigated: droplet size distribution, fluid sheet thickness, and flow and pressure drop characteristics. The standard deviation about the median droplet size for black liquor is nearly the same as the for a wide variety of other fluids and nozzle types. Preliminary correlation for fluid sheet thickness on the plate of a splashplate nozzle show the strong similarities of black liquor to other fluids. The flow and pressure drop characteristic of black liquor nozzle, follow a simple two-term relationship similar to other flow devices. This means that in routine mill operation of black liquor nozzles only the fluid acceleration in the nozzle is important, viscous losses are quiet small. 21 refs., 53 figs., 10 tabs.

  2. Gasification of black liquor

    DOEpatents

    Kohl, Arthur L.

    1987-07-28

    A concentrated aqueous black liquor containing carbonaceous material and alkali metal sulfur compounds is treated in a gasifier vessel containing a relatively shallow molten salt pool at its bottom to form a combustible gas and a sulfide-rich melt. The gasifier vessel, which is preferably pressurized, has a black liquor drying zone at its upper part, a black liquor solids gasification zone located below the drying zone, and a molten salt sulfur reduction zone which comprises the molten salt pool. A first portion of an oxygen-containing gas is introduced into the gas space in the gasification zone immediatley above the molten salt pool. The remainder of the oxygen-containing gas is introduced into the molten salt pool in an amount sufficient to cause gasification of carbonaceous material entering the pool from the gasification zone but not sufficient to create oxidizing conditions in the pool. The total amount of the oxygen-containing gas introduced both above the pool and into the pool constitutes between 25 and 55% of the amount required for complete combustion of the black liquor feed. A combustible gas is withdrawn from an upper portion of the drying zone, and a melt in which the sulfur content is predominantly in the form of alkali metal sulfide is withdrawn from the molten salt sulfur reduction zone.

  3. Gasification of black liquor

    DOEpatents

    Kohl, A.L.

    1987-07-28

    A concentrated aqueous black liquor containing carbonaceous material and alkali metal sulfur compounds is treated in a gasifier vessel containing a relatively shallow molten salt pool at its bottom to form a combustible gas and a sulfide-rich melt. The gasifier vessel, which is preferably pressurized, has a black liquor drying zone at its upper part, a black liquor solids gasification zone located below the drying zone, and a molten salt sulfur reduction zone which comprises the molten salt pool. A first portion of an oxygen-containing gas is introduced into the gas space in the gasification zone immediately above the molten salt pool. The remainder of the oxygen-containing gas is introduced into the molten salt pool in an amount sufficient to cause gasification of carbonaceous material entering the pool from the gasification zone but not sufficient to create oxidizing conditions in the pool. The total amount of the oxygen-containing gas introduced both above the pool and into the pool constitutes between 25 and 55% of the amount required for complete combustion of the black liquor feed. A combustible gas is withdrawn from an upper portion of the drying zone, and a melt in which the sulfur content is predominantly in the form of alkali metal sulfide is withdrawn from the molten salt sulfur reduction zone. 2 figs.

  4. Proceedings of the black liquor research program review fourth meeting held July 28--30, 1987

    SciTech Connect

    Emerson, D. B.; Whitworth, B. A.

    1987-10-01

    Research programs, presented at the black liquor review meeting are described. Research topics include the following: Cooperative Program in Kraft Recovery; Black Liquor Physical Properties; Viscosity of Strong Black Liquor; Ultrafiltration of Kraft Black Liquor; Molecular Weight Distribution of Kraft Lignin; Black Liquor Droplet Formation Project; Fundamental Studies of Black Liquor Combustion; Black Liquor Combustion Sensors; Flash X-ray Imagining of Black Liquor Sprays; Laser Induced Fluorescence For Process Control In The Pulp and Paper Industry; Recovery Boiler Optimization; Black Liquor Gasification and Use of the Products in Combined-Cycle Cogeneration; Black Liquor Steam Plasma Automization; The B and W Pyrosonic 2000R System; Monsteras Boiler Control System; and Cooperative Program Project Reviews. Individual projects are processed separately for the data bases.

  5. Pulsed combustion process for black liquor gasification

    SciTech Connect

    Durai-Swamy, K.; Mansour, M.N.; Warren, D.W.

    1991-02-01

    The objective of this project is to test an energy efficient, innovative black liquor recovery system on an industrial scale. In the MTCI recovery process, black liquor is sprayed directly onto a bed of sodium carbonate solids which is fluidized by steam. Direct contact of the black liquor with hot bed solids promotes high rates of heating and pyrolysis. Residual carbon, which forms as a deposit on the particle surface, is then gasified by reaction with steam. Heat is supplied from pulse combustor resonance tubes which are immersed within the fluid bed. A portion of the gasifier product gas is returned to the pulse combustors to provide the energy requirements of the reactor. Oxidized sulfur species are partially reduced by reaction with the gasifier products, principally carbon monoxide and hydrogen. The reduced sulfur decomposed to solid sodium carbonate and gaseous hydrogen sulfide (H{sub 2}S). Sodium values are recovered by discharging a dry sodium carbonate product from the gasifier. MTCI's indirectly heated gasification technology for black liquor recovery also relies on the scrubbing of H{sub 2}S for product gases to regenerate green liquor for reuse in the mill circuit. Due to concerns relative to the efficiency of sulfur recovery in the MTCI integrated process, an experimental investigation was undertaken to establish performance and design data for this portion of the system.

  6. Laser Excited Fluorescence Studies Of Black Liquor

    NASA Astrophysics Data System (ADS)

    Horvath, J. J.; Semerjian, H. G.

    1986-10-01

    Laser excited fluorescence of black liquor was investigated as a possible monitoring technique for pulping processes. A nitrogen pumped dye laser was used to examine the fluorescence spectrum of black liquor solutions. Various excitation wavelengths were used between 290 and 403 nm. Black liquor fluorescence spectra were found to vary with both excitation wavelength and black liquor concentration. Laser excited fluorescence was found to be a sensitive technique for measurement of black liquor with good detection limits and linear response over a large dynamic range.

  7. In Situ Causticizing for Black Liquor Gasification

    SciTech Connect

    Scott Alan Sinquefield

    2005-10-01

    Black liquor gasification offers a number of attractive incentives to replace Tomlinson boilers but it also leads to an increase in the causticizing load. Reasons for this have been described in previous reports (FY04 ERC, et.al.). The chemistries have also been covered but will be reviewed here briefly. Experimental results of the causticizing reactions with black liquor are presented here. Results of the modeling work were presented in detail in the Phase 1 report. They are included in Table 2 for comparison but will not be discussed in detail. The causticizing agents were added to black liquor in the ratios shown in Table 1, mixed, and then spray-dried. The mixture ratios (doping levels) reflect amount calculated from the stoichiometry above to achieve specified conversions shown in the table. The solids were sieved to 63-90 microns for use in the entrained flow reactors. The firing conditions are shown in Table 2. Pictures and descriptions of the reactors can be found in the Phase 1 annual report. Following gasification, the solids (char) was collected and analyzed by coulometric titration (for carbonate and total carbon), and by inductively coupled plasma emission spectroscopy (ICP) for a wide array of metals.

  8. Combustion properties of Kraft Black Liquors

    SciTech Connect

    Frederick, W.J. Jr.; Hupa, M. )

    1993-04-01

    In a previous study of the phenomena involved in the combustion of black liquor droplets a numerical model was developed. The model required certain black liquor specific combustion information which was then not currently available, and additional data were needed for evaluating the model. The overall objectives of the project reported here was to provide experimental data on key aspects of black liquor combustion, to interpret the data, and to put it into a form which would be useful for computational models for recovery boilers. The specific topics to be investigated were the volatiles and char carbon yields from pyrolysis of single black liquor droplets; a criterion for the onset of devolatilization and the accompanying rapid swelling; and the surface temperature of black liquor droplets during pyrolysis, combustion, and gasification. Additional information on the swelling characteristics of black liquor droplets was also obtained as part of the experiments conducted.

  9. Causticizing for Black Liquor Gasifiers

    SciTech Connect

    Scott Sinquefeld; James Cantrell; Xiaoyan Zeng; Alan Ball; Jeff Empie

    2009-01-07

    The cost-benefit outlook of black liquor gasification (BLG) could be greatly improved if the smelt causticization step could be achieved in situ during the gasification step. Or, at a minimum, the increase in causticizing load associated with BLG could be mitigated. A number of chemistries have been proven successful during black liquor combustion. In this project, three in situ causticizing processes (titanate, manganate, and borate) were evaluated under conditions suitable for high temperature entrained flow BLG, and low temperature steam reforming of black liquor. The evaluation included both thermodynamic modeling and lab experimentation. Titanate and manganate were tested for complete direct causticizing (to thus eliminate the lime cycle), and borates were evaluated for partial causticizing (to mitigate the load increase associated with BLG). Criteria included high carbonate conversion, corresponding hydroxide recovery upon hydrolysis, non process element (NPE) removal, and economics. Of the six cases (three chemistries at two BLG conditions), only two were found to be industrially viable: titanates for complete causticizing during high temperature BLG, and borates for partial causticizing during high temperature BLG. These two cases were evaluated for integration into a gasification-based recovery island. The Larsen [28] BLG cost-benefit study was used as a reference case for economic forecasting (i.e. a 1500 tpd pulp mill using BLG and upgrading the lime cycle). By comparison, using the titanate direct causticizing process yielded a net present value (NPV) of $25M over the NPV of BLG with conventional lime cycle. Using the existing lime cycle plus borate autocausticizing for extra capacity yielded a NPV of $16M.

  10. REFRACTORY FOR BLACK LIQUOR GASIFIERS

    SciTech Connect

    William L. Headrick Jr; Musa Karakus; Jun Wei

    2005-03-01

    The University of Missouri-Rolla will identify materials that will permit the safe, reliable and economical operation of combined cycle gasifiers by the pulp and paper industry. The primary emphasis of this project will be to resolve the material problems encountered during the operation of low-pressure high-temperature (LPHT) and low-pressure low-temperature (LPLT) gasifiers while simultaneously understanding the materials barriers to the successful demonstration of high-pressure high-temperature (HPHT) black liquor gasifiers. This study will define the chemical, thermal and physical conditions in current and proposed gasifier designs and then modify existing materials and develop new materials to successfully meet the formidable material challenges. Resolving the material challenges of black liquor gasification combined cycle technology will provide energy, environmental, and economic benefits that include higher thermal efficiencies, up to three times greater electrical output per unit of fuel, and lower emissions. In the near term, adoption of this technology will allow the pulp and paper industry greater capital effectiveness and flexibility, as gasifiers are added to increase mill capacity. In the long term, combined-cycle gasification will lessen the industry's environmental impact while increasing its potential for energy production, allowing the production of all the mill's heat and power needs along with surplus electricity being returned to the grid. An added benefit will be the potential elimination of the possibility of smelt-water explosions, which constitute an important safety concern wherever conventional Tomlinson recovery boilers are operated. Developing cost-effective materials with improved performance in gasifier environments may be the best answer to the material challenges presented by black liquor gasification. Refractory materials may be selected/developed that either react with the gasifier environment to form protective surfaces in

  11. Big Island Demonstration Project - Black Liquor

    SciTech Connect

    2006-08-01

    Black liquor is a papermaking byproduct that also serves as a fuel for pulp and paper mills. This project involves the design, construction, and operation of a black liquor gasifier that will be integrated into Georgia-Pacific's Big Island facility in Virginia, a mill that has been in operation for more than 100 years.

  12. Refractory for Black Liquor Gasifiers

    SciTech Connect

    William L. Headrick; Musa Karakus; Alireza Rezaie

    2004-03-30

    The University of Missouri-Rolla will identify materials that will permit the safe, reliable and economical operation of combined cycle gasifiers by the pulp and paper industry. The primary emphasis of this project will be to resolve the material problems encountered during the operation of low-pressure high-temperature (LPHT) and low-pressure low-temperature (LPLT) gasifiers while simultaneously understanding the materials barriers to the successful demonstration of high-pressure high-temperature (HPHT) black liquor gasifiers. This study will define the chemical, thermal and physical conditions in current and proposed gasifier designs and then modify existing materials and develop new materials to successfully meet the formidable material challenges. Resolving the material challenges of black liquor gasification combined cycle technology will provide energy, environmental, and economic benefits that include higher thermal efficiencies, up to three times greater electrical output per unit of fuel, and lower emissions. In the near term, adoption of this technology will allow the pulp and paper industry greater capital effectiveness and flexibility, as gasifiers are added to increase mill capacity. In the long term, combined-cycle gasification will lessen the industry's environmental impact while increasing its potential for energy production, allowing the production of all the mill's heat and power needs along with surplus electricity being returned to the grid. An added benefit will be the potential elimination of the possibility of smelt-water explosions, which constitute an important safety concern wherever conventional Tomlinson recovery boilers are operated. Developing cost-effective materials with improved performance in gasifier environments may be the best answer to the material challenges presented by black liquor gasification. Refractory materials may be selected/developed that either react with the gasifier environment to form protective surfaces in

  13. REFRACTORY FOR BLACK LIQUOR GASIFIERS

    SciTech Connect

    William L. Headrick Jr; Musa Karakus; Xiaoting Liang

    2005-07-01

    The University of Missouri-Rolla will identify materials that will permit the safe, reliable and economical operation of combined cycle gasifiers by the pulp and paper industry. The primary emphasis of this project will be to resolve the material problems encountered during the operation of low-pressure high-temperature (LPHT) and low-pressure low-temperature (LPLT) gasifiers while simultaneously understanding the materials barriers to the successful demonstration of high-pressure high-temperature (HPHT) black liquor gasifiers. This study will define the chemical, thermal and physical conditions in current and proposed gasifier designs and then modify existing materials and develop new materials to successfully meet the formidable material challenges. Resolving the material challenges of black liquor gasification combined cycle technology will provide energy, environmental, and economic benefits that include higher thermal efficiencies, up to three times greater electrical output per unit of fuel, and lower emissions. In the near term, adoption of this technology will allow the pulp and paper industry greater capital effectiveness and flexibility, as gasifiers are added to increase mill capacity. In the long term, combined-cycle gasification will lessen the industry's environmental impact while increasing its potential for energy production, allowing the production of all the mill's heat and power needs along with surplus electricity being returned to the grid. An added benefit will be the potential elimination of the possibility of smelt-water explosions, which constitute an important safety concern wherever conventional Tomlinson recovery boilers are operated. Developing cost-effective materials with improved performance in gasifier environments may be the best answer to the material challenges presented by black liquor gasification. Refractory materials may be selected/developed that either react with the gasifier environment to form protective surfaces in

  14. Refractory for Black Liquor Gasifiers

    SciTech Connect

    Robert E. Moore; William L. Headrick; Alireza Rezaie

    2003-03-31

    The University of Missouri-Rolla will identify materials that will permit the safe, reliable and economical operation of combined cycle gasifiers by the pulp and paper industry. The primary emphasis of this project will be to resolve the materials problems encountered during the operation of low-pressure high-temperature (LFHT) and low-pressure low-temperature (LPLT) gasifiers while simultaneously understanding the materials barriers to the successful demonstration of high-pressure high-temperature (HPHT) black liquor gasifiers. This study will define the chemical, thermal and physical conditions in current and proposed gasifier designs and then modify existing materials and develop new materials to successfully meet the formidable material challenges. Resolving the material challenges of black liquor gasification combined cycle technology will provide energy, environmental, and economic benefits that include higher thermal efficiencies, up to three times greater electrical output per unit of fuel, and lower emissions. In the near term, adoption of this technology will allow the pulp and paper industry greater capital effectiveness and flexibility, as gasifiers are added to increase mill capacity. In the long term, combined-cycle gasification will lessen the industry's environmental impact while increasing its potential for energy production, allowing the production of all the mill's heat and power needs along with surplus electricity being returned to the grid. An added benefit will be the potential elimination of the possibility of smelt-water explosions, which constitute an important safety concern wherever conventional Tomlinson recovery boilers are operated. Developing cost-effective materials with improved performance in gasifier environments may be the best answer to the material challenges presented by black liquor gasification. Refractory materials may be selected/developed that either react with the gasifier environment to form protective surfaces in

  15. REFRACTORY FOR BLACK LIQUOR GASIFIERS

    SciTech Connect

    William L. Headrick Jr.; Alireza Rezaie

    2003-12-01

    The University of Missouri-Rolla will identify materials that will permit the safe, reliable and economical operation of combined cycle gasifiers by the pulp and paper industry. The primary emphasis of this project will be to resolve the materials problems encountered during the operation of low-pressure high-temperature (LFHT) and low-pressure low-temperature (LPLT) gasifiers while simultaneously understanding the materials barriers to the successful demonstration of high-pressure high-temperature (HPHT) black liquor gasifiers. This study will define the chemical, thermal and physical conditions in current and proposed gasifier designs and then modify existing materials and develop new materials to successfully meet the formidable material challenges. Resolving the material challenges of black liquor gasification combined cycle technology will provide energy, environmental, and economic benefits that include higher thermal efficiencies, up to three times greater electrical output per unit of fuel, and lower emissions. In the near term, adoption of this technology will allow the pulp and paper industry greater capital effectiveness and flexibility, as gasifiers are added to increase mill capacity. In the long term, combined-cycle gasification will lessen the industry's environmental impact while increasing its potential for energy production, allowing the production of all the mill's heat and power needs along with surplus electricity being returned to the grid. An added benefit will be the potential elimination of the possibility of smelt-water explosions, which constitute an important safety concern wherever conventional Tomlinson recovery boilers are operated. Developing cost-effective materials with improved performance in gasifier environments may be the best answer to the material challenges presented by black liquor gasification. Refractory materials may be selected/developed that either react with the gasifier environment to form protective surfaces in

  16. Refractory for Black Liquor Gasifiers

    SciTech Connect

    William L. Headrick Jr; Musa Karakus; Xiaoting Liang

    2005-10-01

    The University of Missouri-Rolla identified materials that permit the safe, reliable and economical operation of combined cycle gasifiers by the pulp and paper industry. The primary emphasis of this project was to resolve the material problems encountered during the operation of low-pressure high-temperature (LPHT) and low-pressure low-temperature (LPLT) gasifiers while simultaneously understanding the materials barriers to the successful demonstration of high-pressure high-temperature (HPHT) black liquor gasifiers. This study attempted to define the chemical, thermal and physical conditions in current and proposed gasifier designs and then modify existing materials and develop new materials to successfully meet the formidable material challenges. Resolving the material challenges of black liquor gasification combined cycle technology will provide energy, environmental, and economic benefits that include higher thermal efficiencies, up to three times greater electrical output per unit of fuel, and lower emissions. In the near term, adoption of this technology will allow the pulp and paper industry greater capital effectiveness and flexibility, as gasifiers are added to increase mill capacity. In the long term, combined-cycle gasification will lessen the industry's environmental impact while increasing its potential for energy production, allowing the production of all the mill's heat and power needs along with surplus electricity being returned to the grid. An added benefit will be the potential elimination of the possibility of smelt-water explosions, which constitute an important safety concern wherever conventional Tomlinson recovery boilers are operated. Developing cost-effective materials with improved performance in gasifier environments may be the best answer to the material challenges presented by black liquor gasification. Refractory materials were selected/developed that either react with the gasifier environment to form protective surfaces in-situ; and

  17. REFRACTORY FOR BLACK LIQUOR GASIFIERS

    SciTech Connect

    William L. Headrick Jr; Musa Karakus; Xiaoting Liang; Jun Wei

    2005-01-01

    The University of Missouri-Rolla will identify materials that will permit the safe, reliable and economical operation of combined cycle gasifiers by the pulp and paper industry. The primary emphasis of this project will be to resolve the material problems encountered during the operation of low-pressure high-temperature (LPHT) and low-pressure low-temperature (LPLT) gasifiers while simultaneously understanding the materials barriers to the successful demonstration of high-pressure high-temperature (HPHT) black liquor gasifiers. This study will define the chemical, thermal and physical conditions in current and proposed gasifier designs and then modify existing materials and develop new materials to successfully meet the formidable material challenges. Resolving the material challenges of black liquor gasification combined cycle technology will provide energy, environmental, and economic benefits that include higher thermal efficiencies, up to three times greater electrical output per unit of fuel, and lower emissions. In the near term, adoption of this technology will allow the pulp and paper industry greater capital effectiveness and flexibility, as gasifiers are added to increase mill capacity. In the long term, combined-cycle gasification will lessen the industry's environmental impact while increasing its potential for energy production, allowing the production of all the mill's heat and power needs along with surplus electricity being returned to the grid. An added benefit will be the potential elimination of the possibility of smelt-water explosions, which constitute an important safety concern wherever conventional Tomlinson recovery boilers are operated. Developing cost-effective materials with improved performance in gasifier environments may be the best answer to the material challenges presented by black liquor gasification. Refractory materials may be selected/developed that either react with the gasifier environment to form protective surfaces in

  18. Refractory for Black Liquor Gasifiers

    SciTech Connect

    William L. Headrick Jr; Alireza Rezaie

    2003-12-01

    The University of Missouri-Rolla will identify materials that will permit the safe, reliable and economical operation of combined cycle gasifiers by the pulp and paper industry. The primary emphasis of this project will be to resolve the materials problems encountered during the operation of low-pressure high-temperature (LFHT) and low-pressure low-temperature (LPLT) gasifiers while simultaneously understanding the materials barriers to the successful demonstration of high-pressure high-temperature (HPHT) black liquor gasifiers. This study will define the chemical, thermal and physical conditions in current and proposed gasifier designs and then modify existing materials and develop new materials to successfully meet the formidable material challenges. Resolving the material challenges of black liquor gasification combined cycle technology will provide energy, environmental, and economic benefits that include higher thermal efficiencies, up to three times greater electrical output per unit of fuel, and lower emissions. In the near term, adoption of this technology will allow the pulp and paper industry greater capital effectiveness and flexibility, as gasifiers are added to increase mill capacity. In the long term, combined-cycle gasification will lessen the industry's environmental impact while increasing its potential for energy production, allowing the production of all the mill's heat and power needs along with surplus electricity being returned to the grid. An added benefit will be the potential elimination of the possibility of smelt-water explosions, which constitute an important safety concern wherever conventional Tomlinson recovery boilers are operated. Developing cost-effective materials with improved performance in gasifier environments may be the best answer to the material challenges presented by black liquor gasification. Refractory materials may be selected/developed that either react with the gasifier environment to form protective surfaces in

  19. REFRACTORY FOR BLACK LIQUOR GASIFIERS

    SciTech Connect

    William L. Headrick Jr; Musa Karakus; Xiaoting Liang; Jun Wei

    2005-04-01

    The University of Missouri-Rolla will identify materials that will permit the safe, reliable and economical operation of combined cycle gasifiers by the pulp and paper industry. The primary emphasis of this project will be to resolve the material problems encountered during the operation of low-pressure high-temperature (LPHT) and low-pressure low-temperature (LPLT) gasifiers while simultaneously understanding the materials barriers to the successful demonstration of high-pressure high-temperature (HPHT) black liquor gasifiers. This study will define the chemical, thermal and physical conditions in current and proposed gasifier designs and then modify existing materials and develop new materials to successfully meet the formidable material challenges. Resolving the material challenges of black liquor gasification combined cycle technology will provide energy, environmental, and economic benefits that include higher thermal efficiencies, up to three times greater electrical output per unit of fuel, and lower emissions. In the near term, adoption of this technology will allow the pulp and paper industry greater capital effectiveness and flexibility, as gasifiers are added to increase mill capacity. In the long term, combined-cycle gasification will lessen the industry's environmental impact while increasing its potential for energy production, allowing the production of all the mill's heat and power needs along with surplus electricity being returned to the grid. An added benefit will be the potential elimination of the possibility of smelt-water explosions, which constitute an important safety concern wherever conventional Tomlinson recovery boilers are operated. Developing cost-effective materials with improved performance in gasifier environments may be the best answer to the material challenges presented by black liquor gasification. Refractory materials may be selected/developed that either react with the gasifier environment to form protective surfaces in

  20. REFRACTORY FOR BLACK LIQUOR GASIFIERS

    SciTech Connect

    William L. Headrick Jr; Musa Karakus; Xiaoting Liang; Alireza Rezaie

    2004-10-01

    The University of Missouri-Rolla will identify materials that will permit the safe, reliable and economical operation of combined cycle gasifiers by the pulp and paper industry. The primary emphasis of this project will be to resolve the material problems encountered during the operation of low-pressure high-temperature (LPHT) and low-pressure low-temperature (LPLT) gasifiers while simultaneously understanding the materials barriers to the successful demonstration of high-pressure high-temperature (HPHT) black liquor gasifiers. This study will define the chemical, thermal and physical conditions in current and proposed gasifier designs and then modify existing materials and develop new materials to successfully meet the formidable material challenges. Resolving the material challenges of black liquor gasification combined cycle technology will provide energy, environmental, and economic benefits that include higher thermal efficiencies, up to three times greater electrical output per unit of fuel, and lower emissions. In the near term, adoption of this technology will allow the pulp and paper industry greater capital effectiveness and flexibility, as gasifiers are added to increase mill capacity. In the long term, combined-cycle gasification will lessen the industry's environmental impact while increasing its potential for energy production, allowing the production of all the mill's heat and power needs along with surplus electricity being returned to the grid. An added benefit will be the potential elimination of the possibility of smelt-water explosions, which constitute an important safety concern wherever conventional Tomlinson recovery boilers are operated. Developing cost-effective materials with improved performance in gasifier environments may be the best answer to the material challenges presented by black liquor gasification. Refractory materials may be selected/developed that either react with the gasifier environment to form protective surfaces in

  1. REFRACTORY FOR BLACK LIQUOR GASIFIERS

    SciTech Connect

    William L. Headrick Jr; Musa Karakus; Xiaoting Liang; Alireza Rezaie

    2004-07-01

    The University of Missouri-Rolla will identify materials that will permit the safe, reliable and economical operation of combined cycle gasifiers by the pulp and paper industry. The primary emphasis of this project will be to resolve the material problems encountered during the operation of low-pressure high-temperature (LPHT) and low-pressure low-temperature (LPLT) gasifiers while simultaneously understanding the materials barriers to the successful demonstration of high-pressure high-temperature (HPHT) black liquor gasifiers. This study will define the chemical, thermal and physical conditions in current and proposed gasifier designs and then modify existing materials and develop new materials to successfully meet the formidable material challenges. Resolving the material challenges of black liquor gasification combined cycle technology will provide energy, environmental, and economic benefits that include higher thermal efficiencies, up to three times greater electrical output per unit of fuel, and lower emissions. In the near term, adoption of this technology will allow the pulp and paper industry greater capital effectiveness and flexibility, as gasifiers are added to increase mill capacity. In the long term, combined-cycle gasification will lessen the industry's environmental impact while increasing its potential for energy production, allowing the production of all the mill's heat and power needs along with surplus electricity being returned to the grid. An added benefit will be the potential elimination of the possibility of smelt-water explosions, which constitute an important safety concern wherever conventional Tomlinson recovery boilers are operated. Developing cost-effective materials with improved performance in gasifier environments may be the best answer to the material challenges presented by black liquor gasification. Refractory materials may be selected/developed that either react with the gasifier environment to form protective surfaces in

  2. Refractory for Black Liquor Gasifiers

    SciTech Connect

    William L. Headrick Jr; Alireza Rezaie

    2003-08-01

    The University of Missouri-Rolla will identify materials that will permit the safe, reliable and economical operation of combined cycle gasifiers by the pulp and paper industry. The primary emphasis of this project will be to resolve the materials problems encountered during the operation of low-pressure high-temperature (LFHT) and low-pressure low-temperature (LPLT) gasifiers while simultaneously understanding the materials barriers to the successful demonstration of high-pressure high-temperature (HPHT) black liquor gasifiers. This study will define the chemical, thermal and physical conditions in current and proposed gasifier designs and then modify existing materials and develop new materials to successfully meet the formidable material challenges. Resolving the material challenges of black liquor gasification combined cycle technology will provide energy, environmental, and economic benefits that include higher thermal efficiencies, up to three times greater electrical output per unit of fuel, and lower emissions. In the near term, adoption of this technology will allow the pulp and paper industry greater capital effectiveness and flexibility, as gasifiers are added to increase mill capacity. In the long term, combined-cycle gasification will lessen the industry's environmental impact while increasing its potential for energy production, allowing the production of all the mill's heat and power needs along with surplus electricity being returned to the grid. An added benefit will be the potential elimination of the possibility of smelt-water explosions, which constitute an important safety concern wherever conventional Tomlinson recovery boilers are operated. Developing cost-effective materials with improved performance in gasifier environments may be the best answer to the material challenges presented by black liquor gasification. Refractory materials may be selected/developed that either react with the gasifier environment to form protective surfaces in

  3. Refractory for Black Liquor Gasifiers

    SciTech Connect

    William L. Headrick Jr; Alireza Rezaie; Xiaoting Liang; Musa Karakus; Jun Wei

    2005-12-01

    The University of Missouri-Rolla identified materials that permit the safe, reliable and economical operation of combined cycle gasifiers by the pulp and paper industry. The primary emphasis of this project was to resolve the material problems encountered during the operation of low-pressure high-temperature (LPHT) and low-pressure low-temperature (LPLT) gasifiers while simultaneously understanding the materials barriers to the successful demonstration of high-pressure high-temperature (HPHT) black liquor gasifiers. This study attempted to define the chemical, thermal and physical conditions in current and proposed gasifier designs and then modify existing materials and develop new materials to successfully meet the formidable material challenges. Resolving the material challenges of black liquor gasification combined cycle technology will provide energy, environmental, and economic benefits that include higher thermal efficiencies, up to three times greater electrical output per unit of fuel, and lower emissions. In the near term, adoption of this technology will allow the pulp and paper industry greater capital effectiveness and flexibility, as gasifiers are added to increase mill capacity. In the long term, combined-cycle gasification will lessen the industry's environmental impact while increasing its potential for energy production, allowing the production of all the mill's heat and power needs along with surplus electricity being returned to the grid. An added benefit will be the potential elimination of the possibility of smelt-water explosions, which constitute an important safety concern wherever conventional Tomlinson recovery boilers are operated. Developing cost-effective materials with improved performance in gasifier environments may be the best answer to the material challenges presented by black liquor gasification. Refractory materials were selected or developed that reacted with the gasifier environment to form protective surfaces in-situ; and

