Science.gov

Sample records for block protein interactions

  1. An antiviral disulfide compound blocks interaction between arenavirus Z protein and cellular promyelocytic leukemia protein

    SciTech Connect

    Garcia, C.C.; Topisirovic, I.; Djavani, M.; Borden, K.L.B.; Damonte, E.B.; Salvato, M.S.

    2010-03-19

    The promyelocytic leukemia protein (PML) forms nuclear bodies (NB) that can be redistributed by virus infection. In particular, lymphocytic choriomeningitis virus (LCMV) influences disruption of PML NB through the interaction of PML with the arenaviral Z protein. In a previous report, we have shown that the disulfide compound NSC20625 has antiviral and virucidal properties against arenaviruses, inducing unfolding and oligomerization of Z without affecting cellular RING-containing proteins such as the PML. Here, we further studied the effect of the zinc-finger-reactive disulfide NSC20625 on PML-Z interaction. In HepG2 cells infected with LCMV or transiently transfected with Z protein constructs, treatment with NSC20625 restored PML distribution from a diffuse-cytoplasmic pattern to punctate, discrete NB which appeared identical to NB found in control, uninfected cells. Similar results were obtained in cells transfected with a construct expressing a Z mutant in zinc-binding site 2 of the RING domain, confirming that this Z-PML interaction requires the integrity of only one zinc-binding site. Altogether, these results show that the compound NSC20625 suppressed Z-mediated PML NB disruption and may be used as a tool for designing novel antiviral strategies against arenavirus infection.

  2. Protein based Block Copolymers

    PubMed Central

    Rabotyagova, Olena S.; Cebe, Peggy; Kaplan, David L.

    2011-01-01

    Advances in genetic engineering have led to the synthesis of protein-based block copolymers with control of chemistry and molecular weight, resulting in unique physical and biological properties. The benefits from incorporating peptide blocks into copolymer designs arise from the fundamental properties of proteins to adopt ordered conformations and to undergo self-assembly, providing control over structure formation at various length scales when compared to conventional block copolymers. This review covers the synthesis, structure, assembly, properties, and applications of protein-based block copolymers. PMID:21235251

  3. Analysis of barley stripe mosaic virus nucleoprotein complex and triple gene block protein interactions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Barley stripe mosaic virus (BSMV) genome contains three movement proteins encoded in an overlapping triple gene block (TGB). The TGB1 (58 kDa), TGB2 (14 kDa), and TGB3 (17 kDa) proteins are each required for cell-to-cell movement of BSMV, and TGB1 binds to ssRNA and dsRNA. We have now isolated a...

  4. Inhibitor of Apoptosis Proteins Physically Interact with and Block Apoptosis Induced by Drosophila Proteins HID and GRIM

    PubMed Central

    Vucic, Domagoj; Kaiser, William J.; Miller, Lois K.

    1998-01-01

    Reaper (RPR), HID, and GRIM activate apoptosis in cells programmed to die during Drosophila development. We have previously shown that transient overexpression of RPR in the lepidopteran SF-21 cell line induces apoptosis and that members of the inhibitor of apoptosis (IAP) family of antiapoptotic proteins can inhibit RPR-induced apoptosis and physically interact with RPR through their BIR motifs (D. Vucic, W. J. Kaiser, A. J. Harvey, and L. K. Miller, Proc. Natl. Acad. Sci. USA 94:10183–10188, 1997). In this study, we found that transient overexpression of HID and GRIM also induced apoptosis in the SF-21 cell line. Baculovirus and Drosophila IAPs blocked HID- and GRIM-induced apoptosis and also physically interacted with them through the BIR motifs of the IAPs. The region of sequence similarity shared by RPR, HID, and GRIM, the N-terminal 14 amino acids of each protein, was required for the induction of apoptosis by HID and its binding to IAPs. When stably overexpressed by fusion to an unrelated, nonapoptotic polypeptide, the N-terminal 37 amino acids of HID and GRIM were sufficient to induce apoptosis and confer IAP binding activity. However, GRIM was more complex than HID since the C-terminal 124 amino acids of GRIM retained apoptosis-inducing and IAP binding activity, suggesting the presence of two independent apoptotic motifs within GRIM. Coexpression of IAPs with HID stabilized HID levels and resulted in the accumulation of HID in punctate perinuclear locations which coincided with IAP localization. The physical interaction of IAPs with RPR, HID, and GRIM provides a common molecular mechanism for IAP inhibition of these Drosophila proapoptotic proteins. PMID:9584170

  5. RVMAB: Using the Relevance Vector Machine Model Combined with Average Blocks to Predict the Interactions of Proteins from Protein Sequences

    PubMed Central

    An, Ji-Yong; You, Zhu-Hong; Meng, Fan-Rong; Xu, Shu-Juan; Wang, Yin

    2016-01-01

    Protein-Protein Interactions (PPIs) play essential roles in most cellular processes. Knowledge of PPIs is becoming increasingly more important, which has prompted the development of technologies that are capable of discovering large-scale PPIs. Although many high-throughput biological technologies have been proposed to detect PPIs, there are unavoidable shortcomings, including cost, time intensity, and inherently high false positive and false negative rates. For the sake of these reasons, in silico methods are attracting much attention due to their good performances in predicting PPIs. In this paper, we propose a novel computational method known as RVM-AB that combines the Relevance Vector Machine (RVM) model and Average Blocks (AB) to predict PPIs from protein sequences. The main improvements are the results of representing protein sequences using the AB feature representation on a Position Specific Scoring Matrix (PSSM), reducing the influence of noise using a Principal Component Analysis (PCA), and using a Relevance Vector Machine (RVM) based classifier. We performed five-fold cross-validation experiments on yeast and Helicobacter pylori datasets, and achieved very high accuracies of 92.98% and 95.58% respectively, which is significantly better than previous works. In addition, we also obtained good prediction accuracies of 88.31%, 89.46%, 91.08%, 91.55%, and 94.81% on other five independent datasets C. elegans, M. musculus, H. sapiens, H. pylori, and E. coli for cross-species prediction. To further evaluate the proposed method, we compare it with the state-of-the-art support vector machine (SVM) classifier on the yeast dataset. The experimental results demonstrate that our RVM-AB method is obviously better than the SVM-based method. The promising experimental results show the efficiency and simplicity of the proposed method, which can be an automatic decision support tool. To facilitate extensive studies for future proteomics research, we developed a freely

  6. RVMAB: Using the Relevance Vector Machine Model Combined with Average Blocks to Predict the Interactions of Proteins from Protein Sequences.

    PubMed

    An, Ji-Yong; You, Zhu-Hong; Meng, Fan-Rong; Xu, Shu-Juan; Wang, Yin

    2016-01-01

    Protein-Protein Interactions (PPIs) play essential roles in most cellular processes. Knowledge of PPIs is becoming increasingly more important, which has prompted the development of technologies that are capable of discovering large-scale PPIs. Although many high-throughput biological technologies have been proposed to detect PPIs, there are unavoidable shortcomings, including cost, time intensity, and inherently high false positive and false negative rates. For the sake of these reasons, in silico methods are attracting much attention due to their good performances in predicting PPIs. In this paper, we propose a novel computational method known as RVM-AB that combines the Relevance Vector Machine (RVM) model and Average Blocks (AB) to predict PPIs from protein sequences. The main improvements are the results of representing protein sequences using the AB feature representation on a Position Specific Scoring Matrix (PSSM), reducing the influence of noise using a Principal Component Analysis (PCA), and using a Relevance Vector Machine (RVM) based classifier. We performed five-fold cross-validation experiments on yeast and Helicobacter pylori datasets, and achieved very high accuracies of 92.98% and 95.58% respectively, which is significantly better than previous works. In addition, we also obtained good prediction accuracies of 88.31%, 89.46%, 91.08%, 91.55%, and 94.81% on other five independent datasets C. elegans, M. musculus, H. sapiens, H. pylori, and E. coli for cross-species prediction. To further evaluate the proposed method, we compare it with the state-of-the-art support vector machine (SVM) classifier on the yeast dataset. The experimental results demonstrate that our RVM-AB method is obviously better than the SVM-based method. The promising experimental results show the efficiency and simplicity of the proposed method, which can be an automatic decision support tool. To facilitate extensive studies for future proteomics research, we developed a freely

  7. Blocking the Interactions between Calcium-Bound S100A12 Protein and the V Domain of RAGE Using Tranilast.

    PubMed

    Chiou, Jian Wei; Fu, Brian; Chou, Ruey-Hwang; Yu, Chin

    2016-01-01

    The receptor for advanced glycation end products (RAGE), a transmembrane receptor in the immunoglobulin superfamily, is involved in several inflammatory processes. RAGE induces cellular signaling pathways upon binding with various ligands, such as advanced glycation end products (AGEs), β-amyloids, and S100 proteins. The solution structure of S100A12 and the V ligand-binding region of RAGE have been reported previously. Using heteronuclear NMR spectroscopy to conduct 1H-15N heteronuclear single quantum coherence (HSQC) titration experiments, we identified and mapped the binding interface between S100A12 and the V domain of RAGE. The NMR chemical shift data were used as the constraints for the High Ambiguity Driven biomolecular DOCKing (HADDOCK) calculation to generate a structural model of the S100A12-V domain complex. In addition, tranilast (an anti-allergic drug) showed strong interaction with S100A12 in the 1H-15N HSQC titration, fluorescence experiments, and WST-1 assay. The results also indicated that tranilast was located at the binding site between S100A12 and the V domain, blocking interaction between these two proteins. Our results provide the mechanistic details for a structural model and reveal a potential precursor for an inhibitor for pro-inflammatory diseases, which could be useful for the development of new drugs. PMID:27598566

  8. Exploration of Gated Ligand Binding Recognizes an Allosteric Site for Blocking FABP4-Protein Interaction

    PubMed Central

    Li, Yan; Li, Xiang; Dong, Zigang

    2015-01-01

    Fatty acid binding protein 4 (FABP4), reversibly binding to fatty acids and other lipids with high affinities, is a potential target for treatment of cancers. The binding site of FABP4 is buried in an interior cavity and thereby ligand binding/unbinding is coupled with opening/closing of FABP4. It is a difficult task both experimentally and computationally to illuminate the entry or exit pathway, especially with the conformational gating. In this report we combine extensive computer simulations, clustering analysis, and Markov state model to investigate the binding mechanism of FABP4 and troglitazone. Our simulations capture spontaneous binding and unbinding events as well as the conformational transition of FABP4 between the open and closed states. An allosteric binding site on the protein surface is recognized for development of novel FABP4 inhibitors. The binding affinity is calculated and compared with the experimental value. The kinetic analysis suggests that ligand residence on the protein surface may delay the binding process. Overall, our results provide a comprehensive picture of ligand diffusion on the protein surface, ligand migration into the buried cavity, and the conformational change of FABP4 at an atomic level. PMID:26580122

  9. Targeting Multiple Conformations Leads to Small Molecule Inhibitors of the uPAR·uPA Protein-Protein Interaction that Block Cancer Cell Invasion

    PubMed Central

    Khanna, May; Wang, Fang; Jo, Inha; Knabe, W. Eric; Wilson, Sarah M.; Li, Liwei; Bum-Erdene, Khuchtumur; Li, Jing; Sledge, George; Khanna, Rajesh; Meroueh, Samy O.

    2011-01-01

    Interaction of the urokinase receptor (uPAR) with its binding partners including the urokinase-type plasminogen activator (uPA) at the cell surface triggers a series of proteolytic and signaling events that promote invasion and metastasis. Here, we report the discovery of a small molecule (IPR-456) and its derivatives that inhibit the tight uPAR·uPA protein-protein interaction. IPR-456 was discovered by virtual screening against multiple conformations of uPAR sampled from explicit-solvent molecular dynamics simulations. Biochemical characterization reveal that the compound binds to uPAR with sub-micromolar affinity (Kd = 310 nM) and inhibits the tight protein-protein interaction with an IC50 of 10 μM. Free energy calculations based on explicit-solvent molecular dynamics simulations suggested the importance of a carboxylate moiety on IPR-456, which was confirmed by the activity of several derivatives including IPR-803. Immunofluorescence imaging showed that IPR-456 inhibited uPA binding to uPAR of breast MDA-MB-231 tumor cells with an IC50 of 8 μM. The compounds blocked MDA-MB-231 cell invasion, but IPR-456 showed little effect on MDA-MB-231 migration, and no effect on adhesion, suggesting that uPAR mediates these processes through its other binding partners. PMID:21875078

  10. A High-Throughput Screening Strategy to Identify Protein-Protein Interaction Inhibitors That Block the Fanconi Anemia DNA Repair Pathway.

    PubMed

    Voter, Andrew F; Manthei, Kelly A; Keck, James L

    2016-07-01

    Induction of the Fanconi anemia (FA) DNA repair pathway is a common mechanism by which tumors evolve resistance to DNA crosslinking chemotherapies. Proper execution of the FA pathway requires interaction between the FA complementation group M protein (FANCM) and the RecQ-mediated genome instability protein (RMI) complex, and mutations that disrupt FANCM/RMI interactions sensitize cells to DNA crosslinking agents. Inhibitors that block FANCM/RMI complex formation could be useful therapeutics for resensitizing tumors that have acquired chemotherapeutic resistance. To identify such inhibitors, we have developed and validated high-throughput fluorescence polarization and proximity assays that are sensitive to inhibitors that disrupt interactions between the RMI complex and its binding site on FANCM (a peptide referred to as MM2). A pilot screen of 74,807 small molecules was performed using the fluorescence polarization assay. Hits from the primary screen were further tested using the proximity assay, and an orthogonal proximity assay was used to assess inhibitor selectivity. Direct physical interaction between the RMI complex and the most selective inhibitor identified through the screening process was measured by surface plasmon resonance and isothermal titration calorimetry. Observation of direct binding by this small molecule validates the screening protocol. PMID:26962873

  11. Block ground interaction of rockfalls

    NASA Astrophysics Data System (ADS)

    Volkwein, Axel; Gerber, Werner; Kummer, Peter

    2016-04-01

    During a rockfall the interaction of the falling block with the ground is one of the most important factors that define the evolution of a rockfall trajectory. It steers the rebound, the rotational movement, possibly brake effects, friction losses and damping effects. Therefore, if most reliable rockfall /trajectory simulation software is sought a good understanding of the block ground interaction is necessary. Today's rockfall codes enable the simulation of a fully 3D modelled block within a full 3D surface . However, the details during the contact, i.e. the contact duration, the penetration depth or the dimension of the marks in the ground are usually not part of the simulation. Recent field tests with rocks between 20 and 80 kg have been conducted on a grassy slope in 2014 [1]. A special rockfall sensor [2] within the blocks measured the rotational velocity and the acting accelerations during the tests. External video records and a so-called LocalPositioningSystem deliver information on the travel velocity. With these data not only the flight phases of the trajectories but also the contacts with the ground can be analysed. During the single jumps of a block the flight time, jump length, the velocity, and the rotation are known. During the single impacts their duration and the acting accelerations are visible. Further, the changes of rotational and translational velocity influence the next jump of the block. The change of the rotational velocity over the whole trajectory nicely visualizes the different phases of a rockfall regarding general acceleration and deceleration in respect to the inclination and the topography of the field. References: [1] Volkwein A, Krummenacher B, Gerber W, Lardon J, Gees F, Brügger L, Ott T (2015) Repeated controlled rockfall trajectory testing. [Abstract] Geophys. Res. Abstr. 17: EGU2015-9779. [2] Volkwein A, Klette J (2014) Semi-Automatic Determination of Rockfall Trajectories. Sensors 14: 18187-18210.

  12. DNMT3A R882 mutants interact with polycomb proteins to block haematopoietic stem and leukaemic cell differentiation

    PubMed Central

    Koya, Junji; Kataoka, Keisuke; Sato, Tomohiko; Bando, Masashige; Kato, Yuki; Tsuruta-Kishino, Takako; Kobayashi, Hiroshi; Narukawa, Kensuke; Miyoshi, Hiroyuki; Shirahige, Katsuhiko; Kurokawa, Mineo

    2016-01-01

    Despite the clinical impact of DNMT3A mutation on acute myeloid leukaemia, the molecular mechanisms regarding how this mutation causes leukaemogenesis in vivo are largely unknown. Here we show that, in murine transplantation experiments, recipients transplanted with DNMT3A mutant-transduced cells exhibit aberrant haematopoietic stem cell (HSC) accumulation. Differentiation-associated genes are downregulated without accompanying changes in methylation status of their promoter-associated CpG islands in DNMT3A mutant-transduced stem/progenitor cells, representing a DNA methylation-independent role of mutated DNMT3A. DNMT3A R882H also promotes monoblastic transformation in vitro in combination with HOXA9. Molecularly, the DNMT3A mutant interacts with polycomb repressive complex 1 (PRC1), causing transcriptional silencing, revealing a DNA methylation-independent role of DNMT3A mutation. Suppression of PRC1 impairs aberrant HSC accumulation and monoblastic transformation. From our data, it is shown that DNMT3A mutants can block the differentiation of HSCs and leukaemic cells via PRC1. This interaction could be targetable in DNMT3A-mutated leukaemias. PMID:27010239

  13. Azurin-like protein blocks invasion of Toxoplasma gondii through potential interactions with parasite surface antigen SAG1.

    PubMed

    Naguleswaran, Arunasalam; Fialho, Arsenio M; Chaudhari, Anita; Hong, Chang Soo; Chakrabarty, Ananda M; Sullivan, William J

    2008-02-01

    Some pathogenic bacteria produce factors that have evolved a capacity to neutralize competing microbes. The cupredoxin family protein azurin, produced by Pseudomonas aeruginosa, exhibits a remarkable ability to impede invasion of a number of diverse intracellular pathogens, including the human AIDS virus human immunodeficiency virus type 1 and the protozoan parasite Plasmodium falciparum (which causes malaria). Here we report that azurin and an azurin-like protein (Laz) from gonococci/meningococci have activity against Toxoplasma, an apicomplexan parasite that causes opportunistic infection in immunocompromised individuals. We demonstrate that the mechanism of action for Laz involves interfering with the ability of Toxoplasma to adhere to host cells. Computer structural analysis reveals that azurin shares structural features with the predominant surface antigen SAG1, which is known to play an important role in parasite attachment. Interestingly, azurin also has structural similarities to a monoclonal antibody to SAG1. Surface plasmon resonance binding studies validate that SAG1 interacts strongly with Laz and, to lesser extent, azurin. Moreover, Toxoplasma mutants lacking SAG1 are not as susceptible to the growth-inhibitory effects of Laz. Collectively, our data show that Toxoplasma adhesion can be significantly impaired by Laz, and to some extent by azurin, via interactions with SAG1. These observations indicate that Laz can serve as an important tool in the study of host-pathogen interactions and is worthy of further study for development into potential therapeutic agents. PMID:18070964

  14. Plant Translation Elongation Factor 1Bβ Facilitates Potato Virus X (PVX) Infection and Interacts with PVX Triple Gene Block Protein 1.

    PubMed

    Hwang, JeeNa; Lee, Seonhee; Lee, Joung-Ho; Kang, Won-Hee; Kang, Jin-Ho; Kang, Min-Young; Oh, Chang-Sik; Kang, Byoung-Cheorl

    2015-01-01

    The eukaryotic translation elongation factor 1 (eEF1) has two components: the G-protein eEF1A and the nucleotide exchange factor eEF1B. In plants, eEF1B is itself composed of a structural protein (eEF1Bγ) and two nucleotide exchange subunits (eEF1Bα and eEF1Bβ). To test the effects of elongation factors on virus infection, we isolated eEF1A and eEF1B genes from pepper (Capsicum annuum) and suppressed their homologs in Nicotiana benthamiana using virus-induced gene silencing (VIGS). The accumulation of a green fluorescent protein (GFP)-tagged Potato virus X (PVX) was significantly reduced in the eEF1Bβ- or eEF1Bɣ-silenced plants as well as in eEF1A-silenced plants. Yeast two-hybrid and co-immunoprecipitation analyses revealed that eEF1Bα and eEF1Bβ interacted with eEF1A and that eEF1A and eEF1Bβ interacted with triple gene block protein 1 (TGBp1) of PVX. These results suggest that both eEF1A and eEF1Bβ play essential roles in the multiplication of PVX by physically interacting with TGBp1. Furthermore, using eEF1Bβ deletion constructs, we found that both N- (1-64 amino acids) and C-terminal (150-195 amino acids) domains of eEF1Bβ are important for the interaction with PVX TGBp1 and that the C-terminal domain of eEF1Bβ is involved in the interaction with eEF1A. These results suggest that eEF1Bβ could be a potential target for engineering virus-resistant plants. PMID:26020533

  15. Tranilast Blocks the Interaction between the Protein S100A11 and Receptor for Advanced Glycation End Products (RAGE) V Domain and Inhibits Cell Proliferation.

    PubMed

    Huang, Yen-Kai; Chou, Ruey-Hwang; Yu, Chin

    2016-07-01

    The human S100 calcium-binding protein A11 (S100A11) is a member of the S100 protein family. Once S100A11 proteins bind to calcium ions at EF-hand motifs, S100A11 changes its conformation, promoting interaction with target proteins. The receptor for advanced glycation end products (RAGE) consists of three extracellular domains, including the V domain, C1 domain, and C2 domain. In this case, the V domain is the target for mutant S100A11 (mS100A11) binding. RAGE binds to the ligands, resulting in cell proliferation, cell growth, and several signal transduction cascades. We used NMR and fluorescence spectroscopy to demonstrate the interactions between mS100A11and RAGE V domain. The tranilast molecule is a drug used for treating allergic disorders. We discovered that the RAGE V domain and tranilast would interact with mS100A11 by using (1)H-(15)N HSQC NMR titrations. According to the results, we obtained two binary complex models from the HADDOCK program, S100A11-RAGE V domain and S100A11-tranilast, respectively. We overlapped two binary complex models with the same orientation of S100A11 homodimer and demonstrated that tranilast would block the binding site between S100A11 and the RAGE V domain. We further utilized a water-soluble tetrazolium-1 assay to confirm this result. We think that the results will be potentially useful in the development of new anti-cancer drugs. PMID:27226584

  16. MIBSA: Multi Interacting Blocks for Slope Analysis

    NASA Astrophysics Data System (ADS)

    Dattola, Giuseppe; Crosta, Giovanni; Castellanza, Riccardo; di Prisco, Claudio

    2016-04-01

    As it is well known, the slope instabilities have very important consequences in terms of human lives and activities. So predicting the evolution in time and space of slope mass movements becomes fundamental. This is even more relevant when we consider that the triggering mechanisms are a rising ground water level and the occurrence of earthquakes. Therefore, seasonal rainfall has a direct influence on the triggering of large rock and earthslide with a composite failure surface and causing differential behaviors within the sliding mass. In this contribution, a model describing the slope mass by means of an array of blocks that move on a prefixed failure surface, is defined. A shear band located at the base of each block, whose behavior is modelled via a viscous plastic model based on the Perzyna's approach, controls the slip velocity of the block. The motion of the blocks is obtained by solving the second balance equation in which the normal and tangential interaction forces are obtained by a specific interaction model. The model has been implemented in an original code and it is used to perform a parametric analysis that describes the effects of block interactions under a transient ground water oscillation. The numerical results confirm that the normal and tangential interactions between blocks can inhibit or induce the slope movements. The model is tested against some real case studies. This model is under development to add the dynamic effects generated by earthquake shaking.

  17. Responsive block copolymer photonics triggered by protein-polyelectrolyte coacervation.

    PubMed

    Fan, Yin; Tang, Shengchang; Thomas, Edwin L; Olsen, Bradley D

    2014-11-25

    Ionic interactions between proteins and polyelectrolytes are demonstrated as a method to trigger responsive transitions in block copolymer (BCP) photonic gels containing one neutral hydrophobic block and one cationic hydrophilic block. Poly(2-vinylpyridine) (P2VP) blocks in lamellar poly(styrene-b-2-vinylpyridine) block copolymer thin films are quaternized with primary bromides to yield swollen gels that show strong reflectivity peaks in the visible range; exposure to aqueous solutions of various proteins alters the swelling ratios of the quaternized P2VP (QP2VP) gel layers in the PS-QP2VP materials due to the ionic interactions between proteins and the polyelectrolyte. Parameters such as charge density, hydrophobicity, and cross-link density of the QP2VP gel layers as well as the charge and size of the proteins play significant roles on the photonic responses of the BCP gels. Differences in the size and pH-dependent charge of proteins provide a basis for fingerprinting proteins based on their temporal and equilibrium photonic response. The results demonstrate that the BCP gels and their photonic effect provide a robust and visually interpretable method to differentiate different proteins. PMID:25393374

  18. Oriented Protein Nanoarrays on Block Copolymer Template.

    PubMed

    Shen, Lei; Zhu, Jintao

    2016-03-01

    Here, a simple yet robust method is developed to fabricate oriented protein nanoarrays by employing a block copolymer (BCP) template, which presents nano-scaled spot areas at high-density arrays. Unlike the conventional BCP nanolithography, the BCP platform described here resists nonspecific protein adsorption and prevents the denaturation of immobilized proteins in aqueous solution. The orderly arranged array areas are functionalized by linking chemistry which allows for the precise control of protein orientation. This approach allows us to generate potentially oriented protein nanoarrays at high-density array spots, which is useful for miniaturized nanoarrays within high-throughput proteomic applications. PMID:26785818

  19. PIC: Protein Interactions Calculator.

    PubMed

    Tina, K G; Bhadra, R; Srinivasan, N

    2007-07-01

    Interactions within a protein structure and interactions between proteins in an assembly are essential considerations in understanding molecular basis of stability and functions of proteins and their complexes. There are several weak and strong interactions that render stability to a protein structure or an assembly. Protein Interactions Calculator (PIC) is a server which, given the coordinate set of 3D structure of a protein or an assembly, computes various interactions such as disulphide bonds, interactions between hydrophobic residues, ionic interactions, hydrogen bonds, aromatic-aromatic interactions, aromatic-sulphur interactions and cation-pi interactions within a protein or between proteins in a complex. Interactions are calculated on the basis of standard, published criteria. The identified interactions between residues can be visualized using a RasMol and Jmol interface. The advantage with PIC server is the easy availability of inter-residue interaction calculations in a single site. It also determines the accessible surface area and residue-depth, which is the distance of a residue from the surface of the protein. User can also recognize specific kind of interactions, such as apolar-apolar residue interactions or ionic interactions, that are formed between buried or exposed residues or near the surface or deep inside. PMID:17584791

  20. Nanopatterning of recombinant proteins and viruses using block copolymer templates

    NASA Astrophysics Data System (ADS)

    Cresce, Arthur Von Wald

    The study of interfaces is important in understanding biological interactions, including cellular signaling and virus infection. This thesis is an original effort to examine the interaction between a block copolymer and both a protein and a virus. Block copolymers intrinsically form nanometer-scale structures over large areas without expensive processing, making them ideal for the synthesis of the nanopatterned surfaces used in this study. The geometry of these nanostructures can be easily tuned for different applications by altering the block ratio and composition of the block copolymer. Block copolymers can be used for controlled uptake of metal ions, where one block selectively binds metal ions while the other does not. 5-norbornene-2,3-dicarboxylic acid is synthesized through ring-opening metathesis polymerization. It formed spherical domains with spheres approximately 30 nm in diameter, and these spheres were then subsequently loaded with nickel ion. This norbornene block copolymer was tested for its ability to bind histidine-tagged green fluorescent protein (hisGFP), and it was found that the nickel-loaded copolymer was able to retain hisGFP through chelation between the histidine tag and the metal-containing portions of the copolymer surface. Poly(styrene-b-4-vinylpyridine) (PS/P4VP) was also loaded with nickel, forming a cylindrical microstructure. The binding of Tobacco mosaic virus and Tobacco necrosis virus was tested through Tween 20 detergent washes. Electron microscopy allowed for observation of both block copolymer nanostructures and virus particles. Results showed that Tween washes could not remove bound Tobacco mosaic virus from the surface of PS/P4VP. It was also seen that the size and tunability of block copolymers and the lack of processing needed to attain different structures makes them attractive for many applications, including microfluidic devices, surfaces to influence cellular signaling and growth, and as a nanopatterning surface for

  1. Bacteriophage protein-protein interactions.

    PubMed

    Häuser, Roman; Blasche, Sonja; Dokland, Terje; Haggård-Ljungquist, Elisabeth; von Brunn, Albrecht; Salas, Margarita; Casjens, Sherwood; Molineux, Ian; Uetz, Peter

    2012-01-01

    Bacteriophages T7, λ, P22, and P2/P4 (from Escherichia coli), as well as ϕ29 (from Bacillus subtilis), are among the best-studied bacterial viruses. This chapter summarizes published protein interaction data of intraviral protein interactions, as well as known phage-host protein interactions of these phages retrieved from the literature. We also review the published results of comprehensive protein interaction analyses of Pneumococcus phages Dp-1 and Cp-1, as well as coliphages λ and T7. For example, the ≈55 proteins encoded by the T7 genome are connected by ≈43 interactions with another ≈15 between the phage and its host. The chapter compiles published interactions for the well-studied phages λ (33 intra-phage/22 phage-host), P22 (38/9), P2/P4 (14/3), and ϕ29 (20/2). We discuss whether different interaction patterns reflect different phage lifestyles or whether they may be artifacts of sampling. Phages that infect the same host can interact with different host target proteins, as exemplified by E. coli phage λ and T7. Despite decades of intensive investigation, only a fraction of these phage interactomes are known. Technical limitations and a lack of depth in many studies explain the gaps in our knowledge. Strategies to complete current interactome maps are described. Although limited space precludes detailed overviews of phage molecular biology, this compilation will allow future studies to put interaction data into the context of phage biology. PMID:22748812

  2. Thermodynamic Interactions in Organometallic Block Copolymers

    SciTech Connect

    Pople, John A

    2002-08-06

    The thermodynamic interactions in anionically synthesized poly(styrene-block-ferrocenyldimethylsilane) (SF) copolymers were examined using birefringence, small angle X-ray and neutron scattering (SAXS and SANS). We show that birefringence detection of the order-disorder transition is possible in colored samples provided the wavelength of the incident beam is in the tail of the absorption spectrum. The location of the order-disorder transition was confirmed by SAXS. The temperature-dependence of the Flory-Huggins parameter, {chi}, of SF copolymers, determined by SAXS, is similar in magnitude to that between polystyrene and polyisoprene chains. We find that {chi} is independent of block copolymer composition (within experimental error). We also demonstrate that the neutron scattering length densities of styrene and ferrocenyldimethylsilane moieties are identical due to a surprising cancellation of factors related to density and atomic composition.

  3. The nuclear localization of the Arabidopsis transcription factor TIP is blocked by its interaction with the coat protein of Turnip crinkle virus

    SciTech Connect

    Ren Tao; Qu Feng; Morris, T. Jack . E-mail: jmorris@unlnotes.unl.edu

    2005-01-20

    We have previously reported that TIP, an Arabidopsis protein, interacts with the coat protein (CP) of Turnip crinkle virus (TCV) in yeast cells and that this interaction correlated with the resistance response in the TCV-resistant Arabidopsis ecotype Dijon-17. TIP was also able to activate transcription of reporter genes in yeast cells, suggesting that it is likely a transcription factor. We have now verified the physical interaction between TIP and TCV CP in vitro and showed that CP mutants unable to interact with TIP in yeast cells bind TIP with much lower affinity in vitro. Secondly, we have performed gel shift experiments demonstrating that TIP does not bind to DNA in a sequence-specific manner. The subcellular localization of TIP was also investigated by transiently expressing green fluorescence protein (GFP)-tagged TIP in Nicotiana benthamiana plant cells, which showed that GFP-tagged TIP localizes primarily to nuclei. Significantly, co-expression of TCVCP and GFP-TIP prevented the nuclear localization of TIP. Together, these results suggest that TIP might be a transcription factor involved in regulating the defense response of Arabidopsis to TCV and that its normal role is compromised by interaction with the invading viral CP.

  4. Drugging Membrane Protein Interactions.

    PubMed

    Yin, Hang; Flynn, Aaron D

    2016-07-11

    The majority of therapeutics target membrane proteins, accessible on the surface of cells, to alter cellular signaling. Cells use membrane proteins to transduce signals into cells, transport ions and molecules, bind cells to a surface or substrate, and catalyze reactions. Newly devised technologies allow us to drug conventionally "undruggable" regions of membrane proteins, enabling modulation of protein-protein, protein-lipid, and protein-nucleic acid interactions. In this review, we survey the state of the art of high-throughput screening and rational design in drug discovery, and we evaluate the advances in biological understanding and technological capacity that will drive pharmacotherapy forward against unorthodox membrane protein targets. PMID:26863923

  5. Visible Geology - Interactive online geologic block modelling

    NASA Astrophysics Data System (ADS)

    Cockett, R.

    2012-12-01

    Geology is a highly visual science, and many disciplines require spatial awareness and manipulation. For example, interpreting cross-sections, geologic maps, or plotting data on a stereonet all require various levels of spatial abilities. These skills are often not focused on in undergraduate geoscience curricula and many students struggle with spatial relations, manipulations, and penetrative abilities (e.g. Titus & Horsman, 2009). A newly developed program, Visible Geology, allows for students to be introduced to many geologic concepts and spatial skills in a virtual environment. Visible Geology is a web-based, three-dimensional environment where students can create and interrogate their own geologic block models. The program begins with a blank model, users then add geologic beds (with custom thickness and color) and can add geologic deformation events like tilting, folding, and faulting. Additionally, simple intrusive dikes can be modelled, as well as unconformities. Students can also explore the interaction of geology with topography by drawing elevation contours to produce their own topographic models. Students can not only spatially manipulate their model, but can create cross-sections and boreholes to practice their visual penetrative abilities. Visible Geology is easy to access and use, with no downloads required, so it can be incorporated into current, paper-based, lab activities. Sample learning activities are being developed that target introductory and structural geology curricula with learning objectives such as relative geologic history, fault characterization, apparent dip and thickness, interference folding, and stereonet interpretation. Visible Geology provides a richly interactive, and immersive environment for students to explore geologic concepts and practice their spatial skills.; Screenshot of Visible Geology showing folding and faulting interactions on a ridge topography.

  6. Cellulose synthase interacting protein

    PubMed Central

    Somerville, Chris

    2010-01-01

    Cellulose is the most abundant biopolymer on earth. The great abundance of cellulose places it at the forefront as a primary source of biomass for renewable biofuels. However, the knowledge of how plant cells make cellulose remains very rudimentary. Cellulose microfibrils are synthesized at the plasma membrane by hexameric protein complexes, also known as cellulose synthase complexes. The only known components of cellulose synthase complexes are cellulose synthase (CESA) proteins until the recent identification of a novel component. CSI1, which encodes CESA interacting protein 1 (CSI1) in Arabidopsis. CSI1, as the first non-CESA proteins associated with cellulose synthase complexes, opens up many opportunities. PMID:21150290

  7. Interactive protein manipulation

    SciTech Connect

    SNCrivelli@lbl.gov

    2003-07-01

    We describe an interactive visualization and modeling program for the creation of protein structures ''from scratch''. The input to our program is an amino acid sequence -decoded from a gene- and a sequence of predicted secondary structure types for each amino acid-provided by external structure prediction programs. Our program can be used in the set-up phase of a protein structure prediction process; the structures created with it serve as input for a subsequent global internal energy minimization, or another method of protein structure prediction. Our program supports basic visualization methods for protein structures, interactive manipulation based on inverse kinematics, and visualization guides to aid a user in creating ''good'' initial structures.

  8. A Nonlinear Multi-Scale Interaction Model for Atmospheric Blocking: The Eddy-Blocking Matching Mechanism

    NASA Astrophysics Data System (ADS)

    Luo, Dehai; Cha, Jing; Zhong, Linhao; Dai, Aiguo

    2014-05-01

    In this paper, a nonlinear multi-scale interaction (NMI) model is used to propose an eddy-blocking matching (EBM) mechanism to account for how synoptic eddies reinforce or suppress a blocking flow. It is shown that the spatial structure of the eddy vorticity forcing (EVF) arising from upstream synoptic eddies determines whether an incipient block can grow into a meandering blocking flow through its interaction with the transient synoptic eddies from the west. Under certain conditions, the EVF exhibits a low-frequency oscillation on timescales of 2-3 weeks. During the EVF phase with a negative-over- positive dipole structure, a blocking event can be resonantly excited through the transport of eddy energy into the incipient block by the EVF. As the EVF changes into an opposite phase, the blocking decays. The NMI model produces life cycles of blocking events that resemble observations. Moreover, it is shown that the eddy north-south straining is a response of the eddies to a dipole- or Ω-type block. In our model, as in observations, two synoptic anticyclones (cyclones) can attract and merge with one another as the blocking intensifies, but only when the feedback of the blocking on the eddies is included. Thus, we attribute the eddy straining and associated vortex interaction to the feedback of the intensified blocking on synoptic eddies. The results illustrate the concomitant nature of the eddy deformation, whose role as a PV source for the blocking flow becomes important only during the mature stage of a block. Our EBM mechanism suggests that an incipient block flow is amplified (or suppressed) under certain conditions by the EVF coming from the upstream of the blocking region.

  9. Drugging Membrane Protein Interactions

    PubMed Central

    Yin, Hang; Flynn, Aaron D.

    2016-01-01

    The majority of therapeutics target membrane proteins, accessible on the surface of cells, to alter cellular signaling. Cells use membrane proteins to transduce signals into cells, transport ions and molecules, bind the cell to a surface or substrate, and catalyze reactions. Newly devised technologies allow us to drug conventionally “undruggable” regions of membrane proteins, enabling modulation of protein–protein, protein–lipid, and protein–nucleic acid interactions. In this review, we survey the state of the art in high-throughput screening and rational design in drug discovery, and we evaluate the advances in biological understanding and technological capacity that will drive pharmacotherapy forward against unorthodox membrane protein targets. PMID:26863923

  10. Cordycepin Suppresses Thymic Stromal Lymphopoietin Expression via Blocking Caspase-1 and Receptor-Interacting Protein 2 Signaling Pathways in Mast Cells.

    PubMed

    Yoou, Myoung-schook; Jin, Mu Hyun; Lee, So Young; Lee, Sang Hwa; Kim, Byunghyun; Roh, Seok Seon; Choi, In Hwa; Lee, Myeong Soo; Kim, Hyung-Min; Jeong, Hyun-Ja

    2016-01-01

    Cordycepin (3'-deoxyadenosine) is one of the active components isolated from Cordyceps militaris, and has been shown to have anti-inflammatory, anti-oxidant, anti-aging, and anti-cancer effects. Mast cell-derived thymic stromal lymphopoietin (TSLP) plays an important role in the pathogenesis of allergic inflammatory reactions. Here, we investigated the regulatory effect and mechanisms of cordycepin on the expression of TSLP in the human mast cell line, HMC-1 cells, and in the human keratinocyte cell line, HaCaT cells. Cordycepin significantly decreased the production and mRNA expression of TSLP through the inhibition of caspase-1 and nuclear factor-κB activation. Cordycepin also significantly reduced the phosphorylation of receptor-interacting protein 2 and inhibitory kappa B (IκB) kinase β. Cordycepin significantly decreased the production and mRNA expression of interleukin (IL)-8, IL-1β, IL-6, and tumor necrosis factor-α in activated HMC-1 cells. Moreover, cordycepin significantly decreased the levels of TSLP in activated HaCaT cells. Our studies suggest that cordycepin can be applied to the treatment of allergic inflammatory diseases exacerbated by TSLP. PMID:26725432

  11. Cotton and Protein Interactions

    SciTech Connect

    Goheen, Steven C.; Edwards, J. V.; Rayburn, Alfred R.; Gaither, Kari A.; Castro, Nathan J.

    2006-06-30

    The adsorbent properties of important wound fluid proteins and cotton cellulose are reviewed. This review focuses on the adsorption of albumin to cotton-based wound dressings and some chemically modified derivatives targeted for chronic wounds. Adsorption of elastase in the presence of albumin was examined as a model to understand the interactive properties of these wound fluid components with cotton fibers. In the chronic non-healing wound, elastase appears to be over-expressed, and it digests tissue and growth factors, interfering with the normal healing process. Albumin is the most prevalent protein in wound fluid, and in highly to moderately exudative wounds, it may bind significantly to the fibers of wound dressings. Thus, the relative binding properties of both elastase and albumin to wound dressing fibers are of interest in the design of more effective wound dressings. The present work examines the binding of albumin to two different derivatives of cotton, and quantifies the elastase binding to the same derivatives following exposure of albumin to the fiber surface. An HPLC adsorption technique was employed coupled with a colorimetric enzyme assay to quantify the relative binding properties of albumin and elastase to cotton. The results of wound protein binding are discussed in relation to the porosity and surface chemistry interactions of cotton and wound proteins. Studies are directed to understanding the implications of protein adsorption phenomena in terms of fiber-protein models that have implications for rationally designing dressings for chronic wounds.

  12. Length, protein protein interactions, and complexity

    NASA Astrophysics Data System (ADS)

    Tan, Taison; Frenkel, Daan; Gupta, Vishal; Deem, Michael W.

    2005-05-01

    The evolutionary reason for the increase in gene length from archaea to prokaryotes to eukaryotes observed in large-scale genome sequencing efforts has been unclear. We propose here that the increasing complexity of protein-protein interactions has driven the selection of longer proteins, as they are more able to distinguish among a larger number of distinct interactions due to their greater average surface area. Annotated protein sequences available from the SWISS-PROT database were analyzed for 13 eukaryotes, eight bacteria, and two archaea species. The number of subcellular locations to which each protein is associated is used as a measure of the number of interactions to which a protein participates. Two databases of yeast protein-protein interactions were used as another measure of the number of interactions to which each S. cerevisiae protein participates. Protein length is shown to correlate with both number of subcellular locations to which a protein is associated and number of interactions as measured by yeast two-hybrid experiments. Protein length is also shown to correlate with the probability that the protein is encoded by an essential gene. Interestingly, average protein length and number of subcellular locations are not significantly different between all human proteins and protein targets of known, marketed drugs. Increased protein length appears to be a significant mechanism by which the increasing complexity of protein-protein interaction networks is accommodated within the natural evolution of species. Consideration of protein length may be a valuable tool in drug design, one that predicts different strategies for inhibiting interactions in aberrant and normal pathways.

  13. Carotenoid-Protein Interactions

    NASA Astrophysics Data System (ADS)

    Britton, George; Helliwell, John R.

    Chapter 5 shows that the aggregation of carotenoid molecules can have a profound effect on their properties and hence their functioning in biological systems. Another important influence is the interaction between carotenoids and other molecules. The way that interactions of carotenoids with lipid bilayers influence the structure and properties of membranes and membrane-asociated processes is discussed in Chapter 10, and the aggregation of carotenoid molecules within the bilayers in Chapter 5. Of particular importance, though, are interactions between carotenoids and proteins. These allow the hydrophobic carotenoids to be transported, to exist, and to function in an aqueous environment. In some cases they may modify strongly the light-absorption properties and hence the colour and photochemistry of the carotenoids.

  14. Quantification of Plasmodium falciparum malaria from complex infections in the Peruvian Amazon using quantitative PCR of the merozoite surface protein 1, block 2 (PfMSP1-B2): in vitro dynamics reveal density-dependent interactions.

    PubMed

    Zervos, Thomas M; Hernandez, Jean N; Sutton, Patrick L; Branch, Oralee H

    2012-05-01

    The majority of Plasmodium falciparum field isolates are defined as complex infections because they contain multiple genetically distinct clones. Studying interactions between clones in complex infections in vivo and in vitro could elucidate important phenomena in malaria infection, transmission and treatment. Using quantitative PCR (qPCR) of the P. falciparum merozoite surface protein 1, block 2 (PfMSP1-B2), we provide a sensitive and efficient genotyping method. This is important for epidemiological studies because it makes it possible to study genotype-specific growth dynamics. We compared 3 PfMSP1-B2 genotyping methods by analysing 79 field isolates from the Peruvian Amazon. In vivo observations from other studies using these techniques led to the hypothesis that clones within complex infections interact. By co-culturing clones with different PfMSP1-B2 genotypes, and measuring parasitaemia using qPCR, we found that suppression of clonal expansion was a factor of the collective density of all clones present in a culture. PfMSP1-B2 qPCR enabled us to find in vitro evidence for parasite-parasite interactions and could facilitate future investigations of growth trends in naturally occurring complex infections. PMID:22339946

  15. Designing a Nanotube Using Naturally Occurring Protein Building Blocks

    PubMed Central

    Tsai, Chung-Jung; Zheng, Jie; Nussinov, Ruth

    2006-01-01

    Here our goal is to carry out nanotube design using naturally occurring protein building blocks. Inspection of the protein structural database reveals the richness of the conformations of proteins, their parts, and their chemistry. Given target functional protein nanotube geometry, our strategy involves scanning a library of candidate building blocks, combinatorially assembling them into the shape and testing its stability. Since self-assembly takes place on time scales not affordable for computations, here we propose a strategy for the very first step in protein nanotube design: we map the candidate building blocks onto a planar sheet and wrap the sheet around a cylinder with the target dimensions. We provide examples of three nanotubes, two peptide and one protein, in atomistic model detail for which there are experimental data. The nanotube models can be used to verify a nanostructure observed by low-resolution experiments, and to study the mechanism of tube formation. PMID:16683021

  16. Nanobiotechnology: protein-nanomaterial interactions.

    PubMed

    Kane, Ravi S; Stroock, Abraham D

    2007-01-01

    We review recent research that involves the interaction of nanomaterials such as nanoparticles, nanowires, and carbon nanotubes with proteins. We begin with a focus on the fundamentals of the structure and function of proteins on nanomaterials. We then review work in three areas that exploit these interactions: (1) sensing, (2) assembly of nanomaterials by proteins and proteins by nanomaterials, and (3) interactions with cells. We conclude with the identification of challenges and opportunities for the future. PMID:17335286

  17. PREFACE: Protein protein interactions: principles and predictions

    NASA Astrophysics Data System (ADS)

    Nussinov, Ruth; Tsai, Chung-Jung

    2005-06-01

    Proteins are the `workhorses' of the cell. Their roles span functions as diverse as being molecular machines and signalling. They carry out catalytic reactions, transport, form viral capsids, traverse membranes and form regulated channels, transmit information from DNA to RNA, making possible the synthesis of new proteins, and they are responsible for the degradation of unnecessary proteins and nucleic acids. They are the vehicles of the immune response and are responsible for viral entry into the cell. Given their importance, considerable effort has been centered on the prediction of protein function. A prime way to do this is through identification of binding partners. If the function of at least one of the components with which the protein interacts is known, that should let us assign its function(s) and the pathway(s) in which it plays a role. This holds since the vast majority of their chores in the living cell involve protein-protein interactions. Hence, through the intricate network of these interactions we can map cellular pathways, their interconnectivities and their dynamic regulation. Their identification is at the heart of functional genomics; their prediction is crucial for drug discovery. Knowledge of the pathway, its topology, length, and dynamics may provide useful information for forecasting side effects. The goal of predicting protein-protein interactions is daunting. Some associations are obligatory, others are continuously forming and dissociating. In principle, from the physical standpoint, any two proteins can interact, but under what conditions and at which strength? The principles of protein-protein interactions are general: the non-covalent interactions of two proteins are largely the outcome of the hydrophobic effect, which drives the interactions. In addition, hydrogen bonds and electrostatic interactions play important roles. Thus, many of the interactions observed in vitro are the outcome of experimental overexpression. Protein disorder

  18. Imaging Protein-protein Interactions in vivo

    PubMed Central

    Seegar, Tom; Barton, William

    2010-01-01

    Protein-protein interactions are a hallmark of all essential cellular processes. However, many of these interactions are transient, or energetically weak, preventing their identification and analysis through traditional biochemical methods such as co-immunoprecipitation. In this regard, the genetically encodable fluorescent proteins (GFP, RFP, etc.) and their associated overlapping fluorescence spectrum have revolutionized our ability to monitor weak interactions in vivo using Förster resonance energy transfer (FRET)1-3. Here, we detail our use of a FRET-based proximity assay for monitoring receptor-receptor interactions on the endothelial cell surface. PMID:20972411

  19. Blocking Abeta42 accumulation delays the onset and progression of tau pathology via the C terminus of heat shock protein70-interacting protein: a mechanistic link between Abeta and tau pathology.

    PubMed

    Oddo, Salvatore; Caccamo, Antonella; Tseng, Bert; Cheng, David; Vasilevko, Vitaly; Cribbs, David H; LaFerla, Frank M

    2008-11-19

    The molecular alterations that induce tau pathology in Alzheimer disease (AD) are not known, particularly whether this is an amyloid-beta (Abeta)-dependent or -independent event. We addressed this issue in the 3xTg-AD mice using both genetic and immunological approaches and show that a selective decrease in Abeta(42) markedly delays the progression of tau pathology. The mechanism underlying this effect involves alterations in the levels of C terminus of heat shock protein70-interacting protein (CHIP) as we show that Abeta accumulation decreases CHIP expression and increases tau levels. We show that the Abeta-induced effects on tau were rescued by restoring CHIP levels. Our findings have profound clinical implications as they indicate that preventing Abeta accumulation will significantly alter AD progression. These data highlight the critical role CHIP plays as a link between Abeta and tau and identify CHIP as a new potential target not only for AD but for other neurodegenerative disorders characterized by tau accumulation. PMID:19020010

  20. PINT: Protein-protein Interactions Thermodynamic Database.

    PubMed

    Kumar, M D Shaji; Gromiha, M Michael

    2006-01-01

    The first release of Protein-protein Interactions Thermodynamic Database (PINT) contains >1500 data of several thermodynamic parameters along with sequence and structural information, experimental conditions and literature information. Each entry contains numerical data for the free energy change, dissociation constant, association constant, enthalpy change, heat capacity change and so on of the interacting proteins upon binding, which are important for understanding the mechanism of protein-protein interactions. PINT also includes the name and source of the proteins involved in binding, their Protein Information Resource, SWISS-PROT and Protein Data Bank (PDB) codes, secondary structure and solvent accessibility of residues at mutant positions, measuring methods, experimental conditions, such as buffers, ions and additives, and literature information. A WWW interface facilitates users to search data based on various conditions, feasibility to select the terms for output and different sorting options. Further, PINT is cross-linked with other related databases, PIR, SWISS-PROT, PDB and NCBI PUBMED literature database. The database is freely available at http://www.bioinfodatabase.com/pint/index.html. PMID:16381844

  1. Biochemical Approaches for Discovering Protein-Protein Interactions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Protein-protein interactions or protein complexes are indigenous to nearly all cellular processes, ranging from metabolism to structure. Elucidating both individual protein associations and complex protein interaction networks, while challenging, is an essential goal of functional genomics. For ex...

  2. Interactive-predictive detection of handwritten text blocks

    NASA Astrophysics Data System (ADS)

    Ramos Terrades, O.; Serrano, N.; Gordó, A.; Valveny, E.; Juan, A.

    2010-01-01

    A method for text block detection is introduced for old handwritten documents. The proposed method takes advantage of sequential book structure, taking into account layout information from pages previously transcribed. This glance at the past is used to predict the position of text blocks in the current page with the help of conventional layout analysis methods. The method is integrated into the GIDOC prototype: a first attempt to provide integrated support for interactive-predictive page layout analysis, text line detection and handwritten text transcription. Results are given in a transcription task on a 764-page Spanish manuscript from 1891.

  3. Domains mediate protein-protein interactions and nucleate protein assemblies.

    PubMed

    Costa, S; Cesareni, G

    2008-01-01

    Cell physiology is governed by an intricate mesh of physical and functional links among proteins, nucleic acids and other metabolites. The recent information flood coming from large-scale genomic and proteomic approaches allows us to foresee the possibility of compiling an exhaustive list of the molecules present within a cell, enriched with quantitative information on concentration and cellular localization. Moreover, several high-throughput experimental and computational techniques have been devised to map all the protein interactions occurring in a living cell. So far, such maps have been drawn as graphs where nodes represent proteins and edges represent interactions. However, this representation does not take into account the intrinsically modular nature of proteins and thus fails in providing an effective description of the determinants of binding. Since proteins are composed of domains that often confer on proteins their binding capabilities, a more informative description of the interaction network would detail, for each pair of interacting proteins in the network, which domains mediate the binding. Understanding how protein domains combine to mediate protein interactions would allow one to add important features to the protein interaction network, making it possible to discriminate between simultaneously occurring and mutually exclusive interactions. This objective can be achieved by experimentally characterizing domain recognition specificity or by analyzing the frequency of co-occurring domains in proteins that do interact. Such approaches allow gaining insights on the topology of complexes with unknown three-dimensional structure, thus opening the prospect of adopting a more rational strategy in developing drugs designed to selectively target specific protein interactions. PMID:18491061

  4. Bacteriophage Protein–Protein Interactions

    PubMed Central

    Häuser, Roman; Blasche, Sonja; Dokland, Terje; Haggård-Ljungquist, Elisabeth; von Brunn, Albrecht; Salas, Margarita; Casjens, Sherwood; Molineux, Ian

    2012-01-01

    Bacteriophages T7, λ, P22, and P2/P4 (from Escherichia coli), as well as ϕ29 (from Bacillus subtilis), are among the best-studied bacterial viruses. This chapter summarizes published protein interaction data of intraviral protein interactions, as well as known phage–host protein interactions of these phages retrieved from the literature. We also review the published results of comprehensive protein interaction analyses of Pneumococcus phages Dp-1 and Cp-1, as well as coliphages λ and T7. For example, the ≈55 proteins encoded by the T7 genome are connected by ≈43 interactions with another ≈15 between the phage and its host. The chapter compiles published interactions for the well-studied phages λ (33 intra-phage/22 phage-host), P22 (38/9), P2/P4 (14/3), and ϕ29 (20/2). We discuss whether different interaction patterns reflect different phage lifestyles or whether they may be artifacts of sampling. Phages that infect the same host can interact with different host target proteins, as exemplified by E. coli phage λ and T7. Despite decades of intensive investigation, only a fraction of these phage interactomes are known. Technical limitations and a lack of depth in many studies explain the gaps in our knowledge. Strategies to complete current interactome maps are described. Although limited space precludes detailed overviews of phage molecular biology, this compilation will allow future studies to put interaction data into the context of phage biology. PMID:22748812

  5. Protein-protein interactions as drug targets.

    PubMed

    Skwarczynska, Malgorzata; Ottmann, Christian

    2015-10-01

    Modulation of protein-protein interactions (PPIs) is becoming increasingly important in drug discovery and chemical biology. While a few years ago this 'target class' was deemed to be largely undruggable an impressing number of publications and success stories now show that targeting PPIs with small, drug-like molecules indeed is a feasible approach. Here, we summarize the current state of small-molecule inhibition and stabilization of PPIs and review the active molecules from a structural and medicinal chemistry angle, especially focusing on the key examples of iNOS, LFA-1 and 14-3-3. PMID:26510391

  6. Split-Protein Systems: Beyond Binary Protein-Protein Interactions

    PubMed Central

    Shekhawat, Sujan S.; Ghosh, Indraneel

    2011-01-01

    It has been estimated that 650,000 protein-protein interactions exist in the human interactome [1], a subset of all possible macromolecular partnerships that dictate life. Thus there is a continued need for the development of sensitive and user-friendly methods for cataloguing biomacromolecules in complex environments and for detecting their interactions, modifications, and cellular location. Such methods also allow for establishing differences in the interactome between a normal and diseased cellular state and for quantifying the outcome of therapeutic intervention. A promising approach for deconvoluting the role of macromolecular partnerships is split-protein reassembly, also called protein fragment complementation. This approach relies on the appropriate fragmentation of protein reporters, such as the green fluorescent protein or firefly luciferase, which when attached to possible interacting partners can reassemble and regain function, thereby confirming the partnership. Split-protein methods have been effectively utilized for detecting protein-protein interactions in cell-free systems, E. coli, yeast, mammalian cells, plants, and live animals. Herein, we present recent advances in engineering split-protein systems that allow for the rapid detection of ternary protein complexes, small molecule inhibitors, as well as a variety of macromolecules including nucleic acids, poly(ADP) ribose, and iron sulfur clusters. We also present advances that combine split-protein systems with chemical inducers of dimerization strategies that allow for regulating the activity of orthogonal split-proteases as well as aid in identifying enzyme inhibitors. Finally, we discuss autoinhibition strategies leading to turn-on sensors as well as future directions in split-protein methodology including possible therapeutic approaches. PMID:22070901

  7. Split-protein systems: beyond binary protein-protein interactions.

    PubMed

    Shekhawat, Sujan S; Ghosh, Indraneel

    2011-12-01

    It has been estimated that 650,000 protein-protein interactions exist in the human interactome (Stumpf et al., 2008), a subset of all possible macromolecular partnerships that dictate life. Thus there is a continued need for the development of sensitive and user-friendly methods for cataloguing biomacromolecules in complex environments and for detecting their interactions, modifications, and cellular location. Such methods also allow for establishing differences in the interactome between a normal and diseased cellular state and for quantifying the outcome of therapeutic intervention. A promising approach for deconvoluting the role of macromolecular partnerships is split-protein reassembly, also called protein fragment complementation. This approach relies on the appropriate fragmentation of protein reporters, such as the green fluorescent protein or firefly luciferase, which when attached to possible interacting partners can reassemble and regain function, thereby confirming the partnership. Split-protein methods have been effectively utilized for detecting protein-protein interactions in cell-free systems, Escherichia coli, yeast, mammalian cells, plants, and live animals. Herein, we present recent advances in engineering split-protein systems that allow for the rapid detection of ternary protein complexes, small molecule inhibitors, as well as a variety of macromolecules including nucleic acids, poly(ADP) ribose, and iron sulfur clusters. We also present advances that combine split-protein systems with chemical inducers of dimerization strategies that allow for regulating the activity of orthogonal split-proteases as well as aid in identifying enzyme inhibitors. Finally, we discuss autoinhibition strategies leading to turn-on sensors as well as future directions in split-protein methodology including possible therapeutic approaches. PMID:22070901

  8. Energy design for protein-protein interactions

    PubMed Central

    Ravikant, D. V. S.; Elber, Ron

    2011-01-01

    Proteins bind to other proteins efficiently and specifically to carry on many cell functions such as signaling, activation, transport, enzymatic reactions, and more. To determine the geometry and strength of binding of a protein pair, an energy function is required. An algorithm to design an optimal energy function, based on empirical data of protein complexes, is proposed and applied. Emphasis is made on negative design in which incorrect geometries are presented to the algorithm that learns to avoid them. For the docking problem the search for plausible geometries can be performed exhaustively. The possible geometries of the complex are generated on a grid with the help of a fast Fourier transform algorithm. A novel formulation of negative design makes it possible to investigate iteratively hundreds of millions of negative examples while monotonically improving the quality of the potential. Experimental structures for 640 protein complexes are used to generate positive and negative examples for learning parameters. The algorithm designed in this work finds the correct binding structure as the lowest energy minimum in 318 cases of the 640 examples. Further benchmarks on independent sets confirm the significant capacity of the scoring function to recognize correct modes of interactions. PMID:21842951

  9. Energy design for protein-protein interactions

    NASA Astrophysics Data System (ADS)

    Ravikant, D. V. S.; Elber, Ron

    2011-08-01

    Proteins bind to other proteins efficiently and specifically to carry on many cell functions such as signaling, activation, transport, enzymatic reactions, and more. To determine the geometry and strength of binding of a protein pair, an energy function is required. An algorithm to design an optimal energy function, based on empirical data of protein complexes, is proposed and applied. Emphasis is made on negative design in which incorrect geometries are presented to the algorithm that learns to avoid them. For the docking problem the search for plausible geometries can be performed exhaustively. The possible geometries of the complex are generated on a grid with the help of a fast Fourier transform algorithm. A novel formulation of negative design makes it possible to investigate iteratively hundreds of millions of negative examples while monotonically improving the quality of the potential. Experimental structures for 640 protein complexes are used to generate positive and negative examples for learning parameters. The algorithm designed in this work finds the correct binding structure as the lowest energy minimum in 318 cases of the 640 examples. Further benchmarks on independent sets confirm the significant capacity of the scoring function to recognize correct modes of interactions.

  10. The nucleocapsid protein of measles virus blocks host interferon response

    SciTech Connect

    Takayama, Ikuyo; Sato, Hiroki; Watanabe, Akira; Omi-Furutani, Mio; Sugai, Akihiro; Kanki, Keita; Yoneda, Misako; Kai, Chieko

    2012-03-01

    Measles virus (MV) belongs to the genus Morbillivirus of the family Paramyxoviridae. A number of paramyxoviruses inhibit host interferon (IFN) signaling pathways in host immune systems by various mechanisms. Inhibition mechanisms have been described for many paramyxoviruses. Although there are inconsistencies among previous reports concerning MV, it appears that P/V/C proteins interfere with the pathways. In this study, we confirmed the effects of MV P gene products of a wild MV strain on IFN pathways and examined that of other viral proteins on it. Interestingly, we found that N protein acts as an IFN-{alpha}/{beta} and {gamma}-antagonist as strong as P gene products. We further investigated the mechanisms of MV-N inhibition, and revealed that MV-N blocks the nuclear import of activated STAT without preventing STAT and Jak activation or STAT degradation, and that the nuclear translocation of MV-N is important for the inhibition. The inhibitory effect of the N protein was observed as a common feature of other morbilliviruses. The results presented in this report suggest that N protein of MV as well as P/V/C proteins is involved in the inhibition of host IFN signaling pathways.

  11. Probing High-density Functional Protein Microarrays to Detect Protein-protein Interactions.

    PubMed

    Fasolo, Joseph; Im, Hogune; Snyder, Michael P

    2015-01-01

    High-density functional protein microarrays containing ~4,200 recombinant yeast proteins are examined for kinase protein-protein interactions using an affinity purified yeast kinase fusion protein containing a V5-epitope tag for read-out. Purified kinase is obtained through culture of a yeast strain optimized for high copy protein production harboring a plasmid containing a Kinase-V5 fusion construct under a GAL inducible promoter. The yeast is grown in restrictive media with a neutral carbon source for 6 hr followed by induction with 2% galactose. Next, the culture is harvested and kinase is purified using standard affinity chromatographic techniques to obtain a highly purified protein kinase for use in the assay. The purified kinase is diluted with kinase buffer to an appropriate range for the assay and the protein microarrays are blocked prior to hybridization with the protein microarray. After the hybridization, the arrays are probed with monoclonal V5 antibody to identify proteins bound by the kinase-V5 protein. Finally, the arrays are scanned using a standard microarray scanner, and data is extracted for downstream informatics analysis to determine a high confidence set of protein interactions for downstream validation in vivo. PMID:26274875

  12. Charge Effects on the Self-Assembly of Protein Block Copolymer Nanostructures

    NASA Astrophysics Data System (ADS)

    Olsen, Bradley

    Self-assembly of globular protein-polymer block copolymers into nanostructured phases provides a simple method for structural control in biomaterials. Electrostatics play a major role in the self-assembly of these structures from aqueous solutions. While the specific distribution of charge on the protein plays a relatively minor role in self-assembly, large changes in the total charge have a large impact on the concentration at which the proteins self-assemble. While for near-neutral proteins salt screening promotes disassembly and suggests that electrostatic interactions are attractive, proteins with a highly asymmetric charge have repulsive interactions that suppress self-assembly. Using a zwitterionic block in the bioconjugate was also explored as a means to promote self-assembly; however, zwitterionic fusions self-assemble over a narrower range of composition than fusions of any of the nonionic polymers explored. This suggests that dipolar attractions in charge-asymmetric protein-polymer materials play a significant role in the driving force for self-assembly. However, the sensitivity of zwitterionic materials to salt conditions in the buffer also provides a powerful handle for tuning polymer solubility, enabling salt to be used as a method to induce self-assembly.

  13. Interactions of Pathological Hallmark Proteins

    PubMed Central

    Oláh, Judit; Vincze, Orsolya; Virók, Dezső; Simon, Dóra; Bozsó, Zsolt; Tőkési, Natália; Horváth, István; Hlavanda, Emma; Kovács, János; Magyar, Anna; Szűcs, Mária; Orosz, Ferenc; Penke, Botond; Ovádi, Judit

    2011-01-01

    The disordered tubulin polymerization promoting protein (TPPP/p25) was found to be co-enriched in neuronal and glial inclusions with α-synuclein in Parkinson disease and multiple system atrophy, respectively; however, co-occurrence of α-synuclein with β-amyloid (Aβ) in human brain inclusions has been recently reported, suggesting the existence of mixed type pathologies that could result in obstacles in the correct diagnosis and treatment. Here we identified TPPP/p25 as an interacting partner of the soluble Aβ oligomers as major risk factors for Alzheimer disease using ProtoArray human protein microarray. The interactions of oligomeric Aβ with proteins involved in the etiology of neurological disorders were characterized by ELISA, surface plasmon resonance, pelleting experiments, and tubulin polymerization assay. We showed that the Aβ42 tightly bound to TPPP/p25 (Kd = 85 nm) and caused aberrant protein aggregation by inhibiting the physiologically relevant TPPP/p25-derived microtubule assembly. The pair-wise interactions of Aβ42, α-synuclein, and tubulin were found to be relatively weak; however, these three components formed soluble ternary complex exclusively in the absence of TPPP/p25. The aggregation-facilitating activity of TPPP/p25 and its interaction with Aβ was monitored by electron microscopy with purified proteins by pelleting experiments with cell-free extracts as well as by confocal microscopy with CHO cells expressing TPPP/p25 or amyloid. The finding that the interaction of TPPP/p25 with Aβ can produce pathological-like aggregates is tightly coupled with unusual pathology of the Alzheimer disease revealed previously; that is, partial co-localization of Aβ and TPPP/p25 in the case of diffuse Lewy body disease with Alzheimer disease. PMID:21832049

  14. Control of Protein Affinity of Bioactive Nanocellulose and Passivation Using Engineered Block and Random Copolymers.

    PubMed

    Vuoriluoto, Maija; Orelma, Hannes; Zhu, Baolei; Johansson, Leena-Sisko; Rojas, Orlando J

    2016-03-01

    We passivated TEMPO-oxidized cellulose nanofibrils (TOCNF) toward human immunoglobulin G (hIgG) by modification with block and random copolymers of poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA) and poly(oligo(ethylene glycol) methyl ether methacrylate) (POEGMA). The block copolymers reversibly adsorbed on TOCNF and were highly effective in preventing nonspecific interactions with hIgG, especially if short PDMAEMA blocks were used. In such cases, total protein rejection was achieved. This is in contrast to typical blocking agents, which performed poorly. When an anti-human IgG biointerface was installed onto the passivated TOCNF, remarkably high affinity antibody-antigen interactions were observed (0.90 ± 0.09 mg/m(2)). This is in contrast to the nonpassivated biointerface, which resulted in a significant false response. In addition, regeneration of the biointerface was possible by low pH aqueous wash. Protein A from Staphylococcus aureus was also utilized to successfully increase the sensitivity for human IgG recognition (1.28 ± 0.11 mg/m(2)). Overall, the developed system based on TOCNF modified with multifunctional polymers can be easily deployed as bioactive material with minimum fouling and excellent selectivity. PMID:26844956

  15. Protein- protein interaction detection system using fluorescent protein microdomains

    DOEpatents

    Waldo, Geoffrey S.; Cabantous, Stephanie

    2010-02-23

    The invention provides a protein labeling and interaction detection system based on engineered fragments of fluorescent and chromophoric proteins that require fused interacting polypeptides to drive the association of the fragments, and further are soluble and stable, and do not change the solubility of polypeptides to which they are fused. In one embodiment, a test protein X is fused to a sixteen amino acid fragment of GFP (.beta.-strand 10, amino acids 198-214), engineered to not perturb fusion protein solubility. A second test protein Y is fused to a sixteen amino acid fragment of GFP (.beta.-strand 11, amino acids 215-230), engineered to not perturb fusion protein solubility. When X and Y interact, they bring the GFP strands into proximity, and are detected by complementation with a third GFP fragment consisting of GFP amino acids 1-198 (strands 1-9). When GFP strands 10 and 11 are held together by interaction of protein X and Y, they spontaneous association with GFP strands 1-9, resulting in structural complementation, folding, and concomitant GFP fluorescence.

  16. Direct Probing of Protein-Protein Interactions

    SciTech Connect

    Noy, A; Sulchek, T A; Friddle, R W

    2005-03-10

    This project aimed to establish feasibility of using experimental techniques based on direct measurements of interaction forces on the single molecule scale to characterize equilibrium interaction potentials between individual biological molecules. Such capability will impact several research areas, ranging from rapid interaction screening capabilities to providing verifiable inputs for computational models. It should be one of the enabling technologies for modern proteomics research. This study used a combination of Monte-Carlo simulations, theoretical considerations, and direct experimental measurements to investigate two model systems that represented typical experimental situations: force-induced melting of DNA rigidly attached to the tip, and force-induced unbinding of a protein-antibody pair connected to flexible tethers. Our results establish that for both systems researchers can use force spectroscopy measurements to extract reliable information about equilibrium interaction potentials. However, the approaches necessary to extract these potentials in each case--Jarzynski reconstruction and Dynamic Force Spectroscopy--are very different. We also show how the thermodynamics and kinetics of unbinding process dictates the choice between in each case.

  17. Functions of and interactions between the A and B blocks in adenovirus type 2-specific VARNA1 gene.

    PubMed

    Cannon, R E; Wu, G J; Railey, J F

    1986-03-01

    The internal transcriptional control region (ITCR) of VARNA1 gene consists of a 33-base-pair (bp) interblock sequence and two 12-bp sequence blocks that are highly conserved in most of the genes transcribed by RNA polymerase III. To define the functions of and study the interactions between the two blocks, we have constructed mutants with altered interblock sequence or spacing for transcription. The results of transcription efficiencies and competing strengths indicated that the interblock sequence was dispensable and the A and B blocks were essential for transcription control. One of the major functions of the interblock sequence was to maintain an optimal spacing for an intimate interaction between the two essential blocks. Shortening or elongating the interblock spacing in the mutants beyond this range drastically decreased the transcription efficiencies and competing strengths of these mutated genes. To further study how the interaction between the two blocks leads to initiation, the start sites and sizes of RNA products of the mutants were determined. When the interblock spacing was less than 105 bp, the wild-type start site was dictated by the A block after an interaction with the B block through proteins. However, when the interblock spacing was longer than 105 bp, several new start sites located closer to the B block were preferentially used. This suggests that new start sites may be dictated by the B block when its interaction with the A block is weakened by longer spacing. The mechanisms of interaction between the bipartite domain in this gene leading to initiation are different from those in tRNAs and Alu-family RNA genes. PMID:3456587

  18. Functions of and interactions between the A and B blocks in adenovirus type 2-specific VARNA1 gene.

    PubMed Central

    Cannon, R E; Wu, G J; Railey, J F

    1986-01-01

    The internal transcriptional control region (ITCR) of VARNA1 gene consists of a 33-base-pair (bp) interblock sequence and two 12-bp sequence blocks that are highly conserved in most of the genes transcribed by RNA polymerase III. To define the functions of and study the interactions between the two blocks, we have constructed mutants with altered interblock sequence or spacing for transcription. The results of transcription efficiencies and competing strengths indicated that the interblock sequence was dispensable and the A and B blocks were essential for transcription control. One of the major functions of the interblock sequence was to maintain an optimal spacing for an intimate interaction between the two essential blocks. Shortening or elongating the interblock spacing in the mutants beyond this range drastically decreased the transcription efficiencies and competing strengths of these mutated genes. To further study how the interaction between the two blocks leads to initiation, the start sites and sizes of RNA products of the mutants were determined. When the interblock spacing was less than 105 bp, the wild-type start site was dictated by the A block after an interaction with the B block through proteins. However, when the interblock spacing was longer than 105 bp, several new start sites located closer to the B block were preferentially used. This suggests that new start sites may be dictated by the B block when its interaction with the A block is weakened by longer spacing. The mechanisms of interaction between the bipartite domain in this gene leading to initiation are different from those in tRNAs and Alu-family RNA genes. Images PMID:3456587

  19. Hydrodynamic interactions in protein folding

    NASA Astrophysics Data System (ADS)

    Cieplak, Marek; Niewieczerzał, Szymon

    2009-03-01

    We incorporate hydrodynamic interactions (HIs) in a coarse-grained and structure-based model of proteins by employing the Rotne-Prager hydrodynamic tensor. We study several small proteins and demonstrate that HIs facilitate folding. We also study HIV-1 protease and show that HIs make the flap closing dynamics faster. The HIs are found to affect time correlation functions in the vicinity of the native state even though they have no impact on same time characteristics of the structure fluctuations around the native state.

