Science.gov

Sample records for blade fatigue damage

  1. Sources of fatigue damage to passive yaw wind turbine blades

    SciTech Connect

    Laino, D.J.

    1997-12-31

    Using an integrated computer analysis approach developed at the University of Utah, fatigue damage sources to passive yaw wind turbine blades have been investigated. Models of a rigid hub and teetering hub machine reveal the parameters important to the fatigue design of each type. The teetering hub proved much less susceptible to fatigue damage from normal operation loads. As a result, extreme events were critical to the teetering hub fatigue life. The rigid hub blades experienced extremely large gyroscopic load cycles induced by rapid yaw rates during normal operation. These yaw rates stem from turbulence activity which is shown to be dependent upon atmospheric stability. Investigation revealed that increasing yaw damping is an effective way of significantly reducing these gyroscopic fatigue loads.

  2. Prediction of Corrosion Fatigue Damages for Turbine Blades Subjecting to Randomly Distributed Power System Unbalance

    NASA Astrophysics Data System (ADS)

    Lin, Chi-Hshiung

    In this paper, a fatigue damage estimation procedure is implemented by integrating the results of an EPRI and a GE testing reports as well as a shareware developed by the Oslo University, which is incorporated with a verified transient simulation program developed by the Aberdeen University to study the effects of power system unbalance on turbine blade damaging. Based on the Weibull distribution in the negative sequence current (I2) and the operational environment containing 22% NaCl, the probability level of fatigue life as well as the reliability against fatigue failure for the long blades of low-pressure (LP) turbine are evaluated. It is shown that even though the blades could withstand the most serious impact arising from three-phase-to-ground fault, still it cannot guarantee adequate long-term reliability in the normal operational condition.

  3. Effect of Load Phase Angle on Wind Turbine Blade Fatigue Damage: Preprint

    SciTech Connect

    White, D. L.; Musial, W. D.

    2003-11-01

    This paper examines the importance of phase angle variations with respect to fatigue damage. The operating loads on a generic conventional three-bladed upwind 1.5-MW wind turbine blade were analyzed over a range of operating conditions, and an aggregate probability distribution for the actual phase angles between the in-plane (lead-lag) and out-of-plane (flap) loads was determined. Using a finite element model of a generic blade and Miner's Rule, the accumulated theoretical damage (based on axial strains) resulting from a fatigue test with variable phase angles was compared to the damage resulting from a fatigue test with a constant phase angle. The nodal damage distribution at specific blade cross-sections are compared for the constant and variable phase angle cases. The sequence effects of various phase angle progressions were also considered. For this analysis, the finite element results were processed using the nonlinear Marco-Starkey damage accumulation model. Each phase angle sequence was constrained to have the same overall phase angle distribution and the same total number of cycles but the order in which the phase angles were applied was varied.

  4. Research on fatigue damage detection for wind turbine blade based on high-spatial-resolution DPP-BOTDA

    NASA Astrophysics Data System (ADS)

    Xu, Jinlong; Dong, Yongkang; Li, Hui

    2014-03-01

    In this paper, a fatigue damage detection system used for wind turbine blade is successfully developed by using highspatial- resolution differential pulse-width pair Brillouin optical time-domain analysis (DPP-BOTDA) sensing system. A piece of polarization-maintaining optical fiber is bonded on the blade surface to form the distributed sensing network. A DPP-BOTDA system, with a spatial resolution of 20cm and sampling interval of 1cm, is adopted to measuring distributed strain and detecting fatigue damage of wind turbine blade during fatigue test using the differential pulse pair of 39.5ns/41.5ns. Strain and the Brillouin gain spectra changes from undamaged state to fatigue failure are experimentally presented. The experimental results reveal that fatigue damage changes the strain distribution especially around the high strain area, and the width, amplitude and central frequency of the Brillouin gain spectra are sensitive to fatigue damage as the stiffness degradation and accumulated cracks change local strain gradient. As the damage becomes larger, the width of the Brillouin gain spectra becomes broader. Consequently, location and size of fatigue damage could be estimated. The developed system shows its potentiality for developing highly reliable wind turbine monitoring system as the effectiveness of damage detection and distributed sensing.

  5. Determining equivalent damage loading for full-scale wind turbine blade fatigue tests

    SciTech Connect

    Freebury, G.; Musial, W.

    2000-03-13

    This paper describes a simplified method for converting wind turbine rotor design loads into equivalent-damage, constant-amplitude loads and load ratios for both flap and lead-lag directions. It is an iterative method that was developed at the National Renewable Energy Laboratory (NREL) using Palmgren-Miner's linear damage principles. The general method is unique because it does not presume that any information about the materials or blade structural properties is precisely known. According to this method, the loads are never converted to stresses. Instead, a family of M-N curves (moment vs. cycles) is defined with reasonable boundaries for load-amplitude and slope. An optimization program iterates and converges on the constant amplitude test load and load ratio that minimizes the sensitivity to the range of M-N curves for each blade section. The authors constrained the general method to match the NedWind 25 design condition for the Standards, Measurements, and Testing (SMT) blade testing pro gram. SMT participants agreed to use the fixed S-N slope of m = 10 from the original design to produce consistent test-loads among the laboratories. Unconstrained, the general method suggests that slightly higher test loads should be used for the NedWind 25 blade design spectrum. NedWind 25 blade test loads were computed for lead-lag and flap under single-axis and two-axis loading.

  6. Fatigue analysis and testing of wind turbine blades

    NASA Astrophysics Data System (ADS)

    Greaves, Peter Robert

    This thesis focuses on fatigue analysis and testing of large, multi MW wind turbine blades. The blades are one of the most expensive components of a wind turbine, and their mass has cost implications for the hub, nacelle, tower and foundations of the turbine so it is important that they are not unnecessarily strong. Fatigue is often an important design driver, but fatigue of composites is poorly understood and so large safety factors are often applied to the loads. This has implications for the weight of the blade. Full scale fatigue testing of blades is required by the design standards, and provides manufacturers with confidence that the blade will be able to survive its service life. This testing is usually performed by resonating the blade in the flapwise and edgewise directions separately, but in service these two loads occur at the same time.. A fatigue testing method developed at Narec (the National Renewable Energy Centre) in the UK in which the flapwise and edgewise directions are excited simultaneously has been evaluated by comparing the Palmgren-Miner damage sum around the blade cross section after testing with the damage distribution caused by the service life. A method to obtain the resonant test configuration that will result in the optimum mode shapes for the flapwise and edgewise directions was then developed, and simulation software was designed to allow the blade test to be simulated so that realistic comparisons between the damage distributions after different test types could be obtained. During the course of this work the shortcomings with conventional fatigue analysis methods became apparent, and a novel method of fatigue analysis based on multi-continuum theory and the kinetic theory of fracture was developed. This method was benchmarked using physical test data from the OPTIDAT database and was applied to the analysis of a complete blade. A full scale fatigue test method based on this new analysis approach is also discussed..

  7. Subrupture Tendon Fatigue Damage

    PubMed Central

    Laudier, Damien M.; Shine, Jean H.; Basta-Pljakic, Jelena; Jepsen, Karl J.; Schaffler, Mitchell B.; Flatow, Evan L.

    2016-01-01

    The mechanical and microstructural bases of tendon fatigue, by which damage accumulates and contributes to degradation, are poorly understood. To investigate the tendon fatigue process, rat flexor digitorum longus tendons were cyclically loaded (1–16 N) until reaching one of three levels of fatigue damage, defined as peak clamp-to-clamp strain magnitudes representing key intervals in the fatigue life: i) Low (6.0%–7.0%); ii) Moderate (8.5%–9.5%); and iii) High (11.0%–12.0%). Stiffness, hysteresis, and clamp-to-clamp strain were assessed diagnostically (by cyclic loading at 1–8 N) before and after fatigue loading and following an unloaded recovery period to identify mechanical parameters as measures of damage. Results showed that tendon clamp-to-clamp strain increased from pre- to post-fatigue loading significantly and progressively with the fatigue damage level (p≤0.010). In contrast, changes in both stiffness and hysteresis were significant only at the High fatigue level (p≤0.043). Correlative microstructural analyses showed that Low level of fatigue was characterized by isolated, transverse patterns of kinked fiber deformations. At higher fatigue levels, tendons exhibited fiber dissociation and localized ruptures of the fibers. Histomorphometric analysis showed that damage area fraction increased significantly with fatigue level (p≤0.048). The current findings characterized the sequential, microstructural events that underlie the tendon fatigue process and indicate that tendon deformation can be used to accurately assess the progression of damage accumulation in tendons. PMID:18683881

  8. Cumulative fatigue damage models

    NASA Technical Reports Server (NTRS)

    Mcgaw, Michael A.

    1988-01-01

    The problem of calculating expected component life under fatigue loading conditions is complicated by the fact that component loading histories contain, in many cases, cyclic loads of widely varying amplitudes. In such a case a cumulative damage model is required, in addition to a fatigue damage criterion, or life relationship, in order to compute the expected fatigue life. The traditional cumulative damage model used in design is the linear damage rule. This model, while being simple to use, can yield grossly unconservative results under certain loading conditions. Research at the NASA Lewis Research Center has led to the development of a nonlinear cumulative damage model, named the double damage curve approach (DDCA), that has greatly improved predictive capability. This model, which considers the life (or loading) level dependence of damage evolution, was applied successfully to two polycrystalline materials, 316 stainless steel and Haynes 188. The cumulative fatigue behavior of the PWA 1480 single-crystal material is currently being measured to determine the applicability of the DDCA for this material.

  9. Jumplike fatigue crack growth in compressor blades

    NASA Astrophysics Data System (ADS)

    Limar', L. V.; Demina, Yu. A.; Botvina, L. R.

    2014-04-01

    It is shown that power relations between the two main fractographic characteristics of fracture surfaces forming during jumplike fatigue crack growth, namely, the crack depth and the corresponding crack front length, can be used to estimate the fracture stress during vibration tests of the compressor blades of an aviation gas turbine engine, which are made of VT3-1 titanium alloy.

  10. Probabilistic Fatigue Damage Program (FATIG)

    NASA Technical Reports Server (NTRS)

    Michalopoulos, Constantine

    2012-01-01

    FATIG computes fatigue damage/fatigue life using the stress rms (root mean square) value, the total number of cycles, and S-N curve parameters. The damage is computed by the following methods: (a) traditional method using Miner s rule with stress cycles determined from a Rayleigh distribution up to 3*sigma; and (b) classical fatigue damage formula involving the Gamma function, which is derived from the integral version of Miner's rule. The integration is carried out over all stress amplitudes. This software solves the problem of probabilistic fatigue damage using the integral form of the Palmgren-Miner rule. The software computes fatigue life using an approach involving all stress amplitudes, up to N*sigma, as specified by the user. It can be used in the design of structural components subjected to random dynamic loading, or by any stress analyst with minimal training for fatigue life estimates of structural components.

  11. A simple method of estimating wind turbine blade fatigue at potential wind turbine sites

    SciTech Connect

    Barnard, J.C.; Wendell, L.L.

    1995-06-01

    This paper presents a technique of estimating blade fatigue damage at potential wind turbine sites. The cornerstone of this technique is a simple model for the blade`s root flap bending moment. The model requires as input a simple set of wind measurements which may be obtained as part of a routine site characterization study. By using the model to simulate a time series of the root flap bending moment, fatigue damage rates may be estimated. The technique is evaluated by comparing these estimates with damage estimates derived from actual bending moment data; the agreement between the two is quite good. The simple connection between wind measurements and fatigue provided by the model now allows one to readily discriminate between damaging and more benign wind environments.

  12. Approach to the fatigue analysis of vertical-axis wind-turbine blades

    SciTech Connect

    Veers, P.S.

    1981-09-01

    A cursory analysis of the stress history of wind turbine blades indicates that a single stress level at each wind speed does not adequately describe the blade stress history. A statistical description is required. Blade stress data collected from the DOE/ALCOA Low Cost experimental turbines indicate that the Rayleigh probability density function adequately describes the distribution of vibratory stresses at each wind speed. The Rayleigh probability density function allows the distribution of vibratory stresses to be described by the RMS of the stress vs. time signal. With the RMS stress level described for all wind speeds, the complete stress history of the turbine blades is known. Miner's linear cumulative damage rule is used as a basis for summing the fatigue damage over all operating conditions. An analytical expression is derived to predict blade fatigue life.

  13. Structural fatigue test results for large wind turbine blade sections

    NASA Technical Reports Server (NTRS)

    Faddoul, J. R.; Sullivan, T. L.

    1982-01-01

    In order to provide quantitative information on the operating life capabilities of wind turbine rotor blade concepts for root-end load transfer, a series of cantilever beam fatigue tests was conducted. Fatigue tests were conducted on a laminated wood blade with bonded steel studs, a low cost steel spar (utility pole) with a welded flange, a utility pole with additional root-end thickness provided by a swaged collar, fiberglass spars with both bonded and nonbonded fittings, and, finally, an aluminum blade with a bolted steel fitting (Lockheed Mod-0 blade). Photographs, data, and conclusions for each of these tests are presented. In addition, the aluminum blade test results are compared to field failure information; these results provide evidence that the cantilever beam type of fatigue test is a satisfactory method for obtaining qualitative data on blade life expectancy and for identifying structurally underdesigned areas (hot spots).

  14. High Sensitive Methods for Health Monitoring of Compressor Blades and Fatigue Detection

    PubMed Central

    Witoś, Mirosław

    2013-01-01

    The diagnostic and research aspects of compressor blade fatigue detection have been elaborated in the paper. The real maintenance and overhaul problems and characteristic of different modes of metal blade fatigue (LCF, HCF, and VHCF) have been presented. The polycrystalline defects and impurities influencing the fatigue, along with their related surface finish techniques, are taken into account. The three experimental methods of structural health assessment are considered. The metal magnetic memory (MMM), experimental modal analysis (EMA) and tip timing (TTM) methods provide information on the damage of diagnosed objects, for example, compressor blades. Early damage symptoms, that is, magnetic and modal properties of material strengthening and weakening phases (change of local dislocation density and grain diameter, increase of structural and magnetic anisotropy), have been described. It has been proven that the shape of resonance characteristic gives abilities to determine if fatigue or a blade crack is concerned. The capabilities of the methods for steel and titanium alloy blades have been illustrated in examples from active and passive experiments. In the conclusion, the MMM, EMA, and TTM have been verified, and the potential for reliable diagnosis of the compressor blades using this method has been confirmed. PMID:24191135

  15. High sensitive methods for health monitoring of compressor blades and fatigue detection.

    PubMed

    Witoś, Mirosław

    2013-01-01

    The diagnostic and research aspects of compressor blade fatigue detection have been elaborated in the paper. The real maintenance and overhaul problems and characteristic of different modes of metal blade fatigue (LCF, HCF, and VHCF) have been presented. The polycrystalline defects and impurities influencing the fatigue, along with their related surface finish techniques, are taken into account. The three experimental methods of structural health assessment are considered. The metal magnetic memory (MMM), experimental modal analysis (EMA) and tip timing (TTM) methods provide information on the damage of diagnosed objects, for example, compressor blades. Early damage symptoms, that is, magnetic and modal properties of material strengthening and weakening phases (change of local dislocation density and grain diameter, increase of structural and magnetic anisotropy), have been described. It has been proven that the shape of resonance characteristic gives abilities to determine if fatigue or a blade crack is concerned. The capabilities of the methods for steel and titanium alloy blades have been illustrated in examples from active and passive experiments. In the conclusion, the MMM, EMA, and TTM have been verified, and the potential for reliable diagnosis of the compressor blades using this method has been confirmed. PMID:24191135

  16. Loading Analysis of Composite Wind Turbine Blade for Fatigue Life Prediction of Adhesively Bonded Root Joint

    NASA Astrophysics Data System (ADS)

    Salimi-Majd, Davood; Azimzadeh, Vahid; Mohammadi, Bijan

    2015-06-01

    Nowadays wind energy is widely used as a non-polluting cost-effective renewable energy resource. During the lifetime of a composite wind turbine which is about 20 years, the rotor blades are subjected to different cyclic loads such as aerodynamics, centrifugal and gravitational forces. These loading conditions, cause to fatigue failure of the blade at the adhesively bonded root joint, where the highest bending moments will occur and consequently, is the most critical zone of the blade. So it is important to estimate the fatigue life of the root joint. The cohesive zone model is one of the best methods for prediction of initiation and propagation of debonding at the root joint. The advantage of this method is the possibility of modeling the debonding without any requirement to the remeshing. However in order to use this approach, it is necessary to analyze the cyclic loading condition at the root joint. For this purpose after implementing a cohesive interface element in the Ansys finite element software, one blade of a horizontal axis wind turbine with 46 m rotor diameter was modelled in full scale. Then after applying loads on the blade under different condition of the blade in a full rotation, the critical condition of the blade is obtained based on the delamination index and also the load ratio on the root joint in fatigue cycles is calculated. These data are the inputs for fatigue damage growth analysis of the root joint by using CZM approach that will be investigated in future work.

  17. Inspection and monitoring of wind turbine blade-embedded wave defects during fatigue testing

    DOE PAGESBeta

    Niezrecki, Christopher; Avitabile, Peter; Chen, Julie; Sherwood, James; Lundstrom, Troy; LeBlanc, Bruce; Hughes, Scott; Desmond, Michael; Beattie, Alan; Rumsey, Mark; et al

    2014-05-20

    The research we present in this article focuses on a 9-m CX-100 wind turbine blade, designed by a team led by Sandia National Laboratories and manufactured by TPI Composites Inc. The key difference between the 9-m blade and baseline CX-100 blades is that this blade contains fabric wave defects of controlled geometry inserted at specified locations along the blade length. The defect blade was tested at the National Wind Technology Center at the National Renewable Energy Laboratory using a schedule of cycles at increasing load level until failure was detected. Our researchers used digital image correlation, shearography, acoustic emission, fiber-opticmore » strain sensing, thermal imaging, and piezoelectric sensing as structural health monitoring techniques. Furthermore, this article provides a comparison of the sensing results of these different structural health monitoring approaches to detect the defects and track the resultant damage from the initial fatigue cycle to final failure.« less

  18. Inspection and monitoring of wind turbine blade-embedded wave defects during fatigue testing

    SciTech Connect

    Niezrecki, Christopher; Avitabile, Peter; Chen, Julie; Sherwood, James; Lundstrom, Troy; LeBlanc, Bruce; Hughes, Scott; Desmond, Michael; Beattie, Alan; Rumsey, Mark; Klute, Sandra M.; Pedrazzani, Renee; Werlink, Rudy; Newman, John

    2014-05-20

    The research we present in this article focuses on a 9-m CX-100 wind turbine blade, designed by a team led by Sandia National Laboratories and manufactured by TPI Composites Inc. The key difference between the 9-m blade and baseline CX-100 blades is that this blade contains fabric wave defects of controlled geometry inserted at specified locations along the blade length. The defect blade was tested at the National Wind Technology Center at the National Renewable Energy Laboratory using a schedule of cycles at increasing load level until failure was detected. Our researchers used digital image correlation, shearography, acoustic emission, fiber-optic strain sensing, thermal imaging, and piezoelectric sensing as structural health monitoring techniques. Furthermore, this article provides a comparison of the sensing results of these different structural health monitoring approaches to detect the defects and track the resultant damage from the initial fatigue cycle to final failure.

  19. Impact damage and fatigue behavior of gamma TiAl

    SciTech Connect

    Harding, T.S.; Jones, J.W.; Pollock, T.M.; Steif, P.S.; Rubal, M.P.

    1997-12-31

    The relationship between impact damage and the fatigue behavior of gamma titanium aluminide has been examined. Axial fatigue specimens fabricated from cast Ti-47.9Al-2Cr-2Nb alloy and Ti-47.3Al-2.2Nb-0.5Mn-0.4W-0.4Mo-0.23Si alloy were impacted under controlled conditions with various indentor shapes to simulate manufacturing related damage in low pressure turbine blades. Damage was quantified and related to impact parameters. A measure of the ambient temperature fatigue strength in the damaged specimens was obtained by standard fatigue testing employing a step-loading approach. Fractographic studies were performed to differentiate impact damage from subsequent fatigue crack growth and to elucidate the mechanisms responsible for the dependence of fatigue strength on the severity of impact damage. A threshold-based fracture mechanics analysis of crack advance from damage zones, and its use in fatigue failure strength prediction, has been developed.

  20. Non-Harmonic Fourier Analysis for bladed wheels damage detection

    NASA Astrophysics Data System (ADS)

    Neri, P.; Peeters, B.

    2015-11-01

    The interaction between bladed wheels and the fluid distributed by the stator vanes results in cyclic loading of the rotating components. Compressors and turbines wheels are subject to vibration and fatigue issues, especially when resonance conditions are excited. Even if resonance conditions can be often predicted and avoided, high cycle fatigue failures can occur, causing safety issues and economic loss. Rigorous maintenance programs are then needed, forcing the system to expensive shut-down. Blade crack detection methods are beneficial for condition-based maintenance. While contact measurement systems are not always usable in exercise conditions (e.g. high temperature), non-contact methods can be more suitable. One (or more) stator-fixed sensor can measure all the blades as they pass by, in order to detect the damaged ones. The main drawback in this situation is the short acquisition time available for each blade, which is shortened by the high rotational speed of the components. A traditional Discrete Fourier Transform (DFT) analysis would result in a poor frequency resolution. A Non-Harmonic Fourier Analysis (NHFA) can be executed with an arbitrary frequency resolution instead, allowing to obtain frequency information even with short-time data samples. This paper shows an analytical investigation of the NHFA method. A data processing algorithm is then proposed to obtain frequency shift information from short time samples. The performances of this algorithm are then studied by experimental and numerical tests.

  1. Full-scale fatigue tests of CX-100 wind turbine blades. Part II: analysis

    NASA Astrophysics Data System (ADS)

    Taylor, Stuart G.; Jeong, Hyomi; Jang, Jae Kyeong; Park, Gyuhae; Farinholt, Kevin M.; Todd, Michael D.; Ammerman, Curtt M.

    2012-04-01

    This paper presents the initial analysis results of several structural health monitoring (SHM) methods applied to two 9- meter CX-100 wind turbine blades subjected to fatigue loading at the National Renewable Energy Laboratory's (NREL) National Wind Technology Center (NWTC). The first blade was a pristine blade, manufactured to standard CX-100 design specifications. The second blade was manufactured for the University of Massachusetts, Lowell (UMass), with intentional simulated defects within the fabric layup. Each blade was instrumented with a variety of sensors on its surface. The blades were subject to harmonic excitation at their first natural frequency with steadily increasing loading until ultimately reaching failure. Data from the sensors were collected between and during fatigue loading sessions. The data were measured at multi-scale frequency ranges using a variety of data acquisition equipment, including off-the-shelf systems and prototype data acquisition hardware. The data were analyzed to identify fatigue damage initiation and to assess damage progression. Modal response, diffuse wave-field transfer functions in time and frequency domains, and wave propagation methods were applied to assess the condition of the turbine blade. The analysis methods implemented were evaluated in conjunction with hardware-specific performance for their efficacy in enabling the assessment of damage progression in the blade. The results of this assessment will inform the selection of specific data to be collected and analysis methods to be implemented for a CX-100 flight test to be conducted in collaboration with Sandia National Laboratory at the U.S. Department of Agriculture's (USDA) Conservation and Production Research Laboratory (CPRL) in Bushland, Texas.

  2. Acoustic emission monitoring of a wind turbine blade during a fatigue test

    SciTech Connect

    Beattie, A.G.

    1997-01-01

    A fatigue test of a wind turbine blade was conducted at the National Renewable Energy Laboratory in the fall of 1994. Acoustic emission monitoring of the test was performed, starting with the second loading level. The acoustic emission data indicated that this load exceeded the strength of the blade. From the first cycle at the new load, an oil can type of deformation occurred in two areas of the upper skin of the blade. One of these was near the blade root and the other was about the middle of the tested portion of the blade. The emission monitoring indicated that no damage was taking place in the area near the root, but in the deforming area near the middle of the blade, damage occurred from the first cycles at the higher load. The test was stopped after approximately one day and the blade was declared destroyed, although no gross damage had occurred. Several weeks later the test was resumed, to be continued until gross damage occurred. The upper skin tore approximately one half hour after the cycling was restarted.

  3. Fatigue Failure of Space Shuttle Main Engine Turbine Blades

    NASA Technical Reports Server (NTRS)

    Swanson, Gregrory R.; Arakere, Nagaraj K.

    2000-01-01

    Experimental validation of finite element modeling of single crystal turbine blades is presented. Experimental results from uniaxial high cycle fatigue (HCF) test specimens and full scale Space Shuttle Main Engine test firings with the High Pressure Fuel Turbopump Alternate Turbopump (HPFTP/AT) provide the data used for the validation. The conclusions show the significant contribution of the crystal orientation within the blade on the resulting life of the component, that the analysis can predict this variation, and that experimental testing demonstrates it.

  4. Damage Identification of Wind Turbine Blades Using Piezoelectric Transducers

    DOE PAGESBeta

    Choi, Seong-Won; Farinholt, Kevin M.; Taylor, Stuart G.; Light-Marquez, Abraham; Park, Gyuhae

    2014-01-01

    This paper presents the experimental results of active-sensing structural health monitoring (SHM) techniques, which utilize piezoelectric transducers as sensors and actuators, for determining the structural integrity of wind turbine blades. Specifically, Lamb wave propagations and frequency response functions at high frequency ranges are used to estimate the condition of wind turbine blades. For experiments, a 1 m section of a CX-100 blade is used. The goal of this study is to assess and compare the performance of each method in identifying incipient damage with a consideration given to field deployability. Overall, these methods yielded a sufficient damage detection capability to warrantmore » further investigation. This paper also summarizes the SHM results of a full-scale fatigue test of a 9 m CX-100 blade using piezoelectric active sensors. This paper outlines considerations needed to design such SHM systems, experimental procedures and results, and additional issues that can be used as guidelines for future investigations.« less

  5. Wind turbine blade fatigue tests: lessons learned and application to SHM system development

    SciTech Connect

    Taylor, Stuart G.; Farinholt, Kevin M.; Jeong, Hyomi; Jang, JaeKyung; Park, Gyu Hae; Todd, Michael D.; Farrar, Charles R.; Ammerman, Curtt N.

    2012-06-28

    This paper presents experimental results of several structural health monitoring (SHM) methods applied to a 9-meter CX-100 wind turbine blade that underwent fatigue loading. The blade was instrumented with piezoelectric transducers, accelerometers, acoustic emission sensors, and foil strain gauges. It underwent harmonic excitation at its first natural frequency using a hydraulically actuated resonant excitation system. The blade was initially excited at 25% of its design load, and then with steadily increasing loads until it failed. Various data were collected between and during fatigue loading sessions. The data were measured over multiple frequency ranges using a variety of acquisition equipment, including off-the-shelf systems and specially designed hardware developed by the authors. Modal response, diffuse wave-field transfer functions, and ultrasonic guided wave methods were applied to assess the condition of the wind turbine blade. The piezoelectric sensors themselves were also monitored using a sensor diagnostics procedure. This paper summarizes experimental procedures and results, focusing particularly on fatigue crack detection, and concludes with considerations for implementing such damage identification systems, which will be used as a guideline for future SHM system development for operating wind turbine blades.

  6. Structural damage identification in wind turbine blades using piezoelectric active sensing with ultrasonic validation

    SciTech Connect

    Claytor, Thomas N; Ammerman, Curtt N; Park, Gyu Hae; Farinholt, Kevin M; Farrar, Charles R; Atterbury, Marie K

    2010-01-01

    This paper gives a brief overview of a new project at LANL in structural damage identification for wind turbines. This project makes use of modeling capabilities and sensing technology to understand realistic blade loading on large turbine blades, with the goal of developing the technology needed to automatically detect early damage. Several structural health monitoring (SHM) techniques using piezoelectric active materials are being investigated for the development of wireless, low power sensors that interrogate sections of the wind turbine blade using Lamb wave propagation data, frequency response functions (FRFs), and time-series analysis methods. The modeling and sensor research will be compared with extensive experimental testing, including wind tunnel experiments, load and fatigue tests, and ultrasonic scans - on small- to mid-scale turbine blades. Furthermore, this study will investigate the effect of local damage on the global response of the blade by monitoring low-frequency response changes.

  7. Static and Fatigue Analysis of Wind Turbine Blades Subject to Cold Weather Conditions Using Finite Element Analysis

    NASA Astrophysics Data System (ADS)

    Lillo Gallardo, Patricio Andres

    Canada has aggressive targets for introducing wind energy across the country, but also faces challenges in achieving these goals due to the harsh Canadian climate. One issue which has received little attention in other countries not experiencing these extremes is the behaviour of composite blades in winter conditions. The scope of the work presented is to analyze the static stresses and fatigue response in cold climates using finite element models of the blade. The work opens with a quantification of the extremes of cold experienced in candidate Canadian wind turbine deployment locations. The thesis then narrows its focus to a consideration of the stresses in the root of the composite blades, specifically two common blade-hub connection methods: embedded root carrots and T-bolts. Finite element models of the root are proposed to properly simulate boundary conditions, applied loading and thermal stresses for a 1.5 MW wind turbine. It is shown that the blade root is strongly affected by the thermal stresses caused by the mismatch and orthotrophy of the coefficients of thermal expansion of the blade root constituents. Fatigue analysis of a blade is then presented using temperature dependent material properties including estimated fatigue coefficients.It was found that the natural frequencies of a 1.5 MW wind turbine blade are not significantly altered at cold temperatures. Additionally, cold temperatures slightly increase stresses in the composite blade skin when the blade is loaded, due to an increase in stiffness. Cold temperatures also lead to higher cyclic flapwise bending moments acting on the blade. However, this increase was found not to affect the lifetime fatigue damage. Finally, it was found that the cold climate as seen in Canada improves the fatigue strength of the saturated composite materials used in the blade. The predicted fatigue damage of the triaxial fabric and the spar cap layers in cold climates was therefore predicted to be half that of the

  8. Possibility of increasing durability of blades with damages

    NASA Astrophysics Data System (ADS)

    Boguslaev, V. A.

    The efficiency of a hardening method for titanium alloy gas-turbine compressor blades has been studied. It is shown that the hardening method is capable of increasing the durability of damaged blades by more than a factor of two. Cracks in these blades occur in a narrower zone and mainly on the side of the leading edge as compared with nonhardened blades.

  9. Structural changes and damage of single-crystal turbine blades during life tests of an aviation gas turbine engine

    NASA Astrophysics Data System (ADS)

    Ospennikova, O. G.; Orlov, M. R.; Kolodochkina, V. G.; Nazarkin, R. M.

    2015-04-01

    The irreversible structural changes of the single-crystal ZhS32-VI nickel superalloy blades of a high-pressure turbine that occur during life tests of a gas turbine engine are studied. The main operation damages in the hottest section of the blade airfoil are found to be the fracture of the heat-resistant coating in the leading edge and the formation of thermomechanical fatigue cracks. The possibility of reconditioning repair of the blades is considered.

  10. How surface damage removal affects fatigue life

    NASA Technical Reports Server (NTRS)

    Jeelani, S.; Scott, M. A.

    1988-01-01

    The effect of the removal of work hardened surface layers from specimens of 2024-T4 aluminum alloy and AISI-4130 steel on their fatigue lives has been investigated. Specimens were fatigued at selected stress levels for a given number of cycles, and the surface layer was removed followed by subsequent fatigue cycling. Results confirm that when a material is subjected to fatigue loading, damage accumulates in the surface layers in the form of work hardening. Removal of the surface layer brings the specimen back to its pre-fatigued condition.

  11. Development of the electrochemical fatigue sensor for evaluating fatigue damage

    SciTech Connect

    Li, Y.F.; Wang, J.; Wang, M.Z.; DeLuccia, J.; Laird, C.

    1999-07-01

    The Electrochemical Fatigue Sensor (EFS) is a device which operates by an electrochemical-mechanical interaction and which can sense the type and extent of fatigue damage both before and after crack initiation. It was initially explored through studies on soft metals. Here the authors report efforts to determine the ability of the device to read damage in hardened commercial alloys: 7075 aluminum alloy, 4130 steel and Ti-6Al-4V. They also demonstrate that the device, which uses an electrolytic medium, does not degrade the fatigue properties if care is used in electrolyte selection.

  12. Predictions Of Fatigue Damage From Strain Histories

    NASA Technical Reports Server (NTRS)

    Sire, Robert A.; Besuner, Philip M.; Toomey, Tim

    1989-01-01

    Semiempirical mathematical model of fatigue damage in stressed objects uses experimental histories of strains in those objects to predict fatigue lives. Accounts for initiation and propagation of fatigue cracks on cycle-by-cycle basis. Measured strain history first digitized, then converted to history of turning-point strains for purposes of analysis. Data between turning points not used. When model calibrated against proper test data for each type of object characterized, its predictions of fatigue lives superior to statistical models as one based on root-mean-square strain.