  4. REFRACTORY FOR BLACK LIQUOR GASIFIERS

    SciTech Connect

    William L. Headrick Jr.; Alireza Rezaie

    2004-04-01

    The University of Missouri-Rolla will identify materials that will permit the safe, reliable and economical operation of combined cycle gasifiers by the pulp and paper industry. The primary emphasis of this project will be to resolve the materials problems encountered during the operation of low-pressure high-temperature (LPHT) and low-pressure low-temperature (LPLT) gasifiers while simultaneously understanding the materials barriers to the successful demonstration of high-pressure high-temperature (HPHT) black liquor gasifiers. This study will define the chemical, thermal and physical conditions in current and proposed gasifier designs and then modify existing materials and develop new materials to successfully meet the formidable material challenges. Resolving the material challenges of black liquor gasification combined cycle technology will provide energy, environmental, and economic benefits that include higher thermal efficiencies, up to three times greater electrical output per unit of fuel, and lower emissions. In the near term, adoption of this technology will allow the pulp and paper industry greater capital effectiveness and flexibility, as gasifiers are added to increase mill capacity. In the long term, combined-cycle gasification will lessen the industry's environmental impact while increasing its potential for energy production, allowing the production of all the mill's heat and power needs along with surplus electricity being returned to the grid. An added benefit will be the potential elimination of the possibility of smelt-water explosions, which constitute an important safety concern wherever conventional Tomlinson recovery boilers are operated. Developing cost-effective materials with improved performance in gasifier environments may be the best answer to the material challenges presented by black liquor gasification. Refractory materials may be selected/developed that either react with the gasifier environment to form protective surfaces in

  5. Refractory for Black Liquor Gasifiers

    SciTech Connect

    William L. Headrick Jr; Musa Karakus; Xiaoting Laing

    2005-10-01

    The University of Missouri-Rolla will identify materials that will permit the safe, reliable and economical operation of combined cycle gasifiers by the pulp and paper industry. The primary emphasis of this project will be to resolve the material problems encountered during the operation of low-pressure high-temperature (LPHT) and low-pressure low-temperature (LPLT) gasifiers while simultaneously understanding the materials barriers to the successful demonstration of high-pressure high-temperature (HPHT) black liquor gasifiers. This study will define the chemical, thermal and physical conditions in current and proposed gasifier designs and then modify existing materials and develop new materials to successfully meet the formidable material challenges. Resolving the material challenges of black liquor gasification combined cycle technology will provide energy, environmental, and economic benefits that include higher thermal efficiencies, up to three times greater electrical output per unit of fuel, and lower emissions. In the near term, adoption of this technology will allow the pulp and paper industry greater capital effectiveness and flexibility, as gasifiers are added to increase mill capacity. In the long term, combined-cycle gasification will lessen the industry's environmental impact while increasing its potential for energy production, allowing the production of all the mill's heat and power needs along with surplus electricity being returned to the grid. An added benefit will be the potential elimination of the possibility of smelt-water explosions, which constitute an important safety concern wherever conventional Tomlinson recovery boilers are operated. Developing cost-effective materials with improved performance in gasifier environments may be the best answer to the material challenges presented by black liquor gasification. Refractory materials may be selected/developed that either react with the gasifier environment to form protective surfaces in

  6. Advancement of High Temperature Black Liquor Gasification Technology

    SciTech Connect

    Craig Brown; Ingvar Landalv; Ragnar Stare; Jerry Yuan; Nikolai DeMartini; Nasser Ashgriz

    2008-03-31

    procurement of facility upgrades. Chemrec AB is also operating a pressurized, O2-blown gasifier pilot facility in Piteaa, Sweden. There was an exchange of knowledge with the pressurized projects including utilization of the experimental results from facilities in Piteaa, Sweden. Resources at the Georgia Tech Research Corporation (GTRC, a.k.a., the Institute of Paper Science and Technology) were employed primarily to conduct the fundamental investigations on scaling and plugging mechanisms and characterization of green liquor dregs. The project also tapped GTRC expertise in the development of the critical underlying black liquor gasification rate subroutines employed in the CFD code. The actual CFD code development and application was undertaken by Process Simulation, Ltd (PSL) and Simulent, Ltd. PSL focused on the overall integrated gasifier CFD code, while Simulent focused on modeling the black liquor nozzle and description of the black liquor spray. For nozzle development and testing Chemrec collaborated with ETC (Energy Technology Centre) in Piteae utilizing their test facility for nozzle spray investigation. GTI (Gas Technology Institute), Des Plains, IL supported the team with advanced gas analysis equipment during the gasifier test period in June 2005.

  7. Pyrolysis of Large Black Liquor Droplets

    NASA Technical Reports Server (NTRS)

    Bartkus, Tadas P.; T'ien, James S.; Dietrich, Daniel L.; Wessel, Richard A.

    2007-01-01

    This paper presents the results of experiments involving the pyrolysis of large black liquor droplets in the NASA KC-135 reduced gravity aircraft. The reduced gravity environment facilitated the study of droplets up to 9 mm in diameter extending the results of previous studies to droplet sizes that are similar to those encountered in recovery boilers. Single black liquor droplets were rapidly inserted into a 923 K oven. The primary independent variables were the initial droplet diameter (0.5 mm to 9 mm), the black liquor solids content (66.12% - 72.9% by mass), and the ambient oxygen mole fraction (0.0 - 0.21). Video records of the experiments provided size and shape of the droplets as a function of time. The results show that the particle diameter at the end of the drying stage (D(sub DRY) ) increases linearly with the initial particle diameter (D(sub O)). The results further show that the ratio of the maximum swollen diameter (D(sub MAX)) to D(sub O) decreases with increasing D(sub O) for droplets with D(sub O) less than 4 mm. This ratio was independent of D(sub O) for droplets with D(sub O) greater than 4 mm. The particle is most spherical at the end of drying, and least spherical at maximum swollen size, regardless of initial sphericity and droplet size.

  8. Pyrolysis of Large Black Liquor Droplets

    NASA Technical Reports Server (NTRS)

    Bartkus, Tadas P.; Dietrich, Daniel L.; T'ien, James S.; Wessel, Richard A.

    2007-01-01

    This paper presents the results of experiments involving the pyrolysis of large black liquor droplets in the NASA KC-135 reduced gravity aircraft. The reduced gravity environment facilitated the study of droplets up to 9 mm in diameter extending the results of previous studies to droplet sizes that are similar to those encountered in recovery boilers. Single black liquor droplets were rapidly inserted into a 923 K oven. The primary independent variables were the initial droplet diameter (0.5 mm to 9 mm), the black liquor solids content (66.12% - 72.9% by mass), and the ambient oxygen mole fraction (0.0 - 0.21). Video records of the experiments provided size and shape of the droplets as a function of time. The results show that the particle diameter at the end of the drying stage (D(sub DRY)) increases linearly with the initial particle diameter (D(sub O)). The results further show that the ratio of the maximum swollen diameter (D(sub MAX)) to D(sub O) decreases with increasing D(sub O) for droplets with D(sub O) less than 4 mm. This ratio was independent of D(sub O) for droplets with D(sub O) greater than 4 mm. The particle is most spherical at the end of drying, and least spherical at maximum swollen size, regardless of initial sphericity and droplet size.

  9. Fuel nitrogen release during black liquor pyrolysis; Part 2: Comparisons between different liquors

    SciTech Connect

    Aho, K.; Nikkanen, S. ); Hupa, M. . Chemical Engineering Dept.)

    1994-08-01

    This continuation of earlier work reports fuel nitrogen release for black liquors at two temperatures during pyrolysis of single droplets in an oxygen-free environment. Approximately half of the 20--60% fuel nitrogen released was ammonia and half was molecular nitrogen. The total amount of fixed nitrogen released during pyrolysis was almost linearly proportional to the liquor nitrogen content. The yield of fixed nitrogen for birch liquors was significantly higher than for pine liquors, and the yield for bagasse liquor was extremely high.

  10. Black liquor decolorization by selected white-rot fungi.

    PubMed

    Da Re, Verónica; Papinutti, Leandro

    2011-09-01

    Five different strains of white-rot fungi have been tested for their ability to decolorize black liquor on plates and on solid-state fermentation using vermiculite as the solid inert support. Since the high salt concentration inhibited the growth of all fungi, the black liquor was dialyzed against distilled water prior to use. A preliminary step on plates was carried out to qualitatively determine the capacity of the fungal strains for black liquor decolorization. Out of the five fungi studied, Phanerochaete sordida, Pycnoporus sanguineus, and Trametes elegans exhibited the more conspicuous decolorization halos in malt extract medium, while the decolorization by all the strains was not evident when a defined culture medium was used. Cultures on solid-state fermentation using vermiculite as solid support were also tested, the liquid phase was malt extract or glucose-based medium and supplemented with different black liquor concentrations. Decolorization of black liquor was largely affected by the fungal strain, the concentration of black liquor, and the carbon source. The percentage of color removal ranged from 6.14% to 91.86% depending on the fungal strain and culture conditions. Maximal decolorization was observed in malt extract cultures after 60 cultivation days. Interestingly, decolorization in malt extract medium increased with increasing black liquor concentration. The highest decolorization value was achieved by Steccherinum sp. which reduced up to 91.86% the color of the black liquor in malt extract medium; this percentage is equivalent to 5.2 g L(-1) of decolorized black liquor, the highest value reported to date. Traditional technologies used for the treatment of black liquor are not always effective and may not to be an environmentally friendly process. Vermiculite-white-rot fungi systems are presented in this work as a promising efficient alternative for the treatment of black liquor. PMID:21499784

  11. Advancement of High Temperature Black Liquor Gasification Technology

    SciTech Connect

    2006-04-01

    In the pulp and paper industry, black liquor gasification (BLG) can enable the recovery of pulping chemicals and production of syngas from the spent liquor accumulated in the pulping process. The syngas can be converted to value-added fuels, chemicals, and electricity, helping to boost the economics of the pulp mill.

  12. Viscoelastic properties of high solids softwood kraft black liquors

    SciTech Connect

    Zaman, A.A.; Fricke, A.L. . Dept. of Chemical Engineering)

    1995-01-01

    The linear viscoelastic functions of several softwood slash pine kraft black liquors from a two level, four variable factorially designed pulping experiment were determined for solids concentrations from 65% to 81% and temperatures from 40 to 85 C. At high solids and lower temperatures, black liquors behave like un-cross-linked polymers.The exact level of dynamic viscosity and storage modulus at any given condition is dependent upon the solids composition which will vary from liquor to liquor. The linear viscoelastic functions were described using Cross and Carreau-Yasuda models. Superposition principles developed for polymer melts and concentrated polymer solutions were applied to obtain reduced correlations for dynamic viscosity and storage modulus. The data for dynamic viscosity were shifted over the whole range of temperature, solids concentrations, and frequency, and a single curve for dynamic viscosity behavior of every liquor was obtained. The data for storage modulus did not superimpose into a single curve for the effects of solids concentration. The reduced correlations were used to estimate the viscoelasticity of the liquors near normal firing conditions and found that black liquors will not have any problem in droplet formation for concentrations up to 81% solids and temperatures above 120 C. The viscometric and linear viscoelastic functions of black liquors were compared (Cox-Merz rule), and it was shown that at sufficiently low shear rates and frequencies both shear viscosity and the magnitude of the complex viscosity approach zero shear rate viscosity.

  13. Demonstration of Black Liquor Gasification at Big Island

    SciTech Connect

    Robert DeCarrera

    2007-04-14

    This Final Technical Report provides an account of the project for the demonstration of Black Liquor Gasification at Georgia-Pacific LLC's Big Island, VA facility. This report covers the period from May 5, 2000 through November 30, 2006.

  14. Investigation of Pressurized Entrained-Flow Kraft Black Liquor Gasification in an Industrially Relevant Environment

    SciTech Connect

    Kevin Whitty

    2008-06-30

    pressures as high as 32 atmospheres, and at temperatures as high as 1500 C (2730 F). Total black liquor processing capacity under pressurized, oxygen-blown conditions should be in excess of 1 ton black liquor solids per day. Many sampling ports along the conversion section of the system will allow detailed analysis of the environment in the gasifier under industrially representative conditions. Construction was mostly completed before the program was terminated, but resources were insufficient to operate the system. A system for characterizing black liquor sprays in hot environments was designed and constructed. Silhouettes of black liquor sprays formed by injection of black liquor through a twin fluid (liquor and atomizing air) nozzle were videoed with a high-speed camera, and the resulting images were analyzed to identify overall characteristics of the spray and droplet formation mechanisms. The efficiency of liquor atomization was better when the liquor was injected through the center channel of the nozzle, with atomizing air being introduced in the annulus around the center channel, than when the liquor and air feed channels were reversed. Atomizing efficiency and spray angle increased with atomizing air pressure up to a point, beyond which additional atomizing air pressure had little effect. Analysis of the spray patterns indicates that two classifications of droplets are present, a finely dispersed 'mist' of very small droplets and much larger ligaments of liquor that form at the injector tip and form one or more relatively large droplets. This ligament and subsequent large droplet formation suggests that it will be challenging to obtain a narrow distribution of droplet sizes when using an injector of this design. A model for simulating liquor spray and droplet formation was developed by Simulent, Inc. of Toronto. The model was able to predict performance when spraying water that closely matched the vendor specifications. Simulation of liquor spray indicates that

  15. Proceedings of the black liquor research program review fifth meeting

    SciTech Connect

    Not Available

    1988-09-01

    On June 14--17, 1988 the participants and invited guests of the Cooperative Program in Kraft Recovery gathered in Charleston, South Carolina, to review progress on four major black liquor research programs being executed at the Institute of Paper Chemistry, the University of Maine, the National Bureau of Standards, and the University of Florida. These programs include: (1) Black Liquor Properties; (2) Black Liquor Droplet Formation; (3) Black Liquor Nozzle Evaluation; and (4) Black Liquor Combustion. In addition to the objectives of previous meetings, this meeting made a direct attempt to gather ideas on how to improve our ability to move from new technology concepts to commercial implementation. Also attached is the agenda for the Charleston meeting. The first two days were involved with updates and reviews of the four major black liquor programs. A half day was spent discussing pathways to implementation and developing thoughts on what industry, DOE and academia could do to facilitate commercial implementation of the research results. This publication is a summary of the presentations made in Charleston and the industry responses to the research work. Readers are cautioned that the contents are in-progress updates on the status of the research and do not represent referred technical papers. Any questions regarding the content should be referred to the principal investigators of the project.

  16. Recaustization of kraft black liquor via bipolar electrodialysis

    SciTech Connect

    Koumoundouros, J.A.; Oshen, S.; Lynch, J.D.

    1990-05-01

    The US Department of Energy in conjunction with HPD Inc. supported a research program to perform a laboratory feasibility study with various black liquor samples for the recaustization of these samples via bipolar electrodialysis. The research was conducted at the HPD pilot plant facility in Plainfield, Illinois, beginning in April 1989. This report is a summary of the work completed thru November 1989. The program was designed to operate the electrodialyzer in order to obtain performance and engineering data such as current efficiency, power consumption per gram of NaOH produced, and assess fouling and/or membrane durability. Prior to the electrodialysis laboratory runs, the black liquor samples were pretreated in order to remove as much lignin as possible. The black liquor samples were air oxidized, acidified to pH = 9.0 and pH = 2.0 and later filtered via a Buchner funnel under vacuum. The filtrate was then utilized to become the feed to the electrodialysis stack. Initial test runs were performed with synthetic solutions of either sodium sulfate or sodium bicarbonate in order to determine acceptable operating current, power, current efficiencies, and fouling behavior. A second set of test were conducted with a series of four Southern Kraft black liquor samples. Based on the results of this study, it was determined that the use of bipolar electrodialysis for producing a caustic stream and an acidified black liquor stream is feasible and was demonstrated. 9 refs., 27 figs., 32 tabs.

  17. Binding and desulfurization characteristics of pulp black liquor in biocoalbriquettes.

    PubMed

    Kim, Heejoon; Lu, Guoqing; Li, Tianji; Sadakata, Masayoshi

    2002-04-01

    To control pollutant emissions from coal combustion in some developing countries, biocoalbriquette, an artificially produced solid fuel, was developed. Both the breaking strength and production costs of the biocoalbriquette have become essentially the most important factors in popularizing it in these countries. To increase the breaking strength and decrease the production costs, it is proposed in this study to use pulp black liquor, a byproduct from the pulp production industry, as a binder. The influences of pulp black liquor on the briquetting and combustion characteristics were investigated. Furthermore, the desulfurization characteristics of pulp black liquor were also evaluated through combustion experiments. The study results show that the briquetting pressure has a limited effect on the breaking strength. An increase in the briquetting pressure yields greater breaking strength of up to the 50 MPa. Above 50 MPa, the breaking strength changes very little with the briquetting pressure. The use of pulp black liquor has had a greater effect on increasing the breaking strength than on changing the briquetting pressure and also on improving the combustion characteristics of the biocoalbriquette. On the other hand, pulp black liquor has some desulfurization capabilities. When used as a binder, it not only increases the breaking strength and decreases the necessary briquetting pressure, but it also improves some characteristics of the combustion and reduces the pollutants emission. PMID:11999073

  18. Materials evaluations with the pulsed black liquor burner test facility

    SciTech Connect

    Stein, A.

    1997-08-01

    A pulsed burner was designed to provide sufficient heat to convert a fluidized bed of black Kraft liquor into combustible gas which would be used to produce process steam. The pulsed burner design provides a significant increase in the heat transfer capability and consequently significantly increases the efficiency of the conversion process. High temperature corrosion tests were performed in a fluidized bed of black Kraft liquor using a pulsed burner process to determine the optimum materials for use in a commercial application. The materials tested included three different austenitic stainless steels, Type 446 martensitic stainless steel, a high temperature carbon steel, 153MA, and four nickel base alloys. All materials performed well with no corrosion attributed to the environment created by the decomposition of a black Kraft liquor. This behavior was contrary to what was expected due to the high concentration of H{sub 2}S present in the high temperature, 562 C, atmosphere.

  19. Black liquor gasification phase 2D final report

    SciTech Connect

    Kohl, A.L.; Stewart, A.E.

    1988-06-01

    This report covers work conducted by Rockwell International under Amendment 5 to Subcontract STR/DOE-12 of Cooperative Agreement DE-AC-05-80CS40341 between St. Regis Corporation (now Champion International) and the Department of Energy (DOE). The work has been designated Phase 2D of the overall program to differentiate it from prior work under the same subcontract. The overall program is aimed at demonstrating the feasibility of and providing design data for the Rockwell process for gasifying Kraft black liquor. In this process, concentrated black liquor is converted into low-Btu fuel gas and reduced melt by reaction with air in a specially designed gasification reactor.

  20. Sodium and sulfur release and recapture during black liquor burning

    SciTech Connect

    Frederick, W.J.; Iisa, K.; Wag, K.; Reis, V.V.; Boonsongsup, L.; Forssen, M.; Hupa, M.

    1995-08-01

    The objective of this study was to provide data on sulfur and sodium volatilization during black liquor burning, and on SO2 capture by solid sodium carbonate and sodium chloride. This data was interpreted and modeled into rate equations suitable for use in computational models for recovery boilers.

  1. In situ analysis of ash deposits from black liquor combustion

    SciTech Connect

    Bernath, P. |; Sinquefield, S.A. |; Baxter, L.L.; Sclippa, G.; Rohlfing, C.; Barfield, M. |

    1996-05-01

    Aerosols formed during combustion of black liquor cause a significant fire-side fouling problem in pulp mill recovery boilers. The ash deposits reduce heat transfer effectiveness, plug gas passages, and contribute to corrosion. Both vapors and condensation aerosols lead to the formation of such deposits. The high ash content of the fuel and the low dew point of the condensate salts lead to a high aerosol and vapor concentration in most boilers. In situ measurements of the chemical composition of these deposits is an important step in gaining a fundamental understanding of the deposition process. Infrared emission spectroscopy is used to characterize the composition of thin film deposits resulting from the combustion of black liquor and the deposition of submicron aerosols and vapors. New reference spectra of Na{sub 2}SO{sub 4}, K{sub 2}SO{sub 4}, Na{sub 2}CO{sub 3} and K{sub 2}CO{sub 3} pure component films were recorded and compared with the spectra of the black liquor deposit. All of the black liquor emission bands were identified using a combination of literature data and ab initio calculations. Ab initio calculations also predict the locations and intensities of bands for the alkali vapors of interest. 39 refs., 9 figs.

  2. Influence of pressure on pyrolysis of black liquor: 1. Swelling.

    PubMed

    Whitty, Kevin; Backman, Rainer; Hupa, Mikko

    2008-02-01

    This is the first of two papers concerning the behavior of black liquor during pyrolysis under pressurized conditions. Two industrial kraft liquors were pyrolyzed in a laboratory-scale pressurized single particle reactor and a pressurized grid heater at temperatures ranging from 650 to 1100 degrees C and at pressures between 1 and 20 bar. The dimensions of the chars produced were measured and the specific swollen volume was calculated. Swelling decreased roughly logarithmically over the pressure range 1-20 r. An expression is developed to predict the specific swollen volume at elevated pressure when the volume at 1 bar is known. The bulk density of the char increased with pressure, indicating that liquors will be entrained less easily at higher pressures. PMID:17349790

  3. Solvated liquid-lignin fractions from a Kraft black liquor.

    PubMed

    Velez, Julian; Thies, Mark C

    2013-11-01

    A softwood Kraft black liquor was acidified with carbon dioxide at 115°C and 6.2 bar over a pH range of 13.6-9.5, resulting in the precipitation of liquefied-lignin fractions as a separate phase. Seven such "liquid-lignin" fractions were produced, with each fraction being phase-separated within a narrow pH band of 0.5 units. The fractions were found to be highly hydrated phases, containing 32.3-48.2 wt.% water; as a result, their measured melting points were quite low, 90.7-110.5°C. In contrast, no melting point was detected up to 375°C for any of the lignin fractions after drying. Significant reductions in metals content were observed for the lignin fractions compared to the original black-liquor feed. PMID:24054066

  4. Conceptual design of a black liquor gasification pilot plant

    SciTech Connect

    Kelleher, E. G.

    1987-08-01

    In July 1985, Champion International completed a study of kraft black liquor gasification and use of the product gases in a combined cycle cogeneration system based on gas turbines. That study indicated that gasification had high potential as an alternative to recovery boiler technology and offered many advantages. This paper describes the design of the plant, the construction of the pilot plant, and finally presents data from operation of the plant.

  5. Solid fuel production by hydrothermal carbonization of black liquor.

    PubMed

    Kang, Shimin; Li, Xianglan; Fan, Juan; Chang, Jie

    2012-04-01

    Formaldehyde was used as a polymerization agent to perform hydrothermal carbonization of black liquor for solid fuel production from 220 to 285°C. Compared to hydrochar prepared without formaldehyde, hydrochar produced in the presence of a 2.8wt.% formaldehyde solution (hydrochar-F) had 1.27-2.13 times higher yield, 1.02-1.36 times higher heating value (HHV), 1.20-2.31 times higher C recovery efficiency, 1.20-2.44 times higher total energy recovery efficiency, 0.51-0.64 times lower sulfur content, and 0.48-0.89 times lower ash content. The HHV of hydrochar-Fs ranged from 2.2×10(4) to 3.0×10(4)kJ/kg, while the HHV of hydrochar-F produced at 285°C was 1.90 times greater than that of the raw material (black liquor solid). These considerable improvements indicated that formaldehyde was an effective additive in hydrothermal carbonization of black liquor. PMID:22330593

  6. Recovery of solvent and by-products from organosolv black liquor

    SciTech Connect

    Botello, J.I.; Gilarranz, M.A.; Rodriguez, F.; Oliet, M.

    1999-09-01

    The recovery of alcohol and by-products from ethanol-water and methanol-water pulping liquors was studied. The recovery system proposed consists of three stages: black liquor flashing, lignin precipitation, and precipitation distillation of mother liquor. At the flash stage, 47 and 51% of the alcohol in the black liquor are recovered for ethanol and methanol processes, respectively. The lignin recovery yield at the precipitation stage is 67% for ethanol black liquor and 73% for methanol black liquor. The distillation of precipitation mother liquors enables recovery of 98% ethanol and 96% methanol from this stream as distillate, whereas the distillation residue contains significant amounts of sugars, furfural, and acetic acid that can be recovered. The study concludes with the overall mass balance for the recovery system proposed.

  7. Freeze crystallization technology for Kraft black liquor concentration. Third report

    SciTech Connect

    Johnson, W.E.; Rhodes, C.R.

    1985-04-01

    About 25% of the purchased energy in the pulp and paper industry is used to concentrate black liquor. The technical feasibility of using freeze concentration to supplement evaporation has been successfully demonstrated, and results indicate that energy consumption can be reduced 45%. After compiling a considerable data base on the characteristics of black liquor at low temperature and after developing a computer program to aid analysis, the process chosen was vacuum freezing-vapor absorption (VFVA). A pilot plant was built and operated; however, due to problems with crystallization of the absorbent and contamination, it was found that maintaining the conditions necessary for a continuous process was not practical at the present state of development. Therefore, indirect freezing was used for all subsequent work. This required the design and fabrication of a simple shuttle crystallizer to replace scraped surface units conventionally used. CSI also developed an integrated ice separation column that combined crystal growth, a concentration gradient, and washing all in one unit. Finally, extensive heat transfer coefficient data were collected so that a preliminary design could be completed for a 350 TPD industrial freeze concentration unit. An economic analysis was calculated in order to compare using evaporation and freeze concentration to process the increased liquor flow from a pulp mill expansion. A 200,000 lb/hr freezing unit used to preconcentrate the mill's entire stream up to 18.7% solids would save $10 to $16 per ton of pulp.

  8. Treatment of black liquor from the papermaking industry by acidification and reuse.

    PubMed

    Yang, Wen-Bo; Mu, Huan-Zhen; Huang, Yan-Chu

    2003-09-01

    Two different kinds of black liquor from the papermaking industry were treated by acidification and reuse. The experimental parameters and conditions were discussed in detail. The experimental results indicated that the treatment process mentioned in this article is an effective process for the treatment of black liquor from the papermaking industry. By the treatment, the solid materials in black liquor are transferred into two by-products and the other components are reused or evaporated. Thus, no wastewater except some condensation water would be discharged in pulping process and the problem of pollution of black liquor would be effectively solved. PMID:14562934

  9. A comprehensive program to develop correlations for physical properties of kraft black liquor. Final report

    SciTech Connect

    Fricke, A.L.; Zaman, A.A.

    1998-05-01

    The overall objective of the program was to develop correlations to predict physical properties within requirements of engineering precision from a knowledge of pulping conditions and of kraft black liquor composition, if possible. These correlations were to include those relating thermodynamic properties to pulping conditions and liquor composition. The basic premise upon which the research was based is the premise that black liquor behaves as a polymer solution. This premise has proven to be true, and has been used successfully in developing data reduction methods and in interpreting results. A three phase effort involving pulping, analysis of liquor composition, and measurement of liquor properties was conducted.

  10. DEMONSTRATION OF BLACK LIQUOR GASIFICATION AT BIG ISLAND

    SciTech Connect

    Robert DeCarrera

    2003-10-20

    This Technical Progress Report provides an account of the status of the project for the demonstration of Black Liquor Gasification at Georgia-Pacific Corporation's Big Island, VA facility. The report also includes budget information and a milestone schedule. The project to be conducted by G-P is a comprehensive, complete commercial-scale demonstration that is divided into two phases. Phase I is the validation of the project scope and cost estimate. Phase II is project execution, data acquisition and reporting, and consists of procurement of major equipment, construction and start-up of the new system. Phase II also includes operation of the system for a period of time to demonstrate the safe operation and full integration of the energy and chemical recovery systems in a commercial environment. The objective of Phase I is to validate the process design and to engineer viable solutions to any technology gaps. This phase includes engineering and planning for the integration of the full-scale MTCI/StoneChem PulseEnhanced{trademark} black liquor steam-reformer chemical recovery system into G-P's operating pulp and paper mill at Big Island, Virginia. During this phase, the scope and cost estimate will be finalized to confirm the cost of the project and its integration into the existing system at the mill. The objective of Phase II of the project is the successful and safe completion of the engineering, construction and functional operation of the fully integrated full-scale steam reformer process system. This phase includes installation of all associated support systems and equipment required for the enhanced recovery of both energy and chemicals from all of the black liquor generated from the pulping process at the Big Island Mill. The objective also includes operation of the steam reformer system to demonstrate the ability of the system to operate reliably and achieve designed levels of energy and chemical recovery while maintaining environmental emissions at or below

  11. Bacterial decolorization of black liquor in axenic and mixed condition and characterization of metabolites.

    PubMed

    Chandra, Ram; Abhishek, Amar

    2011-06-01

    The pulping byproducts (black liquor) cause serious environmental problem due to its high pollution load. In order to search the degradability of black liquor, the potential bacterial strains Citrobacter freundii (FJ581026) and Citrobacter sp. (FJ581023) were applied in axenic and mixed condition. Results revealed that the mixed bacterial culture are more effective than axenic condition and can reduce 82% COD, 79% AOX, 79% color and 60% lignin after 144 h of incubation period. Additionally, the optimum activity of lignin degrading enzyme was noted at 96 h and characterized as manganese peroxidase (MnP) by SDS–PAGE analysis. Further, the HPLC analysis of control and bacterial degraded sample has shown the reduction as well as shifting of peaks compared to control indicating the degradation as well as transformation of compounds of black liquor. The comparative GC-MS analysis of control and degraded black liquor revealed that along with lignin fragment some chlorophenolic compounds 2,4,6-trichlorophenol, 2,3,4,5-tetrachlorophenol and pentachlorophenol were detected in black liquor degraded by axenic culture whereas these chlorophenolic compounds were completely absent in black liquor degraded by mixed bacterial culture. These chlorophenol inhibit the oxidative degradation which seems a major reason behind the low degradability of axenic degradation compared to mixed culture. The innovation of this aerobic treatment of alkaline black liquor opens additional possibilities for the better treatment of black liquor along with its metabolic product. PMID:21061144

  12. Polymerisation of Kraft lignin from black liquors by laccase from Myceliophthora thermophila: effect of operational conditions and black liquor origin.

