Note: This page contains sample records for the topic blood vessel branching from Science.gov.
While these samples are representative of the content of Science.gov,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of Science.gov
to obtain the most current and comprehensive results.
Last update: August 15, 2014.
1

Branching Blood Vessels  

NSDL National Science Digital Library

This activity explores some of the factors that affect blood flow in branching vessels and is designed for AP Biology, Anatomy & Physiology, and Physics. You may want to do this as activity as a series of labs or you can assign the problems to different groups. After conducting this lab myself, I suggest that you practice it yourself before doing it in class. Be sure that your tubing and funnel fit snugly. Also, make sure that your clamps and Y-connectors fit snugly with the tubing as well.

Mr. Jonathan Borne (Union Springs Academy)

2000-08-01

2

Histamine metabolism influences blood vessel branching in zebrafish reg6 mutants  

Microsoft Academic Search

Background  Vascular branching morphogenesis is responsible for the extension of blood vessels into growing tissues, a process crucial\\u000a for organogenesis. However, the genetic mechanism for vessel branching is largely unknown. Zebrafish reg6 is a temperature-sensitive mutation exhibiting defects in blood vessel branching which results in the formation of swollen\\u000a vessel lumina during capillary plexus formation.\\u000a \\u000a \\u000a \\u000a \\u000a Results  We performed a screening for chemical

Cheng-chen Huang; Yih-Shyun E Cheng; John Yu

2008-01-01

3

Blood Vessels  

NSDL National Science Digital Library

Part of the circulatory system is composed of a series of tubes carries the vital elements and the wastes that keep us strong and healthy. Take a look at these amazing vessels and how they work together. Ever cut yourself on the toe? How about the finger? The ear? Ever get a bloody nose? How about a scrape on the knee? If these things have ever happened to you then you already know that blood vessels carry blood to EVERY part of the body. They start out ...

Hirschi, Mrs.

2007-11-20

4

Spatially restricted patterning cues provided by heparin-binding VEGF-A control blood vessel branching morphogenesis  

PubMed Central

Branching morphogenesis in the mammalian lung and Drosophila trachea relies on the precise localization of secreted modulators of epithelial growth to select branch sites and direct branch elongation, but the intercellular signals that control blood vessel branching have not been previously identified. We found that VEGF120/120 mouse embryos, engineered to express solely an isoform of VEGF-A that lacks heparin-binding, and therefore extracellular matrix interaction domains, exhibited a specific decrease in capillary branch formation. This defect was not caused by isoform-specific differences in stimulating endothelial cell proliferation or by impaired isoform-specific signaling through the Nrp1 receptor. Rather, changes in the extracellular localization of VEGF-A in heparin-binding mutant embryos resulted in an altered distribution of endothelial cells within the growing vasculature. Instead of being recruited into additional branches, nascent endothelial cells were preferentially integrated within existing vessels to increase lumen caliber. The disruption of the normal VEGF-A concentration gradient also impaired the directed extension of endothelial cell filopodia, suggesting that heparin-binding VEGF-A isoforms normally provide spatially restricted stimulatory cues that polarize and thereby guide sprouting endothelial cells to initiate vascular branch formation. Consistent with this idea, we found opposing defects in embryos harboring only a heparin-binding isoform of VEGF-A, including excess endothelial filopodia and abnormally thin vessel branches in ectopic sites. We conclude that differential VEGF-A isoform localization in the extracellular space provides a control point for regulating vascular branching pattern.

Ruhrberg, Christiana; Gerhardt, Holger; Golding, Matthew; Watson, Rose; Ioannidou, Sofia; Fujisawa, Hajime; Betsholtz, Christer; Shima, David T.

2002-01-01

5

Blood Vessel Tension Tester  

NASA Technical Reports Server (NTRS)

In the photo, a medical researcher is using a specially designed laboratory apparatus for measuring blood vessel tension. It was designed by Langley Research Center as a service to researchers of Norfolk General Hospital and Eastern Virginia Medical School, Norfolk, Virginia. The investigators are studying how vascular smooth muscle-muscle in the walls of blood vessels-reacts to various stimulants, such as coffee, tea, alcohol or drugs. They sought help from Langley Research Center in devising a method of measuring the tension in blood vessel segments subjected to various stimuli. The task was complicated by the extremely small size of the specimens to be tested, blood vessel "loops" resembling small rubber bands, some only half a millimeter in diameter. Langley's Instrumentation Development Section responded with a miniaturized system whose key components are a "micropositioner" for stretching a length of blood vessel and a strain gage for measuring the smooth muscle tension developed. The micropositioner is a two-pronged holder. The loop of Mood vessel is hooked over the prongs and it is stretched by increasing the distance between the prongs in minute increments, fractions of a millimeter. At each increase, the tension developed is carefully measured. In some experiments, the holder and specimen are lowered into the test tubes shown, which contain a saline solution simulating body fluid; the effect of the compound on developed tension is then measured. The device has functioned well and the investigators say it has saved several months research time.

1978-01-01

6

What guides early embryonic blood vessel formation?  

Microsoft Academic Search

Survival of vertebrate embryos depends on their ability to assemble a correctly patterned, integrated network of blood vessels to supply oxygen and nutrients to developing tis- sues. The arrangement of larger caliber intraem- bryonic vessels, specification of arterial-venous identity, and proper placement of major branch points and arterial-venous connections are all precisely determined. A number of recent studies in both

Brant M. Weinstein

1999-01-01

7

Blood flow reprograms lymphatic vessels to blood vessels  

PubMed Central

Human vascular malformations cause disease as a result of changes in blood flow and vascular hemodynamic forces. Although the genetic mutations that underlie the formation of many human vascular malformations are known, the extent to which abnormal blood flow can subsequently influence the vascular genetic program and natural history is not. Loss of the SH2 domain–containing leukocyte protein of 76 kDa (SLP76) resulted in a vascular malformation that directed blood flow through mesenteric lymphatic vessels after birth in mice. Mesenteric vessels in the position of the congenital lymphatic in mature Slp76-null mice lacked lymphatic identity and expressed a marker of blood vessel identity. Genetic lineage tracing demonstrated that this change in vessel identity was the result of lymphatic endothelial cell reprogramming rather than replacement by blood endothelial cells. Exposure of lymphatic vessels to blood in the absence of significant flow did not alter vessel identity in vivo, but lymphatic endothelial cells exposed to similar levels of shear stress ex vivo rapidly lost expression of PROX1, a lymphatic fate–specifying transcription factor. These findings reveal that blood flow can convert lymphatic vessels to blood vessels, demonstrating that hemodynamic forces may reprogram endothelial and vessel identity in cardiovascular diseases associated with abnormal flow.

Chen, Chiu-Yu; Bertozzi, Cara; Zou, Zhiying; Yuan, Lijun; Lee, John S.; Lu, MinMin; Stachelek, Stan J.; Srinivasan, Sathish; Guo, Lili; Vincente, Andres; Mericko, Patricia; Levy, Robert J.; Makinen, Taija; Oliver, Guillermo; Kahn, Mark L.

2012-01-01

8

Blood vessel rupture by cavitation  

PubMed Central

Cavitation is thought to be one mechanism for vessel rupture during shock wave lithotripsy treatment. However, just how cavitation induces vessel rupture remains unknown. In this work, a high-speed photomicrography system was set up to directly observe the dynamics of bubbles inside blood vessels in ex vivo rat mesenteries. Vascular rupture correlating to observed bubble dynamics were examined by imaging bubble extravasation and dye leakage. The high-speed images show that bubble expansion can cause vessel distention, and bubble collapse can lead to vessel invagination. Liquid jets were also observed to form. Our results suggest that all three mechanisms, vessel distention, invagination and liquid jets, can contribute to vessel rupture.

Chen, Hong; Brayman, Andrew A.; Bailey, Michael R.

2011-01-01

9

Classification & Structure of Blood Vessels  

MedlinePLUS

... Citation Help Home » Cancer Registration & Surveillance Modules » Anatomy & Physiology » Cardiovascular System » Blood » Classification & Structure of Blood Vessels Cancer Registration & Surveillance Modules Anatomy & Physiology Intro to the Human Body Body Functions & Life ...

10

Blood flow in branching circulatory systems during rest and activity  

Microsoft Academic Search

On the basis of simple physical considerations the blood flow in a branching circulatory system is studied. The case of two\\u000a groups of parallel vessels is treated. The vessels of the same group are supposed to be identical. The resistance of each\\u000a group is determined by the resistance of each vessel in the group and by the number of vessels

George Karreman

1953-01-01

11

Disrupting tumour blood vessels  

Microsoft Academic Search

Low-molecular-weight vascular-disrupting agents (VDAs) cause a pronounced shutdown in blood flow to solid tumours, resulting in extensive tumour-cell necrosis, while they leave the blood flow in normal tissues relatively intact. The largest group of VDAs is the tubulin-binding combretastatins, several of which are now being tested in clinical trials. DMXAA (5,6-dimethylxanthenone-4-acetic acid) — one of a structurally distinct group of

Chryso Kanthou; Bruce C. Baguley; Gillian M. Tozer

2005-01-01

12

Smoking and Your Heart and Blood Vessels  

MedlinePLUS

... How Does Smoking Affect the Heart and Blood Vessels? Cigarette smoking causes about 1 in every 5 ... lungs. Overview Smoking and Your Heart and Blood Vessels The chemicals in tobacco smoke harm your blood ...

13

BPC 157 and blood vessels.  

PubMed

This review focuses on the described effects of BPC 157 on blood vessels after different types of damage, and elucidate by investigating different aspects of vascular response to injury (endothelium damage, clotting, thrombosis, vasoconstriction, vasodilatation, vasculoneogenesis and edema formation) especially in connection to the healing processes. In this respect, BPC 157 was concluded to be the most potent angiomodulatory agent, acting through different vasoactive pathways and systems (e.g. NO, VEGF, FAK) and leading to optimization of the vascular response followed, as it has to be expected, by optimization of the healing process. Formation of new blood vessels involves two main, partly overlapping mechanisms, angiogenesis and vasculogenesis. The additional mechanism of arteriogenesis is involved in the formation of collaterals. In conjunction with blood vessel function, we at least have to consider leakage of fluid/proteins/plasma, resulting in edema/exudate formation as well as thrombogenesis. Blood vessels are also strongly involved in tumor biology. In this aspect, we have neoangiogenesis resulting in pathological vascularization, vascular invasion resulting in release of metastatic cells and the phenomenon of homing resulting in formation of secondary tumors--metastases. PMID:23782145

Seiwerth, Sven; Brcic, Luka; Vuletic, Lovorka Batelja; Kolenc, Danijela; Aralica, Gorana; Misic, Marija; Zenko, Anita; Drmic, Domagoj; Rucman, Rudolf; Sikiric, Predrag

2014-01-01

14

Photoacoustic determination of blood vessel diameter  

NASA Astrophysics Data System (ADS)

A double-ring sensor was applied in photoacoustic tomographic imaging of artificial blood vessels as well as blood vessels in a rabbit ear. The peak-to-peak time (tgrpp) of the laser (1064 nm) induced pressure transient was used to estimate the axial vessel diameter. Comparison with the actual vessel diameter showed that the diameter could be approximated by 2ctgrpp, with c the speed of sound in blood. Using this relation, the lateral diameter could also precisely be determined. In vivo imaging and monitoring of changes in vessel diameters was feasible. Finally, acoustic time traces were recorded while flushing a vessel in the rabbit ear with saline, which proved that the main contribution to the laser-induced pressure transient is caused by blood inside the vessel and that the vessel wall gives only a minor contribution.

Kolkman, Roy G. M.; Klaessens, John H. G. M.; Hondebrink, Erwin; Hopman, Jeroen C. W.; de Mul, Frits F. M.; Steenbergen, Wiendelt; Thijssen, Johan M.; van Leeuwen, Ton G.

2004-10-01

15

Molecular mechanisms of blood vessel formation  

Microsoft Academic Search

The formation of new blood vessels, angiogenesis, is a tightly regulated process. Extracellular angiogenic inducers stimulate the migration and proliferation of endothelial cells, while negative regulators counteract this effect. Changes in the relative balance of inducers and inhibitors activate the ‘angiogenic switch’, before stabilizer molecules activate the maturation of nascent blood vessels.

Federico Bussolino; Alberto Mantovani; Graziella Persico

1997-01-01

16

Tianma Modulates Blood Vessel Tonicity  

PubMed Central

Tianma is a traditional Chinese medicine (TCM) often used for the treatment of hypertension and heart diseases. To elucidate the function of tianma at the molecular level, we investigated the effect of tianma on vascular functions and aortic protein metabolism. We found that long-term treatment with tianma (~2.5g/kg/day for three months) in one-year-old rats could enhance acetylcholine (ACh)-induced vasorelaxation in endothelium-intact thoracic aortic rings against both KCl (80 mM)- and phenylephrine (PE)-induced contraction. By using the iTRAQ (isobaric tag for relative and absolute quantification) technique, we confirmed from the functional data at the proteome level that tianma treatment down-regulated the expressions of contractile proteins (e.g. Acta2) and other related structural proteins (e.g. desmin), and up-regulated the expressions of extracellular matrix (ECM) glycoproteins (e.g. Fbln5) and anti-thrombotic proteins (e.g. Anxa2) in aortic tissue. By inductive reasoning, tianma could perform its vasodilatory effect not only by inhibiting vascular smooth muscle contraction, but also by enhancing blood vessel elasticity and stabilizing the arterial structure. Thus, tianma might become a novel therapeutic herbal medicine for cardiovascular diseases by regulating the aortic proteome metabolism.

Feng, Lin; Manavalan, Arulmani; Mishra, Manisha; Sze, Siu Kwan; Hu, Jiang-Miao; Heese, Klaus

2012-01-01

17

Angiology: Diseases of the Blood Vessels  

Microsoft Academic Search

\\u000a The heart is a modified blood vessel, embryologically, structurally (the endothelium, media, and serosa correspond to the endocardium, myocardium, and pericardium, respectively), and functionally (both the heart and the blood vessels are composed of an inner cavity for blood flow, and a wall with elastic and muscular\\u000a cells). Consequently, there is ample similarity between cardiac and vascular diseases.

Gabriel A. Adelmann

18

Blood Vessels and the Aging Kidney  

Microsoft Academic Search

Aging is associated with a degenerative effect on many organs including the kidney. Blood vessels play a key role in the progression of renal damage in aging, with reductions in glomerular filtration rate and renal blood flow. Therefore, there is considerable interest in the haemodynamic and molecular mechanisms that may be responsible for alterations in the vascular system in aging.

David A. Long; Wei Mu; Karen L. Price; Richard J. Johnson

2005-01-01

19

The effects of blood vessels on electrocorticography  

NASA Astrophysics Data System (ADS)

Electrocorticography, primarily used in a clinical context, is becoming increasingly important for fundamental neuroscientific research, as well as for brain-computer interfaces. Recordings from these implanted electrodes have a number of advantages over non-invasive recordings in terms of band width, spatial resolution, smaller vulnerability to artifacts and overall signal quality. However, an unresolved issue is that signals vary greatly across electrodes. Here, we examine the effect of blood vessels lying between an electrode and the cortex on signals recorded from subdural grid electrodes. Blood vessels of different sizes cover extensive parts of the cortex causing variations in the electrode-cortex connection across grids. The power spectral density of electrodes located on the cortex and electrodes located on blood vessels obtained from eight epilepsy patients is compared. We find that blood vessels affect the power spectral density of the recorded signal in a frequency-band-specific way, in that frequencies between 30 and 70 Hz are attenuated the most. Here, the signal is attenuated on average by 30-40% compared to electrodes directly on the cortex. For lower frequencies this attenuation effect is less pronounced. We conclude that blood vessels influence the signal properties in a non-uniform manner.

Bleichner, M. G.; Vansteensel, M. J.; Huiskamp, G. M.; Hermes, D.; Aarnoutse, E. J.; Ferrier, C. H.; Ramsey, N. F.

2011-08-01

20

Blood Velocity Measurements in Human Retinal Vessels  

Microsoft Academic Search

Laser Doppler velocimetry was used to measure the velocity of blood in human retinal vessels. The mean flow velocities obtained were 1.9 centimeters per second in a retinal vein and 2.2 centimeters per second in a retinal artery. Scattered light from a weak helium-neon laser beam focused on the vessel was detected by a photomultiplier, and the temporal correlation of

Toyoichi Tanaka; Charles Riva; Isaac Ben-Sira

1974-01-01

21

Complete Blood Count and Retinal Vessel Calibers  

PubMed Central

Objective The influence of hematological indices such as complete blood count on microcirculation is poorly understood. Retinal microvasculature can be directly visualized and vessel calibers are associated with a range of ocular and systemic diseases. We examined the association of complete blood count with retinal vessel calibers. Methods Cross-sectional population-based Blue Mountains Eye Study, n?=?3009, aged 49+ years. Complete blood count was measured from fasting blood samples taken at baseline examination, 1992–4. Retinal arteriolar and venular calibers were measured from digitized retinal photographs using a validated semi-automated computer program. Results All analyses adjusted for age, sex, systolic blood pressure, diabetes, smoking and fellow vessel caliber. Higher hematocrit, white cell count and platelet count were associated with narrower arteriolar caliber (p?=?0.02, 0.03 and 0.001 respectively), while higher hemoglobin, hematocrit, red cell count, white cell count and platelet count were associated with wider venular caliber (p<0.0001 for all). Each quintile increase in hematocrit, white cell count and platelet count was associated with approximately 0.5 µm narrower arteriolar caliber; whereas each quintile increase in all of the complete blood count components was associated with approximately 1–2 µm wider venular caliber. Conclusions These associations show that elevated levels of hematological indices can have adverse effects on the microcirculation.

Liew, Gerald; Wang, Jie Jin; Rochtchina, Elena; Wong, Tien Yin; Mitchell, Paul

2014-01-01

22

Blackworms, Blood Vessel Pulsations and Drug Effects.  

ERIC Educational Resources Information Center

Introduces the freshwater oligochaete worm, lumbriculus variegatus (common name: blackworms), an organism that is well suited for classroom study because of its closed circulatory system. Describes a set of simple, fast, noninvasive, and inexpensive methods for observing pulsations of the worm's dorsal blood vessels under baseline conditions, and…

Lesiuk, Nalena M.; Drewes, Charles D.

1999-01-01

23

Interdependent development of blood vessels and organs  

Microsoft Academic Search

The cardiovascular system is the first functional organ in the vertebrate embryo, and many organs start to develop adjacent to cells of the cardiovascular system. Endothelial cells (EC) form the inner cell lining of blood vessels and represent the major cell type that interacts with developing organs. On the one hand, EC provide organs with signals. These signals determine the

Ganka Nikolova; Eckhard Lammert

2003-01-01

24

NO mediates mural cell recruitment and vessel morphogenesis in murine melanomas and tissue-engineered blood vessels  

PubMed Central

NO has been shown to mediate angiogenesis; however, its role in vessel morphogenesis and maturation is not known. Using intravital microscopy, histological analysis, ?–smooth muscle actin and chondroitin sulfate proteoglycan 4 staining, microsensor NO measurements, and an NO synthase (NOS) inhibitor, we found that NO mediates mural cell coverage as well as vessel branching and longitudinal extension but not the circumferential growth of blood vessels in B16 murine melanomas. NO-sensitive fluorescent probe 4,5-diaminofluorescein imaging, NOS immunostaining, and the use of NOS-deficient mice revealed that eNOS in vascular endothelial cells is the predominant source of NO and induces these effects. To further dissect the role of NO in mural cell recruitment and vascular morphogenesis, we performed a series of independent analyses. Transwell and under-agarose migration assays demonstrated that endothelial cell–derived NO induces directional migration of mural cell precursors toward endothelial cells. An in vivo tissue-engineered blood vessel model revealed that NO mediates endothelial–mural cell interaction prior to vessel perfusion and also induces recruitment of mural cells to angiogenic vessels, vessel branching, and longitudinal extension and subsequent stabilization of the vessels. These data indicate that endothelial cell–derived NO induces mural cell recruitment as well as subsequent morphogenesis and stabilization of angiogenic vessels.

Kashiwagi, Satoshi; Izumi, Yotaro; Gohongi, Takeshi; Demou, Zoe N.; Xu, Lei; Huang, Paul L.; Buerk, Donald G.; Munn, Lance L.; Jain, Rakesh K.; Fukumura, Dai

2005-01-01

25

Zinc oxide nanoflowers make new blood vessels  

NASA Astrophysics Data System (ADS)

It is well established that angiogenesis is the process of formation of new capillaries from pre-existing blood vessels. It is a complex process, involving both pro- and anti-angiogenic factors, and plays a significant role in physiological and pathophysiological processes such as embryonic development, atherosclerosis, post-ischemic vascularization of the myocardium, tumor growth and metastasis, rheumatoid arthritis etc. This is the first report of zinc oxide (ZnO) nanoflowers that show significant pro-angiogenic properties (formation of new capillaries from pre-existing blood vessels), observed by in vitro and in vivo angiogenesis assays. The egg yolk angiogenesis assay using ZnO nanoflowers indicates the presence of matured blood vessels formation. Additionally, it helps to promote endothelial cell (EA.hy926 cells) migration in wound healing assays. Formation of reactive oxygen species (ROS), especially hydrogen peroxide (H2O2)--a redox signaling molecule, might be the plausible mechanism for nanoflower-based angiogenesis. Angiogenesis by nanoflowers may provide the basis for the future development of new alternative therapeutic treatment strategies for cardiovascular and ischemic diseases, where angiogenesis plays a significant role.It is well established that angiogenesis is the process of formation of new capillaries from pre-existing blood vessels. It is a complex process, involving both pro- and anti-angiogenic factors, and plays a significant role in physiological and pathophysiological processes such as embryonic development, atherosclerosis, post-ischemic vascularization of the myocardium, tumor growth and metastasis, rheumatoid arthritis etc. This is the first report of zinc oxide (ZnO) nanoflowers that show significant pro-angiogenic properties (formation of new capillaries from pre-existing blood vessels), observed by in vitro and in vivo angiogenesis assays. The egg yolk angiogenesis assay using ZnO nanoflowers indicates the presence of matured blood vessels formation. Additionally, it helps to promote endothelial cell (EA.hy926 cells) migration in wound healing assays. Formation of reactive oxygen species (ROS), especially hydrogen peroxide (H2O2)--a redox signaling molecule, might be the plausible mechanism for nanoflower-based angiogenesis. Angiogenesis by nanoflowers may provide the basis for the future development of new alternative therapeutic treatment strategies for cardiovascular and ischemic diseases, where angiogenesis plays a significant role. Electronic supplementary information (ESI) available: See DOI: 10.1039/c2nr32369a

Barui, Ayan Kumar; Veeriah, Vimal; Mukherjee, Sudip; Manna, Joydeb; Patel, Ajay Kumar; Patra, Sujata; Pal, Krishnendu; Murali, Shruthi; Rana, Rohit K.; Chatterjee, Suvro; Patra, Chitta Ranjan

2012-11-01

26

A probe for blood-vessel and spinal interiors  

NASA Technical Reports Server (NTRS)

Probe design allows insertion into lumen of blood vessels to perform oximetry and investigate plaque on interior vessel walls. Probe is more accurate than standard oximetry procedures of determining oxygenation of circulating blood.

Frazer, R. E.

1978-01-01

27

Gene therapy method targets tumor blood vessels  

Cancer.gov

Working in mice, researchers at Washington University School of Medicine in St. Louis (home of the Alvin J. Siteman Cancer Center) report developing a gene delivery method long sought in the field of gene therapy: a deactivated virus carrying a gene of interest that can be injected into the bloodstream and make its way to the right cells. In this early proof-of-concept study, the scientists have shown that they can target tumor blood vessels in mice without affecting healthy tissues.

28

The Degree of Nonlinearity and Anisotropy of Blood Vessel Elasticity  

Microsoft Academic Search

Blood vessel elasticity is important to physiology and clinical problems involving surgery, angioplasty, tissue remodeling, and tissue engineering. Nonlinearity in blood vessel elasticity in vivo is important to the formation of solitons in arterial pulse waves. It is well known that the stress-strain relationship of the blood vessel is nonlinear in general, but a controversy exists on how nonlinear it

J. Zhou; Y. C. Fung

1997-01-01

29

Fluid and Mass Transport in a Single Lymphatic Blood Vessel.  

National Technical Information Service (NTIS)

The problem considers the single blood vessel model in pulmonary circulation in the presence of gravitation and mass transfer. The tissue surrounding the blood vessel is modelled as a permeable medium distinct from the blood vessel which is a normal free ...

A. R. Bestman

1987-01-01

30

Induction of Pancreatic Differentiation by Signals from Blood Vessels  

Microsoft Academic Search

Blood vessels supply developing organs with metabolic sustenance. Here, we demonstrate a role for blood vessels as a source of developmental signals during pancreatic organogenesis. In vitro experiments with embryonic mouse tissues demonstrate that blood vessel endothelium induces insulin expression in isolated endoderm. Removal of the dorsal aorta in Xenopus laevis embryos results in the failure of insulin expression in

Eckhard Lammert; Ondine Cleaver; Douglas Melton

2001-01-01

31

Decision algorithm for 3D blood vessel loop based on a route edit distance  

NASA Astrophysics Data System (ADS)

This paper reports on a method to distinguish true from false of the loop in the blood vessel graph. Most conventional studies have used a graph to represent 3D blood vessels structure. Blood vessels graph sometimes has a false loop and this exerts a harmful influence to the graph analysis. Conventional study simply cut them but this is not suitable for the graph include real loop. For this reason, we try to distinguish true from false of the loop in the graph. Our method uses the loop inside and the outside main blood vessel shape to distinguish the similar loop. This main blood vessel we called route is long, thick, and not shares to other route as much as possible. Even if a graph includes false loop, this main route will avoid the false connection and detect the same main blood vessel. Our method detects such a main route in each loop branch point and stores it as the outside feature for comparing. Inside feature is measured by converting the inside blood vessels as one route. Each loop is compared by the graph edit distance. Graph edit distance is easily able to deal with the route adding, deleting and replacing. Our method was tested by the cerebral blood vessels image in MRI. Our method tried to detect the arterial cycles of Willis from the graph including false loops. As a result, our method detected it correctly in four data from five.

Kobayashi, D.; Yokota, H.; Morishita, S.; Hiraoka, K.; Fukasaku, K.; Himeno, R.; Mishima, T.

2009-02-01

32

Screening assay for blood vessel maturation inhibitors  

PubMed Central

In cancer patients, the development of resistance to anti-angiogenic agents targeting the VEGF pathway is common. Increased pericyte coverage of the tumor vasculature undergoing VEGF targeted therapy has been suggested to play an important role in resistance. Therefore, reducing the pericytes coverage of the tumor vasculature has been suggested to be a therapeutic approach in breaking the resistance to and increasing the efficacy of anti-angiogenic therapies. To screen compound libraries, a simple in vitro assay of blood vessel maturation demonstrating endothelial cells and pericytes association while forming lumenized vascular structures is needed. Unfortunately, previously described 3-dimensional, matrix based assays are laborious and challenging from an image and data acquisition perspective. For these reasons they generally lack the scalability needed to perform in a high-throughput environment. With this work, we have developed a novel in vitro blood vessel maturation assay, in which lumenized, vascular structures form in one optical plane and mesenchymal progenitor cells (10T1/2) differentiate into pericyte-like cells, which associate with the endothelial vessels (HUVECs). The differentiation of the 10T1/2 cells into pericyte-like cells is visualized using a GFP reporter controlled by the alpha smooth muscle actin promoter (SMP-8). The organization of these vascular structures and their recruited mural cells in one optical plane allows for automated data capture and subsequent image analysis. The ability of this assay to screen for inhibitors of pericytes recruitment was validated. In summary, this novel assay of in vitro blood vessel maturation provides a valuable tool to screen for new agents with therapeutic potential.

Fu, Chenglai; van der Zwan, Anita; Gerber, Stephanie; Van Den Berg, Susan; No, Elisa; Wang, Wayne C.H.; Sheibani, Nader; Carducci, Michael A.; Kachhap, Sushant; Hammers, Hans J.

2014-01-01

33

Perivascular cells in blood vessel regeneration  

PubMed Central

Vascular engineering seeks to design and construct functional blood vessels comprising endothelial cells and perivascular cells (PCs), with the ultimate goal of clinical translation. While endothelial behavior has been extensively investigated, PCs play an equally significant role in the development of novel regenerative strategies, providing functionality and stability to vessels. The two major classes of PCs are vascular smooth muscle cells (vSMCs) and pericytes; vSMCs can be further sub-classified as either contractile or synthetic. The inclusion of these cell types is crucial for successful regeneration of blood vessels. Furthermore, understanding distinctions between vSMCs and pericytes will enable improved therapeutics in a tissue-specific manner. Here we focus on the approaches and challenges facing the use of PCs in vascular regeneration, including their characteristics, stem cell sources, and interactions with endothelial cells. Finally, we discuss biochemical and microRNA (miR) regulators of PC behavior and engineering approaches that mimic various cues affecting PC function.

