Science.gov

Sample records for blade plate removal

  1. Transient monoparesis following blade plate removal in a Hutchinson-Gilford progeria syndrome patient. A case report

    PubMed Central

    Yandow, Suzanne M.; Rimoin, David L.; Grace, Aimee M.; Fillman, Ramona R.; Raney, Ellen M.

    2010-01-01

    Treating patients with Hutchinson-Gilford progeria syndrome (HGPS) are based on the abnormalities of accelerated aging that affect the healing processes, combined with a fragile cardiovascular status. A classic HGPS case is presented, of Korean ancestry, who was treated for severe coxa valga with bilateral varus osteotomies using blade plate fixation. Complications over the blade plate area required removal of the hardware, after which the patient displayed left-sided hypertonicity--determined to be a cerebrovascular accident. Subsequently, she returned almost completely to her pre-surgical neurologic status. Perioperative planning for HGPS patients should include risks typically considered in the planning for geriatric patient care. PMID:19373113

  2. Difficulties encountered removing locked plates

    PubMed Central

    Raja, S; Imbuldeniya, AM; S, Garg; Groom, G

    2012-01-01

    INTRODUCTION Locked plates are commonly used to obtain fixation in periarticular and comminuted fractures. Their use has also gained popularity in repairing fractures in osteoporotic bone. These plates provide stable fixation and promote biological healing. Over the last 3 years, we have used over 150 locked plates with varying success to fix periarticular fractures involving mainly the knee and ankle. In this study, we report our clinical experience and the difficulties encountered when removing locked plates in adult patients with a variety of indications including implant failure, infection, non-union and a palpable symptomatic implant. METHODS A retrospective analysis was performed of patients enrolled prospectively into a database. Included in the study were 36 consecutive adult patients who each underwent the procedure of locked plate removal in a single inner city level 1 trauma centre. Data collected included primary indication for fixation, indication for implant removal, time of the implant in situ, grade of operating surgeon and difficulties encountered during the procedure. RESULTS Implant removal was associated with a complication rate of 47%. The major problems encountered were difficulty in removing the locked screws and the implant itself. A total of ten cold welded screws were found in eight cases. Removal was facilitated by high speed metal cutting burrs and screw removal sets in all but one case, where a decision was made to leave the plate in situ. CONCLUSIONS The majority of studies investigating implant removal and problems encountered in doing so report a relatively high complication rate. With the advent of locking plates and their growing popularity, difficulties are now being seen intra-operatively when removing them. There is a paucity of data, however, specifically directed at locking plate removal. We recommend that surgeons should be aware of the potential complications while removing locked plates. Fluoroscopic control and all

  3. Supracondylar Osteotomy in Valgus Knee: Angle Blade Plate Versus Locking Compression Plate

    PubMed Central

    Kazemi, Seyyed Morteza; Minaei, Reza; Safdari, Farshad; Keipourfard, Ali; Forghani, Rozhin; Mirzapourshafiei, Alemeh

    2016-01-01

    Background: There are few studies comparing the biomechanical properties of angled blade plate and locking compression plates in supracondylar osteotomy. In the current randomized study, we prospectively compared the clinical and radiological outcomes of supracondylar osteotomy using these two plates. Methods: Forty patients with valgus knee malalignment were randomly assigned to two equal numbered groups: angled blade plate and locking compression plates. All of the patients underwent medial closing wedge supracondylar osteotomy and were followed for one year. Before and after the operation the valgus angle and mechanical lateral distal femoral angle were compared between groups. Also, the rate of complications were compared. Results: After the operation, the mean valgus angle and mechanical lateral distal femoral angle improved significantly in the two groups (P<0.001). Although, the preoperative amount of the valgus angle and mechanical lateral distal femoral angle were the same, at the last visit the valgus angle (5.4±2.1 versus 3.1±1.8; P=0.032) and mechanical lateral distal femoral angle (87.6±2 versus 89.7±3.2; P=0.041) were significantly lower and higher in the angled blade plate group, respectively. Nonunion occurred in four patients (20%) in the locking compression plates group (P=0.35). Conclusion: Based on having a larger valgus angle and mechanical lateral distal femoral angle correction in the angled blade plate group and considerable rate of nonunion in the locking compression plate group, the authors recommend using the angled blade plate for fixation of medial closing wedge supracondylar osteotomy for patients with valgus malalignment. However, more long-term studies are required. PMID:26894215

  4. Effect of Hardness Combination on Contact Deformation of Center Bevel Blade with Counter Plate Subjected to a Pushing Load

    NASA Astrophysics Data System (ADS)

    Chaijit, Seksan; Nagasawa, Shigeru; Fukuzawa, Yasushi; Murayama, Mitsuhiro; Katayama, Isamu

    This paper reports on the contact mechanism between the crushing tip of a center bevel blade and the dent of a counter plate. Pushing tests of the blade on the counter plate were carried out experimentally and numerically by varying the mechanical flow properties of both the blade tip and the counter plate. A yield line force ratio β was proposed to characterize the contact deformation in terms of blade apex angle. Through this research, it was found that: (1) the crushed tip of a mild blade could be kept in moderate for the mild counter plate; (2) the counter plate's dent depth is linearly related to the β and depends on the combination of the mechanical properties of both the blade and the counter plate; (3) the total clearance of the deformed tools is almost independent from the tools material combination; (4) the profile angle of the blade tip and the crushed tip thickness mainly depend on the blade's properties.

  5. Optimal placement of piezoelectric plates for active vibration control of gas turbine blades: experimental results

    NASA Astrophysics Data System (ADS)

    Botta, F.; Marx, N.; Gentili, S.; Schwingshackl, C. W.; Di Mare, L.; Cerri, G.; Dini, D.

    2012-04-01

    It is well known that the gas turbine blade vibrations can give rise to catastrophic failures and a reduction of the blades life because of fatigue related phenomena[1]-[3] . In last two decades, the adoption of piezoelectric elements, has received considerable attention by many researcher for its potential applicability to different areas of mechanical, aerospace, aeronautical and civil engineering. Recently, a number of studies of blades vibration control via piezoelectric plates and patches have been reported[4]-[6] . It was reported that the use of piezoelectric elements can be very effective in actively controlling vibrations. In one of their previous contributions[7] , the authors of the present manuscript studied a model to control the blade vibrations by piezoelectric elements and validated their results using a multi-physics finite elements package (COMSOL) and results from the literature. An optimal placement method of piezoelectric plate has been developed and applied to different loading scenarios for realistic configurations encountered in gas turbine blades. It has been demonstrated that the optimal placement depends on the spectrum of the load, so that segmented piezoelectric patches have been considered and, for different loads, an optimal combination of sequential and/or parallel actuation and control of the segments has been studied. In this paper, an experimental investigation carried out by the authors using a simplified beam configuration is reported and discussed. The test results obtained by the investigators are then compared with the numerical predictions [7] .

  6. Helicopter gust alleviation, attitude stabilization, and vibration alleviation using individual-blade-control through a conventional swash plate

    NASA Technical Reports Server (NTRS)

    Ham, N. D.

    1985-01-01

    The novel active control system presented for helicopter rotor aerodynamic and aeroelastic problems involves the individual control of each blade in the rotating frame over a wide range of frequencies (up to the sixth harmonic of rotor speed). This Individual Blade Control (IBC) system controls blade pitch by means of broadband electrohydraulic actuators attached to the swash plate (in the case of three blades) or individually to each blade, using acceleratometer signals to furnish control commands to the actuators. Attention is given to IBC's application to blade lag, flapping, and bending dynamics. It is shown that gust alleviation, attitude stabilization, vibration alleviation, and air/ground resonance suppression, are all achievable with a conventional helicopter swash plate.

  7. Complication with removal of a lumbar spinal locking plate.

    PubMed

    Crawford, Brooke; Lenarz, Christopher; Watson, J Tracy; Alander, Dirk

    2015-01-01

    Introduction. The use of locking plate technology for anterior lumbar spinal fusion has increased stability of the vertebral fusion mass over traditional nonconstrained screw and plate systems. This case report outlines a complication due to the use of this construct. Case. A patient with a history of L2 corpectomy and anterior spinal fusion presented with discitis at the L4/5 level and underwent an anterior lumbar interbody fusion (ALIF) supplemented with a locking plate placed anterolaterally for stability. Fifteen months after the ALIF procedure, he returned with a hardware infection. He underwent debridement of the infection site and removal of hardware. Results. Once hardware was exposed, removal of the locking plate screws was only successful in one out of four screws using a reverse thread screw removal device. Three of the reverse thread screw removal devices broke in attempt to remove the subsequent screws. A metal cutting drill was then used to break hoop stresses associated with the locking device and the plate was removed. Conclusion. Anterior locking plates add significant stability to an anterior spinal fusion mass. However, removal of this hardware can be complicated by the inherent properties of the design with significant risk of major vascular injury. PMID:25838956

  8. Complication with Removal of a Lumbar Spinal Locking Plate

    PubMed Central

    Crawford, Brooke; Lenarz, Christopher; Watson, J. Tracy; Alander, Dirk

    2015-01-01

    Introduction. The use of locking plate technology for anterior lumbar spinal fusion has increased stability of the vertebral fusion mass over traditional nonconstrained screw and plate systems. This case report outlines a complication due to the use of this construct. Case. A patient with a history of L2 corpectomy and anterior spinal fusion presented with discitis at the L4/5 level and underwent an anterior lumbar interbody fusion (ALIF) supplemented with a locking plate placed anterolaterally for stability. Fifteen months after the ALIF procedure, he returned with a hardware infection. He underwent debridement of the infection site and removal of hardware. Results. Once hardware was exposed, removal of the locking plate screws was only successful in one out of four screws using a reverse thread screw removal device. Three of the reverse thread screw removal devices broke in attempt to remove the subsequent screws. A metal cutting drill was then used to break hoop stresses associated with the locking device and the plate was removed. Conclusion. Anterior locking plates add significant stability to an anterior spinal fusion mass. However, removal of this hardware can be complicated by the inherent properties of the design with significant risk of major vascular injury. PMID:25838956

  9. Distal Femoral Osteotomy in Genovalgum: Internal Fixation with Blade Plate Versus Casting

    PubMed Central

    Makhmalbaf, Hadi; Moradi, Ali; Ganji, Saeid

    2014-01-01

    Background: To compare the results of two different ways of distal femoral osteotomy stabilization in patients suffering from genuvalgum: internal fixation with plate, and casting. Methods: In a non-randomized prospective study, after distal femoral osteotomy with the zigzag method, patients were divided into two groups: long leg casting, and internal fixation with blade plate. For all patients, questionnaires were filled to obtain data. Information such as range of motion, tibiofemoral anatomical angle and complications were recorded. Results: 38 knees with valgus deformity underwent distal femoral supracondylar osteotomy. (8 with plaster cast and 30 with internal fixation using a blade plate). Preoperative range of motion was 129±6° and six months later it was 120±14°. The preoperative tibiofemoral angle was 32±6°; postoperative tibiofemoral angles were 3±3°, 6±2°, and 7±3° just after operation, six months, and two years later, respectively. Although this angle was greater among the group stabilized with a cast, this difference was not statistically significant. In postoperative complications, over-correction was found in five, recorvatom deformity in one, knee stiffness in three and superficial wound infection was recorded in three knees. Conclusions: There is no prominent difference in final range of motion and alignment whether fixation is done with casting or internal fixation. However, the complication rate seems higher in the casting method. PMID:25692152

  10. FIXATION OF SUPRACONDYLAR FEMORAL FRACTURES: A BIOMECHANICAL ANALYSIS COMPARING 95° BLADE PLATES AND DYNAMIC CONDYLAR SCREWS (DCS)

    PubMed Central

    Percope Andrade, Marco Antônio; Rodrigues, André Soares; Mendonça, Celso Junio; Santos Portela, Luiz Gustavo

    2015-01-01

    Objective: To determine, by means of comparative biomechanical tests, whether greater compressive load resistance and flexion is presented by 95° angled blade plates or by dynamic condylar screws (DCS), and to correlate the failure type presented during the tests with each type of plate. Methods: Sixty-five porcine femurs were subjected to 1 cm medial wedge osteotomy, in the metaphysis, to simulate an unstable supracondylar femoral fracture. Osteosynthesis was performed on these pieces: 35 were fixed using 95° lateral blade plates and 30 with DCS plates. Another variable studied was the failure type presented in each group, in an attempt to correlate this with the type of plate. Results: There were no statistically significant differences in biomechanical resistance between the two types of plates, or between the failure type and the plate type used for the osteosynthesis. Conclusion: The two types of plate behaved in a similar fashion. However, the angled blade plate proved to be superior to the DCS in the flexion test. No statistical difference in failure type or type of plate used was observed. PMID:27022525

  11. Jael syndrome: removal of a knife blade impacted in the maxillofacial region under local anaesthesia

    PubMed Central

    Dominguete, Paulo Roberto; Matos, Bruno Figueiredo; Meyer, Tufi Neder; Oliveira, Lucinei Roberto

    2013-01-01

    The presence of retained foreign bodies in the maxillofacial region as a consequence of penetrating injuries from knives is poorly documented in the scientific literature. This manuscript reports the case of a 30-year-old Caucasian with a knife blade lodged in the maxillofacial skeleton. Following clinical and radiographic exams, it was determined that the object had penetrated through the left nostril and nasal septum, in the direction of the right maxillary sinus, and remained impacted without causing injury to important anatomical structures. After systemic assessment and determination of the exact location of the knife blade, the object was removed in an outpatient setting under local anaesthesia. This manuscript aims to report a rare case of a transfacial penetrating injury involving a knife blade that was removed in an outpatient setting while also discussing the proper conduct and treatment options for similar cases in the context of a brief literature review. PMID:23580680

  12. Easy and Inexpensive Technique for Removal of Round Headed, Jammed Locking Screws in Distal Tibial Interlocking Plate

    PubMed Central

    Singh, Harpreet; Sharma, Rohit; Gupta, Sachin; Singh, Narinderjit; Singh, Simarpreet

    2015-01-01

    Introduction: The advent of locking plates has brought new problems in implant removal. Difficulty in removing screws from a locking plate is well-known. These difficulties include cold welding between the screw head and locking screw hole, stripping of the recess of the screw head for the screwdriver, and cross-threading between threads in the screw head and screw hole. However, there are cases in which removal is difficult. We describe a new technique for removing a round headed, jammed locking screws from a locking plate. Case Report: 55 years old male patient received a locking distal tibial plate along with distal fibular plate 3years back from UAE. Now patient came with complaint of non-healing ulcer over medial aspect of lower 1/3rd of right leg from past 1 year. Non operative management did not improve the symptoms. The patient consented to implant removal, with the express understanding that implant removal might be impossible because already one failed attempt had been performed at some other hospital six months back. We then decided to proceed with the new technique. The rest of the proximal screws were removed using a technique not previously described. We used stainless steel metal cutting blades that are used to cut door locks or pad locks to cut the remaining stripped headed screws. Conclusion: This technique is very quick, easy to perform and inexpensive because the metal cutting blades which are used to cut the screws are very cheap. Yet it is very effective technique to remove the stripped headed or jammed locking screws. It is also very less destructive because of very less heat production during the procedure there is no problem of thermal necrosis to the bone or the surrounding soft tissue. PMID:27299064

  13. The "Hands Together" Method of Nonsterile Scalpel Blade Mounting and Removal

    ERIC Educational Resources Information Center

    Cornwall, Jon

    2014-01-01

    Scalpels are utilized by many different user groups for such purposes as medical procedures and dissection. Injuries caused by scalpels are a potential risk for scalpel users, and include injuries that may occur while mounting and removing the scalpel blade. Between 10% and 20% of all scalpel injuries in education and healthcare settings are…

  14. A vibrating razor blade machining tool for material removal on low- density foams

    SciTech Connect

    Hillyer, D.F. Jr.

    1990-10-01

    The Lawrence Livermore National Laboratory (LLNL) has developed an accurate method of machining low-density foams into rectangular blank shapes by using a commercial oscillating razor blade machining tool concept marketed as a Vibratome. Since 1970, Vibratome has been used by medical laboratories to section fresh or fixed animal and plant tissues without freezing or embedding. By employing a vibrating razor blade principle, Vibratome sectioning avoids the alteration of morphology and the destruction of enzyme activities. The patented vibrating blade principle moves the sectioning razor blade in a reciprocating arcuate path as it penetrates the specimen. Sectioning takes place in a liquid bath using an ordinary injector-type razor blade. Although other commercial products may accomplish the same task, the Vibratome concept is currently being used at LLNL to obtain improved foam surface qualities from razor machining by combining state-of-the-art air bearing hardware with precise linear motion and an electrodynamic exciter that generates sinusoidal excitation. Razor cut foam surfaces of less than 25 {mu}m (0.001 in.) flatness are achieved over areas of 8.75 in.{sup 2} (2.5 {times} 3.5 in.). Razor machining of wide or narrow foam surfaces is generally characterized by a continuous curl chip for the full length of the material removed. This continuous chip facilitates flatness and prevents increased surface densities caused by material chip collection often left in the surface cells by conventional machine tools. This report covers the design evolution of razor machining of non-metallic soft materials. Hardware that maintains close dimensional tolerances and concurrently leaves the machined surface free of physical property changes is described. 20 figs.

  15. Sputter-ion plating of coatings for protection of gas-turbine blades against high-temperature oxidation and corrosion

    NASA Technical Reports Server (NTRS)

    Coad, J. P.; Restall, J. E.

    1982-01-01

    Considerable effort is being devoted to the development of overlay coatings for protecting critical components such as turbine blades against high-temperature oxidation, corrosion, and erosion damage in service. The most commercially advanced methods for depositing coatings are electron-beam evaporation and plasma spraying. Sputter-ion plating (SIP) offers a potentially cheaper and simpler alternative method for depositing overlays. Experimental work on SIP of Co-Cr-Al-Y and Ni-Cr-Al-Ti alloy coatings is described. Results are presented of metallographic assessment of these coatings, and of the results obtained from high-velocity testing using a gas-turbine simulator rig.

  16. The use of a new locking 90° blade plate in the treatment of atrophic proximal humerus nonunions

    PubMed Central

    Allende, Bartolome T.

    2008-01-01

    This level IV case series study prospectively evaluated patients with atrophic proximal humerus nonunions stabilised with a locking 90° blade plate. All patients were women with an average age of 69 years (range 56–78). Time from trauma to nonunion treatment averaged 23 months. Five patients had had previous surgical treatments. Two patients had a history of infection and one patient with active infection was reconstructed in two stages. Follow-up averaged 22 months (range 18–36); union was achieved in all seven cases after an average of 5.85 months. The DASH score at the last follow-up averaged 25 points and Constant score averaged 72.7 points. No patient required additional procedures. At the last follow-up all patients were free of infection, and there were no cases of avascular necrosis. The results with locked 90° blade plates in atrophic nonunions of the proximal humerus in adults were favourable in this series. PMID:18974986

  17. Mini-plate removal in maxillofacial trauma patients during a five-year retrospective study

    PubMed Central

    2016-01-01

    Objectives The purpose of this study was to analyze the incidence of indications for the removal of mini-plates over a five-year period in maxillofacial trauma patients. Materials and Methods The medical records of 530 patients who underwent treatment with mini-plate fixation after maxillofacial trauma were reviewed for a five-year period (May 2007 to May 2012). Patients were evaluated concerning the number of mini-plates removed, age and gender distributions, time between insertion and removal, indication for removal, and site of removal. Results The plates of 120 patients were removed (26 females and 94 males). The removal rate was 22.6%. The most frequent indication for removal was patient demand (81.7%), followed by tooth extraction (7.5%), and pain (3.3%). The most frequent removal site was the mandible (95.0%). Conclusion The number of mini-plates removed was small, and the most common indication for removal was patient demand. There is no evidence to support a recommendation for the routine removal of titanium mini-plates. PMID:27595084

  18. Design Evaluation Using Finite Element Analysis of Cooled Silicon Nitride Plates for a Turbine Blade Application

    NASA Technical Reports Server (NTRS)

    Abdul-Aziz, Ali; Baaklini, George Y.; Bhatt, Ramakrishna T.

    2001-01-01

    Two- and three-dimensional finite element analyses were performed on uncoated and thermal barrier coated (TBC) silicon nitride plates with and without internal cooling by air. Steady-state heat-transfer analyses were done to optimize the size and the geometry of the cooling channels to reduce thermal stresses, and to evaluate the thermal environment experienced by the plate during burner rig testing. The limited experimental data available were used to model the thermal profile exerted by the flame on the plate. Thermal stress analyses were performed to assess the stress response due to thermal loading. Contours for the temperature and the representative stresses for the plates were generated and presented for different cooling hole sizes and shapes. Analysis indicates that the TBC experienced higher stresses, and the temperature gradient was much reduced when the plate was internally cooled by air. The advantages and disadvantages of several cooling channel layouts were evaluated.

  19. Wide bandsaw blade under cutting conditions. Part III: Stability of a plate moving in its plane while subjected to non-conservative cutting forces

    NASA Astrophysics Data System (ADS)

    Lengoc, L.; McCallion, H.

    1995-09-01

    This study provides yet another possible mechanism for instability of bandsaw blades during sawing, namely dynamic instability of a moving plate when subjected to non-conservative tangential edge loading. In previous publications, the effect of non-conservative edge loading has been neglected; only the divergent buckling and the parametric instability have been considered as causes of unstable bandsaw blade motion. However, the non-conservative loading due to sawing can excite a flutter-type instability, similar to flutter in aeroplane wings. The extended Galerkin method is used to discretize the equation of motion, and a non-self-adjoint eigenvalue solver is employed to find the solutions.

  20. Turbine blade platform seal

    DOEpatents

    Zagar, Thomas W.; Schiavo, Anthony L.

    2001-01-01

    A rotating blade group 90 for a turbo-machine having an improved device for sealing the gap 110 between the edges 112,114 of adjacent blade platforms 96,104. The gap 110 between adjacent blades 92,100 is sealed by a seal pin 20 its central portion 110 and by a seal plate 58,60 at each of the front 54 and rear 56 portions. The seal plates 58,60 are inserted into corresponding grooves 62,64 formed in the adjacent edges 112,114 of adjoining blades 92,100 and held in place by end plates 40,42. The end of the seal plates 58,60 may be chamfered 78,80 to improve the seal against the end plate 40,42. The seal pin 20 provides the required damping between the blades 92,100 and the seal plates 58,60 provide improved sealing effectiveness.

  1. Convective Removal of Continental Margin Lithosphere at the Edges of Subducting Oceanic Plates

    NASA Astrophysics Data System (ADS)

    Levander, A.; Bezada, M. J.; Palomeras, I.; Masy, J.; Humphreys, E.; Niu, F.

    2013-12-01

    Although oceanic lithosphere is continuously recycled to the deeper mantle by subduction, the rates and manner in which different types of continental lithospheric mantle are recycled is unclear. Cratonic mantle can be chemically reworked and essentially decratonized, although the frequency of decratonization is unclear. Lithospheric mantle under or adjacent to orogenic belts can be lost to the deeper mantle by convective downwellings and delamination phenomena. Here we describe how subduction related processes at the edges of oceanic plates adjacent to passive continental margins removes the mantle lithosphere from beneath the margin and from the continental interior. This appears to be a widespread means of recycling non-cratonic continental mantle. Lithospheric removal requires the edge of a subducting oceanic plate to be at a relatively high angle to an adjacent passive continental margin. From Rayleigh wave and body wave tomography, and receiver function images from the BOLIVAR and PICASSO experiments, we infer large-scale removal of continental margin lithospheric mantle from beneath 1) the northern South American plate margin due to Atlantic subduction, and 2) the Iberian and North African margins due to Alboran plate subduction. In both cases lithospheric mantle appears to have been removed several hundred kilometers inland from the subduction zones. This type of ';plate-edge' tectonics either accompanies or pre-conditions continental margins for orogenic activity by thinning and weakening the lithosphere. These processes show the importance of relatively small convective structures, i.e. small subducting plates, in formation of orogenic belts.

  2. Wide bandsaw blade under cutting conditions. Part I: Vibration of a plate moving in its plane while subjected to tangential edge loading

    NASA Astrophysics Data System (ADS)

    Lengoc, L.; McCallion, H.

    1995-09-01

    The cutting span of a bandsaw blade is modelled as a moving plate and a simple, yet powerful, method is presented for analyzing its vibration when subjected to various in-plane stresses, including stresses due to tangential cutting forces. Time-independent tangential edge-loading couples modes of vibration and can lead to divergent buckling. The effects of transport velocity, "back-crowning" and "prestressing" on the vibration of a moving plate under tangential cutting forces are also investigated. Graphical representations of the modes of vibration are presented.

  3. Silicon Nitride Plates for Turbine Blade Application: FEA and NDE Assessment

    NASA Technical Reports Server (NTRS)

    Abdul-Aziz, Ali; Baaklini, George Y.; Bhatt, Ramakrishna T.

    2001-01-01

    Engine manufacturers are continually attempting to improve the performance and the overall efficiency of internal combustion engines. The thermal efficiency is typically improved by raising the operating temperature of essential engine components in the combustion area. This reduces the heat loss to a cooling system and allows a greater portion of the heat to be used for propulsion. Further improvements can be achieved by diverting part of the air from the compressor, which would have been used in the combustor for combustion purposes, into the turbine components. Such a process is called active cooling. Increasing the operating temperature, decreasing the cooling air, or both can improve the efficiency of the engine. Furthermore, lightweight, strong, tough hightemperature materials are required to complement efficiency improvement for nextgeneration gas turbine engines that can operate with minimum cooling. Because of their low-density, high-temperature strength, and thermal conductivity, ceramics are being investigated as potential materials for replacing ordinary metals that are currently used for engine hot section components. Ceramic structures can withstand higher operating temperatures and other harsh environmental factors. In addition, their low densities relative to metals helps condense component mass (ref. 1). The objectives of this program at the NASA Glenn Research Center are to develop manufacturing technology, a thermal barrier coating/environmental barrier coating (TBC/EBC), and an analytical modeling capability to predict thermomechanical stresses, and to do minimal burner rig tests of silicon nitride (Si3N4) and SiC/SiC turbine nozzle vanes under simulated engine conditions. Furthermore, and in support of the latter objectives, an optimization exercise using finite element analysis and nondestructive evaluation (NDE) was carried out to characterize and evaluate silicon nitride plates with cooling channels.

  4. Voltage oxide removal for plating: A new method of electroplating oxide coated metals in situ

    SciTech Connect

    Gutfeld, R. J. von; West, A. C.

    2007-03-15

    A novel in situ method for electroplating oxide coated metals is described. Termed VORP, for voltage oxide removal for plating, the process utilizes a voltage pulse {approx}20-200 V, {approx}2 ms in duration, applied between working and counterelectrodes while both are immersed in a copper electrolyte. The pulse is almost immediately followed by galvanostatic plate-up. Adherent copper deposits up to {approx}4 {mu}m in height on stainless steel 316 coupons have been obtained. Temperature testing up to 260 deg. C in air does not affect the copper adhesion. A preliminary model for oxide removal is proposed utilizing concepts of dielectric breakdown.

  5. ETR, TRA642. REACTOR FLOOR. TOP PLATES AND PLUGS ARE REMOVED. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    ETR, TRA-642. REACTOR FLOOR. TOP PLATES AND PLUGS ARE REMOVED. CAMERA LOOKS INTO ETR TANK. TEST LOOP APPARATUS DESCENDS THROUGH REACTOR'S TEST HOLES. INL NEGATIVE NO. 60-1930. Unknown Photographer, ca. 1960 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  6. Training Plates: A Solution for Patients Unable to Tolerate a Removable Prosthesis.