  20. Hydrodynamic interactions in protein folding.

    PubMed

    Cieplak, Marek; Niewieczerzał, Szymon

    2009-03-28

    We incorporate hydrodynamic interactions (HIs) in a coarse-grained and structure-based model of proteins by employing the Rotne-Prager hydrodynamic tensor. We study several small proteins and demonstrate that HIs facilitate folding. We also study HIV-1 protease and show that HIs make the flap closing dynamics faster. The HIs are found to affect time correlation functions in the vicinity of the native state even though they have no impact on same time characteristics of the structure fluctuations around the native state. PMID:19334888

  1. Protein Interactions in Genome Maintenance as Novel Antibacterial Targets

    PubMed Central

    Walsh, Brian W.; Shapiro, Walker; Simmons, Lyle A.; Keck, James L.

    2013-01-01

    Antibacterial compounds typically act by directly inhibiting essential bacterial enzyme activities. Although this general mechanism of action has fueled traditional antibiotic discovery efforts for decades, new antibiotic development has not kept pace with the emergence of drug resistant bacterial strains. These limitations have severely restricted the therapeutic tools available for treating bacterial infections. Here we test an alternative antibacterial lead-compound identification strategy in which essential protein-protein interactions are targeted rather than enzymatic activities. Bacterial single-stranded DNA-binding proteins (SSBs) form conserved protein interaction “hubs” that are essential for recruiting many DNA replication, recombination, and repair proteins to SSB/DNA nucleoprotein substrates. Three small molecules that block SSB/protein interactions are shown to have antibacterial activity against diverse bacterial species. Consistent with a model in which the compounds target multiple SSB/protein interactions, treatment of Bacillus subtilis cultures with the compounds leads to rapid inhibition of DNA replication and recombination, and ultimately to cell death. The compounds also have unanticipated effects on protein synthesis that could be due to a previously unknown role for SSB/protein interactions in translation or to off-target effects. Our results highlight the potential of targeting protein-protein interactions, particularly those that mediate genome maintenance, as a powerful approach for identifying new antibacterial compounds. PMID:23536821

  2. Derivation of Cinnamon Blocks Leukocyte Attachment by Interacting with Sialosides.

    PubMed

    Lin, Wei-Ling; Guu, Shih-Yun; Tsai, Chan-Chuan; Prakash, Ekambaranellore; Viswaraman, Mohan; Chen, Hsing-Bao; Chang, Chuan-Fa

    2015-01-01

    Molecules derived from cinnamon have demonstrated diverse pharmacological activities against infectious pathogens, diabetes and inflammatory diseases. This study aims to evaluate the effect of the cinnamon-derived molecule IND02 on the adhesion of leukocytes to host cells. The anti-inflammatory ability of IND02, a pentameric procyanidin type A polyphenol polymer isolated from cinnamon alcohol extract, was examined. Pretreatment with IND02 significantly reduced the attachment of THP-1 cells or neutrophils to TNF-α-activated HUVECs or E-selectin/ICAM-1, respectively. IND02 also reduced the binding of E-, L- and P-selectins with sialosides. Furthermore, IND02 could agglutinate human red blood cells (RBC), and the agglutination could be disrupted by sialylated glycoprotein. Our findings demonstrate that IND02, a cinnamon-derived compound, can interact with sialosides and block the binding of selectins and leukocytes with sialic acids. PMID:26076445

  3. Derivation of Cinnamon Blocks Leukocyte Attachment by Interacting with Sialosides

    PubMed Central

    Lin, Wei-Ling; Guu, Shih-Yun; Tsai, Chan-Chuan; Prakash, Ekambaranellore; Viswaraman, Mohan; Chen, Hsing-Bao; Chang, Chuan-Fa

    2015-01-01

    Molecules derived from cinnamon have demonstrated diverse pharmacological activities against infectious pathogens, diabetes and inflammatory diseases. This study aims to evaluate the effect of the cinnamon-derived molecule IND02 on the adhesion of leukocytes to host cells. The anti-inflammatory ability of IND02, a pentameric procyanidin type A polyphenol polymer isolated from cinnamon alcohol extract, was examined. Pretreatment with IND02 significantly reduced the attachment of THP-1 cells or neutrophils to TNF-α-activated HUVECs or E-selectin/ICAM-1, respectively. IND02 also reduced the binding of E-, L- and P-selectins with sialosides. Furthermore, IND02 could agglutinate human red blood cells (RBC), and the agglutination could be disrupted by sialylated glycoprotein. Our findings demonstrate that IND02, a cinnamon-derived compound, can interact with sialosides and block the binding of selectins and leukocytes with sialic acids. PMID:26076445

  4. Effects of depletion interactions on block copolymer micelles

    NASA Astrophysics Data System (ADS)

    Abbas, Sayeed; Lodge, Timothy P.

    2008-03-01

    Block copolymer micelles exhibit two levels of hierarchical self-assembly: the process of micellization itself, and the ordering of these micelles onto a lattice. By a combination of small angle x-ray scattering and neutron scattering, we show that both levels of self-assembly are affected when non-adsorbing homopolymer is added to the solutions. The phenomena are analogous to depletion interactions in colloid/polymer mixtures. We have chosen poly(styrene-b-isoprene) micelles dissolved in diethyl phthalate as the model system. To these solutions polystyrene homopolymer was added. The effects strongly depend on the molecular weight and concentration of the added homopolymer. We find an induced attraction between micelles at moderate micelle concentrations, and a preference for fcc over bcc lattices in more concentrated solutions.

  5. Nanobiotechnology with S-layer proteins as building blocks.

    PubMed

    Sleytr, Uwe B; Schuster, Bernhard; Egelseer, Eva M; Pum, Dietmar; Horejs, Christine M; Tscheliessnig, Rupert; Ilk, Nicola

    2011-01-01

    One of the key challenges in nanobiotechnology is the utilization of self- assembly systems, wherein molecules spontaneously associate into reproducible aggregates and supramolecular structures. In this contribution, we describe the basic principles of crystalline bacterial surface layers (S-layers) and their use as patterning elements. The broad application potential of S-layers in nanobiotechnology is based on the specific intrinsic features of the monomolecular arrays composed of identical protein or glycoprotein subunits. Most important, physicochemical properties and functional groups on the protein lattice are arranged in well-defined positions and orientations. Many applications of S-layers depend on the capability of isolated subunits to recrystallize into monomolecular arrays in suspension or on suitable surfaces (e.g., polymers, metals, silicon wafers) or interfaces (e.g., lipid films, liposomes, emulsomes). S-layers also represent a unique structural basis and patterning element for generating more complex supramolecular structures involving all major classes of biological molecules (e.g., proteins, lipids, glycans, nucleic acids, or combinations of these). Thus, S-layers fulfill key requirements as building blocks for the production of new supramolecular materials and nanoscale devices as required in molecular nanotechnology, nanobiotechnology, biomimetics, and synthetic biology. PMID:21999999

  6. Insulin/poly(ethylene glycol)-block-poly(L-lysine) Complexes: Physicochemical Properties and Protein Encapsulation.

    PubMed

    Pippa, Natassa; Kalinova, Radostina; Dimitrov, Ivaylo; Pispas, Stergios; Demetzos, Costas

    2015-06-01

    Insulin (INS) was encapsulated into complexes with poly(ethylene glycol)-block-poly(L-lysine) (PEG-b-PLys), which is a polypeptide-based block copolymer (a neutral-cationic block polyelectrolyte). The particular cationic-neutral block copolymer can complex INS molecules in aqueous media via electrostatic interactions. Light-scattering techniques are used to study the complexation process and structure of the hybrid nanoparticles in a series of buffers, as a function of protein concentration. The physicochemical and structural characteristics of the complexes depend on the ionic strength of the aqueous medium, while the concentration of PEG-b-PLys was constant through the series of solutions. As INS concentration increased the size distribution of the complexes decreased, especially at the highest ionic strength. The size/structure of complexes diluted in biological medium indicated that the copolymer imparts stealth properties and colloidal and biological stability to the complexes, features that could in turn affect the clearance properties in vivo. Therefore, these studies could be a rational roadmap for designing the optimum complexes/effective nanocarriers for proteins and peptides. PMID:25974620

  7. Identification of local conformational similarity in structurally variable regions of homologous proteins using protein blocks.

    PubMed

    Agarwal, Garima; Mahajan, Swapnil; Srinivasan, Narayanaswamy; de Brevern, Alexandre G

    2011-01-01

    Structure comparison tools can be used to align related protein structures to identify structurally conserved and variable regions and to infer functional and evolutionary relationships. While the conserved regions often superimpose well, the variable regions appear non superimposable. Differences in homologous protein structures are thought to be due to evolutionary plasticity to accommodate diverged sequences during evolution. One of the kinds of differences between 3-D structures of homologous proteins is rigid body displacement. A glaring example is not well superimposed equivalent regions of homologous proteins corresponding to α-helical conformation with different spatial orientations. In a rigid body superimposition, these regions would appear variable although they may contain local similarity. Also, due to high spatial deviation in the variable region, one-to-one correspondence at the residue level cannot be determined accurately. Another kind of difference is conformational variability and the most common example is topologically equivalent loops of two homologues but with different conformations. In the current study, we present a refined view of the "structurally variable" regions which may contain local similarity obscured in global alignment of homologous protein structures. As structural alphabet is able to describe local structures of proteins precisely through Protein Blocks approach, conformational similarity has been identified in a substantial number of 'variable' regions in a large data set of protein structural alignments; optimal residue-residue equivalences could be achieved on the basis of Protein Blocks which led to improved local alignments. Also, through an example, we have demonstrated how the additional information on local backbone structures through protein blocks can aid in comparative modeling of a loop region. In addition, understanding on sequence-structure relationships can be enhanced through our approach. This has been

  8. Importin-α-Mediated Nucleolar Localization of Potato Mop-Top Virus TRIPLE GENE BLOCK1 (TGB1) Protein Facilitates Virus Systemic Movement, Whereas TGB1 Self-Interaction Is Required for Cell-to-Cell Movement in Nicotiana benthamiana1[OPEN

    PubMed Central

    Lukhovitskaya, Nina I.; Cowan, Graham H.; Vetukuri, Ramesh R.; Tilsner, Jens; Torrance, Lesley

    2015-01-01

    Recently, it has become evident that nucleolar passage of movement proteins occurs commonly in a number of plant RNA viruses that replicate in the cytoplasm. Systemic movement of Potato mop-top virus (PMTV) involves two viral transport forms represented by a complex of viral RNA and TRIPLE GENE BLOCK1 (TGB1) movement protein and by polar virions that contain the minor coat protein and TGB1 attached to one extremity. The integrity of polar virions ensures the efficient movement of RNA-CP, which encodes the virus coat protein. Here, we report the involvement of nuclear transport receptors belonging to the importin-α family in nucleolar accumulation of the PMTV TGB1 protein and, subsequently, in the systemic movement of the virus. Virus-induced gene silencing of two importin-α paralogs in Nicotiana benthamiana resulted in significant reduction of TGB1 accumulation in the nucleus, decreasing the accumulation of the virus progeny in upper leaves and the loss of systemic movement of RNA-CP. PMTV TGB1 interacted with importin-α in N. benthamiana, which was detected by bimolecular fluorescence complementation in the nucleoplasm and nucleolus. The interaction was mediated by two nucleolar localization signals identified by bioinformatics and mutagenesis in the TGB1 amino-terminal domain. Our results showed that while TGB1 self-interaction is needed for cell-to-cell movement, importin-α-mediated nucleolar targeting of TGB1 is an essential step in establishing the efficient systemic infection of the entire plant. These results enabled the identification of two separate domains in TGB1: an internal domain required for TGB1 self-interaction and cell-to-cell movement and the amino-terminal domain required for importin-α interaction in plants, nucleolar targeting, and long-distance movement. PMID:25576325

  9. Protein Adsorption on Chemically Modified Block Copolymer Nanodomains: Influence of Charge and Flow.

    PubMed

    Silverstein, Joshua S; Casey, Brendan J; Kofinas, Peter; Dair, Benita J

    2016-02-01

    Understanding the interactions of biomacromolecules with nanoengineered surfaces is vital for assessing material biocompatibility. This study focuses on the dynamics of protein adsorption on nanopatterned block copolymers (BCPs). Poly(styrene)-block-poly(1,2-butadiene) BCPs functionalized with an acid, amine, amide, or captopril moieties were processed to produce nanopatterned films. These films were characterized using water contact angle measurements and atomic force microscopy in air and liquid to determine how the modification process affected. wettability and swelling. Protein adsorption experiments were conducted under static and dynamic conditions via a quartz crystal microbalance with dissipation. Proteins of various size, charge, and stability were investigated to determine whether their physical characteristics affected adsorption. Significantly decreased contact angles were caused by selective swelling of modified BCP domains. The results indicate that nanopatterned chemistry and experimental conditions strongly impact adsorption dynamics. Depending on the structural stability of the protein, polyelectrolyte surfaces significantly increased adsorption over controls. Further analysis suggested that protein stability may correlate with dissipation versus frequency plots. PMID:27433605

  10. Protein Block Expert (PBE): a web-based protein structure analysis server using a structural alphabet.

    PubMed

    Tyagi, M; Sharma, P; Swamy, C S; Cadet, F; Srinivasan, N; de Brevern, A G; Offmann, B

    2006-07-01

    Encoding protein 3D structures into 1D string using short structural prototypes or structural alphabets opens a new front for structure comparison and analysis. Using the well-documented 16 motifs of Protein Blocks (PBs) as structural alphabet, we have developed a methodology to compare protein structures that are encoded as sequences of PBs by aligning them using dynamic programming which uses a substitution matrix for PBs. This methodology is implemented in the applications available in Protein Block Expert (PBE) server. PBE addresses common issues in the field of protein structure analysis such as comparison of proteins structures and identification of protein structures in structural databanks that resemble a given structure. PBE-T provides facility to transform any PDB file into sequences of PBs. PBE-ALIGNc performs comparison of two protein structures based on the alignment of their corresponding PB sequences. PBE-ALIGNm is a facility for mining SCOP database for similar structures based on the alignment of PBs. Besides, PBE provides an interface to a database (PBE-SAdb) of preprocessed PB sequences from SCOP culled at 95% and of all-against-all pairwise PB alignments at family and superfamily levels. PBE server is freely available at http://bioinformatics.univ-reunion.fr/PBE/. PMID:16844973

  11. Protein-Inhibitor Interaction Studies Using NMR

    PubMed Central

    Ishima, Rieko

    2015-01-01

    Solution-state NMR has been widely applied to determine the three-dimensional structure, dynamics, and molecular interactions of proteins. The designs of experiments used in protein NMR differ from those used for small-molecule NMR, primarily because the information available prior to an experiment, such as molecular mass and knowledge of the primary structure, is unique for proteins compared to small molecules. In this review article, protein NMR for structural biology is introduced with comparisons to small-molecule NMR, such as descriptions of labeling strategies and the effects of molecular dynamics on relaxation. Next, applications for protein NMR are reviewed, especially practical aspects for protein-observed ligand-protein interaction studies. Overall, the following topics are described: (1) characteristics of protein NMR, (2) methods to detect protein-ligand interactions by NMR, and (3) practical aspects of carrying out protein-observed inhibitor-protein interaction studies. PMID:26361636

  12. Bioinformatic Prediction of WSSV-Host Protein-Protein Interaction

    PubMed Central

    Sun, Zheng; Xiang, Jianhai

    2014-01-01

    WSSV is one of the most dangerous pathogens in shrimp aquaculture. However, the molecular mechanism of how WSSV interacts with shrimp is still not very clear. In the present study, bioinformatic approaches were used to predict interactions between proteins from WSSV and shrimp. The genome data of WSSV (NC_003225.1) and the constructed transcriptome data of F. chinensis were used to screen potentially interacting proteins by searching in protein interaction databases, including STRING, Reactome, and DIP. Forty-four pairs of proteins were suggested to have interactions between WSSV and the shrimp. Gene ontology analysis revealed that 6 pairs of these interacting proteins were classified into “extracellular region” or “receptor complex” GO-terms. KEGG pathway analysis showed that they were involved in the “ECM-receptor interaction pathway.” In the 6 pairs of interacting proteins, an envelope protein called “collagen-like protein” (WSSV-CLP) encoded by an early virus gene “wsv001” in WSSV interacted with 6 deduced proteins from the shrimp, including three integrin alpha (ITGA), two integrin beta (ITGB), and one syndecan (SDC). Sequence analysis on WSSV-CLP, ITGA, ITGB, and SDC revealed that they possessed the sequence features for protein-protein interactions. This study might provide new insights into the interaction mechanisms between WSSV and shrimp. PMID:24982879

  13. Proteins interacting with cloning scars: a source of false positive protein-protein interactions

    PubMed Central

    Banks, Charles A. S.; Boanca, Gina; Lee, Zachary T.; Florens, Laurence; Washburn, Michael P.

    2015-01-01

    A common approach for exploring the interactome, the network of protein-protein interactions in cells, uses a commercially available ORF library to express affinity tagged bait proteins; these can be expressed in cells and endogenous cellular proteins that copurify with the bait can be identified as putative interacting proteins using mass spectrometry. Control experiments can be used to limit false-positive results, but in many cases, there are still a surprising number of prey proteins that appear to copurify specifically with the bait. Here, we have identified one source of false-positive interactions in such studies. We have found that a combination of: 1) the variable sequence of the C-terminus of the bait with 2) a C-terminal valine “cloning scar” present in a commercially available ORF library, can in some cases create a peptide motif that results in the aberrant co-purification of endogenous cellular proteins. Control experiments may not identify false positives resulting from such artificial motifs, as aberrant binding depends on sequences that vary from one bait to another. It is possible that such cryptic protein binding might occur in other systems using affinity tagged proteins; this study highlights the importance of conducting careful follow-up studies where novel protein-protein interactions are suspected. PMID:25704442

  14. Coevolution of gene expression among interacting proteins

    SciTech Connect

    Fraser, Hunter B.; Hirsh, Aaron E.; Wall, Dennis P.; Eisen,Michael B.

    2004-03-01

    Physically interacting proteins or parts of proteins are expected to evolve in a coordinated manner that preserves proper interactions. Such coevolution at the amino acid-sequence level is well documented and has been used to predict interacting proteins, domains, and amino acids. Interacting proteins are also often precisely coexpressed with one another, presumably to maintain proper stoichiometry among interacting components. Here, we show that the expression levels of physically interacting proteins coevolve. We estimate average expression levels of genes from four closely related fungi of the genus Saccharomyces using the codon adaptation index and show that expression levels of interacting proteins exhibit coordinated changes in these different species. We find that this coevolution of expression is a more powerful predictor of physical interaction than is coevolution of amino acid sequence. These results demonstrate previously uncharacterized coevolution of gene expression, adding a different dimension to the study of the coevolution of interacting proteins and underscoring the importance of maintaining coexpression of interacting proteins over evolutionary time. Our results also suggest that expression coevolution can be used for computational prediction of protein protein interactions.

  15. Genome-wide Protein-protein Interaction Screening by Protein-fragment Complementation Assay (PCA) in Living Cells

    PubMed Central

    Filteau, Marie; Leducq, Jean-Baptiste; Dubé, Alexandre K.; Landry, Christian R.

    2015-01-01

    Proteins are the building blocks, effectors and signal mediators of cellular processes. A protein’s function, regulation and localization often depend on its interactions with other proteins. Here, we describe a protocol for the yeast protein-fragment complementation assay (PCA), a powerful method to detect direct and proximal associations between proteins in living cells. The interaction between two proteins, each fused to a dihydrofolate reductase (DHFR) protein fragment, translates into growth of yeast strains in presence of the drug methotrexate (MTX). Differential fitness, resulting from different amounts of reconstituted DHFR enzyme, can be quantified on high-density colony arrays, allowing to differentiate interacting from non-interacting bait-prey pairs. The high-throughput protocol presented here is performed using a robotic platform that parallelizes mating of bait and prey strains carrying complementary DHFR-fragment fusion proteins and the survival assay on MTX. This protocol allows to systematically test for thousands of protein-protein interactions (PPIs) involving bait proteins of interest and offers several advantages over other PPI detection assays, including the study of proteins expressed from their endogenous promoters without the need for modifying protein localization and for the assembly of complex reporter constructs. PMID:25867901

  16. Fluorescence Studies of Protein Crystallization Interactions

    NASA Technical Reports Server (NTRS)

    Pusey, Marc L.; Smith, Lori; Forsythe, Elizabeth

    1999-01-01

    We are investigating protein-protein interactions in under- and over-saturated crystallization solution conditions using fluorescence methods. The use of fluorescence requires fluorescent derivatives where the probe does not markedly affect the crystal packing. A number of chicken egg white lysozyme (CEWL) derivatives have been prepared, with the probes covalently attached to one of two different sites on the protein molecule; the side chain carboxyl of ASP 101, within the active site cleft, and the N-terminal amine. The ASP 101 derivatives crystallize while the N-terminal amine derivatives do not. However, the N-terminal amine is part of the contact region between adjacent 43 helix chains, and blocking this site does would not interfere with formation of these structures in solution. Preliminary FRET data have been obtained at pH 4.6, 0.1M NaAc buffer, at 5 and 7% NaCl, 4 C, using the N-terminal bound pyrene acetic acid (PAA, Ex 340 nm, Em 376 nm) and ASP 101 bound Lucifer Yellow (LY, Ex 425 nm, Em 525 nm) probe combination. The corresponding Csat values are 0.471 and 0.362 mg/ml (approximately 3.3 and approximately 2.5 x 10 (exp 5) M respectively), and all experiments were carried out at approximately Csat or lower total protein concentration. The data at both salt concentrations show a consistent trend of decreasing fluorescence yield of the donor species (PAA) with increasing total protein concentration. This decrease is apparently more pronounced at 7% NaCl, consistent with the expected increased intermolecular interactions at higher salt concentrations (reflected in the lower solubility). The estimated average distance between protein molecules at 5 x 10 (exp 6) M is approximately 70 nm, well beyond the range where any FRET can be expected. The calculated RO, where 50% of the donor energy is transferred to the acceptor, for the PAA-CEWL * LY-CEWL system is 3.28 nm, based upon a PAA-CEWL quantum efficiency of 0.41.

  17. Protein-protein interactions in DNA mismatch repair.

    PubMed

    Friedhoff, Peter; Li, Pingping; Gotthardt, Julia

    2016-02-01

    The principal DNA mismatch repair proteins MutS and MutL are versatile enzymes that couple DNA mismatch or damage recognition to other cellular processes. Besides interaction with their DNA substrates this involves transient interactions with other proteins which is triggered by the DNA mismatch or damage and controlled by conformational changes. Both MutS and MutL proteins have ATPase activity, which adds another level to control their activity and interactions with DNA substrates and other proteins. Here we focus on the protein-protein interactions, protein interaction sites and the different levels of structural knowledge about the protein complexes formed with MutS and MutL during the mismatch repair reaction. PMID:26725162

  18. A Working Model of Protein Synthesis Using Lego(TM) Building Blocks.

    ERIC Educational Resources Information Center

    Templin, Mark A.; Fetters, Marcia K.

    2002-01-01

    Uses Lego building blocks to improve the effectiveness of teaching about protein synthesis. Provides diagrams and pictures for a 2-3 day student activity. Discusses mRNA, transfer RNA, and a protein synthesis model. (MVL)

  19. Bayesian probabilistic approach for predicting backbone structures in terms of protein blocks.

    PubMed

    de Brevern, A G; Etchebest, C; Hazout, S

    2000-11-15

    By using an unsupervised cluster analyzer, we have identified a local structural alphabet composed of 16 folding patterns of five consecutive C(alpha) ("protein blocks"). The dependence that exists between successive blocks is explicitly taken into account. A Bayesian approach based on the relation protein block-amino acid propensity is used for prediction and leads to a success rate close to 35%. Sharing sequence windows associated with certain blocks into "sequence families" improves the prediction accuracy by 6%. This prediction accuracy exceeds 75% when keeping the first four predicted protein blocks at each site of the protein. In addition, two different strategies are proposed: the first one defines the number of protein blocks in each site needed for respecting a user-fixed prediction accuracy, and alternatively, the second one defines the different protein sites to be predicted with a user-fixed number of blocks and a chosen accuracy. This last strategy applied to the ubiquitin conjugating enzyme (alpha/beta protein) shows that 91% of the sites may be predicted with a prediction accuracy larger than 77% considering only three blocks per site. The prediction strategies proposed improve our knowledge about sequence-structure dependence and should be very useful in ab initio protein modelling. PMID:11025540

  20. Transient protein-protein interactions visualized by solution NMR.

    PubMed

    Liu, Zhu; Gong, Zhou; Dong, Xu; Tang, Chun

    2016-01-01

    Proteins interact with each other to establish their identities in cell. The affinities for the interactions span more than ten orders of magnitude, and KD values in μM-mM regimen are considered transient and are important in cell signaling. Solution NMR including diamagnetic and paramagnetic techniques has enabled atomic-resolution depictions of transient protein-protein interactions. Diamagnetic NMR allows characterization of protein complexes with KD values up to several mM, whereas ultraweak and fleeting complexes can be modeled with the use of paramagnetic NMR especially paramagnetic relaxation enhancement (PRE). When tackling ever-larger protein complexes, PRE can be particularly useful in providing long-range intermolecular distance restraints. As NMR measurements are averaged over the ensemble of complex structures, structural information for dynamic protein-protein interactions besides the stereospecific one can often be extracted. Herein the protein interaction dynamics are exemplified by encounter complexes, alternative binding modes, and coupled binding/folding of intrinsically disordered proteins. Further integration of NMR with other biophysical techniques should allow better visualization of transient protein-protein interactions. In particular, single-molecule data may facilitate the interpretation of ensemble-averaged NMR data. Though same structures of proteins and protein complexes were found in cell as in diluted solution, we anticipate that the dynamics of transient protein protein-protein interactions be different, which awaits awaits exploration by NMR. This article is part of a Special Issue entitled: Physiological Enzymology and Protein Functions. This article is part of a Special Issue entitled: Physiological Enzymology and Protein Functions. PMID:25896389

  1. How do oncoprotein mutations rewire protein-protein interaction networks?

    PubMed

    Bowler, Emily H; Wang, Zhenghe; Ewing, Rob M

    2015-01-01

    The acquisition of mutations that activate oncogenes or inactivate tumor suppressors is a primary feature of most cancers. Mutations that directly alter protein sequence and structure drive the development of tumors through aberrant expression and modification of proteins, in many cases directly impacting components of signal transduction pathways and cellular architecture. Cancer-associated mutations may have direct or indirect effects on proteins and their interactions and while the effects of mutations on signaling pathways have been widely studied, how mutations alter underlying protein-protein interaction networks is much less well understood. Systematic mapping of oncoprotein protein interactions using proteomics techniques as well as computational network analyses is revealing how oncoprotein mutations perturb protein-protein interaction networks and drive the cancer phenotype. PMID:26325016

  2. Protein Synthesis--An Interactive Game.

    ERIC Educational Resources Information Center

    Clements, Lee Ann J.; Jackson, Karen E.

    1998-01-01

    Describes an interactive game designed to help students see and understand the dynamic relationship between DNA, RNA, and proteins. Appropriate for either a class or laboratory setting, following a lecture session about protein synthesis. (DDR)

  3. Protein-protein interactions: methods for detection and analysis.

    PubMed Central

    Phizicky, E M; Fields, S

    1995-01-01

    The function and activity of a protein are often modulated by other proteins with which it interacts. This review is intended as a practical guide to the analysis of such protein-protein interactions. We discuss biochemical methods such as protein affinity chromatography, affinity blotting, coimmunoprecipitation, and cross-linking; molecular biological methods such as protein probing, the two-hybrid system, and phage display: and genetic methods such as the isolation of extragenic suppressors, synthetic mutants, and unlinked noncomplementing mutants. We next describe how binding affinities can be evaluated by techniques including protein affinity chromatography, sedimentation, gel filtration, fluorescence methods, solid-phase sampling of equilibrium solutions, and surface plasmon resonance. Finally, three examples of well-characterized domains involved in multiple protein-protein interactions are examined. The emphasis of the discussion is on variations in the approaches, concerns in evaluating the results, and advantages and disadvantages of the techniques. PMID:7708014

  4. Use of protein-protein interactions in affinity chromatography.

    PubMed

    Muronetz, V I; Sholukh, M; Korpela, T

    2001-10-30

    Biospecific recognition between proteins is a phenomenon that can be exploited for designing affinity-chromatographic purification systems for proteins. In principle, the approach is straightforward, and there are usually many alternative ways, since a protein can be always found which binds specifically enough to the desired protein. Routine immunoaffinity chromatography utilizes the recognition of antigenic epitopes by antibodies. However, forces involved in protein-protein interactions as well the forces keeping the three-dimensional structures of proteins intact are complicated, and proteins are easily unfolded by various factors with unpredictable results. Because of this and because of the generally high association strength between proteins, the correct adjustment of binding forces between an immobilized protein and the protein to be purified as well as the release of bound proteins in biologically active form from affinity complexes are the main problem. Affinity systems involving interactions like enzyme-enzyme, subunit-oligomer, protein-antibody, protein-chaperone and the specific features involved in each case are presented as examples. This article also aims to sketch prospects for further development of the use of protein-protein interactions for the purification of proteins. PMID:11694271

  5. How Many Protein-Protein Interactions Types Exist in Nature?

    PubMed Central

    Mitra, Pralay; Zhang, Yang

    2012-01-01

    Protein quaternary structure universe” refers to the ensemble of all protein-protein complexes across all organisms in nature. The number of quaternary folds thus corresponds to the number of ways proteins physically interact with other proteins. This study focuses on answering two basic questions: Whether the number of protein-protein interactions is limited and, if yes, how many different quaternary folds exist in nature. By all-to-all sequence and structure comparisons, we grouped the protein complexes in the protein data bank (PDB) into 3,629 families and 1,761 folds. A statistical model was introduced to obtain the quantitative relation between the numbers of quaternary families and quaternary folds in nature. The total number of possible protein-protein interactions was estimated around 4,000, which indicates that the current protein repository contains only 42% of quaternary folds in nature and a full coverage needs approximately a quarter century of experimental effort. The results have important implications to the protein complex structural modeling and the structure genomics of protein-protein interactions. PMID:22719985

  6. How many protein-protein interactions types exist in nature?

    PubMed

    Garma, Leonardo; Mukherjee, Srayanta; Mitra, Pralay; Zhang, Yang

    2012-01-01

    "Protein quaternary structure universe" refers to the ensemble of all protein-protein complexes across all organisms in nature. The number of quaternary folds thus corresponds to the number of ways proteins physically interact with other proteins. This study focuses on answering two basic questions: Whether the number of protein-protein interactions is limited and, if yes, how many different quaternary folds exist in nature. By all-to-all sequence and structure comparisons, we grouped the protein complexes in the protein data bank (PDB) into 3,629 families and 1,761 folds. A statistical model was introduced to obtain the quantitative relation between the numbers of quaternary families and quaternary folds in nature. The total number of possible protein-protein interactions was estimated around 4,000, which indicates that the current protein repository contains only 42% of quaternary folds in nature and a full coverage needs approximately a quarter century of experimental effort. The results have important implications to the protein complex structural modeling and the structure genomics of protein-protein interactions. PMID:22719985

  7. Computational drug design targeting protein-protein interactions.

    PubMed

    Bienstock, Rachelle J

    2012-01-01

    Novel discoveries in molecular disease pathways within the cell, combined with increasing information regarding protein binding partners has lead to a new approach in drug discovery. There is interest in designing drugs to modulate protein-protein interactions as opposed to solely targeting the catalytic active site within a single enzyme or protein. There are many challenges in this new approach to drug discovery, particularly since the protein-protein interface has a larger surface area, can comprise a discontinuous epitope, and is more amorphous and less well defined than the typical drug design target, a small contained enzyme-binding pocket. Computational methods to predict modes of protein-protein interaction, as well as protein interface hot spots, have garnered significant interest, in order to facilitate the development of drugs to successfully disrupt and inhibit protein-protein interactions. This review summarizes some current methods available for computational protein-protein docking, as well as tabulating some examples of the successful design of antagonists and small molecule inhibitors for protein-protein interactions. Several of these drugs are now beginning to appear in the clinic. PMID:22316151

  8. Protein nanorings organized by poly(styrene-block-ethylene oxide) self-assembled thin films

    NASA Astrophysics Data System (ADS)

    Malmström, Jenny; Wason, Akshita; Roache, Fergus; Yewdall, N. Amy; Radjainia, Mazdak; Wei, Shanghai; Higgins, Michael J.; Williams, David E.; Gerrard, Juliet A.; Travas-Sejdic, Jadranka

    2015-11-01

    This study explores the use of block copolymer self-assembly to organize Lsmα, a protein which forms stable doughnut-shaped heptameric structures. Here, we have explored the idea that 2-D crystalline arrays of protein filaments can be prepared by stacking doughnut shaped Lsmα protein into the poly(ethylene oxide) blocks of a hexagonal microphase-separated polystyrene-b-polyethylene oxide (PS-b-PEO) block copolymer. We were able to demonstrate the coordinated assembly of such a complex hierarchical nanostructure. The key to success was the choice of solvent systems and protein functionalization that achieved sufficient compatibility whilst still promoting assembly. Unambiguous characterisation of these structures is difficult; however AFM and TEM measurements confirmed that the protein was sequestered into the PEO blocks. The use of a protein that assembles into stackable doughnuts offers the possibility of assembling nanoscale optical, magnetic and electronic structures.This study explores the use of block copolymer self-assembly to organize Lsmα, a protein which forms stable doughnut-shaped heptameric structures. Here, we have explored the idea that 2-D crystalline arrays of protein filaments can be prepared by stacking doughnut shaped Lsmα protein into the poly(ethylene oxide) blocks of a hexagonal microphase-separated polystyrene-b-polyethylene oxide (PS-b-PEO) block copolymer. We were able to demonstrate the coordinated assembly of such a complex hierarchical nanostructure. The key to success was the choice of solvent systems and protein functionalization that achieved sufficient compatibility whilst still promoting assembly. Unambiguous characterisation of these structures is difficult; however AFM and TEM measurements confirmed that the protein was sequestered into the PEO blocks. The use of a protein that assembles into stackable doughnuts offers the possibility of assembling nanoscale optical, magnetic and electronic structures. Electronic supplementary

  9. Current Experimental Methods for Characterizing Protein-Protein Interactions.

    PubMed

    Zhou, Mi; Li, Qing; Wang, Renxiao

    2016-04-19

    Protein molecules often interact with other partner protein molecules in order to execute their vital functions in living organisms. Characterization of protein-protein interactions thus plays a central role in understanding the molecular mechanism of relevant protein molecules, elucidating the cellular processes and pathways relevant to health or disease for drug discovery, and charting large-scale interaction networks in systems biology research. A whole spectrum of methods, based on biophysical, biochemical, or genetic principles, have been developed to detect the time, space, and functional relevance of protein-protein interactions at various degrees of affinity and specificity. This article presents an overview of these experimental methods, outlining the principles, strengths and limitations, and recent developments of each type of method. PMID:26864455

  10. Peroxiredoxin 1 interacts with and blocks the redox factor APE1 from activating interleukin-8 expression.

    PubMed

    Nassour, Hassan; Wang, Zhiqiang; Saad, Amine; Papaluca, Arturo; Brosseau, Nicolas; Affar, El Bachir; Alaoui-Jamali, Moulay A; Ramotar, Dindial

    2016-01-01

    APE1 is an essential DNA repair protein that also possesses the ability to regulate transcription. It has a unique cysteine residue C65, which maintains the reduce state of several transcriptional activators such as NF-κB. How APE1 is being recruited to execute the various biological functions remains unknown. Herein, we show that APE1 interacts with a novel partner PRDX1, a peroxidase that can also prevent oxidative damage to proteins by serving as a chaperone. PRDX1 knockdown did not interfere with APE1 expression level or its DNA repair activities. However, PRDX1 knockdown greatly facilitates APE1 detection within the nucleus by indirect immunofluorescence analysis, even though APE1 level was unchanged. The loss of APE1 interaction with PRDX1 promotes APE1 redox function to activate binding of the transcription factor NF-κB onto the promoter of a target gene, the proinflammatory chemokine IL-8 involved in cancer invasion and metastasis, resulting in its upregulation. Depletion of APE1 blocked the upregulation of IL-8 in the PRDX1 knockdown cells. Our findings suggest that the interaction of PRDX1 with APE1 represents a novel anti-inflammatory function of PRDX1, whereby the association safeguards APE1 from reducing transcription factors and activating superfluous gene expression, which otherwise could trigger cancer invasion and metastasis. PMID:27388124

  11. Peroxiredoxin 1 interacts with and blocks the redox factor APE1 from activating interleukin-8 expression

    PubMed Central

    Nassour, Hassan; Wang, Zhiqiang; Saad, Amine; Papaluca, Arturo; Brosseau, Nicolas; Affar, El Bachir; Alaoui-Jamali, Moulay A.; Ramotar, Dindial

    2016-01-01

    APE1 is an essential DNA repair protein that also possesses the ability to regulate transcription. It has a unique cysteine residue C65, which maintains the reduce state of several transcriptional activators such as NF-κB. How APE1 is being recruited to execute the various biological functions remains unknown. Herein, we show that APE1 interacts with a novel partner PRDX1, a peroxidase that can also prevent oxidative damage to proteins by serving as a chaperone. PRDX1 knockdown did not interfere with APE1 expression level or its DNA repair activities. However, PRDX1 knockdown greatly facilitates APE1 detection within the nucleus by indirect immunofluorescence analysis, even though APE1 level was unchanged. The loss of APE1 interaction with PRDX1 promotes APE1 redox function to activate binding of the transcription factor NF-κB onto the promoter of a target gene, the proinflammatory chemokine IL-8 involved in cancer invasion and metastasis, resulting in its upregulation. Depletion of APE1 blocked the upregulation of IL-8 in the PRDX1 knockdown cells. Our findings suggest that the interaction of PRDX1 with APE1 represents a novel anti-inflammatory function of PRDX1, whereby the association safeguards APE1 from reducing transcription factors and activating superfluous gene expression, which otherwise could trigger cancer invasion and metastasis. PMID:27388124

  12. Solid State NMR and Protein-Protein Interactions in Membranes

    PubMed Central

    Miao, Yimin; Cross, Timothy A.

    2013-01-01

    Solid state NMR spectroscopy has evolved rapidly in recent years into an excellent tool for the characterization of membrane proteins and their complexes. In the past few years it has also become clear that the structure of membrane proteins, especially helical membrane proteins is determined, in part, by the membrane environment. Therefore, the modeling of this environment by a liquid crystalline lipid bilayer for solid state NMR has generated a unique tool for the characterization of native conformational states, local and global dynamics, and high resolution structure for these proteins. Protein-protein interactions can also benefit from this solid state NMR capability to characterize membrane proteins in a native-like environment. These complexes take the form of oligomeric structures and hetero-protein interactions both with water soluble proteins and other membrane proteins. PMID:24034903

  13. Solid state NMR and protein-protein interactions in membranes.

    PubMed

    Miao, Yimin; Cross, Timothy A

    2013-12-01

    Solid state NMR spectroscopy has evolved rapidly in recent years into an excellent tool for the characterization of membrane proteins and their complexes. In the past few years it has also become clear that the structure of membrane proteins, especially helical membrane proteins is determined, in part, by the membrane environment. Therefore, the modeling of this environment by a liquid crystalline lipid bilayer for solid state NMR has generated a unique tool for the characterization of native conformational states, local and global dynamics, and high-resolution structure for these proteins. Protein-protein interactions can also benefit from this solid state NMR capability to characterize membrane proteins in a native-like environment. These complexes take the form of oligomeric structures and hetero-protein interactions both with water-soluble proteins and other membrane proteins. PMID:24034903

  14. Measuring protein interactions by microchip self-interaction chromatography.

    PubMed

    García, Carlos D; Hadley, DeGail J; Wilson, W William; Henry, Charles S

    2003-01-01

    The self-interaction of proteins is of paramount importance in aggregation and crystallization phenomena. Solution conditions leading to a change in the state of aggregation of a protein, whether amorphous or crystalline, have mainly been discovered by the use of trial and error screening of large numbers of solutions. Self-interaction chromatography has the potential to provide a quantitative method for determination of protein self-interactions amenable to high-throughput screening. This paper describes the construction and characterization of a microchip separation system for low-pressure self-interaction chromatography using lysozyme as a model protein. The retention time was analyzed as a function of mobile-phase composition, amount of protein injected, flow rate, and stationary-phase modification. The capacity factors (k') as a function of crystallizing agent concentration are compared with previously published values for the osmotic second virial coefficient (B(22)) obtained by static light scattering, showing the ability of the chip to accurately determine protein-protein interactions. A 500-fold reduction in protein consumption and the possibility of using conventional instrumentation and automation are some of the advantages over currently used methodologies for evaluating protein-protein interactions. PMID:12790668

  15. A Microfluidic Platform for Characterization of Protein-Protein Interactions.

    PubMed

    Javanmard, Mehdi; Talasaz, Amirali H; Nemat-Gorgani, Mohsen; Huber, David E; Pease, Fabian; Ronaghi, Mostafa; Davis, Ronald W

    2009-08-01

    Traditionally, expensive and time consuming techniques such as mass spectrometry and Western Blotting have been used for characterization of protein-protein interactions. In this paper, we describe the design, fabrication, and testing of a rapid and inexpensive sensor, involving the use of microelectrodes in a microchannel, which can be used for real-time electrical detection of specific interactions between proteins. We have successfully demonstrated detection of target glycoprotein-glycoprotein interactions, antigen-antibody interactions, and glycoprotein-antigen interactions. We have also demonstrated the ability of this technique to distinguish between strong and weak interactions. Using this approach, it may be possible to multiplex an array of these sensors onto a chip and probe a complex mixture for various types of interactions involving protein molecules. PMID:20467571

  16. The Intrinsic Geometric Structure of Protein-Protein Interaction Networks for Protein Interaction Prediction.

    PubMed

    Fang, Yi; Sun, Mengtian; Dai, Guoxian; Ramain, Karthik

    2016-01-01

    Recent developments in high-throughput technologies for measuring protein-protein interaction (PPI) have profoundly advanced our ability to systematically infer protein function and regulation. However, inherently high false positive and false negative rates in measurement have posed great challenges in computational approaches for the prediction of PPI. A good PPI predictor should be 1) resistant to high rate of missing and spurious PPIs, and 2) robust against incompleteness of observed PPI networks. To predict PPI in a network, we developed an intrinsic geometry structure (IGS) for network, which exploits the intrinsic and hidden relationship among proteins in network through a heat diffusion process. In this process, all explicit PPIs participate simultaneously to glue local infinitesimal and noisy experimental interaction data to generate a global macroscopic descriptions about relationships among proteins. The revealed implicit relationship can be interpreted as the probability of two proteins interacting with each other. The revealed relationship is intrinsic and robust against individual, local and explicit protein interactions in the original network. We apply our approach to publicly available PPI network data for the evaluation of the performance of PPI prediction. Experimental results indicate that, under different levels of the missing and spurious PPIs, IGS is able to robustly exploit the intrinsic and hidden relationship for PPI prediction with a higher sensitivity and specificity compared to that of recently proposed methods. PMID:26886733

  17. Geminivirus C3 Protein: Replication Enhancement and Protein Interactions

    PubMed Central

    Settlage, Sharon B.; See, Renee G.; Hanley-Bowdoin, Linda

    2005-01-01

    Most dicot-infecting geminiviruses encode a replication enhancer protein (C3, AL3, or REn) that is required for optimal replication of their small, single-stranded DNA genomes. C3 interacts with C1, the essential viral replication protein that initiates rolling circle replication. C3 also homo-oligomerizes and interacts with at least two host-encoded proteins, proliferating cell nuclear antigen (PCNA) and the retinoblastoma-related protein (pRBR). It has been proposed that protein interactions contribute to C3 function. Using the C3 protein of Tomato yellow leaf curl virus, we examined the impact of mutations to amino acids that are conserved across the C3 protein family on replication enhancement and protein interactions. Surprisingly, many of the mutations did not affect replication enhancement activity of C3 in tobacco protoplasts. Other mutations either enhanced or were detrimental to C3 replication activity. Analysis of mutated proteins in yeast two-hybrid assays indicated that mutations that inactivate C3 replication enhancement activity also reduce or inactivate C3 oligomerization and interaction with C1 and PCNA. In contrast, mutated C3 proteins impaired for pRBR binding are fully functional in replication assays. Hydrophobic residues in the middle of the C3 protein were implicated in C3 interaction with itself, C1, and PCNA, while polar resides at both the N and C termini of the protein are important for C3-pRBR interaction. These experiments established the importance of C3-C3, C3-C1, and C3-PCNA interactions in geminivirus replication. While C3-pRBR interaction is not required for viral replication in cycling cells, it may play a role during infection of differentiated cells in intact plants. PMID:16014949

  18. Protein interaction networks from literature mining

    NASA Astrophysics Data System (ADS)

    Ihara, Sigeo

    2005-03-01

    The ability to accurately predict and understand physiological changes in the biological network system in response to disease or drug therapeutics is of crucial importance in life science. The extensive amount of gene expression data generated from even a single microarray experiment often proves difficult to fully interpret and comprehend the biological significance. An increasing knowledge of protein interactions stored in the PubMed database, as well as the advancement of natural language processing, however, makes it possible to construct protein interaction networks from the gene expression information that are essential for understanding the biological meaning. From the in house literature mining system we have developed, the protein interaction network for humans was constructed. By analysis based on the graph-theoretical characterization of the total interaction network in literature, we found that the network is scale-free and semantic long-ranged interactions (i.e. inhibit, induce) between proteins dominate in the total interaction network, reducing the degree exponent. Interaction networks generated based on scientific text in which the interaction event is ambiguously described result in disconnected networks. In contrast interaction networks based on text in which the interaction events are clearly stated result in strongly connected networks. The results of protein-protein interaction networks obtained in real applications from microarray experiments are discussed: For example, comparisons of the gene expression data indicative of either a good or a poor prognosis for acute lymphoblastic leukemia with MLL rearrangements, using our system, showed newly discovered signaling cross-talk.

  19. Protein-protein interactions and genetic diseases: The Interactome

    PubMed Central

    Lage, Kasper

    2014-01-01

    Protein-protein interactions mediate essentially all biological processes. Despite the quality of these data being widely questioned a decade ago, the reproducibility of large-scale protein interaction data is now much improved and there is little question that the latest screens are of high quality. Moreover, common data standards and coordinated curation practices between the databases that collect the interactions have made these valuable data available to a wide group of researchers. Here, I will review how protein-protein interactions are measured, collected and quality controlled. I discuss how the architecture of molecular protein networks have informed disease biology, and how these data are now being computationally integrated with the newest genomic technologies, in particular genome-wide association studies and exome-sequencing projects, to improve our understanding of molecular processes perturbed by genetics in human diseases. PMID:24892209

  20. APID: Agile Protein Interaction DataAnalyzer.

    PubMed

    Prieto, Carlos; De Las Rivas, Javier

    2006-07-01

    Agile Protein Interaction DataAnalyzer (APID) is an interactive bioinformatics web tool developed to integrate and analyze in a unified and comparative platform main currently known information about protein-protein interactions demonstrated by specific small-scale or large-scale experimental methods. At present, the application includes information coming from five main source databases enclosing an unified sever to explore >35 000 different proteins and 111 000 different proven interactions. The web includes search tools to query and browse upon the data, allowing selection of the interaction pairs based in calculated parameters that weight and qualify the reliability of each given protein interaction. Such parameters are for the 'proteins': connectivity, cluster coefficient, Gene Ontology (GO) functional environment, GO environment enrichment; and for the 'interactions': number of methods, GO overlapping, iPfam domain-domain interaction. APID also includes a graphic interactive tool to visualize selected sub-networks and to navigate on them or along the whole interaction network. The application is available open access at http://bioinfow.dep.usal.es/apid/. PMID:16845013

  1. An Interactive Introduction to Protein Structure

    ERIC Educational Resources Information Center

    Lee, W. Theodore

    2004-01-01

    To improve student understanding of protein structure and the significance of noncovalent interactions in protein structure and function, students are assigned a project to write a paper complemented with computer-generated images. The assignment provides an opportunity for students to select a protein structure that is of interest and detail…

  2. Curvature-mediated interactions between membrane proteins.

    PubMed Central

    Kim, K S; Neu, J; Oster, G

    1998-01-01

    Membrane proteins can deform the lipid bilayer in which they are embedded. If the bilayer is treated as an elastic medium, then these deformations will generate elastic interactions between the proteins. The interaction between a single pair is repulsive. However, for three or more proteins, we show that there are nonpairwise forces whose magnitude is similar to the pairwise forces. When there are five or more proteins, we show that the nonpairwise forces permit the existence of stable protein aggregates, despite their pairwise repulsions. PMID:9788923

  3. Noninvasive imaging of protein-protein interactions in living animals

    NASA Astrophysics Data System (ADS)

    Luker, Gary D.; Sharma, Vijay; Pica, Christina M.; Dahlheimer, Julie L.; Li, Wei; Ochesky, Joseph; Ryan, Christine E.; Piwnica-Worms, Helen; Piwnica-Worms, David

    2002-05-01

    Protein-protein interactions control transcription, cell division, and cell proliferation as well as mediate signal transduction, oncogenic transformation, and regulation of cell death. Although a variety of methods have been used to investigate protein interactions in vitro and in cultured cells, none can analyze these interactions in intact, living animals. To enable noninvasive molecular imaging of protein-protein interactions in vivo by positron-emission tomography and fluorescence imaging, we engineered a fusion reporter gene comprising a mutant herpes simplex virus 1 thymidine kinase and green fluorescent protein for readout of a tetracycline-inducible, two-hybrid system in vivo. By using micro-positron-emission tomography, interactions between p53 tumor suppressor and the large T antigen of simian virus 40 were visualized in tumor xenografts of HeLa cells stably transfected with the imaging constructs. Imaging protein-binding partners in vivo will enable functional proteomics in whole animals and provide a tool for screening compounds targeted to specific protein-protein interactions in living animals.

  4. DIP: The Database of Interacting Proteins

    DOE Data Explorer

    The DIP Database catalogs experimentally determined interactions between proteins. It combines information from a variety of sources to create a single, consistent set of protein-protein interactions. By interaction, the DIP Database creators mean that two amino acid chains were experimentally identified to bind to each other. The database lists such pairs to aid those studying a particular protein-protein interaction but also those investigating entire regulatory and signaling pathways as well as those studying the organisation and complexity of the protein interaction network at the cellular level. The data stored within the DIP database were curated, both, manually by expert curators and also automatically using computational approaches that utilize the knowledge about the protein-protein interaction networks extracted from the most reliable, core subset of the DIP data. It is a relational database that can be searched by protein, sequence, motif, article information, and pathBLAST. The website also serves as an access point to a number of projects related to DIP, such as LiveDIP, The Database of Ligand-Receptor Partners (DLRP) and JDIP. Users have free and open access to DIP after login. [Taken from the DIP Guide and the DIP website] (Specialized Interface) (Registration Required)

  5. Blocking and detection chemistries affect antibody performance on reverse phase protein arrays.

    PubMed

    Ambroz, Kristi L H; Zhang, Yonghong; Schutz-Geschwender, Amy; Olive, D Michael

    2008-06-01

    Antibody specificity is critical for RP protein arrays (RPA). The effects of blocking and detection chemistries on antibody specificity were evaluated for Western blots and RPA. Blocking buffers significantly affected nonspecific banding on Western blots, with corresponding effects on arrays. Tyramide signal amplification (TSA) increased both specific and nonspecific signals on Westerns and arrays, masking the expected gradations in signal intensity. These results suggest that consistent blocking and detection conditions should be used for antibody validation and subsequent RPA experiments. PMID:18563731

  6. Predicting Physical Interactions between Protein Complexes*

    PubMed Central

    Clancy, Trevor; Rødland, Einar Andreas; Nygard, Ståle; Hovig, Eivind

    2013-01-01

    Protein complexes enact most biochemical functions in the cell. Dynamic interactions between protein complexes are frequent in many cellular processes. As they are often of a transient nature, they may be difficult to detect using current genome-wide screens. Here, we describe a method to computationally predict physical interactions between protein complexes, applied to both humans and yeast. We integrated manually curated protein complexes and physical protein interaction networks, and we designed a statistical method to identify pairs of protein complexes where the number of protein interactions between a complex pair is due to an actual physical interaction between the complexes. An evaluation against manually curated physical complex-complex interactions in yeast revealed that 50% of these interactions could be predicted in this manner. A community network analysis of the highest scoring pairs revealed a biologically sensible organization of physical complex-complex interactions in the cell. Such analyses of proteomes may serve as a guide to the discovery of novel functional cellular relationships. PMID:23438732

  7. Evolutionarily Conserved Herpesviral Protein Interaction Networks

    PubMed Central

    Fossum, Even; Friedel, Caroline C.; Rajagopala, Seesandra V.; Titz, Björn; Baiker, Armin; Schmidt, Tina; Kraus, Theo; Stellberger, Thorsten; Rutenberg, Christiane; Suthram, Silpa; Bandyopadhyay, Sourav; Rose, Dietlind; von Brunn, Albrecht; Uhlmann, Mareike; Zeretzke, Christine; Dong, Yu-An; Boulet, Hélène; Koegl, Manfred; Bailer, Susanne M.; Koszinowski, Ulrich; Ideker, Trey; Uetz, Peter; Zimmer, Ralf; Haas, Jürgen

    2009-01-01

    Herpesviruses constitute a family of large DNA viruses widely spread in vertebrates and causing a variety of different diseases. They possess dsDNA genomes ranging from 120 to 240 kbp encoding between 70 to 170 open reading frames. We previously reported the protein interaction networks of two herpesviruses, varicella-zoster virus (VZV) and Kaposi's sarcoma-associated herpesvirus (KSHV). In this study, we systematically tested three additional herpesvirus species, herpes simplex virus 1 (HSV-1), murine cytomegalovirus and Epstein-Barr virus, for protein interactions in order to be able to perform a comparative analysis of all three herpesvirus subfamilies. We identified 735 interactions by genome-wide yeast-two-hybrid screens (Y2H), and, together with the interactomes of VZV and KSHV, included a total of 1,007 intraviral protein interactions in the analysis. Whereas a large number of interactions have not been reported previously, we were able to identify a core set of highly conserved protein interactions, like the interaction between HSV-1 UL33 with the nuclear egress proteins UL31/UL34. Interactions were conserved between orthologous proteins despite generally low sequence similarity, suggesting that function may be more conserved than sequence. By combining interactomes of different species we were able to systematically address the low coverage of the Y2H system and to extract biologically relevant interactions which were not evident from single species. PMID:19730696

  8. PLIC: protein-ligand interaction clusters.

    PubMed

    Anand, Praveen; Nagarajan, Deepesh; Mukherjee, Sumanta; Chandra, Nagasuma

    2014-01-01

    Most of the biological processes are governed through specific protein-ligand interactions. Discerning different components that contribute toward a favorable protein- ligand interaction could contribute significantly toward better understanding protein function, rationalizing drug design and obtaining design principles for protein engineering. The Protein Data Bank (PDB) currently hosts the structure of ∼68 000 protein-ligand complexes. Although several databases exist that classify proteins according to sequence and structure, a mere handful of them annotate and classify protein-ligand interactions and provide information on different attributes of molecular recognition. In this study, an exhaustive comparison of all the biologically relevant ligand-binding sites (84 846 sites) has been conducted using PocketMatch: a rapid, parallel, in-house algorithm. PocketMatch quantifies the similarity between binding sites based on structural descriptors and residue attributes. A similarity network was constructed using binding sites whose PocketMatch scores exceeded a high similarity threshold (0.80). The binding site similarity network was clustered into discrete sets of similar sites using the Markov clustering (MCL) algorithm. Furthermore, various computational tools have been used to study different attributes of interactions within the individual clusters. The attributes can be roughly divided into (i) binding site characteristics including pocket shape, nature of residues and interaction profiles with different kinds of atomic probes, (ii) atomic contacts consisting of various types of polar, hydrophobic and aromatic contacts along with binding site water molecules that could play crucial roles in protein-ligand interactions and (iii) binding energetics involved in interactions derived from scoring functions developed for docking. For each ligand-binding site in each protein in the PDB, site similarity information, clusters they belong to and description of

  9. A method for interactive specification of multiple-block topologies

    NASA Technical Reports Server (NTRS)

    Sorenson, Reese L.; Mccann, Karen M.

    1991-01-01

    A method is presented for dealing with the vast amount of topological and other data which must be specified to generate a multiple-block computational grid. Specific uses of the graphical capabilities of a powerful scientific workstation are described which reduce the burden on the user of collecting and formatting such large amounts of data. A program to implement this method, 3DPREP, is described. A plotting transformation algorithm, some useful software tools, notes on programming, and a database organization are also presented. Example grids developed using the method are shown.

  10. PPIM: A Protein-Protein Interaction Database for Maize.

    PubMed

    Zhu, Guanghui; Wu, Aibo; Xu, Xin-Jian; Xiao, Pei-Pei; Lu, Le; Liu, Jingdong; Cao, Yongwei; Chen, Luonan; Wu, Jun; Zhao, Xing-Ming

    2016-02-01

    Maize (Zea mays) is one of the most important crops worldwide. To understand the biological processes underlying various traits of the crop (e.g. yield and response to stress), a detailed protein-protein interaction (PPI) network is highly demanded. Unfortunately, there are very few such PPIs available in the literature. Therefore, in this work, we present the Protein-Protein Interaction Database for Maize (PPIM), which covers 2,762,560 interactions among 14,000 proteins. The PPIM contains not only accurately predicted PPIs but also those molecular interactions collected from the literature. The database is freely available at http://comp-sysbio.org/ppim with a user-friendly powerful interface. We believe that the PPIM resource can help biologists better understand the maize crop. PMID:26620522

  11. Protein-protein interaction networks (PPI) and complex diseases

    PubMed Central

    Safari-Alighiarloo, Nahid; Taghizadeh, Mohammad; Rezaei-Tavirani, Mostafa; Goliaei, Bahram

    2014-01-01

    The physical interaction of proteins which lead to compiling them into large densely connected networks is a noticeable subject to investigation. Protein interaction networks are useful because of making basic scientific abstraction and improving biological and biomedical applications. Based on principle roles of proteins in biological function, their interactions determine molecular and cellular mechanisms, which control healthy and diseased states in organisms. Therefore, such networks facilitate the understanding of pathogenic (and physiologic) mechanisms that trigger the onset and progression of diseases. Consequently, this knowledge can be translated into effective diagnostic and therapeutic strategies. Furthermore, the results of several studies have proved that the structure and dynamics of protein networks are disturbed in complex diseases such as cancer and autoimmune disorders. Based on such relationship, a novel paradigm is suggested in order to confirm that the protein interaction networks can be the target of therapy for treatment of complex multi-genic diseases rather than individual molecules with disrespect the network. PMID:25436094

  12. QuaBingo: A Prediction System for Protein Quaternary Structure Attributes Using Block Composition

    PubMed Central

    Tung, Chi-Hua; Chen, Chi-Wei; Guo, Ren-Chao; Ng, Hui-Fuang

    2016-01-01

    Background. Quaternary structures of proteins are closely relevant to gene regulation, signal transduction, and many other biological functions of proteins. In the current study, a new method based on protein-conserved motif composition in block format for feature extraction is proposed, which is termed block composition. Results. The protein quaternary assembly states prediction system which combines blocks with functional domain composition, called QuaBingo, is constructed by three layers of classifiers that can categorize quaternary structural attributes of monomer, homooligomer, and heterooligomer. The building of the first layer classifier uses support vector machines (SVM) based on blocks and functional domains of proteins, and the second layer SVM was utilized to process the outputs of the first layer. Finally, the result is determined by the Random Forest of the third layer. We compared the effectiveness of the combination of block composition, functional domain composition, and pseudoamino acid composition of the model. In the 11 kinds of functional protein families, QuaBingo is 23% of Matthews Correlation Coefficient (MCC) higher than the existing prediction system. The results also revealed the biological characterization of the top five block compositions. Conclusions. QuaBingo provides better predictive ability for predicting the quaternary structural attributes of proteins. PMID:27610389

  13. QuaBingo: A Prediction System for Protein Quaternary Structure Attributes Using Block Composition.

    PubMed

    Tung, Chi-Hua; Chen, Chi-Wei; Guo, Ren-Chao; Ng, Hui-Fuang; Chu, Yen-Wei

    2016-01-01

    Background. Quaternary structures of proteins are closely relevant to gene regulation, signal transduction, and many other biological functions of proteins. In the current study, a new method based on protein-conserved motif composition in block format for feature extraction is proposed, which is termed block composition. Results. The protein quaternary assembly states prediction system which combines blocks with functional domain composition, called QuaBingo, is constructed by three layers of classifiers that can categorize quaternary structural attributes of monomer, homooligomer, and heterooligomer. The building of the first layer classifier uses support vector machines (SVM) based on blocks and functional domains of proteins, and the second layer SVM was utilized to process the outputs of the first layer. Finally, the result is determined by the Random Forest of the third layer. We compared the effectiveness of the combination of block composition, functional domain composition, and pseudoamino acid composition of the model. In the 11 kinds of functional protein families, QuaBingo is 23% of Matthews Correlation Coefficient (MCC) higher than the existing prediction system. The results also revealed the biological characterization of the top five block compositions. Conclusions. QuaBingo provides better predictive ability for predicting the quaternary structural attributes of proteins. PMID:27610389

  14. Capturing the Interaction Potential of Amyloidogenic Proteins

    SciTech Connect

    Javid, Nadeem; Vogtt, Karsten; Winter, Roland; Krywka, Christina; Tolan, Metin

    2007-07-13

    Experimentally derived static structure factors obtained for the aggregation-prone protein insulin were analyzed with a statistical mechanical model based on the Derjaguin-Landau-Verwey-Overbeek potential. The data reveal that the protein self-assembles into equilibrium clusters already at low concentrations. Furthermore, striking differences regarding interaction forces between aggregation-prone proteins such as insulin in the preaggregated regime and natively stable globular proteins are found.

  15. Methods for analyzing and quantifying protein-protein interaction.

    PubMed

    Syafrizayanti; Betzen, Christian; Hoheisel, Jörg D; Kastelic, Damjana

    2014-02-01

    Genome sequencing has led to the identification of many proteins, which had not been recognized before. In consequence, the basic set of human proteins is generally known. Far less information, however, exists about protein-protein interactions, which are required and responsible for cellular activities and their control. Many protein isoforms that result from mutations, splice-variations and post-translational modifications also come into play. Until recently, interactions of only few protein partners could be analyzed in a single experiment. However, this does not meet the challenge of investigating the highly complex interaction patterns in cellular systems. It is made even more demanding by the need to determine the intensity of interactions quantitatively in order to properly understand protein interplay. Currently available techniques vary with respect to accuracy, reliability, reproducibility and throughput and their performances range from a mere qualitative demonstration of binding to a quantitative characterization of affinities. In this article, an overview is given of the methodologies available for analysis of protein-protein interactions. PMID:24393018

  16. Signature Product Code for Predicting Protein-Protein Interactions

    SciTech Connect

    Martin, Shawn B.; Brown, William M.

    2004-09-25

    The SigProdV1.0 software consists of four programs which together allow the prediction of protein-protein interactions using only amino acid sequences and experimental data. The software is based on the use of tensor products of amino acid trimers coupled with classifiers known as support vector machines. Essentially the program looks for amino acid trimer pairs which occur more frequently in protein pairs which are known to interact. These trimer pairs are then used to make predictions about unknown protein pairs. A detailed description of the method can be found in the paper: S. Martin, D. Roe, J.L. Faulon. "Predicting protein-protein interactions using signature products," Bioinformatics, available online from Advance Access, Aug. 19, 2004.

  17. Signature Product Code for Predicting Protein-Protein Interactions

    Energy Science and Technology Software Center (ESTSC)

    2004-09-25

    The SigProdV1.0 software consists of four programs which together allow the prediction of protein-protein interactions using only amino acid sequences and experimental data. The software is based on the use of tensor products of amino acid trimers coupled with classifiers known as support vector machines. Essentially the program looks for amino acid trimer pairs which occur more frequently in protein pairs which are known to interact. These trimer pairs are then used to make predictionsmore » about unknown protein pairs. A detailed description of the method can be found in the paper: S. Martin, D. Roe, J.L. Faulon. "Predicting protein-protein interactions using signature products," Bioinformatics, available online from Advance Access, Aug. 19, 2004.« less

  18. In Vivo Probe of Lipid II-Interacting Proteins.

    PubMed

    Sarkar, Sourav; Libby, Elizabeth A; Pidgeon, Sean E; Dworkin, Jonathan; Pires, Marcos M

    2016-07-11

    β-Lactams represent one of the most important classes of antibiotics discovered to date. These agents block Lipid II processing and cell wall biosynthesis through inactivation of penicillin-binding proteins (PBPs). PBPs enzymatically load cell wall building blocks from Lipid II carrier molecules onto the growing cell wall scaffold during growth and division. Lipid II, a bottleneck in cell wall biosynthesis, is the target of some of the most potent antibiotics in clinical use. Despite the immense therapeutic value of this biosynthetic pathway, the PBP-Lipid II association has not been established in live cells. To determine this key interaction, we designed an unnatural d-amino acid dipeptide that is metabolically incorporated into Lipid II molecules. By hijacking the peptidoglycan biosynthetic machinery, photoaffinity probes were installed in combination with click partners within Lipid II, thereby allowing, for the first time, demonstration of PBP interactions in vivo with Lipid II. PMID:27225706

  19. Quantitative interaction proteomics of neurodegenerative disease proteins.

    PubMed

    Hosp, Fabian; Vossfeldt, Hannes; Heinig, Matthias; Vasiljevic, Djordje; Arumughan, Anup; Wyler, Emanuel; Landthaler, Markus; Hubner, Norbert; Wanker, Erich E; Lannfelt, Lars; Ingelsson, Martin; Lalowski, Maciej; Voigt, Aaron; Selbach, Matthias

    2015-05-19

    Several proteins have been linked to neurodegenerative disorders (NDDs), but their molecular function is not completely understood. Here, we used quantitative interaction proteomics to identify binding partners of Amyloid beta precursor protein (APP) and Presenilin-1 (PSEN1) for Alzheimer's disease (AD), Huntingtin (HTT) for Huntington's disease, Parkin (PARK2) for Parkinson's disease, and Ataxin-1 (ATXN1) for spinocerebellar ataxia type 1. Our network reveals common signatures of protein degradation and misfolding and recapitulates known biology. Toxicity modifier screens and comparison to genome-wide association studies show that interaction partners are significantly linked to disease phenotypes in vivo. Direct comparison of wild-type proteins and disease-associated variants identified binders involved in pathogenesis, highlighting the value of differential interactome mapping. Finally, we show that the mitochondrial protein LRPPRC interacts preferentially with an early-onset AD variant of APP. This interaction appears to induce mitochondrial dysfunction, which is an early phenotype of AD. PMID:25959826

  20. Protein interaction mapping: A Drosophila case study

    PubMed Central

    Formstecher, Etienne; Aresta, Sandra; Collura, Vincent; Hamburger, Alexandre; Meil, Alain; Trehin, Alexandra; Reverdy, Céline; Betin, Virginie; Maire, Sophie; Brun, Christine; Jacq, Bernard; Arpin, Monique; Bellaiche, Yohanns; Bellusci, Saverio; Benaroch, Philippe; Bornens, Michel; Chanet, Roland; Chavrier, Philippe; Delattre, Olivier; Doye, Valérie; Fehon, Richard; Faye, Gérard; Galli, Thierry; Girault, Jean-Antoine; Goud, Bruno; de Gunzburg, Jean; Johannes, Ludger; Junier, Marie-Pierre; Mirouse, Vincent; Mukherjee, Ashim; Papadopoulo, Dora; Perez, Franck; Plessis, Anne; Rossé, Carine; Saule, Simon; Stoppa-Lyonnet, Dominique; Vincent, Alain; White, Michael; Legrain, Pierre; Wojcik, Jérôme; Camonis, Jacques; Daviet, Laurent

    2005-01-01

    The Drosophila (fruit fly) model system has been instrumental in our current understanding of human biology, development, and diseases. Here, we used a high-throughput yeast two-hybrid (Y2H)-based technology to screen 102 bait proteins from Drosophila melanogaster, most of them orthologous to human cancer-related and/or signaling proteins, against high-complexity fly cDNA libraries. More than 2300 protein-protein interactions (PPI) were identified, of which 710 are of high confidence. The computation of a reliability score for each protein-protein interaction and the systematic identification of the interacting domain combined with a prediction of structural/functional motifs allow the elaboration of known complexes and the identification of new ones. The full data set can be visualized using a graphical Web interface, the PIMRider (http://pim.hybrigenics.com), and is also accessible in the PSI standard Molecular Interaction data format. Our fly Protein Interaction Map (PIM) is surprisingly different from the one recently proposed by Giot et al. with little overlap between the two data sets. Analysis of the differences in data sets and methods suggests alternative strategies to enhance the accuracy and comprehensiveness of the post-genomic generation of broad-scale protein interaction maps. PMID:15710747

  1. Reconstitution of the membrane protein OmpF into biomimetic block copolymer-phospholipid hybrid membranes.

    PubMed

    Bieligmeyer, Matthias; Artukovic, Franjo; Nussberger, Stephan; Hirth, Thomas; Schiestel, Thomas; Müller, Michaela

    2016-01-01

    Structure and function of many transmembrane proteins are affected by their environment. In this respect, reconstitution of a membrane protein into a biomimetic polymer membrane can alter its function. To overcome this problem we used membranes formed by poly(1,4-isoprene-block-ethylene oxide) block copolymers blended with 1,2-diphytanoyl-sn-glycero-3-phosphocholine. By reconstituting the outer membrane protein OmpF from Escherichia coli into these membranes, we demonstrate functionality of this protein in biomimetic lipopolymer membranes, independent of the molecular weight of the block copolymers. At low voltages, the channel conductance of OmpF in 1 M KCl was around 2.3 nS. In line with these experiments, integration of OmpF was also revealed by impedance spectroscopy. Our results indicate that blending synthetic polymer membranes with phospholipids allows for the reconstitution of transmembrane proteins under preservation of protein function, independent of the membrane thickness. PMID:27547605

  2. Reconstitution of the membrane protein OmpF into biomimetic block copolymer–phospholipid hybrid membranes

    PubMed Central

    Bieligmeyer, Matthias; Artukovic, Franjo; Hirth, Thomas; Schiestel, Thomas

    2016-01-01

    Summary Structure and function of many transmembrane proteins are affected by their environment. In this respect, reconstitution of a membrane protein into a biomimetic polymer membrane can alter its function. To overcome this problem we used membranes formed by poly(1,4-isoprene-block-ethylene oxide) block copolymers blended with 1,2-diphytanoyl-sn-glycero-3-phosphocholine. By reconstituting the outer membrane protein OmpF from Escherichia coli into these membranes, we demonstrate functionality of this protein in biomimetic lipopolymer membranes, independent of the molecular weight of the block copolymers. At low voltages, the channel conductance of OmpF in 1 M KCl was around 2.3 nS. In line with these experiments, integration of OmpF was also revealed by impedance spectroscopy. Our results indicate that blending synthetic polymer membranes with phospholipids allows for the reconstitution of transmembrane proteins under preservation of protein function, independent of the membrane thickness. PMID:27547605

  3. Protein kinase C mediated phosphorylation blocks juvenile hormone action.

    PubMed

    Kethidi, Damu R; Li, Yiping; Palli, Subba R

    2006-03-01

    Juvenile hormones (JH) regulate a wide variety of developmental and physiological processes in insects. Although the biological actions of JH are well documented, the molecular mechanisms underlying JH action are poorly understood. We studied the molecular basis of JH action using a JH response element (JHRE) identified in the promoter region of JH esterase gene cloned from Choristoneura fumiferana, which is responsive to JH and 20-hydroxyecdysone (20E). In Drosophila melanogaster L57 cells, the JHRE-regulated reporter gene was induced by JH I, JH III, methoprene, and hydroprene. Nuclear proteins isolated from L57 cells bound to the JHRE and exposure of these proteins to ATP resulted in a reduction in their DNA binding. Either JH III or calf intestinal alkaline phosphatase (CIAP) was able to restore the binding of nuclear proteins to the DNA. In addition, protein kinase C inhibitors increased and protein kinase C activators reduced the binding of nuclear proteins to the JHRE. In transactivation assays, protein kinase C inhibitors induced the luciferase gene placed under the control of a minimal promoter and the JHRE. These data suggest that protein kinase C mediated phosphorylation prevents binding of nuclear proteins to juvenile hormone responsive promoters resulting in suppression of JH action. PMID:16448742

  4. Multilevel regulation of protein protein interactions in biological circuitry

    NASA Astrophysics Data System (ADS)

    Beckett, Dorothy

    2005-06-01

    Protein-protein interactions are central to biology and, in this 'post-genomic era', prediction of these interactions has become the goal of many computational efforts. Close inspection of even relatively simple biological regulatory circuitry reveals multiple levels of control of the contributing protein interactions. The fundamental probability that an interaction will occur under a given set of conditions is difficult to predict because the relationship between structure and energy is not known. Layered on this basic difficulty are allosteric control mechanisms involving post-translational modification or small ligand binding. In addition, many biological processes involve multiple protein-protein interactions, some of which may be cooperative or even competitive. Finally, although the emphasis in predicting protein interactions is based on equilibrium thermodynamic principles, kinetics can be a major controlling feature in these systems. This complexity reinforces the necessity of performing detailed quantitative studies of the component interactions of complex biological regulatory systems. Results of such studies will help us to bridge the gap between our knowledge of structure and our understanding of functional biology.