Wanjare, Maureen; Kusuma, Sravanti; Gerecht, Sharon

2013-01-01

34

Photoacoustic removal of occlusions from blood vessels  

DOEpatents

Partial or total occlusions of fluid passages within the human body are removed by positioning an array of optical fibers in the passage and directing treatment radiation pulses along the fibers, one at a time, to generate a shock wave and hydrodynamics flows that strike and emulsify the occlusions. A preferred application is the removal of blood clots (thrombin and embolic) from small cerebral vessels to reverse the effects of an ischemic stroke. The operating parameters and techniques are chosen to minimize the amount of heating of the fragile cerebral vessel walls occurring during this photo acoustic treatment. One such technique is the optical monitoring of the existence of hydrodynamics flow generating vapor bubbles when they are expected to occur and stopping the heat generating pulses propagated along an optical fiber that is not generating such bubbles.

Visuri, Steven R. (Livermore, CA); Da Silva, Luiz B. (Danville, CA); Celliers, Peter M. (Berkeley, CA); London, Richard A. (Orinda, CA); Maitland, IV, Duncan J. (Lafayette, CA); Esch, Victor C. (San Francisco, CA)

2002-01-01

35

Intralobular lymphatic vessels and their relationship to blood vessels in the mouse thymus  

Microsoft Academic Search

The spatial distribution and fine structure of the lymphatic vessels within the thymic lobules of normal and hydrocortisone-injected mice were studied by light- and electron microscopy. The lymphatic vessels of the cortex and medulla of normal thymus are irregularly shaped spaces closely associated with branches of the intralobular artery and vein. The overall distribution of these vessels in the greatly

Seiji Kato

1988-01-01

36

Intracellular Study of Smooth Muscles of Subcutaneous Blood Vessels.  

National Technical Information Service (NTIS)

Smooth muscles of subcutaneous blood vessels were studied by intracellular microelectrode recording. Smooth-muscle cells of subcutaneous vessels possess spontaneous activity, consisting of slow waves and a spike component. The activity of these cells has ...

A. A. Kokarev

1971-01-01

37

Absorbed dose calculations to blood and blood vessels for internally deposited radionuclides  

Microsoft Academic Search

At present, absorbed dose calculations for radionuclides in the human circulatory system used relatively simple models and are restricted in their applications. To determine absorbed doses to the blood and to the surface of the blood vessel wall, EGS4 Monte Carlo calculations were performed. Absorbed doses were calculated for the blood and the blood vessel wall (lumen) for different blood

G. Akabani; J. W. Poston

1991-01-01

38

Application of computational physics: Blood vessel constrictions and medical infuses  

NASA Astrophysics Data System (ADS)

Application of computation in many fields are growing fast in last two decades. Increasing on computation performance helps researchers to understand natural phenomena in many fields of science and technology including in life sciences. Computational fluid dynamic is one of numerical methods which is very popular used to describe those phenomena. In this paper we propose moving particle semi-implicit (MPS) and molecular dynamics (MD) to describe different phenomena in blood vessel. The effect of increasing the blood pressure on vessel wall will be calculate using MD methods, while the two fluid blending dynamics will be discussed using MPS. Result from the first phenomenon shows that around 80% of constriction on blood vessel make blood vessel increase and will start to leak on vessel wall, while from the second phenomenon the result shows the visualization of two fluids mixture (drugs and blood) influenced by ratio of drugs debit to blood debit.

Suprijadi, Sentosa, M. R. A.; Subekti, P.; Viridi, S.

2014-02-01

39

Bridging mucosal vessels associated with rhythmically oscillating blood flow in murine colitis.  

PubMed

Oscillatory blood flow in the microcirculation is generally considered to be the result of cardiopulmonary influences or active vasomotion. In this report, we describe rhythmically oscillating blood flow in the bridging vessels of the mouse colon that appeared to be independent of known biological control mechanisms. Corrosion casting and scanning electron microscopy of the mouse colon demonstrated highly branched bridging vessels that connected the submucosal vessels with the mucosal plexus. Because of similar morphometric characteristics (19 +/- 11 microm vs. 28 +/- 16 microm), bridging arterioles and venules were distinguished by tracking fluorescent nanoparticles through the microcirculation using intravital fluorescence videomicroscopy. In control mice, the blood flow through the bridging vessels was typically continuous and unidirectional. In contrast, two models of chemically induced inflammation (trinitrobenzenesulfonic acid and dextran sodium sulfate) were associated with a twofold reduction in flow velocity and the prominence of rhythmically oscillating blood flow. The blood oscillation was characterized by tracking the bidirectional displacement of fluorescent nanoparticles. Space-time plots and particle tracking of the oscillating segments demonstrated an oscillation frequency between 0.2 and 5.1 cycles per second. Discrete Fourier transforms demonstrated a power spectrum composed of several base frequencies. These observations suggest that inflammation-inducible changes in blood flow patterns in the murine colon resulted in both reduced blood flow velocity and rhythmic oscillations within the bridging vessels of the mouse colon. PMID:18085623

Turhan, Aslihan; Konerding, Moritz A; Tsuda, Akira; Ravnic, Dino J; Hanidziar, Dusan; Lin, Miao; Mentzer, Steven J

2008-01-01

40

Glucose metabolism in diabetic blood vessels  

SciTech Connect

Since glycolysis appears to be coupled to active ion transport in vascular smooth muscle, alterations in glucose metabolism may contribute to cellular dysfunction and angiopathy in diabetes. Uptake and utilization of glucose were studied in perfused blood vessels in which pulsatile flow and perfusion pressure were similar to those measured directly in vivo. Thoracic aortae isolated from 8-wk alloxan diabetic (D) and nondiabetic control rabbits were cannulated, tethered, and perfused with oxygenated buffer containing 7 or 25 mM glucose and tracer amounts of glucose-U/sup -14/ C. Norepinephrine (NE) (10/sup -6/ M) and/or insulin (I) (150 ..mu..U/ml) and albumin (0.2%) were added. NE-induced tension development increased glucose uptake 39% and /sup 14/CO/sub 2/ and lactate production 2.3-fold. With 7 mM glucose, marked decreases in glucose uptake (74%), /sup 14/CO/sub 2/ (68%), lactate (30%), total tissue glycogen (75%), and tissue phospholipids (70%) were observed in D. Addition of I or elevation of exogenous glucose to 25 mM normalized glucose uptake, but had differential effects on the pattern of substrate utilization. Thus, in D, there was a marked depression of vascular glucose metabolism that was partially reversed by addition of low concentrations of insulin or D levels of glucose.

Brown, B.J.; Crass, M.F. III

1986-03-05

41

Absorbed dose calculations to blood and blood vessels for internally deposited radionuclides  

SciTech Connect

At present, absorbed dose calculations for radionuclides in the human circulatory system used relatively simple models and are restricted in their applications. To determine absorbed doses to the blood and to the surface of the blood vessel wall, EGS4 Monte Carlo calculations were performed. Absorbed doses were calculated for the blood and the blood vessel wall (lumen) for different blood vessels sizes. The radionuclides chosen for this study were those commonly used in nuclear medicine. No diffusion of the radionuclide into the blood vessel was assumed nor cross fire between vessel was assumed. Results are useful in assessing the dose in blood and blood vessel walls for different nuclear medicine procedures. 6 refs., 6 figs., 5 tabs.

Akabani, G. (Pacific Northwest Lab., Richland, WA (USA)); Poston, J.W. (Texas A and M Univ., College Station, TX (USA). Dept. of Nuclear Engineering)

1991-05-01

42

Absorbed dose calculations to blood and blood vessels for internally deposited radionuclides  

SciTech Connect

At present, absorbed dose calculations for radionuclides in the human circulatory system used relatively simple models and are restricted in their applications. To determine absorbed doses to the blood and to the surface of the blood vessel wall, EGS4 Monte Carlo calculations were performed. Absorbed doses were calculated for the blood and the blood vessel wall (lumen) for different blood vessels sizes. The radionuclides chosen for this study were those commonly used in nuclear medicine. No penetration of the radionuclide into the blood vessel was assumed nor was cross fire between the vessel assumed. The results are useful in assessing the dose to blood and blood vessel walls for different nuclear medicine procedures.

Akabani, G.; Poston, J.W. Sr. (Texas A M Univ., College Station (USA))

1991-05-01

43

Vascular Smooth Muscle Progenitor Cells: Building and Repairing Blood Vessels  

PubMed Central

Molecular pathways that control the specification, migration, and number of available smooth muscle progenitor cells play key roles in determining blood vessel size and structure, capacity for tissue repair and remodeling, and progression of age-related disorders. Defects in these pathways will produce malformations of developing blood vessels, depletion of SMC progenitor pools for vessel wall maintenance and repair, and aberrant activation of alternative differentiation pathways in vascular disease. A better understanding of the molecular mechanisms that uniquely specify and maintain vascular SMC precursors is essential if we are to utilize advances in stem and progenitor cell biology and somatic cell reprogramming for applications directed to the vessel wall.

Majesky, Mark W.; Dong, Xiu Rong; Regan, Jenna N.; Hoglund, Virginia J.

2011-01-01

44

Large blood vessel cooling in heated tissues: a numerical study.  

PubMed

Large blood vessels can produce steep temperature gradients in heated tissues leading to inadequate tissue temperatures during hyperthermia. This paper utilizes a finite difference scheme to solve the basic equations of heat transfer and fluid flow to model blood vessel cooling. Unlike previous formulations, heat transfer coefficients were not used to calculate heat transfer to large blood vessels. Instead, the conservation form of the finite difference equations implicitly modelled this process. Temperature profiles of heated tissues near thermally significant vessels were calculated. Microvascular heat transfer was modelled either as an effective conductivity or a heat sink. An increase in perfusion in both microvascular models results in a reduction of the cooling effects of large vessels. For equivalent perfusion values, the effective conductivity model predicted more effective heating of the blood and adjacent tissue. Furthermore, it was found that optimal vessel heating strategies depend on the microvascular heat transfer model adopted; localized deposition of heat near vessels could produce higher temperature profiles when microvascular heat transfer was modelled according to the bioheat transfer equation (BHTE) but not the effective thermal conductivity equation (ETCE). Reduction of the blood flow through thermally significant vessels was found to be the most effective way of reducing localized cooling. PMID:7610110

Kolios, M C; Sherar, M D; Hunt, J W

1995-04-01

45

Selective photocoagulation of cutaneous blood vessels: evaluation of vessel damage by color Doppler optical coherence tomography  

NASA Astrophysics Data System (ADS)

This study investigates the threshold radiant exposures required to irreversibly damage cutaneous blood vessels using a pulsed dye laser (PDL) operating at 585 nm. Evaluation of blood vessel damage and blood flow stoppage was achieved using Doppler imaging in a color Doppler optical coherence tomographic (CDOCT) system. Hamster dorsal skin flap window vessels were irradiated with radiant exposures ranging from 2.5 - 8 J/cm2. A 5 mm spot size and 360 microsecond pulse duration were used. Irradiation sites were imaged with CDOCT prior to, immediately after, and a minimum of 24 hours after delivery of laser energy. Magnitude and color Doppler images provided information such as approximate vessel size, depth, and changes in blood flow velocity. Vessel stenosis, temporary occlusion, permanent occlusion, hemorrhaging, and changes in flow velocity were frequent results of laser irradiation visualized with CDOCT and video imaging. Probit analysis was used to estimate the 50% probability that a blood vessel of given size and type will be destroyed by a given radiant exposure. In most instances, arterioles required higher radiant exposures to be irreversibly damaged than venules of the same size. However, arteriole/venule pairs required approximately the same radiant exposures for visible damage to occur. Vessels of larger diameter required higher radiant exposures to coagulate than vessels of smaller diameter.

Vargas, Gracie; Ducros, Mathieu G.; Dozier, Susan; Barton, Jennifer K.; Welch, Ashley J.

2000-05-01

46

Techniques for measurement of blood flow through intact vessels  

Microsoft Academic Search

Flowmeters which operate by coupling a field through a blood vessel and measuring resultant externally-available velocity-dependent\\u000a variables are particularly attractive, since they are applicable in chronic animal preparations, in humans where a vessel\\u000a is exposed at surgery, and conceivably through the unopened skin for measurement of flow through superficial vessels. Two\\u000a types of flowmeter which operate in this way are

Dean L. Franklin

1965-01-01

47

Recovery of testicular blood flow following ligation of testicular vessels  

SciTech Connect

To determine whether initial ligation of the testicular vessels of the high undescended testis followed by a delayed secondary orchiopexy is a viable alternative to the classical Fowler-Stephens procedure, a series of preliminary experiments were conducted in the rat in which testicular blood flow was measured by the 133-xenon washout technique before, and 1 hour and 30 days after ligation of the vessels. In addition, testicular histology, and testis and sex-accessory tissue weights were measured in 6 control, 6 sham operated and 6 testicular vessel ligated rats 54 days after vessel ligation. The data demonstrate that ligation and division of the testicular blood vessels produce an 80 per cent decrease in testicular blood flow 1 hour after ligation of the vessels. However, 30 days later testis blood flow returns to the control and pre-treatment value. There were no significant changes in testis or sex-accessory tissue weights 54 days after vessel ligation. Histologically, 4 of the surgically operated testes demonstrated necrosis of less than 25 per cent of the seminiferous tubules while 1 testis demonstrated more than 75 per cent necrosis. The rest of the tubules in all 6 testes demonstrated normal spermatogenesis. From this study we conclude that initial testicular vessel ligation produces an immediate decrease in testicular blood flow but with time the collateral vessels are able to compensate and return the testis blood flow to its normal pre-treatment value. These preliminary observations lend support for the concept that initial ligation of the testicular vessels followed by a delayed secondary orchiopexy in patients with a high undescended testis may be a possible alternative to the classical Fowler-Stephens approach.

Pascual, J.A.; Villanueva-Meyer, J.; Salido, E.; Ehrlich, R.M.; Mena, I.; Rajfer, J.

1989-08-01

48

Changes of Pulmonary Blood Vessels in Chronic Radiation Sickness.  

National Technical Information Service (NTIS)

During chronic radiation sickness appear functional and anatomical changes of the blood vessels of the lungs, which are developed in accordance with general process of the disease. These disturbances, expressed in periods of intensification and remissions...

I. S. Amosov

1964-01-01

49

A Computational Model Predicting Disruption of Blood Vessel Development  

EPA Science Inventory

Vascular development is a complex process regulated by dynamic biological networks that vary in topology and state across different tissues and developmental stages. Signals regulating de novo blood vessel formation (vasculogenesis) and remodeling (angiogenesis) come from a varie...

50

Development of blood vessel searching system for HMS  

NASA Astrophysics Data System (ADS)

In this study, we develop a new 3D miniature blood vessel searching system by using near-infrared LED light, a CMOS camera module with an image processing unit for a health monitoring system (HMS), a drug delivery system (DDS) which requires very high performance for automatic micro blood volume extraction and automatic blood examination. Our objective is to fabricate a highly reliable micro detection system by utilizing image capturing, image processing, and micro blood extraction devices. For the searching system to determine 3D blood vessel location, we employ the stereo method. The stereo method is a common photogrammetric method. It employs the optical path principle to detect 3D location of the disparity between two cameras. The principle for blood vessel visualization is derived from the ratio of hemoglobin's absorption of the near-infrared LED light. To get a high quality blood vessel image, we adopted an LED, with peak a wavelength of 940nm. The LED is set on the dorsal side of the finger and it irradiates the human finger. A blood vessel image is captured by a CMOS camera module, which is set below the palmer side of the finger. 2D blood vessel location can be detected by the luminance distribution of a one pixel line. To examine the accuracy of our detecting system, we carried out experiments using finger phantoms with blood vessel diameters of 0.5, 0.75, 1.0mm, at the depths of 0.5 ~ 2.0 mm from the phantom's surface. The experimental results of the estimated depth obtained by our detecting system shows good agreements with the given depths, and the viability of this system is confirmed.

Kandani, Hirofumi; Uenoya, Toshiyuki; Uetsuji, Yasutomo; Nakamachi, Eiji

2008-08-01

51

Evaluation of blood vessel detection methods  

NASA Astrophysics Data System (ADS)

We address the problem of evaluating the performance of algorithms for detecting curvilinear structures in medical images. As an exemplar we consider the detection of vessel trees which contain structures of variable width and contrast. Results for the conventional approach to evaluation, in which the detector output is compared directly with a groundtruth mask, tend to be dominated by the detection of large vessels and fail to capture adequately whether or not finer, lower contrast vessels have been detected successfully. We propose and investigate three alternative evaluation strategies. We demonstrate the use of the standard and new evaluation strategies to assess the performance of a novel method for detecting vessels in retinograms, using the publicly available DRIVE database.

Sadeghzadeh, R.; Berks, M.; Astley, S. M.; Taylor, C. J.

2011-03-01

52

Photoacoustic monitoring and imaging of blood vessel size in vivo  

NASA Astrophysics Data System (ADS)

A double-ring photoacoustic sensor to image and monitor blood content in tissue has been developed. This sensor has a very small opening angle. Using this sensor we are able to image artifical blood vessels, as well as vessels in a rabbit ear. Furthermore, the feasibility of in vivo imaging is demonstrated with a photoacoustic reconstruction of the joining of two palmar veins a few centimeter proximal to the wrist in a human arm.

Kolkman, Roy G. M.; Klaessens, John H. G. M.; Hondebrink, Erwin; Hopman, Jeroen C. W.; Steenbergen, Wiendelt; van Leeuwen, Ton G.; Thijssen, Johan M.; de Mul, Frits F. M.

2003-06-01

53

Blood vessel matrix: a new alternative for abdominal wall reconstruction  

Microsoft Academic Search

Background  Biologic matrices offer a new approach to the management of abdominal wall defects when the use of other foreign material\\u000a is not ideal. A member of our team (GEA) developed a biological decellularized matrix generated from harvested blood vessels\\u000a of swine blood vessel matrix (BVMx). The aim of our study was to investigate whether this novel collagen-based biological\\u000a matrix is

C. F. Bellows; W. Jian; M. K. McHale; D. Cardenas; J. L. West; S. P. Lerner; G. E. Amiel

2008-01-01

54

A completely biological tissue-engineered human blood vessel  

Microsoft Academic Search

Mechanically challenged tissue-engi- neered organs, such as blood vessels, traditionally re- lied on synthetic or modified biological materials for structural support. In this report, we present a novel approach to tissue-engineered blood vessel (TEBV) production that is based exclusively on the use of cul- tured human cells, i.e., without any synthetic or ex- ogenous biomaterials. Human vascular smooth muscle cells

STEPHANIE PAQUET; RAYMOND LABBE; LUCIE GERMAIN; FRANCOIS A. AUGER

55

Development of a blood vessel searching device for HMS  

NASA Astrophysics Data System (ADS)

In this study, an automatic blood vessel searching system (BVSS) is newly developed, which is built in the health monitoring system (HMS) and the drug delivery system (DDS) to extract the blood, evaluates the blood sugar level and injects the insulin for the diabetic patients. Main subjects of our BVSS development are 1) a transmittance photo imaging of the finger by using the LED light as a near-infrared light source with peak wave length of 870 nm, and 2) an image processing to detect the location of the center of the blood vessel cross section. The sharp edge focus method was applied in our BVSS to detect the depth of blood vessel. We carried out experiments by using blood vessel phantoms, which consist of an artificial cylindrical blood vessel and skin tissue, which are made of the teflon tube and the silicone rubber. The teflon tube has the size of 0.6 mm in diameter and is filled with the human blood. The experimental results demonstrated that the estimated depth, which is obtained by image analysis corresponding to given depths, shows a good agreement with the real values, and consequently the availability of our BVSS is confirmed.

Kuroda, Tatsuro; Uenoya, Toshiyuki; Tsuchiya, Kazuyoshi; Uetsuji, Yasutomo; Nakamachi, Eiji

2007-12-01

56

Mouse blood vessel imaging by in-line x-ray phase-contrast imaging  

NASA Astrophysics Data System (ADS)

It is virtually impossible to observe blood vessels by conventional x-ray imaging techniques without using contrast agents. In addition, such x-ray systems are typically incapable of detecting vessels with diameters less than 200 µm. Here we show that vessels as small as 30 µm could be detected using in-line phase-contrast x-ray imaging without the use of contrast agents. Image quality was greatly improved by replacing resident blood with physiological saline. Furthermore, an entire branch of the portal vein from the main axial portal vein to the eighth generation of branching could be captured in a single phase-contrast image. Prior to our work, detection of 30 µm diameter blood vessels could only be achieved using x-ray interferometry, which requires sophisticated x-ray optics. Our results thus demonstrate that in-line phase-contrast x-ray imaging, using physiological saline as a contrast agent, provides an alternative to the interferometric method that can be much more easily implemented and also offers the advantage of a larger field of view. A possible application of this methodology is in animal tumor models, where it can be used to observe tumor angiogenesis and the treatment effects of antineoplastic agents.

Zhang, Xi; Liu, Xiao-Song; Yang, Xin-Rong; Chen, Shao-Liang; Zhu, Pei-Ping; Yuan, Qing-Xi

2008-10-01

57

Three-dimensional reconstruction of blood vessels in the rabbit eye by X-ray phase contrast imaging.  

PubMed

BACKGROUND: A clear understanding of the blood vessels in the eye is helpful in the diagnosis and treatment of ophthalmic diseases, such as glaucoma. Conventional techniques such as micro-CT imaging and histology are not sufficiently accurate to identify the vessels in the eye, because their diameter is just a few microns. The newly developed medical imaging technology, X-ray phase-contrast imaging (XPCI), is able to distinguish the structure of the vessels in the eye. In this study, XPCI was used to identify the internal structure of the blood vessels in the eye. METHODS: After injection with barium sulfate via the ear border artery, an anesthetized rabbit was killed and its eye was fixed in vitro in 10% formalin solution. We acquired images using XPCI at the Shanghai Synchrotron Radiation Facility. The datasets were converted into slices by filtered back-projection (FBP). An angiographic score was obtained as a parameter to quantify the density of the blood vessels. A three-dimensional (3D) model of the blood vessels was then established using Amira 5.2 software. RESULTS: With XPCI, blood vessels in the rabbit eye as small as 18 mum in diameter and a sixth of the long posterior ciliary artery could be clearly distinguished. In the 3D model, we obtained the level 4 branch structure of vessels in the fundus. The diameters of the arteria centralis retinae and its branches are about 200 mum, 110 mum, 95 mum, 80 mum and 40 mum. The diameters of the circulus arteriosus iridis major and its branches are about 210 mum, 70 mum and 30 mum. Analysis of vessel density using the angiographic score showed that the blood vessels had maximum density in the fundus and minimum density in the area anterior to the equator (scores 0.27 +/- 0.029 and 0.16 +/- 0.032, respectively). We performed quantitative angiographic analysis of the blood vessels to further investigate the density of the vessels. CONCLUSIONS: XPCI provided a feasible means to determine the structure of the blood vessels in the eye. We were able to determine the diameters and morphological characteristics of the vessels from both 2D images and the 3D model. By analyzing the images, we obtained measurements of the density distribution of the microvasculature, and this approach may provide valuable reference information prior to glaucoma filtration surgery. PMID:23577753

Zhang, Lu; Qian, Xiuqing; Zhang, Kunya; Cui, Qianqian; Zhao, Qiuyun; Liu, Zhicheng

2013-04-11

58

Analysis of Blood Flow in a Partially Blocked Bifurcated Blood Vessel  

NASA Astrophysics Data System (ADS)

Coronary artery disease is a major cause of death in the United States. It is the narrowing of the lumens of the coronary blood vessel by a gradual build-up of fatty material, atheroma, which leads to the heart muscle not receiving enough blood. This my ocardial ischemia can cause angina, a heart attack, heart failure as well as sudden cardiac death [9]. In this project a solid model of bifurcated blood vessel with an asymmetric stenosis is developed using GAMBIT and imported into FLUENT for analysis. In FLUENT, pressure and velocity distributions in the blood vessel are studied under different conditions, where the size and position of the blockage in the blood vessel are varied. The location and size of the blockage in the blood vessel are correlated with the pressures and velocities distributions. Results show that such correlation may be used to predict the size and location of the blockage.

Abdul-Razzak, Hayder; Elkassabgi, Yousri; Punati, Pavan K.; Nasser, Naseer

2009-09-01

59

Measurement of retinal blood vessel width using computerized image analysis.  

PubMed

We report a new method for quantitating retinal blood vessel width from fluorescein angiogram negatives using a computerized image analyser. Interuser and intrauser variability were 3 to 4 times lower than reported with older methods. In addition, model blood vessels were used to test the accuracy of our method under four clinically relevant conditions: variations in vessel width, fluorescein concentration, flash intensity and background fluorescence. Although computed measurements were affected by vessel width, fluorescein concentration and flash intensity, the linearity of the actual versus computed width was maintained during wide variations in all four conditions (r = 0.95, P less than 0.0001). Accuracy was best achieved at a flash intensity of 150 W/sec and a fluorescein concentration of 45 micrograms/ml. The results of this study provide a better understanding of factors affecting the apparent width of retinal blood vessels in fluorescein angiograms. This technique should be useful in rapidly obtaining accurate measurements of blood vessel width from fluorescein angiograms. PMID:3417411

Eaton, A M; Hatchell, D L

1988-08-01

60

Blood Vessel Adaptation with Fluctuations in Capillary Flow Distribution  

PubMed Central

Throughout the life of animals and human beings, blood vessel systems are continuously adapting their structures – the diameter of vessel lumina, the thickness of vessel walls, and the number of micro-vessels – to meet the changing metabolic demand of the tissue. The competition between an ever decreasing tendency of luminal diameters and an increasing stimulus from the wall shear stress plays a key role in the adaptation of luminal diameters. However, it has been shown in previous studies that the adaptation dynamics based only on these two effects is unstable. In this work, we propose a minimal adaptation model of vessel luminal diameters, in which we take into account the effects of metabolic flow regulation in addition to wall shear stresses and the decreasing tendency of luminal diameters. In particular, we study the role, in the adaptation process, of fluctuations in capillary flow distribution which is an important means of metabolic flow regulation. The fluctuation in the flow of a capillary group is idealized as a switch between two states, i.e., an open-state and a close-state. Using this model, we show that the adaptation of blood vessel system driven by wall shear stress can be efficiently stabilized when the open time ratio responds sensitively to capillary flows. As micro-vessel rarefaction is observed in our simulations with a uniformly decreased open time ratio of capillary flows, our results point to a possible origin of micro-vessel rarefaction, which is believed to induce hypertension.

Hu, Dan; Cai, David; Rangan, Aaditya V.

2012-01-01

61

Three-dimensional photoacoustic imaging of blood vessels in tissue  

Microsoft Academic Search

We applied photoacoustics as a tissue tomography technique for the detection of blood concentrations, e.g., angiogenesis around tumors. We imaged blood vessels in highly scattering samples, using 532-nm light, to depths of ,1 cm. The samples were real tissue (chicken breast) or 10% dilutions of Intralipid-10%. The blood flowed through nylon capillaries. Polyvinylidene difluoride (PVdF) piezoelectric detectors were used in

C. G. A. Hoelen; Mul de F. F. M; R. Pongers; A. Dekker

1998-01-01

62

Expression of serotonin receptor mRNAs in blood vessels  

Microsoft Academic Search

Using RT-PCR we distinguished mRNAs for all known G-protein coupled serotonin receptors expressed in various rat and porcine blood vessels. Nearly all vessels expressed 5HT1d?, 5-HT2A, 5-HT2B, 5-HT4, and 5-Ht7 receptor mRNA to different extents. New splice variants of the porcine 5-HT4 receptor were observed. Similar PCR assays were performed with endothelial and smooth muscle cells from human pulmonary artery,

Christoph Ullmer; Karin Schmuck; Hans O. Kalkman; Hermann Lübbert

1995-01-01

63

Purinergic signaling and blood vessels in health and disease.  