    PubMed

    Laverty, Dominic P; Damien Walmsley, A

    2016-03-01

    Dealing with patients who are unable to tolerate dentures can present a challenge to the general dental practitioner (GDP). Careful assessment of patients and their dentures will identify any causes of the intolerance to dentures. Training plates are a useful technique that can be used to allow patients to become accustomed to removable prosthesis but will inevitably lengthen the treatment process. CPD/Clinical Relevance: Training plates offer a possible solution to general dental practitioners who treat patients who are struggling to tolerate dentures. PMID:27188131

  7. Biological nitrogen removal from plating wastewater by submerged membrane bioreactor packed with granular sulfur.

    PubMed

    Moon, Jinyoung; Hwang, Yongwoo; Kim, Junbeum; Kwak, Inho

    2016-01-01

    Recent toughened water quality standards have necessitated improvements for existing sewer treatment facilities through advanced treatment processes. Therefore, an advanced treatment process that can be installed through simple modification of existing sewer treatment facilities needs to be developed. In this study, a new submerged membrane bioreactor process packed with granular sulfur (MBR-GS) was developed and operated to determine the biological nitrogen removal behaviors of plating wastewater containing a high concentration of NO3(-). Continuous denitrification was carried out at various nitrogen loading rates at 20 °C using synthetic wastewater, which was comprised of NO3(-) and HCO3(-), and actual plating wastewater, which was collected from the effluent water of a plating company called 'H Metals'. High-rate denitrification in synthetic plating wastewater was accomplished at 0.8 kg NO3(-)-N/m(3)·day at a nitrogen loading rate of 0.9 kg NO3(-)-N/m(3)·day. The denitrification rate further increased in actual plating wastewater to 0.91 kg NO3(-)-N/m(3)·day at a nitrogen loading rate of 1.11 kg NO3(-)-N/m(3)·day. Continuous filtration was maintained for up to 30 days without chemical cleaning with a transmembrane pressure in the range of 20 cmHg. Based on stoichiometry, SO4(2-) production and alkalinity consumption could be calculated theoretically. Experimental alkalinity consumption was lower than the theoretical value. This newly proposed MBR-GS process, capable of high-rate nitrogen removal by compulsive flux, is expected to be applicable as an alternative renovation technique for nitrogen treatment of plating wastewater as well as municipal wastewater with a low C/N ratio. PMID:27533855

  8. Removal of particles from holes in submerged plates with oscillating bubbles

    NASA Astrophysics Data System (ADS)

    Pavard, Delphine; Klaseboer, Evert; Ohl, Siew-Wan; Khoo, Boo Cheong

    2009-08-01

    This study is motivated by a common problem in submerged tubes and structures, which is the blockage of the tubes by pollutant particles or debris from the surrounding fluid. To clear the obstruction from the tube, an expanding bubble is used to propel the obstruction away from the tube (the tube is represented as a submerged transparent plate with a hole in our experiments). In some cases the obstruction removal effect is reinforced by the impacting jet of such a collapsing bubble. The bubble is generated via a simple low voltage electric spark discharge circuit. The pressure generated by the oscillating bubble effectively pushes the particle away from the tube, thereby successfully clearing the obstruction. High-speed photography is used to record and analyze the phenomenon. The speed of the particle is found to be around 1 m/s shortly after the collapse of the bubble. Interestingly, there is a clear difference between air-backed plates and water-backed plates in terms of bubble and particle dynamics. The bubbles in the current study are typically of millimeter size. Since the physics are similar for smaller bubbles, the process can possibly be downsized for other microapplications such as the removal of blood clots in vessels [S. R. Visuri et al., U.S. Patent No. 6428531 (August 6, 2002)].

  9. Apparatus for loading a band saw blade

    DOEpatents

    Reeves, Steven R.

    1990-01-01

    A band saw blade is loaded between pairs of guide wheels upon tensioning the blade by guiding the blade between pairs of spaced guide plates which define converging slots that converge toward the guide wheels. The approach is particularly useful in loading blades on underwater band saw machines used to cut radioactive materials.

  10. Optimization of circular plate separators with cross flow for removal of oil droplets and solid particles.

    PubMed

    Ngu, Hei; Wong, Kien Kuok; Law, Puong Ling

    2012-04-01

    A circular gravity-phase separator using coalescing medium with cross flow was developed to remove oil and suspended solids from wastewaters. Coalescence medium in the form of inclined plates promotes rising of oil droplets through coalescence and settling of solid particles through coagulation. It exhibits 22.67% higher removal of total suspended solids (TSS) compared to separators without coalescing medium. Moreover, it removed more than 70% of oil compared to conventional American Petroleum Institute separators, which exhibit an average of 33% oil removal. The flowrate required to attain an effluent oil concentration of 10 mg/L (Q(o10)) at different influent oil concentrations (C(io)) can be represented by Q(o10) x 10(-5) = -0.0012C(io) + 0.352. The flowrate required to attain an effluent TSS concentration of 50 mg/L (Q(ss50)) at different influent TSS concentrations (C(iss)) can be represented by Q(ss50) x 10(-5) = 1.0 x 10(6) C(iss)(-2.9576). The smallest removable solid particle size was 4.87 microm. PMID:22834217

  11. Comparison of damping treatments for gas turbine blades

    NASA Astrophysics Data System (ADS)

    Gordon, Robert W.; Hollkamp, Joseph J.

    1996-05-01

    High frequency vibration of gas turbine fan blades is a high cycle fatigue concern. Friction damping devices are ineffective in suppressing high frequency vibration modes and external damping treatments are plagued by creep concerns. An alternative approach is to apply viscoelastic material internally in the blades. In this paper, an analytical comparison of internal damping treatments for fan blades is presented. The fan blade is modeled as a solid, flat, cantilevered titanium plate. Internal portions are removed producing cavities that are filled with viscoelastic material. Configurations with one, two, and three cavities are modeled using the modal strain energy method in conjunction with finite element analysis to estimate damping. Results show that appreciable damping levels for high frequency modes are possible with stiff viscoelastic material. Other design criteria are also considered. Results indicate that the hydrostatic load from the viscoelastic material on the cavity walls may be a concern.

  12. Is biofilm removal properly assessed? Comparison of different quantification methods in a 96-well plate system.

    PubMed

    Stiefel, Philipp; Rosenberg, Urs; Schneider, Jana; Mauerhofer, Stefan; Maniura-Weber, Katharina; Ren, Qun

    2016-05-01

    Various methods have been reported to quantify total biofilm or different components of biofilm; however, these methods are often confusedly used, leading to discrepancies and misleading results. In this study, different methods for quantification of biofilm, including those for total biomass, total amount of bacterial cells, viable cell number, and amount of extracellular polymeric substances, were systematically compared in microtiter plates. To evaluate which method is suitable for assessment of biofilm removal and for bacterial killing, biofilm samples were treated with various cleaners possessing removing and/or killing capacities. It was found that most of the methods tested in this study in general exhibited high reproducibility and repeatability. Crystal Violet staining was a simple but reliable method for total biomass quantification. Total bacteria cell numbers could be reliably quantified by the fluorescent DNA-binding dye Acridine Orange. Viable cells could be quantified by either an ATP-based assay or a proliferation assay. Both of these viability methods showed a broad detection range and led to precise measurement. For quantification of proteins in the biofilm, staining with fluorescein isothiocyanate was most suitable. Furthermore, it was revealed that a combination of different methods is required to determine if a cleaner kills or removes biofilm. PMID:26923144

  13. The study of physicochemical properties of stabilizing plates removed from the body after treatment of pectus excavatum.

    PubMed

    Kajzer, Anita; Kajzer, Wojciech; Dzielicki, Józef; Matejczyk, Dawid

    2015-01-01

    This paper presents the results of a physicochemical surface study and clinical observation of a new generation of plates for the treatment of pectus excavatum. Analysis of the data allowed us to investigate the effect of implant design and condition of their surface on the results of treatment of pectus excavatum. In the study, we performed an analysis of clinical data, obtained after a suitable period of treatment with the use of implants, as well as a study of physicochemical properties of stabilizing plates after their removal from the body. Surface roughness, the surface wettability and corrosion resistance were measured, and the results were compared with clinical observations. When removing the plates we found only slight inflammatory-periosteal reactions around the wire fixing transverse stabilizing plates to the ribs and locking the base plate correcting the distortion. The corrective plates did not shift or rotate during the entire treatment period, giving an optimal, oval and natural shape of the chest. The obtained values of the parameters investigated indicate that the reduction in resistance to pitting corrosion occurred in the areas where laser marking was made to identify the plate. The remaining plates, in spite of mechanical damage of the surface, were characterized by good corrosion resistance, a fact which is confirmed by the results of clinical evaluation. PMID:26400194

  14. Articulated limiter blade for a tokamak fusion reactor

    DOEpatents

    Doll, David W.

    1985-01-01

    A limiter blade for a large tokomak fusion reactor includes three articulated blade sections for enabling the limiter blade to be adjusted for plasmas of different sizes. Each blade section is formed of a rigid backing plate carrying graphite tiles coated with titanium carbide, and the limiter blade forms a generally elliptic contour in both the poloidal and toroidal directions to uniformly distribute the heat flow to the blade. The limiter blade includes a central blade section movable along the major radius of the vacuum vessel, and upper and lower pivotal blade sections which may be pivoted by linear actuators having rollers held to the back surface of the pivotal blade sections.

  15. Articulated limiter blade for a tokamak fusion reactor

    DOEpatents

    Doll, D.W.

    1982-10-21

    A limiter blade for a large tokomak fusion reactor includes three articulated blade sections for enabling the limiter blade to be adjusted for plasmas of different sizes. Each blade section is formed of a rigid backing plate carrying graphite tiles coated with titanium carbide, and the limiter blade forms a generally elliptic contour in both the poloidal and toroidal directions to uniformly distribute the heat flow to the blade. The limiter blade includes a central blade section movable along the major radius of the vacuum vessel, and upper and lower pivotal blade sections which may be pivoted by linear actuators having rollers held to the back surface of the pivotal blade sections.

  16. Two-Dimensional Diffusion Theory Analysis of Reactivity Effects of a Fuel-Plate-Removal Experiment

    NASA Technical Reports Server (NTRS)

    Gotsky, Edward R.; Cusick, James P.; Bogart, Donald

    1959-01-01

    Two-dimensional two-group diffusion calculations were performed on the NASA reactor simulator in order to evaluate the reactivity effects of fuel plates removed successively from the center experimental fuel element of a seven- by three-element core loading at the Oak Ridge Bulk Shielding Facility. The reactivity calculations were performed by two methods: In the first, the slowing-down properties of the experimental fuel element were represented by its infinite media parameters; and, in the second, the finite size of the experimental fuel element was recognized, and the slowing-down properties of the surrounding core were attributed to this small region. The latter calculation method agreed very well with the experimented reactivity effects; the former method underestimated the experimental reactivity effects.

  17. A Numerical Study on Compressive Behavior of Blade Stiffened Plates with a Debonding between a Stiffener and a Skin Panel

    NASA Astrophysics Data System (ADS)

    Suemasu, Hiroshi; Kasahara, Masaki; Ishikawa, Takashi

    The present paper studies behaviors of blade-stiffened CFRP panels under axial compression by using a finite element method. Effect of a debonding between skin panel and stiffener flange on compressive behavior is analyzed and discussed. The debonding is supposed an impact damage. Linear buckling analysis and non-linear post-buckling analysis are conducted. At the debonded area, contact condition is approximately solved by an introduction of a spring element which has a resistant force only in the compressive direction. The some pre-buckling deflection increased proportional to the compression load before buckling owing to the asymmetric lamination at the flange portion, while the predicted linear buckling load agrees well with that obtained from the nonlinear analysis. The results well explain the experimental findings including the little reduction of compressive performance of the stiffened panel due to impact damage. The effect of the partial debonding on the compressive behavior becomes significant when the debonding area reaches the size comparable to that of the wave length of the buckling mode.

  18. Hot-blade stripper for polyester insulation on FCC

    NASA Technical Reports Server (NTRS)

    Angele, W.; Chambers, C. M.

    1971-01-01

    Stripper incorporates a blade which is electrically heated to a controlled temperature. Heated blade softens and strips insulation from cable while paper ribbon removes insulation material and keeps blade clean for next operation.

  19. Research into acetone removal from air by biofiltration using a biofilter with straight structure plates

    PubMed Central

    Baltrėnas, Pranas; Zagorskis, Alvydas; Misevičius, Antonas

    2015-01-01

    The biological air treatment method is based on the biological destruction of organic compounds using certain cultures of microorganisms. This method is simple and may be applied in many branches of industry. The main element of biological air treatment devices is a filter charge. Tests were carried out using a new-generation laboratory air purifier with a plate structure. This purifier is called biofilter. The biofilter has a special system for packing material humidification which does not require additional energy inputs. In order to extend the packing material's durability, it was composed of thermally treated birch fibre. Pollutant (acetone) biodegradation occurred on thermally treated wood fibre in this research. According to the performed tests and the received results, the process of biodestruction was highly efficient. When acetone was passed through biofilter's packing material at 0.08 m s−1 rate, the efficiency of the biofiltration process was from 70% up to 90%. The species of bacteria capable of removing acetone vapour from the air, i.e. Bacillus (B. cereus, B. subtilis), Pseudomonas (P. aeruginosa, P. putida), Stapylococcus (S. aureus) and Rhodococcus sp., was identified in this study during the process of biofiltration. Their amount in the biological packing material changed from 1.6 × 107 to 3.7 × 1011 CFU g−1. PMID:26019659

  20. Smoother Turbine Blades Resist Thermal Shock Better

    NASA Technical Reports Server (NTRS)

    Czerniak, Paul; Longenecker, Kent; Paulus, Don; Ullman, Zane

    1991-01-01

    Surface treatment increases resistance of turbine blades to low-cycle fatigue. Smoothing removes small flaws where cracks start. Intended for blades in turbines subject to thermal shock of rapid starting. No recrystallization occurs at rocket-turbine operating temperatures.

  1. Organic matter and heavy metal removals from complexed metal plating effluent by the combined electrocoagulation/Fenton process.

    PubMed

    Kabdaşli, I; Arslan, T; Arslan-Alaton, I; Olmez-Hanci, T; Tünay, O

    2010-01-01

    In the present study, the treatment of metal plating wastewater containing complexed metals originating from the nickel and zinc plating process by electrocoagulation (EC) using stainless steel electrodes was explored. In order to improve the organic matter removal efficiency, the effect of H(2)O(2) addition to the electrocoagulation (the combined EC/Fenton process) application was investigated. For this purpose, a wide range of H(2)O(2) concentrations varying between 15 and 230 mM was tested. All EC and EC/Fenton processes were performed at an initial pH of 2.6 and at an optimized current density of 22 mA/cm(2). Although up to 30 mM H(2)O(2) addition improved the EC process performance in terms of organic matter abatement, the highest COD and TOC removal efficiencies were obtained for the combined EC/Fenton process in the presence of 20 mM H(2)O(2). Nickel and zinc were completely removed for all runs tested in the present study after pH adjustments. At the optimized operation conditions, the combined EC/Fenton process proved to be an alternative treatment method for the improvement of organic matter reduction as well as complexed metal removal from metal plating industry wastewater. PMID:20453336

  2. Use of a video laryngoscope to facilitate removal of a long, sharp-pointed blade from the esophagus.

    PubMed

    Hiller, Kenneth N; Hagberg, Carin A

    2016-08-01

    Initial management of ingested esophageal foreign bodies involves airway assessment, determination of the requirement for and timing of therapeutic intervention, risk mitigation during removal, and identification of all indicated equipment for retrieval. Long, sharp-pointed objects lodged in the esophagus require emergent attention and should be retrieved endoscopically, if perforation has not occurred. Inducing general anesthesia and rapidly securing the airway can minimize the risk of aspiration, mitigate any effects of tracheal compression, avoid the potential of exacerbating existing trauma, and provide optimal conditions for removal of long, sharp-pointed esophageal foreign bodies. Video laryngoscopy provides improved recognition of anatomical structures in both normal and difficult airways, enabling assessment for hypopharyngeal and glottic trauma resulting from foreign body ingestion. The indirect view of video laryngoscopy also facilitates the coordinated manipulation of the airway by both the anesthesiologist and the surgeon as they visualize the anatomy together while securing the airway and removing the foreign body. PMID:27290934

  3. Comparing Nafion and ceramic separators used in electrochemical purification of spent chromium plating solutions: cationic impurity removal and transport.

    PubMed

    Huang, Kuo-Lin; Holsen, Thomas M; Chou, Tse-Chuan; Selman, J Robert

    2003-05-01

    This study focuses on the electrolytic regeneration of spent chromium plating solutions. These solutions contain a significant amount of chromium and a lesser amount of other heavy metals, which makes them a significant environmental concern and an obvious target for recycling and reuse. The type of separator used is extremely critical to the performance of the process because they are the major resistance in the transport-related impurity (Cu(II), Ni(II), and Fe(III)) removals from contaminated chromic acid solutions. A Nafion 117 membrane and a ceramic diaphragm separator traditionally used in the industry were tested for comparison. It was found that the mobilities of Cu(II) and Ni(II) were similar and higher than that of Fe(III) using both separators. The mobility of each cation was smaller in the Nafion membrane than in the ceramic diaphragm. The measured conductivity of the ceramic diaphragm was slightly higher than that of Nafion membrane. However, the Nafion membrane was much thinner than the ceramic diaphragm resulting in the system using the Nafion membrane having higher impurity removal rates than the system using the ceramic diaphragm. The removal rates were approximately equal for Cu(II) and Ni(II) and lowest for Fe(III). Both current and initial concentration affected the removal rates of the impurities. Modeling results indicated that a system using a Nafion separator and a small catholyte/anolyte volume ratio was better than a system using a ceramic separator for removing impurities from concentrated plating solutions if the impurities transported into the catholyte are deposited or precipitated. PMID:12775076

  4. Routine removal of the plate after surgical treatment for mandibular angle fracture with a third molar in relation to the fracture line

    PubMed Central

    Yamamoto, Kazuhiko; Matsusue, Yumiko; Horita, Satoshi; Murakami, Kazuhiro; Sugiura, Tsutomu; Kirita, Tadaaki

    2015-01-01

    Purpose: The purpose was to analyze the clinical course of surgically treated mandibular angle fractures from the viewpoint of routine removal of the plate because these fractures are associated with high rates of complications and plate removal. Subjects and Methods: The subjects were 40 patients with unilateral mandibular angle fracture, which was intraorally reduced and principally fixed with a single miniplate on the external oblique ridge. The third molar in relation to the fracture line was extracted in seven patients during the surgery. Clinical course was evaluated in terms of removal of the plate, preservation of the third molar and complications. Results: One patient showed a wound infection postoperatively, and two patients developed pericoronitis during the follow-up. These were managed with medication and local irrigation. One patient with a preserved third molar did not make a required visit and was lost from the follow-up. Removal of the plates was performed in 39 patients after confirmation of good fracture healing, mostly within a year. Twenty-four of 32 preserved third molars were simultaneously extracted. These procedures were generally performed under local anesthesia on an outpatient basis, and they did not cause any complications. Conclusions: Routine removal of the plate after surgical treatment for mandibular angle fractures, simultaneously with extraction of the third molar if indicated, may be beneficial to avoid complications related to the plate and the third molar later in life. PMID:26389039

  5. Application of carbon foam for heavy metal removal from industrial plating wastewater and toxicity evaluation of the adsorbent.

    PubMed

    Lee, Chang-Gu; Song, Mi-Kyung; Ryu, Jae-Chun; Park, Chanhyuk; Choi, Jae-Woo; Lee, Sang-Hyup

    2016-06-01

    Electroplating wastewater contains various types of toxic substances, such as heavy metals, solvents, and cleaning agents. Carbon foam was used as an adsorbent for the removal of heavy metals from real industrial plating wastewater. Its sorption capacity was compared with those of a commercial ion-exchange resin (BC258) and a heavy metal adsorbent (CupriSorb™) in a batch system. The experimental carbon foam has a considerably higher sorption capacity for Cr and Cu than commercial adsorbents for acid/alkali wastewater and cyanide wastewater. Additionally, cytotoxicity test showed that the newly developed adsorbent has low cytotoxic effects on three kinds of human cells. In a pilot plant, the carbon foam had higher sorption capacity for Cr (73.64 g kg(-1)) than for Cu (14.86 g kg(-1)) and Ni (7.74 g kg(-1)) during 350 h of operation time. Oxidation pretreatments using UV/hydrogen peroxide enhance heavy metal removal from plating wastewater containing cyanide compounds. PMID:26999028

  6. Calculation procedure for transient heat transfer to a cooled plate in a heated stream whose temperature varies arbitrarily with time. [turbine blades

    NASA Technical Reports Server (NTRS)

    Sucec, J.

    1975-01-01

    Solutions for the surface temperature and surface heat flux are found for laminar, constant property, slug flow over a plate convectively cooled from below, when the temperature of the fluid over the plate varies arbitrarily with time at the plate leading edge. A simple technique is presented for handling arbitrary fluid temperature variation with time by approximating it by a sequence of ramps or steps for which exact analytical solutions are available.

  7. Removal of nickel(II) from aqueous solution and nickel plating industry wastewater using an agricultural waste: Peanut hulls

    SciTech Connect

    Periasamy, K.; Namasivayam, C.

    1995-07-01

    Activated carbon prepared from peanut hulls (PHC), an agricultural waste by-product, has been used for the adsorption of Ni(II) from aqueous solution. The process of uptake obeys both Freundlich and Langmuir adsorption isotherms. The applicability of Lagergren kinetic model has also been investigated. Quantitative removal of Ni(II) from 100 mL aqueous solution containing 20 mg/L Ni(II) by 85 mg PHC was observed over a pH range of 4.0 to 10.0. The suitability of PHC for treating nickel plating industry wastewater was also tested. A comparative study with a commercial granular activated carbon (GAC) showed that PHC is 36 times more efficient compared to GAC based on Langmuir adsorption capacity (Q{sub O}).

  8. Successful Solutions to SSME/AT Development Turbine Blade Distress

    NASA Technical Reports Server (NTRS)

    Montgomery, Stuart K.

    1999-01-01

    As part of the High-Pressure Fuel Turbopump/Alternate Turbopump (HPFTP/AT) turbine blade development program, unique turbine blade design features were implemented to address 2nd stage turbine blade high cycle fatigue distress and improve turbine robustness. Features included the addition of platform featherseal dampers, asymmetric blade tip seal segments, gold plating of the blade attachments, and airfoil tip trailing edge modifications. Development testing shows these features have eliminated turbine blade high cycle fatigue distress and consequently these features are currently planned for incorporation to the flight configuration. Certification testing will begin in 1999. This presentation summarizes these features.

  9. Counterrotating aircraft propulsor blades

    NASA Technical Reports Server (NTRS)

    Nelson, Joey L. (Inventor); Elston, III, Sidney B. (Inventor); Tseng, Wu-Yang (Inventor); Hemsworth, Martin C. (Inventor)

    1993-01-01

    A propulsor blade for an aircraft engine includes an airfoil section formed in the shape of a scimitar. A metallic blade spar is interposed between opposed surfaces of the blade and is bonded to the surfaces to establish structural integrity of the blade. The metallic blade spar includes a root end allowing attachment of the blade to the engine.

  10. Counterrotating aircraft propulsor blades

    NASA Technical Reports Server (NTRS)

    Nelson, Joey L. (Inventor); Elston, III, Sidney B. (Inventor); Tseng, Wu-Yang (Inventor); Hemsworth, Martin C. (Inventor)

    1988-01-01

    A propulsor blade for an aircraft engine includes an airfoil section formed in the shape of a scimitar. A metallic blade spar is interposed between opposed surfaces of the blade and is bonded to the surfaces to establish structural integrity of the blade. The metallic blade spar includes a root end allowing attachment of the blade to the engine.

  11. Removal of black carbon particles from experimental flue gas by surfactant solution in a new type of umbrella plate scrubber.

    PubMed

    Lu, Pei; Li, Caiting; Zeng, Guangming; Zhao, Yapei; Zhan, Qi; Song, Jingke; Fan, Xiaopeng

    2013-01-01

    Black carbon (BC) particles were removed from experimental flue gas by the surfactant solutions of sodium dodecylbenzene sulfonate (SDBS), hexadecyl trimethyl ammonium bromide (CTAB), fatty alcohol polyoxyethylene ether-9 (AEO-9) and polyoxy ethrlene nonyl phinyl ether-10 (TX-10), as well as AEO-9-SDBS, AEO-9-CTAB and SDBS-CTAB, in a new type of umbrella plate scrubber. Among the four independent surfactants, AEO-9 has the lowest surface tension, 35.9 mN/m, which resulted in the highest BC removal ratio among the alone surfactants. The experimental conditions were as follows: dust concentration = 3000 mg/m3; gas velocity = 14 m/s; liquid-gas ratio = 0.80 l/m3; and gas flow = 400 m3/h. When the mole ratio of the mixed surfactants was 1:1, the lowest surface tension could be detected among the studied mixed surfactants. According to the molecular interaction parameters (beta) and the mole ratio of surfactant 1 in the mixture (x1), the synergistic effects of AEO-9-SDBS and SDBS-CTAB solutions were obviously higher than those of AEO-9-TX-10 and AEO-9-CTAB. Therefore, AEO-9-SDBS solution had the lowest surface tension among the mixtures due to its beta < 0 and x1 = 0.85. The mixture solution of AEO-9-SDBS (1:1 mole ratio, 0.2 mmol/l) yielded the highest BC removal ratio, about 99.8%, and it was about 12% higher than that of only water, which was about 87.9%. The calculated critical micelle concentration was almost the same as that of the experimental concentration when the related equation was corrected by beta. PMID:23530320

  12. Increasing sensitivity and decreasing spot size using an inexpensive, removable hydrophobic coating for matrix-assisted laser desorption/ionisation plates.

    PubMed

    Owen, Stacey J; Meier, Felix S; Brombacher, Stephan; Volmer, Dietrich A

    2003-01-01

    Spot size reduction and increased detection sensitivity in matrix-assisted laser desorption/ionisation (MALDI) of small molecules are accomplished by using an inexpensive and removable hydrophobic coating for MALDI targets, based on 3M Scotch Gard surface treatment. Several variations in sample preparation were explored, such as surface coating technique, identity of the matrix, solvent composition, and the type of metal support plate used. These were investigated on both uncoated and coated surfaces and their impact on spot size, crystal coverage, and sensitivity is presented here. Additionally, crystallisation behaviour obtained on coated plates is compared with that on uncoated plates using scanning electron microscope analysis. To demonstrate the potential of the new coating technique, erythromycin A and valinomycin are studied to determine the increase in detection sensitivity of coated plates in comparison to uncoated plates, and to reveal the suitability of the plates for application in combined high-performance liquid chromatography/MALDI (HPLC/MALDI), where widely varying solvent compositions and droplet volumes are observed. It is shown that enhancements in detection sensitivities correlate very well with the achieved spot size reduction. The versatility of the coated plates is also exhibited by the ease of removing the surface layer, after which the plates can be rigorously cleaned without worry about damaging the hydrophobic surface, followed by a quick reapplication of new hydrophobic coating material. This makes the non-polar coating superior to more expensive commercial hydrophobic-coated targets, which are much more delicate to clean. Furthermore, cleaning and reapplication eliminate potential carry-over effects and the easy application procedure also makes the fabrication of inexpensive, disposable MALDI targets readily possible. PMID:14587091

  13. Drum lid removal tool

    DOEpatents

    Pella, Bernard M.; Smith, Philip D.

    2010-08-24

    A tool for removing the lid of a metal drum wherein the lid is clamped over the drum rim without protruding edges, the tool having an elongated handle with a blade carried by an angularly positioned holder affixed to the midsection of the handle, the blade being of selected width to slice between lid lip and the drum rim and, when the blade is so positioned, upward motion of the blade handle will cause the blade to pry the lip from the rim and allow the lid to be removed.