    PubMed

    Gouveia, S; Fernández-Costas, C; Sanromán, M A; Moldes, D

    2013-03-01

    The capacity of laccase from Myceliophthora thermophila to promote the oxidative polymerisation of Kraft lignin (KL) was evaluated in several conditions of pH, temperature, enzyme dosage and treatment time. Moreover, different black liquors from the Kraft cooking of Eucalyptus globulus and mixture of Pinus pinaster/E. globulus were evaluated in order to determine the effect of the KL source on the polymerisation reaction. Furthermore, one of these black liquors was fractionated by sequential organic solvent fractionation and the polymerisation of the corresponding fractions was tested. Polymerisation products were analysed by size exclusion chromatography and Fourier transform infrared spectroscopy. The results provide evidence of notable lignin modifications after incubation with laccase. Structural oxidation and a notably molecular weight increase were attained, reaching a polymer of 69-fold its initial molecular weight depending on the raw lignin. Moreover, optimum values of reaction conditions were obtained: pH 7.3, 70°C, 2UmL(-1) and 2h. PMID:23360704

  13. One-pot quantitative hydrolysis of lignocelluloses mediated by black liquor.

    PubMed

    Zhu, Zuolin; Sun, Meg M; Su, Chungao; Zhao, Hongmei; Ma, Xuemei; Zhu, Zuodong; Shi, Xianlei; Gu, Kangfu

    2013-01-01

    Black liquor from the kraft process facilitates quantitative biomass hydrolysis converting cellulose and hemicellulose into organic acids such as lactic acid (~50%), and lignin into small molecular aromatics, without gasification and black tar formation. Oxygen transfer between lignin and carbohydrates may be the mechanism. With this method, three tons of lignocellulosic biomass can potentially produce up to one ton of lactic acid, and one ton of small molecular aromatics. This novel usage of black liquor is environmentally viable because it is accompanied by significant emission reduction of particulates, sulfur and nitrogen oxides, most organic sulfur compounds and sulfites of black liquor were converted into sulfates. PMID:23196243

  14. Ultrafiltration of Kraft Black Liquor: Phase II, Final report

    SciTech Connect

    Hill, M.K.

    1987-09-01

    The major justification for examining ultrafiltration was to lower the viscosity of the Kraft Black Liquor by recovering it as an ultrafiltration permeate from which the highest MW lignin had been removed. The liquor could then be concentrated to a higher percentage solids before firing into the recovery boiler. Consequent energy savings for the 1000 ton/day pulp mill would be 2.05 x 10 Btu/y for each percentage increase in TDS (total dissolved solids) to the recovery boiler. This Phase II report gives data on viscosity with percentage solids of KBL permeates. Another favorable effect of ultrafiltration on the permeate properties is disproportionate removal of multivalent ions including the major scaling ion CaS . If this high-viscosity high-Ca retentate could be treated to lower its viscosity and to release the Ca in a non-scaling form, this would enhance the possibility that ultrafiltration might be useful in a mill situation. Included in this report are data on the results of treating the retentate fraction. Other justifications for this program included further information in KBL properties: lignin MW in the KBL at high pH; elemental and sugar analyses; and differential properties of lignins in the retentate and the permeate fractions. A preliminary economic analysis of ultrafiltration is contained in this report. These analyses indicate that with flux rates now attainable, ultrafiltration would not be economically justified at this time if the only justification is to lower KBL viscosity. For certain situations where high Ca liquors present a scaling problem, especially in an evaporator-limited mill, the economics are more favorable. There are also unsolved problems relating to the use of the high viscosity retentate.

  15. Vapor pressure and boiling point elevation of slash pine black liquors: Predictive models with statistical approach

    SciTech Connect

    Zaman, A.A.; McNally, T.W.; Fricke, A.L.

    1998-01-01

    Vapor-liquid equilibria and boiling point elevation of slash pine kraft black liquors over a wide range of solid concentrations (up to 85% solids) has been studied. The liquors are from a statistically designed pulping experiment for pulping slash pine in a pilot scale digester with four cooking variables of effective alkali, sulfidity, cooking time, and cooking temperature. It was found that boiling point elevation of black liquors is pressure dependent, and this dependency is more significant at higher solids concentrations. The boiling point elevation data at different solids contents (at a fixed pressure) were correlated to the dissolved solids (S/(1 {minus} S)) in black liquor. Due to the solubility limit of some of the salts in black liquor, a change in the slope of the boiling point elevation as a function of the dissolved solids was observed at a concentration of around 65% solids. An empirical method was developed to describe the boiling point elevation of each liquor as a function of pressure and solids mass fraction. The boiling point elevation of slash pine black liquors was correlated quantitatively to the pulping variables, using different statistical procedures. These predictive models can be applied to determine the boiling point rise (and boiling point) of slash pine black liquors at processing conditions from the knowledge of pulping variables. The results are presented, and their utility is discussed.

  16. Kinetics of gasification of black liquor char by steam

    SciTech Connect

    Li, J.; van Heiningen, A.R.P. )

    1991-07-01

    This paper reports on the steam gasification kinetics of kraft black liquor char that were studied in a thermogravimetric analysis reactor. The effect of steam and hydrogen concentration on gasification rate can be described by Langmuir-Hinshelwood type kinetics. An activation energy of 210 kJ/mol was obtained. Methane formation was negligible, and H{sub 2}S was the major gaseous sulfur-containing product obtained over the temperature range studied, 873-973 K. The CO{sub 2} concentration was higher than calculated for the water-shift reaction at equilibrium. A gasification mechanism is proposed whereby CO{sub 2} is one of the primary gasification products.

  17. INVESTIGATION OF FUEL CHEMISTRY AND BED PERFORMANCE IN A FLUIDIZED BED BLACK LIQUOR STEAM REFORMER

    SciTech Connect

    Kevin Whitty

    2003-12-01

    The University of Utah project ''Investigation of Fuel Chemistry and Bed Performance in a Fluidized Bed Black Liquor Steam Reformer'' (DOE award number DE-FC26-02NT41490) was developed in response to a solicitation for projects to provide technical support for black liquor and biomass gasification. The primary focus of the project is to provide support for a DOE-sponsored demonstration of MTCI's black liquor steam reforming technology at Georgia-Pacific's paper mill in Big Island, Virginia. A more overarching goal is to improve the understanding of phenomena that take place during low temperature black liquor gasification. This is achieved through five complementary technical tasks: (1) construction of a fluidized bed black liquor gasification test system, (2) investigation of bed performance, (3) evaluation of product gas quality, (4) black liquor conversion analysis and modeling and (5) computational modeling of the Big Island gasifier. Four experimental devices have been constructed under this project. The largest facility, which is the heart of the experimental effort, is a pressurized fluidized bed gasification test system. The system is designed to be able to reproduce conditions near the black liquor injectors in the Big Island steam reformer, so the behavior of black liquor pyrolysis and char gasification can be quantified in a representative environment. The gasification test system comprises five subsystems: steam generation and superheating, black liquor feed, fluidized bed reactor, afterburner for syngas combustion and a flue gas cooler/condenser. The three-story system is located at University of Utah's Industrial Combustion and Gasification Research Facility, and all resources there are available to support the research.

  18. A novel method for the determination of black liquor viscosity by multiple headspace extraction gas chromatography.

    PubMed

    Hu, Hui-Chao; Chai, Xin-Sheng

    2013-12-13

    This work demonstrates a novel method for the determination of viscosity in the concentrated black liquors from pulp mill recovery process. The method is based on the kinetic release of methanol (a vapor tracer) to the headspace in a sample closed vial by a multiple headspace extraction gas chromatographic technique. Both theoretical and empirical models were proposed for establishing the correlation with the reference method. The results showed that the correlation using either of the models is excellent for the tested black liquor samples (at 110°C). The presented method is simple and practical and can be a valuable tool for black liquor viscosity related research and applications. PMID:24210298

  19. Investigation of Fuel Chemistry and Bed Performance in a Fluidized Bed Black Liquor Steam Reformer

    SciTech Connect

    Kevin Whitty

    2007-06-30

    University of Utah's project entitled 'Investigation of Fuel Chemistry and Bed Performance in a Fluidized Bed Black Liquor Steam Reformer' (DOE Cooperative Agreement DE-FC26-02NT41490) was developed in response to a solicitation released by the U.S. Department of Energy in December 2001, requesting proposals for projects targeted towards black liquor/biomass gasification technology support research and development. Specifically, the solicitation was seeking projects that would provide technical support for Department of Energy supported black liquor and biomass gasification demonstration projects under development at the time.

  20. Biomass gasification project gets funding to solve black liquor safety and landfill problems

    SciTech Connect

    Black, N.P.

    1991-02-01

    This paper reports on biomass gasifications. The main by-product in pulp making is black liquor from virgin fiber; the main by-product in paper recycling is fiber residue. Although the black liquor is recycled for chemical and energy recovery, safety problems plague the boilers currently used to do this. The fiber residue is usually transported to a landfill. The system being developed by MTCI will convert black liquor and fiber residue into a combustible gas, which can then be used for a wide variety of thermal or power generation applications.

  1. A new pulping process for wheat straw to reduce problems with the discharge of black liquor.

    PubMed

    Huang, Guolin; Shi, Jeffrey X; Langrish, Tim A G

    2007-11-01

    Aqueous ammonia mixed with caustic potash as wheat straw pulping liquor was investigated. The caustic potash did not only reduce the NH3 usage and cooking time, but also provided a potassium source as a fertilizer in the black liquor. Excess NH3 in the black liquor was recovered and reused by batch distillation with a 98% recovery rate of free NH3. The black liquor was further treated for reuse by coagulation under alkaline conditions. The effects of different flocculation conditions, such as the dosage of 10% aluminium polychloride, the dosage of 0.1% polyacrylamide, the reaction temperature and the pH of the black liquor on the flocculating process were studied. The supernatant was recycled as cooking liquor by adding extra NH4OH and KOH. The amount of delignification and the pulp yield for the process remained steady at 82-85% and 48-50%, respectively, when reusing the supernatant four times. The coagulated residues could be further processed as solid fertilizers. This study provided a new pulping process for wheat straw to reduce problems of discharge black liquor. PMID:17092702

  2. A comprehensive program to develop correlations for physical properties of kraft black liquor. Final report

    SciTech Connect

    Fricke, A.L.; Zaman, A.A.; Stoy, M.O.; Schmidl, G.W.; Dong, D.J.; Speck, B.

    1998-04-01

    A wide variety of experimental techniques have been used in this work, and many of these have been developed completely or improved significantly in the course of the research done during this program. Therefore, it is appropriate to describe these techniques in detail as a reference for future workers so that the techniques can be used in future work with little additional effort or so that the results reported from this program can be compared better with future results from other work. In many cases, the techniques described are for specific analytical instruments. It is recognized that these may be superseded by future developments and improvements in instrumentation if a complete description of techniques used successfully in the past on other instrumentation is available. The total pulping and liquor preparation research work performed included chip and white liquor preparation, digestion, pulp washing, liquor and wash recovery, liquor sampling, weak liquor concentration in two steps to about 45--50% solids with an intermediate soap skimming at about 140F and 27--30% solids, determination of pulp yield and Kappa number, determination of total liquor solids, and a check on the total material balance for pulping. All other research was performed either on a sample of the weak black liquor (the combined black liquor and washes from the digester) or on the skimmed liquor that had been concentrated.

  3. Black liquor fractionation for biofuels production - a techno-economic assessment.

    PubMed

    Mesfun, Sennai; Lundgren, Joakim; Grip, Carl-Erik; Toffolo, Andrea; Nilsson, Rasika Lasanthi Kudahettige; Rova, Ulrika

    2014-08-01

    The hemicelluloses fraction of black liquor is an underutilized resource in many chemical pulp mills. It is possible to extract and separate the lignin and hemicelluloses from the black liquor and use the hemicelluloses for biochemical conversion into biofuels and chemicals. Precipitation of the lignin from the black liquor would consequently decrease the thermal load on the recovery boiler, which is often referred to as a bottleneck for increased pulp production. The objective of this work is to techno-economically evaluate the production of sodium-free lignin as a solid fuel and butanol to be used as fossil gasoline replacement by fractionating black liquor. The hydrolysis and fermentation processes are modeled in Aspen Plus to analyze energy and material balances as well as to evaluate the plant economics. A mathematical model of an existing pulp and paper mill is used to analyze the effects on the energy performance of the mill subprocesses. PMID:24950095

  4. Effect of pulsation on black liquor gasification. Final report

    SciTech Connect

    Zinn, B.T.; Jagoda, J.; Jeong, H.; Kushari, A.; Rosen, L.J.

    1998-12-01

    Pyrolysis is an endothermic process. The heat of reaction is provided either by partial combustion of the waste or by heat transfer from an external combustion process. In one proposed system black liquor is pyrolized in a fluidized bed to which heat is added through a series of pulse combustor tail pipes submerged in the bed material. This system appears promising because of the relatively high heat transfer in pulse combustors and in fluidized beds. Other advantages of pulse combustors are discussed elsewhere. The process is, however, only economically viable if a part of the pyrolysis products can be used to fire the pulse combustors. The overall goals of this study were to determine: (1) which is the limiting heat transfer rate in the process of transferring heat from the hot combustion products to the pipe, through the pipe, from the tail pipe to the bed and through the bed; i.e., whether increased heat transfer within the pulse combustor will significantly increase the overall heat transfer rate; (2) whether the heat transfer benefits of the pulse combustor can be utilized while maintaining the temperature in the bed within the narrow temperature range required by the process without generating hot spots in the bed; and (3) whether the fuel gas produced during the gasification process can be used to efficiently fire the pulse combustor.

  5. A comprehensive program to develop correlations for the physical properties of kraft black liquors. Interim report No.3

    SciTech Connect

    Fricke, A.L.; Dong, D.J.; Schmidl, G.W.; Stoy, M.A.; Zaman, A.A.

    1993-09-01

    The black liquor properties program has conducted a systematic collection data of properties, liquor composition, and lignin characteristics. Complete data, except for some density data, has been collected for Slash Pine black liquors made by experimental pulping at a total of 25 different pulping conditions that cover the entire range used for commercial pulping. In addition, complete data has been collected for some mill liquors and partial properties or composition data has been collected on Slash Pine black liquors made at 16 different pulping conditions and some mill liquors. Data reduction methods have been developed or extended for correlation of viscosity, heat capacity, heat of dilution, and density. Correlation of properties to pulping conditions and of composition to pulping conditions has begun. In most cases, data reduction methods have been developed that are fundamentally based and that have been shown to be generally applicable to all black liquors. While it has not proven to be possible to include research for comprehensive correlations for properties for liquors from other species, we have shown that the behavior of liquors made from other species is similar to that which has been explored extensively for Slash Pine liquors. This report reviews the methods used, describes examples of data reduction methods that have been developed, and presents some preliminary results for correlation of liquor composition and properties to pulping conditions for Slash Pine black liquors.

  6. Optical properties of black liquor and refractometric methods for monitoring the solid residue concentration in sulfate cellulose production

    NASA Astrophysics Data System (ADS)

    Belov, N. P.; Lapshov, S. N.; Mayorov, E. E.; Sherstobitova, A. S.; Yaskov, A. D.

    2012-07-01

    Measurements of the refractive index, its temperature dependence, and the optical transmission of black liquors produced during sulfate pulping are reported for soluble solid residue concentrations up to k ≅ 60 %. The design features of a commercial refractometer for monitoring the concentration of black liquor are examined briefly. A procedure is proposed for laboratory calibration of commercial sensors that employs black liquor solutions in highly refractive organic liquids as reference samples.

  7. Correlations for viscosity of kraft black liquors at low solids concentrations

    SciTech Connect

    Zaman, A.A.; Fricke, A. . Dept. of Chemical Engineering)

    1994-01-01

    The kinematic viscosities of several kraft black liquors from a two-level, four-variables, factorial-designed experiments for pulping slash pine were determined for solids concentrations from 10 to 50% and temperatures up to 80 C by glass capillary methods. The four pulping variables were cooking time, cooking temperature, sulfidity, and effective alkali. Relationships between temperature and kinematic viscosity have been developed by using free volume and absolute rate theories. The results from these two methods have been compared and discussed. A reduced variables method for dilute polymer solutions was used to correlate the viscosity with the combined effect of temperature and solids concentration. The viscosity of black liquor is an important parameter in the design and performance of kraft recovery systems. The energy efficiency will be increased by firing black liquors at higher solids concentrations. To evaporate the liquor most efficiently and to achieve higher concentrations, knowledge of viscosity over a wide range of temperatures and solids concentrations is essential. The purpose of this study is to evaluate the utility of various fundamentally based models for correlating viscosity data of black liquors as a function of temperature and concentration of nonvolatile components in the region in which the liquors behave a Newtonian fluids.

  8. Mill Integration-Pulping, Stream Reforming and Direct Causticization for Black Liquor Recovery

    SciTech Connect

    Adriaan van Heiningen

    2007-06-30

    MTCI/StoneChem developed a steam reforming, fluidized bed gasification technology for biomass. DOE supported the demonstration of this technology for gasification of spent wood pulping liquor (or 'black liquor') at Georgia-Pacific's Big Island, Virginia mill. The present pre-commercial R&D project addressed the opportunities as well as identified negative aspects when the MTCI/StoneChem gasification technology is integrated in a pulp mill production facility. The opportunities arise because black liquor gasification produces sulfur (as H{sub 2}S) and sodium (as Na{sub 2}CO{sub 3}) in separate streams which may be used beneficially for improved pulp yield and properties. The negative aspect of kraft black liquor gasification is that the amount of Na{sub 2}CO{sub 3} which must be converted to NaOH (the so called causticizing requirement) is increased. This arises because sulfur is released as Na{sub 2}S during conventional kraft black liquor recovery, while during gasification the sodium associated Na{sub 2}S is partly or fully converted to Na{sub 2}CO{sub 3}. The causticizing requirement can be eliminated by including a TiO{sub 2} based cyclic process called direct causticization. In this process black liquor is gasified in the presence of (low sodium content) titanates which convert Na{sub 2}CO{sub 3} to (high sodium content) titanates. NaOH is formed when contacting the latter titanates with water, thereby eliminating the causticizing requirement entirely. The leached and low sodium titanates are returned to the gasification process. The project team comprised the University of Maine (UM), North Carolina State University (NCSU) and MTCI/ThermoChem. NCSU and MTCI are subcontractors to UM. The principal organization for the contract is UM. NCSU investigated the techno-economics of using advanced pulping techniques which fully utilize the unique cooking liquors produced by steam reforming of black liquor (Task 1). UM studied the kinetics and agglomeration problems of

  9. A comprehensive program to develop correlations for the physical properties of Kraft black liquor. Interim report No. 3

    SciTech Connect

    Fricke, A.L.; Dong, D.J.; Schmidl, G.W.; Stoy, M.A.; Zaman, A.A.

    1993-09-01

    The black liquor properties program has been conducted over this last period so as to systematically collect data on properties, liquor composition, and lignin characteristics very carefully by methods that have developed during this program. Complete data has been collected for Slash Pine black liquors made by experimental pulping at different pulping conditions. In addition, data has been collected for mill liquors and partial properties or composition data has been collected on Slash Pine black liquors. Data reduction methods have been developed or extended for correlation of viscosity, heat capacity, heat of dilution, and density. Correlation of properties to pulping conditions and of composition to. pulping conditions has begun. In most cases, data reduction methods have been developed that are fundamentally based and that have been shown to be generally applicable to all black liquors. In the near future, we fully expect to accomplish our goal of developing generalized correlations relating physical properties of Slash Pine kraft black liquors to liquor composition. This interim report reviews the methods used, describes examples of data reduction methods that have been developed, and presents some preliminary results for correlation of liquor composition and properties to pulping conditions for Slash Pine black liquors.

  10. Improved Materials for High-Temperature Black Liquor Gasification

    SciTech Connect

    Keiser, J.R.; Hemrick, J.G.; Gorog, J.P.; Leary, R.

    2006-06-29

    with fusion-cast magnesia-alumina spinel refractory, which appears to be the most resistant to degradation found to date, exhibiting over a year of service life and expected to be capable of over two years of service life. Regarding the use of refractory mortar, it was found that expansion of the current chrome-alumina mortar when subjected to black liquor smelt is likely contributing to the strains seen on the vessel shell. Additionally, the candidate high-alumina mortar that was originally proposed as a replacement for the current chrome-alumina mortar also showed a large amount of expansion when subjected to molten smelt. A UMR experimental mortar, composed of a phosphate bonded system specifically designed for use with fusion-cast magnesium-aluminum spinel, was found to perform well in the molten smelt environment. Strain gauges installed on the gasifier vessel shell provided valuable information about the expansion of the refractory, and a new set of strain gauges and thermocouples has been installed in order to monitor the loading caused by the currently installed spinel refractory. These results provide information for a direct comparison of the expansion of the two refractories. Measurements to date suggest that the fusion-cast magnesia-alumina spinel is expanding less than the fusion-cast {alpha}/{beta}-alumina used previously. A modified liquor nozzle was designed and constructed to test a number of materials that should be more resistant to erosion and corrosion than the material currently used. Inserts made of three erosion-resistant metallic materials were fabricated, along with inserts made of three ceramic materials. The assembled system was sent to the New Bern mill for installation in the gasifer in 2005. Following operation of the gasifier using the modified nozzle, inserts should be removed and analyzed for wear by erosion/corrosion. Although no materials have been directly identified for sensor/thermocouple protection tubes, several of the

  11. Dynamic air deposited coatings for power and black liquor recovery boilers

    SciTech Connect

    Verstak, A.A.; Baranovski, V.E.

    1999-11-01

    Dynamic Air Deposition (DyAir) is a novel coating method designed to protect the tubing of power and black liquor recovery boilers against corrosion attack at elevated temperatures. The method utilizes the energy of combustion of gaseous fuel and air to heat the powder material to a temperature just below its melting point and accelerate it over 600 m/s to form a coating. The Ni-Cr and Ni-Cr-Mo DyAir coatings revealed no gas permeability and extremely low oxygen content. Compared to the electric arc and HVOF-sprayed coatings, the DyAir coatings exhibited higher hardness and better crack resistance. During aging at 400 and 700 C the bond strength and crack resistance of the DyAir coatings increased dramatically due to intensive diffusion processes in absence of internal corrosion attack. The DyAir coatings revealed outstanding resistance to corrosion, such as sulfidation attack in presence of hydrochloric acid gas at 400 C, oxidation attack at 700 C and oxidation attack in presence of chlorine at 400 C.

  12. Fuel nitrogen release during black liquor pyrolysis; Part 1: Laboratory measurements at different conditions

    SciTech Connect

    Aho, K.; Vakkilainen, E. ); Hupa, M. . Chemical Engineering Dept.)

    1994-05-01

    Fuel nitrogen release during black liquor pyrolysis is high. There is only minor release during the drying stage. Ammonia is the main fixed nitrogen species formed. The rate of fixed nitrogen release increases with increasing temperature. The level of fixed nitrogen released by birch liquor is almost twice the level for pine liquor. Assuming complete conversion to NO, fixed nitrogen yields gave NO concentrations near typically measured values for flue gases in full scale recovery boilers. The purpose of this work was to gain more detailed information about the behavior of the fuel nitrogen in black liquor combustion. The work focused on the pyrolysis or devolatilization of the combustion process. Devolatilization is the stage at which the majority (typically 50--80%) of the liquor organics release from a fuel particle or droplet as gaseous species due to the rapid destruction of the organic macromolecules in the liquor. In this paper, the authors use the terms devolatilization and pyrolysis interchangeably with no difference in their meaning.

  13. High-solids black liquor firing in pulp and paper industry kraft recovery boilers. Quarterly report, Phase 1a: Black liquor gasifier evaluation

    SciTech Connect

    1996-07-01

    This project phase addresses the following workscope: Conduct bench-scale tests of a low temperature, partial combustion gasifier; Prepare a gasifier pilot-plant preliminary design and cost estimate and prepare a budgetary cost estimate of the balance of the program; Outline a test program to evaluate gasification; Prepare an economic/market analysis of gasification and solicit pulp and paper industry support for subsequent phases; and Prepare a final report and conduct a project review prior to commencement of work leading to construction of any pilot scale components or facilities. The primary accomplishments included completion of installation of the bench-scale black liquor gasifier and supporting systems, preparing test plans and related safety procedures and detailed operating procedures, defining the functional design requirements and outlining the test plans for the pilot-scale gasifier, and preparing a preliminary economic assessment of the black liquor gasifier. This work accomplished under Phase 1a during this period is further described by task.

  14. Technical Report Cellulosic Based Black Liquor Gasification and Fuels Plant Final Technical Report

    SciTech Connect

    Fornetti, Micheal; Freeman, Douglas

    2012-10-31

    The Cellulosic Based Black Liquor Gasification and Fuels Plant Project was developed to construct a black liquor to Methanol biorefinery in Escanaba, Michigan. The biorefinery was to be co-located at the existing pulp and paper mill, NewPage’s Escanaba Paper Mill and when in full operation would: • Generate renewable energy for Escanaba Paper Mill • Produce Methanol for transportation fuel of further refinement to Dimethyl Ether • Convert black liquor to white liquor for pulping. Black liquor is a byproduct of the pulping process and as such is generated from abundant and renewable lignocellulosic biomass. The biorefinery would serve to validate the thermochemical pathway and economic models for black liquor gasification. It was a project goal to create a compelling new business model for the pulp and paper industry, and support the nation’s goal for increasing renewable fuels production and reducing its dependence on foreign oil. NewPage Corporation planned to replicate this facility at other NewPage Corporation mills after this first demonstration scale plant was operational and had proven technical and economic feasibility. An overview of the process begins with black liquor being generated in a traditional Kraft pulping process. The black liquor would then be gasified to produce synthesis gas, sodium carbonate and hydrogen sulfide. The synthesis gas is then cleaned with hydrogen sulfide and carbon dioxide removed, and fed into a Methanol reactor where the liquid product is made. The hydrogen sulfide is converted into polysulfide for use in the Kraft pulping process. Polysulfide is a known additive to the Kraft process that increases pulp yield. The sodium carbonate salts are converted to caustic soda in a traditional recausticizing process. The caustic soda is then part of the white liquor that is used in the Kraft pulping process. Cellulosic Based Black Liquor Gasification and Fuels Plant project set out to prove that black liquor gasification could

  15. [Rapid determination of silicon content in black liquor of straw fibrous material].

    PubMed

    Li, Hai-Long; Chai, Xin-Sheng; Zhan, Huai-Yu; Liu, Meng-Ru; Fu, Shi-Yu; Sun, Li-Jin

    2012-06-01

    The present paper reports a novel method for the determination of silicon content in straw fibrous material black liquor based on alpha-Si--Mo heteropoly acid spectrophotometry. The selected conditions were as follows: detection wavelength 360 nm, pH 4.0, and reaction time 10 min. It was found that the acidic soluble lignin in the sample liquor was the major interference species in the silicon content determination. The interference of acidic soluble lignin can be eliminated by hydrogen peroxide-nitric acid digestion method. The present method is not only simple, rapid, stable and less interferential, but also of good measurement precision and accuracy, with the relative standard deviations of 0.9%, and recoveries of 99.0%-102%. It is suitable for use in high silicon content of black liquor routine rapid analyses. PMID:22870666

  16. Physical properties of kraft black liquor. Final report. Phase I

    SciTech Connect

    Fricke, A.L.

    1983-12-01

    Methods were selected, equipment installed, and procedures developed for determining rheological properties; for determining thermal properties (stability, density, thermal expansion, and heat capacity); for purification and characterization of lignin (glass transition, stability, weight average molecular weight, and number average molecular weight); and for performing chemical analyses (negative inorganic ions, positive inorganic ions, acid organic salts, lignin, and total solids). A strategy for pulping to supply test liquors was developed, and a statistically designed pulping experiment was specified for a Southern softwood species. Arrangements were made for performing initial pulping work in an industrial pilot plant, and a preliminary set of pulping experiments were conducted. Liquors from the preliminary pulping experiments were used to test procedures and to determine reproducibility of the experiment. Literature was also surveyed and preliminary selection of designs for a pilot digester, and for equipment to determine surface tension were made.