  13. Novelty detection applied to vibration data from a CX-100 wind turbine blade under fatigue loading

    NASA Astrophysics Data System (ADS)

    Dervilis, N.; Choi, M.; Antoniadou, I.; Farinholt, K. M.; Taylor, S. G.; Barthorpe, R. J.; Park, G.; Worden, K.; Farrar, C. R.

    2012-08-01

    The remarkable evolution of new generation wind turbines has led to a dramatic increase of wind turbine blade size. In turn, a reliable structural health monitoring (SHM) system will be a key factor for the successful implementation of such systems. Detection of damage at an early stage is a crucial issue as blade failure would be a catastrophic result for the entire wind turbine. In this study the SHM analysis will be based on experimental measurements of Frequency Response Functions (FRFs) extracted by using an input/output acquisition technique under a fatigue loading of a 9m CX-100 blade at the National Renewable Energy Laboratory (NREL) and National Wind Technology Center (NWTC) performed in the Los Alamos National Laboratory. The blade was harmonically excited at its first natural frequency using a Universal Resonant Excitation (UREX) system. For analysis, the Auto-Associative Neural Network (AANN) is a non-parametric method where a set of damage sensitive features gathered from the measured structure are used to train a network that acts as a novelty detector. This traditionally has a highly complex "bottleneck" structure with five layers in the AANN. In the current paper, a new attempt is also exploited based on an AANN with one hidden layer in order to reduce the theoretical and computational difficulties. Damage detection of composite bodies of blades is a "grand challenge" due to varying aerodynamic and gravitational loads and environmental conditions. A study of the noise tolerant capability of the AANN which is associated to its generalisation capacity is addressed. It will be shown that vibration response data combined with AANNs is a robust and powerful tool, offering novelty detection even when operational and environmental variations are present. The AANN is a method which has not yet been widely used in the structural health monitoring of composite blades.

  14. The relationship between observed fatigue damage and life estimation models

    NASA Technical Reports Server (NTRS)

    Kurath, Peter; Socie, Darrell F.

    1988-01-01

    Observations of the surface of laboratory specimens subjected to axial and torsional fatigue loadings has resulted in the identification of three damage fatigue phenomena: crack nucleation, shear crack growth, and tensile crack growth. Material, microstructure, state of stress/strain, and loading amplitude all influence which of the three types of fatigue damage occurs during a dominant fatigue life fraction. Fatigue damage maps are employed to summarize the experimental observations. Appropriate bulk stress/strain damage parameters are suggested to model fatigue damage for the dominant fatigue life fraction. Extension of the damage map concept to more complex loadings is presented.

  15. Blade reliability collaborative : collection of defect, damage and repair data.

    SciTech Connect

    Ashwill, Thomas D.; Ogilvie, Alistair B.; Paquette, Joshua A.

    2013-04-01

    The Blade Reliability Collaborative (BRC) was started by the Wind Energy Technologies Department of Sandia National Laboratories and DOE in 2010 with the goal of gaining insight into planned and unplanned O&M issues associated with wind turbine blades. A significant part of BRC is the Blade Defect, Damage and Repair Survey task, which will gather data from blade manufacturers, service companies, operators and prior studies to determine details about the largest sources of blade unreliability. This report summarizes the initial findings from this work.

  16. Identification of Foreign Objects Damaging Compressor Blades in Turbojet Engines

    NASA Technical Reports Server (NTRS)

    Spakowski, A E; Graab, J

    1957-01-01

    Damage to the compressor blades of turbojet engines due to ingestion of foreign objects is a growing problem, the solution of which has been made more difficult by the large percentage of damaging materials that have remained unknown. A rapid emission spectroscopic method was devised to identify the chemical composition of these foreign objects. Results on laboratory-prepared specimens and blades from damaged engines show that the method can be utilized to determine the nature of the ingested foreign objects.

  17. A new method for dual-axis fatigue testing of large wind turbine blades using resonance excitation and spectral loading

    NASA Astrophysics Data System (ADS)

    White, Darris L.

    The demand for cost effective renewable energy sources has resulted in the continual refinement of modern wind turbine designs. These refinements generally result in larger wind turbines and wind turbine blades. In order to reduce maintenance expenses, and improve quality and reliability, each new blade design must be subjected to a high cycle fatigue test. With blades expected to soon reach 70 meters in length, traditional fatigue test systems and methods are becoming less practical. Additionally, the relationship between the flap and lead-lag bending moments has not been well understood. This work explores the accuracy of current test methods compared to service loads, presents a new method for fatigue testing larger blades and experimentally validates the analysis. A dynamic model of a generic wind turbine blade and test system has been developed to evaluate the strain profiles during testing, evaluate control strategies and optimize the test accuracy. The relationship between the flap and lead-lag strains resulting from service bending moments has been analyzed. A load spectrum based on the relationship between the flap and lead-lag loads has been developed and compared to traditional test conditions. The effect of using the load spectrum on the test system stability has been analyzed and a new state-space controller has been designed. A 3-D finite element model of a generic wind turbine blade has been used to evaluate the damage accumulation for current test load conditions and the proposed load spectrum. A nonlinear damage accumulation model has been derived to evaluate the effects of load sequencing. Additionally, a new method for applying the fatigue loads to the blades has been developed and implemented. A system that applies a harmonic force at the resonance frequency of the blade in the flap direction has been designed. The new system will reduce the costs and time associated with performing a fatigue test on wind turbine blades. The new system is also

  18. Combined wind turbine fatigue and ultimate load reduction by individual blade control

    NASA Astrophysics Data System (ADS)

    Han, Y.; Leithead, W. E.

    2014-06-01

    If each blade of the wind turbine has individual pitch actuator, there is possibility of employing the pitch system to mitigate structural loads through advanced control methods. Previously, considerable reduction of blade lifetime equivalent fatigue loads has been achieved by Individual Blade Control (IBC) and in addition, it has also been shown the potential in blade ultimate loads reduction. However, both fatigue and ultimate loads impact on the design and life of wind turbine blades. In this paper, the design and application of IBC that concurrently reduce both blade fatigue and ultimate loads is investigated. The contributions of blade load spectral components, which are 1P, 2P and edgewise mode from blade in-plane and/or out-of-plane bending moments, are firstly explored. Four different control options for reducing various combinations of these load components are compared. In response to the different spectral peaks of both fatigue and ultimate loads, the controller has been designed so that it can act on different frequency components which vary with wind speed. The performance of the IBC controller on fatigue and ultimate load reduction is assessed by simulating a 5MW exemplar wind turbine. Simulation results show that with a proper selection of controlling inputs at different wind speed, the use of a single combined IBC can achieve satisfactory reduction on both fatigue and ultimate loads.

  19. Damage detection in turbine wind blades by vibration based methods

    NASA Astrophysics Data System (ADS)

    Doliński, L.; Krawczuk, M.

    2009-08-01

    The paper describes results of numerical simulation for damage localization in the composite coat of a wind turbine blade using modal parameters and a modern damage detection method (wavelet transform). The presented results were obtained in the first period of research on the diagnostic method, which is aimed at detecting damage in the blades of large wind turbines during normal operation. A blade-modelling process including the geometry, loads and failures has been introduced in the paper. A series of simulations has been carried out for different localizations and size of damage for finding the method's limits. To verify the results of numeric simulations a subscale blade has been built which has geometric features and mechanical properties similar to the computer model.

  20. Double Linear Damage Rule for Fatigue Analysis

    NASA Technical Reports Server (NTRS)

    Halford, G.; Manson, S.

    1985-01-01

    Double Linear Damage Rule (DLDR) method for use by structural designers to determine fatigue-crack-initiation life when structure subjected to unsteady, variable-amplitude cyclic loadings. Method calculates in advance of service how many loading cycles imposed on structural component before macroscopic crack initiates. Approach eventually used in design of high performance systems and incorporated into design handbooks and codes.

  1. Fatigue of Composite Materials and Substructures for Wind Turbine Blades

    SciTech Connect

    MANDELL, JOHN F.; SAMBORSKY, DANIEL D.; CAIRNS, DOUGLAS

    2002-03-01

    This report presents the major findings of the Montana State University Composite Materials Fatigue Program from 1997 to 2001, and is intended to be used in conjunction with the DOE/MSU Composite Materials Fatigue Database. Additions of greatest interest to the database in this time period include environmental and time under load effects for various resin systems; large tow carbon fiber laminates and glass/carbon hybrids; new reinforcement architectures varying from large strands to prepreg with well-dispersed fibers; spectrum loading and cumulative damage laws; giga-cycle testing of strands; tough resins for improved structural integrity; static and fatigue data for interply delamination; and design knockdown factors due to flaws and structural details as well as time under load and environmental conditions. The origins of a transition to increased tensile fatigue sensitivity with increasing fiber content are explored in detail for typical stranded reinforcing fabrics. The second focus of the report is on structural details which are prone to delamination failure, including ply terminations, skin-stiffener intersections, and sandwich panel terminations. Finite element based methodologies for predicting delamination initiation and growth in structural details are developed and validated, and simplified design recommendations are presented.

  2. Brittleness Effect on Rock Fatigue Damage Evolution

    NASA Astrophysics Data System (ADS)

    Nejati, Hamid Reza; Ghazvinian, Abdolhadi

    2014-09-01

    The damage evolution mechanism of rocks is one of the most important aspects in studying of rock fatigue behavior. Fatigue damage evolution of three rock types (onyx marble, sandstone and soft limestone) with different brittleness were considered in the present study. Intensive experimental tests were conducted on the chosen rock samples and acoustic emission (AE) sensors were used in some of them to monitor the fracturing process. Experimental tests indicated that brittleness strongly influences damage evolution of rocks in the course of static and dynamic loading. AE monitoring revealed that micro-crack density induced by the applied loads during different stages of the failure processes increases as rock brittleness increases. Also, results of fatigue tests on the three rock types indicated that the rock with the most induced micro-cracks during loading cycles has the least fatigue life. Furthermore, the condition of failure surfaces of the studied rocks samples, subjected to dynamic and static loading, were evaluated and it was concluded that the roughness of failure surfaces is influenced by loading types and rock brittleness. Dynamic failure surfaces were rougher than static ones and low brittle rock demonstrate a smoother failure surface compared to high brittle rock.

  3. Eulerian laser Doppler vibrometry: Online blade damage identification on a multi-blade test rotor

    NASA Astrophysics Data System (ADS)

    Oberholster, A. J.; Heyns, P. S.

    2011-01-01

    Laser Doppler vibrometry enables the telemetry-free measurement of online turbomachinery blade vibration. Specifically, the Eulerian or fixed reference frame implementation of laser vibrometry provides a practical solution to the condition monitoring of rotating blades. The short data samples that are characteristic of this measurement approach do however negate the use of traditional frequency domain signal processing techniques. It is therefore necessary to employ techniques such as time domain analysis and non-harmonic Fourier analysis to obtain useful information from the blade vibration signatures. The latter analysis technique allows the calculation of phase angle trends which can be used as indicators of blade health deterioration, as has been shown in previous work for a single-blade rotor. This article presents the results from tests conducted on a five-blade axial-flow test rotor at different rotor speeds and measurement positions. With the aid of artificial neural networks, it is demonstrated that the parameters obtained from non-harmonic Fourier analysis and time domain signal processing on Eulerian laser Doppler vibrometry signals can successfully be used to identify and quantify blade damage from among healthy blades. It is also shown that the natural frequencies of individual blades can be approximated from the Eulerian signatures recorded during rotor run-up and run-down.

  4. Evaluation of a threshold-based model of fatigue in gamma titanium aluminide following impact damage

    NASA Astrophysics Data System (ADS)

    Harding, Trevor Scott

    2000-10-01

    Recent interest in gamma titanium aluminide (gamma-TiAl) for use in gas turbine engine applications has centered on the low density and good elevated temperature strength retention of gamma-TiAl compared to current materials. However, the relatively low ductility and fracture toughness of gamma-TiAl leads to serious concerns regarding its ability to resist impact damage. Furthermore, the limited fatigue crack growth resistance of gamma-TiAl means that the potential for fatigue failures resulting from impact damage is real if a damage tolerant design approach is used. A threshold-based design approach may be required if fatigue crack growth from potential impact sites is to be avoided. The objective of the present research is to examine the feasibility of a threshold-based approach for the design of a gamma-TiAl low-pressure turbine blade subjected to both assembly-related impact damage and foreign object damage. Specimens of three different gamma-TiAl alloys were damaged in such a way as to simulate anticipated impact damage for a turbine blade. Step-loading fatigue tests were conducted at both room temperature and 600°C. In terms of the assembly-related impact damage, the results indicate that there is reasonably good agreement between the threshold-based predictions of the fatigue strength of damaged specimens and the measured data. However, some discrepancies do exist. In the case of very lightly damaged specimens, prediction of the resulting fatigue strength requires that a very conservative small-crack fatigue threshold be used. Consequently, the allowable design conditions are significantly reduced. For severely damaged specimens, an analytical approach found that the potential effects of residual stresses may be related to the discrepancies observed between the threshold-based model and measured fatigue strength data. In the case of foreign object damage, a good correlation was observed between impacts resulting in large cracks and a long-crack threshold

  5. Piezoelectric active sensing techniques for damage detection on wind turbine blades

    NASA Astrophysics Data System (ADS)

    Park, Gyuhae; Farinholt, Kevin M.; Taylor, Stuart G.; Farrar, Charles R.

    2011-04-01

    This paper presents the performance of a variety of structural health monitoring (SHM) techniques, based on the use of piezoelectric active sensors, to determine the structural integrity of a 9m CX-100 wind turbine blade (developed by Sandia National Laboratory). First, the dynamic characterization of a CX-100 blade is performed using piezoelectric transducers, where the results are compared to those by conventional accelerometers. Several SHM techniques, including Lamb wave propagations, frequency response functions, and time series based methods are then utilized to analyze the condition of the wind turbine blade. The main focus of this research is to assess and construct a performance matrix to compare the performance of each method in identifying incipient damage, with a special consideration given the issues related to field deployment. Experiments are conducted on a stationary, full length CX-100 wind turbine blade. This examination is a precursor for planned full-scale fatigue testing of the blade and subsequent tests to be performed on an operational CX-100 Rotor Blade to be flown in the field.

  6. Uncertainty Analysis in Fatigue Life Prediction of Gas Turbine Blades Using Bayesian Inference

    NASA Astrophysics Data System (ADS)

    Li, Yan-Feng; Zhu, Shun-Peng; Li, Jing; Peng, Weiwen; Huang, Hong-Zhong

    2015-12-01

    This paper investigates Bayesian model selection for fatigue life estimation of gas turbine blades considering model uncertainty and parameter uncertainty. Fatigue life estimation of gas turbine blades is a critical issue for the operation and health management of modern aircraft engines. Since lots of life prediction models have been presented to predict the fatigue life of gas turbine blades, model uncertainty and model selection among these models have consequently become an important issue in the lifecycle management of turbine blades. In this paper, fatigue life estimation is carried out by considering model uncertainty and parameter uncertainty simultaneously. It is formulated as the joint posterior distribution of a fatigue life prediction model and its model parameters using Bayesian inference method. Bayes factor is incorporated to implement the model selection with the quantified model uncertainty. Markov Chain Monte Carlo method is used to facilitate the calculation. A pictorial framework and a step-by-step procedure of the Bayesian inference method for fatigue life estimation considering model uncertainty are presented. Fatigue life estimation of a gas turbine blade is implemented to demonstrate the proposed method.

  7. Ultrasonic evaluation of the effects of compressive residual stresses on aircraft engine turbine blades subjected to high cycle fatigue

    NASA Astrophysics Data System (ADS)

    Bray, Don E.; Suh, Ui; Hough, C. L. ``Mickey''

    2002-05-01

    Experiments conducted on titanium (Ti-64) turbine blades with the LCR ultrasonic wave at 20 MHz showed significant differences in untreated blades and blades treated to increase the subsurface compressive residual stress. Group 1 showed significant differences in the treated and untreated areas, the top and bottom of the blades, high cycle fatigue and cracked and uncracked conditions. Group 2 blades showed significant difference between untreated and treated travel-times at probes located at the blade leading edge.

  8. Use of the WEST-1 wind turbine simulator to predict blade fatigue load distribution

    NASA Technical Reports Server (NTRS)

    Janetzke, D. C.

    1983-01-01

    To test the ability of WEST-1 to predict blade fatigue load distribution, actual wind signals were fed into the simulator and the response data were recorded and processed in the same manner as actual wind turbine data. The WEST-1 simulator was operated in a stable, unattended mode for six hours. The probability distribution of the cyclic flatwise bending moment for the blade was comparable to that for an actual wind turbine in winds with low turbulence. The input from a stationary anemometer was found to be inadequate for use in the prediction of fatigue load distribution for blade design purposes and modifications are necessary.

  9. CHARACTERIZATION OF A MOBILE OSCILLATORY FATIGUE OPERATOR FOR WIND TURBINE BLADE TESTING

    SciTech Connect

    Donohoo, P.E.; Cotrell, J.

    2008-01-01

    Laboratory testing of wind turbine blades is required to meet wind turbine design standards, reduce machine cost, and reduce the technical and fi nancial risks of deploying mass-produced wind turbine models. Fatigue testing at the National Wind Technology Center (NWTC) is currently conducted using Universal Resonance Excitation (UREX) technology. In a UREX test, the blade is mounted to a rigid stand and hydraulic exciters mounted to the blade are used to excite the blade to its resonant frequency. A drawback to UREX technology is that mounting hydraulic systems to the blade is diffi cult and requires a relatively long set-up period. An alternative testing technology called the Mobile Oscillatory Fatigue Operator (MOFO) has been analyzed. The MOFO uses an oscillating blade test-stand rather than a rigid stand, avoiding the need to place hydraulic systems on the blade. The MOFO will be demonstrated by converting an existing test-stand at the NWTC to an oscillating stand that can test blades up to 25 m in length. To obtain the loads necessary to design the MOFO, the system motion is modeled using rigid body and lumped mass dynamics models. Preliminary modeling indicates the existing stand can be converted to a MOFO relatively easily. However, the blade dynamic models suggest that blade bending moment distributions are signifi cantly different for UREX and MOFO testing; more sophisticated models are required to assess the implication of this difference on the accuracy of the test.

  10. Full-scale fatigue tests of CX-100 wind turbine blades. Part I: testing

    NASA Astrophysics Data System (ADS)

    Farinholt, Kevin M.; Taylor, Stuart G.; Park, Gyuhae; Ammerman, Curtt M.

    2012-04-01

    This paper overviews the test setup and experimental methods for structural health monitoring (SHM) of two 9-meter CX-100 wind turbine blades that underwent fatigue loading at the National Renewable Energy Laboratory's (NREL) National Wind Technology Center (NWTC). The first blade was a pristine blade, which was manufactured to standard specifications for the CX-100 design. The second blade was manufactured for the University of Massachusetts, Lowell with intentional simulated defects within the fabric layup. Each blade was instrumented with piezoelectric transducers, accelerometers, acoustic emission sensors, and foil strain gauges. The blades underwent harmonic excitation at their first natural frequency using the Universal Resonant Excitation (UREX) system at NREL. Blades were initially excited at 25% of their design load, and then with steadily increasing loads until each blade reached failure. Data from the sensors were collected between and during fatigue loading sessions. The data were measured over multi-scale frequency ranges using a variety of acquisition equipment, including off-the-shelf systems and specially designed hardware developed at Los Alamos National Laboratory (LANL). The hardware systems were evaluated for their aptness in data collection for effective application of SHM methods to the blades. The results of this assessment will inform the selection of acquisition hardware and sensor types to be deployed on a CX-100 flight test to be conducted in collaboration with Sandia National Laboratory at the U.S. Department of Agriculture's (USDA) Conservation and Production Research Laboratory (CPRL) in Bushland, Texas.

  11. Effect of Impact Damage on the Fatigue Response of TiAl Alloy-ABB-2

    NASA Technical Reports Server (NTRS)

    Draper, S. L.; Lerch, B. A.; Pereira, J. M.; Nathal, M. V.; Nazmy, M. Y.; Staubli, M.; Clemens, D. R.

    2001-01-01

    The ability of gamma-TiAl to withstand potential foreign or domestic object damage is a technical risk to the implementation of gamma-TiAl in low pressure turbine (LPT) blade applications. In the present study, the impact resistance of TiAl alloy ABB-2 was determined and compared to the impact resistance of Ti(48)Al(2)Nb(2)Cr. Specimens were impacted with four different impact conditions with impact energies ranging from 0.22 to 6.09 J. After impacting, the impact damage was characterized by crack lengths on both the front and backside of the impact. Due to the flat nature of gamma-TiAl's S-N (stress vs. cycles to failure) curve, step fatigue tests were used to determine the fatigue strength after impacting. Impact damage increased with increasing impact energy and led to a reduction in the fatigue strength of the alloy. For similar crack lengths, the fatigue strength of impacted ABB-2 was similar to the fatigue strength of impacted Ti(48)Al(2)Nb(2)Cr, even though the tensile properties of the two alloys are significantly different. Similar to Ti(48)Al(2)Nb(2)Cr, ABB-2 showed a classical mean stress dependence on fatigue strength. The fatigue strength of impacted ABB-2 could be accurately predicted using a threshold analysis.

  12. Fretting Fatigue of Single Crystal/Polycrystalline Nickel Subjected to Blade/Disk Contact Loading

    NASA Astrophysics Data System (ADS)

    Matlik, J. F.; Murthy, H.; Farris, T. N.

    2002-01-01

    Fretting fatigue describes the formation and growth of cracks at the edge-of-contact of nominally clamped components subjected to cyclic loading. Components that are known to be subject to fretting fatigue include riveted lap joints and blade/disk contacts in launch vehicle turbomachinery. Recent efforts have shown that conventional mechanics tools, both fatigue and fracture based, can be used to model fretting fatigue experiments leading to successful life predictions. In particular, experiments involving contact load configurations similar to those that occur in the blade/disk connection of gas turbine engines have been performed extensively. Predictions of fretting fatigue life have been compared favorably to experimental observations [1]. Recent efforts are aimed at performing experiments at higher temperatures as shown in the photograph below along with a sample fracture surface. The talk will describe the status of these experiments as will as model developments relevant to the single crystal material properties.

  13. Effect of Crystal Orientation on Fatigue Failure of Single Crystal Nickel Base Turbine Blade Superalloys

    NASA Technical Reports Server (NTRS)

    Arakere, Nagaraj K.; Swanson, Gregory R.

    2000-01-01

    High Cycle Fatigue (HCF) induced failures in aircraft gas-turbine engines is a pervasive problem affecting a wide range of components and materials. HCF is currently the primary cause of component failures in gas turbine aircraft engines. Turbine blades in high performance aircraft and rocket engines are increasingly being made of single crystal nickel superalloys. Single-crystal Nickel-base superalloys were developed to provide superior creep, stress rupture, melt resistance and thermomechanical fatigue capabilities over polycrystalline alloys previously used in the production of turbine blades and vanes. Currently the most widely used single crystal turbine blade superalloys are PWA 1480/1493 and PWA 1484. These alloys play an important role in commercial, military and space propulsion systems. PWA1493, identical to PWA1480, but with tighter chemical constituent control, is used in the NASA SSME (Space Shuttle Main Engine) alternate turbopump, a liquid hydrogen fueled rocket engine. Objectives for this paper are motivated by the need for developing failure criteria and fatigue life evaluation procedures for high temperature single crystal components, using available fatigue data and finite element modeling of turbine blades. Using the FE (finite element) stress analysis results and the fatigue life relations developed, the effect of variation of primary and secondary crystal orientations on life is determined, at critical blade locations. The most advantageous crystal orientation for a given blade design is determined. Results presented demonstrates that control of secondary and primary crystallographic orientation has the potential to optimize blade design by increasing its resistance to fatigue crack growth without adding additional weight or cost.

  14. Effects of FOD on the fatigue crack initiation of ballistically impacted titanium-aluminum(6)-vanadium(4) simulated engine blades

    NASA Astrophysics Data System (ADS)

    Birkbeck, Janine C.

    Nicks and dents caused by foreign object damage (FOD) in leading edges of turbine engine blades often provide crack initiation sites that may grow under high cycle fatigue (HCF) conditions and lead to reduced life. Leading edge specimens simulating the geometry of these engine blades were fabricated from STOA Ti-6Al-4V. The leading edges were then ballistically impacted with small steel spheres and the subsequent damage was characterized with SEM according to the crater dimensions (depth and length), material lost, cracks and extrusions. A few specimens were sectioned after impact and SEM of the area beneath the impacts revealed adiabatic shear bands as well as a surface impact transformation layer with a fine transformed microstructure. These shear bands contained micro-cracks, tears and some shrinkage porosity, which indicated the magnitude of the localized high temperatures achieved during the impact. The remaining specimens were subjected to tension-tension axial HCF testing using a step loading fatigue procedure. Fatigue fracture initiation always occurred at the exit side of the impact crater and at the crater center. Extrusions, loss of material and cracks caused by the impact did not correlate well with the normalized fatigue strength. However, SEM of the fractured surfaces beneath the impacts revealed adiabatic shear band traces as well as a surface impact transformation layer exhibiting a fine texture at the fracture initiation sites. Only a moderate correlation existed between the depth of the impact crater and the normalized fatigue stress. No correlation existed between the crater length and the normalized fatigue strength. The failure of several craters with the smaller crater depth strongly suggested that factors not related to the crater geometry were involved. The fatigue limit stress model was able to predict the fatigue limit for craters less than 0.4 mm deep. However, this model underestimated the fatigue strength loss for deeper craters

  15. Modeling Fatigue Damage in Long-Fiber Thermoplastics

    SciTech Connect

    Nguyen, Ba Nghiep; Kunc, Vlastimil; Bapanapalli, Satish K.

    2009-10-30

    This paper applies a fatigue damage model recently developed for injection-molded long-fiber thermoplastics (LFTs) to predict the modulus reduction and fatigue lifetime of glass/polyamide 6,6 (PA6,6) specimens. The fatigue model uses a multiscale mechanistic approach to describe fatigue damage accumulation in these materials subjected to cyclic loading. Micromechanical modeling using a modified Eshelby-Mori-Tanaka approach combined with averaging techniques for fiber length and orientation distributions is performed to establish the stiffness reduction relation for the composite as a function of the microcrack volume fraction. Next, continuum damage mechanics and a thermodynamic formulation are used to derive the constitutive relations and the damage evolution law. The fatigue damage model has been implemented in the ABAQUS finite element code and has been applied to analyze fatigue of the studied glass/PA6,6 specimens. The predictions agree well with the experimental results.

  16. Vortex-induced vibration effect on fatigue life estimate of turbine blades

    NASA Astrophysics Data System (ADS)

    Lau, Y. L.; Leung, R. C. K.; So, R. M. C.

    2007-11-01

    An analysis of a turbine blade fatigue life that includes the physics of fluid-structure interaction on the high cycle fatigue (HCF) life estimate of turbine blades is carried out. The rotor wake excitation is modeled by rows of Karman vortices superimposed on an inviscid uniform flow. The vortex-induced vibration problem is modeled by a linear cascade composed of five turbine blades and the coupled Euler and structural dynamics equations are numerically solved using a time-marching boundary element technique. The analysis can be applied to any blade geometries; it is not limited to the blade geometry considered here. Two major design parameters have been identified; the ratio of blade spacing to blade chord length s/ c of the stator, and the normalized frequency parameter c/ d which is related to the wake passing frequency of the rotor. For a rigid cascade, it is found that aerodynamic resonance prevails at the resonant c/ d values corresponding to an isolated blade while s/ c is responsible for the level of the aerodynamic response. If the central blades were elastic, the parameter s/ c plays a different role in the fluid-structure interaction problem. With a c/ d that could lead to structural resonance for an isolated blade, changing s/ c would stabilize the aerodynamic and structural response of the elastic blade in a cascade. On the contrary, an improper choice of s/ c might turn the elastic blade response into structural resonance even though the oncoming c/ d is non-resonant. The results of the nonlinear effects of c/ d and s/ c could be used together with the Campbell diagram to obtain an improved HCF design of rotor-stator pair.

  17. Effect of Crystal Orientation on Fatigue Failure of Single Crystal Nickel Base Turbine Blade Superalloys

    NASA Technical Reports Server (NTRS)

    Arakere, N. K.; Swanson, G.

    2002-01-01

    High cycle fatigue (HCF) induced failures in aircraft gas turbine and rocket engine turbopump blades is a pervasive problem. Single crystal nickel turbine blades are being utilized in rocket engine turbopumps and jet engines throughout industry because of their superior creep, stress rupture, melt resistance, and thermomechanical fatigue capabilities over polycrystalline alloys. Currently the most widely used single crystal turbine blade superalloys are PWA 1480/1493, PWA 1484, RENE' N-5 and CMSX-4. These alloys play an important role in commercial, military and space propulsion systems. Single crystal materials have highly orthotropic properties making the position of the crystal lattice relative to the part geometry a significant factor in the overall analysis. The failure modes of single crystal turbine blades are complicated to predict due to the material orthotropy and variations in crystal orientations. Fatigue life estimation of single crystal turbine blades represents an important aspect of durability assessment. It is therefore of practical interest to develop effective fatigue failure criteria for single crystal nickel alloys and to investigate the effects of variation of primary and secondary crystal orientation on fatigue life. A fatigue failure criterion based on the maximum shear stress amplitude /Delta(sub tau)(sub max))] on the 24 octahedral and 6 cube slip systems, is presented for single crystal nickel superalloys (FCC crystal). This criterion reduces the scatter in uniaxial LCF test data considerably for PWA 1493 at 1200 F in air. Additionally, single crystal turbine blades used in the alternate advanced high-pressure fuel turbopump (AHPFTP/AT) are modeled using a large-scale three-dimensional finite element model. This finite element model is capable of accounting for material orthotrophy and variation in primary and secondary crystal orientation. Effects of variation in crystal orientation on blade stress response are studied based on 297

  18. Cumulative creep fatigue damage in 316 stainless steel

    NASA Technical Reports Server (NTRS)

    Mcgaw, Michael A.

    1989-01-01

    The cumulative creep-fatigue damage behavior of 316 stainless steel at 1500 F was experimentally established for the two-level loading cases of fatigue followed by fatigue, creep fatigue followed by fatigue, and fatigue followed by creep fatigue. The two-level loadings were conducted such that the lower life (high strain) cycling was applied first for a controlled number of cycles and the higher life (low strain) cycling was conducted as the second level to failure. The target life levels in this study were 100 cycles to failure for both the fatigue and creep-fatigue lowlife loading, 5000 cycles to failure for the higher life fatigue loading and 10,000 cycles to failure for the higher life creep-fatigue loading. The failed specimens are being examined both fractographically and metallographically to ascertain the nature of the damaging mechanisms that produced failure. Models of creep-fatigue damage accumulation are being evaluated and knowledge of the various damaging mechanisms is necessary to ensure that predictive capability is instilled in the final failure model.

  19. Implementation of a Biaxial Resonant Fatigue Test Method on a Large Wind Turbine Blade

    SciTech Connect

    Snowberg, D.; Dana, S.; Hughes, S.; Berling, P.

    2014-09-01

    A biaxial resonant test method was utilized to simultaneously fatigue test a wind turbine blade in the flap and edge (lead-lag) direction. Biaxial resonant blade fatigue testing is an accelerated life test method utilizing oscillating masses on the blade; each mass is independently oscillated at the respective flap and edge blade resonant frequency. The flap and edge resonant frequency were not controlled, nor were they constant for this demonstrated test method. This biaxial resonant test method presented surmountable challenges in test setup simulation, control and data processing. Biaxial resonant testing has the potential to complete test projects faster than single-axis testing. The load modulation during a biaxial resonant test may necessitate periodic load application above targets or higher applied test cycles.