PubMed

Purinergic signaling plays important roles in control of vascular tone and remodeling. There is dual control of vascular tone by ATP released as a cotransmitter with noradrenaline from perivascular sympathetic nerves to cause vasoconstriction via P2X1 receptors, whereas ATP released from endothelial cells in response to changes in blood flow (producing shear stress) or hypoxia acts on P2X and P2Y receptors on endothelial cells to produce nitric oxide and endothelium-derived hyperpolarizing factor, which dilates vessels. ATP is also released from sensory-motor nerves during antidromic reflex activity to produce relaxation of some blood vessels. In this review, we stress the differences in neural and endothelial factors in purinergic control of different blood vessels. The long-term (trophic) actions of purine and pyrimidine nucleosides and nucleotides in promoting migration and proliferation of both vascular smooth muscle and endothelial cells via P1 and P2Y receptors during angiogenesis and vessel remodeling during restenosis after angioplasty are described. The pathophysiology of blood vessels and therapeutic potential of purinergic agents in diseases, including hypertension, atherosclerosis, ischemia, thrombosis and stroke, diabetes, and migraine, is discussed. PMID:24335194

Burnstock, Geoffrey; Ralevic, Vera

2014-01-01

64

Bright Solitons on Continuous Wave Background in Blood Vessels  

NASA Astrophysics Data System (ADS)

The nonlinear Schrödinger equation (NLSE) with variable coefficients in blood vessels is discussed via an NLSE-based constructive method, and exact solutions are obtained including multi-soliton solutions with and without continuous wave backgrounds. The dynamical behaviors of these soliton solutions are studied. The solitonic propagation behaviors such as restraint and sustainment on continuous wave background are discussed by altering the value of dispersion parameter ?. Moreover, the longitude controllable behaviors are also reported by modulating the dispersion parameter ?. These results are potentially useful for future experiments in various blood vessels.

Xiang, Jia-Jie; Jiang, Hua-Jie; Dai, Chao-Qing; Wang, Yue-Yue

2014-03-01

65

Acrolein generation stimulates hypercontraction in isolated human blood vessels  

SciTech Connect

Increased risk of vasospasm, a spontaneous hyperconstriction, is associated with atherosclerosis, cigarette smoking, and hypertension-all conditions involving oxidative stress, lipid peroxidation, and inflammation. To test the role of the lipid peroxidation- and inflammation-derived aldehyde, acrolein, in human vasospasm, we developed an ex vivo model using human coronary artery bypass graft (CABG) blood vessels and a demonstrated acrolein precursor, allylamine. Allylamine induces hypercontraction in isolated rat coronary artery in a semicarbazide-sensitive amine oxidase activity (SSAO) dependent manner. Isolated human CABG blood vessels (internal mammary artery, radial artery, saphenous vein) were used to determine: (1) vessel responses and sensitivity to acrolein, allylamine, and H{sub 2}O{sub 2} exposure (1 {mu}M-1 mM), (2) SSAO dependence of allylamine-induced effects using SSAO inhibitors (semicarbazide, 1 mM; MDL 72274-E, active isomer; MDL 72274-Z, inactive isomer; 100 {mu}M), (3) the vasoactive effects of two other SSAO amine substrates, benzylamine and methylamine, and (4) the contribution of extracellular Ca{sup 2+} to hypercontraction. Acrolein or allylamine but not H{sub 2}O{sub 2}, benzylamine, or methylamine stimulated spontaneous and pharmacologically intractable hypercontraction in CABG blood vessels that was similar to clinical vasospasm. Allylamine-induced hypercontraction and blood vessel SSAO activity were abolished by pretreatment with semicarbazide or MDL 72274-E but not by MDL 72274-Z. Allylamine-induced hypercontraction also was significantly attenuated in Ca{sup 2+}-free buffer. In isolated aorta of spontaneously hypertensive rat, allylamine-induced an SSAO-dependent contraction and enhanced norepinephrine sensitivity but not in Sprague-Dawley rat aorta. We conclude that acrolein generation in the blood vessel wall increases human susceptibility to vasospasm, an event that is enhanced in hypertension.

Conklin, D.J. [Institute of Molecular Cardiology, Department of Medicine, University of Louisville, Louisville, KY 40202 (United States) and Department of Biology, University of Wisconsin-Eau Claire, Eau Claire, WI 54701 (United States)]. E-mail: dj.conklin@louisville.edu; Bhatnagar, A. [Institute of Molecular Cardiology, Department of Medicine, University of Louisville, Louisville, KY 40202 (United States); Cowley, H.R. [Department of Biology, University of Wisconsin-Eau Claire, Eau Claire, WI 54701 (United States); Johnson, G.H. [Department of Cardiothoracic Surgery, Luther Hospital/Midelfort Clinic, Eau Claire, WI 54702 (United States); Wiechmann, R.J. [Department of Cardiothoracic Surgery, Luther Hospital/Midelfort Clinic, Eau Claire, WI 54702 (United States); Sayre, L.M. [Department of Chemistry, Case Western Reserve University, Cleveland, OH 44106 (United States); Trent, M.B. [Department of Pathology, University of Texas Medical Branch at Galveston, Galveston, TX 77555-0609 (United States); Boor, P.J. [Department of Pathology, University of Texas Medical Branch at Galveston, Galveston, TX 77555-0609 (United States)

2006-12-15

66

The deletion of Math5 disrupts retinal blood vessel and glial development in mice  

PubMed Central

Retinal vascular development is a complex process that is not yet fully understood. The majority of research in this area has focused on astrocytes and the template they form in the inner retina, which precedes endothelial cells in the mouse retina. In humans and dogs, however, astrocyte migration follows behind development of blood vessels, suggesting that other cell types may guide this process. One such cell type is the ganglion cell, which differentiates before blood vessel formation and lies adjacent to the primary retinal vascular plexus. The present study investigated the potential role played by ganglion cells in vascular development using Math5?/? mice. It has previously been reported that Math5 regulates the differentiation of ganglion cells and Math5?/? mice have a 95% reduction in these cells. The development of blood vessels and glia was investigated using Griffonia simplicifolia isolectin B4 labeling and GFAP immunohistochemistry, respectively. JB-4 analysis demonstrated that the hyaloid vessels arose from choriovitreal vessels adjacent to the optic nerve area. As previously reported, Math5?/? mice had a rudimentary optic nerve. The primary retinal vessels did not develop post-natally in the Math5?/? mice, however, branches of the hyaloid vasculature eventually dove into the retina and formed the inner retinal capillary networks. An astrocyte template only formed in some areas of the Math5?/? retina. In addition, GFAP+ Müller cells were seen throughout the retina that had long processes wrapped around the hyaloid vessels. Transmission electron microscopy confirmed Müller cell abnormalities and revealed disruptions in the inner limiting membrane. The present data demonstrates that the loss of ganglion cells in the Math5?/? mice is associated with a lack of retinal vascular development.

Edwards, Malia M.; McLeod, D. Scott; Li, Renzhong; Grebe, Rhonda; Bhutto, Imran; Mu, Xiuqian; Lutty, Gerard A.

2011-01-01

67

Bilayered scaffold for engineering cellularized blood vessels.  

PubMed

Vascular scaffolds fabricated by electrospinning poly(epsilon-caprolactone) (PCL) and collagen have been designed to provide adequate structural support as well as a favorable adhesion substrate for vascular cells. However, the presence of small-sized pores limits the efficacy of smooth muscle cells (SMC) seeding, as these cells could not adequately infiltrate into the scaffolds. To overcome this challenge, we developed a bilayered scaffolding system that provides different pore sizes to facilitate adequate cellular interactions. Based on the fact that pore size increases with the increase in fiber diameter, four different fiber diameters (ranging 0.27-4.45 mum) were fabricated by electrospinning with controlled parameters. The fabricated scaffolds were examined by evaluating cellular interactions, and the mechanical properties were measured. Endothelial cells (EC) seeded on nanoscaled fibers showed enhanced cellular orientation and focal adhesion. Conversely, fabrication of a larger fiber diameter improved SMC infiltration into the scaffolds. To incorporate both of these properties into a scaffold, bilayered vascular scaffolds were produced. The inner layer yielded small diameter fibers and the outer layer provided large diameter fibers. We show that the bilayered scaffolds permit EC adhesion on the lumen and SMC infiltration into the outer layer. This study suggests that the use of bilayered scaffolds may lead to improved vessel formation. PMID:20188414

Ju, Young Min; Choi, Jin San; Atala, Anthony; Yoo, James J; Lee, Sang Jin

2010-05-01

68

IP-10 induces dissociation of newly formed blood vessels  

PubMed Central

Summary The signals that prune the exuberant vascular growth of tissue repair are still ill defined. We demonstrate that activation of CXC chemokine receptor 3 (CXCR3) mediates the regression of newly formed blood vessels. We present evidence that CXCR3 is expressed on newly formed vessels in vivo and in vitro. CXCR3 is expressed on vessels at days 7-21 post-wounding, and is undetectable in unwounded or healed skin. Treatment of endothelial cords with CXCL10 (IP-10), a CXCR3 ligand present during the resolving phase of wounds, either in vitro or in vivo caused dissociation even in the presence of angiogenic factors. Consistent with this, mice lacking CXCR3 express a greater number of vessels in wound tissue compared to wild-type mice. We then hypothesized that signaling from CXCR3 not only limits angiogenesis, but also compromises vessel integrity to induce regression. We found that activation of CXCR3 triggers ?-calpain activity, causing cleavage of the cytoplasmic tail of ?3 integrins at the calpain cleavage sites c'754 and c'747. IP-10 stimulation also activated caspase 3, blockage of which prevented cell death but not cord dissociation. This is the first direct evidence for an extracellular signaling mechanism through CXCR3 that causes the dissociation of newly formed blood vessels followed by cell death.

Bodnar, Richard J.; Yates, Cecelia C.; Rodgers, Margaret E.; Du, Xiaoping; Wells, Alan

2009-01-01

69

Optically induced occlusion of single blood vessels in rodent neocortex.  

PubMed

The ability to form targeted vascular occlusions in small vessels of the brain is an important technique for studying the microscopic basis of cerebral ischemia. We describe two complementary methods that enable targeted occlusion of any single blood vessel within the upper 500 µm of adult rodent neocortex. Our goal is to generate highly localized regions of ischemia by blocking penetrating arterioles and ascending venules, which are bottlenecks of flow in the cortical angioarchitecture. One method, termed photothrombosis, makes use of linear optical absorption by a photosensitizer, transiently circulated in the blood stream, to induce a clot in a surface or near-surface segment of a vessel. The second method, termed plasma-mediated ablation, makes use of nonlinear optical interactions, without the need to introduce an exogenous absorber, to induce clots in subsurface segments of penetrating vessels, as well as subsurface microvessels and capillaries. The choice of the method for occlusion of individual vessels depends on the location of the vessels being studied and the objectives of the study. Here we describe concurrent high resolution in vivo imaging and auxiliary laser setups, occlusion protocols, and post hoc histological procedures. PMID:24298038

Shih, Andy Y; Nishimura, Nozomi; Nguyen, John; Friedman, Beth; Lyden, Patrick D; Schaffer, Chris B; Kleinfeld, David

2013-12-01

70

Wavelength dependence of the apparent diameter of retinal blood vessels  

NASA Astrophysics Data System (ADS)

Imaging of retinal blood vessels may assist in the diagnosis and monitoring of diseases such as glaucoma, diabetic retinopathy, and hypertension. However, close examination reveals that the contrast and apparent diameter of vessels are dependent on the wavelength of the illuminating light. In this study multispectral images of large arteries and veins within enucleated swine eyes are obtained with a modified fundus camera by use of intravitreal illumination. The diameters of selected vessels are measured as a function of wavelength by cross-sectional analysis. A fixed scale with spectrally independent dimension is placed above the retina to isolate the chromatic effects of the imaging system and eye. Significant apparent differences between arterial and venous diameters are found, with larger diameters observed at shorter wavelengths. These differences are due primarily to spectral absorption in the cylindrical blood column.

Park, Robert; Twietmeyer, Karen; Chipman, Russell; Beaudry, Neil; Salyer, David

2005-04-01

71

Blood vessels and feature points detection on retinal images.  

PubMed

In this paper we present a method for the automatic extraction of blood vessels from retinal images, while capturing points of intersection/overlap and endpoints of the vascular tree. The algorithm performance is evaluated through a comparison with handmade segmented images available on the STARE project database (STructured Analysis of the REtina). The algorithm is performed on the green channel of the RGB triad. The green channel can be used to represent the illumination component. The matched filter is used to enhance vessels w.r.t. the background. The separation between vessels and background is accomplished by a threshold operator based on gaussian probability density function. The length filtering removes pixels and isolated segments from the resulting image. Finally endpoints, intersections and overlapping vessels are extracted. PMID:19163146

Ardizzone, Edoardo; Pirrone, Roberto; Gambino, Orazio; Radosta, Salvatore

2008-01-01

72

Blood vessels and feature points detection on retinal images  

Microsoft Academic Search

In this paper we present a method for the automatic extraction of blood vessels from retinal images, while capturing points of intersection\\/overlap and endpoints of the vascular tree. The algorithm performance is evaluated through a comparison with handmade segmented images available on the STARE project database (STructured Analysis of the REtina). The algorithm is performed on the green channel of

Edoardo Ardizzone; Roberto Pirrone; Orazio Gambino; Salvatore Radosta

2008-01-01

73

Shadows of blood-vessels upon the retina  

Microsoft Academic Search

Discusses the theories proposed by König and Shapringer to explain why, if light is admitted into the eye through two small holes in diaphragm held in the front focal plane, two images of a blood-vessel in the front part of the retina are cast upon the sensitive layer. If now red and blue light are admitted together through the hole,

C. L. Franklin

1895-01-01

74

Computational analysis of fluid-structure interaction in blood vessels  

NASA Astrophysics Data System (ADS)

Vessels carrying blood flow in a human body are known to be flexible tissues. Interaction of the internal blood flow with the vessel wall compliance, in addition to significant alteration of the fluid mechanical properties (shear and normal stresses), can also result in a variety of interesting mechanical phenomena, such as flow limitation, self-exciting oscillations (flutter), wall collapse. We investigate computationally an unsteady behavior of flexible vessels carrying a blood flow assuming incompressible newtonian fluid approximation for blood. We first utilize a membrane model with constant tension for the vessel walls and apply it to simulate the coupled fluid-wall behavior in 2D collapsible channels and 3D collapsible tubes. We show that although the model works well for 2D cases, it always leads to a complete wall collapse for 3D cases for any negative transmural pressure difference, showing the necessity of including the bending rigidity. We revisit the same problems using full linear elasticity fluid-structure interaction model for finite thickness walls developed in a high-order spectral element fluid solver. We finally investigate the unsteady flow behavior in flexible channels and tubes with the newly-developed FSI solver.

Peet, Yulia; Miksis, Michael; Davis, Stephen; Chopp, David

2011-11-01

75

Mitochondrial angiopathy in cerebral blood vessels of mitochondrial eneephalomyopathy  

Microsoft Academic Search

We studied cerebral blood vessels of two autopsied patients with mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes (MELAS). All the main cerebral arteries in the proximal portion at the brain base and more distal portion at the cortical surface, as well as within the brain parenchyma were examined by electron microscopy. There was a striking increase in number of

E. Ohama; S. Ohara; F. Ikuta; K. Tanaka; M. Nishizawa; T. Miyatake

1987-01-01

76

Blood vessels and nerves: common signals, pathways and diseases  

Microsoft Academic Search

Both blood vessels and nerves are vital channels to and from tissues. Recent genetic insights show that they have much more in common than was originally anticipated. They use similar signals and principles to differentiate, grow and navigate towards their targets. Moreover, the vascular and nervous systems cross-talk and, when dysregulated, this contributes to medically important diseases. The realization that

Peter Carmeliet

2003-01-01

77

Fractal structures in stenoses and aneurysms in blood vessels  

PubMed Central

Recent advances in the field of chaotic advection provide the impetus to revisit the dynamics of particles transported by blood flow in the presence of vessel wall irregularities. The irregularity, being either a narrowing or expansion of the vessel, mimicking stenoses or aneurysms, generates abnormal flow patterns that lead to a peculiar filamentary distribution of advected particles, which, in the blood, would include platelets. Using a simple model, we show how the filamentary distribution depends on the size of the vessel wall irregularity, and how it varies under resting or exercise conditions. The particles transported by blood flow that spend a long time around a disturbance either stick to the vessel wall or reside on fractal filaments. We show that the faster flow associated with exercise creates widespread filaments where particles can get trapped for a longer time, thus allowing for the possible activation of such particles. We argue, based on previous results in the field of active processes in flows, that the non-trivial long-time distribution of transported particles has the potential to have major effects on biochemical processes occurring in blood flow, including the activation and deposition of platelets. One aspect of the generality of our approach is that it also applies to other relevant biological processes, an example being the coexistence of plankton species investigated previously.

Schelin, Adriane B.; Karolyi, Gyorgy; de Moura, Alessandro P. S.; Booth, Nuala A.; Grebogi, Celso

2010-01-01

78

SEGMENTATION OF RETINAL BLOOD VESSELS USING A NOVEL CLUSTERING ALGORITHM  

Microsoft Academic Search

In this paper, segmentation of blood vessels from colour reti- nal images using a novel clustering algorithm and scale- space features is proposed. The proposed clustering algo- rithm, which we call Nearest Neighbour Clustering Algo- rithm (NNCA), uses the same concept as the K-nearest neigh- bour (KNN) classier with the advantage that the algorithm needs no training set and it

Sameh A. Salem; Nancy M. Salem; Asoke K. Nandi

2006-01-01

79

Validation of the performance of a practical blood vessel imaging system to facilitate vessel punctures  

NASA Astrophysics Data System (ADS)

A practical system to visualize vessels underneath the skin has been developed, based on near-infrared (NIR) transillumination. A study in the clinical setting proved the system to be useful as a support in blood withdrawal in young children. During clinical application it was found that performance varied depending on vessel size, depth of vessels and surrounding lighting conditions. To gain more insight on the different variables that determine functioning of the system, we performed phantom studies. A combined liquid/solid phantom was fabricated with similar optical properties as the tissue layers of skin reported in literature at 850 nm. This phantom was used to estimate the depth of visibility in the relation to vessel size and darkness of the skin. Vessel contrast was determined analytically from images and evaluated by 3 independent observers. The knowledge gained from these experiments will be helpful to improve the imaging system and develop a solid phantom to be used as a gold standard to test the system under various clinical lighting conditions. The working range of the system was found to be appropriate to visualize the vessels used for the most procedures, such as blood withdrawal and placement of intravenous lines.

Cuper, Natascha J.; Verdaasdonk, Rudolf M.; de Roode, Rowland

2009-02-01

80

Gene Expression Analysis in Human Breast Cancer Associated Blood Vessels  

PubMed Central

Angiogenesis is essential for solid tumour growth, whilst the molecular profiles of tumour blood vessels have been reported to be different between cancer types. Although presently available anti-angiogenic strategies are providing some promise for the treatment of some cancers it is perhaps not surprisingly that, none of the anti-angiogenic agents available work on all tumours. Thus, the discovery of novel anti-angiogenic targets, relevant to individual cancer types, is required. Using Affymetrix microarray analysis of laser-captured, CD31-positive blood vessels we have identified 63 genes that are upregulated significantly (5–72 fold) in angiogenic blood vessels associated with human invasive ductal carcinoma (IDC) of the breast as compared with blood vessels in normal human breast. We tested the angiogenic capacity of a subset of these genes. Genes were selected based on either their known cellular functions, their enriched expression in endothelial cells and/or their sensitivity to anti-VEGF treatment; all features implicating their involvement in angiogenesis. For example, RRM2, a ribonucleotide reductase involved in DNA synthesis, was upregulated 32-fold in IDC-associated blood vessels; ATF1, a nuclear activating transcription factor involved in cellular growth and survival was upregulated 23-fold in IDC-associated blood vessels and HEX-B, a hexosaminidase involved in the breakdown of GM2 gangliosides, was upregulated 8-fold in IDC-associated blood vessels. Furthermore, in silico analysis confirmed that AFT1 and HEX-B also were enriched in endothelial cells when compared with non-endothelial cells. None of these genes have been reported previously to be involved in neovascularisation. However, our data establish that siRNA depletion of Rrm2, Atf1 or Hex-B had significant anti-angiogenic effects in VEGF-stimulated ex vivo mouse aortic ring assays. Overall, our results provide proof-of-principle that our approach can identify a cohort of potentially novel anti-angiogenic targets that are likley to be, but not exclusivley, relevant to breast cancer.

Jones, Dylan T.; Lechertier, Tanguy; Mitter, Richard; Herbert, John M. J.; Bicknell, Roy; Jones, J. Louise; Li, Ji-Liang; Buffa, Francesca; Harris, Adrian L.; Hodivala-Dilke, Kairbaan

2012-01-01

81

Artificial blood vessel: the Holy Grail of peripheral vascular surgery.  

PubMed

Artificial blood vessels composed of viable tissue represent the ideal vascular graft. Compliance, lack of thrombogenicity, and resistance to infections as well as the ability to heal, remodel, contract, and secrete normal blood vessel products are theoretical advantages of such grafts. Three basic elements are generally required for the construction of an artificial vessel: a structural scaffold, made either of collagen or a biodegradable polymer; vascular cells, and a nurturing environment. Mechanical properties of the artificial vessels are enhanced by bioreactors that mimic the in vivo environment of the vascular cells by producing pulsatile flow. Alternative approaches include the production of fibrocollagenous tubes within the recipient's own body (subcutaneous tissue or peritoneal cavity) and the construction of an artificial vessel from acellular native tissues, such as decellularized small intestine submucosa, ureter, and allogeneic or xenogeneic arteries. This review details the most recent developments on vascular tissue engineering, summarizes the results of initial experiments on animals and humans, and outlines the current status and the challenges for the future. PMID:15768021

Kakisis, John D; Liapis, Christos D; Breuer, Christopher; Sumpio, Bauer E

2005-02-01

82

Interest of ICG blood clearance monitoring for reproducible 810-nm diode laser coagulation of blood vessels  

NASA Astrophysics Data System (ADS)

Purpose: To evaluate a method of control of diode laser fluence leading to a reproducible ICG-enhanced selective photocoagulation of blood vessels. This method would use the chromophore clearance, i.e. ICG blood concentration decay to adapt the laser fluence. Materials and Methods: A skin flap window was used on hamsters. After a 15 mg/kg ICG solution injection, photocoagulation of vessels were performed. Results: Selective photocoagulation of blood vessels was obtained only during the first 10 minutes. The fluence required to obtain a selective photocoagulation of vessels (F) was modelized using a one compartment phamacokinetic equation: F equals Of(1-e-t/(tau )). The best fit was obtained for a time constant (tau) equals 4.8 min and Of equals 300 J/cm2 (correlation coefficient r2 equals 0.996). During the first 10 minutes, the fluence required for selective photocoagulation of vessels was increased by a factor 4.5. Conclusion: Fluence required for a selective photocoagulation of vessels was correlated to ICG blood concentration decay. The time constant was equivalent to ICG half-life time in human blood. These results demonstrate that diode laser ICG-enhanced photocoagulation can be controlled by monitoring the ICG blood clearance.

Desmettre, Thomas; Soulie-Begu, Sylvie; Devoisselle, Jean-Marie; Mordon, Serge R.

1999-02-01

83

Multiscale fabrication of a transparent circulation type blood vessel simulator  

PubMed Central

We proposed and fabricated multiscale transparent arteriole and capillary vessel models with circular cross sections of 10–500 ?m using photolithography. The circularities of the fabricated 10, 50, and 500 ?m diameter microchannels were 84.0%, 61.5%, and 82.3%, respectively. Next, we connected these different models to realize a circulation type blood vessel model simulating arteriole networks. We proposed a novel connection method using an intermediate connector made of wax, which we used to connect these models to make a circulation model. In flow experiments, the fabricated models showed no leakage and circulation models with seamless connections were achieved.

Nakano, Takuma; Itoyama, Taro; Yoshida, Keisuke; Sawada, Yu; Ikeda, Seiichi; Fukuda, Toshio; Matsuda, Takehisa; Negoro, Makoto; Arai, Fumihito

2010-01-01

84

Twisted Blood Vessels: Symptoms, Etiology and Biomechanical Mechanisms  

PubMed Central

Tortuous arteries and veins are commonly observed in humans and animals. While mild tortuosity is asymptomatic, severe tortuosity can lead to ischemic attack in distal organs. Clinical observations have linked tortuous arteries and veins with aging, atherosclerosis, hypertension, genetic defects and diabetes mellitus. However, the mechanisms of their formation and development are poorly understood. This review summarizes the current clinical and biomechanical studies on the initiation, development and treatment of tortuous blood vessels. We submit a new hypothesis that mechanical instability and remodeling could be mechanisms for the initiation and development of these tortuous vessels.

Han, Hai-Chao

2012-01-01

85

Dimensional analysis of blood vessel images in real-time  

NASA Astrophysics Data System (ADS)

The physiology and pathology of dissected blood vessels are studied by perfusion myography combined with video microscopy. Images of the vessels are formed under diffuse white light illumination and contrast is achieved by differential absorption with respect to the vessel wall. To obtain the vessel dimensional information in quasi real time an edge-tracking algorithm is used, allowing the edges to be found by applying common image processing tools to a very small number of pixels rather than the whole image. Employing a low order optical model of the light transmission properties of vessels with circular cross section, a relationship between the positions of edges found by a typical image processing algorithm and actual dimensions is derived. The dimensional analysis is demonstrated on rat mesenteric resistance arteries (internal diameter less than 300 micrometer) mounted in a perfusion arteriograph. Segments of vessels are secured on two glass cannulae using single strands of a nylon braided suture. The artery is perfused with physiological salt solution and the perfusion pressure maintained at 60 mmHg before starting the experiment. Changes in vascular diameter to the vasoconstrictor noradrenaline and the endothelium-dependent vasodilator acetylcholine were then observed.

Smith, Peter R.; Eustaquio-Martin, Almudena; Thomason, Harry; Bennett, M.; Thurston, H.

1996-01-01

86

Simulation of branching blood flows on parallel computers.  

PubMed

We present a fully parallel nonlinearly implicit algorithm for the numerical simulation of some branching blood flow problems, which require efficient and robust solver technologies in order to handle the high nonlinearity and the complex geometry. Parallel processing is necessary because of the large number of mesh points needed to accurately discretize the system of differential equations. In this paper we introduce a parallel Newton-Krylov-Schwarz based implicit method, and software for distributed memory parallel computers, for solving the nonlinear algebraic systems arising from a Q2-Q1 finite element discretization of the incompressible Navier-Stokes equations that we use to model the blood flow in the left anterior descending coronary artery. PMID:15133979

Yue, Xue; Hwang, Feng-Nan; Shandas, Robin; Cai, Xiao-Chuan

2004-01-01

87

Control of Blood Vessel Identity: From Embryo to Adult  

PubMed Central

Arteries and veins have been historically defined by the direction of blood flow and oxygen tension within the vessel, in addition to their functional, hemodynamic, and anatomical differences. It is now known that the molecular identity of these vessels is genetically predetermined, with specific molecular pathways activated during the development of arteries and veins. Eph-B4 is a determinant of venous differentiation and Ephrin-B2 is a determinant of arterial differentiation. Placement of a vein into the higher pressure and flow of the arterial circulation results in adaptation of the vein to the arterial environment. There is selective loss of Eph-B4 expression without induction of Ephrin-B2 expression during vein graft adaptation. These findings suggest that loss of venous identity is the crucial mechanism in vein graft adaptation and that developmentally critical determinants of vessel identity are plastic during adult life.

2008-01-01

88

Blood vessel adaptation to gravity in a semi-arboreal snake  

Microsoft Academic Search

The effects of vasoactive agonists on systemic blood vessels were examined with respect to anatomical location and gravity acclimation in the semi-arboreal snake, Elaphe Obsoleta. Major blood vessels were reactive to putative neurotransmitters, hormones or local factors in vessel specific patterns. Catecholamines, adenosine triphosphate, histamine and high potassium (80 mM) stimulated significantly greater tension per unit vessel mass in posterior

D. J. Conklin; H. B. Lillywhite; K. R. Olson; R. E. Ballard; A. R. Hargens

1996-01-01

89

[Stem and progenitor cells in biostructure of blood vessel walls].  