  17. Pretreatment of corn stover for sugar production with switchgrass-derived black liquor.

    PubMed

    Xu, Jiele; Zhang, Ximing; Cheng, Jay J

    2012-05-01

    To improve the cost-effectiveness of biomass-to-sugar conversion, sodium hydroxide (NaOH) pretreatment of switchgrass was carried out at 21°C using previously determined optimum conditions (2% NaOH (w/v), 6h), and the spent alkaline liquid (black liquor) was collected and used for pretreatment of corn stover, a feedstock exhibiting a higher susceptibility to NaOH attack, for improved enzymatic hydrolysis at a reduced cost. The results showed that, because of the high pH and the appreciable amount of carbohydrates in the black liquor, sugar production during enzymatic hydrolysis of corn stover pretreated with black liquor was comparable to that of biomass pretreated with 1% NaOH. After black liquor pretreatment at the best residence time (24h), the total reducing sugar, glucose, and xylose yields of corn stover reached 478.5, 287.7, and 145.3mg/g raw biomass, respectively, indicating the viability of this novel pretreatment technology. PMID:22357289

  18. Recovering ultraclean lignins of controlled molecular weight from Kraft black-liquor lignins.

    PubMed

    Klett, A S; Chappell, P V; Thies, M C

    2015-08-18

    By operating in a region of liquid-liquid equilibrium, hot acetic acid-water mixtures can be used to simultaneously clean, fractionate, and solvate Kraft black-liquor lignins. Lignin-rich liquid phases of controlled molecular weight with key metals contents reduced to <50 ppm are obtained without a washing step. PMID:26169767

  19. Coliquefaction of coal and black liquor to environmentally acceptable liquid fuels

    SciTech Connect

    Kim, J.; Lalvani, S.B.; Muchmore, C.B.; Akash, B.A.

    1999-11-01

    Previous work in the laboratories has demonstrated that addition to lignin to coal during liquefaction significantly increases the depolymerization of coal and enhances the quality of the liquid products. It is believed that thermolysis of the lignin results in the formation of phenoxyl and other reactive radicals at temperatures too low for significant thermolysis of the coal matrix; such radicals are effective and active intermediates that depolymerize coal by cleaving methylene bridges. It has been reported that alkali is also effective for extraction of liquids from coal. The work presented here combines these two reactive agents by utilizing the black liquor waste stream from the Kraft pulping process for coal depolymerization. That waste stream contains large amounts of lignin and sodium hydroxide, as well as other components. To permit comparative evaluations of the extent of coal depolymerization by coprocessing coal and black liquor, reference runs were performed with tetralin alone, sodium hydroxide in tetralin, and lignin in tetralin. Results indicated that the sodium hydroxide-tetralin system resulted in almost 67% conversion at 375 C, 1 hour. The black liquor system exhibited a lower conversion of 60%, indicating some inhibition of the depolymerization reactions by components in the black liquor.

  20. Estimation of Theaflavins (TF) and Thearubigins (TR) Ratio in Black Tea Liquor Using Electronic Vision System

    NASA Astrophysics Data System (ADS)

    Akuli, Amitava; Pal, Abhra; Ghosh, Arunangshu; Bhattacharyya, Nabarun; Bandhopadhyya, Rajib; Tamuly, Pradip; Gogoi, Nagen

    2011-09-01

    Quality of black tea is generally assessed using organoleptic tests by professional tea tasters. They determine the quality of black tea based on its appearance (in dry condition and during liquor formation), aroma and taste. Variation in the above parameters is actually contributed by a number of chemical compounds like, Theaflavins (TF), Thearubigins (TR), Caffeine, Linalool, Geraniol etc. Among the above, TF and TR are the most important chemical compounds, which actually contribute to the formation of taste, colour and brightness in tea liquor. Estimation of TF and TR in black tea is generally done using a spectrophotometer instrument. But, the analysis technique undergoes a rigorous and time consuming effort for sample preparation; also the operation of costly spectrophotometer requires expert manpower. To overcome above problems an Electronic Vision System based on digital image processing technique has been developed. The system is faster, low cost, repeatable and can estimate the amount of TF and TR ratio for black tea liquor with accuracy. The data analysis is done using Principal Component Analysis (PCA), Multiple Linear Regression (MLR) and Multiple Discriminate Analysis (MDA). A correlation has been established between colour of tea liquor images and TF, TR ratio. This paper describes the newly developed E-Vision system, experimental methods, data analysis algorithms and finally, the performance of the E-Vision System as compared to the results of traditional spectrophotometer.

  1. Effects of black liquor shocks on activated sludge treatment of bleached kraft pulp mill wastewater.

    PubMed

    Morales, Gabriela; Pesante, Silvana; Vidal, Gladys

    2015-01-01

    Kraft pulp mills use activated sludge systems to remove organic matter from effluents. Process streams may appear as toxic spills in treatment plant effluents, such as black liquor, which is toxic to microorganisms of the activated sludge. The present study evaluates the effects of black liquor shocks in activated sludge systems. Four black liquor shocks from 883 to 3,225 mg chemical oxygen demand-COD L(-1) were applied during 24 hours in a continuously operating lab-scale activated sludge system. Removal efficiencies of COD, color and specific compounds were determined. Moreover, specific oxygen uptake rate (SOUR), sludge volumetric index (SVI) and indicator microorganisms were evaluated. Results show that the addition of black liquor caused an increase in COD removal (76-67%) immediately post shock; followed two days later by a decrease (-19-50%). On the other hand, SOUR ranged between 0.152 and 0.336 mgO2 g(-1) volatile suspended solids-VSS• min(-1) during shocks, but the initial value was reestablished at hour 24. When the COD concentration of the shock was higher than 1,014 mg/L, the abundance of stalked ciliates and rotifers dropped. Finally, no changes in SVI were observed, with values remaining in the range 65.8-40.2 mL g(-1) total suspended solids-TSS during the entire operating process. Based on the results, the principal conclusion is that the activated sludge system with the biomass adapted to the kraft pulp effluent could resist a black liquor shock with 3,225 mgCOD L(-1) of concentration during 24 h, under this study's conditions. PMID:25837566

  2. Black liquor combustion validated recovery boiler modeling, five-year report

    SciTech Connect

    Grace, T.M.; Frederick, W.J.; Salcudean, M.; Wessel, R.A.

    1996-08-01

    The objective of this project was to develop a new computer model of a recovery boiler furnace using a computational fluid dynamics (CFD) code specifically tailored to the requirements for solving recovery boiler flows, and using improved submodels for black liquor combustion based on continued laboratory fundamental studies. The project originated in October 1990 and was scheduled to run for four years. At that time, there was considerable emphasis on developing accurate predictions of the physical carryover of macroscopic particles of partially burnt black liquor and smelt droplets out of the furnace, since this was seen as the main cause of boiler plugging. This placed a major emphasis on gas flow patterns within the furnace and on the mass loss rates and swelling and shrinking rates of burning black liquor drops. As work proceeded on developing the recovery boiler furnace model, it became apparent that some recovery boilers encounter serious plugging problems even when physical carryover was minimal. After the original four-year period was completed, the project was extended to address this issue. The objective of the extended project was to improve the utility of the models by including the black liquor chemistry relevant to air emissions predictions and aerosol formation, and by developing the knowledge base and computational tools to relate furnace model outputs to fouling and plugging of the convective sections of the boilers. The work done to date includes CFD model development and validation, acquisition of information on black liquor combustion fundamentals and development of improved burning models, char bed model development, and model application and simplification.

  3. Final technical report. In-situ FT-IR monitoring of a black liquor recovery boiler

    SciTech Connect

    James Markham; Joseph Cosgrove; David Marran; Jorge Neira; Chad Nelson; Peter Solomon

    1999-05-31

    This project developed and tested advanced Fourier transform infrared (FT-IR) instruments for process monitoring of black liquor recovery boilers. The state-of-the-art FT-IR instruments successfully operated in the harsh environment of a black liquor recovery boiler and provided a wealth of real-time process information. Concentrations of multiple gas species were simultaneously monitored in-situ across the combustion flow of the boiler and extractively at the stack. Sensitivity to changes of particulate fume and carryover levels in the process flow were also demonstrated. Boiler set-up and operation is a complex balance of conditions that influence the chemical and physical processes in the combustion flow. Operating parameters include black liquor flow rate, liquor temperature, nozzle pressure, primary air, secondary air, tertiary air, boiler excess oxygen and others. The in-process information provided by the FT-IR monitors can be used as a boiler control tool since species indicative of combustion efficiency (carbon monoxide, methane) and pollutant emissions (sulfur dioxide, hydrochloric acid and fume) were monitored in real-time and observed to fluctuate as operating conditions were varied. A high priority need of the U.S. industrial boiler market is improved measurement and control technology. The sensor technology demonstrated in this project is applicable to the need of industry.

  4. Evaluation of the anaerobic degradation of black liquor from a Kraft pulp plant with addition of organic co-substrates.

    PubMed

    Buzzini, A P; Sakamoto, I K; Varesche, M B; Pires, E C

    2009-01-01

    The purpose of this study was to assess the anaerobic degradation of black liquor with and without additional carbon sources. Batch experiments were conducted using black liquor, from an integrated pulp and paper mill adding ethanol, methanol and nutrients. The PCR/DGGE technique was used to characterize the structure of the microbial community. The addition of extra sources of carbon did not significantly influence the degradation of black liquor under the conditions evaluated and the microbial community was similar in all experiments. It was observed an increase in some members of the archaeal in reactors that had the best efficiencies for removal of black liquor (around 7.5%). Either ethanol or methanol can be used as co-substrates because the produce the same quantitative and qualitative effect. PMID:19587424

  5. Bio-refinery system of DME or CH4 production from black liquor gasification in pulp mills.

    PubMed

    Naqvi, M; Yan, J; Fröling, M

    2010-02-01

    There is great interest in developing black liquor gasification technology over recent years for efficient recovery of bio-based residues in chemical pulp mills. Two potential technologies of producing dimethyl ether (DME) and methane (CH(4)) as alternative fuels from black liquor gasification integrated with the pulp mill have been studied and compared in this paper. System performance is evaluated based on: (i) comparison with the reference pulp mill, (ii) fuel to product efficiency (FTPE) and (iii) biofuel production potential (BPP). The comparison with the reference mill shows that black liquor to biofuel route will add a highly significant new revenue stream to the pulp industry. The results indicate a large potential of DME and CH(4) production globally in terms of black liquor availability. BPP and FTPE of CH(4) production is higher than DME due to more optimized integration with the pulping process and elimination of evaporation unit in the pulp mill. PMID:19767203

  6. Development of viscometers for kraft black liquor. Summary report, Phase 2 and 2A

    SciTech Connect

    Fricke, A.L.; Crisalle, O.D.

    1996-11-01

    This report documents the results of the evaluation of the on-line prototype viscometers for kraft black liquors carried out at the Pilot Plant facilities of the University of Florida. The original plan called for the evaluation of five prototype on-line viscometers along with laboratory bench versions. At a later stage in the project an additional experimental prototype under development at Southwest Research Institute was added. The viscometers are evaluated for accuracy and repeatability under varying process conditions, such as black liquor species, solids content, temperature, flow rate, and contaminants, as well as for maintenance and reliability. This document reports extensive results of the evaluations and recommendations for design modifications and for the installation of the instruments in industrial pulping mills for further field evaluations in Phase 3 of the project. The report also documents relevant details of the final design of the pilot flow loop used to support the experiments.

  7. Comparison of Refractory Performance in Black Liquor Gasifiers and a Smelt Test System

    SciTech Connect

    Peascoe, RA

    2001-09-25

    Prior laboratory corrosion studies along with experience at the black liquor gasifier in New Bern, North Carolina, clearly demonstrate that serious material problems exist with the gasifier's refractory lining. Mullite-based and alumina-based refractories used at the New Bern facility suffered significant degradation even though they reportedly performed adequately in smaller scale systems. Oak Ridge National Laboratory's involvement in the failure analysis, and the initial exploration of suitable replacement materials, led to the realization that a simple and reliable, complementary method for refractory screening was needed. The development of a laboratory test system and its suitability for simulating the environment of black liquor gasifiers was undertaken. Identification and characterization of corrosion products were used to evaluate the test system as a rapid screening tool for refractory performance and as a predictor of refractory lifetime. Results from the test systems and pl ants were qualitatively similar.

  8. Influence of pressure on pyrolysis of black liquor: 2. Char yields and component release.

    PubMed

    Whitty, Kevin; Kullberg, Mika; Sorvari, Vesa; Backman, Rainer; Hupa, Mikko

    2008-02-01

    This is the second in a series of papers concerning the behavior of black liquor during pyrolysis at elevated pressures. Two industrial black liquors were pyrolyzed under pressurized conditions in two laboratory-scale devices, a pressurized single-particle reactor and a pressurized grid heater. Temperatures ranging between 650 and 1100 degrees C and pressures in the range 1-20 bar were studied. Char yields were calculated and based on analysis of some of the chars the fate of carbon, sodium, potassium and sulfur was determined as a function of pyrolysis pressure. At temperatures below 800 degrees C little variation in char yield was observed at different pressures. At higher temperatures char yield increased with pressure due to slower decomposition of sodium carbonate. For the same reason, sodium release decreased with pressure. Sulfur release, however, increased with pressure primarily because there was less opportunity for its capture in the less-swollen chars. PMID:17349787

  9. A Remote Sensing Technique For Combustion Gas Temperature Measurement In Black Liquor Recovery Boilers

    NASA Astrophysics Data System (ADS)

    Charagundla, S. R.; Semerjian, H. G.

    1986-10-01

    A remote sensing technique, based on the principles of emission spectroscopy, is being developed for temperature measurements in black liquor recovery boilers. Several tests have been carried out, both in the laboratory and at a number of recovery boilers, to characterize the emission spectra in the wavelength range of 300 nm to 800 nm. These tests have pointed out the potential for temperature measurements using the line intensity ratio technique based on a pair of emission lines at 404.4 nm and 766.5 nm observed in the recovery boiler combustion zone; these emission lines are due to potassium, a common constituent found in all the black liquors. Accordingly, a fiber optics based four-color system has been developed. This in-situ, nonintrusive temperature measurement technique, together with some of the more recent results, is described in this paper.

  10. Combined biomass and black liquor gasifier/gas turbine cogeneration at pulp and paper mills

    SciTech Connect

    Larson, E.D.; Kreutz, T.G.; Consonni, S.

    1999-07-01

    Kraft pulp and paper mills generate large quantities of black liquor and byproduct biomass suitable for gasification. These fuels are used today for onsite cogeneration of heat and power in boiler/steam turbine systems. Gasification technologies under development would enable these fuels to be used in gas turbines. This paper reports results of detailed full-load performance modeling of pulp-mill cogeneration systems based on gasifier/gas turbine technologies. Pressurized, oxygen-blown black liquor gasification, the most advanced of proposed commercial black liquor gasifier designs, is considered, together with three alternative biomass gasifier designs under commercial development (high-pressure air-blown, low-pressure air-blown, and low-pressure indirectly-heated). Heavy-duty industrial gas turbines of the 70-MW{sub e} and 25-MW {sub e} class are included in the analysis. Results indicate that gasification-based cogeneration with biomass-derived fuels would transform a typical pulp mill into significant power exporter and would also offer possibilities for net reductions in emissions of carbon dioxide relative to present practice.

  11. Enhanced remediation of black liquor by activated sludge bioaugmented with a novel exogenous microorganism culture.

    PubMed

    Zheng, Yu; Chai, Li-Yuan; Yang, Zhi-Hui; Tang, Chong-Jian; Chen, Yue-Hui; Shi, Yan

    2013-07-01

    Black liquor (BL) is a notoriously difficult wastewater to treat due to the economic and efficiency limitations of physiochemical methods and intrinsic difficulties with bioremediation strategies caused by the high pH (10-13) and lignin content. This study investigated the feasibility of a novel bioaugmentation strategy for BL treatment, which uses a mixed microorganism culture of lignocellulose-degrading microorganisms isolated from degraded bamboo slips. Black liquor treatment was assessed in terms of chemical oxygen demand (COD) and color removal with a sequencing batch reactor organic loading rate of 9 kg COD/L·day under highly alkaline conditions (pH 10). Results revealed that bioaugmented activated sludge treatment of BL with special mixed microorganisms significantly enhanced the removal efficiency of COD, color, and lignin from the wastewater up to 64.8, 50.5, and 53.2 %, respectively. Gel permeation chromatography profiles showed that the bioaugmentation system could successfully degrade high molecular lignin fragments in black liquor. This work confirms bioaugmentation as a feasible alternative strategy for enhanced biological treatment of wastewater with high lignin content and high organic load rate under strongly alkaline conditions. PMID:23053102

  12. Pulsed combustion process for black liquor gasification. Second annual report, [November 1990--February 1992

    SciTech Connect

    Not Available

    1993-02-01

    This second annual report summarizes the work accomplished during the period November 1990 through February 1992 for DOE Cooperative Agreement No. DE-FC05-90CE40893. The overall project objective is to field test an energy-efficient, innovative black liquor recovery system at a significant industrial scale. This is intended to demonstrate the maturity of the technology in an industrial environment and serve as an example to the industry of the safer and more energy-efficient processing technique. The project structure is comprised of three primary activities: process characterization testing, scale-up hardware development, and field testing. The objective of the process characterization testing was to resolve key technical issues regarding the black liquor recovery process that were identified during earlier laboratory verification tests. This was intended to provide a sound engineering data base for the design, construction and testing of a nominal 1.0 TPH integrated black liquor recovery gasifier. The objective of the scale-up hardware development effort was to ensure that key hardware components, in particular the pulse heater module, would perform reliably and safely in the field. Finally, the objective of the field test is to develop an industrial data base sufficient to demonstrate the capabilities and performance of the operating system with respect to thermal efficiency, product quality, fuel handling, system control, reliability and cost. These tests are to provide long-term and continuous operating data at a capacity unattainable in the bench-scale apparatus.

  13. Green chemicals from pulp production black liquor by partial wet oxidation.

    PubMed

    Muddassar, Hassan Raja; Melin, Kristian; de Villalba Kokkonen, Daniela; Riera, Gerard Viader; Golam, Sarwar; Koskinen, Jukka

    2015-11-01

    To reduce greenhouse gas emissions, more sustainable sources of energy, fuel and chemicals are needed. Biomass side streams such as black liquor, which is a by-product of pulp production, has the potential to be used for this purpose. The aim of the study was the production of carboxylic acids, such as lactic acid, formic acid and acetic acid, from kraft and non-wood black liquor. The processes studied were partial wet oxidation (PWO) and catalytic partial wet oxidation (CPWO). The results show that the yield of carboxylic acid is higher when treated by PWO than the results from CPWO at temperatures of 170 °C and 230 °C. The results shows that the PWO process can increase the yield of carboxylic acids and hydroxy acids in black liquor, reduce lignin content and decrease pH, which makes further separation of the acids more favourable. The hydroxy acids are valuable raw materials for biopolymers, and acetic acid and formic acid are commonly used chemicals conventionally produced from fossil feedstock. PMID:26377325

  14. Electrocoagulation treatment of black liquor from soda-AQ pulping of wheat straw.

    PubMed

    Rastegarfar, N; Behrooz, R; Bahramifar, N

    2015-02-01

    The effect of electrocoagulation treatment was investigated on black liquor from soda-anthraquinone (AQ) pulping of wheat straw. Removal of phenol, chemical oxygen demand (COD), color, total suspended solids (TSS), total dissolved solids (TDS), and total solids (TS) from black liquor was investigated at different current densities by using aluminum electrodes at various electrolysis times (10, 25, 40, 55, and 70 min) and pH levels (3, 5, 7, 9, and 10.5). It was observed that at 16 V, electrolysis time of 55 min and current density of 61.8 mA/cm(2) were sufficient for the removal of the pollutants. Energy consumption was evaluated as an important cost-relation parameter. Results showed that the electrocoagulation treatment reduced color intensity from the high initial value of 18,750 to 220 PCU. This was strongly influenced by the pH level of the wastewater. In addition, it was found that the removal efficiency increased with increasing of current density. The maximum efficiencies for removal were 98.8, 81, 80, 92, 61, and 68 % for color, phenol, COD, TSS, TDS, and TS, respectively. The lowest energy consumption values were obtained at neutral pH after 55 min. Electrocoagulation was found to be an effective, simple, and low-cost technique to treat black liquor. PMID:25637386

  15. 'White liquor hits black livers': meanings of excessive liquor consumption in South Africa in the second half of the twentieth century.

    PubMed

    Mager, Anne

    2004-08-01

    Four years into South Africa's first democracy, the African National Congress Youth League, with the help of the liquor industry's Social Aspects of Alcohol Committee drafted a policy to prevent substance abuse in black communities. They declared that alcohol was 'often not used in a socially acceptable way'. Concerned not so much with post-apartheid policy as with making sense of what socially acceptable alcohol usage might mean, this article explores narratives of alcohol use and abuse in South Africa in the second half of the twentieth century. It demonstrates that while multiple understandings of excess in alcohol consumption were articulated, those notions tied to particular constructions of racial difference prevailed. Ideas pairing drinking habits with race were given effect by state institutions. By tying drinking habits to 'race' and by locating 'race' in a social hierarchy, state institutions determined access to liquor and welfare services. By naturalising Africans as heavy drinkers, the state justified its sale of liquor to African men while denying the need for rehabilitation in the event of alcoholic dependence. By placing 'coloured' closer to 'white' in its racial order, the apartheid state found cause to extend limited rehabilitation services to those designated 'coloured'. By tying liquor revenues to apartheid administration, the ruling regime exonerated its policy of excluding blacks from the retail liquor trade even after lifting prohibition in 1962. This policy encouraged rampant illicit liquor dealing, created a social environment in which alcoholic excess, particularly after 1976, reached new proportions and generated new and dangerous meanings of socially acceptable drinking. Against the grain of these dominant discourses of racially designated meanings of drinking, African people forged a more complex set of practices and meanings not rendered any clearer by the ANC Youth League's discourse of acceptable and unacceptable usage. PMID:15177831

  16. Evaluation of the effect of ultrasound on organosolv black liquor from olive tree pruning residues.

    PubMed

    García, Araceli; Alriols, María González; Labidi, Jalel

    2012-03-01

    Ultrasonic treatments (0, 15, 30, 60 and 120 min) were applied to black liquor resulting from organosolv fractionation of olive tree pruning residues (ethanol/water 60/40 v/v, 180 °C, 60 min) in order to determine their effect on black liquor components. HPLC analyses of ultrasound-treated liquid fractions demonstrated that ultrasonic irradiation promoted up to 20% degradation of monosaccharides for 15 min of sonication and an increase of monomeric sugars from 3% to 16% due lignin-carbohydrate complex rupture. The quality and purity of the lignin precipitated from sonicated liquors by adding acidified water were assessed. Attenuated-total reflectance infrared spectroscopy (ATR-IR), gel permeation chromatography (GPC) and nuclear magnetic resonance (NMR) confirmed that main lignin structure did not change due sonication, and thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and chemical composition and antioxidant behavior showed purification of lignin samples. These results established sonication as a suitable intensification technology in biorefinery processes. PMID:22277207

  17. Carbon and char residue yields from rapid pyrolysis of kraft black liquor.

    PubMed

    Sricharoenchaikul, V; Hicks, A L; Frederick, W J

    2001-04-01

    The yields of char residue, fixed carbon, and inorganic carbonate were measured for oxidized black liquor char residues produced in a laboratory laminar entrained-flow reactor (LEFR) at heating rates of 4000-13,000 degrees C/s. The char residue yields at the end of devolatilization thus obtained decreased nearly linearly with temperature, from 75% at 700 degrees C to 58% at 1100 degrees C. There were explainable differences in the char residue yields from the liquor used in this study and those used in other studies. Char residue yields seemed to depend mainly on the temperature to which the particles or droplets were exposed and were not very sensitive to heating rate. Fixed carbon yields behaved similarly to those of the char residue. The fixed carbon remaining at the end of devolatilization decreased from 67% at 700 degrees C to about 45% at 1100 degrees C. The carbonate content in black liquor changed very little before and after devolatilization. PMID:11272019

  18. Fundamental studies of black liquor combustion: Report No. 2, Phase 1 (October 1984-November 1986)

    SciTech Connect

    Clay, D. T.; Lien, S. J.; Grace, T. M.; Macek, A.; Semerjian, H. G.; Amin, N.; Charagundla, S. R.

    1987-01-01

    The fundamentals of kraft black liquor combustion are being studied in a five year project. This report covers the second and third years of work by The Institute of Paper Chemistry (IPC) and the National Bureau of Standards (NBS) for the US Department of Energy. The burning processes are being studied in two continuous flow reactor systems designed to both study overall process and single particle phenomena. Black liquor burning is divided into four distinct phases: drying, volatiles burning, char burning, and smelt coalescence. Phase 1, In-flight Processes, is the main focus of this report. In-flight processes include mainly the stages of drying and volatiles burning. Testing results in both flow reactors and in two specially designed single particle reactors are presented. Dynamic droplet velocity and swelling have been measured for the first time. A direct link between initial liquor viscosity and burning behavior in the early stages has also been identified. During the fourth year Phase 1 will be completed and Phases 2 (Char Burning) and 3 (Fume Processes) will begin.

  19. A comprehensive program to develop correlations for the physical properties of Kraft black liquor. Interim report No. 2

    SciTech Connect

    Fricke, A.L.

    1990-12-01

    Experimental effort for the program to evaluate physical properties of kraft black liquors is now proceeding well. Experimental work includes pulping, liquor analysis, lignin purification and characterization, vapor-liquid equilibria, heat capacity, heats of solution and combustion, and viscosity measurements. Measurement of thermal conductivity has not yet begun. Collection of the data necessary for development of generalized correlations is proceeding, but will require about two more years. The digester is operating very well. It is now possible to operate the digester as a closed, rotating reactor or as a batch reactor with liquor circulation. When operated with liquor circulation, temperatures within the chip bed can be monitored during cooking. Cooking is reproducible, and cooks are being performed to produce liquors for experimental studies. The digester could be further modified to permit us to conduct rapid exchange batch pulping or to permit us to simulate continuous pulping. Liquors to be used in experimental studies are concentrated in our large scale evaporator or in our small scale evaporator. The large scale evaporator is used to concentrate liquors to about 50% solids for storage and for use in studies requiring high solids liquors. The small scale evaporator is used for preparing final samples to as high as 85% solids and for measuring vapor-liquid equilibria. Liquors are now routinely analyzed to determine all components, except higher molecular weight organic acids and extractives. Lignin determination by uv-visible means has been improved. Lignin purification from black liquor has been improved and lignin molecular weights are determined routinely. Work on lignin molecular weight distribution is still not satisfactory, but recent developments holds promise.

  20. High-speed interferometric measurement and visualization of the conversion of a black liquor droplet during laser heating

    NASA Astrophysics Data System (ADS)

    Lycksam, Henrik; Sjödahl, Mikael; Gren, Per; Öhman, Marcus; Gebart, Rikard

    2012-11-01

    Black liquor is a mix of organic and inorganic materials that is left after the kraft pulping process. In a modern pulp mill the pulping chemicals and the energy in the black liquor is recovered and used in the pulping cycle by burning the black liquor in a recovery burner. An alternative to the recovery boiler is to gasify the black liquor to produce an energy rich synthesis gas that can be upgraded into synthetic fuels or chemicals. Characterization of black liquor has mostly been done under conditions that are relevant for recovery boilers but the conditions in a gasifier differ significantly from this. In particular the droplets are much smaller and the heating rates are much higher. This paper presents an optical interferometric technique that has the potential to produce data under relevant conditions for gasification. In the paper, results are measured at atmospheric conditions and with relatively low heating rate. However, the method can be applied also for pressurized conditions and at heating rates that are only limited by the frame rate of the digital camera that is used to capture the transient event when the droplets are heated. In the paper the dynamic properties of the gas ejected from and the swelling during conversion of a single droplet are measured.

  1. Improved Materials for Use as Components in Kraft Black Liquor Recovery Boilers

    SciTech Connect

    Keiser, J.R.

    2001-10-22

    This Cooperative Research and Development Agreement (CRADA) was undertaken to evaluate current and improved materials and materials processing conditions for use as components in kraft black liquor recovery boilers and other unit processes. The main areas addressed were: (1) Improved Black Liquor Nozzles, (2) Weld Overlay of Composite Floor Tubes, and (3) Materials for Lime Kilns. Iron aluminide was evaluated as an alternate material for the nozzles used to inject an aqueous solution known as black liquor into recovery boilers as well for the uncooled lining in the ports used for the nozzles. Although iron aluminide is known to have much better sulfidation resistance in gases than low alloy and stainless steels, it did not perform adequately in the environment where it came into contact with molten carbonate, sulfide and sulfate salts. Weld overlaying carbon steel tubes with a layer of stainless weld metal was a proposed method of extending the life of recovery boiler floor tubes that have experienced considerable fireside corrosion. After exposure under service conditions, sections of weld overlaid floor tubes were removed from a boiler floor and examined metallographically. Examination results indicated satisfactory performance of the tubes. Refractory-lined lime kilns are a critical component of the recovery process in kraft pulp mills, and the integrity of the lining is essential to the successful operation of the kiln. A modeling study was performed to determine the cause of, and possible solutions for, the repeated loss of the refractory lining from the cooled end of a particular kiln. The evaluation showed that the temperature, the brick shape and the coefficient of friction between the bricks were the most important parameters influencing the behavior of the refractory lining.

  2. Effect of pulsations on black liquor gasification. Progress report, July--September 1995

    SciTech Connect

    Kushari, A.; Jeong, H.; Jagoda, J.I.; Zinn, B.T.