  20. ADVANCED COMPOSITE WIND TURBINE BLADE DESIGN BASED ON DURABILITY AND DAMAGE TOLERANCE

    SciTech Connect

    Galib Abumeri; Frank Abdi

    2012-02-16

    The objective of the program was to demonstrate and verify Certification-by-Analysis (CBA) capability for wind turbine blades made from advanced lightweight composite materials. The approach integrated durability and damage tolerance analysis with robust design and virtual testing capabilities to deliver superior, durable, low weight, low cost, long life, and reliable wind blade design. The GENOA durability and life prediction software suite was be used as the primary simulation tool. First, a micromechanics-based computational approach was used to assess the durability of composite laminates with ply drop features commonly used in wind turbine applications. Ply drops occur in composite joints and closures of wind turbine blades to reduce skin thicknesses along the blade span. They increase localized stress concentration, which may cause premature delamination failure in composite and reduced fatigue service life. Durability and damage tolerance (D&DT) were evaluated utilizing a multi-scale micro-macro progressive failure analysis (PFA) technique. PFA is finite element based and is capable of detecting all stages of material damage including initiation and propagation of delamination. It assesses multiple failure criteria and includes the effects of manufacturing anomalies (i.e., void, fiber waviness). Two different approaches have been used within PFA. The first approach is Virtual Crack Closure Technique (VCCT) PFA while the second one is strength-based. Constituent stiffness and strength properties for glass and carbon based material systems were reverse engineered for use in D&DT evaluation of coupons with ply drops under static loading. Lamina and laminate properties calculated using manufacturing and composite architecture details matched closely published test data. Similarly, resin properties were determined for fatigue life calculation. The simulation not only reproduced static strength and fatigue life as observed in the test, it also showed composite

  1. Damage tolerance and structural monitoring for wind turbine blades

    PubMed Central

    McGugan, M.; Pereira, G.; Sørensen, B. F.; Toftegaard, H.; Branner, K.

    2015-01-01

    The paper proposes a methodology for reliable design and maintenance of wind turbine rotor blades using a condition monitoring approach and a damage tolerance index coupling the material and structure. By improving the understanding of material properties that control damage propagation it will be possible to combine damage tolerant structural design, monitoring systems, inspection techniques and modelling to manage the life cycle of the structures. This will allow an efficient operation of the wind turbine in terms of load alleviation, limited maintenance and repair leading to a more effective exploitation of offshore wind. PMID:25583858

  2. Damage tolerance and structural monitoring for wind turbine blades.

    PubMed

    McGugan, M; Pereira, G; Sørensen, B F; Toftegaard, H; Branner, K

    2015-02-28

    The paper proposes a methodology for reliable design and maintenance of wind turbine rotor blades using a condition monitoring approach and a damage tolerance index coupling the material and structure. By improving the understanding of material properties that control damage propagation it will be possible to combine damage tolerant structural design, monitoring systems, inspection techniques and modelling to manage the life cycle of the structures. This will allow an efficient operation of the wind turbine in terms of load alleviation, limited maintenance and repair leading to a more effective exploitation of offshore wind. PMID:25583858

  3. 77 FR 4890 - Damage Tolerance and Fatigue Evaluation for Composite Rotorcraft Structures, and Damage Tolerance...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-01

    ... Fatigue Evaluation for Metallic Structures'' (76 FR 75435), published December 2, 2011. In the ``Composite... Tolerance and Fatigue Evaluation for Composite Rotorcraft Structures'' (76 FR 74655). On December 2, 2011... Fatigue Evaluation for Composite Rotorcraft Structures, and Damage Tolerance and Fatigue Evaluation...

  4. A study of cumulative fatigue damage in AISI 4130 steel

    NASA Technical Reports Server (NTRS)

    Jeelani, S.; Musial, M.

    1986-01-01

    Experimental data were obtained using AISI 4130 steel under stress ratios of -1 and 0. A study of cumulative fatigue damage using Miner's and Kramer's equations for stress ratios of -1 and 0 for low-high, low-high-mixed, high-low, and high-low-mixed stress sequences has revealed that there is a close agreement between the theoretical and experimental values of fatigue damage and fatigue life. Kramer's equation predicts less conservative and more realistic cumulative fatigue damage than the popularly used Miner's rule does.

  5. On damage diagnosis for a wind turbine blade using pattern recognition

    NASA Astrophysics Data System (ADS)

    Dervilis, N.; Choi, M.; Taylor, S. G.; Barthorpe, R. J.; Park, G.; Farrar, C. R.; Worden, K.

    2014-03-01

    With the increased interest in implementation of wind turbine power plants in remote areas, structural health monitoring (SHM) will be one of the key cards in the efficient establishment of wind turbines in the energy arena. Detection of blade damage at an early stage is a critical problem, as blade failure can lead to a catastrophic outcome for the entire wind turbine system. Experimental measurements from vibration analysis were extracted from a 9 m CX-100 blade by researchers at Los Alamos National Laboratory (LANL) throughout a full-scale fatigue test conducted at the National Renewable Energy Laboratory (NREL) and National Wind Technology Center (NWTC). The blade was harmonically excited at its first natural frequency using a Universal Resonant EXcitation (UREX) system. In the current study, machine learning algorithms based on Artificial Neural Networks (ANNs), including an Auto-Associative Neural Network (AANN) based on a standard ANN form and a novel approach to auto-association with Radial Basis Functions (RBFs) networks are used, which are optimised for fast and efficient runs. This paper introduces such pattern recognition methods into the wind energy field and attempts to address the effectiveness of such methods by combining vibration response data with novelty detection techniques.

  6. Damage and fatigue described by a fractional derivative model

    NASA Astrophysics Data System (ADS)

    Caputo, Michele; Fabrizio, Mauro

    2015-07-01

    As in [1], damage is associated with fatigue that a material undergoes. In this paper, because we work with viscoelastic solids represented by a fractional model, damage is described by the order of the fractional derivative, which represents the phase field satisfying Ginzburg-Landau equation, which describes the evolution of damage. Finally, in our model, damage is caused, not only by fatigue, but also directly by a source related to environmental factors and described by a positive time function.

  7. Finite element based damage assessment of composite tidal turbine blades

    NASA Astrophysics Data System (ADS)

    Fagan, Edward M.; Leen, Sean B.; Kennedy, Ciaran R.; Goggins, Jamie

    2015-07-01

    With significant interest growing in the ocean renewables sector, horizontal axis tidal current turbines are in a position to dominate the marketplace. The test devices that have been placed in operation so far have suffered from premature failures, caused by difficulties with structural strength prediction. The goal of this work is to develop methods of predicting the damage level in tidal turbines under their maximum operating tidal velocity. The analysis was conducted using the finite element software package Abaqus; shell models of three representative tidal turbine blades are produced. Different construction methods will affect the damage level in the blade and for this study models were developed with varying hydrofoil profiles. In order to determine the risk of failure, a user material subroutine (UMAT) was created. The UMAT uses the failure criteria designed by Alfred Puck to calculate the risk of fibre and inter-fibre failure in the blades. The results show that degradation of the stiffness is predicted for the operating conditions, having an effect on the overall tip deflection. The failure criteria applied via the UMAT form a useful tool for analysis of high risk regions within the blade designs investigated.

  8. Very-High-Cycle-Fatigue of in-service air-engine blades, compressor and turbine

    NASA Astrophysics Data System (ADS)

    Shanyavskiy, A. A.

    2014-01-01

    In-service Very-High-Cycle-Fatigue (VHCF) regime of compressor vane and turbine rotor blades of the Al-based alloy VD-17 and superalloy GS6K, respectively, was considered. Surface crack origination occurred at the lifetime more than 1500 hours for vanes and after 550 hours for turbine blades. Performed fractographic investigations have shown that subsurface crack origination in vanes took place inspite of corrosion pittings on the blade surface. This material behavior reflected lifetime limit that was reached by the criterion VHCF. In superalloy GS6K subsurface fatigue cracking took place with the appearance of flat facet. This phenomenon was discussed and compared with specimens cracking of the same superalloy but prepared by the powder technology. In turbine blades VHCF regime appeared because of resonance of blades under the influenced gas stream. Both cases of compressor-vanes and turbine blades in-service cracking were discussed with crack growth period and stress equivalent estimations. Recommendations to continue aircrafts airworthiness were made for in-service blades.

  9. Analysis of SNL/MSU/DOE fatigue database trends for wind turbine blade materials.

    SciTech Connect

    Mandell, John F.; Ashwill, Thomas D.; Wilson, Timothy J.; Sears, Aaron T.; Agastra, Pancasatya; Laird, Daniel L.; Samborsky, Daniel D.

    2010-12-01

    This report presents an analysis of trends in fatigue results from the Montana State University program on the fatigue of composite materials for wind turbine blades for the period 2005-2009. Test data can be found in the SNL/MSU/DOE Fatigue of Composite Materials Database which is updated annually. This is the fifth report in this series, which summarizes progress of the overall program since its inception in 1989. The primary thrust of this program has been research and testing of a broad range of structural laminate materials of interest to blade structures. The report is focused on current types of infused and prepreg blade materials, either processed in-house or by industry partners. Trends in static and fatigue performance are analyzed for a range of materials, geometries and loading conditions. Materials include: sixteen resins of three general types, five epoxy based paste adhesives, fifteen reinforcing fabrics including three fiber types, three prepregs, many laminate lay-ups and process variations. Significant differences in static and fatigue performance and delamination resistance are quantified for particular materials and process conditions. When blades do fail, the likely cause is fatigue in the structural detail areas or at major flaws. The program is focused strongly on these issues in addition to standard laminates. Structural detail tests allow evaluation of various blade materials options in the context of more realistic representations of blade structure than do the standard test methods. Types of structural details addressed in this report include ply drops used in thickness tapering, and adhesive joints, each tested over a range of fatigue loading conditions. Ply drop studies were in two areas: (1) a combined experimental and finite element study of basic ply drop delamination parameters for glass and carbon prepreg laminates, and (2) the development of a complex structured resin-infused coupon including ply drops, for comparison studies of

  10. Fatigue damage accumulation in various metal matrix composites

    NASA Technical Reports Server (NTRS)

    Johnson, W. S.

    1987-01-01

    The purpose of this paper is to review some of the latest understanding of the fatigue behavior of continuous fiber reinforced metal matrix composites. The emphasis is on the development of an understanding of different fatigue damage mechanisms and why and how they occur. The fatigue failure modes in continuous fiber reinforced metal matrix composites are controlled by the three constituents of the system: fiber, matrix, and fiber/matrix interface. The relative strains to fatigue failure of the fiber and matrix will determine the failure mode. Several examples of matrix, fiber, and self-similar damage growth dominated fatigue damage are given for several metal matrix composite systems. Composite analysis, failure modes, and damage modeling are discussed. Boron/aluminum, silicon-carbide/aluminum, FP/aluminum, and borsic/titanium metal matrix composites are discussed.

  11. Fatigue testing of low-cost fiberglass composite wind turbine blade materials

    NASA Technical Reports Server (NTRS)

    Hofer, K. E.; Bennett, L. C.

    1981-01-01

    The static and fatigue behavior of transverse filament tape (TFT) fiberglass/epoxy and TFT/polyester composites was established by the testing of specimens cut from panels fabricated by a filament winding process used for the construction of large experimental wind turbine blades.

  12. Fatigue strength and evaluation of creep damage during fatigue cycling of Inconel Alloy 625

    SciTech Connect

    Purohit, A.; Thiele, U.; O'Donnell, J.E.

    1983-06-01

    Evaluation of high strain rate and corresponding low strain rate tests indicate no creep-fatigue interaction. For T greater than or equal to 900/sup 0/C, creep damage predominates during the cyclic straining. For tests in which creep damage is largely suppressed - for example in high-frequency reverse bend fatigue tests - the cycles to fatigue failure were found to increase directly with the degree of suppression of creep damage. However, a practical limit exists for suppression of creep damage at 1100/sup 0/C; at that temperature, even for the high frequency reverse bend tests (approx. 1000 rpm with ..sigma.. = 12.3% s/sup -1/), the creep damage predominated over the fatigue damage.

  13. The characterization of widespread fatigue damage in fuselage structure

    NASA Technical Reports Server (NTRS)

    Piascik, Robert S.; Willard, Scott A.; Miller, Matthew

    1994-01-01

    The characteristics of widespread fatigue damage (WSFD) in fuselage riveted structure were established by detailed nondestructive and destructive examinations of fatigue damage contained in a full size fuselage test article. The objectives of this were to establish an experimental data base for validating emerging WSFD analytical prediction methodology and to identify first order effects that contribute to fatigue crack initiation and growth. Detailed examinations were performed on a test panel containing four bays of a riveted lap splice joint. The panel was removed from a full scale fuselage test article after receiving 60,000 full pressurization cycles. The results of in situ examinations document the progression of fuselage skin fatigue crack growth through crack linkup. Detailed tear down examinations and fractography of the lap splice joint region revealed fatigue crack initiation sites, crack morphology, and crack linkup geometry. From this large data base, distributions of crack size and locations are presented and discussions of operative damage mechanisms are offered.

  14. Fatigue Life of Postbuckled Structures with Indentation Damages

    NASA Technical Reports Server (NTRS)

    Davila, Carlos G.; Bisagni, Chiara

    2016-01-01

    The fatigue life of composite stiffened panels with indentation damage was investigated experimentally using single stringer compression specimens. Indentation damage was induced on one of the two flanges of each stringer. The experiments were conducted using advanced instrumentation, including digital image correlation, passive thermography, and in-situ ultrasonic scanning. Specimens with initial indentation damage lengths of 32 millimeters to 56 millimeters were tested quasi-statically and in fatigue, and the effects of cyclic load amplitude and damage size were studied. A means of comparison of the damage propagation rates and collapse loads based on a stress intensity measure and the Paris law is proposed.

  15. Fatigue Life of Postbuckled Structures with Indentation Damage

    NASA Technical Reports Server (NTRS)

    Davila, Carlos G.; Bisagni, Chiara

    2016-01-01

    The fatigue life of composite stiffened panels with indentation damage was investigated experimentally using single stringer compression specimens. Indentation damage was induced on one of the two flanges of the stringer. The experiments were conducted using advanced instrumentation, including digital image correlation, passive thermography, and in-situ ultrasonic scanning. Specimens with initial indentation damage lengths of 37 millimeters to 56 millimeters were tested in fatigue and the effects of cyclic load amplitude and damage size were studied. A means of comparison of the damage propagation rates and collapse loads based on a stress intensity measure and the Paris law is proposed.

  16. Topology optimization in damage governed low cycle fatigue

    NASA Astrophysics Data System (ADS)

    Desmorat, Boris; Desmorat, Rodrigue

    2008-05-01

    Topology optimization is applied here to discuss an optimization problem of fatigue resistance. Fatigue lifetime is maximized by optimizing the shape of a structure in cyclic plasticity combined with Lemaitre damage law. The topology optimization algorithm is detailed. A 3D numerical example is given. To cite this article: B. Desmorat, R. Desmorat, C. R. Mecanique 336 (2008).

  17. Modal characteristics of turbine blade packets under lacing wire damage induced mistuning

    NASA Astrophysics Data System (ADS)

    Chatterjee, Animesh; Kotambkar, Mangesh S.

    2015-05-01

    Effect of mistuning on turbo machine blade vibration in a packeted blade-disk system has become an important area of research in the recent past, mainly due to the critical applications in aero engines and power plant turbines. It has been shown that even a small mistuning can lead to stress build up through mode localization under forced vibration. Such mistuning can come from initial geometric blade to blade variation due to manufacturing tolerances or from a crack growing in the bladed disk system during operational life stages. The literature review indicates that researchers have mainly considered blade damage as a cause of mistuning. However, lacing wire damage, although not as catastrophic as blade damage, are more frequent in occurrences and often act as a precursor to subsequent blade damage. Detection of lacing wire damage is therefore equally important. Present work has investigated nature of mistuning induced by lacing wire damage and its effect on the characteristic modal properties. A damage severity index has been introduced and effect of damage on the blade group natural frequencies is investigated. Scope of developing a damage identification methodology in packeted blade-disk system is also discussed.

  18. Mechanisms of fatigue damage in boron/aluminum composites

    NASA Technical Reports Server (NTRS)

    Johnson, W. S.

    1980-01-01

    Tensile fatigue tests were conducted on several laminates of boron/aluminum (6061-0). In laminates with 0 deg fibers on the outside, an analysis that identifies "shakedown" conditions predicted the stress amplitude below which no fatigue damage accumulated. A fatigue damage accumulation model which relates matrix fatigue cracking and the overall laminate properties is described. A model for the saturation damage stage development is presented, that identical laminates, tested in directions 90 deg apart (such that one layup has 90 deg outer plies and the other 0 deg), have different fatigue behaviors due to the stacking sequence. The 90 deg plies on the surface develop cracks earlier than predicted by shakedown. An attempt was made to explain this stacking sequence effect. Variable load history effects on the fatigue damage response were investigated. Tests reveal that for a given stress ratio the specimen seeks the saturation damage state for the largest stress range to which it is subjected. It was also found that little damage is generated by shifting a given stress range down, whereas significant damage may be created by shifting it upward. The laminate stresses were always tensile.

  19. Mean stress and the exhaustion of fatigue-damage resistance

    NASA Technical Reports Server (NTRS)

    Berkovits, Avraham

    1989-01-01

    Mean-stress effects on fatigue life are critical in isothermal and thermomechanically loaded materials and composites. Unfortunately, existing mean-stress life-prediction methods do not incorporate physical fatigue damage mechanisms. An objective is to examine the relation between mean-stress induced damage (as measured by acoustic emission) and existing life-prediction methods. Acoustic emission instrumentation has indicated that, as with static yielding, fatigue damage results from dislocation buildup and motion until dislocation saturation is reached, after which void formation and coalescence predominate. Correlation of damage processes with similar mechanisms under monotonic loading led to a reinterpretation of Goodman diagrams for 40 alloys and a modification of Morrow's formulation for life prediction under mean stresses. Further testing, using acoustic emission to monitor dislocation dynamics, can generate data for developing a more general model for fatigue under mean stress.

  20. Resolution of tower shadow models for downwind mounted rotors and its effects on the blade fatigue

    NASA Astrophysics Data System (ADS)

    Reiso, M.; Muskulus, M.

    2014-12-01

    A simulation study on the wind field resolution in computer load simulations has been conducted, both in transversal/vertical and longitudinal direction, to determine the effect on blade fatigue loading. Increasing the transversal/vertical resolution decreased the loading significantly, while only small changes to the load, at very low frequencies were found for increased longitudinal resolution. Next the influence of the tower shadow for a downwind mounted rotor was investigated, with respect to blade fatigue loading. The influence of different components to the total tower shadow effect was studied, both for a monopile and a truss tower, latter at inclination 0 and 22.5 degrees with respect to the incoming wind direction. Four components were considered, both individually and in combinations: mean wind speed, mean velocity deficit, unsteady motions from vortex shedding, and turbulence. The mean velocity deficit and turbulence were the main contributors to blade fatigue loading, and the unsteady motions can be neglected for the truss tower. For the monopile, neglecting the unsteady motions resulted in an underestimation of fatigue loading in the order of 3 percent.

  1. Quantitative study of fretting fatigue damage in shot peened titanium-aluminum-vanadium

    NASA Astrophysics Data System (ADS)

    Martinez, Sonia A.

    Fretting fatigue damage has been known to be the origin of premature failure in some of the aerospace engine components. The blade/disk assemblies, for example have been particularly susceptible to fretting induced failure. Several nondestructive evaluation techniques are being used to detect the cracks due to fretting fatigue damage. Although partial success has been achieved in detection of cracks, research is lacking in the area of detection of precursors to the development of cracks due fretting fatigue damage. The goal of the research presented in this thesis is to develop a methodology based on x-ray diffraction residual stress measurements for quantitative nondestructive characterization of accumulated fretting fatigue damage. To achieve the goal a systematic experimental study of the characteristics of the residual stress due to surface treatments of shot peening (SP), Laser Shock Peening (LSP) and Low Plasticity Burnishing (LPB), used in the aerospace industry was conducted. The residual stress in LSP and LPB was found to be complex involving shear stress and spatial non-uniformity. On the other hand in shot peening it was found to be least complex. More over it is the most cost effective and hence often used surface treatment in the industry. In order to gain an understanding of the effect of shot peening parameters on the fretting fatigue life, experiments were conducted on samples with four different peening intensities (0, 4, 7 and 10 A) and two surface coverage (100% and 400%). It was observed that the fretting fatigue life increases with the increasing peening intensity, and increase in surface coverage beyond 100% has virtually no effect. Scanning Electron Microscopic (SEM) observation of fractured surface was utilized to identify crack initiation. On all of the fretting fatigued specimens relaxation of residual stress was observed and it increased with increasing number of cycles. A complete relaxation was observed before failure. To obtain an

  2. A probabilistic fatigue analysis of multiple site damage

    NASA Technical Reports Server (NTRS)

    Rohrbaugh, S. M.; Ruff, D.; Hillberry, B. M.; Mccabe, G.; Grandt, A. F., Jr.

    1994-01-01

    The variability in initial crack size and fatigue crack growth is incorporated in a probabilistic model that is used to predict the fatigue lives for unstiffened aluminum alloy panels containing multiple site damage (MSD). The uncertainty of the damage in the MSD panel is represented by a distribution of fatigue crack lengths that are analytically derived from equivalent initial flaw sizes. The variability in fatigue crack growth rate is characterized by stochastic descriptions of crack growth parameters for a modified Paris crack growth law. A Monte-Carlo simulation explicitly describes the MSD panel by randomly selecting values from the stochastic variables and then grows the MSD cracks with a deterministic fatigue model until the panel fails. Different simulations investigate the influences of the fatigue variability on the distributions of remaining fatigue lives. Six cases that consider fixed and variable conditions of initial crack size and fatigue crack growth rate are examined. The crack size distribution exhibited a dominant effect on the remaining fatigue life distribution, and the variable crack growth rate exhibited a lesser effect on the distribution. In addition, the probabilistic model predicted that only a small percentage of the life remains after a lead crack develops in the MSD panel.

  3. Helicopter rotor blade frequency evolution with damage growth and signal processing

    NASA Astrophysics Data System (ADS)

    Roy, Niranjan; Ganguli, Ranjan

    2005-05-01

    Structural damage in materials evolves over time due to growth of fatigue cracks in homogenous materials and a complicated process of matrix cracking, delamination, fiber breakage and fiber matrix debonding in composite materials. In this study, a finite element model of the helicopter rotor blade is used to analyze the effect of damage growth on the modal frequencies in a qualitative manner. Phenomenological models of material degradation for homogenous and composite materials are used. Results show that damage can be detected by monitoring changes in lower as well as higher mode flap (out-of-plane bending), lag (in-plane bending) and torsion rotating frequencies, especially for composite materials where the onset of the last stage of damage of fiber breakage is most critical. Curve fits are also proposed for mathematical modeling of the relationship between rotating frequencies and cycles. Finally, since operational data are noisy and also contaminated with outliers, denoising algorithms based on recursive median filters and radial basis function neural networks and wavelets are studied and compared with a moving average filter using simulated data for improved health-monitoring application. A novel recursive median filter is designed using integer programming through genetic algorithm and is found to have comparable performance to neural networks with much less complexity and is better than wavelet denoising for outlier removal. This filter is proposed as a tool for denoising time series of damage indicators.

  4. Fatigue damage mechanisms in boron-aluminium composite laminates

    NASA Technical Reports Server (NTRS)

    Dvorak, G. J.; Johnson, W. S.

    1980-01-01

    The relationship between fatigue and shakedown in metal matrix composites is investigated theoretically and experimentally for unidirectional and laminated 6061 Al-B materials. It is shown that no fatigue damage takes place if the applied stress range is such that the material remains elastic, or shakes down, i.e., resumes elastic cyclic straining after a small number of plastic strain cycles. Fatigue damage occurs only in specimens subjected to stress ranges which cause sustained cyclic plastic straining in the aluminum matrix. If the applied stress range is smaller than that required for fatigue failure, after about 10 to the 6th cycles a saturation damage state is reached which remains essentially unchanged with increasing number of cycles.

  5. Deformation and fatigue behavior of SSME turbopump blade materials

    NASA Technical Reports Server (NTRS)

    Milligan, Walter W.; Antolovich, Stephen D.

    1987-01-01

    Directionally solidified and single crystal superalloys which are intended for use as turbopump blade materials are anisotropic both elastically and plastically. Therefore, isotropic constitutive models must be modified. Several models which are now being developed are based on metallurgical theories of deformation in these types of alloys. However, these theories have not been fully justified, and the temperature and strain regimes over which they may be valid are poorly defined. The objective of this work is to study the deformation behavior of the alloys, in order to determine the validity of these models and to thereby support the ongoing research efforts in solid mechanics.

  6. Environmental influence on the fatigue behavior of wind turbine rotor blades

    SciTech Connect

    Bruijn, J.C.M. de

    1995-11-01

    Generally, the lifetime of Wind Turbine blades is limited by the (mechanical) fatigue resistance, which in turn is lowered by environmental aspects such as humidity and temperature (changes). At this time, not much knowledge on the combined influence of both fatigue and environmental aspects is available, which leads to arbitrary safety factors being used by Wind Turbine designers and manufacturers, which in turn results in low cost effectiveness. To predict the life time under both fatigue and environmental loading, KEMA has developed an accelerated (50x) environmental test for Wind Turbine blades. This test is based on climatological data from different sites in the Netherlands for periods up to four years. The acceleration factors were taken from the procedures proposed in ASTM D-1183 and EN-STAFF, and based on some common knowledge. The accelerated weathering test was evaluated using data on total moisture content and moisture profile from actual glass reinforced polyester blades weathered for a prolonged period outdoors. The accelerated environmental test was adapted where necessary using WW8GAIN, a software program to simulate the effect of humidity and temperature changes on the moisture content and moisture profile for composite materials. The resulting accelerated test procedure has been used to pre-condition a number of test specimens which are thereafter tested in fatigue loading according to a constant amplitude and WISPER-spectrum. Preliminary tests indicate that the precondition on its own does not significantly influence the life time of the glass fiber reinforced samples. However, when samples are continuously kept in contact with water during fatigue loading a drastic reduction of the life time is found correspondingly to a considerably larger design safety factor than the factor 1.25 currently used.

  7. An empirical modified fatigue damage model for impacted GFRP laminates

    NASA Astrophysics Data System (ADS)

    Naderi, S.; Hassan, M. A.; Bushroa, A. R.

    2014-10-01

    The aim of the present paper is to evaluate the residual strength of GFRP laminates following a low-velocity impact event under cyclic loading. The residual strength is calculated using a linear fatigue damage model. According to an investigation into the effect of low-velocity impact on the fatigue behavior of laminates, it seems laminate fatigue life decreases after impact. By normalizing the fatigue stress against undamaged static strength, the Fatigue Damage parameter “FD” is presented with a linear relationship as its slope which is a linear function of the initial impact energy; meanwhile, the constants were attained from experimental data. FD is implemented into a plane-stress continuum damage mechanics based model for GFRP composite laminates, in order to predict damage threshold in composite structures. An S-N curve is implemented to indicate the fatigue behavior for 2 mm thickness encompassing both undamaged and impacted samples. A decline in lifespan is evident when the impact energy level increases. Finally, the FD is intended to capture the unique GFRP composite characteristics.

  8. Effects of geometry and materials on low cycle fatigue life of turbine blades in LOX/hydrogen rocket engines

    NASA Technical Reports Server (NTRS)

    Ryan, R. M.; Gross, L. A.

    1986-01-01

    This paper presents the results of an advanced turbine blade test program aimed at improving turbine blade low cycle fatigue (LCF) life. A total of 21 blades were tested in a blade thermal tester. The blades were made of MAR-M-246(Hf)DS and PWA-1480SC in six different geometries. The test results show that the PWA-1480SC material improved life by a factor of 1.7 to 3.0 over the current MAR-M-246(Hf)DS. The geometry changes yielded life improvements as high as 20 times the baseline blade made of PWA-1480SC and 34 times the baseline MAR-M-246DS blade.

  9. An experiemental and computational study of the aerodynamics of turbine blades with damage

    NASA Astrophysics Data System (ADS)

    Islam, Alamgir M. T.

    1999-10-01

    Investigations have been made of the aerodynamic effects of in-service damage on the performance of axial turbine blades. Two aspects of blade damage were considered: surface roughening and trailing edge damage. The work is related to gas turbine engine health monitoring. Correlations for the effects of surface roughness were developed based on a database obtained from Kind et al. (1998). The correlations account for the effects of the roughness height as well as the location and extent of the roughness patch on the blade surface. The effect of trailing edge damage at transonic flow conditions was investigated both experimentally and computationally. Computational investigation was conducted for only trailing-edge damage using a three- dimensional Navier-Stokes solver developed by Dawes (1988). The computations with trailing edge damage represent a novel application of the code and the wind tunnel measurements were therefore used to validate the computations. Results showed that surface roughening and trailing edge damage produced significantly different aerodynamic behavior of the flow. Surface roughening largely influences the profile losses and trailing edge damage has a considerable effect on the flow deviation. The effect of trailing edge damage on the loss characteristics of the blades was found to be fairly small over the full range of flow conditions. In fact, the overall measured profile losses were actually lower for 20% damage than for the undamaged blade. The measured flow deviation increased with the increase in damage size as well as cascade exit Mach number. Computational investigations were made to identify the parameters that influence flow deviation in turbines with both undamaged and damaged blades so that correlations could be developed. It was found that the deviation is primarily determined by the blade loading towards the trailing edge. The blade row parameters which influence this pressure difference were identified. The deviation

  10. High Cycle Fatigue Crack Initiation Study of Case Blade Alloy Rene 125

    NASA Technical Reports Server (NTRS)

    Kantzos, P.; Gayda, J.; Miner, R. V.; Telesman, J.; Dickerson, P.

    2000-01-01

    This study was conducted in order to investigate and document the high cycle fatigue crack initiation characteristics of blade alloy Rene 125 as cast by three commercially available processes. This alloy is typically used in turbine blade applications. It is currently being considered as a candidate alloy for high T3 compressor airfoil applications. This effort is part of NASA's Advanced Subsonic Technology (AST) program which aims to develop improved capabilities for the next generation subsonic gas turbine engine for commercial carriers. Wrought alloys, which are customarily used for airfoils in the compressor, cannot meet the property goals at the higher compressor exit temperatures that would be required for advanced ultra-high bypass engines. As a result cast alloys are currently being considered for such applications. Traditional blade materials such as Rene 125 have the high temperature capabilities required for such applications. However, the implementation of cast alloys in compressor airfoil applications where airfoils are typically much thinner does raise some issues of concern such as thin wall castability, casting cleaningness, and susceptibility to high-cycle fatigue (HCF) loading.

  11. Finite element prediction of fatigue damage growth in cancellous bone.

    PubMed

    Hambli, Ridha; Frikha, Sana; Toumi, Hechmi; Tavares, João Manuel R S

    2016-01-01

    Cyclic stresses applied to bones generate fatigue damage that affects the bone stiffness and its elastic modulus. This paper proposes a finite element model for the prediction of fatigue damage accumulation and failure in cancellous bone at continuum scale. The model is based on continuum damage mechanics and incorporates crack closure effects in compression. The propagation of the cracks is completely simulated throughout the damaged area. In this case, the stiffness of the broken element is reduced by 98% to ensure no stress-carrying capacities of completely damaged elements. Once a crack is initiated, the propagation direction is simulated by the propagation of the broken elements of the mesh. The proposed model suggests that damage evolves over a real physical time variable (cycles). In order to reduce the computation time, the integration of the damage growth rate is based on the cycle blocks approach. In this approach, the real number of cycles is reduced (divided) into equivalent blocks of cycles. Damage accumulation is computed over the cycle blocks and then extrapolated over the corresponding real cycles. The results show a clear difference between local tensile and compressive stresses on damage accumulation. Incorporating stiffness reduction also produces a redistribution of the peak stresses in the damaged region, which results in a delay in damage fracture. PMID:26077722

  12. Optimization of fatigue damage indication in ferromagnetic low carbon steel

    NASA Astrophysics Data System (ADS)

    Tomáš, Ivan; Kovářík, Ondřej; Kadlecová, Jana; Vértesy, Gábor

    2015-09-01

    Fatigue damage was investigated by the method of magnetic adaptive testing (MAT), which is based on the systematic measurement and evaluation of minor magnetic hysteresis loops. A large number of magnetic measurements were performed on a single reference series of low carbon steel flat samples, which were fatigued by cyclic bending in an identical way, up to an increasing level of fatigue damage. The measurements of the magnetic properties of these samples were repeated under varied conditions, including speed of magnetization of the samples, sample temperature during the measurement, choice of the evaluated signal, frequency of the voltage sampling, and range of the applied amplitudes of the magnetizing field/current. Special attention was turned to the influence of the thickness of the non-ferromagnetic spacers positioned between the surface of the samples and the flat fronts of the attached magnetizing yokes. On one hand, the spacers decrease the values of the induced signal and its derivatives, but on the other hand they substantially increase the reproducibility of the measurement and positively influence the shapes of the resulting degradation curves. Optimum conditions for the magnetic measurement of the fatigue damage were searched, found, and recommended. The results indicate the reliable applicability of MAT to detect early stages of the material fatigue, and to predict its residual lifetime.