  5. Characterizing carbohydrate-protein interactions by NMR

    PubMed Central

    Bewley, Carole A.; Shahzad-ul-Hussan, Syed

    2013-01-01

    Interactions between proteins and soluble carbohydrates and/or surface displayed glycans are central to countless recognition, attachment and signaling events in biology. The physical chemical features associated with these binding events vary considerably, depending on the biological system of interest. For example, carbohydrate-protein interactions can be stoichiometric or multivalent, the protein receptors can be monomeric or oligomeric, and the specificity of recognition can be highly stringent or rather promiscuous. Equilibrium dissociation constants for carbohydrate binding are known to vary from micromolar to millimolar, with weak interactions being far more prevalent; and individual carbohydrate binding sites can be truly symmetrical or merely homologous, and hence, the affinities of individual sites within a single protein can vary, as can the order of binding. Several factors, including the weak affinities with which glycans bind their protein receptors, the dynamic nature of the glycans themselves, and the non-equivalent interactions among oligomeric carbohydrate receptors, have made NMR an especially powerful tool for studying and defining carbohydrate-protein interactions. Here we describe those NMR approaches that have proven to be the most robust in characterizing these systems, and explain what type of information can (or cannot) be obtained from each. Our goal is to provide to the reader the information necessary for selecting the correct experiment or sets of experiments to characterize their carbohydrate-protein interaction of interest. PMID:23784792

  6. Van der Waals Interactions Involving Proteins

    NASA Technical Reports Server (NTRS)

    Roth, Charles M.; Neal, Brian L.; Lenhoff, Abraham M.

    1996-01-01

    Van der Waals (dispersion) forces contribute to interactions of proteins with other molecules or with surfaces, but because of the structural complexity of protein molecules, the magnitude of these effects is usually estimated based on idealized models of the molecular geometry, e.g., spheres or spheroids. The calculations reported here seek to account for both the geometric irregularity of protein molecules and the material properties of the interacting media. Whereas the latter are found to fall in the generally accepted range, the molecular shape is shown to cause the magnitudes of the interactions to differ significantly from those calculated using idealized models. with important consequences. First, the roughness of the molecular surface leads to much lower average interaction energies for both protein-protein and protein-surface cases relative to calculations in which the protein molecule is approximated as a sphere. These results indicate that a form of steric stabilization may be an important effect in protein solutions. Underlying this behavior is appreciable orientational dependence, one reflection of which is that molecules of complementary shape are found to exhibit very strong attractive dispersion interactions. Although this has been widely discussed previously in the context of molecular recognition processes, the broader implications of these phenomena may also be important at larger molecular separations, e.g., in the dynamics of aggregation, precipitation, and crystal growth.

  7. Van der Waals interactions involving proteins.

    PubMed Central

    Roth, C M; Neal, B L; Lenhoff, A M

    1996-01-01

    Van der Waals (dispersion) forces contribute to interactions of proteins with other molecules or with surfaces, but because of the structural complexity of protein molecules, the magnitude of these effects is usually estimated based on idealized models of the molecular geometry, e.g., spheres or spheroids. The calculations reported here seek to account for both the geometric irregularity of protein molecules and the material properties of the interacting media. Whereas the latter are found to fall in the generally accepted range, the molecular shape is shown to cause the magnitudes of the interactions to differ significantly from those calculated using idealized models, with important consequences. First, the roughness of the molecular surface leads to much lower average interaction energies for both protein-protein and protein-surface cases relative to calculations in which the protein molecule is approximated as a sphere. These results indicate that a form of steric stabilization may be an important effect in protein solutions. Underlying this behavior is appreciable orientational dependence, one reflection of which is that molecules of complementary shape are found to exhibit very strong attractive dispersion interactions. Although this has been widely discussed previously in the context of molecular recognition processes, the broader implications of these phenomena may also be important at larger molecular separations, e.g., in the dynamics of aggregation, precipitation, and crystal growth. Images FIGURE 3 PMID:8789115

  8. FAK and p53 protein interactions.

    PubMed

    Golubovskaya, Vita M; Cance, William G

    2011-09-01

    Focal Adhesion Kinase plays a major role in cell adhesion, motility, survival, proliferation, metastasis, angiogenesis and lymphangiogenesis. In 2004, we have cloned the promoter sequence of FAK and found that p53 inhibits its activity (BBA, v. 1678, 2004). In 2005, we were the first group to show that FAK and p53 proteins directly interact in the cells (JBC, v. 280, 2005). We have shown that FAK and p53 proteins interact in the cytoplasm and in the nucleus by immunoprecipitation, pull-down and confocal microscopy assays. We have shown that FAK inhibited activity of p53 with the transcriptional targets: p21, Bax and Mdm-2 through protein-protein interactions. We identified the 7 amino-acid site in p53 that is involved in interaction with FAK protein. The present review will discuss the interaction of FAK and p53 proteins and discuss the mechanism of FAK-p53 loop regulation: inhibition of FAK promoter activity by p53 protein and also inhibition of p53 transcriptional activity by FAK protein. PMID:21355845

  9. RNA Protein Interaction in Neurons

    PubMed Central

    Darnell, Robert B.

    2013-01-01

    Neurons have their own systems for regulating RNA. Several multigene families encode RNA binding proteins (RNABPs) that are uniquely expressed in neurons, including the well-known neuron-specific markers ELAV and NeuN, and the disease antigen NOVA. New technologies have emerged in recent years to assess the function of these proteins in vivo, and the answers are yielding insights into how and why neurons may regulate RNA in special ways—to increase cellular complexity, to spatially localize mRNA, and to regulate their expression in response to synaptic stimuli. The functions of such restricted neuronal proteins is likely to be complimented by more widely expressed RNABPs that may themselves have developed specialized functions in neurons, including Argonaute/miRNAs. Here we review what is known about such RNABPs, and explore the potential biologic and neurologic significance of neuronal RNA regulatory systems. PMID:23701460

  10. Time-resolved SANS studies on block copolymer micelles with varying core-solvent interactions

    NASA Astrophysics Data System (ADS)

    Cooksey, Tyler; Singh, Avantika; Marquez, Maria; Robertson, Megan

    The self-assembly of block copolymer micelles occurs through a relaxation process dominated by the exchange of individual polymer chains. The objective of this work is to probe the single chain exchange of block copolymer micelles with varying core-solvent interactions, utilizing time-resolved neutron scattering (TR-SANS). The interactions between the core-forming polymer and the solvent has many implications for the micelle structure, including the aggregation number, micelle size, and interfacial tension. However, few studies have investigated the effect of the core polymer-solvent interactions on the dynamics of micelle formation. We will focus our study on poly(epsilon-caprolactone-block-ethylene oxide) block copolymers forming micelle structures in mixtures of water and tetrahydrofuran (THF). It was observed that changing the THF concentration, which varies the degree of repulsion between the core and solvent, greatly influences the single chain exchange rate in this system.

  11. Interaction between Albumin and Pluronic F127 Block Copolymer Revealed by Global and Local Physicochemical Profiling.

    PubMed

    Neacsu, Maria Victoria; Matei, Iulia; Micutz, Marin; Staicu, Teodora; Precupas, Aurica; Popa, Vlad Tudor; Salifoglou, Athanasios; Ionita, Gabriela

    2016-05-12

    The interaction of human serum albumin (HSA) with amphiphilic block copolymer Pluronic F127 has been investigated by several physical methods. Interest in studying this system stems from a broad range of bioactivities involving both macromolecules. Serum albumins constitute a significant class of proteins in the circulatory system, acting as carriers for a wide spectrum of compounds or assemblies. Pluronic block copolymers have revealed their capacity to ferry a variety of biologically active compounds. Circular dichroism, rheological measurements, and differential scanning microcalorimetry (μDSC) were employed to get insight into the interaction betweeen the two macromolecules. The results reveal that Pluronic F127 induces conformational changes to albumin if it is organized in a micellar form, while albumin influences the self-assembly of Pluronic F127 into micelles or gels. F127 micelles, however, induce smaller conformational changes compared to ionic surfactants. The μDSC thermograms obtained for HSA and/or F127 show that HSA shifts the critical micellar temperature (cmt) to lower values, while concurrently the HSA denaturation behavior is influenced by F127, depending on its concentration. Rheological measurements on solutions of F127 17% have shown that a sol-to-gel transition occurs at higher temperatures in the presence of HSA and the resulting gel is weaker. The global profile on HSA/F127 systems was complemented by local information provided by EPR measurements. A series of X-band EPR experiments was performed with spin probes 4-(N,N'-dimethyl-N-hexadecyl)ammonium-2,2',6,6'-tetramethylpiperidine-1-oxyl iodide (CAT16) and 5-doxyl stearic acid (5-DSA). These spin probes bind to albumin sites and are sensitive to phase transformations in Pluronic block copolymer solutions. For a given F127 concentration, the spin probe binds only to HSA below cmt and migrates to the F127 micelles above cmt. The collective data suggest soft interactions between the

  12. Contribution of Hydrophobic Interactions to Protein Stability

    PubMed Central

    Pace, C. Nick; Fu, Hailong; Fryar, Katrina Lee; Landua, John; Trevino, Saul R.; Shirley, Bret A.; Hendricks, Marsha McNutt; Iimura, Satoshi; Gajiwala, Ketan; Scholtz, J. Martin; Grimsley, Gerald R.

    2011-01-01

    Our goal was to gain a better understanding of the contribution of hydrophobic interactions to protein stability. We measured the change in conformational stability, Δ(ΔG), for hydrophobic mutants of four proteins: villin head piece subdomain (VHP) with 36 residues, a surface protein from Borrelia burgdorferi (VlsE) with 341 residues, and two proteins previously studied in our laboratory, ribonucleases Sa and T1. We compare our results with previous studies and reach the following conclusions. 1. Hydrophobic interactions contribute less to the stability of a small protein, VHP (0.6 ± 0.3 kcal/mole per –CH2– group), than to the stability of a large protein, VlsE (1.6 ± 0.3 kcal/mol per –CH2– group). 2. Hydrophobic interactions make the major contribution to the stability of VHP (40 kcal/mol) and the major contributors are (in kcal/mol): Phe 18 (3.9), Met 13 (3.1), Phe 7 (2.9), Phe 11 (2.7), and Leu 21 (2.7). 3. Based on Δ(ΔG) values for 148 hydrophobic mutants in 13 proteins, burying a –CH2– group on folding contributes, on average, 1.1 ± 0.5 kcal/mol to protein stability. 4. The experimental Δ(ΔG) values for aliphatic side chains (Ala, Val, Ile, and Leu) are in good agreement with their ΔGtr values from water to cyclohexane. 5. For 22 proteins with 36 to 534 residues, hydrophobic interactions contribute 60 ± 4% and hydrogen bonds 40 ± 4% to protein stability. 6. Conformational entropy contributes about 2.4 kcal/mol per residue to protein instability. The globular conformation of proteins is stabilized predominately by hydrophobic interactions. PMID:21377472

  13. Contribution of hydrophobic interactions to protein stability.

    PubMed

    Pace, C Nick; Fu, Hailong; Fryar, Katrina Lee; Landua, John; Trevino, Saul R; Shirley, Bret A; Hendricks, Marsha McNutt; Iimura, Satoshi; Gajiwala, Ketan; Scholtz, J Martin; Grimsley, Gerald R

    2011-05-01

    Our goal was to gain a better understanding of the contribution of hydrophobic interactions to protein stability. We measured the change in conformational stability, Δ(ΔG), for hydrophobic mutants of four proteins: villin headpiece subdomain (VHP) with 36 residues, a surface protein from Borrelia burgdorferi (VlsE) with 341 residues, and two proteins previously studied in our laboratory, ribonucleases Sa and T1. We compared our results with those of previous studies and reached the following conclusions: (1) Hydrophobic interactions contribute less to the stability of a small protein, VHP (0.6±0.3 kcal/mol per -CH(2)- group), than to the stability of a large protein, VlsE (1.6±0.3 kcal/mol per -CH(2)- group). (2) Hydrophobic interactions make the major contribution to the stability of VHP (40 kcal/mol) and the major contributors are (in kilocalories per mole) Phe18 (3.9), Met13 (3.1), Phe7 (2.9), Phe11 (2.7), and Leu21 (2.7). (3) Based on the Δ(ΔG) values for 148 hydrophobic mutants in 13 proteins, burying a -CH(2)- group on folding contributes, on average, 1.1±0.5 kcal/mol to protein stability. (4) The experimental Δ(ΔG) values for aliphatic side chains (Ala, Val, Ile, and Leu) are in good agreement with their ΔG(tr) values from water to cyclohexane. (5) For 22 proteins with 36 to 534 residues, hydrophobic interactions contribute 60±4% and hydrogen bonds contribute 40±4% to protein stability. (6) Conformational entropy contributes about 2.4 kcal/mol per residue to protein instability. The globular conformation of proteins is stabilized predominantly by hydrophobic interactions. PMID:21377472

  14. Interface-Resolved Network of Protein-Protein Interactions

    PubMed Central

    Johnson, Margaret E.; Hummer, Gerhard

    2013-01-01

    We define an interface-interaction network (IIN) to capture the specificity and competition between protein-protein interactions (PPI). This new type of network represents interactions between individual interfaces used in functional protein binding and thereby contains the detail necessary to describe the competition and cooperation between any pair of binding partners. Here we establish a general framework for the construction of IINs that merges computational structure-based interface assignment with careful curation of available literature. To complement limited structural data, the inclusion of biochemical data is critical for achieving the accuracy and completeness necessary to analyze the specificity and competition between the protein interactions. Firstly, this procedure provides a means to clarify the information content of existing data on purported protein interactions and to remove indirect and spurious interactions. Secondly, the IIN we have constructed here for proteins involved in clathrin-mediated endocytosis (CME) exhibits distinctive topological properties. In contrast to PPI networks with their global and relatively dense connectivity, the fragmentation of the IIN into distinctive network modules suggests that different functional pressures act on the evolution of its topology. Large modules in the IIN are formed by interfaces sharing specificity for certain domain types, such as SH3 domains distributed across different proteins. The shared and distinct specificity of an interface is necessary for effective negative and positive design of highly selective binding targets. Lastly, the organization of detailed structural data in a network format allows one to identify pathways of specific binding interactions and thereby predict effects of mutations at specific surfaces on a protein and of specific binding inhibitors, as we explore in several examples. Overall, the endocytosis IIN is remarkably complex and rich in features masked in the coarser

  15. Estrogen receptor α inhibitor activates the unfolded protein response, blocks protein synthesis, and induces tumor regression.

    PubMed

    Andruska, Neal D; Zheng, Xiaobin; Yang, Xujuan; Mao, Chengjian; Cherian, Mathew M; Mahapatra, Lily; Helferich, William G; Shapiro, David J

    2015-04-14

    Recurrent estrogen receptor α (ERα)-positive breast and ovarian cancers are often therapy resistant. Using screening and functional validation, we identified BHPI, a potent noncompetitive small molecule ERα biomodulator that selectively blocks proliferation of drug-resistant ERα-positive breast and ovarian cancer cells. In a mouse xenograft model of breast cancer, BHPI induced rapid and substantial tumor regression. Whereas BHPI potently inhibits nuclear estrogen-ERα-regulated gene expression, BHPI is effective because it elicits sustained ERα-dependent activation of the endoplasmic reticulum (EnR) stress sensor, the unfolded protein response (UPR), and persistent inhibition of protein synthesis. BHPI distorts a newly described action of estrogen-ERα: mild and transient UPR activation. In contrast, BHPI elicits massive and sustained UPR activation, converting the UPR from protective to toxic. In ERα(+) cancer cells, BHPI rapidly hyperactivates plasma membrane PLCγ, generating inositol 1,4,5-triphosphate (IP3), which opens EnR IP3R calcium channels, rapidly depleting EnR Ca(2+) stores. This leads to activation of all three arms of the UPR. Activation of the PERK arm stimulates phosphorylation of eukaryotic initiation factor 2α (eIF2α), resulting in rapid inhibition of protein synthesis. The cell attempts to restore EnR Ca(2+) levels, but the open EnR IP3R calcium channel leads to an ATP-depleting futile cycle, resulting in activation of the energy sensor AMP-activated protein kinase and phosphorylation of eukaryotic elongation factor 2 (eEF2). eEF2 phosphorylation inhibits protein synthesis at a second site. BHPI's novel mode of action, high potency, and effectiveness in therapy-resistant tumor cells make it an exceptional candidate for further mechanistic and therapeutic exploration. PMID:25825714

  16. Human Milk Blocks DC-SIGN-Pathogen Interaction via MUC1.

    PubMed

    Koning, Nathalie; Kessen, Sabine F M; Van Der Voorn, J Patrick; Appelmelk, Ben J; Jeurink, Prescilla V; Knippels, Leon M J; Garssen, Johan; Van Kooyk, Yvette

    2015-01-01

    Beneficial effects of breastfeeding are well-recognized and include both immediate neonatal protection against pathogens and long-term protection against allergies and autoimmune diseases. Although several proteins have been identified to have anti-viral or anti-bacterial effects like secretory IgA or lactoferrin, the mechanisms of immune modulation are not fully understood. Recent studies identified important beneficial effects of glycans in human milk, such as those expressed in oligosaccharides or on glycoproteins. Glycans are recognized by the carbohydrate receptors C-type lectins on dendritic cell (DC) and specific tissue macrophages, which exert important functions in immune modulation and immune homeostasis. A well-characterized C-type lectin is dendritic cell-specific intercellular adhesion molecule-3-grabbing non-integrin (DC-SIGN), which binds terminal fucose. The present study shows that in human milk, MUC1 is the major milk glycoprotein that binds to the lectin domain of DC-SIGN and prevents pathogen interaction through the presence of Lewis x-type oligosaccharides. Surprisingly, this was specific for human milk, as formula, bovine or camel milk did not show any presence of proteins that interacted with DC-SIGN. The expression of DC-SIGN is found in young infants along the entire gastrointestinal tract. Our data thus suggest the importance of human milk glycoproteins for blocking pathogen interaction to DC in young children. Moreover, a potential benefit of human milk later in life in shaping the infants immune system through DC-SIGN cannot be ruled out. PMID:25821450

  17. Human Milk Blocks DC-SIGN–Pathogen Interaction via MUC1

    PubMed Central

    Koning, Nathalie; Kessen, Sabine F. M.; Van Der Voorn, J. Patrick; Appelmelk, Ben J.; Jeurink, Prescilla V.; Knippels, Leon M. J.; Garssen, Johan; Van Kooyk, Yvette

    2015-01-01

    Beneficial effects of breastfeeding are well-recognized and include both immediate neonatal protection against pathogens and long-term protection against allergies and autoimmune diseases. Although several proteins have been identified to have anti-viral or anti-bacterial effects like secretory IgA or lactoferrin, the mechanisms of immune modulation are not fully understood. Recent studies identified important beneficial effects of glycans in human milk, such as those expressed in oligosaccharides or on glycoproteins. Glycans are recognized by the carbohydrate receptors C-type lectins on dendritic cell (DC) and specific tissue macrophages, which exert important functions in immune modulation and immune homeostasis. A well-characterized C-type lectin is dendritic cell-specific intercellular adhesion molecule-3-grabbing non-integrin (DC-SIGN), which binds terminal fucose. The present study shows that in human milk, MUC1 is the major milk glycoprotein that binds to the lectin domain of DC-SIGN and prevents pathogen interaction through the presence of Lewis x-type oligosaccharides. Surprisingly, this was specific for human milk, as formula, bovine or camel milk did not show any presence of proteins that interacted with DC-SIGN. The expression of DC-SIGN is found in young infants along the entire gastrointestinal tract. Our data thus suggest the importance of human milk glycoproteins for blocking pathogen interaction to DC in young children. Moreover, a potential benefit of human milk later in life in shaping the infants immune system through DC-SIGN cannot be ruled out. PMID:25821450

  18. Moonlighting proteins in sperm-egg interactions.

    PubMed

    Petit, François M; Serres, Catherine; Auer, Jana

    2014-12-01

    Sperm-egg interaction is a highly species-specific step during the fertilization process. The first steps consist of recognition between proteins on the sperm head and zona pellucida (ZP) glycoproteins, the acellular coat that protects the oocyte. We aimed to determine which sperm head proteins interact with ZP2, ZP3 and ZP4 in humans. Two approaches were combined to identify these proteins: immunoblotting human spermatozoa targeted by antisperm antibodies (ASAs) from infertile men and far-Western blotting of human sperm proteins overlaid by each of the human recombinant ZP (hrZP) proteins. We used a proteomic approach with 2D electrophoretic separation of sperm protein revealed using either ASAs eluted from infertile patients or recombinant human ZP glycoproteins expressed in Chinese-hamster ovary (CHO) cells. Only spots highlighted by both methods were analysed by MALDI-MS/MS for identification. We identified proteins already described in human spermatozoa, but implicated in different metabolic pathways such as glycolytic enzymes [phosphokinase type 3 (PK3), enolase 1 (ENO1), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), aldolase A (ALDOA) and triose phosphate isomerase (TPI)], detoxification enzymes [GST Mu (GSTM) and phospholipid hydroperoxide glutathione peroxidase (PHGPx) 4], ion channels [voltage-dependent anion channel 2 (VDAC2)] or structural proteins (outer dense fibre 2). Several proteins were localized on the sperm head by indirect immunofluorescence, and their interaction with ZP proteins was confirmed by co-precipitation experiments. These results confirm the complexity of the sperm-ZP recognition process in humans with the implication of different proteins interacting with the main three ZP glycoproteins. The multiple roles of these proteins suggest that they are multifaceted or moonlighting proteins. PMID:25399599

  19. Multivalent Protein Assembly Using Monovalent Self-Assembling Building Blocks

    PubMed Central

    Petkau-Milroy, Katja; Sonntag, Michael H.; Colditz, Alexander; Brunsveld, Luc

    2013-01-01

    Discotic molecules, which self-assemble in water into columnar supramolecular polymers, emerged as an alternative platform for the organization of proteins. Here, a monovalent discotic decorated with one single biotin was synthesized to study the self-assembling multivalency of this system in regard to streptavidin. Next to tetravalent streptavidin, monovalent streptavidin was used to study the protein assembly along the supramolecular polymer in detail without the interference of cross-linking. Upon self-assembly of the monovalent biotinylated discotics, multivalent proteins can be assembled along the supramolecular polymer. The concentration of discotics, which influences the length of the final polymers at the same time dictates the amount of assembled proteins. PMID:24152447

  20. Website on Protein Interaction and Protein Structure Related Work

    NASA Technical Reports Server (NTRS)

    Samanta, Manoj; Liang, Shoudan; Biegel, Bryan (Technical Monitor)

    2003-01-01

    In today's world, three seemingly diverse fields - computer information technology, nanotechnology and biotechnology are joining forces to enlarge our scientific knowledge and solve complex technological problems. Our group is dedicated to conduct theoretical research exploring the challenges in this area. The major areas of research include: 1) Yeast Protein Interactions; 2) Protein Structures; and 3) Current Transport through Small Molecules.

  1. Eukaryotic LYR Proteins Interact with Mitochondrial Protein Complexes.

    PubMed

    Angerer, Heike

    2015-01-01

    In eukaryotic cells, mitochondria host ancient essential bioenergetic and biosynthetic pathways. LYR (leucine/tyrosine/arginine) motif proteins (LYRMs) of the Complex1_LYR-like superfamily interact with protein complexes of bacterial origin. Many LYR proteins function as extra subunits (LYRM3 and LYRM6) or novel assembly factors (LYRM7, LYRM8, ACN9 and FMC1) of the oxidative phosphorylation (OXPHOS) core complexes. Structural insights into complex I accessory subunits LYRM6 and LYRM3 have been provided by analyses of EM and X-ray structures of complex I from bovine and the yeast Yarrowia lipolytica, respectively. Combined structural and biochemical studies revealed that LYRM6 resides at the matrix arm close to the ubiquinone reduction site. For LYRM3, a position at the distal proton-pumping membrane arm facing the matrix space is suggested. Both LYRMs are supposed to anchor an acyl-carrier protein (ACPM) independently to complex I. The function of this duplicated protein interaction of ACPM with respiratory complex I is still unknown. Analysis of protein-protein interaction screens, genetic analyses and predicted multi-domain LYRMs offer further clues on an interaction network and adaptor-like function of LYR proteins in mitochondria. PMID:25686363

  2. Novel computational methods to design protein-protein interactions

    NASA Astrophysics Data System (ADS)

    Zhou, Alice Qinhua; O'Hern, Corey; Regan, Lynne

    2014-03-01

    Despite the abundance of structural data, we still cannot accurately predict the structural and energetic changes resulting from mutations at protein interfaces. The inadequacy of current computational approaches to the analysis and design of protein-protein interactions has hampered the development of novel therapeutic and diagnostic agents. In this work, we apply a simple physical model that includes only a minimal set of geometrical constraints, excluded volume, and attractive van der Waals interactions to 1) rank the binding affinity of mutants of tetratricopeptide repeat proteins with their cognate peptides, 2) rank the energetics of binding of small designed proteins to the hydrophobic stem region of the influenza hemagglutinin protein, and 3) predict the stability of T4 lysozyme and staphylococcal nuclease mutants. This work will not only lead to a fundamental understanding of protein-protein interactions, but also to the development of efficient computational methods to rationally design protein interfaces with tunable specificity and affinity, and numerous applications in biomedicine. NSF DMR-1006537, PHY-1019147, Raymond and Beverly Sackler Institute for Biological, Physical and Engineering Sciences, and Howard Hughes Medical Institute.

  3. Systematic computational prediction of protein interaction networks.

    PubMed

    Lees, J G; Heriche, J K; Morilla, I; Ranea, J A; Orengo, C A

    2011-06-01

    Determining the network of physical protein associations is an important first step in developing mechanistic evidence for elucidating biological pathways. Despite rapid advances in the field of high throughput experiments to determine protein interactions, the majority of associations remain unknown. Here we describe computational methods for significantly expanding protein association networks. We describe methods for integrating multiple independent sources of evidence to obtain higher quality predictions and we compare the major publicly available resources available for experimentalists to use. PMID:21572181

  4. Inferring Domain-Domain Interactions from Protein-Protein Interactions with Formal Concept Analysis

    PubMed Central

    Khor, Susan

    2014-01-01

    Identifying reliable domain-domain interactions will increase our ability to predict novel protein-protein interactions, to unravel interactions in protein complexes, and thus gain more information about the function and behavior of genes. One of the challenges of identifying reliable domain-domain interactions is domain promiscuity. Promiscuous domains are domains that can occur in many domain architectures and are therefore found in many proteins. This becomes a problem for a method where the score of a domain-pair is the ratio between observed and expected frequencies because the protein-protein interaction network is sparse. As such, many protein-pairs will be non-interacting and domain-pairs with promiscuous domains will be penalized. This domain promiscuity challenge to the problem of inferring reliable domain-domain interactions from protein-protein interactions has been recognized, and a number of work-arounds have been proposed. This paper reports on an application of Formal Concept Analysis to this problem. It is found that the relationship between formal concepts provides a natural way for rare domains to elevate the rank of promiscuous domain-pairs and enrich highly ranked domain-pairs with reliable domain-domain interactions. This piggybacking of promiscuous domain-pairs onto less promiscuous domain-pairs is possible only with concept lattices whose attribute-labels are not reduced and is enhanced by the presence of proteins that comprise both promiscuous and rare domains. PMID:24586450

  5. Teaching Noncovalent Interactions Using Protein Molecular Evolution

    ERIC Educational Resources Information Center

    Fornasari, Maria Silvina; Parisi, Gustavo; Echave, Julian

    2008-01-01

    Noncovalent interactions and physicochemical properties of amino acids are important topics in biochemistry courses. Here, we present a computational laboratory where the capacity of each of the 20 amino acids to maintain different noncovalent interactions are used to investigate the stabilizing forces in a set of proteins coming from organisms…

  6. 21 CFR 520.2380a - Thiabendazole top dressing and mineral protein block.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Thiabendazole top dressing and mineral protein... § 520.2380a Thiabendazole top dressing and mineral protein block. (a) Chemical name. 2-(4-Thiazolyl..., Ostertagia and Cooperia). (iv) Limitations. Administer to cattle on pasture or range accustomed to...

  7. 21 CFR 520.2380a - Thiabendazole top dressing and mineral protein block.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Thiabendazole top dressing and mineral protein... § 520.2380a Thiabendazole top dressing and mineral protein block. (a) Chemical name. 2-(4-Thiazolyl..., Ostertagia and Cooperia). (iv) Limitations. Administer to cattle on pasture or range accustomed to...

  8. 21 CFR 520.2380a - Thiabendazole top dressing and mineral protein block.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Thiabendazole top dressing and mineral protein... § 520.2380a Thiabendazole top dressing and mineral protein block. (a) Chemical name. 2-(4-Thiazolyl..., Ostertagia and Cooperia). (iv) Limitations. Administer to cattle on pasture or range accustomed to...

  9. 21 CFR 520.2380a - Thiabendazole top dressing and mineral protein block.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Thiabendazole top dressing and mineral protein... § 520.2380a Thiabendazole top dressing and mineral protein block. (a) Chemical name. 2-(4-Thiazolyl..., Ostertagia and Cooperia). (iv) Limitations. Administer to cattle on pasture or range accustomed to...

  10. 21 CFR 520.2380a - Thiabendazole top dressing and mineral protein block.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Thiabendazole top dressing and mineral protein... § 520.2380a Thiabendazole top dressing and mineral protein block. (a) Chemical name. 2-(4-Thiazolyl..., Ostertagia and Cooperia). (iv) Limitations. Administer to cattle on pasture or range accustomed to...

  11. Subcellular localization of the barley stripe mosaic virsus triple gene block proteins

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Barley stripe mosaic virus (BSMV) spreads from cell-to-cell through the coordinated actions of three triple gene block proteins (TGB1, TGB2, and TGB3) arranged in overlapping open reading frames (ORFs). Our previous studies (Lawrence and Jackson, 2001a,b) have shown that each of these proteins is re...

  12. Evolving new protein-protein interaction specificity through promiscuous intermediates.

    PubMed

    Aakre, Christopher D; Herrou, Julien; Phung, Tuyen N; Perchuk, Barrett S; Crosson, Sean; Laub, Michael T

    2015-10-22

    Interacting proteins typically coevolve, and the identification of coevolving amino acids can pinpoint residues required for interaction specificity. This approach often assumes that an interface-disrupting mutation in one protein drives selection of a compensatory mutation in its partner during evolution. However, this model requires a non-functional intermediate state prior to the compensatory change. Alternatively, a mutation in one protein could first broaden its specificity, allowing changes in its partner, followed by a specificity-restricting mutation. Using bacterial toxin-antitoxin systems, we demonstrate the plausibility of this second, promiscuity-based model. By screening large libraries of interface mutants, we show that toxins and antitoxins with high specificity are frequently connected in sequence space to more promiscuous variants that can serve as intermediates during a reprogramming of interaction specificity. We propose that the abundance of promiscuous variants promotes the expansion and diversification of toxin-antitoxin systems and other paralogous protein families during evolution. PMID:26478181

  13. Protein-protein interaction network analysis of cirrhosis liver disease

    PubMed Central

    Safaei, Akram; Rezaei Tavirani, Mostafa; Arefi Oskouei, Afsaneh; Zamanian Azodi, Mona; Mohebbi, Seyed Reza; Nikzamir, Abdol Rahim

    2016-01-01

    Aim: Evaluation of biological characteristics of 13 identified proteins of patients with cirrhotic liver disease is the main aim of this research. Background: In clinical usage, liver biopsy remains the gold standard for diagnosis of hepatic fibrosis. Evaluation and confirmation of liver fibrosis stages and severity of chronic diseases require a precise and noninvasive biomarkers. Since the early detection of cirrhosis is a clinical problem, achieving a sensitive, specific and predictive novel method based on biomarkers is an important task. Methods: Essential analysis, such as gene ontology (GO) enrichment and protein-protein interactions (PPI) was undergone EXPASy, STRING Database and DAVID Bioinformatics Resources query. Results: Based on GO analysis, most of proteins are located in the endoplasmic reticulum lumen, intracellular organelle lumen, membrane-enclosed lumen, and extracellular region. The relevant molecular functions are actin binding, metal ion binding, cation binding and ion binding. Cell adhesion, biological adhesion, cellular amino acid derivative, metabolic process and homeostatic process are the related processes. Protein-protein interaction network analysis introduced five proteins (fibroblast growth factor receptor 4, tropomyosin 4, tropomyosin 2 (beta), lectin, Lectin galactoside-binding soluble 3 binding protein and apolipoprotein A-I) as hub and bottleneck proteins. Conclusion: Our result indicates that regulation of lipid metabolism and cell survival are important biological processes involved in cirrhosis disease. More investigation of above mentioned proteins will provide a better understanding of cirrhosis disease. PMID:27099671

  14. Synoptic/planetary-scale interactions and blocking over the North Atlantic Ocean

    NASA Technical Reports Server (NTRS)

    Smith, Phillip J.

    1989-01-01

    The focus was on the development of a blocking anticyclone that formed over the North Atlantic in January 1979 and a marine cyclone that deepened explosively prior to the onset of the block. The extended height tendency equation was used as the primary diagnostic tool. Focusing on the domain encompassing the migrating ridge that eventually formed the block, it was found that vorticity advection played the dominant role in the development of the ridge and the formation of the block. Also of interest was an attempt to evaluate the relative importance of synoptic-scale, planetary-scale, and synoptic/planetary-scale interactions as the block developed. To accomplish this, all data fields were partitioned into synoptic and planetary-scale components using a Barnes-type filter. Finally, the cyclone was diagnosed by examining the low level static stability fields associated with the cyclone's development.

  15. Blocking peptides against HBV: PreS1 protein selected from a phage display library

    SciTech Connect

    Wang, Wei; Liu, Yang; Zu, Xiangyang; Jin, Rui; Xiao, Gengfu

    2011-09-09

    Highlights: {yields} Successfully selected specific PreS1-interacting peptides by using phage displayed library. {yields} Alignment of the positive phage clones revealed a consensus PreS1 binding motif. {yields} A highly enriched peptide named P7 had a strong binding ability for PreS1. {yields} P7 could block PreS1 attachment. -- Abstract: The PreS1 protein is present on the outermost part of the hepatitis B virus (HBV) surface and has been shown to have a pivotal function in viral infectivity and assembly. The development of reagents with high affinity and specificity for PreS1 is of great significance for early diagnosis and treatment of HBV infection. A phage display library of dodecapeptide was screened for interactions with purified PreS1 protein. Alignment of the positive phage clones revealed a putative consensus PreS1 binding motif of HX{sub n}HX{sub m}HP/R. Moreover, a peptide named P7 (KHMHWHPPALNT) was highly enriched and occurred with a surprisingly high frequency of 72%. A thermodynamic study revealed that P7 has a higher binding affinity to PreS1 than the other peptides. Furthermore, P7 was able to abrogate the binding of HBV virions to the PreS1 antibody, suggesting that P7 covers key functional sites on the native PreS1 protein. This newly isolated peptide may, therefore, be a new therapeutic candidate for the treatment of HBV. The consensus motif could be modified to deliver imaging, diagnostic, and therapeutic agents to tissues affected by HBV.

  16. Protein Synthesis Inhibition Blocks Consolidation of an Acrobatic Motor Skill

    ERIC Educational Resources Information Center

    Kaelin-Lang, Alain; Dichgans, Johannes; Schulz, Jorg B.; Luft, Andreas R.; Buitrago, Manuel M.

    2004-01-01

    To investigate whether motor skill learning depends on de novo protein synthesis, adult rats were trained in an acrobatic locomotor task (accelerating rotarod) for 7 d. Animals were systemically injected with cycloheximide (CHX, 0.5 mg/kg, i.p.) 1 h before sessions 1 and 2 or sessions 2 and 3. Control rats received vehicle injections before…

  17. A Protein Interaction Map of Drosophila melanogaster

    NASA Astrophysics Data System (ADS)

    Giot, L.; Bader, J. S.; Brouwer, C.; Chaudhuri, A.; Kuang, B.; Li, Y.; Hao, Y. L.; Ooi, C. E.; Godwin, B.; Vitols, E.; Vijayadamodar, G.; Pochart, P.; Machineni, H.; Welsh, M.; Kong, Y.; Zerhusen, B.; Malcolm, R.; Varrone, Z.; Collis, A.; Minto, M.; Burgess, S.; McDaniel, L.; Stimpson, E.; Spriggs, F.; Williams, J.; Neurath, K.; Ioime, N.; Agee, M.; Voss, E.; Furtak, K.; Renzulli, R.; Aanensen, N.; Carrolla, S.; Bickelhaupt, E.; Lazovatsky, Y.; DaSilva, A.; Zhong, J.; Stanyon, C. A.; Finley, R. L.; White, K. P.; Braverman, M.; Jarvie, T.; Gold, S.; Leach, M.; Knight, J.; Shimkets, R. A.; McKenna, M. P.; Chant, J.; Rothberg, J. M.

    2003-12-01

    Drosophila melanogaster is a proven model system for many aspects of human biology. Here we present a two-hybrid-based protein-interaction map of the fly proteome. A total of 10,623 predicted transcripts were isolated and screened against standard and normalized complementary DNA libraries to produce a draft map of 7048 proteins and 20,405 interactions. A computational method of rating two-hybrid interaction confidence was developed to refine this draft map to a higher confidence map of 4679 proteins and 4780 interactions. Statistical modeling of the network showed two levels of organization: a short-range organization, presumably corresponding to multiprotein complexes, and a more global organization, presumably corresponding to intercomplex connections. The network recapitulated known pathways, extended pathways, and uncovered previously unknown pathway components. This map serves as a starting point for a systems biology modeling of multicellular organisms, including humans.

  18. Computational Methods to Predict Protein Interaction Partners

    NASA Astrophysics Data System (ADS)

    Valencia, Alfonso; Pazos, Florencio

    In the new paradigm for studying biological phenomena represented by Systems Biology, cellular components are not considered in isolation but as forming complex networks of relationships. Protein interaction networks are among the first objects studied from this new point of view. Deciphering the interactome (the whole network of interactions for a given proteome) has been shown to be a very complex task. Computational techniques for detecting protein interactions have become standard tools for dealing with this problem, helping and complementing their experimental counterparts. Most of these techniques use genomic or sequence features intuitively related with protein interactions and are based on "first principles" in the sense that they do not involve training with examples. There are also other computational techniques that use other sources of information (i.e. structural information or even experimental data) or are based on training with examples.

  19. Protein interactions in concentrated ribonuclease solutions

    NASA Astrophysics Data System (ADS)

    Boyer, Mireille; Roy, Marie-Odile; Jullien, Magali; Bonneté, Françoise; Tardieu, Annette

    1999-01-01

    To investigate the protein interactions involved in the crystallization process of ribonuclease A, dynamic light scattering (DLS) and small angle X-ray scattering experiments (SAXS) were performed on concentrated solutions. Whereas the translational diffusion coefficient obtained from DLS is sensitive to thermodynamic and hydrodynamic interactions and permits to calculate an interaction parameter, the shape of the SAXS curves is related to the type of interaction (attractive or repulsive). We compared the effect of pH on protein interactions in the case of two types of crystallizing agents: a mixture of salts (3 M sodium chloride plus 0.2 M ammonium sulfate) and an organic solvent (ethanol). The results show that in the presence of ethanol, as in low salt, protein interactions become more attractive as the pH increases from 4 to 8 and approaches the isoelectric point. In contrast, a reverse effect is observed in high salt conditions: the strength of attractive interactions decreases as the pH increases. The range of the pH effect can be related to ionization of histidine residues, particularly those located in the active site of the protein. The present observations point out the important role played by localized charges in crystallization conditions, whatever the precipitating agent.

  20. Targeting protein-protein interactions in hematologic malignancies: still a challenge or a great opportunity for future therapies?

    PubMed Central

    Cierpicki, Tomasz; Grembecka, Jolanta

    2015-01-01

    Summary Over the past several years, there has been an increasing research effort focused on inhibition of protein-protein interactions (PPIs) to develop novel therapeutic approaches for cancer, including hematologic malignancies. These efforts have led to development of small molecule inhibitors of PPIs, some of which already advanced to the stage of clinical trials while others are at different stages of pre-clinical optimization, emphasizing PPIs as an emerging and attractive class of drug targets. Here, we review several examples of recently developed inhibitors of protein-protein interactions highly relevant to hematologic cancers. We address the existing skepticism about feasibility of targeting PPIs and emphasize potential therapeutic benefit from blocking PPIs in hematologic malignancies. We then use these examples to discuss the approaches for successful identification of PPI inhibitors and provide analysis of the protein-protein interfaces, with the goal to address ‘druggability’ of new PPIs relevant to hematology. We discuss lessons learned to improve the success of targeting new protein-protein interactions and evaluate prospects and limits of the research in this field. We conclude that not all PPIs are equally tractable for blocking by small molecules, and detailed analysis of PPI interfaces is critical for selection of those with the highest chance of success. Together, our analysis uncovers patterns that should help to advance drug discovery in hematologic malignancies by successful targeting of new protein-protein interactions. PMID:25510283

  1. Protein-protein interactions and prediction: a comprehensive overview.

    PubMed

    Sowmya, Gopichandran; Ranganathan, Shoba

    2014-01-01

    Molecular function in cellular processes is governed by protein-protein interactions (PPIs) within biological networks. Selective yet specific association of these protein partners contributes to diverse functionality such as catalysis, regulation, assembly, immunity, and inhibition in a cell. Therefore, understanding the principles of protein-protein association has been of immense interest for several decades. We provide an overview of the experimental methods used to determine PPIs and the key databases archiving this information. Structural and functional information of existing protein complexes confers knowledge on the principles of PPI, based on which a classification scheme for PPIs is then introduced. Obtaining high-quality non-redundant datasets of protein complexes for interaction characterisation is an essential step towards deciphering their underlying binding principles. Analysis of physicochemical features and their documentation has enhanced our understanding of the molecular basis of protein-protein association. We describe the diverse datasets created/collected by various groups and their key findings inferring distinguishing features. The currently available interface databases and prediction servers have also been compiled. PMID:23855658

  2. Cowpox virus protein CPXV012 eludes CTLs by blocking ATP binding to TAP.

    PubMed

    Luteijn, Rutger D; Hoelen, Hanneke; Kruse, Elisabeth; van Leeuwen, Wouter F; Grootens, Jennine; Horst, Daniëlle; Koorengevel, Martijn; Drijfhout, Jan W; Kremmer, Elisabeth; Früh, Klaus; Neefjes, Jacques J; Killian, Antoinette; Lebbink, Robert Jan; Ressing, Maaike E; Wiertz, Emmanuel J H J

    2014-08-15

    CD8(+) CTLs detect virus-infected cells through recognition of virus-derived peptides presented at the cell surface by MHC class I molecules. The cowpox virus protein CPXV012 deprives the endoplasmic reticulum (ER) lumen of peptides for loading onto newly synthesized MHC class I molecules by inhibiting the transporter associated with Ag processing (TAP). This evasion strategy allows the virus to avoid detection by the immune system. In this article, we show that CPXV012, a 9-kDa type II transmembrane protein, prevents peptide transport by inhibiting ATP binding to TAP. We identified a segment within the ER-luminal domain of CPXV012 that imposes the block in peptide transport by TAP. Biophysical studies show that this domain has a strong affinity for phospholipids that are also abundant in the ER membrane. We discuss these findings in an evolutionary context and show that a frameshift deletion in the CPXV012 gene in an ancestral cowpox virus created the current form of CPXV012 that is capable of inhibiting TAP. In conclusion, our findings indicate that the ER-luminal domain of CPXV012 inserts into the ER membrane, where it interacts with TAP. CPXV012 presumably induces a conformational arrest that precludes ATP binding to TAP and, thus, activity of TAP, thereby preventing the presentation of viral peptides to CTLs. PMID:25024387

  3. Inferring high-confidence human protein-protein interactions

    PubMed Central

    2012-01-01

    Background As numerous experimental factors drive the acquisition, identification, and interpretation of protein-protein interactions (PPIs), aggregated assemblies of human PPI data invariably contain experiment-dependent noise. Ascertaining the reliability of PPIs collected from these diverse studies and scoring them to infer high-confidence networks is a non-trivial task. Moreover, a large number of PPIs share the same number of reported occurrences, making it impossible to distinguish the reliability of these PPIs and rank-order them. For example, for the data analyzed here, we found that the majority (>83%) of currently available human PPIs have been reported only once. Results In this work, we proposed an unsupervised statistical approach to score a set of diverse, experimentally identified PPIs from nine primary databases to create subsets of high-confidence human PPI networks. We evaluated this ranking method by comparing it with other methods and assessing their ability to retrieve protein associations from a number of diverse and independent reference sets. These reference sets contain known biological data that are either directly or indirectly linked to interactions between proteins. We quantified the average effect of using ranked protein interaction data to retrieve this information and showed that, when compared to randomly ranked interaction data sets, the proposed method created a larger enrichment (~134%) than either ranking based on the hypergeometric test (~109%) or occurrence ranking (~46%). Conclusions From our evaluations, it was clear that ranked interactions were always of value because higher-ranked PPIs had a higher likelihood of retrieving high-confidence experimental data. Reducing the noise inherent in aggregated experimental PPIs via our ranking scheme further increased the accuracy and enrichment of PPIs derived from a number of biologically relevant data sets. These results suggest that using our high-confidence protein interactions

  4. Predicting protein-peptide interactions from scratch

    NASA Astrophysics Data System (ADS)

    Yan, Chengfei; Xu, Xianjin; Zou, Xiaoqin; Zou lab Team

    Protein-peptide interactions play an important role in many cellular processes. The ability to predict protein-peptide complex structures is valuable for mechanistic investigation and therapeutic development. Due to the high flexibility of peptides and lack of templates for homologous modeling, predicting protein-peptide complex structures is extremely challenging. Recently, we have developed a novel docking framework for protein-peptide structure prediction. Specifically, given the sequence of a peptide and a 3D structure of the protein, initial conformations of the peptide are built through protein threading. Then, the peptide is globally and flexibly docked onto the protein using a novel iterative approach. Finally, the sampled modes are scored and ranked by a statistical potential-based energy scoring function that was derived for protein-peptide interactions from statistical mechanics principles. Our docking methodology has been tested on the Peptidb database and compared with other protein-peptide docking methods. Systematic analysis shows significantly improved results compared to the performances of the existing methods. Our method is computationally efficient and suitable for large-scale applications. Nsf CAREER Award 0953839 (XZ) NIH R01GM109980 (XZ).

  5. Topology of Protein Interaction Network Shapes Protein Abundances and Strengths of Their Functional and Nonspecific Interactions

    SciTech Connect

    Maslov, S.; Heo, M.; Shakhnovich, E.

    2011-03-08

    How do living cells achieve sufficient abundances of functional protein complexes while minimizing promiscuous nonfunctional interactions? Here we study this problem using a first-principle model of the cell whose phenotypic traits are directly determined from its genome through biophysical properties of protein structures and binding interactions in a crowded cellular environment. The model cell includes three independent prototypical pathways, whose topologies of protein-protein interaction (PPI) subnetworks are different, but whose contributions to the cell fitness are equal. Model cells evolve through genotypic mutations and phenotypic protein copy number variations. We found a strong relationship between evolved physical-chemical properties of protein interactions and their abundances due to a 'frustration' effect: Strengthening of functional interactions brings about hydrophobic interfaces, which make proteins prone to promiscuous binding. The balancing act is achieved by lowering concentrations of hub proteins while raising solubilities and abundances of functional monomers. On the basis of these principles we generated and analyzed a possible realization of the proteome-wide PPI network in yeast. In this simulation we found that high-throughput affinity capture-mass spectroscopy experiments can detect functional interactions with high fidelity only for high-abundance proteins while missing most interactions for low-abundance proteins.

  6. Protein-protein interactions in reversibly assembled nanopatterns.

    PubMed

    Rakickas, Tomas; Gavutis, Martynas; Reichel, Annett; Piehler, Jacob; Liedberg, Bo; Valiokas, Ramūnas

    2008-10-01

    We describe herein a platform to study protein-protein interactions and to form functional protein complexes in nanoscopic surface domains. For this purpose, we employed multivalent chelator (MCh) templates, which were fabricated in a stepwise procedure combining dip-pen nanolithography (DPN) and molecular recognition-directed assembly. First, we demonstrated that an atomic force microscope (AFM) tip inked with an oligo(ethylene glycol) (OEG) disulfide compound bearing terminal biotin groups can be used to generate biotin patterns on gold achieving line widths below 100 nm, a generic platform for fabrication of functional nanostructures via the highly specific biotin-streptavidin recognition. Subsequently, we converted such biotin/streptavidin patterns into functional MCh patterns for reversible assembly of histidine-tagged (His-tagged) proteins via the attachment of a tris-nitriloacetic acid (trisNTA) biotin derivative. Fluorescence microscopy confirmed reversible immobilization of the receptor subunit ifnar2-His10 and its interaction with interferon-alpha2 labeled with fluorescent quantum dots in a 7 x 7 dot array consisting of trisNTA spots with a diameter of approximately 230 nm. Moreover, we carried out characterization of the specificity, stability, and reversibility as well as quantitative real-time analysis of protein-protein interactions at the fabricated nanopatterns by imaging surface plasmon resonance. Our work offers a route for construction and analysis of functional protein-based nanoarchitectures. PMID:18788824

  7. Predicting protein-protein interactions based only on sequences information.

    PubMed

    Shen, Juwen; Zhang, Jian; Luo, Xiaomin; Zhu, Weiliang; Yu, Kunqian; Chen, Kaixian; Li, Yixue; Jiang, Hualiang

    2007-03-13

    Protein-protein interactions (PPIs) are central to most biological processes. Although efforts have been devoted to the development of methodology for predicting PPIs and protein interaction networks, the application of most existing methods is limited because they need information about protein homology or the interaction marks of the protein partners. In the present work, we propose a method for PPI prediction using only the information of protein sequences. This method was developed based on a learning algorithm-support vector machine combined with a kernel function and a conjoint triad feature for describing amino acids. More than 16,000 diverse PPI pairs were used to construct the universal model. The prediction ability of our approach is better than that of other sequence-based PPI prediction methods because it is able to predict PPI networks. Different types of PPI networks have been effectively mapped with our method, suggesting that, even with only sequence information, this method could be applied to the exploration of networks for any newly discovered protein with unknown biological relativity. In addition, such supplementary experimental information can enhance the prediction ability of the method. PMID:17360525

  8. Building protein interaction maps for Down's syndrome.

    PubMed

    Gardiner, Katheleen; Davisson, Muriel T; Crnic, Linda S

    2004-08-01

    Now that the complete sequences for human chromosome 21 and the orthologous mouse genomic regions are known, reasonably complete, conserved, protein-coding gene catalogues are also available. The central issue now facing Down's syndrome researchers is the correlation of increased expression of specific, normal, chromosome 21 genes with the development of specific deficits in learning and memory. Because of the number of candidate genes involved, the number of alternative splice variants of individual genes and the number of pathways in which these genes function, a pathway analysis approach will be critical to success. Here, three examples, both gene specific and pathway related, that would benefit from pathway analysis are discussed: (1) the potential roles of eight chromosome 21 proteins in RNA processing pathways; (2) the chromosome 21 protein intersectin 1 and its domain composition, alternative splicing, protein interactions and functions; and (3) the interactions of ten chromosome 21 proteins with components of the mitogen-activated protein kinase and the calcineurin signalling pathways. A productive approach to developing gene-phenotype correlations in Down's syndrome will make use of known and predicted functions and interactions of chromosome 21 genes to predict pathways that may be perturbed by their increased levels of expression. Investigations may then be targeted in animal models to specific interactions, intermediate steps or end-points of such pathways and the downstream - perhaps amplified - consequences of gene dosage directly assessed. Once pathway perturbations have been identified, the potential for rational design of therapeutics becomes practical. PMID:15355596

  9. Interaction prediction using conserved network motifs in protein-protein interaction networks

    NASA Astrophysics Data System (ADS)

    Albert, Reka

    2005-03-01

    High-throughput protein interaction detection methods are strongly affected by false positive and false negative results. Focused experiments are needed to complement the large-scale methods by validating previously detected interactions but it is often difficult to decide which proteins to probe as interaction partners. Developing reliable computational methods assisting this decision process is a pressing need in bioinformatics. This talk will describe the recent developments in analyzing and understanding protein interaction networks, then present a method that uses the conserved properties of the protein network to identify and validate interaction candidates. We apply a number of machine learning algorithms to the protein connectivity information and achieve a surprisingly good overall performance in predicting interacting proteins. Using a ``leave-one-ou approach we find average success rates between 20-50% for predicting the correct interaction partner of a protein. We demonstrate that the success of these methods is based on the presence of conserved interaction motifs within the network. A reference implementation and a table with candidate interacting partners for each yeast protein are available at http://www.protsuggest.org

  10. Protein-protein and protein-salt interactions in aqueous protein solutions containing concentrated electrolytes

    SciTech Connect

    Curtis, R.A.; Blanch, H.W.; Prausnitz, J.M.

    1998-01-05

    Protein-protein and protein-salt interactions have been obtained for ovalbumin in solutions of ammonium sulfate and for lysozyme in solutions of ammonium sulfate, sodium chloride, potassium isothiocyanate, and potassium chloride. The two-body interactions between ovalbumin molecules in concentrated ammonium-sulfate solutions can be described by the DLVO potentials plus a potential that accounts for the decrease in free volume available to the protein due to the presence of the salt ions. The interaction between ovalbumin and ammonium sulfate is unfavorable, reflecting the kosmotropic nature of sulfate anions. Lysozyme-lysozyme interactions cannot be described by the above potentials because anion binding to lysozyme alters these interactions. Lysozyme-isothiocyanate complexes are strongly attractive due to electrostatic interactions resulting from bridging by the isothiocyanate ion. Lysozyme-lysozyme interactions in sulfate solutions are more repulsive than expected, possibly resulting from a larger excluded volume of a lysozyme-sulfate bound complex or perhaps, hydration forces between the lysozyme-sulfate complexes.

  11. Blocking of bacterial biofilm formation by a fish protein coating.

    PubMed

    Vejborg, Rebecca Munk; Klemm, Per

    2008-06-01

    Bacterial biofilm formation on inert surfaces is a significant health and economic problem in a wide range of environmental, industrial, and medical areas. Bacterial adhesion is generally a prerequisite for this colonization process and, thus, represents an attractive target for the development of biofilm-preventive measures. We have previously found that the preconditioning of several different inert materials with an aqueous fish muscle extract, composed primarily of fish muscle alpha-tropomyosin, significantly discourages bacterial attachment and adhesion to these surfaces. Here, this proteinaceous coating is characterized with regards to its biofilm-reducing properties by using a range of urinary tract infectious isolates with various pathogenic and adhesive properties. The antiadhesive coating significantly reduced or delayed biofilm formation by all these isolates under every condition examined. The biofilm-reducing activity did, however, vary depending on the substratum physicochemical characteristics and the environmental conditions studied. These data illustrate the importance of protein conditioning layers with respect to bacterial biofilm formation and suggest that antiadhesive proteins may offer an attractive measure for reducing or delaying biofilm-associated infections. PMID:18424549

  12. [Chemical libraries dedicated to protein-protein interactions].

    PubMed

    Sperandio, Olivier; Villoutreix, Bruno O; Morelli, Xavier; Roche, Philippe

    2015-03-01

    The identification of complete networks of protein-protein interactions (PPI) within a cell has contributed to major breakthroughs in understanding biological pathways, host-pathogen interactions and cancer development. As a consequence, PPI have emerged as a new class of promising therapeutic targets. However, they are still considered as a challenging class of targets for drug discovery programs. Recent successes have allowed the characterization of structural and physicochemical properties of protein-protein interfaces leading to a better understanding of how they can be disrupted with small molecule compounds. In addition, characterization of the profiles of PPI inhibitors has allowed the development of PPI-focused libraries. In this review, we present the current efforts at developing chemical libraries dedicated to these innovative targets. PMID:25855285

  13. KFC Server: interactive forecasting of protein interaction hot spots.

    PubMed

    Darnell, Steven J; LeGault, Laura; Mitchell, Julie C

    2008-07-01

    The KFC Server is a web-based implementation of the KFC (Knowledge-based FADE and Contacts) model-a machine learning approach for the prediction of binding hot spots, or the subset of residues that account for most of a protein interface's; binding free energy. The server facilitates the automated analysis of a user submitted protein-protein or protein-DNA interface and the visualization of its hot spot predictions. For each residue in the interface, the KFC Server characterizes its local structural environment, compares that environment to the environments of experimentally determined hot spots and predicts if the interface residue is a hot spot. After the computational analysis, the user can visualize the results using an interactive job viewer able to quickly highlight predicted hot spots and surrounding structural features within the protein structure. The KFC Server is accessible at http://kfc.mitchell-lab.org. PMID:18539611

  14. Pauli blocking and final-state interaction in electron-nucleus quasielastic scattering

    SciTech Connect

    Liu, Lon-chang

    2008-01-01

    The nucleon final-state interaction in electron-nucleus quasielastic scattering is studied. Based on the unitarity equation satisfied by the scattering-wave operators, a doorway model is developed to implement the Pauli-blocking of nucleon knockout. The model is complementary to the commonly used nuclear Fermi gas model which can not be applied with confidence to light- and medium-mass nuclei. Pauli blocking in these latter nuclei is illustrated with the case of Coulomb interaction. Significant effects are noted for beam energies below {approx} 350 MeV/c. Extension of the model to high-energy hadron-nucleus quasielastic scatterings is discussed.

  15. Prediction of protein-protein interactions based on protein-protein correlation using least squares regression.

    PubMed

    Huang, De-Shuang; Zhang, Lei; Han, Kyungsook; Deng, Suping; Yang, Kai; Zhang, Hongbo

    2014-01-01

    In order to transform protein sequences into the feature vectors, several works have been done, such as computing auto covariance (AC), conjoint triad (CT), local descriptor (LD), moran autocorrelation (MA), normalized moreaubroto autocorrelation (NMB) and so on. In this paper, we shall adopt these transformation methods to encode the proteins, respectively, where AC, CT, LD, MA and NMB are all represented by '+' in a unified manner. A new method, i.e. the combination of least squares regression with '+' (abbreviated as LSR(+)), will be introduced for encoding a protein-protein correlation-based feature representation and an interacting protein pair. Thus there are totally five different combinations for LSR(+), i.e. LSRAC, LSRCT, LSRLD, LSRMA and LSRNMB. As a result, we combined a support vector machine (SVM) approach with LSR(+) to predict protein-protein interactions (PPI) and PPI networks. The proposed method has been applied on four datasets, i.e. Saaccharomyces cerevisiae, Escherichia coli, Homo sapiens and Caenorhabditis elegans. The experimental results demonstrate that all LSR(+) methods outperform many existing representative algorithms. Therefore, LSR(+) is a powerful tool to characterize the protein-protein correlations and to infer PPI, whilst keeping high performance on prediction of PPI networks. PMID:25059329

  16. The role of synoptic/planetary scale interactions during the development of a blocking anticyclone

    NASA Astrophysics Data System (ADS)

    Tsou, Chin-Hua; Smith, Phillip J.

    1990-01-01

    The period 19 21 January 1979 marked the development of a blocking anticyclone over the North Atlantic Ocean preceded by explosive cyclogenesis about 500km south of Nova Scotia. Using fields derived from GLA analyzes (4° lat×5° long) of the FGGE SOP-I data set, the general behavior of this block is diagnosed using the extended height tendency equation. This equation preserves much of the simplicity of the quasi-geostrophic form, but replaces the geostrophic wind and relative vorticity by the observed value. Three-dimensionally varying static stability and strong diabatic heating are also allowed in the extended form. To further analyze the relative importance of planetary-scale, synoptic-scale, and scale-interaction forcing of this block, height tendencies were solved from a scale-partitioned form of height tendency equation. The scale partitioning is accomplished using the Barnes objective analysis scheme. Results indicate that vorticity advection was the primary forcing mechanism during the block development. Growth in this mechanism occurred during and extended beyond the period of explosive cyclogenesis and was located downstream from the cyclone event. In fact, much of the vorticity advection was attributed to the northward advection of negative relative vorticity east of a jet streak that formed between the cyclone and anticyclone. The scale interactions implied by this relationship between the cyclone and anticyclone were confirmed in the partitioned height tendencies. The scale interaction component was consistently larger than the other two and was particularly significant during the block development. This component was followed in importance by the synoptic-scale component, although the latter was significant only in the vorticity advection term. Interestingly, despite pronounced northward warm air advection, the direct forcing of the block by thermal advection was relatively small. Rather, the thermal forcing was strongest in the upstream cyclone

  17. Annotation and retrieval in protein interaction databases

    NASA Astrophysics Data System (ADS)

    Cannataro, Mario; Hiram Guzzi, Pietro; Veltri, Pierangelo

    2014-06-01

    Biological databases have been developed with a special focus on the efficient retrieval of single records or the efficient computation of specialized bioinformatics algorithms against the overall database, such as in sequence alignment. The continuos production of biological knowledge spread on several biological databases and ontologies, such as Gene Ontology, and the availability of efficient techniques to handle such knowledge, such as annotation and semantic similarity measures, enable the development on novel bioinformatics applications that explicitly use and integrate such knowledge. After introducing the annotation process and the main semantic similarity measures, this paper shows how annotations and semantic similarity can be exploited to improve the extraction and analysis of biologically relevant data from protein interaction databases. As case studies, the paper presents two novel software tools, OntoPIN and CytoSeVis, both based on the use of Gene Ontology annotations, for the advanced querying of protein interaction databases and for the enhanced visualization of protein interaction networks.

  18. Transient DNA / RNA-protein interactions.

    PubMed

    Blanco, Francisco J; Montoya, Guillermo

    2011-05-01

    The great pace of biomolecular structure determination has provided a plethora of protein structures, but not as many structures of nucleic acids or of their complexes with proteins. The recognition of DNA and RNA molecules by proteins may produce large and relatively stable assemblies (such as the ribosome) or transient complexes (such as DNA clamps sliding through the DNA). These transient interactions are most difficult to characterize, but even in 'stable' complexes captured in crystal structures, the dynamics of the whole or part of the assembly pose great technical difficulties in understanding their function. The development and refinement of powerful experimental and computational tools have made it possible to learn a great deal about the relevance of these fleeting events for numerous biological processes. We discuss here the most recent findings and the challenges that lie ahead in the quest for a better understanding of protein-nucleic acid interactions. PMID:21410646

  19. Studying protein-protein interactions: progress, pitfalls and solutions.

    PubMed

    Hayes, Sheri; Malacrida, Beatrice; Kiely, Maeve; Kiely, Patrick A

    2016-08-15

    Signalling proteins are intrinsic to all biological processes and interact with each other in tightly regulated and orchestrated signalling complexes and pathways. Characterization of protein binding can help to elucidate protein function within signalling pathways. This information is vital for researchers to gain a more comprehensive knowledge of cellular networks which can then be used to develop new therapeutic strategies for disease. However, studying protein-protein interactions (PPIs) can be challenging as the interactions can be extremely transient downstream of specific environmental cues. There are many powerful techniques currently available to identify and confirm PPIs. Choosing the most appropriate range of techniques merits serious consideration. The aim of this review is to provide a starting point for researchers embarking on a PPI study. We provide an overview and point of reference for some of the many methods available to identify interactions from in silico analysis and large scale screening tools through to the methods used to validate potential PPIs. We discuss the advantages and disadvantages of each method and we also provide a workflow chart to highlight the main experimental questions to consider when planning cell lysis to maximize experimental success. PMID:27528744

  20. Potential disruption of protein-protein interactions by graphene oxide.

    PubMed

    Feng, Mei; Kang, Hongsuk; Yang, Zaixing; Luan, Binquan; Zhou, Ruhong

    2016-06-14

    Graphene oxide (GO) is a promising novel nanomaterial with a wide range of potential biomedical applications due to its many intriguing properties. However, very little research has been conducted to study its possible adverse effects on protein-protein interactions (and thus subsequent toxicity to human). Here, the potential cytotoxicity of GO is investigated at molecular level using large-scale, all-atom molecular dynamics simulations to explore the interaction mechanism between a protein dimer and a GO nanosheet oxidized at different levels. Our theoretical results reveal that GO nanosheet could intercalate between the two monomers of HIV-1 integrase dimer, disrupting the protein-protein interactions and eventually lead to dimer disassociation as graphene does [B. Luan et al., ACS Nano 9(1), 663 (2015)], albeit its insertion process is slower when compared with graphene due to the additional steric and attractive interactions. This study helps to better understand the toxicity of GO to cell functions which could shed light on how to improve its biocompatibility and biosafety for its wide potential biomedical applications. PMID:27306022

  1. Potential disruption of protein-protein interactions by graphene oxide

    NASA Astrophysics Data System (ADS)

    Feng, Mei; Kang, Hongsuk; Yang, Zaixing; Luan, Binquan; Zhou, Ruhong

    2016-06-01

    Graphene oxide (GO) is a promising novel nanomaterial with a wide range of potential biomedical applications due to its many intriguing properties. However, very little research has been conducted to study its possible adverse effects on protein-protein interactions (and thus subsequent toxicity to human). Here, the potential cytotoxicity of GO is investigated at molecular level using large-scale, all-atom molecular dynamics simulations to explore the interaction mechanism between a protein dimer and a GO nanosheet oxidized at different levels. Our theoretical results reveal that GO nanosheet could intercalate between the two monomers of HIV-1 integrase dimer, disrupting the protein-protein interactions and eventually lead to dimer disassociation as graphene does [B. Luan et al., ACS Nano 9(1), 663 (2015)], albeit its insertion process is slower when compared with graphene due to the additional steric and attractive interactions. This study helps to better understand the toxicity of GO to cell functions which could shed light on how to improve its biocompatibility and biosafety for its wide potential biomedical applications.

  2. Peptiderive server: derive peptide inhibitors from protein-protein interactions.

    PubMed

    Sedan, Yuval; Marcu, Orly; Lyskov, Sergey; Schueler-Furman, Ora

    2016-07-01

    The Rosetta Peptiderive protocol identifies, in a given structure of a protein-protein interaction, the linear polypeptide segment suggested to contribute most to binding energy. Interactions that feature a 'hot segment', a linear peptide with significant binding energy compared to that of the complex, may be amenable for inhibition and the peptide sequence and structure derived from the interaction provide a starting point for rational drug design. Here we present a web server for Peptiderive, which is incorporated within the ROSIE web interface for Rosetta protocols. A new feature of the protocol also evaluates whether derived peptides are good candidates for cyclization. Fast computation times and clear visualization allow users to quickly assess the interaction of interest. The Peptiderive server is available for free use at http://rosie.rosettacommons.org/peptiderive. PMID:27141963

  3. A Method for Predicting Protein-Protein Interaction Types

    PubMed Central

    Silberberg, Yael

    2014-01-01

    Protein-protein interactions (PPIs) govern basic cellular processes through signal transduction and complex formation. The diversity of those processes gives rise to a remarkable diversity of interactions types, ranging from transient phosphorylation interactions to stable covalent bonding. Despite our increasing knowledge on PPIs in humans and other species, their types remain relatively unexplored and few annotations of types exist in public databases. Here, we propose the first method for systematic prediction of PPI type based solely on the techniques by which the interaction was detected. We show that different detection methods are better suited for detecting specific types. We apply our method to ten interaction types on a large scale human PPI dataset. We evaluate the performance of the method using both internal cross validation and external data sources. In cross validation, we obtain an area under receiver operating characteristic (ROC) curve ranging from 0.65 to 0.97 with an average of 0.84 across the predicted types. Comparing the predicted interaction types to external data sources, we obtained significant agreements for phosphorylation and ubiquitination interactions, with hypergeometric p-value = 2.3e−54 and 5.6e−28 respectively. We examine the biological relevance of our predictions using known signaling pathways and chart the abundance of interaction types in cell processes. Finally, we investigate the cross-relations between different interaction types within the network and characterize the discovered patterns, or motifs. We expect the resulting annotated network to facilitate the reconstruction of process-specific subnetworks and assist in predicting protein function or interaction. PMID:24625764

  4. Targeting Protein-Protein Interactions for Parasite Control

    PubMed Central

    Taylor, Christina M.; Fischer, Kerstin; Abubucker, Sahar; Wang, Zhengyuan; Martin, John; Jiang, Daojun; Magliano, Marc; Rosso, Marie-Noëlle; Li, Ben-Wen; Fischer, Peter U.; Mitreva, Makedonka

    2011-01-01

    Finding new drug targets for pathogenic infections would be of great utility for humanity, as there is a large need to develop new drugs to fight infections due to the developing resistance and side effects of current treatments. Current drug targets for pathogen infections involve only a single protein. However, proteins rarely act in isolation, and the majority of biological processes occur via interactions with other proteins, so protein-protein interactions (PPIs) offer a realm of unexplored potential drug targets and are thought to be the next-generation of drug targets. Parasitic worms were chosen for this study because they have deleterious effects on human health, livestock, and plants, costing society billions of dollars annually and many sequenced genomes are available. In this study, we present a computational approach that utilizes whole genomes of 6 parasitic and 1 free-living worm species and 2 hosts. The species were placed in orthologous groups, then binned in species-specific ortholgous groups. Proteins that are essential and conserved among species that span a phyla are of greatest value, as they provide foundations for developing broad-control strategies. Two PPI databases were used to find PPIs within the species specific bins. PPIs with unique helminth proteins and helminth proteins with unique features relative to the host, such as indels, were prioritized as drug targets. The PPIs were scored based on RNAi phenotype and homology to the PDB (Protein DataBank). EST data for the various life stages, GO annotation, and druggability were also taken into consideration. Several PPIs emerged from this study as potential drug targets. A few interactions were supported by co-localization of expression in M. incognita (plant parasite) and B. malayi (H. sapiens parasite), which have extremely different modes of parasitism. As more genomes of pathogens are sequenced and PPI databases expanded, this methodology will become increasingly applicable. PMID

  5. Interactions between plasma and block copolymers used in directed self-assembly patterning

    NASA Astrophysics Data System (ADS)

    Sirard, Stephen; Azarnouche, Laurent; Gurer, Emir; Durand, William; Maher, Michael; Mori, Kazunori; Blachut, Gregory; Janes, Dustin; Asano, Yusuke; Someya, Yasunobu; Hymes, Diane; Graves, David; Ellison, Christopher J.; Willson, C. Grant

    2016-03-01

    The directed self-assembly (DSA) of block copolymers offers a promising route for scaling feature sizes below 20 nm. At these small dimensions, plasmas are often used to define the initial patterns. It is imperative to understand how plasmas interact with each block in order to design processes with sufficient etch contrast and pattern fidelity. Symmetric lamella forming block copolymers including, polystyrene-b-poly(methyl methacrylate) and several high-χ silicon-containing and tin-containing block copolymers were synthesized, along with homopolymers of each block, and exposed to various oxidizing, reducing, and fluorine-based plasma processes. Etch rate kinetics were measured, and plasma modifications of the materials were characterized using XPS, AES, and FTIR. Mechanisms for achieving etch contrast were elucidated and were highly dependent on the block copolymer architecture. For several of the polymers, plasma photoemissions were observed to play an important role in modifying the materials and forming etch-resistant protective layers. Furthermore, it was observed for the silicon- and tin-containing polymers that an initial transient state exists, where the polymers exhibit an enhanced etch rate, prior to the formation of the etch-resistant protective layer. Plasma developed patterns were demonstrated for the differing block copolymer materials with feature sizes ranging from 20 nm down to approximately 5 nm.