PubMed

Development of vascular and hematopoietic systems during organogenesis occurs at the same time. During vasculogenesis, a small part of cells does not undergo complete differentiation but stays on this level, "anchored" in tissue structures described as stem cell niches. The presence of blood vessels within tissue stem cell niches is typical and led to identification of niches and ensures that they are functioning. The three-layer biostructure of vessel walls for artery and vein, tunica: intima, media and adventitia, for a long time was defined as a mechanical barrier between vessel light and the local tissue environment. Recent findings from vascular biology studies indicate that vessel walls are dynamic biostructures, which are equipped with stem and progenitor cells, described as vascular wall-resident stem cells/progenitor cells (VW-SC/PC). Distinct zones for vessel wall harbor heterogeneous subpopulations of VW-SC/PC, which are described as "subendothelial or vasculogenic zones". Recent evidence from in vitro and in vivo studies show that prenatal activity of stem and progenitor cells is not only limited to organogenesis but also exists in postnatal life, where it is responsible for vessel wall homeostasis, remodeling and regeneration. It is believed that VW-SC/PC could be engaged in progression of vascular disorders and development of neointima. We would like to summarize current knowledge about mesenchymal and progenitor stem cell phenotype with special attention to distribution and biological properties of VW-SC/PC in biostructures of intima, media and adventitia niches. It is postulated that in the near future, niches for VW-SC/PC could be a good source of stem and progenitor cells, especially in the context of vessel tissue bioengineering as a new alternative to traditional revascularization therapies. PMID:24088542

Korta, Krzysztof; Kupczyk, Piotr; Skóra, Jan; Pupka, Artur; Zejler, Pawe?; Ho?ysz, Marcin; Gajda, Mariusz; Nowakowska, Beata; Bar?, Piotr; Dorobisz, Andrzej T; Dawiskiba, Tomasz; Szyber, Piotr; Bar, Julia

2013-01-01

90

Blood vessel tubulogenesis requires Rasip1 regulation of GTPase signaling  

PubMed Central

SUMMARY Cardiovascular function depends on patent blood vessel formation by endothelial cells (ECs). However the mechanisms underlying vascular ‘tubulogenesis’ are only beginning to be unraveled. We show that endothelial tubulogenesis requires the Ras interacting protein 1, Rasip1, and its binding partner the RhoGAP Arhgap29. Mice lacking Rasip1 fail to form patent lumens in all blood vessels, including the early endocardial tube. Rasipl null angioblasts fail to properly localize the polarity determinant Par3 and display defective cell polarity, resulting in mislocalized junctional complexes and loss of adhesion to extracellular matrix (ECM). Similarly, depletion of either Rasip1 or Arhgap29 in cultured ECs blocks in vitro lumen formation, fundamentally alters the cytoskeleton and reduces integrin-dependent adhesion to ECM. These defects result from increased RhoA/ROCK/myosin II activity and blockade of Cdc42 and Rac1 signaling. This study identifies Rasip1 as a unique, endothelial-specific regulator of Rho GTPase signaling, which is essential for blood vessel morphogenesis.

Xu, Ke; Sacharidou, Anastasia; Fu, Stephen; Chong, Diana C.; Skaug, Brian; Chen, Zhijian J.; Davis, George E.; Cleaver, Ondine

2011-01-01

91

Predictive Simulation of Bidirectional Glenn Shunt Using a Hybrid Blood Vessel Model  

Microsoft Academic Search

This paper proposes a method for performing predictive sim- ulation of cardiac surgery. It applies a hybrid approach to model the deformation of blood vessels. The hybrid blood vessel model consists of a reference Cosserat rod and a surface mesh. The reference Cosserat rod models the blood vessel's global bending, stretching, twisting and shear- ing in a physically correct manner,

Hao Li; Wee Kheng Leow; Ing-sh Chiu

2009-01-01

92

Modeling of blood vessel constriction in 2-D case using molecular dynamics method  

NASA Astrophysics Data System (ADS)

Blood vessel constriction is simulated with particle-based method using a molecular dynamics authoring software known as Molecular Workbench (WM). Blood flow and vessel wall, the only components considered in constructing a blood vessel, are all represented in particle form with interaction potentials: Lennard-Jones potential, push-pull spring potential, and bending spring potential. Influence of medium or blood plasma is accommodated in plasma viscosity through Stokes drag force. It has been observed that pressure p is increased as constriction c is increased. Leakage of blood vessel starts at 80% constriction, which shows existence of maximum pressure that can be overcome by vessel wall.

A. S., M. Rendi; Suprijadi, Viridi, S.

2014-03-01

93

Blood vessel classification into arteries and veins in retinal images  

NASA Astrophysics Data System (ADS)

The prevalence of diabetes is expected to increase dramatically in coming years; already today it accounts for a major proportion of the health care budget in many countries. Diabetic Retinopathy (DR), a micro vascular complication very often seen in diabetes patients, is the most common cause of visual loss in working age population of developed countries today. Since the possibility of slowing or even stopping the progress of this disease depends on the early detection of DR, an automatic analysis of fundus images would be of great help to the ophthalmologist due to the small size of the symptoms and the large number of patients. An important symptom for DR are abnormally wide veins leading to an unusually low ratio of the average diameter of arteries to veins (AVR). There are also other diseases like high blood pressure or diseases of the pancreas with one symptom being an abnormal AVR value. To determine it, a classification of vessels as arteries or veins is indispensable. As to our knowledge despite the importance there have only been two approaches to vessel classification yet. Therefore we propose an improved method. We compare two feature extraction methods and two classification methods based on support vector machines and neural networks. Given a hand-segmentation of vessels our approach achieves 95.32% correctly classified vessel pixels. This value decreases by 10% on average, if the result of a segmentation algorithm is used as basis for the classification.

Kondermann, Claudia; Kondermann, Daniel; Yan, Michelle

2007-03-01

94

Surgical anatomy of the retroperitoneal spaces, Part III: Retroperitoneal blood vessels and lymphatics.  

PubMed

In this article, we discuss the surgical anatomy of the blood vessels and the lymphatic vessels and lymph nodes found in the retroperitoneum. Retroperitoneal blood vessels include the aorta and all its branches--parietal and visceral--from the diaphragm to the pelvis, and the inferior vena cava and its tributaries. The retroperitoneal lymphatics form a very rich and extensive chain. As a general rule, lymphatics follow the arteries and named lymph nodes are found at the root of the arteries. Retroperitoneal nodes of the abdomen comprise the inferior diaphragmatic nodes and the lumbar nodes. The latter are classified as left lumbar (aortic), intermediate (interaorticovenous), and right lumbar (caval). These nodes surround the aorta and the inferior vena cava. Around the aorta lie the paraortic nodes, preaortic nodes (include celiac, superior mesenteric, inferior mesenteric nodes collecting lymph from the splanchna supplied by the homonymous arteries), and retroaortic nodes. Similarly, around the vena cava lie the paracaval, precaval, and retrocaval nodes. Pelvic nodes include the common iliac, external and internal iliac, obturator, and sacral nodes. PMID:20336888

Mirilas, Petros; Skandalakis, John E

2010-02-01

95

Homocysteine induces blood vessel global hypomethylation mediated by LOX-1.  

PubMed

Homocysteine (Hcy) is an independent risk factor of atherosclerosis through its involvement with the methionine cycle. In this study, we aimed to determine the blood vessel global methylation rate in Hcy-induced atherosclerosis in apolipoprotein-E-deficient (ApoE-/-) mice, and to explore the possible mechanism of this change in endothelial cells. ApoE-/- mice were divided into a hyperlipidemia (HLP) group, a hyperhomocysteinemia (HHcy) group, and an HHcy + folate + vitamin B12 (HHcy+FA+VB) group. Wild-type C57BL/6J mice were prepared as controls. Total Hcy, lipids, S-adenosylmethionine (SAM), and S-adenosylhomocysteine (SAH) contents in serum were measured with an automatic biochemistry analyzer and high-performance liquid chromatography. Methylation of B1 repetitive elements in blood vessels was tested using nested methylation-specific-polymerase chain reaction (nMS-PCR). Endothelial cells (ECs) were pretreated with Hcy or by adding FA and VB. Lectin-like oxidized LDL receptor-1 (LOX-1) expressions were determined by quantitative PCR, Western blot, and nMS-PCR. The HHcy group displayed severe HLP and HHcy. SAM and SAH contents were also elevated in the HHcy group compared with other groups. Methylation of B1 repetitive elements was significantly increased in the HHcy group (0.5050 ± 0.0182) compared to the HLP (0.5158 ± 0.0163) and control (0.5589 ± 0.0236) groups. mRNA and protein expressions of LOX-1 increased (0.2877 ± 0.0341, 0.6090 ± 0.0547), whereas methylation expression decreased (0.5527 ± 0.0148) after 100 ?M Hcy stimulation in ECs. In conclusion, Hcy-induced atherosclerosis was closely associated with induced hypomethylation status in the blood vessel, and this process was partially mediated by LOX-1 DNA methylation. PMID:24938465

Yang, X L; Tian, J; Liang, Y; Ma, C J; Yang, A N; Wang, J; Ma, S C; Cheng, Y; Hua, X; Jiang, Y D

2014-01-01

96

Translating the Conversation Between the Brain and Blood Vessels  

NSDL National Science Digital Library

ÃÂWeÃÂre studying why people who are obese become hypertensive,ÃÂ Dr. Schreihofer said of one aspect of her work. ÃÂWe believe this is due to something about the obese state: We donÃÂt know what that is, but weÃÂre starting to rule things out.ÃÂ Indeed, the Schreihofer laboratory has already answered one question: Does hypertension occur because the brain loses its ability to sense that the blood vessels are stretching under high pressure? In a study with obese rats, they found the ratsÃÂ brains could sense the stretch but still became hypertensive, eliminating that mechanism as a possibility.

APS Communications Office (American Physiological Society Communications Office)

2006-04-21

97

Change in Morphology and Oxytocin Receptor Expression in the Uterine Blood Vessels during the Involution Process  

Microsoft Academic Search

Background: The histological changes in uterine blood vessels during pregnancy have been well investigated, but there have been few reports focusing on the changes in blood vessels during the involution process, especially within the first 24 h. We observed the process of uterine involution, focusing on the vessels of the resected uterus. Methods: Paraffin-embedded uterine samples from 15 patients who

Tomoko Wakasa; Kenichi Wakasa; Masahiro Nakayama; Yuko Kuwae; Keiko Matsuoka; Makoto Takeuchi; Noriyuki Suehara; Tadashi Kimura

2009-01-01

98

Meningial blood vessel calcification in the brain of the cat.  

PubMed

Mineralization in the wall of central nervous system blood vessels is sporadically encountered in aged horses and cattle as in man, generally as an age-related change. This phenomenon has not to date been located in the meninges in dogs or cats. The present study reports a retrospective histological examination of 50 feline brains from 40-day- to 13-year-old cats. Histological examination using routine staining techniques (hematoxylin and eosin, Luxol fast blue-periodic acid-Schiff) and special stains (Von Kossa and Pearl's method) showed substantial blood vessel calcification (BVC) in 29 cases which, except for 1 case, was present only in the leptomeninges. In 72% of cases BVC was not related to nervous tissue lesions. For this reason it was considered an incidental finding, producing no morphological or clinical signs. However, BVC should not be considered merely an age-related finding since it is also quite common in very young animals (35%), suggesting that its pathogenesis needs to be investigated further and compared to BVC observed in children affected by acquired immune deficiency and idiopathic arterial calcification. PMID:12557010

Mandara, Maria Teresa

2003-03-01

99

Microfluidic strategy to investigate dynamics of small blood vessel function  

NASA Astrophysics Data System (ADS)

Resistance arteries (RAs, 30-300 microns in diameter) that are located within the terminal part of the vascular tree regulate the laminar perfusion of tissue with blood, via the peripheral vascular resistance, and hence controls the systemic blood pressure. The structure of RAs is adapted to actively controlling flow resistance by dynamically changing their diameter, which is non-linearly dependent on the temporal variation of the transmural pressure, perfusion flow rate and spatiotemporal changes in the chemical environment. Increases in systemic blood pressure (hypertension) resulting from pathologic changes in the RA response represent the primary risk factor for cardiovascular diseases. We use a microfluidic strategy to investigate small blood vessels by quantifying structural variations within the arterial wall, RA outer contour and diameter over time. First, we document the artery response to vasomotor drugs that were homogeneously applied at step-wise increasing concentration. Second, we investigate the response in the presence of well-defined axial and circumferential heterogeneities. Artery per- and superfusion is discussed based on microscale PIV measurements of the fluid velocity on both sides of the arterial wall. Structural changes in the arterial wall are quantified using cross-correlation and proper orthogonal decomposition analyses of bright-field micrographs.

Yasotharan, Sanjesh; Bolz, Steffen-Sebastian; Guenther, Axel

2010-11-01

100

Lama1 mutations lead to vitreoretinal blood vessel formation, persistence of fetal vasculature, and epiretinal membrane formation in mice  

PubMed Central

Background Valuable insights into the complex process of retinal vascular development can be gained using models with abnormal retinal vasculature. Two such models are the recently described mouse lines with mutations in Lama1, an important component of the retinal internal limiting membrane (ILM). These mutants have a persistence of the fetal vasculature of vitreous (FVV) but lack a primary retinal vascular plexus. The present study provides a detailed analysis of astrocyte and vascular development in these Lama1 mutants. Results Although astrocytes and blood vessels initially migrate into Lama1 mutant retinas, both traverse the peripapillary ILM into the vitreous by P3. Once in the vitreous, blood vessels anastomose with vessels of the vasa hyaloidea propria, part of the FVV, and eventually re-enter the retina where they dive to form the inner and outer retinal capillary networks. Astrocytes continue proliferating within the vitreous to form a dense mesh that resembles epiretinal membranes associated with persistent fetal vasculature and proliferative vitreoretinopathy. Conclusions Lama1 and a fully intact ILM are required for normal retinal vascular development. Mutations in Lama1 allow developing retinal vessels to enter the vitreous where they anastomose with vessels of the hyaloid system which persist and expand. Together, these vessels branch into the retina to form fairly normal inner retinal vascular capillary plexi. The Lama1 mutants described in this report are potential models for studying the human conditions persistent fetal vasculature and proliferative vitreoretinopathy.

2011-01-01

101

Parametrically defined cerebral blood vessels as non-invasive blood input functions for brain PET studies  

NASA Astrophysics Data System (ADS)

A non-invasive alternative to arterial blood sampling for the generation of a blood input function for brain positron emission tomography (PET) studies is presented. The method aims to extract the dimensions of the blood vessel directly from PET images and to simultaneously correct the radioactivity concentration for partial volume and spillover. This involves simulation of the tomographic imaging process to generate images of different blood vessel and background geometries and selecting the one that best fits, in a least-squares sense, the acquired PET image. A phantom experiment was conducted to validate the method which was then applied to eight subjects injected with 6-[18F]fluoro-L-DOPA and one subject injected with [11C]CO-labelled red blood cells. In the phantom study, the diameter of syringes filled with an 11C solution and inserted into a water-filled cylinder were estimated with an accuracy of half a pixel (1 mm). The radioactivity concentration was recovered to 100 ± 4% in the 8.7 mm diameter syringe, the one that most closely approximated the superior sagittal sinus. In the human studies, the method systematically overestimated the calibre of the superior sagittal sinus by 2-3 mm compared to measurements made in magnetic resonance venograms on the same subjects. Sources of discrepancies related to the anatomy of the blood vessel were found not to be fundamental limitations to the applicability of the method to human subjects. This method has the potential to provide accurate quantification of blood radioactivity concentration from PET images without the need for blood samples, corrections for delay and dispersion, co-registered anatomical images, or manually defined regions of interest.

Asselin, Marie-Claude; Cunningham, Vincent J.; Amano, Shigeko; Gunn, Roger N.; Nahmias, Claude

2004-03-01

102

Mouse Studies Show Gene Therapy Method Holds Promise in Targeting Tumor Blood Vessels for Destruction  

Cancer.gov

Cancer researchers have reported the development of a novel method for delivering a therapeutic gene specifically to the blood vessels of tumors in mice. Once delivered, the gene produces a protein that damages the blood vessels and disrupts the blood flow to tumors, but not to the surrounding tissue.

103

Novel methods for adenovirus-mediated gene transfer to blood vessels in vivo  

Microsoft Academic Search

Adenovirus-mediated gene transfer is a promising method for studies of vascular biology and potentially for gene therapy. Intravascular approaches for gene transfer to blood vessels in vivo generally require interruption of blood flow and have several limitations. We have used two alternative approaches for gene transfer to blood vessels in vivo using perivascular application of vectors. First, replication-deficient adenovirus expressing

Hiroaki Ooboshi; C. David Ríos; Donald D. Heistad

1997-01-01

104

Cryogenic Heat Transfer Inside the Tissues with Thermally Significant Blood Vessels During Cryosurgery  

Microsoft Academic Search

To characterize the effect of thermally significant blood vessels (TSBV) on heat transfer inside the tissues during cryosurgery, the bioheat transfer equations controlling both the normal and the tumor tissues together with the Navier-Stokes equations controlling the blood flow inside the blood vessel were numerically solved. The tissues were treated as non-ideal materials with temperature dependent thermophysical properties regarding the

Gang Zhao; Qian-feng Yu; Zhi-feng Liu

2008-01-01

105

TOPAZ: a computer code for modeling heat transfer and fluid flow in arbitrary networks of pipes, flow branches, and vessels  

Microsoft Academic Search

An overview of the computer code TOPAZ (Transient-One-Dimensional Pipe Flow Analyzer) is presented. TOPAZ models the flow of compressible and incompressible fluids through complex and arbitrary arrangements of pipes, valves, flow branches and vessels. Heat transfer to and from the fluid containment structures (i.e. vessel and pipe walls) can also be modeled. This document includes discussions of the fluid flow

Winters

1984-01-01

106

ENHANCED ABSORPTION OF MILLIMETER WAVE ENERGY IN MURINE SUBCUTANEOUS BLOOD VESSELS  

PubMed Central

The aim of the present study was to determine millimeter wave (MMW) absorption by blood vessels traversing the subcutaneous fat layer of murine skin. Most calculations were performed using the finite-difference time-domain (FDTD) technique. We used two types of models: (1) a rectangular block of multilayer tissue with blood vessels traversing the fat layer and (2) cylindrical models with circular and elliptical cross sections simulating the real geometry of murine limbs. We found that the specific absorption rate (SAR) in blood vessels normally traversing the fat layer achieved its maximal value at the parallel orientation of the E-field to the vessel axis. At 42 GHz exposure, the maximal SAR in small blood vessels could be more than 30 times greater than that in the skin. The SAR increased with decreasing the blood vessel diameter and increasing the fat thickness. The SAR decreased with increasing the exposure frequency. When the cylindrical or elliptical models of murine limbs were exposed to plane MMW, the greatest absorption of MMW energy occurred in blood vessels located on the lateral areas of the limb model. At these areas the maximal SAR values were comparable with or were greater than the maximal SAR on the front surface of the skin. Enhanced absorption of MMW energy by blood vessels traversing the fat layer may play a primary role in initiating MMW effects on blood cells and vasodilatation of cutaneous blood vessels.

Alekseev, Stanislav I.; Ziskin, Marvin C.

2011-01-01

107

Blood vessel segmentation using line-direction vector based on Hessian analysis  

NASA Astrophysics Data System (ADS)

For decision of the treatment strategy, grading of stenoses is important in diagnosis of vascular disease such as arterial occlusive disease or thromboembolism. It is also important to understand the vasculature in minimally invasive surgery such as laparoscopic surgery or natural orifice translumenal endoscopic surgery. Precise segmentation and recognition of blood vessel regions are indispensable tasks in medical image processing systems. Previous methods utilize only ``lineness'' measure, which is computed by Hessian analysis. However, difference of the intensity values between a voxel of thin blood vessel and a voxel of surrounding tissue is generally decreased by the partial volume effect. Therefore, previous methods cannot extract thin blood vessel regions precisely. This paper describes a novel blood vessel segmentation method that can extract thin blood vessels with suppressing false positives. The proposed method utilizes not only lineness measure but also line-direction vector corresponding to the largest eigenvalue in Hessian analysis. By introducing line-direction information, it is possible to distinguish between a blood vessel voxel and a voxel having a low lineness measure caused by noise. In addition, we consider the scale of blood vessel. The proposed method can reduce false positives in some line-like tissues close to blood vessel regions by utilization of iterative region growing with scale information. The experimental result shows thin blood vessel (0.5 mm in diameter, almost same as voxel spacing) can be extracted finely by the proposed method.

Nimura, Yukitaka; Kitasaka, Takayuki; Mori, Kensaku

2010-03-01

108

Laser-irradiation-induced relaxation of blood vessels in vivo  

SciTech Connect

The response of blood vessels to laser irradiation in vivo was studied in the dorsal skin flap glass window chamber model of hamsters. The vasodilatory response of venules was critically dependent on the wavelength of irradiating laser. Relaxation was not produced in arterioles, although it was tried repeatedly. Vessels were irradiated with the 514.5 nm single line argon laser with irradiances from 1 to 10 W/cm{sup 2} on a 1.2 mm-diameter spot. Irradiation of venules with 2.2 W/cm{sup 2} and 4.25 W/cm{sup 2} produced reversible relaxation. Venules relaxed initially and after the interruption of irradiation returned to their original diameter. At higher irradiances (8.5 W/cm{sup 2}) an irreversible relaxation was observed. At irradiances of 10 W/cm{sup 2} and above initial relaxation was accompanied with constriction, focal coaguli, and hemostasis. Irradiation with the argon-pumped dye laser at 595 nm did not produce any significant relaxation.

Gourgouliatos, Z.F.; Welch, A.J.; Diller, K.R.; Aggarwal, S.J. (Univ. of Texas, Austin (USA))

1990-01-01

109

Heterogeneity of muscarinic receptor subtypes in cerebral blood vessels  

SciTech Connect

The identity and distribution of muscarinic cholinergic receptor subtypes and associated signal transduction mechanisms was characterized for the cerebral circulation using correlated functional and biochemical investigations. Subtypes were distinguished by the relative affinities of a panel of muscarinic antagonists, pirenzepine, AF-DX 116 (11-2-((2-(diethylaminomethyl)- 1-piperidinyl)acetyl)-5,11-dihydro-6H- pyrido(2,3-b)(1,4)benzodiazepine-6-one), hexahydrosiladifenidol, methoctramine, 4-diphenylacetoxy-N-methylpiperidine methobromide, dicyclomine, para-fluoro-hexahydrosiladifenidol and atropine. Muscarinic receptors characterized by inhibition of (3H)quinuclidinylbenzilate binding in membranes of bovine pial arteries were of the M2 subtype. In contrast pharmacological analysis of (3H)-quinuclidinylbenzilate binding in bovine intracerebral microvessels suggests the presence of an M4 subtype. Receptors mediating endothelium-dependent vasodilation in rabbit pial arteries were of the M3 subtype, whereas muscarinic receptors stimulating endothelium-independent phosphoinositide hydrolysis in bovine pial arteries were of the M1 subtype. These findings suggest that characteristics of muscarinic receptors in cerebral blood vessels vary depending on the type of vessel, cellular location and function mediated.

Garcia-Villalon, A.L.; Krause, D.N.; Ehlert, F.J.; Duckles, S.P. (Department of Pharmacology, College of Medicine, University of California, Irvine (USA))

1991-07-01

110

Beta-amyloid, blood vessels and brain function  

PubMed Central

Cerebrovascular disease and Alzheimer’s disease are common diseases of aging and frequently co-exist in the same brain. Accumulating evidence suggests that the presence of brain infarction, including silent infarction, influences the course of Alzheimer’s disease. Conversely, there is evidence that beta-amyloid can impair blood vessel function. Vascular beta-amyloid deposition, also known as cerebral amyloid angiopathy, is associated with vascular dysfunction in animal and human studies. Alzheimer’s disease is associated with morphological changes in capillary networks, and soluble beta-amyloid produces abnormal vascular responses to physiologic and pharmacologic stimuli. In this review we discuss current evidence linking beta-amyloid metabolism with vascular function and morphological changes in animals and humans.

Smith, Eric E.; Greenberg, Steven M.

2009-01-01

111

Blood Vessel Normalization in the Hamster Oral Cancer Model for Experimental Cancer Therapy Studies  

SciTech Connect

Normalization of tumor blood vessels improves drug and oxygen delivery to cancer cells. The aim of this study was to develop a technique to normalize blood vessels in the hamster cheek pouch model of oral cancer. Materials and Methods: Tumor-bearing hamsters were treated with thalidomide and were compared with controls. Results: Twenty eight hours after treatment with thalidomide, the blood vessels of premalignant tissue observable in vivo became narrower and less tortuous than those of controls; Evans Blue Dye extravasation in tumor was significantly reduced (indicating a reduction in aberrant tumor vascular hyperpermeability that compromises blood flow), and tumor blood vessel morphology in histological sections, labeled for Factor VIII, revealed a significant reduction in compressive forces. These findings indicated blood vessel normalization with a window of 48 h. Conclusion: The technique developed herein has rendered the hamster oral cancer model amenable to research, with the potential benefit of vascular normalization in head and neck cancer therapy.

Ana J. Molinari; Romina F. Aromando; Maria E. Itoiz; Marcela A. Garabalino; Andrea Monti Hughes; Elisa M. Heber; Emiliano C. C. Pozzi; David W. Nigg; Veronica A. Trivillin; Amanda E. Schwint

2012-07-01

112

Bone marrow blood vessel ossification and "microvascular dead space" in rat and human long bone.  

PubMed

Severe calcification of the bone microvascular network was observed in rats, whereby the bone marrow blood vessels appeared ossified. This study sought to characterize the magnitude of ossification in relation to patent blood vessels and adipocyte content in femoral diaphyses. Additionally, this study confirmed the presence of ossified vessels in patients with arteriosclerotic vascular disease and peripheral vascular disease and cellulitis. Young (4-6month; n=8) and old (22-24month; n=8) male Fischer-344 rats were perfused with barium sulfate to visualize patent bone marrow blood vessels. Femoral shafts were processed for bone histomorphometry to quantify ossified (Goldner's Trichrome) and calcified (Alizarin Red) vessels. Adipocyte content was also determined. Additional femora (n=5/age group) were scanned via ?CT to quantify microvascular ossification. Bone marrow blood vessels from the rats and the human patients were also isolated and examined via microscopy. Ossified vessels (rats and humans) had osteocyte lacunae on the vessel surfaces and "normal" vessels were transitioning into bone. The volume of ossified vessels was 4800% higher (p<0.05) in the old vs. young rats. Calcified and ossified vessel volumes per tissue volume and calcified vessel volume per patent vessel volume were augmented (p<0.05) 262%, 375% and 263%, respectively, in the old vs. young rats. Ossified and patent vessel number was higher (171%) and lower (40%), respectively, in the old vs. young rats. Finally, adipocyte volume per patent vessel volume was higher (86%) with age. This study is the first to report ossification of bone marrow blood vessels in rats and humans. Ossification presumably results in "microvascular dead space" in regard to loss of patency and vasomotor function as opposed to necrosis. Progression of bone microvascular ossification may provide the common link associated with age-related changes in bone and bone marrow. The clinical implications may be evident in the difficulties treating bone disease in the elderly. PMID:24680721

Prisby, Rhonda D

2014-07-01

113

The ultrastructure of the blood vessels of Branchiostoma lanceolatum (Pallas) (Cephalochordata)  

Microsoft Academic Search

The ultrastructure of the blood vessels of Branchiostoma has been studied using selected characteristic vessels as examples. It is shown that the vessels are a part of the original blastocoelic cavity and are delimited either by the basal laminae of adjacent epithelia or by connective tissue developed in the blastocoelic space. A brief account of the kinds of “connective tissue”

Hans Rfihr

1981-01-01

114

Development of retinal blood vessel segmentation methodology using wavelet transforms for assessment of diabetic retinopathy  

Microsoft Academic Search

Automated image processing has the potential to assist in the early detection of diabetes, by detecting changes in blood vessel diameter and patterns in the retina. This paper describes the development of segmentation methodology in the processing of retinal blood vessel images obtained using non-mydriatic colour photography. The methods used include wavelet analysis, supervised classifier probabilities and adaptive threshold procedures,

D. J. Cornforth; H. J. Jelinek; J. J. G. Leandro; J. V. B. Soares; R. M. Cesar; M. J. Cree; P. Mitchell; T. Bossomaier

2005-01-01

115

Medical Tests and Procedures for Finding and Treating Heart and Blood Vessel Disease  

MedlinePLUS

... per-FYOO-shun) test, also called a stress nuclear perfusion test, uses small amounts of radioactive material to make ... to examine blood vessels. Nuclear heart scan ... body is at rest or during exercise. This test also can check the blood vessels that go ...