  13. A novel damage index for fatigue damage detection in a laminated composites using Lamb waves

    NASA Astrophysics Data System (ADS)

    Seki, Daigo

    A well-established structural health monitoring (SHM) technique, the Lamb wave based approach, is used for fatigue damage identification in a laminated composite. A novel damage index, 'normalized correlation moment' (NCM) which is composed of the nth moment of the cross correlation of the baseline and comparison waves, was used as damage index for monitoring damage in composites and compared with the signal difference coefficient (SDC) which is one of the most commonly used damage indices. Composite specimens were fabricated by the hand layup method by followed by compression. Piezo electric disks mounted on composite specimens were used as actuators and sensors. Three point bending fatigue tests were carried out on an intact composite laminate and a delaminated composite laminate with [06/904/06] orientation. Finite element analysis was performed to test the validity of SDC and NCM for fatigue damage.

  14. 14 CFR 27.573 - Damage Tolerance and Fatigue Evaluation of Composite Rotorcraft Structures.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Damage Tolerance and Fatigue Evaluation of... Requirements Fatigue Evaluation § 27.573 Damage Tolerance and Fatigue Evaluation of Composite Rotorcraft... practice, the applicant must do a fatigue evaluation in accordance with paragraph (e) of this section....

  15. 14 CFR 29.573 - Damage Tolerance and Fatigue Evaluation of Composite Rotorcraft Structures.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Damage Tolerance and Fatigue Evaluation of... Requirements Fatigue Evaluation § 29.573 Damage Tolerance and Fatigue Evaluation of Composite Rotorcraft... practice, the applicant must do a fatigue evaluation in accordance with paragraph (e) of this section....

  16. Early detection of fatigue damage in composite materials

    NASA Technical Reports Server (NTRS)

    Salkind, M. J.

    1975-01-01

    Early detection of fatigue damage in composite materials by nondestructive inspection (NDI) techniques has been demonstrated for glass/epoxy, graphite/glass/epoxy, and graphite/epoxy composites. Modulus and temperature were monitored and a correlation between them observed. Axial modulus and torsional modulus changes were a function of the laminate orientation. Torsional modulus measurements and coin tap tests were performed at 0, 1 million, 5 million, and 10 million cycles, on axial fatigue specimens. Three distinct regions were noted. In the primary region a small but rapid change in stiffness was noted in the first few thousand cycles. This was followed by a secondary region of little or no stiffness change. The tertiary region was characterized by an increasing rate of stiffness change leading to fracture. NDI procedures including holographic interferometry, ultrasonics, penetrant, and X-ray radiography were evaluated for fatigue damage detection.

  17. 77 FR 55105 - Aging Airplane Program: Widespread Fatigue Damage; Correction

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-07

    ... entitled ``Aging Airplane Program: Widespread Fatigue Damage'' (77 FR 30877), which corrected a final rule published November 15, 2010 (75 FR 69746). In that technical amendment, the FAA intended to correct... Federal Aviation Administration 14 CFR Parts 121 and 129 RIN 2120-AI05 Aging Airplane Program:...

  18. Effect of the flap and edgewise bending moment phase relationships on the fatigue loads of a typical HAWT blade

    NASA Astrophysics Data System (ADS)

    Sutherland, H. J.

    The load spectrum unposed upon a horizontal-axis wind turbine blade is typically decomposed into two primary bending moments; flap and edgewise bending. The critical fatigue loads (stress cycles) imposed on the blade may not be on one of these axes, especially if die two bending loads are in-phase with one another. To quantify the correlation of these two bending moments and determine the impact of this correlation on off-axis fatigue loads, an extensive data set for a typical wind turbine blade is examined. The results are compared using their respective cycle count matrices. These results illustrate that the harmonic components of die principal bending stresses are correlated, and that the random components are not. The analysis techniques described in the paper provide the turbine designer with a spectral technique for combining primary bending spectra into off-axis fatigue loads.

  19. Fatigue Damage Mechanisms in Advanced Hybrid Titanium Composite Laminates

    NASA Technical Reports Server (NTRS)

    Johnson, W. Steven; Rhymer, Donald W.; St.Clair, Terry L. (Technical Monitor)

    2000-01-01

    Hybrid Titanium Composite Laminates (HTCL) are a type of hybrid composite laminate with promise for high-speed aerospace applications, specifically designed for improved damage tolerance and strength at high-temperature (350 F, 177 C). However, in previous testing, HTCL demonstrated a propensity to excessive delamination at the titanium/PMC interface following titanium cracking. An advanced HTCL has been constructed with an emphasis on strengthening this interface, combining a PETI-5/IM7 PMC with Ti-15-3 foils prepared with an alkaline-perborate surface treatment. This paper discusses how the fatigue capabilities of the "advanced" HTCL compare to the first generation HTCL which was not modified for interface optimization, in both tension-tension (R = 0.1) and tension-compression (R=-0.2). The advanced HTCL under did not demonstrate a significant improvement in fatigue life, in either tension-tension or tension-compression loading. However, the advanced HTCL proved much more damage tolerant. The R = 0.1 tests revealed the advanced HTCL to increase the fatigue life following initial titanium ply damage up to 10X that of the initial HTCL at certain stress levels. The damage progression following the initial ply damage demonstrated the effect of the strengthened PMC/titanium interface. Acetate film replication of the advanced HTCL edges showed a propensity for some fibers in the adjacent PMC layers to fail at the point of titanium crack formation, suppressing delamination at the Ti/PMC interface. The inspection of failure surfaces validated these findings, revealing PMC fibers bonded to the majority of the titanium surfaces. Tension compression fatigue (R = -0.2) demonstrated the same trends in cycles between initial damage and failure, damage progression, and failure surfaces. Moreover, in possessing a higher resistance to delamination, the advanced HTCL did not exhibit buckling following initial titanium ply cracking under compression unlike the initial HTCL.

  20. The effects of controls on fatigue loads in two-bladed teetered rotor wind turbines

    SciTech Connect

    Wu, K.C.; De La Guardia, R.

    1996-10-01

    This paper presents a quantitative analysis of the fatigue loads in a yaw-controlled, passive pitch, 2-bladed teetered-rotor wind turbine using proportional-integral, full state optimal, and fuzzy logic controllers. Time domain simulation data is generated using the EASY5x/WT software developed at the University of Texas at El Paso. The simulation data reveal that the choice of controller type can play a very important role in the fatigue life of a wind turbine and should be considered early in the design process of the wind turbine. In summary, the fuzzy logic controller is the most robust controller under a wide regime of wind conditions. It provides the best overall performance in terms of power regulation capability and minimum fatigue loads. The optimal controller with a full state Kalman filter observer provides a satisfactory performance in terms of power regulation capability and loads when the operating condition is close to the design point at which the controller was optimized. It fails to regulate the power output when the actual operating point deviated too far, about 30% in the computer simulations, from the designed operating point. The PI controller provided satisfactory performance in power regulation. However, it produced the worst fatigue loads to the wind turbine among the three controllers.

  1. The effects of controls on fatigue loads in two-bladed teetered rotor wind turbines

    SciTech Connect

    Wu, K.C.; Guardia, R. De La

    1996-11-01

    This paper presents a quantitative analysis of the fatigue loads in a down wind, yaw-controlled, fixed pitch, two-bladed teetered-rotor wind turbine using proportional-integral, full-state optimal, and fuzzy logic controllers. Time-domain simulation data is generated using the EASY5x/WT software developed at the University of Texas at El Paso. The simulation data reveal that the choice of controller type, or the controller dynamics, can play a very important role in the fatigue life of a wind turbine and should be considered early in the design process of the wind turbine. In summary, the fuzzy logic controller is the most robust controller under a wide regime of wind conditions. It provides the best overall performance in terms of power regulation capability and minimum fatigue loads. The optimal controller with a full-state Kalman filter observer provides a satisfactory performance in terms of power regulation capability and loads when the operating condition is close to the design point at which the controller was optimized. It fails to regulate the power output when the actual operating point deviated too far, about 30 percent in the computer simulations, from the designed operating point. The PI controller provided satisfactory performance in power regulation. However, it produced the worst fatigue loads to the wind turbine among the three controllers.

  2. Sliding Contact Fatigue Damage in Layered Ceramic Structures

    PubMed Central

    Kim, Jae-Won; Kim, Joo-Hyung; Thompson, Van P.; Zhang, Yu

    2016-01-01

    Porcelain veneered restorations often chip and fracture from repeated occlusal loading, making fatigue studies relevant. Most fatigue studies are limited to uniaxial loading without sliding motion. We hypothesize that biaxial loading (contact-load-slide-liftoff, simulating a masticatory cycle) as compared to uniaxial loading accelerates the fatigue of layered ceramics. Monolithic glass plates were epoxy joined to polycarbonate substrates as a transparent model for an all-ceramic crown on dentin. Uniaxial and biaxial cyclic contact was applied through a hard sphere in water with a mouth-motion machine. The uniaxial (contact-load-hold-liftoff) and traditional R-ratio fatigue (indenter never leaves the specimen surface) produced a similar lifespan, while biaxial fatigue was more severe. The accelerated crack growth rate in biaxial fatigue is attributed to enhanced tensile stresses at the trailing edges of a moving indenter. Fracture mechanics descriptions for damage evolution in brittle materials loaded repeatedly with a sliding sphere are provided. Clinical relevance is addressed. PMID:17959894

  3. Widespread fatigue damage monitoring: Issues and concerns

    NASA Technical Reports Server (NTRS)

    Swift, T.

    1994-01-01

    This paper is intended to illustrate the considerable effect that small in-service undetectable multi-site-damage (MSD) can have on the residual strength capability of aging aircraft structures. In general, very few people in the industry believe that tiny cracks of undetectable size are a problem because they know that many aircraft have been able to survive much larger damage. In fact they have been certified for this large damage capability. However, this is not the issue. The real issue is the effect the tiny cracks, at multiple sites, have on the large damage capability which the industry has become accustomed to expect and which the aircraft have been certified to sustain. The concern is that this message does not appear to be fully understood by many people outside the fracture community. The prime purpose of this paper, therefore, has been to convey this message by describing in simple terms the net section yielding phenomenon in ductile materials which causes loss in lead crack residual strength in the presence of MSD. The explanation continues with a number of examples on complex stiffened structures, using the results of previous finite element analyses, which illustrate that the effect of MSD is extremely sensitive to structural configuration. It is hoped that those members of the aviation community who believe that tiny cracks are not a problem will read this paper very carefully.

  4. Fatigue damage development of various CFRP-laminates

    NASA Technical Reports Server (NTRS)

    Schulte, K.; Baron, CH.

    1988-01-01

    The chronic strength and fatigue behavior of a woven carbon-fiber reinforced laminate in a balanced eight-shaft satin weave style was compared to nonwoven laminates with an equivalent cross-ply layup. Half the fibers were arranged in the direction of the load and the other half perpendicular to it. Two types of nonwoven laminates consisting of continuous fibers and aligned discontinuous fibers, both produced from carbon fiber prepregs, were studied. The cross-ply laminate with continuous fiber showed the best characteristics with regard to both static strength and fatigue. The similarities and differences in damage mechanisms in the laminates are described.

  5. Inspecting for widespread fatigue damage: Is partial debonding the key?

    NASA Technical Reports Server (NTRS)

    Brewer, John

    1994-01-01

    Experimental and analytical results indicate that cracks can initiate, grow, and coalesce more rapidly in fuselage lap joints that have experienced partial or complete debonding. Computational analysis in this paper shows that stress concentrations and stress intensity factors at the rivet holes are far less severe when the bond is intact. Debonding hastens the initiation of widespread fatigue cracks and significantly increases crack growth rate. Thus, debonded regions serve as "breeding grounds" for widespread fatigue damage. Therefore, the effectiveness of lap joint inspection programs may be enhanced if detailed inspections are focused on areas in which debonding has been detected.

  6. Continuum Fatigue Damage Modeling for Use in Life Extending Control

    NASA Technical Reports Server (NTRS)

    Lorenzo, Carl F.

    1994-01-01

    This paper develops a simplified continuum (continuous wrp to time, stress, etc.) fatigue damage model for use in Life Extending Controls (LEC) studies. The work is based on zero mean stress local strain cyclic damage modeling. New nonlinear explicit equation forms of cyclic damage in terms of stress amplitude are derived to facilitate the continuum modeling. Stress based continuum models are derived. Extension to plastic strain-strain rate models are also presented. Application of these models to LEC applications is considered. Progress toward a nonzero mean stress based continuum model is presented. Also, new nonlinear explicit equation forms in terms of stress amplitude are also derived for this case.

  7. Effects of Materials Parameters and Design Details on the Fatigue of Composite Materials for Wind Turbine Blades

    SciTech Connect

    Mandell, J.F.; Samborsky, D.D.; Sutherland, H.J.

    1999-03-04

    This paper presents an analysis of the results of nine years of fatigue testing represented in the USDOE/Montana State University (DOE/MSU) Composite Materials Fatigue Database. The focus of the program has been to explore a broad range of glass-fiber-based materials parameters encompassing over 4500 data points for 130 materials systems. Significant trends and transitions in fatigue resistance are shown as the fiber content and fabric architecture are varied. The effects of structural details including ply drops, bonded stiffeners, and other geometries that produce local variations in fiber packing and geometry are also described. Fatigue tests on composite beam structures are then discussed; these show generally good correlation with coupon fatigue data in the database. Goodman diagrams for fatigue design are presented, and their application to predicting the service lifetime of blades is described.

  8. Fatigue damage prognosis using affine arithmetic

    NASA Astrophysics Data System (ADS)

    Gbaguidi, Audrey; Kim, Daewon

    2014-02-01

    Among the essential steps to be taken in structural health monitoring systems, damage prognosis would be the field that is least investigated due to the complexity of the uncertainties. This paper presents the possibility of using Affine Arithmetic for uncertainty propagation of crack damage in damage prognosis. The structures examined are thin rectangular plates made of titanium alloys with central mode I cracks and a composite plate with an internal delamination caused by mixed mode I and II fracture modes, under a harmonic uniaxial loading condition. The model-based method for crack growth rates are considered using the Paris Erdogan law model for the isotropic plates and the delamination growth law model proposed by Kardomateas for the composite plate. The parameters for both models are randomly taken and their uncertainties are considered as defined by an interval instead of a probability distribution. A Monte Carlo method is also applied to check whether Affine Arithmetic (AA) leads to tight bounds on the lifetime of the structure.

  9. Linking asphalt binder fatigue to asphalt mixture fatigue performance using viscoelastic continuum damage modeling

    NASA Astrophysics Data System (ADS)

    Safaei, Farinaz; Castorena, Cassie; Kim, Y. Richard

    2016-08-01

    Fatigue cracking is a major form of distress in asphalt pavements. Asphalt binder is the weakest asphalt concrete constituent and, thus, plays a critical role in determining the fatigue resistance of pavements. Therefore, the ability to characterize and model the inherent fatigue performance of an asphalt binder is a necessary first step to design mixtures and pavements that are not susceptible to premature fatigue failure. The simplified viscoelastic continuum damage (S-VECD) model has been used successfully by researchers to predict the damage evolution in asphalt mixtures for various traffic and climatic conditions using limited uniaxial test data. In this study, the S-VECD model, developed for asphalt mixtures, is adapted for asphalt binders tested under cyclic torsion in a dynamic shear rheometer. Derivation of the model framework is presented. The model is verified by producing damage characteristic curves that are both temperature- and loading history-independent based on time sweep tests, given that the effects of plasticity and adhesion loss on the material behavior are minimal. The applicability of the S-VECD model to the accelerated loading that is inherent of the linear amplitude sweep test is demonstrated, which reveals reasonable performance predictions, but with some loss in accuracy compared to time sweep tests due to the confounding effects of nonlinearity imposed by the high strain amplitudes included in the test. The asphalt binder S-VECD model is validated through comparisons to asphalt mixture S-VECD model results derived from cyclic direct tension tests and Accelerated Loading Facility performance tests. The results demonstrate good agreement between the asphalt binder and mixture test results and pavement performance, indicating that the developed model framework is able to capture the asphalt binder's contribution to mixture fatigue and pavement fatigue cracking performance.

  10. Linking asphalt binder fatigue to asphalt mixture fatigue performance using viscoelastic continuum damage modeling

    NASA Astrophysics Data System (ADS)

    Safaei, Farinaz; Castorena, Cassie; Kim, Y. Richard

    2016-04-01

    Fatigue cracking is a major form of distress in asphalt pavements. Asphalt binder is the weakest asphalt concrete constituent and, thus, plays a critical role in determining the fatigue resistance of pavements. Therefore, the ability to characterize and model the inherent fatigue performance of an asphalt binder is a necessary first step to design mixtures and pavements that are not susceptible to premature fatigue failure. The simplified viscoelastic continuum damage (S-VECD) model has been used successfully by researchers to predict the damage evolution in asphalt mixtures for various traffic and climatic conditions using limited uniaxial test data. In this study, the S-VECD model, developed for asphalt mixtures, is adapted for asphalt binders tested under cyclic torsion in a dynamic shear rheometer. Derivation of the model framework is presented. The model is verified by producing damage characteristic curves that are both temperature- and loading history-independent based on time sweep tests, given that the effects of plasticity and adhesion loss on the material behavior are minimal. The applicability of the S-VECD model to the accelerated loading that is inherent of the linear amplitude sweep test is demonstrated, which reveals reasonable performance predictions, but with some loss in accuracy compared to time sweep tests due to the confounding effects of nonlinearity imposed by the high strain amplitudes included in the test. The asphalt binder S-VECD model is validated through comparisons to asphalt mixture S-VECD model results derived from cyclic direct tension tests and Accelerated Loading Facility performance tests. The results demonstrate good agreement between the asphalt binder and mixture test results and pavement performance, indicating that the developed model framework is able to capture the asphalt binder's contribution to mixture fatigue and pavement fatigue cracking performance.

  11. Damage localization in a residential-sized wind turbine blade by use of the SDDLV method

    NASA Astrophysics Data System (ADS)

    Johansen, R. J.; Hansen, L. M.; Ulriksen, M. D.; Tcherniak, D.; Damkilde, L.

    2015-07-01

    The stochastic dynamic damage location vector (SDDLV) method has previously proved to facilitate effective damage localization in truss- and plate-like structures. The method is based on interrogating damage-induced changes in transfer function matrices in cases where these matrices cannot be derived explicitly due to unknown input. Instead, vectors from the kernel of the transfer function matrix change are utilized; vectors which are derived on the basis of the system and state-to-output mapping matrices from output-only state-space realizations. The idea is then to convert the kernel vectors associated with the lowest singular values into static pseudo-loads and apply these alternately to an undamaged reference model with known stiffness matrix. By doing so, the stresses in the potentially damaged elements will, theoretically, approach zero. The present paper demonstrates an application of the SDDLV method for localization of structural damages in a cantilevered residential-sized wind turbine blade. The blade was excited by an unmeasured multi-impulse load and the resulting dynamic response was captured through accelerometers mounted along the blade. The static pseudo-loads were applied to a finite element (FE) blade model, which was tuned against the modal parameters of the actual blade. In the experiments, an undamaged blade configuration was analysed along with different damage scenarios, hereby testing the applicability of the SDDLV method.

  12. Fatigue damage initiation in Waspaloy under complex cyclic loading

    SciTech Connect

    Abdul-Latif, A.; Ferney, V.; Saanouni, K.

    1999-07-01

    The low-cycle fatigue damage initiation i n Waspaloy under complex cyclic loading (out-of-phase) is studied from experimental and theoretical viewpoints. Special emphasis is put on the transgranular damage development and results are compared to those reproduced in the literature. A physico-phenomenological model based on slip theory is used to predict the damage initiation lives as well as the directional aspect of the damage distribution. In this model, the micro-damage is supposed to initiate and then evolve on the activated crystallographic slip systems. The theoretical results are compared to both the experimental ones concerning the same material (Waspaloy) as well as other experimental results extracted from the literature.

  13. Lamb Wave Assessment of Fatigue and Thermal Damage in Composites

    NASA Technical Reports Server (NTRS)

    Seale, Michael D.; Smith, Barry T.; Prosser, W. H.

    2004-01-01

    Among the various techniques available, ultrasonic Lamb waves offer a convenient method of evaluating composite materials. Since the Lamb wave velocity depends on the elastic properties of a structure, an effective tool exists to monitor damage in composites by measuring the velocity of these waves. Lamb wave measurements can propagate over long distances and are sensitive to the desired in-plane elastic properties of the material. This paper describes two studies which monitor fatigue damage and two studies which monitor thermal damage in composites using Lamb waves. In the fatigue studies, the Lamb wave velocity is compared to modulus measurements obtained using strain gage measurements in the first experiment and the velocity is monitored along with the crack density in the second. In the thermal damage studies, one examines samples which were exposed to varying temperatures for a three minute duration and the second includes rapid thermal damage in composites by intense laser beams. In all studies, the Lamb wave velocity is demonstrated to be an excellent method to monitor damage in composites.

  14. Thermal fatigue damage of Cu-Cr-Zr alloys

    NASA Astrophysics Data System (ADS)

    Chatterjee, Arya; Mitra, R.; Chakraborty, A. K.; Rotti, C.; Ray, K. K.

    2013-11-01

    The primary aim of this investigation is to examine thermal fatigue damage (TFD) in Cu-Cr-Zr alloys used in High Heat Flux components of Tokamak and its subsystems. Thermal fatigue experiments have been carried out between 290 °C and 30 °C, which is analogous to the condition of service application on two Cu-Cr-Zr alloys having different aging treatments. The extents of TFD have been examined by standard measurements of electrical conductivity, lattice strain, residual stress and dynamic elastic modulus, supplemented by characterizations of microstructure and determination of hardness and tensile properties. The results lead to infer that the relative amounts of damage are different in the two alloys which are further dependent on their aging conditions; the reasons for the observed difference have been explained. The operative mechanisms of TFD are revealed to be as formation and subsequent coalescence of microvoids, and/or initiation and growth of microcracks.

  15. Nonlinear ultrasound modelling and validation of fatigue damage

    NASA Astrophysics Data System (ADS)

    Fierro, G. P. Malfense; Ciampa, F.; Ginzburg, D.; Onder, E.; Meo, M.

    2015-05-01

    Nonlinear ultrasound techniques have shown greater sensitivity to microcracks and they can be used to detect structural damages at their early stages. However, there is still a lack of numerical models available in commercial finite element analysis (FEA) tools that are able to simulate the interaction of elastic waves with the materials nonlinear behaviour. In this study, a nonlinear constitutive material model was developed to predict the structural response under continuous harmonic excitation of a fatigued isotropic sample that showed anharmonic effects. Particularly, by means of Landau's theory and Kelvin tensorial representation, this model provided an understanding of the elastic nonlinear phenomena such as the second harmonic generation in three-dimensional solid media. The numerical scheme was implemented and evaluated using a commercially available FEA software LS-DYNA, and it showed a good numerical characterisation of the second harmonic amplitude generated by the damaged region known as the nonlinear response area (NRA). Since this process requires only the experimental second-order nonlinear parameter and rough damage size estimation as an input, it does not need any baseline testing with the undamaged structure or any dynamic modelling of the fatigue crack growth. To validate this numerical model, the second-order nonlinear parameter was experimentally evaluated at various points over the fatigue life of an aluminium (AA6082-T6) coupon and the crack propagation was measured using an optical microscope. A good correlation was achieved between the experimental set-up and the nonlinear constitutive model.

  16. Fatigue Crack Growth Database for Damage Tolerance Analysis

    NASA Technical Reports Server (NTRS)

    Forman, R. G.; Shivakumar, V.; Cardinal, J. W.; Williams, L. C.; McKeighan, P. C.

    2005-01-01

    The objective of this project was to begin the process of developing a fatigue crack growth database (FCGD) of metallic materials for use in damage tolerance analysis of aircraft structure. For this initial effort, crack growth rate data in the NASGRO (Registered trademark) database, the United States Air Force Damage Tolerant Design Handbook, and other publicly available sources were examined and used to develop a database that characterizes crack growth behavior for specific applications (materials). The focus of this effort was on materials for general commercial aircraft applications, including large transport airplanes, small transport commuter airplanes, general aviation airplanes, and rotorcraft. The end products of this project are the FCGD software and this report. The specific goal of this effort was to present fatigue crack growth data in three usable formats: (1) NASGRO equation parameters, (2) Walker equation parameters, and (3) tabular data points. The development of this FCGD will begin the process of developing a consistent set of standard fatigue crack growth material properties. It is envisioned that the end product of the process will be a general repository for credible and well-documented fracture properties that may be used as a default standard in damage tolerance analyses.

  17. Rotor anisotropy as a blade damage indicator for wind turbine structural health monitoring systems

    NASA Astrophysics Data System (ADS)

    Tcherniak, Dmitri

    2016-06-01

    Structural damage of a rotor blade causes structural anisotropy of the rotor. In rotor dynamic, the anisotropy affects the symmetry of the rotor mode shapes, and the latter can be utilized to detect the blade damage. The mode shape symmetry can be characterized by relative blades' magnitude and phase. The study examines the potential use of these parameters as rotor damage indicators. Firstly the indicators are studied analytically using a simple 6 degrees-of-freedom model of a rotating rotor. Floquet analysis is used due to the time periodic nature of the considered system. Floquet analysis allows one to perform analytical modal decomposition of the system and study the sensitivity of the damage indicators to the amount of damage. Secondly, operational modal analysis (OMA) is involved to extract the same damage indicators from simulated experimental data, which was synthesized via numerical simulations. Finally, the same procedure was applied to operating Vestas V27 wind turbine, first using the simulated experimental data obtained by using aeroelastic simulation code HAWC2 and then using the data acquired during the measurement campaign on a real wind turbine. The study demonstrates that the proposed damage indicators are significantly more sensitive than the commonly used changes in natural frequency, and in contrast to the latter, can also pinpoint the faulty blade. It is also demonstrated that these indicators can be derived from blades vibration data obtained from real life experiment.

  18. 14 CFR 23.574 - Metallic damage tolerance and fatigue evaluation of commuter category airplanes.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Metallic damage tolerance and fatigue... COMMUTER CATEGORY AIRPLANES Structure Fatigue Evaluation § 23.574 Metallic damage tolerance and fatigue... evaluation of the strength, detail design, and fabrication must show that catastrophic failure due to...

  19. 14 CFR 23.574 - Metallic damage tolerance and fatigue evaluation of commuter category airplanes.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Metallic damage tolerance and fatigue... COMMUTER CATEGORY AIRPLANES Structure Fatigue Evaluation § 23.574 Metallic damage tolerance and fatigue... evaluation of the strength, detail design, and fabrication must show that catastrophic failure due to...

  20. 14 CFR 23.574 - Metallic damage tolerance and fatigue evaluation of commuter category airplanes.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Metallic damage tolerance and fatigue... COMMUTER CATEGORY AIRPLANES Structure Fatigue Evaluation § 23.574 Metallic damage tolerance and fatigue... evaluation of the strength, detail design, and fabrication must show that catastrophic failure due to...

  1. 14 CFR 23.574 - Metallic damage tolerance and fatigue evaluation of commuter category airplanes.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Metallic damage tolerance and fatigue... COMMUTER CATEGORY AIRPLANES Structure Fatigue Evaluation § 23.574 Metallic damage tolerance and fatigue... evaluation of the strength, detail design, and fabrication must show that catastrophic failure due to...

  2. Evaluation of the New B-REX Fatigue Testing System for Multi-Megawatt Wind Turbine Blades: Preprint

    SciTech Connect

    White, D.; Musial, W.; Engberg, S.

    2004-12-01

    The National Renewable Energy Laboratory (NREL) recently developed a new hybrid fatigue testing system called the Blade Resonance Excitation (B-REX) test system. The new system uses 65% less energy to test large wind turbine blades in half the time of NREL's dual-axis forced-displacement test method with lower equipment and operating costs. The B-REX is a dual-axis test system that combines resonance excitation with forced hydraulic loading to reduce the total test time required while representing the operating strains on the critical inboard blade stations more accurately than a single-axis test system. The analysis and testing required to fully implement the B-REX was significant. To control unanticipated blade motion and vibrations caused by dynamic coupling between the flap, lead-lag, and torsional directions, we needed to incorporate additional test hardware and control software. We evaluated the B-REX test system under stable operating conditions using a combination of various sensors. We then compared our results with results from the same blade, tested previously using NREL's dual-axis forced-displacement test method. Experimental results indicate that strain levels produced by the B-REX system accurately replicated the forced-displacement method. This paper describes the challenges we encountered while developing the new blade fatigue test system and the experimental results that validate its accuracy.

  3. Damage Detection Based on Static Strain Responses Using FBG in a Wind Turbine Blade.

    PubMed

    Tian, Shaohua; Yang, Zhibo; Chen, Xuefeng; Xie, Yong

    2015-01-01

    The damage detection of a wind turbine blade enables better operation of the turbines, and provides an early alert to the destroyed events of the blade in order to avoid catastrophic losses. A new non-baseline damage detection method based on the Fiber Bragg grating (FBG) in a wind turbine blade is developed in this paper. Firstly, the Chi-square distribution is proven to be an effective damage-sensitive feature which is adopted as the individual information source for the local decision. In order to obtain the global and optimal decision for the damage detection, the feature information fusion (FIF) method is proposed to fuse and optimize information in above individual information sources, and the damage is detected accurately through of the global decision. Then a 13.2 m wind turbine blade with the distributed strain sensor system is adopted to describe the feasibility of the proposed method, and the strain energy method (SEM) is used to describe the advantage of the proposed method. Finally results show that the proposed method can deliver encouraging results of the damage detection in the wind turbine blade. PMID:26287200

  4. Damage Detection Based on Static Strain Responses Using FBG in a Wind Turbine Blade

    PubMed Central

    Tian, Shaohua; Yang, Zhibo; Chen, Xuefeng; Xie, Yong

    2015-01-01

    The damage detection of a wind turbine blade enables better operation of the turbines, and provides an early alert to the destroyed events of the blade in order to avoid catastrophic losses. A new non-baseline damage detection method based on the Fiber Bragg grating (FBG) in a wind turbine blade is developed in this paper. Firstly, the Chi-square distribution is proven to be an effective damage-sensitive feature which is adopted as the individual information source for the local decision. In order to obtain the global and optimal decision for the damage detection, the feature information fusion (FIF) method is proposed to fuse and optimize information in above individual information sources, and the damage is detected accurately through of the global decision. Then a 13.2 m wind turbine blade with the distributed strain sensor system is adopted to describe the feasibility of the proposed method, and the strain energy method (SEM) is used to describe the advantage of the proposed method. Finally results show that the proposed method can deliver encouraging results of the damage detection in the wind turbine blade. PMID:26287200

  5. The effect of yield strength and ductility to fatigue damage

    NASA Technical Reports Server (NTRS)

    Yeh, H. Y.

    1973-01-01

    The cumulative damage of aluminium alloys with different yield strength and various ductility due to seismic loads was studied. The responses of an idealized beam with a centered mass at one end and fixed at the other end to El Centro's and Taft's earthquakes are computed by assuming that the alloys are perfectly elastoplastic materials and by using numerical technique. Consequently, the corresponding residual plastic strain can be obtained from the stress-strain relationship. The revised Palmgren-Miner cumulative damage theorem is utilized to calculate the fatigue damage. The numerical results show that in certain cases, the high ductility materials are more resistant to seismic loads than the high yield strength materials. The results also show that if a structure collapse during the earthquake, the collapse always occurs in the very early stage.

  6. Damage assessment in CFRP laminates exposed to impact fatigue loading

    NASA Astrophysics Data System (ADS)

    Tsigkourakos, George; Silberschmidt, Vadim V.; Ashcroft, I. A.

    2011-07-01

    Demand for advanced engineering composites in the aerospace industry is increasing continuously. Lately, carbon fibre reinforced polymers (CFRPs) became one of the most important structural materials in the industry due to a combination of characteristics such as: excellent stiffness, high strength-to-weight ratio, and ease of manufacture according to application. In service, aerospace composite components and structures are exposed to various transient loads, some of which can propagate in them as cyclic impacts. A typical example is an effect of the wind gusts during flight. This type of loading is known as impact fatigue (IF); it is a repetition of low-energy impacts. Such loads can cause various types of damage in composites: fibre breaking, transverse matrix cracking, de-bonding between fibres and matrix and delamination resulting in reduction of residual stiffness and loss of functionality. Furthermore, this damage is often sub-surface, which reinforces the need for more regular inspection. The effects of IF are of major importance due its detrimental effect on the structural integrity of components that can be generated after relatively few impacts at low force levels compared to those in a standard fatigue regime. This study utilises an innovative testing system with the capability of subjecting specimens to a series of repetitive impacts. The primary subject of this paper is to assess the damaging effect of IF on the behaviour of drilled CFRP specimens, exposed to such loading. A detailed damage analysis is implemented utilising an X-ray micro computed tomography system. The main findings suggested that at early stages of life damage is governed by o degree splits along the length of the specimens resulting in a 20% reduction of stiffness. The final failure damage scenario indicated that transverse crasks in the 90 degree plies are the main reason for complete delamination which can be translated to a 50% stiffness reduction.