  6. Quantitative study of protein-protein interactions by quartz nanopipettes

    NASA Astrophysics Data System (ADS)

    Tiwari, Purushottam Babu; Astudillo, Luisana; Miksovska, Jaroslava; Wang, Xuewen; Li, Wenzhi; Darici, Yesim; He, Jin

    2014-08-01

    In this report, protein-modified quartz nanopipettes were used to quantitatively study protein-protein interactions in attoliter sensing volumes. As shown by numerical simulations, the ionic current through the conical-shaped nanopipette is very sensitive to the surface charge variation near the pore mouth. With the appropriate modification of negatively charged human neuroglobin (hNgb) onto the inner surface of a nanopipette, we were able to detect concentration-dependent current change when the hNgb-modified nanopipette tip was exposed to positively charged cytochrome c (Cyt c) with a series of concentrations in the bath solution. Such current change is due to the adsorption of Cyt c to the inner surface of the nanopipette through specific interactions with hNgb. In contrast, a smaller current change with weak concentration dependence was observed when Cyt c was replaced with lysozyme, which does not specifically bind to hNgb. The equilibrium dissociation constant (KD) for the Cyt c-hNgb complex formation was derived and the value matched very well with the result from surface plasmon resonance measurement. This is the first quantitative study of protein-protein interactions by a conical-shaped nanopore based on charge sensing. Our results demonstrate that nanopipettes can potentially be used as a label-free analytical tool to quantitatively characterize protein-protein interactions.In this report, protein-modified quartz nanopipettes were used to quantitatively study protein-protein interactions in attoliter sensing volumes. As shown by numerical simulations, the ionic current through the conical-shaped nanopipette is very sensitive to the surface charge variation near the pore mouth. With the appropriate modification of negatively charged human neuroglobin (hNgb) onto the inner surface of a nanopipette, we were able to detect concentration-dependent current change when the hNgb-modified nanopipette tip was exposed to positively charged cytochrome c (Cyt c) with

  7. Prediction and redesign of protein-protein interactions.

    PubMed

    Lua, Rhonald C; Marciano, David C; Katsonis, Panagiotis; Adikesavan, Anbu K; Wilkins, Angela D; Lichtarge, Olivier

    2014-01-01

    Understanding the molecular basis of protein function remains a central goal of biology, with the hope to elucidate the role of human genes in health and in disease, and to rationally design therapies through targeted molecular perturbations. We review here some of the computational techniques and resources available for characterizing a critical aspect of protein function - those mediated by protein-protein interactions (PPI). We describe several applications and recent successes of the Evolutionary Trace (ET) in identifying molecular events and shapes that underlie protein function and specificity in both eukaryotes and prokaryotes. ET is a part of analytical approaches based on the successes and failures of evolution that enable the rational control of PPI. PMID:24878423

  8. The Arabidopsis ESCRT protein-protein interaction network.

    PubMed

    Shahriari, Mojgan; Richter, Klaus; Keshavaiah, Channa; Sabovljevic, Aneta; Huelskamp, Martin; Schellmann, Swen

    2011-05-01

    In yeast, endosomal sorting of monoubiquitylated transmembrane proteins is performed by a subset of the 19 "class E vacuolar protein sorting" proteins. The core machinery consists of 11 proteins that are organised in three complexes termed ESCRT I-III (endosomal sorting complex required for transport I-III) and is conserved in eukaryotic cells. While the pathway is well understood in yeast and animals, the plant ESCRT system is largely unexplored. At least one sequence homolog for each ESCRT component can be found in the Arabidopsis genome. Generally, sequence conservation between yeast/animals and the Arabidopsis proteins is low. To understand details about participating proteins and complex organization we have performed a systematic pairwise yeast two hybrid analysis of all Arabidopsis proteins showing homology to the ESCRT core machinery. Positive interactions were validated using bimolecular fluorescence complementation. In our experiments, most putative ESCRT components exhibited interactions with other ESCRT components that could be shown to occur on endosomes suggesting that despite their low homology to their yeast and animal counterparts they represent functional components of the plant ESCRT pathway. PMID:21442383

  9. Ac-susceptibility investigations of superspin blocking and freezing in interacting magnetic nanoparticle ensembles

    NASA Astrophysics Data System (ADS)

    Botez, Cristian E.; Morris, Joshua L.

    2016-03-01

    We have investigated the effect of dipolar interactions on the superspin blocking and freezing of 9 nm average size Fe3O4 magnetic nanoparticle ensembles. Our dynamic susceptibility data reveals a two-regime behavior of the blocking temperature, T B, upon diluting a Fe3O4/hexane magnetic fluid. As the nanoparticle volume ratio, Φ, is reduced from an as-prepared reference Φ = 1 to Φ = 1/96, the blocking temperature decreases from 46.1 K to 34.2 K, but higher values reenter upon further diluting the magnetic fluid to Φ = 1/384 (where T B = 42.5 K). We found evidence that cooling below T B within the higher concentration range (Φ > 1/48) leads to the collective freezing of the superspins, whereas individual superspin blocking occurs in the presence of weaker interactions (Φ < 1/96). The unexpected increase of the blocking temperature with the decrease of the inter-particle interactions observed at low nanoparticle concentrations is well described by the Mørup-Tronc model.

  10. AC-susceptibility investigations of superspin blocking and freezing in interacting magnetic nanoparticle ensembles

    NASA Astrophysics Data System (ADS)

    Morris, Joshua Logan

    We have investigated the effect of dipolar interactions on the superspin blocking and freezing of 10 nm average size Fe3O4 magnetic nanoparticle ensembles. Our dynamic susceptibility data reveals a two-regime behavior of the blocking temperature, TB, upon diluting a Fe 3O4/hexane magnetic nanoparticle fluid. As the nanoparticle volume ratio, Phi, is reduced from an as-prepared reference Phi = 1 to Phi = 1/96, the blocking temperature decreases from 46.1 K to 34.2 K, but higher values reenter upon further diluting the magnetic fluid to Phi = 1/384 (where TB = 42.5 K). We show that cooling below TB within the higher concentration range (Phi > 1/48) leads to the collective freezing of the superspins in a spin-glass-like fashion, whereas individual superspin blocking occurs in the presence of weaker dipolar interactions (Phi < 1/96). The unexpected increase of the blocking temperature with the decrease of the interparticle interactions observed at low nanoparticle concentrations is well described by the Morup-Tronc (MT) model.

  11. Ac-susceptibility investigations of superspin blocking and freezing in interacting magnetic nanoparticle ensembles.

    PubMed

    Botez, Cristian E; Morris, Joshua L

    2016-03-18

    We have investigated the effect of dipolar interactions on the superspin blocking and freezing of 9 nm average size Fe3O4 magnetic nanoparticle ensembles. Our dynamic susceptibility data reveals a two-regime behavior of the blocking temperature, T(B), upon diluting a Fe3O4/hexane magnetic fluid. As the nanoparticle volume ratio, Φ, is reduced from an as-prepared reference Φ = 1 to Φ = 1/96, the blocking temperature decreases from 46.1 K to 34.2 K, but higher values reenter upon further diluting the magnetic fluid to Φ = 1/384 (where T(B) = 42.5 K). We found evidence that cooling below T B within the higher concentration range (Φ > 1/48) leads to the collective freezing of the superspins, whereas individual superspin blocking occurs in the presence of weaker interactions (Φ < 1/96). The unexpected increase of the blocking temperature with the decrease of the inter-particle interactions observed at low nanoparticle concentrations is well described by the Mørup-Tronc model. PMID:26876797

  12. Self diffusion of interacting membrane proteins.

    PubMed Central

    Abney, J R; Scalettar, B A; Owicki, J C

    1989-01-01

    A two-dimensional version of the generalized Smoluchowski equation is used to analyze the time (or distance) dependent self diffusion of interacting membrane proteins in concentrated membrane systems. This equation provides a well established starting point for descriptions of the diffusion of particles that interact through both direct and hydrodynamic forces; in this initial work only the effects of direct interactions are explicitly considered. Data describing diffusion in the presence of hard-core repulsions, soft repulsions, and soft repulsions with weak attractions are presented. The effect that interactions have on the self-diffusion coefficient of a real protein molecule from mouse liver gap junctions is also calculated. The results indicate that self diffusion is always inhibited by direct interactions; this observation is interpreted in terms of the caging that will exist at finite protein concentration. It is also noted that, over small distance scales, the diffusion coefficient is determined entirely by the very strong Brownian forces; therefore, as a function of displacement the self-diffusion coefficient decays (rapidly) from its value at infinite dilution to its steady-state interaction-averaged value. The steady-state self-diffusion coefficient describes motion over distance scales that range from approximately 10 nm to cellular dimensions and is the quantity measured in fluorescence recovery after photobleaching experiments. The short-ranged behavior of the diffusion coefficient is important on the interparticle-distance scale and may therefore influence the rate at which nearest-neighbor collisional processes take place. The hard-disk theoretical results presented here are in excellent agreement with lattice Monte-Carlo results obtained by other workers. The concentration dependence of experimentally measured diffusion coefficients of antibody-hapten complexes bound to the membrane surface is consistent with that predicted by the theory. The

  13. Pentamidine blocks the interaction between mutant S100A5 and RAGE V domain and inhibits the RAGE signaling pathway.

    PubMed

    Cho, Ching Chang; Chou, Ruey Hwang; Yu, Chin

    2016-08-19

    The human S100 protein family contains small, dimeric and acidic proteins that contain two EF-hand motifs and bind calcium. When S100A5 binds calcium, its conformation changes and promotes interaction with the target protein. The extracellular domain of RAGE (Receptor of Advanced Glycation End products) contain three domains: C1, C2 and V. The RAGE V domain is the target protein of S100A5 that promotes cell survival, growth and differentiation by activating several signaling pathways. Pentamidine is an apoptotic and antiparasitic drug that is used to treat or prevent pneumonia. Here, we found that pentamidine interacts with S100A5 using HSQC titration. We elucidated the interactions of S100A5 with RAGE V domain and pentamidine using fluorescence and NMR spectroscopy. We generated two binary models-the S100A5-RAGE V domain and S100A5-Pentamidine complex-and then observed that the pentamidine and RAGE V domain share a similar binding region in mS100A5. We also used the WST-1 assay to investigate the bioactivity of S100A5, RAGE V domain and pentamidine. These results indicated that pentamidine blocks the binding between S100A5 and RAGE V domain. This finding is useful for the development of new anti-proliferation drugs. PMID:27297108

  14. Dynamic interactions of proteins in complex networks

    SciTech Connect

    Appella, E.; Anderson, C.

    2009-10-01

    Recent advances in techniques such as NMR and EPR spectroscopy have enabled the elucidation of how proteins undergo structural changes to act in concert in complex networks. The three minireviews in this series highlight current findings and the capabilities of new methodologies for unraveling the dynamic changes controlling diverse cellular functions. They represent a sampling of the cutting-edge research presented at the 17th Meeting of Methods in Protein Structure Analysis, MPSA2008, in Sapporo, Japan, 26-29 August, 2008 (http://www.iapsap.bnl.gov). The first minireview, by Christensen and Klevit, reports on a structure-based yeast two-hybrid method for identifying E2 ubiquitin-conjugating enzymes that interact with the E3 BRCA1/BARD1 heterodimer ligase to generate either mono- or polyubiquitinated products. This method demonstrated for the first time that the BRCA1/BARD1 E3 can interact with 10 different E2 enzymes. Interestingly, the interaction with multiple E2 enzymes displayed unique ubiquitin-transfer properties, a feature expected to be common among other RING and U-box E3s. Further characterization of new E3 ligases and the E2 enzymes that interact with them will greatly enhance our understanding of ubiquitin transfer and facilitate studies of roles of ubiquitin and ubiquitin-like proteins in protein processing and trafficking. Stein et al., in the second minireview, describe recent progress in defining the binding specificity of different peptide-binding domains. The authors clearly point out that transient peptide interactions mediated by both post-translational modifications and disordered regions ensure a high level of specificity. They postulate that a regulatory code may dictate the number of combinations of domains and post-translational modifications needed to achieve the required level of interaction specificity. Moreover, recognition alone is not enough to obtain a stable complex, especially in a complex cellular environment. Increasing

  15. Motif mediated protein-protein interactions as drug targets.

    PubMed

    Corbi-Verge, Carles; Kim, Philip M

    2016-01-01

    Protein-protein interactions (PPI) are involved in virtually every cellular process and thus represent an attractive target for therapeutic interventions. A significant number of protein interactions are frequently formed between globular domains and short linear peptide motifs (DMI). Targeting these DMIs has proven challenging and classical approaches to inhibiting such interactions with small molecules have had limited success. However, recent new approaches have led to the discovery of potent inhibitors, some of them, such as Obatoclax, ABT-199, AEG-40826 and SAH-p53-8 are likely to become approved drugs. These novel inhibitors belong to a wide range of different molecule classes, ranging from small molecules to peptidomimetics and biologicals. This article reviews the main reasons for limited success in targeting PPIs, discusses how successful approaches overcome these obstacles to discovery promising inhibitors for human protein double minute 2 (HDM2), B-cell lymphoma 2 (Bcl-2), X-linked inhibitor of apoptosis protein (XIAP), and provides a summary of the promising approaches currently in development that indicate the future potential of PPI inhibitors in drug discovery. PMID:26936767

  16. Modulation of opioid receptor function by protein-protein interactions.

    PubMed

    Alfaras-Melainis, Konstantinos; Gomes, Ivone; Rozenfeld, Raphael; Zachariou, Venetia; Devi, Lakshmi

    2009-01-01

    Opioid receptors, MORP, DORP and KORP, belong to the family A of G protein coupled receptors (GPCR), and have been found to modulate a large number of physiological functions, including mood, stress, appetite, nociception and immune responses. Exogenously applied opioid alkaloids produce analgesia, hedonia and addiction. Addiction is linked to alterations in function and responsiveness of all three opioid receptors in the brain. Over the last few years, a large number of studies identified protein-protein interactions that play an essential role in opioid receptor function and responsiveness. Here, we summarize interactions shown to affect receptor biogenesis and trafficking, as well as those affecting signal transduction events following receptor activation. This article also examines protein interactions modulating the rate of receptor endocytosis and degradation, events that play a major role in opiate analgesia. Like several other GPCRs, opioid receptors may form homo or heterodimers. The last part of this review summarizes recent knowledge on proteins known to affect opioid receptor dimerization. PMID:19273296

  17. Docking and scoring protein interactions: CAPRI 2009.

    PubMed

    Lensink, Marc F; Wodak, Shoshana J

    2010-11-15

    Protein docking algorithms are assessed by evaluating blind predictions performed during 2007-2009 in Rounds 13-19 of the community-wide experiment on critical assessment of predicted interactions (CAPRI). We evaluated the ability of these algorithms to sample docking poses and to single out specific association modes in 14 targets, representing 11 distinct protein complexes. These complexes play important biological roles in RNA maturation, G-protein signal processing, and enzyme inhibition and function. One target involved protein-RNA interactions not previously considered in CAPRI, several others were hetero-oligomers, or featured multiple interfaces between the same protein pair. For most targets, predictions started from the experimentally determined structures of the free (unbound) components, or from models built from known structures of related or similar proteins. To succeed they therefore needed to account for conformational changes and model inaccuracies. In total, 64 groups and 12 web-servers submitted docking predictions of which 4420 were evaluated. Overall our assessment reveals that 67% of the groups, more than ever before, produced acceptable models or better for at least one target, with many groups submitting multiple high- and medium-accuracy models for two to six targets. Forty-one groups including four web-servers participated in the scoring experiment with 1296 evaluated models. Scoring predictions also show signs of progress evidenced from the large proportion of correct models submitted. But singling out the best models remains a challenge, which also adversely affects the ability to correctly rank docking models. With the increased interest in translating abstract protein interaction networks into realistic models of protein assemblies, the growing CAPRI community is actively developing more efficient and reliable docking and scoring methods for everyone to use. PMID:20806235

  18. Carbohydrate–Aromatic Interactions in Proteins

    PubMed Central

    2015-01-01

    Protein–carbohydrate interactions play pivotal roles in health and disease. However, defining and manipulating these interactions has been hindered by an incomplete understanding of the underlying fundamental forces. To elucidate common and discriminating features in carbohydrate recognition, we have analyzed quantitatively X-ray crystal structures of proteins with noncovalently bound carbohydrates. Within the carbohydrate-binding pockets, aliphatic hydrophobic residues are disfavored, whereas aromatic side chains are enriched. The greatest preference is for tryptophan with an increased prevalence of 9-fold. Variations in the spatial orientation of amino acids around different monosaccharides indicate specific carbohydrate C–H bonds interact preferentially with aromatic residues. These preferences are consistent with the electronic properties of both the carbohydrate C–H bonds and the aromatic residues. Those carbohydrates that present patches of electropositive saccharide C–H bonds engage more often in CH−π interactions involving electron-rich aromatic partners. These electronic effects are also manifested when carbohydrate–aromatic interactions are monitored in solution: NMR analysis indicates that indole favorably binds to electron-poor C–H bonds of model carbohydrates, and a clear linear free energy relationships with substituted indoles supports the importance of complementary electronic effects in driving protein–carbohydrate interactions. Together, our data indicate that electrostatic and electronic complementarity between carbohydrates and aromatic residues play key roles in driving protein–carbohydrate complexation. Moreover, these weak noncovalent interactions influence which saccharide residues bind to proteins, and how they are positioned within carbohydrate-binding sites. PMID:26561965

  19. Dynamic regulation of lipid-protein interactions.

    PubMed

    Martfeld, Ashley N; Rajagopalan, Venkatesan; Greathouse, Denise V; Koeppe, Roger E

    2015-09-01

    We review the importance of helix motions for the function of several important categories of membrane proteins and for the properties of several model molecular systems. For voltage-gated potassium or sodium channels, sliding, tilting and/or rotational movements of the S4 helix accompanied by a swapping of cognate side-chain ion-pair interactions regulate the channel gating. In the seven-helix G protein-coupled receptors, exemplified by the rhodopsins, collective helix motions serve to activate the functional signaling. Peptides which initially associate with lipid-bilayer membrane surfaces may undergo dynamic transitions from surface-bound to tilted-transmembrane orientations, sometimes accompanied by changes in the molecularity, formation of a pore or, more generally, the activation of biological function. For single-span membrane proteins, such as the tyrosine kinases, an interplay between juxtamembrane and transmembrane domains is likely to be crucial for the regulation of dimer assembly that in turn is associated with the functional responses to external signals. Additionally, we note that experiments with designed single-span transmembrane helices offer fundamental insights into the molecular features that govern protein-lipid interactions. This article is part of a Special Issue entitled: Lipid-protein interactions. PMID:25666872

  20. Multifunctional proteins revealed by overlapping clustering in protein interaction network

    PubMed Central

    Chapple, Charles E.; Guénoche, Alain; Brun, Christine

    2012-01-01

    Motivation: Multifunctional proteins perform several functions. They are expected to interact specifically with distinct sets of partners, simultaneously or not, depending on the function performed. Current graph clustering methods usually allow a protein to belong to only one cluster, therefore impeding a realistic assignment of multifunctional proteins to clusters. Results: Here, we present Overlapping Cluster Generator (OCG), a novel clustering method which decomposes a network into overlapping clusters and which is, therefore, capable of correct assignment of multifunctional proteins. The principle of OCG is to cover the graph with initial overlapping classes that are iteratively fused into a hierarchy according to an extension of Newman's modularity function. By applying OCG to a human protein–protein interaction network, we show that multifunctional proteins are revealed at the intersection of clusters and demonstrate that the method outperforms other existing methods on simulated graphs and PPI networks. Availability: This software can be downloaded from http://tagc.univ-mrs.fr/welcome/spip.php?rubrique197 Contact: brun@tagc.univ-mrs.fr Supplementary information: Supplementary data are available at Bioinformatics online. PMID:22080466

  1. Dynamic network analysis of protein interactions

    NASA Astrophysics Data System (ADS)

    Almaas, Eivind; Deri, Joya

    2007-03-01

    Network approaches have recently become a popular tool to study complex systems such as cellular metabolism and protein interactions. A substantial number of analyses of the protein interaction network (PIN) of the yeast Saccharomyces cerevisiae have considered this network as a static entity, not taking the network's dynamic nature into account. Here, we examine the time-variation of gene regulation superimposed on the PIN by defining mRNA expression profiles throughout the cell cycle as node weights. To characterize these network dynamics, we have both developed a set of novel network measures as well as studied previously published measures for weighted networks. We expect that our approach will provide a deeper understanding of protein regulation during the cell cycle.

  2. Intracellular protein interaction mapping with FRET hybrids

    PubMed Central

    You, Xia; Nguyen, Annalee W.; Jabaiah, Abeer; Sheff, Mark A.; Thorn, Kurt S.; Daugherty, Patrick S.

    2006-01-01

    A quantitative methodology was developed to identify protein interactions in a broad range of cell types by using FRET between fluorescent proteins. Genetic fusions of a target receptor to a FRET acceptor and a large library of candidate peptide ligands to a FRET donor enabled high-throughput optical screening for optimal interaction partners in the cytoplasm of Escherichia coli. Flow cytometric screening identified a panel of peptide ligands capable of recognizing the target receptors in the intracellular environment. For both SH3 and PDZ domain-type target receptors, physiologically meaningful consensus sequences were apparent among the isolated ligands. The relative dissociation constants of interacting partners could be measured directly by using a dilution series of cell lysates containing FRET hybrids, providing a previously undescribed high-throughput approach to rank the affinity of many interaction partners. FRET hybrid interaction screening provides a powerful tool to discover protein ligands in the cellular context with potential applications to a wide variety of eukaryotic cell types. PMID:17130455

  3. Action of Protein Synthesis Inhibitors in Blocking Electrogenic H+ Efflux from Corn Roots 12

    PubMed Central

    Chastain, Chris J.; Lafayette, Peter R.; Hanson, John B.

    1981-01-01

    The block in the electrogenic H+ efflux produced by protein synthesis inhibitors in corn root tissue can be released or by-passed by addition of fusicoccin or nigericin. The inhibition also lowers cell potential, and the release repolarizes. Associated with the inhibition of H+ efflux is inhibition of K+ influx and the growth of the root tip; fusicoccin partially relieves these inhibitions, but nigericin does not. The inhibition of H+ efflux which arises from blocking the proton channel of the ATPase by oligomycin or N,N′-dicyclohexylcarbodiimide can also be partially relieved by fusicoccin, but not by nigericin; the inhibition produced by diethylstilbestrol is not relieved by fusicoccin. The results are discussed in terms of the presumed mode of action of fusicoccin on the plasmalemma ATPase. Inhibition of protein synthesis appears to inactivate the proton channel of the ATPase, possibly as the indirect result of disrupted metabolism. Fusicoccin reactivates or bypasses the blocked channel. PMID:16661763

  4. Low-Temperature Processable Block Copolymers That Preserve the Function of Blended Proteins.

    PubMed

    Iwasaki, Yasuhiko; Takemoto, Kyohei; Tanaka, Shinya; Taniguchi, Ikuo

    2016-07-11

    Low-temperature processable polymers have attracted increasing interest as ecological materials because of their reduced energy consumption during processing and suitability for making composites with heat-sensitive biomolecules at ambient temperature. In the current study, low-temperature processable biodegradable block copolymers were synthesized by ring-opening polymerization of l-lactide (LLA) using polyphosphoester as a macroinitiator. The polymer films could be processed under a hydraulic pressure of 35 MPa. The block copolymer films swelled in water because the polyphosphoester block was partially hydrated. Interestingly, the swelling ratio of the films changed with temperature. The pressure-induced order-to-disorder transition of the block copolymers was characterized by small-angle X-ray scattering; a crystallinity reduction in the block copolymers was observed after application of pressure. The crystallinity of the block copolymers was recovered after removing the applied pressure. The Young's modulus of the block copolymer films increased as the LLA unit content increased. Moreover, the modulus did not change after multiple processing cycles and the recyclability of the block copolymers was also confirmed. Finally, polymer films with embedded proteinase K as a model protein were prepared. The activity of catalase loaded into the polymer films was evaluated after processing at different temperatures. The activity of catalase was preserved when the polymer films were processed at room temperature but was significantly reduced after high-temperature processing. The suitability of low-temperature processable biodegradable polymers for making biofunctional composites without reducing protein activity was clarified. These materials will be useful for biomedical and therapeutic applications. PMID:27280847

  5. A Tool for Interactive Protein Manipulation

    Energy Science and Technology Software Center (ESTSC)

    2005-03-28

    ProteinShop is a graphical environment that facilitates a solution to the protein prediction problem through a combination of unique features and capabilities. These include: 1. Helping researchers automatically generate 3D protein structures from scratcW by using the sequence of amino acids and secondary structure specifications as input. 2. Enabling users to apply their accumulated biochemical knowledge and intuition during the interactive manipulation of structures. 3. FacIlitating interactive comparison and analysis of alternative structures through visualizationmore » of free energy computed during modeling. 4. Accelerating discovery of low-energy configurations by applying local optimizations plug-in to user-selected protein structures. ProteinShop v.2.0 includes the following new features: - Visualizes multiple-domain structures - Automatically creates a user-specified number of beta-sheet configurations - Provides the interface and the libraries for energy visualization and local minimization of protein structures - Reads standard POB files without previous editing« less

  6. Phthalocyanines as Molecular Scaffolds to Block Disease-Associated Protein Aggregation.

    PubMed

    Valiente-Gabioud, Ariel A; Miotto, Marco C; Chesta, María E; Lombardo, Verónica; Binolfi, Andres; Fernández, Claudio O

    2016-05-17

    amyloidogenic proteins. Analysis of the structure-activity relationship in phthalocyanines revealed that their anti-amyloid activity is highly dependent on the type of metal ion coordinated to the tetrapyrrolic system but is not sensitive to the number of peripheral charged substituents. The tendency of phthalocyanines to oligomerize (self-association) via aromatic-aromatic stacking interactions correlates precisely with their binding capabilities to target proteins and, more importantly, determines their efficiency as anti-amyloid agents. The ability to block different types of disease-associated protein aggregation raises the possibility that these cyclic tetrapyrrole compounds have a common mechanism of action to impair the formation of a variety of pathological aggregates. Because the structural and molecular basis for the anti-amyloid effects of these molecules is starting to emerge, combined efforts from the fields of structural, cellular, and animal biology will result critical for the rational design and discovery of new drugs for the treatment of amyloid related neurological disorders. PMID:27136297

  7. Functional module identification in protein interaction networks by interaction patterns

    PubMed Central

    Wang, Yijie; Qian, Xiaoning

    2014-01-01

    Motivation: Identifying functional modules in protein–protein interaction (PPI) networks may shed light on cellular functional organization and thereafter underlying cellular mechanisms. Many existing module identification algorithms aim to detect densely connected groups of proteins as potential modules. However, based on this simple topological criterion of ‘higher than expected connectivity’, those algorithms may miss biologically meaningful modules of functional significance, in which proteins have similar interaction patterns to other proteins in networks but may not be densely connected to each other. A few blockmodel module identification algorithms have been proposed to address the problem but the lack of global optimum guarantee and the prohibitive computational complexity have been the bottleneck of their applications in real-world large-scale PPI networks. Results: In this article, we propose a novel optimization formulation LCP2 (low two-hop conductance sets) using the concept of Markov random walk on graphs, which enables simultaneous identification of both dense and sparse modules based on protein interaction patterns in given networks through searching for LCP2 by random walk. A spectral approximate algorithm SLCP2 is derived to identify non-overlapping functional modules. Based on a bottom-up greedy strategy, we further extend LCP2 to a new algorithm (greedy algorithm for LCP2) GLCP2 to identify overlapping functional modules. We compare SLCP2 and GLCP2 with a range of state-of-the-art algorithms on synthetic networks and real-world PPI networks. The performance evaluation based on several criteria with respect to protein complex prediction, high level Gene Ontology term prediction and especially sparse module detection, has demonstrated that our algorithms based on searching for LCP2 outperform all other compared algorithms. Availability and implementation: All data and code are available at http://www.cse.usf.edu/∼xqian/fmi/slcp2hop

  8. The centrality of cancer proteins in human protein-protein interaction network: a revisit.

    PubMed

    Xiong, Wei; Xie, Luyu; Zhou, Shuigeng; Liu, Hui; Guan, Jihong

    2014-01-01

    Topological analysis of protein-protein interaction (PPI) networks has been widely applied to the investigation on cancer mechanisms. However, there is still a debate on whether cancer proteins exhibit more topological centrality compared to the other proteins in the human PPI network. To resolve this debate, we first identified four sets of human proteins, and then mapped these proteins into the yeast PPI network by homologous genes. Finally, we compared these proteins' properties in human and yeast PPI networks. Experiments over two real datasets demonstrated that cancer proteins tend to have higher degree and smaller clustering coefficient than non-cancer proteins. Experimental results also validated that cancer proteins have larger betweenness centrality compared to the other proteins on the STRING dataset. However, on the BioGRID dataset, the average betweenness centrality of cancer proteins is larger than that of disease and control proteins, but smaller than that of essential proteins. PMID:24878726

  9. DOMMINO 2.0: integrating structurally resolved protein-, RNA-, and DNA-mediated macromolecular interactions

    PubMed Central

    Kuang, Xingyan; Dhroso, Andi; Han, Jing Ginger; Shyu, Chi-Ren; Korkin, Dmitry

    2016-01-01

    Macromolecular interactions are formed between proteins, DNA and RNA molecules. Being a principle building block in macromolecular assemblies and pathways, the interactions underlie most of cellular functions. Malfunctioning of macromolecular interactions is also linked to a number of diseases. Structural knowledge of the macromolecular interaction allows one to understand the interaction’s mechanism, determine its functional implications and characterize the effects of genetic variations, such as single nucleotide polymorphisms, on the interaction. Unfortunately, until now the interactions mediated by different types of macromolecules, e.g. protein–protein interactions or protein–DNA interactions, are collected into individual and unrelated structural databases. This presents a significant obstacle in the analysis of macromolecular interactions. For instance, the homogeneous structural interaction databases prevent scientists from studying structural interactions of different types but occurring in the same macromolecular complex. Here, we introduce DOMMINO 2.0, a structural Database Of Macro-Molecular INteractiOns. Compared to DOMMINO 1.0, a comprehensive database on protein-protein interactions, DOMMINO 2.0 includes the interactions between all three basic types of macromolecules extracted from PDB files. DOMMINO 2.0 is automatically updated on a weekly basis. It currently includes ∼1 040 000 interactions between two polypeptide subunits (e.g. domains, peptides, termini and interdomain linkers), ∼43 000 RNA-mediated interactions, and ∼12 000 DNA-mediated interactions. All protein structures in the database are annotated using SCOP and SUPERFAMILY family annotation. As a result, protein-mediated interactions involving protein domains, interdomain linkers, C- and N- termini, and peptides are identified. Our database provides an intuitive web interface, allowing one to investigate interactions at three different resolution levels: whole subunit network

  10. Tools for controlling protein interactions with light

    PubMed Central

    Tucker, Chandra L.; Vrana, Justin D.; Kennedy, Matthew J.

    2014-01-01

    Genetically-encoded actuators that allow control of protein-protein interactions with light, termed ‘optical dimerizers’, are emerging as new tools for experimental biology. In recent years, numerous new and versatile dimerizer systems have been developed. Here we discuss the design of optical dimerizer experiments, including choice of a dimerizer system, photoexcitation sources, and coordinate use of imaging reporters. We provide detailed protocols for experiments using two dimerization systems we previously developed, CRY2/CIB and UVR8/UVR8, for use controlling transcription, protein localization, and protein secretion with light. Additionally, we provide instructions and software for constructing a pulse-controlled LED light device for use in experiments requiring extended light treatments. PMID:25181301

  11. Protein Phosphatase 1α Interacting Proteins in the Human Brain

    PubMed Central

    Esteves, Sara L.C.; Domingues, Sara C.; da Cruz e Silva, Odete A.B.; da Cruz e Silva, Edgar F.

    2012-01-01

    Abstract Protein Phosphatase 1 (PP1) is a major serine/threonine-phosphatase whose activity is dependent on its binding to regulatory subunits known as PP1 interacting proteins (PIPs), responsible for targeting PP1 to a specific cellular location, specifying its substrate or regulating its action. Today, more than 200 PIPs have been described involving PP1 in panoply of cellular mechanisms. Moreover, several PIPs have been identified that are tissue and event specific. In addition, the diversity of PP1/PIP complexes can further be achieved by the existence of several PP1 isoforms that can bind preferentially to a certain PIP. Thus, PP1/PIP complexes are highly specific for a particular function in the cell, and as such, they are excellent pharmacological targets. Hence, an in-depth survey was taken to identify specific PP1α PIPs in human brain by a high-throughput Yeast Two-Hybrid approach. Sixty-six proteins were recognized to bind PP1α, 39 being novel PIPs. A large protein interaction databases search was also performed to integrate with the results of the PP1α Human Brain Yeast Two-Hybrid and a total of 246 interactions were retrieved. PMID:22321011

  12. Predicting Disease-Related Proteins Based on Clique Backbone in Protein-Protein Interaction Network

    PubMed Central

    Yang, Lei; Zhao, Xudong; Tang, Xianglong

    2014-01-01

    Network biology integrates different kinds of data, including physical or functional networks and disease gene sets, to interpret human disease. A clique (maximal complete subgraph) in a protein-protein interaction network is a topological module and possesses inherently biological significance. A disease-related clique possibly associates with complex diseases. Fully identifying disease components in a clique is conductive to uncovering disease mechanisms. This paper proposes an approach of predicting disease proteins based on cliques in a protein-protein interaction network. To tolerate false positive and negative interactions in protein networks, extending cliques and scoring predicted disease proteins with gene ontology terms are introduced to the clique-based method. Precisions of predicted disease proteins are verified by disease phenotypes and steadily keep to more than 95%. The predicted disease proteins associated with cliques can partly complement mapping between genotype and phenotype, and provide clues for understanding the pathogenesis of serious diseases. PMID:25013377

  13. The interactions of peripheral membrane proteins with biological membranes

    SciTech Connect

    Johs, Alexander; Whited, A. M.

    2015-01-01

    The interactions of peripheral proteins with membrane surfaces are critical to many biological processes, including signaling, recognition, membrane trafficking, cell division and cell structure. On a molecular level, peripheral membrane proteins can modulate lipid composition, membrane dynamics and protein-protein interactions. Biochemical and biophysical studies have shown that these interactions are in fact highly complex, dominated by several different types of interactions, and have an interdependent effect on both the protein and membrane. Here we examine three major mechanisms underlying the interactions between peripheral membrane proteins and membranes: electrostatic interactions, hydrophobic interactions, and fatty acid modification of proteins. While experimental approaches continue to provide critical insights into specific interaction mechanisms, emerging bioinformatics resources and tools contribute to a systems-level picture of protein-lipid interactions. Through these recent advances, we begin to understand the pivotal role of protein-lipid interactions underlying complex biological functions at membrane interfaces.

  14. The interactions of peripheral membrane proteins with biological membranes

    DOE PAGESBeta

    Johs, Alexander; Whited, A. M.

    2015-01-01

    The interactions of peripheral proteins with membrane surfaces are critical to many biological processes, including signaling, recognition, membrane trafficking, cell division and cell structure. On a molecular level, peripheral membrane proteins can modulate lipid composition, membrane dynamics and protein-protein interactions. Biochemical and biophysical studies have shown that these interactions are in fact highly complex, dominated by several different types of interactions, and have an interdependent effect on both the protein and membrane. Here we examine three major mechanisms underlying the interactions between peripheral membrane proteins and membranes: electrostatic interactions, hydrophobic interactions, and fatty acid modification of proteins. While experimental approachesmore » continue to provide critical insights into specific interaction mechanisms, emerging bioinformatics resources and tools contribute to a systems-level picture of protein-lipid interactions. Through these recent advances, we begin to understand the pivotal role of protein-lipid interactions underlying complex biological functions at membrane interfaces.« less

  15. Protease inhibitor homologues from mamba venoms: facilitation of acetylcholine release and interactions with prejunctional blocking toxins.

    PubMed

    Harvey, A L; Karlsson, E

    1982-09-01

    1 Five polypeptides, which were isolated from elapid snake venoms and which are structurally related to protease inhibitors, were tested for action on isolated biventer cervicis nerve-muscle preparations of the chick. 2 Dendrotoxin from the Eastern green mamba (Dendroaspis angusticeps) and toxins K and I from the black mamba (Dendroaspis polylepis polylepis) increased to indirect stimulation without affecting responses to exogenous acetylcholine, carbachol of KCl. 3 The two other protease inhibitor homologues, HHV-II from Ringhals cobra (Hemachatus haemachatus) and NNV-II from Cape cobra (Naja nivea) did not increase responses to nerve stimulation. Trypsin inhibitor from bovine pancreas also had no facilitatory effects on neuromuscular transmission. 4 The facilitatory toxins from mamba venoms interacted with the prejunctional blocking toxins, beta-bungarotoxin, crotoxin and notexin, but not with taipoxin. The blocking effects of beta-bungarotoxin were reduced by pretreatment with the mamba toxins, whereas the blocking actions of crotoxin and notexin were enhanced. 5 The results indicate that protease inhibitor homologues from mamba venoms form a new class of neurotoxin, which acts to increase the release of acetylcholine in response to motor nerve stimulation. 6 From the interaction studies it is concluded that the facilitatory toxins bind to motor nerve terminals at sites related to those occupied by the prejunctional blocking toxins. However, differences in interactions with individual toxins suggest that there must be several related binding sites on the nerve terminals. PMID:6751453

  16. Using support vector machine for improving protein-protein interaction prediction utilizing domain interactions

    SciTech Connect

    Singhal, Mudita; Shah, Anuj R.; Brown, Roslyn N.; Adkins, Joshua N.

    2010-10-02

    Understanding protein interactions is essential to gain insights into the biological processes at the whole cell level. The high-throughput experimental techniques for determining protein-protein interactions (PPI) are error prone and expensive with low overlap amongst them. Although several computational methods have been proposed for predicting protein interactions there is definite room for improvement. Here we present DomainSVM, a predictive method for PPI that uses computationally inferred domain-domain interaction values in a Support Vector Machine framework to predict protein interactions. DomainSVM method utilizes evidence of multiple interacting domains to predict a protein interaction. It outperforms existing methods of PPI prediction by achieving very high explanation ratios, precision, specificity, sensitivity and F-measure values in a 10 fold cross-validation study conducted on the positive and negative PPIs in yeast. A Functional comparison study using GO annotations on the positive and the negative test sets is presented in addition to discussing novel PPI predictions in Salmonella Typhimurium.

  17. Analysis of phosphorylation-dependent protein-protein interactions of histone h3.

    PubMed

    Klingberg, Rebecca; Jost, Jan Oliver; Schümann, Michael; Gelato, Kathy Ann; Fischle, Wolfgang; Krause, Eberhard; Schwarzer, Dirk

    2015-01-16

    Multiple posttranslational modifications (PTMs) of histone proteins including site-specific phosphorylation of serine and threonine residues govern the accessibility of chromatin. According to the histone code theory, PTMs recruit regulatory proteins or block their access to chromatin. Here, we report a general strategy for simultaneous analysis of both of these effects based on a SILAC MS scheme. We applied this approach for studying the biochemical role of phosphorylated S10 of histone H3. Differential pull-down experiments with H3-tails synthesized from l- and d-amino acids uncovered that histone acetyltransferase 1 (HAT1) and retinoblastoma-binding protein 7 (RBBP7) are part of the protein network, which interacts with the unmodified H3-tail. An additional H3-derived bait containing the nonhydrolyzable phospho-serine mimic phosphonomethylen-alanine (Pma) at S10 recruited several isoforms of the 14-3-3 family and blocked the recruitment of HAT1 and RBBP7 to the unmodified H3-tail. Our observations provide new insights into the many functions of H3S10 phosphorylation. In addition, the outlined methodology is generally applicable for studying specific binding partners of unmodified histone tails. PMID:25330109

  18. Chemical Interactions and Their Role in the Microphase Separation of Block Copolymer Thin Films

    PubMed Central

    Farrell, Richard A.; Fitzgerald, Thomas G.; Borah, Dipu; Holmes, Justin D.; Morris, Michael A.

    2009-01-01

    The thermodynamics of self-assembling systems are discussed in terms of the chemical interactions and the intermolecular forces between species. It is clear that there are both theoretical and practical limitations on the dimensions and the structural regularity of these systems. These considerations are made with reference to the microphase separation that occurs in block copolymer (BCP) systems. BCP systems self-assemble via a thermodynamic driven process where chemical dis-affinity between the blocks driving them part is balanced by a restorative force deriving from the chemical bond between the blocks. These systems are attracting much interest because of their possible role in nanoelectronic fabrication. This form of self-assembly can obtain highly regular nanopatterns in certain circumstances where the orientation and alignment of chemically distinct blocks can be guided through molecular interactions between the polymer and the surrounding interfaces. However, for this to be possible, great care must be taken to properly engineer the interactions between the surfaces and the polymer blocks. The optimum methods of structure directing are chemical pre-patterning (defining regions on the substrate of different chemistry) and graphoepitaxy (topographical alignment) but both centre on generating alignment through favourable chemical interactions. As in all self-assembling systems, the problems of defect formation must be considered and the origin of defects in these systems is explored. It is argued that in these nanostructures equilibrium defects are relatively few and largely originate from kinetic effects arising during film growth. Many defects also arise from the confinement of the systems when they are ‘directed’ by topography. The potential applications of these materials in electronics are discussed. PMID:19865513

  19. Secretion Modification Region-Derived Peptide Disrupts HIV-1 Nef's Interaction with Mortalin and Blocks Virus and Nef Exosome Release

    PubMed Central

    Shelton, Martin N.; Huang, Ming-Bo; Ali, Syed A.; Powell, Michael D.

    2012-01-01

    Nef is secreted from infected cells in exosomes and is found in abundance in the sera of HIV-infected individuals. Secreted exosomal Nef (exNef) induces apoptosis in uninfected CD4+ T cells and may be a key component of HIV pathogenesis. The exosomal pathway has been implicated in HIV-1 virus release, suggesting a possible link between these two viral processes. However, the underlying mechanisms and cellular components of exNef secretion have not been elucidated. We have previously described a Nef motif, the secretion modification region (SMR; amino acids 66 to 70), that is required for exNef secretion. In silico modeling data suggest that this motif can form a putative binding pocket. We hypothesized that the Nef SMR binds a cellular protein involved in protein trafficking and that inhibition of this interaction would abrogate exNef secretion. By using tandem mass spectrometry and coimmunoprecipitation with a novel SMR-based peptide (SMRwt) that blocks exNef secretion and HIV-1 virus release, we identified mortalin as an SMR-specific cellular protein. A second set of coimmunoprecipitation experiments with full-length Nef confirmed that mortalin interacts with Nef via Nef's SMR motif and that this interaction is disrupted by the SMRwt peptide. Overexpression and microRNA knockdown of mortalin revealed a positive correlation between exNef secretion levels and mortalin protein expression. Using antibody inhibition we demonstrated that the Nef/mortalin interaction is necessary for exNef secretion. Taken together, this work constitutes a significant step in understanding the underlying mechanism of exNef secretion, identifies a novel host-pathogen interaction, and introduces an HIV-derived peptide with antiviral properties. PMID:22013042

  20. Ribo-Proteomics Approach to Profile RNA-Protein and Protein-Protein Interaction Networks.

    PubMed

    Yeh, Hsin-Sung; Chang, Jae-Woong; Yong, Jeongsik

    2016-01-01

    Characterizing protein-protein and protein-RNA interaction networks is a fundamental step to understanding the function of an RNA-binding protein. In many cases, these interactions are transient and highly dynamic. Therefore, capturing stable as well as transient interactions in living cells for the identification of protein-binding partners and the mapping of RNA-binding sequences is key to a successful establishment of the molecular interaction network. In this chapter, we will describe a method for capturing the molecular interactions in living cells using formaldehyde as a crosslinker and enriching a specific RNA-protein complex from cell extracts followed by mass spectrometry and Next-Gen sequencing analyses. PMID:26965265

  1. Amlexanox Blocks the Interaction between S100A4 and Epidermal Growth Factor and Inhibits Cell Proliferation.

    PubMed

    Cho, Ching Chang; Chou, Ruey-Hwang; Yu, Chin

    2016-01-01

    The human S100A4 protein binds calcium, resulting in a change in its conformation to promote the interaction with its target protein. Human epidermal growth factor (EGF) is the target protein of S100A4 and a critical ligand of the receptor EGFR. The EGF/EGFR system promotes cell survival, differentiation, and growth by activating several signaling pathways. Amlexanox is an anti-inflammatory and anti-allergic drug that is used to treat recurrent aphthous ulcers. In the present study, we determined that amlexanox interacts with S100A4 using heteronuclear single quantum correlation titration. We elucidated the interactions of S100A4 with EGF and amlexanox using fluorescence and nuclear magnetic resonance spectroscopy. We generated two binary models (for the S100A4-EGF and S100A4-amlexanox complexes) and observed that amlexanox and EGF share a similar binding region in mS100A4. We also used a WST-1 assay to investigate the bioactivity of S100A4, EGF, and amlexanox, and found that amlexanox blocks the binding between S100A4 and EGF, and is therefore useful for the development of new anti-proliferation drugs. PMID:27559743

  2. Amlexanox Blocks the Interaction between S100A4 and Epidermal Growth Factor and Inhibits Cell Proliferation

    PubMed Central

    Cho, Ching Chang; Chou, Ruey-Hwang; Yu, Chin

    2016-01-01

    The human S100A4 protein binds calcium, resulting in a change in its conformation to promote the interaction with its target protein. Human epidermal growth factor (EGF) is the target protein of S100A4 and a critical ligand of the receptor EGFR. The EGF/EGFR system promotes cell survival, differentiation, and growth by activating several signaling pathways. Amlexanox is an anti-inflammatory and anti-allergic drug that is used to treat recurrent aphthous ulcers. In the present study, we determined that amlexanox interacts with S100A4 using heteronuclear single quantum correlation titration. We elucidated the interactions of S100A4 with EGF and amlexanox using fluorescence and nuclear magnetic resonance spectroscopy. We generated two binary models (for the S100A4-EGF and S100A4-amlexanox complexes) and observed that amlexanox and EGF share a similar binding region in mS100A4. We also used a WST-1 assay to investigate the bioactivity of S100A4, EGF, and amlexanox, and found that amlexanox blocks the binding between S100A4 and EGF, and is therefore useful for the development of new anti-proliferation drugs. PMID:27559743

  3. Michigan molecular interactions r2: from interacting proteins to pathways.

    PubMed

    Tarcea, V Glenn; Weymouth, Terry; Ade, Alex; Bookvich, Aaron; Gao, Jing; Mahavisno, Vasudeva; Wright, Zach; Chapman, Adriane; Jayapandian, Magesh; Ozgür, Arzucan; Tian, Yuanyuan; Cavalcoli, Jim; Mirel, Barbara; Patel, Jignesh; Radev, Dragomir; Athey, Brian; States, David; Jagadish, H V

    2009-01-01

    Molecular interaction data exists in a number of repositories, each with its own data format, molecule identifier and information coverage. Michigan molecular interactions (MiMI) assists scientists searching through this profusion of molecular interaction data. The original release of MiMI gathered data from well-known protein interaction databases, and deep merged this information while keeping track of provenance. Based on the feedback received from users, MiMI has been completely redesigned. This article describes the resulting MiMI Release 2 (MiMIr2). New functionality includes extension from proteins to genes and to pathways; identification of highlighted sentences in source publications; seamless two-way linkage with Cytoscape; query facilities based on MeSH/GO terms and other concepts; approximate graph matching to find relevant pathways; support for querying in bulk; and a user focus-group driven interface design. MiMI is part of the NIH's; National Center for Integrative Biomedical Informatics (NCIBI) and is publicly available at: http://mimi.ncibi.org. PMID:18978014

  4. Baculovirus display for discovery of low-affinity extracellular receptor-ligand interactions using protein microarrays.

    PubMed

    Tom, Irene; Estevez, Alberto; Bowman, Krista; Gonzalez, Lino C

    2015-06-15

    When used in conjunction with multivalent protein probes, protein microarrays offer a robust technology for discovery of low-affinity extracellular protein-protein interactions. Probes for receptor-matching screens generally consist of purified extracellular domains fused to affinity tags. Given that approximately two-thirds of extracellular proteins are transmembrane domain-containing proteins, it would be desirable to develop a system to express and display probe receptors in a native-like membrane environment. Toward this end, we evaluated baculovirus display as a platform for generating multivalent probes for protein microarray screens. Virion particles were generated displaying single-transmembrane domain receptors BTLA, CD200, and EFNB2, representing a range of affinities for their interacting partners. Virions directly labeled with Cy5 fluorophore were screened against a microarray containing more than 600 extracellular proteins, and the results were compared with data derived from soluble Fc protein or probe-coated protein A microbeads. An optimized protocol employing a blocking step with a nonrelated probe-expressing control baculovirus allowed identification of the expected interactions with a signal-to-noise ratio similar to or higher than those obtained with the other formats. Our results demonstrate that baculovirus display is suitable for detection of high- and low-affinity extracellular protein-protein interactions on protein microarrays. This platform eliminates the need for protein purification and provides a native-like lipid environment for membrane-associated receptors. PMID:25797350

  5. Protein-protein interactions of mitochondrial-associated protein via bioluminescence resonance energy transfer

    PubMed Central

    Koshiba, Takumi

    2015-01-01

    Protein-protein interactions are essential biological reactions occurring at inter- and intra-cellular levels. The analysis of their mechanism is generally required in order link to understand their various cellular functions. Bioluminescence resonance energy transfer (BRET), which is based on an enzymatic activity of luciferase, is a useful tool for investigating protein-protein interactions in live cells. The combination of the BRET system and biomolecular fluorescence complementation (BiFC) would provide us a better understanding of the hetero-oligomeric structural states of protein complexes. In this review, we discuss the application of BRET to the protein-protein interactions of mitochondrial-associated proteins and discuss its physiological relevance. PMID:27493852

  6. Turning the spotlight on protein-lipid interactions in cells

    PubMed Central

    Peng, Tao; Yuan, Xiaoqiu; Hang, Howard C.

    2014-01-01

    Protein function is largely dependent on coordinated and dynamic interactions of the protein with biomolecules including other proteins, nucleic acids and lipids. While powerful methods for global profiling of protein-protein and protein-nucleic acid interactions are available, proteome-wide mapping of protein-lipid interactions is still challenging and rarely performed. The emergence of bifunctional lipid probes with photoactivatable and clickable groups offers new chemical tools for globally profiling protein-lipid interactions under cellular contexts. In this review, we summarize recent advances in the development of bifunctional lipid probes for studying protein-lipid interactions. We also highlight how in vivo photocrosslinking reactions contribute to the characterization of lipid-binding proteins and lipidation-mediated protein-protein interactions. PMID:25129056

  7. Schizophrenia interactome with 504 novel protein-protein interactions.

    PubMed

    Ganapathiraju, Madhavi K; Thahir, Mohamed; Handen, Adam; Sarkar, Saumendra N; Sweet, Robert A; Nimgaonkar, Vishwajit L; Loscher, Christine E; Bauer, Eileen M; Chaparala, Srilakshmi

    2016-01-01

    Genome-wide association studies of schizophrenia (GWAS) have revealed the role of rare and common genetic variants, but the functional effects of the risk variants remain to be understood. Protein interactome-based studies can facilitate the study of molecular mechanisms by which the risk genes relate to schizophrenia (SZ) genesis, but protein-protein interactions (PPIs) are unknown for many of the liability genes. We developed a computational model to discover PPIs, which is found to be highly accurate according to computational evaluations and experimental validations of selected PPIs. We present here, 365 novel PPIs of liability genes identified by the SZ Working Group of the Psychiatric Genomics Consortium (PGC). Seventeen genes that had no previously known interactions have 57 novel interactions by our method. Among the new interactors are 19 drug targets that are targeted by 130 drugs. In addition, we computed 147 novel PPIs of 25 candidate genes investigated in the pre-GWAS era. While there is little overlap between the GWAS genes and the pre-GWAS genes, the interactomes reveal that they largely belong to the same pathways, thus reconciling the apparent disparities between the GWAS and prior gene association studies. The interactome including 504 novel PPIs overall, could motivate other systems biology studies and trials with repurposed drugs. The PPIs are made available on a webserver, called Schizo-Pi at http://severus.dbmi.pitt.edu/schizo-pi with advanced search capabilities. PMID:27336055

  8. Single-molecule protein arrays enabled by scanning probe block copolymer lithography.

    PubMed

    Chai, Jinan; Wong, Lu Shin; Giam, Louise; Mirkin, Chad A

    2011-12-01

    The ability to control the placement of individual protein molecules on surfaces could enable advances in a wide range of areas, from the development of nanoscale biomolecular devices to fundamental studies in cell biology. Such control, however, remains a challenge in nanobiotechnology due to the limitations of current lithographic techniques. Herein we report an approach that combines scanning probe block copolymer lithography with site-selective immobilization strategies to create arrays of proteins down to the single-molecule level with arbitrary pattern control. Scanning probe block copolymer lithography was used to synthesize individual sub-10-nm single crystal gold nanoparticles that can act as scaffolds for the adsorption of functionalized alkylthiol monolayers, which facilitate the immobilization of specific proteins. The number of protein molecules that adsorb onto the nanoparticles is dependent upon particle size; when the particle size approaches the dimensions of a protein molecule, each particle can support a single protein. This was demonstrated with both gold nanoparticle and quantum dot labeling coupled with transmission electron microscopy imaging experiments. The immobilized proteins remain bioactive, as evidenced by enzymatic assays and antigen-antibody binding experiments. Importantly, this approach to generate single-biomolecule arrays is, in principle, applicable to many parallelized cantilever and cantilever-free scanning probe molecular printing methods. PMID:22106270

  9. Screening of Small-Molecule Inhibitors of Protein-Protein Interaction with Capillary Electrophoresis Frontal Analysis.

    PubMed

    Xu, Mei; Liu, Chao; Zhou, Mi; Li, Qing; Wang, Renxiao; Kang, Jingwu

    2016-08-16

    A simple and effective method for identifying inhibitors of protein-protein interactions (PPIs) was developed by using capillary electrophoresis frontal analysis (CE-FA). Antiapoptotic B-cell-2 (Bcl-2) family member Bcl-XL protein, a 5-carboxyfluorescein labeled peptide truncated from the BH3 domain of Bid (F-Bid) as the ligand, and a known Bcl-XL-Bid interaction inhibitor ABT-263 were employed as an experimental model for the proof of concept. In CE-FA, the free ligand is separated from the protein and protein-ligand complex to permit the measurement of the equilibrium concentration of the ligand, hence the dissociation constant of the protein-ligand complex. In the presence of inhibitors, formation of the protein-ligand complex is hindered, thereby the inhibition can be easily identified by the raised plateau height of the ligand and the decayed plateau of the complex. Further, we proposed an equation used to convert the IC50 value into the inhibition constant Ki value, which is more useful than the former for comparison. In addition, the sample pooling strategy was employed to improve the screening throughput more than 10 times. A small chemical library composed of synthetic compounds and natural extracts were screened with the method, two natural products, namely, demethylzeylasteral and celastrol, were identified as new inhibitors to block the Bcl-XL-Bid interaction. Cell-based assay was performed to validate the activity of the identified compounds. The result demonstrated that CE-FA represents a straightforward and robust technique for screening of PPI inhibitors. PMID:27425825

  10. Functionality of host proteins in Cucumber mosaic virus replication: GAPDH is obligatory to promote interaction between replication-associated proteins.

    PubMed

    Chaturvedi, Sonali; Seo, Jang-Kyun; Rao, A L N

    2016-07-01

    Here, we evaluated the role of two host proteins, a Bromo domain containing RNA binding protein (BRP1) and Glyceraldehyde 3-phosphate dehydrogenase (GAPDH), in the replication of Cucumber mosaic virus (CMV). LC-MS/MS analysis of host/viral proteins pull down against BRP1 from CMV-infected plants co-infiltrated with BRP1-FLAG agroconstruct identified that BRP1 specifically interacts with a ten amino acid motif (843-SPQDVVPLVR-852) encompassing the helicase domain of replicase protein p1a. The interaction between BRP1 and p1a was subsequently confirmed using a BiFC assay. Among fourteen other host proteins identified to interact with BRP1 during CMV infection, six were found to block accumulation of viral progeny in Arabidopsis thaliana lines defective in each of these host proteins. Additional BiFC assays followed by trans-complementation assays identified that plant lines defective in the expression of GAPDH blocked CMV replication by interfering with p1a:p2a interaction. Distinct roles of BRP1 and GAPDH in the replication of CMV are discussed. PMID:27077230

  11. Notable Aspects of Glycan-Protein Interactions

    PubMed Central

    Cohen, Miriam

    2015-01-01

    This mini review highlights several interesting aspects of glycan-mediated interactions that are common between cells, bacteria, and viruses. Glycans are ubiquitously found on all living cells, and in the extracellular milieu of multicellular organisms. They are known to mediate initial binding and recognition events of both immune cells and pathogens with their target cells or tissues. The host target tissues are hidden under a layer of secreted glycosylated decoy targets. In addition, pathogens can utilize and display host glycans to prevent identification as foreign by the host’s immune system (molecular mimicry). Both the host and pathogens continually evolve. The host evolves to prevent infection and the pathogens evolve to evade host defenses. Many pathogens express both glycan-binding proteins and glycosidases. Interestingly, these proteins are often located at the tip of elongated protrusions in bacteria, or in the leading edge of the cell. Glycan-protein interactions have low affinity and, as a result, multivalent interactions are often required to achieve biologically relevant binding. These enable dynamic forms of adhesion mechanisms, reviewed here, and include rolling (cells), stick and roll (bacteria) or surfacing (viruses). PMID:26340640

  12. Notable Aspects of Glycan-Protein Interactions.

    PubMed

    Cohen, Miriam

    2015-01-01

    This mini review highlights several interesting aspects of glycan-mediated interactions that are common between cells, bacteria, and viruses. Glycans are ubiquitously found on all living cells, and in the extracellular milieu of multicellular organisms. They are known to mediate initial binding and recognition events of both immune cells and pathogens with their target cells or tissues. The host target tissues are hidden under a layer of secreted glycosylated decoy targets. In addition, pathogens can utilize and display host glycans to prevent identification as foreign by the host's immune system (molecular mimicry). Both the host and pathogens continually evolve. The host evolves to prevent infection and the pathogens evolve to evade host defenses. Many pathogens express both glycan-binding proteins and glycosidases. Interestingly, these proteins are often located at the tip of elongated protrusions in bacteria, or in the leading edge of the cell. Glycan-protein interactions have low affinity and, as a result, multivalent interactions are often required to achieve biologically relevant binding. These enable dynamic forms of adhesion mechanisms, reviewed here, and include rolling (cells), stick and roll (bacteria) or surfacing (viruses). PMID:26340640

  13. Identification of essential proteins based on ranking edge-weights in protein-protein interaction networks.

    PubMed

    Wang, Yan; Sun, Huiyan; Du, Wei; Blanzieri, Enrico; Viero, Gabriella; Xu, Ying; Liang, Yanchun

    2014-01-01

    Essential proteins are those that are indispensable to cellular survival and development. Existing methods for essential protein identification generally rely on knock-out experiments and/or the relative density of their interactions (edges) with other proteins in a Protein-Protein Interaction (PPI) network. Here, we present a computational method, called EW, to first rank protein-protein interactions in terms of their Edge Weights, and then identify sub-PPI-networks consisting of only the highly-ranked edges and predict their proteins as essential proteins. We have applied this method to publicly-available PPI data on Saccharomyces cerevisiae (Yeast) and Escherichia coli (E. coli) for essential protein identification, and demonstrated that EW achieves better performance than the state-of-the-art methods in terms of the precision-recall and Jackknife measures. The highly-ranked protein-protein interactions by our prediction tend to be biologically significant in both the Yeast and E. coli PPI networks. Further analyses on systematically perturbed Yeast and E. coli PPI networks through randomly deleting edges demonstrate that the proposed method is robust and the top-ranked edges tend to be more associated with known essential proteins than the lowly-ranked edges. PMID:25268881

  14. Heparan sulfate and heparin interactions with proteins

    PubMed Central

    Meneghetti, Maria C. Z.; Hughes, Ashley J.; Rudd, Timothy R.; Nader, Helena B.; Powell, Andrew K.; Yates, Edwin A.; Lima, Marcelo A.

    2015-01-01

    Heparan sulfate (HS) polysaccharides are ubiquitous components of the cell surface and extracellular matrix of all multicellular animals, whereas heparin is present within mast cells and can be viewed as a more sulfated, tissue-specific, HS variant. HS and heparin regulate biological processes through interactions with a large repertoire of proteins. Owing to these interactions and diverse effects observed during in vitro, ex vivo and in vivo experiments, manifold biological/pharmacological activities have been attributed to them. The properties that have been thought to bestow protein binding and biological activity upon HS and heparin vary from high levels of sequence specificity to a dependence on charge. In contrast to these opposing opinions, we will argue that the evidence supports both a level of redundancy and a degree of selectivity in the structure–activity relationship. The relationship between this apparent redundancy, the multi-dentate nature of heparin and HS polysaccharide chains, their involvement in protein networks and the multiple binding sites on proteins, each possessing different properties, will also be considered. Finally, the role of cations in modulating HS/heparin activity will be reviewed and some of the implications for structure–activity relationships and regulation will be discussed. PMID:26289657

  15. The influence of protein-protein interactions on the organization of proteins within thylakoid membranes.

    PubMed

    Tremmel, I G; Weis, E; Farquhar, G D

    2005-04-01

    The influence of attractive protein-protein interactions on the organization of photosynthetic proteins within the thylakoid membrane was investigated. Protein-protein interactions were simulated using Monte Carlo techniques and the influence of different interaction energies was examined. It was found that weak interactions led to protein clusters whereas strong interactions led to ramified chains. An optimum curve for the relationship between interaction energy and the number of contact sites emerged. With increasing particle densities the effect decreased. In a mixture of interacting and noninteracting particles the distance between the noninteracting particles was increased and there seemed to be much more free space around them. In thylakoids, this could lead to a more homogeneous distribution of the noninteracting but rate-limiting cytochrome bf complexes. Due to the increased free space between cytochrome bf, obstruction of binding sites--occurring unavoidably in a random distribution--may be drastically reduced. Furthermore, protein-protein interactions in thylakoids may lead to a decrease in plastoquinone diffusion. PMID:15665125

  16. Substrates of multidrug resistance-associated proteins block the cystic fibrosis transmembrane conductance regulator chloride channel.

    PubMed

    Linsdell, P; Hanrahan, J W

    1999-03-01

    1. The effects of physiological substrates of multidrug resistance-associated proteins (MRPs) on cystic fibrosis transmembrane conductance regulator (CFTR) Cl- channel currents were examined using patch clamp recording from CFTR-transfected mammalian cell lines. 2. Two MRP substrates, taurolithocholate-3-sulphate (TLCS) and beta-estradiol 17-(beta-D-glucuronide) (E217betaG) caused a voltage-dependent block of macroscopic CFTR Cl- currents when applied to the intracellular face of excised membrane patches, with mean apparent dissociation constants (KDs) of 96+/-10 and 563+/-103 microM (at 0 mV) respectively. The unconjugated bile salts taurocholate and cholate were also effective CFTR channel blockers under these conditions, with KDs of 453+/-44 and 3760+/-710 microM (at 0 mV) respectively. 3. Reducing the extracellular Cl- concentration from 154 to 20 mM decreased the KD for block intracellular TLCS to 54+/-1 microM, and also significantly reduced the voltage dependence of block, by suggesting that TLCS blocks Cl- permeation through CFTR by binding within the channel pore. 4. Intracellular TLCS reduced the apparent amplitude of CFTR single channel currents, suggesting that the duration of block is very fast compared to the gating of the channel. 5. The apparent affinity of block by TLCs is comparable to that of other well-known CFTR channel blockers, suggesting that MRP substrates may comprise a novel class of probes of the CFTR channel pore. 6. These results also suggest that the related proteins CFTR and MRP may share a structurally similar anion binding site at the cytoplasmic face of the membrane. PMID:10217542

  17. Substrates of multidrug resistance-associated proteins block the cystic fibrosis transmembrane conductance regulator chloride channel

    PubMed Central

    Linsdell, Paul; Hanrahan, John W

    1999-01-01

    The effects of physiological substrates of multidrug resistance-associated proteins (MRPs) on cystic fibrosis transmembrane conductance regulator (CFTR) Cl− channel currents were examined using patch clamp recording from CFTR-transfected mammalian cell lines. Two MRP substrates, taurolithocholate-3-sulphate (TLCS) and β-estradiol 17-(β-D-glucuronide) (E217βG) caused a voltage-dependent block of macroscopic CFTR Cl− currents when applied to the intracellular face of excised membrane patches, with mean apparent dissociation constants (KDs) of 96±10 and 563±103 μM (at 0 mV) respectively. The unconjugated bile salts taurocholate and cholate were also effective CFTR channel blockers under these conditions, with KDs of 453±44 and 3760±710 μM (at 0 mV) respectively. Reducing the extracellular Cl− concentration from 154 to 20 mM decreased the KD for block intracellular TLCS to 54±1 μM, and also significantly reduced the voltage dependence of block, by suggesting that TLCS blocks Cl− permeation through CFTR by binding within the channel pore. Intracellular TLCS reduced the apparent amplitude of CFTR single channel currents, suggesting that the duration of block is very fast compared to the gating of the channel. The apparent affinity of block by TLCs is comparable to that of other well-known CFTR channel blockers, suggesting that MRP substrates may comprise a novel class of probes of the CFTR channel pore. These results also suggest that the related proteins CFTR and MRP may share a structurally similar anion binding site at the cytoplasmic face of the membrane. PMID:10217542

  18. Imaging Protein Protein Interactions inside Living Cells via Interaction-Dependent Fluorophore Ligation

    PubMed Central

    Slavoff, Sarah A.; Liu, Daniel S.; Cohen, Justin D.; Ting, Alice Y.

    2012-01-01

    We report a new method, Interaction-Dependent PRobe Incorporation Mediated by Enzymes, or ID-PRIME, for imaging protein protein interactions (PPIs) inside living cells. ID-PRIME utilizes a mutant of Escherichia coli lipoic acid ligase, LplAW37V, which can catalyze the covalent ligation of a coumarin fluorophore onto a peptide recognition sequence called LAP1. The affinity between the ligase and LAP1 is tuned such that, when each is fused to a protein partner of interest, LplAW37V labels LAP1 with coumarin only when the protein partners to which they are fused bring them together. Coumarin labeling in the absence of such interaction is low or undetectable. Characterization of ID-PRIME in living mammalian cells shows that multiple protein protein interactions can be imaged (FRB FKBP, Fos Jun, and neuroligin PSD-95), with as little as 10 min of coumarin treatment. The signal intensity and detection sensitivity are similar to those of the widely used fluorescent protein complementation technique (BiFC) for PPI detection, without the disadvantage of irreversible complex trapping. ID-PRIME provides a powerful and complementary approach to existing methods for visualization of PPIs in living cells with spatial and temporal resolution. PMID:22098454

  19. Tetramer formation in Arabidopsis MADS domain proteins: analysis of a protein-protein interaction network

    PubMed Central

    2014-01-01

    Background MADS domain proteins are transcription factors that coordinate several important developmental processes in plants. These proteins interact with other MADS domain proteins to form dimers, and it has been proposed that they are able to associate as tetrameric complexes that regulate transcription of target genes. Whether the formation of functional tetramers is a widespread property of plant MADS domain proteins, or it is specific to few of these transcriptional regulators remains unclear. Results We analyzed the structure of the network of physical interactions among MADS domain proteins in Arabidopsis thaliana. We determined the abundance of subgraphs that represent the connection pattern expected for a MADS domain protein heterotetramer. These subgraphs were significantly more abundant in the MADS domain protein interaction network than in randomized analogous networks. Importantly, these subgraphs are not significantly frequent in a protein interaction network of TCP plant transcription factors, when compared to expectation by chance. In addition, we found that MADS domain proteins in tetramer-like subgraphs are more likely to be expressed jointly than proteins in other subgraphs. This effect is mainly due to proteins in the monophyletic MIKC clade, as there is no association between tetramer-like subgraphs and co-expression for proteins outside this clade. Conclusions Our results support that the tendency to form functional tetramers is widespread in the MADS domain protein-protein interaction network. Our observations also suggest that this trend is prevalent, or perhaps exclusive, for proteins in the MIKC clade. Because it is possible to retrodict several experimental results from our analyses, our work can be an important aid to make new predictions and facilitates experimental research on plant MADS domain proteins. PMID:24468197

  20. Characterization of Protein Complexes and Subcomplexes in Protein-Protein Interaction Databases

    PubMed Central

    Zaki, Nazar; Mohamed, Elfadil A.; Mora, Antonio

    2015-01-01

    The identification and characterization of protein complexes implicated in protein-protein interaction data are crucial to the understanding of the molecular events under normal and abnormal physiological conditions. This paper provides a novel characterization of subcomplexes in protein interaction databases, stressing definition and representation issues, quantification, biological validation, network metrics, motifs, modularity, and gene ontology (GO) terms. The paper introduces the concept of “nested group” as a way to represent subcomplexes and estimates that around 15% of those nested group with the higher Jaccard index may be a result of data artifacts in protein interaction databases, while a number of them can be found in biologically important modular structures or dynamic structures. We also found that network centralities, enrichment in essential proteins, GO terms related to regulation, imperfect 5-clique motifs, and higher GO homogeneity can be used to identify proteins in nested complexes. PMID:25722891

  1. Designer amphiphilic proteins as building blocks for the intracellular formation of organelle-like compartments

    NASA Astrophysics Data System (ADS)

    Huber, Matthias C.; Schreiber, Andreas; von Olshausen, Philipp; Varga, Balázs R.; Kretz, Oliver; Joch, Barbara; Barnert, Sabine; Schubert, Rolf; Eimer, Stefan; Kele, Péter; Schiller, Stefan M.