  14. Blade for turbine engine

    NASA Technical Reports Server (NTRS)

    Suciu, Gabriel L. (Inventor); Babu, Michael (Inventor); Murdock, James R. (Inventor)

    2004-01-01

    A blade for a turbine engine having a centerline. The blade comprises: a root section extending at an angle relative to the centerline; and an airfoil section extending from the root section. The root section is directly adjacent said airfoil section. In other words, the blade is neckless. The blade is part of a rotor assembly, and is preferably a fan blade.

  15. Interactive multi-mode blade impact analysis

    NASA Technical Reports Server (NTRS)

    Alexander, A.; Cornell, R. W.

    1978-01-01

    The theoretical methodology used in developing an analysis for the response of turbine engine fan blades subjected to soft-body (bird) impacts is reported, and the computer program developed using this methodology as its basis is described. This computer program is an outgrowth of two programs that were previously developed for the purpose of studying problems of a similar nature (a 3-mode beam impact analysis and a multi-mode beam impact analysis). The present program utilizes an improved missile model that is interactively coupled with blade motion which is more consistent with actual observations. It takes into account local deformation at the impact area, blade camber effects, and the spreading of the impacted missile mass on the blade surface. In addition, it accommodates plate-type mode shapes. The analysis capability in this computer program represents a significant improvement in the development of the methodology for evaluating potential fan blade materials and designs with regard to foreign object impact resistance.

  16. Ceramic blade attachment system

    DOEpatents

    Boyd, G.L.

    1995-04-11

    A retainer ring is arranged to mount turbine blades to a turbine disk so that aerodynamic forces produced by a gas turbine engine are transferred from the turbine blades to the turbine disk to cause the turbine blades and turbine disk to rotate, but so that centrifugal forces of the turbine blades resulting from the rotation of the turbine blades and turbine disk are not transferred from the turbine blades to the turbine disk. 6 figures.

  17. Ceramic blade attachment system

    DOEpatents

    Boyd, Gary L.

    1995-01-01

    A retainer ring is arranged to mount turbine blades to a turbine disk so that aerodynamic forces produced by a gas turbine engine are transferred from the turbine blades to the turbine disk to cause the turbine blades and turbine disk to rotate, but so that centrifugal forces of the turbine blades resulting from the rotation of the turbine blades and turbine disk are not transferred from the turbine blades to the turbine disk.

  18. Weld bead reinforcement removal: A method of improving the strength and ductility of peaked welds in 2219-T87 aluminum alloy plate

    NASA Technical Reports Server (NTRS)

    Lovoy, C. V.

    1979-01-01

    The results of a study to determine the degree to which the ductility and tensile properties of peaked welds could be enhanced by removing the reinforcing bead and fairing the weld nugget into the adjacent parent metal are presented. The study employed 2219-T87 aluminum alloy plate, tungsten inert gas (TIG) welding, and 2319 filler wire. The study concluded that significant improvements in peak weld, ultimate strength, and ductility can be obtained through removal and fairing of the weld reinforcing bead. The specimens so treated and tested in this program exhibited ultimate strength improvements of 2 to 3 percent for peak angles of 5.8 to 10 degrees and 10 to 22 percent for welds with peak angles of 11.7 to 16.9 degrees. It was also determined that removal of the weld bead enhanced the ability of peaked welds to straighten when exposed to cyclic loading at stress levels above the yield strength.

  19. Aluminum-blade development for the Mod-0A 200-kilowatt wind turbine

    SciTech Connect

    Linscott, B.S.; Shaltens, R.K.; Eggers, A.G.

    1981-12-01

    This report documents the operating experience with two aluminum blades used on the DOE/NASA Mod-0A 200-kilowatt wind turbine located at Clayton, New Mexico. Each Mod-0A aluminum blade is 59.9 feet long and weighs 2360 pounds. The aluminum Mod-0A blade design requirements, the selected design, fabrication procedures, and the blade analyses are discussed. A detailed chronology is presented on the operating experience of the Mod-0A aluminum blades used at Clayton, New Mexico. Blade structural damage was experienced. Inspection and damage assessment were required. Structural modifications that were incorporated to the blades successfully extended the useful operating life of the blades. The aluminum blades completed the planned 2 years of operation of the Clayton wind turbine. The blades were removed from service in August 1980 to allow testing of advanced technology wood composite blades.

  20. The measurement and control of helicopter blade modal response using blade-mounted accelerometers

    NASA Technical Reports Server (NTRS)

    Ham, Norman D.; Balough, Dwight L.; Talbot, Peter D.

    1987-01-01

    The measurement of helicopter blade flapping, bending, and lag modal acceleration and displacement response using blade-mounted accelerometers is described. It is shown that knowledge of the blade mode shapes is sufficient to permit separation of the modal contributions to the accelerometer signals using matrix inversion. The application of the Mckillip (1985) filter to the identification of modal rate response is described. Finally, the design of flapping, bending, and lag mode controllers utilizing the conventional mesh plate is presented. The measurement technique is illustrated using flight test results obtained using a Black Hawk helicopter.

  1. Aircraft rotor blade with passive tuned tab

    NASA Technical Reports Server (NTRS)

    Campbell, T. G. (Inventor)

    1985-01-01

    A structure for reducing vibratory airloading in a rotor blade with a leading edge and a trailing edge includes a cut out portion at the trailing edge. A substantially wedge shaped cross section, inertially deflectable tab, also with a leading edge and a trailing edge is pivotally mounted in the cut out portion. The trailing edge of the tab may move above and below the rotor blade. A torsion strap applies force against the tab when the trailing edge of the tab is above and below the rotor blade. A restraining member is slidably movable along the torsion strap to vary torsional biasing force supplied by the torsion bar to the tab. A plurality of movable weights positioned between plates vary a center of gravity of the tab. Skin of the tab is formed from unidirectional graphite and fiberglass layers. Sliders coupled with a pinned degree of freedom at rod eliminate bending of tab under edgewise blade deflection.

  2. Desulfurization Of Gas-Turbine Blades

    NASA Technical Reports Server (NTRS)

    Outlaw, Ronald A.

    1994-01-01

    Sulfur removed from nickel-base superalloy used to make gas-turbine blades by heating alloy and simultaneously subjecting it to sputtering by directed Ar(Sup+) ions from ion gun or from glow discharge. Reduction of sulfur content of superalloy by factor of 10 increases lifetime of turbine blade made of alloy by similar factor, because stability of protective surface oxide formed during operation of turbine increased.

  3. BLADED IMPELLER FOR TURBOBLOWERS

    DOEpatents

    Baumann, K.

    1949-10-01

    A means is given of holding open-sided impeller blades in a turbo-rotor. Two half blades, with dovetail roots of sufficient weight to contain the center of gravity, are fitted into slots cut in the rotor so as to form the desired angle between the blade faces. The adjoining edges of the half blades are welded to form one solid blade that is securely locked an the rotor. This design permits the manufacture of a V shaped impeller blade without the need of machining the entire V shaped contour from a single blank, and furthermore provides excellent locking characteristics for attachment to the rotor.

  4. Vibration and flutter of mistuned bladed-disk assemblies

    NASA Technical Reports Server (NTRS)

    Kaza, K. R. V.; Kielb, R. E.

    1984-01-01

    An analytical model for investigating vibration and flutter of mistuned bladed disk assemblies is presented. This model accounts for elastic, inertial and aerodynamic coupling between bending and torsional motions of each individual blade, elastic and inertial couplings between the blades and the disk, and aerodynamic coupling among the blades. The disk was modeled as a circular plate with constant thickness and each blade was represented by a twisted, slender, straight, nonuniform, elastic beam with a symmetric cross section. The elastic axis, inertia axis, and the tension axis were taken to be noncoincident and the structural warping of the section was explicitly considered. The blade aerodynamic loading in the subsonic and supersonic flow regimes was obtained from two-dimensional unsteady, cascade theories. All the possible standing wave modes of the disk and traveling wave modes of the blades were included. The equations of motion were derived by using the energy method in conjunction with the assumed mode shapes for the disk and the blades. Continuities of displacement and slope at the blade-disk junction were maintained. The equations were solved to investigate the effects of blade-disk coupling and blade frequency mistuning on vibration and flutter. Results showed that the flexibility of practical disks such as those used for current generation turbofans did not have a significant influence on either the tuned or mistuned flutter characteristics. However, the disk flexibility may have a strong influence on some of the system frequencies and on forced response.

  5. Advanced turbofan blade refurbishment technique

    SciTech Connect

    Roberts, W.B.

    1995-10-01

    The purpose of the work reported here is to investigate whether the lessons learned from the work of Suder et al. can be used to reduce the in-service performance deterioration of a fan on a high bypass ratio turbofan engine. To this end, a back-to-back test was done on the fan of an RB211-22B engine with the cooperation of Delta Airlines. The fan and engine were first overhauled per normal airline practice and cell-tested to establish that the engine performance met flight acceptance standards. This test, which the engine passed, also established a performance baseline for the overhauled engine. At this point the fan blade leading edge had not been filed or scraped and the blade surfaces had not been polished because the leading edge damage and blade surface roughness fell within the acceptable limits specified by the manufacturer for normal overhaul practice. After the cell test, the fan was removed from the engine and sent to Sermatech International where the following additional operations were performed: (1) the blade surfaces were polished to a finish of 20 rms {micro}in; (2) leading edge roughness due to particle impact damage was removed and the leading edge was polished to a finish of 20 rms {micro}in; (3) the leading edge shape was rounded and the leading edge thickness was reduced over the first 5--10% of chord. Test results indicated a 0.7% drop in thrust specific fuel consumption (lb fuel/lb thrust/hr) relative to the baseline engine after the enhanced fan overhaul. Based on the results of Suder et al. (1995) it appears that 70--80% of this performance gain is due to the thin smooth leading edge and the remainder to the highly polished finish of the blade.

  6. Turbulent transport on the endwall in the region between adjacent turbine blades

    SciTech Connect

    Goldstein, R.J.; Spores, R.A. )

    1988-11-01

    The complex three-dimensional flow in the endwall region near the base of a turbine blade has an important impact on the local heat transfer. The initial horseshoe vortex, the passage vortex, and resulting corner vortices cause large variations in heat transfer over the entire endwall region. Due to these large surface gradients in heat transfer, conventional measurement techniques generally do not provide in accurate determination of the local heat transfer coefficients. In the present study the heat/mass transfer analogy is used to examine the local transport coefficients for two different endwall boundary layer thicknesses and two free-stream Reynolds numbers. A linear turbine blade cascade is used in conjunction with a removable endwall plate. Napthalene (C{sub 10}H{sub 8}) is cast into a mold on the plate and the rate of naphthalene sublimation is determined at 6,000+ locations on the simulated endwall by employing a computer-aided data acquisition system. This technique allows one to obtain detailed contour plots of the local convection coefficient over the entire endwall. By examining the mass transfer contours, it is possible to infer information on three-dimensional flow in the passage between the blades. Extremely high transport coefficients on the endwall indicate locations of potential overheating and failure in actual turbine.

  7. Turbine blade damping study

    NASA Technical Reports Server (NTRS)

    Dominic, R. J.

    1984-01-01

    Research results and progress on the performance of bladed systems is reported the different topics discussed include: the study of turbine blade damping; forced vibrations of friction damped beam moistures in two dimensions; and a users manual for a computer program for dynamic analysis of bladed systems.

  8. Removal of chromium from synthetic plating waste by zero-valent iron and sulfate-reducing bacteria.

    PubMed

    Guha, Saumyen; Bhargava, Puja

    2005-01-01

    Experiments were conducted to evaluate the potential of zero-valent iron and sulfate-reducing bacteria (SRB) for reduction and removal of chromium from synthetic electroplating waste. The zero-valent iron shows promising results as a reductant of hexavalent chromium (Cr+6) to trivalent chromium (Cr+3), capable of 100% reduction. The required iron concentration was a function of chromium concentration in the waste stream. Removal of Cr+3 by adsorption or precipitation on iron leads to complete removal of chromium from the waste and was a slower process than the reduction of Cr+6. Presence SRB in a completely mixed batch reactor inhibited the reduction of Cr+6. In a fixed-bed column reactor, SRB enhanced chromium removal and showed promising results for the treatment of wastes with low chromium concentrations. It is proposed that, for waste with high chromium concentration, zero-valent iron is an efficient reductant and can be used for reduction of Cr+6. For low chromium concentrations, a SRB augmented zero-valent iron and sand column is capable of removing chromium completely. PMID:16121509

  9. Determination of Turbine Blade Life from Engine Field Data

    NASA Technical Reports Server (NTRS)

    Zaretsky, Erwin V.; Litt, Jonathan S.; Hendricks, Robert C.; Soditus, Sherry M.

    2013-01-01

    It is probable that no two engine companies determine the life of their engines or their components in the same way or apply the same experience and safety factors to their designs. Knowing the failure mode that is most likely to occur minimizes the amount of uncertainty and simplifies failure and life analysis. Available data regarding failure mode for aircraft engine blades, while favoring low-cycle, thermal-mechanical fatigue (TMF) as the controlling mode of failure, are not definitive. Sixteen high-pressure turbine (HPT) T-1 blade sets were removed from commercial aircraft engines that had been commercially flown by a single airline and inspected for damage. Each set contained 82 blades. The damage was cataloged into three categories related to their mode of failure: (1) TMF, (2) Oxidation/erosion (O/E), and (3) Other. From these field data, the turbine blade life was determined as well as the lives related to individual blade failure modes using Johnson-Weibull analysis. A simplified formula for calculating turbine blade life and reliability was formulated. The L10 blade life was calculated to be 2427 cycles (11 077 hr). The resulting blade life attributed to O/E equaled that attributed to TMF. The category that contributed most to blade failure was Other. If there were no blade failures attributed to O/E and TMF, the overall blade L(sub 10) life would increase approximately 11 to 17 percent.

  10. Determination of Turbine Blade Life from Engine Field Data

    NASA Technical Reports Server (NTRS)

    Zaretsky, Erwin V.; Litt, Jonathan S.; Hendricks, Robert C.; Soditus, Sherry M.

    2012-01-01

    It is probable that no two engine companies determine the life of their engines or their components in the same way or apply the same experience and safety factors to their designs. Knowing the failure mode that is most likely to occur minimizes the amount of uncertainty and simplifies failure and life analysis. Available data regarding failure mode for aircraft engine blades, while favoring low-cycle, thermal mechanical fatigue as the controlling mode of failure, are not definitive. Sixteen high-pressure turbine (HPT) T-1 blade sets were removed from commercial aircraft engines that had been commercially flown by a single airline and inspected for damage. Each set contained 82 blades. The damage was cataloged into three categories related to their mode of failure: (1) Thermal-mechanical fatigue, (2) Oxidation/Erosion, and (3) "Other." From these field data, the turbine blade life was determined as well as the lives related to individual blade failure modes using Johnson-Weibull analysis. A simplified formula for calculating turbine blade life and reliability was formulated. The L(sub 10) blade life was calculated to be 2427 cycles (11 077 hr). The resulting blade life attributed to oxidation/erosion equaled that attributed to thermal-mechanical fatigue. The category that contributed most to blade failure was Other. If there were there no blade failures attributed to oxidation/erosion and thermal-mechanical fatigue, the overall blade L(sub 10) life would increase approximately 11 to 17 percent.

  11. Blade Manufacturing Improvement: Remote Blade Manufacturing Demonstration

    SciTech Connect

    ASHWILL, THOMAS D.

    2003-05-01

    The objective of this program was to investigate manufacturing improvements for wind turbine blades. The program included a series of test activities to evaluate the strength, deflection, performance, and loading characteristics of the prototype blades. The original contract was extended in order to continue development of several key blade technologies identified in the project. The objective of the remote build task was to demonstrate the concept of manufacturing wind turbine blades at a temporary manufacturing facility in a rural environment. TPI Composites successfully completed a remote manufacturing demonstration in which four blades were fabricated. The remote demonstration used a manufacturing approach which relied upon material ''kits'' that were organized in the factory and shipped to the site. Manufacturing blades at the wind plant site presents serious logistics difficulties and does not appear to be the best approach. A better method appears to be regional manufacturing facilities, which will eliminate most of the transportation cost, without incurring the logistical problems associated with fabrication directly onsite. With this approach the remote facilities would use commonly available industrial infrastructure such as enclosed workbays, overhead cranes, and paved staging areas. Additional fatigue testing of the M20 root stud design was completed with good results. This design provides adhesive bond strength under fatigue loading that exceeds that of the fastener. A new thru-stud bonding concept was developed for the M30 stud design. This approach offers several manufacturing advantages; however, the test results were inconclusive.

  12. Laser cladding and inspection for life extension of turbine blades

    SciTech Connect

    Failor, J.

    1995-03-01

    Turbine blades used in commercial aviation require very close tolerances in order to maintain engine performance. Blade tip clearances and shroud gap limits are held to within several thousandths, keeping air bypasses and vibration to a minimum. At both the maintenance and overhaul levels, components are inspected to serviceable guidelines and turbine blades that exceed acceptable service limits were, until recently, removed and tagged unserviceable or discarded. Laser cladding offers a cost saving alternative to the replacement of unserviceable turbine blades. With today`s automation systems and an effective quality control procedure in place this process can produce acceptable yields.

  13. Ceramic blade attachment system

    DOEpatents

    Shaffer, James E.

    1995-01-01

    A turbine blade having a preestablished rate of thermal expansion is attached to a turbine disc having a preestablished rate of thermal expansion being greater than the preestablished rate of thermal expansion of the turbine blade and forms a turbine assembly. The turbine blade has a root portion defining a pair of sides having a pair of grooves therein. The turbine assembly includes a pair of flanges between which the turbine blades are positioned. Each of the pair of flanges has a plurality of grooves defined therein. The grooves within the pair of flanges are aligned with the grooves in the blades and have a space formed therebetween. A plurality of spherical balls are positioned within the space. The plurality of spherical balls has a preestablished rate of thermal expansion being equal to the preestablished rate of thermal expansion of the turbine blade.

  14. Ceramic blade attachment system

    DOEpatents

    Shaffer, J.E.

    1995-07-11

    A turbine blade having a preestablished rate of thermal expansion is attached to a turbine disc having a preestablished rate of thermal expansion being greater than the preestablished rate of thermal expansion of the turbine blade and forms a turbine assembly. The turbine blade has a root portion defining a pair of sides having a pair of grooves therein. The turbine assembly includes a pair of flanges between which the turbine blades are positioned. Each of the pair of flanges has a plurality of grooves defined therein. The grooves within the pair of flanges are aligned with the grooves in the blades and have a space formed therebetween. A plurality of spherical balls are positioned within the space. The plurality of spherical balls has a preestablished rate of thermal expansion being equal to the preestablished rate of thermal expansion of the turbine blade. 4 figs.

  15. Rotor blade dynamic design

    NASA Technical Reports Server (NTRS)

    Pritchard, Jocelyn I.; Adelman, Howard M.; Mantay, Wayne R.

    1989-01-01

    The rotor dynamic design considerations are essentially limitations on the vibratory response of the blades which in turn limit the dynamic excitation of the fuselage by forces and moments transmitted to the hub. Quantities which are associated with the blade response and which are subject to design constraints are discussed. These include blade frequencies, vertical and inplane hub shear, rolling and pitching moments, and aeroelastic stability margin.

  16. Propeller blade retention system

    NASA Technical Reports Server (NTRS)

    Elston, III, Sidney B. (Inventor); Simon, III, Victor H. (Inventor); Tseng, Wu-Yang (Inventor); Butler, Lawrence (Inventor)

    1993-01-01

    The invention concerns the mounting of propeller blades to a ring-shaped rotor. The blades are of the variable pitch type, and the shank of each blade extends through a respective hole in the rotor. Each hole contains an annular shelf which is fastened to the wall of the hole and surrounds each shank. Each shank bears a pair of bearing races which sandwich the annular shelf in order to connect the blade to the rotor. Bearing rollers are positioned between the annular shelf and the bearing races.

  17. Evaluation of MARC for the analysis of rotating composite blades

    NASA Astrophysics Data System (ADS)

    Bartos, Karen F.; Ernst, Michael A.

    1993-03-01

    The suitability of the MARC code for the analysis of rotating composite blades was evaluated using a four-task process. A nonlinear displacement analysis and subsequent eigenvalue analysis were performed on a rotating spring mass system to ensure that displacement-dependent centrifugal forces were accounted for in the eigenvalue analysis. Normal modes analyses were conducted on isotropic plates with various degrees of twist to evaluate MARC's ability to handle blade twist. Normal modes analyses were conducted on flat composite plates to validate the newly developed coupled COBSTRAN-MARC methodology. Finally, normal modes analyses were conducted on four composite propfan blades that were designed, analyzed, and fabricated at NASA Lewis Research Center. Results were compared with experimental data. The research documented herein presents MARC as a viable tool for the analysis of rotating composite blades.

  18. Evaluation of MARC for the analysis of rotating composite blades

    NASA Technical Reports Server (NTRS)

    Bartos, Karen F.; Ernst, Michael A.

    1993-01-01

    The suitability of the MARC code for the analysis of rotating composite blades was evaluated using a four-task process. A nonlinear displacement analysis and subsequent eigenvalue analysis were performed on a rotating spring mass system to ensure that displacement-dependent centrifugal forces were accounted for in the eigenvalue analysis. Normal modes analyses were conducted on isotropic plates with various degrees of twist to evaluate MARC's ability to handle blade twist. Normal modes analyses were conducted on flat composite plates to validate the newly developed coupled COBSTRAN-MARC methodology. Finally, normal modes analyses were conducted on four composite propfan blades that were designed, analyzed, and fabricated at NASA Lewis Research Center. Results were compared with experimental data. The research documented herein presents MARC as a viable tool for the analysis of rotating composite blades.

  19. Impact resistance of composite fan blades. [fiber reinforced graphite and boron epoxy blades for STOL operating conditions

    NASA Technical Reports Server (NTRS)

    Premont, E. J.; Stubenrauch, K. R.

    1973-01-01

    The resistance of current-design Pratt and Whitney Aircraft low aspect ratio advanced fiber reinforced epoxy matrix composite fan blades to foreign object damage (FOD) at STOL operating conditions was investigated. Five graphite/epoxy and five boron/epoxy wide chord fan blades with nickel plated stainless steel leading edge sheath protection were fabricated and impact tested. The fan blades were individually tested in a vacuum whirlpit under FOD environments. The FOD environments were typical of those encountered in service operations. The impact objects were ice balls, gravel, stralings and gelatin simulated birds. Results of the damage sustained from each FOD impact are presented for both the graphite boron reinforced blades. Tests showed that the present design composite fan blades, with wrap around leading edge protection have inadequate FOD impact resistance at 244 m/sec (800 ft/sec) tip speed, a possible STOL operating condition.

  20. Fan blade protection system

    NASA Technical Reports Server (NTRS)

    Hermans, Thomas C. (Inventor); Wakeman, Thomas G. (Inventor); Hauser, Ambrose A. (Inventor)

    1993-01-01

    In one type of aircraft propulsion system, propeller blades are mounted on a ring which surrounds a turbine. An annular space exists between the turbine and the ring. If a propeller blade should break free, the unbalanced centrifugal load tends to deform the ring. The invention reduces the deformation, as by locating spacers between the turbine and the ring.

  1. Composite wind turbine blades

    NASA Astrophysics Data System (ADS)

    Ong, Cheng-Huat

    Researchers in wind energy industry are constantly moving forward to develop higher efficiency wind turbine. One major component for wind turbine design is to have cost effective wind turbine blades. In addition to correct aerodynamic shape and blade geometry, blade performance can be enhanced further through aero-elastic tailoring design and material selections. An analytical tool for blade design has been improved and validated. This analytical tool is utilized to resolve issues related to elastic tailoring design. The investigation looks into two major issues related to the design and fabrication of a bend-twist-coupled blade. Various design parameters for a blade such as materials, laminate lay-up, skin thickness, ply orientation, internal spar, etc. have been examined for designing a bend-twist-coupled blade. The parametric study indicates that the critical design parameters are the ply material, the ply orientation, and the volume fraction ratio between the anisotropic layers and orthotropic layers. To produce a blade having the bend-twist coupling characteristics, the fiber lay-ups at the top and bottom skins of the blade must have a "mirror" lay-up in relation to the middle plane of the blade. Such lay-up causes fiber discontinuation at the seam. The joint design at the seam is one major consideration in fabricating a truly anisotropic blade. A new joint design was proposed and tensile failure tests were carried out for both the old and new joint designs. The tests investigated the effects of different types of joint designs, the laminate lay-up at the joints, and the stacking sequence of the joint retention strength. A major component of a wind turbine blade, D-spar, was designed to maximum coupling. Two D-spars were then fabricated using the new joint design; one of them was subjected to both static and modal testings. Traditionally, wind turbine blades are made of low cost glass material; however, carbon fibers are proposed as alternative material. Our

  2. Ceramic blade attachment system

    DOEpatents

    Shaffer, James E.

    1995-01-01

    A turbine blade having a preestablished rate of thermal expansion is attached to a turbine wheel having a preestablished rate of thermal expansion being greater than the preestablished rate of thermal expansion of the turbine blade. The turbine blade has a root portion having a first groove and a second groove therein. The turbine wheel includes a plurality of openings in which the turbine blade is positioned. Each of the openings has a first groove and a second groove therein. The space or void formed between the first grooves and the second grooves has a plurality of spherical balls positioned therein. The plurality of spherical balls has a preestablished rate of thermal expansion being equal to the preestablished rate of thermal expansion of the turbine blade.

  3. Ceramic blade attachment system

    DOEpatents

    Shaffer, J.E.

    1995-01-10

    A turbine blade having a preestablished rate of thermal expansion is attached to a turbine wheel having a preestablished rate of thermal expansion being greater than the preestablished rate of thermal expansion of the turbine blade. The turbine blade has a root portion having a first groove and a second groove therein. The turbine wheel includes a plurality of openings in which the turbine blade is positioned. Each of the openings has a first groove and a second groove therein. The space or void formed between the first grooves and the second grooves has a plurality of spherical balls positioned therein. The plurality of spherical balls has a preestablished rate of thermal expansion being equal to the preestablished rate of thermal expansion of the turbine blade. 4 figures.

  4. Engine Performance of Precision-forged, Electropolished and Machined Blades of Nimonic 80 and 80A Alloys

    NASA Technical Reports Server (NTRS)

    Sikora, Paul F; Johnston, James R

    1955-01-01

    An investigation was conducted to determine the effect of electropolishing precision-forged blades and of machining blades from oversize forgings on the engine performance of Nimonic 80 and Nimonic 80A turbine blades. These blades, along with precision-forged blades, were run in a J33-9 turbojet engine. The tests resulted in the following conclusions: (1) Electropolishing of precision-forged blades did not improve engine life relative to the life of nonelectropolished blades. (2) Machining blades from oversize forgings did not improve the engine life of precision-forged blades. (3) The precision-forging and heat-treating practice used in fabricating the blades investigated was such that the surface roughness and oxide penetration was so slight, approximately 0.0005 inch in depth, as to preclude any benefits derived from surface removal by electropolishing or machining.

  5. Wind turbine blade construction

    SciTech Connect

    Basso, R.J.

    1988-03-01

    This patent describes a blade for the rotor of a wind turbine or the like having a root end mounted on the rotor and extending generally radially outwardly from the rotor out to a distal end comprising: (a) a cuff at the root end of the blade for mounting on the rotor, and having a generally cylindrical, radially outwardly directed collar; (b) a generally cylindrical reinforcing strut mounted generally coaxially to the collar, and extending radially outwardly from the rotor throughout a portion of the length of the blade; (c) a hollow spar coaxially mounted around the strut and extending substantially the full length of the blade; (d) an elongated, rigid aerodynamic skin defining the exterior, wind-encountering surfaces of the blade, and being mounted over and bonded to the strut and defining the distal end of the blade; (e) the reinforcing strut being of decreasing diameter toward the distal end of the blade; and (f) the reinforcing strut comprising telescoping tubes of graduated length with the larger diameter tubes being longer than the smaller diameter tubes.