  7. Periostin Deficiency Increases Bone Damage and Impairs Injury Response to Fatigue Loading in Adult Mice

    PubMed Central

    Bonnet, Nicolas; Gineyts, Evelyne; Ammann, Patrick; Conway, Simon J.; Garnero, Patrick; Ferrari, Serge

    2013-01-01

    Bone damage removal and callus formation in response to fatigue loading are essential to prevent fractures. Periostin (Postn) is a matricellular protein that mediates adaptive response of cortical bone to loading. Whether and how periostin influences damage and the injury response to fatigue remains unknown. We investigated the skeletal response of Postn-/- and Postn+/+ mice after fatigue stimulus by axial compression of their tibia. In Postn+/+ mice, cracks number and surface (CsNb, CsS) increased 1h after fatigue, with a decrease in strength compared to non-fatigued tibia. At 15 days, CsNb had started to decline, while CtTV and CtBV increased in fatigued vs non-fatigued tibia, reflecting a woven bone response that was present in 75% of the fatigued bones. Cortical porosity and remodelling also prominently increased in the fatigued tibia of Postn+/+ mice. At 30 days, paralleling a continuous removal of cortical damage, strength of the fatigued tibia was similar to the non-fatigue tibia. In Postn-/- mice, cracks were detectable even in the absence of fatigue, while the amount of collagen crosslinks and tissue hardness was decreased compared to Postn+/+. Fatigue significantly increased CsNb and CsS in Postn-/-, but was not associated with changes in CtTV and CtBV, as only 16% of the fatigued bones formed some woven bone. Cortical porosity and remodelling did not increase either after fatigue in Postn-/- , and the level of damage remained high even after 30 days. As a result, strength remained compromised in Postn-/- mice. Contrary to Postn+/+ , which osteocytic lacunae showed a change in the degree of anisotropy (DA) after fatigue, Postn-/- showed no DA change. Hence periostin appears to influence bone materials properties, damage accumulation and repair, including local modeling/remodeling processes in response to fatigue. These observations suggest that the level of periostin expression could influence the propensity to fatigue fractures. PMID:24167618

  8. Periostin deficiency increases bone damage and impairs injury response to fatigue loading in adult mice.

    PubMed

    Bonnet, Nicolas; Gineyts, Evelyne; Ammann, Patrick; Conway, Simon J; Garnero, Patrick; Ferrari, Serge

    2013-01-01

    Bone damage removal and callus formation in response to fatigue loading are essential to prevent fractures. Periostin (Postn) is a matricellular protein that mediates adaptive response of cortical bone to loading. Whether and how periostin influences damage and the injury response to fatigue remains unknown. We investigated the skeletal response of Postn(-/-) and Postn(+/+) mice after fatigue stimulus by axial compression of their tibia. In Postn(+/+) mice, cracks number and surface (CsNb, CsS) increased 1h after fatigue, with a decrease in strength compared to non-fatigued tibia. At 15 days, CsNb had started to decline, while CtTV and CtBV increased in fatigued vs non-fatigued tibia, reflecting a woven bone response that was present in 75% of the fatigued bones. Cortical porosity and remodelling also prominently increased in the fatigued tibia of Postn(+/+) mice. At 30 days, paralleling a continuous removal of cortical damage, strength of the fatigued tibia was similar to the non-fatigue tibia. In Postn(-/-) mice, cracks were detectable even in the absence of fatigue, while the amount of collagen crosslinks and tissue hardness was decreased compared to Postn(+/+). Fatigue significantly increased CsNb and CsS in Postn(-/-), but was not associated with changes in CtTV and CtBV, as only 16% of the fatigued bones formed some woven bone. Cortical porosity and remodelling did not increase either after fatigue in Postn(-/-), and the level of damage remained high even after 30 days. As a result, strength remained compromised in Postn(-/-) mice. Contrary to Postn(+/+), which osteocytic lacunae showed a change in the degree of anisotropy (DA) after fatigue, Postn(-/-) showed no DA change. Hence periostin appears to influence bone materials properties, damage accumulation and repair, including local modeling/remodeling processes in response to fatigue. These observations suggest that the level of periostin expression could influence the propensity to fatigue fractures. PMID

  9. Damage evolution in metal matrix composites subjected to thermomechanical fatigue

    SciTech Connect

    Allen, D.H.; Hurtado, L.D.; Helms, K.L.E.

    1995-05-01

    A thermomechanical analysis of unidirectional continuous fiber metal matrix composites is presented. The analysis includes the effects of processing induced residual thermal stresses, interface cracking, and inelastic matrix behavior on damage evolution. Due to the complexity of the nonlinear effects, the analysis is performed computationally using the finite element method. The interface fracture is modeled by a nonlinear constitutive model. The problem formulation is summarized and results are presented for a four-ply unidirectional SCS-6/{beta}21S titanium composite under high temperature isothermal mechanical fatigue.

  10. Damage detection method for wind turbine blades based on dynamics analysis and mode shape difference curvature information

    NASA Astrophysics Data System (ADS)

    Wang, Yanfeng; Liang, Ming; Xiang, Jiawei

    2014-10-01

    Blades are among the key components of wind turbines. Blade damage is one of the most common types of structural defects and can cause catastrophic structural failure. Therefore, it is highly desirable to detect and diagnose blade damage as early as possible. In this paper, we propose a method for blade damage detection and diagnosis. This method incorporates finite element method (FEM) for dynamics analysis (modal analysis and response analysis) and the mode shape difference curvature (MSDC) information for damage detection/diagnosis. Finite element models of wind turbine blades have been built and modified via frequency comparison with experimental data and the formula for the model updating technique. Our numerical simulation results have demonstrated that the proposed technique can detect the spatial locations of damages for wind turbine blades. Changes in natural frequencies and modes for smaller size blades with damage are found to occur at lower frequencies and lower modes than in the larger sized blade case. The relationship between modal parameters and damage information (location, size) is very complicated especially for larger size blades. Moreover, structure and dynamic characters for larger size blades are different from those for smaller sized blades. Therefore, dynamic response analysis for a larger sized wind turbine blade with a multi-layer composite material based on aerodynamic loads’ (including lift forces and drag forces) calculation has been carried out and improved the efficiency and precision to damage detection by combining (MSDC) information. This method provides a low cost and efficient non-destructive tool for wind turbine blade condition monitoring.

  11. Time-dependent damage in predictions of fatigue behaviour of normal and healing ligaments

    NASA Astrophysics Data System (ADS)

    Thornton, Gail M.; Bailey, Soraya J.; Schwab, Timothy D.

    2015-08-01

    Ligaments are dense fibrous tissues that connect bones across a joint and are exposed daily to creep and fatigue loading. Ligaments are tensile load-bearing tissues; therefore, fatigue loading will have a component of time-dependent damage from the non-zero mean stress and cycle-dependent damage from the oscillating stress. If time-dependent damage is not sufficient to completely predict the fatigue response, then cycle-dependent damage could be an important contributor. Using data from normal ligaments (current study and Thornton et al., Clin. Biomech. 22:932-940, 2007a) and healing ligaments (Thornton and Bailey, J. Biomech. Eng. 135:091004-1-091004-6, 2013), creep data was used to predict the fatigue response considering time-dependent damage. Relationships between creep lifetime and test stress or initial strain were modelled using exponential or power-law regression. In order to predict fatigue lifetimes, constant rates of damage were assumed and time-varying stresses were introduced into the expressions for time-dependent damage from creep. Then, the predictions of fatigue lifetime were compared with curvefits to the fatigue data where exponential or power-law regressions were used to determine the relationship between fatigue lifetime and test stress or initial strain. The fatigue prediction based on time-dependent damage alone greatly overestimated fatigue lifetime suggesting that time-dependent damage alone cannot account for all of the damage accumulated during fatigue and that cycle-dependent damage has an important role. At lower stress and strain, time-dependent damage was a greater relative contributor for normal ligaments than healing ligaments; however, cycle-dependent damage was a greater relative contributor with incremental increases in stress or strain for normal ligaments than healing ligaments.

  12. Prediction of sand particle trajectories and sand erosion damage on helicopter rotor blades

    NASA Astrophysics Data System (ADS)

    Shin, Bong Gun

    Therefore, in this dissertation, accurate and time-efficient methodologies were developed for performing sand particle tracking and predicting sand erosion damage on actual helicopter rotor blades under realistic hover and vertical lift conditions. In this dissertation, first, injection (release) conditions of solid particles with new injection parameter, sand particle mass flow rate (SPmFR), were specified to deal with the effect of non-uniform and unsteady flow conditions surrounding at each injection point from which solid particles are released. The SPmFR defines the number of solid particles released from the same injection position per unit time. Secondly, a general definition of erosion rate, "mass or volume loss from the metal surface due to the impact of a unit "mass" of solid particles" was also modified by multiplying with SPmFR in order to solve the limitation for predicting erosion damage on actual helicopter rotor blade. Next, a suitable empirical particle rebound model and an erosion damage model for spherical sand particles with diameters ranging from 10 microm to 500 microm impacting on the material Ti-6A1-4V, the material of helicopter rotor blade, were developed. Finally, C++ language based codes in the form of User Defined Functions (UDFs) were developed and implemented into the commercially available multi-dimensional viscous flow solver ANSYS-FLUENT in order to develop and integrate with the general purpose flow solver, ANSYS-FLUENT, for a specific Lagrangian particle trajectory computing algorithm and rebound and erosion quantification purposes. In the erosion simulation, a reasonably accurate fluid flow solution is necessary. In order to validate the numerical results obtained in this dissertation, computations for flow-only around 2D RAE2822 airfoil and 3D rotating rotor blade (NACA0012) without any sand particle were performed. In the comparison of these results with experimental results, it is found that the flow solutions are in good

  13. Damage assessment for wind turbine blades based on a multivariate statistical approach

    NASA Astrophysics Data System (ADS)

    García, David; Tcherniak, Dmitri; Trendafilova, Irina

    2015-07-01

    This paper presents a vibration based structural health monitoring methodology for damage assessment on wind turbine blades made of composite laminates. Normally, wind turbine blades are manufactured by two half shells made by composite laminates which are glued together. This connection must be carefully controlled due to its high probability to disbond which might result in collapse of the whole structure. The delamination between both parts must be monitored not only for detection but also for localisation and severity determination. This investigation consists in a real time monitoring methodology which is based on singular spectrum analysis (SSA) for damage and delamination detection. SSA is able to decompose the vibratory response in a certain number of components based on their covariance distribution. These components, known as Principal Components (PCs), contain information about of the oscillatory patterns of the vibratory response. The PCs are used to create a new space where the data can be projected for better visualization and interpretation. The method suggested is applied herein for a wind turbine blade where the free-vibration responses were recorded and processed by the methodology. Damage for different scenarios viz different sizes and locations was introduced on the blade. The results demonstrate a clear damage detection and localization for all damage scenarios and for the different sizes.

  14. Model-Trained Neural Networks and Electronic Holography Demonstrated to Detect Damage in Blades

    NASA Technical Reports Server (NTRS)

    Decker, Arthur J.; Fite, E. Brian; Mehmed, Oral; Thorp, Scott A.

    1998-01-01

    Detect Damage in Blades Electronic holography can show damaged regions in fan blades at 30 frames/sec. The electronic holograms are transformed by finite-element-model-trained artificial neural networks to visualize the damage. The trained neural networks are linked with video and graphics to visualize the bending-induced strain distribution, which is very sensitive to damage. By contrast, it is very difficult to detect damage by viewing the raw, speckled, characteristic fringe patterns. For neural-network visualization of damage, 2 frames or 2 fields are used, rather than the 12 frames normally used to compute the displacement distribution from electronic holograms. At the NASA Lewis Research Center, finite element models are used to compute displacement and strain distributions for the vibration modes of undamaged and cracked blades. A model of electronic time-averaged holography is used to transform the displacement distributions into finite-element-resolution characteristic fringe patterns. Then, a feedforward neural network is trained with the fringe-pattern/strain-pattern pairs, and the neural network, electronic holography, and video are implemented on a workstation. Now that the neural networks have been tested successfully at 30 frames/sec on undamaged and cracked cantilevers, the electronic holography and neural-network processing are being adapted for onsite damage inspection of twisted fan blades and rotormounted blades. Our conclusion is that model-trained neural nets are effective when they are trained with good models whose application is well understood. This work supports the aeromechanical testing portion of the Advanced Subsonic Technology Project.

  15. Unified continuum damage model for matrix cracking in composite rotor blades

    SciTech Connect

    Pollayi, Hemaraju; Harursampath, Dineshkumar

    2015-03-10

    This paper deals with modeling of the first damage mode, matrix micro-cracking, in helicopter rotor/wind turbine blades and how this effects the overall cross-sectional stiffness. The helicopter/wind turbine rotor system operates in a highly dynamic and unsteady environment leading to severe vibratory loads present in the system. Repeated exposure to this loading condition can induce damage in the composite rotor blades. These rotor/turbine blades are generally made of fiber-reinforced laminated composites and exhibit various competing modes of damage such as matrix micro-cracking, delamination, and fiber breakage. There is a need to study the behavior of the composite rotor system under various key damage modes in composite materials for developing Structural Health Monitoring (SHM) system. Each blade is modeled as a beam based on geometrically non-linear 3-D elasticity theory. Each blade thus splits into 2-D analyzes of cross-sections and non-linear 1-D analyzes along the beam reference curves. Two different tools are used here for complete 3-D analysis: VABS for 2-D cross-sectional analysis and GEBT for 1-D beam analysis. The physically-based failure models for matrix in compression and tension loading are used in the present work. Matrix cracking is detected using two failure criterion: Matrix Failure in Compression and Matrix Failure in Tension which are based on the recovered field. A strain variable is set which drives the damage variable for matrix cracking and this damage variable is used to estimate the reduced cross-sectional stiffness. The matrix micro-cracking is performed in two different approaches: (i) Element-wise, and (ii) Node-wise. The procedure presented in this paper is implemented in VABS as matrix micro-cracking modeling module. Three examples are presented to investigate the matrix failure model which illustrate the effect of matrix cracking on cross-sectional stiffness by varying the applied cyclic load.

  16. Effects of fatigue induced damage on the longitudinal fracture resistance of cortical bone.

    PubMed

    Fletcher, Lloyd; Codrington, John; Parkinson, Ian

    2014-07-01

    As a composite material, cortical bone accumulates fatigue microdamage through the repetitive loading of everyday activity (e.g. walking). The accumulation of fatigue microdamage is thought to contribute to the occurrence of fragility fractures in older people. Therefore it is beneficial to understand the relationship between microcrack accumulation and the fracture resistance of cortical bone. Twenty longitudinally orientated compact tension fracture specimens were machined from a single bovine femur, ten specimens were assigned to both the control and fatigue damaged groups. The damaged group underwent a fatigue loading protocol to induce microdamage which was assessed via fluorescent microscopy. Following fatigue loading, non-linear fracture resistance tests were undertaken on both the control and damaged groups using the J-integral method. The interaction of the crack path with the fatigue induced damage and inherent toughening mechanisms were then observed using fluorescent microscopy. The results of this study show that fatigue induced damage reduces the initiation toughness of cortical bone and the growth toughness within the damage zone by three distinct mechanisms of fatigue-fracture interaction. Further analysis of the J-integral fracture resistance showed both the elastic and plastic component were reduced in the damaged group. For the elastic component this was attributed to a decreased number of ligament bridges in the crack wake while for the plastic component this was attributed to the presence of pre-existing fatigue microcracks preventing energy absorption by the formation of new microcracks. PMID:24715332

  17. Fatigue and Mechanical Damage Propagation in Automotive PEM Fuel Cells

    NASA Astrophysics Data System (ADS)

    Banan, Roshanak

    Polymer electrolyte membrane (PEM) fuel cells are generally exposed to high magnitude road-induced vibrations and impact loads, frequent humidity-temperature loading cycles, and freeze/thaw stresses when employed in automotive applications. The resultant mechanical stresses can play a significant role in the evolution of mechanical defects in the membrane electrode assembly (MEA). The focus of this research is to investigate fatigue challenges due to humidity-temperature (hygrothermal) cycles and vibrations and their effects on damage evolution in PEM fuel cells. To achieve this goal, this thesis is divided into three parts that provide insight into damage propagation in the MEA under i) hygrothermal cycles, ii) external applied vibrations, and iii) a combination of both to simulate realistic automotive conditions. A finite element damage model based on cohesive zone theory was developed to simulate the propagation of micro-scale defects (cracks and delaminations) in the MEA under fuel cell operating conditions. It was found that the micro-defects can propagate to critical states under start-up and shut-down cycles, prior to reaching the desired lifespan of the fuel cell. The simultaneous presence of hygrothermal cycles and vibrations severely intensified damage propagation and resulted in considerably large defects within 75% of the fuel cell life expectancy. However, the order of generated damage was found to be larger under hygrothermal cycles than vibrations. Under hygrothermal cycles, membrane crack propagation was more severe compared to delamination propagation. Conversely, the degrading influence of vibrations was more significant on delaminations. The presence of an anode/cathode channel offset under the combined loadings lead to a 2.5-fold increase in the delamination length compared to the aligned-channel case. The developed model can be used to investigate the damage behaviour of current materials employed in fuel cells as well as to evaluate the

  18. Effective AE source location of damages in the wind turbine blade

    NASA Astrophysics Data System (ADS)

    Yoon, D. J.; Han, B. H.

    2012-05-01

    Acoustic emission (AE) has emerged as a powerful nondestructive tool to detect preexisting defects or to characterize failure mechanisms. Recently, this technique or this kind of principle, that is an in-situ monitoring of inside damages of materials or structures, becomes increasingly popular for monitoring the integrity of large structures like a huge wind blade. Therefore, it is required to find a symptom of damage propagation before catastrophic failure through a continuous monitoring. In this study, we have tried to develop a source location algorithm for damage identification on the part of real wind turbine blade. First, it was focused to understand the activities of acoustic emission events generated from the glass fiber reinforced plastic (GFRP) structures such as a wind blade. Secondly, this study aims to identify and locate the damages from blade specimens. In this work, the activities of AE signals generated from external artificial sources was evaluated and located by new developed source location algorithm. The results show that new suggested source location algorithm was much higher performance than conventional source location method.

  19. Increasing the FOD tolerance of composites. [gas turbine engine blade foreign object damage

    NASA Technical Reports Server (NTRS)

    Novak, R. C.

    1978-01-01

    An experimental program was conducted for the purpose of increasing the foreign object damage tolerance of resin matrix composites in gas turbine engine fan blade applications. The superhybrid concept consisting of a resin matrix composite core surrounded by a sheath of boron/aluminum and titanium was found to be the most promising approach.

  20. A study of cumulative fatigue damage in titanium 6Al-4V alloy

    NASA Technical Reports Server (NTRS)

    Jeelani, S.; Ghebremedhin, S.; Musial, M.

    1986-01-01

    Experimental data were obtained using titanium 6Al-4V alloy under stress ratios of -1, 0, and negative infinity. A study of cumulative fatigue damage using Miner's (1945) and Kramer's (1974) equations for stress ratios of -1 and 0 for low-high, low-high mixed, high-low, and high-low mixed stress sequences has revealed close agreement between the theoretical and experimental values of fatigue damage and fatigue life. Kramer's equation predicts less conservative and more realistic cumulative fatigue damage than does the popularly used Miner's rule.

  1. Investigation of Gear and Bearing Fatigue Damage Using Debris Particle Distributions

    NASA Technical Reports Server (NTRS)

    Dempsey, Paula J.; Lewicki, David G.; Decker, Harry J.

    2004-01-01

    A diagnostic tool was developed for detecting fatigue damage to spur gears, spiral bevel gears, and rolling element bearings. This diagnostic tool was developed and evaluated experimentally by collecting oil debris data from fatigue tests performed in the NASA Glenn Spur Gear Fatigue Rig, Spiral Bevel Gear Test Facility, and the 500hp Helicopter Transmission Test Stand. During each test, data from an online, in-line, inductance type oil debris sensor was monitored and recorded for the occurrence of pitting damage. Results indicate oil debris alone cannot discriminate between bearing and gear fatigue damage.

  2. 77 FR 30877 - Aging Airplane Program: Widespread Fatigue Damage; Technical Amendment

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-24

    ... Airplane Program: Widespread Fatigue Damage,'' (75 FR 69746). In that final rule the FAA revised the... actions (see Damage Tolerance Data for Repairs and Alterations, 72 FR 70486). Change to Table 1 of Sec... Administration 14 CFR Parts 26, 121, and 129 RIN 2120-AI05 Aging Airplane Program: Widespread Fatigue...

  3. 14 CFR 23.574 - Metallic damage tolerance and fatigue evaluation of commuter category airplanes.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... evaluation of commuter category airplanes. 23.574 Section 23.574 Aeronautics and Space FEDERAL AVIATION... COMMUTER CATEGORY AIRPLANES Structure Fatigue Evaluation § 23.574 Metallic damage tolerance and fatigue evaluation of commuter category airplanes. For commuter category airplanes— (a) Metallic damage tolerance....

  4. 75 FR 793 - Damage Tolerance and Fatigue Evaluation of Composite Rotorcraft Structures

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-06

    ...This proposal would revise airworthiness standards for type certification requirements of normal and transport category rotorcraft. The amendment would require evaluation of fatigue and residual static strength of composite rotorcraft structures using a damage tolerance evaluation, or a fatigue evaluation, if the applicant establishes that a damage tolerance evaluation is impractical. The......

  5. Effects of foreign object damage from small hard particles on the high-cycle fatigue life of titanium-(6)aluminum-(4)vanadium

    NASA Astrophysics Data System (ADS)

    Hamrick, Joseph L., II

    Thin rectangular samples of Ti-6Al-4V were damaged by four methods to represent foreign object damage found in turbine engine blades: (1) impact with 2 mm. and 5 mm diameter glass spheres at 305 m/s, (2) impact with 2 mm and 4 mm diameter steel spheres at 305 m/s, (3) quasi-static displacement controlled indentation using steel chisels with 1 mm, 2 nun and 5 mm diameter tips and (4) shearing notches with a 2 mm. diameter chisel point under a quasi-static loading condition. Finite element analysis was used to study the relationship between the stress state created by the plastic damage and the fatigue strength. A new method of quantifying the amount of plastic damage from multiple methods was developed. The fatigue strength required for crack initiation at 10E7 cycles was found to be a function of the total depth from the edge of the undeformed specimen up to the end of the plastically deformed zone. For damage depths less than 1750 mum, the reduction in fatigue strength is proportional to the depth of total damage. For depths > 1750 mum, there appears to be a threshold value of fatigue strength.

  6. Determination of Turbine Blade Life from Engine Field Data

    NASA Technical Reports Server (NTRS)

    Zaretsky, Erwin V.; Litt, Jonathan S.; Hendricks, Robert C.; Soditus, Sherry M.

    2012-01-01

    It is probable that no two engine companies determine the life of their engines or their components in the same way or apply the same experience and safety factors to their designs. Knowing the failure mode that is most likely to occur minimizes the amount of uncertainty and simplifies failure and life analysis. Available data regarding failure mode for aircraft engine blades, while favoring low-cycle, thermal mechanical fatigue as the controlling mode of failure, are not definitive. Sixteen high-pressure turbine (HPT) T-1 blade sets were removed from commercial aircraft engines that had been commercially flown by a single airline and inspected for damage. Each set contained 82 blades. The damage was cataloged into three categories related to their mode of failure: (1) Thermal-mechanical fatigue, (2) Oxidation/Erosion, and (3) "Other." From these field data, the turbine blade life was determined as well as the lives related to individual blade failure modes using Johnson-Weibull analysis. A simplified formula for calculating turbine blade life and reliability was formulated. The L(sub 10) blade life was calculated to be 2427 cycles (11 077 hr). The resulting blade life attributed to oxidation/erosion equaled that attributed to thermal-mechanical fatigue. The category that contributed most to blade failure was Other. If there were there no blade failures attributed to oxidation/erosion and thermal-mechanical fatigue, the overall blade L(sub 10) life would increase approximately 11 to 17 percent.

  7. A SMALL-SCALE DAMAGE APPROACH TO PREDICT FATIGUE CRACK GROWTH IN CERAMIC MATERIALS

    SciTech Connect

    Nguyen, Ba Nghiep; Koeppel, Brian J.; Khaleel, Mohammad A.

    2006-05-19

    This paper proposes a small-scale damage modeling approach to predict fatigue crack growth in ceramic materials. A fatigue damage model is formulated that uses two variables. One variable is the scalar damage variable governing the reduction of stiffness, and the other is the number of cycles. The damage evolution law is obtained based on thermodynamics of continuous media and a damage criterion containing a damage threshold function that depends on the damage variable and the cyclic loading parameters. The model has been implemented into the ABAQUS finite element code via user-subroutines and has been used in a modified boundary layer (MBL) modeling approach to analyze fatigue crack growth in a small fracture process zone situated at an initial crack tip. The model application is illustrated through an analysis of fatigue crack growth in an yttria-stabilized tetragonal zirconia material.

  8. Damage assessment of small-scale wind turbine blade using piezoelectric sensors

    NASA Astrophysics Data System (ADS)

    Rim, Mi-Sun; Kim, Sang-Woo; Kim, Eun-Ho; Lee, In

    2012-04-01

    Real-time structural health monitoring (SHM) systems are applied many fields. Recently, the interest about wind energy was increased by the demand of clean energy in the world and many researches were actively performed for applying SHM technology to wind turbine systems. Piezoelectric sensor is one kind of sensor which is widely used for SHM system to assess damage creation. In this paper, the small scale wind turbine blade was fabricated and health monitoring of the blade was performed using the piezoelectric sensor. The quasi-static bending test of the blade was carried out and the PVDF (Polyvinylidene fluoride) sensors, which are polymer type piezoelectric materials, were used for health monitoring. Two-cycle test was performed; the load was applied during 350 sec and removed at the first cycle, and load was applied again until the blade was broken completely at the second cycle. The voltage of PVDF sensors were measured during the quasi-static bending test in order to find out the moment when the damage occurrence started. The voltage of the sensor critically changed at the moment of damage occurred.

  9. Multiple damage identification on a wind turbine blade using a structural neural system

    NASA Astrophysics Data System (ADS)

    Kirikera, Goutham R.; Schulz, Mark J.; Sundaresan, Mannur J.

    2007-04-01

    A large number of sensors are required to perform real-time structural health monitoring (SHM) to detect acoustic emissions (AE) produced by damage growth on large complicated structures. This requires a large number of high sampling rate data acquisition channels to analyze high frequency signals. To overcome the cost and complexity of having such a large data acquisition system, a structural neural system (SNS) was developed. The SNS reduces the required number of data acquisition channels and predicts the location of damage within a sensor grid. The sensor grid uses interconnected sensor nodes to form continuous sensors. The combination of continuous sensors and the biomimetic parallel processing of the SNS tremendously reduce the complexity of SHM. A wave simulation algorithm (WSA) was developed to understand the flexural wave propagation in composite structures and to utilize the code for developing the SNS. Simulation of AE responses in a plate and comparison with experimental results are shown in the paper. The SNS was recently tested by a team of researchers from University of Cincinnati and North Carolina A&T State University during a quasi-static proof test of a 9 meter long wind turbine blade at the National Renewable Energy Laboratory (NREL) test facility in Golden, Colorado. Twelve piezoelectric sensor nodes were used to form four continuous sensors to monitor the condition of the blade during the test. The four continuous sensors are used as inputs to the SNS. There are only two analog output channels of the SNS, and these signals are digitized and analyzed in a computer to detect damage. In the test of the wind turbine blade, multiple damages were identified and later verified by sectioning of the blade. The results of damage identification using the SNS during this proof test will be shown in this paper. Overall, the SNS is very sensitive and can detect damage on complex structures with ribs, joints, and different materials, and the system

  10. Fiber-Optic Defect and Damage Locator System for Wind Turbine Blades

    SciTech Connect

    Dr. Vahid Sotoudeh; Dr. Richard J. Black; Dr. Behzad Moslehi; Mr. Aleks Plavsic

    2010-10-30

    IFOS in collaboration with Auburn University demonstrated the feasibility of a Fiber Bragg Grating (FBG) integrated sensor system capable of providing real time in-situ defect detection, localization and quantification of damage. In addition, the system is capable of validating wind turbine blade structural models, using recent advances in non-contact, non-destructive dynamic testing of composite structures. This new generation method makes it possible to analyze wind turbine blades not only non-destructively, but also without physically contacting or implanting intrusive electrical elements and transducers into the structure. Phase I successfully demonstrated the feasibility of the technology with the construction of a 1.5 kHz sensor interrogator and preliminary instrumentation and testing of both composite material coupons and a wind turbine blade.

  11. Fatigue damage in cross-ply titanium metal matrix composites containing center holes

    NASA Technical Reports Server (NTRS)

    Bakuckas, J. G., Jr.; Johnson, W. S.; Bigelow, C. A.

    1992-01-01

    The development of fatigue damage in (0/90) sub SCS-6/TI-15-3 laminates containing center holes was studied. Stress levels required for crack initiation in the matrix were predicted using an effective strain parameter and compared to experimental results. Damage progression was monitored at various stages of fatigue loading. In general, a saturated state of damage consisting of matrix cracks and fiber matrix debonding was obtained which reduced the composite modulus. Matrix cracks were bridged by the 0 deg fibers. The fatigue limit (stress causing catastrophic fracture of the laminates) was also determined. The static and post fatigue residual strengths were accurately predicted using a three dimensional elastic-plastic finite element analysis. The matrix damage that occurred during fatigue loading significantly reduced the notched strength.

  12. Acousto-ultrasonics-based fatigue damage characterization: Linear versus nonlinear signal features

    NASA Astrophysics Data System (ADS)

    Su, Zhongqing; Zhou, Chao; Hong, Ming; Cheng, Li; Wang, Qiang; Qing, Xinlin

    2014-03-01

    Engineering structures are prone to fatigue damage over service lifespan, entailing early detection and continuous monitoring of the fatigue damage from its initiation through growth. A hybrid approach for characterizing fatigue damage was developed, using two genres of damage indices constructed based on the linear and the nonlinear features of acousto-ultrasonic waves. The feasibility, precision and practicability of using linear and nonlinear signal features, for quantitatively evaluating multiple barely visible fatigue cracks in a metallic structure, was compared. Miniaturized piezoelectric elements were networked to actively generate and acquire acousto-ultrasonic waves. The active sensing, in conjunction with a diagnostic imaging algorithm, enabled quantitative evaluation of fatigue damage and facilitated embeddable health monitoring. Results unveiled that the nonlinear features of acousto-ultrasonic waves outperform their linear counterparts in terms of the detectability. Despite the deficiency in perceiving small-scale damage and the possibility of conveying false alarms, linear features show advantages in noise tolerance and therefore superior practicability. The comparison has consequently motivated an amalgamation of linear and nonlinear features of acousto-ultrasonic waves, targeting the prediction of multi-scale damage ranging from microscopic fatigue cracks to macroscopic gross damage.

  13. Cumulative creep-fatigue damage evolution in an austenitic stainless steel

    NASA Technical Reports Server (NTRS)

    Mcgaw, Michael A.

    1992-01-01

    A model of cumulative creep-fatigue damage has been developed which is based on the use of damage curve equations to describe the evolution of creep-fatigue damage for four basic creep-fatigue cycle types. These cycle types correspond to the four fundamental cycles of the Strain Range Partitioning Life Prediction approach of Manson, Halford, and Hirschberg. A concept referred to as Damage Coupling is introduced to analytically account for the differences in the nature of the damage introduced by each cycle type. For application of this model, the cumulative creep-fatigue damage behavior of type 316 stainless steel at 816 C has been experimentally established for the two-level loading cases involving fatigue and creep-fatigue, in various permutations. The tests were conducted such that the lower life (high strain) cycling was applied first, for a controlled number of cycles, and the higher life (lower strain) cycling was conducted at the second level, to failure. The proposed model correlated the majority of the observed cumulative creep-fatigue data.

  14. Microstructure: Property correlation. [multiaxial fatigue damage evolution in waspaloy

    NASA Technical Reports Server (NTRS)

    Jayaraman, N.