    2015-01-01

    Nanoscale biological materials formed by the assembly of defined block-domain proteins control the formation of cellular compartments such as organelles. Here, we introduce an approach to intentionally ‘program’ the de novo synthesis and self-assembly of genetically encoded amphiphilic proteins to form cellular compartments, or organelles, in Escherichia coli. These proteins serve as building blocks for the formation of artificial compartments in vivo in a similar way to lipid-based organelles. We investigated the formation of these organelles using epifluorescence microscopy, total internal reflection fluorescence microscopy and transmission electron microscopy. The in vivo modification of these protein-based de novo organelles, by means of site-specific incorporation of unnatural amino acids, allows the introduction of artificial chemical functionalities. Co-localization of membrane proteins results in the formation of functionalized artificial organelles combining artificial and natural cellular function. Adding these protein structures to the cellular machinery may have consequences in nanobiotechnology, synthetic biology and materials science, including the constitution of artificial cells and bio-based metamaterials.

  2. Designer amphiphilic proteins as building blocks for the intracellular formation of organelle-like compartments.

    PubMed

    Huber, Matthias C; Schreiber, Andreas; von Olshausen, Philipp; Varga, Balázs R; Kretz, Oliver; Joch, Barbara; Barnert, Sabine; Schubert, Rolf; Eimer, Stefan; Kele, Péter; Schiller, Stefan M

    2015-01-01

    Nanoscale biological materials formed by the assembly of defined block-domain proteins control the formation of cellular compartments such as organelles. Here, we introduce an approach to intentionally 'program' the de novo synthesis and self-assembly of genetically encoded amphiphilic proteins to form cellular compartments, or organelles, in Escherichia coli. These proteins serve as building blocks for the formation of artificial compartments in vivo in a similar way to lipid-based organelles. We investigated the formation of these organelles using epifluorescence microscopy, total internal reflection fluorescence microscopy and transmission electron microscopy. The in vivo modification of these protein-based de novo organelles, by means of site-specific incorporation of unnatural amino acids, allows the introduction of artificial chemical functionalities. Co-localization of membrane proteins results in the formation of functionalized artificial organelles combining artificial and natural cellular function. Adding these protein structures to the cellular machinery may have consequences in nanobiotechnology, synthetic biology and materials science, including the constitution of artificial cells and bio-based metamaterials. PMID:25362355

  3. Light-Scattering Studies of Protein Solutions: Role of Hydration in Weak Protein-Protein Interactions

    PubMed Central

    Paliwal, A.; Asthagiri, D.; Abras, D.; Lenhoff, A. M.; Paulaitis, M. E.

    2005-01-01

    We model the hydration contribution to short-range electrostatic/dispersion protein interactions embodied in the osmotic second virial coefficient, B2, by adopting a quasi-chemical description in which water molecules associated with the protein are identified through explicit molecular dynamics simulations. These water molecules reduce the surface complementarity of highly favorable short-range interactions, and therefore can play an important role in mediating protein-protein interactions. Here we examine this quasi-chemical view of hydration by predicting the interaction part of B2 and comparing our results with those derived from light-scattering measurements of B2 for staphylococcal nuclease, lysozyme, and chymotrypsinogen at 25°C as a function of solution pH and ionic strength. We find that short-range protein interactions are influenced by water molecules strongly associated with a relatively small fraction of the protein surface. However, the effect of these strongly associated water molecules on the surface complementarity of short-range protein interactions is significant, and must be taken into account for an accurate description of B2. We also observe remarkably similar hydration behavior for these proteins despite substantial differences in their three-dimensional structures and spatial charge distributions, suggesting a general characterization of protein hydration. PMID:15980182

  4. Algorithmic approaches to protein-protein interaction site prediction.

    PubMed

    Aumentado-Armstrong, Tristan T; Istrate, Bogdan; Murgita, Robert A

    2015-01-01

    Interaction sites on protein surfaces mediate virtually all biological activities, and their identification holds promise for disease treatment and drug design. Novel algorithmic approaches for the prediction of these sites have been produced at a rapid rate, and the field has seen significant advancement over the past decade. However, the most current methods have not yet been reviewed in a systematic and comprehensive fashion. Herein, we describe the intricacies of the biological theory, datasets, and features required for modern protein-protein interaction site (PPIS) prediction, and present an integrative analysis of the state-of-the-art algorithms and their performance. First, the major sources of data used by predictors are reviewed, including training sets, evaluation sets, and methods for their procurement. Then, the features employed and their importance in the biological characterization of PPISs are explored. This is followed by a discussion of the methodologies adopted in contemporary prediction programs, as well as their relative performance on the datasets most recently used for evaluation. In addition, the potential utility that PPIS identification holds for rational drug design, hotspot prediction, and computational molecular docking is described. Finally, an analysis of the most promising areas for future development of the field is presented. PMID:25713596

  5. Deciphering Supramolecular Structures with Protein-Protein Interaction Network Modeling

    PubMed Central

    Tsuji, Toshiyuki; Yoda, Takao; Shirai, Tsuyoshi

    2015-01-01

    Many biological molecules are assembled into supramolecules that are essential to perform complicated functions in the cell. However, experimental information about the structures of supramolecules is not sufficient at this point. We developed a method of predicting and modeling the structures of supramolecules in a biological network by combining structural data of the Protein Data Bank (PDB) and interaction data in IntAct databases. Templates for binary complexes in IntAct were extracted from PDB. Modeling was attempted by assembling binary complexes with superposed shared subunits. A total of 3,197 models were constructed, and 1,306 (41% of the total) contained at least one subunit absent from experimental structures. The models also suggested 970 (25% of the total) experimentally undetected subunit interfaces, and 41 human disease-related amino acid variants were mapped onto these model-suggested interfaces. The models demonstrated that protein-protein interaction network modeling is useful to fill the information gap between biological networks and structures. PMID:26549015

  6. Targeting protein-protein interactions as an anticancer strategy

    PubMed Central

    Ivanov, Andrei A.; Khuri, Fadlo R.; Fu, Haian

    2013-01-01

    The emergence and convergence of cancer genomics, targeted therapies, and network oncology have significantly expanded the landscape of protein-protein interaction (PPI) networks in cancer for therapeutic discovery. Extensive biological and clinical investigations have led to the identification of protein interaction hubs and nodes that are critical for the acquisition and maintaining characteristics of cancer essential for cell transformation. Such cancer enabling PPIs have become promising therapeutic targets. With technological advances in PPI modulator discovery and validation of PPI-targeting agents in clinical settings, targeting PPI interfaces as an anticancer strategy has become a reality. Future research directed at genomics-based PPI target discovery, PPI interface characterization, PPI-focused chemical library design, and patient-genomic subpopulation-driven clinical studies is expected to accelerate the development of the next generation of PPI-based anticancer agents for personalized precision medicine. Here we briefly review prominent PPIs that mediate cancer-acquired properties, highlight recognized challenges and promising clinical results in targeting PPIs, and outline emerging opportunities. PMID:23725674

  7. Parallel Force Assay for Protein-Protein Interactions

    PubMed Central

    Aschenbrenner, Daniela; Pippig, Diana A.; Klamecka, Kamila; Limmer, Katja; Leonhardt, Heinrich; Gaub, Hermann E.

    2014-01-01

    Quantitative proteome research is greatly promoted by high-resolution parallel format assays. A characterization of protein complexes based on binding forces offers an unparalleled dynamic range and allows for the effective discrimination of non-specific interactions. Here we present a DNA-based Molecular Force Assay to quantify protein-protein interactions, namely the bond between different variants of GFP and GFP-binding nanobodies. We present different strategies to adjust the maximum sensitivity window of the assay by influencing the binding strength of the DNA reference duplexes. The binding of the nanobody Enhancer to the different GFP constructs is compared at high sensitivity of the assay. Whereas the binding strength to wild type and enhanced GFP are equal within experimental error, stronger binding to superfolder GFP is observed. This difference in binding strength is attributed to alterations in the amino acids that form contacts according to the crystal structure of the initial wild type GFP-Enhancer complex. Moreover, we outline the potential for large-scale parallelization of the assay. PMID:25546146

  8. Impact of blocking and detection chemistries on antibody performance for reverse phase protein arrays.

    PubMed

    Ambroz, Kristi

    2011-01-01

    Careful selection of well-qualified antibodies is critical for accurate data collection from reverse phase protein arrays (RPPA). The most common way to qualify antibodies for RPPA analysis is by Western blotting because the detection mechanism is based on the same immunodetection principles. Western blots of tissue or cell lysates that result in single bands and low cross-reactivity indicate appropriate antibodies for RPPA detection. Western blot conditions used to validate antibodies for RPPA experiments, including blocking and detection reagents, have significant effects on aspects of antibody performance such as cross-reactivity against other proteins in the sample. We have found that there can be a dramatic impact on antibody behavior with changes in blocking reagent and detection method, and offer an alternative method that allows detection reagents and conditions to be held constant in both antibody validation and RPPA experiments. PMID:21901590

  9. Matrix protein 2 of influenza A virus blocks autophagosome fusion with lysosomes

    PubMed Central

    Gannagé, Monique; Schmid, Dorothee; Albrecht, Randy; Dengjel, Jörn; Torossi, Tania; Rämer, Patrick C.; Lee, Monica; Strowig, Till; Arrey, Frida; Conenello, Gina; Pypaert, Marc; Andersen, Jens; García-Sastre, Adolfo; Münz, Christian

    2009-01-01

    Influenza A virus is an important human pathogen causing significant morbidity and mortality every year and threatening the human population with epidemics and pandemics. Therefore, it is important to understand the biology of this virus to develop strategies to control its pathogenicity. Here we demonstrate that live influenza A virus infection causes accumulation of autophagosomes by blocking their fusion with lysosomes. Matrix protein 2 is sufficient and necessary for this inhibition of autophagosome degradation. Macroautophagy inhibition compromises cell survival of influenza virus infected cells, but does not influence viral replication. We propose that influenza A virus, which also encodes pro-apoptotic proteins, is able to determine the death of its host cell by inducing apoptosis and blocking macroautophagy. PMID:19837376

  10. Wortmannin and 1-butanol block activation of a novel family of protein kinases in neutrophils.

    PubMed

    Ding, J; Badwey, J A

    1994-07-11

    Neutrophils contain four uncharacterized protein kinases with molecular masses of ca. 69, 63, 49 and 40 kDa that are rapidly activated upon stimulation of these cells with the chemoattractant fMet-Leu-Phe [Ding, J. and Badwey, J.A. (1993) J. Biol. Chem. 268, 17326-17333]. We now report that wortmannin and 1-butanol block activation of all four of these kinases. These reagents are known to inhibit superoxide generation in neutrophils stimulated with this agonist. Wortmannin inhibits phosphatidylinositol 3-kinase and blocks activation of phospholipase D, whereas 1-butanol can reduce the generation of phosphatidate in cells by serving as a substrate for phospholipase D. These data suggest that phosphatidylinositol 3-kinase and phospholipase D may be involved in the activation of several novel protein kinases in neutrophils and that one or more of these kinases is/are involved in superoxide release. PMID:8034030

  11. Barotropic interaction between planetary- and synoptic-scale waves during the life cycles of blockings

    NASA Astrophysics Data System (ADS)

    Luo, Dehai; Li, Jianping

    2000-12-01

    In this paper, in an equivalent barotropic framework a new forced nonlinear Schroedinger equation is proposed to examine the interaction between the planetary-scale waves and the localized synoptic-scale eddies upstream. With the help of the perturbed inverse scattering transform method, nonlinear parameter equations can be derived to describe the evolution of the dipole soliton amplitude, frequency, group velocity and phase under the forcing of localized synoptic-scale eddies. The numerical solutions of these equations predict that in the interaction between the weak dipole soliton (weak incipient dipole anomaly) and the synoptic-scale eddies, only when the high-frequency eddies themselves have a moderate parameter match they can near resonantly enhance a quasi-stationary large-amplitude split flow. The instantaneous total streamfunction field (the sum of background westerly wind, envelope Rossby soliton and synoptic-scale waves) is found to be very similar to the observed Berggren-type blocking on the weather map(Berggren et al. 1949). The role of synoptic-scale eddies is to increase the amplitude of large-scale dipole anomaly flow, and to decrease its group velocity, phase velocity and zonal wavenumber so that the dipole anomaly system can be amplified and transferred from dispersive system to very weak dispersive one. This may explain why and how the synoptic-scale eddies can reinforce and maintain vortex pair block. Furthermore, it is clearly found that during the prevalence of the vortex pair block the synoptic-scale eddies are split into two branches around the vortex pair block due to the feedback of amplified dipole block.

  12. Efficient inhibition of tumor angiogenesis and growth by a synthetic peptide blocking S100A4-methionine aminopeptidase 2 interaction

    PubMed Central

    Ochiya, Takahiro; Takenaga, Keizo; Asagiri, Masataka; Nakano, Kazumi; Satoh, Hitoshi; Watanabe, Toshiki; Imajoh-Ohmi, Shinobu; Endo, Hideya

    2015-01-01

    The prometastatic calcium-binding protein, S100A4, is expressed in endothelial cells, and its downregulation markedly suppresses tumor angiogenesis in a xenograft cancer model. Given that endothelial S100A4 can be a molecular target for inhibiting tumor angiogenesis, we addressed here whether synthetic peptide capable of blocking S100A4-effector protein interaction could be a novel antiangiogenic agent. To examine this hypothesis, we focused on the S100A4-binding domain of methionine aminopeptidase 2, an effector protein, which plays a role in endothelial cell growth. Overexpression of the domain in mouse endothelial MSS31 cells reduced DNA synthesis, and the corresponding synthetic peptide (named NBD) indeed interacted with S100A4 and inhibited capillary formation in vitro and new blood vessel formation in vivo. Intriguingly, a single intra-tumor administration of the NBD peptide in human prostate cancer xenografts significantly reduced vascularity, resulting in tumor regression. Mechanistically, the NBD peptide enhanced assembly of nonmuscle myosin IIA filaments along with Ser1943 phosphorylation, stimulated formation of focal adhesions without phosphorylation of focal adhesion kinase, and provoked G1/S arrest of the cell cycle. Altogether, the NBD peptide is a potent inhibitor for tumor angiogenesis, and is the first example of an anticancer peptide drug developed on the basis of an endothelial S100A4-targeted strategy. PMID:26029719

  13. Efficient inhibition of tumor angiogenesis and growth by a synthetic peptide blocking S100A4-methionine aminopeptidase 2 interaction.

    PubMed

    Ochiya, Takahiro; Takenaga, Keizo; Asagiri, Masataka; Nakano, Kazumi; Satoh, Hitoshi; Watanabe, Toshiki; Imajoh-Ohmi, Shinobu; Endo, Hideya

    2015-01-01

    The prometastatic calcium-binding protein, S100A4, is expressed in endothelial cells, and its downregulation markedly suppresses tumor angiogenesis in a xenograft cancer model. Given that endothelial S100A4 can be a molecular target for inhibiting tumor angiogenesis, we addressed here whether synthetic peptide capable of blocking S100A4-effector protein interaction could be a novel antiangiogenic agent. To examine this hypothesis, we focused on the S100A4-binding domain of methionine aminopeptidase 2, an effector protein, which plays a role in endothelial cell growth. Overexpression of the domain in mouse endothelial MSS31 cells reduced DNA synthesis, and the corresponding synthetic peptide (named NBD) indeed interacted with S100A4 and inhibited capillary formation in vitro and new blood vessel formation in vivo. Intriguingly, a single intra-tumor administration of the NBD peptide in human prostate cancer xenografts significantly reduced vascularity, resulting in tumor regression. Mechanistically, the NBD peptide enhanced assembly of nonmuscle myosin IIA filaments along with Ser1943 phosphorylation, stimulated formation of focal adhesions without phosphorylation of focal adhesion kinase, and provoked G1/S arrest of the cell cycle. Altogether, the NBD peptide is a potent inhibitor for tumor angiogenesis, and is the first example of an anticancer peptide drug developed on the basis of an endothelial S100A4-targeted strategy. PMID:26029719

  14. Response of rotation-translation blocked proteins using Langevin dynamics on a locally harmonic landscape.

    PubMed

    Manson, Anthony C; Coalson, Rob D

    2012-10-11

    Langevin dynamics is used to compute the time evolution of the nonequilibrium motion of the atomic coordinates of a protein in response to ligand dissociation. The protein potential energy surface (PES) is approximated by a harmonic basin about the minimum of the unliganded state. Upon ligand dissociation, the protein undergoes relaxation from the bound to the unbound state. A coarse graining scheme based on rotation translation blocks (RTB) is applied to the relaxation of the two domain iron transport protein, ferric binding protein. This scheme provides a natural and efficient way to freeze out the small amplitude, high frequency motions within each rigid fragment, thereby allowing for the number of dynamical degrees of freedom to be reduced. The results obtained from all flexible atom (constraint free) dynamics are compared to those obtained using RTB-Langevin dynamics. To assess the impact of the assumed rigid fragment clustering on the temporal relaxation dynamics of the protein molecule, three distinct rigid block decompositions were generated and their responses compared. Each of the decompositions was a variant of the one-block-per-residue grouping, with their force and friction matrices being derived from their fully flexible counterpart. Monitoring the time evolution of the distance separating a selected pair of amino acids, the response curves of the blocked decompositions were similar in shape to each other and to the control system in which all atomic degrees of freedom are fully independent. The similar shape of the blocked responses showed that the variations in grouping had only a minor impact on the kinematics. Compared with the all atom responses, however, the blocked responses were faster as a result of the instantaneous transmission of force throughout each rigid block. This occurred because rigid blocking does not permit any intrablock deformation that could store or divert energy. It was found, however, that this accelerated response could be

  15. Module organization and variance in protein-protein interaction networks

    PubMed Central

    Lin, Chun-Yu; Lee, Tsai-Ling; Chiu, Yi-Yuan; Lin, Yi-Wei; Lo, Yu-Shu; Lin, Chih-Ta; Yang, Jinn-Moon

    2015-01-01

    A module is a group of closely related proteins that act in concert to perform specific biological functions through protein–protein interactions (PPIs) that occur in time and space. However, the underlying module organization and variance remain unclear. In this study, we collected module templates to infer respective module families, including 58,041 homologous modules in 1,678 species, and PPI families using searches of complete genomic database. We then derived PPI evolution scores and interface evolution scores to describe the module elements, including core and ring components. Functions of core components were highly correlated with those of essential genes. In comparison with ring components, core proteins/PPIs were conserved across multiple species. Subsequently, protein/module variance of PPI networks confirmed that core components form dynamic network hubs and play key roles in various biological functions. Based on the analyses of gene essentiality, module variance, and gene co-expression, we summarize the observations of module organization and variance as follows: 1) a module consists of core and ring components; 2) core components perform major biological functions and collaborate with ring components to execute certain functions in some cases; 3) core components are more conserved and essential during organizational changes in different biological states or conditions. PMID:25797237

  16. From Topology to Phenotype in Protein-Protein Interaction Networks

    NASA Astrophysics Data System (ADS)

    Pržulj, Nataša

    We have recently witnessed an explosion in biological network data along with the development of computational approaches for their analyses. This new interdisciplinary research area is an integral part of systems biology, promising to provide new insights into organizational principles of life, as well as into evolution and disease. However, there is a danger that the area might become hindered by several emerging issues. In particular, there is typically a weak link between biological and computational scientists, resulting in the use of simple computational techniques of limited potential to explain these complex biological data. Hence, there is a danger that the community might view the topological features of network data as mere statistics, ignoring the value of the information contained in these data. This might result in the imposition of scientific doctrines, such as scale-free-centric (on the modelling side) and genome-centric (on the biological side) opinions onto this nascent research area. In this chapter, we take a network science perspective and present a brief, high-level overview of the area, commenting on possible challenges ahead. We focus on protein-protein interaction networks (PINs) in which nodes correspond to proteins in a cell and edges to physical bindings between the proteins.

  17. Creating functional sophistication from simple protein building blocks, exemplified by factor H and the regulators of complement activation.

    PubMed

    Makou, Elisavet; Herbert, Andrew P; Barlow, Paul N

    2015-10-01

    Complement control protein modules (CCPs) occur in numerous functionally diverse extracellular proteins. Also known as short consensus repeats (SCRs) or sushi domains each CCP contains approximately 60 amino acid residues, including four consensus cysteines participating in two disulfide bonds. Varying in length and sequence, CCPs adopt a β-sandwich type fold and have an overall prolate spheroidal shape with N- and C-termini lying close to opposite poles of the long axis. CCP-containing proteins are important as cytokine receptors and in neurotransmission, cell adhesion, blood clotting, extracellular matrix formation, haemoglobin metabolism and development, but CCPs are particularly well represented in the vertebrate complement system. For example, factor H (FH), a key soluble regulator of the alternative pathway of complement activation, is made up entirely from a chain of 20 CCPs joined by short linkers. Collectively, therefore, the 20 CCPs of FH must mediate all its functional capabilities. This is achieved via collaboration and division of labour among these modules. Structural studies have illuminated the dynamic architectures that allow FH and other CCP-rich proteins to perform their biological functions. These are largely the products of a highly varied set of intramolecular interactions between CCPs. The CCP can act as building block, spacer, highly versatile recognition site or dimerization mediator. Tandem CCPs may form composite binding sites or contribute to flexible, rigid or conformationally 'switchable' segments of the parent proteins. PMID:26517887

  18. Chain and pore-blocking effects on matrix degradation in protein-loaded microgels.

    PubMed

    Widenbring, Ronja; Frenning, Göran; Malmsten, Martin

    2014-10-13

    Factors affecting matrix degradation in protein-loaded microgels were investigated for dextran-based microgels, the sugar-binding protein Concanavalin A (ConA), and the dextran-degrading enzyme Dextranase. For this system, effects of enzyme, protein, and glucose concentrations, as well as pH, were considered. Microgel network degradation was monitored by micromanipulator-assisted light microscopy, whereas enzyme and protein distributions were monitored by confocal microscopy. Results show that Dextranase-mediated microgel degradation increased with increasing enzyme concentration, whereas an increased ConA loading in the dextran microgels caused a concentration-dependent decrease in microgel degradation. In the presence of glucose, competitive release of microgel-bound ConA restored the microgel degradation observed in the absence of ConA. To clarify effects of mass transport limitations, microgel degradation was compared to that of non-cross-linked dextran, demonstrating that ConA limits enzyme substrate access in dextran microgels primarily through pore blocking and induction of pore shrinkage. The experimentally observed effects were qualitatively captured by a modified Michaelis-Menten approach for spherical symmetry, in which network blocking by ConA was included. Taken together, the results demonstrate that matrix degradation of protein-loaded microgels depends sensitively on a number of factors, which need to be considered in the use of microgels in biomedical applications. PMID:25144139

  19. Activities of the Sex-lethal protein in RNA binding and protein:protein interactions.

    PubMed Central

    Samuels, M; Deshpande, G; Schedl, P

    1998-01-01

    The Drosophila sex determination gene Sex-lethal (Sxl) controls its own expression, and the expression of downstream target genes such as transformer , by regulating pre-mRNA splicing and mRNA translation. Sxl codes an RNA-binding protein that consists of an N-terminus of approximately 100 amino acids, two 90 amino acid RRM domains, R1 and R2, and an 80 amino acid C-terminus. In the studies reported here we have examined the functional properties of the different Sxl protein domains in RNA binding and in protein:protein interactions. The two RRM domains are responsible for RNA binding. Specificity in the recognition of target RNAs requires both RRM domains, and proteins which consist of the single domains or duplicated domains have anomalous RNA recognition properties. Moreover, the length of the linker between domains can affect RNA recognition properties. Our results indicate that the two RRM domains mediate Sxl:Sxl protein interactions, and that these interactions probably occur both in cis and trans. We speculate that cis interactions between R1 and R2 play a role in RNA recognition by the Sxl protein, while trans interactions stabilize complex formation on target RNAs that contain two or more closely spaced binding sites. Finally, we show that the interaction of Sxl with the snRNP protein Snf is mediated by the R1 RRM domain. PMID:9592147

  20. Interaction of Curcumin with PEO-PPO-PEO block copolymers: a molecular dynamics study.

    PubMed

    Samanta, Susruta; Roccatano, Danilo

    2013-03-21

    Curcumin, a naturally occurring drug molecule, has been extensively investigated for its various potential usages in medicine. Its water insolubility and high metabolism rate require the use of drug delivery systems to make it effective in the human body. Among various types of nanocarriers, block copolymer based ones are the most effective. These polymers are broadly used as drug-delivery systems, but the nature of this process is poorly understood. In this paper, we propose a molecular dynamics simulation study of the interaction of Curcumin with block copolymer based on polyethylene oxide (PEO) and polypropylene oxide (PPO). The study has been conducted considering the smallest PEO and PPO oligomers and multiple chains of the block copolymer Pluronic P85. Our study shows that the more hydrophobic 1,2-dimethoxypropane (DMP) molecules and PPO block preferentially coat the Curcumin molecule. In the case of the Pluronic P85, simulation shows formation of a drug-polymer aggregate within 50 ns. This process leaves exposed the PEO part of the polymers, resulting in better solvation and stability of the drug in water. PMID:23441964

  1. Developing algorithms for predicting protein-protein interactions of homology modeled proteins.

    SciTech Connect

    Martin, Shawn Bryan; Sale, Kenneth L.; Faulon, Jean-Loup Michel; Roe, Diana C.

    2006-01-01

    The goal of this project was to examine the protein-protein docking problem, especially as it relates to homology-based structures, identify the key bottlenecks in current software tools, and evaluate and prototype new algorithms that may be developed to improve these bottlenecks. This report describes the current challenges in the protein-protein docking problem: correctly predicting the binding site for the protein-protein interaction and correctly placing the sidechains. Two different and complementary approaches are taken that can help with the protein-protein docking problem. The first approach is to predict interaction sites prior to docking, and uses bioinformatics studies of protein-protein interactions to predict theses interaction site. The second approach is to improve validation of predicted complexes after docking, and uses an improved scoring function for evaluating proposed docked poses, incorporating a solvation term. This scoring function demonstrates significant improvement over current state-of-the art functions. Initial studies on both these approaches are promising, and argue for full development of these algorithms.

  2. Protein Cross-Linking Capillary Electrophoresis for Protein-Protein Interaction Analysis.

    PubMed

    Ouimet, Claire M; Shao, Hao; Rauch, Jennifer N; Dawod, Mohamed; Nordhues, Bryce; Dickey, Chad A; Gestwicki, Jason E; Kennedy, Robert T

    2016-08-16

    Capillary electrophoresis (CE) has been identified as a useful platform for detecting, quantifying, and screening for modulators of protein-protein interactions (PPIs). In this method, one protein binding partner is labeled with a fluorophore, the protein binding partners are mixed, and then, the complex is separated from free protein to allow direct determination of bound to free ratios. Although it possesses many advantages for PPI studies, the method is limited by the need to have separation conditions that both prevent protein adsorption to capillary and maintain protein interactions during the separation. In this work, we use protein cross-linking capillary electrophoresis (PXCE) to overcome this limitation. In PXCE, the proteins are cross-linked under binding conditions and then separated. This approach eliminates the need to maintain noncovalent interactions during electrophoresis and facilitates method development. We report PXCE methods for an antibody-antigen interaction and heterodimer and homodimer heat shock protein complexes. Complexes are cross-linked by short treatments with formaldehyde after reaching binding equilibrium. Cross-linked complexes are separated by electrophoretic mobility using free solution CE or by size using sieving electrophoresis of SDS complexes. The method gives good quantitative results; e.g., a lysozyme-antibody interaction was found to have Kd = 24 ± 3 nM by PXCE and Kd = 17 ± 2 nM using isothermal calorimetry (ITC). Heat shock protein 70 (Hsp70) in complex with bcl2 associated athanogene 3 (Bag3) was found to have Kd = 25 ± 5 nM by PXCE which agrees with Kd values reported without cross-linking. Hsp70-Bag3 binding site mutants and small molecule inhibitors of Hsp70-Bag3 were characterized by PXCE with good agreement to inhibitory constants and IC50 values obtained by a bead-based flow cytometry protein interaction assay (FCPIA). PXCE allows rapid method development for quantitative analysis of PPIs. PMID:27434096

  3. Ortholog-based protein-protein interaction prediction and its application to inter-species interactions

    PubMed Central

    Lee, Sheng-An; Chan, Cheng-hsiung; Tsai, Chi-Hung; Lai, Jin-Mei; Wang, Feng-Sheng; Kao, Cheng-Yan; Huang, Chi-Ying F

    2008-01-01

    Background The rapid growth of protein-protein interaction (PPI) data has led to the emergence of PPI network analysis. Despite advances in high-throughput techniques, the interactomes of several model organisms are still far from complete. Therefore, it is desirable to expand these interactomes with ortholog-based and other methods. Results Orthologous pairs of 18 eukaryotic species were expanded and merged with experimental PPI datasets. The contributions of interologs from each species were evaluated. The expanded orthologous pairs enable the inference of interologs for various species. For example, more than 32,000 human interactions can be predicted. The same dataset has also been applied to the prediction of host-pathogen interactions. PPIs between P. falciparum calmodulin and several H. sapiens proteins are predicted, and these interactions may contribute to the maintenance of host cell Ca2+ concentration. Using comparisons with Bayesian and structure-based approaches, interactions between putative HSP40 homologs of P. falciparum and the H. sapiens TNF receptor associated factor family are revealed, suggesting a role for these interactions in the interference of the human immune response to P. falciparum. Conclusion The PPI datasets are available from POINT and POINeT . Further development of methods to predict host-pathogen interactions should incorporate multiple approaches in order to improve sensitivity, and should facilitate the identification of targets for drug discovery and design. PMID:19091010

  4. Detection and identification of protein interactions of S100 proteins by ProteinChip technology.

    PubMed

    Lehmann, Roland; Melle, Christian; Escher, Niko; von Eggeling, Ferdinand

    2005-01-01

    The aim of this work was to establish an approach for identification of protein interactions. This assay used an anti-S100A8 antibody coupled on beads and incubated with cell extract. The bead eluates were analyzed using ProteinChip technology and subsequently subjected to an appropriate digestion. Molecular masses of digestion fragments were determined by SELDI-MS, and database analysis revealed S100A10 as interacting protein. This result was confirmed by co-immunoprecipitation and immunocapturing. Using S100A10 as new bait, a specific interaction with S100A7 was detectable. PMID:16212425

  5. Hydrophobic Blocks Facilitate Lipid Compatibility and Translocon Recognition of Transmembrane Protein Sequences

    PubMed Central

    2016-01-01

    Biophysical hydrophobicity scales suggest that partitioning of a protein segment from an aqueous phase into a membrane is governed by its perceived segmental hydrophobicity but do not establish specifically (i) how the segment is identified in vivo for translocon-mediated insertion or (ii) whether the destination lipid bilayer is biochemically receptive to the inserted sequence. To examine the congruence between these dual requirements, we designed and synthesized a library of Lys-tagged peptides of a core length sufficient to span a bilayer but with varying patterns of sequence, each composed of nine Leu residues, nine Ser residues, and one (central) Trp residue. We found that peptides containing contiguous Leu residues (Leu-block peptides, e.g., LLLLLLLLLWSSSSSSSSS), in comparison to those containing discontinuous stretches of Leu residues (non-Leu-block peptides, e.g., SLSLLSLSSWSLLSLSLLS), displayed greater helicity (circular dichroism spectroscopy), traveled slower during sodium dodecyl sulfate–polyacrylamide gel electrophoresis, had longer reverse phase high-performance liquid chromatography retention times on a C-18 column, and were helical when reconstituted into 1-palmitoyl-2-oleoylglycero-3-phosphocholine liposomes, each observation indicating superior lipid compatibility when a Leu-block is present. These parameters were largely paralleled in a biological membrane insertion assay using microsomal membranes from dog pancreas endoplasmic reticulum, where we found only the Leu-block sequences successfully inserted; intriguingly, an amphipathic peptide (SLLSSLLSSWLLSSLLSSL; Leu face, Ser face) with biophysical properties similar to those of Leu-block peptides failed to insert. Our overall results identify local sequence lipid compatibility rather than average hydrophobicity as a principal determinant of transmembrane segment potential, while demonstrating that further subtleties of hydrophobic and helical patterning, such as circumferential hydrophobicity

  6. Hydrophobic blocks facilitate lipid compatibility and translocon recognition of transmembrane protein sequences.

    PubMed

    Stone, Tracy A; Schiller, Nina; von Heijne, Gunnar; Deber, Charles M

    2015-02-24

    Biophysical hydrophobicity scales suggest that partitioning of a protein segment from an aqueous phase into a membrane is governed by its perceived segmental hydrophobicity but do not establish specifically (i) how the segment is identified in vivo for translocon-mediated insertion or (ii) whether the destination lipid bilayer is biochemically receptive to the inserted sequence. To examine the congruence between these dual requirements, we designed and synthesized a library of Lys-tagged peptides of a core length sufficient to span a bilayer but with varying patterns of sequence, each composed of nine Leu residues, nine Ser residues, and one (central) Trp residue. We found that peptides containing contiguous Leu residues (Leu-block peptides, e.g., LLLLLLLLLWSSSSSSSSS), in comparison to those containing discontinuous stretches of Leu residues (non-Leu-block peptides, e.g., SLSLLSLSSWSLLSLSLLS), displayed greater helicity (circular dichroism spectroscopy), traveled slower during sodium dodecyl sulfate-polyacrylamide gel electrophoresis, had longer reverse phase high-performance liquid chromatography retention times on a C-18 column, and were helical when reconstituted into 1-palmitoyl-2-oleoylglycero-3-phosphocholine liposomes, each observation indicating superior lipid compatibility when a Leu-block is present. These parameters were largely paralleled in a biological membrane insertion assay using microsomal membranes from dog pancreas endoplasmic reticulum, where we found only the Leu-block sequences successfully inserted; intriguingly, an amphipathic peptide (SLLSSLLSSWLLSSLLSSL; Leu face, Ser face) with biophysical properties similar to those of Leu-block peptides failed to insert. Our overall results identify local sequence lipid compatibility rather than average hydrophobicity as a principal determinant of transmembrane segment potential, while demonstrating that further subtleties of hydrophobic and helical patterning, such as circumferential hydrophobicity in

  7. Profiling of Protein Interaction Networks of Protein Complexes Using Affinity Purification and Quantitative Mass Spectrometry*

    PubMed Central

    Kaake, Robyn M.; Wang, Xiaorong; Huang, Lan

    2010-01-01

    Protein-protein interactions are important for nearly all biological processes, and it is known that aberrant protein-protein interactions can lead to human disease and cancer. Recent evidence has suggested that protein interaction interfaces describe a new class of attractive targets for drug development. Full characterization of protein interaction networks of protein complexes and their dynamics in response to various cellular cues will provide essential information for us to understand how protein complexes work together in cells to maintain cell viability and normal homeostasis. Affinity purification coupled with quantitative mass spectrometry has become the primary method for studying in vivo protein interactions of protein complexes and whole organism proteomes. Recent developments in sample preparation and affinity purification strategies allow the capture, identification, and quantification of protein interactions of protein complexes that are stable, dynamic, transient, and/or weak. Current efforts have mainly focused on generating reliable, reproducible, and high confidence protein interaction data sets for functional characterization. The availability of increasing amounts of information on protein interactions in eukaryotic systems and new bioinformatics tools allow functional analysis of quantitative protein interaction data to unravel the biological significance of the identified protein interactions. Existing studies in this area have laid a solid foundation toward generating a complete map of in vivo protein interaction networks of protein complexes in cells or tissues. PMID:20445003

  8. Inhibition of host cell translation elongation by Legionella pneumophila blocks the host cell unfolded protein response

    PubMed Central

    Hempstead, Andrew D.; Isberg, Ralph R.

    2015-01-01

    Cells of the innate immune system recognize bacterial pathogens by detecting common microbial patterns as well as pathogen-specific activities. One system that responds to these stimuli is the IRE1 branch of the unfolded protein response (UPR), a sensor of endoplasmic reticulum (ER) stress. Activation of IRE1, in the context of Toll-like receptor (TLR) signaling, induces strong proinflammatory cytokine induction. We show here that Legionella pneumophila, an intravacuolar pathogen that replicates in an ER-associated compartment, blocks activation of the IRE1 pathway despite presenting pathogen products that stimulate this response. L. pneumophila TLR ligands induced the splicing of mRNA encoding XBP1s, the main target of IRE1 activity. L. pneumophila was able to inhibit both chemical and bacterial induction of XBP1 splicing via bacterial translocated proteins that interfere with host protein translation. A strain lacking five translocated translation elongation inhibitors was unable to block XBP1 splicing, but this could be rescued by expression of a single such inhibitor, consistent with limitation of the response by translation elongation inhibitors. Chemical inhibition of translation elongation blocked pattern recognition receptor-mediated XBP1 splicing, mimicking the effects of the bacterial translation inhibitors. In contrast, host cell-promoted inhibition of translation initiation in response to the pathogen was ineffective in blocking XBP1 splicing, demonstrating the need for the elongation inhibitors for protection from the UPR. The inhibition of host translation elongation may be a common strategy used by pathogens to limit the innate immune response by interfering with signaling via the UPR. PMID:26598709

  9. The V protein of Tioman virus is incapable of blocking type I interferon signaling in human cells.

    PubMed

    Caignard, Grégory; Lucas-Hourani, Marianne; Dhondt, Kevin P; Labernardière, Jean-Louis; Petit, Thierry; Jacob, Yves; Horvat, Branka; Tangy, Frédéric; Vidalain, Pierre-Olivier

    2013-01-01

    The capacity of a virus to cross species barriers is determined by the development of bona fide interactions with cellular components of new hosts, and in particular its ability to block IFN-α/β antiviral signaling. Tioman virus (TioV), a close relative of mumps virus (MuV), has been isolated in giant fruit bats in Southeast Asia. Nipah and Hendra viruses, which are present in the same bat colonies, are highly pathogenic in human. Despite serological evidences of close contacts between TioV and human populations, whether TioV is associated to some human pathology remains undetermined. Here we show that in contrast to the V protein of MuV, the V protein of TioV (TioV-V) hardly interacts with human STAT2, does not degrade STAT1, and cannot block IFN-α/β signaling in human cells. In contrast, TioV-V properly binds to human STAT3 and MDA5, and thus interferes with IL-6 signaling and IFN-β promoter induction in human cells. Because STAT2 binding was previously identified as a host restriction factor for some Paramyxoviridae, we established STAT2 sequence from giant fruit bats, and binding to TioV-V was tested. Surprisingly, TioV-V interaction with STAT2 from giant fruit bats is also extremely weak and barely detectable. Altogether, our observations question the capacity of TioV to appropriately control IFN-α/β signaling in both human and giant fruit bats that are considered as its natural host. PMID:23342031

  10. Cyclin D1 blocks the anti-proliferative function of RUNX3 by interfering with RUNX3-p300 interaction

    SciTech Connect

    Iwatani, Kazunori; Fujimoto, Tetsuhiro; Ito, Takaaki

    2010-09-24

    Research highlights: {yields} Cyclin D1 interacts with RUNX3 and inhibits the interaction and collaboration of RUNX3 with coactivator p300. {yields} Cyclin D1 blocks the ability of RUNX3 to induce the expression of cdk inhibitor p21. {yields} Cyclin D1 releases cancer cells from the inhibition of proliferation induced by RUNX3. -- Abstract: Transcriptional function of cyclin D1, whose deregulation is frequently observed in human cancers, has been suggested to contribute to cancer formation. In the present study, we show that cyclin D1 protein inhibits RUNX3 activity by directly binding to it and interfering with its interaction with p300 interaction in lung cancer cells. Cyclin D1 inhibits p300-dependent RUNX3 acetylation and negatively regulates cyclin-dependent kinase (cdk) inhibitor p21 expression. These transcriptional effects of cyclin D1 do not require cdk4/6 kinase activation. We propose that cyclin D1 provides a transcriptional switch that allows the tumor suppressor activity of RUNX3 to be repressed in cancer cells. Since RUNX3 plays tumor suppressive roles in a wide range of cancers, a non-canonical cyclin D1 function may be critical for neoplastic transformation of the epithelial cells in which RUNX3 regulates proliferation.

  11. Brain delivery of proteins via their fatty acid and block copolymer modifications

    PubMed Central

    Yi, Xiang; Kabanov, Alexander V.

    2014-01-01

    It is well known that hydrophobic small molecules penetrate cell membranes better than hydrophilic molecules. Amphiphilic molecules that dissolve both in lipid and aqueous phases are best suited for membrane transport. Transport of biomacromolecules across physiological barriers, e.g. the blood-brain barrier, is greatly complicated by the unique structure and function of such barriers. Two decades ago we adopted a simple philosophy that to increase protein delivery to the brain one needs to modify this protein with hydrophobic moieties. With this general idea we began modifying proteins (antibodies, enzymes, hormones, etc.) with either hydrophobic fatty acid residues or amphiphilic block copolymer moieties, such as poy(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (pluronics or poloxamers) and more recently, poly(2-oxasolines). This simple approach has resulted in impressive successes in CNS drug delivery. We present a retrospective overview of these works initiated in the Soviet Union in 1980s, and then continued in the United States and other countries. Notably some of the early findings were later corroborated by brain pharmacokinetic data. Industrial development of several drug candidates employing these strategies has followed. Overall modification by hydrophobic fatty acids residues or amphiphilic block copolymers represents a promising and relatively safe strategy to deliver proteins to the brain. PMID:24160902

  12. Prediction of Protein-Protein Interaction Sites Based on Naive Bayes Classifier

    PubMed Central

    Geng, Haijiang; Lu, Tao; Lin, Xiao; Liu, Yu; Yan, Fangrong

    2015-01-01

    Protein functions through interactions with other proteins and biomolecules and these interactions occur on the so-called interface residues of the protein sequences. Identifying interface residues makes us better understand the biological mechanism of protein interaction. Meanwhile, information about the interface residues contributes to the understanding of metabolic, signal transduction networks and indicates directions in drug designing. In recent years, researchers have focused on developing new computational methods for predicting protein interface residues. Here we creatively used a 181-dimension protein sequence feature vector as input to the Naive Bayes Classifier- (NBC-) based method to predict interaction sites in protein-protein complexes interaction. The prediction of interaction sites in protein interactions is regarded as an amino acid residue binary classification problem by applying NBC with protein sequence features. Independent test results suggested that Naive Bayes Classifier-based method with the protein sequence features as input vectors performed well. PMID:26697220

  13. Blocking temperature of interacting magnetic nanoparticles with uniaxial and cubic anisotropies from Monte Carlo simulations

    NASA Astrophysics Data System (ADS)

    Russier, V.

    2016-07-01

    The low temperature behavior of densely packed interacting spherical single domain nanoparticles (MNP) is investigated by Monte Carlo simulations in the framework of an effective one spin model. The particles are distributed through a hard sphere like distribution with periodic boundary conditions and interact through the dipole dipole interaction (DDI) with an anisotropy energy including both cubic and uniaxial symmetry components. The cubic component is shown to play a sizable role on the value of the blocking temperature Tb only when the MNP easy axes are parallel to the cubic easy direction ([111] direction for a negative cubic anisotropy constant). The nature of the collective low temperature state, either ferromagnetic or spin glass like, is found to depend on the ratio of the anisotropy to the dipolar energies characterizing partly the disorder in the system.

  14. Block-adaptive quantum mechanics: an adaptive divide-and-conquer approach to interactive quantum chemistry.

    PubMed

    Bosson, Maël; Grudinin, Sergei; Redon, Stephane

    2013-03-01

    We present a novel Block-Adaptive Quantum Mechanics (BAQM) approach to interactive quantum chemistry. Although quantum chemistry models are known to be computationally demanding, we achieve interactive rates by focusing computational resources on the most active parts of the system. BAQM is based on a divide-and-conquer technique and constrains some nucleus positions and some electronic degrees of freedom on the fly to simplify the simulation. As a result, each time step may be performed significantly faster, which in turn may accelerate attraction to the neighboring local minima. By applying our approach to the nonself-consistent Atom Superposition and Electron Delocalization Molecular Orbital theory, we demonstrate interactive rates and efficient virtual prototyping for systems containing more than a thousand of atoms on a standard desktop computer. PMID:23108532

  15. Development of GAGG depth-of-interaction (DOI) block detectors based on pulse shape analysis

    NASA Astrophysics Data System (ADS)

    Yamamoto, Seiichi; Kobayashi, Takahiro; Yeol Yeom, Jung; Morishita, Yuki; Sato, Hiroki; Endo, Takanori; Usuki, Yoshiyuki; Kamada, Kei; Yoshikawa, Akira

    2014-12-01

    A depth-of-interaction (DOI) detector is required for developing a high resolution and high sensitivity PET system. Ce-doped Gd3Al2Ga3O12 (GAGG fast: GAGG-F) is a promising scintillator for PET applications with high light output, no natural radioisotope and suitable light emission wavelength for semiconductor based photodetectors. However, no DOI detector based on pulse shape analysis with GAGG-F has been developed to date, due to the lack of appropriate scintillators of pairing. Recently a new variation of this scintillator with different Al/Ga ratios-Ce-doped Gd3Al2.6Ga2.4O12 (GAGG slow: GAGG-S), which has slower decay time was developed. The combination of GAGG-F and GAGG-S may allow us to realize high resolution DOI detectors based on pulse shape analysis. We developed and tested two GAGG phoswich DOI block detectors comprised of pixelated GAGG-F and GAGG-S scintillation crystals. One phoswich block detector comprised of 2×2×5 mm pixel that were assembled into a 5×5 matrix. The DOI block was optically coupled to a silicon photomultiplier (Si-PM) array (Hamamatsu MPPC S11064-050P) with a 2-mm thick light guide. The other phoswich block detector comprised of 0.5×0.5×5 mm (GAGG-F) and 0.5×0.5×6 mm3 (GAGG-S) pixels that were assembled into a 20×20 matrix. The DOI block was also optically coupled to the same Si-PM array with a 2-mm thick light guide. In the block detector of 2-mm crystal pixels (5×5 matrix), the 2-dimensional histogram revealed excellent separation with an average energy resolution of 14.1% for 662-keV gamma photons. The pulse shape spectrum displayed good separation with a peak-to-valley ratio of 8.7. In the block detector that used 0.5-mm crystal pixels (20×20 matrix), the 2-dimensional histogram also showed good separation with energy resolution of 27.5% for the 662-keV gamma photons. The pulse shape spectrum displayed good separation with a peak-to-valley ratio of 6.5. These results indicate that phoswich DOI detectors with the two

  16. UvrD controls the access of recombination proteins to blocked replication forks.

    PubMed

    Lestini, Roxane; Michel, Bénédicte

    2007-08-22

    Blocked replication forks often need to be processed by recombination proteins prior to replication restart. In Escherichia coli, the UvrD repair helicase was recently shown to act at inactivated replication forks, where it counteracts a deleterious action of RecA. Using two mutants affected for different subunits of the polymerase III holoenzyme (Pol IIIh), we show here that the anti-RecA action of UvrD at blocked forks reflects two different activities of this enzyme. A defective UvrD mutant is able to antagonize RecA in cells affected for the Pol IIIh catalytic subunit DnaE. In this mutant, RecA action at blocked forks specifically requires the protein RarA (MgsA). We propose that UvrD prevents RecA binding, possibly by counteracting RarA. In contrast, at forks affected for the Pol IIIh clamp (DnaN), RarA is not required for RecA binding and the ATPase function of UvrD is essential to counteract RecA, supporting the idea that UvrD removes RecA from DNA. UvrD action on RecA is conserved in evolution as it can be performed in E. coli by the UvrD homologue from Bacillus subtilis, PcrA. PMID:17641684

  17. UvrD controls the access of recombination proteins to blocked replication forks

    PubMed Central

    Lestini, Roxane; Michel, Bénédicte

    2007-01-01

    Blocked replication forks often need to be processed by recombination proteins prior to replication restart. In Escherichia coli, the UvrD repair helicase was recently shown to act at inactivated replication forks, where it counteracts a deleterious action of RecA. Using two mutants affected for different subunits of the polymerase III holoenzyme (Pol IIIh), we show here that the anti-RecA action of UvrD at blocked forks reflects two different activities of this enzyme. A defective UvrD mutant is able to antagonize RecA in cells affected for the Pol IIIh catalytic subunit DnaE. In this mutant, RecA action at blocked forks specifically requires the protein RarA (MgsA). We propose that UvrD prevents RecA binding, possibly by counteracting RarA. In contrast, at forks affected for the Pol IIIh clamp (DnaN), RarA is not required for RecA binding and the ATPase function of UvrD is essential to counteract RecA, supporting the idea that UvrD removes RecA from DNA. UvrD action on RecA is conserved in evolution as it can be performed in E. coli by the UvrD homologue from Bacillus subtilis, PcrA. PMID:17641684

  18. Protein-protein interactions in plant mitogen-activated protein kinase cascades.

    PubMed

    Zhang, Tong; Chen, Sixue; Harmon, Alice C

    2016-02-01

    Mitogen-activated protein kinases (MAPKs) form tightly controlled signaling cascades that play essential roles in plant growth, development, and defense. However, the molecular mechanisms underlying MAPK cascades are still elusive, due largely to our poor understanding of how they relay the signals. Extensive effort has been devoted to characterization of MAPK-substrate interactions to illustrate phosphorylation-based signaling. The diverse MAPK substrates identified also shed light on how spatiotemporal-specific protein-protein interactions function in distinct MAPK cascade-mediated biological processes. This review surveys various technologies used for characterizing MAPK-substrate interactions and presents case studies of MPK4 and MPK6, highlighting the multiple functions of MAPKs. Mass spectrometry-based approaches in identifying MAPK-interacting proteins are emphasized due to their increasing utility and effectiveness. The potential for using MAPKs and their substrates in enhancing plant stress tolerance is also discussed. PMID:26646897

  19. The Foundations of Protein-Ligand Interaction

    NASA Astrophysics Data System (ADS)

    Klebe, Gerhard

    For the specific design of a drug we must first answer the question: How does a drug achieve its activity? An active ingredient must, in order to develop its action, bind to a particular target molecule in the body. Usually this is a protein, but also nucleic acids in the form of RNA and DNA can be target structures for active agents. The most important condition for binding is at first that the active agent exhibits the correct size and shape in order to optimally fit into a cavity exposed to the surface of the protein, the "bindingpocket". It is further necessary for the surface properties of the ligand and protein to be mutually compatible to form specific interactions. In 1894 Emil Fischer compared the exact fit of a substrate for the catalytic centre of an enzyme with the picture of a "lock-and-key". Paul Ehrlich coined in 1913 "Corpora non agunt nisi fixata", literally "bodies do not work when they are not bound". He wanted to imply that active agents that are meant to kill bacteria or parasites must be "fixed" by them, i.e. linked to their structures. Both concepts form the starting point for any rational concept in the development of active pharmaceutical ingredients. In many respects they still apply today. A drug must, after being administered, reach its target and interact with a biological macromolecule. Specific agents have a large affinity and sufficient selectivity to bind to the macromolecule's active site. This is the only way they can develop the desired biological activity without side-effects.

  20. Methods for Mapping of Interaction Networks Involving Membrane Proteins

    SciTech Connect

    Hooker, Brian S.; Bigelow, Diana J.; Lin, Chiann Tso

    2007-11-23

    Numerous approaches have been taken to study protein interactions, such as tagged protein complex isolation followed by mass spectrometry, yeast two-hybrid methods, fluorescence resonance energy transfer, surface plasmon resonance, site-directed mutagenesis, and crystallography. Membrane protein interactions pose significant challenges due to the need to solubilize membranes without disrupting protein-protein interactions. Traditionally, analysis of isolated protein complexes by high-resolution 2D gel electrophoresis has been the main method used to obtain an overall picture of proteome constituents and interactions. However, this method is time consuming, labor intensive, detects only abundant proteins and is not suitable for the coverage required to elucidate large interaction networks. In this review, we discuss the application of various methods to elucidate interactions involving membrane proteins. These techniques include methods for the direct isolation of single complexes or interactors as well as methods for characterization of entire subcellular and cellular interactomes.

  1. Essential protein identification based on essential protein-protein interaction prediction by Integrated Edge Weights.

    PubMed

    Jiang, Yuexu; Wang, Yan; Pang, Wei; Chen, Liang; Sun, Huiyan; Liang, Yanchun; Blanzieri, Enrico

    2015-07-15

    Essential proteins play a crucial role in cellular survival and development process. Experimentally, essential proteins are identified by gene knockouts or RNA interference, which are expensive and often fatal to the target organisms. Regarding this, an alternative yet important approach to essential protein identification is through computational prediction. Existing computational methods predict essential proteins based on their relative densities in a protein-protein interaction (PPI) network. Degree, betweenness, and other appropriate criteria are often used to measure the relative density. However, no matter what criterion is used, a protein is actually ordered by the attributes of this protein per se. In this research, we presented a novel computational method, Integrated Edge Weights (IEW), to first rank protein-protein interactions by integrating their edge weights, and then identified sub PPI networks consisting of those highly-ranked edges, and finally regarded the nodes in these sub networks as essential proteins. We evaluated IEW on three model organisms: Saccharomyces cerevisiae (S. cerevisiae), Escherichia coli (E. coli), and Caenorhabditis elegans (C. elegans). The experimental results showed that IEW achieved better performance than the state-of-the-art methods in terms of precision-recall and Jackknife measures. We had also demonstrated that IEW is a robust and effective method, which can retrieve biologically significant modules by its highly-ranked protein-protein interactions for S. cerevisiae, E. coli, and C. elegans. We believe that, with sufficient data provided, IEW can be used to any other organisms' essential protein identification. A website about IEW can be accessed from http://digbio.missouri.edu/IEW/index.html. PMID:25892709

  2. Protein-protein interactions of PDE4 family members - Functions, interactions and therapeutic value.

    PubMed

    Klussmann, Enno

    2016-07-01

    The second messenger cyclic adenosine monophosphate (cAMP) is ubiquitous and directs a plethora of functions in all cells. Although theoretically freely diffusible through the cell from the site of its synthesis it is not evenly distributed. It rather is shaped into gradients and these gradients are established by phospodiesterases (PDEs), the only enzymes that hydrolyse cAMP and thereby terminate cAMP signalling upstream of cAMP's effector systems. Miles D. Houslay has devoted most of his scientific life highly successfully to a particular family of PDEs, the PDE4 family. The family is encoded by four genes and gives rise to around 20 enzymes, all with different functions. M. Houslay has discovered many of these functions and realised early on that PDE4 family enzymes are attractive drug targets in a variety of human diseases, but not their catalytic activity as that is encoded in conserved domains in all family members. He postulated that targeting the intracellular location would provide the specificity that modern innovative drugs require to improve disease conditions with fewer side effects than conventional drugs. Due to the wealth of M. Houslay's work, this article can only summarize some of his discoveries and, therefore, focuses on protein-protein interactions of PDE4. The aim is to discuss functions of selected protein-protein interactions and peptide spot technology, which M. Houslay introduced into the PDE4 field for identifying interacting domains. The therapeutic potential of PDE4 interactions will also be discussed. PMID:26498857

  3. Differential regulation of gene expression in mouse spermatogonial cells after blocking c-kit-SCF interaction with RNAi

    PubMed Central

    Sikarwar, Arun P; Rambabu, Murali K; Reddy, K V R

    2008-01-01

    c-Kit, the gene product of the W locus is a receptor tyrosine kinase that regulates the survival, growth and differentiation of spermatogonial cells (SGCs). Stem cell factor (SCF), the gene product of the steel (Sl) locus is the ligand for c-kit. Normal function of SGCs requires cross-talk between c-kit and SCF through which the receptor-ligand pair regulates the functions of SGCs. The implications of cross-talk between c-kit and SCF in regulating SGC function remains unclear due to the molecular complexity of this interaction. In the present study, we analyzed the interactions between c-kit and SCF in mouse primary SGCs after blocking the c-kit expression by c-kit siRNA and its effect on cell fate were determined using cDNA Expression Array and Real-time PCR. Immunofluorescence (IF) and western blot studies revealed that c-kit protein was detected in SGCs and knocked down to undetectable levels at 24 hr post transfection with 10 nM concentration of c-kit siRNA. We further demonstrated that expression of various genes involved in cell signaling, cell differentiation, apoptosis and cell cycle pathways was altered. SGC functions are affected by SCF signaling through c-kit receptor and this signaling appears to be important to maintain balance between cell proliferation and apoptosis along with the modulation of inflammatory responses of SGCs. To the best of our knowledge, this is the first report that identifies the putative molecular pathways in murine SGCs in response to specific blocking of c-kit-SCF interactions by siRNA. In conclusion, the present study may provide useful insights into siRNA function and hopefully aid in understanding the involvement of c-kit in the early events of SGC activities and spermatogenesis in mice. PMID:19771240

  4. Analyses of Interactions Between Heparin and the Apical Surface Proteins of Plasmodium falciparum

    NASA Astrophysics Data System (ADS)

    Kobayashi, Kyousuke; Takano, Ryo; Takemae, Hitoshi; Sugi, Tatsuki; Ishiwa, Akiko; Gong, Haiyan; Recuenco, Frances C.; Iwanaga, Tatsuya; Horimoto, Taisuke; Akashi, Hiroomi; Kato, Kentaro

    2013-11-01

    Heparin, a sulfated glycoconjugate, reportedly inhibits the blood-stage growth of the malaria parasite Plasmodium falciparum. Elucidation of the inhibitory mechanism is valuable for developing novel invasion-blocking treatments based on heparin. Merozoite surface protein 1 has been reported as a candidate target of heparin; however, to better understand the molecular mechanisms involved, we characterized the molecules that bind to heparin during merozoite invasion. Here, we show that heparin binds only at the apical tip of the merozoite surface and that multiple heparin-binding proteins localize preferentially in the apical organelles. To identify heparin-binding proteins, parasite proteins were fractionated by means of heparin affinity chromatography and subjected to immunoblot analysis with ligand-specific antibodies. All tested members of the Duffy and reticulocyte binding-like families bound to heparin with diverse affinities. These findings suggest that heparin masks the apical surface of merozoites and blocks interaction with the erythrocyte membrane after initial attachment.

  5. Small-molecule tools for dissecting the roles of SSB/protein interactions in genome maintenance

    SciTech Connect

    Lu, Duo; Bernstein, Douglas A.; Satyshur, Kenneth A.; Keck, James L.

    2010-09-03

    Bacterial single-stranded DNA-binding proteins (SSBs) help to recruit a diverse array of genome maintenance enzymes to their sites of action through direct protein interactions. For all cases examined to date, these interactions are mediated by the evolutionarily conserved C terminus of SSB (SSB-Ct). The essential nature of SSB protein interactions makes inhibitors that block SSB complex formation valuable biochemical tools and attractive potential antibacterial agents. Here, we identify four small molecules that disrupt complexes formed between Escherichia coli SSB and Exonuclease I (ExoI), a well-studied SSB-interacting enzyme. Each compound disrupts ExoI/SSB-Ct peptide complexes and abrogates SSB stimulation of ExoI nuclease activity. Structural and biochemical studies support a model for three of the compounds in which they compete with SSB for binding to ExoI. The fourth appears to rely on an allosteric mechanism to disrupt ExoI/SSB complexes. Subsets of the inhibitors block SSB-Ct complex formation with two other SSB-interaction partners as well, which highlights their utility as reagents for investigating the roles of SSB/protein interactions in diverse DNA replication, recombination, and repair reactions.

  6. Intricate protein-protein interactions in the cyanobacterial circadian clock.

    PubMed

    Egli, Martin

    2014-08-01

    The cyanobacterial circadian clock consists of a post-translational oscillator (PTO) and a PTO-dependent transcription-translation feedback loop (TTFL). The PTO can be reconstituted in vitro with the KaiA, KaiB, and KaiC proteins, enabling detailed biochemical and biophysical investigations. Both the CI and the CII halves of the KaiC hexamer harbor ATPases, but only the C-terminal CII ring exhibits kinase and phospho-transferase activities. KaiA stimulates the kinase and KaiB associates with KaiC during the dephosphorylation phase and sequesters KaiA. Recent research has led to conflicting models of the KaiB-KaiC interaction, precluding a clear understanding of KaiB function and KaiABC clock mechanism. PMID:24936066

  7. Intricate Protein-Protein Interactions in the Cyanobacterial Circadian Clock*

    PubMed Central

    Egli, Martin

    2014-01-01

    The cyanobacterial circadian clock consists of a post-translational oscillator (PTO) and a PTO-dependent transcription-translation feedback loop (TTFL). The PTO can be reconstituted in vitro with the KaiA, KaiB, and KaiC proteins, enabling detailed biochemical and biophysical investigations. Both the CI and the CII halves of the KaiC hexamer harbor ATPases, but only the C-terminal CII ring exhibits kinase and phospho-transferase activities. KaiA stimulates the kinase and KaiB associates with KaiC during the dephosphorylation phase and sequesters KaiA. Recent research has led to conflicting models of the KaiB-KaiC interaction, precluding a clear understanding of KaiB function and KaiABC clock mechanism. PMID:24936066

  8. Production in Pichia pastoris of protein-based polymers with small heterodimer-forming blocks.

    PubMed

    Domeradzka, Natalia E; Werten, Marc W T; de Vries, Renko; de Wolf, Frits A

    2016-05-01

    Some combinations of leucine zipper peptides are capable of forming α-helical heterodimeric coiled coils with very high affinity. These can be used as physical cross-linkers in the design of protein-based polymers that form supramolecular structures, for example hydrogels, upon mixing solutions containing the complementary blocks. Such two-component physical networks are of interest for many applications in biomedicine, pharmaceutics, and diagnostics. This article describes the efficient secretory production of A and B type leucine zipper peptides fused to protein-based polymers in Pichia pastoris. By adjusting the fermentation conditions, we were able to significantly reduce undesirable proteolytic degradation. The formation of A-B heterodimers in mixtures of the purified products was confirmed by size exclusion chromatography. Our results demonstrate that protein-based polymers incorporating functional heterodimer-forming blocks can be produced with P. pastoris in sufficient quantities for use in future supramolecular self-assembly studies and in various applications. Biotechnol. Bioeng. 2016;113: 953-960. © 2015 Wiley Periodicals, Inc. PMID:26479855

  9. CPI motif interaction is necessary for capping protein function in cells

    PubMed Central

    Edwards, Marc; McConnell, Patrick; Schafer, Dorothy A.; Cooper, John A.

    2015-01-01

    Capping protein (CP) has critical roles in actin assembly in vivo and in vitro. CP binds with high affinity to the barbed end of actin filaments, blocking the addition and loss of actin subunits. Heretofore, models for actin assembly in cells generally assumed that CP is constitutively active, diffusing freely to find and cap barbed ends. However, CP can be regulated by binding of the ‘capping protein interaction' (CPI) motif, found in a diverse and otherwise unrelated set of proteins that decreases, but does not abolish, the actin-capping activity of CP and promotes uncapping in biochemical experiments. Here, we report that CP localization and the ability of CP to function in cells requires interaction with a CPI-motif-containing protein. Our discovery shows that cells target and/or modulate the capping activity of CP via CPI motif interactions in order for CP to localize and function in cells. PMID:26412145

  10. Measuring frequency domain granger causality for multiple blocks of interacting time series.

    PubMed

    Faes, Luca; Nollo, Giandomenico

    2013-04-01

    In the past years, several frequency-domain causality measures based on vector autoregressive time series modeling have been suggested to assess directional connectivity in neural systems. The most followed approaches are based on representing the considered set of multiple time series as a realization of two or three vector-valued processes, yielding the so-called Geweke linear feedback measures, or as a realization of multiple scalar-valued processes, yielding popular measures like the directed coherence (DC) and the partial DC (PDC). In the present study, these two approaches are unified and generalized by proposing novel frequency-domain causality measures which extend the existing measures to the analysis of multiple blocks of time series. Specifically, the block DC (bDC) and block PDC (bPDC) extend DC and PDC to vector-valued processes, while their logarithmic counterparts, denoted as multivariate total feedback [Formula: see text] and direct feedback [Formula: see text], represent into a full multivariate framework the Geweke's measures. Theoretical analysis of the proposed measures shows that they: (i) possess desirable properties of causality measures; (ii) are able to reflect either direct causality (bPDC, [Formula: see text] or total (direct + indirect) causality (bDC, [Formula: see text] between time series blocks; (iii) reduce to the DC and PDC measures for scalar-valued processes, and to the Geweke's measures for pairs of processes; (iv) are able to capture internal dependencies between the scalar constituents of the analyzed vector processes. Numerical analysis showed that the proposed measures can be efficiently estimated from short time series, allow to represent in an objective, compact way the information derived from the causal analysis of several pairs of time series, and may detect frequency domain causality more accurately than existing measures. The proposed measures find their natural application in the evaluation of directional

  11. Specificity and non-specificity in RNA–protein interactions

    PubMed Central

    Jankowsky, Eckhard; Harris, Michael E.

    2016-01-01

    Gene expression is regulated by complex networks of interactions between RNAs and proteins. Proteins that interact with RNA have been traditionally viewed as either specific or non-specific; specific proteins interact preferentially with defined RNA sequence or structure motifs, whereas non-specific proteins interact with RNA sites devoid of such characteristics. Recent studies indicate that the binary “specific vs. non-specific” classification is insufficient to describe the full spectrum of RNA–protein interactions. Here, we review new methods that enable quantitative measurements of protein binding to large numbers of RNA variants, and the concepts aimed as describing resulting binding spectra: affinity distributions, comprehensive binding models and free energy landscapes. We discuss how these new methodologies and associated concepts enable work towards inclusive, quantitative models for specific and non-specific RNA–protein interactions. PMID:26285679

  12. Methods for the analysis of protein-chromatin interactions.

    PubMed

    Brickwood, Sarah J; Myers, Fiona A; Chandler, Simon P

    2002-01-01

    The analysis of protein interactions with chromatin is vital for the understanding of DNA sequence recognition in vivo. Chromatin binding requires the interaction of proteins with DNA lying on the macromolecular protein surface of nucleosomes, a situation that can alter factor binding characteristics substantially when compared with naked DNA. It is therefore important to study these protein-DNA interactions in the context of a chromatin substrate, the more physiologically relevant binding situation. In this article we review techniques used in the investigation of protein interactions with defined nucleosomal templates. PMID:11876294

  13. Perfluorinated Moieties Increase the Interaction of Amphiphilic Block Copolymers with Lipid Monolayers.

    PubMed

    Schwieger, Christian; Blaffert, Jacob; Li, Zheng; Kressler, Jörg; Blume, Alfred

    2016-08-16

    The interaction of amphiphilic and triphilic block copolymers with lipid monolayers has been studied. Amphiphilic triblock copolymer PGMA20-PPO34-PGMA20 (GP) is composed of a hydrophobic poly(propylene oxide) (PPO) middle block that is flanked by two hydrophilic poly(glycerol monomethacrylate) (PGMA) side blocks. The attachment of a perfluoro-n-nonyl residue (F9) to either end of GP yields a triphilic polymer with the sequence F9-PGMA20-PPO34-PGMA20-F9 (F-GP). The F9 chains are fluorophilic, i.e., they have a tendency to demix in hydrophilic as well as in lipophilic environments. We investigated (i) the adsorption of both polymers to differently composed lipid monolayers and (ii) the compression behavior of mixed polymer/lipid monolayers. The lipid monolayers are composed of phospholipids with PC or PE headgroups and acyl chains of different length and saturation. Both polymers interact with lipid monolayers by inserting their hydrophobic moieties (PPO, F9). The interaction is markedly enhanced in the presence of F9 chains, which act as membrane anchors. GP inserts into lipid monolayers up to a surface pressure of 30 mN/m, whereas F-GP inserts into monolayers at up to 45 mN/m, suggesting that F-GP also inserts into lipid bilayer membranes. The adsorption of both polymers to lipid monolayers with short acyl chains is favored. Upon compression, a two-step squeeze-out of F-GP occurs, with PPO blocks being released into the aqueous subphase at 28 mN/m and the F9 chains being squeezed out at 48 mN/m. GP is squeezed out in one step at 28 mN/m because of the lack of F9 anchor groups. The liquid expanded (LE) to liquid condensed (LC) phase transition of DPPC and DMPE is maintained in the presence of the polymers, indicating that the polymers can be accommodated in LE- and LC-phase monolayers. These results show how fluorinated moieties can be included in the rational design of membrane-binding polymers. PMID:27442444

  14. Interaction and localization diversities of global and local hubs in human protein-protein interaction networks.

    PubMed

    Kiran, M; Nagarajaram, H A

    2016-08-16

    Hubs, the highly connected nodes in protein-protein interaction networks (PPINs), are associated with several characteristic properties and are known to perform vital roles in cells. We defined two classes of hubs, global (housekeeping) and local (tissue-specific) hubs. These two categories of hubs are distinct from each other with respect to their abundance, structure and function. However, how distinct are the spatial expression pattern and other characteristics of their interacting partners is still not known. Our investigations revealed that the partners of the local hubs compared with those of global hubs are conserved across the tissues in which they are expressed. Partners of local hubs show diverse subcellular localizations as compared with the partners of global hubs. We examined the nature of interacting domains in both categories of hubs and found that they are promiscuous in global hubs but not so in local hubs. Deletion of some of the local and global hubs has an impact on the characteristic path length of the network indicating that those hubs are inter-modular in nature. Our present study has, therefore, shed further light on the characteristic features of the local and global hubs in human PPIN. This knowledge of different topological aspects of hubs with regard to their types and subtypes is essential as it helps in better understanding of roles of hub proteins in various cellular processes under various conditions including those caused by host-pathogen interactions and therefore useful in prioritizing targets for drug design and repositioning. PMID:27400769

  15. Evolution of protein interactions: from interactomes to interfaces.

    PubMed

    Andreani, Jessica; Guerois, Raphael

    2014-07-15

    Protein-protein interactions lie at the heart of most cellular processes. Many experimental and computational studies aim to deepen our understanding of these interactions and improve our capacity to predict them. In this respect, the evolutionary perspective is most interesting, since the preservation of structure and function puts constraints on the evolution of proteins and their interactions. However, uncovering these constraints remains a challenge, and the description and detection of evolutionary signals in protein-protein interactions is currently a very active field of research. Here, we review recent works dissecting the mechanisms of protein-protein interaction evolution and exploring how to use evolutionary information to predict interactions, both at the global level of the interactome and at the detailed level of protein-protein interfaces. We first present to what extent protein-protein interactions are found to be conserved within interactomes and which properties can influence their conservation. We then discuss the evolutionary and co-evolutionary pressures applied on protein-protein interfaces. Finally, we describe how the computational prediction of interfaces can benefit from evolutionary inputs. PMID:24853495

  16. Nitric oxide blocks cellular heme insertion into a broad range of heme proteins

    PubMed Central

    Waheed, Syed Mohsin; Ghosh, Arnab; Chakravarti, Ritu; Biswas, Ashis; Haque, Mohammad Mahfuzul; Panda, Koustubh; Stuehr, Dennis J.

    2010-01-01

    Although heme insertion into proteins enables their function in bioenergetics, metabolism, and signaling, the mechanisms and regulation of this process is not fully understood. We developed a means to study cellular heme insertion into apo-protein targets over a 3 h time period, and then investigated how nitric oxide (NO) released from a chemical donor (NOC-18) might influence heme (protoporphyrin IX) insertion into seven targets that present a range of protein structure, heme ligation, and function (three NO synthases, two cytochrome P450’s, catalase, and hemoglobin). NO blocked cellular heme insertion into all seven apo-protein targets. The inhibition occurred at relatively low (nM/min) fluxes of NO, was reversible, and did not involve changes in intracellular heme level, activation of guanylate cyclase, or inhibition of mitochondrial ATP production. These aspects and the range of protein targets suggest that NO can act as a global inhibitor of heme insertion, possibly by inhibiting a common step in the process. PMID:20211245

  17. RING finger protein PLR-1 blocks Wnt signaling by altering trafficking of Wnt Receptors

    NASA Astrophysics Data System (ADS)

    Robinson, Ryan E.