  6. Jet Engine Fan Blade Containment Using an Alternate Geometry

    NASA Technical Reports Server (NTRS)

    Carney, K.S.; Pereira, J.M.; Revilock, D.M.; Matheny, P.

    2008-01-01

    With a goal of reducing jet engine weight, simulations of a fan blade containment system with an alternate geometry were tested and analyzed. A projectile simulating a fan blade was shot at two alternate geometry containment case configurations using a gas gun. The first configuration was a flat plate representing a standard case configuration. The second configuration was a flat plate with a radially convex curve section at the impact point. The curved surface was designed to force the blade to deform plastically, dissipating energy before the full impact of the blade is received by the plate. The curved case was able to tolerate a higher impact velocity before failure. The computational model was developed and correlated with the tests and a weight savings assessment was performed. For the particular test configuration used in this study the ballistic impact velocity of the curved plate was approximately 60 m/s (200 ft/s) greater than that of the flat plate. For the computational model to successfully duplicate the test, the very high strain rate behavior of the materials had to be incorporated.

  7. Blade attachment assembly

    DOEpatents

    Garcia-Crespo, Andres Jose; Delvaux, John McConnell; Miller, Diane Patricia

    2016-05-03

    An assembly and method for affixing a turbomachine rotor blade to a rotor wheel are disclosed. In an embodiment, an adaptor member is provided disposed between the blade and the rotor wheel, the adaptor member including an adaptor attachment slot that is complementary to the blade attachment member, and an adaptor attachment member that is complementary to the rotor wheel attachment slot. A coverplate is provided, having a coverplate attachment member that is complementary to the rotor wheel attachment slot, and a hook for engaging the adaptor member. When assembled, the coverplate member matingly engages with the adaptor member, and retains the blade in the adaptor member, and the assembly in the rotor wheel.

  8. Ceramic blade attachment system

    DOEpatents

    Boyd, Gary L.

    1994-01-01

    A turbine blade having a preestablished rate of thermal expansion is attached to a turbine wheel having a preestablished rate of thermal expansion being greater than the preestablished rate of thermal expansion of the turbine blade. The turbine blade has a root portion having a pair of recessed portions thereon. The turbine wheel includes a plurality of openings in which the turbine blade is positioned. Each of the openings have a pair of grooves therein in which are positioned a pair of pins having a generally rectangular cross-section and a reaction surface thereon. A pair of cylindrical rollers interposed respective ones of the pair of reaction surfaces and the pair of recessed portions. The attachment system or turbine assembly provides an economical, reliable and effective attachment of a component having a preestablished rate of thermal expansion to a component having a greater preestablished rate of thermal expansion.

  9. Ceramic blade attachment system

    DOEpatents

    Boyd, G.L.

    1994-12-13

    A turbine blade having a preestablished rate of thermal expansion is attached to a turbine wheel having a preestablished rate of thermal expansion being greater than the preestablished rate of thermal expansion of the turbine blade. The turbine blade has a root portion having a pair of recessed portions thereon. The turbine wheel includes a plurality of openings in which the turbine blade is positioned. Each of the openings have a pair of grooves therein in which are positioned a pair of pins having a generally rectangular cross-section and a reaction surface thereon. A pair of cylindrical rollers interposed respective ones of the pair of reaction surfaces and the pair of recessed portions. The attachment system or turbine assembly provides an economical, reliable and effective attachment of a component having a preestablished rate of thermal expansion to a component having a greater preestablished rate of thermal expansion. 3 figures.

  10. Aeroelastic behavior of composite rotor blades with swept tips

    NASA Astrophysics Data System (ADS)

    Yuan, Kuo-An; Friedmann, Peretz P.; Venkatesan, Comandur

    This paper presents an analytical study of the aeroelastic behavior of composite rotor blades with straight and swept tips. The blade is modeled by beam type finite elements. A single finite element is used to model the swept tip. The nonlinear equations of motion for the finite element model are derived using Hamilton's principle and based on a moderate deflection theory and accounts for: arbitrary cross-sectional shape, pretwist, generally anisotropic material behavior, transverse shears and out-of-plane warping. Numerical results illustrating the effects of tip sweep, anhedral and composite ply orientation on blade aeroelastic behavior are presented. It is shown that composite ply orientation has a substantial effect on blade stability. At low thrust conditions, certain ply orientations can cause instability in the lag mode. The flap-torsion coupling associated with tip sweep can also induce aeroelastic instability in the blade. This instability can be removed by appropriate ply orientation in the composite construction.

  11. Aeroelastic behavior of composite rotor blades with swept tips

    NASA Technical Reports Server (NTRS)

    Yuan, Kuo-An; Friedmann, Peretz P.; Venkatesan, Comandur

    1992-01-01

    This paper presents an analytical study of the aeroelastic behavior of composite rotor blades with straight and swept tips. The blade is modeled by beam type finite elements. A single finite element is used to model the swept tip. The nonlinear equations of motion for the finite element model are derived using Hamilton's principle and based on a moderate deflection theory and accounts for: arbitrary cross-sectional shape, pretwist, generally anisotropic material behavior, transverse shears and out-of-plane warping. Numerical results illustrating the effects of tip sweep, anhedral and composite ply orientation on blade aeroelastic behavior are presented. It is shown that composite ply orientation has a substantial effect on blade stability. At low thrust conditions, certain ply orientations can cause instability in the lag mode. The flap-torsion coupling associated with tip sweep can also induce aeroelastic instability in the blade. This instability can be removed by appropriate ply orientation in the composite construction.

  12. Blade Testing Trends (Presentation)

    SciTech Connect

    Desmond, M.

    2014-08-01

    As an invited guest speaker, Michael Desmond presented on NREL's NWTC structural testing methods and capabilities at the 2014 Sandia Blade Workshop held on August 26-28, 2014 in Albuquerque, NM. Although dynamometer and field testing capabilities were mentioned, the presentation focused primarily on wind turbine blade testing, including descriptions and capabilities for accredited certification testing, historical methodology and technology deployment, and current research and development activities.

  13. Acoustic emission monitoring of wind turbine blades

    NASA Astrophysics Data System (ADS)

    Van Dam, Jeremy; Bond, Leonard J.

    2015-03-01

    Damage to wind turbine blades can, if left uncorrected, evolve into catastrophic failures resulting in high costs and significant losses for the operator. Detection of damage, especially in real time, has the potential to mitigate the losses associated with such catastrophic failure. To address this need various forms of online monitoring are being investigated, including acoustic emission detection. In this paper, pencil lead breaks are used as a standard reference source and tests are performed on unidirectional glass-fiber-reinforced-polymer plates. The mechanical pencil break is used to simulate an acoustic emission (AE) that generates elastic waves in the plate. Piezoelectric sensors and a data acquisition system are used to detect and record the signals. The expected dispersion curves generated for Lamb waves in plates are calculated, and the Gabor wavelet transform is used to provide dispersion curves based on experimental data. AE sources using an aluminum plate are used as a reference case for the experimental system and data processing validation. The analysis of the composite material provides information concerning the wave speed, modes, and attenuation of the waveform, which can be used to estimate maximum AE event - receiver separation, in a particular geometry and materials combination. The foundational data provided in this paper help to guide improvements in online structural health monitoring of wind turbine blades using acoustic emission.

  14. Bipolar battery plate

    NASA Technical Reports Server (NTRS)

    Rowlette, John J. (Inventor)

    1987-01-01

    A liquid-impermeable plate (10) having through-plate conductivity with essentially zero resistance comprises an insulator sheet (12) having a series of spaced perforations (14) each of which contains a metal element (16) sealingly received into the perforation (14). A low-cost plate can readily be manufactured by punching a thermoplastic sheet (40) such as polypropylene with a punching tool (52), filling the apertures with led spheres (63) having a diameter smaller than the holes (50) but larger than the thickness of the sheet, sweeping excess spheres (62) off the sheet with a doctor blade (60) and then pressing a heated platen (74) onto the sheet to swage the spheres into a cylindrical shape and melt the surrounding resin to form a liquid-impermeable collar (4) sealing the metal into the sheet.

  15. Multicolor printing plate joining

    NASA Technical Reports Server (NTRS)

    Waters, W. J. (Inventor)

    1984-01-01

    An upper plate having ink flow channels and a lower plate having a multicolored pattern are joined. The joining is accomplished without clogging any ink flow paths. A pattern having different colored parts and apertures is formed in a lower plate. Ink flow channels each having respective ink input ports are formed in an upper plate. The ink flow channels are coated with solder mask and the bottom of the upper plate is then coated with solder. The upper and lower plates are pressed together at from 2 to 5 psi and heated to a temperature of from 295 F to 750 F or enough to melt the solder. After the plates have cooled and the pressure is released, the solder mask is removed from the interior passageways by means of a liquid solvent.

  16. Adaptor assembly for coupling turbine blades to rotor disks

    SciTech Connect

    Delvaux, John McConnel; Garcia-Crespo, Andres Jose; Joyce, Kilmer Joseph; Tindell, Allan Randall

    2014-06-03

    An adaptor assembly for coupling a blade root of a turbine blade to a root slot of a rotor disk is disclosed. The adaptor assembly may generally include an adaptor body having a root configured to be received within the root slot. The adaptor body may also define a slot having an open end configured to receive the blade root. The adaptor body may further define a channel. The adaptor assembly may also include a plate having an outwardly extending foot. The foot may be configured to be received within the channel. Additionally, the plate may be configured to cover at least a portion of the open end of the slot when the foot is received within the channel.

  17. Damping Experiment of Spinning Composite Plates with Embedded Viscoelastic Material

    NASA Technical Reports Server (NTRS)

    Mehmed, Oral; Kosmatka, John B.

    1997-01-01

    One way to increase gas turbine engine blade reliability and durability is to reduce blade vibration. It is well known that vibration reduction can be achieved by adding damping to metal and composite blade-disk systems. This experiment was done to investigate the use of integral viscoelastic damping treatments to reduce vibration of rotating composite fan blades. It is part of a joint research effort with NASA LeRC and the University of California, San Diego (UCSD). Previous vibration bench test results obtained at UCSD show that plates with embedded viscoelastic material had over ten times greater damping than similar untreated plates; and this was without a noticeable change in blade stiffness. The objectives of this experiment, were to verify the structural integrity of composite plates with viscoelastic material embedded between composite layers while under large steady forces from spinning, and to measure the damping and natural frequency variation with rotational speed.

  18. Blade-Pitch Control for Quieting Tilt-Rotor Aircraft

    NASA Technical Reports Server (NTRS)

    Betzina, Mark D.; Nguyen, Khanh Q.

    2004-01-01

    A method of reducing the noise generated by a tilt-rotor aircraft during descent involves active control of the blade pitch of the rotors. This method is related to prior such noise-reduction methods, of a type denoted generally as higher-harmonic control (HHC), in which the blade pitch is made to oscillate at a harmonic of the frequency of rotation of the rotor. A tilt-rotor aircraft is so named because mounted at its wing tips are motors that can be pivoted to enable the aircraft to take off and land like a helicopter or to fly like a propeller airplane. When the aircraft is operating in its helicopter mode, the rotors generate more thrust per unit rotor-disk area than helicopter rotors do, thus producing more blade-vortex interaction (BVI) noise. BVI is a major source of noise produced by helicopters and tilt-rotor aircraft during descent: When a rotor descends into its own wake, the interaction of each blade with the blade-tip vortices generated previously gives rise to large air-pressure fluctuations. These pressure fluctuations radiate as distinct, impulsive noise. In general, the pitch angle of the rotor blades of a tilt-rotor aircraft is controlled by use of a swash plate connected to the rotor blades by pitch links. In both prior HHC methods and the present method, HHC control signals are fed as input to swash-plate control actuators, causing the rotor-blade pitch to oscillate. The amplitude, frequency, and phase of the control signal can be chosen to minimize BVI noise.

  19. SSME blade damper technology

    NASA Technical Reports Server (NTRS)

    Kielb, Robert E.; Griffin, Jerry H.

    1987-01-01

    Before 1975 turbine blade damper designs were based on experience and very simple mathematical models. Failure of the dampers to perform as expected showed the need to gain a better understanding of the physical mechanism of friction dampers. Over the last 10 years research on friction dampers for aeronautical propulsion systems has resulted in methods to optimize damper designs. The first-stage turbine blades on the Space Shuttle Main Engine (SSME) high-pressure oxygen pump have experienced cracking problems due to excessive vibration. A solution is to incorporate a well-designed friction dampers to attenuate blade vibration. The subject study, a cooperative effort between NASA Lewis and Carnegie-Mellon University, represents an application of recently developed friction damper technology to the SSME high-pressure oxygen turbopump. The major emphasis was the contractor's design known as the two-piece damper. Damping occurs at the frictional interface between the top half of the damper and the underside of the platforms of the adjacent blades. The lower half of the damper is an air seal to retard airflow in the volume between blade necks.

  20. Ceramic blade attachment system

    DOEpatents

    Frey, G.A.; Jimenez, O.D.

    1996-12-03

    A turbine blade having a preestablished rate of thermal expansion is attached to a turbine flange having a preestablished rate of thermal expansion being greater than the preestablished rate of thermal expansion of the turbine blade. The turbine flange includes a first upstanding flange and a second upstanding flange having a groove formed between them. The turbine flange further includes a recess. Each of the first and second upstanding flanges have a plurality of bores therein. A turbine blade has a first member and a second member positioned in one of the groove and the recess. Each of the first member and the second member have a plurality of bores therein. A pin is positioned in respective ones of the plurality of bores in the first and second upstanding members and the first and second members and attach the blade to the turbine flange. The pin has a preestablished rate of thermal expansion being substantially equal to the rate of thermal expansion of the blade. 4 figs.

  1. Ceramic blade attachment system

    DOEpatents

    Frey, deceased, Gary A.; Jimenez, Oscar D.

    1996-01-01

    A turbine blade having a preestablished rate of thermal expansion is attached to a turbine flange having a preestablished rate of thermal expansion being greater than the preestablished rate of thermal expansion of the turbine blade. The turbine flange includes a first upstanding flange and a second upstanding flange having a groove formed therebetween. The turbine flange further includes a recess. Each of the first and second upstanding flanges have a plurality of bores therein. A turbine blade has a first member and a second member positioned in one of the groove and the recess. Each of the first member and the second member have a plurality of bores therein. And, a pin is positioned in respective ones of the plurality of bores in the first and second upstanding members and the first and second members and attach the blade to the turbine flange. The pin has a preestablished rate of thermal expansion being substantially equal to the rate of thermal expansion of the blade.

  2. Research on measurement and control of helicopter rotor response using blade-mounted accelerometers 1990-91

    NASA Technical Reports Server (NTRS)

    Ham, Norman D.; Mckillip, Robert M., Jr.

    1991-01-01

    Wind tunnel testing of the full-size Model 412/IBC rotor performed at the NASA Ames Research Center is described. The use of blade-mounted accelerometers is found to be feasible for estimating or measuring blade flapping, lagging, and bending accelerations, rates, and displacements. Application of the imaginary swash plate concept to IBC systems leads to useful filtering of the blade accelerometer signals while permitting the control of a four-bladed rotor using measurements from any three blades. Rotor state measurements in the rotating system can be transformed to the corresponding nonrotating rotor states using the IBC algorithm with its associated filtering properties.

  3. CALUTRON FACE PLATE

    DOEpatents

    Brobeck, W.M.

    1959-08-25

    The construction of a removable cover plate for a calutron tank is described. The plate is fabricated of a rectangular frame member to which is welded a bowed or dished plate of thin steel, reinforced with transverse stiffening ribs. When the tank is placed between the poles of a magnet, the plate may be pivoted away from the tank and magnet and is adapted to support the ion separation mechanism secured to its inner side as well as the vacuum load within the tank.

  4. Stalling of Helicopter Blades

    NASA Technical Reports Server (NTRS)

    Gustafson, F B; Myers, G C , Jr

    1946-01-01

    Theoretical studies have predicted that operation of helicopter rotor beyond certain combinations of thrust, forward speed, and rotational speed might be prevented by rapidly increasing stalling of the retreating blade. The same studies also indicate that the efficiency of the rotor will increase until these limits are reached or closely approached, so that it is desirable to design helicopter rotors for operation close to the limits imposed by blade stalling. Inasmuch as the theoretical predictions of blade stalling involve numerous approximations and assumptions, an experimental investigation was needed to determine whether, in actual practice, the stall did occur and spread as predicted and to establish the amount of stalling that could be present without severe vibration or control difficulties being introduced. This report presents the results of such an investigation.

  5. Fluid blade disablement tool

    DOEpatents

    Jakaboski, Juan-Carlos; Hughs, Chance G.; Todd, Steven N.

    2012-01-10

    A fluid blade disablement (FBD) tool that forms both a focused fluid projectile that resembles a blade, which can provide precision penetration of a barrier wall, and a broad fluid projectile that functions substantially like a hammer, which can produce general disruption of structures behind the barrier wall. Embodiments of the FBD tool comprise a container capable of holding fluid, an explosive assembly which is positioned within the container and which comprises an explosive holder and explosive, and a means for detonating. The container has a concavity on the side adjacent to the exposed surface of the explosive. The position of the concavity relative to the explosive and its construction of materials with thicknesses that facilitate inversion and/or rupture of the concavity wall enable the formation of a sharp and coherent blade of fluid advancing ahead of the detonation gases.

  6. Turbojet engine blade damping

    NASA Technical Reports Server (NTRS)

    Srinivasan, A. V.; Cutts, D. G.; Sridhar, S.

    1981-01-01

    The potentials of various sources of nonaerodynamic damping in engine blading are evaluated through a combination of advanced analysis and testing. The sources studied include material hysteresis, dry friction at shroud and root disk interfaces as well as at platform type external dampers. A limited seris of tests was conducted to evaluate damping capacities of composite materials (B/AL, B/AL/Ti) and thermal barrier coatings. Further, basic experiments were performed on titanium specimens to establish the characteristics of sliding friction and to determine material damping constants J and n. All the tests were conducted on single blades. Mathematical models were develthe several mechanisms of damping. Procedures to apply this data to predict damping levels in an assembly of blades are developed and discussed.

  7. Blade pressure measurements

    NASA Astrophysics Data System (ADS)

    Chivers, J. W. H.

    Three measurement techniques which enable rotating pressures to be measured during the normal operation of a gas turbine or a component test rig are described. The first technique was developed specifically to provide steady and transient blade surface pressure data to aid both fan flutter research and general fan performance development. This technique involves the insertion of miniature high frequency response pressure transducers into the fan blades of a large civil gas turbine. The other two techniques were developed to measure steady rotating pressures inside and on the surface of engine or rig turbine blades and also rotating pressures in cooling feed systems. These two low frequency response systems are known as the "pressure pineapple' (a name which resulted from the shape of the original prototype) and the rotating scanivalve.

  8. Containment of composite fan blades

    NASA Technical Reports Server (NTRS)

    Coppa, A. P.; Stotler, C. L.

    1977-01-01

    The development of containment concepts for use with large composite fan blades, taking into account the frangible nature of composite blades is considered. Aspects of the development program include; (1) an analysis to predict the interaction between a failed fan blade and the blade containment structure; (2) scaling factors to allow impact testing using subscale containment rings and simulated blades; (3) the design and fabrication of containment systems for further evaluation in a rotating rig test facility; (4) evaluate the test data against the analytically predicted results; and (5) determine overall systems weights and design characteristics of a composite fan stage installation and compare to the requirements of an equivalent titanium fan blade system. Progress in the blade impact penetration tests and the design and fabrication of blade containment systems is reported.

  9. Surface controlled blade stabilizer

    DOEpatents

    Russell, Larry R.

    1983-01-01

    Drill string stabilizer apparatus, controllable to expand and retract entirely from the surface by control of drill string pressure, wherein increase of drill string pressure from the surface closes a valve to create a piston means which is moved down by drill string pressure to expand the stabilizer blades, said valve being opened and the piston moving upward upon reduction of drill string pressure to retract the stabilizer blades. Upward and downward movements of the piston and an actuator sleeve therebelow are controlled by a barrel cam acting between the housing and the actuator sleeve.

  10. The MOD-1 steel blade

    NASA Technical Reports Server (NTRS)

    Vanbronkhorst, J.

    1979-01-01

    The design, development, fabrication, testing, and transport of two 100 foot metal blades for the MOD-1 WTS are summarized. Because the metal blade design was started late in the MOD-1 system development, many of the design requirements (allocations) were restrictive for the metal blade concept, particularly the maximum weight requirement. The design solutions required to achieve the weight goal resulted in a labor intensive (expensive) fabrication, particularly for a quantity of only two blades manufactured using minimal tooling.

  11. Cooled snubber structure for turbine blades

    DOEpatents

    Mayer, Clinton A; Campbell, Christian X; Whalley, Andrew; Marra, John J

    2014-04-01

    A turbine blade assembly in a turbine engine. The turbine blade assembly includes a turbine blade and a first snubber structure. The turbine blade includes an internal cooling passage containing cooling air. The first snubber structure extends outwardly from a sidewall of the turbine blade and includes a hollow interior portion that receives cooling air from the internal cooling passage of the turbine blade.

  12. Resistive band for turbomachine blade

    SciTech Connect

    Roberts, Herbert Chidsey; Taxacher, Glenn Curtis

    2015-08-25

    A turbomachine system includes a rotor that defines a longitudinal axis of the turbomachine system. A first blade is coupled to the rotor, and the first blade has first and second laminated plies. A first band is coupled to the first blade and is configured to resist separation of the first and second laminated plies.

  13. Blade lock for a rotor disk and rotor blade assembly

    NASA Technical Reports Server (NTRS)

    Moore, Jerry H. (Inventor)

    1992-01-01

    A rotor disk 18 and rotor blade 26 assembly is disclosed having a blade lock 66 which retains the rotor blade against axial movement in an axially extending blade retention slot 58. Various construction details are developed which shield the dead rim region D.sub.d and shift at least a portion of the loads associated with the locking device from the dead rim. In one detailed embodiment, a projection 68 from the live rim D.sub.1 of the disk 18 is adapted by slots 86 to receive blade locks 66.

  14. Rotor blade system with reduced blade-vortex interaction noise

    NASA Technical Reports Server (NTRS)

    Leishman, John G. (Inventor); Han, Yong Oun (Inventor)

    2005-01-01

    A rotor blade system with reduced blade-vortex interaction noise includes a plurality of tube members embedded in proximity to a tip of each rotor blade. The inlets of the tube members are arrayed at the leading edge of the blade slightly above the chord plane, while the outlets are arrayed at the blade tip face. Such a design rapidly diffuses the vorticity contained within the concentrated tip vortex because of enhanced flow mixing in the inner core, which prevents the development of a laminar core region.

  15. Thermosyphon Method for Cooling the Rotor Blades of High-Temperature Steam Turbines

    NASA Astrophysics Data System (ADS)

    Bogomolov, Alexander R.; Temnikova, Elena Yu.

    2016-02-01

    The design scheme of closed two-phase thermosyphon were suggested that can provide standard thermal operation of blades of high-temperature steam turbine. The method for thermosyphon calculation is developed. The example of thermal calculation was implemented, it showed that to cool the steam turbine blades at their heating by high-temperature steam, the heat can be removed in the rear part of the blades by air with the temperature of about 440°C.

  16. Pressure blades and total cutting edge: an experiment in lithic technology.

    PubMed

    Sheets, P D; Muto, G R

    1972-02-11

    Pressure techniques were used to remove 83 blades from a preformed obsidian core weighing 820 grams, yielding 17.32 meters of acute cutting edge. The blades represented 91 percent of the original weight (2.1 centimeters of acute cutting edge per gram of original material), thus demonstrating the efficiency of the pressure-blade techniques for the production of acute cutting edges. PMID:17808802

  17. Razor Blades to Computers.

    ERIC Educational Resources Information Center

    Schneider, Arthur

    Stages in developing editing equipment and processes for videotape are described. In 1956, when the first broadcast videotape recorders were installed, a splicing block, consisting of an aluminum block, steel ruler, and sharp razor blade, was used. Gradually, technicians developed more sophisticated methods. At present, two very advanced methods…

  18. Design aspects of the XV-15 advanced technology blade program

    NASA Technical Reports Server (NTRS)

    Smith, K. E.; Alexander, H. R.; Maisel, M. D.

    1985-01-01

    The paper discusses the design of a tiltrotor blade for application to the XV-15 research demonstration aircraft. The design features 43 deg nonlinear twist and nonuniform tapered planform. The structure is composite with extensive use of graphite in the primary structure. Instrumentation and wiring is encapsulated in the composite structure during the cure cycle. The tip shell is removable, providing access to the tracking and balance weights. This feature provides research facility of alternate tip configurations. The cuff is similarly removable. The graphite epoxy system used is high strain American Cyanamid's Celion 6000ST/Cycom 950. This is the first application of this material in rotor blades.

  19. Turbine blade and non-integral platform with pin attachment

    DOEpatents

    Campbell, Christian Xavier; Eng, Darryl; Marra, John J.

    2016-08-02

    Platforms (36, 38) span between turbine blades (23, 24, 25) on a disk (32). Each platform may be individually mounted to the disk by a pin attachment (42). Each platform (36) may have a rotationally rearward edge portion (50) that underlies a forward portion (45) of the adjacent platform (38). This limits centrifugal bending of the rearward portion of the platform, and provides coolant sealing. The rotationally forward edge (44A, 44B) of the platform overlies a seal element (51) on the pressure side (28) of the forwardly adjacent blade, and does not underlie a shelf on that blade. The pin attachment allows radial mounting of each platform onto the disk via tilting (60) of the platform during mounting to provide mounting clearance for the rotationally rearward edge portion (50). This facilitates quick platform replacement without blade removal.

  20. Study of blade clearance effects on centrifugal pumps

    NASA Technical Reports Server (NTRS)

    Hoshide, R. K.; Nielson, C. E.

    1972-01-01

    A program of analysis, design, fabrication, and testing has been conducted to develop and experimentally verify analytical models to predict the effects of impeller blade clearance on centrifugal pumps. The effect of tip clearance on pump efficiency, and the relationship between the head coefficient and torque loss with tip clearance was established. Analysis were performed to determine the cost variation in design, manufacture, and test that would occur between unshrouded and shrouded impellers. An impeller, representative of typical rocket engine impellers, was modified by removing its front shroud to permit variation of its blade clearances. It was tested in water with special instrumentation to provide measurements of blade surface pressures during operation. Pump performance data were obtained from tests at various impeller tip clearances. Blade pressure data were obtained at the nominal tip clearance. Comparisons of predicted and measured data are given.

  1. Turbine blade and non-integral platform with pin attachment

    SciTech Connect

    Campbell, Christian X; Eng, Darryl; Marra, John J

    2015-01-27

    Platforms (36, 38) span between turbine blades (23, 24, 25) on a disk (32). Each platform may be individually mounted to the disk by a pin attachment (42). Each platform (36) may have a rotationally rearward edge portion (50) that underlies a forward portion (45) of the adjacent platform (38). This limits centrifugal bending of the rearward portion of the platform, and provides coolant sealing. The rotationally forward edge (44A, 44B) of the platform overlies a seal element (51) on the pressure side (28) of the forwardly adjacent blade, and does not underlie a shelf on that blade. The pin attachment allows radial mounting of each platform onto the disk via tilting (60) of the platform during mounting to provide mounting clearance for the rotationally rearward edge portion (50). This facilitates quick platform replacement without blade removal.

  2. Rotor blade vortex interaction noise

    NASA Astrophysics Data System (ADS)

    Yu, Yung H.