    1990-01-01

    Strain controlled torsional and biaxial (tension-torsion) low cycle fatigue behavior of Waspaloy was studied at room temperature as a function of heat treatment. Biaxial tests were conducted under proportional (when the axial and torsional strain cycles are in-phase) and non-proportional (when the axial and torsional strain cycles are 90 deg out-of-phase) cyclic conditions. The deformation behavior under these different cyclic conditions were evaluated by slip trace analysis. For this, a Schmidt-type factor was defined for multiaxial loading conditions and it was shown that when the slip deformation is predominant, non-proportional cycles are more damaging than proportional or pure axial or torsional cycles. This was attributed to the fact that under non-proportional cyclic conditions, deformation was through multiple slip as opposed single slip for other loading conditions, which gave rise to increased hardening. The total life for a given test condition was found to be independent of heat treatment. This was interpreted as being due to the differences in the cycles to initiation and propagation of cracks.

  15. 14 CFR 27.573 - Damage Tolerance and Fatigue Evaluation of Composite Rotorcraft Structures.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Damage Tolerance and Fatigue Evaluation of Composite Rotorcraft Structures. 27.573 Section 27.573 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Strength Requirements Fatigue Evaluation §...

  16. 14 CFR 29.573 - Damage Tolerance and Fatigue Evaluation of Composite Rotorcraft Structures.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Damage Tolerance and Fatigue Evaluation of Composite Rotorcraft Structures. 29.573 Section 29.573 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Strength Requirements Fatigue Evaluation...

  17. Fatigue Damage in CFRP Woven Fabric Composites through Dynamic Modulus Measurements

    SciTech Connect

    Chiaki Miyasaka; K. L. Telschow

    2004-07-01

    Advanced fiber reinforced composite materials offer substantial advantages over metallic materials for the structural applications subjected to fatigue loading. With the increasing use of these composites, it is required to understand their mechanical response to cyclic loading (1)-(4). Our major concern in this work is to macroscopically evaluate the damage development in composites during fatigue loading. For this purpose, we examine what effect the fatigue damage may have on the material properties and how they can be related mathematically to each other. In general, as the damage initiates in composite materials and grows during cyclic loading, material properties such as modulus, residual strength and strain would vary and, in many cases, they may be significantly reduced because of the progressive accumulation of cracks. Therefore, the damage can be characterized by the change in material properties, which is expected to be available for non-destructive evaluation of the fatigue damage development in composites. Here, the tension-tension fatigue tests are firstly conducted on the plain woven fabric carbon fiber composites for different loading levels. In the fatigue tests, the dynamic elastic moduli are measured on real-time, which will decrease with an increasing number of cycles due to the degradation of stiffness. Then, the damage function presenting the damage development during fatigue loading is determined from the dynamic elastic moduli thus obtained, from which the damage function is formulated in terms of a number of cycles and an applied loading level. Finally, the damage function is shown to be applied for predicting the remaining lifetime of the CFRP composites subjected to two-stress level fatigue loading.

  18. Impact behavior of filament-wound graphite/epoxy fan blades. [foreign object damage to turbofan engines

    NASA Technical Reports Server (NTRS)

    Bowles, K. J.

    1978-01-01

    The fabrication and impact tests of graphite/epoxy filament wound fan blades are discussed. Blades which were spin tested at tip speeds up to 305 m/sec retained their structural integrity. Two blades were each impacted with a 454-g slice of a 908-g simulated bird at a tip speed of 263 deg and impact angles of 22 deg and 32 deg. The impact tests were recorded with high-speed movie film. The blade which was impacted at 22 deg sustained some root delamination but remained intact. The 32 deg impact separated the blade from the root. No local damage other than leading-edge debonding was observed for either blade. The results of a failure mode analysis are also discussed.

  19. Fatigue testing and damage development in continuous fiber reinforced metal matrix composites

    NASA Technical Reports Server (NTRS)

    Johnson, W. S.

    1989-01-01

    A general overview of the fatigue behavior of metal matrix composites (MMC) is presented. The first objective is to present experimental procedures and techniques for conducting a meaningful fatigue test to detect and quantify fatigue damage in MMC. These techniques include interpretation of stress-strain responses, acid etching of the matrix, edge replicas of the specimen under load, radiography, and micrographs of the failure surfaces. In addition, the paper will show how stiffness loss in continuous fiber reinforced metal matrix composites can be a useful parameter for detecting fatigue damage initiation and accumulation. Second, numerous examples of how fatigue damage can initiate and grow in various MMC are given. Depending on the relative fatigue behavior of the fiber and matrix, and the interface properties, the failure modes of MMC can be grouped into four categories: (1) matrix dominated, (2) fiber dominated, (3) self-similar damage growth, and (4) fiber/matrix interfacial failures. These four types of damage will be discussed and illustrated by examples with the emphasis on the fatigue of unnotched laminates.

  20. Fatigue testing and damage development in continuous fiber reinforced metal matrix composites

    NASA Technical Reports Server (NTRS)

    Johnson, W. S.

    1988-01-01

    A general overview of the fatigue behavior of metal matrix composites (MMC) is presented. The first objective is to present experimental procedures and techniques for conducting a meaningful fatigue test to detect and quantify fatigue damage in MMC. These techniques include interpretation of stress-strain responses, acid etching of the matrix, edge replicas of the specimen under load, radiography, and micrographs of the failure surfaces. In addition, the paper will show how stiffness loss in continuous fiber reinforced metal matrix composites can be a useful parameter for detecting fatigue damage initiation and accumulation. Second, numerous examples of how fatigue damage can initiate and grow in various MMC are given. Depending on the relative fatigue behavior of the fiber and matrix, and the interface properties, the failure modes of MMC can be grouped into four categories: (1) matrix dominated, (2) fiber dominated, (3) self-similar damage growth, and (4) fiber/matrix interfacial failures. These four types of damage will be discussed and illustrated by examples with the emphasis on the fatigue of unnotched laminates.

  1. Fatigue damage monitoring for basalt fiber reinforced polymer composites using acoustic emission technique

    NASA Astrophysics Data System (ADS)

    Wang, Wentao; Li, Hui; Qu, Zhi

    2012-04-01

    Basalt fiber reinforced polymer (BFRP) is a structural material with superior mechanical properties. In this study, unidirectional BFRP laminates with 14 layers are made with the hand lay-up method. Then, the acoustic emission technique (AE) combined with the scanning electronic microscope (SEM) technique is employed to monitor the fatigue damage evolution of the BFRP plates in the fatigue loading tests. Time-frequency analysis using the wavelet transform technique is proposed to analyze the received AE signal instead of the peak frequency method. A comparison between AE signals and SEM images indicates that the multi-frequency peaks picked from the time-frequency curves of AE signals reflect the accumulated fatigue damage evolution and fatigue damage patterns. Furthermore, seven damage patterns, that is, matrix cracking, delamination, fiber fracture and their combinations, are identified from the time-frequency curves of the AE signals.

  2. Implementation of a Two-Axis Servo-Hydraulic System for Full-Scale Fatigue Testing of Wind Turbine Blades

    SciTech Connect

    Hughes, S. D.; Musial, W. D.; Stensland, T.

    1999-09-09

    Recently, the blade fatigue testing capabilities at NREL were upgraded from single-axis to two-axis loading. To implement this, several practical challenges were addressed, as hardware complexity increased dramatically with two actuators applying the loads at right angles to each other. A custom bellcrank was designed and implemented to minimize the load angle errors and to prevent actuator side loading. The control system was upgraded to accept load and displacement feedback from two actuators. The inherent long strokes uniquely associated with wind turbine blade-tests required substantial real-time corrections for both the control and data systems. A custom data acquisition and control system was developed using a National Instruments LabVIEW platform that interfaces with proprietary servo-hydraulic software developed by MTS Corporation. Before testing, the program is run under quasi-static (slow speed) conditions and iterates to determine the correct operational control parameters for the controller, taking into consideration geometry, test speed, and phase angle errors between the two actuators. Comparisons are made between single-axis and two-axis test loads using actual test load data and load uncertainties are qualitatively described. To date, two fatigue tests have been completed and another is currently ongoing using NREL's two-axis capability.

  3. Fatigue Damage Evaluation of Friction Stir Spot Welded Cross-Tension Joints Under Repeated Two-Step Force Amplitudes

    NASA Astrophysics Data System (ADS)

    Joy-A-Ka, Sutep; Ogawa, Yuki; Akebono, Hiroyuki; Kato, Masahiko; Sugeta, Atsushi; Sun, Yufeng; Fujii, Hidetoshi

    2015-06-01

    This paper investigates an approach to evaluate the fatigue damage of FSSW cross-tension specimens under two-step force amplitude conditions. In fatigue tests with repeated two-step force amplitude, the fatigue limit of the welded joint disappeared. However, the fatigue damage evaluation using the modified Miner's rule erred too much on the side of safety, as the modified Miner's rule tends to overestimate the damage by applied forces below the fatigue limit. Thus, it was determined that, within the testing conditions used in this study, the fatigue damage evaluation using Haibach's method yielded an accurate evaluation. In the case where significant plastic deformation caused by the applied force occurred near the welded zone, the cumulative fatigue damage value based on Miner's rule was often larger than unity. Therefore, it is important to consider a cumulative damage estimation that takes into account the effect of pre-strain from the high force amplitude.

  4. Fatigue damage prognosis of a cruciform structure under biaxial random and flight profile loading

    NASA Astrophysics Data System (ADS)

    Mohanty, Subhasish; Chattopadhyay, Aditi; Peralta, Pedro; Quech, Dan

    2010-04-01

    The accurate estimation of fatigue life of metallic structural components in service environments is still a challenge for the aircraft designer or fleet manager. Majority of the current available fatigue life prediction models has deficiency to accurately predict damage under random or flight profile service loads. The inherent accuracy is due to the stochastic nature of crack propagation in metallic structure. In addition, currently no generic prediction model available accounting the load interaction effects due to variable loading. In the present paper we discus the use of a Generic Bayesian framework based Gaussian process approach to probabilistically predict the fatigue damage under complex random and flight profile loading.

  5. Fatigue damage evaluation of plain woven carbon fiber reinforced plastic (CFRP) modified with MFC (micro-fibrillated cellulose) by thermo-elastic damage analysis (TDA)

    NASA Astrophysics Data System (ADS)

    Aoyama, Ryohei; Okubo, Kazuya; Fujii, Toru

    2013-04-01

    The aim of this study is to investigate characteristics of fatigue damage of CFRP modified with MFC by TDA under tensile cyclic loading. In this paper, fatigue life of CFRP modified with MFC was investigated under cyclic loading. Characteristics of fatigue damage of CFRP modified with MFC were evaluated by thermo-elastic damage analysis. Maximum improvement in fatigue life was also obtained under cyclic loading when epoxy matrix was enhanced with 0.3wt% of MFC as well as under static loading. Result of TDA showed same tendency as the result of fatigue test, and the result of TDA well expressed the fatigue damage behavior of plain woven CFRP plate. Eventually, TDA was effective for clear understanding the degree of fatigue damage progression of CFRP modified with MFC.

  6. Structural Health Monitoring Static Test of a Wind Turbine Blade: August 1999

    SciTech Connect

    Sundaresan, M. J.; Schulz, M. J.; Ghoshal, A.

    2002-03-01

    Structural health monitoring research is being performed by NCA&T, the NREL and Sandia Laboratories to develop a''Smart Blade'' with an embedded sensor system integrated into the blade by the manufacturer to continuously monitor the condition of the loading in the blade and reduce or prevent fatigue damage of the blade. This will reduce maintenance costs and improve the reliability of wind power.

  7. Fatigue-Induced Damage in Zr-Based Bulk Metallic Glasses

    PubMed Central

    Chuang, Chih-Pin; Yuan, Tao; Dmowski, Wojciech; Wang, Gong-Yao; Freels, Matt; Liaw, Peter K.; Li, Ran; Zhang, Tao

    2013-01-01

    In the present work, we investigate the effect of “fatigue” on the fatigue behavior and atomic structure of Zr-based BMGs. Fatigue experiments on the failed-by-fatigue samples indicate that the remnants generally have similar or longer fatigue life than the as-cast samples. Meanwhile, the pair-distribution-function (PDF) analysis of the as-cast and post-fatigue samples showed very small changes of local atomic structures. These observations suggest that the fatigue life of the 6-mm in-diameter Zr-based BMG is dominated by the number of pre-existing crack-initiation sites in the sample. Once the crack initiates in the specimen, the fatigue-induced damage is accumulated locally on these initiated sites, while the rest of the region deforms elastically. The results suggest that the fatigue failure of BMGs under compression-compression fatigue experiments is a defect-controlled process. The present work indicates the significance of the improved fatigue resistance with decreasing the sample size. PMID:23999496

  8. Numerical Simulation for Predicting Fatigue Damage Progress in Notched CFRP Laminates by Using Cohesive Elements

    NASA Astrophysics Data System (ADS)

    Okabe, Tomonaga; Yashiro, Shigeki

    This study proposes the cohesive zone model (CZM) for predicting fatigue damage growth in notched carbon-fiber-reinforced composite plastic (CFRP) cross-ply laminates. In this model, damage growth in the fracture process of cohesive elements due to cyclic loading is represented by the conventional damage mechanics model. We preliminarily investigated whether this model can appropriately express fatigue damage growth for a circular crack embedded in isotropic solid material. This investigation demonstrated that this model could reproduce the results with the well-established fracture mechanics model plus the Paris' law by tuning adjustable parameters. We then numerically investigated the damage process in notched CFRP cross-ply laminates under tensile cyclic loading and compared the predicted damage patterns with those in experiments reported by Spearing et al. (Compos. Sci. Technol. 1992). The predicted damage patterns agreed with the experiment results, which exhibited the extension of multiple types of damage (e.g., splits, transverse cracks and delaminations) near the notches.

  9. A coupled/uncoupled deformation and fatigue damage algorithm utilizing the finite element method

    SciTech Connect

    Wilt, T.E.; Arnold, S.M.

    1994-03-01

    A fatigue damage computational algorithm utilizing a multiaxial, isothermal, continuum based fatigue damage model for unidirectional metal matrix composites has been implemented into the commercial finite element code MARC using MARC user subroutines. Damage is introduced into the finite element solution through the concept of effective stress which fully couples the fatigue damage calculations with the finite element deformation solution. An axisymmetric stress analysis was performed on a circumferentially reinforced ring, wherein both the matrix cladding and the composite core were assumed to behave elastic-perfectly plastic. The composite core behavior was represented using Hill's anisotropic continuum based plasticity model, and similarly, the matrix cladding was represented by an isotropic plasticity model. Results are presented in the form of S-N curves and damage distribution plots.

  10. A coupled/uncoupled deformation and fatigue damage algorithm utilizing the finite element method

    NASA Technical Reports Server (NTRS)

    Wilt, Thomas E.; Arnold, Steven M.

    1994-01-01

    A fatigue damage computational algorithm utilizing a multiaxial, isothermal, continuum based fatigue damage model for unidirectional metal matrix composites has been implemented into the commercial finite element code MARC using MARC user subroutines. Damage is introduced into the finite element solution through the concept of effective stress which fully couples the fatigue damage calculations with the finite element deformation solution. An axisymmetric stress analysis was performed on a circumferentially reinforced ring, wherein both the matrix cladding and the composite core were assumed to behave elastic-perfectly plastic. The composite core behavior was represented using Hill's anisotropic continuum based plasticity model, and similarly, the matrix cladding was represented by an isotropic plasticity model. Results are presented in the form of S-N curves and damage distribution plots.

  11. Comparative study of approaches to assess damage in thermally fatigued Cusbnd Crsbnd Zr alloy

    NASA Astrophysics Data System (ADS)

    Chatterjee, Arya; Mitra, R.; Chakraborty, A. K.; Rotti, C.; Ray, K. K.

    2016-06-01

    For the first time the nature of response of thermal fatigue damage (TFD) in Cusbnd Crsbnd Zr alloys, considered for the High Heat Flux components of Tokamak and its subsystems in International Thermonuclear Experimental Reactor application has been studied. Temperature cycling between 290 °C and 30 °C, similar to the service condition, has been carried out on two differently aged Cusbnd Crsbnd Zr alloys. The TFD has been assessed by damage mechanics approach using damage parameters, and by surface characteristics. The damage parameters increase exponentially during initial fatigue cycles and saturates, whilst surface characteristics shows continuous increase with increase in thermal fatigue cycles. Damages are different in the aged alloys depending upon the aging conditions.

  12. Damage mechanisms in bithermal and thermomechanical fatigue of Haynes 188

    NASA Technical Reports Server (NTRS)

    Kalluri, Sreeramesh; Halford, Gary R.

    1992-01-01

    Post failure fractographic and metallographic studies were conducted on Haynes 188 specimens fatigued under bithermal and thermomechanical loading conditions between 316 and 760 C. Bithermal fatigue specimens examined included those tested under high strain rate in-phase and out-phase, tensile creep in-phase, and compressive creep out-of-phase loading conditions. Specimens tested under in-phase and out-of-phase thermomechanical fatigue were also examined. The nature of failure mode (transgrandular versus intergranular), the topography of the fracture surface, and the roles of oxidation and metallurgical changes were studied for each type of bithermal and thermomechanical test.

  13. Fatigue damage of steam turbine shaft at asynchronous connections of turbine generator to electrical network

    NASA Astrophysics Data System (ADS)

    Bovsunovsky, A. P.

    2015-07-01

    The investigations of cracks growth in the fractured turbine rotors point out at theirs fatigue nature. The main reason of turbine shafts fatigue damage is theirs periodical startups which are typical for steam turbines. Each startup of a turbine is accompanied by the connection of turbine generator to electrical network. During the connection because of the phase shift between the vector of electromotive force of turbine generator and the vector of supply-line voltage the short-term but powerful reactive shaft torque arises. This torque causes torsional vibrations and fatigue damage of turbine shafts of different intensity. Based on the 3D finite element model of turbine shaft of the steam turbine K-200-130 and the mechanical properties of rotor steel there was estimated the fatigue damage of the shaft at its torsional vibrations arising as a result of connection of turbine generator to electric network.

  14. Differential continuum damage mechanics models for creep and fatigue of unidirectional metal matrix composites

    NASA Technical Reports Server (NTRS)

    Arnold, S. M.; Kruch, S.

    1991-01-01

    Three multiaxial isothermal continuum damage mechanics models for creep, fatigue, and creep/fatigue interaction of a unidirectional metal matrix composite volume element are presented, only one of which will be discussed in depth. Each model is phenomenological and stress based, with varying degrees of complexity to accurately predict the initiation and propagation of intergranular and transgranular defects over a wide range of loading conditions. The development of these models is founded on the definition of an initially transversely isotropic fatigue limit surface, static fracture surface, normalized stress amplitude function and isochronous creep damage failure surface, from which both fatigue and creep damage evolutionary laws can be obtained. The anisotropy of each model is defined through physically meaningful invariants reflecting the local stress and material orientation. All three transversely isotropic models have been shown, when taken to their isotropic limit, to directly simplify to previously developed and validated creep and fatigue continuum damage theories. Results of a nondimensional parametric study illustrate (1) the flexibility of the present formulation when attempting to characterize a large class of composite materials, and (2) its ability to predict anticipated qualitative trends in the fatigue behavior of unidirectional metal matrix composites. Additionally, the potential for the inclusion of various micromechanical effects (e.g., fiber/matrix bond strength, fiber volume fraction, etc.), into the phenomenological anisotropic parameters is noted, as well as a detailed discussion regarding the necessary exploratory and characterization experiments needed to utilize the featured damage theories.

  15. Fatigue properties of MA 6000E, a gamma-prime strengthened ODS alloy. [Oxide Dispersion Strengthened Ni-base alloy for gas turbine blade applications

    NASA Technical Reports Server (NTRS)

    Kim, Y. G.; Merrick, H. F.

    1980-01-01

    MA 6000E is a corrosion resistant, gamma-prime strengthened ODS alloy under development for advanced turbine blade applications. The high temperature, 1093 C, rupture strength is superior to conventional nickel-base alloys. This paper addresses the fatigue behavior of the alloy. Excellent properties are exhibited in low and high cycle fatigue and also thermal fatigue. This is attributed to a unique combination of microstructural features, i.e., a fine distribution of dispersed oxides and other nonmetallics, and the highly elongated grain structure which advantageously modify the deformation characteristics and crack initiation and propagation modes from that characteristic of conventional gamma-prime hardened superalloys.

  16. 14 CFR 25.571 - Damage-tolerance and fatigue evaluation of structure.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Damage-tolerance and fatigue evaluation of structure. 25.571 Section 25.571 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF..., manufacturing defects, or accidental damage, will be avoided throughout the operational life of the...

  17. 14 CFR 25.571 - Damage-tolerance and fatigue evaluation of structure.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Damage-tolerance and fatigue evaluation of structure. 25.571 Section 25.571 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... damage, will be avoided throughout the operational life of the airplane. This evaluation must...

  18. 14 CFR 25.571 - Damage-tolerance and fatigue evaluation of structure.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Damage-tolerance and fatigue evaluation of structure. 25.571 Section 25.571 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF..., manufacturing defects, or accidental damage, will be avoided throughout the operational life of the...

  19. 14 CFR 25.571 - Damage-tolerance and fatigue evaluation of structure.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Damage-tolerance and fatigue evaluation of structure. 25.571 Section 25.571 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF..., manufacturing defects, or accidental damage, will be avoided throughout the operational life of the...

  20. Assessment of material fatigue damage using nonlinear vibro-modulation technique

    NASA Astrophysics Data System (ADS)

    Zagrai, Andrei; Donskoy, Dimitri; Chudnovsky, Alexander; Wu, Hudson

    2001-05-01

    Heavy periodic loads exerted on structural materials often lead to fatigue damage (material degradation at microscale) which may finally trigger irreversible fracture process. Conventional NDT techniques detect only the latter, and there is an increasing need for new tools to assess fatigue damage at the earliest possible stage, i.e., before fracture. This paper presents experimental results of early damage characterization using an innovative nonlinear vibro-modulation technique (VMT) [Donskoy et al., NDT&E Int. 34 (2001)]. In the experiments, fatigue damage was initiated in steel, aluminum, and carbon-carbon composite specimens during strain-controlled three-point bending high-cycling fatigue tests. The damage progress was independently monitored using dataflow from the testing machine and the real-time nonlinear vibro-modulation measurements. The tests demonstrated that the reduction in the specimens' stiffness (direct indication of damage accumulation) correlates well with the increase in the VMT's nonlinear damage index. These results confirm that VMT could offer new opportunities for early damage detection and remaining life prediction. [Work supported by NAVAIR.

  1. Fatigue life performance comparisons of tapered roller bearings with debris-damaged raceways{copyright}

    SciTech Connect

    Nixon, H.P.; Zantopulos, H.

    1995-09-01

    Debris-contaminated lubrication environments is inherent in many equipment applications and requires mechanical components that, as much as possible, are resistant to the potential effects of debris particles. Bearing fatigue life performance comparisons were made for various bearing materials and manufacturer origin, in order to assess the variability in performance of debris-damaged raceways. The evaluation was conducted using a repeatable debris-damaging process prior to fatigue testing of each group of bearings. The performance results reveal wide variations in the impact that debris damage can have on various bearing products and materials. 11 refs., 4 figs., 4 tabs.

  2. Risk assessment of Cumberland unit 2 L-O blades

    SciTech Connect

    Lam, T.C.T.; Puri, A.

    1996-12-31

    Concern about the reliability of the 1,300 mw Cumberland steam turbine units after an unexpected blade tip failure in the fall of 1995 caused TVA to conduct an investigation into the current reliability of the L-O blades. A probabilistic model based on the measured frequencies, damping and material fatigue data was generated. The influence of significant erosion damage on the blade natural frequencies and on the local stresses was estimated. A probabilistic model of the local fatigue limit was generated based on test data. Monte Carlo simulation was employed to estimate the probability of blade failure by comparing the dynamic stress with the fatigue limit. Risk assessment of the blade failure is presented.

  3. Evaluation of micro-damage accumulation in holed plain-woven CFRP composite under fatigue loading

    NASA Astrophysics Data System (ADS)

    Ying, Jia; Nishikawa, Masaaki; Hojo, Masaki

    2014-03-01

    Fluorescence method was used to detect the micro-damage caused by fatigue in a plain-woven carbon fiber reinforced polymer (CFRP). Fluorescence measurement is a method which estimates micro-damage by measuring fluorescent intensity change inside materials. The principle is, larger micro-damage means larger plastic strain, thus more space in that damaged spot which allows more fluorescent dyes coming in the material. By detecting fluorescent intensity in CFRP layer by layer using confocal laser microscopy, micro-damage can be estimated. Results show that there's a good relationship between micro-damage and fluorescent intensity gradient.

  4. A low-order model for analysing effects of blade fatigue load control

    NASA Astrophysics Data System (ADS)

    Kallesøe, B. S.

    2006-09-01

    A new low-order mathematical model is introduced to analyse blade dynamics and blade load-reducing control strategies for wind turbines. The model consists of a typical wing section model combined with a rotor speed model, leading to four structural degrees of freedom (flapwise, edgewise and torsional blade oscillations and rotor speed). The aerodynamics is described by an unsteady aerodynamic model. The equations of motion are derived in non-linear and linear form. The linear equations of motion are used for stability analysis and control design. The non-linear equations of motion are used for time simulations to evaluate control performance. The stability analysis shows that the model is capable of predicting classical flutter and stall-induced vibrations. The results from the stability analysis are compared with known results, showing good agreement. The model is used to compare the performance of one proportional-integral-derivative controller and two full-state feedback controllers. Copyright

  5. Fatigue crack initiation and damage evolution of unnotched titanium matrix composites

    NASA Astrophysics Data System (ADS)

    Her, Yung-Chiun

    Fatigue crack initiation, multiplication, matrix crack density evolution, and stiffness reduction of several unnotched SCS-6 silicon carbide fiber-reinforced titanium and titanium aluminide matrix composites have been investigated experimentally and analytically. The effects of the thickness of the interfacial reaction layer and fiber coating on fatigue crack initiation life, crack growth rate, and fatigue damage evolution of the composites were examined. Growth behavior of small fatigue cracks in TMCs was also studied carefully. It was found that fatigue crack initiation and multiplication of TMCs are strongly influenced by the thickness of the interfacial reaction layer. Fatigue crack will not develop from the micro-notches in the interfacial reaction layer until the thickness of the reaction layer exceeds a critical value. Matrix crack growth rate is affected by the applied stress level, however, it appears to be independent of the matrix material and heat treatment. The combined effects of fatigue crack multiplication and propagation result in stiffness degradation of the composites. The Ag/Ta duplex fiber coating significantly improves the transverse tensile and flexural creep resistance of the SCS-6/Ti-25-10 composite. However, the Ag/Ta-coated composite exhibits a shorter crack initiation life, higher number of matrix cracks, and higher crack growth rate than the uncoated composite. The embrittlement of the residual Ag/Ta layer suggests that Ag is not an effective diffusion barrier to prevent the interdiffusion of atomic species across the interface. The high interfacial cracking density and high interfacial bond strength in the Ag/Ta-coated SCS-6/Tisb3Al composite are believed to be responsible for its poor fatigue damage tolerance. For titanium alloys, the threshold intensity factor range, Delta Ksbth, for small fatigue cracks in the matrix alloys of TMCs has been determined to be between 0.9 ˜ 1.0 MPa*msp{1/2} which is much lower than that for long

  6. Improving Fatigue Damage Resistance of Alumina through Surface Grading

    PubMed Central

    Ren, L.; Liu, L.; Bhowmick, S.; Gerbig, Y.B.; Janal, M.N.; Thompson, V.P.; Zhang, Y.

    2011-01-01

    Porcelain-veneered alumina crown restorations often fail from bulk fracture resulting from radial cracks that initiate at the cementation surface with repeated flexure of the stiffer crown layers on the soft dentin support. We hypothesized that bulk fracture may be substantially mitigated by grading the elastic modulus at the crown surfaces. In this study, we fabricated graded structures by infiltrating glass into dense alumina plates, resulting in a diminished modulus at the surface layers. The plates were then bonded to polycarbonate substrates and subjected to fatigue loading in water. Tests were terminated when fracture occurred at the cementation tensile surface or at the fatigue endurance limit (1 million cycles). Infiltrated specimens showed a significant increase in fatigue fracture loads over non-infiltrated controls. Our results indicate that controlled elastic gradients at the surface could be highly beneficial in the design of fracture-resistant alumina crowns. PMID:21555776

  7. Simplification of Fatigue Test Requirements for Damage Tolerance of Composite Interstage Launch Vehicle Hardware

    NASA Technical Reports Server (NTRS)

    Nettles, A. T.; Hodge, A. J.; Jackson, J. R.

    2010-01-01

    The issue of fatigue loading of structures composed of composite materials is considered in a requirements document that is currently in place for manned launch vehicles. By taking into account the short life of these parts, coupled with design considerations, it is demonstrated that the necessary coupon level fatigue data collapse to a static case. Data from a literature review of past studies that examined compressive fatigue loading after impact and data generated from this experimental study are presented to support this finding. Damage growth, in the form of infrared thermography, was difficult to detect due to rapid degradation of compressive properties once damage growth initiated. Unrealistically high fatigue amplitudes were needed to fail 5 of 15 specimens before 10,000 cycles were reached. Since a typical vehicle structure, such as the Ares I interstage, only experiences a few cycles near limit load, it is concluded that static compression after impact (CAI) strength data will suffice for most launch vehicle structures.

  8. An Intelligent Sensor System for Monitoring Fatigue Damage in Welded Steel Components

    SciTech Connect

    Fernandes, B.; Gaydecki, P.; Burdekin, F. Michael

    2005-04-09

    A system for monitoring fatigue damage in steel components is described. The sensor, a thin steel sheet with a pre-crack in it, is attached to the component. Its crack length increases by fatigue in service and is recorded using a microcontroller. Measurement is accomplished using conductive tracks in a circuit whose output voltage changes when the crack propagates past a track. Data stored in memory can be remotely downloaded using Bluetooth{sup TM} technology to a PC.

  9. Fatigue damage growth mechanisms in continuous fiber reinforced titanium matrix composites

    NASA Technical Reports Server (NTRS)

    Johnson, W. S.; Naik, R. A.; Pollock, W. D.

    1990-01-01

    The role of fiber/matrix interface strength, residual thermal stresses, and fiber and matrix properties on fatigue damage accumulation in continuous fiber metal matrix composites (MMC) will be discussed. Results from titanium matrix/silicon-carbide fiber composites will be the primary topic of discussion. Results have been obtained from both notched and unnotched specimens at room and elevated temperatures. The stress in the 0 deg fibers has been indentified as the controlling factor in fatigue life. Fatigue of the notched specimens indicated that cracks can grow many fiber spacings in the matrix materials without breaking fibers.

  10. Fatigue damage growth mechanisms in continuous fiber reinforced titanium matrix composites

    NASA Technical Reports Server (NTRS)

    Johnson, W. S.; Naik, R. A.; Pollock, W. D.

    1990-01-01

    The role of fiber/matrix interface strength, residual thermal stresses, and fiber and matrix properties on fatigue damage accumulation in continuous fiber metal matrix composites (MMC) is discussed. Results from titanium matrix silicon carbide fiber composites is the primary topic of discussion. Results were obtained from both notched and unnotched specimens at room and elevated temperatures. The stress in the 0 deg fibers was identified as the controlling factor in fatigue life. Fatigue of the notched specimens indicated that cracks can grow in the matrix materials without breaking fibers.

  11. Fatigue damage evaluation of austenitic stainless steel using nonlinear ultrasonic waves in low cycle regime

    SciTech Connect

    Zhang, Jianfeng; Xuan, Fu-Zhen

    2014-05-28

    The interrupted low cycle fatigue test of austenitic stainless steel was conducted and the dislocation structure and fatigue damage was evaluated subsequently by using both transmission electron microscope and nonlinear ultrasonic wave techniques. A “mountain shape” correlation between the nonlinear acoustic parameter and the fatigue life fraction was achieved. This was ascribed to the generation and evolution of planar dislocation structure and nonplanar dislocation structure such as veins, walls, and cells. The “mountain shape” correlation was interpreted successfully by the combined contribution of dislocation monopole and dipole with an internal-stress dependent term of acoustic nonlinearity.

  12. Analysis and prediction of Multiple-Site Damage (MSD) fatigue crack growth

    NASA Technical Reports Server (NTRS)

    Dawicke, D. S.; Newman, J. C., Jr.

    1992-01-01

    A technique was developed to calculate the stress intensity factor for multiple interacting cracks. The analysis was verified through comparison with accepted methods of calculating stress intensity factors. The technique was incorporated into a fatigue crack growth prediction model and used to predict the fatigue crack growth life for multiple-site damage (MSD). The analysis was verified through comparison with experiments conducted on uniaxially loaded flat panels with multiple cracks. Configuration with nearly equal and unequal crack distribution were examined. The fatigue crack growth predictions agreed within 20 percent of the experimental lives for all crack configurations considered.