    Secreted Wnt proteins control a wide range of essential developmental processes, including axon guidance and establishment of anteroposterior neuronal polarity. We identified a transmembrane RING finger protein, PLR-1, that governs the response to Wnts by reducing the cell surface levels of Wnt receptors Frizzled, CAM-1 and LIN-18 in Caenorhabditis elegans. Frizzled, CAM-1 and LIN-18 are normally enriched at the plasma membrane where they are capable of detecting and responding to extracellular Wnts. However, when PLR-1 is expressed Frizzled, CAM-1 and LIN-18 are no longer detected at the cell surface and instead colocalize with PLR-1 in endosomes and Golgi. PLR-1 is related to a broad family of transmembrane proteins that contain a lumenal protease associated domain and a cytosolic RING finger. The RING finger is a hallmark of one type of E3 ubiquitin ligase and monoubiquitination is commonly used to regulate protein trafficking. Protease associated domains are largely thought to mediate interactions between proteins. To identify the domains responsible for PLR-1 regulation of Frizzled from the cell surface we utilized a series of fluorescently tagged fusion proteins and protein truncations containing various domains from PLR-1 and Frizzled. Our data suggests that PLR-1 and Frizzled interact and form a complex via their respective extracellular/lumenal domains, and that ubiqiuitination of Frizzled by PLR-1 targets the Frizzled/PLR-1 complex to the endosome.

  18. Fluorinated amino acids: compatibility with native protein structures and effects on protein-protein interactions.

    PubMed

    Salwiczek, Mario; Nyakatura, Elisabeth K; Gerling, Ulla I M; Ye, Shijie; Koksch, Beate

    2012-03-21

    Fluorinated analogues of the canonical α-L-amino acids have gained widespread attention as building blocks that may endow peptides and proteins with advantageous biophysical, chemical and biological properties. This critical review covers the literature dealing with investigations of peptides and proteins containing fluorinated analogues of the canonical amino acids published over the course of the past decade including the late nineties. It focuses on side-chain fluorinated amino acids, the carbon backbone of which is identical to their natural analogues. Each class of amino acids--aliphatic, aromatic, charged and polar as well as proline--is presented in a separate section. General effects of fluorine on essential properties such as hydrophobicity, acidity/basicity and conformation of the specific side chains and the impact of these altered properties on stability, folding kinetics and activity of peptides and proteins are discussed (245 references). PMID:22130572

  19. Biomimetic block copolymer particles with gated nanopores and ultrahigh protein sorption capacity

    NASA Astrophysics Data System (ADS)

    Yu, Haizhou; Qiu, Xiaoyan; Nunes, Suzana P.; Peinemann, Klaus-Viktor

    2014-06-01

    The design of micro- or nanoparticles that can encapsulate sensitive molecules such as drugs, hormones, proteins or peptides is of increasing importance for applications in biotechnology and medicine. Examples are micelles, liposomes and vesicles. The tiny and, in most cases, hollow spheres are used as vehicles for transport and controlled administration of pharmaceutical drugs or nutrients. Here we report a simple strategy to fabricate microspheres by block copolymer self-assembly. The microsphere particles have monodispersed nanopores that can act as pH-responsive gates. They contain a highly porous internal structure, which is analogous to the Schwarz P structure. The internal porosity of the particles contributes to their high sorption capacity and sustained release behaviour. We successfully separated similarly sized proteins using these particles. The ease of particle fabrication by macrophase separation and self-assembly, and the robustness of the particles makes them ideal for sorption, separation, transport and sustained delivery of pharmaceutical substances.

  20. Nanoporous membrane based on block copolymer thin film for protein drug delivery

    NASA Astrophysics Data System (ADS)

    Yang, Seung Yun; Yang, Jeong-A.; Kim, Eung-Sam; Jeon, Gumhye; Oh, Eun Ju; Choi, Kwan Yong; Hahn, Sei Kwang; Kim, Jin Kon

    2010-03-01

    We studied long term and controlled release of protein drugs by using nanoporous membranes with various pore sizes. Nanoporous membrane consists of the separation layer prepared by polystyrene-block-poly(methylmethacrylate) copolymer thin film and conventional microfiltration membrane as a support. We demonstrate a long-term constant in vitro release of bovine serum albumin (BSA)and human growth hormone ) (hGH) without their denaturation up to 2 months. A nearly constant serum concentration of hGH was maintained up to 3 weeks in SD rats. The long-term constant delivery based on this membrane for protein drugs within the therapeutic range can be highly appreciated for the patients with hormone- deficiency.

  1. Biomimetic block copolymer particles with gated nanopores and ultrahigh protein sorption capacity.

    PubMed

    Yu, Haizhou; Qiu, Xiaoyan; Nunes, Suzana P; Peinemann, Klaus-Viktor

    2014-01-01

    The design of micro- or nanoparticles that can encapsulate sensitive molecules such as drugs, hormones, proteins or peptides is of increasing importance for applications in biotechnology and medicine. Examples are micelles, liposomes and vesicles. The tiny and, in most cases, hollow spheres are used as vehicles for transport and controlled administration of pharmaceutical drugs or nutrients. Here we report a simple strategy to fabricate microspheres by block copolymer self-assembly. The microsphere particles have monodispersed nanopores that can act as pH-responsive gates. They contain a highly porous internal structure, which is analogous to the Schwarz P structure. The internal porosity of the particles contributes to their high sorption capacity and sustained release behaviour. We successfully separated similarly sized proteins using these particles. The ease of particle fabrication by macrophase separation and self-assembly, and the robustness of the particles makes them ideal for sorption, separation, transport and sustained delivery of pharmaceutical substances. PMID:24934665

  2. Probing calmodulin protein-protein interactions using high-content protein arrays.

    PubMed

    O'Connell, David J; Bauer, Mikael; Linse, Sara; Cahill, Dolores J

    2011-01-01

    The calcium ion (Ca(2+)) is a ubiquitous second messenger that is crucial for the regulation of a wide variety of cellular processes. The diverse transient signals transduced by Ca(2+) are mediated by intracellular -Ca(2+)-binding proteins. Calcium ions shuttle into and out of the cytosol, transported across membranes by channels, exchangers, and pumps that regulate flux across the ER, mitochondrial and plasma membranes. Calcium regulates both rapid events, such as cytoskeleton remodelling or release of vesicle contents, and slower ones, such as transcriptional changes. Moreover, sustained cytosolic calcium elevations can lead to unwanted cellular activation or apoptosis. Calmodulin represents the most significant of the Ca(2+)-binding proteins and is an essential regulator of intracellular processes in response to extracellular stimuli mediated by a rise in Ca(2+) ion concentration. To profile novel protein-protein interactions that calmodulin participates in, we probed a high-content recombinant human protein array with fluorophore-labelled calmodulin in the presence of Ca(2+). This protein array contains 37,200 redundant proteins, incorporating over 10,000 unique human proteins expressed from a human brain cDNA library. We describe the identification of a high affinity interaction between calmodulin and the single-pass transmembrane proteins STIM1 and STIM2 that localise to the ER. Translocation of STIM1 and STIM2 from the endoplasmic reticulum to the plasma membrane is a key step in store operated calcium entry in the cell. PMID:21901608

  3. Collective prediction of protein functions from protein-protein interaction networks

    PubMed Central

    2014-01-01

    Background Automated assignment of functions to unknown proteins is one of the most important task in computational biology. The development of experimental methods for genome scale analysis of molecular interaction networks offers new ways to infer protein function from protein-protein interaction (PPI) network data. Existing techniques for collective classification (CC) usually increase accuracy for network data, wherein instances are interlinked with each other, using a large amount of labeled data for training. However, the labeled data are time-consuming and expensive to obtain. On the other hand, one can easily obtain large amount of unlabeled data. Thus, more sophisticated methods are needed to exploit the unlabeled data to increase prediction accuracy for protein function prediction. Results In this paper, we propose an effective Markov chain based CC algorithm (ICAM) to tackle the label deficiency problem in CC for interrelated proteins from PPI networks. Our idea is to model the problem using two distinct Markov chain classifiers to make separate predictions with regard to attribute features from protein data and relational features from relational information. The ICAM learning algorithm combines the results of the two classifiers to compute the ranks of labels to indicate the importance of a set of labels to an instance, and uses an ICA framework to iteratively refine the learning models for improving performance of protein function prediction from PPI networks in the paucity of labeled data. Conclusion Experimental results on the real-world Yeast protein-protein interaction datasets show that our proposed ICAM method is better than the other ICA-type methods given limited labeled training data. This approach can serve as a valuable tool for the study of protein function prediction from PPI networks. PMID:24564855

  4. Ensemble learning prediction of protein-protein interactions using proteins functional annotations.

    PubMed

    Saha, Indrajit; Zubek, Julian; Klingström, Tomas; Forsberg, Simon; Wikander, Johan; Kierczak, Marcin; Maulik, Ujjwal; Plewczynski, Dariusz

    2014-04-01

    Protein-protein interactions are important for the majority of biological processes. A significant number of computational methods have been developed to predict protein-protein interactions using protein sequence, structural and genomic data. Vast experimental data is publicly available on the Internet, but it is scattered across numerous databases. This fact motivated us to create and evaluate new high-throughput datasets of interacting proteins. We extracted interaction data from DIP, MINT, BioGRID and IntAct databases. Then we constructed descriptive features for machine learning purposes based on data from Gene Ontology and DOMINE. Thereafter, four well-established machine learning methods: Support Vector Machine, Random Forest, Decision Tree and Naïve Bayes, were used on these datasets to build an Ensemble Learning method based on majority voting. In cross-validation experiment, sensitivity exceeded 80% and classification/prediction accuracy reached 90% for the Ensemble Learning method. We extended the experiment to a bigger and more realistic dataset maintaining sensitivity over 70%. These results confirmed that our datasets are suitable for performing PPI prediction and Ensemble Learning method is well suited for this task. Both the processed PPI datasets and the software are available at . PMID:24469380

  5. Protein tertiary structure recognition using optimized Hamiltonians with local interactions.

    PubMed Central

    Goldstein, R A; Luthey-Schulten, Z A; Wolynes, P G

    1992-01-01

    Protein folding codes embodying local interactions including surface and secondary structure propensities and residue-residue contacts are optimized for a set of training proteins by using spin-glass theory. A screening method based on these codes correctly matches the structure of a set of test proteins with proteins of similar topology with 100% accuracy, even with limited sequence similarity between the test proteins and the structural homologs and the absence of any structurally similar proteins in the training set. PMID:1409599

  6. Heterogeneous patterns on block copolymer thin film via solvent annealing: Effect on protein adsorption

    NASA Astrophysics Data System (ADS)

    Shen, Lei; Zhu, Jintao; Liang, Haojun

    2015-03-01

    Heterogeneous patterns consisting of nanometer-scaled hydrophobic/hydrophilic domains were generated by self-assembly of poly(styrene)-block-poly(2-hydroxyethyl methacrylate) (PS-b-PHEMA) block copolymer thin film. The effect of the heterogeneity of the polymer film surface on the nonspecific adsorption of the protein human plasma fibrinogen (FBN, 5.0 × 5.0 × 47.5 nm3) was investigated. The kinetics of the FBN adsorption varies from a single-component Langmuir model on homogeneous hydrophilic PHEMA to a two-stage spreading relaxation model on homogeneous hydrophobic PS surface. On a heterogeneous PS-b-PHEMA surface with majority PS part, the initial FBN adsorption rate remains the same as that on the homogeneous PS surface. However, hydrophilic PHEMA microdomains on the heterogeneous surface slow down the second spreading stage of the FBN adsorption process, leading to a surface excess of adsorbed FBN molecules less than the presumed one simply calculated as adsorption onto multiple domains. Importantly, when the PS-b-PHEMA surface is annealed to form minority domelike PS domains (diameter: ˜50-100 nm) surrounded by a majority PHEMA matrix, such surface morphology proves to be strongly protein-repulsive. These interesting findings can be attributed to the enhancement of the spread FBN molecule in a mobile state by the heterogeneity of polymer film surface before irreversible adsorption occurs.

  7. Spironolactone blocks Epstein-Barr virus production by inhibiting EBV SM protein function.

    PubMed

    Verma, Dinesh; Thompson, Jacob; Swaminathan, Sankar

    2016-03-29

    Clinically available drugs active against Epstein-Barr virus (EBV) and other human herpesviruses are limited to those targeting viral DNA replication. To identify compounds directed against other steps in the viral life cycle, we searched for drugs active against the EBV SM protein, which is essential for infectious virus production. SM has a highly gene-specific mode of action and preferentially enhances expression of several late lytic cycle EBV genes. Here we demonstrate that spironolactone, a mineralocorticoid receptor antagonist approved for clinical use, inhibits SM function and infectious EBV production. Expression of EBV viral capsid antigen is highly SM dependent, and spironolactone inhibits viral capsid antigen synthesis and capsid formation, blocking EBV virion production at a step subsequent to viral DNA replication. In addition, spironolactone inhibits expression of other SM-dependent genes necessary for infectious virion formation. We further demonstrate that molecules structurally related to spironolactone with similar antimineralocorticoid blocking activity do not inhibit EBV production. These findings pave the way for development of antiherpesvirus drugs with new mechanisms of action directed against SM and homologous essential proteins in other herpesviruses. PMID:26976570

  8. Predicting the binding patterns of hub proteins: a study using yeast protein interaction networks

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Protein-protein interactions are critical to elucidating the role played by individual proteins in important biological pathways. Such networks are typically constructed using high throughput techniques (e.g., Yeast-2-Hybrid experiments). Of particular interest are hub proteins that can interact wit...

  9. A Laboratory-Intensive Course on the Experimental Study of Protein-Protein Interactions

    ERIC Educational Resources Information Center

    Witherow, D. Scott; Carson, Sue

    2011-01-01

    The study of protein-protein interactions is important to scientists in a wide range of disciplines. We present here the assessment of a lab-intensive course that teaches students techniques used to identify and further study protein-protein interactions. One of the unique elements of the course is that students perform a yeast two-hybrid screen…

  10. Selective separation of similarly sized proteins with tunable nanoporous block copolymer membranes.

    PubMed

    Qiu, Xiaoyan; Yu, Haizhou; Karunakaran, Madhavan; Pradeep, Neelakanda; Nunes, Suzana P; Peinemann, Klaus-Viktor

    2013-01-22

    An integral asymmetric membrane was fabricated in a fast and one-step process by combining the self-assembly of an amphiphilic block copolymer (PS-b-P4VP) with nonsolvent-induced phase separation. The structure was found to be composed of a thin layer of densely packed highly ordered cylindrical channels with uniform pore sizes perpendicular to the surface on top of a nonordered sponge-like layer. The as-assembled membrane obtained a water flux of more than 3200 L m(-2) h(-1) bar(-1), which was at least an order of magnitude higher than the water fluxes of commercially available membranes with comparable pore sizes, making this membrane particularly well suited to size-selective and charge-based separation of biomolecules. To test the performance of the membrane, we conducted diffusion experiments at the physiological pH of 7.4 using bovine serum albumin (BSA) and globulin-γ, two proteins with different diameters but too close in size (2-fold difference in molecular mass) to be efficiently separated via conventional dialysis membrane processes. The diffusion rate differed by a factor of 87, the highest value reported to date. We also analyzed charge-based diffusive transport and separation of two proteins of similar molecular weight (BSA and bovine hemoglobin (BHb)) through the membrane as a function of external pH. The membrane achieved a selectivity of about 10 at pH 4.7, the isoelectric point (pI) of BSA. We then positively charged the membrane to improve the separation selectivity. With the modified membrane BSA was completely blocked when the pH was 7.0, the pI of BHb, while BHb was completely blocked at pH 4.7. Our results demonstrate the potential of our asymmetric membrane to efficiently separate biological substances/pharmaceuticals in bioscience, biotechnology, and biomedicine applications. PMID:23252799

  11. Block-diagonal similarity renormalization group and effective nucleon-nucleon interactions

    NASA Astrophysics Data System (ADS)

    Szpigel, S.; Timóteo, V. S.; Ruiz Arriola, E.

    2016-04-01

    We apply the block-diagonal similarity renormalization group to a simple toy-model for the nucleon-nucleon (NN) interaction in the 1 S 0 channel, aiming to analyze the complementarity between the explicit and the implicit renormalization approaches in nuclear physics. By explicit renormalization we mean the methods based on the wilsonian renormalization group in which high-energy modes above a given cutoff scale are integrated out while their effects are replaced by scale dependent effective interactions consistently generated in the process. We call implicit renormalization the usual procedure of cutoff effective theories in which the high-energy modes above the cutoff scale are simply removed and their effects are included through parametrized cutoff dependent counterterms whose strengths are fixed by fitting low-energy data. We compare the effective interactions obtained in both schemes and find a wide range of cutoff scales where they overlap. We further analyze the role played by the one-pion exchange (OPE) considering a δ-shell plus OPE representation for the NN interaction.

  12. Decoupling Substrate Surface Interactions in Block Polymer Thin Film Self-Assembly

    NASA Astrophysics Data System (ADS)

    Shelton, Cameron; Epps, Thomas

    2015-03-01

    Understanding the impact of the major factors that affect block polymer (BP) thin film self-assembly is necessary to control nanostructure ordering, orientation, and defect density. In this work, we systematically studied the influence of the substrate surface energy, one of the most significant parameters directing self-assembly, on wetting behavior, through-film interactions, and substrate surface field propagation. Notably, we determined the applicability of decoupled surface energy components (dispersive and polar interactions) as opposed to total surface energy, using a suite of chlorosilane monolayers and UV-ozone degradation to create a library of total, dispersive, and polar surface energy effects. Our experimental results combined with surface chemistry literature indicated repulsive total surface energy interactions are the dominant force at the substrate-polymer interface, whereas attractive decoupled surface energy interactions become significant past the contacting layer. This work represents a thorough analysis of a vital force affecting BP self-assembly as well as a blueprint for the generalized design of substrate surfaces that achieve target BP nanostructure orientations for nanolithography, templating, and nanoporous membrane applications.

  13. A Least Square Method Based Model for Identifying Protein Complexes in Protein-Protein Interaction Network

    PubMed Central

    Dai, Qiguo; Guo, Maozu; Guo, Yingjie; Liu, Xiaoyan; Liu, Yang; Teng, Zhixia

    2014-01-01

    Protein complex formed by a group of physical interacting proteins plays a crucial role in cell activities. Great effort has been made to computationally identify protein complexes from protein-protein interaction (PPI) network. However, the accuracy of the prediction is still far from being satisfactory, because the topological structures of protein complexes in the PPI network are too complicated. This paper proposes a novel optimization framework to detect complexes from PPI network, named PLSMC. The method is on the basis of the fact that if two proteins are in a common complex, they are likely to be interacting. PLSMC employs this relation to determine complexes by a penalized least squares method. PLSMC is applied to several public yeast PPI networks, and compared with several state-of-the-art methods. The results indicate that PLSMC outperforms other methods. In particular, complexes predicted by PLSMC can match known complexes with a higher accuracy than other methods. Furthermore, the predicted complexes have high functional homogeneity. PMID:25405206

  14. Studying Protein-Protein Interactions in Budding Yeast Using Co-immunoprecipitation.

    PubMed

    Foltman, Magdalena; Sanchez-Diaz, Alberto

    2016-01-01

    Understanding protein-protein interactions and the architecture of protein complexes in which they work is essential to identify their biological role. Protein co-immunoprecipitation (co-IP) is an invaluable technique used in biochemistry allowing the identification of protein interactors. Here, we describe in detail an immunoaffinity purification protocol as a one-step or two-step immunoprecipitation from budding yeast Saccharomyces cerevisiae cells to subsequently detect interactions between proteins involved in the same biological process. PMID:26519317

  15. In Vivo Application of Photocleavable Protein Interaction Reporter Technology

    PubMed Central

    Yang, Li; Zheng, Chunxiang; Weisbrod, Chad R.; Tang, Xiaoting; Munske, Gerhard R.; Hoopmann, Michael R.; Eng, Jimmy K.; Bruce, James E.

    2012-01-01

    Summary In vivo protein structures and protein-protein interactions are critical to the function of proteins in biological systems. As a complementary approach to traditional protein interaction identification methods, cross-linking strategies are beginning to provide additional data on protein and protein complex topological features. Previously, photocleavable protein interaction reporter (pcPIR) technology was demonstrated by cross-linking pure proteins and protein complexes and the use of ultraviolet light to cleave or release cross-linked peptides to enable identification. In the present report, the pcPIR strategy is applied to E. coli cells and in vivo protein interactions and topologies are measured. More than 1600 labeled peptides from E. coli were identified, indicating many protein sites react with pcPIR in vivo. From those labeled sites, 53 in vivo inter-cross-linked peptide pairs were identified and manually validated. Approximately half of the interactions have been reported using other techniques, although detailed structures exist for very few. Three proteins or protein complexes with detailed crystallography structures are compared to the cross-linking results obtained from in vivo application of pcPIR technology. PMID:22168182

  16. Interactions of proteins in gels, solutions and on surfaces

    NASA Astrophysics Data System (ADS)

    Ramasamy, Radha Perumal

    2006-12-01

    The study of protein interaction, identification and separation has applications in various fields relating to Biotechnology. In this research these aspects were investigated. The proteins albumin, casein, poly-L-lysine were studied. FITC and TRITC were used to fluorescently tag the proteins. Confocal microscopy was used to image the interaction of proteins. The migration of fluorescently tagged protein-salt aggregates on solid surfaces during electrophoresis was investigated using Confocal microscopy. The secondary structural modifications of proteins in solutions were investigated using FTIR micro spectroscopic imaging. The size of the colloids formed due to protein-protein interactions as a function of the protein concentrations were studied using DLS and their charges were found using zeta potential measurements. Based on DL.S and zeta potential measurements, a model is proposed for interactions of oppositely charged proteins. The nature of interaction was found using UV - Visual spectroscopy. It was found that oppositely charged proteins formed ionic bonds. It was also found that FITC molecule influenced the surface charge of albumin more than TRITC molecule. The effects of the influence of cell geometries upon Electro Osmotic Flow (EOF) were studied using neutrally charged fluorescent Polystyrene beads. Results showed that tagging proteins with fluorescent molecules influenced their mobility and interactions with other proteins. However no secondary structural modifications of the proteins were observed when oppositely charged proteins interacted. It was also observed that electrostatic interactions made oppositely charged proteins form large aggregates. The EOF was found to be dependent upon the ionic strength of the buffer, conductivity of the solid surfaces, distance from the surface and position of the electrodes in the electrophoretic cell.

  17. Pseudorevertants of a Semliki Forest Virus Fusion-Blocking Mutation Reveal a Critical Interchain Interaction in the Core Trimer▿

    PubMed Central

    Liu, Catherine Y.; Besanceney, Christen; Song, Yifan; Kielian, Margaret

    2010-01-01

    Semliki Forest virus (SFV) is an enveloped alphavirus that infects cells by a low-pH-triggered membrane fusion reaction mediated by the viral E1 protein. E1 inserts into target membranes and refolds to a hairpin-like homotrimer containing a central core trimer and an outer layer composed of domain III and the juxtamembrane stem region. The key residues involved in mediating E1 trimerization are not well understood. We recently showed that aspartate 188 in the interface of the core trimer plays a critical role. Substitution with lysine (D188K) blocks formation of the core trimer and E1 trimerization and strongly inhibits virus fusion and infection. Here, we have isolated and characterized revertants that rescued the fusion and growth defects of D188K. These revertants included pseudorevertants containing acidic or polar neutral residues at E1 position 188 and a second-site revertant containing an E1 K176T mutation. Computational analysis using multiconformation continuum electrostatics revealed an important interaction bridging D188 of one chain with K176 of the adjacent chain in the core trimer. E1 K176 is completely conserved among the alphaviruses, and mutations of K176 to threonine (K176T) or isoleucine (K176I) produced similar fusion phenotypes as D188 mutants. Together, our data support a model in which a ring of three salt bridges formed by D188 and K176 stabilize the core trimer, a key intermediate of the alphavirus fusion protein. PMID:20826687

  18. Newcastle Disease Virus V Protein Targets Phosphorylated STAT1 to Block IFN-I Signaling

    PubMed Central

    Qiu, Xusheng; Fu, Qiang; Meng, Chunchun; Yu, Shengqing; Zhan, Yuan; Dong, Luna; Song, Cuiping; Sun, Yingjie; Tan, Lei; Hu, Shunlin; Wang, Xiaoquan; Liu, Xiaowen; Peng, Daxin; Liu, Xiufan; Ding, Chan

    2016-01-01

    Newcastle disease virus (NDV) V protein is considered as an effector for IFN antagonism, however, the mechanism remains unknown. In this study, the expression of STAT1 and phospho-STAT1 in cells infected with NDV or transfected with V protein-expressing plasmids were analyzed. Our results showed that NDV V protein targets phospho-STAT1 reduction in the cells depends on the stimulation of IFN-α. In addition, a V-deficient genotype VII recombinant NDV strain rZJ1-VS was constructed using reverse genetic technique to confirm the results. The rZJ1-VS lost the ability to reduce phospho-STAT1 and induced higher expression of IFN-responsive genes in infected cells. Furthermore, treatment with an ubiquitin E1 inhibitor PYR-41 demonstrated that phospho-STAT1 reduction was caused by degradation, but not de-phosphorylation. We conclude that NDV V protein targets phospho-STAT1 degradation to block IFN-α signaling, which adds novel knowledge to the strategies used by paramyxoviruses to evade IFN. PMID:26859759

  19. Measuring protein-protein and protein-nucleic Acid interactions by biolayer interferometry.

    PubMed

    Sultana, Azmiri; Lee, Jeffrey E

    2015-01-01

    Biolayer interferometry (BLI) is a simple, optical dip-and-read system useful for measuring interactions between proteins, peptides, nucleic acids, small molecules, and/or lipids in real time. In BLI, a biomolecular bait is immobilized on a matrix at the tip of a fiber-optic sensor. The binding between the immobilized ligand and another molecule in an analyte solution produces a change in optical thickness at the tip and results in a wavelength shift proportional to binding. BLI provides direct binding affinities and rates of association and dissociation. This unit describes an efficient approach using streptavidin-based BLI to analyze DNA-protein and protein-protein interactions. A quantitative set of equilibrium binding affinities (K(d)) and rates of association and dissociation (k(a)/k(d)) can be measured in minutes using nanomole quantities of sample. PMID:25640894

  20. Modularity in the evolution of yeast protein interaction network

    PubMed Central

    Ogishima, Soichi; Tanaka, Hiroshi; Nakaya, Jun

    2015-01-01

    Protein interaction networks are known to exhibit remarkable structures: scale-free and small-world and modular structures. To explain the evolutionary processes of protein interaction networks possessing scale-free and small-world structures, preferential attachment and duplication-divergence models have been proposed as mathematical models. Protein interaction networks are also known to exhibit another remarkable structural characteristic, modular structure. How the protein interaction networks became to exhibit modularity in their evolution? Here, we propose a hypothesis of modularity in the evolution of yeast protein interaction network based on molecular evolutionary evidence. We assigned yeast proteins into six evolutionary ages by constructing a phylogenetic profile. We found that all the almost half of hub proteins are evolutionarily new. Examining the evolutionary processes of protein complexes, functional modules and topological modules, we also found that member proteins of these modules tend to appear in one or two evolutionary ages. Moreover, proteins in protein complexes and topological modules show significantly low evolutionary rates than those not in these modules. Our results suggest a hypothesis of modularity in the evolution of yeast protein interaction network as systems evolution. PMID:25914446

  1. Extreme multifunctional proteins identified from a human protein interaction network

    PubMed Central

    Chapple, Charles E.; Robisson, Benoit; Spinelli, Lionel; Guien, Céline; Becker, Emmanuelle; Brun, Christine

    2015-01-01

    Moonlighting proteins are a subclass of multifunctional proteins whose functions are unrelated. Although they may play important roles in cells, there has been no large-scale method to identify them, nor any effort to characterize them as a group. Here, we propose the first method for the identification of ‘extreme multifunctional' proteins from an interactome as a first step to characterize moonlighting proteins. By combining network topological information with protein annotations, we identify 430 extreme multifunctional proteins (3% of the human interactome). We show that the candidates form a distinct sub-group of proteins, characterized by specific features, which form a signature of extreme multifunctionality. Overall, extreme multifunctional proteins are enriched in linear motifs and less intrinsically disordered than network hubs. We also provide MoonDB, a database containing information on all the candidates identified in the analysis and a set of manually curated human moonlighting proteins. PMID:26054620

  2. Synoptic/planetary-scale interactions and blocking over the North Atlantic Ocean

    NASA Technical Reports Server (NTRS)

    Smith, Phillip J.; Lupo, Anthony R.; Hunter, Melinda L.; Stettner, David R.

    1993-01-01

    The central theme of this project has been the diagnosis of blocking anticyclogenesis and the corresponding interactions with synoptic-scale circulations. To that end an extensive investigation of the dynamics and energetics of a major blocking anticyclone and two upstream cyclones, all of which occurred over the North Atlantic Ocean and the United States in January 1979, was undertaken. Data for the study were provided by Goddard Laboratory for Atmospheres (GLA) 4 LAT by 5 LON FGGE analyses. The methodology has primarily focused on the diagnosis of circulation forcing mechanisms using the modified forms (referred to as the extended forms) of the height tendency and Zwack-Okossi equations developed by our research group. Calculations use routine second-order finite differencing with boundary layer fraction and sensible heating and latent heat release represented as parameterized quantities. Of particular interest are the latent heat release estimates, which combine convectional parameterized values with estimates derived from satellite IR data. The latter were obtained using an algorithm derived by Dr. Franklin R. Robertson of NASA's Marshall Space Flight Center. Results are contained in project reports, theses and publications identified in previous review summaries and reports, and publications listed at the end of this summary. Significant accomplishments in the past year are presented.

  3. Intermolecular interactions and solvent diffusion in ordered nanostructures formed by self-assembly of block copolymers

    NASA Astrophysics Data System (ADS)

    Gu, Zhiyong

    Hydrogels formed by Poloxamer poly(ethylene oxide)-poly(propylene oxide) (PEO-PPO) block copolymers find various pharmaceutical and biomedical applications. A variety of ordered structures can be exhibited by Poloxamer block copolymers in selective solvents such as water, for example, micellar cubic phase, hexagonal phase, lamellar phase, etc. We are interested in the thermodynamic and transport properties of water in such hydrogels that have an ordered (lyotropic liquid crystalline) structure. We have investigated the time evolution of water loss from Poloxamer gel films under a driving force of known water vapor pressure in the air in contact with the film. The experimental data on the drying process have been fitted to the diffusion equation for water in the film, under a boundary condition that includes the water concentration in the gel at infinite time; the water diffusion coefficient and other parameters have thus been obtained. The water chemical potential and osmotic pressure in the gel have been obtained from osmotic stress measurements. The osmotic pressure (force), together with data on the corresponding lyotropic liquid crystal spacing (distance) that we obtained from Small Angle X-Ray Scattering (SAXS) measurements, have been analyzed to provide information on the prevailing intermolecular (inter-assembly) forces in the gel. The forces in the gel reveal interactions that occur at two levels, that of the PEO coil and that of the PEO segment.

  4. Course 1: Physics of Protein-DNA Interaction

    NASA Astrophysics Data System (ADS)

    Bruinsma, R. F.

    1 Introduction 1.1 The central dogma and bacterial gene expression 1.2 Molecular structure 2 Thermodynamics and kinetics of repressor-DNA interaction 2.1 Thermodynamics and the lac repressor 2.2 Kinetics of repressor-DNA interaction 3 DNA deformability and protein-DNA interaction 3.1 Introduction 3.2 The worm-like chain 3.3 The RST model 4 Electrostatics in water and protein-DNA interaction 4.1 Macro-ions and aqueous electrostatics 4.2 The primitive model 4.3 Manning condensation 4.4 Counter-ion release and non-specific protein-DNA interaction

  5. Folding superfunnel to describe cooperative folding of interacting proteins.

    PubMed

    Smeller, László

    2016-07-01

    This paper proposes a generalization of the well-known folding funnel concept of proteins. In the funnel model the polypeptide chain is treated as an individual object not interacting with other proteins. Since biological systems are considerably crowded, protein-protein interaction is a fundamental feature during the life cycle of proteins. The folding superfunnel proposed here describes the folding process of interacting proteins in various situations. The first example discussed is the folding of the freshly synthesized protein with the aid of chaperones. Another important aspect of protein-protein interactions is the folding of the recently characterized intrinsically disordered proteins, where binding to target proteins plays a crucial role in the completion of the folding process. The third scenario where the folding superfunnel is used is the formation of aggregates from destabilized proteins, which is an important factor in case of several conformational diseases. The folding superfunnel constructed here with the minimal assumption about the interaction potential explains all three cases mentioned above. Proteins 2016; 84:1009-1016. © 2016 Wiley Periodicals, Inc. PMID:27090200

  6. Relationship between blocking temperature and strength of interparticle interaction in magnetic nanoparticle systems

    NASA Astrophysics Data System (ADS)

    Seehra, M. S.; Pisane, K. L.

    2016-06-01

    In magnetic nanoparticle systems, the variation of the blocking temperature TB with the measuring frequency fm is often used to determine the strength of the interparticle interactions (IPI) through a parameter Φ or the Vogel-Fulcher temperature To. Presence of IPI is inferred if To > 0 and Φ = ∆TB/[ TB ∆ log10fm ] < 0.13 where Δ signifies changes in TB and fm. Here it is shown that these two parameters are related by the Eq. Φ = Φo [ 1 - (To/TB(1)) ] where Φo ≈ 0.11-0.15 is a constant of the system depending on the magnitudes of measuring frequency and the attempt frequency fo of the Néel relaxation. Using data on a variety of nanoparticle systems, experimental verification of this relationship is also presented.

  7. Block renormalization group in a formalism with lattice wavelets: Correlation function formulas for interacting fermions

    SciTech Connect

    Pereira, E.; Procacci, A.

    1997-03-01

    Searching for a general and technically simple multiscale formalism to treat interacting fermions, we develop a (Wilson{endash}Kadanoff) block renormalization group mechanism, which, due to the property of {open_quotes}orthogonality between scales,{close_quotes} establishes a trivial link between the correlation functions and the effective potential flow, leading to simple expressions for the generating and correlation functions. Everything is based on the existence of {open_quotes}special configurations{close_quotes} (lattice wavelets) for multiscale problems: using a simple linear change of variables relating the initial fields to these configurations, we establish the formalism. The algebraic formulas show a perfect parallel with those obtained for bosonic problems, considered in previous works. {copyright} 1997 Academic Press, Inc.

  8. Globular and disordered—the non-identical twins in protein-protein interactions

    PubMed Central

    Teilum, Kaare; Olsen, Johan G.; Kragelund, Birthe B.

    2015-01-01

    In biology proteins from different structural classes interact across and within classes in ways that are optimized to achieve balanced functional outputs. The interactions between intrinsically disordered proteins (IDPs) and other proteins rely on changes in flexibility and this is seen as a strong determinant for their function. This has fostered the notion that IDP's bind with low affinity but high specificity. Here we have analyzed available detailed thermodynamic data for protein-protein interactions to put to the test if the thermodynamic profiles of IDP interactions differ from those of other protein-protein interactions. We find that ordered proteins and the disordered ones act as non-identical twins operating by similar principles but where the disordered proteins complexes are on average less stable by 2.5 kcal mol−1. PMID:26217672

  9. Globular and disordered-the non-identical twins in protein-protein interactions.

    PubMed

    Teilum, Kaare; Olsen, Johan G; Kragelund, Birthe B

    2015-01-01

    In biology proteins from different structural classes interact across and within classes in ways that are optimized to achieve balanced functional outputs. The interactions between intrinsically disordered proteins (IDPs) and other proteins rely on changes in flexibility and this is seen as a strong determinant for their function. This has fostered the notion that IDP's bind with low affinity but high specificity. Here we have analyzed available detailed thermodynamic data for protein-protein interactions to put to the test if the thermodynamic profiles of IDP interactions differ from those of other protein-protein interactions. We find that ordered proteins and the disordered ones act as non-identical twins operating by similar principles but where the disordered proteins complexes are on average less stable by 2.5 kcal mol(-1). PMID:26217672

  10. The interactions between microphase separation and crystallization in block copolymers containing polyethylene

    NASA Astrophysics Data System (ADS)

    Quiram, Daniel Jonathan

    The interactions between microphase separation and crystallization were examined in block copolymers containing polyethylene of varying chemistry, composition (fsb{E} = 0.26-0.88, where fsb{E} is weight fraction polyethylene), and molecular weight. Block copolymer compositions were altered to explore crystallization from three distinct melt morphologies: body-centered cubic spheres, hexagonally-packed cylinders, and alternating lamellae. Polymer morphology was investigated on a size-scale ranging from angstroms to microns, employing wide-angle and small-angle x-ray scattering (WAXS and SAXS), small-angle light scattering, and differential scanning calorimetry. The primary series of diblock copolymers investigated were polyethylene-b-poly(3-methyl-1-butene) (E/MB, where MB is an olefinic rubber; fsb{E} = 0.26-0.27). This composition led to a cylindrical morphology when the melt microphase separated. Molecular weights were varied to obtain differing degrees of melt incompatibility, ranging from disordered to strongly segregated. Crystallization from strongly segregated melts was confined to the cylindrical microdomains, essentially independent of thermal history. In contrast, the morphology produced by crystallization from weakly segregated melts was highly dependent upon thermal history. Several block copolymers with microphase-separated melts containing an E block and either polystyrene (glass transition temperature, Tsb{g}≈ 100sp°C) or poly(vinylcyclohexane) (Tsb{g}≈ 135sp°C) were investigated to determine the effect of a vitreous component on crystallization. SAXS experiments showed that vitrification of the amorphous material effectively confined E crystallization to its melt domain phase: cylinders in a glassy matrix, lamellae, and matrices surrounding both glassy cylinders and spheres. Crystalline chain orientation within cylinders was examined through WAXS. The chains aligned preferentially and this orientation varied depending on chain diffusion during

  11. The protein interaction landscape of the human CMGC kinase group.

    PubMed

    Varjosalo, Markku; Keskitalo, Salla; Van Drogen, Audrey; Nurkkala, Helka; Vichalkovski, Anton; Aebersold, Ruedi; Gstaiger, Matthias

    2013-04-25

    Cellular information processing via reversible protein phosphorylation requires tight control of the localization, activity, and substrate specificity of protein kinases, which to a large extent is accomplished by complex formation with other proteins. Despite their critical role in cellular regulation and pathogenesis, protein interaction information is available for only a subset of the 518 human protein kinases. Here we present a global proteomic analysis of complexes of the human CMGC kinase group. In addition to subgroup-specific functional enrichment and modularity, the identified 652 high-confidence kinase-protein interactions provide a specific biochemical context for many poorly studied CMGC kinases. Furthermore, the analysis revealed a kinase-kinase subnetwork and candidate substrates for CMGC kinases. Finally, the presented interaction proteome uncovered a large set of interactions with proteins genetically linked to a range of human diseases, including cancer, suggesting additional routes for analyzing the role of CMGC kinases in controlling human disease pathways. PMID:23602568

  12. Membrane-Mediated Interaction between Strongly Anisotropic Protein Scaffolds

    PubMed Central

    Schweitzer, Yonatan; Kozlov, Michael M.

    2015-01-01

    Specialized proteins serve as scaffolds sculpting strongly curved membranes of intracellular organelles. Effective membrane shaping requires segregation of these proteins into domains and is, therefore, critically dependent on the protein-protein interaction. Interactions mediated by membrane elastic deformations have been extensively analyzed within approximations of large inter-protein distances, small extents of the protein-mediated membrane bending and small deviations of the protein shapes from isotropic spherical segments. At the same time, important classes of the realistic membrane-shaping proteins have strongly elongated shapes with large and highly anisotropic curvature. Here we investigated, computationally, the membrane mediated interaction between proteins or protein oligomers representing membrane scaffolds with strongly anisotropic curvature, and addressed, quantitatively, a specific case of the scaffold geometrical parameters characterizing BAR domains, which are crucial for membrane shaping in endocytosis. In addition to the previously analyzed contributions to the interaction, we considered a repulsive force stemming from the entropy of the scaffold orientation. We computed this interaction to be of the same order of magnitude as the well-known attractive force related to the entropy of membrane undulations. We demonstrated the scaffold shape anisotropy to cause a mutual aligning of the scaffolds and to generate a strong attractive interaction bringing the scaffolds close to each other to equilibrium distances much smaller than the scaffold size. We computed the energy of interaction between scaffolds of a realistic geometry to constitute tens of kBT, which guarantees a robust segregation of the scaffolds into domains. PMID:25710602

  13. HKC: an algorithm to predict protein complexes in protein-protein interaction networks.

    PubMed

    Wang, Xiaomin; Wang, Zhengzhi; Ye, Jun

    2011-01-01

    With the availability of more and more genome-scale protein-protein interaction (PPI) networks, research interests gradually shift to Systematic Analysis on these large data sets. A key topic is to predict protein complexes in PPI networks by identifying clusters that are densely connected within themselves but sparsely connected with the rest of the network. In this paper, we present a new topology-based algorithm, HKC, to detect protein complexes in genome-scale PPI networks. HKC mainly uses the concepts of highest k-core and cohesion to predict protein complexes by identifying overlapping clusters. The experiments on two data sets and two benchmarks show that our algorithm has relatively high F-measure and exhibits better performance compared with some other methods. PMID:22174556

  14. Synthetic protein interactions reveal a functional map of the cell

    PubMed Central

    Berry, Lisa K; Ólafsson, Guðjón; Ledesma-Fernández, Elena; Thorpe, Peter H

    2016-01-01

    To understand the function of eukaryotic cells, it is critical to understand the role of protein-protein interactions and protein localization. Currently, we do not know the importance of global protein localization nor do we understand to what extent the cell is permissive for new protein associations – a key requirement for the evolution of new protein functions. To answer this question, we fused every protein in the yeast Saccharomyces cerevisiae with a partner from each of the major cellular compartments and quantitatively assessed the effects upon growth. This analysis reveals that cells have a remarkable and unanticipated tolerance for forced protein associations, even if these associations lead to a proportion of the protein moving compartments within the cell. Furthermore, the interactions that do perturb growth provide a functional map of spatial protein regulation, identifying key regulatory complexes for the normal homeostasis of eukaryotic cells. DOI: http://dx.doi.org/10.7554/eLife.13053.001 PMID:27098839

  15. Pharmacologic inhibition of the menin-MLL interaction blocks progression of MLL leukemia in vivo

    PubMed Central

    Borkin, Dmitry; He, Shihan; Miao, Hongzhi; Kempinska, Katarzyna; Pollock, Jonathan; Chase, Jennifer; Purohit, Trupta; Malik, Bhavna; Zhao, Ting; Wang, Jingya; Wen, Bo; Zong, Hongliang; Jones, Morgan; Danet-Desnoyers, Gwenn; Guzman, Monica L.; Talpaz, Moshe; Bixby, Dale L.; Sun, Duxin; Hess, Jay L.; Muntean, Andrew G.; Maillard, Ivan; Cierpicki, Tomasz; Grembecka, Jolanta

    2015-01-01

    Summary Chromosomal translocations affecting Mixed Lineage Leukemia gene (MLL) result in acute leukemias resistant to therapy. The leukemogenic activity of MLL fusion proteins is dependent on their interaction with menin, providing basis for therapeutic intervention. Here we report development of highly potent and orally bioavailable small molecule inhibitors of the menin-MLL interaction, MI-463 and MI-503, show their profound effects in MLL leukemia cells and substantial survival benefit in mouse models of MLL leukemia. Finally, we demonstrate efficacy of these compounds in primary samples derived from MLL leukemia patients. Overall, we demonstrate that pharmacologic inhibition of the menin-MLL interaction represents an effective treatment for MLL leukemias in vivo and provide advanced molecular scaffold for clinical lead identification. PMID:25817203

  16. Genome-wide protein-protein interactions and protein function exploration in cyanobacteria.

    PubMed

    Lv, Qi; Ma, Weimin; Liu, Hui; Li, Jiang; Wang, Huan; Lu, Fang; Zhao, Chen; Shi, Tieliu

    2015-01-01

    Genome-wide network analysis is well implemented to study proteins of unknown function. Here, we effectively explored protein functions and the biological mechanism based on inferred high confident protein-protein interaction (PPI) network in cyanobacteria. We integrated data from seven different sources and predicted 1,997 PPIs, which were evaluated by experiments in molecular mechanism, text mining of literatures in proved direct/indirect evidences, and "interologs" in conservation. Combined the predicted PPIs with known PPIs, we obtained 4,715 no-redundant PPIs (involving 3,231 proteins covering over 90% of genome) to generate the PPI network. Based on the PPI network, terms in Gene ontology (GO) were assigned to function-unknown proteins. Functional modules were identified by dissecting the PPI network into sub-networks and analyzing pathway enrichment, with which we investigated novel function of underlying proteins in protein complexes and pathways. Examples of photosynthesis and DNA repair indicate that the network approach is a powerful tool in protein function analysis. Overall, this systems biology approach provides a new insight into posterior functional analysis of PPIs in cyanobacteria. PMID:26490033

  17. Genome-wide protein-protein interactions and protein function exploration in cyanobacteria

    PubMed Central

    Lv, Qi; Ma, Weimin; Liu, Hui; Li, Jiang; Wang, Huan; Lu, Fang; Zhao, Chen; Shi, Tieliu

    2015-01-01

    Genome-wide network analysis is well implemented to study proteins of unknown function. Here, we effectively explored protein functions and the biological mechanism based on inferred high confident protein-protein interaction (PPI) network in cyanobacteria. We integrated data from seven different sources and predicted 1,997 PPIs, which were evaluated by experiments in molecular mechanism, text mining of literatures in proved direct/indirect evidences, and “interologs” in conservation. Combined the predicted PPIs with known PPIs, we obtained 4,715 no-redundant PPIs (involving 3,231 proteins covering over 90% of genome) to generate the PPI network. Based on the PPI network, terms in Gene ontology (GO) were assigned to function-unknown proteins. Functional modules were identified by dissecting the PPI network into sub-networks and analyzing pathway enrichment, with which we investigated novel function of underlying proteins in protein complexes and pathways. Examples of photosynthesis and DNA repair indicate that the network approach is a powerful tool in protein function analysis. Overall, this systems biology approach provides a new insight into posterior functional analysis of PPIs in cyanobacteria. PMID:26490033

  18. An Inhibitory Antibody Blocks Interactions between Components of the Malarial Invasion Machinery

    PubMed Central

    Collins, Christine R.; Withers-Martinez, Chrislaine; Hackett, Fiona; Blackman, Michael J.

    2009-01-01

    Host cell invasion by apicomplexan pathogens such as the malaria parasite Plasmodium spp. and Toxoplasma gondii involves discharge of proteins from secretory organelles called micronemes and rhoptries. In Toxoplasma a protein complex comprising the microneme apical membrane antigen 1 (AMA1), two rhoptry neck proteins, and a protein called Ts4705, localises to the moving junction, a region of close apposition between parasite and host cell during invasion. Antibodies against AMA1 prevent invasion and are protective in vivo, and so AMA1 is of widespread interest as a malaria vaccine candidate. Here we report that the AMA1 complex identified in Toxoplasma is conserved in Plasmodium falciparum. We demonstrate that the invasion-inhibitory monoclonal antibody (mAb) 4G2, which recognises P. falciparum AMA1 (PfAMA1), cannot bind when PfAMA1 is in a complex with its partner proteins. We further show that a single completely conserved PfAMA1 residue, Tyr251, lying within a conserved hydrophobic groove adjacent to the mAb 4G2 epitope, is required for complex formation. We propose that mAb 4G2 inhibits invasion by preventing PfAMA1 from interacting with other components of the invasion complex. Our findings should aid the rational design of subunit malaria vaccines based on PfAMA1. PMID:19165323

  19. The Switch Regulating Transcription of the Escherichia coli Biotin Operon Does Not Require Extensive Protein-Protein Interactions

    PubMed Central

    Solbiati, José; Cronan, John E.

    2009-01-01

    Transcription of the Escherichia coli biotin (bio) operon is regulated by BirA, a protein that is not only the repressor that regulates bio operon expression by DNA binding but also the enzyme that covalently attaches biotin to its cognate acceptor proteins. Binding of BirA to the bio operator requires dimerization of the protein that is triggered by BirA-catalyzed synthesis of biotinoyl-adenylate (bio-AMP), the obligatory intermediate of the attachment reaction. The current model postulates that the unmodified acceptor protein binds the monomeric BirA:bio-AMP complex and thereby blocks assembly (dimerization) of the form of BirA that binds DNA. We report that expression of fusion proteins that carry synthetic biotin accepting peptide sequences was as effective as the natural acceptor protein in derepression of bio operon transcription. These peptide sequences have sequences that are remarkably dissimilar to that of the natural acceptor protein and thus our data argue that the regulatory switch does not require the extensive protein-protein interactions postulated in the current model. PMID:20142036

  20. Selective inhibition of farnesyl-protein transferase blocks ras processing in vivo.

    PubMed

    Gibbs, J B; Pompliano, D L; Mosser, S D; Rands, E; Lingham, R B; Singh, S B; Scolnick, E M; Kohl, N E; Oliff, A

    1993-04-15

    The ras oncogene product, Ras, is synthesized in vivo as a precursor protein that requires post-translational processing to become biologically active and to be capable of transforming mammalian cells. Farnesylation appears to be a critical modification of Ras, and thus inhibitors of the farnesyl-protein transferase (FPTase) that catalyzes this reaction may block ras-dependent tumorigenesis. Three structural classes of FPTase inhibitors were identified: (alpha-hydroxyfarnesyl)phosphonic acid, chaetomellic acids, and zaragozic acids. By comparison, these compounds were weaker inhibitors of geranylgeranyl-protein transferases. Each of these inhibitors was competitive with respect to farnesyl diphosphate in the FPTase reaction. All compounds were assayed for inhibition of Ras processing in Ha-ras-transformed NIH3T3 fibroblasts. Ras processing was inhibited by 1 microM (alpha-hydroxyfarnesyl)phosphonic acid. Neither chaetomellic acid nor zaragozic acid were active in this assay. These results are the first demonstration that a small organic chemical selected for inhibition of FPTase can inhibit Ras processing in vivo. PMID:8463291

  1. Blocking rapid ice crystal growth through nonbasal plane adsorption of antifreeze proteins.

    PubMed

    Olijve, Luuk L C; Meister, Konrad; DeVries, Arthur L; Duman, John G; Guo, Shuaiqi; Bakker, Huib J; Voets, Ilja K

    2016-04-01

    Antifreeze proteins (AFPs) are a unique class of proteins that bind to growing ice crystal surfaces and arrest further ice growth. AFPs have gained a large interest for their use in antifreeze formulations for water-based materials, such as foods, waterborne paints, and organ transplants. Instead of commonly used colligative antifreezes such as salts and alcohols, the advantage of using AFPs as an additive is that they do not alter the physicochemical properties of the water-based material. Here, we report the first comprehensive evaluation of thermal hysteresis (TH) and ice recrystallization inhibition (IRI) activity of all major classes of AFPs using cryoscopy, sonocrystallization, and recrystallization assays. The results show that TH activities determined by cryoscopy and sonocrystallization differ markedly, and that TH and IRI activities are not correlated. The absence of a distinct correlation in antifreeze activity points to a mechanistic difference in ice growth inhibition by the different classes of AFPs: blocking fast ice growth requires rapid nonbasal plane adsorption, whereas basal plane adsorption is only relevant at long annealing times and at small undercooling. These findings clearly demonstrate that biomimetic analogs of antifreeze (glyco)proteins should be tailored to the specific requirements of the targeted application. PMID:26936953

  2. Blocking rapid ice crystal growth through nonbasal plane adsorption of antifreeze proteins

    PubMed Central

    Olijve, Luuk L. C.; Meister, Konrad; DeVries, Arthur L.; Duman, John G.; Guo, Shuaiqi; Bakker, Huib J.; Voets, Ilja K.

    2016-01-01

    Antifreeze proteins (AFPs) are a unique class of proteins that bind to growing ice crystal surfaces and arrest further ice growth. AFPs have gained a large interest for their use in antifreeze formulations for water-based materials, such as foods, waterborne paints, and organ transplants. Instead of commonly used colligative antifreezes such as salts and alcohols, the advantage of using AFPs as an additive is that they do not alter the physicochemical properties of the water-based material. Here, we report the first comprehensive evaluation of thermal hysteresis (TH) and ice recrystallization inhibition (IRI) activity of all major classes of AFPs using cryoscopy, sonocrystallization, and recrystallization assays. The results show that TH activities determined by cryoscopy and sonocrystallization differ markedly, and that TH and IRI activities are not correlated. The absence of a distinct correlation in antifreeze activity points to a mechanistic difference in ice growth inhibition by the different classes of AFPs: blocking fast ice growth requires rapid nonbasal plane adsorption, whereas basal plane adsorption is only relevant at long annealing times and at small undercooling. These findings clearly demonstrate that biomimetic analogs of antifreeze (glyco)proteins should be tailored to the specific requirements of the targeted application. PMID:26936953

  3. Spinophilin directs Protein Phosphatase 1 specificity by blocking substrate binding sites

    PubMed Central

    Ragusa, Michael J.; Dancheck, Barbara; Critton, David A.; Nairn, Angus C.; Page, Rebecca; Peti, Wolfgang

    2010-01-01

    The serine/threonine Protein Phosphatase 1 (PP1) dephosphorylates hundreds of key biological targets. PP1 associates with ≥200 regulatory proteins to form highly specific holoenzymes. These regulatory proteins target PP1 to its point of action within the cell and prime its enzymatic specificity for particular substrates. However, how they direct PP1’s specificity is not understood. Here we show that spinophilin, a neuronal PP1 regulator, is entirely unstructured in its unbound form and binds PP1, through a folding-upon-binding mechanism, in an elongated fashion, blocking one of PP1’s three putative substrate binding sites, without altering its active site. This mode of binding is sufficient for spinophilin to restrict PP1’s activity toward a model substrate in vitro, without affecting its ability to dephosphorylate its neuronal substrate GluR1. Thus, our work provides the molecular basis for the ability of spinophilin to dictate PP1 substrate specificity. PMID:20305656

  4. Design of Protein-Protein Interactions with a Novel Ensemble-Based Scoring Algorithm

    NASA Astrophysics Data System (ADS)

    Roberts, Kyle E.; Cushing, Patrick R.; Boisguerin, Prisca; Madden, Dean R.; Donald, Bruce R.

    Protein-protein interactions (PPIs) are vital for cell signaling, protein trafficking and localization, gene expression, and many other biological functions. Rational modification of PPI targets provides a mechanism to understand their function and importance. However, PPI systems often have many more degrees of freedom and flexibility than the small-molecule binding sites typically targeted by protein design algorithms. To handle these challenging design systems, we have built upon the computational protein design algorithm K * [8,19] to develop a new design algorithm to study protein-protein and protein-peptide interactions. We validated our algorithm through the design and experimental testing of novel peptide inhibitors.

  5. The HMGB1 protein induces a metabolic type of tumour cell death by blocking aerobic respiration.

    PubMed

    Gdynia, Georg; Sauer, Sven W; Kopitz, Jürgen; Fuchs, Dominik; Duglova, Katarina; Ruppert, Thorsten; Miller, Matthias; Pahl, Jens; Cerwenka, Adelheid; Enders, Markus; Mairbäurl, Heimo; Kamiński, Marcin M; Penzel, Roland; Zhang, Christine; Fuller, Jonathan C; Wade, Rebecca C; Benner, Axel; Chang-Claude, Jenny; Brenner, Hermann; Hoffmeister, Michael; Zentgraf, Hanswalter; Schirmacher, Peter; Roth, Wilfried

    2016-01-01

    The high-mobility group box 1 (HMGB1) protein has a central role in immunological antitumour defense. Here we show that natural killer cell-derived HMGB1 directly eliminates cancer cells by triggering metabolic cell death. HMGB1 allosterically inhibits the tetrameric pyruvate kinase isoform M2, thus blocking glucose-driven aerobic respiration. This results in a rapid metabolic shift forcing cells to rely solely on glycolysis for the maintenance of energy production. Cancer cells can acquire resistance to HMGB1 by increasing glycolysis using the dimeric form of PKM2, and employing glutaminolysis. Consistently, we observe an increase in the expression of a key enzyme of glutaminolysis, malic enzyme 1, in advanced colon cancer. Moreover, pharmaceutical inhibition of glutaminolysis sensitizes tumour cells to HMGB1 providing a basis for a therapeutic strategy for treating cancer. PMID:26948869

  6. The HMGB1 protein induces a metabolic type of tumour cell death by blocking aerobic respiration

    PubMed Central

    Gdynia, Georg; Sauer, Sven W.; Kopitz, Jürgen; Fuchs, Dominik; Duglova, Katarina; Ruppert, Thorsten; Miller, Matthias; Pahl, Jens; Cerwenka, Adelheid; Enders, Markus; Mairbäurl, Heimo; Kamiński, Marcin M.; Penzel, Roland; Zhang, Christine; Fuller, Jonathan C.; Wade, Rebecca C.; Benner, Axel; Chang-Claude, Jenny; Brenner, Hermann; Hoffmeister, Michael; Zentgraf, Hanswalter; Schirmacher, Peter; Roth, Wilfried

    2016-01-01

    The high-mobility group box 1 (HMGB1) protein has a central role in immunological antitumour defense. Here we show that natural killer cell-derived HMGB1 directly eliminates cancer cells by triggering metabolic cell death. HMGB1 allosterically inhibits the tetrameric pyruvate kinase isoform M2, thus blocking glucose-driven aerobic respiration. This results in a rapid metabolic shift forcing cells to rely solely on glycolysis for the maintenance of energy production. Cancer cells can acquire resistance to HMGB1 by increasing glycolysis using the dimeric form of PKM2, and employing glutaminolysis. Consistently, we observe an increase in the expression of a key enzyme of glutaminolysis, malic enzyme 1, in advanced colon cancer. Moreover, pharmaceutical inhibition of glutaminolysis sensitizes tumour cells to HMGB1 providing a basis for a therapeutic strategy for treating cancer. PMID:26948869

  7. Interactions between permeant and blocking anions inside the CFTR chloride channel pore.

    PubMed

    Linsdell, Paul

    2015-07-01

    Binding of cytoplasmic anionic open channel blockers within the cystic fibrosis transmembrane conductance regulator (CFTR) Cl(-) channel is antagonized by extracellular Cl(-). In the present work, patch clamp recording was used to investigate the interaction between extracellular Cl(-) (and other anions) and cytoplasmic Pt(NO2)4(2-) ions inside the CFTR channel pore. In constitutively open (E1371Q-CFTR) channels, these different anions bind to two separate sites, located in the outer and inner vestibules of the pore respectively, in a mutually antagonistic fashion. A mutation in the inner vestibule (I344K) that greatly increased Pt(NO2)4(2-) binding affinity also greatly strengthened antagonistic Cl(-):blocker interactions as well as the voltage-dependence of block. Quantitative analysis of ion binding affinity suggested that the I344K mutation strengthened interactions not only with intracellular Pt(NO2)4(2-) ions but also with extracellular Cl(-), and that altered blocker Cl(-)- and voltage-dependence were due to the introduction of a novel type of antagonistic ion:ion interaction inside the pore that was independent of Cl(-) binding in the outer vestibule. It is proposed that this mutation alters the arrangement of anion binding sites inside the pore, allowing both Cl(-) and Pt(NO2)4(2-) to bind concurrently within the inner vestibule in a strongly mutually antagonistic fashion. However, the I344K mutation does not increase single channel conductance following disruption of Cl(-) binding in the outer vestibule in R334Q channels. Implications for the arrangement of ion binding sites in the pore, and their functional consequences for blocker binding and for rapid Cl(-) permeation, are discussed. PMID:25892339

  8. Blocking the Interaction between Apolipoprotein E and Aβ Reduces Intraneuronal Accumulation of Aβ and Inhibits Synaptic Degeneration

    PubMed Central

    Kuszczyk, Magdalena A.; Sanchez, Sandrine; Pankiewicz, Joanna; Kim, Jungsu; Duszczyk, Malgorzata; Guridi, Maitea; Asuni, Ayodeji A.; Sullivan, Patrick M.; Holtzman, David M.; Sadowski, Martin J.

    2014-01-01

    Accumulation of β-amyloid (Aβ) in the brain is a key event in Alzheimer disease pathogenesis. Apolipoprotein (Apo) E is a lipid carrier protein secreted by astrocytes, which shows inherent affinity for Aβ and has been implicated in the receptor-mediated Aβ uptake by neurons. To characterize ApoE involvement in the intraneuronal Aβ accumulation and to investigate whether blocking the ApoE/Aβ interaction could reduce intraneuronal Aβ buildup, we used a noncontact neuronal-astrocytic co-culture system, where synthetic Aβ peptides were added into the media without or with cotreatment with Aβ12-28P, which is a nontoxic peptide antagonist of ApoE/Aβ binding. Compared with neurons cultured alone, intraneuronal Aβ content was significantly increased in neurons co-cultured with wild-type but not with ApoE knockout (KO) astrocytes. Neurons co-cultured with astrocytes also showed impaired intraneuronal degradation of Aβ, increased level of intraneuronal Aβ oligomers, and marked down-regulation of several synaptic proteins. Aβ12-28P treatment significantly reduced intraneuronal Aβ accumulation, including Aβ oligomer level, and inhibited loss of synaptic proteins. Furthermore, we showed significantly reduced intraneuronal Aβ accumulation in APPSW/PS1dE9/ApoE KO mice compared with APPSW/PS1dE9/ApoE targeted replacement mice that expressed various human ApoE isoforms. Data from our co-culture and in vivo experiments indicate an essential role of ApoE in the mechanism of intraneuronal Aβ accumulation and provide evidence that ApoE/Aβ binding antagonists can effectively prevent this process. PMID:23499462

  9. Visualization and targeted disruption of protein interactions in living cells.

    PubMed

    Herce, Henry D; Deng, Wen; Helma, Jonas; Leonhardt, Heinrich; Cardoso, M Cristina

    2013-01-01

    Protein-protein interactions are the basis of all processes in living cells, but most studies of these interactions rely on biochemical in vitro assays. Here we present a simple and versatile fluorescent-three-hybrid (F3H) strategy to visualize and target protein-protein interactions. A high-affinity nanobody anchors a GFP-fusion protein of interest at a defined cellular structure and the enrichment of red-labelled interacting proteins is measured at these sites. With this approach, we visualize the p53-HDM2 interaction in living cells and directly monitor the disruption of this interaction by Nutlin 3, a drug developed to boost p53 activity in cancer therapy. We further use this approach to develop a cell-permeable vector that releases a highly specific peptide disrupting the p53 and HDM2 interaction. The availability of multiple anchor sites and the simple optical readout of this nanobody-based capture assay enable systematic and versatile analyses of protein-protein interactions in practically any cell type and species. PMID:24154492

  10. GWIDD: a comprehensive resource for genome-wide structural modeling of protein-protein interactions

    PubMed Central

    2012-01-01

    Protein-protein interactions are a key component of life processes. The knowledge of the three-dimensional structure of these interactions is important for understanding protein function. Genome-Wide Docking Database (http://gwidd.bioinformatics.ku.edu) offers an extensive source of data for structural studies of protein-protein complexes on genome scale. The current release of the database combines the available experimental data on the structure and characteristics of protein interactions with structural modeling of protein complexes for 771 organisms spanned over the entire universe of life from viruses to humans. The interactions are stored in a relational database with user-friendly interface that includes various search options. The search results can be interactively previewed; the structures, downloaded, along with the interaction characteristics. PMID:23245398

  11. Targeting the K-Ras/PDEδ protein-protein interaction: the solution for Ras-driven cancers or just another therapeutic mirage?

    PubMed

    Frett, Brendan; Wang, Yuanxiang; Li, Hong-Yu

    2013-10-01

    The holy grail, finally? After years of unsuccessful attempts at drugging the Ras oncogene, a recent paper by Zimmerman et al. has revealed the possibility of inhibiting Ras signaling on a clinically relevant level by blocking the K-Ras/PDEδ protein-protein interaction. The results, reported in Nature, are highlighted herein with future implications and directions to evaluate the full clinical potential of this research. PMID:23939923

  12. PIMA: Protein-Protein interactions in Macromolecular Assembly - a web server for its Analysis and Visualization

    PubMed Central

    Kaleeckal Mathew, Oommen; Sowdhamini, Ramanathan

    2016-01-01

    Protein-protein interactions are essential for the basic biological machinery of the cell. This is important for processes like protein synthesis, enzyme kinetics, molecular assembly and signal transduction. A high number of macromolecular structural complexes are known due to recent advances in structure determination techniques. Therefore, it is of interest to develop an interactive tool to objectively analyze large protein complexes. Hence, we describe the development and utility of a web enabled application named ‘Protein-Protein Interaction in Macro-molecular Assembly’ (PIMA) for the analysis of large protein assemblies. The intricate details of physical interactions amongst protein subunits in a large complex are presented as simple user preferred interactive network diagrams PMID:27212837

  13. Analyzing Protein-Phosphoinositide Interactions with Liposome Flotation Assays.

    PubMed

    Busse, Ricarda A; Scacioc, Andreea; Schalk, Amanda M; Krick, Roswitha; Thumm, Michael; Kühnel, Karin

    2016-01-01

    Liposome flotation assays are a convenient tool to study protein-phosphoinositide interactions. Working with liposomes resembles physiological conditions more than protein-lipid overlay assays, which makes this method less prone to detect false positive interactions. However, liposome lipid composition must be well-considered in order to prevent nonspecific binding of the protein through electrostatic interactions with negatively charged lipids like phosphatidylserine. In this protocol we use the PROPPIN Hsv2 (homologous with swollen vacuole phenotype 2) as an example to demonstrate the influence of liposome lipid composition on binding and show how phosphoinositide binding specificities of a protein can be characterized with this method. PMID:26552682

  14. Dual stimuli-responsive coating designed through layer-by-layer assembly of PAA-b-PNIPAM block copolymers for the control of protein adsorption.

    PubMed

    Osypova, A; Magnin, D; Sibret, P; Aqil, A; Jérôme, C; Dupont-Gillain, C; Pradier, C-M; Demoustier-Champagne, S; Landoulsi, J

    2015-11-01

    In this paper, we describe the successful construction, characteristics and interaction with proteins of stimuli-responsive thin nanostructured films prepared by layer-by-layer (LbL) sequential assembly of PNIPAM-containing polyelectrolytes and PAH. PAA-b-PNIPAM block copolymers were synthesized in order to benefit from (i) the ionizable properties of PAA, to be involved in the LbL assembly, and (ii) the sensitivity of PNIPAM to temperature stimulus. The impact of parameters related to the structure and size of the macromolecules (their molecular weight and the relative degree of polymerization of PAA and PNIPAM), and the interaction with proteins under physico-chemical stimuli, such as pH and temperature, are carefully investigated. The incorporation of PAA-b-PNIPAM into multilayered films is shown to be successful whatever the block copolymer used, resulting in slightly thicker films than the corresponding (PAA/PAH)n film. Importantly, the protein adsorption studies demonstrate that it is possible to alter the adsorption behavior of proteins on (PAA-b-PNIPAM/PAH)n surfaces by varying the temperature and/or the pH of the medium, which seems to be intimately related to two key factors: (i) the ability of PNIPAM units to undergo conformational changes and (ii) the structural changes of the film made of weak polyelectrolytes. The simplicity of construction of these PNIPAM block copolymer-based LbL coatings on a large range of substrates, combined with their highly tunable features, make them ideal candidates to be employed for various biomedical applications requiring the control of protein adsorption. PMID:26338028

  15. Mitochondrial nucleoid interacting proteins support mitochondrial protein synthesis

    PubMed Central

    He, J.; Cooper, H. M.; Reyes, A.; Di Re, M.; Sembongi, H.; Litwin, T. R.; Gao, J.; Neuman, K. C.; Fearnley, I. M.; Spinazzola, A.; Walker, J. E.; Holt, I. J.

    2012-01-01

    Mitochondrial ribosomes and translation factors co-purify with mitochondrial nucleoids of human cells, based on affinity protein purification of tagged mitochondrial DNA binding proteins. Among the most frequently identified proteins were ATAD3 and prohibitin, which have been identified previously as nucleoid components, using a variety of methods. Both proteins are demonstrated to be required for mitochondrial protein synthesis in human cultured cells, and the major binding partner of ATAD3 is the mitochondrial ribosome. Altered ATAD3 expression also perturbs mtDNA maintenance and replication. These findings suggest an intimate association between nucleoids and the machinery of protein synthesis in mitochondria. ATAD3 and prohibitin are tightly associated with the mitochondrial membranes and so we propose that they support nucleic acid complexes at the inner membrane of the mitochondrion. PMID:22453275

  16. Widespread Expansion of Protein Interaction Capabilities by Alternative Splicing.

    PubMed

    Yang, Xinping; Coulombe-Huntington, Jasmin; Kang, Shuli; Sheynkman, Gloria M; Hao, Tong; Richardson, Aaron; Sun, Song; Yang, Fan; Shen, Yun A; Murray, Ryan R; Spirohn, Kerstin; Begg, Bridget E; Duran-Frigola, Miquel; MacWilliams, Andrew; Pevzner, Samuel J; Zhong, Quan; Trigg, Shelly A; Tam, Stanley; Ghamsari, Lila; Sahni, Nidhi; Yi, Song; Rodriguez, Maria D; Balcha, Dawit; Tan, Guihong; Costanzo, Michael; Andrews, Brenda; Boone, Charles; Zhou, Xianghong J; Salehi-Ashtiani, Kourosh; Charloteaux, Benoit; Chen, Alyce A; Calderwood, Michael A; Aloy, Patrick; Roth, Frederick P; Hill, David E; Iakoucheva, Lilia M; Xia, Yu; Vidal, Marc

    2016-02-11

    While alternative splicing is known to diversify the functional characteristics of some genes, the extent to which protein isoforms globally contribute to functional complexity on a proteomic scale remains unknown. To address this systematically, we cloned full-length open reading frames of alternatively spliced transcripts for a large number of human genes and used protein-protein interaction profiling to functionally compare hundreds of protein isoform pairs. The majority of isoform pairs share less than 50% of their interactions. In the global context of interactome network maps, alternative isoforms tend to behave like distinct proteins rather than minor variants of each other. Interaction partners specific to alternative isoforms tend to be expressed in a highly tissue-specific manner and belong to distinct functional modules. Our strategy, applicable to other functional characteristics, reveals a widespread expansion of protein interaction capabilities through alternative splicing and suggests that many alternative "isoforms" are functionally divergent (i.e., "functional alloforms"). PMID:26871637

  17. Inhibition of the p53/hDM2 protein-protein interaction by cyclometallated iridium(III) compounds

    PubMed Central

    Liu, Li-Juan; He, Bingyong; Miles, Jennifer A.; Wang, Wanhe; Mao, Zhifeng; Che, Weng Ian; Lu, Jin-Jian; Chen, Xiu-Ping; Wilson, Andrew J.; Ma, Dik-Lung; Leung, Chung-Hang

    2016-01-01

    Inactivation of the p53 transcription factor by mutation or other mechanisms is a frequent event in tumorigenesis. One of the major endogenous negative regulators of p53 in humans is hDM2, a ubiquitin E3 ligase that binds to p53 causing proteasomal p53 degradation. In this work, a library of organometallic iridium(III) compounds were synthesized and evaluated for their ability to disrupt the p53/hDM2 protein-protein interaction. The novel cyclometallated iridium(III) compound 1 [Ir(eppy)2(dcphen)](PF6) (where eppy = 2-(4-ethylphenyl)pyridine and dcphen = 4, 7-dichloro-1, 10-phenanthroline) blocked the interaction of p53/hDM2 in human amelanotic melanoma cells. Finally, 1 exhibited anti-proliferative activity and induced apoptosis in cancer cell lines consistent with inhibition of the p53/hDM2 interaction. Compound 1 represents the first reported organometallic p53/hDM2 protein-protein interaction inhibitor. PMID:26883110

  18. Computational biology for target discovery and characterization: a feasibility study in protein-protein interaction detection

    SciTech Connect

    Zhou, C; Zemla, A

    2009-02-25

    In this work we developed new code for detecting putative multi-domain protein-protein interactions for a small network of bacterial pathogen proteins, and determined how structure-driven domain-fusion (DF) methods should be scaled up for whole-proteome analysis. Protein-protein interactions are of great interest in structural biology and are important for understanding the biology of pathogens. The ability to predict protein-protein interactions provides a means for development of anti-microbials that may interfer with key processes in pathogenicity. The function of a protein-protein complex can be elucidated through knowledge of its structure. The overall goal of this project was to determine the feasibility of extending current LLNL capabilities to produce a high-throughput systems bio-informatics capability for identification and characterization of putative interacting protein partners within known or suspected small protein networks. We extended an existing LLNL methodology for identification of putative protein-protein interacting partners (Chakicherla et al (in review)) by writing a new code to identify multi-domain-fusion linkages (3 or more per complex). We applied these codes to the proteins in the Yersinia pestis quorum sensing network, known as the lsr operon, which comprises a virulence mechanism in this pathogen. We determined that efficient application of our computational algorithms in high-throughput for detection of putative protein-protein complexes genome wide would require pre-computation of PDB domains and construction of a domain-domain association database.