    2000-02-01

    Blade-vortex interaction noise-generated by helicopter main rotor blades is one of the most severe noise problems and is very important both in military applications and community acceptance of rotorcraft. Research over the decades has substantially improved physical understanding of noise-generating mechanisms, and various design concepts have been investigated to control noise radiation using advanced blade planform shapes and active blade control techniques. The important parameters to control rotor blade-vortex interaction noise and vibration have been identified: blade tip vortex structures and its trajectory, blade aeroelastic deformation, and airloads. Several blade tip design concepts have been investigated for diffusing tip vortices and also for reducing noise. However, these tip shapes have not been able to substantially reduce blade-vortex interaction noise without degradation of rotor performance. Meanwhile, blade root control techniques, such as higher-harmonic pitch control (HHC) and individual blade control (IBC) concepts, have been extensively investigated for noise and vibration reduction. The HHC technique has proved the substantial blade-vortex interaction noise reduction, up to 6 dB, while vibration and low-frequency noise have been increased. Tests with IBC techniques have shown the simultaneous reduction of rotor noise and vibratory loads with 2/rev pitch control inputs. Recently, active blade control concepts with smart structures have been investigated with the emphasis on active blade twist and trailing edge flap. Smart structures technologies are very promising, but further advancements are needed to meet all the requirements of rotorcraft applications in frequency, force, and displacement.

  3. Bipolar battery plate

    NASA Technical Reports Server (NTRS)

    Rowlette, John J. (Inventor)

    1985-01-01

    A liquid-impermeable plate (10) having throughplate conductivity with essentially zero resistance comprises an insulator sheet (12) having a series of spaced perforations (14) each of which contains a metal element (16) sealingly received into the perforation (14). A low-cost plate can readily be manufactured by punching a thermoplastic sheet (40) such as polypropylene with a punching tool (52), filling the apertures with lead spheres (63) having a diameter smaller than the holes (50) but larger than the thickness of the sheet, sweeping excess spheres (62) off the sheet with a doctor blade (60) and then pressing a heated platen (74) onto the sheet to swage the spheres into a cylindrical shape and melt the surrounding resin to form a liquid-impermeable collar (4) sealing the metal into the sheet.

  4. Laser-based gluing of diamond-tipped saw blades

    NASA Astrophysics Data System (ADS)

    Hennigs, Christian; Lahdo, Rabi; Springer, André; Kaierle, Stefan; Hustedt, Michael; Brand, Helmut; Wloka, Richard; Zobel, Frank; Dültgen, Peter

    2016-03-01

    To process natural stone such as marble or granite, saw blades equipped with wear-resistant diamond grinding segments are used, typically joined to the blade by brazing. In case of damage or wear, they must be exchanged. Due to the large energy input during thermal loosening and subsequent brazing, the repair causes extended heat-affected zones with serious microstructure changes, resulting in shape distortions and disadvantageous stress distributions. Consequently, axial run-out deviations and cutting losses increase. In this work, a new near-infrared laser-based process chain is presented to overcome the deficits of conventional brazing-based repair of diamond-tipped steel saw blades. Thus, additional tensioning and straightening steps can be avoided. The process chain starts with thermal debonding of the worn grinding segments, using a continuous-wave laser to heat the segments gently and to exceed the adhesive's decomposition temperature. Afterwards, short-pulsed laser radiation removes remaining adhesive from the blade in order to achieve clean joining surfaces. The third step is roughening and activation of the joining surfaces, again using short-pulsed laser radiation. Finally, the grinding segments are glued onto the blade with a defined adhesive layer, using continuous-wave laser radiation. Here, the adhesive is heated to its curing temperature by irradiating the respective grinding segment, ensuring minimal thermal influence on the blade. For demonstration, a prototype unit was constructed to perform the different steps of the process chain on-site at the saw-blade user's facilities. This unit was used to re-equip a saw blade with a complete set of grinding segments. This saw blade was used successfully to cut different materials, amongst others granite.

  5. Graphene in turbine blades

    NASA Astrophysics Data System (ADS)

    Das, D. K.; Swain, P. K.; Sahoo, S.

    2016-07-01

    Graphene, the two-dimensional (2D) nanomaterial, draws interest of several researchers due to its many superior properties. It has extensive applications in numerous fields. A turbine is a hydraulic machine which extracts energy from a fluid and converts it into useful work. Recently, Gudukeya and Madanhire have tried to increase the efficiency of Pelton turbine. Beucher et al. have also tried the same by reducing friction between fluid and turbine blades. In this paper, we study the advantages of using graphene as a coating on Pelton turbine blades. It is found that the efficiency of turbines increases, running and maintenance cost is reduced with more power output. By the application of graphene in pipes, cavitation will be reduced, durability of pipes will increase, operation and maintenance cost of water power plants will be less.

  6. Process of forming a plated wirepack with abrasive particles only in the cutting surface with a controlled kerf

    NASA Technical Reports Server (NTRS)

    Smith, Maynard B. (Inventor); Schmid, Frederick (Inventor); Khattak, Chandra P. (Inventor)

    1983-01-01

    A narrow wire blade with abrasive particles plated within a longitudinally-extending, plated cutting portion that extends from only one side of a wire core and has parallel side walls spaced by a controlled width.

  7. Constructal blade shape in nanofluids

    PubMed Central

    2011-01-01

    Blade configuration of nanofluids has been proven to perform much better than dispersed configuration for some heat conduction systems. The analytical analysis and numerical calculation are made for the cylinder--shaped and regular-rectangular-prism--shaped building blocks of the blade-configured heat conduction systems (using nanofluids as the heat conduction media) to find the optimal cross-sectional shape for the nanoparticle blade under the same composing materials, composition ratio, volumetric heat generation rate, and total building block volume. The regular-triangular-prism--shaped blade has been proven to perform better than all the other three kinds of blades, namely, the regular-rectangular-prism--shaped blade, the regular-hexagonal-prism--shaped blade, and the cylinder--shaped blade. Thus, the regular-triangular-prism--shaped blade is selected as the optimally shaped blade for the two kinds of building blocks that are considered in this study. It is also proven that the constructal cylinder--regular-triangular-prism building block performs better than the constructal regular-rectangular-prism--regular-triangular-prism building block. PMID:21711751

  8. Blade Vibration Measurement System

    NASA Technical Reports Server (NTRS)

    Platt, Michael J.

    2014-01-01

    The Phase I project successfully demonstrated that an advanced noncontacting stress measurement system (NSMS) could improve classification of blade vibration response in terms of mistuning and closely spaced modes. The Phase II work confirmed the microwave sensor design process, modified the sensor so it is compatible as an upgrade to existing NSMS, and improved and finalized the NSMS software. The result will be stand-alone radar/tip timing radar signal conditioning for current conventional NSMS users (as an upgrade) and new users. The hybrid system will use frequency data and relative mode vibration levels from the radar sensor to provide substantially superior capabilities over current blade-vibration measurement technology. This frequency data, coupled with a reduced number of tip timing probes, will result in a system capable of detecting complex blade vibrations that would confound traditional NSMS systems. The hardware and software package was validated on a compressor rig at Mechanical Solutions, Inc. (MSI). Finally, the hybrid radar/tip timing NSMS software package and associated sensor hardware will be installed for use in the NASA Glenn spin pit test facility.

  9. Plate motion

    SciTech Connect

    Gordon, R.G. )

    1991-01-01

    The motion of tectonic plates on the earth is characterized in a critical review of U.S. research from the period 1987-1990. Topics addressed include the NUVEL-1 global model of current plate motions, diffuse plate boundaries and the oceanic lithosphere, the relation between plate motions and distributed deformations, accelerations and the steadiness of plate motions, the distribution of current Pacific-North America motion across western North America and its margin, plate reconstructions and their uncertainties, hotspots, and plate dynamics. A comprehensive bibliography is provided. 126 refs.

  10. Development of an imaging system for the detection of alumina on turbine blades

    NASA Astrophysics Data System (ADS)

    Greenwell, S. J.; Kell, J.; Day, J. C. C.

    2014-03-01

    An imaging system capable of detecting alumina on turbine blades by acquiring LED-induced fluorescence images has been developed. Acquiring fluorescence images at adjacent spectral bands allows the system to distinguish alumina from fluorescent surface contaminants. Repair and overhaul processes require that alumina is entirely removed from the blades by grit blasting and chemical stripping. The capability of the system to detect alumina has been investigated with two series of turbine blades provided by Rolls-Royce plc. The results illustrate that the system provides a superior inspection method to visual assessment when ascertaining whether alumina is present on turbine blades during repair and overhaul processes.

  11. Design of TFTR movable limiter blades for ohmic and neutral-beam-heated plasmas

    SciTech Connect

    Doll, D.W.; Ulrickson, M.A.; Cecchi, J.L.; Citrolo, J.C.; Weissenburger, D.; Bialek, J.

    1981-10-01

    A new set of movable limiter blades has been designed for TFTR that will meet both the requirements of the 4 MW ohmic heated and the 33 MW neutral beam heated plasmas. This is accomplished with three limiter blades each having and elliptical shape along the toroidal direction. Heat flux levels are acceptable for both ohmic heated and pre-strong compression plasmas. The construction consists of graphite tiles attached to cooled backing plates. The tiles have an average thickness of approx. 4.7 cm and are drawn against the backing plate with spring loaded fasteners that are keyed into the graphite. The cooled backing plate provides the structure for resisting disruption and fault induced loads. A set of rollers attached to the top and bottom blades allow them to be expanded and closed in order to vary the plasma surface for scaling experiments. Water cooling lines penetrate only the mid-plane port cover/support plate in such a way as to avoid bolted water connections inside the vacuum boundary and at the same time allow blade movement. Both the upper and lower blades are attached to the mid-plane limiter blade through pivots. Pivot connections are protected against arcing with an alumina coating and a shunt bar strap. Remote handling is considered throughout the design.

  12. Snubber assembly for turbine blades

    DOEpatents

    Marra, John J

    2013-09-03

    A snubber associated with a rotatable turbine blade in a turbine engine, the turbine blade including a pressure sidewall and a suction sidewall opposed from the pressure wall. The snubber assembly includes a first snubber structure associated with the pressure sidewall of the turbine blade, a second snubber structure associated with the suction sidewall of the turbine blade, and a support structure. The support structure extends through the blade and is rigidly coupled at a first end portion thereof to the first snubber structure and at a second end portion thereof to the second snubber structure. Centrifugal loads exerted by the first and second snubber structures caused by rotation thereof during operation of the engine are at least partially transferred to the support structure, such that centrifugal loads exerted on the pressure and suctions sidewalls of the turbine blade by the first and second snubber structures are reduced.

  13. Superhybrid composite blade impact studies

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.; Lark, R. F.; Sinclair, J. H.

    1980-01-01

    The feasibility of superhybrid composite blades for meeting the mechanical design and impact resistance requirements of large fan blades for aircraft turbine engine applications was investigated. Two design concepts were evaluated: leading edge spar (TiCom) and center spar (TiCore), both with superhybrid composite shells. The investigation was both analytical and experimental. The results obtained show promise that superhybrid composites can be used to make light weight, high quality, large fan blades with good structural integrity. The blades tested successfully demonstrated their ability to meet steady state operating conditions, overspeed, and small bird impact requirements.

  14. Ceramic blade with tip seal

    DOEpatents

    Glezer, B.; Bhardwaj, N.K.; Jones, R.B.

    1997-08-05

    The present gas turbine engine includes a disc assembly defining a disc having a plurality of blades attached thereto. The disc has a preestablished rate of thermal expansion and the plurality of blades have a preestablished rate of thermal expansion being less than the preestablished rate of thermal expansion of the disc. A shroud assembly is attached to the gas turbine engine and is spaced from the plurality of blades a preestablished distance forming an interface there between. Positioned in the interface is a seal having a preestablished rate of thermal expansion being generally equal to the rate of thermal expansion of the plurality of blades. 4 figs.

  15. Superhybrid composite blade impact studies

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.; Lark, R. F.; Sinclair, J. H.

    1981-01-01

    An investigation was conducted to determine the feasibility of superhybrid composite blades for meeting the mechanical design and impact resistance requirements of large fan blades for aircraft turbine engine applications. Two design concepts were evaluated: (1) leading edge spar (TiCom) and (2) center spar (TiCore), both with superhybrid composite shells. The investigation was both analytical and experimental. The results obtained show promise that superhybrid composites can be used to make light-weight, high-quality, large fan blades with good structural integrity. The blades tested successfully demonstrated their ability to meet steady-state operating conditions, overspeed, and small bird impact requirements.

  16. Removal of fly-ash and dust particulate matters from syngas produced by gasification of coal by using a multi-stage dual-flow sieve plate wet scrubber.

    PubMed

    Kurella, Swamy; Meikap, Bhim Charan

    2016-08-23

    In this work, fly-ash water scrubbing experiments were conducted in a three-stage lab-scale dual-flow sieve plate scrubber to observe the performance of scrubber in fly-ash removal at different operating conditions by varying the liquid rate, gas rate and inlet fly-ash loading. The percentage of fly-ash removal efficiency increases with increase in inlet fly-ash loading, gas flow rate and liquid flow rate, and height of the scrubber; 98.55% maximum percentage of fly-ash removal efficiency (ηFA) is achieved at 19.36 × 10(-4) Nm(3)/s gas flow rate (QG) and 48.183 × 10(-6) m(3)/s liquid flow rate (QL) at 25 × 10(-3) kg/Nm(3) inlet fly-ash loading (CFA,i). A model has also been developed for the prediction of fly-ash removal efficiency of the column using the experimental results. The predicted values calculated using the correlation matched well with the experimental results. Deviations observed between the experimental and the predicted values were less than 20%. PMID:27230635

  17. Helicopter rotor blade design for minimum vibration

    NASA Technical Reports Server (NTRS)

    Taylor, R. B.

    1984-01-01

    The importance of blade design parameters in rotor vibratory response and the design of a minimum vibration blade based upon this understanding are examined. Various design approaches are examined for a 4 bladed articulated rotor operating at a high speed flight condition. Blade modal shaping, frequency placement, structural and aerodynamic coupling, and intermodal cancellation are investigated to systematically identify and evaluate blade design parameters that influence blade airloads, blade modal response, hub loads, and fuselage vibration. The relative contributions of the various components of blade force excitation and response to the vibratory hub loads transmitted to the fuselage are determined in order to isolate primary candidates for vibration alleviation. A blade design is achieved which reduces the predicted fuselage vibration from the baseline blade by approximately one half. Blade designs are developed that offer significant reductions in vibration (and fatigue stresses) without resorting to special vibration alleviation devices, radical blade geometries, or weight penalties.

  18. Wall shear stress measurement in blade end-wall corner region

    NASA Technical Reports Server (NTRS)

    Bhargava, R.; Raj, R.; Boldman, D. R.

    1987-01-01

    The magnitude and the direction of wall shear stress and surface pressure in the blade end-wall corner region were investigated. The measurements were obtained on a specially designed Preston tube, the tip of which could be concentrically rotated about its axis of rotation at the measurement location. The magnitude of wall shear stress in the vicinity of the corner was observed to increase significantly (170 percent) compared to its far-upstream value; the increase was consistently higher on the blade surface compared to the value on the plate surface of the blade end-wall corner. On both surfaces in the blade end-wall corner, the variation of the wall shear stress direction was found to be more predominant in the vicinity of the blade leading-edge location. The trend of the measured wall shear stress direction showed good agreement with the limiting streamline directions obtained from the flow visualization studies.

  19. Individual-blade-control research in the MIT VTOL Technology Laboratory 1977-1985

    NASA Technical Reports Server (NTRS)

    Ham, N. D.

    1986-01-01

    A new, advanced system for active control of helicopters and its application to the solution of rotor aerodynamic and aeroelastic problems is described. Each blade is individually controlled in the rotating frame over a wide range of frequencies. Application of the system to gust alleviation, attitude stabilization, vibration alleviation, blade lag damping augmentation, stall flutter suppression, blade flapping stabilization, stall alleviation, and performance enhancement is outlined. The effectiveness of the system in achieving most of these applications is demonstrated by experimental results from wind tunnel tests of a model helicopter rotor with individual blade control. The feasibility of achieving many or all of the applications of individual blade control using the conventional helicopter swash plate is demonstrated, and the necessary control laws are presented.

  20. Estimation of blade airloads from rotor blade bending moments

    NASA Technical Reports Server (NTRS)

    Bousman, William G.

    1987-01-01

    A method is developed to estimate the blade normal airloads by using measured flap bending moments; that is, the rotor blade is used as a force balance. The blade's rotation is calculated in vacuum modes and the airloads are then expressed as an algebraic sum of the mode shapes, modal amplitudes, mass distribution, and frequency properties. The modal amplitudes are identified from the blade bending moments using the Strain Pattern Analysis Method. The application of the method is examined using simulated flap bending moment data that have been calculated for measured airloads for a full-scale rotor in a wind tunnel. The estimated airloads are compared with the wind tunnel measurements. The effects of the number of measurements, the number of modes, and errors in the measurements and the blade properties are examined, and the method is shown to be robust.

  1. A Non-Uniformly Under-Sampled Blade Tip-Timing Signal Reconstruction Method for Blade Vibration Monitoring

    PubMed Central

    Hu, Zheng; Lin, Jun; Chen, Zhong-Sheng; Yang, Yong-Min; Li, Xue-Jun

    2015-01-01

    High-speed blades are often prone to fatigue due to severe blade vibrations. In particular, synchronous vibrations can cause irreversible damages to the blade. Blade tip-timing methods (BTT) have become a promising way to monitor blade vibrations. However, synchronous vibrations are unsuitably monitored by uniform BTT sampling. Therefore, non-equally mounted probes have been used, which will result in the non-uniformity of the sampling signal. Since under-sampling is an intrinsic drawback of BTT methods, how to analyze non-uniformly under-sampled BTT signals is a big challenge. In this paper, a novel reconstruction method for non-uniformly under-sampled BTT data is presented. The method is based on the periodically non-uniform sampling theorem. Firstly, a mathematical model of a non-uniform BTT sampling process is built. It can be treated as the sum of certain uniform sample streams. For each stream, an interpolating function is required to prevent aliasing in the reconstructed signal. Secondly, simultaneous equations of all interpolating functions in each sub-band are built and corresponding solutions are ultimately derived to remove unwanted replicas of the original signal caused by the sampling, which may overlay the original signal. In the end, numerical simulations and experiments are carried out to validate the feasibility of the proposed method. The results demonstrate the accuracy of the reconstructed signal depends on the sampling frequency, the blade vibration frequency, the blade vibration bandwidth, the probe static offset and the number of samples. In practice, both types of blade vibration signals can be particularly reconstructed by non-uniform BTT data acquired from only two probes. PMID:25621612

  2. Design of centrifugal impeller blades

    NASA Technical Reports Server (NTRS)

    Betz, A; Flugge-Lotz, I

    1939-01-01

    This paper restricts itself to radial impellers with cylindrical blades since, as Prasil has shown, the flow about an arbitrarily curved surface of revolution may be reduced to this normal form we have chosen by a relatively simple conformal transformation. This method starts from the simple hypotheses of the older centrifugal impeller theory by first assuming an impeller with an infinite number of blades. How the flow is then modified is then investigated. For the computation of flow for a finite number of blades, the approximation method as developed by Munk, Prandtl and Birnbaum, or Glauert is found suitable. The essential idea of this method is to replace the wing by a vortex sheet and compute the flow as the field of these vortices. The shape of the blades is then obtained from the condition that the flow must be along the surface of the blade.

  3. SERI advanced wind turbine blades

    SciTech Connect

    Tangler, J.; Smith, B.; Jager, D.

    1992-02-01

    The primary goal of the Solar Energy Research Institute's (SERI) advanced wind turbine blades is to convert the kinetic energy in the wind into mechanical energy in an inexpensive and efficient manner. To accomplish this goal, advanced wind turbine blades have been developed by SERI that utilize unique airfoil technology. Performance characteristics of the advanced blades were verified through atmospheric testing on fixed-pitch, stall-regulated horizontal-axis wind turbines (HAWTs). Of the various wind turbine configurations, the stall-regulated HAWT dominates the market because of its simplicity and low cost. Results of the atmospheric tests show that the SERI advanced blades produce 10% to 30% more energy than conventional blades. 6 refs.

  4. SERI advanced wind turbine blades

    SciTech Connect

    Tangler, J.; Smith, B.; Jager, D.

    1992-02-01

    The primary goal of the Solar Energy Research Institute`s (SERI) advanced wind turbine blades is to convert the kinetic energy in the wind into mechanical energy in an inexpensive and efficient manner. To accomplish this goal, advanced wind turbine blades have been developed by SERI that utilize unique airfoil technology. Performance characteristics of the advanced blades were verified through atmospheric testing on fixed-pitch, stall-regulated horizontal-axis wind turbines (HAWTs). Of the various wind turbine configurations, the stall-regulated HAWT dominates the market because of its simplicity and low cost. Results of the atmospheric tests show that the SERI advanced blades produce 10% to 30% more energy than conventional blades. 6 refs.

  5. Low-Noise Rotorcraft Blades

    NASA Technical Reports Server (NTRS)

    Brooks, Thomas F.

    1994-01-01

    Blades of helicopter rotors, tilt rotors, and like reshaped to reduce noise, according to proposal. Planform features combination of rearward and forward sweep. Forward sweep over large outer portion of blade constitutes primary noise-reduction feature. Relieves some of compressive effect in tip region, with consequent reduction of noise from compressive sources. Performance at high advance ratio improved. Cabin vibration and loading noise reduced by load-averaging effect of double-sweep planform. Aft-swept section provides balancing of aerodynamic and other dynamic forces on blade along 1/4-chord line of straight inboard section and along projection of line to outermost blade radius. Possible for hub-hinge forces and moments to remain within practical bounds. Provides stabilizing blade forces and moments to counteract any instability caused by forward sweep.

  6. SERI advanced wind turbine blades

    NASA Astrophysics Data System (ADS)

    Tangler, J.; Smith, B.; Jager, D.

    1992-02-01

    The primary goal of the Solar Energy Research Institute's (SERI) advanced wind turbine blades is to convert the kinetic energy in the wind into mechanical energy in an inexpensive and efficient manner. To accomplish this goal, advanced wind turbine blades have been developed by SERI that utilize unique airfoil technology. Performance characteristics of the advanced blades were verified through atmospheric testing on fixed-pitch, stall-regulated horizontal-axis wind turbines (HAWTs). Of the various wind turbine configurations, the stall-regulated HAWT dominates the market because of its simplicity and low cost. Results of the atmospheric tests show that the SERI advanced blades produce 10 percent to 30 percent more energy than conventional blades.

  7. Vibrations of blades with variable thickness and curvature by shell theory

    NASA Technical Reports Server (NTRS)

    Lee, J. K.; Leissa, A. W.; Wang, A. J.

    1983-01-01

    A procedure for analyzing the vibrations of rotating turbomachinery blades has been previously developed. This procedure is based upon shallow shell theory, and utilizes the Ritz method to determine frequencies and mode shapes. However, it has been limited heretofore to blades of uniform thickness, uniform curvature, and/or twist and rectangular planform. The present work shows how the procedure may be generalized to eliminate the aforementioned restrictions. Nonrectangular planforms are dealt with by a suitable coordinate transformation. This, as well as variable thickness, curvature and twist, require using numerical integration. The procedure is demonstrated on four examples of cantilevered blades for which theoretical and experimental data have been previously published: (1) flat plate with spanwise taper, (2) flat plate with chordwise taper, (3) twisted plate with chordwise taper, and (4) cylindrical shell with chordwise taper.

  8. Ultrasonic Abrasive Removal Of EDM Recast

    NASA Technical Reports Server (NTRS)

    Mandel, Johnny L.; Jacobson, Marlowe S.

    1990-01-01

    Ultrasonic abrasive process removes layer of recast material generated during electrical-discharge machining (EDM) of damper pocket on turbine blade. Form-fitted tool vibrated ultrasonically in damper pocket from which material removed. Vibrations activate abrasive in pocket. Amount of material removed controlled precisely.

  9. Turbine Blade Alloy

    NASA Technical Reports Server (NTRS)

    MacKay, Rebecca

    2001-01-01

    The High Speed Research Airfoil Alloy Program developed a fourth-generation alloy with up to an +85 F increase in creep rupture capability over current production airfoil alloys. Since improved strength is typically obtained when the limits of microstructural stability are exceeded slightly, it is not surprising that this alloy has a tendency to exhibit microstructural instabilities after high temperature exposures. This presentation will discuss recent results obtained on coated fourth-generation alloys for subsonic turbine blade applications under the NASA Ultra-Efficient Engine Technology (UEET) Program. Progress made in reducing microstructural instabilities in these alloys will be presented. In addition, plans will be presented for advanced alloy development and for computational modeling, which will aid future alloy development efforts.

  10. Turbine blade cooling

    SciTech Connect

    Staub, F.W.; Willett, F.T.

    1999-07-20

    A turbine rotor blade comprises a shank portion, a tip portion and an airfoil. The airfoil has a pressure side wall and a suction side wall that are interconnected by a plurality of partition sidewalls, defining an internal cooling passageway within the airfoil. The internal cooling passageway includes at least one radial outflow passageway to direct a cooling medium flow from the shank portion towards the tip portion and at least one radial inflow passageway to direct a cooling medium flow from the tip portion towards the shank portion. A number of mixing ribs are disposed on the partition sidewalls within the radial outflow passageways so as to enhance the thermal mixing of the cooling medium flow, thereby producing improved heat transfer over a broad range of the Buoyancy number. 13 figs.

  11. Turbine blade cooling

    DOEpatents

    Staub, Fred Wolf; Willett, Fred Thomas

    1999-07-20

    A turbine rotor blade comprises a shank portion, a tip portion and an airfoil. The airfoil has a pressure side wall and a suction side wall that are interconnected by a plurality of partition sidewalls, defining an internal cooling passageway within the airfoil. The internal cooling passageway includes at least one radial outflow passageway to direct a cooling medium flow from the shank portion towards the tip portion and at least one radial inflow passageway to direct a cooling medium flow from the tip portion towards the shank portion. A number of mixing ribs are disposed on the partition sidewalls within the radial outflow passageways so as to enhance the thermal mixing of the cooling medium flow, thereby producing improved heat transfer over a broad range of the Buoyancy number.

  12. Turbine blade cooling

    DOEpatents

    Staub, Fred Wolf; Willett, Fred Thomas

    2000-01-01

    A turbine rotor blade comprises a shank portion, a tip portion and an airfoil. The airfoil has a pressure side wall and a suction side wall that are interconnected by a plurality of partition sidewalls, defining an internal cooling passageway within the airfoil. The internal cooling passageway includes at least one radial outflow passageway to direct a cooling medium flow from the shank portion towards the tip portion and at least one radial inflow passageway to direct a cooling medium flow from the tip portion towards the shank portion. A number of mixing ribs are disposed on the partition sidewalls within the radial outflow passageways so as to enhance the thermal mixing of the cooling medium flow, thereby producing improved heat transfer over a broad range of the Buoyancy number.

  13. Multiple piece turbine blade

    DOEpatents

    Kimmel, Keith D

    2012-05-29

    A turbine rotor blade with a spar and shell construction, the spar including an internal cooling supply channel extending from an inlet end on a root section and ending near the tip end, and a plurality of external cooling channels formed on both side of the spar, where a middle external cooling channel is connected to the internal cooling supply channels through a row of holes located at a middle section of the channels. The spar and the shell are held together by hooks that define serpentine flow passages for the cooling air and include an upper serpentine flow circuit and a lower serpentine flow circuit. the serpentine flow circuits all discharge into a leading edge passage or a trailing edge passage.

  14. Hardware removal - extremity

    MedlinePlus

    Surgeons use hardware such as pins, plates, or screws to help fix a broken bone or to correct an abnormality in ... of pain or other problems related to the hardware, you may have surgery to remove the hardware. ...