116

Segmentation of blood vessels from red-free and fluorescein retinal images  

Microsoft Academic Search

The morphology of the retinal blood vessels can be an important indicator for diseases like diabetes, hypertension and retinopathy of prematurity (ROP). Thus, the measurement of changes in morphology of arterioles and venules can be of diagnostic value. Here we present a method to automatically segment retinal blood vessels based upon multiscale feature extraction. This method overcomes the problem of

M. Elena Martínez-Pérez; Alun D. Hughes; Simon A. Thom; Anil A. Bharath; Kim H. Parker

2007-01-01

117

Detection of blood vessels in retinal images using two-dimensional matched filters  

Microsoft Academic Search

Blood vessels usually have poor local contrast, and the application of existing edge detection algorithms yield results which are not satisfactory. An operator for feature extraction based on the optical and spatial properties of objects to be recognized is introduced. The gray-level profile of the cross section of a blood vessel is approximated by a Gaussian-shaped curve. The concept of

SUBHASIS CHAUDHURI; SHANKAR CHATTERJEE; NORMAN KATZ; MARK NELSON; MICHAEL GOLDBAUM

1989-01-01

118

Blood Vessel Fibronectin Increases in Conjunction with Endothelial Cell Proliferation and Capillary Ingrowth During Wound Healing  

Microsoft Academic Search

The regulation of angiogenesis and alterations in the structure of blood vessels taking part in wound healing are poorly understood. In studies of guinea pig 4-mm skin wounds, left uncovered for 1–28 days, biopsied and processed for 1-?m section and immunofluorescence, we found that fibronectin in blood vessel walls markedly increased in conjunction with endothelial cell proliferation and capillary ingrowth.

Richard A. F. Clark; Patricia DellaPelle; Eleanor Manseau; Joan M. Lanigan; Harold F. Dvorak; Robert B. Colvin

1982-01-01

119

Imaging tissue engineered blood vessel mimics with optical coherence tomography  

NASA Astrophysics Data System (ADS)

Optical coherence tomography (OCT) is a technology that enables 2D cross-sectional images of tissue microstructure. This interferometric technique provides resolutions of approximately 10-20 mum with a penetration depth of 1-2 mm in highly scattering tissues. With the use of fiber optics, OCT systems have been developed for intravascular imaging with a demonstrated improvement in both resolution and dynamic range compared to commercial intravascular ultrasound systems. OCT studies of normal, atherosclerotic, and stented arteries indicate the ability of OCT to visualize arterial structures. These results suggest OCT may be a valuable tool for studying luminal structures in tissue engineered constructs. In the present study, new endoscopic OCT systems and analysis techniques were developed to visualize the growth and response of the cellular lining within a tissue engineered blood vessel mimic (BVM). The BVM consists of two primary components. A biocompatible polymeric scaffold is used to form the tubular structure. Human microvessel cells from adipose tissue are sodded on to the inner surface of the scaffold. These constructs are then developed and imaged within a sterile bioreactor. Three specific aims were defined for the present study. First, an OCT longitudinal scanning endoscope was developed. With this endoscope, a study of 16 BVMs was performed comparing images from OCT and corresponding histological sections. The study demonstrated that endoscopic imaging did not visually damage the mimic cellular lining. OCT images showed excellent correlation with corresponding histological sections. Second, a concentric three element endoscope was developed to provide radial cross-sections of the BVM. OCT images using this endoscope monitored lining development on three types of polymeric scaffolds. In the third specific aim, automated algorithms were developed to assess the percent cellular coverage of a stent using volumetric OCT images. The results of the present study suggest that OCT endoscopic systems may be a valuable tool for assessing and optimizing the development of tissue engineered constructs. Conversely, the BVMs modeled the arterial response to deployed stents allowing the development of automated OCT analysis software. These results suggest that blood vessel mimics may be used to advance OCT technology and techniques.

Bonnema, Garret Thomas

120

Blood Vessel Deformations on Microsecond Time Scales by Ultrasonic Cavitation  

PubMed Central

Transient interactions among ultrasound, microbubbles, and microvessels were studied using high-speed photomicrography. We observed liquid jets, vessel distention (motion outward against the surrounding tissue), and vessel invagination (motion inward toward the lumen). Contrary to current paradigms, liquid jets were directed away from the nearest vessel wall and invagination exceeded distention. These observations provide insight into the mechanics of bubble-vessel interactions, which appear to depend qualitatively upon the mechanical properties of biological tissues.

Chen, Hong; Kreider, Wayne; Brayman, Andrew A.; Bailey, Michael R.; Matula, Thomas J.

2011-01-01

121

Three-dimensional reconstruction of rat dermal blood vessels in vivo  

NASA Astrophysics Data System (ADS)

We performed imaging and reconstruction of dermal and subdermal blood vessels in a rat skin flap window model. The window model consists of a double thickness of dorsal skin which is sutured to a holding fixture. A 1 cm circle of skin is removed from one thickness, exposing the dermal blood vessels of the opposing side. An optical coherence tomography system operating at 1310 nm was used to image the blood vessels. A series of transverse images of the window model characterized sections of tissue. Off-the-shelf software for desktop and workstation computers was used to preprocess the images, identify and reconstruct blood vessels, and to extract parameters such depth, diameter, and percent volume of blood vessels. Such parameters may be of interest in developing improved treatments for vascular disorders such as port wine stains.

Barton, Jennifer K.; Izatt, Joseph A.; Kulkarni, Manish D.; Welch, Ashley J.

1997-05-01

122

Fabrication of cell microintegrated blood vessel constructs through electrohydrodynamic atomization  

PubMed Central

Biodegradable synthetic matrices that resemble the size scale, architecture and mechanical properties of the native extracellular matrix can be fabricated through electrospinning. Tubular conduits may also be fabricated with properties appropriate for vascular tissue engineering. Achieving large cell infiltrate within the electrospun matrix in vitro remains time consuming and challenging. This difficulty was overcome by electrospraying smooth muscle cells concurrently with electrospinning of a biodegradable, elastomeric poly(ester urethane)urea (PEUU) small diameter conduit. Constructs were cultured statically or in spinner flasks. Hematoxylin and eosin (H&E) staining demonstrated qualitatively uniform SMC integration radially and circumferentially within the conduit after initial static culture. In comparison with static culture, samples cultured in spinner flasks indicated 2.4 times more viable cells present from MTT and significantly larger numbers of SMCs spread within the electrospun fiber networks by H&E image analysis. Conduits were strong and flexible with mechanical behaviors that mimicked those of native arteries, including static compliance of 1.6 ± 0.5 × 10?3 mmHg?1, dynamic compliance of 8.7 ± 1.8 × 10?4 mmHg?1, burst strengths of 1750 ± 220 mmHg, and suture retention. This method to rapidly and efficiently integrate cells into a strong, compliant biodegradable tubular matrix represents a significant achievement as a tissue engineering approach for blood vessel replacement.

Stankus, John J.; Soletti, Lorenzo; Fujimoto, Kazuro; Hong, Yi; Vorp, David A.; Wagner, William R.

2007-01-01

123

An in vivo assay to test blood vessel permeability.  

PubMed

This method is based on the intravenous injection of Evans Blue in mice as the test animal model. Evans blue is a dye that binds albumin. Under physiologic conditions the endothelium is impermeable to albumin, so Evans blue bound albumin remains restricted within blood vessels. In pathologic conditions that promote increased vascular permeability endothelial cells partially lose their close contacts and the endothelium becomes permeable to small proteins such as albumin. This condition allows for extravasation of Evans Blue in tissues. A healthy endothelium prevents extravasation of the dye in the neighboring vascularized tissues. Organs with increased permeability will show significantly increased blue coloration compared to organs with intact endothelium. The level of vascular permeability can be assessed by simple visualization or by quantitative measurement of the dye incorporated per milligram of tissue of control versus experimental animal/tissue. Two powerful aspects of this assay are its simplicity and quantitative characteristics. Evans Blue dye can be extracted from tissues by incubating a specific amount of tissue in formamide. Evans Blue absorbance maximum is at 620 nm and absorbance minimum is at 740 nm. By using a standard curve for Evans Blue, optical density measurements can be converted into milligram dye captured per milligram of tissue. Statistical analysis should be used to assess significant differences in vascular permeability. PMID:23524912

Radu, Maria; Chernoff, Jonathan

2013-01-01

124

Effect of configuration between cryoprobe and large blood vessels on the tissue freezing during cryosurgery.  

PubMed

For accurate predictions of the tissue temperature distribution during cryosurgery a thermal model should incorporate the individual impact of large blood vessels. In presence of large vessel, configuring cryoprobe becomes very important because misplacement of cryoprobes may result in either inadequate cooling temperatures in the target tissue due to the heating nature of large vessels or undesired damage to the downstream healthy tissues and organs as a result of arresting of key vessels. In this article, typical vascular models are applied to investigate the effects of large blood vessels and cryoprobe configurations on the transient temperature profiles of cooled tissues during cryosurgery. The thermal model describing heat transfer to or from large vessels is based on heat transfer coefficient derived from analytical solutions of forced convection in cylindrical ducts. A finite difference algorithm developed in our previous study is used to solve this complex problem with phase change heat transfer in biological tissues embedded with large blood vessels. Numerical computations are then performed to predict the transient temperature distributions of tissues under three different configurations of cryoprobe. The results indicate that different configurations of cryoprobe can produce significantly different temperature profiles and blood vessel heating in cooled tissues. Results of this study should be considered in the strategy for an optimal placement of cryoprobes when performing cryosurgical treatments in the vicinity of large blood vessels. PMID:17282223

Deng, Zhong-Shan; Liu, Jing

2005-01-01

125

TOPAZ: a computer code for modeling heat transfer and fluid flow in arbitrary networks of pipes, flow branches, and vessels  

SciTech Connect

An overview of the computer code TOPAZ (Transient-One-Dimensional Pipe Flow Analyzer) is presented. TOPAZ models the flow of compressible and incompressible fluids through complex and arbitrary arrangements of pipes, valves, flow branches and vessels. Heat transfer to and from the fluid containment structures (i.e. vessel and pipe walls) can also be modeled. This document includes discussions of the fluid flow equations and containment heat conduction equations. The modeling philosophy, numerical integration technique, code architecture, and methods for generating the computational mesh are also discussed.

Winters, W.S.

1984-01-01

126

Investigating laser/blood-vessel interaction with color Doppler optical coherence tomography  

NASA Astrophysics Data System (ADS)

A non-invasive method of imaging laser irradiated blood vessels, and of tracking the healing response, has been achieved using Color Doppler Optical Coherence Tomography (CDOCT). This method may increase understanding of the mechanisms behind treatment of vascular disorders such as port wine stains. The CDOCT system uses a superluminescent diode with a center wavelength of 1280 nm. Pulsed dye and KTP lasers operating at 585 and 532 nm, respectively, were used to irradiate rat and hamster dorsal skin flap window models. The window model is a chronic preparation which exposes subdermal blood vessels while maintaining a thickness of normal skin. Irradiation sites were imaged with CDOCT prior to and immediately after laser irradiation, and at intervals up to several days following irradiation. The CDOCT signal was processed to provide both magnitude and color Doppler images. The Doppler signal provides an estimate of the blood flow velocity. The response of blood vessels to radiant exposures above and below the threshold for vessel coagulation was measured. An increase in the blood vessel backscattered signal was observed as blood and vessel walls were coagulated. Changes in blood flow velocity were noted in cases where vessels constricted or flow became occluded.

Barton, Jennifer K.; Izatt, Joseph A.; Welch, Ashley J.

1998-04-01

127

Investigating pulsed dye laser-blood vessel interaction with color Doppler optical coherence tomography  

NASA Astrophysics Data System (ADS)

A non-invasive method of imaging laser irradiated blood vessels has been achieved using Color Doppler Optical Coherence Tomography (CDOCT). This method may increase understanding of the mechanisms behind treatment of vascular disorders. The CDOCT system used a 1280 nm center wavelength superluminescent diode. A 585 nm, 360 æs pulsed dye laser was used to irradiate hamster dorsal skin flap window preparations. Irradiation sites were imaged with CDOCT prior to, immediately after, and 24 hours after laser irradiation. The processed CDOCT signal provided an estimate of the blood flow velocity. An increase in the blood vessel backscattered signal was observed as blood or vessel walls were coagulated. A decrease in damaged blood vessel reflectivity occurred after twenty four hours.

Barton, Jennifer K.; Welch, Ashley J.; Izatt, Joseph A.

1998-09-01

128

Personal identification based on blood vessels of retinal fundus images  

NASA Astrophysics Data System (ADS)

Biometric technique has been implemented instead of conventional identification methods such as password in computer, automatic teller machine (ATM), and entrance and exit management system. We propose a personal identification (PI) system using color retinal fundus images which are unique to each individual. The proposed procedure for identification is based on comparison of an input fundus image with reference fundus images in the database. In the first step, registration between the input image and the reference image is performed. The step includes translational and rotational movement. The PI is based on the measure of similarity between blood vessel images generated from the input and reference images. The similarity measure is defined as the cross-correlation coefficient calculated from the pixel values. When the similarity is greater than a predetermined threshold, the input image is identified. This means both the input and the reference images are associated to the same person. Four hundred sixty-two fundus images including forty-one same-person's image pairs were used for the estimation of the proposed technique. The false rejection rate and the false acceptance rate were 9.9×10-5% and 4.3×10-5%, respectively. The results indicate that the proposed method has a higher performance than other biometrics except for DNA. To be used for practical application in the public, the device which can take retinal fundus images easily is needed. The proposed method is applied to not only the PI but also the system which warns about misfiling of fundus images in medical facilities.

Fukuta, Keisuke; Nakagawa, Toshiaki; Hayashi, Yoshinori; Hatanaka, Yuji; Hara, Takeshi; Fujita, Hiroshi

2008-04-01

129

Prevent Diabetes Problems: Keep Your Heart and Blood Vessels Healthy, Number 2 in a Series of 7.  

National Technical Information Service (NTIS)

Too much glucose (sugar) in the blood for a long time can cause diabetes problems. This high blood glucose (also called blood sugar) can damage many parts of the body, such as the heart, blood vessels, eyes, and kidneys. Heart and blood vessel disease can...

2003-01-01

130

Mouse blood vessel imaging by in-line x-ray phase-contrast imaging  

Microsoft Academic Search

It is virtually impossible to observe blood vessels by conventional x-ray imaging techniques without using contrast agents. In addition, such x-ray systems are typically incapable of detecting vessels with diameters less than 200 µm. Here we show that vessels as small as 30 µm could be detected using in-line phase-contrast x-ray imaging without the use of contrast agents. Image quality

Xi Zhang; Xiao-Song Liu; Xin-Rong Yang; Shao-Liang Chen; Pei-Ping Zhu; Qing-Xi Yuan

2008-01-01

131

Hybrid finite element-finite difference method for thermal analysis of blood vessels.  

PubMed

A hybrid finite-difference/finite-element technique for the thermal analysis of blood vessels embedded in perfused tissue has been developed and evaluated. This method provides efficient and accurate solutions to the conjugated heat transfer problem of convection by blood coupled to conduction in the tissue. The technique uses a previously developed 3D automatic meshing method for creating a finite element mesh in the tissue surrounding the vessels, coupled iteratively with a 1-D marching finite difference method for the interior of the vessels. This hybrid technique retains the flexibility and ease of automated finite-element meshing techniques for modelling the complex geometry of blood vessels and irregularly shaped tissues, and speeds the solution time by using a simple finite-difference method to calculate the bulk mean temperatures within all blood vessels. The use of the 1D finite-difference technique in the blood vessels also eliminates the large computer memory requirements needed to accurately solve large vessel network problems when fine FE meshes are used in the interior of vessels. The accuracy of the hybrid technique has been verified against previously verified numerical solutions. In summary, the hybrid technique combines the accuracy and flexibility found in automated finite-element techniques, with the speed and reduction of computational memory requirements associated with the 1D finite-difference technique, something which has not been done before. This method, thus, has the potential to provide accurate, flexible and relatively fast solutions for the thermal analysis of coupled perfusion/blood vessel problems, and large vessel network problems. PMID:10949130

Blanchard, C H; Gutierrez, G; White, J A; Roemer, R B

2000-01-01

132

Locating the Optical Nerve in a Retinal Image Using the Fuzzy Convergence of the Blood Vessels  

Microsoft Academic Search

We describe an automated method to locate the optic nerve in images of the ocular fundus. Our method uses a novel al- gorithm we call fuzzy convergence to determine the origination of the blood vessel network. We evaluate our method using 31 images of healthy retinas and 50 images of diseased retinas, containing such diverse symptoms as tortuous vessels, choroidal

Adam Hoover; Michael H. Goldbaum

2003-01-01

133

Optical Transillumination Tomography for Imaging of Tissue-Engineered Blood Vessels  

Microsoft Academic Search

Recent progress in tissue engineering led to the development of completely biological human vessels grown from the patients own cells. Those tissue-engineered blood vessels (TEBV) are grown on an individual basis at high costs per item, and therefore require close growth monitoring and quality control. We designed and tested an optical transillumination tomography system using red laser light to image

James C. Gladish; Gang Yao; Nicolas L’ Heureux; Mark A. Haidekker

2005-01-01

134

Locating the optic nerve in a retinal image using the fuzzy convergence of the blood vessels  

Microsoft Academic Search

We describe an automated method to locate the optic nerve in images of the ocular fundus. Our method uses a novel algorithm we call fuzzy convergence to determine the origination of the blood vessel network. We evaluate our method using 31 images of healthy retinas and 50 images of diseased retinas, containing such diverse symptoms as tortuous vessels, choroidal neovascularization,

Adam Hoover; Michael Goldbaum

2003-01-01

135

Brain Tumor Invasion Along Blood Vessels May Lead to New Cancer Treatments  

MedlinePLUS

... mail For Immediate Release: Tuesday, July 8, 2014 Brain tumor invasion along blood vessels may lead to new cancer treatments NIH-funded researchers find brain tumor cells disrupt the brain’s protective barrier, offering ...

136

In vivo experiments and numerical investigations on nanocryosurgical freezing of target tissues with large blood vessels.  

PubMed

This study presented the first in vivo animal experiments of using nano-cryosurgical modality to completely freezing tumor tissues embedded with large blood vessels, which is a tough issue to tackle otherwise. Three-dimensional theoretical simulations were also performed on the complex freezing problems by considering flow and heat transfer of blood flow in large vessels. According to the experimental measurements and numerical predictions, injecting the nanoparticles with high thermal conductivity into the freezing target can significantly reduce the heating effect of blood vessel, shorten the freezing time, and enlarge the freezing range. Most importantly, the introduction of nanoparticles successfully overcomes the classical challenges in completely ablating the tumor region with large blood vessel and enhancing the freezing efficacy of cryosurgery. This investigation consolidates the practical and theoretical foundation for nano-cryosurgery which suggests a highly efficient freezing strategy for treating late stage tumor. PMID:22515090

Sun, Zi-Qiao; Yang, Yang; Liu, Jing

2012-02-01

137

New Drug Therapy May Provide Hope for Infants with Blood Vessel Defect.  

National Technical Information Service (NTIS)

This citation summarizes a one-page announcement of technology available for utilization. A drug called Indomethacin offers a simple and usually effective means of treating patent ductus arteriosus, a blood vessel defect found in premature babies. Indomet...

1982-01-01

138

Temperature evolution in tissues embedded with large blood vessels during photo-thermal heating.  

PubMed

During laser-assisted photo-thermal therapy, the temperature of the heated tissue region must rise to the therapeutic value (e.g., 43°C) for complete ablation of the target cells. Large blood vessels (larger than 500 micron in diameter) at or near the irradiated tissues have a considerable impact on the transient temperature distribution in the tissue. In this study, the cooling effects of large blood vessels on temperature distribution in tissues during laser irradiation are predicted using finite element based simulation. A uniform flow is assumed at the entrance and three-dimensional conjugate heat transfer equations in the tissue region and the blood region are simultaneously solved for different vascular models. A volumetric heat source term based on Beer-Lambert law is introduced into the energy equation to account for laser heating. The heating pattern is taken to depend on the absorption and scattering coefficients of the tissue medium. Experiments are also conducted on tissue mimics in the presence and absence of simulated blood vessels to validate the numerical model. The coupled heat transfer between thermally significant blood vessels and their surrounding tissue for three different tissue-vascular networks are analyzed keeping the laser irradiation constant. A surface temperature map is obtained for different vascular models and for the bare tissue (without blood vessels). The transient temperature distribution is seen to differ according to the nature of the vascular network, blood vessel size, flow rate, laser spot size, laser power and tissue blood perfusion rate. The simulations suggest that the blood flow through large blood vessels in the vicinity of the photothermally heated tissue can lead to inefficient heating of the target. PMID:24679976

Paul, Anup; Narasimhan, Arunn; Kahlen, Franz J; Das, Sarit K

2014-04-01

139

Hemostasis of punctured blood vessels using high-intensity focused ultrasound  

Microsoft Academic Search

The hemorrhagic complications of vascular injury can be significant. We report on the use of high-intensity focused ultrasound (HIFU) to stop the hemorrhage of punctured blood vessels in pigs. Two HIFU transducers with frequencies of 3.5 and 2.0 MHz, each equipped with a water-filled conical housing, were used. Major blood vessels (femoral artery and vein, axillary artery, carotid artery and

Shahram Vaezy; Roy Martin; Hadi Yaziji; Peter Kaczkowski; George Keilman; Steve Carter; Michael Caps; Emil Y Chi; Michael Bailey; Lawrence Crum

1998-01-01

140

Pilot study on cryogenic heat transfer in biological tissues embedded with large blood vessels  

Microsoft Academic Search

Blood flow through large vessel plays an important role in affecting the temperature profiles of the living tissues under\\u000a cryosurgery. Besides, arresting of blood vessels due to freezing may possibly cause danger to the patient, which needs to\\u000a be considered when operating the cryoprobe. However, such important issues received few attentions in the bioheat field even\\u000a up to date. In

Y. T. Zhang; J. Liu; Y. X. Zhou

2002-01-01

141

Particle flow behavior in models of branching vessels. II. Effects of branching angle and diameter ratio on flow patterns.  

PubMed

To further elucidate the role of fluid mechanical factors in the localization of atherogenesis and thrombogenesis, we have studied the 3-dimensional flow patterns in square T-junctions with branching angles theta from 30 degrees to 150 degrees and diameter ratios d/D (side: main tube) from 1.05/3.0 to 1.0. Cine films of the motions of tracer microspheres in dilute suspensions were taken at inflow Reynolds numbers from 15 to 400 and flow ratios (main: side tube) from 0.1 to 4.0. Flow patterns with suspension entering through the main tube were similar to those previously described in uniform 3 mm diameter T-junctions: paired vortices (spiral secondary flows) symmetrical about the common median plane formed at the entrances of the main and side daughter tubes. Particles circulated through the main vortex, some crossing above and below the mainstream into and through the side vortex. At the geometrical flow ratio, the main vortex became smaller and smaller as the branching angle (theta less than 90 degrees) and diameter ratio decreased, and was confined to a thin side tube was a minimum. In obtuse angle T-junctions the stagnation point shifted from the flow divider into the side tube, enhancing the flow disturbance there. The velocity distributions in main and side tubes were skewed towards the inner walls close to the flow divider. When flow entered through the side tube, a pair of recirculation zones formed in the main tube at the inner wall of the bend with a sharper angle. PMID:3986324

Karino, T; Goldsmith, H L

1985-01-01

142

Impact of Cold Ischemia on Mitochondrial Function in Porcine Hearts and Blood Vessels  

PubMed Central

The effects of cold storage using Custodiol® (Histidine-Tryptophan-Ketoglutarate, HTK) or isotonic saline solution on mitochondrial function in hearts (left and rights ventricles) and various blood vessels of pigs were investigated. Hearts, saphenous veins, internal-mammary-arteries and aortas of male landrace pigs were harvested and exposed to cold ischemia in either saline or Custodiol-HTK solution. Mitochondrial function was measured in situ in permeabilized fibers by high-resolution respirometry. Mitochondrial respiratory capacities (maximal respiration rates) were similar in the right and left ventricle in controls and after 14 h of cold storage were significantly better preserved in Custodiol-HTK than in saline solution. Mitochondrial respiration rates in various blood vessels including aorta, arteries and veins were less than 5% of myocardium rates. In contrast to the pig heart, in some blood vessels, like veins, mitochondrial function remained stable even after 24 h of cold ischemia. HTK-Custodiol protection of mitochondrial function after prolonged cold ischemia was observed in the myocardium but not in blood vessels. HTK-Custodiol solution thus offers significant protection of myocardial mitochondria against cold ischemic injury and can be used as efficient preservation solution in organ transplantation but probably has no benefit for blood vessels preservation. Analysis of mitochondrial function can be used as a valuable approach for the assessment of cold ischemic injury in various tissues including pig heart and various blood vessels.

Wiedemann, Dominik; Schachner, Thomas; Bonaros, Nikolaos; Dorn, Melissa; Andreas, Martin; Kocher, Alfred; Kuznetsov, Andrey V.

2013-01-01

143

Impact of cold ischemia on mitochondrial function in porcine hearts and blood vessels.  

PubMed

The effects of cold storage using Custodiol® (Histidine-Tryptophan-Ketoglutarate, HTK) or isotonic saline solution on mitochondrial function in hearts (left and rights ventricles) and various blood vessels of pigs were investigated. Hearts, saphenous veins, internal-mammary-arteries and aortas of male landrace pigs were harvested and exposed to cold ischemia in either saline or Custodiol-HTK solution. Mitochondrial function was measured in situ in permeabilized fibers by high-resolution respirometry. Mitochondrial respiratory capacities (maximal respiration rates) were similar in the right and left ventricle in controls and after 14 h of cold storage were significantly better preserved in Custodiol-HTK than in saline solution. Mitochondrial respiration rates in various blood vessels including aorta, arteries and veins were less than 5% of myocardium rates. In contrast to the pig heart, in some blood vessels, like veins, mitochondrial function remained stable even after 24 h of cold ischemia. HTK-Custodiol protection of mitochondrial function after prolonged cold ischemia was observed in the myocardium but not in blood vessels. HTK-Custodiol solution thus offers significant protection of myocardial mitochondria against cold ischemic injury and can be used as efficient preservation solution in organ transplantation but probably has no benefit for blood vessels preservation. Analysis of mitochondrial function can be used as a valuable approach for the assessment of cold ischemic injury in various tissues including pig heart and various blood vessels. PMID:24213604

Wiedemann, Dominik; Schachner, Thomas; Bonaros, Nikolaos; Dorn, Melissa; Andreas, Martin; Kocher, Alfred; Kuznetsov, Andrey V

2013-01-01

144

Blood Vessel Contributions to Retinal Nerve Fiber Layer Thickness Profiles Measured With Optical Coherence Tomography  

PubMed Central

Purpose To understand better the influence of retinal blood vessels (BVs) on the interindividual variation in the retinal nerve fiber layer (RNFL) thickness measured with optical coherence tomography (OCT). Subjects and Methods RNFL thickness profiles were measured by OCT in 16 control individuals and 16 patients. The patients had advanced glaucoma defined by abnormal disc appearance, abnormal visual fields, and a mean visual field deviation worse than ? 10 dB. Results In general, the OCT RNFL thickness profiles showed 4 local maxima, with the peak amplitudes in the superior and inferior regions occurring in the temporal (peripapillary) disc region. There was considerable variability among individuals in the location of these maxima. However, the 4 maxima typically fell on, or near, a major BV with the temporal and inferior peaks nearly always associated with the main temporal branches of the superior and inferior veins and arteries. In the patients’ hemifields with severe loss (mean visual field deviation worse than ? 20 dB), the signals associated with the major BVs were in the order of 100 to 150 µm. Conclusions The variation in the local peaks of the RNFL profiles of controls correlates well with the location of the main temporal branches of the superior and inferior veins and arteries. This correspondence is, in part, due to a direct BV contribution to the shape of the OCT RNFL and, in part, due to the fact that BVs develop along the densest regions of axons. Although the overall BV contribution was estimated to be relatively modest, roughly 13% of the total peripapillary RNFL thickness in controls, their contribution represents a substantial portion locally and increases in importance with disease progression.

Hood, Donald C.; Fortune, Brad; Arthur, Stella N.; Xing, Danli; Salant, Jennifer A.; Ritch, Robert; Liebmann, Jeffrey M.

2010-01-01

145

Infrared laser thermal fusion of blood vessels: preliminary ex vivo tissue studies.  