    1995-12-31

    The objective of this study is to investigate the use of pulse combustion to provide the energy required for the endothermic gasification of black liquor in a fluidized bed. In this process it is critical that the temperature remain in the small window above the gasification temperature but below the smelting temperature of the inorganic salts in the black liquor. Pulse combustors have been shown to have high heat transfer rates between the hot combustion products and the combustor tailpipe. Similarly, fluidized beds have high heat transfer rates within the bed itself, promoting temperature uniformity throughout. Typical analysis of the gasified black liquor shows there is a large percentage of combustible gases in the products of the gasification process (approximately 70%). The potential exists, therefore, for using this fuel mixture to fire the pulse combustor. This makes the entire process more efficient and may be necessary to make it economically feasible. The overall goals of this study are to determine (1) which is the limiting heat transfer rate in the process of transferring the heat from the hot combustion products to the pipe, through the pipe, from the tailpipe to the bed and then throughout the bed; i.e., whether increased heat transfer within the pulse combustor will significantly increase the overall heat transfer rate; (2) whether the temperature distribution in the bed can be maintained within the narrow temperature range required by the process without generating hot spots in the bed even if the heat transfer from the pulse combustor is significantly increased; and (3) whether the fuel gas produced during the gasification process can be used to efficiently fire the pulse combustor.

  3. Black liquor combustion validated recovery boiler modeling: Final year report. Volume 4 (Appendix IV)

    SciTech Connect

    Grace, T.M.; Frederick, W.J.; Salcudean, M.; Wessel, R.A.

    1998-08-01

    This project was initiated in October 1990, with the objective of developing and validating a new computer model of a recovery boiler furnace using a computational fluid dynamics (CFD) code specifically tailored to the requirements for solving recovery boiler flows, and using improved submodels for black liquor combustion based on continued laboratory fundamental studies. The key tasks to be accomplished were as follows: (1) Complete the development of enhanced furnace models that have the capability to accurately predict carryover, emissions behavior, dust concentrations, gas temperatures, and wall heat fluxes. (2) Validate the enhanced furnace models, so that users can have confidence in the predicted results. (3) Obtain fundamental information on aerosol formation, deposition, and hardening so as to develop the knowledge base needed to relate furnace model outputs to plugging and fouling in the convective sections of the boiler. (4) Facilitate the transfer of codes, black liquid submodels, and fundamental knowledge to the US kraft pulp industry. Volume 4 contains the following appendix sections: Radiative heat transfer properties for black liquor combustion -- Facilities and techniques and Spectral absorbance and emittance data; and Radiate heat transfer determination of the optical constants of ash samples from kraft recovery boilers -- Calculation procedure; Computation program; Density determination; Particle diameter determination; Optical constant data; and Uncertainty analysis.

  4. Conversion of a black liquor recovery boiler to wood firing: A case history

    SciTech Connect

    Eleniewski, M.A.

    1994-12-31

    In 1983 a large integrated pulp and paper mill in southeastern United States retired an older chemical recovery boiler when it was replaced by a newer and larger unit as part of a mill expansion. At that time the mill was generating steam and power using wood waste, natural gas and black liquor, a common fuel mix for pulp mills. The retirement of the recovery boiler presented an opportunity for the mill and corporate engineering to evaluate various mixes of fuels for the mill.

  5. Eucalyptus kraft black liquor enhances growth and productivity of Spirulina in outdoor cultures

    SciTech Connect

    Chauhan, V.S.; Singh, G.; Ramamurthy, V.

    1995-07-01

    Mass cultivation of microalgae for commercial applications suffers from poor productivities when measured against laboratory results or theoretical projections. In an effort to reduce this gap it was discovered that addition of eucalyptus kraft black liquor (BL) enhanced biomass productivity in outdoor cultures of Spirulina by increasing growth rate by 38% and biomass yield by 43%. BL treatment resulted in elevation of nitrogen assimilating enzyme activities and efficiency of phosphate utilization. Analyses of forenoon and afternoon oxygen production rates (OPRs) indicated higher photosynthetic and respiratory activity in BL-treated cultures compared to untreated cultures. 20 refs., 1 fig., 2 tabs.

  6. Protocol Development for the Carbohydrate Quantification in Black Liquor with Brix Refractometer

    NASA Astrophysics Data System (ADS)

    Baksi, Arnab; Putatunda, Sirsha; Sen, Dwaipayan; Sarkar, Ankur; Bhattacharjee, Chiranjib

    2013-07-01

    Present work is a proposed methodology to quantify carbohydrates even at its trace level in black liquor (BL) in the presence of lignosulphonates (LS) using brix refractometer. Primarily, the detection accuracy was validated with the simulated solutions resembling BL used in the present work. A factor, resembling the weight fraction of LS and inorganics, was multiplied with the brix degree obtained for the simulated solution to convert it into the brix reading for a sole carbohydrate present in the solution along with other chemicals. It was found that the accuracy level of measuring carbohydrate was within ±1-2 % of the actual.

  7. A Constructed Alkaline Consortium and Its Dynamics in Treating Alkaline Black Liquor with Very High Pollution Load

    PubMed Central

    Yang, Chunyu; Cao, Guangchun; Li, Yang; Zhang, Xiaojun; Ren, Hongyan; Wang, Xia; Feng, Jinhui; Zhao, Liping; Xu, Ping

    2008-01-01

    Background Paper pulp wastewater resulting from alkaline extraction of wheat straw, known as black liquor, is very difficult to be treated and causes serious environmental problems due to its high pH value and chemical oxygen demand (COD) pollution load. Lignin, semicellulose and cellulose are the main contributors to the high COD values in black liquor. Very few microorganisms can survive in such harsh environments of the alkaline wheat straw black liquor. A naturally developed microbial community was found accidentally in a black liquor storing pool in a paper pulp mill of China. The community was effective in pH decreasing, color and COD removing from the high alkaline and high COD black liquor. Findings Thirty-eight strains of bacteria were isolated from the black liquor storing pool, and were grouped as eleven operational taxonomy units (OTUs) using random amplified polymorphic DNA-PCR profiles (RAPD). Eleven representative strains of each OTU, which were identified as genera of Halomonas and Bacillus, were used to construct a consortium to treat black liquor with a high pH value of 11.0 and very high COD pollution load of 142,600 mg l−1. After treatment by the constructed consortium, about 35.4% of color and 39,000 mg l−1 (27.3%) CODcr were removed and the pH decreased to 7.8. 16S rRNA gene polymerase chain reaction denaturant gradient gel electrophoresis (PCR-DGGE) and gas chromatography/mass spectrometry (GC/MS) analysis suggested a two-stage treatment mechanism to elucidate the interspecies collaboration: Halomonas isolates were important in the first stage to produce organic acids that contributed to the pH decline, while Bacillus isolates were involved in the degradation of lignin derivatives in the second stage under lower pH conditions. Conclusions/Significance Tolerance to the high alkaline environment and good controllability of the simple consortium suggested that the constructed consortium has good potential for black liquor treatment

  8. Material Characterization and Analysis for Selection of Refractories Used In Black Liquor Gasification

    SciTech Connect

    Hemrick, James Gordon; Keiser, James R; Meisner, Roberta Ann; Gorog, John Peter

    2008-01-01

    Black liquor gasification provides the pulp and paper industry with a technology which could potentially replace recovery boilers with equipment that could reduce emissions and, if used in a combined cycle system, increase the power production of the mill allowing it to be a net exporter of electrical power. In addition, rather than burning the syngas produced in a gasifier, this syngas could be used to produce higher value chemicals or fuels. However, problems with structural materials, and particularly the refractory lining of the reactor vessel, have caused unplanned shutdowns and resulted in component replacement much sooner than originally planned. Through examination of exposed materials, laboratory corrosion tests and cooperative efforts with refractory manufacturers, many refractory materials issues in high-temperature black liquor gasification have been addressed and optimized materials have been selected for this application. In this paper, the characterization and analysis techniques used for refractory screening and selection will be discussed along with characteristic results from these methods which have led to the selection of optimized materials for this application.

  9. Material Characterization and Analysis for Selection of Refractories Used in Black Liquor Gasification

    SciTech Connect

    Hemrick, James Gordon; Keiser, James R; Meisner, Roberta A

    2010-01-01

    Black liquor gasification provides the pulp and paper industry with a technology which could potentially replace recovery boilers with equipment that could reduce emissions and, if used in a combined cycle system, increase the power production of the mill allowing it to be a net exporter of electrical power. In addition, rather than burning the syngas produced in a gasifier, this syngas could be used to produce higher value chemicals or fuels. However, problems with structural materials such as the refractory lining of the reactor vessel have caused unplanned shutdowns and resulted in component replacement much sooner than originally planned. Through examination of exposed materials, laboratory corrosion tests and cooperative efforts with refractory manufacturers, many refractory materials issues in high-temperature black liquor gasification have been addressed and optimized materials have been selected for this application. In this paper, an updated summary of the characterization and analysis techniques used for refractory screening and selection will be discussed along with characteristic results from these methods which have led to the selection of optimized materials for both the hot-face and back-up linings used in this application.

  10. [Preparation of spherical lignin cation adsorption resin with black pulping liquor].

    PubMed

    Liu, Ming-Hua; Zou, Jin-Guang; Hong, Shu-Nan; Zeng, Zhen-Ou

    2005-09-01

    Spherical lignin cation adsorption resin was obtained by two-step method with black liquor of paper mill and characterized by the Scanning electron microscopy (SEM) and Fourier transform infrared spectrometry (FTIR). Firstly, the spherical lignin beads were prepared with black liquor of paper mill by applying reverse-phase suspension polymerization technique, and the preparation conditions were also optimized. The suitable conditions include 200 r/min of stirring speed, 90 degrees C of reaction temperature, 1.0 h of reaction time and use epoxy chloropropane (1.5% by weight of lignin) as cross-linking agent, the ideal volume ratio between oil phase and water phase was 3:1 by using kerosene oil as disperse phase, and the perfect dispersant agent was Tween 80 (3% by weight of lignin). Secondly, the spherical lignin cation adsorption resin was developed by grafting the acrylamide onto the back-bone of the spherical lignin beads. The best concentration of acrylamide was 0.72 mol/L at ambient temperature for 2.0 h, and the ideal initiator system was the Fenton reagent of H2O2/Fe2+. Under the above conditions, the ion exchange capacity of the prepared resin could reach 1.640 5 mmol/g. PMID:16366482

  11. Separation and characterization of lignins from the black liquor of oil palm trunk fiber pulping

    SciTech Connect

    Sun, R.; Tomkinson, J.; Bolton, J.

    1999-11-01

    Six lignin preparations, isolated by a novel two-step precipitation method instead of the traditional one-step precipitation method from the oil palm trunk fiber pulping (OPTFP) black liquor, were found to be relatively free of nonlignin materials such as polysaccharide degradation products, ash, and salts. A lignin fraction with a purity of 99.5% was obtained at an optimum precipitation pH 1.5 after isolation of the nonlignin materials in ethanol. About 94% of the total lignin was recovered by this novel method at this condition, and the value of COD in the treated black liquor reduced significantly to lower 250. The isolated lignin fractions contained syringyl, guaiacyl, and p-hydroxyphenyl units in an approximate molar ratio of 16--20:5:1 on the basis of chemical and spectroscopic analysis. Small amounts of p-hydroxybenzoic acids were found to be esterified to lignin, while ferulic acids were associated to lignin by ether linkage. {sup 13}C-NMR indicated the presence of {beta}-O-4 ether bonds, and {beta}-5 and 5-5{prime} carbon-carbon linkages between the lignin molecules.

  12. Integrating black liquor gasification with pulping - Process simulation, economics and potential benefits

    NASA Astrophysics Data System (ADS)

    Lindstrom, Erik Vilhelm Mathias

    Gasification of black liquor could drastically increase the flexibility and improve the profit potential of a mature industry. The completed work was focused on research around the economics and benefits of its implementation, utilizing laboratory pulping experiments and process simulation. The separation of sodium and sulfur achieved through gasification of recovered black liquor, can be utilized in processes like modified continuous cooking, split sulfidity and green liquor pretreatment pulping, and polysulfide-anthraquinone pulping, to improve pulp yield and properties. Laboratory pulping protocols have been developed for these modified pulping technologies and different process options evaluated. The process simulation work around BLG has led to the development of a WinGEMS module for the low temperature MTCI steam reforming process, and case studies comparing a simulated conventional kraft process to different process options built around the implementation of a BLG unit operation into the kraft recovery cycle. Pulp yield increases of 1-3% points with improved product quality, and the potential for capital and operating cost savings relative to the conventional kraft process have been demonstrated. Process simulation work has shown that the net variable operating cost for a pulping process using BLGCC is highly dependent on the cost of lime kiln fuel and the selling price of green power to the grid. Under the assumptions taken in the performed case study, the BLGCC process combined with split sulfidity or PSAQ pulping operations had net variable operating cost 2-4% greater than the kraft reference. The influence of the sales price of power to the grid is the most significant cost factor. If a sales price increase to 6 ¢/KWh for green power could be achieved, cost savings of about $40/ODtP could be realized in all investigated BLG processes. Other alternatives to improve the process economics around BLG would be to modify or eliminate the lime kiln unit

  13. Stability and Regeneration of Catalysts for the Destruction of Tars from Bio-mass Black Liquor Gasification

    SciTech Connect

    Pradeep Agrawal

    2004-09-07

    The goal of this project was to develop catalytic materials and processes that would be effective in the destruction of tars formed during the gasification of black liquor and biomass. We report here the significant results obtained at the conclusion of this two year project.

  14. Biobutanol production by Clostridium acetobutylicum using xylose recovered from birch Kraft black liquor.

    PubMed

    Kudahettige-Nilsson, Rasika L; Helmerius, Jonas; Nilsson, Robert T; Sjöblom, Magnus; Hodge, David B; Rova, Ulrika

    2015-01-01

    Acetone-butanol-ethanol (ABE) fermentation was studied using acid-hydrolyzed xylan recovered from hardwood Kraft black liquor by CO2 acidification as the only carbon source. Detoxification of hydrolyzate using activated carbon was conducted to evaluate the impact of inhibitor removal and fermentation. Xylose hydrolysis yields as high as 18.4% were demonstrated at the highest severity hydrolysis condition. Detoxification using active carbon was effective for removal of both phenolics (76-81%) and HMF (38-52%). Batch fermentation of the hydrolyzate and semi-defined P2 media resulted in a total solvent yield of 0.12-0.13g/g and 0.34g/g, corresponding to a butanol concentration of 1.8-2.1g/L and 7.3g/L respectively. This work is the first study of a process for the production of a biologically-derived biofuel from hemicelluloses solubilized during Kraft pulping and demonstrates the feasibility of utilizing xylan recovered directly from industrial Kraft pulping liquors as a feedstock for biological production of biofuels such as butanol. PMID:25460986

  15. Newtonian viscosity of high solids kraft black liquors: Effects of temperature and solids concentrations

    SciTech Connect

    Zaman, A.A.; Fricke, A.L. . Dept. of Chemical Engineering)

    1994-02-01

    The Newtonian (zero shear rate) viscosities of four different softwood kraft black liquors from a four variable-two level factorially designed experiment for pulping slash pine were determined for solids concentrations up to 84% and temperatures up to 140 C (413.2 K). Methods of measurement and estimation of zero shear rate viscosities from viscosity-shear rate data have been described and compared. The combination of the absolute reaction rates and free-volume concepts were used to express the relationship between the Newtonian viscosity and temperature. Attempts were made to obtain a generalized correlation for Newtonian viscosity as a function of temperature and solids concentrations. The results of this model and results of the previous empirical correlation have been compared and discussed.

  16. Preparation of activated carbon with large specific surface area from reed black liquor.

    PubMed

    Sun, Y; Zhang, J P; Yang, G; Li, Z H

    2007-05-01

    Activated carbon with large specific surface area and well-developed porosity was prepared from pyrolysis of K2CO3-impregnated lignin precipitated from reed pulp black liquors. The impregnation ratio was 1:1. The effect of activation temperature upon the Brunauer-Emmett-Teller (BET) specific surface area and pore volume of the carbon was closely investigated. Increasing activation temperature led to an opening and widening of the porous structure below 800'C. Above 800'C, the excess widening of pore led to the decrease of BET surface area and micropore volume. The BET surface area and pore volume of the carbon activated at 800 degrees C were 1395 m(2) g(-1) and 0.7702 ml g(-1) , respectively. The potential application of the carbon activated at 800 degrees C for removal of Cr (VI) was also investigated. The experimental results showed that it had good adsorption capacity. PMID:17615958

  17. Cracking and Corrosion of Composite Tubes in Black Liquor Recovery Boiler Primary Air Ports

    SciTech Connect

    Keiser, James R.; Singbeil, Douglas L.; Sarma, Gorti B.; Kish, Joseph R.; Yuan, Jerry; Frederick, Laurie A.; Choudhury, Kimberly A.; Gorog, J. Peter; Jetté, Francois R.; Hubbard, Camden R.; Swindeman, Robert W.; Singh, Prett M.; Maziasz, Phillip J.

    2006-10-01

    Black liquor recovery boilers are an essential part of kraft mills. Their design and operating procedures have changed over time with the goal of providing improved boiler performance. These performance improvements are frequently associated with an increase in heat flux and/or operating temperature with a subsequent increase in the demand on structural materials associated with operation at higher temperatures and/or in more corrosive environments. Improvements in structural materials have therefore been required. In most cases the alternate materials have provided acceptable solutions. However, in some cases the alternate materials have solved the original problem but introduced new issues. This report addresses the performance of materials in the tubes forming primary air port openings and, particularly, the problems associated with use of stainless steel clad carbon steel tubes and the solutions that have been identified.

  18. Preparation of adsorbent with magnesium sulfate and straw pulp black liquor and its phenol adsorption properties

    NASA Astrophysics Data System (ADS)

    Guo, Lugang; Wang, Haizeng

    2009-09-01

    A magnesia adsorbent was prepared from straw pulp black liquor and magnesium sulfate for the first time, and its adsorption of phenol from aqueous solution was examined. The characteristics of the adsorbent were tested through chemical analysis, surface analysis, X-ray diffraction and FT-IR spectroscopy. The effects of various factors, such as dose, adsorption time and adsorption temperature, on phenol adsorption behavior were studied. The results show that the adsorption processes can be fitted to the isotherm Langmuir model very well. It was found that the adsorption process was strongly influenced by temperature and the optimal temperature for phenol removal was 40 °C. The optimum adsorption time was 10 min, and desorption would happen afterwards. Between the models of Langmuir and Freundlich, the adsorption process of phenol onto magnesia fitted the Langmuir equation better.

  19. Black liquor combustion validated recovery boiler modeling: Final year report. Volume 5 (Appendix V)

    SciTech Connect

    Grace, T.M.; Frederick, W.J.; Salcudean, M.; Wessel, R.A.

    1998-08-01

    This project was initiated in October 1990, with the objective of developing and validating a new computer model of a recovery boiler furnace using a computational fluid dynamics (CFD) code specifically tailored to the requirements for solving recovery boiler flows, and using improved submodels for black liquor combustion based on continued laboratory fundamental studies. The key tasks to be accomplished were as follows: (1) Complete the development of enhanced furnace models that have the capability to accurately predict carryover, emissions behavior, dust concentrations, gas temperatures, and wall heat fluxes. (2) Validate the enhanced furnace models, so that users can have confidence in the predicted results. (3) Obtain fundamental information on aerosol formation, deposition, and hardening so as to develop the knowledge base needed to relate furnace model outputs to plugging and fouling in the convective sections of the boiler. (4) Facilitate the transfer of codes, black liquid submodels, and fundamental knowledge to the US kraft pulp industry. Volume 5 contains model validation simulations and comparison with data.

  20. Catalytic pyrolysis of black-liquor lignin by co-feeding with different plastics in a fluidized bed reactor.

    PubMed

    Zhang, Huiyan; Xiao, Rui; Nie, Jianlong; Jin, Baosheng; Shao, Shanshan; Xiao, Guomin

    2015-09-01

    Catalytic co-pyrolysis of black-liquor lignin and waste plastics (polyethylene, PE; polypropylene PP; polystyrene, PS) was conducted in a fluidized bed. The effects of temperature, plastic to lignin ratio, catalyst and plastic types on product distributions were studied. Both aromatic and olefin yields increased with increasing PE proportion. Petrochemical yield of co-pyrolysis of PE and lignin was LOSA-1 > spent FCC > Gamma-Al2O3 > sand. The petrochemical yield with LOSA-1 is 43.9% which is more than two times of that without catalyst. The feedstock for co-pyrolysis with lignin is polystyrene > polyethylene > polypropylene. Catalytic co-pyrolysis of black-liquor lignin with PS produced the maximum aromatic yield (55.3%), while co-pyrolysis with PE produced the maximum olefin yield (13%). PMID:26011693

  1. Direct Causticizing for Black Liquor Gasification in a Circulating Fluidized Bed

    SciTech Connect

    Scott Sinquefield; Xiaoyan Zeng, Alan Ball

    2010-03-02

    Gasification of black liquor (BLG) has distinct advantages over direct combustion in Tomlinson recovery boilers. In this project we seek to resolve causticizing issues in order to make pressurized BLG even more efficient and cost-effective. One advantage of BLG is that the inherent partial separation of sulfur and sodium during gasification lends itself to the use of proven high yield variants to conventional kraft pulping which require just such a separation. Processes such as polysulfide, split sulfidity, ASAQ, and MSSAQ can increase pulp yield from 1% to 10% over conventional kraft but require varying degrees of sulfur/sodium separation, which requires additional [and costly] processing in a conventional Tomlinson recovery process. However during gasification, the sulfur is partitioned between the gas and smelt phases, while the sodium all leaves in the smelt; thus creating the opportunity to produce sulfur-rich and sulfur-lean white liquors for specialty pulping processes. A second major incentive of BLG is the production of a combustible product gas, rich in H2 and CO. This product gas (a.k.a. “syngas”) can be used in gas turbines for combined cycle power generation (which is twice as efficient as the steam cycle alone), or it can be used as a precursor to form liquid fuels, such as dimethyl ether or Fischer Tropsh diesel. There is drawback to BLG, which has the potential to become a third major incentive if this work is successful. The causticizing load is greater for gasification of black liquor than for combustion in a Tomlinson boiler. So implementing BLG in an existing mill would require costly increases to the causticizing capacity. In situ causticizing [within the gasifier] would handle the entire causticizing load and therefore eliminate the lime cycle entirely. Previous work by the author and others has shown that titanate direct causticizing (i.e. in situ) works quite well for high-temperature BLG (950°C), but was limited to pressures below

  2. Effectiveness of coagulation and acid precipitation processes for the pre-treatment of diluted black liquor.

    PubMed

    Garg, Anurag; Mishra, I M; Chand, S

    2010-08-15

    The effectiveness of coagulation (using aluminium-based chemicals and ferrous sulfate) and acid precipitation (using H(2)SO(4)) processes for the pre-treatment of diluted black liquor obtained from a pulp and paper mill is reported. Commercial alum was found to be the most economical among all the aluminium and ferrous salts used as a coagulant. A maximum removal of chemical oxygen demand (COD) (ca. 63%) and colour reduction (ca. 90%) from the wastewater (COD = 7000 mg l(-1)) at pH 5.0 was obtained with alum. During the acid precipitation process, at pH < 5.0, significant COD reductions (up to 64%) were observed. Solid residue obtained from the alum treatment at a temperature of 95 degrees C showed much better (3 times) settling rate than that for the residue obtained after treatment with the same coagulant at a temperature of 25 degrees C. The settling curves had three parts, namely, hindered, transition and compression zones. Tory plots were used to determine the critical height of suspension-supernatant interface that is used in the design of a clarifier-thickener unit. High heating values and large biomass fraction of the solid residues can encourage the fuel users to use this waste derived sludge as a potential renewable energy source. PMID:20430523

  3. Black liquor gasification integrated in pulp and paper mills: A critical review.

    PubMed

    Naqvi, M; Yan, J; Dahlquist, E

    2010-11-01

    Black liquor gasification (BLG) has potential to replace a Tomlinson recovery boiler as an alternative technology to increase safety, flexibility and energy efficiency of pulp and paper mills. This paper presents an extensive literature review of the research and development of various BLG technologies over recent years based on low and high temperature gasification that include SCA-Billerud process, Manufacturing and Technology Conversion International (MTCI) process, direct alkali regeneration system (DARS), BLG with direct causticization, Chemrec BLG system, and catalytic hydrothermal BLG. A few technologies were tested on pilot scale but most of them were abandoned due to technical inferiority and very fewer are now at commercial stage. The drivers for the commercialization of BLG enabling bio-refinery operations at modern pulp mills, co-producing pulp and value added energy products, are discussed. In addition, the potential areas of research and development in BLG required to solve the critical issues and to fill research knowledge gaps are addressed and highlighted. PMID:20558058

  4. A win-win technique of stabilizing sand dune and purifying paper mill black-liquor.

    PubMed

    Hanjie, Wang; Frits, Penning de Vries; Yongcan, Jin

    2009-01-01

    The principle and technique were reported here to produce lignin-based sand stabilizing material (LSSM) using extracted lignin from black liquor of straw paper mills. Field tests using LSSM to stabilize and green sand dunes were started in 2002. The field experiment was carried out in August 2005 when the newly formed plant community was 3 years old. The results from the comprehensive field experiment demonstrated that unlike polyvinyl acetate or foamed asphalt commonly used for dune stabilization, LSSM was plant-friendly material and could be used in combination with seeding and planting of desert species. With the help of LSSM, the desert species (i.e., Agriophyllum squarrosum (L.) Moq. and Artemisia desertorum Spreng. etc.) could be used to form community in 2-3 yeas and to stabilize sand dune effectively. The newly formed community was sustainable under an extremely dry climate condition. The organic matter and total nitrogen in the soil increased significantly as the community were formed, while the change in P and K contents in the soil was negligible. PMID:19634424

  5. Environmentally safe treatment of black liquor with Comamonas sp. B-9 under high-alkaline conditions.

    PubMed

    Zheng, Yu; Chai, Liyuan; Yang, Zhihui; Chen, Yuehui; Shi, Yan; Wang, Yangyang

    2014-02-01

    The strain Comamonas sp. B-9 was isolated from steeping fluid of erosive bamboo slips derived from Kingdom Wu during the Three-Kingdoms Dynasty of ancient China (A.D. 220-280). It could be used to treat black liquor (BL) with high-alkaline pH and with an initial chemical oxygen demand (COD) of 18,000-25,000 mg L(-1) , without the addition of other carbon and nitrogen sources. The results revealed that Comamonas sp. B-9 was capable of reducing the COD, color, and lignin content of BL by up to 56.8, 35.3, and 43.5%, respectively. High levels of laccase, manganese peroxidase, cellulase, and xylanase enzymatic activities were also observed, and these enzymes could play an important role in the biotreatment of BL. Further, GC-MS analysis showed that most of the compounds detected in BL after biotreatment with Comamonas sp. B-9 were diminished, while 4-methyl benzaldehyde, 3,4,5-trihydroxybenzoic acid ethyl ester, and 4-hydroxy-3,5-dimethoxy benzaldehyde were produced as metabolites. The presented results indicate that Comamonas sp. B-9 has potential application for the treatment of wastewaters from pulp and paper processing with high COD load under high-alkaline conditions. PMID:23553551

  6. Genoprotective effects of lignin isolated from oil palm black liquor waste.

    PubMed

    Naik, Prashantha; Rozman, Hj Din; Bhat, Rajeev

    2013-07-01

    Black liquor waste (BLW), a major by-product of palm oil extraction process contains lignin as one of the constituents. Lignin isolated from BLW was evaluated for antioxidant and genoprotective properties and was compared with the commercial lignin for overall efficacy. Antioxidant compounds (phenolics and tannins) and antioxidant activities (phosphomolybdenum assay, ABTS(+) and FRAP assays) of lignin isolated from BLW were compared with commercial lignin. Bone marrow micronucleus (MN) test was employed for evaluating the dose-yield protective effect against cyclophosphamide (CP, 50mg/kg b.w.) induced genotoxicity in mouse. Results revealed isolated lignin to exhibit rich antioxidant activities. A decrease in MN frequency and recovery of P/N ratio (P: polychromatic erythrocytes, N: normochromatic erhythocytes) indicated protective effects of lignin against cyclophosphamide induced genotoxicity and cytotoxicity. The efficacy of BLW-derived lignin as an antioxidant and genoprotective agent was comparable to commercial lignin. Results on lignin isolated from BLW are envisaged to find potential applications in food and/or pharmaceutical industries. PMID:23603466

  7. Evaluating the potential of immobilized bacterial consortium for black liquor biodegradation.

    PubMed

    Paliwal, Rashmi; Uniyal, Shivani; Rai, J P N

    2015-05-01

    Two indigenous bacterial strains, Bacillus megaterium ETLB-1 (accession no. KC767548) and Pseudomonas plecoglossicida ETLB-3 (accession no. KC767547), isolated from soil contaminated with paper mill effluent, were co-immobilized on corncob cubes to investigate their biodegradation potential against black liquor (BL). Results exhibit conspicuous reduction in color and lignin of BL upto 913.46 Co-Pt and 531.45 mg l(-1), respectively. Reduction in chlorophenols up to 12 mg l(-1) was recorded with highest release of chloride ions, i.e., 1290 mg l(-1). Maximum enzyme activity for lignin peroxidase (LiP), manganese peroxidase (MnP), and laccase (LAC) was recorded as 5.06, 8.13, and 8.23 U ml(-1), respectively, during the treatment. Scanning electron microscopy (SEM) revealed successful immobilization of bacterial strains in porous structures of biomaterial. Gas chromatography/mass spectroscopy (GC/MS) showed formation of certain low molecular weight metabolites such as 4-hydroxy-benzoic acid, 3-hydroxy-4-methoxybenzaldehyde, ferulic acid, and t-cinnamic acid and removal of majority of the compounds (such as teratogenic phthalate derivatives) during the period of treatment. Results demonstrated that the indigenous bacterial consortium possesses excellent decolorization and lignin degradation capability which enables its commercial utilization in effluents treatment system. PMID:25433900

  8. Mechanical Design of Steel Tubing for Use in Black Liquor Recovery Boilers

    SciTech Connect

    Taljat, B.; Zacharaia, T.; Wang, X.; Kesier, J.; Swindeman, R.; Hubbard, C.