  15. Hardware removal - extremity

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/007644.htm Hardware removal - extremity To use the sharing features on this page, please enable JavaScript. Surgeons use hardware such as pins, plates, or screws to help ...

  16. Turbine blade friction damping study

    NASA Technical Reports Server (NTRS)

    Dominic, R. J.

    1985-01-01

    A lumped parameter method, implemented on a VAX 11/780 computer shows that the primary parameters affecting the performance of the friction damper of the first stage turbine of the SSME high pressure fuel pump are: the damper-blade coefficient of friction; the normal force applied to the friction interface; the amplitude of the periodic forcing function; the relative phase angle of the forcing functions for adjacent blades bridged by a damper (effectively, the engine order of the forcing function); and the amount of hysteretic damping that acts to limit the vibration amplitude of the blade in its resonance modes. The low order flexural resonance vibration modes of HPFTP blades without dampers, with production dampers, and with two types of lightweight experimental dampers were evaluated in high speed spin pit tests. Results agree with those of the analytical study in that blades fitted with production friction dampers experienced the airfoil-alone flexural resonance mode, while those without dampers or with lighter weight dampers did not. No blades fitted with dampers experienced the whole blade flexural resonance mode during high speed tests, while those without dampers did.

  17. Novel Compressor Blade Design Study

    NASA Astrophysics Data System (ADS)

    Srinivas, Abhay

    Jet engine efficiency goals are driving compressors to higher pressure ratios and engines to higher bypass ratios, each one driving to smaller cores. This is leading to larger tip gaps relative to the blade height. These larger relative tip clearances would negate some of the cycle improvements, and ways to mitigate this effect must be found. A novel split tip blade geometry has been created which helps improve the efficiency at large clearances while also improving operating range. Two identical blades are leaned in opposite directions starting at 85% span. They are cut at mid chord and the 2 halves then merged together so a split tip is created. The result is similar to the alula feathers on a soaring bird. The concept is that the split tip will energize the tip flow and increase range. For higher relative tip clearance, this will also improve efficiency. The 6th rotor of a highly loaded 10 stage machine was chosen as the baseline for this study. Three dimensional CFD simulations were performed using CD Adapco's Star-CCM+ at 5 clearances for the baseline and split tip geometry. The choking flow and stall margin of the split tip blade was higher than that of the baseline blade for all tip clearances. The pressure ratio of the novel blade was higher than that of the baseline blade near choke, but closer to stall it decreased. The sensitivity of peak efficiency to clearance was improved. At tight clearances of 0.62% of blade height, the maximum efficiency of the new design was less than the baseline blade, but as the tip clearance was increased above 2.5%, the maximum efficiency increased. Structural analysis was also performed to ascertain the feasibility of the design.

  18. Tiltrotor Research Aircraft composite blade repairs - Lessons learned

    NASA Technical Reports Server (NTRS)

    Espinosa, Paul S.; Groepler, David R.

    1992-01-01

    The XV-15, N703NA Tiltrotor Research Aircraft located at the NASA Ames Research Center, Moffett Field, California, currently uses a set of composite rotor blades of complex shape known as the advanced technology blades (ATBs). The main structural element of the blades is a D-spar constructed of unidirectional, angled fiberglass/graphite, with the aft fairing portion of the blades constructed of a fiberglass cross-ply skin bonded to a Nomex honeycomb core. The blade tip is a removable laminate shell that fits over the outboard section of the spar structure, which contains a cavity to retain balance weights. Two types of tip shells are used for research. One is highly twisted (more than a conventional helicopter blade) and has a hollow core constructed of a thin Nomex-honeycomb-and-fiberglass-skin sandwich; the other is untwisted with a solid Nomex honeycomb core and a fiberglass cross-ply skin. During initial flight testing of the blades, a number of problems in the composite structure were encountered. These problems included debonding between the fiberglass skin and the honeycomb core, failure of the honeycomb core, failures in fiberglass splices, cracks in fiberglass blocks, misalignment of mated composite parts, and failures of retention of metal fasteners. Substantial time was spent in identifying and repairing these problems. Discussed here are the types of problems encountered, the inspection procedures used to identify each problem, the repairs performed on the damaged or flawed areas, the level of criticality of the problems, and the monitoring of repaired areas. It is hoped that this discussion will help designers, analysts, and experimenters in the future as the use of composites becomes more prevalent.

  19. Tiltrotor research aircraft composite blade repairs: Lessons learned

    NASA Technical Reports Server (NTRS)

    Espinosa, Paul S.; Groepler, David R.

    1991-01-01

    The XV-15, N703NA Tiltrotor Research Aircraft located at the NASA Ames Research Center, Moffett Field, California, currently uses a set of composite rotor blades of complex shape known as the advanced technology blades (ATBs). The main structural element of the blades is a D-spar constructed of unidirectional, angled fiberglass/graphite, with the aft fairing portion of the blades constructed of a fiberglass cross-ply skin bonded to a Nomex honeycomb core. The blade tip is a removable laminate shell that fits over the outboard section of the spar structure, which contains a cavity to retain balance weights. Two types of tip shells are used for research. One is highly twisted (more than a conventional helicopter blade) and has a hollow core constructed of a thin Nomex-honeycomb-and-fiberglass-skin sandwich; the other is untwisted with a solid Nomex honeycomb core and a fiberglass cross-ply skin. During initial flight testing of the blades, a number of problems in the composite structure were encountered. These problems included debonding between the fiberglass skin and the honeycomb core, failure of the honeycomb core, failures in fiberglass splices, cracks in fiberglass blocks, misalignment of mated composite parts, and failures of retention of metal fasteners. Substantial time was spent in identifying and repairing these problems. Discussed here are the types of problems encountered, the inspection procedures used to identify each problem, the repairs performed on the damaged or flawed areas, the level of criticality of the problems, and the monitoring of repaired areas. It is hoped that this discussion will help designers, analysts, and experimenters in the future as the use of composites becomes more prevalent.

  20. Blade loss transient dynamics analysis with flexible bladed disk

    NASA Technical Reports Server (NTRS)

    Gallardo, V. C.; Black, G.; Bach, L.; Cline, S.; Storace, A.

    1983-01-01

    The transient dynamic response of a flexible bladed disk on a flexible rotor in a two rotor system is formulated by modal synthesis and a Lagrangian approach. Only the nonequilibrated one diameter flexible mode is considered for the flexible bladed disk, while the two flexible rotors are represented by their normal modes. The flexible bladed disk motion is modeled as a combination of two one diameter standing waves, and is coupled inertially and gyroscopically to the flexible rotors. Application to a two rotor model shows that a flexible bladed disk on one rotor can be driven into resonance by an unbalance in the other rotor, and at a frequency equal to the difference in the rotor speeds.

  1. Containment of composite fan blades

    NASA Technical Reports Server (NTRS)

    Stotler, C. L.; Coppa, A. P.

    1979-01-01

    A lightweight containment was developed for turbofan engine fan blades. Subscale ballistic-type tests were first run on a number of concepts. The most promising configuration was selected and further evaluated by larger scale tests in a rotating test rig. Weight savings made possible by the use of this new containment system were determined and extrapolated to a CF6-size engine. An analytical technique was also developed to predict the released blades motion when involved in the blade/casing interaction process. Initial checkout of this procedure was accomplished using several of the tests run during the program.

  2. Optical Detection of Blade Flutter

    NASA Technical Reports Server (NTRS)

    Nieberding, W. C.; Pollack, J. L.

    1977-01-01

    Dynamic strain gages mounted on rotor blades are used as the primary instrumentation for detecting the onset of flutter and defining the vibratory mode and frequency. Optical devices are evaluated for performing the same measurements as well as providing supplementary information on the vibratory characteristics. Two separate methods are studied: stroboscopic imagery of the blade tip and photoelectric scanning of blade tip motion. Both methods give visual data in real time as well as video tape records. The optical systems are described, and representative results are presented. The potential of this instrumentation in flutter research is discussed.

  3. Composite-Blade Structural Analyzer

    NASA Technical Reports Server (NTRS)

    Aiello, R. A.; Chamis, C. C.

    1992-01-01

    COBSTRAN (COmposite Blade STRuctural ANalyzer) computer program is preprocessor and postprocessor facilitating design and analysis of composite turbofan and turboprop blades, and of composite wind-turbine blades. Combines theories of mechanics of composites and of laminates with data base of fiber and matrix properties. Designed to carry out linear analyses required for efficient mathematical modeling and analysis of bladelike structural components made of multilayered angle-plied fiber composites. Components made from isotropic or anisotropic homogeneous materials also modeled. Written in FORTRAN 77.

  4. Optical Blade Position Tracking System Test

    SciTech Connect

    Fingersh, L. J.

    2006-01-01

    The Optical Blade Position Tracking System Test measures the blade deflection along the span of the blade using simple off-the-shelf infrared security cameras along with blade-mounted retro-reflective tape and video image processing hardware and software to obtain these measurements.

  5. Wooden wind turbine blade manufacturing process

    DOEpatents

    Coleman, Clint

    1986-01-01

    A wooden wind turbine blade is formed by laminating wood veneer in a compression mold having the exact curvature needed for one side of the blade, following which the other side of the blade is ground flat along its length but twisted with respect to the blade axis.

  6. Rotating vibration behavior of the turbine blades with different groups of blades

    NASA Astrophysics Data System (ADS)

    Tsai, Gwo-Chung

    2004-04-01

    The rotating vibration behaviors of full cycle of 60 blades are studied in this report. The dynamic analysis of two different structures in one of which there are 10 groups of 6 blades and in the other 5 groups of 12 blades, is performed to investigate behavior deviation. In this research, the following jobs are considered: (1) collect the geometric dimensions and material properties of a single blade, (2) create the finite element model of a single blade, a group of 6 blades and 12 blades, and full cycle of 60 blades, (3) perform the vibration analyses of a single blade, a group of blades and a full circle of 60 blades, (4) perform the steady state stress analysis of the blade with different rotating speed; (5) get the Campbell diagram for the full circle of blades, and (6) make comparisons between a group of 6 blades and a group of 12 blades. The conclusions from the analyses are the following: (1) the contact elements are applied to groups of 6 and 12 blades systems and the highest stresses are observed at the location of the first neck of the blade root. These results completely agree very well with in-site observations. (2) The big differences were present in the Campbell diagram: resonant frequencies are observed in the first vibration group for the full system comprising the group of 6 blades and resonant frequencies are not found in the first vibration group of the full blade system made of the group of 12 blades. (3) The dynamic behavior of the full blade system comprised of a group of 6 blades was found much different from that of the full blade system made is of a group of 12 blades. (4) Excellent agreements for the vibration frequencies and mode shapes of a single blade and a full circle of blades are obtained between the FEA results and experimental data.

  7. Impact resistance of spar-shell composite fan blades

    NASA Technical Reports Server (NTRS)

    Graff, J.; Stoltze, L.; Varholak, E. M.

    1973-01-01

    Composite spar-shell fan blades for a 1.83 meter (6 feet) diameter fan stage were fabricated and tested in a whirling arm facility to evaluate foreign object damage (FOD) resistance. The blades were made by adhesively bonding boron-epoxy shells on titanium spars and then adhesively bonding an Inconel 625 sheath on the leading edge. The rotating blades were individually tested at a tip speed of 800 feet per second. Impacting media used were gravel, rivets, bolt, nut, ice balls, simulated birds, and a real bird. Incidence angles were typical of those which might be experienced by STOL aircraft. The tests showed that blades of the design tested in this program have satisfactory impact resistance to small objects such as gravel, rivets, nuts, bolts, and two inch diameter ice balls. The blades suffered nominal damage when impacted with one-pound birds (9 to 10 ounce slice size). However, the shell was removed from the spar for a larger slice size.

  8. Blade Manufacturing Improvement Project: Final Report

    SciTech Connect

    SHERWOOD, KENT

    2002-10-01

    The Blade Manufacturing Improvement Project explores new, unique and improved materials integrated with innovative manufacturing techniques that promise substantial economic enhancements for the fabrication of wind turbine blades. The primary objectives promote the development of advanced wind turbine blade manufacturing in ways that lower blade costs, cut rotor weight, reduce turbine maintenance costs, improve overall turbine quality and increase ongoing production reliability. Foam Matrix (FMI) has developed a wind turbine blade with an engineered foam core, incorporating advanced composite materials and using Resin Transfer Molding (RTM) processes to form a monolithic blade structure incorporating a single molding tool. Patented techniques are employed to increase blade load bearing capability and insure the uniform quality of the manufactured blade. In production quantities, FMI manufacturing innovations may return a sizable per blade cost reduction when compared to the cost of producing comparable blades with conventional methods.

  9. Glass-bead peen plating

    NASA Technical Reports Server (NTRS)

    Graves, J. R.

    1974-01-01

    Peen plating of aluminum, copper, and nickel powders was investigated. Only aluminum was plated successfully within the range of peen plating conditions studied. Optimum plating conditions for aluminum were found to be: (1) bead/powder mixture containing 25 to 35% powder by weight, (2) peening intensity of 0.007A as measured by Almen strip, and (3) glass impact bead diameter of at least 297 microns (0.0117 inches) for depositing-100 mesh aluminum powder. No extensive cleaning or substrate preparation is required beyond removing loose dirt or heavy oil.

  10. Spline for blade grids design

    NASA Astrophysics Data System (ADS)

    Korshunov, Andrei; Shershnev, Vladimir; Korshunova, Ksenia

    2015-08-01

    Methods of designing blades grids of power machines, such as equal thickness shape built on middle-line arc, or methods based on target stress spreading were invented long time ago, well described and still in use. Science and technology has moved far from that time and laboriousness of experimental research, which were involving unique equipment, requires development of new robust and flexible methods of design, which will determine the optimal geometry of flow passage.This investigation provides simple and universal method of designing blades, which, in comparison to the currently used methods, requires significantly less input data but still provides accurate results. The described method is purely analytical for both concave and convex sides of the blade, and therefore lets to describe the curve behavior down the flow path at any point. Compared with the blade grid designs currently used in industry, geometric parameters of the designs constructed with this method show the maximum deviation below 0.4%.

  11. Ceramic blade with tip seal

    DOEpatents

    Glezer, Boris; Bhardwaj, Narender K.; Jones, Russell B.

    1997-01-01

    The present gas turbine engine (10) includes a disc assembly (64) defining a disc (66) having a plurality of blades (70) attached thereto. The disc (66) has a preestablished rate of thermal expansion and the plurality of blades have a preestablished rate of thermal expansion being less than the preestablished rate of thermal expansion of the disc (66). A shroud assembly (100) is attached to the gas turbine engine (10) and is spaced from the plurality of blades (70) a preestablished distance forming an interface (108) therebetween. Positioned in the interface is a seal (110) having a preestablished rate of thermal expansion being generally equal to the rate of thermal expansion of the plurality of blades (70).

  12. Automatic measurement of blade profile

    NASA Astrophysics Data System (ADS)

    Dong, Benhan; Liu, Lang; Liu, Wei; Gao, Penfei

    2002-05-01

    In this paper a newly developed 3D surface shape measuring system together with its application to the metrology of surface form of blade. The experiment shows that 3D500 measuring system is a useful tool for surface evaluation with character of full-field, on-line, real-time measurement that are important to the quality control inspection of the profile of turbine blade.

  13. Blade tip timing (BTT) uncertainties

    NASA Astrophysics Data System (ADS)

    Russhard, Pete

    2016-06-01

    Blade Tip Timing (BTT) is an alternative technique for characterising blade vibration in which non-contact timing probes (e.g. capacitance or optical probes), typically mounted on the engine casing (figure 1), and are used to measure the time at which a blade passes each probe. This time is compared with the time at which the blade would have passed the probe if it had been undergoing no vibration. For a number of years the aerospace industry has been sponsoring research into Blade Tip Timing technologies that have been developed as tools to obtain rotor blade tip deflections. These have been successful in demonstrating the potential of the technology, but rarely produced quantitative data, along with a demonstration of a traceable value for measurement uncertainty. BTT technologies have been developed under a cloak of secrecy by the gas turbine OEM's due to the competitive advantages it offered if it could be shown to work. BTT measurements are sensitive to many variables and there is a need to quantify the measurement uncertainty of the complete technology and to define a set of guidelines as to how BTT should be applied to different vehicles. The data shown in figure 2 was developed from US government sponsored program that bought together four different tip timing system and a gas turbine engine test. Comparisons showed that they were just capable of obtaining measurement within a +/-25% uncertainty band when compared to strain gauges even when using the same input data sets.

  14. Holographic flow visualization within a rotating compressor blade row

    NASA Technical Reports Server (NTRS)

    Benser, W. A.

    1975-01-01

    Rapid double-pulsed holographic techniques were used to visualize the shock configurations in the tip region of a lightly loaded, high tip speed fan stage. The holograms showed the passage shock emanating from the blade leading edge, a moderately strong conical shock originating at the intersection of the part span shroud leading edge and the blade suction surface, and a second conical shock originating at the intersection of the part span shroud and the blade pressure surface. Due to a limited viewing angle, the bow waves upstream of the rotor could not be observed, and only limited details of the trailing edge shocks were obtained. Reasonable details of the shock patterns were obtained from holograms which were made without extensive rig modifications. Results indicate that larger viewing windows and and holographic plates would permit a wider viewing angle and give much more coverage of the regions of interest. Also, shorter time delay for double-pulsed holograms is also desirable, and would minimize blade movement and give clearer holograms.

  15. New type of wind turbine with composite rotor blade

    SciTech Connect

    Rys, J.

    1995-11-01

    During the last three years a new type of a wind turbine has been designed and tested in Division of Machine Design at Cracow University of Technology. The wind turbine consists of four main units: (1) rotor with two blades, each of them having an aerodynamically formed surface made of a laminated composite material bordered by a metallic frame; (2) directing system consisting of one rotor unit which drives blades about their own axis and controls the orientation of the turbine towards the wind; (3) supporting and transmissing system; and (4) foundation consisting of typical reinforced concrete plates fastened together, convenient to transport. The paper presents the method describing simulation of motion of the turbine. Such an approach gives one the possibility to analyze the maximum load acting in the vicinity of the blade and the load response of the elements of the turbine. A certain useful technique is demonstrated which can be applied to determine the load distribution. It is used to find e.g. the optimal fastening of internal metallic frame of the rotor blade. Specific and important advantages of the new type of engine are summarized in the final remarks as follows: perfect static and dynamic balancing, nice geometric shape of rotor which can be made of typical materials, low mass and cost per unit, typical technology of elements, easy mounting and dismounting. Several designing and technological solutions are illustrated in graphs and drawings.

  16. Synthesis of individual rotor blade control system for gust alleviation

    NASA Technical Reports Server (NTRS)

    Wang, Ji C.; Chu, Alphonse Y.; Talbot, Peter D.

    1990-01-01

    The utilization of rotor flapping in synthesizing an Individual Blade Control (IBC) system for gust alleviation is demonstrated. The objective is to illustrate and seek to improve Ham's IBC method. A sensor arrangement with two accelerometers mounted on the root and tip of a blade is proposed for estimating of flapping states for feedback control. Equivalent swash plate implementation of IBC is also deliberated. The study concludes by addressing the concept of general rotor states feedback, of which the IBC method is a special case. The blade flapping equation of motion is derived. Ham's original IBC method and a modified IBC scheme called Model Reference (MRIBC) are examined, followed by simulation study with ideal measurements and relative performances of the two methods. The practical aspects of IBC implementation are presented. Different configuration of sensors and their merits are considered. The realization of IBC using equivalent swash plate instead of direct actuator motion is discussed. It is shown that IBC is a particular case of rotor states feedback. The idea of general rotor states feedback is further elaborated. Finally, major conclusions are given.

  17. Effect of Helicopter Blade Dynamics on Blade Aerodynamic and Structural Loads

    NASA Technical Reports Server (NTRS)

    Heffernan, Ruth M.

    1987-01-01

    The effect of rotor blade dynamics on aerodynamic and structural loads is examined for a conventional, main- rotor helicopter using both a comprehensive rotorcraft analysis (CAMRAD) and night test data. The impact of blade dynamics on blade section lift-coefficient time histories is studied by comparing predictions from both a rigid blade analysis and an elastic blade analysis with helicopter flight test data. The elastic blade analysis better predicts high-frequency behavior of section lift. In addition, components of the blade angle of attack, such as elastic blade twist, blade nap rate, blade slope velocity, and inflow, are examined as a function of blade mode. Elastic blade motion affects the blade angle of attack by a few tenths of a degree, and up to the sixth rotor harmonic. A similar study of the influence of blade dynamics on bending and torsion moments was also conducted. The modal analysis of the predicted blade structural loads suggested that five elastic bending deg of freedom (four flap and one lag) and three elastic torsion deg of freedom contributed to calculations of the blade structural loads. However, when structural bending load predictions from several elastic blade analyses were compared with flight test data, an elastic blade model consisting of only three elastic bending modes (first and second flap, and first lag), and two elastic torsion modes was found to be sufficient for maximum correlation.

  18. VELOCITIES AND STREAMLINES ON A BLADE-TO-BLADE STREAM SURFACE OF A TANDEM BLADE TURBOMACHINE

    NASA Technical Reports Server (NTRS)

    Katsanis, T.

    1994-01-01

    This computer program gives the blade-to-blade solution of the two-dimensional, subsonic, compressible (or incompressible), nonviscous flow problem for a circular or straight infinite cascade of tandem or slotted turbomachine blades. The blades may be fixed or rotating. The flow may be axial, radial , or mixed. The method of solution is based on the stream function using an iterative solution of nonlinear finite-difference equations. These equations are solved using two major levels of iteration. The inner iteration consists of the solution of simultaneous linear equations by successive over-relaxation, using an estimated optimum over-relaxation factor. The outer iteration then changes the coefficients of the simultaneous equations to correct for compressibility. The program input consists of the basic blade geometry, the meridional stream channel coordinates, fluid stagnation conditions, weight flow and flow split through the slot, and inlet and outlet flow angles. The output includes blade surface velocities, velocity magnitude and direction throughout the passage, and the streamline coordinates.

  19. Inflammatory papillary hyperplasia: supraperiosteal excision by the blade-loop technique.

    PubMed

    Antonelli, J R; Panno, F V; Witko, A

    1998-01-01

    Inflammatory papillary hyperplasia (IPH) is a benign, irreversible, persistent, and usually painless lesion of the oral mucosa that is the result of epithelial proliferation. Many surgical methods of treatment have proven to be not totally satisfactory in case of surgery, completeness of tissue removal, healing time, or patient comfort in the postoperative period. A relatively simple and effective procedure is proposed for the supraperiosteal excision of this lesion from the palate, using a razor blade cutting element and handle, called the blade-loop knife, or the Paquette knife handle. The blade-loop technique minimizes trauma and results in a short and comfortable postoperative period. PMID:9758987

  20. Investigation of Blade Angle of an Open Cross-Flow Runner

    NASA Astrophysics Data System (ADS)

    Katayama, Yusuke; Iio, Shouichiro; Veerapun, Salisa; Uchiyama, Tomomi

    2015-04-01

    The aim of this study was to develop a nano-hydraulic turbine utilizing drop structure in irrigation channels or industrial waterways. This study was focused on an open-type cross-flow turbine without any attached equipment for cost reduction and easy maintenance. In this study, the authors used an artificial indoor waterfall as lab model. Test runner which is a simple structure of 20 circular arc-shaped blades sandwiched by two circular plates was used The optimum inlet blade angle and the relationship between the power performance and the flow rate approaching theoretically and experimentally were investigated. As a result, the optimum inlet blade angle due to the flow rate was changed. Additionally, allocation rate of power output in 1st stage and 2nd stage is changed by the blade inlet angle.

  1. Electrically induced mechanical precompression of ferroelectric plates

    DOEpatents

    Chen, P.J.

    1987-03-02

    A method of electrically inducing mechanical precompression of ferroelectric plate covered with electrodes utilizes the change in strains of the plate as functions of applied electric field. A first field polarizes and laterally shrinks the entire plate. An outer portion of the electrodes are removed, and an opposite field partially depolarizes and expands the central portion of the plate against the shrunk outer portion. 2 figs.

  2. Electrically induced mechanical precompression of ferroelectric plates

    DOEpatents

    Chen, Peter J.

    1987-01-01

    A method of electrically inducing mechanical precompression of a ferroelectric plate covered with electrodes utilizes the change in strains of the plate as functions of applied electric field. A first field polarizes and laterally shrinks the entire plate. An outer portion of the electrodes are removed, and an opposite field partially depolarizes and expands the central portion of the plate against the shrunk outer portion.

  3. Stability analysis of flexible wind-turbine blades using finite-element method

    SciTech Connect

    Kamoulakos, A.

    1982-08-01

    Static vibration and flutter analysis of a straight elastic axis blade was performed based on a finite element method solution. The total potential energy functional was formulated according to linear beam theory. The inertia and aerodynamic loads were formulated according to the blade absolute acceleration and absolute velocity vectors. In vibration analysis, the direction of motion of the blade during the first out-of-lane and first in-plane modes was examined; numerical results involve NASA/DOE Mod-0, McCauley propeller, north wind turbine and flat plate behavior. In flutter analysis, comparison cases were examined involving several references. Vibration analysis of a nonstraight elastic axis blade based on a finite element method solution was performed in a similar manner with the straight elastic axis blade, since it was recognized that a curved blade can be approximated by an assembly of a sufficient number of straight blade elements at different inclinations with respect to a common system of axes. Numerical results involve comparison between the behavior of a straight and a curved cantilever beam during the lowest two in-plane and out-of-plane modes.

  4. Structural integrity design for an active helicopter rotor blade with piezoelectric flap actuators

    NASA Astrophysics Data System (ADS)

    Lee, Jaehwan; Shin, SangJoon

    2011-04-01

    Helicopter uses a rotor system to generate lift, thrust and forces, and its aerodynamic environment is generally complex. Unsteady aerodynamic environment arises such as blade vortex interaction. This unsteady aerodynamic environment induces vibratory aerodynamic loads and high aeroacoustic noise. The aerodynamic load and aeroacoustic noise is at N times the rotor blade revolutions (N/rev). But conventional rotor control system composed of pitch links and swash plate is not capable of adjusting such vibratory loads because its control is restricted to 1/rev. Many active control methodologies have been examined to alleviate the problem. The blade using active control device manipulates the blade pitch angle with N/rev. In this paper, Active Trailing-edge Flap blade, which is one of the active control methods, is designed to reduce the unsteady aerodynamic loads. Active Trailing-edge Flap blade uses a trailing edge flap manipulated by an actuator to change camber line of the airfoil. Piezoelectric actuators are installed inside the blade to manipulate the trailing edge flap.

  5. Stability analysis of flexible wind turbine blades using finite element method

    NASA Technical Reports Server (NTRS)

    Kamoulakos, A.

    1982-01-01

    Static vibration and flutter analysis of a straight elastic axis blade was performed based on a finite element method solution. The total potential energy functional was formulated according to linear beam theory. The inertia and aerodynamic loads were formulated according to the blade absolute acceleration and absolute velocity vectors. In vibration analysis, the direction of motion of the blade during the first out-of-lane and first in-plane modes was examined; numerical results involve NASA/DOE Mod-0, McCauley propeller, north wind turbine and flat plate behavior. In flutter analysis, comparison cases were examined involving several references. Vibration analysis of a nonstraight elastic axis blade based on a finite element method solution was performed in a similar manner with the straight elastic axis blade, since it was recognized that a curved blade can be approximated by an assembly of a sufficient number of straight blade elements at different inclinations with respect to common system of axes. Numerical results involve comparison between the behavior of a straight and a curved cantilever beam during the lowest two in-plane and out-of-plane modes.