PubMed

Suture ligation of blood vessels during surgery can be time-consuming and skill-intensive. Energy-based, electrosurgical, and ultrasonic devices have recently replaced the use of sutures and mechanical clips (which leave foreign objects in the body) for many surgical procedures, providing rapid hemostasis during surgery. However, these devices have the potential to create an undesirably large collateral zone of thermal damage and tissue necrosis. We explore an alternative energy-based technology, infrared lasers, for rapid and precise thermal coagulation and fusion of the blood vessel walls. Seven near-infrared lasers (808, 980, 1075, 1470, 1550, 1850 to 1880, and 1908 nm) were tested during preliminary tissue studies. Studies were performed using fresh porcine renal vessels, ex vivo, with native diameters of 1 to 6 mm, and vessel walls flattened to a total thickness of 0.4 mm. A linear beam profile was applied normal to the vessel for narrow, full-width thermal coagulation. The laser irradiation time was 5 s. Vessel burst pressure measurements were used to determine seal strength. The 1470 nm laser wavelength demonstrated the capability of sealing a wide range of blood vessels from 1 to 6 mm diameter with burst strengths of 578 ± 154, 530 ± 171, and 426 ± 174? mmHg for small, medium, and large vessel diameters, respectively. Lateral thermal coagulation zones (including the seal) measured 1.0 ± 0.4? mm on vessels sealed at this wavelength. Other laser wavelengths (1550, 1850 to 1880, and 1908 nm) were also capable of sealing vessels, but were limited by lower vessel seal pressures, excessive charring, and/or limited power output preventing treatment of large vessels (>4? mm outer diameter). PMID:23640080

Cilip, Christopher M; Rosenbury, Sarah B; Giglio, Nicholas; Hutchens, Thomas C; Schweinsberger, Gino R; Kerr, Duane; Latimer, Cassandra; Nau, William H; Fried, Nathaniel M

2013-05-01

146

Infrared laser thermal fusion of blood vessels: preliminary ex vivo tissue studies  

NASA Astrophysics Data System (ADS)

Suture ligation of blood vessels during surgery can be time-consuming and skill-intensive. Energy-based, electrosurgical, and ultrasonic devices have recently replaced the use of sutures and mechanical clips (which leave foreign objects in the body) for many surgical procedures, providing rapid hemostasis during surgery. However, these devices have the potential to create an undesirably large collateral zone of thermal damage and tissue necrosis. We explore an alternative energy-based technology, infrared lasers, for rapid and precise thermal coagulation and fusion of the blood vessel walls. Seven near-infrared lasers (808, 980, 1075, 1470, 1550, 1850 to 1880, and 1908 nm) were tested during preliminary tissue studies. Studies were performed using fresh porcine renal vessels, ex vivo, with native diameters of 1 to 6 mm, and vessel walls flattened to a total thickness of 0.4 mm. A linear beam profile was applied normal to the vessel for narrow, full-width thermal coagulation. The laser irradiation time was 5 s. Vessel burst pressure measurements were used to determine seal strength. The 1470 nm laser wavelength demonstrated the capability of sealing a wide range of blood vessels from 1 to 6 mm diameter with burst strengths of 578±154, 530±171, and 426±174 mmHg for small, medium, and large vessel diameters, respectively. Lateral thermal coagulation zones (including the seal) measured 1.0±0.4 mm on vessels sealed at this wavelength. Other laser wavelengths (1550, 1850 to 1880, and 1908 nm) were also capable of sealing vessels, but were limited by lower vessel seal pressures, excessive charring, and/or limited power output preventing treatment of large vessels (>4 mm outer diameter).

Cilip, Christopher M.; Rosenbury, Sarah B.; Giglio, Nicholas; Hutchens, Thomas C.; Schweinsberger, Gino R.; Kerr, Duane; Latimer, Cassandra; Nau, William H.; Fried, Nathaniel M.

2013-05-01

147

Computational study of thermal effects of large blood vessels in human knee joint.  

PubMed

This paper is dedicated to present a comprehensive investigation on the thermal effects of large blood vessels of human knee joint during topical cooling and fomentation treatment. A three-dimensional (3D) finite element analysis by taking full use of the anatomical CAD model of human knee joint was developed to accurately simulate the treatment process. Based on the classical Pennes bio-heat transfer equation, the time evolution of knee joint's temperature distribution and heat flux from large blood vessels was obtained. In addition, we compared several influencing factors and obtained some key conclusions which cannot be easily acquired through clinical experiments. The results indicated that the thermal effects of large blood vessels could remarkably affect the temperature distribution of knee joint during treatment process. Fluctuations of blood flow velocity and metabolic heat production rate affect little on the thermal effects of large blood vessels. Changing the temperature of blood and regimes of treatment could effectively regulate this phenomenon, which is important for many physiological activities. These results provide a guideline to the basic and applied research for the thermally significant large blood vessels in the knee organism. PMID:23196147

Xue, Xu; He, Zhi Zhu; Liu, Jing

2013-01-01

148

Development of three dimensional blood vessel search system by using on stereo and autofocus hybrid method.  

PubMed

In this study, we developed an accurate three dimensional blood vessel search (3D BVS) system and an automatic operated blood sampling system. These systems were implemented into the point-of-care system for the ubiquitous medical care, which was featured as the portable type self-monitoring blood glucose (SMBG) devise. It resolved the human error problem, which causes by the complicated manual operation of blood sampling and blood glucose measurement in conventional SMBG devices. In this study, we mainly discuss the performance examination of accurate position detection of blood vessel. Our 3D BVS system employed the near-infrared (NIR) light imaging process and the stereo and autofocus hybrid method to determine the 3D blood vessel location accurately. We evaluated the accuracy of our 3D BVS system by using the phantom of human skin, blood vessel and blood. As a result, we validated a very good performance ability of our 3D BVS system for a portable type SMBG device. PMID:22255741

Nakamachi, E

2011-01-01

149

Effects of pulsatile blood flow in large vessels on thermal dose distribution during thermal therapy.  

PubMed

The aim of this study is to evaluate the effect of pulsatile blood flow in thermally significant blood vessels on the thermal lesion region during thermal therapy of tumor. A sinusoidally pulsatile velocity profile for blood flow was employed to simulate the cyclic effect of the heart beat on the blood flow. The evolution of temperature field was governed by the energy transport equation for blood flow together with Pennes' bioheat equation for perfused tissue encircling the blood vessel. The governing equations were numerically solved by a novel multi-block Chebyshev pseudospectral method and the accumulated thermal dose in tissue was computed. Numerical results show that pulsatile velocity profile, with various combinations of pulsatile amplitude and frequency, has little difference in effect on the thermal lesion region of tissue compared with uniform or parabolic velocity profile. However, some minor differences on the thermal lesion region of blood vessel is observed for middle-sized blood vessel. This consequence suggests that, in this kind of problem, we may as well do the simulation simply by a steady uniform velocity profile for blood flow. PMID:17500462

Horng, Tzyy-Leng; Lin, Win-Li; Liauh, Chihng-Tsung; Shih, Tzu-Ching

2007-04-01

150

Label free in vivo laser speckle imaging of blood and lymph vessels  

NASA Astrophysics Data System (ADS)

The peripheral lymphatic vascular system is a part of the immune body system comprising a complex network of lymph vessels and nodes that are flowing lymph toward the heart. Traditionally the imaging of lymphatic vessels is based on the conventional imaging modalities utilizing contrast fluorescence materials. Given the important role of the lymphatic system there is a critical need for the development of noninvasive imaging technologies for functional quantitative diagnosis of the lymph vessels and lymph flow without using foreign chemicals. We report a label free methodology for noninvasive in vivo imaging of blood and lymph vessels, using long-exposure laser speckle imaging approach. This approach entails great promise in the noninvasive studies of tissues blood and lymph vessels distribution in vivo.

Kalchenko, Vyacheslav; Kuznetsov, Yuri; Meglinski, Igor; Harmelin, Alon

2012-05-01

151

Evaluation of immunohistochemical markers of lymphatic and blood vessels in canine mammary tumours.  

PubMed

Canine mammary tumours (CMTs) are the most common neoplasms in intact female dogs. Bitches with spontaneously arising CMTs represent a promising animal model for human breast cancer research. The aim of the present study was to develop an immunohistochemical protocol for the identification of blood and lymphatic vessels in CMTs. Antibodies specific for human lymphatic vessels (prox-1, lyve-1, podoplanin and D2-40) and blood vessels (von Willebrand factor [vWf], CD31 and CD34) were utilized. Serial sections of 18 samples (eight samples of normal canine mammary tissue, five benign and five malignant CMTs) were examined. Antibodies specific for podoplanin, D2-40 and CD34 showed no immunoreactivity with canine tissue. Prox-1 and CD31 were determined to be the most suitable markers for lymphatic and blood vessels, respectively. PMID:23123127

Sleeckx, N; Van Brantegem, L; Fransen, E; Van den Eynden, G; Casteleyn, C; Veldhuis Kroeze, E; Van Ginneken, C

2013-05-01

152

Proteomic profiling of tissue-engineered blood vessel walls constructed by adipose-derived stem cells.  

PubMed

Adipose-derived stem cells (ASCs) can differentiate into smooth muscle cells and have been engineered into elastic small diameter blood vessel walls in vitro. However, the mechanisms involved in the development of three-dimensional (3D) vascular tissue remain poorly understood. The present study analyzed protein expression profiles of engineered blood vessel walls constructed by human ASCs using methods of two-dimensional gel electrophoresis (2DE) and mass spectrometry (MS). These results were compared to normal arterial walls. A total of 1701±15 and 1265±26 protein spots from normal and engineered blood vessel wall extractions were detected by 2DE, respectively. A total of 20 spots with at least 2.0-fold changes in expression were identified, and 38 differently expressed proteins were identified by 2D electrophoresis and ion trap MS. These proteins were classified into seven functional categories: cellular organization, energy, signaling pathway, enzyme, anchored protein, cell apoptosis/defense, and others. These results demonstrated that 2DE, followed by ion trap MS, could be successfully utilized to characterize the proteome of vascular tissue, including tissue-engineered vessels. The method could also be employed to achieve a better understanding of differentiated smooth muscle protein expression in vitro. These results provide a basis for comparative studies of protein expression in vascular smooth muscles of different origin and could provide a better understanding of the mechanisms of action needed for constructing blood vessels that exhibit properties consistent with normal blood vessels. PMID:22963350

Wang, Chen; Guo, Fangfang; Zhou, Heng; Zhang, Yun; Xiao, Zhigang; Cui, Lei

2013-02-01

153

Blood Vessels Form a Migratory Scaffold in the Rostral Migratory Stream  

PubMed Central

In adult mice, new neurons born in the subventricular zone (SVZ), lining the lateral ventricles, migrate tangentially into the olfactory bulb along a well-delineated path, the Rostral Migratory Stream (RMS). Neuroblasts in the RMS migrate tangentially in chains, without a recognized migratory scaffold. Here, we quantitatively examine the distribution of, and relationships between, cells within the RMS, throughout its rostral-caudal extent. We show that there is a higher density of blood vessels in the RMS than in other brain regions, including areas with equal cell density, and that the orientation of blood vessels parallels the RMS throughout the caudal to rostral path. Of particular interest, migratory neuroblast chains are longitudinally aligned along blood vessels within the RMS, with over 80% of vessel length in rostral areas of the RMS apposed by neuroblasts. Electron micrographs show direct contact between endothelial cells and neuroblasts, although intervening astrocytic processes are often present. Within the RMS, astrocytes arborize extensively, extending long processes which are parallel to blood vessels and the direction of neuroblast migration. Thus, the astrocytic processes establish a longitudinal alignment within the RMS, rather than a more typical stellate shape. This complementary alignment suggests that blood vessels and astrocytes may cooperatively establish a scaffold for migrating neuroblasts, as well as provide and regulate migratory cues.

Whitman, Mary C.; Fan, Wen; Rela, Lorena; Rodriguez-Gil, Diego J.; Greer, Charles A.

2009-01-01

154

Proteomic Profiling of Tissue-Engineered Blood Vessel Walls Constructed by Adipose-Derived Stem Cells  

PubMed Central

Adipose-derived stem cells (ASCs) can differentiate into smooth muscle cells and have been engineered into elastic small diameter blood vessel walls in vitro. However, the mechanisms involved in the development of three-dimensional (3D) vascular tissue remain poorly understood. The present study analyzed protein expression profiles of engineered blood vessel walls constructed by human ASCs using methods of two-dimensional gel electrophoresis (2DE) and mass spectrometry (MS). These results were compared to normal arterial walls. A total of 1701±15 and 1265±26 protein spots from normal and engineered blood vessel wall extractions were detected by 2DE, respectively. A total of 20 spots with at least 2.0-fold changes in expression were identified, and 38 differently expressed proteins were identified by 2D electrophoresis and ion trap MS. These proteins were classified into seven functional categories: cellular organization, energy, signaling pathway, enzyme, anchored protein, cell apoptosis/defense, and others. These results demonstrated that 2DE, followed by ion trap MS, could be successfully utilized to characterize the proteome of vascular tissue, including tissue-engineered vessels. The method could also be employed to achieve a better understanding of differentiated smooth muscle protein expression in vitro. These results provide a basis for comparative studies of protein expression in vascular smooth muscles of different origin and could provide a better understanding of the mechanisms of action needed for constructing blood vessels that exhibit properties consistent with normal blood vessels.

Wang, Chen; Guo, Fangfang; Zhou, Heng; Zhang, Yun; Xiao, Zhigang

2013-01-01

155

Objective assessment of blood and lymphatic vessel invasion and association with macrophage infiltration in cutaneous melanoma  

PubMed Central

The aims of this study were to investigate the role of vascular invasion (blood and lymphatic), vessel density and the presence of tumour-associated macrophages as prognostic markers in 202 cutaneous melanoma patients. Sections of primary melanoma were stained with lymphatic-specific antibody D2-40 to assess lymphatic vessel invasion and density in intratumoural and peritumoural areas; an antibody against endothelial marker CD34 was used to determine blood vessel invasion and density, and an antibody against CD68 was used to determine macrophage counts. Immunohistochemically determined vascular invasion (combined blood and lymphatic) was compared with that determined using haematoxylin and eosin (H&E) staining. The use of immunohistochemistry increased detection of vascular invasion from 8–30% of patients, and histological exam of H&E-stained tissue was associated with a false positive rate of 64%. Lymphatic vessel invasion occurred at a much higher frequency than blood vessel invasion (27 and 4% of patients, respectively). Although immunohistochemically detected vessel invasion was significantly associated with histological markers of adverse prognosis, such as increased Breslow thickness, ulceration and mitotic rate (all P<0.001), no associations with relapse-free or overall survival were observed. High macrophage counts were significantly associated with markers of aggressive disease, such as Breslow thickness, ulceration and mitotic rate (P<0.001, P<0.001, P=0.005, respectively), and lymphatic vessel invasion and high microvessel density (P=0.002 and P=0.003, respectively). These results suggest that vascular invasion is more accurately detected using immunohistochemistry and occurs predominantly via lymphatic vessels. The association of vessel characteristics with histological characteristics of the primary melanoma provides evidence for their biological importance in melanoma, but that they were not associated with clinical outcome attests to the value of existing histological prognostic biomarkers. We note that a high macrophage count may be associated with neovascularisation and primary tumour growth, and may also promote invasion through lymphatic vessels.

Storr, Sarah J; Safuan, Sabreena; Mitra, Angana; Elliott, Faye; Walker, Christopher; Vasko, Mark J; Ho, Bernard; Cook, Martin; Mohammed, Rabab AA; Patel, Poulam M; Ellis, Ian O; Newton-Bishop, Julia A; Martin, Stewart G

2012-01-01

156

The Rheology of Blood Flow in a Branched Arterial System  

PubMed Central

Blood flow rheology is a complex phenomenon. Presently there is no universally agreed upon model to represent the viscous property of blood. However, under the general classification of non-Newtonian models that simulate blood behavior to different degrees of accuracy, there are many variants. The power law, Casson and Carreau models are popular non-Newtonian models and affect hemodynamics quantities under many conditions. In this study, the finite volume method is used to investigate hemodynamics predictions of each of the models. To implement the finite volume method, the computational fluid dynamics software Fluent 6.1 is used. In this numerical study the different hemorheological models are found to predict different results of hemodynamics variables which are known to impact the genesis of atherosclerosis and formation of thrombosis. The axial velocity magnitude percentage difference of up to 2 % and radial velocity difference up to 90 % is found at different sections of the T-junction geometry. The size of flow recirculation zones and their associated separation and reattachment point's locations differ for each model. The wall shear stress also experiences up to 12 % shift in the main tube. A velocity magnitude distribution of the grid cells shows that the Newtonian model is close dynamically to the Casson model while the power law model resembles the Carreau model. Zusammenfassung Die Rheologie von Blutströmungen ist ein komplexes Phänomen. Gegenwärtig existiert kein allgemein akzeptiertes Modell, um die viskosen Eigenschaften von Blut wiederzugeben. Jedoch gibt es mehrere Varianten unter der allgemeinen Klassifikation von nicht-Newtonschen Modellen, die das Verhalten von Blut mit unterschiedlicher Genauigkeit simulieren. Die Potenzgesetz-, Casson und Carreau-Modelle sind beliebte nicht-New-tonsche Modelle und beeinflussen die hämodynamischen Eigenschaften in vielen Situationen. In dieser Studie wurde die finite Volumenmethode angewandt, um die hämodynamischen Vorhersagen dieser Modelle zu untersuchen. Um die finite Volumenmethode zu implementieren, wurde die Fluiddynamiksoftware Fluent 6.1 verwendet. In dieser numerischen Studie wurde gefunden, dass die unterschiedlichen hämorheologischen Modelle unterschiedliche Resultate für die hämodynamischen Größen vorhersagen, von denen bekannt ist, dass sie die Entstehung von Arteriosklerose und die Bildung von Thrombose beeinflussen. Es wurde gefunden, dass die relative Differenz der axialen Geschwindigkeit bis zu 2% und die der radialen Geschwindigkeit bis zu 90% in unterschiedlichen Abschnitten der T-Verbindung beträgt. Die Größe der Strömungszirkulationszonen und ihrer dazugehörigen Trennungs- und Vereinigungspunkte differieren für jedes Modell. Die Scherspannung an der Wand erfährt ebenfalls eine Verschiebung im Hauptrohr von bis zu 12%. Der Verlauf der Geschwindigkeit auf den Gitterzellen zeigt, dass das Newtonsche Modell mit Bezug auf die Dynamik dem Casson-Modell nahe ist, während das Potenzgesetzmodell dem Carreau-Modell ähnlich ist. Résumé La rhéologie de l'écoulement sanguin est un phénomène complexe. Présentement, il n'y a pas de consensus universel sur le modèle qui représente la propriété visqueuse du sang. Cependant, parmi la classification générale des modèles non-Newtoniens qui simulent le comportement du sang avec différents degrés de précision, il y a plusieurs différences. Les lois de puissance, les modèles de Casson et Carreau sont des modèles non-Newtoniens populaires et ont un effet sur les quantités hémodynamiques sous plusieurs conditions. Dans cette étude, la méthode de volume fini est utilisée pour explorer les prédictions hémodynamiques de chacun de ces modèles. Pour implémenter la méthode de volume fini, le logiciel de calcul de dynamique des fluides Fluent 6.1 a été utilisé. Dans cette &

Shibeshi, Shewaferaw S.; Collins, William E.

2006-01-01

157

The Rheology of Blood Flow in a Branched Arterial System.  

PubMed

Blood flow rheology is a complex phenomenon. Presently there is no universally agreed upon model to represent the viscous property of blood. However, under the general classification of non-Newtonian models that simulate blood behavior to different degrees of accuracy, there are many variants. The power law, Casson and Carreau models are popular non-Newtonian models and affect hemodynamics quantities under many conditions. In this study, the finite volume method is used to investigate hemodynamics predictions of each of the models. To implement the finite volume method, the computational fluid dynamics software Fluent 6.1 is used. In this numerical study the different hemorheological models are found to predict different results of hemodynamics variables which are known to impact the genesis of atherosclerosis and formation of thrombosis. The axial velocity magnitude percentage difference of up to 2 % and radial velocity difference up to 90 % is found at different sections of the T-junction geometry. The size of flow recirculation zones and their associated separation and reattachment point's locations differ for each model. The wall shear stress also experiences up to 12 % shift in the main tube. A velocity magnitude distribution of the grid cells shows that the Newtonian model is close dynamically to the Casson model while the power law model resembles the Carreau model. ZUSAMMENFASSUNG: Die Rheologie von Blutströmungen ist ein komplexes Phänomen. Gegenwärtig existiert kein allgemein akzeptiertes Modell, um die viskosen Eigenschaften von Blut wiederzugeben. Jedoch gibt es mehrere Varianten unter der allgemeinen Klassifikation von nicht-Newtonschen Modellen, die das Verhalten von Blut mit unterschiedlicher Genauigkeit simulieren. Die Potenzgesetz-, Casson und Carreau-Modelle sind beliebte nicht-New-tonsche Modelle und beeinflussen die hämodynamischen Eigenschaften in vielen Situationen. In dieser Studie wurde die finite Volumenmethode angewandt, um die hämodynamischen Vorhersagen dieser Modelle zu untersuchen. Um die finite Volumenmethode zu implementieren, wurde die Fluiddynamiksoftware Fluent 6.1 verwendet. In dieser numerischen Studie wurde gefunden, dass die unterschiedlichen hämorheologischen Modelle unterschiedliche Resultate für die hämodynamischen Grössen vorhersagen, von denen bekannt ist, dass sie die Entstehung von Arteriosklerose und die Bildung von Thrombose beeinflussen. Es wurde gefunden, dass die relative Differenz der axialen Geschwindigkeit bis zu 2% und die der radialen Geschwindigkeit bis zu 90% in unterschiedlichen Abschnitten der T-Verbindung beträgt. Die Grösse der Strömungszirkulationszonen und ihrer dazugehörigen Trennungs- und Vereinigungspunkte differieren für jedes Modell. Die Scherspannung an der Wand erfährt ebenfalls eine Verschiebung im Hauptrohr von bis zu 12%. Der Verlauf der Geschwindigkeit auf den Gitterzellen zeigt, dass das Newtonsche Modell mit Bezug auf die Dynamik dem Casson-Modell nahe ist, während das Potenzgesetzmodell dem Carreau-Modell ähnlich ist. R#ENTITYSTARTX000E9;SUM#ENTITYSTARTX000E9;: La rhéologie de l'écoulement sanguin est un phénomène complexe. Présentement, il n'y a pas de consensus universel sur le modèle qui représente la propriété visqueuse du sang. Cependant, parmi la classification générale des modèles non-Newtoniens qui simulent le comportement du sang avec différents degrés de précision, il y a plusieurs différences. Les lois de puissance, les modèles de Casson et Carreau sont des modèles non-Newtoniens populaires et ont un effet sur les quantités hémodynamiques sous plusieurs conditions. Dans cette étude, la méthode de volume fini est utilisée pour explorer les prédictions hémodynamiques de chacun de ces modèles. Pour implémenter la méthode de volume fini, le logiciel de calcul de dynamique des fluides Fluent 6.1 a été utilisé. Dans cette étude numérique, les différents modèles hémorhéologiques tendent à prédire des résultats différents pour les variables hémodynamiques qui sont reconnues comme aya

Shibeshi, Shewaferaw S; Collins, William E

2005-01-01

158

Effect of metabolic heat generation and blood perfusion on the heat transfer in the tissues with a blood vessel  

Microsoft Academic Search

The heat transfer within a perfused tissue in the presence of a vessel is considered when metabolic heat generation and blood\\u000a perfusion in the tissue are temperature dependent. The Pennes bio-heat transfer equation is used for the perfused tissue and\\u000a a lumped capacitance analysis is used for the convection in the vessel with a constant Nusselt number. Approximate analytical\\u000a solutions

K. N. Rai; S. K. Rai

1999-01-01

159

Signaling Required for Blood Vessel Maintenance: Molecular Basis and Pathological Manifestations  

PubMed Central

As our understanding of molecular mechanisms leading to vascular formation increases, vessel maintenance including stabilization of new vessels and prevention of vessel regression began to be considered as an active process that requires specific cellular signaling. While signaling pathways such as VEGF, FGF, and angiopoietin-Tie2 are important for endothelial cell survival and junction stabilization, PDGF and TGF-? signaling modify mural cell (vascular smooth muscle cells and pericytes) functions, thus they fortify vessel integrity. Breakdown of these signaling systems results in pathological hyperpermeability and/or genetic vascular abnormalities such as vascular malformations, ultimately progressing to hemorrhage and edema. Hence, blood vessel maintenance is fundamental to controlling vascular homeostasis and tissue functions. This paper discusses signaling pathways essential for vascular maintenance and clinical conditions caused by deterioration of vessel integrity.

Murakami, Masahiro

2012-01-01

160

The cortical representation of shadows cast by retinal blood vessels.  

PubMed Central

PURPOSE: We inquired whether the representation of angioscotomas could be detected in the primary (striate) visual cortex. METHODS: In 12 normal squirrel monkeys, the ocular fundi were photographed and retinal vascular landmarks were projected onto a tangent screen for calibration. Each animal then underwent monocular enucleation under general anesthesia. Animals were perfused after 8 to 10 days, and flat-mounted sections of striate cortex were processed for the metabolic enzyme cytochrome oxidase (CO). RESULTS: In each animal, the cortical region corresponding to the blind spot appeared as a 3 x 2 mm oval in the CO staining pattern. It stood out because it received input from only 1 eye. In 9 of 12 animals, the representation of the major retinal vessels was also visible, for the same reason. In our best examples, CO sections showed about 10 thin lines radiating from the blind spot representation. Some could be traced for 15 mm, all the way to the vertical meridian. Vessels only 12 minutes of arc in diameter were represented in the cortex. Each angioscotoma representation in the cortex could be matched with its corresponding retinal vessel in the fundus. CONCLUSIONS: Our findings show that (1) the visual field map in layer IVc is more precise than indicated by physiological studies, and (2) visual experience must refine the final pattern of geniculocortical projections, given that the retinal vessels can produce a shadow only after birth. Images FIGURE 3 FIGURE 4 FIGURE 5 FIGURE 6 FIGURE 7 FIGURE 12

Horton, J C; Adams, D L

2000-01-01

161

Retinal hyperaemia-related blood vessel artifacts are relevant to automated OCT layer segmentation.  

PubMed

A frequently observed local measurement artifact with spectral domain OCT is caused by the void signal of the retinal vasculature. This study investigated the effect of suppression of blood vessel artifacts with and without retinal hyperaemia. Spectral domain OCT scans, centred on the optic nerve head, were performed in 46 healthy subjects (92 eyes). Baseline scans were made during rest, while for the follow-up scan, 23 subjects (50 %) performed strenuous physical exercise. Systemic and retinal hyperaemia were quantified. Quantification of retinal nerve fibre layer (RNFL) thickness was performed with and without suppression of retinal blood vessel artifacts. The potential systematic effect on RNFL thickness measurements was analysed using Bland-Altman plots. At baseline (no retinal hyperaemia), there was a systematic difference in RNFL thickness (3.4 ?m, limits of agreement -0.9 to 7.7) with higher values if blood vessel artifacts were not suppressed. There was significant retinal hyperaemia in the exercise group (p < 0.0001). Baseline thickness increased from 93.18 to 93.83 ?m (p < 0.05) in the exercise group using the algorithm with blood vessel artifact suppression, but no significant changes were observed using the algorithm without blood vessel artifact suppression. Retinal hyperaemia leads to blood vessel artifacts which are relevant to the precision of OCT layer segmentation algorithms. The two algorithms investigated in this study can not be used interchangeably. The algorithm with blood vessel artifact suppression was more sensitive in detecting small changes in RNFL thickness. This may be relevant for the use of OCT in a range of neurodegenerative diseases were only a small degree of retinal layer atrophy have been found so far. PMID:24390200

Balk, L J; Mayer, M; Uitdehaag, B M J; Petzold, A

2014-03-01

162

An experimental system for the study of ultrasound exposure of isolated blood vessels  

NASA Astrophysics Data System (ADS)

An experimental system designed for the study of the effects of diagnostic or therapeutic ultrasound exposure on isolated blood vessels in the presence or absence of intraluminal contrast agent is described. The system comprised several components. A microscope was used to monitor vessel size (and thus vessel functionality), and potential leakage of intraluminal 70 kDa FITC-dextran fluorescence marker. A vessel chamber allowed the mounting of an isolated vessel whilst maintaining its viability, with pressure regulation for the control of intraluminal pressure and induction of flow for the infusion of contrast microbubbles. A fibre-optic hydrophone sensor mounted on the vessel chamber using a micromanipulator allowed pre-exposure targeting of the vessel to within 150 µm, and monitoring of acoustic cavitation emissions during exposures. Acoustic cavitation was also detected using changes in the ultrasound drive voltage and by detection of audible emissions using a submerged microphone. The suitability of this system for studying effects in the isolated vessel model has been demonstrated using a pilot study of 6 sham exposed and 18 high intensity focused ultrasound exposed vessels, with or without intraluminal contrast agent (SonoVue) within the vessels.

Tokarczyk, Anna; Rivens, Ian; van Bavel, E.; Symonds-Tayler, Richard; ter Haar, Gail

2013-04-01

163

A study of ultrasound-induced microstreaming in blood vessels of tropical fish.  