    1999-05-26

    Finite element models were developed for thermal-mechanical analysis of black liquor recovery boiler floor tubes. Residual stresses in boiler floors due to various manufacturing processes were analyzed. The modeling results were verified by X-ray and neutron diffraction measurements at room temperature on as-manufactured tubes as well as tubes after service. The established finite element models were then used to evaluate stress conditions during boiler operation. Using these finite element models, a parametric response surface study was performed to investigate the influence of material properties of the clad layer on stresses in the floor tubes during various boiler operating conditions, which yielded a generalized solution of stresses in the composite tube floors. The results of the study are useful for identifying the mechanisms of cracking experienced by recovery boilers. Based on the results of the response surface study, a recommendation was made for more suitable materials in terms of the analyzed mechanical properties. Alternative materials and manufacturing processes are being considered to improve the resistance to cracking and the in-service life of composite tubes. To avoid numerous FE stress-strain analyses of composite tubes made of different material combinations, a response surface study was performed that considered two essential mechanical properties of the clad material - coefficient of thermal expansion and yield stress - as independent variables. The response surface study provided a generalized solution of stresses in the floor in terms of the two selected parameters.

  9. Mechanism on microwave-assisted acidic solvolysis of black-liquor lignin.

    PubMed

    Dong, Chengjian; Feng, Chunguang; Liu, Qian; Shen, Dekui; Xiao, Rui

    2014-06-01

    Microwave-assisted degradation of black-liquor lignin with formic acid was studied, concerning the product yield and distribution of phenolic compounds against reaction temperature (110-180°C) and reaction time (5-90 min). The liquid product consisting of bio-oil 1 and bio-oil 2, achieved the maxima yield of 64.08% at 160°C and 30 min (bio-oil 1: 9.69% and bio-oil 2: 54.39%). The chemical information of bio-oil 1 and bio-oil 2 were respectively identified by means of Gas Chromatography-Mass Spectrometer (GC-MS) and Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS), while the solid residue was analyzed by Gel Permeation Chromatography (GPC) and Fourier Transform Infrared Spectroscopy (FTIR). A possible mechanism was proposed for the microwave-assisted acidic solvolysis of lignin, specifying the kinetic relationship among the primary cracking of lignin, repolymerization of the oligomers and formation of solid residue. PMID:24747392

  10. Gasification behavior of carbon residue in bed solids of black liquor gasifier

    SciTech Connect

    Preto, Fernando; Zhang, Xiaojie; Wang, Jinsheng

    2008-07-15

    Steam gasification of carbon residue in bed solids of a low-temperature black liquor gasifier was studied using a thermogravimetric system at 3 bar. Complete gasification of the carbon residue, which remained unreactive at 600 C, was achieved in about 10 min as the temperature increased to 800 C. The rate of gasification and its temperature dependence were evaluated from the non-isothermal experiment results. Effects of particle size and adding H{sub 2} and CO to the gasification agent were also studied. The rate of steam gasification could be taken as zero order in carbon until 80% of carbon was gasified, and for the rest of the gasification process the rate appeared to be first order in carbon. The maximum rate of carbon conversion was around 0.003/s and the activation energy was estimated to be in the range of 230-300 kJ/mol. The particle size did not show significant effect on the rate of gasification. Hydrogen and carbon monoxide appeared to retard the onset of the gasification process. (author)

  11. Encapsulation of black carrot juice using spray and freeze drying.

    PubMed

    Murali, S; Kar, Abhijit; Mohapatra, Debabandya; Kalia, Pritam

    2015-12-01

    Black carrot juice extracted using pectinase enzyme was encapsulated in three different carrier materials (maltodextrin 20DE, gum arabic and tapioca starch) using spray drying at four inlet temperatures (150, 175, 200 and 225 ℃) and freeze drying at a constant temperature of - 53 ℃ and vacuum of 0.22-0.11 mbar with the constant feed mixture. The products were analyzed for total anthocyanin content, antioxidant activity, water solubility index, encapsulation efficiency and total colour change. For both the drying methods followed in this study, maltodextrin 20DE as the carrier material has proven to be better in retaining maximum anthocyanin and antioxidant activity compared to gum arabic and tapioca starch. The best spray dried product, was obtained at 150 ℃. The most acceptable was the freeze dried product with maximum anthocyanin content, antioxidant activity, water solubility index, encapsulation efficiency and colour change. PMID:25367889

  12. Black liquor and the hangover effect: fish assemblage recovery dynamics following a pulse disturbance

    PubMed Central

    Piller, Kyle R; Geheber, Aaron D

    2015-01-01

    Anthropogenic perturbations impact aquatic systems causing wide-ranging responses, from assemblage restructuring to assemblage recovery. Previous studies indicate the duration and intensity of disturbances play a role in the dynamics of assemblage recovery. In August 2011, the Pearl River, United States, was subjected to a weak black liquor spill from a paper mill which resulted in substantial loss of fish in a large stretch of the main channel. We quantified resilience and recovery of fish assemblage structure in the impacted area following the event. We compared downstream (impacted) assemblages to upstream (unimpacted) assemblages to determine initial impacts on structure. Additionally, we incorporated historic fish collections (1988–2011) to examine impacts on assemblage structure across broad temporal scales. Based on NMDS, upstream and downstream sites generally showed similar assemblage structure across sample periods with the exception of the 2 months postdischarge, where upstream and downstream sites visually differed. Multivariate analysis of variance (PERMANOVA) indicated significant seasonal variation among samples, but found no significant interaction between impacted and unimpacted assemblages following the discharge event. However, multivariate dispersion (MVDISP) showed greater variance among assemblage structure following the discharge event. These results suggest that 2 months following the disturbance represent a time period of stochasticity in regard to assemblage structure dynamics, and this was followed by rapid recovery. We term this dynamic the “hangover effect” as it represents the time frame from the cessation of the perturbation to the assemblage's return to predisturbance conditions. The availability and proximity of tributaries and upstream refugia, which were not affected by the disturbance, as well as the rapid recovery of abiotic parameters likely played a substantial role in assemblage recovery. This study not only

  13. Black liquor and the hangover effect: fish assemblage recovery dynamics following a pulse disturbance.

    PubMed

    Piller, Kyle R; Geheber, Aaron D

    2015-06-01

    Anthropogenic perturbations impact aquatic systems causing wide-ranging responses, from assemblage restructuring to assemblage recovery. Previous studies indicate the duration and intensity of disturbances play a role in the dynamics of assemblage recovery. In August 2011, the Pearl River, United States, was subjected to a weak black liquor spill from a paper mill which resulted in substantial loss of fish in a large stretch of the main channel. We quantified resilience and recovery of fish assemblage structure in the impacted area following the event. We compared downstream (impacted) assemblages to upstream (unimpacted) assemblages to determine initial impacts on structure. Additionally, we incorporated historic fish collections (1988-2011) to examine impacts on assemblage structure across broad temporal scales. Based on NMDS, upstream and downstream sites generally showed similar assemblage structure across sample periods with the exception of the 2 months postdischarge, where upstream and downstream sites visually differed. Multivariate analysis of variance (PERMANOVA) indicated significant seasonal variation among samples, but found no significant interaction between impacted and unimpacted assemblages following the discharge event. However, multivariate dispersion (MVDISP) showed greater variance among assemblage structure following the discharge event. These results suggest that 2 months following the disturbance represent a time period of stochasticity in regard to assemblage structure dynamics, and this was followed by rapid recovery. We term this dynamic the "hangover effect" as it represents the time frame from the cessation of the perturbation to the assemblage's return to predisturbance conditions. The availability and proximity of tributaries and upstream refugia, which were not affected by the disturbance, as well as the rapid recovery of abiotic parameters likely played a substantial role in assemblage recovery. This study not only demonstrates

  14. Pyrometric temperature measurement method and apparatus for measuring particle temperatures in hot furnaces: Application to reacting black liquor

    NASA Astrophysics Data System (ADS)

    Stenberg, J.; Frederick, W. J.; Boström, S.; Hernberg, R.; Hupa, M.

    1996-05-01

    A specialized two-color pyrometric method has been developed for the measurement of particle surface temperatures in hot, radiating environments. In this work, the method has been applied to the measurement of surface temperatures of single reacting black liquor char particles in an electrically heated muffle furnace. Black liquor was introduced into the hot furnace as wet droplets. After drying, the resulted particles were processed in different atmospheres corresponding to combustion, pyrolysis, and gasification at furnace temperatures of 700-900 °C. The pyrometric measurement is performed using two silicon photodiode detectors and 10 nm bandpass filters centered at 650 and 1050 nm. Thermal radiation is transferred using an uncooled fiberoptic probe brought into the vicinity of the char particle. The key features of the pyrometric apparatus and analysis method are: (1) Single particle temperature is resolved temporally at high speed. (2) The thermal radiation originating from the furnace and reflected by the particle is accounted for in the measurement of the surface temperature. (3) Particle temperatures above or below the furnace temperature can be measured without the need of a cooled background assisting the measurement in the hot furnace. To accomplish this, a minimum particle size is needed that is a function of the temperature difference between the particle and furnace. Particles cooler than the furnace can be measured if their diameter is more than 0.7 mm. Surface temperatures of 300-400 °C above the furnace temperature were measured during combustion of black liquor char particles in air. In atmospheres corresponding to gasification, endothermic reactions occurred, and char temperature remained typically 40° below the furnace temperature.

  15. Black liquor combustion validated recovery boiler modeling: Final year report. Volume 2 (Appendices I, section 5 and II, section 1)

    SciTech Connect

    Grace, T.M.; Frederick, W.J.; Salcudean, M.; Wessel, R.A.

    1998-08-01

    This project was initiated in October 1990, with the objective of developing and validating a new computer model of a recovery boiler furnace using a computational fluid dynamics (CFD) code specifically tailored to the requirements for solving recovery boiler flows, and using improved submodels for black liquor combustion based on continued laboratory fundamental studies. The key tasks to be accomplished were as follows: (1) Complete the development of enhanced furnace models that have the capability to accurately predict carryover, emissions behavior, dust concentrations, gas temperatures, and wall heat fluxes. (2) Validate the enhanced furnace models, so that users can have confidence in the predicted results. (3) Obtain fundamental information on aerosol formation, deposition, and hardening so as to develop the knowledge base needed to relate furnace model outputs to plugging and fouling in the convective sections of the boiler. (4) Facilitate the transfer of codes, black liquid submodels, and fundamental knowledge to the US kraft pulp industry. Volume 2 contains the last section of Appendix I, Radiative heat transfer in kraft recovery boilers, and the first section of Appendix II, The effect of temperature and residence time on the distribution of carbon, sulfur, and nitrogen between gaseous and condensed phase products from low temperature pyrolysis of kraft black liquor.

  16. Causes and solutions for cracking of coextruded and weld overlay floor tubes in black liquor recovery boilers

    SciTech Connect

    Keiser, J.R.; Taljat, B.; Wang, X.L.

    1998-09-01

    Cracking of coextruded, black liquor recovery boiler floor tubes is both a safety and an economic issue to mill operators. In an effort to determine the cause of the cracking and to identify a solution, extensive studies, described in this and three accompanying papers, are being conducted. In this paper, results of studies to characterize both the cracking and the chemical and thermal environment are reported. Based on the results described in this series of papers, a possible mechanism is presented and means to lessen the likelihood of cracking or to totally avoid cracking of floor tubes are offered.

  17. Controlling emissions from a black liquor fluidized bed evaporator (Copeland reactor) using a regenerative thermal oxidizer and a prefilter

    SciTech Connect

    Grzanka, R.

    1997-12-31

    This paper reports on an intriguing pilot project developed to control air emissions from a pulp mill. Testing is complete, and the results show favorable emissions reductions. Stone Container Corporation, REECO, NCASI, the Ohio DEP, and the US EPA, have all worked together and approved the installation of control equipment, for VOC and HAP emissions under Presumptive MACT, setting the standard for the Copeland Reactor process in a semi chem pulp mill. The equipment, once operational, will reduce VOC and CO emissions by greater than 90%. This installation will be done at one seventh the cost of the significant process modifications required to accomplish the same emission reduction. In addition, increased process operating efficiency will be achieved with the use of an energy recovery system. The process is a black liquor fluidized bed boiler, which is used to generate sodium carbonate from the black liquor. The vapor emissions were high in VOCs, CO and particulate. After much study and testing, a wet electrostatic precipitator was chosen as the filter system for particulate control, followed by a regenerative thermal oxidizer for VOC and HAP control, finally an air-to-air heat exchanger is being used to preheat the combustion air entering the process.

  18. Energy conversion performance of black liquor gasification to hydrogen production using direct causticization with CO(2) capture.

    PubMed

    Naqvi, M; Yan, J; Dahlquist, E

    2012-04-01

    This paper estimates potential hydrogen production via dry black liquor gasification system with direct causticization integrated with a reference pulp mill. The advantage of using direct causticization is elimination of energy intensive lime kiln. Pressure swing adsorption is integrated in the carbon capture process for hydrogen upgrading. The energy conversion performance of the integrated system is compared with other bio-fuel alternatives and evaluated based on system performance indicators. The results indicated a significant hydrogen production potential (about 141MW) with an energy ratio of about 0.74 from the reference black liquor capacity (about 243.5MW) and extra biomass import (about 50MW) to compensate total energy deficit. About 867,000tonnes of CO(2) abatement per year is estimated i.e. combining CO(2) capture and CO(2) offset from hydrogen replacing motor gasoline. The hydrogen production offers a substantial motor fuel replacement especially in regions with large pulp and paper industry e.g. about 63% of domestic gasoline replacement in Sweden. PMID:22342037

  19. Structural analysis of lignin residue from black liquor and its thermal performance in thermogravimetric-Fourier transform infrared spectroscopy.

    PubMed

    Hu, Jun; Xiao, Rui; Shen, Dekui; Zhang, Huiyan

    2013-01-01

    Structural characteristics of benzene-ethanol-extracted lignin (BEL) and acetone-extracted lignin (AL) precipitated from black liquor were identified by elemental analysis, FTIR, (13)C NMR, and (1)H NMR, while the thermal behaviors were examined with thermogravimetric-Fourier transform infrared spectroscopy (TG-FTIR). The frequency of β-O-4 bonds per 100 C9 monomeric units was 28 and 17 for BEL and AL. Two-stage pyrolysis processes were observed for the two lignins. The mass loss rate of the initial solvent evolution stage (110-180 °C) of BEL was greater than that of AL. The two lignins presented slightly different mass loss curves and evolution profiles of gases in the main pyrolysis stage (280-500 °C). A global kinetic model was proposed for lignin pyrolysis and activation energies of 39.5 and 38.8 kJ/mol was obtained for BEL and AL. The results enhance understanding of lignin pyrolysis and facilitate commercial utilization of black-liquor lignin. PMID:23220109

  20. Fundamental study of black liquor gasification kinetics using a pressurized entrained-flow reactor (PEFR). Quarterly progress report for the period July 1999 to September 1999

    SciTech Connect

    1999-10-29

    The goal of the program is to identify the optimal operating window for black liquor gasification. The goals during this year are to prepare the PEFR for operation, conduct a series of preliminary screening tests to bracket BLG operating conditions, and develop a process model that can guide identification of the optimal operating window.

  1. High-solids black liquor firing in pulp and paper industry Kraft recovery boilers. Final report, Phase 1, Volume 1: Executive summary

    SciTech Connect

    Southards, W.T.; Clement, J.L.; McIlroy, R.A.; Tharp, M.R.; Verrill, C.L.; Wessell, R.A.

    1995-11-01

    This project is a multiple-phase effort to develop technologies to improve high-solids black liquor firing in pulp mill recovery boilers. The objectives are to develop a preliminary design of a recovery furnace simulator; evaluate the economics of high-solids; and delineate a project concept for evaluating candidate technologies to improve chemical recovery.

  2. Thermogravimetric-Fourier transform infrared spectrometric analysis of CO2 gasification of reed (Phragmites australis) kraft black liquor.

    PubMed

    Yang, Qing; Yin, Xiuli; Wu, Chuangzhi; Wu, Shubin; Guo, Daliang

    2012-03-01

    CO(2) gasification of the reed (Phragmites australis) kraft black liquor (KBL) and its water-soluble lignin (WSL) was analyzed by thermogravimetry coupled with Fourier transform infrared spectrometry (TG-FTIR). In KBL gasification, major mass loss of KBL occurred between 150 and 1000°C, followed by a further slow mass loss until the heating was stopped and the TG curve leveled off. The TG profiles of the WSL and the KBL were similar during gasification; however, the differential thermogravimetry (DTG) curves and mass decrease from 300°C of the TG curves of the WSL and the KBL were different because of their dissimilar ingredients. The CO formation mechanism was the same and independent of structural types of lignins between reed and wood in their KBL CO(2) gasification. PMID:22209407

  3. Increasing the lignin yield of the Alkaline Polyol Pulping process by treating black liquor with laccases of Myceliophthora thermophila.

    PubMed

    Engel, Norman; Hundt, Martin; Schapals, Tino

    2016-03-01

    The Alkaline Polyol Pulping process separates cellulose from lignocellulosic biomass by dissolving lignin to a great extent. Due to the pulping conditions the dissolved lignin depolymerises and only 75% can be precipitated. To increase this amount, a 24 h reaction of laccases of Myceliophthora thermophila with lignin dissolved in black liquor of the AlkaPolP process was investigated. The influence of pH, temperature, enzyme concentration and partial oxygen pressure was examined in a batch stirred tank reactor using a Box-Behnken factorial design. Due to the enzymatic reaction the lignin polymerises which results in an enhanced lignin precipitation. The addition of a mediator improves the polymerisation but decreases the amount of precipitable lignin. The influence of the parameters on precipitation yield and molecular mass can sufficiently be described with a second-order model and optimum conditions can be assessed. FT-IR spectra of the obtained lignins revealed that its typical phenolic structure is preserved. PMID:26722808

  4. Economic evaluation of kraft black liquor freeze concentration for the pulp and paper industry: Final report

    SciTech Connect

    Coleman, T.C.

    1986-09-01

    The system was conceptually incorporated into several paper mill liquor concentration systems. Three fundamental scenarios were considered: a small, sulphite mill expansion comparing freeze concentration to evaporators and vapor recompression; a ''greenfield'' mill which evaluated the use of a freeze concentration process to achieve varying degrees of liquor concentration before achieving final concentration using traditional evaporation; and a kraft mill expansion which explored the use of freeze concentration to achieve a mill capacity expansion using a freeze concentrator in tandem with an existing evaporator set. The performance of these various scenarios were evaluated using a heat balance analysis and the comparative net present value of each arrangement was determined using a traditional evaporator system as a reference. Results indicate that generally the freeze concentration process is not economically attractive relative to traditional evaporator systems at the present time. At a fuel cost of $28.77/barrel, the freeze concentration process becomes attractive. However, this study was performed considering a fuel oil cost of $23.63 per barrel and the world fuel oil price has declined markedly since then.

  5. Black liquor combustion validated recovery boiler modeling: Final year report. Volume 3 (Appendices II, sections 2--3 and III)

    SciTech Connect

    Grace, T.M.; Frederick, W.J.; Salcudean, M.; Wessel, R.A.

    1998-08-01

    This project was initiated in October 1990, with the objective of developing and validating a new computer model of a recovery boiler furnace using a computational fluid dynamics (CFD) code specifically tailored to the requirements for solving recovery boiler flows, and using improved submodels for black liquor combustion based on continued laboratory fundamental studies. The key tasks to be accomplished were as follows: (1) Complete the development of enhanced furnace models that have the capability to accurately predict carryover, emissions behavior, dust concentrations, gas temperatures, and wall heat fluxes. (2) Validate the enhanced furnace models, so that users can have confidence in the predicted results. (3) Obtain fundamental information on aerosol formation, deposition, and hardening so as to develop the knowledge base needed to relate furnace model outputs to plugging and fouling in the convective sections of the boiler. (4) Facilitate the transfer of codes, black liquid submodels, and fundamental knowledge to the US kraft pulp industry. Volume 3 contains the following appendix sections: Formation and destruction of nitrogen oxides in recovery boilers; Sintering and densification of recovery boiler deposits laboratory data and a rate model; and Experimental data on rates of particulate formation during char bed burning.

  6. Black liquor combustion validated recovery boiler modeling: Final year report. Volume 1 (Main text and Appendix I, sections 1--4)

    SciTech Connect

    Grace, T.M.; Frederick, W.J.; Salcudean, M.; Wessel, R.A.

    1998-08-01

    This project was initiated in October 1990, with the objective of developing and validating a new computer model of a recovery boiler furnace using a computational fluid dynamics (CFD) code specifically tailored to the requirements for solving recovery boiler flows, and using improved submodels for black liquor combustion based on continued laboratory fundamental studies. The key tasks to be accomplished were as follows: (1) Complete the development of enhanced furnace models that have the capability to accurately predict carryover, emissions behavior, dust concentrations, gas temperatures, and wall heat fluxes. (2) Validate the enhanced furnace models, so that users can have confidence in the predicted results. (3) Obtain fundamental information on aerosol formation, deposition, and hardening so as to develop the knowledge base needed to relate furnace model outputs to plugging and fouling in the convective sections of the boiler. (4) Facilitate the transfer of codes, black liquid submodels, and fundamental knowledge to the US kraft pulp industry. Volume 1 contains the main body of the report and the first 4 sections of Appendix 1: Modeling of black liquor recovery boilers -- summary report; Flow and heat transfer modeling in the upper furnace of a kraft recovery boiler; Numerical simulation of black liquor combustion; and Investigation of turbulence models and prediction of swirling flows for kraft recovery furnaces.

  7. Detection of estrogen- and dioxin-like activity in pulp and paper mill black liquor and effluent using in vitro bioassays

    SciTech Connect

    Zacharewski, T.; Berhane, K.; Gillesby, B.; Burnison, K. |

    1995-12-31

    Pulp and paper mill effluent contains a complex mixture of compounds which adversely affect fish physiologically and at the population level. These effects include compromised reproductive fitness and the induction of mixed-function oxidase activities; two classic responses mediated by the estrogen and/or Ah receptor. In vitro recombinant receptor/reporter gene assays were used to examine pulp and paper mill black liquor and effluent for estrogenic, dioxin-like and antiestrogenic activities. Using MCF7 cells transiently transfected with a Gal4-estrogen receptor chimeric construct (Gal4-HEGO) and a Gal4-regulated luciferase reporter gene (17m5-G-Luc), it was estimated that black liquor contains 4 {+-} 2 ppb ``estrogen equivalents``, while negligible estrogenic activity was observed in a methanol-extracted pulp and paper mill effluent fraction (MF). A dioxin response element (DRE)-regulated luciferase reporter gene (pGudLucl.1) transiently transfected into Hepalclc7 wild type cells exhibited a dose-dependent increase in luciferase activity following treatment with 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDO), black liquor and MF. Based on the dose response curves, black liquor and MF contain 10 {+-} 4 ppb and 20 {+-} 6 ppt ``TCDD equivalents``, respectively. Moreover, MF exhibited significant AhR-mediated antiestrogenic activity. These results demonstrate the utility of these bioassays and suggest that the effects observed in fish exposed to pulp and paper mill effluent may be due to unidentified ER and AhR ligands not detected by conventional chemical analysis due to the lack of appropriate chemical standards.

  8. Development of an alternative kraft black liquor recovery process based on low-temperature processing in fluidized beds. Final technical report on Annex 9, Task 1

    SciTech Connect

    Kubes, G.J.

    1994-03-24

    The overall objective of this research program was to provide the fundamental knowledge and experimental data from pilot scale operation for an alternative black liquor recovery technology which would have a higher overall energy efficiency, would not suffer from the smelt-water explosion hazard and would be lower in capital cost. In addition, the alternative process would be more flexible and well suited for incremental recovery capacity or for new pulping processes, such as the new sulfide-sulfide-AQ process. The research program consists of number of specific research objectives with the aim to achieve the ultimate objective of developing an alternative recovery process which is shown in Figure 1. The specific objectives are linked to individual unit operations and they represent the following research topics: (1) superheated steam drying of kraft black liquors; (2) fast pyrolysis of black liquor; (3) hydrogen sulfide absorption from flue gas; (4) reduction of sodium sulfate in solid phase with gaseous hydrogen; and (5) verification of the fundamental results in fluidized bed pilot plant. The accomplishments in each of these objectives are described.

  9. Optimization the soda-AQ process for cellulose pulp production and energy content of black liquor from L. leucocephala K360.

    PubMed

    Feria, M J; García, J C; Díaz, M J; Garrote, G; López, F

    2012-09-01

    A commercial variety of Leucaena leucocephala K360 was used for pulp production and papermaking employing the soda-anthraquinone process. Also, the chemical and energy contents of the resultant black liquors were determined to simultaneously optimize: pulp and paper production and energy generation. A process temperature of (185°C), an operating time of (120 min) and an active alkali concentration of (21%) provided sheets of paper with good strength (tensile index of 12.12 Nm/g, burst index of 0.38 kPa m(2)/g, tear index of 1.29 mN m(2)/g and a Kappa number of 20.5) and black liquor with a greater calorific value (14.1 MJ/kg) than that obtained with higher active alkali concentrations. However, reducing the active alkali concentration to a level in the low operation range led to less marked degradation of cellulose and allowed paper sheets with good properties to be obtained and energy to be optimally produced from the black liquor. PMID:22789829

  10. Bacterial decolorization and detoxification of black liquor from rayon grade pulp manufacturing paper industry and detection of their metabolic products.

    PubMed

    Chandra, Ram; Abhishek, Amar; Sankhwar, Monica

    2011-06-01

    This study deals with the decolorization of black liquor (BL) by isolated potential bacterial consortium comprising Serratia marcescens (GU193982), Citrobacter sp. (HQ873619) and Klebsiella pneumoniae (GU193983). The decolorization of BL was studied by using the different nutritional as well as environmental parameters. In this study, result revealed that the ligninolytic activities were found to be growth associated and the developed bacterial consortium was efficient for the reduction of COD, BOD and color up to 83%, 74% and 85%, respectively. The HPLC analysis of degraded samples of BL has shown the reduction in peak area compared to control. Further, the GC-MS analysis showed that, most of the compounds detected in control were diminished after bacterial treatment while, formic acid hydrazide, 4-cyclohexane-1,2-dicarboxylic acid, carbamic acid, 1,2-benzenedicarboxylic acid and erythropentanoic acid were found as new metabolites. Further, the seed germination test using Phaseolus aureus has supported the detoxification of bacterial decolorized BL. PMID:21482463

  11. Fast carbonization using fluidized bed for biochar production from reed black liquor: optimization for H2S removal.

    PubMed

    Yang, Gang; Sun, Yong; Zhang, Jing Ping; Wen, Chao

    2016-10-01

    The biochar was produced from fast pyrolysis of reed black liquor using fluidized bed. Response surface methodology and the central composite design (CCD) were employed for determining optimal adsorbents with maximum H2S removal capacity. The operational parameters such as carbonization temperature (°C), duration (min) and space velocity (SV, L min(-1) kg(-1)) were chosen as independent variables in CCD. The statistical analysis indicates that the effects of carbonization temperature, duration, SV and combined effect of carbonization temperature and duration are all significant to the H2S removal capacity. The optimal condition for achieving the maximum H2S adsorption capacity for biochar is obtained as the follows: carbonization temperature (500°C), duration (5.7 min), SV (7300 L min(-1) kg(-1)) with H2S removal reaching 60 mg g(-1). The dynamic experimental results indicate a good performance in H2S removal by the produced biochar. PMID:26936082

  12. Catalytic oxidative treatment of diluted black liquor at mild conditions using copper oxide/cerium oxide catalyst.

    PubMed

    Garg, Anurag; Mishra, Indra M; Chand, Shri

    2008-02-01

    Wet-air oxidation of diluted black liquor (chemical oxygen demand [COD] approximately 3250 to 14 500 mg/L) was performed at mild operating conditions (temperature = 388 to 423 K and total pressure = 0.6 MPa) in the presence of heterogeneous 60% copper oxide (CuO)/ 40% cerium oxide (CeO2) catalyst. Maximum COD reduction of 77.3% was obtained at 423 K at pH 3.0, which was marginally higher than that obtained at 413 K temperature (77.1%). In the acidic environment (pH < or = 3), most of the COD was removed in the form of settleable solids during the transient heating of the wastewater from room temperature to the desired one. The solid residue obtained after the reaction has a heating value of 20.1 MJ/kg, which is comparable with that of Indian coal. Thermal degradation kinetic determination suggested that thermal characteristics of the solid residue are well represented by a power law model with Agarwal and Sivasubramanian approximation (Safi et al., 2004). PMID:18330223

  13. Exposure assessment of fishes to a modern pulp and paper mill effluents after a black liquor spill.

    PubMed

    Meriläinen, Päivi; Oikari, Aimo

    2008-09-01

    Conjugated resin acids (RAs) in fish bile are considered a sensitive chemical indicator of exposure to pulp and paper mill effluent, and were used in this study to monitor the post-spill situation of a lake area (Southern Lake Saimaa) contaminated by black liquor discharged from a mill in June 2003. From the exposure perspective of populations of wild roach and perch, which were studied for their bile RAs at four time periods (July 2003, September 2003, May 2004, July 2004), the exceptional event passed in 2 months or less. Perch had lower concentration of RAs in bile than roach in all sampling areas and all times. Besides the current emissions present in the water column, part of the exposure status of the roach population to RAs seemed to derive from historically contaminated sediments. In order to test this hypothesis, a laboratory experiment with perch and roach, along with three teleosts (rainbow trout, brown trout and whitefish), was conducted. The species were simultaneously exposed for 7 days to RAs (23 microg/l). We calculated a perch/roach-ratio to investigate the difference in origin of exposure between perch and roach populations in the wild and in the laboratory. One year after the spill, the perch/roach-ratio of bile RAs was 0.25 (CV 25%) at 1 km from the mill. This is in contrast to that found under the sole waterborne conditions (0.44; CV 24%), supporting the idea that sediments serve as an additional source of RAs in roach. Additionally, bioconcentration factor log BCF(bile(RA)) was calculated to assess hepatobiliary performance and the capacity to excrete RAs in fish. PMID:18040877

  14. Laccase-initiated cross-linking of lignocellulose fibres using a ultra-filtered lignin isolated from kraft black liquor.