  6. Solder dross removal apparatus

    NASA Technical Reports Server (NTRS)

    Webb, Winston S. (Inventor)

    1990-01-01

    An automatic dross removal apparatus is disclosed for removing dross from the surface of a solder bath in an automated electric component handling system. A rotatable wiper blade is positioned adjacent the solder bath which skims the dross off of the surface prior to the dipping of a robot conveyed component into the bath. An electronic control circuit causes a motor to rotate the wiper arm one full rotational cycle each time a pulse is received from a robot controller as a component approaches the solder bath.

  7. Solder dross removal apparatus

    NASA Technical Reports Server (NTRS)

    Webb, Winston S. (Inventor)

    1992-01-01

    An automatic dross removal apparatus (10) is disclosed for removing dross from the surface of a solder bath (22) in an automated electric component handling system. A rotatable wiper blade (14) is positioned adjacent the solder bath (22) which skims the dross off of the surface prior to the dipping of a robot conveyed component into the bath. An electronic control circuit (34) causes a motor (32) to rotate the wiper arm (14) one full rotational cycle each time a pulse is received from a robot controller (44) as a component approaches the solder bath (22).

  8. Large, low cost composite wind turbine blades

    NASA Technical Reports Server (NTRS)

    Gewehr, H. W.

    1979-01-01

    A woven roving E-glass tape, having all of its structural fibers oriented across the tape width was used in the manufacture of the spar for a wind turbine blade. Tests of a 150 ft composite blade show that the transverse filament tape is capable of meeting structural design requirements for wind turbine blades. Composite blades can be designed for interchangeability with steel blades in the MOD-1 wind generator system. The design, analysis, fabrication, and testing of the 150 ft blade are discussed.

  9. Effect of blade tip configuration on tip clearance loss of a centrifugal impeller

    NASA Astrophysics Data System (ADS)

    Ishida, Masahiro; Ueki, Hironobu; Senoo, Yasutoshi

    1989-06-01

    The effect of blade tip configuration on the tip clearance loss was examined experimentally using an unshrouded centrifugal impeller with backward-leaning blades. Tips with rounded edges, sharp square edges, and edges with end plates were tested. The observed tip clearance effects could be theoretically predicted by assuming reasonable values of the contraction coefficent alpha = 0.91 for the round edge, 0.73 for the sharp square edge, and 0.53 for the end-plate edge. The impeller efficiency was improved by about 1.5 point by reducing the contraction coefficient from 0.91 to 0.53. The effect of contraction coefficient on impeller efficiency depends on the ratio of leakage loss to the tip clearance loss. Improved efficiency for impellers with highly loaded blades is expected from reducing the contraction coefficient.

  10. Estimation of blade airloads from rotor blade bending moments

    NASA Technical Reports Server (NTRS)

    Bousman, William G.

    1987-01-01

    This paper presents a method for the estimation of blade airloads, based on the measurements of flap bending moments. In this procedure, the blade rotation in vacuum modes is calculated, and the airloads are expressed as an algebraic sum of the mode shapes, modal amplitudes, mass distribution, and frequency properties. The method was validated by comparing the calculated airload distribution with the original wind tunnel measurements which were made using ten modes and twenty measurement stations. Good agreement between the predicted and the measured airloads was found up to 0.90 R, but the agreement degraded towards the blade tip. The method is shown to be quite robust to the type of experimental problems that could be expected to occur in the testing of full-scale and model-scale rotors.

  11. Wire blade development for Fixed Abrasive Slicing Technique (FAST) slicing

    NASA Technical Reports Server (NTRS)

    Khattak, C. P.; Schmid, F.; Smith, M. B.

    1982-01-01

    A low cost, effective slicing method is essential to make ingot technology viable for photovoltaics in terrestrial applications. The fixed abrasive slicing technique (FAST) combines the advantages of the three commercially developed techniques. In its development stage FAST demonstrated cutting effectiveness of 10 cm and 15 cm diameter workpieces. Wire blade development is still the critical element for commercialization of FAST technology. Both impregnated and electroplated wire blades have been developed; techniques have been developed to fix diamonds only in the cutting edge of the wire. Electroplated wires show the most near term promise and this approach is emphasized. With plated wires it has been possible to control the size and shape of the electroplating, it is expected that this feature reduces kerf and prolongs the life of the wirepack.

  12. Passive damping of composite blades using embedded piezoelectric modules or shape memory alloy wires: a comparative study

    NASA Astrophysics Data System (ADS)

    Bachmann, F.; de Oliveira, R.; Sigg, A.; Schnyder, V.; Delpero, T.; Jaehne, R.; Bergamini, A.; Michaud, V.; Ermanni, P.

    2012-07-01

    Emission reduction from civil aviation has been intensively addressed in the scientific community in recent years. The combined use of novel aircraft engine architectures such as open rotor engines and lightweight materials offer the potential for fuel savings, which could contribute significantly in reaching gas emissions targets, but suffer from vibration and noise issues. We investigated the potential improvement of mechanical damping of open rotor composite fan blades by comparing two integrated passive damping systems: shape memory alloy wires and piezoelectric shunt circuits. Passive damping concepts were first validated on carbon fibre reinforced epoxy composite plates and then implemented in a 1:5 model of an open rotor blade manufactured by resin transfer moulding (RTM). A two-step process was proposed for the structural integration of the damping devices into a full composite fan blade. Forced vibration measurements of the plates and blade prototypes quantified the efficiency of both approaches, and their related weight penalty.

  13. Blade Tip Rubbing Stress Prediction

    NASA Technical Reports Server (NTRS)

    Davis, Gary A.; Clough, Ray C.

    1991-01-01

    An analytical model was constructed to predict the magnitude of stresses produced by rubbing a turbine blade against its tip seal. This model used a linearized approach to the problem, after a parametric study, found that the nonlinear effects were of insignificant magnitude. The important input parameters to the model were: the arc through which rubbing occurs, the turbine rotor speed, normal force exerted on the blade, and the rubbing coefficient of friction. Since it is not possible to exactly specify some of these parameters, values were entered into the model which bracket likely values. The form of the forcing function was another variable which was impossible to specify precisely, but the assumption of a half-sine wave with a period equal to the duration of the rub was taken as a realistic assumption. The analytical model predicted resonances between harmonics of the forcing function decomposition and known harmonics of the blade. Thus, it seemed probable that blade tip rubbing could be at least a contributor to the blade-cracking phenomenon. A full-scale, full-speed test conducted on the space shuttle main engine high pressure fuel turbopump Whirligig tester was conducted at speeds between 33,000 and 28,000 RPM to confirm analytical predictions.

  14. Peen plating

    NASA Technical Reports Server (NTRS)

    Babecki, A. J. (Inventor); Haehner, C. L.

    1973-01-01

    A process for metal plating which comprises spraying a mixture of metallic powder and small peening particles at high velocity against a surface is described. The velocity must be sufficient to impact and bond metallic powder onto the surface. In the case of metal surfaces, the process has as one of its advantages providing mechanical working (hardening) of the surface simultaneously with the metal plating.

  15. Research on measurement and control of helicopter rotor response using blade-mounted accelerometers 1991-92

    NASA Technical Reports Server (NTRS)

    Ham, Norman D.; Mckillip, Robert M., Jr.

    1992-01-01

    Preliminary wind tunnel tests of the hill-size Model 412/IBC rotor at the Ames Research Center, NASA, are described. Blade flapping motion was excited by swash plate oscillation, and the flapping response was measured using blade-mounted accelerometers and compared with flapping motion inferred form blade strain measurements. The recorded open-loop accelerometer signals were used as input to the flapping-IBC system in the laboratory. The resulting controller cyclic pitch outputs are compared with the original cyclic pitch excitation inputs, and the potential effectiveness of the controller in suppressing the original excitation is evaluated. Control of blade flapping excites blade lagging, and vice versa; the paper describes a theoretical investigation of these coupling effects.

  16. Hub-mounted actuators for blade pitch collective control

    NASA Technical Reports Server (NTRS)

    Jeffery, Philip A. E. (Inventor); Luecke, Greg R. (Inventor)

    1985-01-01

    Blade collective pitch control is provided for a rotor system by rotary actuators located between adjacent blades. Each actuator is connected to the leading edge of one adjacent blade and the trailing edge of the other adjacent blade.

  17. The boundary layer over turbine blade models with realistic rough surfaces

    NASA Astrophysics Data System (ADS)

    McIlroy, Hugh M., Jr.

    The impact of turbine blade surface roughness on aerodynamic performance and heat loads is well known. Over time, as the turbine blades are exposed to heat loads, the external surfaces of the blades become rough. Also, for film-cooled blades, surface degradation can have a significant impact on film-cooling effectiveness. Many studies have been conducted on the effects of surface degradation/roughness on engine performance but most investigations have modeled the rough surfaces with uniform or two-dimensional roughness patterns. The objective of the present investigation is to conduct measurements that will reveal the influence of realistic surface roughness on the near-wall behavior of the boundary layer. Measurements have been conducted at the Matched-Index-of-Refraction (MIR) Facility at the Idaho National Engineering and Environmental Laboratory with a laser Doppler velocimeter. A flat plate model of a turbine blade has been developed that produces a transitional boundary layer, elevated freestream turbulence and an accelerating freestream in order to simulate conditions on the suction side of a high-pressure turbine blade. Boundary layer measurements have been completed over a smooth plate model and over a model with a strip of realistic rough surface. The realistic rough surface was developed by scaling actual turbine blade surface data that was provided by U.S. Air Force Research Laboratory. The results indicate that bypass transition occurred very early in the flow over the model and that the boundary layer remained unstable throughout the entire length of the test plate; the boundary layer thickness and momentum thickness Reynolds numbers increased over the rough patch; and the shape factor increased over the rough patch but then decreased downstream of the patch relative to the smooth plate case; in the rough patch case the flow experienced two transition reversals with laminar-like behavior achieved by the end of the test plate; streamwise turbulence

  18. Use of Blade Lean in Turbomachinery Redesign

    NASA Technical Reports Server (NTRS)

    Moore, John; Moore, Joan G.; Lupi, Alex

    1993-01-01

    Blade lean is used to improve the uniformity of exit flow distributions from turbomachinery blading. In turbines, it has been used to control secondary flows by tailoring blade turning to reduce flow overturning and underturning and to create more uniform loss distributions from hub to shroud. In the present study, the Pump Consortium centrifugal impeller has been redesigned using blade lean. The flow at the exit of the baseline impeller had large blade-to-blade variations, creating a highly unsteady flow for the downstream diffuser. Blade lean is used to redesign the flow to move the high loss fluid from the suction side to the hub, significantly reducing blade-toblade variations at the exit.

  19. Structural Tailoring of SSME Blades (vanes)

    NASA Technical Reports Server (NTRS)

    Rubinstein, R.

    1985-01-01

    The engine blade design optimization program STAEBL (Structural Tailoring of Engine Blades) is available at the NASA Lewis computer facility. The analysis capabilities of this program were extended to typical loading conditions for SSME turbopump blades including thermal and pressure loading. Input files for representative SSME blade designs were developed and sample optimization studies for these blades completed. The structural tailoring program combines a general optimization package and a finite element blade analysis package. The analysis package's capabilities include natural frequency, maximum stress, and forced response computation, and fatigue life and flutter analysis. Optimization is performed using the feasible directions method. The current design is modified by perturbing the design variables so that the design constraints are satisfied while the objective function, such as blade weight, is reduced at the maximum rate. The program's geometric design variables include blade thickness distribution, thickness to chord ratios, and root chord.

  20. Use of blade lean in turbomachinery redesign

    NASA Astrophysics Data System (ADS)

    Moore, John; Moore, Joan G.; Lupi, Alex

    1993-07-01

    Blade lean is used to improve the uniformity of exit flow distributions from turbomachinery blading. In turbines, it has been used to control secondary flows by tailoring blade turning to reduce flow overturning and underturning and to create more uniform loss distributions from hub to shroud. In the present study, the Pump Consortium centrifugal impeller has been redesigned using blade lean. The flow at the exit of the baseline impeller had large blade-to-blade variations, creating a highly unsteady flow for the downstream diffuser. Blade lean is used to redesign the flow to move the high loss fluid from the suction side to the hub, significantly reducing blade-toblade variations at the exit.

  1. Blade for a gas turbine

    DOEpatents

    Liang, George

    2010-10-26

    A blade is provided for a gas turbine. The blade comprises a main body comprising a cooling fluid entrance channel; a cooling fluid collector in communication with the cooling fluid entrance channel; a plurality of side channels extending through an outer wall of the main body and communicating with the cooling fluid collector and a cooling fluid cavity; a cooling fluid exit channel communicating with the cooling fluid cavity; and a plurality of exit bores extending from the cooling fluid exit channel through the main body outer wall.

  2. Spring-Blade Impact Tester

    NASA Technical Reports Server (NTRS)

    Holmes, Alan M.; Champagne, James W.

    1989-01-01

    Record of energy relationships retrieved from compact, portable tester. Spring-blade impact tester developed to support evaluation of tolerance to damage of struts under consideration for use in Space Station. Approach offers potential for determining damage as function of change in relationship between applied and absorbed energies as applied energy successively increased with each impact. Impactor strikes specimen at moment of maximum kinetic energy after spring blades released from cocked position. Concept also provides potential for measuring behavior during impact, and energy relationships retrievable from oscilloscope traces of impact.

  3. Effect of helicopter blade dynamics on blade aerodynamic and structural loads

    NASA Technical Reports Server (NTRS)

    Heffernan, Ruth M.

    1987-01-01

    The effect of rotor blade dynamics on aerodynamic and structural loads is examined for a conventional, main-rotor helicopter using a comprehensive rotorcraft analysis (CAMRAD) and flight-test data. The impact of blade dynamics on blade section lift-coefficient time histories is studied by comparing predictions from a rigid-blade analysis and an elastic-blade analysis with helicopter flight test data. The elastic blade analysis better predicts high-frequency behavior of section lift. In addition, components of the blade angle of attack such as elastic blade twist, blade flap rate, blade slope velocity, and inflow are examined as a function of blade mode. Elastic blade motion changed blade angle of attack by a few tenths of a degree, and up to the sixth rotor harmonic. A similar study of the influence of blade dynamics on bending and torsion moments was also conducted. A correlation study comparing predictions from several elastic-blade analyses with flight-test data revealed that an elastic-blade model consisting of only three elastic bending modes (first and second flap and first lag), and two elastic torsion modes was sufficient for good correlation.

  4. The boundary layer on compressor cascade blades

    NASA Technical Reports Server (NTRS)

    Deutsch, S.

    1981-01-01

    Some redesign of the cascade facility was necessary in order to incoporate the requirements of the LDA system into the design. Of particular importance was the intended use of a combination of suction upstream of the blade pack with diverging pack walls, as opposed to blade pack suction alone, for spanwise dimensionality control. An ARL blade was used to redo some tests using this arrangement. Preliminary testing and boundary layer measurements began on the double circular arc blades.

  5. Structural tailoring of engine blades (STAEBL)

    NASA Technical Reports Server (NTRS)

    Platt, C. E.; Pratt, T. K.; Brown, K. W.

    1982-01-01

    A mathematical optimization procedure was developed for the structural tailoring of engine blades and was used to structurally tailor two engine fan blades constructed of composite materials without midspan shrouds. The first was a solid blade made from superhybrid composites, and the second was a hollow blade with metal matrix composite inlays. Three major computerized functions were needed to complete the procedure: approximate analysis with the established input variables, optimization of an objective function, and refined analysis for design verification.

  6. Comparison of model helicopter rotor primary and secondary blade/vortex interaction blade slap

    NASA Astrophysics Data System (ADS)

    Hubbard, J. E., Jr.; Leighton, K. P.

    1984-05-01

    A study of the relative importance of blade/vortex interactions which occur on the retreating side of a model helicopter rotor disk is described. Some of the salient characteristics of this phenomenon are presented and discussed. It is shown that the resulting Secondary blade slap may be of equal or greater intensity than the advancing side (Primary) blade slap. Instrumented model helicopter rotor data is presented which reveals the nature of the retreating blade/vortex interaction. The importance of Secondary blade slap as it applies to predictive techniques or approaches is discussed. When Secondary blade slap occurs it acts to enlarge the window of operating conditions for which blade slap exists.

  7. A comparison of model helicopter rotor Primary and Secondary blade/vortex interaction blade slap

    NASA Technical Reports Server (NTRS)

    Hubbard, J. E., Jr.; Leighton, K. P.

    1983-01-01

    A study of the relative importance of blade/vortex interactions which occur on the retreating side of a model helicopter rotor disk is described. Some of the salient characteristics of this phenomenon are presented and discussed. It is shown that the resulting Secondary blade slap may be of equal or greater intensity than the advancing side (Primary) blade slap. Instrumented model helicopter rotor data is presented which reveals the nature of the retreating blade/vortex interaction. The importance of Secondary blade slap as it applies to predictive techniques or approaches is discussed. When Secondary blade slap occurs it acts to enlarge the window of operating conditions for which blade slap exists.

  8. VELOCITIES AND STREAMLINES ON A BLADE-TO-BLADE STREAM SURFACE OF A TURBOMACHINE

    NASA Technical Reports Server (NTRS)

    Katsanis, T.

    1994-01-01

    This program is a revision of an existing program for blade-to-blade aerodynamic analysis of turbomachine blades and it is a simpler program while consistent with related programs. The analysis is for two-dimensional, subsonic, compressible (or incompressible), nonviscous flow in a circular or straight infinite cascade of blades, which may be fixed or rotating. The flow may be axial, radial, or mixed, and the stream channel thickness may change in the through-flow direction. The program input consists of blade and stream channel geometry, total flow conditions, inlet and outlet flow angles, and blade-to-blade stream channel weight flow. The output includes blade surface velocities, velocity magnitude and direction at all interior mesh points in the blade-to-blade passage, and streamline coordinates throughout the passage. This program was developed on an IBM 7094/7044 DCS.

  9. Perturbation solutions for transonic flow on the blade-to-blade surface of compressor blade rows

    NASA Technical Reports Server (NTRS)

    Stahara, S. S.; Chaussee, D. S.; Spreiter, J. R.

    1978-01-01

    A preliminary investigation was conducted to establish the theoretical basis of perturbation techniques with the objective of minimizing computational requirements associated with parametric studies of transonic flows in turbomachines. The theoretical analysis involved the development of perturbation methods for determining first order changes in the flow solution due to variations of one or more geometrical or flow parameters. The formulation is primarily directed toward transonic flows on the blade to blade surface of a single blade row compressor. Two different perturbation approaches were identified and studied. Applications and results of these methods for various perturbations are presented for selected two dimensional transonic cascade flows to illustrate the advantages and disadvantages of each technique. Additionally, it was found that, for flows with shock waves, proper account of shock displacement was crucial.

  10. Fiber composite fan blade impact improvement program

    NASA Technical Reports Server (NTRS)

    Oller, T. L.

    1976-01-01

    The results of a 20-month program, designed to investigate parameters which effect the foreign object damage resulting from ingestion of birds into fan blades are described. Work performed on this program included the design, fabrication, and impact testing of QCSEE fan blades to demonstrate improvement in resistance relative to existing blades and also the design and demonstration of a pin root attachment concept.

  11. Computer Program Aids Design Of Impeller Blades

    NASA Technical Reports Server (NTRS)

    Chen, Wei-Chung; Galazin, John V.

    1992-01-01

    Impeller blades for centrifugal turbopumps designed quickly with help of computer program. Generates blade contours and continually subjects them to evaluation. Checks physical parameters to ensure they are compatible with required performance and recycles design if criteria not met. Program written for centrifugal turbomachinery, also adapted to such axial pump components as inducer blades and stator vanes.

  12. Forward sweep, low noise rotor blade

    NASA Technical Reports Server (NTRS)

    Brooks, Thomas F. (Inventor)

    1996-01-01

    A forward-swept, low-noise rotor blade includes an inboard section, an aft-swept section and a forward-swept outboard section. The rotor blade reduces the noise of rotorcraft, including both standard helicopters and advanced systems such as tiltrotors. The primary noise reduction feature is the forward sweep of the planform over a large portion of the outer blade radius. The rotor blade also includes an aft-swept section. The purpose of the aft-swept region is to provide a partial balance to pitching moments produced by the outboard forward-swept portion of the blade. The rotor blade has a constant chord width; or has a chord width which decreases linearly along the entire blade span; or combines constant and decreasing chord widths, wherein the blade is of constant chord width from the blade root to a certain location on the rotor blade, then decreases linearly to the blade tip thereafter. The noise source showing maximum noise reduction is blade-vortex interaction (BVI) noise. Also reduced are thickness, noise, high speed impulsive noise, cabin vibration and loading noise.

  13. Dynamic response of active twist rotor blades

    NASA Astrophysics Data System (ADS)

    Cesnik, Carlos E. S.; Shin, Sang Joon; Wilbur, Matthew L.

    2001-02-01

    Dynamic characteristics of active twist rotor (ATR) blades are investigated analytically and experimentally in this paper. The ATR system is intended for vibration and potentially for noise reductions in helicopters through individual blade control. An aeroelastic model is developed to identify frequency response characteristics of the ATR blade with integral, generally anisotropic, strain actuators embedded in its composite construction. An ATR prototype blade was designed and manufactured to experimentally study the vibration reduction capabilities of such systems. Several bench and hover tests were conducted and those results are presented and discussed here. Selected results on sensitivity of the ATR system to collective setting (i.e. blade loading), blade rpm (i.e. centrifugal force and blade station velocity), and media density (i.e. altitude) are presented. They indicated that the twist actuation authority of the ATR blade is independent of the collective setting up to approximately 10P, and dependent on rotational speed and altitude near the torsional resonance frequency due to its dependency on the aerodynamic damping. The proposed model captures very well the physics and sensitivities to selected test parameters of the ATR system. The numerical result of the blade torsional loads show an average error of 20% in magnitude and virtually no difference in phase for the blade frequency response. Overall, the active blade model is in very good agreement with the experiments and can be used to analyze and design future active helicopter blade systems.

  14. COBSTRAN - COMPOSITE BLADE STRUCTURAL ANALYZER

    NASA Technical Reports Server (NTRS)

    Aiello, R. A.

    1994-01-01

    The COBSTRAN (COmposite Blade STRuctural ANalyzer) program is a pre- and post-processor that facilitates the design and analysis of composite turbofan and turboprop blades, as well as composite wind turbine blades. COBSTRAN combines composite mechanics and laminate theory with a data base of fiber and matrix properties. As a preprocessor for NASTRAN or another Finite Element Method (FEM) program, COBSTRAN generates an FEM model with anisotropic homogeneous material properties. Stress output from the FEM program is provided as input to the COBSTRAN postprocessor. The postprocessor then uses the composite mechanics and laminate theory routines to calculate individual ply stresses, strains, interply stresses, thru-the-thickness stresses and failure margins. COBSTRAN is designed to carry out the many linear analyses required to efficiently model and analyze blade-like structural components made of multilayered angle-plied fiber composites. Components made from isotropic or anisotropic homogeneous materials can also be modeled as a special case of COBSTRAN. NASTRAN MAT1 or MAT2 material cards are generated according to user supplied properties. COBSTRAN is written in FORTRAN 77 and was implemented on a CRAY X-MP with a UNICOS 5.0.12 operating system. The program requires either COSMIC NASTRAN or MSC NASTRAN as a structural analysis package. COBSTRAN was developed in 1989, and has a memory requirement of 262,066 64 bit words.

  15. Twistable mold for helicopter blades

    NASA Technical Reports Server (NTRS)

    Carter, E. S.; Kiely, E. F.

    1972-01-01

    Design is described of mold for fabrication of blades composed of sets of aerodynamic shells having same airfoil section characteristics but different distributions. Mold consists of opposing stacks of thin templates held together by long bolts. When bolts are loosened, templates can be set at different positions with respect to each other and then locked in place.

  16. Photo Surfing in Blade Runner

    ERIC Educational Resources Information Center

    Ohler, Jason

    2005-01-01

    This month's "Mining Movies" looks at Blade Runner, Ridley Scott's film set in the year 2019. It is a sad time for Earth, which is in the midst of environmental degradation so severe that other planets are being prepared for colonization. The main source of labor for this preparation work are "replicants," organic robots that look and behave like…

  17. Design procedures for compressor blades

    NASA Technical Reports Server (NTRS)

    Starken, H.

    1983-01-01

    The conventional methods for the design of the blades in the case of axial turbomachines are considered, taking into account difficulties concerning the determination of optimal blade profiles. These difficulties have been partly overcome as a consequence of the introduction of new numerical methods during the last few years. It is pointed out that, in the case of the subsonic range, a new procedure is now available for the determination of the form of blade profile on the basis of a given velocity distribution on the profile surface. The search for a profile form with favorable characteristics is consequently transformed into a search for a favorable velocity or pressure distribution on the blade. The distribution of velocities depends to a large degree on the characteristics of the profile boundary layers. The considered concept is not new. However, its practical implementation has only recently become possible. The employment of the new design procedure is illustrated with the aid of an example involving a concrete design problem.

  18. Turbine blade tip flow discouragers

    DOEpatents

    Bunker, Ronald Scott

    2000-01-01

    A turbine assembly comprises a plurality of rotating blade portions in a spaced relation with a stationery shroud. The rotating blade portions comprise a root section, a tip portion and an airfoil. The tip portion has a pressure side wall and a suction side wall. A number of flow discouragers are disposed on the blade tip portion. In one embodiment, the flow discouragers extend circumferentially from the pressure side wall to the suction side wall so as to be aligned generally parallel to the direction of rotation. In an alternative embodiment, the flow discouragers extend circumferentially from the pressure side wall to the suction side wall so as to be aligned at an angle in the range between about 0.degree. to about 60.degree. with respect to a reference axis aligned generally parallel to the direction of rotation. The flow discouragers increase the flow resistance and thus reduce the flow of hot gas flow leakage for a given pressure differential across the blade tip portion so as to improve overall turbine efficiency.

  19. Base excitation testing system using spring elements to pivotally mount wind turbine blades

    DOEpatents

    Cotrell, Jason; Hughes, Scott; Butterfield, Sandy; Lambert, Scott

    2013-12-10

    A system (1100) for fatigue testing wind turbine blades (1102) through forced or resonant excitation of the base (1104) of a blade (1102). The system (1100) includes a test stand (1112) and a restoring spring assembly (1120) mounted on the test stand (1112). The restoring spring assembly (1120) includes a primary spring element (1124) that extends outward from the test stand (1112) to a blade mounting plate (1130) configured to receive a base (1104) of blade (1102). During fatigue testing, a supported base (1104) of a blad (1102) may be pivotally mounted to the test stand (1112) via the restoring spring assembly (1120). The system (1100) may include an excitation input assembly (1140) that is interconnected with the blade mouting plate (1130) to selectively apply flapwise, edgewise, and/or pitch excitation forces. The restoring spring assemply (1120) may include at least one tuning spring member (1127) positioned adjacent to the primary spring element (1124) used to tune the spring constant or stiffness of the primary spring element (1124) in one of the excitation directions.

  20. Damping Experiment of Spinning Composite Plates With Embedded Viscoelastic Material

    NASA Technical Reports Server (NTRS)

    Mehmed, Oral

    1998-01-01

    One way to increase gas turbine engine blade reliability and durability is to reduce blade vibration. It is well known that vibration can be reduced by adding damping to metal and composite blade-disk systems. As part of a joint research effort of the NASA Lewis Research Center and the University of California, San Diego, the use of integral viscoelastic damping treatment to reduce the vibration of rotating composite fan blades was investigated. The objectives of this experiment were to verify the structural integrity of composite plates with viscoelastic material patches embedded between composite layers while under large steady forces from spinning, and to measure the damping and natural frequency variation with rotational speed.

  1. Recent developments in turbine blade internal cooling.

    PubMed

    Han, J C; Dutta, S

    2001-05-01

    This paper focuses on turbine blade internal cooling. Internal cooling is achieved by passing the coolant through several rib-enhanced serpentine passages inside the blade and extracting the heat from the outside of the blades. Both jet impingement and pin-fin-cooling are also used as a method of internal cooling. In the past number of years there has been considerable progress in turbine blade internal cooling research and this paper is limited to reviewing a few selected publications to reflect recent developments in turbine blade internal cooling. PMID:11460626

  2. Turbine blade tip gap reduction system

    DOEpatents

    Diakunchak, Ihor S.