  19. Structural study of surfactant-dependent interaction with protein

    SciTech Connect

    Mehan, Sumit; Aswal, Vinod K.; Kohlbrecher, Joachim

    2015-06-24

    Small-angle neutron scattering (SANS) has been used to study the complex structure of anionic BSA protein with three different (cationic DTAB, anionic SDS and non-ionic C12E10) surfactants. These systems form very different surfactant-dependent complexes. We show that the structure of protein-surfactant complex is initiated by the site-specific electrostatic interaction between the components, followed by the hydrophobic interaction at high surfactant concentrations. It is also found that hydrophobic interaction is preferred over the electrostatic interaction in deciding the resultant structure of protein-surfactant complexes.

  20. PPLook: an automated data mining tool for protein-protein interaction

    PubMed Central

    2010-01-01

    Background Extracting and visualizing of protein-protein interaction (PPI) from text literatures are a meaningful topic in protein science. It assists the identification of interactions among proteins. There is a lack of tools to extract PPI, visualize and classify the results. Results We developed a PPI search system, termed PPLook, which automatically extracts and visualizes protein-protein interaction (PPI) from text. Given a query protein name, PPLook can search a dataset for other proteins interacting with it by using a keywords dictionary pattern-matching algorithm, and display the topological parameters, such as the number of nodes, edges, and connected components. The visualization component of PPLook enables us to view the interaction relationship among the proteins in a three-dimensional space based on the OpenGL graphics interface technology. PPLook can also provide the functions of selecting protein semantic class, counting the number of semantic class proteins which interact with query protein, counting the literature number of articles appearing the interaction relationship about the query protein. Moreover, PPLook provides heterogeneous search and a user-friendly graphical interface. Conclusions PPLook is an effective tool for biologists and biosystem developers who need to access PPI information from the literature. PPLook is freely available for non-commercial users at http://meta.usc.edu/softs/PPLook. PMID:20550717

  1. An ontology-based search engine for protein-protein interactions

    PubMed Central

    2010-01-01

    Background Keyword matching or ID matching is the most common searching method in a large database of protein-protein interactions. They are purely syntactic methods, and retrieve the records in the database that contain a keyword or ID specified in a query. Such syntactic search methods often retrieve too few search results or no results despite many potential matches present in the database. Results We have developed a new method for representing protein-protein interactions and the Gene Ontology (GO) using modified Gödel numbers. This representation is hidden from users but enables a search engine using the representation to efficiently search protein-protein interactions in a biologically meaningful way. Given a query protein with optional search conditions expressed in one or more GO terms, the search engine finds all the interaction partners of the query protein by unique prime factorization of the modified Gödel numbers representing the query protein and the search conditions. Conclusion Representing the biological relations of proteins and their GO annotations by modified Gödel numbers makes a search engine efficiently find all protein-protein interactions by prime factorization of the numbers. Keyword matching or ID matching search methods often miss the interactions involving a protein that has no explicit annotations matching the search condition, but our search engine retrieves such interactions as well if they satisfy the search condition with a more specific term in the ontology. PMID:20122195

  2. Interaction graph mining for protein complexes using local clique merging.

    PubMed

    Li, Xiao-Li; Tan, Soon-Heng; Foo, Chuan-Sheng; Ng, See-Kiong

    2005-01-01

    While recent technological advances have made available large datasets of experimentally-detected pairwise protein-protein interactions, there is still a lack of experimentally-determined protein complex data. To make up for this lack of protein complex data, we explore the mining of existing protein interaction graphs for protein complexes. This paper proposes a novel graph mining algorithm to detect the dense neighborhoods (highly connected regions) in an interaction graph which may correspond to protein complexes. Our algorithm first locates local cliques for each graph vertex (protein) and then merge the detected local cliques according to their affinity to form maximal dense regions. We present experimental results with yeast protein interaction data to demonstrate the effectiveness of our proposed method. Compared with other existing techniques, our predicted complexes can match or overlap significantly better with the known protein complexes in the MIPS benchmark database. Novel protein complexes were also predicted to help biologists in their search for new protein complexes. PMID:16901108

  3. Interaction between Vaccinium bracteatum Thunb. leaf pigment and rice proteins.

    PubMed

    Wang, Li; Xu, Yuan; Zhou, Sumei; Qian, Haifeng; Zhang, Hui; Qi, Xiguang; Fan, Meihua

    2016-03-01

    In this study, we investigated the interaction of Vaccinium bracteatum Thunb. leaf (VBTL) pigment and rice proteins. In the presence of rice protein, VBTL pigment antioxidant activity and free polyphenol content decreased by 67.19% and 68.11%, respectively, and L(∗) of the protein-pigment complex decreased significantly over time. L(∗) values of albumin, globulin and glutelin during 60-min pigment exposure decreased by 55.00, 57.14, and 54.30%, respectively, indicating that these proteins had bound to the pigment. A significant difference in protein surface hydrophobicity was observed between rice proteins and pigment-protein complexes, indicating that hydrophobic interaction is a major binding mechanism between VBTL pigment and rice proteins. A significant difference in secondary structures between proteins and protein-pigment complexes was also uncovered, indicating that hydrogen bonding may be another mode of interaction between VBTL pigment and rice proteins. Our results indicate that VBTL pigment can stain rice proteins with hydrophobic and hydrogen interactions. PMID:26471554

  4. Making the LINC: SUN and KASH protein interactions

    PubMed Central

    Kim, Dae In; Birendra, KC; Roux, Kyle J.

    2015-01-01

    Cell nuclei are physically integrated with the cytoskeleton through the LINC complex (for LInker of Nucleoskeleton and Cytoskeleton), a structure that spans the nuclear envelope to link the nucleoskeleton and cytoskeleton. Outer nuclear membrane KASH domain proteins and inner nuclear membrane SUN domain proteins interact to form the core of the LINC complex. In this review we provide a comprehensive analysis of the reported protein-protein interactions for KASH and SUN domain proteins. This critical structure, directly connecting the genome with the rest of the cell, contributes to a myriad of cellular functions and, when perturbed, is associated with human disease. PMID:25720065

  5. Interacting proteins as genetic modifiers of Huntington disease.

    PubMed

    Li, Xiao-Jiang; Friedman, Meyer; Li, Shihua

    2007-11-01

    Huntington disease is caused by polyglutamine expansion in huntingtin, a 350 kD protein that is ubiquitously expressed and widely distributed at the subcellular level. Recently, Kaltenbach et al. identified a large collection of novel huntingtin-interacting proteins, several of which modify mutant huntingtin toxicity in Drosophila. Thus, the interaction of mutant huntingtin with certain protein partners can influence its toxicity and therefore the severity and/or progression of Huntington disease. PMID:17961788

  6. Protein lethality investigated in terms of long range dynamical interactions.

    PubMed

    Rodrigues, Francisco A; Costa, Luciano da Fontoura

    2009-04-01

    The relationship between network structure/dynamics and biological function constitutes a fundamental issue in systems biology. However, despite many related investigations, the correspondence between structure and biological functions is not yet fully understood. A related subject that has deserved particular attention recently concerns how essentiality is related to the structure and dynamics of protein interactions. In the current work, protein essentiality is investigated in terms of long range influences in protein-protein interaction networks by considering simulated dynamical aspects. This analysis is performed with respect to outward activations, an approach which models the propagation of interactions between proteins by considering self-avoiding random walks. The obtained results are compared to protein local connectivity. Both the connectivity and the outward activations were found to be strongly related to protein essentiality. PMID:19396375

  7. Rosetta stone method for detecting protein function and protein-protein interactions from genome sequences

    DOEpatents

    Eisenberg, David; Marcotte, Edward M.; Pellegrini, Matteo; Thompson, Michael J.; Yeates, Todd O.

    2002-10-15

    A computational method system, and computer program are provided for inferring functional links from genome sequences. One method is based on the observation that some pairs of proteins A' and B' have homologs in another organism fused into a single protein chain AB. A trans-genome comparison of sequences can reveal these AB sequences, which are Rosetta Stone sequences because they decipher an interaction between A' and B. Another method compares the genomic sequence of two or more organisms to create a phylogenetic profile for each protein indicating its presence or absence across all the genomes. The profile provides information regarding functional links between different families of proteins. In yet another method a combination of the above two methods is used to predict functional links.

  8. Potato leafroll virus structural proteins manipulate overlapping, yet distinct protein interaction networks during infection.

    PubMed

    DeBlasio, Stacy L; Johnson, Richard; Sweeney, Michelle M; Karasev, Alexander; Gray, Stewart M; MacCoss, Michael J; Cilia, Michelle

    2015-06-01

    Potato leafroll virus (PLRV) produces a readthrough protein (RTP) via translational readthrough of the coat protein amber stop codon. The RTP functions as a structural component of the virion and as a nonincorporated protein in concert with numerous insect and plant proteins to regulate virus movement/transmission and tissue tropism. Affinity purification coupled to quantitative MS was used to generate protein interaction networks for a PLRV mutant that is unable to produce the read through domain (RTD) and compared to the known wild-type PLRV protein interaction network. By quantifying differences in the protein interaction networks, we identified four distinct classes of PLRV-plant interactions: those plant and nonstructural viral proteins interacting with assembled coat protein (category I); plant proteins in complex with both coat protein and RTD (category II); plant proteins in complex with the RTD (category III); and plant proteins that had higher affinity for virions lacking the RTD (category IV). Proteins identified as interacting with the RTD are potential candidates for regulating viral processes that are mediated by the RTP such as phloem retention and systemic movement and can potentially be useful targets for the development of strategies to prevent infection and/or viral transmission of Luteoviridae species that infect important crop species. PMID:25787689

  9. Filamin A Protein Interacts with Human Immunodeficiency Virus Type 1 Gag Protein and Contributes to Productive Particle Assembly*

    PubMed Central

    Cooper, JoAnn; Liu, Ling; Woodruff, Elvin A.; Taylor, Harry E.; Goodwin, J. Shawn; D'Aquila, Richard T.; Spearman, Paul; Hildreth, James E. K.; Dong, Xinhong

    2011-01-01

    HIV-1 Gag precursor directs virus particle assembly and release. In a search for Gag-interacting proteins that are involved in late stages of the HIV-1 replication cycle, we performed yeast two-hybrid screening against a human cDNA library and identified the non-muscle actin filament cross-linking protein filamin A as a novel Gag binding partner. The 280-kDa filamin A regulates cortical actin network dynamics and participates in the anchoring of membrane proteins to the actin cytoskeleton. Recent studies have shown that filamin A facilitates HIV-1 cell-to-cell transmission by binding to HIV receptors and coreceptors and regulating their clustering on the target cell surface. Here we report a novel role for filamin A in HIV-1 Gag intracellular trafficking. We demonstrate that filamin A interacts with the capsid domain of HIV-1 Gag and that this interaction is involved in particle release in a productive manner. Disruption of this interaction eliminated Gag localization at the plasma membrane and induced Gag accumulation within internal compartments. Moreover, blocking clathrin-dependent endocytic pathways did not relieve the restriction to particle release induced by filamin A depletion. These results suggest that filamin A is involved in the distinct step of the Gag trafficking pathway. The discovery of the Gag-filamin A interaction may provide a new therapeutic target for the treatment of HIV infection. PMID:21705339

  10. Structural Similarity and Classification of Protein Interaction Interfaces

    PubMed Central

    Zhao, Nan; Pang, Bin; Shyu, Chi-Ren; Korkin, Dmitry

    2011-01-01

    Interactions between proteins play a key role in many cellular processes. Studying protein-protein interactions that share similar interaction interfaces may shed light on their evolution and could be helpful in elucidating the mechanisms behind stability and dynamics of the protein complexes. When two complexes share structurally similar subunits, the similarity of the interaction interfaces can be found through a structural superposition of the subunits. However, an accurate detection of similarity between the protein complexes containing subunits of unrelated structure remains an open problem. Here, we present an alignment-free machine learning approach to measure interface similarity. The approach relies on the feature-based representation of protein interfaces and does not depend on the superposition of the interacting subunit pairs. Specifically, we develop an SVM classifier of similar and dissimilar interfaces and derive a feature-based interface similarity measure. Next, the similarity measure is applied to a set of 2,806×2,806 binary complex pairs to build a hierarchical classification of protein-protein interactions. Finally, we explore case studies of similar interfaces from each level of the hierarchy, considering cases when the subunits forming interactions are either homologous or structurally unrelated. The analysis has suggested that the positions of charged residues in the homologous interfaces are not necessarily conserved and may exhibit more complex conservation patterns. PMID:21589874

  11. Molecular interactions of graphene oxide with human blood plasma proteins

    NASA Astrophysics Data System (ADS)

    Kenry, Affa Affb Affc; Loh, Kian Ping; Lim, Chwee Teck

    2016-04-01

    We investigate the molecular interactions between graphene oxide (GO) and human blood plasma proteins. To gain an insight into the bio-physico-chemical activity of GO in biological and biomedical applications, we performed a series of biophysical assays to quantify the molecular interactions between GO with different lateral size distributions and the three essential human blood plasma proteins. We elucidate the various aspects of the GO-protein interactions, particularly, the adsorption, binding kinetics and equilibrium, and conformational stability, through determination of quantitative parameters, such as GO-protein association constants, binding cooperativity, and the binding-driven protein structural changes. We demonstrate that the molecular interactions between GO and plasma proteins are significantly dependent on the lateral size distribution and mean lateral sizes of the GO nanosheets and their subtle variations may markedly influence the GO-protein interactions. Consequently, we propose the existence of size-dependent molecular interactions between GO nanosheets and plasma proteins, and importantly, the presence of specific critical mean lateral sizes of GO nanosheets in achieving very high association and fluorescence quenching efficiency of the plasma proteins. We anticipate that this work will provide a basis for the design of graphene-based and other related nanomaterials for a plethora of biological and biomedical applications.

  12. Proteins interacting with Membranes: Protein Sorting and Membrane Shaping

    NASA Astrophysics Data System (ADS)

    Callan-Jones, Andrew

    2015-03-01

    Membrane-bound transport in cells requires generating membrane curvature. In addition, transport is selective, in order to establish spatial gradients of membrane components in the cell. The mechanisms underlying cell membrane shaping by proteins and the influence of curvature on membrane composition are active areas of study in cell biophysics. In vitro approaches using Giant Unilamellar Vesicles (GUVs) are a useful tool to identify the physical mechanisms that drive sorting of membrane components and membrane shape change by proteins. I will present recent work on the curvature sensing and generation of IRSp53, a protein belonging to the BAR family, whose members, sharing a banana-shaped backbone, are involved in endocytosis. Pulling membrane tubes with 10-100 nm radii from GUVs containing encapsulated IRSp53 have, unexpectedly, revealed a non-monotonic dependence of the protein concentration on the tube as a function of curvature. Experiments also show that bound proteins alter the tube mechanics and that protein phase separation along the tube occurs at low tensions. I will present accompanying theoretical work that can explain these findings based on the competition between the protein's intrinsic curvature and the effective rigidity of a membrane-protein patch.

  13. Identification of antituberculosis agents that target ribosomal protein interactions using a yeast two-hybrid system

    PubMed Central

    Lin, Yuan; Li, Yan; Zhu, Yuanjun; Zhang, Jing; Li, Yongzhen; Liu, Xiao; Jiang, Wei; Yu, Shishan; You, Xue-Fu; Xiao, Chunling; Hong, Bin; Wang, Yanchang; Jiang, Jian-Dong; Si, Shuyi

    2012-01-01

    Mycobacterium tuberculosis kills about 2 million people annually and antibiotic resistance is a cause of increased mortality. Therefore, development of new antituberculosis drugs is urgent for the control of widespread tuberculosis infections. For this purpose, we performed an innovative screen to identify new agents that disrupt the function of ribosomes in M. tuberculosis. Two bacterial ribosomal proteins L12 and L10 interact with each other and constitute the stalk of the 50S ribosomal subunit, which recruits initiation and elongation factors (EFs) during translation. Therefore, the L12–L10 interaction should be essential for ribosomal function and protein synthesis. We established a yeast two-hybrid system to identify small molecules that block the interaction between L12 and L10 proteins from M. tuberculosis. Using this system, we identified two compounds T766 and T054 that show strong bactericidal activity against tuberculosis but with low toxicity to mice and other bacterial strains. Moreover, using surface plasmon resonance (SPR) assay, we have demonstrated that these compounds bind specifically to L12 to disrupt L12–L10 interaction. Overproduction of L12 protein, but not L10, lowers the antibacterial activity of T766 and T054, indicating that the ribosome is likely the cellular target. Therefore, our data demonstrate that this yeast two-hybrid system is a useful tool to identify unique antituberculosis agents targeting the ribosomal protein L12–L10 interaction. PMID:23045703

  14. The interaction of IQGAPs with calmodulin-like proteins.

    PubMed

    Pathmanathan, Sevvel; Hamilton, Elaine; Atcheson, Erwan; Timson, David J

    2011-04-01

    Since their identification over 15 years ago, the IQGAP (IQ-motif-containing GTPase-activating protein) family of proteins have been implicated in a wide range of cellular processes, including cytoskeletal reorganization, cell-cell adhesion, cytokinesis and apoptosis. These processes rely on protein-protein interactions, and understanding these (and how they influence one another) is critical in determining how the IQGAPs function. A key group of interactions is with calmodulin and the structurally related proteins myosin essential light chain and S100B. These interactions occur primarily through a series of IQ motifs, which are α-helical segments of the protein located towards the middle of the primary sequence. The three human IQGAP isoforms (IQGAP1, IQGAP2 and IQGAP3) all have four IQ motifs. However, these have different affinities for calmodulin, myosin light chain and S100B. Whereas all four IQ motifs of IQGAP1 interact with calmodulin in the presence of calcium, only the last two do so in the absence of calcium. IQ1 (the first IQ motif) interacts with the myosin essential light chain Mlc1sa and the first two undergo a calcium-dependent interaction with S100B. The significance of the interaction between Mlc1sa and IQGAP1 in mammals is unknown. However, a similar interaction involving the Saccharomyces cerevisiae IQGAP-like protein Iqg1p is involved in cytokinesis, leading to speculation that there may be a similar role in mammals. PMID:21428964

  15. Information-driven structural modelling of protein-protein interactions.

    PubMed

    Rodrigues, João P G L M; Karaca, Ezgi; Bonvin, Alexandre M J J

    2015-01-01

    Protein-protein docking aims at predicting the three-dimensional structure of a protein complex starting from the free forms of the individual partners. As assessed in the CAPRI community-wide experiment, the most successful docking algorithms combine pure laws of physics with information derived from various experimental or bioinformatics sources. Of these so-called "information-driven" approaches, HADDOCK stands out as one of the most successful representatives. In this chapter, we briefly summarize which experimental information can be used to drive the docking prediction in HADDOCK, and then focus on the docking protocol itself. We discuss and illustrate with a tutorial example a "classical" protein-protein docking prediction, as well as more recent developments for modelling multi-body systems and large conformational changes. PMID:25330973

  16. Synthesis and interactions with blood of polyetherurethaneurea/polypeptide block copolymers.

    PubMed

    Ito, Y; Miyashita, K; Kashiwagi, T; Imanishi, Y

    1993-01-01

    Polyurethane/polypeptide block copolymers were synthesized. Infrared spectroscopy and differential scanning calorimetry revealed that in the block copolymers both segments undergo phase-mixing, while in polyurethane/polypeptide blend both components undergo phase-separation. Contact angle measurement showed that in the block copolymers polyurethane segments tended to appear on the membrane surface, whereas in polyurethane/polypeptide blend polypeptide components appeared on the membrane surface. In vitro nonthrombogenicity of the block copolymers was similar to that of homopolymers or polymer blends, though adhesion and deformation of platelets were suppressed on the block copolymer membranes. PMID:8260582

  17. Actin Interacts with Dengue Virus 2 and 4 Envelope Proteins

    PubMed Central

    Jitoboam, Kunlakanya; Phaonakrop, Narumon; Libsittikul, Sirikwan; Thepparit, Chutima; Roytrakul, Sittiruk; Smith, Duncan R.

    2016-01-01

    Dengue virus (DENV) remains a significant public health problem in many tropical and sub-tropical countries worldwide. The DENV envelope (E) protein is the major antigenic determinant and the protein that mediates receptor binding and endosomal fusion. In contrast to some other DENV proteins, relatively few cellular interacting proteins have been identified. To address this issue a co-immuoprecipitation strategy was employed. The predominant co-immunoprecipitating proteins identified were actin and actin related proteins, however the results suggested that actin was the only bona fide interacting partner. Actin was shown to interact with the E protein of DENV 2 and 4, and the interaction between actin and DENV E protein was shown to occur in a truncated DENV consisting of only domains I and II. Actin was shown to decrease during infection, but this was not associated with a decrease in gene transcription. Actin-related proteins also showed a decrease in expression during infection that was not transcriptionally regulated. Cytoskeletal reorganization was not observed during infection, suggesting that the interaction between actin and E protein has a cell type specific component. PMID:27010925

  18. Differential Occurrence of Interactions and Interaction Domains in Proteins Containing Homopolymeric Amino Acid Repeats.

    PubMed

    Pelassa, Ilaria; Fiumara, Ferdinando

    2015-01-01

    Homopolymeric amino acids repeats (AARs), which are widespread in proteomes, have often been viewed simply as spacers between protein domains, or even as "junk" sequences with no obvious function but with a potential to cause harm upon expansion as in genetic diseases associated with polyglutamine or polyalanine expansions, including Huntington disease and cleidocranial dysplasia. A growing body of evidence indicates however that at least some AARs can form organized, functional protein structures, and can regulate protein function. In particular, certain AARs can mediate protein-protein interactions, either through homotypic AAR-AAR contacts or through heterotypic contacts with other protein domains. It is still unclear however, whether AARs may have a generalized, proteome-wide role in shaping protein-protein interaction networks. Therefore, we have undertaken here a bioinformatics screening of the human proteome and interactome in search of quantitative evidence of such a role. We first identified the sets of proteins that contain repeats of any one of the 20 amino acids, as well as control sets of proteins chosen at random in the proteome. We then analyzed the connectivity between the proteins of the AAR-containing protein sets and we compared it with that observed in the corresponding control networks. We find evidence for different degrees of connectivity in the different AAR-containing protein networks. Indeed, networks of proteins containing polyglutamine, polyglutamate, polyproline, and other AARs show significantly increased levels of connectivity, whereas networks containing polyleucine and other hydrophobic repeats show lower degrees of connectivity. Furthermore, we observed that numerous protein-protein, -nucleic acid, and -lipid interaction domains are significantly enriched in specific AAR protein groups. These findings support the notion of a generalized, combinatorial role of AARs, together with conventional protein interaction domains, in shaping

  19. Investigating Protein-protein Interactions in Live Cells Using Bioluminescence Resonance Energy Transfer

    PubMed Central

    Estruch, Sara B.; Fisher, Simon E.

    2014-01-01

    Assays based on Bioluminescence Resonance Energy Transfer (BRET) provide a sensitive and reliable means to monitor protein-protein interactions in live cells. BRET is the non-radiative transfer of energy from a 'donor' luciferase enzyme to an 'acceptor' fluorescent protein. In the most common configuration of this assay, the donor is Renilla reniformis luciferase and the acceptor is Yellow Fluorescent Protein (YFP). Because the efficiency of energy transfer is strongly distance-dependent, observation of the BRET phenomenon requires that the donor and acceptor be in close proximity. To test for an interaction between two proteins of interest in cultured mammalian cells, one protein is expressed as a fusion with luciferase and the second as a fusion with YFP. An interaction between the two proteins of interest may bring the donor and acceptor sufficiently close for energy transfer to occur. Compared to other techniques for investigating protein-protein interactions, the BRET assay is sensitive, requires little hands-on time and few reagents, and is able to detect interactions which are weak, transient, or dependent on the biochemical environment found within a live cell. It is therefore an ideal approach for confirming putative interactions suggested by yeast two-hybrid or mass spectrometry proteomics studies, and in addition it is well-suited for mapping interacting regions, assessing the effect of post-translational modifications on protein-protein interactions, and evaluating the impact of mutations identified in patient DNA. PMID:24893771

  20. The variable C-terminus of cysteine string proteins modulates exocytosis and protein-protein interactions.

    PubMed

    Boal, Frédéric; Zhang, Hui; Tessier, Céline; Scotti, Pier; Lang, Jochen

    2004-12-28

    Cysteine string proteins (Csps) are vesicle proteins involved in neurotransmission and hormone exocytosis. They are composed of distinct domains: a variable N-terminus, a J-domain followed by a linker region, a cysteine-rich string, and a C-terminus which diverges among isoforms. Their precise function and interactions are not fully understood. Using insulin exocytosis as a model, we show that the linker region and the C-terminus, but not the variable N-terminus, regulate overall secretion. Moreover, endogenous Csp1 binds in a calcium-dependent manner to monomeric VAMP2, and this interaction requires the C-terminus of Csp. The interaction is isoform specific as recombinant Csp1 binds VAMP1 and VAMP7, but not VAMP3. Cross-linking in permeabilized clonal beta-cells revealed homodimerization of Csp which is stimulated by Ca(2+) and again modulated by the variant C-terminus. Our data suggest that both interactions of Csp occur during exocytosis and may explain the effect of the variant C-terminus of this chaperon protein on peptide hormone secretion. PMID:15610015

  1. A Microfluidic Platform for Characterization of Protein—Protein Interactions

    PubMed Central

    Javanmard, Mehdi; Talasaz, Amirali H.; Nemat-Gorgani, Mohsen; Huber, David E.; Pease, Fabian; Ronaghi, Mostafa; Davis, Ronald W.

    2010-01-01

    Traditionally, expensive and time consuming techniques such as mass spectrometry and Western Blotting have been used for characterization of protein–protein interactions. In this paper, we describe the design, fabrication, and testing of a rapid and inexpensive sensor, involving the use of microelectrodes in a microchannel, which can be used for real-time electrical detection of specific interactions between proteins. We have successfully demonstrated detection of target glycoprotein–glycoprotein interactions, antigen-antibody interactions, and glycoprotein-antigen interactions. We have also demonstrated the ability of this technique to distinguish between strong and weak interactions. Using this approach, it may be possible to multiplex an array of these sensors onto a chip and probe a complex mixture for various types of interactions involving protein molecules. PMID:20467571

  2. Predicting Pharmacodynamic Drug-Drug Interactions through Signaling Propagation Interference on Protein-Protein Interaction Networks

    PubMed Central

    Park, Kyunghyun; Kim, Docyong; Ha, Suhyun; Lee, Doheon

    2015-01-01

    As pharmacodynamic drug-drug interactions (PD DDIs) could lead to severe adverse effects in patients, it is important to identify potential PD DDIs in drug development. The signaling starting from drug targets is propagated through protein-protein interaction (PPI) networks. PD DDIs could occur by close interference on the same targets or within the same pathways as well as distant interference through cross-talking pathways. However, most of the previous approaches have considered only close interference by measuring distances between drug targets or comparing target neighbors. We have applied a random walk with restart algorithm to simulate signaling propagation from drug targets in order to capture the possibility of their distant interference. Cross validation with DrugBank and Kyoto Encyclopedia of Genes and Genomes DRUG shows that the proposed method outperforms the previous methods significantly. We also provide a web service with which PD DDIs for drug pairs can be analyzed at http://biosoft.kaist.ac.kr/targetrw. PMID:26469276

  3. Surface array proteins of Campylobacter fetus block lectin-mediated binding to type A lipopolysaccharide.

    PubMed Central

    Fogg, G C; Yang, L Y; Wang, E; Blaser, M J

    1990-01-01

    Campylobacter fetus strains with type A lipopolysaccharide (LPS) and a surface array protein layer (S+) have been found to be pathogenic in humans and animals. Spontaneous laboratory mutants that lack surface array proteins (S-) are sensitive to the bactericidal activity of normal human serum. The ability of lectins to determine the presence of the S-layer and differentiate LPS type was assessed. We screened 14 lectins and found 3 (wheat germ agglutinin, Bandeiraea simplicifolia II, and Helix pomatia agglutinin) that agglutinated S- C. fetus strains with type A LPS but not S- strains with type B or type C LPS or S+ strains. However, the S+ type A strains were agglutinated after sequential water extraction, heat, or pronase treatment, all of which remove the S-layer, whereas there was no effect on the control strains. Specific carbohydrates for each lectin and purified LPS from a type A C. fetus strain specifically inhibited agglutination of an S- type A strain. In a direct enzyme-linked lectin assay, binding to the S- type A LPS strain was significantly greater than binding to the S+ strain (P = 0.01) or to a Campylobacter jejuni strain (P = 0.008). Consequently, these results indicate that the three lectins bind to the O side chains of C. fetus type A LPS but that the presence of the S-layer on intact cells blocks binding. Images PMID:2387622

  4. Lithium blocks ethanol-induced modulation of protein kinases in the developing brain

    SciTech Connect

    Chakraborty, Goutam; Saito, Mitsuo; Mao, Rui-Fen; Wang, Ray; Vadasz, Csaba; Saito, Mariko

    2008-03-14

    Lithium has been shown to be neuroprotective against various insults including ethanol exposure. We previously reported that ethanol-induced apoptotic neurodegeneration in the postnatal day 7 (P7) mice is associated with decreases in phosphorylation levels of Akt, glycogen synthase kinase-3{beta} (GSK-3{beta}), and AMP-activated protein kinase (AMPK), and alteration in lipid profiles in the brain. Here, P7 mice were injected with ethanol and lithium, and the effects of lithium on ethanol-induced alterations in phosphorylation levels of protein kinases and lipid profiles in the brain were examined. Immunoblot and immunohistochemical analyses showed that lithium significantly blocked ethanol-induced caspase-3 activation and reduction in phosphorylation levels of Akt, GSK-3{beta}, and AMPK. Further, lithium inhibited accumulation of cholesterol ester (ChE) and N-acylphosphatidylethanolamine (NAPE) triggered by ethanol in the brain. These results suggest that Akt, GSK-3{beta}, and AMPK are involved in ethanol-induced neurodegeneration and the neuroprotective effects of lithium by modulating both apoptotic and survival pathways.

  5. Trifunctional cross-linker for mapping protein-protein interaction networks and comparing protein conformational states

    PubMed Central

    Tan, Dan; Li, Qiang; Zhang, Mei-Jun; Liu, Chao; Ma, Chengying; Zhang, Pan; Ding, Yue-He; Fan, Sheng-Bo; Tao, Li; Yang, Bing; Li, Xiangke; Ma, Shoucai; Liu, Junjie; Feng, Boya; Liu, Xiaohui; Wang, Hong-Wei; He, Si-Min; Gao, Ning; Ye, Keqiong; Dong, Meng-Qiu; Lei, Xiaoguang

    2016-01-01

    To improve chemical cross-linking of proteins coupled with mass spectrometry (CXMS), we developed a lysine-targeted enrichable cross-linker containing a biotin tag for affinity purification, a chemical cleavage site to separate cross-linked peptides away from biotin after enrichment, and a spacer arm that can be labeled with stable isotopes for quantitation. By locating the flexible proteins on the surface of 70S ribosome, we show that this trifunctional cross-linker is effective at attaining structural information not easily attainable by crystallography and electron microscopy. From a crude Rrp46 immunoprecipitate, it helped identify two direct binding partners of Rrp46 and 15 protein-protein interactions (PPIs) among the co-immunoprecipitated exosome subunits. Applying it to E. coli and C. elegans lysates, we identified 3130 and 893 inter-linked lysine pairs, representing 677 and 121 PPIs. Using a quantitative CXMS workflow we demonstrate that it can reveal changes in the reactivity of lysine residues due to protein-nucleic acid interaction. DOI: http://dx.doi.org/10.7554/eLife.12509.001 PMID:26952210

  6. Probing Protein-DNA Interactions by Unzipping DNA

    NASA Astrophysics Data System (ADS)

    Wang, Michelle

    2003-03-01

    Protein-DNA interactions are essential to cellular processes. In replication, transcription, recombination, DNA repair, and DNA packaging, proteins bind to DNA as activators or repressors, to recruit other proteins, or to carry out various catalytic activities. I will present Unzipping Force Analysis of Protein Association (UFAPA) as a novel and versatile method for detection of the position and dynamic nature of protein-DNA interactions. A single DNA double helix was unzipped in the presence of DNA-binding proteins using a feedback-enhanced optical trap. When the unzipping fork in a DNA reached a bound protein molecule, we observed a dramatic increase in the tension in the DNA, followed by a sudden tension reduction. Analysis of the unzipping force throughout an unbinding "event" revealed information about the spatial location and dynamic nature of the protein-DNA complex.

  7. Predicting Protein-Protein Interactions from the Molecular to the Proteome Level.

    PubMed

    Keskin, Ozlem; Tuncbag, Nurcan; Gursoy, Attila

    2016-04-27

    Identification of protein-protein interactions (PPIs) is at the center of molecular biology considering the unquestionable role of proteins in cells. Combinatorial interactions result in a repertoire of multiple functions; hence, knowledge of PPI and binding regions naturally serve to functional proteomics and drug discovery. Given experimental limitations to find all interactions in a proteome, computational prediction/modeling of protein interactions is a prerequisite to proceed on the way to complete interactions at the proteome level. This review aims to provide a background on PPIs and their types. Computational methods for PPI predictions can use a variety of biological data including sequence-, evolution-, expression-, and structure-based data. Physical and statistical modeling are commonly used to integrate these data and infer PPI predictions. We review and list the state-of-the-art methods, servers, databases, and tools for protein-protein interaction prediction. PMID:27074302

  8. A novel method for protein-protein interaction site prediction using phylogenetic substitution models

    PubMed Central

    La, David; Kihara, Daisuke

    2011-01-01

    Protein-protein binding events mediate many critical biological functions in the cell. Typically, functionally important sites in proteins can be well identified by considering sequence conservation. However, protein-protein interaction sites exhibit higher sequence variation than other functional regions, such as catalytic sites of enzymes. Consequently, the mutational behavior leading to weak sequence conservation poses significant challenges to the protein-protein interaction site prediction. Here, we present a phylogenetic framework to capture critical sequence variations that favor the selection of residues essential for protein-protein binding. Through the comprehensive analysis of diverse protein families, we show that protein binding interfaces exhibit distinct amino acid substitution as compared with other surface residues. Based on this analysis, we have developed a novel method, BindML, which utilizes the substitution models to predict protein-protein binding sites of protein with unknown interacting partners. BindML estimates the likelihood that a phylogenetic tree of a local surface region in a query protein structure follows the substitution patterns of protein binding interface and non-binding surfaces. BindML is shown to perform well compared to alternative methods for protein binding interface prediction. The methodology developed in this study is very versatile in the sense that it can be generally applied for predicting other types of functional sites, such as DNA, RNA, and membrane binding sites in proteins. PMID:21989996

  9. P2X1 Receptor Antagonists Inhibit HIV-1 Fusion by Blocking Virus-Coreceptor Interactions

    PubMed Central

    Giroud, Charline; Marin, Mariana; Hammonds, Jason; Spearman, Paul

    2015-01-01

    ABSTRACT HIV-1 Env glycoprotein-mediated fusion is initiated upon sequential binding of Env to CD4 and the coreceptor CXCR4 or CCR5. Whereas these interactions are thought to be necessary and sufficient to promote HIV-1 fusion, other host factors can modulate this process. Previous studies reported potent inhibition of HIV-1 fusion by selective P2X1 receptor antagonists, including NF279, and suggested that these receptors play a role in HIV-1 entry. Here we investigated the mechanism of antiviral activity of NF279 and found that this compound does not inhibit HIV-1 fusion by preventing the activation of P2X1 channels but effectively blocks the binding of the virus to CXCR4 or CCR5. The notion of an off-target effect of NF279 on HIV-1 fusion is supported by the lack of detectable expression of P2X1 receptors in cells used in fusion experiments and by the fact that the addition of ATP or the enzymatic depletion of ATP in culture medium does not modulate viral fusion. Importantly, NF279 fails to inhibit HIV-1 fusion with cell lines and primary macrophages when added at an intermediate stage downstream of Env-CD4-coreceptor engagement. Conversely, in the presence of NF279, HIV-1 fusion is arrested downstream of CD4 binding but prior to coreceptor engagement. NF279 also antagonizes the signaling function of CCR5, CXCR4, and another chemokine receptor, as evidenced by the suppression of calcium responses elicited by specific ligands and by recombinant gp120. Collectively, our results demonstrate that NF279 is a dual HIV-1 coreceptor inhibitor that interferes with the functional engagement of CCR5 and CXCR4 by Env. IMPORTANCE Inhibition of P2X receptor activity suppresses HIV-1 fusion and replication, suggesting that P2X signaling is involved in HIV-1 entry. However, mechanistic experiments conducted in this study imply that P2X1 receptor is not expressed in target cells or involved in viral fusion. Instead, we found that inhibition of HIV-1 fusion by a specific P2X1

  10. Cannabinoid receptor 2 expression modulates Gβ(1)γ(2) protein interaction with the activator of G protein signalling 2/dynein light chain protein Tctex-1.

    PubMed

    Nagler, Marina; Palkowitsch, Lysann; Rading, Sebastian; Moepps, Barbara; Karsak, Meliha

    2016-01-01

    The activator of G protein signalling AGS2 (Tctex-1) forms protein complexes with Gβγ, and controls cell proliferation by regulating cell cycle progression. A direct interaction of Tctex-1 with various G protein-coupled receptors has been reported. Since the carboxyl terminal portion of CB2 carries a putative Tctex-1 binding motif, we investigated the potential interplay of CB2 and Tctex-1 in the absence and presence of Gβγ. The supposed interaction of cannabinoid receptor CB2 with Tctex-1 and the influence of CB2 on the formation of Tctex-1-Gβγ-complexes were studied by co- and/or immunoprecipitation experiments in transiently transfected HEK293 cells. The analysis on Tctex-1 protein was performed in the absence and presence of the ligands JWH 133, 2-AG, and AM 630, the protein biosynthesis inhibitor cycloheximide or the protein degradation blockers MG132, NH4Cl/leupeptin or bafilomycin. Our results show that CB2 neither directly nor indirectly via Gβγ interacts with Tctex-1, but competes with Tctex-1 in binding to Gβγ. The Tctex-1-Gβγ protein interaction was disrupted by CB2 receptor expression resulting in a release of Tctex-1 from the complex, and its degradation by the proteasome and partly by lysosomes. The decrease in Tctex-1 protein levels is induced by CB2 expression "dose-dependently" and is independent of stimulation by agonist or blocking by an inverse agonist treatment. The results suggest that CB2 receptor expression independent of its activation by agonists is sufficient to competitively disrupt Gβγ-Tctex-1 complexes, and to initiate Tctex-1 degradation. These findings implicate that CB2 receptor expression modifies the stability of intracellular protein complexes by a non-canonical pathway. PMID:26410677

  11. Network representation of protein interactions-Experimental results.

    PubMed

    Kurzbach, Dennis; Flamm, Andrea G; Sára, Tomáš

    2016-09-01

    A graph theoretical analysis of nuclear magnetic resonance (NMR) data of six different protein interactions has been presented. The representation of the protein interaction data as a graph or network reveals that all of the studied interactions are based on a common functional concept. They all involve a single densely packed hub of functionally correlated residues that mediate the ligand binding events. This is found independent of the kind of protein (folded or unfolded) or ligand (protein, polymer or small molecule). Furthermore, the power of the graph analysis is demonstrated at the examples of the Calmodulin (CaM)/Calcium and the Cold Shock Protein A (CspA)/RNA interaction. The presented approach enables the precise determination of multiple binding sites for the respective ligand molecules. PMID:27272395

  12. Single Molecule Approaches in RNA-Protein Interactions.

    PubMed

    Serebrov, Victor; Moore, Melissa J

    2016-01-01

    RNA-protein interactions govern every aspect of RNA metabolism, and aberrant RNA-binding proteins are the cause of hundreds of genetic diseases. Quantitative measurements of these interactions are necessary in order to understand mechanisms leading to diseases and to develop efficient therapies. Existing methods of RNA-protein interactome capture can afford a comprehensive snapshot of RNA-protein interaction networks but lack the ability to characterize the dynamics of these interactions. As all ensemble methods, their resolution is also limited by statistical averaging. Here we discuss recent advances in single molecule techniques that have the potential to tackle these challenges. We also provide a thorough overview of single molecule colocalization microscopy and the essential protein and RNA tagging and detection techniques. PMID:27256383

  13. [Multiparticle computer simulation of protein interactions in the photosynthetic membrane].

    PubMed

    Riznichenko, G Iu; Kovalenko, I B; Abaturova, A M; D'iakonova, A N; Kniazeva, O S; Ustinin, D M; Khrushchev, S S; Rubin, A B

    2011-01-01

    The basic principles of the design of direct multiparticle models and the results of multiparticle computer simulation of electron transfer by mobile protein carriers in the photosynthetic membrane of a chloroplast thylakoid are presented. The reactions of complex formation of the protein plastocyanin with the protein cytochrome f and the pigment-protein complex of photosystem I, as well as of the protein ferredoxin with the protein FNR and photosystem 1 are considered. The role of diffusion and electrostatic interactions is discussed, and the effect of the shape of the reaction volume and ionic strength on the rate of electron transport are discussed. PMID:22117434

  14. Domain-mediated protein interaction prediction: From genome to network.

    PubMed

    Reimand, Jüri; Hui, Shirley; Jain, Shobhit; Law, Brian; Bader, Gary D

    2012-08-14

    Protein-protein interactions (PPIs), involved in many biological processes such as cellular signaling, are ultimately encoded in the genome. Solving the problem of predicting protein interactions from the genome sequence will lead to increased understanding of complex networks, evolution and human disease. We can learn the relationship between genomes and networks by focusing on an easily approachable subset of high-resolution protein interactions that are mediated by peptide recognition modules (PRMs) such as PDZ, WW and SH3 domains. This review focuses on computational prediction and analysis of PRM-mediated networks and discusses sequence- and structure-based interaction predictors, techniques and datasets for identifying physiologically relevant PPIs, and interpreting high-resolution interaction networks in the context of evolution and human disease. PMID:22561014

  15. Aromatic-aromatic interactions: analysis of π-π interactions in interleukins and TNF proteins

    PubMed Central

    Sivasakthi, Vaideeswaran; Anitha, Parimelzaghan; Kumar, Kalavathi Murugan; Bag, Susmita; Senthilvel, Padmanaban; Lavanya, Pandian; Swetha, Rayapadi; Anbarasu, Anand; Ramaiah, Sudha

    2013-01-01

    Aromatic-aromatic hydrogen bonds are important in many areas of chemistry, biology and materials science. In this study we have analyzed the roles played by the π-π interactions in interleukins (ILs) and tumor necrosis factor (TNF) proteins. Majority of π-π interacting residues are conserved in ILs and TNF proteins. The accessible surface area calculations in these proteins reveal that these interactions might be important in stabilizing the inner core regions of these proteins. In addition to π-π interactions, the aromatic residues also form π-networks in ILs and TNF proteins. The results obtained in the present study indicate that π-π interactions and π-π networks play important roles in the structural stability of ILs and TNF proteins. PMID:23750094

  16. Porcine reproductive and respiratory syndrome virus envelope (E) protein interacts with mitochondrial proteins and induces apoptosis.

    PubMed

    Pujhari, Sujit; Zakhartchouk, Alexander N

    2016-07-01

    Porcine reproductive and respiratory syndrome virus (PRRSV) causes significant economic losses for the swine industry worldwide. The PRRSV E protein, encoded by ORF 2b, is one of the non-glycosylated minor structural proteins. In this study, we present evidence for the interaction of the E protein with mitochondrial proteins ATP5A (part of ATP synthase complex), prohibitin, and ADP/ATP translocase. We additionally demonstrate partial mitochondrial localization of the E protein in transfected cells. To functionally investigate these interactions, we infected MARC-145 cells with PRRSV or alphavirus replicon particles (VRPs) expressing PRRSV E protein. In infected cells, production of ATP was significantly reduced. The E protein also induced apoptosis by activating caspase-3, which results in PARP cleavage. Taken together, these data suggest that the PRRSV E protein interacts with mitochondrial proteins and induces apoptosis by inhibiting ATP production. PMID:27068165

  17. A proteome-wide protein interaction map for Campylobacter jejuni

    PubMed Central

    Parrish, Jodi R; Yu, Jingkai; Liu, Guozhen; Hines, Julie A; Chan, Jason E; Mangiola, Bernie A; Zhang, Huamei; Pacifico, Svetlana; Fotouhi, Farshad; DiRita, Victor J; Ideker, Trey; Andrews, Phillip; Finley, Russell L

    2007-01-01

    Background Data from large-scale protein interaction screens for humans and model eukaryotes have been invaluable for developing systems-level models of biological processes. Despite this value, only a limited amount of interaction data is available for prokaryotes. Here we report the systematic identification of protein interactions for the bacterium Campylobacter jejuni, a food-borne pathogen and a major cause of gastroenteritis worldwide. Results Using high-throughput yeast two-hybrid screens we detected and reproduced 11,687 interactions. The resulting interaction map includes 80% of the predicted C. jejuni NCTC11168 proteins and places a large number of poorly characterized proteins into networks that provide initial clues about their functions. We used the map to identify a number of conserved subnetworks by comparison to protein networks from Escherichia coli and Saccharomyces cerevisiae. We also demonstrate the value of the interactome data for mapping biological pathways by identifying the C. jejuni chemotaxis pathway. Finally, the interaction map also includes a large subnetwork of putative essential genes that may be used to identify potential new antimicrobial drug targets for C. jejuni and related organisms. Conclusion The C. jejuni protein interaction map is one of the most comprehensive yet determined for a free-living organism and nearly doubles the binary interactions available for the prokaryotic kingdom. This high level of coverage facilitates pathway mapping and function prediction for a large number of C. jejuni proteins as well as orthologous proteins from other organisms. The broad coverage also facilitates cross-species comparisons for the identification of evolutionarily conserved subnetworks of protein interactions. PMID:17615063

  18. Protein-engineered block-copolymers as stem cell delivery vehicles

    NASA Astrophysics Data System (ADS)

    Heilshorn, Sarah

    2015-03-01

    Stem cell transplantation is a promising therapy for a myriad of debilitating diseases and injuries; however, current delivery protocols are inadequate. Transplantation by direct injection, which is clinically preferred for its minimal invasiveness, commonly results in less than 5% cell viability, greatly inhibiting clinical outcomes. We demonstrate that mechanical membrane disruption results in significant acute loss of viability at clinically relevant injection rates. As a strategy to protect cells from these damaging forces, we show that cell encapsulation within hydrogels of specific mechanical properties will significantly improve viability. Building on these fundamental studies, we have designed a reproducible, bio-resorbable, customizable hydrogel using protein-engineering technology. In our Mixing-Induced Two-Component Hydrogel (MITCH), network assembly is driven by specific and stoichiometric peptide-peptide binding interactions. By integrating protein science methodologies with simple polymer physics models, we manipulate the polypeptide chain interactions and demonstrate the direct ability to tune the network crosslinking density, sol-gel phase behavior, and gel mechanics. This is in contrast to many other physical hydrogels, where predictable tuning of bulk mechanics from the molecular level remains elusive due to the reliance on non-specific and non-stoichiometric chain interactions for network formation. Furthermore, the hydrogel network can be easily modified to deliver a variety of bioactive payloads including growth factors, peptide drugs, and hydroxyapatite nanoparticles. Through a series of in vitro and in vivo studies, we demonstrate that these materials may significantly improve transplanted stem cell retention and function.

  19. Highly protein-resistant coatings and suspension cell culture thereon from amphiphilic block copolymers prepared by RAFT polymerization.

    PubMed

    Haraguchi, Kazutoshi; Kubota, Kazuomi; Takada, Tetsuo; Mahara, Saori

    2014-06-01

    Novel amphiphilic block copolymers composed of hydrophobic (poly(2-methoxyethyl acrylate): M) and hydrophilic (poly(N,N-dimethylacrylamide): D) segments were synthesized by living radical polymerization: a reversible addition-fragmentation chain-transfer polymerization. Two types of amphiphilic block copolymers, triblock (MDM) and 4-arm block ((MD)4) copolymers with specific compositions (D/M = (750-1500)/250), were prepared by a versatile one-pot synthesis. These copolymers show good adhesion to various types of substrates (e.g., polystyrene, polycarbonate, polypropylene, Ti, and glass), and the surface coating showed high protein repellency and a low contact angle for water, regardless of the substrate. The two opposing characteristics of high protein repellency and good substrate adhesion were achieved by the combined effects of the molecular architecture of the block copolymers, the high molecular weight, and the characteristics of each segment, that is, low protein adsorption capability of both segments and low glass transition temperature of the hydrophobic segment. Further, a polystyrene dish coated with the MDM block copolymer could be sterilized by γ-ray irradiation and used as a good substrate for a suspension cell culture that exhibits low cell adhesion and good cell growth. PMID:24773089

  20. Visualization of Host-Polerovirus Interaction Topologies Using Protein Interaction Reporter Technology

    PubMed Central

    DeBlasio, Stacy L.; Chavez, Juan D.; Alexander, Mariko M.; Ramsey, John; Eng, Jimmy K.; Mahoney, Jaclyn; Gray, Stewart M.; Bruce, James E.

    2015-01-01

    ABSTRACT Demonstrating direct interactions between host and virus proteins during infection is a major goal and challenge for the field of virology. Most protein interactions are not binary or easily amenable to structural determination. Using infectious preparations of a polerovirus (Potato leafroll virus [PLRV]) and protein interaction reporter (PIR), a revolutionary technology that couples a mass spectrometric-cleavable chemical cross-linker with high-resolution mass spectrometry, we provide the first report of a host-pathogen protein interaction network that includes data-derived, topological features for every cross-linked site that was identified. We show that PLRV virions have hot spots of protein interaction and multifunctional surface topologies, revealing how these plant viruses maximize their use of binding interfaces. Modeling data, guided by cross-linking constraints, suggest asymmetric packing of the major capsid protein in the virion, which supports previous epitope mapping studies. Protein interaction topologies are conserved with other species in the Luteoviridae and with unrelated viruses in the Herpesviridae and Adenoviridae. Functional analysis of three PLRV-interacting host proteins in planta using a reverse-genetics approach revealed a complex, molecular tug-of-war between host and virus. Structural mimicry and diversifying selection—hallmarks of host-pathogen interactions—were identified within host and viral binding interfaces predicted by our models. These results illuminate the functional diversity of the PLRV-host protein interaction network and demonstrate the usefulness of PIR technology for precision mapping of functional host-pathogen protein interaction topologies. IMPORTANCE The exterior shape of a plant virus and its interacting host and insect vector proteins determine whether a virus will be transmitted by an insect or infect a specific host. Gaining this information is difficult and requires years of experimentation. We used

  1. Discovering novel protein-protein interactions by measuring the protein semantic similarity from the biomedical literature.

    PubMed

    Chiang, Jung-Hsien; Ju, Jiun-Huang

    2014-12-01

    Protein-protein interactions (PPIs) are involved in the majority of biological processes. Identification of PPIs is therefore one of the key aims of biological research. Although there are many databases of PPIs, many other unidentified PPIs could be buried in the biomedical literature. Therefore, automated identification of PPIs from biomedical literature repositories could be used to discover otherwise hidden interactions. Search engines, such as Google, have been successfully applied to measure the relatedness among words. Inspired by such approaches, we propose a novel method to identify PPIs through semantic similarity measures among protein mentions. We define six semantic similarity measures as features based on the page counts retrieved from the MEDLINE database. A machine learning classifier, Random Forest, is trained using the above features. The proposed approach achieve an averaged micro-F of 71.28% and an averaged macro-F of 64.03% over five PPI corpora, an improvement over the results of using only the conventional co-occurrence feature (averaged micro-F of 68.79% and an averaged macro-F of 60.49%). A relation-word reinforcement further improves the averaged micro-F to 71.3% and averaged macro-F to 65.12%. Comparing the results of the current work with other studies on the AIMed corpus (ranging from 77.58% to 85.1% in micro-F, 62.18% to 76.27% in macro-F), we show that the proposed approach achieves micro-F of 81.88% and macro-F of 64.01% without the use of sophisticated feature extraction. Finally, we manually examine the newly discovered PPI pairs based on a literature review, and the results suggest that our approach could extract novel protein-protein interactions. PMID:25385082

  2. The origins of the evolutionary signal used to predict protein-protein interactions

    PubMed Central

    2012-01-01

    Background The correlation of genetic distances between pairs of protein sequence alignments has been used to infer protein-protein interactions. It has been suggested that these correlations are based on the signal of co-evolution between interacting proteins. However, although mutations in different proteins associated with maintaining an interaction clearly occur (particularly in binding interfaces and neighbourhoods), many other factors contribute to correlated rates of sequence evolution. Proteins in the same genome are usually linked by shared evolutionary history and so it would be expected that there would be topological similarities in their phylogenetic trees, whether they are interacting or not. For this reason the underlying species tree is often corrected for. Moreover processes such as expression level, are known to effect evolutionary rates. However, it has been argued that the correlated rates of evolution used to predict protein interaction explicitly includes shared evolutionary history; here we test this hypothesis. Results In order to identify the evolutionary mechanisms giving rise to the correlations between interaction proteins, we use phylogenetic methods to distinguish similarities in tree topologies from similarities in genetic distances. We use a range of datasets of interacting and non-interacting proteins from Saccharomyces cerevisiae. We find that the signal of correlated evolution between interacting proteins is predominantly a result of shared evolutionary rates, rather than similarities in tree topology, independent of evolutionary divergence. Conclusions Since interacting proteins do not have tree topologies that are more similar than the control group of non-interacting proteins, it is likely that coevolution does not contribute much to, if any, of the observed correlations. PMID:23217198

  3. Visualization of electron transfer interactions of membrane proteins

    NASA Astrophysics Data System (ADS)

    Kawato, Suguru

    1991-08-01

    To visualize electron transfer interactions of proteins in the cellular nieinbrane, we have developed a polarized laser flash-induced anisotropy decay imaging. The time-resolved anisotropy is particularly sensitive to protein-protein interactions. This technique has been successfully applied to examine formation and dissociation of electron transfer complex in adrenal cortex and liver. Electron transfer plays a significant role for steroid hormone synthesis from cholesterol in adrenalcortex and for drug metabolism in liver such as detoxification of chemical compounds. Several redox partners perticipate in dynamic electron transfer interactions. The terminal enzyme cytochrome P-450 receives electrons to activate molecular oxygen, resulting in hydroxylation of various substrates.

  4. Depletion Interactions: Effects of Added Homopolymer on Ordered Phases Formed by Spherical Block Copolymer Micelles

    SciTech Connect

    Abbas, Sayeed; Lodge, Timothy P.

    2008-12-09

    Three distinct poly(styrene-b-isoprene) (SI) diblock copolymers with molecular weights of 16-16, 38-14, and 50-13 kDa for styrene and isoprene, respectively, formed spherical micelles when dissolved in diethyl phthalate (DEP). Since DEP is a styrene-selective solvent, micelles with polyisoprene in the core and polystyrene in the corona were formed. At block copolymer concentrations of 20%, 16%, and 14% in DEP, the spherical micelles of SI(16-16), SI(38-14), and SI(50-13) pack onto a face-centered cubic (FCC) lattice, a mixture of FCC and body-centered cubic (BCC) lattices, and a BCC lattice, respectively. Polystyrene homopolymers with molecular weights of 4, 48, and 180 kDa were added to these ordered solutions. The following general trends were observed: the FCC phase tended to disorder, and samples that originally behaved like soft solids exhibited liquidlike flow behavior. The effect increased strongly with both the molecular weight and concentration of homopolymer in the solution. Furthermore, the BCC lattice tended to be displaced by the FCC lattice, or to disorder, when homopolymer was added. These results can be explained by invoking depletion interactions, which have been studied extensively in colloid/polymer mixtures. However, the phenomenon differs in certain details from colloidal systems because the addition of homopolymer can also influence the aggregation number of the micelles, which in turn affects the lattice packing of the micelles.

  5. Modeling interactions between blocking and permeant cations in the NavMs channel.

    PubMed

    Korkosh, Vyacheslav S; Zhorov, Boris S; Tikhonov, Denis B

    2016-06-01

    Mechanisms of sodium channel block by local anesthetics (LAs) are still a matter of intensive studies. In the absence of high-resolution structures of eukaryotic channels, atomic details of LA-channel interactions are analyzed using homology modeling. LAs are predicted to access the closed channel through a sidewalk (fenestration) between the channel repeats, bind in a horizontal orientation, and leave its aromatic moiety in the interface. Recent X-ray structure of a bacterial sodium channel NavMs with a cationic molecule Pl1, which is structurally similar to LAs, has confirmed this theoretical prediction and demonstrated a reduced selectivity filter occupancy by the permeant ions in the Pl1-bound channel. However, the nature of the antagonism between LAs and permeant ions is still unclear. Here we used the NavMs structure and Monte Carlo energy minimizations to model Pl1 binding. Our computations predict that Pl1 can displace permeant ion(s) from the selectivity filter by both steric and electrostatic mechanisms. We hypothesize that the electrostatic mechanism is more general, because it is applicable to many LAs and related drugs, which lack a moiety capable to enter the selectivity filter and sterically displace the permeant ion. The electrostatic mechanism is also consistent with the data that various cationic blockers of potassium channels bind in the inner pore without entering the selectivity filter. PMID:27020546

  6. Intracellular spermine blocks TRPC4 channel via electrostatic interaction with C-terminal negative amino acids.

    PubMed

    Kim, Jinsung; Moon, Sang Hui; Shin, Young-Cheul; Jeon, Ju-Hong; Park, Kyu Joo; Lee, Kyu Pil; So, Insuk

    2016-04-01

    Transient receptor potential canonical (TRPC) 4 channels are calcium-permeable, nonselective cation channels and are widely expressed in mammalian tissue, especially in the GI tract and brain. TRPC4 channels are known to be involved in neurogenic contraction of ileal smooth muscle cells via generating cationic current after muscarinic stimulation (muscarinic cationic current (mIcat)). Polyamines exist in numerous tissues and are believed to be involved in cell proliferation, differentiation, scar formation, wound healing, and carcinogenesis. Besides, physiological polyamines are essential to maintain inward rectification of cardiac potassium channels (Kir2.1). At membrane potentials more positive than equilibrium potential, intracellular polyamines plug the cytosolic surface of the Kir2.1 so that potassium ions cannot pass through the pore. Recently, it was reported that polyamines inhibit not only cardiac potassium channels but also nonselective cation channels that mediate the generation of mIcat. Here, we report that TRPC4, a definite mIcat mediator, is inhibited by intracellular spermine with great extent. The inhibition was specific to TRPC4 and TRPC5 channels but was not effective to TRPC1/4, TRPC1/5, and TRPC3 channels. For this inhibition to occur, we found that glutamates at 728th and 729th position of TRPC4 channels are essential whereby we conclude that spermine blocks the TRPC4 channel with electrostatic interaction between negative amino acids at the C-terminus of the channel. PMID:26631167

  7. Electrostatic interactions drive the nonsteric directional block of OmpF channel by La3+.

    PubMed

    Queralt-Martín, María; Verdiá-Báguena, Carmina; Aguilella, Vicente M; Alcaraz, Antonio

    2013-12-10

    Ion channels regulate the transport of molecules and the electric signal transduction in living cells by means of complex and even highly sophisticated mechanisms. We focus here on the crucial role that polyvalent ions, well-known modulators of many biological nanosystems, play in ion channel function. In particular, we show that trace amounts of lanthanum are able to block the bacterial porin OmpF, a large biological pore of Escherichia coli wide enough to exchange antibiotics and other larger molecules. The underlying mechanism has a strong directional character: it is sensitive to the sign of the applied voltage and to the side of the blocker addition. We explore these channel features by combining planar lipid bilayer electrophysiology at the single channel level, site-directed mutagenesis, and inductively coupled plasma mass spectrometry (ICP-MS). In contrast to other well-described channel blockers, which seem to occlude the narrower part of the pore, we envisage a nonsteric mechanism based on electrostatic interactions. PMID:24256306

  8. Molecular interactions and solubilization of structurally related meso-porphyrin photosensitizers by amphiphilic block copolymers (Pluronics).

    PubMed

    Sobczyński, Jan; Smistad, Gro; Hegge, Anne Bee; Kristensen, Solveig

    2015-01-01

    The influence of four Pluronics block copolymers (i.e. F68, P123, F127, and L44) on the aggregation and solubilization of five structurally related meso-tetraphenyl porphyrin photosensitizers (PS) as model compounds for use in Photodynamic Therapy of cancer (PDT) was evaluated. Interactions between the PSs and Pluronics were studied at micromolar concentration by means of UV-Vis absorption spectrometry and by kinematic viscosity (υ) and osmolarity measurements at millimolar concentrations. Pluronic micelles were characterized by size and zeta potential (ζ) measurements. The morphology of selected PS-Pluronic assemblies was studied by atomic force microscopy (AFM). While hydrophobic 5,10,15,20-Tetrakis(4-hydroxyphenyl) porphine (THPP) seemed to be solubilized in the Pluronic micellar cores, amphiphilic di(monoethanolammonium) meso-tetraphenyl porphine disulphonate (TPPS2a) was likely bound to the micellar palisade layer. Hydrophilic PSs like 5,10,15,20-Tetrakis (4-trimethylaniliniumphenyl) porphine (TAPP) seemed to form complexes with Pluronic unimers and to be distributed among the micellar coronas. TPPS2a aggregated into a network which could be broken at Pluronic concentration [Formula: see text] cmc, but would reconstitute in the presence of tonicity adjusting agents, e.g. sodium chloride (NaCl) or glucose. PMID:25027806

  9. From Nonspecific DNA–Protein Encounter Complexes to the Prediction of DNA–Protein Interactions

    PubMed Central

    Gao, Mu; Skolnick, Jeffrey

    2009-01-01

    DNA–protein interactions are involved in many essential biological activities. Because there is no simple mapping code between DNA base pairs and protein amino acids, the prediction of DNA–protein interactions is a challenging problem. Here, we present a novel computational approach for predicting DNA-binding protein residues and DNA–protein interaction modes without knowing its specific DNA target sequence. Given the structure of a DNA-binding protein, the method first generates an ensemble of complex structures obtained by rigid-body docking with a nonspecific canonical B-DNA. Representative models are subsequently selected through clustering and ranking by their DNA–protein interfacial energy. Analysis of these encounter complex models suggests that the recognition sites for specific DNA binding are usually favorable interaction sites for the nonspecific DNA probe and that nonspecific DNA–protein interaction modes exhibit some similarity to specific DNA–protein binding modes. Although the method requires as input the knowledge that the protein binds DNA, in benchmark tests, it achieves better performance in identifying DNA-binding sites than three previously established methods, which are based on sophisticated machine-learning techniques. We further apply our method to protein structures predicted through modeling and demonstrate that our method performs satisfactorily on protein models whose root-mean-square Cα deviation from native is up to 5 Å from their native structures. This study provides valuable structural insights into how a specific DNA-binding protein interacts with a nonspecific DNA sequence. The similarity between the specific DNA–protein interaction mode and nonspecific interaction modes may reflect an important sampling step in search of its specific DNA targets by a DNA-binding protein. PMID:19343221

  10. Protein solvent and weak protein protein interactions in halophilic malate dehydrogenase

    NASA Astrophysics Data System (ADS)

    Ebel, Christine; Faou, Pierre; Zaccai, Giuseppe

    1999-01-01

    With the aim to correlate the solvation, stability and solubility properties of halophilic malate dehydrogenase, we characterized its weak interparticle interactions by small-angle neutron scattering in various solvents. The protein concentration dependence of the apparent radius of gyration and forward scattered intensity extrapolated from Guinier plots, and thus the second virial coefficient, A2, were determined for each solvent condition. In NaCl 1M+2-methylpentane-2,4-diol 30%, a solvent that promotes protein crystallization, A2 is negative, -0.4×10 -4 ml mol g -2 and indicating attractive interactions; in ammonium sulfate 3M, in which the protein precipitates at high concentrations, A2˜0. In 2-5M NaCl, 1-3.5M NaOAc, 1-4.5M KF or 1-2M (NH 4) 2SO 4, in which the protein is very soluble, A2 is positive with a value of the order of 0.4×10 -4 ml mol g -2 which decreases with increasing salt concentration. In MgCl 2 however, A2 increases with increasing salt concentration from 0.2 to 1.3M.

  11. Blocking c-Met signaling enhances bone morphogenetic protein-2-induced osteoblast differentiation

    PubMed Central

    Shibasaki, Seiji; Kitano, Sachie; Karasaki, Miki; Tsunemi, Sachi; Sano, Hajime; Iwasaki, Tsuyoshi

    2015-01-01

    We previously demonstrated that blocking hepatocyte growth factor (HGF) receptor/c-Met signaling inhibited arthritis and articular bone destruction in mouse models of rheumatoid arthritis (RA). In the present study, we investigated the role of c-Met signaling in osteoblast differentiation using the C2C12 myoblast cell line derived from murine satellite cells and the MC3T3-E1 murine pre-osteoblast cell line. Osteoblast differentiation was induced by treatment with bone morphogenetic protein (BMP)-2 or osteoblast-inducer reagent in the presence or absence of either HGF antagonist (NK4) or c-Met inhibitor (SU11274). Osteoblast differentiation was confirmed by Runx2 expression, and alkaline phosphatase (ALP) and osteocalcin production by the cells. Production of ALP, osteocalcin and HGF was verified by enzyme-linked immunosorbent assay. Runx2 expression was confirmed by reverse transcription-PCR analysis. The phosphorylation status of ERK1/2, AKT, and Smads was determined by Western blot analysis. Both NK4 and SU11274 enhanced Runx2 expression, and ALP and osteocalcin production but suppressed HGF production in BMP-2-stimulated C2C12 cells. SU11274 also enhanced ALP and osteocalcin production in osteoblast-inducer reagent-stimulated MC3T3-E1 cells. SU11274 inhibited ERK1/2 and AKT phosphorylation in HGF-stimulated C2C12 cells. This result suggested that ERK and AKT were functional downstream of the c-Met signaling pathway. However, both mitogen-activated protein kinase/ERK kinase (MEK) and phosphatidylinositol 3-kinase (PI3K) inhibitor suppressed osteocalcin and HGF production in BMP-2-stimulated C2C12 cells. Furthermore, SU11274, MEK, and PI3K inhibitor suppressed Smad phosphorylation in BMP-2-stimulated C2C12 cells. These results indicate that although the c-Met-MEK-ERK-Smad and c-Met-PI3K-AKT-Smad signaling pathways positively regulate osteoblast differentiation, c-Met signaling negatively regulates osteoblast differentiation, independent of the MEK-ERK-Smad and PI3

  12. Blocking c-Met signaling enhances bone morphogenetic protein-2-induced osteoblast differentiation.

    PubMed

    Shibasaki, Seiji; Kitano, Sachie; Karasaki, Miki; Tsunemi, Sachi; Sano, Hajime; Iwasaki, Tsuyoshi

    2015-01-01

    We previously demonstrated that blocking hepatocyte growth factor (HGF) receptor/c-Met signaling inhibited arthritis and articular bone destruction in mouse models of rheumatoid arthritis (RA). In the present study, we investigated the role of c-Met signaling in osteoblast differentiation using the C2C12 myoblast cell line derived from murine satellite cells and the MC3T3-E1 murine pre-osteoblast cell line. Osteoblast differentiation was induced by treatment with bone morphogenetic protein (BMP)-2 or osteoblast-inducer reagent in the presence or absence of either HGF antagonist (NK4) or c-Met inhibitor (SU11274). Osteoblast differentiation was confirmed by Runx2 expression, and alkaline phosphatase (ALP) and osteocalcin production by the cells. Production of ALP, osteocalcin and HGF was verified by enzyme-linked immunosorbent assay. Runx2 expression was confirmed by reverse transcription-PCR analysis. The phosphorylation status of ERK1/2, AKT, and Smads was determined by Western blot analysis. Both NK4 and SU11274 enhanced Runx2 expression, and ALP and osteocalcin production but suppressed HGF production in BMP-2-stimulated C2C12 cells. SU11274 also enhanced ALP and osteocalcin production in osteoblast-inducer reagent-stimulated MC3T3-E1 cells. SU11274 inhibited ERK1/2 and AKT phosphorylation in HGF-stimulated C2C12 cells. This result suggested that ERK and AKT were functional downstream of the c-Met signaling pathway. However, both mitogen-activated protein kinase/ERK kinase (MEK) and phosphatidylinositol 3-kinase (PI3K) inhibitor suppressed osteocalcin and HGF production in BMP-2-stimulated C2C12 cells. Furthermore, SU11274, MEK, and PI3K inhibitor suppressed Smad phosphorylation in BMP-2-stimulated C2C12 cells. These results indicate that although the c-Met-MEK-ERK-Smad and c-Met-PI3K-AKT-Smad signaling pathways positively regulate osteoblast differentiation, c-Met signaling negatively regulates osteoblast differentiation, independent of the MEK-ERK-Smad and PI3

  13. Protein-Protein Interactions in high moisture-extruded meat analogs and heat-induce soy Protein Gels

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Two commercial soy protein isolates were made into fibrous meat analogs by high moisture extrusion or into gels by heating and cooling, at varying concentrations and/or temperatures. Protein-protein interactions by extrusion or gelation were investigated through protein solubility studies of raw an...