    PubMed

    Elegir, G; Bussini, D; Antonsson, S; Lindström, M E; Zoia, L

    2007-12-01

    In this work, the effect of Trametes pubescens laccase (TpL) used in combination with a low-molecular-weight ultra-filtered lignin (UFL) to improve mechanical properties of kraft liner pulp and chemi-thermo-mechanical pulp was studied. UFL was isolated by ultra-filtration from the kraft cooking black liquor obtained from softwood pulping. This by-product from the pulp industry contains an oligomeric lignin with almost twice the amount of free phenolic moieties than residual kraft pulp lignin. The reactivity of TpL on UFL and kraft pulp was studied by nuclear magnetic resonance spectroscopy and size exclusion chromatography. Laccase was shown to polymerise UFL and residual kraft pulp lignin in the fibres, seen by the increase in their average molecular weight and in the case of UFL as a decrease in the amount of phenolic hydroxyls. The laccase initiated cross-linking of lignin, mediated by UFL, which gives rise to more than a twofold increase in wet strength of kraft liner pulp handsheets without loosing other critical mechanical properties. Hence, this could be an interesting path to decrease mechano-sorptive creep that has been reported to lessen in extent as wet strength is given to papers. The laccase/2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) mediator system showed a greater increase in wet tensile strength of the resulting pulp sheets than the laccase/UFL system. However, other mechanical properties such as dry tensile strength, compression strength and Scott Bond internal strength were negatively affected by the laccase/ABTS system. PMID:17955195

  15. Materials for the pulp and paper industry. Section 1: Development of materials for black liquor recovery boilers

    SciTech Connect

    Keiser, J.R.; Hubbard, C.R.; Payzant, E.A.

    1997-04-01

    Black liquor recovery boilers are essential components of kraft pulp and paper mills because they are a critical element of the system used to recover the pulping chemicals required in the kraft pulping process. In addition, the steam produced in these boilers is used to generate a significant portion of the electrical power used in the mill. Recovery boilers require the largest capital investment of any individual component of a paper mill, and these boilers are a major source of material problems in a mill. The walls and floors of these boilers are constructed of tube panels that circulate high pressure water. Molten salts (smelt) accumulate on the floor of recovery boilers, and leakage of water into the boiler can result in a violent explosion when the leaked water instantly vaporizes upon contacting the molten smelt. Because corrosion of the conventionally-used carbon steel tubing was found to be excessive in the lower section of recovery boilers, use of stainless steel/carbon steel co-extruded tubing was adopted for boiler walls to lessen corrosion and reduce the likelihood of smelt/water explosions. Eventually, this co-extruded or composite (as it is known in the industry) tubing was selected for use as a portion or all of the floor of recovery boilers, particularly those operating at pressures > 6.2 MPa (900 psi), because of the corrosion problems encountered in carbon steel floor tubes. Since neither the cause of the cracking nor an effective solution has been identified, this program was established to develop a thorough understanding of the degradation that occurs in the composite tubing used for walls and floors. This is being accomplished through a program that includes collection and review of technical reports, examination of unexposed and cracked tubes from boiler floors, computer modeling to predict residual stresses under operating conditions, and operation of laboratory tests to study corrosion, stress corrosion cracking, and thermal fatigue.

  16. Synthesis and characterization of high photocatalytic activity and stable Ag3PO4/TiO2 fibers for photocatalytic degradation of black liquor

    NASA Astrophysics Data System (ADS)

    Cai, Li; Long, Qiyi; Yin, Chao

    2014-11-01

    The TiO2 fiber was prepared by using cotton fiber as a template, and then Ag3PO4/TiO2 fibers were synthesized via in situ Ag3PO4 particles onto the surface of TiO2 fiber. Their structure and physical properties were characterized by means of scanning electron microscopy (SEM), specific surface analyzer, X-ray diffraction (XRD), UV-vis absorption spectra and photoluminescence spectra (PL). SEM analysis indicated that the well-defined surface morphology of natural cotton fiber was mostly preserved in TiO2 and Ag3PO4/TiO2 fibers. Compared with TiO2 fiber, the absorbance wavelengths of Ag3PO4/TiO2 fibers were apparently red shifted and the PL intensities revealed a significant decrease. By using the photocatalytic degradation of black liquor as a model reaction, the visible light and ultraviolet light catalytic efficiencies of TiO2, Ag3PO4 and Ag3PO4/TiO2 fibers were evaluated. The reaction results showed that Ag3PO4/TiO2 fibers had stronger photocatalytic activity and excellent chemical stability in repeated and long-term applications. Therefore, the prepared Ag3PO4/TiO2 fibers could act as an efficient catalyst for the photocatalytic degradation of black liquor, which suggested their promising applications. It was proposed that the •OH radicals played the leading role in the photocatalytic degradation of the black liquor by Ag3PO4/TiO2 fibers system.

  17. Engineering Study for a Full Scale Demonstration of Steam Reforming Black Liquor Gasification at Georgia-Pacific's Mill in Big Island, Virginia

    SciTech Connect

    Robert De Carrera; Mike Ohl

    2002-03-19

    Georgia-Pacific Corporation performed an engineering study to determine the feasibility of installing a full-scale demonstration project of steam reforming black liquor chemical recovery at Georgia-Pacific's mill in Big Island, Virginia. The technology considered was the Pulse Enhanced Steam Reforming technology that was developed and patented by Manufacturing and Technology Conversion, International (MTCI) and is currently licensed to StoneChem, Inc., for use in North America. Pilot studies of steam reforming have been carried out on a 25-ton per day reformer at Inland Container's Ontario, California mill and on a 50-ton per day unit at Weyerhaeuser's New Bern, North Carolina mill.

  18. Mammalian cell-line based toxicological evaluation of paper mill black liquor treated in a soil microcosm by indigenous alkalo-tolerant Bacillus sp.

    PubMed

    Mishra, Monika; Das, Mihir Tanay; Thakur, Indu Shekhar

    2014-02-01

    Organic pollutants present in the soil of a microcosm containing pulp and paper mill black liquor were extracted with hexane/acetone (1:1 v/v) to study the biodegradation and detoxification potential of a Bacillus sp. gas chromatography-mass spectroscopic (GC-MS) analysis performed after biodegradation showed formation of simpler compounds like p-hydroxyhydrocinnamic acid (retention time [RT] 19.3 min), homovanillic acid methyl ester (RT 21.6 min) and 3,5-dimethoxy-p-coumaric alcohol (RT 24.7 min). The methyltetrazolium (MTT) assay for cytotoxicity, 7-ethoxyresorufin-O-deethylase (EROD) assay for dioxin-like behavior and alkaline comet assay for genotoxicity were carried out in the human hepatocarcinoma cell line HuH-7 before and after bacterial treatment. Bioremediation for 15 days reduced toxicity, as shown by a 139-fold increase in black liquor's LC50 value, a 343-fold reduction in benzo(a)pyrene equivalent value and a 5-fold reduction in olive tail moment. The EROD assay positively correlated with both the MTT and comet assays in post biodegradation toxicity evaluation. PMID:24170500

  19. High-solids black liquor firing in pulp and paper industry kraft recovery boilers: Phase 1 -- Final report. Volume 2: Project technical results

    SciTech Connect

    Southards, W.T.; Clement, J.L.; McIlroy, R.A.; Tharp, M.R.; Verrill, C.L.; Wessell, R.A.

    1995-11-01

    This project is a multiple-phase effort to develop technologies to improve high-solids black liquor firing in pulp mill recovery boilers. The principal means to this end is to construct and operate a pilot-scale recovery furnace simulator (RFS) in which these technologies can be tested. The Phase 1 objectives are to prepare a preliminary design for the RFS, delineate a project concept for evaluating candidate technologies, establish industrial partners, and report the results. Phase 1 addressed the objectives with seven tasks: Develop a preliminary design of the RFS; estimate the detailed design and construction costs of the RFS and the balance of the project; identify interested parties in the paper industry and key suppliers; plan the Phase 2 and Phase 3 tests to characterize the RFS; evaluate the economic justification for high-solids firing deployment in the industry; evaluate high-solids black liquor property data to support the RFS design; manage the project and reporting results, which included planning the future program direction.

  20. Effect of Carbon Black on Dielectric and Microwave Absorption Properties of Carbon Black/Cordierite Plasma-Sprayed Coatings

    NASA Astrophysics Data System (ADS)

    Su, Jinbu; Zhou, Wancheng; Liu, Yi; Qing, Yuchang; Luo, Fa; Zhu, Dongmei

    2015-06-01

    Carbon black (CB)/cordierite composite coatings with different CB contents were fabricated by a multi-function micro-plasma spraying system developed by the Second Artillery Engineering College. Scanning electron microscopy was employed to investigate the microstructure of the spray-dried powders and as-sprayed coatings. The complex permittivities of the coatings and powders with different CB contents were investigated at the frequency of 8.2-12.4 GHz. The results show that both real and imaginary part of the permittivity increase with increasing CB content, which can be ascribed to the increase of the number of micro-capacitors and the polarization centers. Reflection loss of the as-sprayed coatings with different CB contents and thicknesses was calculated according to the transmission line theory. The coating with 4.54% CB content and 3.0 mm thickness shows optical microwave absorption with a minimum reflection loss of -23.90 dB at 10.13 GHz and reflection loss less than -9 dB over the whole investigated frequency.

  1. The impact of foliar boron sprays on reproductive biology and seed quality of black gram.

    PubMed

    Pandey, Nalini; Gupta, Bhavana

    2013-01-01

    An experiment was conducted under glass house condition to study the effect of foliar application of boron (B) on reproductive biology and seed quality of black gram (Vigna mungo). Black gram (V. mungo L. var. DPU-88-31) was grown under controlled sand culture condition at deficient and sufficient B levels. After 32 days of sowing B deficient plants were sprayed with three concentrations of B (0.05%, 0.1% and 0.2% borax) at three different stages of reproductive development, i.e. prior to flowering, initiation of bud formation and after bud formation. Deficient B supply decreased the anther and pollen size, pollen tube growth, pollen viability as well as stigmatic receptivity which were increased by foliar B application. Foliar spray at all the three concentrations and at all stages increased the yield parameters like number of pods, pod size and number of seeds formed per plant. Foliar B application also improved the seed yield and seed quality in terms of storage seed proteins (albumin, globulin, glutenin and prolamin) and carbohydrates (sugars and starch) in black gram. The foliar application of B in appropriate doses (particularly 0.1%) after bud formation made quantitative and qualitative improvement in seed yield of black gram by supplementing additional/critical B requirements for reproductive development. PMID:22947393

  2. Equipment Design and Cost Estimation for Small Modular Biomass Systems, Synthesis Gas Cleanup, and Oxygen Separation Equipment; Task 2: Gas Cleanup Design and Cost Estimates -- Black Liquor Gasification

    SciTech Connect

    Nexant Inc.

    2006-05-01

    As part of Task 2, Gas Cleanup and Cost Estimates, Nexant investigated the appropriate process scheme for removal of acid gases from black liquor-derived syngas for use in both power and liquid fuels synthesis. Two 3,200 metric tonne per day gasification schemes, both low-temperature/low-pressure (1100 deg F, 40 psi) and high-temperature/high-pressure (1800 deg F, 500 psi) were used for syngas production. Initial syngas conditions from each of the gasifiers was provided to the team by the National Renewable Energy Laboratory and Princeton University. Nexant was the prime contractor and principal investigator during this task; technical assistance was provided by both GTI and Emery Energy.

  3. Integration of the Mini-Sulfide Sulfite Anthraquinone (MSS-AQ) Pulping Process and Black Liquor Gasification in a Pulp Mill

    SciTech Connect

    Hasan Jameel, North Carolina State University; Adrianna Kirkman, North Carolina State University; Ravi Chandran,Thermochem Recovery International Brian Turk Research Triangle Institute; Brian Green, Research Triangle Institute

    2010-01-27

    As many of the recovery boilers and other pieces of large capital equipment of U.S. pulp mills are nearing the end of their useful life, the pulp and paper industry will soon need to make long-term investments in new technologies. The ability to install integrated, complete systems that are highly efficient will impact the industry’s energy use for decades to come. Developing a process for these new systems is key to the adoption of state-of-the-art technologies in the Forest Products industry. This project defined an integrated process model that combines mini-sulfide sulfite anthraquinone (MSS-AQ) pulping and black liquor gasification with a proprietary desulfurization process developed by the Research Triangle Institute. Black liquor gasification is an emerging technology that enables the use of MSS-AQ pulping, which results in higher yield, lower bleaching cost, lower sulfur emissions, and the elimination of causticization requirements. The recently developed gas cleanup/absorber technology can clean the product gas to a state suitable for use in a gas turbine and also regenerate the pulping chemicals needed to for the MSS-AQ pulping process. The combination of three advanced technologies into an integrated design will enable the pulping industry to achieve a new level of efficiency, environmental performance, and cost savings. Because the three technologies are complimentary, their adoption as a streamlined package will ensure their ability to deliver maximum energy and cost savings benefits. The process models developed by this project will enable the successful integration of new technologies into the next generation of chemical pulping mills. When compared to the Kraft reference pulp, the MSS-AQ procedures produced pulps with a 10-15 % yield benefit and the ISO brightness was 1.5-2 times greater. The pulp refined little easier and had a slightly lower apparent sheet density (In both the cases). At similar levels of tear index the MSS-AQ pulps also

  4. Effects of solids content, settling temperature, and liquor source on tall oil solubilities

    SciTech Connect

    Rousseau, R.W.; Kassebi, A.; Zinkel, D.F.

    1984-01-01

    Tall oil soap solubility in black liquors obtained from cooking pine and sweet gum, and in mixture of these liquors, was studied. As expected, solids content had a significant effect on the amount of soap remaining in settled liquors obtained from pine. Concentrating these liquors to about 30% solids reduced the soap concentration to approximately 0.8% of solids. Increasing the temperature at which the liquors were settled also increased residual tall oil soap content. Although mass balance calculations on mixtures of black liquors obtained from pine and gum show that the percentage recovery (solids basis) varies little with the inclusion of 12 to 50% hardwood black liquor, absolute recovery is increased with increased proportions of hardwood liquor. This is the result of decreased soap solubility with increased proportions of hardwood liquor. No discernable effect was observed on the proportion and composition of the acids and neutrals of the dissolved tall oil with respect to the solids content of the liquors.

  5. Detection of irradiated liquor

    NASA Astrophysics Data System (ADS)

    Shengchu, Qi; Jilan, Wu; Rongyao, Yuan

    D-2,3-butanediol is formed by irradiation processes in irradiated liquors. This radiolytic product is not formed in unirradiated liquors and its presence can therefore be used to identify whether a liquor has been irradiated or not. The relation meso/dl≈1 for 2,3-butanediol and the amount present in irradiated liquors may therefore be used as an indication of the dose used in the irradiation.

  6. Furnace endoscope—measuring fuel spray properties in hot and corrosive environments

    NASA Astrophysics Data System (ADS)

    Miikkulainen, P.; Kankkunen, A.; Järvinen, M. P.

    2004-12-01

    A furnace endoscope was developed to carry out in-furnace measurements of black liquor sprays in order to discover the initial velocity, opening angle and trajectory of the spray, and compare spray disintegration mechanisms and spray appearance with the ones measured in a spray chamber. An error analysis of the velocity measurement method was carried out, and the meaning of the optimum measurement distance from the optics to the observed object is discussed. Some details of the development process of the probe are also presented, especially the definition of the scale of the image and the cooling system of the protection tubes. The furnace endoscope can be used in difficult conditions, such as those found inside a chemical recovery boiler (~1,200°C and corrosive chemicals) with promising and accurate measurement results. The equipment has been tested in several furnaces.

  7. High-solids black liquor firing in pulp and paper industry kraft recovery boilers: Phase Ia - Low-temperature gasifier evaluation. Final report, November 1, 1995--October 31, 1996

    SciTech Connect

    Southards, W.T.; Blude, J.D.; Dickinson, J.A.

    1997-06-01

    This project, conducted under The United States Department of Energy (DOE) Cooperative Agreement DE-FC36-94GO10002/A002, was part of a multiple-phase effort to develop technologies that improve the energy efficiency and economics of chemical process recovery in the pulp and paper industry. The approach taken was to consider two major alternatives in two phases. Phase I, conducted previously, considered means to improve pulp mill recovery boilers using high-solids advanced combustion of black liquor; while this project, Phase la, considered means to recover kraft pulping mill process chemicals by low-temperature black liquor gasification. The principal steps previously proposed in this program were: (1) Evaluate these two technologies, high-solids advanced combustion and gasification, and then select a path forward using the more promising of these two options for future work. (2) Design and construct a pilot-scale unit based on the selected technology, and using that unit, develop the precompetitive data necessary to make commercialization attractive. (3) Develop and deploy a first-of-a-kind (FOAK) commercial unit in a kraft pulp mill. Phase I, which evaluated the high-solids advanced combustion option, was concluded in 1995. Results of that project phase were reported previously. This report describes the work conducted in Phase Ia. The work is described in Sections 1 through 4 and six appendices provide additional detail.

  8. Factors affecting the corrosivity of pulping liquors

    NASA Astrophysics Data System (ADS)

    Hazlewood, Patrick Evan

    Increased equipment failures and the resultant increase in unplanned downtime as the result of process optimization programs continue to plague pulp mills. The failures are a result of a lack of understanding of corrosion in the different pulping liquors, specifically the parameters responsible for its adjustment such as the role and identification of inorganic and organic species. The current work investigates the role of inorganic species, namely sodium hydroxide and sodium sulfide, on liquor corrosivity at a range of process conditions beyond those currently experienced in literature. The role of sulfur species, in the activation of corrosion and the ability of hydroxide to passivate carbon steel A516-Gr70, is evaluated with gravimetric and electrochemical methods. The impact of wood chip weathering on process corrosion was also evaluated. Results were used to identify black liquor components, depending on the wood species, which play a significant role in the activation and inhibition of corrosion for carbon steel A516-Gr70 process equipment. Further, the effect of black liquor oxidation on liquor corrosivity was evaluated. Corrosion and stress corrosion cracking performance of selected materials provided information on classes of materials that may be reliably used in aggressive pulping environments.

  9. Acidification of prehydrolysis liquor and spent liquor of neutral sulfite semichemical pulping process.

    PubMed

    Fatehi, Pedram; Gao, Weijiue; Sun, Yonghui; Dashtban, Mehdi

    2016-10-01

    Acidification has been commercialized for producing kraft lignin from black liquor of kraft pulping process. This work intended to evaluate the effectiveness of acidification in extracting lignocelluloses from the spent liquor of neutral sulfite semichemical pulping (NSSC) process and from prehydrolysis liquor (PHL) of kraft-based dissolving pulp production process. The results showed that the NSSC and PHL spent liquors had some lignin-carbohydrate complexes (LCC), and that the square weighted counts of particles with a chord length of 50-150μm in the spent liquors were significantly increased as pH dropped to 1.5. Interestingly, the acidification reduced the lignosulfonate/lignin content of NSSC and PHL by 13% or 20%, while dropped their oligosugars content by 75% and 38%, respectively. On a dry basis, the precipitates had more carbon, hydrogen and a high heating value of 18-22MJ/kg, but less oxygen, than spent liquors. The precipitates of PHL could be used as fuel. PMID:27394999

  10. Influence of Excipients and Spray Drying on the Physical and Chemical Properties of Nutraceutical Capsules Containing Phytochemicals from Black Bean Extract.

    PubMed

    Guajardo-Flores, Daniel; Rempel, Curtis; Gutiérrez-Uribe, Janet A; Serna-Saldívar, Sergio O

    2015-01-01

    Black beans (Phaseolus vulgaris L.) are a rich source of flavonoids and saponins with proven health benefits. Spray dried black bean extract powders were used in different formulations for the production of nutraceutical capsules with reduced batch-to-batch weight variability. Factorial designs were used to find an adequate maltodextrin-extract ratio for the spray-drying process to produce black bean extract powders. Several flowability properties were used to determine composite flow index of produced powders. Powder containing 6% maltodextrin had the highest yield (78.6%) and the best recovery of flavonoids and saponins (>56% and >73%, respectively). The new complexes formed by the interaction of black bean powder with maltodextrin, microcrystalline cellulose 50 and starch exhibited not only bigger particles, but also a rougher structure than using only maltodextrin and starch as excipients. A drying process prior to capsule production improved powder flowability, increasing capsule weight and reducing variability. The formulation containing 25.0% of maltodextrin, 24.1% of microcrystalline cellulose 50, 50% of starch and 0.9% of magnesium stearate produced capsules with less than 2.5% weight variability. The spray drying technique is a feasible technique to produce good flow extract powders containing valuable phytochemicals and low cost excipients to reduce the end-product variability. PMID:26633352

  11. Fortification of dark chocolate with spray dried black mulberry (Morus nigra) waste extract encapsulated in chitosan-coated liposomes and bioaccessability studies.

    PubMed

    Gültekin-Özgüven, Mine; Karadağ, Ayşe; Duman, Şeyma; Özkal, Burak; Özçelik, Beraat

    2016-06-15

    Fine-disperse anionic liposomes containing black mulberry (Morus nigra) extract (BME) were prepared by high pressure homogenization at 25,000 psi. Primary liposomes were coated with cationic chitosan (0.4, w/v%) using the layer-by-layer depositing method and mixed with maltodextrin (MD) (20, w/v%) prior to spray drying. After that, spray dried liposomal powders containing BME were added to chocolates with alkalization degrees (pH 4.5, 6, 7.5) at conching temperatures of 40 °C, 60 °C, and 80 °C. The results showed that, compared to spray dried extract, chitosan coated liposomal powders provided better protection of anthocyanin content in both increased temperature and pH. In addition, encapsulation in liposomes enhanced in vitro bioaccessability of anthocyanins. Chocolate was fortified with encapsulated anthocyanins maximum 76.8% depending on conching temperature and pH. PMID:26868567

  12. Smart Windows, Switchable between Transparent, Mirror, and Black States, Fabricated Using Rough and Smooth Indium Tin Oxide Films Deposited by Spray Chemical Vapor Deposition

    NASA Astrophysics Data System (ADS)

    Onodera, Ryou; Seki, Yoshiyuki; Seki, Shigeyuki; Yamada, Katsumi; Sawada, Yutaka; Uchida, Takayuki

    2013-02-01

    Two types of indium-tin oxide films, rough and smooth, with an average grain size of 434 and 71 nm, respectively, were deposited by spray pyrolysis chemical vapor deposition. Using both these films, we fabricated glare tunable transparent electrochemical devices exhibiting reversible optical changes between transparent, mirror, and black states, without any treatments. Under zero bias conditions, the transmittance of the transparent state reached 81.1% at 700 nm. With a bias of -2.5 V, the reflectance of the mirror state reached 82.0% at 700 nm. The total transmittances in the mirror and black state amounted to 0.6% in the visible range.

  13. Optimization of Arc-Sprayed Ni-Cr-Ti Coatings for High Temperature Corrosion Applications

    NASA Astrophysics Data System (ADS)

    Matthews, S.; Schweizer, M.

    2013-04-01

    High Cr content Ni-Cr-Ti arc-spray coatings have proven successful in resisting the high temperature sulfidizing conditions found in black liquor recovery boilers in the pulp and paper industry. The corrosion resistance of the coatings is dependent upon the coating composition, to form chromium sulfides and oxides to seal the coating, and on the coating microstructure. Selection of the arc-spray parameters influences the size, temperature and velocity of the molten droplets generated during spraying, which in turn dictates the coating composition and formation of the critical coating microstructural features—splat size, porosity and oxide content. Hence it is critical to optimize the arc-spray parameters in order to maximize the corrosion resistance of the coating. In this work the effect of key spray parameters (current, voltage, spray distance and gas atomizing pressure) on the coating splat thickness, porosity content, oxide content, microhardness, thickness, and surface profile were investigated using a full factorial design of experiment. Based on these results a set of oxidized, porous and optimized coatings were prepared and characterized in detail for follow-up corrosion testing.

  14. Scrubbing liquors for nitrogen tetroxide

    NASA Technical Reports Server (NTRS)

    Thomas, J. J.

    1978-01-01

    Once it was determined that the wet scrubbing concept was the most practical solution to the N2O4 emission problem, it became important to optimize the composition of the scrubbing liquor. Several reagents were cited in the literature as being advantageous in scrubbing NO2. Experiments were conducted on a model wet scrubber in order to verify and rank the performances of these scrubbing liquors. The most efficient scrubbing liquor found experimentally was a 10% sodium sulfite solution.

  15. Antioxidant Activity of Berry and Fruit Wines and Liquors.

    PubMed

    Heinonen; Lehtonen; Hopia

    1998-01-19

    A total of 44 different berry and fruit wines and liquors with total phenolic contents between 91 and 1820 mg/L, expressed as gallic acid equivalents (GAE), were evaluated for antioxidant activity. Dealcoholized wine extracts were added to methyl linoleate (MeLo), and the oxidation in the dark at 40 degrees C was followed by conjugated diene measurement. Wines made of mixtures of black currants and crowberries or bilberries (240-275 µM GAE) were slightly superior to reference red grape wines (330-375 µM GAE) and equally as active as the control antioxidant, alpha-tocopherol (50 µM), in inhibiting MeLo hydroperoxide formation. Also, raw materials including apple, arctic bramble, cowberries, cranberries, red currants, or rowanberries possessed antioxidant activity. Thus, these raw materials contain phenolic compounds, some of which are capable of protecting lipids against oxidation also in a hydrophobic lipid system. Liquors, apart from arctic bramble liquor, were less active than wines. However, the total phenolic content did not correlate with the antioxidant activity of the berry and fruit wines and liquors, therefore alleviating the importance of further characterization of the phenolic antioxidants present in berry and fruit wines. PMID:10554191

  16. Sunday Liquor Laws and Crime.

    PubMed

    Heaton, Paul

    2012-02-01

    Many jurisdictions have considered relaxing Sunday alcohol sales restrictions, yet such restrictions' effects on public health remain poorly understood. This paper analyzes the effects of legalization of Sunday packaged liquor sales on crime, focusing on the phased introduction of such sales in Virginia beginning in 2004. Differences-in-differences and triple-differences estimates indicate the liberalization increased minor crime by 5% and alcohol-involved serious crime by 10%. The law change did not affect domestic crime or induce significant geographic or inter-temporal crime displacement. The costs of this additional crime are comparable to the state's revenues from increased liquor sales. PMID:22125348

  17. 21 CFR 163.111 - Chocolate liquor.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 2 2011-04-01 2011-04-01 false Chocolate liquor. 163.111 Section 163.111 Food and... CONSUMPTION CACAO PRODUCTS Requirements for Specific Standardized Cacao Products § 163.111 Chocolate liquor. (a) Description. (1) Chocolate liquor is the solid or semiplastic food prepared by finely...

  18. 21 CFR 163.111 - Chocolate liquor.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 2 2014-04-01 2014-04-01 false Chocolate liquor. 163.111 Section 163.111 Food and... CONSUMPTION CACAO PRODUCTS Requirements for Specific Standardized Cacao Products § 163.111 Chocolate liquor. (a) Description. (1) Chocolate liquor is the solid or semiplastic food prepared by finely...

  19. Sprayed coatings

    NASA Astrophysics Data System (ADS)

    Steffens, H. D.

    1980-03-01

    Thermal spraying is shown to be an efficient means for the protection of surface areas against elevated temperature, wear, corrosion, hot gas corrosion, and erosion in structural aircraft components. Particularly in jet engines, numerous parts are coated by flame, detonation, or plasma spraying techniques. The applied methods of flame, detonation, and plasma spraying are explained, as well as electric arc spraying. Possibilities for spray coatings which meet aircraft service requirements are discussed, as well as methods for quality control, especially nondestructive test methods. In particular, coating characteristics and properties obtained by different spray methods are described, and special attention is paid to low pressure plasma spraying.