    2012-09-11

    A turbine blade sealing system for reducing a gap between a tip of a turbine blade and a stationary shroud of a turbine engine. The sealing system includes a plurality of flexible seal strips extending from a pressure side of a turbine blade generally orthogonal to the turbine blade. During operation of the turbine engine, the flexible seal strips flex radially outward extending towards the stationary shroud of the turbine engine, thereby reducing the leakage of air past the turbine blades and increasing the efficiency of the turbine engine.

  3. Examination, evaluation and repair of laminated wood blades after service on the Mod-OA wind turbine

    NASA Technical Reports Server (NTRS)

    Faddoul, J. R.

    1983-01-01

    Laminated wood blades were designed, fabricated, and installed on a 200-KW wind turbine (Mod-OA). The machine uses a two-blade rotor with a diameter of 38.1 m (125 ft). Each blade weights less than 1361 kg (3000 lb). After operating in the field, two blade sets were returned for inspection. One set had been in Hawaii for 17 months (7844 hr of operation) and the other had been at Block Island, Rhode Island, for 26 months (22 months operating - 7564 hr). The Hawaii set was returned because of one of the studs that holds the blade to the hub had failed. This was found to be caused by a combination of improper installation and inadequate corrosion protection. No other problems were found. The broken stud (along with four others that were badly corroded) was replaced and the blades are now in storage. The Block Island set of blades was returned at the completion of the test program, but one blade was found to have developed a crack in the leading edge along the entire span. This crack was found to be the result of a manufacturing process problem but was not structurally critical. When a load-deflection test was conducted on the cracked blade, the response was identical to that measured before installation. In general, the laminate quality of both blade sets was excellent. No significant internal delamination or structural defects were found in any blade. The stud bonding process requires close tolerance control and adequate corrosion protection, but studs can be removed and replaced without major problems. Moisture content stabilization does not appear to be a problem, and laminated wood blades are satisfactory for long-term operation on Mod-OA wind turbines.

  4. Numerical study of a bio-centrifugal blood pump with straight impeller blade profiles.

    PubMed

    Song, Guoliang; Chua, Leok Poh; Lim, Tau Meng

    2010-02-01

    Computational fluid dynamic simulations of the flow in the Kyoto-NTN (Kyoto University, Kyoto, Japan) magnetically suspended centrifugal blood pump with a 16-straight-bladed impeller were performed in the present study. The flow in the pump was assumed as unsteady and turbulent, and blood was treated as a Newtonian fluid. At the impeller rotating speed of 2000 rpm and flow rate of 5 L/min, the pump produces a pressure head of 113.5 mm Hg according to the simulation. It was found that the double volute of the pump has caused symmetrical pressure distribution in the volute passages and subsequently caused symmetrical flow patterns in the blade channels. Due to the tangentially increasing pressure in the volute passages, the flow through the blade channels initially increases at the low-pressure region and then decreases due to the increased pressure. The reverse flow and vortices have been identified in the impeller blade channels. The high shear stress of the flow in the pump mainly occurred at the inlet and outlet of the blade channels, the beginning of the volute passages and the regions around the tips of the cutwater and splitter plate. Higher shear stress is obtained when the tips of the cutwater and splitter plate are located at the impeller blade trailing edges than when they are located at the middle of the impeller blade channel. It was found that the blood damage index assessed based on the blood corpuscle path tracing of the present pump was about 0.94%, which has the same order of magnitude as those of the clinical centrifugal pumps reported in the literature. PMID:19817732

  5. Damage localization in a residential-sized wind turbine blade by use of the SDDLV method

    NASA Astrophysics Data System (ADS)

    Johansen, R. J.; Hansen, L. M.; Ulriksen, M. D.; Tcherniak, D.; Damkilde, L.

    2015-07-01

    The stochastic dynamic damage location vector (SDDLV) method has previously proved to facilitate effective damage localization in truss- and plate-like structures. The method is based on interrogating damage-induced changes in transfer function matrices in cases where these matrices cannot be derived explicitly due to unknown input. Instead, vectors from the kernel of the transfer function matrix change are utilized; vectors which are derived on the basis of the system and state-to-output mapping matrices from output-only state-space realizations. The idea is then to convert the kernel vectors associated with the lowest singular values into static pseudo-loads and apply these alternately to an undamaged reference model with known stiffness matrix. By doing so, the stresses in the potentially damaged elements will, theoretically, approach zero. The present paper demonstrates an application of the SDDLV method for localization of structural damages in a cantilevered residential-sized wind turbine blade. The blade was excited by an unmeasured multi-impulse load and the resulting dynamic response was captured through accelerometers mounted along the blade. The static pseudo-loads were applied to a finite element (FE) blade model, which was tuned against the modal parameters of the actual blade. In the experiments, an undamaged blade configuration was analysed along with different damage scenarios, hereby testing the applicability of the SDDLV method.

  6. Using stream surfaces for blade design

    SciTech Connect

    Miller, P.L. IV; Oliver, J.H.; Miller, D.P.; Tweedt, D.L.

    1997-04-01

    A wide variety of machines with rotating components incorporate blades for imparting energy to, or extracting it from, various fluid streams. Examples include turbines, pumps, compressors, fans, and propellers. In all of these applications, the blade design is critical for achieving optimal performance. Because the underlying function of a blade is to smoothly change the velocity of fluid flow, the blade is generally comprised of parametric sculptured surface models. The complex interaction between the fluid mechanics (i.e., machine performance) and the blade geometry is of fundamental importance in blade design. A new, interactive program offers parameters that are familiar to the designer of turbomachinery blades while it produces a precise and portable nonuniform rational B-spline (NURBS) surface model.

  7. Application of a system modification technique to dynamic tuning of a spinning rotor blade

    NASA Technical Reports Server (NTRS)

    Spain, C. V.

    1987-01-01

    An important consideration in the development of modern helicopters is the vibratory response of the main rotor blade. One way to minimize vibration levels is to ensure that natural frequencies of the spinning main rotor blade are well removed from integer multiples of the rotor speed. A technique for dynamically tuning a finite-element model of a rotor blade to accomplish that end is demonstrated. A brief overview is given of the general purpose finite element system known as Engineering Analysis Language (EAL) which was used in this work. A description of the EAL System Modification (SM) processor is then given along with an explanation of special algorithms developed to be used in conjunction with SM. Finally, this technique is demonstrated by dynamically tuning a model of an advanced composite rotor blade.

  8. Aeroelastic stability of wind turbine blade/aileron systems

    NASA Technical Reports Server (NTRS)

    Strain, J. C.; Mirandy, L.

    1995-01-01

    Aeroelastic stability analyses have been performed for the MOD-5A blade/aileron system. Various configurations having different aileron torsional stiffness, mass unbalance, and control system damping have been investigated. The analysis was conducted using a code recently developed by the General Electric Company - AILSTAB. The code extracts eigenvalues for a three degree of freedom system, consisting of: (1) a blade flapwise mode; (2) a blade torsional mode; and (3) an aileron torsional mode. Mode shapes are supplied as input and the aileron can be specified over an arbitrary length of the blade span. Quasi-steady aerodynamic strip theory is used to compute aerodynamic derivatives of the wing-aileron combination as a function of spanwise position. Equations of motion are summarized herein. The program provides rotating blade stability boundaries for torsional divergence, classical flutter (bending/torsion) and wing/aileron flutter. It has been checked out against fixed-wing results published by Theodorsen and Garrick. The MOD-5A system is stable with respect to divergence and classical flutter for all practical rotor speeds. Aileron torsional stiffness must exceed a minimum critical value to prevent aileron flutter. The nominal control system stiffness greatly exceeds this minimum during normal operation. The basic system, however, is unstable for the case of a free (or floating) aileron. The instability can be removed either by the addition of torsional damping or mass-balancing the ailerons. The MOD-5A design was performed by the General Electric Company, Advanced Energy Program Department under Contract DEN3-153 with NASA Lewis Research Center and sponsored by the Department of Energy.

  9. Prediction of blade vortex interaction noise from measured blade pressure

    NASA Technical Reports Server (NTRS)

    Nakamura, Y.

    1981-01-01

    The impulsive nature of noise due to the interaction of a rotor blade with a tip vortex is studied. The time signature of this noise is calculated theoretically based on the measured blade surface pressure fluctuation of an operational load survey rotor in slow descending flight and is compared with the simultaneous microphone measurement. Particularly, the physical understanding of the characteristic features of a waveform is extensively studied in order to understand the generating mechanism and to identify the important parameters. The interaction trajectory of a tip vortex on an acoustic planform is shown to be a very important parameter for the impulsive shape of the noise. The unsteady nature of the pressure distribution at the very leading edge is also important to the pulse shape. The theoretical model using noncompact linear acoustics predicts the general shape of interaction impulse pretty well except for peak amplitude which requires more continuous pressure information along the span at the leading edge.

  10. Aeroelastic dynamics of mistuned blade assemblies with closely spaced blade modes

    NASA Technical Reports Server (NTRS)

    Pierre, Christophe; Murthy, Durbha V.

    1993-01-01

    The aeroelastic characteristics of tuned and randomly mistuned blade assemblies which possess two blade-alone natural modes with close frequencies are studied. Modal interactions among the two blade modes are shown to be come extremely significant for small frequency separation. The two distinct loci of the aeroelastic eigenvalues, which characterize an assembly with well separated modes, fully merge into a single root locus as the blade-mode frequency separation vanishes. Also, while in the case of well separated blade modes the introduction of random mistuning into one blade mode affects only the assembly modes which are predominantly of that blade-mode type, mistuning results in the localization of all the assembly modes when the blade-alone natural frequencies are close. Results indicate that in the case of closely-spaced blade modes a single-degree of freedom blade model yields qualitatively erroneous results and that an N-blade assembly with two close blade modes behaves like an equivalent 2Nb-blade assembly with a single blade mode.

  11. Prediction of helicopter rotor noise from measured blade surface pressure

    NASA Astrophysics Data System (ADS)

    Succi, G. P.; Brieger, J. T.

    The current techniques of helicopter rotor noise prediction attempt to describe the details of the noise field precisely and remove the empiricisms and restrictions inherent in previous methods. These techniques require detailed inputs of the rotor geometry, operating conditions, and blade surface pressure distribution. The purpose of this paper is to review those techniques in general and the Farassat/Nystrom analysis in particular. The predictions of the Farassat/Nystrom noise computer program, using both measured and calculated blade surface pressure data, are compared to measured noise level data. This study is based on a contract from NASA to Bolt Beranek and Newman Inc. (BBN) with measured data from the AH-lG Helicopter Operational Loads Survey flight test program supplied by Bell Helicopter Textron.

  12. Incidence of visible and occult blood on laryngoscope blades and handles.

    PubMed

    Phillips, R A; Monaghan, W P

    1997-06-01

    Anesthesia providers must take appropriate precautions to reduce the potential for transmission of infectious agents to the patients under their care. The devastating spread of human immunodeficiency virus (HIV) and hepatitis B virus (HBV) over the past decade has resulted in the development of specific guidelines for the cleaning, disinfection, sterilization, and handling of medical equipment and instruments. Contamination of laryngoscope blades and handles with visible and occult blood frequently occurs during routine airway management. Several studies suggest procedures for cleaning, disinfection, sterilization, or handling of laryngoscope blades and handles are ineffective, or there may be poor compliance with the established protocols. The purpose of this study was to determine the incidence of visible and occult blood on laryngoscope blades and handles that were identified as ready for patient use. Sixty-five laryngoscope blades and handles identified as ready for patient use were observed for visible blood and tested for occult blood. A modified version of the three-stage phenolphthalein blood indicator test was employed to determine the presence of occult blood. None of the blades or handles observed had visible blood. Of the 65 blades tested for occult blood, 13 (20%) tested positive. Of the 65 handles tested for occult blood, 26 (40%) tested positive. More afternoon blades and handles tested positive for occult blood than morning blades and handles (P < 0.01). The extent to which contaminated anesthesia equipment plays in nosocomial infection is difficult to determine. The presence of blood is an indicator of potential cross-infection, since biological fluids, such as blood and saliva, are known to transmit infectious diseases. This study confirms that more rigorous decontamination protocols must be instituted to ensure complete removal of blood prior to sterilization, since laryngoscope blades and handles have irregular surfaces with repositories for

  13. A novel method for refurbishing used hot section gas turbine blades

    SciTech Connect

    Kempster, A.; Czech, N.

    1995-01-01

    During the normal operation of a land-based gas turbine, attack will occur of the gas-washed surfaces of the rotating stationary blades in the turbine hot section. This attack and its intensity can be variable depending on the blade`s position in the turbine hot section. This attack will progressively degrade these gas-washed surfaces even if these surfaces have been previously coated with a protective layer. During the service period of the turbine, it will be necessary to refurbish the blades from the hotter section of the turbine. One of the refurbishment steps will be to provide the blades with a suitable replacement coating to afford protection until the next service period. conventional refurbishment techniques used to clean the blade surface rely on abrasive cleaning and/or chemical pickling. These processes may be capable of removing superficial oxidation and any residual coating but are not able consistently to remove the substrate material that has suffered from corrosive attack. It is important that this attached substrate layer be removed completely, otherwise any residual corrosion products, particularly the presence of deeply penetrated sulfides in grain boundaries, could significantly reduce the life of any subsequent coating. The technique described in this paper essentially activates the surface layer of the substrate that is corroded, thus rendering it more easily removed by chemical and physical means. It is possible by this method to remove up to 400 {mu}m of the substrate material and provided that all the corrosion products are contained within this zone, it is demonstrated how this produces a clean unattacked surface that is necessary for any subsequent welding, brazing, or recoating operation.

  14. Rapidly Moving Divertor Plates In A Tokamak

    SciTech Connect

    S. Zweben

    2011-05-16

    It may be possible to replace conventional actively cooled tokamak divertor plates with a set of rapidly moving, passively cooled divertor plates on rails. These plates would absorb the plasma heat flux with their thermal inertia for ~10-30 sec, and would then be removed from the vessel for processing. When outside the tokamak, these plates could be cooled, cleaned, recoated, inspected, and then returned to the vessel in an automated loop. This scheme could provide nearoptimal divertor surfaces at all times, and avoid the need to stop machine operation for repair of damaged or eroded plates. We describe various possible divertor plate designs and access geometries, and discuss an initial design for a movable and removable divertor module for NSTX-U.

  15. Multiple piece turbine rotor blade

    DOEpatents

    Kimmel, Keith D.; Plank, William L.

    2016-07-19

    A spar and shell turbine rotor blade with a spar and a tip cap formed as a single piece, the spar includes a bottom end with dovetail or fir tree slots that engage with slots on a top end of a root section, and a platform includes an opening on a top surface for insertion of the spar in which a shell made from an exotic high temperature resistant material is secured between the tip cap and the platform. The spar is tapered to form thinner walls at the tip end to further reduce the weight and therefore a pulling force due to blade rotation. The spar and tip cap piece is made from a NiAL material to further reduce the weight and the pulling force.

  16. Impact resistance of composite fan blades

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Results are presented of a program to determine the impact resistance of composite fan blades subjected to foreign object damage (FOD) while operating under conditions simulating a short take-off and landing (STOL) engine at takeoff. The full-scale TF39 first-stage fan blade was chosen as the base design for the demonstration component since its configuration and operating tip speeds are similar to a typical STOL fan blade several composite configurations had already been designed and evaluated under previous programs. The first portion of the program was devoted toward fabricating and testing high impact resistant, aerodynamically acceptable composite blades which utilized only a single material system in any given blade. In order to increase the blade impact capability beyond this point, several mixed material (hybrid) designs were investigated using S-glass and Kevlar as well as boron and graphite fibers. These hybrid composite blades showed a marked improvement in resistance to bird impact over those blades made of a single composite material. The work conducted under this program has demonstrated substantial improvement in composite fan blades with respect to FOD resistance and has indicated that the hybrid design concept, which utilizes different types of fibers in various portions of a fan blade design depending on the particular requirements of the different areas and the characteristics of the different fibers involved, shows a significant improvement over those designs utilizing only one material system.

  17. Rotor blades for turbine engines

    SciTech Connect

    Piersall, Matthew R; Potter, Brian D

    2013-02-12

    A tip shroud that includes a plurality of damping fins, each damping fin including a substantially non-radially-aligned surface that is configured to make contact with a tip shroud of a neighboring rotor blade. At least one damping fin may include a leading edge damping fin and at least one damping fin may include a trailing edge damping fin. The leading edge damping fin may be configured to correspond to the trailing edge damping fin.

  18. Avionics Box Cold Plate Damage Prevention

    NASA Technical Reports Server (NTRS)

    Stambolian, Damon; Larcher, Steven; Henderson, Gena; Tran, Donald

    2011-01-01

    Over the years there have been several occurrences of damage to Space Shuttle Orbiter cold plates during removal and replacement of avionics boxes. Thus a process improvement team was put together to determine ways to prevent these kinds of damage. From this effort there were many solutions including, protective covers, training, and improved operations instructions. The focus of this paper is to explain the cold plate damage problem and the corrective actions for preventing future damage to aerospace avionics cold plate designs.

  19. Mechanical characterization of composite repairs for fiberglass wind turbine blades

    NASA Astrophysics Data System (ADS)

    Chawla, Tanveer Singh

    While in service, wind turbine blades experience various modes of loading. An example is impact loading in the form of hail or bird strikes, which might lead to localized damage or formation of cracks a few plies deep on the blade surface. One of the methods to conduct repairs on wind turbine blades that are damaged while in service is hand lay-up of the repair part after grinding out the damaged portion and some of its surrounding area. The resin used for such repairs usually differs from the parent plate resin in composition and properties such as gel time, viscosity, etc. As a result the properties of the repaired parts are not the same as that of the undamaged blades. Subsequent repetitive loading can be detrimental to weak repairs to such an extent so as to cause delamination at the parent-repair bondline causing the repairs to eventually fall off the blade. Thus the strength and toughness of the repair are of critical importance. Initial part of this work consists of an effort to increase repair strength by identifying an optimum hand layup repair resin for fiberglass wind turbine blades currently being manufactured by a global company. As delamination of the repair from the parent blade is a major concern and unidirectional glass fibers along with a polymer resin are used to manufacture blades under consideration, testing method detailed in ASTM D 5528 (Test Method for Mode I Interlaminar Fracture Toughness of Unidirectional Fiber-Reinforced Polymer Matrix Composites) was followed to determine propagation fracture toughness values of the prospective vinyl ester repair resin candidates. These values were compared to those for a base polyester repair resin used by the company. Experimental procedure and results obtained from the above mentioned testing using double cantilever beam (DCB) specimens are detailed. Three new repair resins were shortlisted through mode I testing. It was also found that variation in the depth of the ground top ply of the parent part

  20. Structural tailoring of engine blades (STAEBL) theoretical manual

    NASA Technical Reports Server (NTRS)

    Brown, K. W.

    1985-01-01

    This Theoretical Manual includes the theories included in the Structural Tailoring of Engine Blades (STAEBL) computer program which was developed to perform engine fan and compressor blade numerical optimizations. These blade optimizations seek a minimum weight or cost design that satisfies practical blade design constraints, by controlling one to twenty design variables. The STAEBL constraint analyses include blade stresses, vibratory response, flutter, and foreign object damage. Blade design variables include airfoil thickness at several locations, blade chord, and construction variables: hole size for hollow blades, and composite material layup for composite blades.

  1. Structural tailoring of engine blades (STAEBL) user's manual

    NASA Technical Reports Server (NTRS)

    Brown, K. W.

    1985-01-01

    This User's Manual contains instructions and demonstration case to prepare input data, run, and modify the Structural Tailoring of Engine Blades (STAEBL) computer code. STAEBL was developed to perform engine fan and compressor blade numerical optimizations. This blade optimization seeks a minimum weight or cost design that satisfies realistic blade design constraints, by tuning one to twenty design variables. The STAEBL constraint analyses include blade stresses, vibratory response, flutter, and foreign object damage. Blade design variables include airfoil thickness at several locations, blade chord, and construction variables: hole size for hollow blades, and composite material layup for composite blades.

  2. Cyclic Structural Analyses of SSME Turbine Blades

    NASA Technical Reports Server (NTRS)

    Kaufman, A.; Manderscheid, J. M.

    1985-01-01

    The problems of calculating the structural response of high-temperature space propulsion components such as turbine blades for the fuel turbopump are addressed. The first high-pressure-stage fuel turbine blade (HPFTB) in the liquid-hydrogen turbopump of the space shuttle main engine (SSME) was selected for this study. In the past these blades have cracked in the blade shank region and at the airfoil leading edge adjacent to the platform. To achieve the necessary durability, these blades are currently being cast by using directional solidification. Single-crystal alloys are also being investigated for future SSME applications. The study evaluated the utility of advanced structural analysis methods in assessing the low-cycle fatigue lives of these anisotropic components. The turbine blade airfoil of the high-pressure stage of the SSME fuel turbopump was analyzed because it has a history of rapid crack initiation.

  3. Cooling arrangement for a tapered turbine blade

    SciTech Connect

    Liang, George

    2010-07-27

    A cooling arrangement (11) for a highly tapered gas turbine blade (10). The cooling arrangement (11) includes a pair of parallel triple-pass serpentine cooling circuits (80,82) formed in an inner radial portion (50) of the blade, and a respective pair of single radial channel cooling circuits (84,86) formed in an outer radial portion (52) of the blade (10), with each single radial channel receiving the cooling fluid discharged from a respective one of the triple-pass serpentine cooling circuit. The cooling arrangement advantageously provides a higher degree of cooling to the most highly stressed radially inner portion of the blade, while providing a lower degree of cooling to the less highly stressed radially outer portion of the blade. The cooling arrangement can be implemented with known casting techniques, thereby facilitating its use on highly tapered, highly twisted Row 4 industrial gas turbine blades that could not be cooled with prior art cooling arrangements.

  4. Impact testing on composite fan blades

    NASA Technical Reports Server (NTRS)

    Johns, R. H.

    1974-01-01

    The results of impact tests on large, fiber composite fan blades for aircraft turbofan engine applications are discussed. Solid composite blades of two different sizes and designs were tested. Both graphite/epoxy and boron/epoxy were evaluated. In addition, a spar-shell blade design was tested that had a boron/epoxy shell bonded to a titanium spar. All blades were tested one at a time in a rotating arm rig to simulate engine operating conditions. Impacting media included small gravel, two inch diameter ice balls, gelatin and RTV foam-simulated birds, as well as starlings and pigeons. The results showed little difference in performance between the graphite and boron/epoxy blades. The results also indicate that composite blades may be able to tolerate ice ball and small bird impacts but need improvement to tolerate birds in the small duck and larger category.

  5. FOD impact testing of composite fan blades

    NASA Technical Reports Server (NTRS)

    Johns, R. H.

    1974-01-01

    The results of impact tests on large, fiber composite fan blades for aircraft turbofan engine applications are discussed. Solid composite blades of two different sizes and designs were tested. Both graphite/epoxy and boron/epoxy were evaluated. In addition, a spar-shell blade design was tested that had a boron/epoxy shell bonded to a titanium spar. All blades were tested one at a time in a rotating arm rig to simulate engine operating conditions. Impacting media included small gravel, two inch diameter ice balls, gelatin and RTV foam-simulated birds, as well as starlings and pigeons. The results showed little difference in performance between the graphite and boron/epoxy blades. The results also indicate that composite blades may be able to tolerate ice ball and small bird impacts but need improvement to tolerate birds in the small duck and larger category.

  6. FOD impact testing of composite fan blades

    NASA Technical Reports Server (NTRS)

    Johns, R. H.

    1974-01-01

    The results of impact tests on large, fiber composite fan blades for aircraft turbofan engine applications are discussed. Solid composite blades of two different sizes and designs were tested. Both graphite/epoxy and boron/epoxy were evaluated. In addition, a spar-shell blade design was tested that had a boron/epoxy shell bonded to a titanium spar. All blades were tested one at a time in a rotating arm rig to simulate engine operating conditions. Impacting media included small gravel, two inch diameter ice balls, gelatin, and RTV foam-simulated birds, as well as starlings and pigeons. The results showed little difference in performance between the graphite and boron/epoxy blades. The results also indicate that composite blades may be able to tolerate ice ball and small bird impacts but need improvement to tolerate birds in the small duck and larger category.

  7. Advanced turbine blade tip seal system

    NASA Technical Reports Server (NTRS)

    Zelahy, J. W.

    1981-01-01

    An advanced blade/shroud system designed to maintain close clearance between blade tips and turbine shrouds and at the same time, be resistant to environmental effects including high temperature oxidation, hot corrosion, and thermal cycling is described. Increased efficiency and increased blade life are attained by using the advanced blade tip seal system. Features of the system include improved clearance control when blade tips preferentially wear the shrouds and a superior single crystal superalloy tip. The tip design, joint location, characterization of the single crystal tip alloy, the abrasive tip treatment, and the component and engine test are among the factors addressed. Results of wear testing, quality control plans, and the total manufacturing cycle required to fully process the blades are also discussed.

  8. Load attenuating passively adaptive wind turbine blade

    DOEpatents

    Veers, Paul S.; Lobitz, Donald W.

    2003-01-01

    A method and apparatus for improving wind turbine performance by alleviating loads and controlling the rotor. The invention employs the use of a passively adaptive blade that senses the wind velocity or rotational speed, and accordingly modifies its aerodynamic configuration. The invention exploits the load mitigation prospects of a blade that twists toward feather as it bends. The invention includes passively adaptive wind turbine rotors or blades with currently preferred power control features. The apparatus is a composite fiber horizontal axis wind-turbine blade, in which a substantial majority of fibers in the blade skin are inclined at angles of between 15 and 30 degrees to the axis of the blade, to produces passive adaptive aeroelastic tailoring (bend-twist coupling) to alleviate loading without unduly jeopardizing performance.

  9. Load attenuating passively adaptive wind turbine blade

    DOEpatents

    Veers, Paul S.; Lobitz, Donald W.

    2003-01-07

    A method and apparatus for improving wind turbine performance by alleviating loads and controlling the rotor. The invention employs the use of a passively adaptive blade that senses the wind velocity or rotational speed, and accordingly modifies its aerodynamic configuration. The invention exploits the load mitigation prospects of a blade that twists toward feather as it bends. The invention includes passively adaptive wind turbine rotors or blades with currently preferred power control features. The apparatus is a composite fiber horizontal axis wind-turbine blade, in which a substantial majority of fibers in the blade skin are inclined at angles of between 15 and 30 degrees to the axis of the blade, to produces passive adaptive aeroelastic tailoring (bend-twist coupling) to alleviate loading without unduly jeopardizing performance.

  10. Diagnostic methods of a bladed disc mode shape evaluation used for shrouded blades in steam turbines

    NASA Astrophysics Data System (ADS)

    Strnad, Jaromir; Liska, Jindrich

    2015-11-01

    This paper deals with advanced methods for the evaluation of a bladed disc behavior in terms of the wheel vibration and blade service time consumption. These methods are developed as parts of the noncontact vibration monitoring system of the steam turbine shrouded blades. The proposed methods utilize the time-frequency processing (cross spectra) and the method using least squares to analyse the data from the optical and magnetoresistive sensors, which are mounted in the stator radially above the rotor blades. Fundamentally, the blade vibrations are detected during the blade passages under the sensors and the following signal processing, which covers also the proposed methods, leads to the estimation of the blade residual service life. The prototype system implementing above mentioned techniques was installed into the last stage of the new steam turbine (LP part). The methods for bladed disc mode shape evaluation were successfully verified on the signals, which were obtained during the commission operation of the turbine.