  14. Template-based structure modeling of protein-protein interactions

    PubMed Central

    Szilagyi, Andras; Zhang, Yang

    2014-01-01

    The structure of protein-protein complexes can be constructed by using the known structure of other protein complexes as a template. The complex structure templates are generally detected either by homology-based sequence alignments or, given the structure of monomer components, by structure-based comparisons. Critical improvements have been made in recent years by utilizing interface recognition and by recombining monomer and complex template libraries. Encouraging progress has also been witnessed in genome-wide applications of template-based modeling, with modeling accuracy comparable to high-throughput experimental data. Nevertheless, bottlenecks exist due to the incompleteness of the proteinprotein complex structure library and the lack of methods for distant homologous template identification and full-length complex structure refinement. PMID:24721449

  15. Bilayer-thickness-mediated interactions between integral membrane proteins.

    PubMed

    Kahraman, Osman; Koch, Peter D; Klug, William S; Haselwandter, Christoph A

    2016-04-01

    Hydrophobic thickness mismatch between integral membrane proteins and the surrounding lipid bilayer can produce lipid bilayer thickness deformations. Experiment and theory have shown that protein-induced lipid bilayer thickness deformations can yield energetically favorable bilayer-mediated interactions between integral membrane proteins, and large-scale organization of integral membrane proteins into protein clusters in cell membranes. Within the continuum elasticity theory of membranes, the energy cost of protein-induced bilayer thickness deformations can be captured by considering compression and expansion of the bilayer hydrophobic core, membrane tension, and bilayer bending, resulting in biharmonic equilibrium equations describing the shape of lipid bilayers for a given set of bilayer-protein boundary conditions. Here we develop a combined analytic and numerical methodology for the solution of the equilibrium elastic equations associated with protein-induced lipid bilayer deformations. Our methodology allows accurate prediction of thickness-mediated protein interactions for arbitrary protein symmetries at arbitrary protein separations and relative orientations. We provide exact analytic solutions for cylindrical integral membrane proteins with constant and varying hydrophobic thickness, and develop perturbative analytic solutions for noncylindrical protein shapes. We complement these analytic solutions, and assess their accuracy, by developing both finite element and finite difference numerical solution schemes. We provide error estimates of our numerical solution schemes and systematically assess their convergence properties. Taken together, the work presented here puts into place an analytic and numerical framework which allows calculation of bilayer-mediated elastic interactions between integral membrane proteins for the complicated protein shapes suggested by structural biology and at the small protein separations most relevant for the crowded membrane

  16. Bilayer-thickness-mediated interactions between integral membrane proteins

    NASA Astrophysics Data System (ADS)

    Kahraman, Osman; Koch, Peter D.; Klug, William S.; Haselwandter, Christoph A.

    2016-04-01

    Hydrophobic thickness mismatch between integral membrane proteins and the surrounding lipid bilayer can produce lipid bilayer thickness deformations. Experiment and theory have shown that protein-induced lipid bilayer thickness deformations can yield energetically favorable bilayer-mediated interactions between integral membrane proteins, and large-scale organization of integral membrane proteins into protein clusters in cell membranes. Within the continuum elasticity theory of membranes, the energy cost of protein-induced bilayer thickness deformations can be captured by considering compression and expansion of the bilayer hydrophobic core, membrane tension, and bilayer bending, resulting in biharmonic equilibrium equations describing the shape of lipid bilayers for a given set of bilayer-protein boundary conditions. Here we develop a combined analytic and numerical methodology for the solution of the equilibrium elastic equations associated with protein-induced lipid bilayer deformations. Our methodology allows accurate prediction of thickness-mediated protein interactions for arbitrary protein symmetries at arbitrary protein separations and relative orientations. We provide exact analytic solutions for cylindrical integral membrane proteins with constant and varying hydrophobic thickness, and develop perturbative analytic solutions for noncylindrical protein shapes. We complement these analytic solutions, and assess their accuracy, by developing both finite element and finite difference numerical solution schemes. We provide error estimates of our numerical solution schemes and systematically assess their convergence properties. Taken together, the work presented here puts into place an analytic and numerical framework which allows calculation of bilayer-mediated elastic interactions between integral membrane proteins for the complicated protein shapes suggested by structural biology and at the small protein separations most relevant for the crowded membrane

  17. Global approaches to study protein-protein interactions among viruses and hosts.

    PubMed

    Mendez-Rios, Jorge; Uetz, Peter

    2010-02-01

    While high-throughput protein-protein interaction screens were first published approximately 10 years ago, systematic attempts to map interactions among viruses and hosts started only a few years ago. HIV-human interactions dominate host-pathogen interaction databases (with approximately 2000 interactions) despite the fact that probably none of these interactions have been identified in systematic interaction screens. Recently, combinations of protein interaction data with RNAi and other functional genomics data allowed researchers to model more complex interaction networks. The rapid progress in this area promises a flood of new data in the near future, with clinical applications as soon as structural and functional genomics catches up with next-generation sequencing of human variation and structure-based drug design. PMID:20143950

  18. Detecting Protein-Protein Interactions in Vesicular Stomatitis Virus Using a Cytoplasmic Yeast Two Hybrid System

    PubMed Central

    Moerdyk-Schauwecker, Megan; DeStephanis, Darla; Hastie, Eric; Grdzelishvili, Valery Z.

    2011-01-01

    Summary Protein-protein interactions play an important role in many virus-encoded functions and in virus-host interactions. While a “classical” yeast two-hybrid system (Y2H) is one of the most common techniques to detect such interactions, it has a number of limitations, including a requirement for the proteins of interest to be relocated to the nucleus. Modified Y2H, such as the Sos recruitment system (SRS), which detect interactions occurring in the cytoplasm rather than the nucleus, allow proteins from viruses replicating in the cytoplasm to be tested in a more natural context. In this study, a SRS was used to detect interactions involving proteins from vesicular stomatitis virus (VSV), a prototypic non-segmented negative strand RNA (NNS) virus. All five full-length VSV proteins, as well as several truncated proteins, were screened against each other. Using the SRS, most interactions demonstrated previously involving VSV phosphoprotein, nucleocapsid (N) and large polymerase proteins were confirmed independently, while difficulties were encountered using the membrane associated matrix and glycoproteins. A human cDNA library was also screened against VSV N protein and one cellular protein, SFRS18, was identified which interacted with N in this context. The system presented can be redesigned easily for studies in other less tractable NNS viruses. PMID:21320532

  19. Choosing negative examples for the prediction of protein-protein interactions

    PubMed Central

    Ben-Hur, Asa; Noble, William Stafford

    2006-01-01

    The protein-protein interaction networks of even well-studied model organisms are sketchy at best, highlighting the continued need for computational methods to help direct experimentalists in the search for novel interactions. This need has prompted the development of a number of methods for predicting protein-protein interactions based on various sources of data and methodologies. The common method for choosing negative examples for training a predictor of protein-protein interactions is based on annotations of cellular localization, and the observation that pairs of proteins that have different localization patterns are unlikely to interact. While this method leads to high quality sets of non-interacting proteins, we find that this choice can lead to biased estimates of prediction accuracy, because the constraints placed on the distribution of the negative examples makes the task easier. The effects of this bias are demonstrated in the context of both sequence-based and non-sequence based features used for predicting protein-protein interactions. PMID:16723005

  20. A method for investigating protein-protein interactions related to Salmonella typhimurium pathogenesis

    SciTech Connect

    Chowdhury, Saiful M.; Shi, Liang; Yoon, Hyunjin; Ansong, Charles; Rommereim, Leah M.; Norbeck, Angela D.; Auberry, Kenneth J.; Moore, R. J.; Adkins, Joshua N.; Heffron, Fred; Smith, Richard D.

    2009-02-10

    We successfully modified an existing method to investigate protein-protein interactions in the pathogenic bacterium Salmonella typhimurium (STM). This method includes i) addition of a histidine-biotin-histidine tag to the bait proteins via recombinant DNA techniques; ii) in vivo cross-linking with formaldehyde; iii) tandem affinity purification of bait proteins under fully denaturing conditions; and iv) identification of the proteins cross-linked to the bait proteins by liquid-chromatography in conjunction with tandem mass-spectrometry. In vivo cross-linking stabilized protein interactions permitted the subsequent two-step purification step conducted under denaturing conditions. The two-step purification greatly reduced nonspecific binding of non-cross-linked proteins to bait proteins. Two different negative controls were employed to reduce false-positive identification. In an initial demonstration of this approach, we tagged three selected STM proteins- HimD, PduB and PhoP- with known binding partners that ranged from stable (e.g., HimD) to transient (i.e., PhoP). Distinct sets of interacting proteins were identified with each bait protein, including the known binding partners such as HimA for HimD, as well as anticipated and unexpected binding partners. Our results suggest that novel protein-protein interactions may be critical to pathogenesis by Salmonella typhimurium. .

  1. PPISEARCHENGINE: gene ontology-based search for protein-protein interactions.

    PubMed

    Park, Byungkyu; Cui, Guangyu; Lee, Hyunjin; Huang, De-Shuang; Han, Kyungsook

    2013-01-01

    This paper presents a new search engine called PPISearchEngine which finds protein-protein interactions (PPIs) using the gene ontology (GO) and the biological relations of proteins. For efficient retrieval of PPIs, each GO term is assigned a prime number and the relation between the terms is represented by the product of prime numbers. This representation is hidden from users but facilitates the search for the interactions of a query protein by unique prime factorisation of the number that represents the query protein. For a query protein, PPISearchEngine considers not only the GO term associated with the query protein but also the GO terms at the lower level than the GO term in the GO hierarchy, and finds all the interactions of the query protein which satisfy the search condition. In contrast, the standard keyword-matching or ID-matching search method cannot find the interactions of a protein unless the interactions involve a protein with explicit annotations. To the best of our knowledge, this search engine is the first method that can process queries like 'for protein p with GO [Formula: see text], find p's interaction partners with GO [Formula: see text]'. PPISearchEngine is freely available to academics at http://search.hpid.org/. PMID:22316075

  2. Identification of brain-specific angiogenesis inhibitor 2 as an interaction partner of glutaminase interacting protein

    SciTech Connect

    Zencir, Sevil; Ovee, Mohiuddin; Dobson, Melanie J.; Banerjee, Monimoy; Topcu, Zeki; Mohanty, Smita

    2011-08-12

    Highlights: {yields} Brain-specific angiogenesis inhibitor 2 (BAI2) is a new partner protein for GIP. {yields} BAI2 interaction with GIP was revealed by yeast two-hybrid assay. {yields} Binding of BAI2 to GIP was characterized by NMR, CD and fluorescence. {yields} BAI2 and GIP binding was mediated through the C-terminus of BAI2. -- Abstract: The vast majority of physiological processes in living cells are mediated by protein-protein interactions often specified by particular protein sequence motifs. PDZ domains, composed of 80-100 amino acid residues, are an important class of interaction motif. Among the PDZ-containing proteins, glutaminase interacting protein (GIP), also known as Tax Interacting Protein TIP-1, is unique in being composed almost exclusively of a single PDZ domain. GIP has important roles in cellular signaling, protein scaffolding and modulation of tumor growth and interacts with a number of physiological partner proteins, including Glutaminase L, {beta}-Catenin, FAS, HTLV-1 Tax, HPV16 E6, Rhotekin and Kir 2.3. To identify the network of proteins that interact with GIP, a human fetal brain cDNA library was screened using a yeast two-hybrid assay with GIP as bait. We identified brain-specific angiogenesis inhibitor 2 (BAI2), a member of the adhesion-G protein-coupled receptors (GPCRs), as a new partner of GIP. BAI2 is expressed primarily in neurons, further expanding GIP cellular functions. The interaction between GIP and the carboxy-terminus of BAI2 was characterized using fluorescence, circular dichroism (CD) and nuclear magnetic resonance (NMR) spectroscopy assays. These biophysical analyses support the interaction identified in the yeast two-hybrid assay. This is the first study reporting BAI2 as an interaction partner of GIP.

  3. Characterization of the interactions between protein and carbon black.

    PubMed

    Chen, Tzu-Tao; Chuang, Kai-Jen; Chiang, Ling-Ling; Chen, Chun-Chao; Yeh, Chi-Tai; Wang, Liang-Shun; Gregory, Clive; Jones, Tim; BéruBé, Kelly; Lee, Chun-Nin; Chuang, Hsiao-Chi; Cheng, Tsun-Jen

    2014-01-15

    A considerable amount of studies have been conducted to investigate the interactions of biological fluids with nanoparticle surfaces, which exhibit a high affinity for proteins and particles. However, the mechanisms underlying these interactions have not been elucidated, particularly as they relate to human health. Using bovine serum albumin (BSA) and mice bronchoalveolar lavage fluid (BALF) as models for protein-particle conjugates, we characterized the physicochemical modifications of carbon blacks (CB) with 23nm or 65nm in diameter after protein treatment. Adsorbed BALF-containing proteins were quantified and identified by pathways, biological analyses and protein classification. Significant modifications of the physicochemistry of CB were induced by the addition of BSA. Enzyme modulators and hydrolase predominately interacted with CB, with protein-to-CB interactions that were associated with the coagulation pathways. Additionally, our results revealed that an acute-phase response could be activated by these proteins. With regard to human health, the present study revealed that the CB can react with proteins (∼55kDa and 70kDa) after inhalation and may modify the functional structures of lung proteins, leading to the activation of acute-inflammatory responses in the lungs. PMID:24291665

  4. Multiplex single-molecule interaction profiling of DNA barcoded proteins

    PubMed Central

    Gu, Liangcai; Li, Chao; Aach, John; Hill, David E.; Vidal, Marc; Church, George M.

    2014-01-01

    In contrast with advances in massively parallel DNA sequencing1, high-throughput protein analyses2-4 are often limited by ensemble measurements, individual analyte purification and hence compromised quality and cost-effectiveness. Single-molecule (SM) protein detection achieved using optical methods5 is limited by the number of spectrally nonoverlapping chromophores. Here, we introduce a single molecular interaction-sequencing (SMI-Seq) technology for parallel protein interaction profiling leveraging SM advantages. DNA barcodes are attached to proteins collectively via ribosome display6 or individually via enzymatic conjugation. Barcoded proteins are assayed en masse in aqueous solution and subsequently immobilized in a polyacrylamide (PAA) thin film to construct a random SM array, where barcoding DNAs are amplified into in situ polymerase colonies (polonies)7 and analyzed by DNA sequencing. This method allows precise quantification of various proteins with a theoretical maximum array density of over one million polonies per square millimeter. Furthermore, protein interactions can be measured based on the statistics of colocalized polonies arising from barcoding DNAs of interacting proteins. Two demanding applications, G-protein coupled receptor (GPCR) and antibody binding profiling, were demonstrated. SMI-Seq enables “library vs. library” screening in a one-pot assay, simultaneously interrogating molecular binding affinity and specificity. PMID:25252978

  5. Visualization and targeted disruption of protein interactions in living cells

    PubMed Central

    Herce, Henry D.; Deng, Wen; Helma, Jonas; Leonhardt, Heinrich; Cardoso, M. Cristina

    2013-01-01

    Protein–protein interactions are the basis of all processes in living cells, but most studies of these interactions rely on biochemical in vitro assays. Here we present a simple and versatile fluorescent-three-hybrid (F3H) strategy to visualize and target protein–protein interactions. A high-affinity nanobody anchors a GFP-fusion protein of interest at a defined cellular structure and the enrichment of red-labelled interacting proteins is measured at these sites. With this approach, we visualize the p53–HDM2 interaction in living cells and directly monitor the disruption of this interaction by Nutlin 3, a drug developed to boost p53 activity in cancer therapy. We further use this approach to develop a cell-permeable vector that releases a highly specific peptide disrupting the p53 and HDM2 interaction. The availability of multiple anchor sites and the simple optical readout of this nanobody-based capture assay enable systematic and versatile analyses of protein–protein interactions in practically any cell type and species. PMID:24154492

  6. Use of Flow Cytometric Methods to Quantify Protein-Protein Interactions

    PubMed Central

    Blazer, Levi L.; Roman, David L.; Muxlow, Molly R.; Neubig, Richard R.

    2010-01-01

    A method is described for the quantitative analysis of protein-protein interactions using the Flow Cytometry Protein Interaction Assay (FCPIA). This method is based upon immobilizing protein on a polystyrene bead, incubating these beads with a fluorescently labeled binding partner, and assessing the sample for bead-associated fluorescence in a flow cytometer. This method can be used to calculate protein-protein interaction affinities or to perform competition experiments with unlabeled binding partners or small molecules. Examples described in this protocol highlight the use of this assay in the quantification of the affinity of binding partners of the Regulator of G-Protein Signaling protein, RGS19, in either a saturation or competition format. An adaptation of this method that is compatible for High Throughput screening is also provided. PMID:20069525

  7. AAV Vectors for FRET-Based Analysis of Protein-Protein Interactions in Photoreceptor Outer Segments

    PubMed Central

    Becirovic, Elvir; Böhm, Sybille; Nguyen, Ong N. P.; Riedmayr, Lisa M.; Hammelmann, Verena; Schön, Christian; Butz, Elisabeth S.; Wahl-Schott, Christian; Biel, Martin; Michalakis, Stylianos

    2016-01-01

    Fluorescence resonance energy transfer (FRET) is a powerful method for the detection and quantification of stationary and dynamic protein-protein interactions. Technical limitations have hampered systematic in vivo FRET experiments to study protein-protein interactions in their native environment. Here, we describe a rapid and robust protocol that combines adeno-associated virus (AAV) vector-mediated in vivo delivery of genetically encoded FRET partners with ex vivo FRET measurements. The method was established on acutely isolated outer segments of murine rod and cone photoreceptors and relies on the high co-transduction efficiency of retinal photoreceptors by co-delivered AAV vectors. The procedure can be used for the systematic analysis of protein-protein interactions of wild type or mutant outer segment proteins in their native environment. Conclusively, our protocol can help to characterize the physiological and pathophysiological relevance of photoreceptor specific proteins and, in principle, should also be transferable to other cell types. PMID:27516733

  8. AAV Vectors for FRET-Based Analysis of Protein-Protein Interactions in Photoreceptor Outer Segments.

    PubMed

    Becirovic, Elvir; Böhm, Sybille; Nguyen, Ong N P; Riedmayr, Lisa M; Hammelmann, Verena; Schön, Christian; Butz, Elisabeth S; Wahl-Schott, Christian; Biel, Martin; Michalakis, Stylianos

    2016-01-01

    Fluorescence resonance energy transfer (FRET) is a powerful method for the detection and quantification of stationary and dynamic protein-protein interactions. Technical limitations have hampered systematic in vivo FRET experiments to study protein-protein interactions in their native environment. Here, we describe a rapid and robust protocol that combines adeno-associated virus (AAV) vector-mediated in vivo delivery of genetically encoded FRET partners with ex vivo FRET measurements. The method was established on acutely isolated outer segments of murine rod and cone photoreceptors and relies on the high co-transduction efficiency of retinal photoreceptors by co-delivered AAV vectors. The procedure can be used for the systematic analysis of protein-protein interactions of wild type or mutant outer segment proteins in their native environment. Conclusively, our protocol can help to characterize the physiological and pathophysiological relevance of photoreceptor specific proteins and, in principle, should also be transferable to other cell types. PMID:27516733

  9. Automated Analysis of Fluorescence Microscopy Images to Identify Protein-Protein Interactions

    DOE PAGESBeta

    Venkatraman, S.; Doktycz, M. J.; Qi, H.; Morrell-Falvey, J. L.

    2006-01-01

    The identification of protein interactions is important for elucidating biological networks. One obstacle in comprehensive interaction studies is the analyses of large datasets, particularly those containing images. Development of an automated system to analyze an image-based protein interaction dataset is needed. Such an analysis system is described here, to automatically extract features from fluorescence microscopy images obtained from a bacterial protein interaction assay. These features are used to relay quantitative values that aid in the automated scoring of positive interactions. Experimental observations indicate that identifying at least 50% positive cells in an image is sufficient to detect a protein interaction.more » Based on this criterion, the automated system presents 100% accuracy in detecting positive interactions for a dataset of 16 images. Algorithms were implemented using MATLAB and the software developed is available on request from the authors.« less

  10. Assessing Energetic Contributions to Binding from a Disordered Region in a Protein-Protein Interaction

    SciTech Connect

    S Cho; C Swaminathan; D Bonsor; M Kerzic; R Guan; J Yang; C Kieke; P Anderson; D Kranz; et al.

    2011-12-31

    Many functional proteins are at least partially disordered prior to binding. Although the structural transitions upon binding of disordered protein regions can influence the affinity and specificity of protein complexes, their precise energetic contributions to binding are unknown. Here, we use a model protein-protein interaction system in which a locally disordered region has been modified by directed evolution to quantitatively assess the thermodynamic and structural contributions to binding of disorder-to-order transitions. Through X-ray structure determination of the protein binding partners before and after complex formation and isothermal titration calorimetry of the interactions, we observe a correlation between protein ordering and binding affinity for complexes along this affinity maturation pathway. Additionally, we show that discrepancies between observed and calculated heat capacities based on buried surface area changes in the protein complexes can be explained largely by heat capacity changes that would result solely from folding the locally disordered region. Previously developed algorithms for predicting binding energies of protein-protein interactions, however, are unable to correctly model the energetic contributions of the structural transitions in our model system. While this highlights the shortcomings of current computational methods in modeling conformational flexibility, it suggests that the experimental methods used here could provide training sets of molecular interactions for improving these algorithms and further rationalizing molecular recognition in protein-protein interactions.

  11. Identifying protein complexes in protein-protein interaction networks by using clique seeds and graph entropy.

    PubMed

    Chen, Bolin; Shi, Jinhong; Zhang, Shenggui; Wu, Fang-Xiang

    2013-01-01

    The identification of protein complexes plays a key role in understanding major cellular processes and biological functions. Various computational algorithms have been proposed to identify protein complexes from protein-protein interaction (PPI) networks. In this paper, we first introduce a new seed-selection strategy for seed-growth style algorithms. Cliques rather than individual vertices are employed as initial seeds. After that, a result-modification approach is proposed based on this seed-selection strategy. Predictions generated by higher order clique seeds are employed to modify results that are generated by lower order ones. The performance of this seed-selection strategy and the result-modification approach are tested by using the entropy-based algorithm, which is currently the best seed-growth style algorithm to detect protein complexes from PPI networks. In addition, we investigate four pairs of strategies for this algorithm in order to improve its accuracy. The numerical experiments are conducted on a Saccharomyces cerevisiae PPI network. The group of best predictions consists of 1711 clusters, with the average f-score at 0.68 after removing all similar and redundant clusters. We conclude that higher order clique seeds can generate predictions with higher accuracy and that our improved entropy-based algorithm outputs more reasonable predictions than the original one. PMID:23112006

  12. Mutual diffusion of interacting membrane proteins.

    PubMed Central

    Abney, J R; Scalettar, B A; Owicki, J C

    1989-01-01

    The generalized Stokes-Einstein equation is used, together with the two-dimensional pressure equation, to analyze mutual diffusion in concentrated membrane systems. These equations can be used to investigate the role that both direct and hydrodynamic interactions play in determining diffusive behavior. Here only direct interactions are explicitly incorporated into the theory at high densities; however, both direct and hydrodynamic interactions are analyzed for some dilute solutions. We look at diffusion in the presence of weak attractions, soft repulsions, and hard-core repulsions. It is found that, at low densities, attractions retard mutual diffusion while repulsions enhance it. Mechanistically, attractions tend to tether particles together and oppose the dissipation of gradients or fluctuations in concentration, while repulsions provide a driving force that pushes particles apart. At higher concentrations, changes in the structure of the fluid enhance mutual diffusion even in the presence of attractions. It is shown that the theoretical description of postelectrophoresis relaxation and fluorescence correlation spectroscopy experiments must be modified if interacting systems are studied. The effects of interactions on mutual diffusion coefficients have probably already been seen in postelectrophoresis relaxation experiments. PMID:2775829

  13. Investigation of protein-ligand interactions by mass spectrometry.

    PubMed

    Sinz, Andrea

    2007-04-01

    The rate of drug discovery is greatly dependent on the development and improvement of rapid and reliable analytical methods that allow screening for protein-ligand interactions. The solution-based methods for investigating protein-ligand interactions by mass spectrometry (MS), which are discussed in this paper, are hydrogen/deuterium exchange of protein backbone amide hydrogens, and photoaffinity labeling. Moreover, MS analysis of intact noncovalent protein-ligand complexes is described. Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS) with its ultra-high resolution and excellent mass accuracy is also considered herein as it is gaining increasing popularity for a mass spectrometric investigation of protein-ligand interactions. PMID:17299828

  14. Neurodegenerative diseases: quantitative predictions of protein-RNA interactions.

    PubMed

    Cirillo, Davide; Agostini, Federico; Klus, Petr; Marchese, Domenica; Rodriguez, Silvia; Bolognesi, Benedetta; Tartaglia, Gian Gaetano

    2013-02-01

    Increasing evidence indicates that RNA plays an active role in a number of neurodegenerative diseases. We recently introduced a theoretical framework, catRAPID, to predict the binding ability of protein and RNA molecules. Here, we use catRAPID to investigate ribonucleoprotein interactions linked to inherited intellectual disability, amyotrophic lateral sclerosis, Creutzfeuld-Jakob, Alzheimer's, and Parkinson's diseases. We specifically focus on (1) RNA interactions with fragile X mental retardation protein FMRP; (2) protein sequestration caused by CGG repeats; (3) noncoding transcripts regulated by TAR DNA-binding protein 43 TDP-43; (4) autogenous regulation of TDP-43 and FMRP; (5) iron-mediated expression of amyloid precursor protein APP and α-synuclein; (6) interactions between prions and RNA aptamers. Our results are in striking agreement with experimental evidence and provide new insights in processes associated with neuronal function and misfunction. PMID:23264567

  15. Detecting overlapping protein complexes by rough-fuzzy clustering in protein-protein interaction networks.

    PubMed

    Wu, Hao; Gao, Lin; Dong, Jihua; Yang, Xiaofei

    2014-01-01

    In this paper, we present a novel rough-fuzzy clustering (RFC) method to detect overlapping protein complexes in protein-protein interaction (PPI) networks. RFC focuses on fuzzy relation model rather than graph model by integrating fuzzy sets and rough sets, employs the upper and lower approximations of rough sets to deal with overlapping complexes, and calculates the number of complexes automatically. Fuzzy relation between proteins is established and then transformed into fuzzy equivalence relation. Non-overlapping complexes correspond to equivalence classes satisfying certain equivalence relation. To obtain overlapping complexes, we calculate the similarity between one protein and each complex, and then determine whether the protein belongs to one or multiple complexes by computing the ratio of each similarity to maximum similarity. To validate RFC quantitatively, we test it in Gavin, Collins, Krogan and BioGRID datasets. Experiment results show that there is a good correspondence to reference complexes in MIPS and SGD databases. Then we compare RFC with several previous methods, including ClusterONE, CMC, MCL, GCE, OSLOM and CFinder. Results show the precision, sensitivity and separation are 32.4%, 42.9% and 81.9% higher than mean of the five methods in four weighted networks, and are 0.5%, 11.2% and 66.1% higher than mean of the six methods in five unweighted networks. Our method RFC works well for protein complexes detection and provides a new insight of network division, and it can also be applied to identify overlapping community structure in social networks and LFR benchmark networks. PMID:24642838

  16. Detecting Overlapping Protein Complexes by Rough-Fuzzy Clustering in Protein-Protein Interaction Networks

    PubMed Central

    Wu, Hao; Gao, Lin; Dong, Jihua; Yang, Xiaofei

    2014-01-01

    In this paper, we present a novel rough-fuzzy clustering (RFC) method to detect overlapping protein complexes in protein-protein interaction (PPI) networks. RFC focuses on fuzzy relation model rather than graph model by integrating fuzzy sets and rough sets, employs the upper and lower approximations of rough sets to deal with overlapping complexes, and calculates the number of complexes automatically. Fuzzy relation between proteins is established and then transformed into fuzzy equivalence relation. Non-overlapping complexes correspond to equivalence classes satisfying certain equivalence relation. To obtain overlapping complexes, we calculate the similarity between one protein and each complex, and then determine whether the protein belongs to one or multiple complexes by computing the ratio of each similarity to maximum similarity. To validate RFC quantitatively, we test it in Gavin, Collins, Krogan and BioGRID datasets. Experiment results show that there is a good correspondence to reference complexes in MIPS and SGD databases. Then we compare RFC with several previous methods, including ClusterONE, CMC, MCL, GCE, OSLOM and CFinder. Results show the precision, sensitivity and separation are 32.4%, 42.9% and 81.9% higher than mean of the five methods in four weighted networks, and are 0.5%, 11.2% and 66.1% higher than mean of the six methods in five unweighted networks. Our method RFC works well for protein complexes detection and provides a new insight of network division, and it can also be applied to identify overlapping community structure in social networks and LFR benchmark networks. PMID:24642838

  17. Membrane interaction of retroviral Gag proteins

    PubMed Central

    Dick, Robert A.; Vogt, Volker M.

    2014-01-01

    Assembly of an infectious retroviral particle relies on multimerization of the Gag polyprotein at the inner leaflet of the plasma membrane. The three domains of Gag common to all retroviruses – MA, CA, and NC – provide the signals for membrane binding, assembly, and viral RNA packaging, respectively. These signals do not function independently of one another. For example, Gag multimerization enhances membrane binding and is more efficient when NC is interacting with RNA. MA binding to the plasma membrane is governed by several principles, including electrostatics, recognition of specific lipid head groups, hydrophobic interactions, and membrane order. HIV-1 uses many of these principles while Rous sarcoma virus (RSV) appears to use fewer. This review describes the principles that govern Gag interactions with membranes, focusing on RSV and HIV-1 Gag. The review also defines lipid and membrane behavior, and discusses the complexities in determining how lipid and membrane behavior impact Gag membrane binding. PMID:24808894

  18. A protein interaction map for cell polarity development.

    PubMed

    Drees, B L; Sundin, B; Brazeau, E; Caviston, J P; Chen, G C; Guo, W; Kozminski, K G; Lau, M W; Moskow, J J; Tong, A; Schenkman, L R; McKenzie, A; Brennwald, P; Longtine, M; Bi, E; Chan, C; Novick, P; Boone, C; Pringle, J R; Davis, T N; Fields, S; Drubin, D G

    2001-08-01

    Many genes required for cell polarity development in budding yeast have been identified and arranged into a functional hierarchy. Core elements of the hierarchy are widely conserved, underlying cell polarity development in diverse eukaryotes. To enumerate more fully the protein-protein interactions that mediate cell polarity development, and to uncover novel mechanisms that coordinate the numerous events involved, we carried out a large-scale two-hybrid experiment. 68 Gal4 DNA binding domain fusions of yeast proteins associated with the actin cytoskeleton, septins, the secretory apparatus, and Rho-type GTPases were used to screen an array of yeast transformants that express approximately 90% of the predicted Saccharomyces cerevisiae open reading frames as Gal4 activation domain fusions. 191 protein-protein interactions were detected, of which 128 had not been described previously. 44 interactions implicated 20 previously uncharacterized proteins in cell polarity development. Further insights into possible roles of 13 of these proteins were revealed by their multiple two-hybrid interactions and by subcellular localization. Included in the interaction network were associations of Cdc42 and Rho1 pathways with proteins involved in exocytosis, septin organization, actin assembly, microtubule organization, autophagy, cytokinesis, and cell wall synthesis. Other interactions suggested direct connections between Rho1- and Cdc42-regulated pathways; the secretory apparatus and regulators of polarity establishment; actin assembly and the morphogenesis checkpoint; and the exocytic and endocytic machinery. In total, a network of interactions that provide an integrated response of signaling proteins, the cytoskeleton, and organelles to the spatial cues that direct polarity development was revealed. PMID:11489916

  19. PIPs: human protein–protein interaction prediction database

    PubMed Central

    McDowall, Mark D.; Scott, Michelle S.; Barton, Geoffrey J.

    2009-01-01

    The PIPs database (http://www.compbio.dundee.ac.uk/www-pips) is a resource for studying protein–protein interactions in human. It contains predictions of >37 000 high probability interactions of which >34 000 are not reported in the interaction databases HPRD, BIND, DIP or OPHID. The interactions in PIPs were calculated by a Bayesian method that combines information from expression, orthology, domain co-occurrence, post-translational modifications and sub-cellular location. The predictions also take account of the topology of the predicted interaction network. The web interface to PIPs ranks predictions according to their likelihood of interaction broken down by the contribution from each information source and with easy access to the evidence that supports each prediction. Where data exists in OPHID, HPRD, DIP or BIND for a protein pair this is also reported in the output tables returned by a search. A network browser is included to allow convenient browsing of the interaction network for any protein in the database. The PIPs database provides a new resource on protein–protein interactions in human that is straightforward to browse, or can be exploited completely, for interaction network modelling. PMID:18988626

  20. Biophysics of protein-DNA interactions and chromosome organization

    PubMed Central

    Marko, John F.

    2014-01-01

    The function of DNA in cells depends on its interactions with protein molecules, which recognize and act on base sequence patterns along the double helix. These notes aim to introduce basic polymer physics of DNA molecules, biophysics of protein-DNA interactions and their study in single-DNA experiments, and some aspects of large-scale chromosome structure. Mechanisms for control of chromosome topology will also be discussed. PMID:25419039

  1. Overview of the protein-protein interaction annotation extraction task of BioCreative II

    PubMed Central

    Krallinger, Martin; Leitner, Florian; Rodriguez-Penagos, Carlos; Valencia, Alfonso

    2008-01-01

    Background: The biomedical literature is the primary information source for manual protein-protein interaction annotations. Text-mining systems have been implemented to extract binary protein interactions from articles, but a comprehensive comparison between the different techniques as well as with manual curation was missing. Results: We designed a community challenge, the BioCreative II protein-protein interaction (PPI) task, based on the main steps of a manual protein interaction annotation workflow. It was structured into four distinct subtasks related to: (a) detection of protein interaction-relevant articles; (b) extraction and normalization of protein interaction pairs; (c) retrieval of the interaction detection methods used; and (d) retrieval of actual text passages that provide evidence for protein interactions. A total of 26 teams submitted runs for at least one of the proposed subtasks. In the interaction article detection subtask, the top scoring team reached an F-score of 0.78. In the interaction pair extraction and mapping to SwissProt, a precision of 0.37 (with recall of 0.33) was obtained. For associating articles with an experimental interaction detection method, an F-score of 0.65 was achieved. As for the retrieval of the PPI passages best summarizing a given protein interaction in full-text articles, 19% of the submissions returned by one of the runs corresponded to curator-selected sentences. Curators extracted only the passages that best summarized a given interaction, implying that many of the automatically extracted ones could contain interaction information but did not correspond to the most informative sentences. Conclusion: The BioCreative II PPI task is the first attempt to compare the performance of text-mining tools specific for each of the basic steps of the PPI extraction pipeline. The challenges identified range from problems in full-text format conversion of articles to difficulties in detecting interactor protein pairs and then

  2. The Intraviral Protein Interaction Network of Hepatitis C Virus*

    PubMed Central

    Hagen, Nicole; Bayer, Karen; Rösch, Kathrin; Schindler, Michael

    2014-01-01

    Hepatitis C virus (HCV) is a global health problem and one of the main reasons for chronic liver diseases such as cirrhosis and hepatocellular carcinoma. The HCV genome is translated into a polyprotein which is proteolytically processed into 10 viral proteins. The interactome of the HCV proteins with the host cell has been worked out; however, it remains unclear how viral proteins interact with each other. We aimed to generate the interaction network of these 10 HCV proteins using a flow-cytometry-based FRET assay established in our laboratory (Banning, C., Votteler, J., Hoffmann, D., Koppensteiner, H., Warmer, M., Reimer, R., Kirchhoff, F., Schubert, U., Hauber, J., and Schindler, M. (2010) A flow cytometry-based FRET assay to identify and analyse protein-protein interactions in living cells. PLoS One 5, e9344). HCV proteins were constructed as fusions with the chromophores CFP and YFP. All HCV fusions were expressed and localized to specific subcellular compartments, indicating that they were functional. FACS-FRET measurements identified a total of 20 interactions; 13 of these were previously described and have now been confirmed in living cells via our method. Among the seven novel protein binding pairs, HCV p7 plays a pivotal role. It binds to the HCV capsid protein Core and the two glycoproteins E1 and E2. These interplays were further demonstrated in the relevant context of Huh7.5 liver cells expressing infectious HCV. Our work demonstrates the feasibility of rapidly generating small interaction networks via FACS-FRET and defines the network of intra-HCV protein interactions. Furthermore, our data support an important role of p7 in HCV assembly. PMID:24797426

  3. Linkers in the structural biology of protein–protein interactions

    PubMed Central

    Reddy Chichili, Vishnu Priyanka; Kumar, Veerendra; Sivaraman, J

    2013-01-01

    Linkers or spacers are short amino acid sequences created in nature to separate multiple domains in a single protein. Most of them are rigid and function to prohibit unwanted interactions between the discrete domains. However, Gly-rich linkers are flexible, connecting various domains in a single protein without interfering with the function of each domain. The advent of recombinant DNA technology made it possible to fuse two interacting partners with the introduction of artificial linkers. Often, independent proteins may not exist as stable or structured proteins until they interact with their binding partner, following which they gain stability and the essential structural elements. Gly-rich linkers have been proven useful for these types of unstable interactions, particularly where the interaction is weak and transient, by creating a covalent link between the proteins to form a stable protein–protein complex. Gly-rich linkers are also employed to form stable covalently linked dimers, and to connect two independent domains that create a ligand-binding site or recognition sequence. The lengths of linkers vary from 2 to 31 amino acids, optimized for each condition so that the linker does not impose any constraints on the conformation or interactions of the linked partners. Various structures of covalently linked protein complexes have been described using X-ray crystallography, nuclear magnetic resonance and cryo-electron microscopy techniques. In this review, we evaluate several structural studies where linkers have been used to improve protein quality, to produce stable protein–protein complexes, and to obtain protein dimers. PMID:23225024

  4. Sequence Motifs in MADS Transcription Factors Responsible for Specificity and Diversification of Protein-Protein Interaction

    PubMed Central

    van Dijk, Aalt D. J.; Morabito, Giuseppa; Fiers, Martijn; van Ham, Roeland C. H. J.; Angenent, Gerco C.; Immink, Richard G. H.

    2010-01-01

    Protein sequences encompass tertiary structures and contain information about specific molecular interactions, which in turn determine biological functions of proteins. Knowledge about how protein sequences define interaction specificity is largely missing, in particular for paralogous protein families with high sequence similarity, such as the plant MADS domain transcription factor family. In comparison to the situation in mammalian species, this important family of transcription regulators has expanded enormously in plant species and contains over 100 members in the model plant species Arabidopsis thaliana. Here, we provide insight into the mechanisms that determine protein-protein interaction specificity for the Arabidopsis MADS domain transcription factor family, using an integrated computational and experimental approach. Plant MADS proteins have highly similar amino acid sequences, but their dimerization patterns vary substantially. Our computational analysis uncovered small sequence regions that explain observed differences in dimerization patterns with reasonable accuracy. Furthermore, we show the usefulness of the method for prediction of MADS domain transcription factor interaction networks in other plant species. Introduction of mutations in the predicted interaction motifs demonstrated that single amino acid mutations can have a large effect and lead to loss or gain of specific interactions. In addition, various performed bioinformatics analyses shed light on the way evolution has shaped MADS domain transcription factor interaction specificity. Identified protein-protein interaction motifs appeared to be strongly conserved among orthologs, indicating their evolutionary importance. We also provide evidence that mutations in these motifs can be a source for sub- or neo-functionalization. The analyses presented here take us a step forward in understanding protein-protein interactions and the interplay between protein sequences and network evolution. PMID

  5. A conserved patch of hydrophobic amino acids modulates Myb activity by mediating protein-protein interactions.

    PubMed

    Dukare, Sandeep; Klempnauer, Karl-Heinz

    2016-07-01

    The transcription factor c-Myb plays a key role in the control of proliferation and differentiation in hematopoietic progenitor cells and has been implicated in the development of leukemia and certain non-hematopoietic tumors. c-Myb activity is highly dependent on the interaction with the coactivator p300 which is mediated by the transactivation domain of c-Myb and the KIX domain of p300. We have previously observed that conservative valine-to-isoleucine amino acid substitutions in a conserved stretch of hydrophobic amino acids have a profound effect on Myb activity. Here, we have explored the function of the hydrophobic region as a mediator of protein-protein interactions. We show that the hydrophobic region facilitates Myb self-interaction and binding of the histone acetyl transferase Tip60, a previously identified Myb interacting protein. We show that these interactions are affected by the valine-to-isoleucine amino acid substitutions and suppress Myb activity by interfering with the interaction of Myb and the KIX domain of p300. Taken together, our work identifies the hydrophobic region in the Myb transactivation domain as a binding site for homo- and heteromeric protein interactions and leads to a picture of the c-Myb transactivation domain as a composite protein binding region that facilitates interdependent protein-protein interactions of Myb with regulatory proteins. PMID:27080133

  6. Screening for in planta protein-protein interactions combining bimolecular fluorescence complementation with flow cytometry

    PubMed Central

    2012-01-01

    Understanding protein and gene function requires identifying interaction partners using biochemical, molecular or genetic tools. In plants, searching for novel protein-protein interactions is limited to protein purification assays, heterologous in vivo systems such as the yeast-two-hybrid or mutant screens. Ideally one would be able to search for novel protein partners in living plant cells. We demonstrate that it is possible to screen for novel protein-protein interactions from a random library in protoplasted Arabidopsis plant cells and recover some of the interacting partners. Our screen is based on capturing the bi-molecular complementation of mYFP between an YN-bait fusion partner and a completely random prey YC-cDNA library with FACS. The candidate interactions were confirmed using in planta BiFC assays and in planta FRET-FLIM assays. From this work, we show that the well characterized protein Calcium Dependent Protein Kinase 3 (CPK3) interacts with APX3, HMGB5, ORP2A and a ricin B-related lectin domain containing protein At2g39050. This is one of the first randomin planta screens to be successfully employed. PMID:22789293

  7. Discovering Distinct Functional Modules of Specific Cancer Types Using Protein-Protein Interaction Networks

    PubMed Central

    Shen, Ru; Wang, Xiaosheng; Guda, Chittibabu

    2015-01-01

    Background. The molecular profiles exhibited in different cancer types are very different; hence, discovering distinct functional modules associated with specific cancer types is very important to understand the distinct functions associated with them. Protein-protein interaction networks carry vital information about molecular interactions in cellular systems, and identification of functional modules (subgraphs) in these networks is one of the most important applications of biological network analysis. Results. In this study, we developed a new graph theory based method to identify distinct functional modules from nine different cancer protein-protein interaction networks. The method is composed of three major steps: (i) extracting modules from protein-protein interaction networks using network clustering algorithms; (ii) identifying distinct subgraphs from the derived modules; and (iii) identifying distinct subgraph patterns from distinct subgraphs. The subgraph patterns were evaluated using experimentally determined cancer-specific protein-protein interaction data from the Ingenuity knowledgebase, to identify distinct functional modules that are specific to each cancer type. Conclusion. We identified cancer-type specific subgraph patterns that may represent the functional modules involved in the molecular pathogenesis of different cancer types. Our method can serve as an effective tool to discover cancer-type specific functional modules from large protein-protein interaction networks. PMID:26495282

  8. Identification of Protein Interactions Involved in Cellular Signaling

    PubMed Central

    Westermarck, Jukka; Ivaska, Johanna; Corthals, Garry L.

    2013-01-01

    Protein-protein interactions drive biological processes. They are critical for all intra- and extracellular functions, and the technologies to analyze them are widely applied throughout the various fields of biological sciences. This study takes an in-depth view of some common principles of cellular regulation and provides a detailed account of approaches required to comprehensively map signaling protein-protein interactions in any particular cellular system or condition. We provide a critical review of the benefits and disadvantages of the yeast two-hybrid method and affinity purification coupled with mass spectrometric procedures for identification of signaling protein-protein interactions. In particular, we emphasize the quantitative and qualitative differences between tandem affinity and one-step purification (such as FLAG and Strep tag) methods. Although applicable to all types of interaction studies, a special section is devoted in this review to aspects that should be considered when attempting to identify signaling protein interactions that often are transient and weak by nature. Finally, we discuss shotgun and quantitative information that can be gleaned by MS-coupled methods for analysis of multiprotein complexes. PMID:23481661

  9. Quantification of protein interaction kinetics in a micro droplet

    NASA Astrophysics Data System (ADS)

    Yin, L. L.; Wang, S. P.; Shan, X. N.; Zhang, S. T.; Tao, N. J.

    2015-11-01

    Characterization of protein interactions is essential to the discovery of disease biomarkers, the development of diagnostic assays, and the screening for therapeutic drugs. Conventional flow-through kinetic measurements need relative large amount of sample that is not feasible for precious protein samples. We report a novel method to measure protein interaction kinetics in a single droplet with sub microliter or less volume. A droplet in a humidity-controlled environmental chamber is replacing the microfluidic channels as the reactor for the protein interaction. The binding process is monitored by a surface plasmon resonance imaging (SPRi) system. Association curves are obtained from the average SPR image intensity in the center area of the droplet. The washing step required by conventional flow-through SPR method is eliminated in the droplet method. The association and dissociation rate constants and binding affinity of an antigen-antibody interaction are obtained by global fitting of association curves at different concentrations. The result obtained by this method is accurate as validated by conventional flow-through SPR system. This droplet-based method not only allows kinetic studies for proteins with limited supply but also opens the door for high-throughput protein interaction study in a droplet-based microarray format that enables measurement of many to many interactions on a single chip.

  10. PLIP: fully automated protein-ligand interaction profiler.

    PubMed

    Salentin, Sebastian; Schreiber, Sven; Haupt, V Joachim; Adasme, Melissa F; Schroeder, Michael

    2015-07-01

    The characterization of interactions in protein-ligand complexes is essential for research in structural bioinformatics, drug discovery and biology. However, comprehensive tools are not freely available to the research community. Here, we present the protein-ligand interaction profiler (PLIP), a novel web service for fully automated detection and visualization of relevant non-covalent protein-ligand contacts in 3D structures, freely available at projects.biotec.tu-dresden.de/plip-web. The input is either a Protein Data Bank structure, a protein or ligand name, or a custom protein-ligand complex (e.g. from docking). In contrast to other tools, the rule-based PLIP algorithm does not require any structure preparation. It returns a list of detected interactions on single atom level, covering seven interaction types (hydrogen bonds, hydrophobic contacts, pi-stacking, pi-cation interactions, salt bridges, water bridges and halogen bonds). PLIP stands out by offering publication-ready images, PyMOL session files to generate custom images and parsable result files to facilitate successive data processing. The full python source code is available for download on the website. PLIP's command-line mode allows for high-throughput interaction profiling. PMID:25873628

  11. Quantification of protein interaction kinetics in a micro droplet

    SciTech Connect

    Yin, L. L.; Wang, S. P. E-mail: njtao@asu.edu; Shan, X. N.; Tao, N. J. E-mail: njtao@asu.edu; Zhang, S. T.

    2015-11-15

    Characterization of protein interactions is essential to the discovery of disease biomarkers, the development of diagnostic assays, and the screening for therapeutic drugs. Conventional flow-through kinetic measurements need relative large amount of sample that is not feasible for precious protein samples. We report a novel method to measure protein interaction kinetics in a single droplet with sub microliter or less volume. A droplet in a humidity-controlled environmental chamber is replacing the microfluidic channels as the reactor for the protein interaction. The binding process is monitored by a surface plasmon resonance imaging (SPRi) system. Association curves are obtained from the average SPR image intensity in the center area of the droplet. The washing step required by conventional flow-through SPR method is eliminated in the droplet method. The association and dissociation rate constants and binding affinity of an antigen-antibody interaction are obtained by global fitting of association curves at different concentrations. The result obtained by this method is accurate as validated by conventional flow-through SPR system. This droplet-based method not only allows kinetic studies for proteins with limited supply but also opens the door for high-throughput protein interaction study in a droplet-based microarray format that enables measurement of many to many interactions on a single chip.

  12. Ex vivo identification of protein-protein interactions involving the dopamine transporter.

    PubMed

    Hadlock, Gregory C; Nelson, Chad C; Baucum, Anthony J; Hanson, Glen R; Fleckenstein, Annette E

    2011-03-30

    The dopamine (DA) transporter (DAT) is a key regulator of dopaminergic signaling as it mediates the reuptake of extrasynaptic DA and thereby terminates dopaminergic signaling. Emerging evidence indicates that DAT function is influenced through interactions with other proteins. The current report describes a method to identify such interactions following DAT immunoprecipitation from a rat striatal synaptosomal preparation. This subcellular fraction was selected since DAT function is often determined ex vivo by measuring DA uptake in this preparation and few reports investigating DAT-protein interactions have utilized this preparation. Following SDS-PAGE and colloidal Coomassie staining, selected protein bands from a DAT-immunoprecipitate were excised, digested with trypsin, extracted, and analyzed by liquid chromatography tandem mass spectrometry (LC/MS/MS). From the analysis of the tryptic peptides, several proteins were identified including DAT, Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) β, CaMKII δ, protein kinase C (PKC) β, and PKC γ. Co-immunoprecipitation of PKC, CaMKII, and protein interacting with C kinase-1 with DAT was confirmed by Western blotting. Thus, the present study highlights a method to immunoprecipitate DAT and to identify co-immunoprecipitating proteins using LC/MS/MS and Western blotting. This method can be utilized to evaluate DAT protein-protein interactions but also to assess interactions involving other synaptic proteins. Ex vivo identification of protein-protein interactions will provide new insight into the function and regulation of a variety of synaptic, membrane-associated proteins, including DAT. PMID:21291912

  13. Gel mobility shift assays to detect protein-RNA interactions.

    PubMed

    Yakhnin, Alexander V; Yakhnin, Helen; Babitzke, Paul

    2012-01-01

    The gel mobility shift assay is a powerful technique for detecting and quantifying protein-RNA interactions. While other techniques such as filter binding and isothermal titration calorimetry (ITC) are available for quantifying protein-RNA interactions, gel shift analysis provides the added advantage that you can visualize the protein-RNA complexes. In the gel shift assay, protein-RNA complexes are typically separated from the unbound RNA using native polyacrylamide gels in Tris/borate/EDTA buffer, although an alternative Tris-glycine buffering system is superior in many situations. Here, we describe both gel shift methods, along with strategies to improve separation of protein-RNA complexes from free RNA, which can be a particular challenge for small RNA binding proteins. PMID:22736005

  14. HLA and anti-citrullinated protein antibodies: Building blocks in RA.

    PubMed

    van der Woude, Diane; Catrina, Anca I

    2015-12-01

    Antibodies against citrullinated proteins (ACPAs) are specific for rheumatoid arthritis (RA). ACPA-positive RA is a chronic inflammatory disease resulting from the complex interaction between genetic (mainly HLA class II genes) and environmental factors (mainly smoking). Recent findings have offered new insights into where, when and how anti-citrulline immunity develops. Some studies have found that a mucosal site, such as the lungs, may function as the initiating site for the immune response against citrullinated proteins, in line with the known association between smoking and ACPA. Other studies, focusing rather on the HLA associations, have suggested that cross-reactivity between microbial sequences and citrullinated self-proteins may lead to ACPA formation. Once ACPAs have developed, they can circulate throughout the body and upon reaching the joints exert direct pathogenic effects themselves. ACPAs can target first the bone compartment of the joints to activate osteoclasts and release interleukin (IL)-8 that in turn will promote bone loss and pain-like behaviour. In the current review, we will present the current understanding of the genetic associations in RA contributing to ACPA occurrence and offer insight in the latest findings explaining how and why autoimmunity generated in the lungs of genetically susceptible hosts might lead to chronic inflammation in the joints. PMID:27107507

  15. Proteins differentially interact with grapefruit furanocoumarins

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Grapefruit juice (GFJ) interferes with the cytochrome P450 3A4 activity responsible for metabolizing certain medications. This interference is referred to as the "grapefruit-drug interaction". Grapefruit furanocoumarins (FCs), such as 6', 7'-dihydroxybergamottin (DHB) and bergamottin (BM), have been...

  16. Protein fragment bimolecular fluorescence complementation analyses for the in vivo study of protein-protein interactions and cellular protein complex localizations.

    PubMed

    Waadt, Rainer; Schlücking, Kathrin; Schroeder, Julian I; Kudla, Jörg

    2014-01-01

    The analyses of protein-protein interactions are crucial for understanding cellular processes including signal transduction, protein trafficking, and movement. Protein fragment complementation assays are based on the reconstitution of protein function when non-active protein fragments are brought together by interacting proteins that were genetically fused to these protein fragments. Bimolecular fluorescence complementation (BiFC) relies on the reconstitution of fluorescent proteins and enables both the analysis of protein-protein interactions and the visualization of protein complex formations in vivo. Transient expression of proteins is a convenient approach to study protein functions in planta or in other organisms and minimizes the need for time-consuming generation of stably expressing transgenic organisms. Here we describe protocols for BiFC analyses in Nicotiana benthamiana and Arabidopsis thaliana leaves transiently transformed by Agrobacterium infiltration. Further, we discuss different BiFC applications and provide examples for proper BiFC analyses in planta. PMID:24057390

  17. Computational Prediction of Protein–Protein Interaction Networks: Algo-rithms and Resources

    PubMed Central

    Zahiri, Javad; Bozorgmehr, Joseph Hannon; Masoudi-Nejad, Ali

    2013-01-01

    Protein interactions play an important role in the discovery of protein functions and pathways in biological processes. This is especially true in case of the diseases caused by the loss of specific protein-protein interactions in the organism. The accuracy of experimental results in finding protein-protein interactions, however, is rather dubious and high throughput experimental results have shown both high false positive beside false negative information for protein interaction. Computational methods have attracted tremendous attention among biologists because of the ability to predict protein-protein interactions and validate the obtained experimental results. In this study, we have reviewed several computational methods for protein-protein interaction prediction as well as describing major databases, which store both predicted and detected protein-protein interactions, and the tools used for analyzing protein interaction networks and improving protein-protein interaction reliability. PMID:24396273

  18. Analysis of Lipolytic Protein Trafficking and Interactions in Adipocytes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This work examined the colocalization, trafficking, and interactions of key proteins involved in lipolysis during brief cAMP-dependent protein kinase A (PKA) activation. Double label immunofluorescence analysis of 3T3-L1 adipocytes indicated that PKA activation increases the translocation of hormon...

  19. Understanding Protein Synthesis: An Interactive Card Game Discussion

    ERIC Educational Resources Information Center

    Lewis, Alison; Peat, Mary; Franklin, Sue

    2005-01-01

    Protein synthesis is a complex process and students find it difficult to understand. This article describes an interactive discussion "game" used by first year biology students at the University of Sydney. The students, in small groups, use the game in which the processes of protein synthesis are actioned by the students during a practical…

  20. The Role of Protein-Protein and Protein-Membrane Interactions on P450 Function.

    PubMed

    Scott, Emily E; Wolf, C Roland; Otyepka, Michal; Humphreys, Sara C; Reed, James R; Henderson, Colin J; McLaughlin, Lesley A; Paloncýová, Markéta; Navrátilová, Veronika; Berka, Karel; Anzenbacher, Pavel; Dahal, Upendra P; Barnaba, Carlo; Brozik, James A; Jones, Jeffrey P; Estrada, D Fernando; Laurence, Jennifer S; Park, Ji Won; Backes, Wayne L

    2016-04-01

    This symposium summary, sponsored by the ASPET, was held at Experimental Biology 2015 on March 29, 2015, in Boston, Massachusetts. The symposium focused on: 1) the interactions of cytochrome P450s (P450s) with their redox partners; and 2) the role of the lipid membrane in their orientation and stabilization. Two presentations discussed the interactions of P450s with NADPH-P450 reductase (CPR) and cytochrome b5. First, solution nuclear magnetic resonance was used to compare the protein interactions that facilitated either the hydroxylase or lyase activities of CYP17A1. The lyase interaction was stimulated by the presence of b5 and 17α-hydroxypregnenolone, whereas the hydroxylase reaction was predominant in the absence of b5. The role of b5 was also shown in vivo by selective hepatic knockout of b5 from mice expressing CYP3A4 and CYP2D6; the lack of b5 caused a decrease in the clearance of several substrates. The role of the membrane on P450 orientation was examined using computational methods, showing that the proximal region of the P450 molecule faced the aqueous phase. The distal region, containing the substrate-access channel, was associated with the membrane. The interaction of NADPH-P450 reductase (CPR) with the membrane was also described, showing the ability of CPR to "helicopter" above the membrane. Finally, the endoplasmic reticulum (ER) was shown to be heterogeneous, having ordered membrane regions containing cholesterol and more disordered regions. Interestingly, two closely related P450s, CYP1A1 and CYP1A2, resided in different regions of the ER. The structural characteristics of their localization were examined. These studies emphasize the importance of P450 protein organization to their function. PMID:26851242

  1. Exosome engineering for efficient intracellular delivery of soluble proteins using optically reversible protein-protein interaction module.

    PubMed

    Yim, Nambin; Ryu, Seung-Wook; Choi, Kyungsun; Lee, Kwang Ryeol; Lee, Seunghee; Choi, Hojun; Kim, Jeongjin; Shaker, Mohammed R; Sun, Woong; Park, Ji-Ho; Kim, Daesoo; Heo, Won Do; Choi, Chulhee

    2016-01-01

    Nanoparticle-mediated delivery of functional macromolecules is a promising method for treating a variety of human diseases. Among nanoparticles, cell-derived exosomes have recently been highlighted as a new therapeutic strategy for the in vivo delivery of nucleotides and chemical drugs. Here we describe a new tool for intracellular delivery of target proteins, named 'exosomes for protein loading via optically reversible protein-protein interactions' (EXPLORs). By integrating a reversible protein-protein interaction module controlled by blue light with the endogenous process of exosome biogenesis, we are able to successfully load cargo proteins into newly generated exosomes. Treatment with protein-loaded EXPLORs is shown to significantly increase intracellular levels of cargo proteins and their function in recipient cells in vitro and in vivo. These results clearly indicate the potential of EXPLORs as a mechanism for the efficient intracellular transfer of protein-based therapeutics into recipient cells and tissues. PMID:27447450

  2. Identification of Redox and Glucose-Dependent Txnip Protein Interactions

    PubMed Central

    Neuharth, Skyla; Kim, Dae In; Motamedchaboki, Khatereh; Roux, Kyle J.

    2016-01-01

    Thioredoxin-interacting protein (Txnip) acts as a negative regulator of thioredoxin function and is a critical modulator of several diseases including, but not limited to, diabetes, ischemia-reperfusion cardiac injury, and carcinogenesis. Therefore, Txnip has become an attractive therapeutic target to alleviate disease pathologies. Although Txnip has been implicated with numerous cellular processes such as proliferation, fatty acid and glucose metabolism, inflammation, and apoptosis, the molecular mechanisms underlying these processes are largely unknown. The objective of these studies was to identify Txnip interacting proteins using the proximity-based labeling method, BioID, to understand differential regulation of pleiotropic Txnip cellular functions. The BioID transgene fused to Txnip expressed in HEK293 identified 31 interacting proteins. Many protein interactions were redox-dependent and were disrupted through mutation of a previously described reactive cysteine (C247S). Furthermore, we demonstrate that this model can be used to identify dynamic Txnip interactions due to known physiological regulators such as hyperglycemia. These data identify novel Txnip protein interactions and demonstrate dynamic interactions dependent on redox and glucose perturbations, providing clarification to the pleiotropic cellular functions of Txnip. PMID:27437069

  3. Examination of Interactions of Oppositely Charged Proteins in Gels

    SciTech Connect

    Ramasamy,P.; El-Maghrabi, M.; Halada, G.; Miller, L.; Rafailovich, M.

    2007-01-01

    Understanding the interactions of proteins with one another serves as an important step for developing faster protein separation methods. To examine protein-protein interactions of oppositely charged proteins, fluorescently labeled albumin and poly-L-lysine were subjected to electrophoresis in agarose gels, in which the cationic albumin and the anionic poly-L-lysine were allowed to migrate toward each other and interact. Fluorescence microscopy was used to image fluorescently tagged proteins in the gel. The secondary structure of the proteins in solution was studied using conventional FTIR spectroscopy. Results showed that sharp interfaces were formed where FITC tagged albumin met poly-L-lysine and that the interfaces did not migrate after they had been formed. The position of the interface in the gel was found to be linearly dependent upon the relative concentration of the proteins. The formation of the interface also depended upon the fluorescent tag attached to the protein. The size of the aggregates at the interface, the fluorescence intensity modifications, and the mobility of the interface for different pore sizes of the gel were investigated. It was observed that the interface was made up of aggregates of about 1 {mu}m in size. Using dynamic light scattering, it was observed that the size of the aggregates that formed due to interactions of oppositely charged proteins depended upon the fluorescent tags attached to the proteins. The addition of small amounts of poly-L-lysine to solutions containing FITC albumin decreased the zeta potential drastically. For this, we propose a model suggesting that adding small amounts of poly-L-lysine to solutions containing FITC -albumin favors the formation of macromolecular complexes having FITC albumin molecules on its surface. Although oppositely charged FITC tagged poly-L-lysine and FITC tagged albumin influence each other's migration velocities by forming aggregates, there were no observable secondary structural

  4. ProteinShop: A tool for interactive protein manipulation and steering

    SciTech Connect

    Crivelli, Silvia; Kreylos, Oliver; Max, Nelson; Hamann, Bernd; Bethel, Wes

    2004-05-25

    We describe ProteinShop, a new visualization tool that streamlines and simplifies the process of determining optimal protein folds. ProteinShop may be used at different stages of a protein structure prediction process. First, it can create protein configurations containing secondary structures specified by the user. Second, it can interactively manipulate protein fragments to achieve desired folds by adjusting the dihedral angles of selected coil regions using an Inverse Kinematics method. Last, it serves as a visual framework to monitor and steer a protein structure prediction process that may be running on a remote machine. ProteinShop was used to create initial configurations for a protein structure prediction method developed by a team that competed in CASP5. ProteinShop's use accelerated the process of generating initial configurations, reducing the time required from days to hours. This paper describes the structure of ProteinShop and discusses its main features.

  5. Molecular tweezers modulate 14-3-3 protein-protein interactions.

    PubMed

    Bier, David; Rose, Rolf; Bravo-Rodriguez, Kenny; Bartel, Maria; Ramirez-Anguita, Juan Manuel; Dutt, Som; Wilch, Constanze; Klärner, Frank-Gerrit; Sanchez-Garcia, Elsa; Schrader, Thomas; Ottmann, Christian

    2013-03-01

    Supramolecular chemistry has recently emerged as a promising way to modulate protein functions, but devising molecules that will interact with a protein in the desired manner is difficult as many competing interactions exist in a biological environment (with solvents, salts or different sites for the target biomolecule). We now show that lysine-specific molecular tweezers bind to a 14-3-3 adapter protein and modulate its interaction with partner proteins. The tweezers inhibit binding between the 14-3-3 protein and two partner proteins--a phosphorylated (C-Raf) protein and an unphosphorylated one (ExoS)--in a concentration-dependent manner. Protein crystallography shows that this effect arises from the binding of the tweezers to a single surface-exposed lysine (Lys214) of the 14-3-3 protein in the proximity of its central channel, which normally binds the partner proteins. A combination of structural analysis and computer simulations provides rules for the tweezers' binding preferences, thus allowing us to predict their influence on this type of protein-protein interactions. PMID:23422566

  6. Lipid-protein interactions: Lessons learned from stress.

    PubMed

    Battle, A R; Ridone, P; Bavi, N; Nakayama, Y; Nikolaev, Y A; Martinac, B

    2015-09-01

    Biological membranes are essential for normal function and regulation of cells, forming a physical barrier between extracellular and intracellular space and cellular compartments. These physical barriers are subject to mechanical stresses. As a consequence, nature has developed proteins that are able to transpose mechanical stimuli into meaningful intracellular signals. These proteins, termed Mechanosensitive (MS) proteins provide a variety of roles in response to these stimuli. In prokaryotes these proteins form transmembrane spanning channels that function as osmotically activated nanovalves to prevent cell lysis by hypoosmotic shock. In eukaryotes, the function of MS proteins is more diverse and includes physiological processes such as touch, pain and hearing. The transmembrane portion of these channels is influenced by the physical properties such as charge, shape, thickness and stiffness of the lipid bilayer surrounding it, as well as the bilayer pressure profile. In this review we provide an overview of the progress to date on advances in our understanding of the intimate biophysical and chemical interactions between the lipid bilayer and mechanosensitive membrane channels, focusing on current progress in both eukaryotic and prokaryotic systems. These advances are of importance due to the increasing evidence of the role the MS channels play in disease, such as xerocytosis, muscular dystrophy and cardiac hypertrophy. Moreover, insights gained from lipid-protein interactions of MS channels are likely relevant not only to this class of membrane proteins, but other bilayer embedded proteins as well. This article is part of a Special Issue entitled: Lipid-protein interactions. PMID:25922225

  7. Efficient detection of RNA–protein interactions using tethered RNAs

    PubMed Central

    Loiselle, David; Haystead, Timothy A.; Macara, Ian G.

    2011-01-01

    The diverse localization of transcripts in cells suggests that there are many specific RNA–protein interactions that have yet to be identified. Progress has been limited, however, by the lack of a robust method to detect and isolate the RNA-binding proteins. Here we describe the use of an RNA aptamer, scaffolded to a tRNA, to create an affinity matrix that efficiently pulls down transcript-specific RNA-binding proteins from cell lysates. The addition of the tRNA scaffold to a Streptavidin aptamer (tRSA) increased binding efficiency by ∼10-fold. The tRSA system with an attached G-quartet sequence also could efficiently and specifically capture endogenous Fragile X Mental Retardation Protein (FMRP), which recognizes this RNA sequence. An alternative method, using biotinylated RNA, captured FMRP less efficiently than did our tRSA method. Finally we demonstrate the identification of novel RNA-binding proteins that interact with intron2 or 3′-UTR of the polarity protein Crumbs3 transcript. Proteins captured by these RNA sequences attached to the tRNA scaffold were identified by mass spectrometry. GFP-tagged versions of these proteins also showed specific interaction with either the Crb3 intron2 or 3′-UTR. Our tRSA technique should find wide application in mapping the RNA–protein interactome. PMID:21300640

  8. Targeting Protein-Protein Interactions with Trimeric Ligands: High Affinity Inhibitors of the MAGUK Protein Family

    PubMed Central

    Nissen, Klaus B.; Haugaard-Kedström, Linda M.; Wilbek, Theis S.; Nielsen, Line S.; Åberg, Emma; Kristensen, Anders S.; Bach, Anders; Jemth, Per; Strømgaard, Kristian

    2015-01-01

    PDZ domains in general, and those of PSD-95 in particular, are emerging as promising drug targets for diseases such as ischemic stroke. We have previously shown that dimeric ligands that simultaneously target PDZ1 and PDZ2 of PSD-95 are highly potent inhibitors of PSD-95. However, PSD-95 and the related MAGUK proteins contain three consecutive PDZ domains, hence we envisioned that targeting all three PDZ domains simultaneously would lead to more potent and potentially more specific interactions with the MAGUK proteins. Here we describe the design, synthesis and characterization of a series of trimeric ligands targeting all three PDZ domains of PSD-95 and the related MAGUK proteins, PSD-93, SAP-97 and SAP-102. Using our dimeric ligands targeting the PDZ1-2 tandem as starting point, we designed novel trimeric ligands by introducing a PDZ3-binding peptide moiety via a cysteine-derivatized NPEG linker. The trimeric ligands generally displayed increased affinities compared to the dimeric ligands in fluorescence polarization binding experiments and optimized trimeric ligands showed low nanomolar inhibition towards the four MAGUK proteins, thus being the most potent inhibitors described. Kinetic experiments using stopped-flow spectrometry showed that the increase in affinity is caused by a decrease in the dissociation rate of the trimeric ligand as compared to the dimeric ligands, likely reflecting the lower probability of simultaneous dissociation of all three PDZ ligands. Thus, we have provided novel inhibitors of the MAGUK proteins with exceptionally high affinity, which can be used to further elucidate the therapeutic potential of these proteins. PMID:25658767

  9. Absolute Hydration Free Energies of Blocked Amino Acids: Implications for Protein Solvation and Stability

    PubMed Central

    König, Gerhard; Bruckner, Stefan; Boresch, Stefan

    2013-01-01

    Most proteins perform their function in aqueous solution. The interactions with water determine the stability of proteins and the desolvation costs of ligand binding or membrane insertion. However, because of experimental restrictions, absolute solvation free energies of proteins or amino acids are not available. Instead, solvation free energies are estimated based on side chain analog data. This approach implies that the contributions to free energy differences are additive, and it has often been employed for estimating folding or binding free energies. However, it is not clear how much the additivity assumption affects the reliability of the resulting data. Here, we use molecular dynamics–based free energy simulations to calculate absolute hydration free energies for 15 N-acetyl-methylamide amino acids with neutral side chains. By comparing our results with solvation free energies for side chain analogs, we demonstrate that estimates of solvation free energies of full amino acids based on group-additive methods are systematically too negative and completely overestimate the hydrophobicity of glycine. The largest deviation of additive protocols using side chain analog data was 6.7 kcal/mol; on average, the deviation was 4 kcal/mol. We briefly discuss a simple way to alleviate the errors incurred by using side chain analog data and point out the implications of our findings for the field of biophysics and implicit solvent models. To support our results and conclusions, we calculate relative protein stabilities for selected point mutations, yielding a root-mean-square deviation from experimental results of 0.8 kcal/mol. PMID:23442867

  10. Fluorescence lifetime imaging microscopy (FLIM) to quantify protein-protein interactions inside cells.

    PubMed

    Duncan, R R

    2006-11-01

    Recent developments in cellular imaging spectroscopy now permit the minimally invasive study of protein dynamics inside living cells. These advances are of interest to cell biologists, as proteins rarely act in isolation, but rather in concert with others in forming cellular machinery. Until recently, all protein interactions had to be determined in vitro using biochemical approaches: this biochemical legacy has provided cell biologists with the basis to test defined protein-protein interactions not only inside cells, but now also with high spatial resolution. These techniques can detect and quantify protein behaviours down to the single-molecule level, all inside living cells. More recent developments in TCSPC (time-correlated single-photon counting) imaging are now also driving towards being able to determine protein interaction rates with similar spatial resolution, and together, these experimental advances allow investigators to perform biochemical experiments inside living cells. PMID:17052173

  11. The Development of an Interactive Videodisc Program on Protein Synthesis.

    ERIC Educational Resources Information Center

    Hazan, Charlene Corey

    An interactive videodisk (IVD) program was developed to reinforce learning of the biological concept of protein synthesis for high school students. The laser videodisc "The Living Textbook Life Science" was the source of frames, and the authoring system of G. Smith was used to create the disc. The interactive program was designed to make the…

  12. Influence of hydrodynamic interactions on mechanical unfolding of proteins

    NASA Astrophysics Data System (ADS)

    Szymczak, P.; Cieplak, Marek

    2007-07-01

    We incorporate hydrodynamic interactions in a structure-based model of ubiquitin and demonstrate that the hydrodynamic coupling may reduce the peak force when stretching the protein at constant speed, especially at larger speeds. Hydrodynamic interactions are also shown to facilitate unfolding at constant force and inhibit stretching by fluid flows.

  13. Protein-protein interaction studies based on molecular aptamers by affinity capillary electrophoresis.

    PubMed

    Huang, Chih-Ching; Cao, Zehui; Chang, Huan-Tsung; Tan, Weihong

    2004-12-01

    Protein-DNA/protein-protein interactions play critical roles in many biological processes. We report here the investigation of protein-protein interactions using molecular aptamers with affinity capillary electrophoresis (ACE). A human alpha-thrombin binding aptamer was labeled with 6-carboxyfluorescein and exploited as a selective fluorescent probe for studying thrombin-protein interactions using capillary electrophoresis with laser-induced fluorescence. A 15-mer binding DNA aptamer can be separated into two peaks in CE that correspond to the linear aptamer (L-Apt) and the thrombin-binding G-quadruplex structure in the presence of K(+) or Ba(2+). In a bare capillary, the peak area of G-quadruplex aptamer (G-Apt) was found to decrease with the addition of thrombin while that of L-Apt remained unchanged. Even though the peak of the G-Apt/thrombin binding complex is broad due to a weaker binding affinity between aptamer and thrombin, we were still able to quantify the thrombin and anti-thrombin proteins (human anti-thrombin III, AT III) based on the peak areas of free G-Apt. The detection limits of thrombin and AT III were 9.8 and 2.1 nM, respectively. The a