  20. 27 CFR 19.513 - Distinctive liquor bottles.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Distinctive liquor bottles..., DEPARTMENT OF THE TREASURY LIQUORS DISTILLED SPIRITS PLANTS Liquor Bottle, Label, and Closure Requirements Authorized Liquor Bottles § 19.513 Distinctive liquor bottles. (a) Application. A proprietor must submit...

  1. Recycling paper-pulp waste liquors

    NASA Technical Reports Server (NTRS)

    Sarbolouki, M. N.

    1981-01-01

    Papermills in U.S. annually produce 3 million tons of sulfite waste liquor solids; other fractions of waste liquor are monomeric sugars and lignosulfonates in solution. Recovery of lignosulfonates involves precipitation and cross-linking of sulfonates to form useful solid ion-exchange resin. Contamination of sugars recovered from liquor is avoided by first converting them to ethanol, then removing ethanol by distillation.

  2. Antistatic sprays

    NASA Technical Reports Server (NTRS)

    Ming, James E.

    1989-01-01

    Antistatic sprays from several different manufacturers are examined. The sprays are examined for contamination potential (i.e., outgassing and nonvolatile residue), corrosiveness on an aluminum mirror surface, and electrostatic effectiveness. In addition, the chemical composition of the antistatic sprays is determined by infrared spectrophotometry, mass spectrometry, and ultraviolet spectrophotometry. The results show that 12 of the 17 antistatic sprays examined have a low contamination potential. Of these sprays, 7 are also noncorrosive to an aluminum surface. And of these, only 2 demonstrate good electrostatic properties with respect to reducing voltage accumulation; these sprays did not show a fast voltage dissipation rate however. The results indicate that antistatic sprays can be used on a limited basis where contamination potential, corrosiveness, and electrostatic effectiveness is not critical. Each application is different and proper evaluation of the situation is necessary. Information on some of the properties of some antistatic sprays is presented in this document to aid in the evaluation process.

  3. 21 CFR 163.111 - Chocolate liquor.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 2 2013-04-01 2013-04-01 false Chocolate liquor. 163.111 Section 163.111 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION CACAO PRODUCTS Requirements for Specific Standardized Cacao Products § 163.111 Chocolate liquor. (a) Description. (1) Chocolate...

  4. 21 CFR 163.111 - Chocolate liquor.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 2 2012-04-01 2012-04-01 false Chocolate liquor. 163.111 Section 163.111 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION CACAO PRODUCTS Requirements for Specific Standardized Cacao Products § 163.111 Chocolate liquor. (a) Description. (1) Chocolate...

  5. 25 CFR 140.18 - Intoxicating liquors.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 25 Indians 1 2010-04-01 2010-04-01 false Intoxicating liquors. 140.18 Section 140.18 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR FINANCIAL ACTIVITIES LICENSED INDIAN TRADERS § 140.18 Intoxicating liquors. No trader shall use or permit to be used his premises for any unlawful conduct or purpose whatsoever. No trader shall use...

  6. 21 CFR 163.111 - Chocolate liquor.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Chocolate liquor. 163.111 Section 163.111 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION CACAO PRODUCTS Requirements for Specific Standardized Cacao Products § 163.111 Chocolate liquor. (a) Description. (1) Chocolate...

  7. Suspension plasma spraying of La0.6Sr0.4Co0.2Fe0.8O3-δ cathodes: Influence of carbon black pore former on performance and degradation

    NASA Astrophysics Data System (ADS)

    Fan, E. S. C.; Kuhn, J.; Kesler, O.

    2016-06-01

    Suspension plasma spray deposition is utilized to fabricate solid oxide fuel cell cathodes with minimal material decomposition. Adding carbon black as a pore former to the feedstock suspension results in smoother and more porous coatings, but over the range of carbon black concentrations studied, has little impact on the overall symmetrical cell performance. The cathode made with a suspension containing 25 wt% carbon has the highest deposition efficiency and a polarization resistance of 0.062 Ωcm2 at 744 °C. This cathode is tested for 500 h, and it is observed that adding an SDC interlayer between the YSZ electrolyte and the cathode(s) and/or coating the metal substrate with lanthanum chromite decrease the rate of performance degradation.

  8. Suspension plasma spraying of La0.6Sr0.4Co0.2Fe0.8O3-δ cathodes: Influence of carbon black pore former on performance and degradation

    NASA Astrophysics Data System (ADS)

    Fan, E. S. C.; Kuhn, J.; Kesler, O.

    2016-06-01

    Suspension plasma spray deposition is utilized to fabricate solid oxide fuel cell cathodes with minimal material decomposition. Adding carbon black as a pore former to the feedstock suspension results in smoother and more porous coatings, but over the range of carbon black concentrations studied, has little impact on the overall symmetrical cell performance. The cathode made with a suspension containing 25 wt% carbon has the highest deposition efficiency and a polarization resistance of 0.062 Ωcm2 at 744 °C. This cathode is tested for 500 h, and it is observed that adding an SDC interlayer between the YSZ electrolyte and the cathode(s) and/or coating the metal substrate with lanthanum chromite decrease the rate of performance degradation.

  9. Steam stripping recycle developed for gasifier liquors

    SciTech Connect

    Not Available

    1987-03-01

    When coal is gasified in fixed bed processes such as the British Gas/Lurgi Slagging Gasifier, the crude product contains steam which on cooling results in the formation of an aqueous liquor. This liquor contains soluble species such as hydrogen sulfide, ammonia, hydrogen cyanide, hydrogen chloride and phenols. These liquors are environmentally unacceptable and their disposal can be a serious problem. British Gas has developed a new process for the purification of such aqueous effluent liquors. It has been discovered that the gasification steam may be used, at gasification pressure, to strip the volatile compounds from such liquors and thereby include these compounds in the reactant stream where they are gasified within the main reactor. A portion of the gasifier feed steam may be superheated, passed through the condensate liquor, combined with the remaining portion of the gasifier feed steam and then injected through the tuyeres of the gasification plant. In this way an effluent liquor is produced with contains substantially only inorganic compounds, and these can be removed by conventional treatments. Although high-pressure steam stripping removes any lighter volatile components, compounds such as the higher molecular weight phenols may not be readily stripped out. The invention therefore provides also for the use of oxygen-containing gas under pressure to purify the effluent. The oxygen-containing gas may either be used alone, in a mixture with steam or as a second stage following the steam-stripping process.

  10. 27 CFR 26.110 - Release of articles or liquors.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2012-04-01 2012-04-01 false Release of articles or... BUREAU, DEPARTMENT OF THE TREASURY LIQUORS LIQUORS AND ARTICLES FROM PUERTO RICO AND THE VIRGIN ISLANDS Taxpayment of Liquors and Articles in Puerto Rico Articles § 26.110 Release of articles or liquors....

  11. 27 CFR 26.110 - Release of articles or liquors.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Release of articles or... BUREAU, DEPARTMENT OF THE TREASURY LIQUORS LIQUORS AND ARTICLES FROM PUERTO RICO AND THE VIRGIN ISLANDS Taxpayment of Liquors and Articles in Puerto Rico Articles § 26.110 Release of articles or liquors....

  12. 27 CFR 26.110 - Release of articles or liquors.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Release of articles or... BUREAU, DEPARTMENT OF THE TREASURY LIQUORS LIQUORS AND ARTICLES FROM PUERTO RICO AND THE VIRGIN ISLANDS Taxpayment of Liquors and Articles in Puerto Rico Articles § 26.110 Release of articles or liquors....

  13. 19 CFR 122.132 - Sealing of aircraft liquor kits.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 19 Customs Duties 1 2011-04-01 2011-04-01 false Sealing of aircraft liquor kits. 122.132 Section... OF THE TREASURY AIR COMMERCE REGULATIONS Aircraft Liquor Kits § 122.132 Sealing of aircraft liquor kits. (a) Sealing required. Aircraft liquor kits shall be sealed on board the aircraft by...

  14. 19 CFR 122.132 - Sealing of aircraft liquor kits.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 19 Customs Duties 1 2012-04-01 2012-04-01 false Sealing of aircraft liquor kits. 122.132 Section... OF THE TREASURY AIR COMMERCE REGULATIONS Aircraft Liquor Kits § 122.132 Sealing of aircraft liquor kits. (a) Sealing required. Aircraft liquor kits shall be sealed on board the aircraft by...

  15. 19 CFR 122.132 - Sealing of aircraft liquor kits.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 19 Customs Duties 1 2014-04-01 2014-04-01 false Sealing of aircraft liquor kits. 122.132 Section... OF THE TREASURY AIR COMMERCE REGULATIONS Aircraft Liquor Kits § 122.132 Sealing of aircraft liquor kits. (a) Sealing required. Aircraft liquor kits shall be sealed on board the aircraft by...

  16. 27 CFR 27.208 - Liquor bottles denied entry.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Liquor bottles denied... for Liquor Bottles § 27.208 Liquor bottles denied entry. Filled liquor bottles, not conforming to the... customs custody of distilled spirits in bottles, except those coming under the provisions of §...

  17. 27 CFR 31.202 - Possession of refilled liquor bottles.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... liquor bottles. 31.202 Section 31.202 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND... Liquor Bottles § 31.202 Possession of refilled liquor bottles. No person who sells, or offers for sale, distilled spirits, or agent or employee of such person, shall: (a) Possess any liquor bottle in which...

  18. 27 CFR 26.314 - Distinctive liquor bottles.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... officer to— (1) Meet the requirements of 27 CFR part 5; (2) Be distinctive; (3) Be suitable for their... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Distinctive liquor bottles... for Liquor Bottles § 26.314 Distinctive liquor bottles. (a) Application. Liquor bottles of...

  19. 27 CFR 26.319 - Used liquor bottles.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Used liquor bottles. 26... for Liquor Bottles § 26.319 Used liquor bottles. The appropriate TTB officer may pursuant to letterhead application filed in triplicate, authorize an importer to receive liquor bottles assembled for...

  20. 27 CFR 26.318 - Liquor bottles denied entry.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Liquor bottles denied... Requirements for Liquor Bottles § 26.318 Liquor bottles denied entry. Filled liquor bottles not conforming to... release from customs custody of distilled spirits in bottles, except those coming under the provisions...

  1. 27 CFR 31.202 - Possession of refilled liquor bottles.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... liquor bottles. 31.202 Section 31.202 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND... Liquor Bottles § 31.202 Possession of refilled liquor bottles. No person who sells, or offers for sale, distilled spirits, or agent or employee of such person, shall: (a) Possess any liquor bottle in which...

  2. 27 CFR 27.208 - Liquor bottles denied entry.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Liquor bottles denied... for Liquor Bottles § 27.208 Liquor bottles denied entry. Filled liquor bottles, not conforming to the... customs custody of distilled spirits in bottles, except those coming under the provisions of §...

  3. 27 CFR 26.319 - Used liquor bottles.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Used liquor bottles. 26... for Liquor Bottles § 26.319 Used liquor bottles. The appropriate TTB officer may pursuant to letterhead application filed in triplicate, authorize an importer to receive liquor bottles assembled for...

  4. 27 CFR 26.314 - Distinctive liquor bottles.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... officer to— (1) Meet the requirements of 27 CFR part 5; (2) Be distinctive; (3) Be suitable for their... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Distinctive liquor bottles... for Liquor Bottles § 26.314 Distinctive liquor bottles. (a) Application. Liquor bottles of...

  5. 27 CFR 26.318 - Liquor bottles denied entry.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Liquor bottles denied... Requirements for Liquor Bottles § 26.318 Liquor bottles denied entry. Filled liquor bottles not conforming to... release from customs custody of distilled spirits in bottles, except those coming under the provisions...

  6. 19 CFR 122.132 - Sealing of aircraft liquor kits.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 19 Customs Duties 1 2010-04-01 2010-04-01 false Sealing of aircraft liquor kits. 122.132 Section 122.132 Customs Duties U.S. CUSTOMS AND BORDER PROTECTION, DEPARTMENT OF HOMELAND SECURITY; DEPARTMENT OF THE TREASURY AIR COMMERCE REGULATIONS Aircraft Liquor Kits § 122.132 Sealing of aircraft liquor kits. (a) Sealing required. Aircraft liquor...

  7. Oxymetazoline Nasal Spray

    MedlinePlus

    Afrin® Nasal Spray ... Anefrin® Nasal Spray ... Dristan® Nasal Spray ... Mucinex® Nasal Spray ... Nostrilla® Nasal Spray ... Vicks Sinex® Nasal Spray ... Zicam® Nasal Spray ... Oxymetazoline nasal spray is used to relieve nasal discomfort caused by colds, allergies, and hay fever. It is also used to ...

  8. Nitroglycerin Spray

    MedlinePlus

    ... attacks. Your doctor will probably tell you to sit down and use one dose of nitroglycerin when ... dose.To use the spray, follow these steps: Sit down if possible, and hold the container without ...

  9. Recovering gallium from residual bayer process liquor

    NASA Astrophysics Data System (ADS)

    Afonso de Magalhães, Maria Elizabeth; Tubino, Matthieu

    1991-06-01

    Gallium is normally obtained by direct electrolysis as a by-product from Bayer process residual liquor at an aluminum processing plant. However, to permit any net accumulation of the metal, the gallium concentration must be at least about 0.3 g/l in the liquor. This article describes a continuous process of extraction with organic solvents and rhodamine-B, followed by a re-extraction step into aqueous media. The final product is a solid containing up to 18 wt.% Ga in a solid mixture of hydroxides and oxides of gallium and aluminum. This final product can then be electrolyzed to recover the gallium more efficiently.

  10. Hair spray poisoning

    MedlinePlus

    Hair spray poisoning occurs when someone breathes in (inhales) hair spray or sprays it down their throat or ... The harmful ingredients in hair spray are: Carboxymethylcellulose ... Polyvinyl alcohol Propylene glycol Polyvinylpyrrolidone

  11. 27 CFR 26.110 - Release of articles or liquors.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2013-04-01 2013-04-01 false Release of articles or... BUREAU, DEPARTMENT OF THE TREASURY ALCOHOL LIQUORS AND ARTICLES FROM PUERTO RICO AND THE VIRGIN ISLANDS Taxpayment of Liquors and Articles in Puerto Rico Articles § 26.110 Release of articles or liquors....

  12. 27 CFR 26.110 - Release of articles or liquors.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2014-04-01 2014-04-01 false Release of articles or... BUREAU, DEPARTMENT OF THE TREASURY ALCOHOL LIQUORS AND ARTICLES FROM PUERTO RICO AND THE VIRGIN ISLANDS Taxpayment of Liquors and Articles in Puerto Rico Articles § 26.110 Release of articles or liquors....

  13. 27 CFR 31.31 - Retail dealer in liquors.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Retail dealer in liquors... Classified § 31.31 Retail dealer in liquors. (a) General. Except as otherwise provided in paragraph (b) of... other than a dealer is a retail dealer in liquors for purposes of this part. Every retail dealer...

  14. 27 CFR 10.603 - Liquor bottle records.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Liquor bottle records. 10... Liquor bottle records. A proprietor must maintain records of the receipt, use, and disposition of liquor bottles. (26 U.S.C. 5207)...

  15. 27 CFR 5.46 - Standard liquor bottles.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Standard liquor bottles. 5... Bottled Distilled Spirits § 5.46 Standard liquor bottles. (a) General. A standard liquor bottle shall be... container of a bottle shall not be so designed as to mislead purchasers as to the size of the bottles....

  16. 27 CFR 27.204 - Distinctive liquor bottles.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... such bottles are found by the appropriate TTB officer to— (1) Meet the requirements of 27 CFR part 5... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Distinctive liquor bottles... Bottles § 27.204 Distinctive liquor bottles. (a) Application. Liquor bottles of distinctive shape...

  17. 27 CFR 27.209 - Used liquor bottles.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Used liquor bottles. 27... Bottles § 27.209 Used liquor bottles. The appropriate TTB officer may pursuant to letterhead application filed in triplicate, authorize an importer to receive liquor bottles assembled for him as provided...

  18. 27 CFR 27.209 - Used liquor bottles.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Used liquor bottles. 27... Bottles § 27.209 Used liquor bottles. The appropriate TTB officer may pursuant to letterhead application filed in triplicate, authorize an importer to receive liquor bottles assembled for him as provided...

  19. 27 CFR 27.204 - Distinctive liquor bottles.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... such bottles are found by the appropriate TTB officer to— (1) Meet the requirements of 27 CFR part 5... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Distinctive liquor bottles... Bottles § 27.204 Distinctive liquor bottles. (a) Application. Liquor bottles of distinctive shape...

  20. 27 CFR 19.633 - Distinctive liquor bottles.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... TTB officer if the bottles are found to— (1) Meet the requirements of 27 CFR part 5; (2) Be... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Distinctive liquor bottles..., DEPARTMENT OF THE TREASURY LIQUORS DISTILLED SPIRITS PLANTS Liquor Bottle and Label Requirements...

  1. 27 CFR 5.46 - Standard liquor bottles.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Standard liquor bottles. 5... Bottled Distilled Spirits § 5.46 Standard liquor bottles. (a) General. A standard liquor bottle shall be... container of a bottle shall not be so designed as to mislead purchasers as to the size of the bottles....

  2. 27 CFR 26.50 - Formulas for liquors.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2012-04-01 2012-04-01 false Formulas for liquors. 26.50 Section 26.50 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS LIQUORS AND ARTICLES FROM PUERTO RICO AND THE VIRGIN ISLANDS Formulas for Products From Puerto Rico § 26.50...

  3. 27 CFR 26.220 - Formulas for liquors.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2012-04-01 2012-04-01 false Formulas for liquors. 26.220 Section 26.220 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS LIQUORS AND ARTICLES FROM PUERTO RICO AND THE VIRGIN ISLANDS Formulas for Products From the Virgin Islands §...

  4. 27 CFR 26.44 - Liquor dealer registration and recordkeeping.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Liquor dealer registration and recordkeeping. 26.44 Section 26.44 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS LIQUORS AND ARTICLES FROM PUERTO RICO AND THE VIRGIN ISLANDS Products Coming Into the...

  5. 27 CFR 26.210 - Liquor dealer registration and recordkeeping.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Liquor dealer registration and recordkeeping. 26.210 Section 26.210 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS LIQUORS AND ARTICLES FROM PUERTO RICO AND THE VIRGIN ISLANDS Products Coming Into the...

  6. 27 CFR 31.31 - Retail dealer in liquors.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Retail dealer in liquors. 31.31 Section 31.31 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS ALCOHOL BEVERAGE DEALERS Activities Subject to This Part Dealers Classified § 31.31 Retail dealer in liquors....

  7. 27 CFR 26.220 - Formulas for liquors.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Formulas for liquors. 26.220 Section 26.220 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS LIQUORS AND ARTICLES FROM PUERTO RICO AND THE VIRGIN ISLANDS Formulas for Products From the Virgin Islands §...

  8. 77 FR 61778 - Shakopee Mdewakanton Sioux Community-Liquor Ordinance To Allow for On-Sale Liquor Transactions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-11

    ...This notice publishes the Shakopee Mdewakanton Sioux Community--Liquor Ordinance to Allow for On-Sale Liquor Transactions (Ordinance). The Ordinance regulates and controls the sale, consumption and possession of liquor within the Shakopee Mdewakanton Sioux Community's Indian country. This Ordinance will increase the ability of the tribal government to control the distribution and possession of......

  9. High-Temperature Oxidation and Smelt Deposit Corrosion of Ni-Cr-Ti Arc-Sprayed Coatings

    NASA Astrophysics Data System (ADS)

    Matthews, S.; Schweizer, M.

    2013-08-01

    High Cr content Ni-Cr-Ti arc-sprayed coatings have been extensively applied to mitigate corrosion in black liquor recovery boilers in the pulp and paper industry. In a previous article, the effects of key spray parameters on the coating's microstructure and its composition were investigated. Three coating microstructures were selected from that previous study to produce a dense, oxidized coating (coating A), a porous, low oxide content coating (coating B), and an optimized coating (coating C) for corrosion testing. Isothermal oxidation trials were performed in air at 550 and 900 °C for 30 days. Additional trials were performed under industrial smelt deposits at 400 and 800 °C for 30 days. The effect of the variation in coating microstructure on the oxidation and smelt's corrosion response was investigated through the characterization of the surface corrosion products, and the internal coating microstructural developments with time at high temperature. The effect of long-term, high-temperature exposure on the interaction between the coating and substrate was characterized, and the mechanism of interdiffusion was discussed.

  10. Nitroglycerin Spray

    MedlinePlus

    ... of the hole, the container will no longer dispense full doses of medication. Do not try to open the container of nitroglycerin spray. This product may catch fire, so do not use near an open flame, and do not allow the container to be burned after use.

  11. The corrosion of titanium in alkaline peroxide bleach liquors

    SciTech Connect

    Wyllie, W.E. II; Brown, B.E.; Duquette, D.J.

    1994-12-31

    An experimental program to determine the effects of hydrogen peroxide (H{sub 2}O{sub 2}) and of potential corrosion inhibitors on the corrosion behavior of titanium has been developed. Corrosion rates less than 0.25 mm/y were observed in laboratory bleach liquor at pH 12 to which 5 g/l of H{sub 2}O{sub 2} were added. At pH 13, with 10 g/l H{sub 2}O{sub 2}, the corrosion rates were unacceptably high in both sodium hydroxide (NaOH) and laboratory bleach liquor solutions (>8.38 mm/y). The preliminary results of inhibitor studies indicated that the addition of 3.7 g/l sodium silicate or 0.01 g/l calcium nitrate (Ca(NO{sub 3}){sub 2}) effectively inhibited the corrosion of titanium exposed to 5 g/l of H{sub 2}O{sub 2} in NaOH solutions of pH 12. It was also found that in simulated paper mill chemistries, i.e., basic solutions containing 3.7 g/l sodium silicate and 0.6 g/l EDTA (ethylenediaminetetraacetic acid), corrosion rates increased markedly with the addition of 5 g/l H{sub 2}O{sub 2}. However, subsequent additions of peroxide resulted in corrosion rates which were even lower than those found in NaOH. This is believed to be due to the formation of a black scale on the surface of the sample. The addition of magnesium sulfate (MgSO{sub 4}) in the 0.1--0.5 g/l range also was shown to inhibit corrosion in the NaOH solution, but only after prior exposure to H{sub 2}O{sub 2}.

  12. Determining silica solubility in bayer process liquor

    NASA Astrophysics Data System (ADS)

    Müller-Steinhagen, H.

    1998-11-01

    The efficient precipitation of dissolved silica from Bayer process liquor is essential for the production of high-quality alumina and the reduction of excessive scaling in the heat exchangers in the evaporation building of Bayer processes. The accurate prediction of silica solubility in Bayer liquor is one of the key parameters in improving the design and operation of the desilication process. Previous findings, particularly with respect to the influence of temperature and concentrations of caustic soda and alumina on the solubility of silica, are inconclusive. In this article, experimental results are presented over a wide range of temperature and alumina and caustic soda concentrations. Attempts are made to utilize artificial neural networks for identifying the process variables and modeling. The radial basis function neural network architecture was used successfully to generate a nonlinear correlation for the prediction of the solubility of silica in Bayer process liquor. The resulting correlation can predict the present data and the control data of other investigators with good accuracy.

  13. Agricultural Spraying

    NASA Technical Reports Server (NTRS)

    1986-01-01

    AGDISP, a computer code written for Langley by Continuum Dynamics, Inc., aids crop dusting airplanes in targeting pesticides. The code is commercially available and can be run on a personal computer by an inexperienced operator. Called SWA+H, it is used by the Forest Service, FAA, DuPont, etc. DuPont uses the code to "test" equipment on the computer using a laser system to measure particle characteristics of various spray compounds.

  14. 27 CFR 70.605 - Claims relating to imported, domestic, and Virgin Islands liquors.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... imported, domestic, and Virgin Islands liquors. 70.605 Section 70.605 Alcohol, Tobacco Products and... Claims Procedures § 70.605 Claims relating to imported, domestic, and Virgin Islands liquors. (a) Claims involving taxes on domestic liquors, imported liquors, and liquors manufactured in the Virgin Islands...

  15. 27 CFR 19.638 - Disposition of stocks of liquor bottles.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... liquor bottles. 19.638 Section 19.638 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS DISTILLED SPIRITS PLANTS Liquor Bottle and Label Requirements Liquor Bottle Requirements § 19.638 Disposition of stocks of liquor bottles. When a...

  16. Olopatadine Nasal Spray

    MedlinePlus

    ... relieve sneezing and a stuffy, runny or itchy nose caused by allergic rhinitis (hay fever). Olopatadine is ... comes as a liquid to spray in the nose. Olopatadine nasal spray is usually sprayed in each ...

  17. PILOT-SCALE ANAEROBIC FILTER TREATMENT OF HEAT TREATMENT LIQUOR

    EPA Science Inventory

    This investigation was undertaken to demonstrate the application of the anaerobic filter in the treatment of liquor waste resulting from heat treatment of raw sludge in municipal sewage treatment plants. The liquor which contains high concentrations of soluble wastes is often ret...

  18. 27 CFR 31.201 - Refilling of liquor bottles.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... bottles. 31.201 Section 31.201 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE... Bottles § 31.201 Refilling of liquor bottles. No person who sells, or offers for sale, distilled spirits, or agent or employee of such person, shall: (a) Place in any liquor bottle any distilled...

  19. 27 CFR 31.201 - Refilling of liquor bottles.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... bottles. 31.201 Section 31.201 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE... Bottles § 31.201 Refilling of liquor bottles. No person who sells, or offers for sale, distilled spirits, or agent or employee of such person, shall: (a) Place in any liquor bottle any distilled...

  20. 27 CFR 31.203 - Possession of used liquor bottles.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... bottles. 31.203 Section 31.203 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE... Bottles § 31.203 Possession of used liquor bottles. The possession of used liquor bottles by any person... circumstances: (a) The owner or occupant of any premises on which the used bottles have been lawfully...

  1. 27 CFR 31.203 - Possession of used liquor bottles.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... bottles. 31.203 Section 31.203 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE... Bottles § 31.203 Possession of used liquor bottles. The possession of used liquor bottles by any person... circumstances: (a) The owner or occupant of any premises on which the used bottles have been lawfully...

  2. 27 CFR 19.603 - Liquor bottle records.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2014-04-01 2014-04-01 false Liquor bottle records. 19.603 Section 19.603 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU... Liquor bottle records. A proprietor must maintain records of the receipt, use, and disposition of...

  3. 27 CFR 19.513 - Distinctive liquor bottles.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ..., DEPARTMENT OF THE TREASURY LIQUORS DISTILLED SPIRITS PLANTS Liquor Bottle, Label, and Closure Requirements... TTB F 5100.31, Application for and Certification/Exemption of Label/Bottle Approval, to the... designs. The proprietor must certify as to the total capacity of a representative sample bottle...

  4. 27 CFR 19.603 - Liquor bottle records.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2012-04-01 2012-04-01 false Liquor bottle records. 19.603 Section 19.603 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU... Liquor bottle records. A proprietor must maintain records of the receipt, use, and disposition of...

  5. 27 CFR 19.603 - Liquor bottle records.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2013-04-01 2013-04-01 false Liquor bottle records. 19.603 Section 19.603 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU... Liquor bottle records. A proprietor must maintain records of the receipt, use, and disposition of...

  6. 27 CFR 31.42 - Restaurants serving liquors with meals.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Restaurants serving liquors with meals. 31.42 Section 31.42 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS ALCOHOL BEVERAGE DEALERS Activities Subject to This Part Certain Organizations, Agencies,...

  7. 27 CFR 31.32 - Wholesale dealer in liquors.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Wholesale dealer in liquors. 31.32 Section 31.32 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS ALCOHOL BEVERAGE DEALERS Activities Subject to This Part Dealers Classified § 31.32 Wholesale dealer in...

  8. Liquor Activity Reduction (LAR) Programme - 12397

    SciTech Connect

    Pether, Colin; Carrol, Phil; Birkett, Eddie; Kibble, Matthew

    2012-07-01

    Waste material from the reprocessing of irradiated fuel has been stored under water for several decades leading to the water becoming highly radioactive. As a critical enabler to the decommissioning strategy for the Sellafield site, the Liquor Activity Reduction (LAR) programme has been established to provide a processing route for this highly radioactive liquor. This paper reviews the progress that has been made since the start of routine LAR transfer cycles (July 2010) and follows on from the earlier paper presented at WM2011. The paper focuses on the learning from the first full year of routine LAR transfer cycles and the application of this learning to the wider strategies for the treatment of further radioactive liquid effluents on the Sellafield site. During this period over 100,000 Curies of radioactivity has been safely removed and treated. The past year has witnessed the very successful introduction of the LAR programme. This has lead to hazard reduction at MSSS and demonstration that the SIXEP facility can meet the significantly increased challenge that the LAR programme represents. Part of the success has been the ability to predict and deliver a realistic production schedule with the availability of the MSSS, EDT and SIXEP facilities being central to this. Most importantly, the LAR programme has been successful in bringing together key stakeholders to deliver this work while integrating with the existing, day to day, demands of the Sellafield site. (authors)

  9. 19 CFR 122.134 - When airline does not have in-bond liquor storeroom.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 19 Customs Duties 1 2014-04-01 2014-04-01 false When airline does not have in-bond liquor... does not have in-bond liquor storeroom. (a) Handling of liquor kits. An aircraft may land at an airport where the airline involved does not have an authorized in-bond liquor storeroom. When this occurs,...

  10. 27 CFR 19.634 - Receipt and storage of liquor bottles.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... CFR 31.263. Liquor bottles, including those of less than 200 ml capacity, shall be stored in a safe... liquor bottles. 19.634 Section 19.634 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS DISTILLED SPIRITS PLANTS Liquor Bottle and...