  13. An investigation on low frequency fatigue damage of mooring lines applied in a semi-submersible platform

    NASA Astrophysics Data System (ADS)

    Du, Junfeng; Wang, Shuqing; Chang, Anteng; Li, Huajun

    2016-06-01

    Assessing the fatigue life of mooring systems is important for deep water structures. In this paper, a comprehensive fatigue analysis is conducted on the mooring lines applied in a semi-submersible platform with special focus on the low frequency (LF) fatigue damage. Several influential factors, including water depth, wave spectral parameters, and riser system, are considered. Numerical simulation of a semi-submersible platform with the mooring/riser system is executed under different conditions, and the fatigue damage of mooring lines is assessed by using the time domain analysis method as a benchmark. The effects of these factors on the mooring line tension and the fatigue damage are investigated and discussed in detail. Research results indicate that the LF fatigue damage only accounts for a very small portion of the total damage, although the LF components dominate the global motion response and the mooring line tension of the semi-submersible platform. However, it is demonstrated that the LF fatigue damage is clearly affected by the influential factors. The increase in water depth and spectral peak periods, and the existence of risers can weaken the contribution of the LF components to the mooring line fatigue damage, while the fatigue damage due to the LF components increases with the increase of significant wave height.

  14. Evaluation of Creep-Fatigue Damage Based on Simplified Model Test Approach

    SciTech Connect

    Wang, Yanli; Li, Tianlei; Sham, Sam; Jetter, Robert I

    2013-01-01

    Current methods used in the ASME Code, Subsection NH for the evaluation of creep-fatigue damage are based on the separation of elevated temperature cyclic damage into two parts, creep damage and fatigue damage. This presents difficulties in both evaluation of test data and determination of cyclic damage in design. To avoid these difficulties, an alternative approach was identified, called the Simplified Model Test or SMT approach based on the use of creep-fatigue hold time test data from test specimens with elastic follow-up conservatively designed to bound the response of general structural components of interest. A key feature of the methodology is the use of the results of elastic analysis directly in design evaluation similar to current methods in the ASME Code, Subsection NB. Although originally developed for current material included in Subsection NH, recent interest in the application of Alloy 617 for components operating at very high temperatures has caused renewed interest in the SMT approach because it provides an alternative to the proposed restriction on the use of current Subsection NH simplified methods at very high temperatures. A comprehensive review and assessment of five representative simplified methods for creep-fatigue damage evaluation is presented in Asayama [1]. In this review the SMT methodology was identified as the best long term approach but the need for test data precluded its near term implementation. Asayama and Jetter [2] is a summary of the more comprehensive report by Asayama [1] with a summary of the SMT approach presented by Jetter [3].

  15. The application of the load-stroke hysteresis technique for evaluating fatigue damage development

    SciTech Connect

    Baxter, T.; Reifsnider, K.L.

    1994-12-31

    A new experimental method was developed to measure hysteresis loss during a fatigue test from the load and stroke signals of a standard servo-hydraulic materials testing system. The method was used to characterize changes in properties and performance induced by long-term cyclic loading. Advantages of the load-stroke hysteresis measurement include: (1) contact with the specimen is not required, (2) the fatigue test is not interrupted for data collection, (3) the measured quantity (the hysteresis loop area) is directly related to the (damage) events that alter material properties and life, and (4) a quantitative measure of damage extent and development rate is obtained. The method was used to evaluate damage development during fatigue tests of polymeric composite laminates with unidirectional and angle-ply fiber orientations. The hysteresis loop measurements were used to identify the different stages of damage development and the different damage mechanisms (matrix cracking, delamination, and fiber fracture) in the material systems. The results from the hysteresis technique were correlated with conventional NDE methods such as dynamic signal analysis and specimen surface temperature measurements. It was found that the load-stroke hysteresis technique was especially sensitive to the fiber fracture, the most difficult type of damage process to interrogate in-situ. The hysteresis technique may provide a valuable method for predicting fatigue failure in composite specimens.

  16. Use of atomic force microscopy for characterizing damage evolution during fatigue

    NASA Astrophysics Data System (ADS)

    Cretegny, Laurent

    2000-10-01

    A study of the development of surface fatigue damage in PH 13-8 Mo stainless steel and copper by atomic force microscopy (AFM) was performed. AFM observations allow highly automated, quantitative characterization of surface deformation with a resolution of 5 nm or better, which is ideal for understanding fatigue damage evolution. A secondary objective was to establish a correlation between fatigue life exhausted and impedance spectroscopy. Strain controlled fatigue tests were conducted both in high and low cycle fatigue regimes, and interruptions of the fatigue tests allowed characterizing the evolution of the surface upset at various life-fractions. In the low strain amplitude tests on stainless steel (Deltaepsilonpl/2 = 0.0026%), surface damage occurred in the shape of narrow streaks at the interface between martensite laths where reverted austenite was present. The streaks eventually coalesced to form crack nuclei. In high strain amplitude tests (Deltaepsilon pl/2 = 0.049%), fatigue surface damage was essentially dominated by the formation of extrusions. In copper, both low (Deltaepsilonpl/2 = 0.061%) and high (Deltaepsilonpl/2 = 0.134%) strain amplitude tests showed the formation of slip bands (mainly extrusions) across entire grains. Protrusions were present only in copper specimens tested at the high strain amplitude. Crack nucleation in the low strain amplitude tests occurred in both materials at the interface between a region that sustained a high level of deformation and one with little evidence of surface upset. This commonality between these two materials that are otherwise very dissimilar in nature suggests a universal scheme for location of fatigue crack nucleation sites during HCF. A procedure was developed in this study to quantitatively characterize the amount of irreversible surface strain. The proposed formalism is applicable to any material, independently of the type of surface damage, and leads to a criterion for crack nucleation based on

  17. Isothermal Fatigue, Damage Accumulation, and Life Prediction of a Woven PMC

    NASA Technical Reports Server (NTRS)

    Gyekenyesi, Andrew L.

    1998-01-01

    This dissertation focuses on the characterization of the fully reversed fatigue behavior exhibited by a carbon fiber/polyimide resin, woven laminate at room and elevated temperatures. Nondestructive video edge view microscopy and destructive sectioning techniques were used to study the microscopic damage mechanisms that evolved. The residual elastic stiffness was monitored and recorded throughout the fatigue life of the coupon. In addition, residual compressive strength tests were conducted on fatigue coupons with various degrees of damage as quantified by stiffness reduction. Experimental results indicated that the monotonic tensile properties were only minimally influenced by temperature, while the monotonic compressive and fully reversed fatigue properties displayed noticeable reductions due to the elevated temperature. The stiffness degradation, as a function of cycles, consisted of three stages; a short-lived high degradation period, a constant degradation rate segment composing the majority of the life, and a final stage demonstrating an increasing rate of degradation up to failure. Concerning the residual compressive strength tests at room and elevated temperatures, the elevated temperature coupons appeared much more sensitive to damage. At elevated temperatures, coupons experienced a much larger loss in compressive strength when compared to room temperature coupons with equivalent damage. The fatigue damage accumulation law proposed for the model incorporates a scalar representation for damage, but admits a multiaxial, anisotropic evolutionary law. The model predicts the current damage (as quantified by residual stiffness) and remnant life of a composite that has undergone a known load at temperature. The damage/life model is dependent on the applied multiaxial stress state as well as temperature. Comparisons between the model and data showed good predictive capabilities concerning stiffness degradation and cycles to failure.

  18. Fatigue damage assessment in 7075 and 7050 aluminum alloys at low cyclic stresses

    NASA Astrophysics Data System (ADS)

    Malast, Mary Kathryn

    Dynamic loads from buffeting, shock waves, and separated flow cause aircraft structural fatigue. Increases in aircraft performance cause sonic high cycle fatigue (HCF) in structural components. The accuracy of HCF damage predictions and fracture mechanics analysis has been limited in the past by the maximum cyclic rate of fatigue test equipment. Constant load amplitude axial fatigue data has previously been acquired at rates on the order of 100 Hz or less. Understanding HCF damage mechanisms has been hindered by this limitation. Recent improvements in test technology and analysis methods have made axial HCF experiments practical. X-ray diffraction line broadening analysis is used here to quantify microstructural changes in 7075-T651 and 7050-T7451 precipitation hardened aluminum alloys after exposure to fatigue loading. The Stokes deconvolution and Warren-Averbach method are used to compute size and strain broadening from line broadened X-ray diffraction patterns. Changes in domain size, strain, domain size anisotropy, and particle size distribution are used to assess fatigue in the alloys. Mechanisms which account for the observed microstructural changes are proposed. Peak splitting produces double maxima in the X-ray diffraction data. Double maxima are previously reported in the literature. Possible sources of the double maxima in precipitation hardened aluminum alloys are considered. In addition to assessing fatigue related microstructural changes in 7075 and 7050 aluminum alloys, the line broadening method applied to fatigue related assessment of these alloys is determined to be a promising approach. The method may have application to evaluation of aircraft in production. Possible applications and future work needed to apply the line broadening method to damage evaluation of engineering problems are proposed.

  19. Fatigue damage criteria - Matrix, fibers and interfaces of continuous fiber reinforced metal matrix composites

    NASA Technical Reports Server (NTRS)

    Johnson, W. S.

    1988-01-01

    Continuous fiber reinforced metal matrix composites (MMC) are projected for use in high temperature, stiffness critical parts that will be subjected to cyclic loadings. Depending on the relative fatigue behavior of the fiber and matrix, and the interface properties, the failure modes of MMC can be grouped into four catagories: (1) matrix dominated, (2) fiber dominated, (3) self-similar damage growth, and (4) fiber/matrix interfacial failures. These four types of damage are discussed and illustrated by examples. The emphasis is on the fatigue of unnotched laminates.

  20. Fatigue crack damage detection using subharmonic component with nonlinear boundary condition

    SciTech Connect

    Wu, Weiliang Qu, Wenzhong E-mail: xiaoli6401@126.com; Xiao, Li E-mail: xiaoli6401@126.com; Shen, Yanfeng Giurgiutiu, Victor

    2015-03-31

    In recent years, researchers have focused on structural health monitoring (SHM) and damage detection techniques using nonlinear vibration and nonlinear ultrasonic methods. Fatigue cracks may exhibit contact acoustic nonlinearity (CAN) with distinctive features such as superharmonics and subharmonics in the power spectrum of the sensing signals. However, challenges have been noticed in the practical applications of the harmonic methods. For instance, superharmonics can also be generated by the piezoelectric transducers and the electronic equipment; super/subharmonics may also stem from the nonlinear boundary conditions such as structural fixtures and joints. It is hard to tell whether the nonlinear features come from the structural damage or the intrinsic nonlinear boundary conditions. The objective of this paper is to demonstrate the application of nonlinear ultrasonic subharmonic method for detecting fatigue cracks with nonlinear boundary conditions. The fatigue crack was qualitatively modeled as a single-degree-of-freedom (SDOF) system with non-classical hysteretic nonlinear interface forces at both sides of the crack surfaces. The threshold of subharmonic generation was studied, and the influence of crack interface parameters on the subharmonic resonance condition was investigated. The different threshold behaviors between the nonlinear boundary condition and the fatigue crack was found, which can be used to distinguish the source of nonlinear subharmonic features. To evaluate the proposed method, experiments of an aluminum plate with a fatigue crack were conducted to quantitatively verify the subharmonic resonance range. Two surface-bonded piezoelectric transducers were used to generate and receive ultrasonic wave signals. The fatigue damage was characterized in terms of a subharmonic damage index. The experimental results demonstrated that the subharmonic component of the sensing signal can be used to detect the fatigue crack and further distinguish it from

  1. Fatigue crack damage detection using subharmonic component with nonlinear boundary condition

    NASA Astrophysics Data System (ADS)

    Wu, Weiliang; Shen, Yanfeng; Qu, Wenzhong; Xiao, Li; Giurgiutiu, Victor

    2015-03-01

    In recent years, researchers have focused on structural health monitoring (SHM) and damage detection techniques using nonlinear vibration and nonlinear ultrasonic methods. Fatigue cracks may exhibit contact acoustic nonlinearity (CAN) with distinctive features such as superharmonics and subharmonics in the power spectrum of the sensing signals. However, challenges have been noticed in the practical applications of the harmonic methods. For instance, superharmonics can also be generated by the piezoelectric transducers and the electronic equipment; super/subharmonics may also stem from the nonlinear boundary conditions such as structural fixtures and joints. It is hard to tell whether the nonlinear features come from the structural damage or the intrinsic nonlinear boundary conditions. The objective of this paper is to demonstrate the application of nonlinear ultrasonic subharmonic method for detecting fatigue cracks with nonlinear boundary conditions. The fatigue crack was qualitatively modeled as a single-degree-of-freedom (SDOF) system with non-classical hysteretic nonlinear interface forces at both sides of the crack surfaces. The threshold of subharmonic generation was studied, and the influence of crack interface parameters on the subharmonic resonance condition was investigated. The different threshold behaviors between the nonlinear boundary condition and the fatigue crack was found, which can be used to distinguish the source of nonlinear subharmonic features. To evaluate the proposed method, experiments of an aluminum plate with a fatigue crack were conducted to quantitatively verify the subharmonic resonance range. Two surface-bonded piezoelectric transducers were used to generate and receive ultrasonic wave signals. The fatigue damage was characterized in terms of a subharmonic damage index. The experimental results demonstrated that the subharmonic component of the sensing signal can be used to detect the fatigue crack and further distinguish it from

  2. Fatigue analysis of multiple site damage at a row of holes in a wide panel

    NASA Astrophysics Data System (ADS)

    Buhler, Kimberley; Grandt, Alten F., Jr.; Moukawsher, E. J.

    1994-09-01

    This paper is concerned with predicting the fatigue life of unstiffened panels which contain multiple site damage (MSD). The initial damage consists of through-the-thickness cracks emanating from a row of holes in the center of a finite width panel. A fracture mechanics analysis has been developed to predict the growth, interaction, and coalescence of the various cracks which propagate in the panel. A strain-life analysis incorporating Neuber's rule for notches, and Miner's rule for cumulative damage, is also employed to predict crack initiation for holes without initial cracking. This analysis is compared with the results of a series of fatigue tests on 2024-T3 aluminum panels, and is shown to do an excellent job of predicting the influence of MSD on the fatigue life of nine inch wide specimens. Having established confidence in the ability to analyze the influence of MSD on fatigue life, a parametric study is conducted to examine the influence of various MSD scenarios in an unstiffened panel. The numerical study considered 135 cases in all, with the parametric variables being the applied cyclic stress level, the lead crack geometry, and the number and location of MSD cracks. The numerical analysis provides details for the manner in which lead cracks and MSD cracks grow and coalesce leading to final failure. The results indicate that MSD located adjacent to lead cracks is the most damaging configuration, while for cases without lead cracks, MSD clusters which are not separated by uncracked holes are most damaging.

  3. Fatigue analysis of multiple site damage at a row of holes in a wide panel

    NASA Technical Reports Server (NTRS)

    Buhler, Kimberley; Grandt, Alten F., Jr.; Moukawsher, E. J.

    1994-01-01

    This paper is concerned with predicting the fatigue life of unstiffened panels which contain multiple site damage (MSD). The initial damage consists of through-the-thickness cracks emanating from a row of holes in the center of a finite width panel. A fracture mechanics analysis has been developed to predict the growth, interaction, and coalescence of the various cracks which propagate in the panel. A strain-life analysis incorporating Neuber's rule for notches, and Miner's rule for cumulative damage, is also employed to predict crack initiation for holes without initial cracking. This analysis is compared with the results of a series of fatigue tests on 2024-T3 aluminum panels, and is shown to do an excellent job of predicting the influence of MSD on the fatigue life of nine inch wide specimens. Having established confidence in the ability to analyze the influence of MSD on fatigue life, a parametric study is conducted to examine the influence of various MSD scenarios in an unstiffened panel. The numerical study considered 135 cases in all, with the parametric variables being the applied cyclic stress level, the lead crack geometry, and the number and location of MSD cracks. The numerical analysis provides details for the manner in which lead cracks and MSD cracks grow and coalesce leading to final failure. The results indicate that MSD located adjacent to lead cracks is the most damaging configuration, while for cases without lead cracks, MSD clusters which are not separated by uncracked holes are most damaging.

  4. Observations of fatigue crack initiation and damage growth in notched titanium matrix composites

    NASA Technical Reports Server (NTRS)

    Naik, Rajiv A.; Johnson, W. S.

    1991-01-01

    The purpose was to characterize damage initiation and growth in notched titanium matrix composites at room temperature. Double edge notched or center open hole SCS-6/Ti-15-3 specimens containing 0 deg plies or containing both 0 and 90 deg plies were fatigued. The specimens were tested in the as-fabricated (ASF) and in heat-treated conditions. A local strain criterion using unnotched specimen fatigue data was successful in predicting fatigue damage initiation. The initiation stress level was accurately predicted for both a double edge notched unidirectional specimen and a cross-plied center hole specimen. The fatigue produced long multiple cracks growing from the notches. These fatigue cracks were only in the matrix material and did not break the fibers in their path. The combination of matrix cracking and fiber/matrix debonding appears to greatly reduce the stress concentration around the notches. The laminates that were heat treated showed a different crack growth pattern. In the ASF specimens, matrix cracks had a more tortuous path and showed considerable more crack branching. For the same specimen geometry and cyclic stress, the (0/90/0) laminate with a hole had far superior fatigue resistance than the matrix only specimen with a hole.

  5. Observations of fatigue crack initiation and damage growth in notched titanium matrix composites

    NASA Technical Reports Server (NTRS)

    Naik, R. A.; Johnson, W. S.

    1990-01-01

    The purpose was to characterize damage initiation and growth in notched titanium matrix composites at room temperature. Double edge notched or center open hole SCS-6/Ti-15-3 specimens containing 0 deg plies or containing both 0 and 90 deg plies were fatigued. The specimens were tested in the as-fabricated (ASF) and in heat-treated conditions. A local strain criterion using unnotched specimen fatigue data was successful in predicting fatigue damage initiation. The initiation stress level was accurately predicted for both a double edge notched unidirectional specimen and a cross-plied center hole specimen. The fatigue produced long multiple cracks growing from the notches. These fatigue cracks were only in the matrix material and did not break the fibers in their path. The combination of matrix cracking and fiber/matrix debonding appears to greatly reduce the stress concentration around the notches. The laminates that were heat treated showed a different crack growth pattern. In the ASF specimens, matrix cracks had a more tortuous path and showed considerable more crack branching. For the same specimen geometry and cyclic stress, the (0/90/0) laminate with a hole had far superior fatigue resistance than the matrix only specimen with a hole.

  6. Experimental and analytical study of fatigue damage in notched graphite/epoxy laminates

    NASA Technical Reports Server (NTRS)

    Whitcomb, J. D.

    1979-01-01

    Both tension and compression fatigue behaviors were investigated in four notched graphite/epoxy laminates. After fatigue loading, specimens were examined for damage type and location using visual inspection, light microscopy, scanning electron microscopy, ultrasonic C-scans, and X-radiography. Delamination and ply cracking were found to be the dominant types of fatigue damage. In general, ply cracks did not propagate into adjacent plies of differing fiber orientation. To help understand the varied fatigue observations, the interlaminar stress distribution was calculated with finite element analysis for the regions around the hole and along the straight free edge. Comparison of observed delamination locations with the calculated stresses indicated that both interlaminar shear and peel stresses must be considered when predicting delamination. The effects of the fatigue cycling on residual strength and stiffness were measured for some specimens of each laminate type. Fatigue loading generally caused only small stiffness losses. In all cases, residual strengths were greater than or equal to the virgin strengths.

  7. Modeling nonlinearities of ultrasonic waves for fatigue damage characterization: theory, simulation, and experimental validation.

    PubMed

    Hong, Ming; Su, Zhongqing; Wang, Qiang; Cheng, Li; Qing, Xinlin

    2014-03-01

    A dedicated modeling technique for comprehending nonlinear characteristics of ultrasonic waves traversing in a fatigued medium was developed, based on a retrofitted constitutive relation of the medium by considering the nonlinearities originated from material, fatigue damage, as well as the "breathing" motion of fatigue cracks. Piezoelectric wafers, for exciting and acquiring ultrasonic waves, were integrated in the model. The extracted nonlinearities were calibrated by virtue of an acoustic nonlinearity parameter. The modeling technique was validated experimentally, and the results showed satisfactory consistency in between, both revealing: the developed modeling approach is able to faithfully simulate fatigue crack-incurred nonlinearities manifested in ultrasonic waves; a cumulative growth of the acoustic nonlinearity parameter with increasing wave propagation distance exists; such a parameter acquired via a sensing path is nonlinearly related to the offset distance from the fatigue crack to that sensing path; and neither the incidence angle of the probing wave nor the length of the sensing path impacts on the parameter significantly. This study has yielded a quantitative characterization strategy for fatigue cracks using embeddable piezoelectric sensor networks, facilitating deployment of structural health monitoring which is capable of identifying small-scale damage at an embryo stage and surveilling its growth continuously. PMID:24156928

  8. Real-time sensing of fatigue crack damage for information-based decision and control

    NASA Astrophysics Data System (ADS)

    Keller, Eric Evans

    Information-based decision and control for structures that are subject to failure by fatigue cracking is based on the following notion: Maintenance, usage scheduling, and control parameter tuning can be optimized through real time knowledge of the current state of fatigue crack damage. Additionally, if the material properties of a mechanical structure can be identified within a smaller range, then the remaining life prediction of that structure will be substantially more accurate. Information-based decision systems can rely one physical models, estimation of material properties, exact knowledge of usage history, and sensor data to synthesize an accurate snapshot of the current state of damage and the likely remaining life of a structure under given assumed loading. The work outlined in this thesis is structured to enhance the development of information-based decision and control systems. This is achieved by constructing a test facility for laboratory experiments on real-time damage sensing. This test facility makes use of a methodology that has been formulated for fatigue crack model parameter estimation and significantly improves the quality of predictions of remaining life. Specifically, the thesis focuses on development of an on-line fatigue crack damage sensing and life prediction system that is built upon the disciplines of Systems Sciences and Mechanics of Materials. A major part of the research effort has been expended to design and fabricate a test apparatus which allows: (i) measurement and recording of statistical data for fatigue crack growth in metallic materials via different sensing techniques; and (ii) identification of stochastic model parameters for prediction of fatigue crack damage. To this end, this thesis describes the test apparatus and the associated instrumentation based on four different sensing techniques, namely, traveling optical microscopy, ultrasonic flaw detection, Alternating Current Potential Drop (ACPD), and fiber

  9. Computational fluid dynamics analysis of blade tip clearances on hemodynamic performance and blood damage in a centrifugal ventricular assist device.

    PubMed

    Wu, Jingchun; Paden, Bradley E; Borovetz, Harvey S; Antaki, James F

    2010-05-01

    An important challenge facing the design of turbodynamic ventricular assist devices (VADs) intended for long-term support is the optimization of the flow path geometry to maximize hydraulic performance while minimizing shear-stress-induced hemolysis and thrombosis. For unshrouded centrifugal, mixed-flow and axial-flow blood pumps, the complex flow patterns within the blade tip clearance between the lengthwise upper surface of the rotating impeller blades and the stationary pump housing have a dramatic effect on both the hydrodynamic performance and the blood damage production. Detailed computational fluid dynamics (CFD) analyses were performed in this study to investigate such flow behavior in blade tip clearance region for a centrifugal blood pump representing a scaled-up version of a prototype pediatric VAD. Nominal flow conditions were analyzed at a flow rate of 2.5 L/min and rotor speed of 3000 rpm with three blade tip clearances of 50, 100, and 200 microm. CFD simulations predicted a decrease in the averaged tip leakage flow rate and an increase in pump head and axial thrust with decreasing blade tip clearances from 200 to 50 microm. The predicted hemolysis, however, exhibited a unimodal relationship, having a minimum at 100 microm compared to 50 microm and 200 microm. Experimental data corroborate these predictions. Detailed flow patterns observed in this study revealed interesting fluid dynamic features associated with the blade tip clearances, such as the generation and dissipation of tip leakage vortex and its interaction with the primary flow in the blade-blade passages. Quantitative calculations suggested the existence of an optimal blade tip clearance by which hydraulic efficiency can be maximized and hemolysis minimized. PMID:19832736

  10. Computational Fluid Dynamics Analysis of Blade Tip Clearances on Hemodynamic Performance and Blood Damage in a Centrifugal Ventricular Assist Device

    PubMed Central

    Wu, Jingchun; Paden, Bradley E.; Borovetz, Harvey S.; Antaki, James F.

    2011-01-01

    An important challenge facing the design of turbodynamic ventricular assist devices (VADs) intended for long-term support is the optimization of the flow path geometry to maximize hydraulic performance while minimizing shear-stress-induced hemolysis and thrombosis. For unshrouded centrifugal, mixed-flow and axial-flow blood pumps, the complex flow patterns within the blade tip clearance between the lengthwise upper surface of the rotating impeller blades and the stationary pump housing have a dramatic effect on both the hydrodynamic performance and the blood damage production. Detailed computational fluid dynamics (CFD) analyses were performed in this study to investigate such flow behavior in blade tip clearance region for a centrifugal blood pump representing a scaled-up version of a prototype pediatric VAD. Nominal flow conditions were analyzed at a flow rate of 2.5 L/min and rotor speed of 3000 rpm with three blade tip clearances of 50, 100, and 200 μm. CFD simulations predicted a decrease in the averaged tip leakage flow rate and an increase in pump head and axial thrust with decreasing blade tip clearances from 200 to 50 μm. The predicted hemolysis, however, exhibited a unimodal relationship, having a minimum at 100 μm compared to 50 μm and 200 μm. Experimental data corroborate these predictions. Detailed flow patterns observed in this study revealed interesting fluid dynamic features associated with the blade tip clearances, such as the generation and dissipation of tip leakage vortex and its interaction with the primary flow in the blade-blade passages. Quantitative calculations suggested the existence of an optimal blade tip clearance by which hydraulic efficiency can be maximized and hemolysis minimized. PMID:19832736

  11. Dependence of microelastic-plastic nonlinearity of martensitic stainless steel on fatigue damage accumulation

    SciTech Connect

    Cantrell, John H.

    2006-09-15

    Self-organized substructural arrangements of dislocations formed during cyclic stress-induced fatigue of metals produce substantial changes in the material microelastic-plastic nonlinearity, a quantitative measure of which is the nonlinearity parameter {beta} extracted from acoustic harmonic generation measurements. The contributions to {beta} from the substructural evolution of dislocations and crack growth for fatigued martensitic 410Cb stainless steel are calculated from the Cantrell model [Proc. R. Soc. London, Ser. A 460, 757 (2004)] as a function of percent full fatigue life to fracture. A wave interaction factor f{sub WI} is introduced into the model to account experimentally for the relative volume of fatigue damage included in the total volume of material swept out by an interrogating acoustic wave. For cyclic stress-controlled loading at 551 MPa and f{sub WI}=0.013 the model predicts a monotonic increase in {beta} from dislocation substructures of almost 100% from the virgin state to roughly 95% full life. Negligible contributions from cracks are predicted in this range of fatigue life. However, during the last 5% of fatigue life the model predicts a rapid monotonic increase of {beta} by several thousand percent that is dominated by crack growth. The theoretical predictions are in good agreement with experimental measurements of 410Cb stainless steel samples fatigued in uniaxial, stress-controlled cyclic loading at 551 MPa from zero to full tensile load with a measured f{sub WI} of 0.013.

  12. Dependence of Microelastic-plastic Nonlinearity of Martensitic Stainless Steel on Fatigue Damage Accumulation

    NASA Technical Reports Server (NTRS)

    Cantrell, John H.

    2006-01-01

    Self-organized substructural arrangements of dislocations formed in wavy slip metals during cyclic stress-induced fatigue produce substantial changes in the material microelastic-plastic nonlinearity, a quantitative measure of which is the nonlinearity parameter Beta extracted from acoustic harmonic generation measurements. The contributions to Beta from the substructural evolution of dislocations and crack growth for fatigued martensitic 410Cb stainless steel are calculated from the Cantrell model as a function of percent full fatigue life to fracture. A wave interaction factor f(sub WI) is introduced into the model to account experimentally for the relative volume of material fatigue damage included in the volume of material swept out by an interrogating acoustic wave. For cyclic stress-controlled loading at 551 MPa and f(sub WI) = 0.013 the model predicts a monotonic increase in Beta from dislocation substructures of almost 100 percent from the virgin state to roughly 95 percent full life. Negligible contributions from cracks are predicted in this range of fatigue life. However, over the last five percent of fatigue life the model predicts a rapid monotonic increase of Beta by several thousand percent that is dominated by crack growth. The theoretical predictions are in good agreement with experimental measurements of 410Cb stainless steel samples fatigued in uniaxial, stress-controlled cyclic loading at 551 MPa from zero to full tensile load with a measured f(sub WI) of 0.013.

  13. Mechanisms controlling fatigue damage development in continuous fiber reinforced metal matrix composites

    NASA Technical Reports Server (NTRS)

    Johnson, W. S.

    1989-01-01

    Damage in continuous fiber reinforced metal matrix composite materials can be quite complex since there are a number of different constituents (fiber, matrix, and the fiber/matrix interface) that can fail. Multidirectional lay-ups have an even greater number of possible damage orientations and mechanisms. Based on the simplifying assumption of equivalent constituent strain states in the absence of damage, a strain based failure criteria may be applied to determine when and where initial damage will occur. Based on the relative strain to fatigue failure of the fiber and matrix, the possible damage mechanisms of an MMC can be grouped into three categories: (1) matrix dominated, (2) fiber dominated, and (3) self-similar damage growth. A fourth type of damage development, fiber/matrix interface failure, is dependent on the relative strength of the fiber/matrix interface and the matrix yield strength. These four types of damage are discussed and illustrated by examples.

  14. Cyclic fatigue damage characteristics observed for simple loadings extended to multiaxial life prediction

    NASA Technical Reports Server (NTRS)

    Jones, David J.; Kurath, Peter

    1988-01-01

    Fully reversed uniaxial strain controlled fatigue tests were performed on smooth cylindrical specimens made of 304 stainless steel. Fatigue life data and cracking observations for uniaxial tests were compared with life data and cracking behavior observed in fully reversed torsional tests. It was determined that the product of maximum principle strain amplitude and maximum principle stress provided the best correlation of fatigue lives for these two loading conditions. Implementation of this parameter is in agreement with observed physical damage and it accounts for the variation of stress-strain response, which is unique to specific loading conditions. Biaxial fatigue tests were conducted on tubular specimens employing both in-phase and out-of-phase tension torsion cyclic strain paths. Cracking observations indicated that the physical damage which occurred in the biaxial tests was similar to the damage observed in uniaxial and torsional tests. The Smith, Watson, and Topper parameter was then extended to predict the fatigue lives resulting from the more complex loading conditions.

  15. Swept Blade Aero-Elastic Model for a Small Wind Turbine (Presentation)

    SciTech Connect

    Damiani, R.; Lee, S.; Larwood, S.

    2014-07-01

    A preprocessor for analyzing preswept wind turbines using the in-house aero-elastic tool coupled with a multibody dynamic simulator was developed. A baseline 10-kW small wind turbine with straight blades and various configurations that featured bend-torsion coupling via blade-tip sweep were investigated to study their impact on ultimate loads and fatigue damage equivalent loads.

  16. Thermography Inspection for Early Detection of Composite Damage in Structures During Fatigue Loading

    NASA Technical Reports Server (NTRS)

    Zalameda, Joseph N.; Burke, Eric R.; Parker, F. Raymond; Seebo, Jeffrey P.; Wright, Christopher W.; Bly, James B.

    2012-01-01

    Advanced composite structures are commonly tested under controlled loading. Understanding the initiation and progression of composite damage under load is critical for validating design concepts and structural analysis tools. Thermal nondestructive evaluation (NDE) is used to detect and characterize damage in composite structures during fatigue loading. A difference image processing algorithm is demonstrated to enhance damage detection and characterization by removing thermal variations not associated with defects. In addition, a one-dimensional multilayered thermal model is used to characterize damage. Lastly, the thermography results are compared to other inspections such as non-immersion ultrasonic inspections and computed tomography X-ray.

  17. Fatigue life prediction of rotor blade composites: Validation of constant amplitude formulations with variable amplitude experiments

    NASA Astrophysics Data System (ADS)

    Westphal, T.; Nijssen, R. P. L.