PubMed Central

Tails of the tropical fish Xiphophorous maculatus have been studied by light microscopy during irradiation with continuous wave 780 kHz ultrasound. Acoustically-induced microstreaming was observed in blood vessels during irradiation with peak intensities above 1 Wcm-2. The microstreaming took the form of rotation of single blood cells and clusters of a few cells and occurred at positions close to the edges of cartilage rods supporting the tail. Streaming was detected initially in vessels 5-10 micrometers across where it impeded blood flow, and as the blood velocity fell it was also observed in larger vessels 15-30 micrometers across. Measurements of rotation speed showed that streaming velocity increased with intensity. The microstreaming is thought to result from radiation torque created by the complex standing wave field produced by reflection from the irradiation tank window and the cartilage rods, or by vibration of the rods in the sound field.

Martin, C. J.; Pratt, B. M.; Watmough, D. J.

1982-01-01

164

Analysis of the effect of partial vitrification on stress development in cryopreserved blood vessels.  

PubMed

Thermal stress development in blood vessels, during processes associated with vitrification (vitreous means glassy in Latin), is studied. This paper addresses the limiting case where the specimen completely crystallizes, while the cryoprotectant medium (CPA) completely vitrifies. This case is expected to provide upper boundary estimates for stresses for the more common problem of a partially vitrified sample. The CPA is modeled as a linear viscoelastic medium, with viscosity increasing exponentially with decreasing temperature; given the assumption of complete crystallization, the blood vessel is modeled as linear elastic below the freezing temperature. Consistent with previous observations, the CPA is found to behave linear elastically below a set-temperature, at which point the viscosity rises sufficiently quickly with further cooling. This observation reduces computational efforts and allows for parametric studies based on suitably chosen wholly elastic models. Both 2D concentric cylinder models of the blood vessel in a straight configuration and a 3D model of the vessel curled in a vial of CPA are studied; 2D models are shown to bound the results of the more general 3D problem. It is found that stress in the CPA decreases with increase in CPA volume, at least under conditions where the temperature can be viewed as uniform. Planar cracks are predicted to form transverse to the vessel axis, and to propagate right up to the blood vessel wall. Should such cracks propagate into the vessel, even over only a few mum, the mechanical damage to the lumen, or to endothelial cells, may cause the blood vessel to completely loose its functionality at the end of the cryopreservation protocol. PMID:16996295

Steif, Paul S; Palastro, Matthew C; Rabin, Yoed

2007-07-01

165

Blood vessel adaptation to gravity in a semi-arboreal snake  

NASA Technical Reports Server (NTRS)

The effects of vasoactive agonists on systemic blood vessels were examined with respect to anatomical location and gravity acclimation in the semi-arboreal snake, Elaphe Obsoleta. Major blood vessels were reactive to putative neurotransmitters, hormones or local factors in vessel specific patterns. Catecholamines, adenosine triphosphate, histamine and high potassium (80 mM) stimulated significantly greater tension per unit vessel mass in posterior than anterior arteries. Anterior vessels were significantly more sensitive to catecholamines than midbody and posterior vessels. Angiotensin II stimulated significantly greater tension in carotid artery than in midbody and posterior dorsal aorta. Arginine vasotocin strongly contracted the left and right aortic arches and anterior dorsal aorta. Veins were strongly contracted by catecholamines, high potassium and angiotensin II, but less so by adenosine triphosphate, arginine vasotocin and histamine. Precontracted vessel were relaxed by acetylcholine and sodium nitroprusside, but not by atrial natriuretic peptide or bradykinin. Chronic exposure of snakes to intermittent hypergravity stress ( + 1.5 Gz at tail) did not affect the majority of vessel responses. These data demonstrate that in vitro tension correlates with that catecholamines, as well as other agonists, are important in mediating vascular responses to gravitational stresses in snakes.

Conklin, D. J.; Lillywhite, H. B.; Olson, K. R.; Ballard, R. E.; Hargens, A. R.

1996-01-01

166

Rosacea Treatment: Redness, Flushing, and Visible Blood Vessels  

MedlinePLUS

... for a day or two. Lasers and Other Light Therapies Effectiveness: The redness, flushing, and visible blood ... may be effectively treated with lasers and other light therapies. While the number of treatments varies, most ...

167

Usefulness of blood vessels as a DNA source for PCR-based genotyping based on two cases of corpse dismemberment.  

PubMed

The success of PCR-based genotyping of decomposed remains depends on the quality of extracted DNA. Hard tissues and muscles are preferred because of their DNA stability. However, in dismembered corpses the choice of a suitable DNA source is more limited. In short tandem repeat (STR) analysis in two cases of dismembered corpses, we found an advantage of using blood vessels over muscles. To confirm that blood vessels are better for STR typing compared to muscle, we collected nine sets of blood vessels and the adjacent muscle from six other decomposed remains and compared the STR profiles between the blood vessel and muscle samples. Better results for STR typing were obtained in blood vessels. Based on these results, we recommend use of blood vessels as material for PCR-based genotyping in identification of dismembered human remains with heavy postmortem changes. PMID:19853489

Shintani-Ishida, Kaori; Harada, Kazuki; Nakajima, Makoto; Yoshida, Ken-ichi

2010-01-01

168

A Microstructurally Motivated Model of the Mechanical Behavior of Tissue Engineered Blood Vessels  

Microsoft Academic Search

Mechanical models have potential to guide the development and use of engineered blood vessels as well as other engineered\\u000a tissues. This paper presents a microstructurally motivated, pseudoelastic, mechanical model of the biaxial mechanics of engineered\\u000a vessels in the physiologic pressure range. The model incorporates experimentally measured densities and alignments of engineered\\u000a collagen. Specifically, these microstructural and associated mechanical inputs were

Shannon L. M. Dahl; Megann E. Vaughn; Jin-Jia Hu; Niels J. B. Driessen; Frank P. T. Baaijens; Jay D. Humphrey; Laura E. Niklason

2008-01-01

169

Role of the Wilms’ tumour transcription factor, Wt1, in blood vessel formation  

Microsoft Academic Search

Blood vessel formation is important for normal organ development and tumour growth. A highly specialised developmental program\\u000a of vessel formation exists in the heart and is essential for normal cardiogenesis. From mouse models, it became clear that\\u000a the Wilms’ tumour protein Wt1 is required for normal heart development. Originally identified as a tumour suppressor gene\\u000a based on its mutational inactivation

Holger Scholz; Kay-Dietrich Wagner; Nicole Wagner

2009-01-01

170

New algorithm for detecting smaller retinal blood vessels in fundus images  

NASA Astrophysics Data System (ADS)

About 4.1 million Americans suffer from diabetic retinopathy. To help automatically diagnose various stages of the disease, a new blood-vessel-segmentation algorithm based on spatial high-pass filtering was developed to automatically segment blood vessels, including the smaller ones, with low noise. Methods: Image database: Forty, 584 x 565-pixel images were collected from the DRIVE image database. Preprocessing: Green-band extraction was used to obtain better contrast, which facilitated better visualization of retinal blood vessels. A spatial highpass filter of mask-size 11 was applied. A histogram stretch was performed to enhance contrast. A median filter was applied to mitigate noise. At this point, the gray-scale image was converted to a binary image using a binary thresholding operation. Then, a NOT operation was performed by gray-level value inversion between 0 and 255. Postprocessing: The resulting image was AND-ed with its corresponding ring mask to remove the outer-ring (lens-edge) artifact. At this point, the above algorithm steps had extracted most of the major and minor vessels, with some intersections and bifurcations missing. Vessel segments were reintegrated using the Hough transform. Results: After applying the Hough transform, both the average peak SNR and the RMS error improved by 10%. Pratt's Figure of Merit (PFM) was decreased by 6%. Those averages were better than [1] by 10-30%. Conclusions: The new algorithm successfully preserved the details of smaller blood vessels and should prove successful as a segmentation step for automatically identifying diseases that affect retinal blood vessels.

Leander, Robert; Bidari, Praveen I.; Mohammed, Tauseef A.; Das, Moumita; Umbaugh, Scott E.

2010-03-01

171

COVERAGE OF BLOOD VESSELS BY ASTROCYTIC ENDFEET IS REDUCED IN MAJOR DEPRESSIVE DISORDER  

PubMed Central

Background According to clinical studies, depression and cerebrovascular disease influence each other. Despite this evidence, no studies have investigated the relationship between major depressive disorder (MDD) and cerebrovascular disease at the cellular level. Astrocytic processes are a crucial interface between blood vessels and neurons, and astrocyte density is reduced in MDD. This study investigated the coverage of vessels by astrocyte endfeet in the prefrontal cortex in MDD. Methods Thirteen pairs of MDD and non-psychiatric control subjects were used for double immunofluorescent staining and confocal image analysis. Frozen sections of gray matter from orbitofrontal area 47 and white matter from the ventro-medial prefrontal cortex were examined. Astrocytic processes (labeled with antibodies for aquaporin-4, AQP4 or glial fibrillary acidic protein, GFAP) were co-localized with blood vessels (labeled with an antibody to collagen IV) to measure the coverage of vessel walls by astrocyte processes. Results The coverage of blood vessels by endfeet of AQP4-immunoreactive (IR) astrocytes was significantly reduced by 50 percent in subjects with MDD as compared to controls (ANCOVA: F(1,23)=5.161, p=0.033). This difference was detected in orbitofrontal gray matter but not in white matter. Conversely, the coverage of vessels by GFAP-IR processes did not significantly differ between the groups. Conclusions A significant reduction in the coverage of gray matter vessels by AQP4-IR astrocyte processes in MDD suggests alterations in AQP4 functions such as regulation of water homeostasis, blood flow, glucose transport and metabolism, the blood brain barrier, glutamate turnover and synaptic plasticity.

Rajkowska, Grazyna; Hughes, Jonathan; Stockmeier, Craig A.; Miguel-Hidalgo, Jose Javier; Maciag, Dorota

2012-01-01

172

Apelin Inhibits Diet-Induced Obesity by Enhancing Lymphatic and Blood Vessel Integrity  

PubMed Central

Angiogenesis is tightly associated with the outgrowth of adipose tissue, leading to obesity, which is a risk factor for type 2 diabetes and hypertension, mainly because expanding adipose tissue requires an increased nutrient supply from blood vessels. Therefore, induction of vessel abnormality by adipokines has been well-studied, whereas how altered vascular function promotes obesity is relatively unexplored. Also, surviving Prox1 heterozygous mice have shown abnormal lymphatic patterning and adult-onset obesity, indicating that accumulation of adipocytes could be closely linked with lymphatic function. Here, we propose a new antiobesity strategy based on enhancement of lymphatic and blood vessel integrity with apelin. Apelin knockout (KO) mice fed a high-fat diet (HFD) showed an obese phenotype associated with abnormal lymphatic and blood vessel enlargement. Fatty acids present in the HFD induced hyperpermeability of endothelial cells, causing adipocyte differentiation, whereas apelin promoted vascular stabilization. Moreover, treatment of apelin KO mice with a selective cyclooxygenase-2 inhibitor, celecoxib, that were fed an HFD improved vascular function and also attenuated obesity. Finally, apelin transgenic mice showed decreased subcutaneous adipose tissue attributable to inhibition of HFD-induced hyperpermeability of vessels. These results indicate that apelin inhibits HFD-induced obesity by enhancing vessel integrity. Apelin could serve as a therapeutic target for treating obesity and related diseases.

Sawane, Mika; Kajiya, Kentaro; Kidoya, Hiroyasu; Takagi, Masaya; Muramatsu, Fumitaka; Takakura, Nobuyuki

2013-01-01

173

In vitro fabrication of functional three-dimensional tissues with perfusable blood vessels  

PubMed Central

In vitro fabrication of functional vascularized three-dimensional tissues has been a long-standing objective in the field of tissue engineering. Here we report a technique to engineer cardiac tissues with perfusable blood vessels in vitro. Using resected tissue with a connectable artery and vein as a vascular bed, we overlay triple-layer cardiac cell sheets produced from coculture with endothelial cells, and support the tissue construct with media perfused in a bioreactor. We show that endothelial cells connect to capillaries in the vascular bed and form tubular lumens, creating in vitro perfusable blood vessels in the cardiac cell sheets. Thicker engineered tissues can be produced in vitro by overlaying additional triple-layer cell sheets. The vascularized cardiac tissues beat and can be transplanted with blood vessel anastomoses. This technique may create new opportunities for in vitro tissue engineering and has potential therapeutic applications.

Sekine, Hidekazu; Shimizu, Tatsuya; Sakaguchi, Katsuhisa; Dobashi, Izumi; Wada, Masanori; Yamato, Masayuki; Kobayashi, Eiji; Umezu, Mitsuo; Okano, Teruo

2013-01-01

174

Fabrication of mesenchymal stem cells-integrated vascular constructs mimicking multiple properties of the native blood vessels  

Microsoft Academic Search

Mesenchymal stem cells (MSCs)-populated small diameter (6?mm) vascular constructs were fabricated. The constructs mimicked the native vessels in multiple levels, i.e. having similar structure and morphology to that of the extracellular matrix in the native blood vessels; recapitulating mechanical properties such as compliance and burst pressure of the native blood vessels; simulating the highly cellularized nature of the native blood

Feng Wang; Zhenqing Li; Jianjun Guan

2012-01-01

175

Vessel remodeling and plaque distribution in side branch of complex coronary bifurcation lesions: a grayscale intravascular ultrasound study.  

PubMed

To investigate vessel remodeling and plaque distribution in side branch (SB) of true coronary bifurcation lesions with SB disease extending from its ostium. A total of 62 patients with single de novo true bifurcation lesions with SB with severe and extensive disease were enrolled. Of that, 45 patients/lesions underwent pre-intervention intravascular ultrasound (IVUS) at the SB. Left anterior descending was the most prevalent target vessel (>85%). All lesions had significant involvement of both branches of the bifurcation, and the majority were classified as type 1,1,1 according to the Medina classification. Considering the subset with IVUS imaging, mean lesion length, reference diameter and % diameter stenosis in the SB were 8.88 ± 4.61 mm, 2.68 ± 0.59, and 70.2 ± 16.0%, respectively. Also, mean proximal (take-off) and distal (carina) angles were 142.3 ± 21.9° and 60.7 ± 22.4°, respectively. At minimum lumena area (MLA) site, mean external elastic membrane and MLA cross-sectional areas were 6.70 ± 2.08 and 1.87 ± 0.93 mm2, respectively; given that the mean distance measured between the SB origin and MLA site was <1 mm. In addition, mean plaque burden was 67.9% and mean remodeling index was 0.78 ± 0.21. Importantly, only 9 cases out of 45 presented remodeling index > 1.0. Also, plaque distribution analysis within the SB ostium demonstrated preferable plaque positioning in the opposite side to the flow divider. In conclusions, significant negative remodeling is a frequent encounter in SB of complex coronary bifurcation lesions presenting with extensive and severe disease; in addition, plaque distribution in the SB ostium appears to be asymmetric in relation to the parent vessel, as plaque burden is mostly found in regions of low wall shear stress including the opposite side to the flow divider within the bifurcation anatomy. PMID:23868286

Costa, Ricardo A; Feres, Fausto; Staico, Rodolfo; Abizaid, Alexandre; Costa, J Ribamar; Siqueira, Dimytri; Tanajura, Luiz F; Damiani, Lucas P; Sousa, Amanda; Sousa, J Eduardo; Colombo, Antonio

2013-12-01

176

Crosslinking of saphenous vein ECM by procyanidins for small diameter blood vessel replacement.  

PubMed

Xenogenic decellularized vessels, mainly composed of extracellular matrices (ECMs), are thought to be one of the alternative resources of small-diameter blood vessels due to abundant source, tubular configuration, vascular microstructure, and good cytocompatibility. However, the main shortcomings of ECM vessels are their low chemical stability, easy calcification, immunogenicity, and high risk of thrombogenicity. Previous studies have shown that, glutaraldehyde (GA), as a crosslinking agent, led to significant calcification and cytotoxicity for the prepared ECM substitutes. To overcome the drawbacks of pure and GA-crosslinked vascular alternatives of small-diameter blood vessels, procyanidins (PC), a naturally derived polyphenol with anti-inflammatory and platelet aggregation inhibiting bioactivities, was applied to crosslink the decellularized bovine saphenous vein ECM (svECM). After crosslinking, the obtained svECM substitutes exhibited natural tubular configuration with significantly improved mechanical properties, proper resistance to proteolysis, high chemical stability, and excellent anticalcification property. The PC-crosslinked svECM substitutes were cytocompatible for cells adhesion and proliferation, and blood compatible for erythrocytes with far less hemolysis than that of safety standard. Furthermore, the PC-crosslinked svECM substitutes showed distinct antithrombosis and anti-immunogenicity potential. With these advantages, it is suggested that the PC-crosslinked svECM may be used as a practical substitutes of small diameter blood vessels. © 2014 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 102B: 1190-1198, 2014. PMID:24425308

Zhai, Wanyin; Zhang, Hongxia; Wu, Chengtie; Zhang, Jiamin; Sun, Xiaoning; Zhang, Hongfeng; Zhu, Ziyan; Chang, Jiang

2014-08-01

177

Ultrasonic Technique for Assessing Wall Vibrations in Stenosed Blood Vessels.  

National Technical Information Service (NTIS)

A real-time signal processing technique for ultrasonic imaging of tissue vibrations for localizing the source of a bruit in a 2D image with respect to the anatomy and/or for obtaining simultaneous information about vibrations and the underlying blood flow...

K. W. Beach S. Sikdar Y. Kim

2005-01-01

178

An efficient algorithm for retinal blood vessel segmentation using h-maxima transform and multilevel thresholding.  

PubMed

Retinal blood vessel detection and analysis play vital roles in early diagnosis and prevention of several diseases, such as hypertension, diabetes, arteriosclerosis, cardiovascular disease and stroke. This paper presents an automated algorithm for retinal blood vessel segmentation. The proposed algorithm takes advantage of powerful image processing techniques such as contrast enhancement, filtration and thresholding for more efficient segmentation. To evaluate the performance of the proposed algorithm, experiments were conducted on 40 images collected from DRIVE database. The results show that the proposed algorithm yields an accuracy rate of 96.5%, which is higher than the results achieved by other known algorithms. PMID:21331960

Saleh, Marwan D; Eswaran, C

2012-01-01

179

An automated blood vessel segmentation algorithm using histogram equalization and automatic threshold selection.  

PubMed

This paper focuses on the detection of retinal blood vessels which play a vital role in reducing the proliferative diabetic retinopathy and for preventing the loss of visual capability. The proposed algorithm which takes advantage of the powerful preprocessing techniques such as the contrast enhancement and thresholding offers an automated segmentation procedure for retinal blood vessels. To evaluate the performance of the new algorithm, experiments are conducted on 40 images collected from DRIVE database. The results show that the proposed algorithm performs better than the other known algorithms in terms of accuracy. Furthermore, the proposed algorithm being simple and easy to implement, is best suited for fast processing applications. PMID:20524139

Saleh, Marwan D; Eswaran, C; Mueen, Ahmed

2011-08-01

180

Cellular and molecular mechanisms underlying blood vessel lumen formation.  

PubMed

The establishment of a functional vascular system requires multiple complex steps throughout embryogenesis, from endothelial cell (EC) specification to vascular patterning into venous and arterial hierarchies. Following the initial assembly of ECs into a network of cord-like structures, vascular expansion and remodeling occur rapidly through morphogenetic events including vessel sprouting, fusion, and pruning. In addition, vascular morphogenesis encompasses the process of lumen formation, critical for the transformation of cords into perfusable vascular tubes. Studies in mouse, zebrafish, frog, and human endothelial cells have begun to outline the cellular and molecular requirements underlying lumen formation. Although the lumen can be generated through diverse mechanisms, the coordinated participation of multiple conserved molecules including transcription factors, small GTPases, and adhesion and polarity proteins remains a fundamental principle, leading us closer to a more thorough understanding of this complex event. PMID:24323945

Charpentier, Marta S; Conlon, Frank L

2014-03-01

181

Automated artery-venous classification of retinal blood vessels based on structural mapping method  

NASA Astrophysics Data System (ADS)

Retinal blood vessels show morphologic modifications in response to various retinopathies. However, the specific responses exhibited by arteries and veins may provide a precise diagnostic information, i.e., a diabetic retinopathy may be detected more accurately with the venous dilatation instead of average vessel dilatation. In order to analyze the vessel type specific morphologic modifications, the classification of a vessel network into arteries and veins is required. We previously described a method for identification and separation of retinal vessel trees; i.e. structural mapping. Therefore, we propose the artery-venous classification based on structural mapping and identification of color properties prominent to the vessel types. The mean and standard deviation of each of green channel intensity and hue channel intensity are analyzed in a region of interest around each centerline pixel of a vessel. Using the vector of color properties extracted from each centerline pixel, it is classified into one of the two clusters (artery and vein), obtained by the fuzzy-C-means clustering. According to the proportion of clustered centerline pixels in a particular vessel, and utilizing the artery-venous crossing property of retinal vessels, each vessel is assigned a label of an artery or a vein. The classification results are compared with the manually annotated ground truth (gold standard). We applied the proposed method to a dataset of 15 retinal color fundus images resulting in an accuracy of 88.28% correctly classified vessel pixels. The automated classification results match well with the gold standard suggesting its potential in artery-venous classification and the respective morphology analysis.

Joshi, Vinayak S.; Garvin, Mona K.; Reinhardt, Joseph M.; Abramoff, Michael D.

2012-02-01

182

Role of tissue factor in embryonic blood vessel development  

Microsoft Academic Search

TISSUE factor, a member of the cytokine-receptor superfamily and high-affinity receptor and cofactor for plasma factor Vll\\/VIIa (ref. 1), is the primary cellular initiator of blood coagulation. It is involved in thrombosis and inflammation associated with sepsis, atherosclerosis and cancer2, and can participate in other cellular processes including intracellular signalling3, metastasis4, tumour-associated angiogenesis5, and embryogenesis6. Here we report that inactivation

Peter Carmeliet; Nigel Mackman; Lieve Moons; Thomas Luther; Pierre Gressens; Lise van Vlaenderen; Hilde Demunck; Michael Kasper; Georg Breier; Philippe Evrard; Martin Müller; Werner Risau; Thomas Edgington; Désiré Collen

1996-01-01

183

Polysaccharides from astragali radix restore chemical-induced blood vessel loss in zebrafish  

PubMed Central

Background Astragali Radix has been used widely for the treatment of cardiovascular and cerebrovascular diseases, and to enhance endurance and stamina in traditional Chinese medicine (TCM) for over 2000 years. The polysaccharide constituents of Astragali Radix (ARP) are considered as one of the major constituents contributing to the multiple pharmacological effects of this medicinal plant. The purpose of the study is to evaluate the vascular regenerative activities of ARPs in a chemically-induced blood vessel loss model in zebrafish. Methods Blood vessel loss was induced in both Tg(fli-1a:EGFP)y1 and Tg(fli-1a:nEGFP)y7 embryos by administration of 300 nM VEGFR tyrosine kinase inhibitor II (VRI) for 3 h at 24 hpf (hour post-fertilization). Then, the blood vessel damaged zebrafish were treated with ARPs for 21 h and 45 h after VRI withdrawal. Morphological changes in intersegmental vessels (ISVs) of zebrafish larvae were observed under the fluorescence microscope and measured quantitatively. The rescue effect of ARPs in the zebrafish models was validated by measuring the relative mRNA expressions of Kdrl, Kdr and Flt-1 using real-time PCR. Results Two polysaccharide fractions, P4 (50000 D < molecular weight & diameter < 0.1 ?m) and P5 (molecular diameter > 0.1 ?m), isolated from Astragali Radix by ultrafiltration, produced a significant and dose-dependent recovery in VRI-induced blood vessel loss in zebrafish. Furthermore, the down-regulation of Flk-1 and Flt-1 mRNA expression induced by VRI was reversed by treatment with P4. Conclusion The present study demonstrates that P4 isolated from Astragali Radix reduces VRI-induced blood vessel loss in zebrafish. These findings support the hypothesis that polysaccharides are one of the active constituents in Astragali Radix, contributing to its beneficial effect on treatment of diseases associated with a deficiency in angiogenesis.

2012-01-01

184

Blood vessel remodeling in pig ovarian follicles during the periovulatory period: an immunohistochemistry and SEM-corrosion casting study  

PubMed Central

Background The present research aims to describe the process of vascular readjustment occurring in pig ovary during the periovulatory phase (from LH surge to ovulation) that drives the transformation of the follicle, a limited blood supplied structure, into the corpus luteum, a highly vascularised endocrine gland required to maintain high levels of progesterone in pregnancy. The swine model was chosen because it is characterized by a long periovulatory window (about 40–44 hrs-similar to human) that permits to recover follicles at a precise endocrinological timing. Methods By validated hormonal protocol (eCG+hCG), able to mimic the physiologic gonadotropin stimulation, preovulatory follicles (PreOFs, 60 h-eCG), follicles in the middle (early periovulatory follicles, EPerOFs, 18 h-hCG) or late (LPerOFs, 36 h-hCG) periovulatory phase were isolated from prepubertal gilts. To understand the angiogenic process, morphological/morphometrical analyses were performed by combining immunohistochemistry (IHC) and SEM of vascular corrosion casts (VCC) techniques. Results PreOFs showed a vascular plexus with proliferating endothelial cells (EPI). This plexus was characterized by a dense inner capillary network, with angiogenic figures, connected to the outer network by anastomotic vessels (arterioles and venules of the middle network). EPerOFs decreased their EPI, blood vessel extension in the outer network, and evidenced a reduced compactness of blood vessels. In LPerOFs, a rapid neovascularization was associated to an intensive tissue remodeling: the follicle acquired an undulated aspect presenting arterioles/venules near the basal membrane, increased vascular extension by EPI, sprouting and non-sprouting angiogenesis. The analysis of vascular geometric relations and branching angles evidenced similar values at all stages. Conclusion These data allow us to hypothesize that EPerOFs are in a quiescent status. LPerOFs represent the "metamorphic" follicles that rapidly turn-on angiogenesis to sustain a successful corpus luteum formation. Particularly, it is interesting to underlie that the non-sprouting angiogenesis, typical of structures in rapid neovascularization, occurred only in the LPerOFs. Moreover, vascular geometric relations showed as blood vessel remodeling occurs with the "maximum output and the minimum energetic expense". This knowledge will allow to better understand the mechanisms regulating the reproductive success and to clarify the complex physiological angiogenic process in adult tissues.

Martelli, Alessandra; Palmerini, Maria Grazia; Russo, Valentina; Rinaldi, Carlo; Bernabo, Nicola; Di Giacinto, Oriana; Berardinelli, Paolo; Nottola, Stefania Annarita; Macchiarelli, Guido; Barboni, Barbara

2009-01-01

185

Peristaltic Pumping of Blood Through Small Vessels of Varying Cross-Section  

NASA Astrophysics Data System (ADS)

The paper is devoted to a study of the peristaltic motion of blood in the micro-circulatory system. The vessel is considered to be of varying cross-section. The progressive peristaltic waves are taken to be of sinusoidal nature. Blood is considered to be a Herschel-Bulkley fluid. Of particular concern here is to investigate the effects of amplitude ratio, mean pressure gradient, yield stress and the power law index on the velocity distribution, streamline pattern and wall shear stress. On the basis of the derived analytical expression, extensive numerical calculations have been made. The study reveals that velocity of blood and wall shear stress are appreciably affected due to the non-uniform geometry of blood vessels. They are also highly sensitive to the magnitude of the amplitude ratio and the value of the fluid index.

Misra, J. C.; Maiti, S.

2012-11-01

186

Occlusion of Small Vessels by Malaria-Infected Red Blood Cells  

NASA Astrophysics Data System (ADS)

We use dissipative particle dynamics (DPD) method to study malaria-infected red blood cells (i-RBC). We have developed a multi-scale model to describe both static and dynamic properties of RBCs. With this model, we study the adhesive interaction between RBCs as well as the interaction between the Plasmodium falciparum (Pf)-parasitized cells and a vessel wall coated with purified ICAM-1. In this talk, we will discuss the effect of the Pf-parasitized malaria cell on the flow resistance of the blood flow at different parasetimia levels. The blood flow in malaria disease shows high flow resistance as compared with the healthy case due to both the stiffening of the i-RBCs (up to ten times) as well as the adhesion dynamics. For certain sizes of of small vessels, the malaria-infected cells can even lead to occlusion of the blood flow, in agreement with recent experiments.

Lei, Huan; Fedosov, Dmitry; Caswell, Bruce; Karniadakis, George

2010-11-01

187

Bone, blood vessels, and muscle detection algorithm and creating database based on dynamic and non-dynamic multi-slice CT image of head and neck  

NASA Astrophysics Data System (ADS)

Nowadays, dental CT images play more and more important roles in oral clinical applications. Our research is important particularly in the field of dentistry. We are using non-dynamic and dynamic CT image for our research. We are creating our database of bone, blood vessels and muscles of head and neck. This database contains easy case and difficult case of head and neck's bone, blood vessels and muscle. There are lots of difficult cases in our database. Teeth separation and condylar process separation is difficult case. External carotid artery has many branches and they are attached with vain so it is difficult to separate. All muscle threshold value is same and they are attaching with each other so muscle separation is very difficult. These databases also contain different age's patients. For this reason our database becomes an important tool for dental students and also important assets for diagnosis. After completion our database we can link it with other dental application.