    2014-12-01

    The effect of Constant Life Diagram (CLD) formulation on the fatigue life prediction under variable amplitude (VA) loading was investigated based on variable amplitude tests using three different load spectra representative for wind turbine loading. Next to the Wisper and WisperX spectra, the recently developed NewWisper2 spectrum was used. Based on these variable amplitude fatigue results the prediction accuracy of 4 CLD formulations is investigated. In the study a piecewise linear CLD based on the S-N curves for 9 load ratios compares favourably in terms of prediction accuracy and conservativeness. For the specific laminate used in this study Boerstra's Multislope model provides a good alternative at reduced test effort.

  18. Nondestructive determination of fatigue crack damage in composites using vibration tests.

    NASA Technical Reports Server (NTRS)

    Dibenedetto, A. T.; Gauchel, J. V.; Thomas, R. L.; Barlow, J. W.

    1972-01-01

    The vibration response of glass reinforced epoxy and polyester laminates was investigated. The complex modulus and the damping capacity were measured as fatigue crack damage accumulated. Changes in the Young's modulus as well as the damping capacity correlated with the amount of crack damage. The damping was especially sensitive to debonding of the reinforcement from the resin matrix. Measurement of these vibration response changes shows promise as a means to nondestructively test the structural integrity of filament-reinforced composite structural members.

  19. The Characteristics of Fatigue Damage in the Fuselage Riveted Lap Splice Joint

    NASA Technical Reports Server (NTRS)

    Piascik, Robert S.; Willard, Scott A.

    1997-01-01

    An extensive data base has been developed to form the physical basis for new analytical methodology to predict the onset of widespread fatigue damage in the fuselage lap splice joint. The results of detailed destructive examinations have been cataloged to describe the physical nature of MSD in the lap splice joint. ne catalog includes a detailed description, e.g., crack initiation, growth rates, size, location, and fracture morphology, of fatigue damage in the fuselage lap splice joint structure. Detailed examinations were conducted on a lap splice joint panel removed from a full scale fuselage test article after completing a 60,000 cycle pressure test. The panel contained a four bay region that exhibited visible outer skin cracks and regions of crack link-up along the upper rivet row. Destructive examinations revealed undetected fatigue damage in the outer skin, inner skin, and tear strap regions. Outer skin fatigue cracks were found to initiate by fretting damage along the faying surface. The cracks grew along the faying surface to a length equivalent to two to three skin thicknesses before penetrating the outboard surface of the outer skin. Analysis of fracture surface marker bands produced during full scale testing revealed that all upper rivet row fatigue cracks contained in a dim bay region grow at similar rates; this important result suggests that fracture mechanics based methods can be used to predict the growth of outer skin fatigue cracks in lap splice structure. Results are presented showing the affects of MSD and out-of-plane pressure loads on outer skin crack link-up.

  20. Damage detection in carbon composite material typical of wind turbine blades using auto-associative neural networks

    NASA Astrophysics Data System (ADS)

    Dervilis, N.; Barthorpe, R. J.; Antoniadou, I.; Staszewski, W. J.; Worden, K.

    2012-04-01

    The structure of a wind turbine blade plays a vital role in the mechanical and structural operation of the turbine. As new generations of offshore wind turbines are trying to achieve a leading role in the energy market, key challenges such as a reliable Structural Health Monitoring (SHM) of the blades is significant for the economic and structural efficiency of the wind energy. Fault diagnosis of wind turbine blades is a "grand challenge" due to their composite nature, weight and length. The damage detection procedure involves additional difficulties focused on aerodynamic loads, environmental conditions and gravitational loads. It will be shown that vibration dynamic response data combined with AANNs is a robust and powerful tool, offering on-line and real time damage prediction. In this study the features used for SHM are Frequency Response Functions (FRFs) acquired via experimental methods based on an LMS system by which identification of mode shapes and natural frequencies is accomplished. The methods used are statistical outlier analysis which allows a diagnosis of deviation from normality and an Auto-Associative Neural Network (AANN). Both of these techniques are trained by adopting the FRF data for normal and damage condition. The AANN is a method which has not yet been widely used in the condition monitoring of composite materials of blades. This paper is trying to introduce a new scheme for damage detection, localisation and severity assessment by adopting simple measurements such as FRFs and exploiting multilayer neural networks and outlier novelty detection.

  1. A Modified Nonlinear Damage Accumulation Model for Fatigue Life Prediction Considering Load Interaction Effects

    PubMed Central

    Huang, Hong-Zhong; Yuan, Rong

    2014-01-01

    Many structures are subjected to variable amplitude loading in engineering practice. The foundation of fatigue life prediction under variable amplitude loading is how to deal with the fatigue damage accumulation. A nonlinear fatigue damage accumulation model to consider the effects of load sequences was proposed in earlier literature, but the model cannot consider the load interaction effects, and sometimes it makes a major error. A modified nonlinear damage accumulation model is proposed in this paper to account for the load interaction effects. Experimental data of two metallic materials are used to validate the proposed model. The agreement between the model prediction and experimental data is observed, and the predictions by proposed model are more possibly in accordance with experimental data than that by primary model and Miner's rule. Comparison between the predicted cumulative damage by the proposed model and an existing model shows that the proposed model predictions can meet the accuracy requirement of the engineering project and it can be used to predict the fatigue life of welded aluminum alloy joint of Electric Multiple Units (EMU); meanwhile, the accuracy of approximation can be obtained from the proposed model though more simple computing process and less material parameters calling for extensive testing than the existing model. PMID:24574866

  2. 14 CFR 23.573 - Damage tolerance and fatigue evaluation of structure.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Damage tolerance and fatigue evaluation of structure. 23.573 Section 23.573 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... operational life of the airplane must be consistent with the initial detectability and subsequent growth...

  3. 14 CFR 23.573 - Damage tolerance and fatigue evaluation of structure.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Damage tolerance and fatigue evaluation of structure. 23.573 Section 23.573 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... operational life of the airplane must be consistent with the initial detectability and subsequent growth...

  4. 14 CFR 23.573 - Damage tolerance and fatigue evaluation of structure.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Damage tolerance and fatigue evaluation of structure. 23.573 Section 23.573 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... operational life of the airplane must be consistent with the initial detectability and subsequent growth...

  5. 14 CFR 23.573 - Damage tolerance and fatigue evaluation of structure.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Damage tolerance and fatigue evaluation of structure. 23.573 Section 23.573 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... operational life of the airplane must be consistent with the initial detectability and subsequent growth...

  6. 14 CFR 23.573 - Damage tolerance and fatigue evaluation of structure.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Damage tolerance and fatigue evaluation of structure. 23.573 Section 23.573 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... operational life of the airplane must be consistent with the initial detectability and subsequent growth...

  7. A fatigue damage estimator using RBF, backpropagation, and CID4 neural algorithms

    NASA Technical Reports Server (NTRS)

    Cios, Krzysztof J.; Tjia, Robert E.; Liu, Ning

    1992-01-01

    Fatigue damage estimation using neural networks is described in the paper. Attention is focused on the method of data generation for both the training and test data used by radial basis function (RBF), backpropagation, and CID4 algorithms used in this study. The performance results of the three neural algorithms are analyzed in terms of their strengths and weaknesses in training.

  8. Fatigue-damage evolution and damage-induced reduction of critical current of a Nb3Al superconducting composite

    NASA Astrophysics Data System (ADS)

    Ochiai, S.; Sekino, F.; Sawada, T.; Ohno, H.; Hojo, M.; Tanaka, M.; Okuda, H.; Koganeya, M.; Hayashi, K.; Yamada, Y.; Ayai, N.; Watanabe, K.

    2003-09-01

    We have studied the fatigue-damage mechanism of a Nb3Al superconducting composite at room temperature, and the influences of the fatigue damages introduced at room temperature on the critical current at 4.2 K and the residual strength at room temperature. The main (largest) fatigue crack arose first in the clad copper and then extended into the inner core with an increasing number of stress cycles. The cracking of the Nb3Al filaments in the core region occurred at a late stage (around 60-90% of the fatigue life). Once the fracture of the core occurred, it extended very quickly, resulting in a quick reduction in critical current and the residual strength with increasing stress cycles. Such a behaviour was accounted for by the crack growth calculated from the S-N curves (the relation of the maximum stress to the number of stress cycles at failure) combined with the Paris law. The size and distribution of the subcracks along the specimen length, and therefore the reduction in critical current of the region apart from the main crack, were dependent on the maximum stress level. The large subcracks causing fracture of the Nb3Al filaments were formed when the maximum stress was around 300-460 MPa, resulting in large reduction in critical current, but not when the maximum stress was outside such a stress range.

  9. Locating fatigue damage using temporal signal features of nonlinear Lamb waves

    NASA Astrophysics Data System (ADS)

    Hong, Ming; Su, Zhongqing; Lu, Ye; Sohn, Hoon; Qing, Xinlin

    2015-08-01

    The temporal signal features of linear guided waves, as typified by the time-of-flight (ToF), have been exploited intensively for identifying damage, with proven effectiveness in locating gross damage in particular. Upon re-visiting the conventional, ToF-based detection philosophy, the present study extends the use of temporal signal processing to the realm of nonlinear Lamb waves, so as to reap the high sensitivity of nonlinear Lamb waves to small-scale damage (e.g., fatigue cracks), and the efficacy of temporal signal processing in locating damage. Nonlinear wave features (i.e., higher-order harmonics) are extracted using networked, miniaturized piezoelectric wafers, and reverted to the time domain for damage localization. The proposed approach circumvents the deficiencies of using Lamb wave features for evaluating undersized damage, which are either undiscernible in time-series analysis or lacking in temporal information in spectral analysis. A probabilistic imaging algorithm is introduced to supplement the approach, facilitating the presentation of identification results in an intuitive manner. Through numerical simulation and then experimental validation, two damage indices (DIs) are comparatively constructed, based, respectively, on linear and nonlinear temporal features of Lamb waves, and used to locate fatigue damage near a rivet hole of an aluminum plate. Results corroborate the feasibility and effectiveness of using temporal signal features of nonlinear Lamb waves to locate small-scale fatigue damage, with enhanced accuracy compared with linear ToF-based detection. Taking a step further, a synthesized detection strategy is formulated by amalgamating the two DIs, targeting continuous and adaptive monitoring of damage from its onset to macroscopic formation.

  10. Fatigue damage study in aluminum-2024 T3 alloys

    NASA Technical Reports Server (NTRS)

    Ferguson, Milton W.

    1992-01-01

    The grain structure of aluminum 2024, a commonly used commercial alloy is investigated, and these findings are correlated with the fatigue property of the material. Samples of aluminum 2024 were polished and etched in different reagents. Optical micrographs (at 500X) of samples etched in Keller's reagent revealed grain boundaries as well as some particles present in the microstructure. Normal x-ray scans of samples etched for different intervals of time in Keller's reagent indicate no significant variations in diffraction peak positions; however, the width of the rocking curve increased with the time of etching. These results are consistent with the direct dependence of the width of the rocking curve on the range of grain orientation. Etching removes the preferred orientation layer of the sample produced by polishing; thereby, causing the width to increase.

  11. Fatigue Life Prediction of Steel Bridges for Extreme Loading Using a New Damage Indicator

    NASA Astrophysics Data System (ADS)

    Karunananda, Pallaha Athawudagedara Kamal; Ohga, Mitao; Dissanayake, Punchi Bandage Ranjith; Siriwardane, Siriwardane Arachchilage Sudath Chaminda

    High cycle fatigue (HCF) damage caused by normal traffic loading is one of the major modes of failures in steel bridges. During bridge service life, there are extreme loading situations such as typhoons, earthquakes which cause higher amplitude loading than normal traffic loading. Due to this reason, critical members could undergo overstress cycles in the plastic range. Therefore, such members are subjected to low cycle fatigue (LCF) during these situations while subjecting to HCF in serviceable condition. Bridges, which are not seriously damaged, generally continue to be functioned after these extreme loading situations and fatigue life estimation is required to ensure their safety. Therefore, this paper presents a new damage indicator based fatigue model to predict life of steel bridges due to combined effect of extreme and normal traffic loadings. It consists of a modified strain life curve and a strain based damage indicator. Both the strain life curve and the damage indicator are newly proposed in the study. Modified strain life curve consists of Coffin Manson relation in the LCF regime and a new strain life curve in the HCF regime. Damage variable is based on von Mises equivalent strain and modified by factors to consider effects of loading non proportionality and loading path in multiaxial stress state. The new damage indicator can capture the loading sequence effect. The proposed model is verified with experimental test results of combined HCF and LCF of three materials; S304L stainless steel, Haynes 188 (a Cobolt superalloy) and S45C steel obtained from the literature. The verification of experimental results confirms the validity of the proposed model.

  12. Non-Destructive Evaluation of Fatigue Damage for SUS316 by Using Electromagnetic Methods

    NASA Astrophysics Data System (ADS)

    Oka, M.; Tsuchida, Y.; Yakushiji, T.; Enokizono, M.

    2009-03-01

    There are some fatigue damage estimation methods for an austenitic stainless steel that uses martensitic transformation. For instance, those are the remanent magnetization method, the excitation method using the differential pick-up coil, and so on. We are researching also those two methods in our laboratory now. In the remanent magnetization method, it is well known that the relationship between fatigue damage and the remanent magnetization is simple, clear, and reproducible. In addition, the excitation method can be easily used at the job site because the special magnetizer is unnecessary. But, these methods have some disadvantages shown as follows. For instance, the former needs a special magnetizer and the latter's output signal is small. On the other hand, it is well known that the inductance of a pancake type coil put on the metallic specimen changes according to the electromagnetic properties of the metallic specimen. In this paper, the assessment method of fatigue of an austenitic stainless steel (SUS316) that uses the change by fatigue of the inductance of the pancake type coil measured with the LCR meter is shown. In addition, the fatigue evaluation performance of this method is described.

  13. An experimental investigation of fatigue damage in aluminum 2024-T3 alloys

    NASA Technical Reports Server (NTRS)

    Ferguson, Milton W.

    1993-01-01

    Aluminum alloys are finding increasing use in the aerospace and automobile industries due to their attractive low density-high modulus and low density-high strength characteristics. Unfortunately, cyclic stress-strain deformation alters the microstructure of the material. These structural changes can lead to fatigue damage and ultimately service failure. Therefore, in order to assess the integrity of the alloy, a correlation between fatigue damage and a measurable microstructural property is needed. Aluminum 2024-T3, a commonly used commercial alloy, contains many grains (individual crystals) of various orientations. The sizes and orientations of these grains are known to affect the strength, hardness, and magnetic permeability of polycrystalline alloys and metals; therefore, perhaps a relationship between a grain property and the fatigue state can be established. Tension-compression cycling in aluminum alloys can also induce changes in their dislocation densities. These changes can be studied from measurements of the electrical resistivities of the materials. Consequently, the goals of this investigation were: to study the grain orientation of aluminum 2024-T3 and to seek a correlation between the grain orientation and the fatigue state of the material; and to measure the electrical resistivities of fatigued samples of aluminum 2024-T3 and to interpret the findings.

  14. Structural damage detection in wind turbine blades based on time series representations of dynamic responses

    NASA Astrophysics Data System (ADS)

    Hoell, Simon; Omenzetter, Piotr

    2015-03-01

    The development of large wind turbines that enable to harvest energy more efficiently is a consequence of the increasing demand for renewables in the world. To optimize the potential energy output, light and flexible wind turbine blades (WTBs) are designed. However, the higher flexibilities and lower buckling capacities adversely affect the long-term safety and reliability of WTBs, and thus the increased operation and maintenance costs reduce the expected revenue. Effective structural health monitoring techniques can help to counteract this by limiting inspection efforts and avoiding unplanned maintenance actions. Vibration-based methods deserve high attention due to the moderate instrumentation efforts and the applicability for in-service measurements. The present paper proposes the use of cross-correlations (CCs) of acceleration responses between sensors at different locations for structural damage detection in WTBs. CCs were in the past successfully applied for damage detection in numerical and experimental beam structures while utilizing only single lags between the signals. The present approach uses vectors of CC coefficients for multiple lags between measurements of two selected sensors taken from multiple possible combinations of sensors. To reduce the dimensionality of the damage sensitive feature (DSF) vectors, principal component analysis is performed. The optimal number of principal components (PCs) is chosen with respect to a statistical threshold. Finally, the detection phase uses the selected PCs of the healthy structure to calculate scores from a current DSF vector, where statistical hypothesis testing is performed for making a decision about the current structural state. The method is applied to laboratory experiments conducted on a small WTB with non-destructive damage scenarios.

  15. Fatigue

    MedlinePlus

    ... sleep. Fatigue is a lack of energy and motivation. Drowsiness and apathy (a feeling of not caring ... fatigue symptoms, and your lifestyle, habits, and feelings. Tests that may be ordered include the following: Blood ...

  16. A Coupled/Uncoupled Computational Scheme for Deformation and Fatigue Damage Analysis of Unidirectional Metal-Matrix Composites

    NASA Technical Reports Server (NTRS)

    Wilt, Thomas E.; Arnold, Steven M.; Saleeb, Atef F.

    1997-01-01

    A fatigue damage computational algorithm utilizing a multiaxial, isothermal, continuum-based fatigue damage model for unidirectional metal-matrix composites has been implemented into the commercial finite element code MARC using MARC user subroutines. Damage is introduced into the finite element solution through the concept of effective stress that fully couples the fatigue damage calculations with the finite element deformation solution. Two applications using the fatigue damage algorithm are presented. First, an axisymmetric stress analysis of a circumferentially reinforced ring, wherein both the matrix cladding and the composite core were assumed to behave elastic-perfectly plastic. Second, a micromechanics analysis of a fiber/matrix unit cell using both the finite element method and the generalized method of cells (GMC). Results are presented in the form of S-N curves and damage distribution plots.

  17. Experimental Evaluation of Fatigue Damage Progression in Postbuckled Single Stringer Composite Specimens

    NASA Technical Reports Server (NTRS)

    Bisagni, Chiara; Davila, Carlos G.; Rose, Cheryl A.; Zalameda, Joseph N.

    2014-01-01

    The durability and damage tolerance of postbuckled composite structures are not yet completely understood, and remain difficult to predict due to the nonlinearity of the geometric response and its interaction with local damage modes. A research effort was conducted to investigate experimentally the quasi-static and fatigue damage progression in a single-stringer compression (SSC) specimen. Three specimens were manufactured with a hat-stiffener, and an initial defect was introduced with a Teflon film embedded between one flange of the stringer and the skin. One of the specimens was tested under quasi-static compressive loading, while the remaining two specimens were tested by cycling in postbuckling. The tests were performed at the NASA Langley Research Center under controlled conditions and with instrumentation that allows a precise evaluation of the postbuckling response and of the damage modes. Three-dimensional digital image correlation VIC-3D systems were used to provide full field displacements and strains on the skin and the stringer. Passive thermal monitoring was conducted during the fatigue tests using an infrared camera that showed the location of the delamination front while the specimen was being cycled. The live information from the thermography was used to stop the fatigue tests at critical stages of the damage evolution to allow detailed ultrasonic scans.

  18. Real Time Fatigue Damage Growth Assessment of a Composite Three-Stringer Panel Using Passive Thermography

    NASA Technical Reports Server (NTRS)

    Zalameda, Joseph N.; Burke, Eric R.; Horne, Michael R.; Bly, James B.

    2015-01-01

    Fatigue testing of advanced composite structures is critical to validate both structural designs and damage prediction models. In-situ inspection methods are necessary to track damage onset and growth as a function of load cycles. Passive thermography is a large area, noncontact inspection technique that is used to detect composite damage onset and growth in real time as a function of fatigue cycles. The thermal images are acquired in synchronicity to the applied compressive load using a dual infrared camera acquisition system for full (front and back) coverage. Image processing algorithms are investigated to increase defect contrast areas. The thermal results are compared to non-immersion ultrasound inspections and acoustic emission data.

  19. Estimation of Fatigue Damage for AN Austenitic Stainless Steel (SUS304) Using a Pancake Type Coil

    NASA Astrophysics Data System (ADS)

    Oka, M.; Tsuchida, Y.; Nagato, S.; Yakushiji, T.; Enokizono, M.

    2008-02-01

    There are some fatigue damage estimation methods of an austenitic stainless steel that uses martensitic transformation. For instance, those are the remanent magnetization method, the excitation method, and so on. Those two methods are researched also in our laboratory now. In the remanent magnetization method, it is well known that the relationship between fatigue damage and the remanent magnetization is simple, clear, and reproducible. However, this method has the disadvantage to need a special magnetizer. Then, this method cannot be easily used at the job site such as the factory. On the other hand, as the special magnetizer is unnecessary, the excitation method can be easily used at the job site. But, this method has some disadvantages shown as follows. For instance, the output signal of this method is small. And the surface state of the specimen strongly influences the noise component of the output signal. It is well known that the inductance of a pancake type coil put on the metallic specimen changes according to the electromagnetic properties of the metallic specimen. In this paper, the method of evaluation of fatigue damage of an austenitic stainless steel (SUS304) by using a change of an inductance of a pancake type coil is shown. In addition, the fatigue evaluation performance of this method is described.

  20. Low cost corrosion damage mitigation and improved fatigue performance of low plasticity burnished 7075-T6

    NASA Astrophysics Data System (ADS)

    Prevéy, Paul S.; Cammett, John

    2001-10-01

    Low plasticity burnishing (LPB) has been investigated as a surface enhancement process and corrosion mitigation method for aging aircraft structural applications. Compressive residual stresses reaching the alloy yield strength and extending to a depth of 1.25 mm (0.050 in.) deeper than typical corrosion damage is achievable. Excellent surface finish can be achieved with no detectable metallurgical damage to surface and subsurface material. Salt fog exposures of 100 and 500 h reduced the fatigue strength at 2×106 cycles by 50%. The LPB of the corroded surface, without removal of the corrosion product or pitted material, restored the 2×106 fatigue strength to greater than that of the original machined surface. The fatigue strength of the corroded material in the finite life regime (104 to 106 cycles) after LPB was 140 MPa (20 ksi) higher than the original uncorroded alloy and increased the life by an order of magnitude. Ease of adaptation to computer numerical control (CNC) machine tools allows LPB processing at costs and speeds comparable to machining operations. Low plasticity burnishing offers a promising new technology for mitigation of corrosion damage and improved fatigue life of aircraft structural components with significant cost and time savings over current practices.

  1. Deformation history and load sequence effects on cumulative fatigue damage and life predictions

    NASA Astrophysics Data System (ADS)

    Colin, Julie

    Fatigue loading seldom involves constant amplitude loading. This is especially true in the cooling systems of nuclear power plants, typically made of stainless steel, where thermal fluctuations and water turbulent flow create variable amplitude loads, with presence of mean stresses and overloads. These complex loading sequences lead to the formation of networks of microcracks (crazing) that can propagate. As stainless steel is a material with strong deformation history effects and phase transformation resulting from plastic straining, such load sequence and variable amplitude loading effects are significant to its fatigue behavior and life predictions. The goal of this study was to investigate the effects of cyclic deformation on fatigue behavior of stainless steel 304L as a deformation history sensitive material and determine how to quantify and accumulate fatigue damage to enable life predictions under variable amplitude loading conditions for such materials. A comprehensive experimental program including testing under fully-reversed, as well as mean stress and/or mean strain conditions, with initial or periodic overloads, along with step testing and random loading histories was conducted on two grades of stainless steel 304L, under both strain-controlled and load-controlled conditions. To facilitate comparisons with a material without deformation history effects, similar tests were also carried out on aluminum 7075-T6. Experimental results are discussed, including peculiarities observed with stainless steel behavior, such as a phenomenon, referred to as secondary hardening characterized by a continuous increase in the stress response in a strain-controlled test and often leading to runout fatigue life. Possible mechanisms for secondary hardening observed in some tests are also discussed. The behavior of aluminum is shown not to be affected by preloading, whereas the behavior of stainless steel is greatly influenced by prior loading. Mean stress relaxation in

  2. Fatigue damage simulation of a laminated composite plate with a central hole

    NASA Astrophysics Data System (ADS)

    Lessard, Larry B.; Liu, Bangyan

    A FEM technique is here used in conjunction with a modulus-degradation model to simulate the progression of damage in a laminated composite plate, which has a central hole and is subjected to tension-tension fatigue loading, as a function of load level and number of load cycles. Analytical models are developed to predict the residual elastic moduli changes that are due to both matrix cracking and delamination. The scheme as a whole is sufficiently general for application to numerous additional problems involving fatigue-loaded composites with stress concentrations.

  3. A model for predicting damage induced fatigue life of laminated composite structural components

    NASA Technical Reports Server (NTRS)

    Allen, David H.; Lo, David C.; Georgiou, Ioannis T.; Harris, Charles E.

    1990-01-01

    This paper presents a model for predicting the life of laminated composite structural components subjected to fatigue induced microstructural damage. The model uses the concept of continuum damage mechanics, wherein the effects of microcracks are incorporated into a damage dependent lamination theory instead of treating each crack as an internal boundary. Internal variables are formulated to account for the effects of both matrix cracks and internal delaminations. Evolution laws for determining the damage variables as functions of ply stresses are proposed, and comparisons of predicted damage evolution are made to experiment. In addition, predicted stiffness losses, as well as ply stresses are shown as functions of damage state for a variety of stacking sequences.

  4. Post-Impact Fatigue Damage Monitoring Using Fiber Bragg Grating Sensors

    PubMed Central

    Shin, Chow-Shing; Liaw, Shien-Kuei; Yang, Shi-Wei

    2014-01-01

    It has been shown that impact damage to composite materials can be revealed by embedded Fiber Bragg Gratings (FBG) as a broadening and splitting of the latter's characteristic narrow peak reflected spectrum. The current work further subjected the impact damaged composite to cyclic loading and found that the FBG spectrum gradually submerged into a rise of background intensity as internal damages progressed. By skipping the impact, directing the impact to positions away from the FBG and examining the extracted fibers, we concluded that the above change is not a result of deterioration/damage of the sensor. It is caused solely by the damages initiated in the composite by the impact and aggravated by fatigue loading. Evolution of the grating spectrum may therefore be used to monitor qualitatively the development of the incurred damages. PMID:24594609

  5. The effect of cement creep and cement fatigue damage on the micromechanics of the cement-bone interface.

    PubMed

    Waanders, Daan; Janssen, Dennis; Mann, Kenneth A; Verdonschot, Nico

    2010-11-16

    The cement-bone interface provides fixation for the cement mantle within the bone. The cement-bone interface is affected by fatigue loading in terms of fatigue damage or microcracks and creep, both mostly in the cement. This study investigates how fatigue damage and cement creep separately affect the mechanical response of the cement-bone interface at various load levels in terms of plastic displacement and crack formation. Two FEA models were created, which were based on micro-computed tomography data of two physical cement-bone interface specimens. These models were subjected to tensile fatigue loads with four different magnitudes. Three deformation modes of the cement were considered: 'only creep', 'only damage' or 'creep and damage'. The interfacial plastic deformation, the crack reduction as a result of creep and the interfacial stresses in the bone were monitored. The results demonstrate that, although some models failed early, the majority of plastic displacement was caused by fatigue damage, rather than cement creep. However, cement creep does decrease the crack formation in the cement up to 20%. Finally, while cement creep hardly influences the stress levels in the bone, fatigue damage of the cement considerably increases the stress levels in the bone. We conclude that at low load levels the plastic displacement is mainly caused by creep. At moderate to high load levels, however, the plastic displacement is dominated by fatigue damage and is hardly affected by creep, although creep reduced the number of cracks in moderate to high load region. PMID:20692663

  6. Fatigue damage modeling for coated single crystal superalloys

    NASA Technical Reports Server (NTRS)

    Nissley, David M.

    1988-01-01

    A high temperature, low-cycle fatigue life prediction method for coated single crystal nickel-base superalloys is being developed. The method is being developed for use in predicting crack initiation life of coated single crystal turbine airfoils. Although the models are being developed using coated single crystal PWA 1480, they should be readily adaptable to other coated nickel-base single crystal materials. The coatings choosen for this effort were of two generic types: a low pressure plasma sprayed NiCoCrAlY overlay, designated PWA 286, and an aluminide diffusion, designated PWA 273. In order to predict the useful crack initiation life of airfoils, the constitutive and failure behavior of the coating/substrate combination must be taken into account. Coatings alter the airfoil surface microstructure and are a primary source from which cracks originate. The adopted life prediction approach addresses this complexity by separating the coating and single crystal crack initiation regimes. This provides a flexible means for using different life model formulations for the coating and single crystal materials. At the completion of this program, all constitutive and life model formulations will be available in equation form and as software. The software will use the MARC general purpose finite element code to drive the constitutive models and calculate life parameters.

  7. The influence of tensile fatigue damage on residual compressive strength of woven composites

    SciTech Connect

    Mitrovic, M.; Carman, G.P.

    1995-12-31

    The long term mechanical fatigue of a Celion G30-500/PMR-15 woven composite system is investigated to study the interrelationship between thermo-mechanical properties, namely the thermal expansion coefficient (TEC) and the compressive strength. Residual compressive strength measurements (IITRI fixture) conducted on specimens subjected to tension-tension fatigue cycling indicate that this material property is sensitive to cracks and delaminations which form during mechanical cycling. Measured compressive strength degradation are as large as 49% for this material undergoing mechanical fatigue cycling with TEC degradation as large as 61%. Experimental results show that a correlation exists between TEC measurements and compressive strength. This correlation suggests that TEC measurements may be used as a damage evaluation technique.

  8. Optimal selection of autoregressive model coefficients for early damage detectability with an application to wind turbine blades

    NASA Astrophysics Data System (ADS)

    Hoell, Simon; Omenzetter, Piotr

    2016-03-01

    Data-driven vibration-based damage detection techniques can be competitive because of their lower instrumentation and data analysis costs. The use of autoregressive model coefficients (ARMCs) as damage sensitive features (DSFs) is one such technique. So far, like with other DSFs, either full sets of coefficients or subsets selected by trial-and-error have been used, but this can lead to suboptimal composition of multivariate DSFs and decreased damage detection performance. This study enhances the selection of ARMCs for statistical hypothesis testing for damage presence. Two approaches for systematic ARMC selection, based on either adding or eliminating the coefficients one by one or using a genetic algorithm (GA) are proposed. The methods are applied to a numerical model of an aerodynamically excited large composite wind turbine blade with disbonding damage. The GA out performs the other selection methods and enables building multivariate DSFs that markedly enhance early damage detectability and are insensitive to measurement noise.

  9. Determination of Turbine Blade Life from Engine Field Data

    NASA Technical Reports Server (NTRS)

    Zaretsky, Erwin V.; Litt, Jonathan S.; Hendricks, Robert C.; Soditus, Sherry M.

    2013-01-01

    It is probable that no two engine companies determine the life of their engines or their components in the same way or apply the same experience and safety factors to their designs. Knowing the failure mode that is most likely to occur minimizes the amount of uncertainty and simplifies failure and life analysis. Available data regarding failure mode for aircraft engine blades, while favoring low-cycle, thermal-mechanical fatigue (TMF) as the controlling mode of failure, are not definitive. Sixteen high-pressure turbine (HPT) T-1 blade sets were removed from commercial aircraft engines that had been commercially flown by a single airline and inspected for damage. Each set contained 82 blades. The damage was cataloged into three categories related to their mode of failure: (1) TMF, (2) Oxidation/erosion (O/E), and (3) Other. From these field data, the turbine blade life was determined as well as the lives related to individual blade failure modes using Johnson-Weibull analysis. A simplified formula for calculating turbine blade life and reliability was formulated. The L10 blade life was calculated to be 2427 cycles (11 077 hr). The resulting blade life attributed to O/E equaled that attributed to TMF. The category that contributed most to blade failure was Other. If there were no blade failures attributed to O/E and TMF, the overall blade L(sub 10) life would increase approximately 11 to 17 percent.

  10. The effect of pseudo-accumulation in the measurement of fatigue laser-induced damage threshold

    NASA Astrophysics Data System (ADS)

    Melninkaitis, A.; Mirauskas, J.; Jupé, M.; Ristau, D.; Arenberg, J. W.; Sirutkaitis, V.

    2008-10-01

    Laser-induced damage threshold determination as a function of the number of incident pulses on a specific optic is a classic problem in laser damage studies. There are several models of the fundamental mechanisms explaining the fatigue laser damage behavior including temperature accumulation and changes of electronic or chemical material structure. Herewith we discuss the effects of unstable laser radiation on S-on-1 laser-induced damage probability. Numerical simulations of S-on-1 measurements for specific cases of defect densities, spot sizes and beam jitters are performed. It is demonstrated that the statistical effects of "pseudo-accumulation" reasoned by unstable laser radiation in transparent dielectrics containing nanometer sized defects leads to accumulation-like behavior. The magnitudes of the random beam walking and the energy fluctuations are directly related to the damage probability. Experimental results are also introduced to illustrate the theoretical results.