Shabbir Ahamed, Mohammed; Kubo, Mitsuru; Kawata, Yoshiki; Niki, Noboru; Iwasaki, Hirokazu

2007-03-01

188

Acrylic resin injection method for blood vessel investigations.  

PubMed

The injection of acrylic resin into vessels is an excellent method for macroscopically and microscopically observing their three-dimensional features. Conventional methods can be enhanced by removal of the polymerization inhibitor (hydroquinone) without requiring distillation, a consistent viscosity of polymerized resin, and a constant injection pressure and speed. As microvascular corrosion cast specimens are influenced by viscosity, pressure, and speed changes, injection into different specimens yields varying results. We devised a method to reduce those problems. Sodium hydroxide was used to remove hydroquinone from commercial methylmethacrylate. The solid polymer and the liquid monomer were mixed using a 1 : 9 ratio (low-viscosity acrylic resin, 9.07 ± 0.52 mPa•s) or a 3:7 ratio (high-viscosity resin, 1036.33 ± 144.02 mPa•s). To polymerize the acrylic resin for injection, a polymerization promoter (1.0% benzoyl peroxide) was mixed with a polymerization initiator (0.5%, N, N-dimethylaniline). The acrylic resins were injected using a precise syringe pump, with a 5-mL/min injection speed and 11.17 ± 1.60 mPa injection pressure (low-viscosity resin) and a 1-mL/min injection speed and 58.50 ± 5.75 mPa injection pressure (high-viscosity resin). Using the aforementioned conditions, scanning electron microscopy indicated that sufficient resin could be injected into the capillaries of the microvascular corrosion cast specimens. PMID:24107720

Suwa, Fumihiko; Uemura, Mamoru; Takemura, Akimichi; Toda, Isumi; Fang, Yi-Ru; Xu, Yuan Jin; Zhang, Zhi Yuan

2013-01-01

189

A Microstructurally Motivated Model of the Mechanical Behavior of Tissue Engineered Blood Vessels  

PubMed Central

Mechanical models have potential to guide the development and use of engineered blood vessels as well as other engineered tissues. This paper presents a microstructurally motivated, pseudoelastic, mechanical model of the biaxial mechanics of engineered vessels in the physiologic pressure range. The model incorporates experimentally measured densities and alignments of engineered collagen. Specifically, these microstructural and associated mechanical inputs were measured directly from engineered blood vessels that were cultured over periods of 5–7.5 weeks. To the best of our knowledge, this is the first successful application of either a phenomenological or a microstructurally motivated mechanical model to engineered vascular tissues. Model development revealed the need to use novel theoretical configurations to describe the strain history of engineered vessels. The constitutive equations developed herein suggested that collagen remodeled between 5 and 7.5 weeks during a 7.5-week culture period. This remodeling led to strain energies for collagen that differed with alignment, which likely resulted from undulations that varied with alignment. Finally, biaxial data emphasized that axial extensions increase stresses in engineered vessels in the physiologic pressure range, thereby providing a guideline for surgical use: engineered vessels should be implanted at appropriate axial extension to minimize adverse stress responses.

Dahl, Shannon L. M.; Vaughn, Megann E.; Hu, Jin-Jia; Driessen, Niels J. B.; Baaijens, Frank P. T.; Humphrey, Jay D.; Niklason, Laura E.

2008-01-01

190

PERIPHERAL NERVE-DERIVED CXCL12 AND VEGF-A REGULATE THE PATTERNING OF ARTERIAL VESSEL BRANCHING IN DEVELOPING LIMB SKIN  

PubMed Central

SUMMARY In developing limb skin, peripheral nerves provide a spatial template that controls the branching pattern and differentiation of arteries. Our previous studies indicate that nerve-derived VEGF-A is required for arterial differentiation but not for nerve-vessel alignment. In this study, we demonstrate that nerve-vessel alignment depends on the activity of Cxcl12-Cxcr4 chemokine signaling. Genetic inactivation of Cxcl12-Cxcr4 signaling perturbs nerve-vessel alignment, and abolishes arteriogenesis. Further in vitro assays allow us to uncouple nerve-vessel alignment and arteriogenesis, revealing that nerve-derived Cxcl12 stimulates endothelial cell migration, while nerve-derived VEGF-A is responsible for arterial differentiation. These findings suggest a coordinated sequential action in which nerve-Cxcl12 functions over a distance to recruit vessels to align with nerves and subsequent arterial differentiation presumably requires a local-action of nerve-VEGF-A in the nerve-associated vessels.

Li, Wenling; Kohara, Hiroshi; Uchida, Yutaka; James, Jennifer M.; Soneji, Kosha; Cronshaw, Darran G.; Zou, Yong-Rui; Nagasawa, Takashi; Mukouyama, Yoh-suke

2013-01-01

191

Mechanism of IL12 mediated alterations in tumour blood vessel morphology: analysis using whole-tissue mounts  

Microsoft Academic Search

New blood vessel formation within tumours is a critical feature for tumour growth. A major limitation in understanding this complex process has been the inability to visualise and analyse vessel formation. Here, we report on the development of a whole-tissue mount technique that allows visualisation of vessel structure. Mice expressing green fluorescent protein (GFP) made it possible to easily see

S A Gerber; J P Moran; J G Frelinger; J A Frelinger; B M Fenton; E M Lord; EM Lord

2003-01-01

192

Locating Blood Vessels in Retinal Images by Piece-wise Threshold Probing of a Matched Filter Response  

Microsoft Academic Search

We describe an automated method to locate and outline blood vessels in images of the ocular fundus. Such a tool should prove useful to eye care specialists for purposes of patient screening, treatment evaluation, and clinical study. Our method differs from previously known methods in that it uses local and global vessel features cooperatively to segment the vessel network. We

Adam Hoover; Valentina Kouznetsova; Michael H. Goldbaum

2000-01-01

193

Angiotensin inhibition enhances drug delivery and potentiates chemotherapy by decompressing tumour blood vessels  

PubMed Central

Cancer and stromal cells actively exert physical forces (solid stress) to compress tumour blood vessels, thus reducing vascular perfusion. Tumour interstitial matrix also contributes to solid stress, with hyaluronan implicated as the primary matrix molecule responsible for vessel compression because of its swelling behaviour. Here we show, unexpectedly, that hyaluronan compresses vessels only in collagen-rich tumours, suggesting that collagen and hyaluronan together are critical targets for decompressing tumour vessels. We demonstrate that the angiotensin inhibitor losartan reduces stromal collagen and hyaluronan production, associated with decreased expression of profibrotic signals TGF-?1, CCN2 and ET-1, downstream of angiotensin-II-receptor-1 inhibition. Consequently, losartan reduces solid stress in tumours resulting in increased vascular perfusion. Through this physical mechanism, losartan improves drug and oxygen delivery to tumours, thereby potentiating chemotherapy and reducing hypoxia in breast and pancreatic cancer models. Thus, angiotensin inhibitors —inexpensive drugs with decades of safe use — could be rapidly repurposed as cancer therapeutics.

Chauhan, Vikash P.; Martin, John D.; Liu, Hao; Lacorre, Delphine A.; Jain, Saloni R.; Kozin, Sergey V.; Stylianopoulos, Triantafyllos; Mousa, Ahmed S.; Han, Xiaoxing; Adstamongkonkul, Pichet; Popovic, Zoran; Huang, Peigen; Bawendi, Moungi G.; Boucher, Yves; Jain, Rakesh K.

2013-01-01

194

HIFU procedures at moderate intensities—effect of large blood vessels  

Microsoft Academic Search

A three-dimensional computational model is presented for studying the efficacy of high-intensity focused ultrasound (HIFU) procedures targeted near large blood vessels. The analysis applies to procedures performed at intensities below the threshold for cavitation, boiling and highly nonlinear propagation, but high enough to increase tissue temperature a few degrees per second. The model is based upon the linearized KZK equation

P Hariharan; M R Myers; R K Banerjee

2007-01-01

195

Peculiar structures of the blood vessels forming the secondary ossification center in the rat femoral heads  

Microsoft Academic Search

To investigate the development of the blood vessels forming the secondary ossification center in the femoral heads of growing rats, we observed the specimens of the proximal femurs having vascular casts using both an optical and a scanning electron microscopy (SEM). Histologically, the vascular invasion occurred from the lateral part of the cartilaginous epiphysis, prior to the appearance of the

T. Hirano; M. E. Rabbi; K. Taguchi; K. Iwasaki

1994-01-01

196

New feature-based detection of blood vessels and exudates in color fundus images  

Microsoft Academic Search

Exudates are one of the earliest and most prevalent symptoms of diseases leading to blindness such as diabetic retinopathy and wet macular degeneration. Certain areas of the retina with such conditions are to be photocoagulated by laser to stop the disease progress and prevent blindness. Outlining these areas is dependent on outlining the exudates, the blood vessels, the optic disc

Doaa Youssef; Nahed Solouma; Amr El-dib; Mai Mabrouk; Abo-Bakr Youssef

2010-01-01

197

Mouse lung contains endothelial progenitors with high capacity to form blood and lymphatic vessels  

Microsoft Academic Search

BACKGROUND: Postnatal endothelial progenitor cells (EPCs) have been successfully isolated from whole bone marrow, blood and the walls of conduit vessels. They can, therefore, be classified into circulating and resident progenitor cells. The differentiation capacity of resident lung endothelial progenitor cells from mouse has not been evaluated. RESULTS: In an attempt to isolate differentiated mature endothelial cells from mouse lung

Judith Schniedermann; Moritz Rennecke; Kerstin Buttler; Georg Richter; Anna-Maria Städtler; Susanne Norgall; Muhammad Badar; Bernhard Barleon; Tobias May; Jörg Wilting; Herbert A Weich

2010-01-01

198

Blood vessel invasion in resected non small cell lung carcinomas is predictive of metastatic occurrence  

Microsoft Academic Search

Prognosis of patients with non small cell lung cancer (NSCLC) remains difficult to assess, even after adjustment for pathological stage. Prognostic value of numerous biological markers has been evaluated, with conflicting results. Data of 86 patients with NSCLC treated by surgery were collected with clinical characteristics, histopathological data including tumor differentiation and status of blood and lymphatic vessel invasion and

V Rigau; T. J Molina; C Chaffaud; G Huchon; J Audouin; S Chevret; J. M Bréchot

2002-01-01

199

A Blood Vessel Model Constructed from Collagen and Cultured Vascular Cells  

Microsoft Academic Search

A model of a blood vessel was constructed in vitro. Its multilayered structure resembled that of an artery and it withstood physiological pressures. Electron microscopy showed that the endothelial cells lining the lumen and the smooth muscle cells in the wall were healthy and well differentiated. The lining of endothelial cells functioned physically, as a permeability barrier, and biosynthetically, producing

Crispin B. Weinberg; Eugene Bell

1986-01-01

200

Heterogeneity of Angiogenesis and Blood Vessel Maturation in Human Tumors: Implications for Antiangiogenic Tumor Therapies1  

Microsoft Academic Search

Microvessel density (MVD) counting techniques have been widely used to assess the vasculature in tumors. MVD counts assess the presence of blood vessels but do not give an indication of the degree of angiogenesis and the functional status of the tumor neovasculature. To analyze angiogenesis and the functional status of the tumor vascular bed, we have quantitated endo- thelial cell

Anne Eberhard; Sebastian Kahlert; Valentin Goede; Bernhard Hemmerlein; Karl H. Plate; Hellmut G. Augustin

2000-01-01

201

Mass General study finds normalizing tumor blood vessels improves delivery of only the smallest nanomedicines  

Cancer.gov

Combining two strategies designed to improve the results of cancer treatment – antiangiogenesis drugs and nanomedicines – may only be successful if the smallest nanomedicines are used. A new study from Massachusetts General Hospital researchers, appearing in Nature Nanotechnology, finds that normalizing blood vessels within tumors, which improves the delivery of standard chemotherapy drugs, can block the delivery of larger nanotherapy molecules.

202

Biogenic amines modulate pulse rate in the dorsal blood vessel of Lumbriculus variegatus  

Microsoft Academic Search

The biogenic amines are widespread regulators of physiological processes, and play an important role in regulating heart rate in diverse organisms. Here, we present the first pharmacological evidence for a role of the biogenic amines in the regulation of dorsal blood vessel pulse rate in an aquatic oligochaete, Lumbriculus variegatus (Müller, 1774). Bath application of octopamine to intact worms resulted

Kevin M. Crisp; Rebecca E. Grupe; Tenzin T. Lobsang; Xong Yang

2010-01-01

203

Design and Implementation of a Unique Blood-Vessel Detection Algorithm towards Early Diagnosis of Diabetic Retinopathy  

Microsoft Academic Search

Diabetic retinopathy (DR), a major complication of diabetes and the leading cause of new cases of blindness among adults, can be cured by the early and precise detection of the disease. An important aspect of DR is the micro-vascular changes that cause detectable changes in the appearance of retinal blood vessels. In this paper, we propose a new blood-vessel detection

Sumeet Dua; Naveen Kandiraju; Hilary W. Thompson

2005-01-01

204

Measurements of Dynamic Viscoelasticity of Poly (vinyl alcohol) Hydrogel for the Development of Blood Vessel Biomodeling  

NASA Astrophysics Data System (ADS)

In vitro blood vessel biomodeling with realistic mechanical properties and geometrical structures is helpful for training in surgical procedures, especial those used in endovascular treatment. Poly (vinyl alcohol) hydrogel (PVA-H), which is made of Poly (vinyl alcohol) (PVA) and water, may be useful as a material for blood vessel biomodeling due to its low surface friction resistance and good transparency. In order to simulate the mechanical properties of blood vessels, measurements of mechanical properties of PVA-H were carried out with a dynamic mechanical analyzer, and the storage modulus (G’) and loss modulus (G”) of PVA-H were obtained. PVA-Hs were prepared by the low-temperature crystallization method. They were made of PVA with various concentrations (C) and degrees of polymerization (DP), and made by blending two kinds of PVA having different DP or saponification values (SV). The G’ and G” of PVA-H increased, as the C or DP of PVA increased, or as the proportion of PVA with higher DP or SV increased. These results indicate that it is possible to obtain PVA-H with desirable dynamic viscoelasticity. Furthermore, it is suggested that PVA-H is stable in the temperature range of 0°C to 40°C, indicating that biomodeling made of PVA-H should be available at 37°C, the physiological temperature. The dynamic viscoelasticity of PVA-H obtained was similar to that of the dog blood vessel measured in previous reports. In conclusion, PVA-H is suggested to be useful as a material of blood vessel biomodeling.

Kosukegawa, Hiroyuki; Mamada, Keisuke; Kuroki, Kanju; Liu, Lei; Inoue, Kosuke; Hayase, Toshiyuki; Ohta, Makoto

205

Automated characterization of blood vessels as arteries and veins in retinal images.  

PubMed

In recent years researchers have found that alternations in arterial or venular tree of the retinal vasculature are associated with several public health problems such as diabetic retinopathy which is also the leading cause of blindness in the world. A prerequisite for automated assessment of subtle changes in arteries and veins, is to accurately separate those vessels from each other. This is a difficult task due to high similarity between arteries and veins in addition to variation of color and non-uniform illumination inter and intra retinal images. In this paper a novel structural and automated method is presented for artery/vein classification of blood vessels in retinal images. The proposed method consists of three main steps. In the first step, several image enhancement techniques are employed to improve the images. Then a specific feature extraction process is applied to separate major arteries from veins. Indeed, vessels are divided to smaller segments and feature extraction and vessel classification are applied to each small vessel segment instead of each vessel point. Finally, a post processing step is added to improve the results obtained from the previous step using structural characteristics of the retinal vascular network. In the last stage, vessel features at intersection and bifurcation points are processed for detection of arterial and venular sub trees. Ultimately vessel labels are revised by publishing the dominant label through each identified connected tree of arteries or veins. Evaluation of the proposed approach against two different datasets of retinal images including DRIVE database demonstrates the good performance and robustness of the method. The proposed method may be used for determination of arteriolar to venular diameter ratio in retinal images. Also the proposed method potentially allows for further investigation of labels of thinner arteries and veins which might be found by tracing them back to the major vessels. PMID:23849699

Mirsharif, Qazaleh; Tajeripour, Farshad; Pourreza, Hamidreza

2013-01-01

206

Interactive 3D Analysis of Blood Vessel Trees and Collateral Vessel Volumes in Magnetic Resonance Angiograms in the Mouse Ischemic Hindlimb Model  

PubMed Central

The quantitative analysis of blood vessel volumes from magnetic resonance angiograms (MRA) or ?CT images is difficult and time-consuming. This fact, when combined with a study that involves multiple scans of multiple subjects, can represent a significant portion of research time. In order to enhance analysis options and to provide an automated and fast analysis method, we developed a software plugin for the ImageJ and Fiji image processing frameworks that enables the quick and reproducible volume quantification of blood vessel segments. The novel plugin named Volume Calculator (VolCal), accepts any binary (thresholded) image and produces a three-dimensional schematic representation of the vasculature that can be directly manipulated by the investigator. Using MRAs of the mouse hindlimb ischemia model, we demonstrate quick and reproducible blood vessel volume calculations with 95 – 98% accuracy. In clinical settings this software may enhance image interpretation and the speed of data analysis and thus enhance intervention decisions for example in peripheral vascular disease or aneurysms. In summary, we provide a novel, fast and interactive quantification of blood vessel volumes for single blood vessels or sets of vessel segments with particular focus on collateral formation after an ischemic insult.

Marks, Peter C.; Preda, Marilena; Henderson, Terry; Liaw, Lucy; Lindner, Volkhard; Friesel, Robert E.; Pinz, Ilka M.

2014-01-01

207

Diabetic retinopathy: a quadtree based blood vessel detection algorithm using RGB components in fundus images.  

PubMed

Blood vessel detection in retinal images is a fundamental step for feature extraction and interpretation of image content. This paper proposes a novel computational paradigm for detection of blood vessels in fundus images based on RGB components and quadtree decomposition. The proposed algorithm employs median filtering, quadtree decomposition, post filtration of detected edges, and morphological reconstruction on retinal images. The application of preprocessing algorithm helps in enhancing the image to make it better fit for the subsequent analysis and it is a vital phase before decomposing the image. Quadtree decomposition provides information on the different types of blocks and intensities of the pixels within the blocks. The post filtration and morphological reconstruction assist in filling the edges of the blood vessels and removing the false alarms and unwanted objects from the background, while restoring the original shape of the connected vessels. The proposed method which makes use of the three color components (RGB) is tested on various images of publicly available database. The results are compared with those obtained by other known methods as well as with the results obtained by using the proposed method with the green color component only. It is shown that the proposed method can yield true positive fraction values as high as 0.77, which are comparable to or somewhat higher than the results obtained by other known methods. It is also shown that the effect of noise can be reduced if the proposed method is implemented using only the green color component. PMID:18461818

Reza, Ahmed Wasif; Eswaran, C; Hati, Subhas

2008-04-01

208

A comparison of blood vessel features and local binary patterns for colorectal polyp classification  

NASA Astrophysics Data System (ADS)

Colorectal cancer is the third leading cause of cancer deaths in the United States of America for both women and men. By means of early detection, the five year survival rate can be up to 90%. Polyps can to be grouped into three different classes: hyperplastic, adenomatous, and carcinomatous polyps. Hyperplastic polyps are benign and are not likely to develop into cancer. Adenomas, on the other hand, are known to grow into cancer (adenoma-carcinoma sequence). Carcinomas are fully developed cancers and can be easily distinguished from adenomas and hyperplastic polyps. A recent narrow band imaging (NBI) study by Tischendorf et al. has shown that hyperplastic polyps and adenomas can be discriminated by their blood vessel structure. We designed a computer-aided system for the differentiation between hyperplastic and adenomatous polyps. Our development aim is to provide the medical practitioner with an additional objective interpretation of the available image data as well as a confidence measure for the classification. We propose classification features calculated on the basis of the extracted blood vessel structure. We use the combined length of the detected blood vessels, the average perimeter of the vessels and their average gray level value. We achieve a successful classification rate of more than 90% on 102 polyps from our polyp data base. The classification results based on these features are compared to the results of Local Binary Patterns (LBP). The results indicate that the implemented features are superior to LBP.

Gross, Sebastian; Stehle, Thomas; Behrens, Alexander; Auer, Roland; Aach, Til; Winograd, Ron; Trautwein, Christian; Tischendorf, Jens

2009-02-01

209

Computerized detection of retina blood vessel using a piecewise line fitting approach  

NASA Astrophysics Data System (ADS)

Retina vessels are important landmarks in fundus images, an accurate segmentation of the vessels may be useful for automated screening for several eye diseases or systematic diseases, such as diebetes. A new method is presented for automated segmentation of blood vessels in two-dimensional color fundus images. First, a coherence filter and a followed mean filter are applied to the green channel of the image. The green channel is selected because the vessels have the maximal contrast at the green channel. The coherence filter is to enhance the line strength of the original image and the mean filter is to discard the intensity variance among different regions. Since the vessels are darker than the around tissues depicted on the image, the pixels with small intensity are then retained as points of interest (POI). A new line fitting algorithm is proposed to identify line-like structures in each local circle of the POI. The proposed line fitting method is less sensitive to noise compared to the least squared fitting. The fitted lines with higher scores are regarded as vessels. To evaluate the performance of the proposed method, a public available database DRIVE with 20 test images is selected for experiments. The mean accuracy on these images is 95.7% which is comparable to the state-of-art.

Gu, Suicheng; Zhen, Yi; Wang, Ningli; Pu, Jiantao

2013-03-01

210

Generation of functionally competent and durable engineered blood vessels from human induced pluripotent stem cells.  

PubMed

Efficient generation of competent vasculogenic cells is a critical challenge of human induced pluripotent stem (hiPS) cell-based regenerative medicine. Biologically relevant systems to assess functionality of the engineered vessels in vivo are equally important for such development. Here, we report a unique approach for the derivation of endothelial precursor cells from hiPS cells using a triple combination of selection markers--CD34, neuropilin 1, and human kinase insert domain-containing receptor--and an efficient 2D culture system for hiPS cell-derived endothelial precursor cell expansion. With these methods, we successfully generated endothelial cells (ECs) from hiPS cells obtained from healthy donors and formed stable functional blood vessels in vivo, lasting for 280 d in mice. In addition, we developed an approach to generate mesenchymal precursor cells (MPCs) from hiPS cells in parallel. Moreover, we successfully generated functional blood vessels in vivo using these ECs and MPCs derived from the same hiPS cell line. These data provide proof of the principle that autologous hiPS cell-derived vascular precursors can be used for in vivo applications, once safety and immunological issues of hiPS-based cellular therapy have been resolved. Additionally, the durability of hiPS-derived blood vessels in vivo demonstrates a potential translation of this approach in long-term vascularization for tissue engineering and treatment of vascular diseases. Of note, we have also successfully generated ECs and MPCs from type 1 diabetic patient-derived hiPS cell lines and use them to generate blood vessels in vivo, which is an important milestone toward clinical translation of this approach. PMID:23861493

Samuel, Rekha; Daheron, Laurence; Liao, Shan; Vardam, Trupti; Kamoun, Walid S; Batista, Ana; Buecker, Christa; Schäfer, Richard; Han, Xiaoxing; Au, Patrick; Scadden, David T; Duda, Dan G; Fukumura, Dai; Jain, Rakesh K

2013-07-30

211

Generation of functionally competent and durable engineered blood vessels from human induced pluripotent stem cells  

PubMed Central

Efficient generation of competent vasculogenic cells is a critical challenge of human induced pluripotent stem (hiPS) cell-based regenerative medicine. Biologically relevant systems to assess functionality of the engineered vessels in vivo are equally important for such development. Here, we report a unique approach for the derivation of endothelial precursor cells from hiPS cells using a triple combination of selection markers—CD34, neuropilin 1, and human kinase insert domain-containing receptor—and an efficient 2D culture system for hiPS cell-derived endothelial precursor cell expansion. With these methods, we successfully generated endothelial cells (ECs) from hiPS cells obtained from healthy donors and formed stable functional blood vessels in vivo, lasting for 280 d in mice. In addition, we developed an approach to generate mesenchymal precursor cells (MPCs) from hiPS cells in parallel. Moreover, we successfully generated functional blood vessels in vivo using these ECs and MPCs derived from the same hiPS cell line. These data provide proof of the principle that autologous hiPS cell-derived vascular precursors can be used for in vivo applications, once safety and immunological issues of hiPS-based cellular therapy have been resolved. Additionally, the durability of hiPS-derived blood vessels in vivo demonstrates a potential translation of this approach in long-term vascularization for tissue engineering and treatment of vascular diseases. Of note, we have also successfully generated ECs and MPCs from type 1 diabetic patient-derived hiPS cell lines and use them to generate blood vessels in vivo, which is an important milestone toward clinical translation of this approach.

Samuel, Rekha; Daheron, Laurence; Liao, Shan; Vardam, Trupti; Kamoun, Walid S.; Batista, Ana; Buecker, Christa; Schafer, Richard; Han, Xiaoxing; Au, Patrick; Scadden, David T.; Duda, Dan G.; Fukumura, Dai; Jain, Rakesh K.

2013-01-01

212

Ho:YAG laser irradiation in blood vessel as a vasodilator: ex vivo study  

NASA Astrophysics Data System (ADS)

We studied Ho:YAG laser irradiation in blood vessel as a vasodilator ex vivo. We thought that the Ho:YAG laser-induced bubble expansion might be able to dilate the vessel because we found the vessel wall expansion after the Ho:YAG laser irradiation, that is steady deformation, in the vessel ex vivo. There have been many reports regarding to the Ho:YAG laser irradiation in the vessel. Most of studies concentrated on the interaction between Ho:YAG laser irradiation and vessel wall to investigate side effect on Ho:YAG laser angioplasty. We proposed to use the Ho:YAG laser-induced bubble expansion as a vasodilator. We studied vasodilation effect of the Ho:YAG laser-induced bubble ex vivo. The flash lamp excited Ho:YAG laser surgical unit (IH102, NIIC, Japan) (?=2.1?m) was used. The laser energy was delivered by a silica glass fiber (outer diameter: 1000?m, core diameter: 600?m). The laser-induced bubble was generated in the extracted fresh porcine carotid artery with the warmed saline perfusion. The laser energy at the fiber tip was ranging from 170-1300mJ per pulse. Number of the laser irradiation was ranged from 20pulses to 100pulses. The outer diameter of the vessel was observed. To examine the change in mechanical properties of the vessel wall, the stress-strain curve of the laser-irradiated vessel was measured. Birefringence observation and microscopic observation of staining specimen were performed. When the laser energy was set to 1300mJ per pulse, the outer diameter of the vessel after the laser irradiation was expanded by 1.4 times comparing with that of before the laser irradiation and the dilatation effect was kept even at 10minutes after the irradiation. The elasticity modulus of the artery by collagen was changed by the laser irradiation. In the polarized microscopic observation, the brightness of the intimal side of the vessel is increased comparing with that of the normal. We think this brightness increasing may be attributed to birefringence change by the arrangement of stretched collagen fiber. We suppose it is likely to be able to use the Ho:YAG laser irradiation as a temporary vasodilater tool in spite of further study should be performed.

Nakatani, E.; Iwasaki, T.; Kaneko, K.; Shimazaki, N.; Arai, T.

2007-03-01

213

Comparison of two algorithms in the automatic segmentation of blood vessels in fundus images  

NASA Astrophysics Data System (ADS)

Effective timing and treatment are critical to saving the sight of patients with diabetes. Lack of screening, as well as a shortage of ophthalmologists, help contribute to approximately 8,000 cases per year of people who lose their sight to diabetic retinopathy, the leading cause of new cases of blindness [1] [2]. Timely treatment for diabetic retinopathy prevents severe vision loss in over 50% of eyes tested [1]. Fundus images can provide information for detecting and monitoring eye-related diseases, like diabetic retinopathy, which if detected early, may help prevent vision loss. Damaged blood vessels can indicate the presence of diabetic retinopathy [9]. So, early detection of damaged vessels in retinal images can provide valuable information about the presence of disease, thereby helping to prevent vision loss. Purpose: The purpose of this study was to compare the effectiveness of two blood vessel segmentation algorithms. Methods: Fifteen fundus images from the STARE database were used to develop two algorithms using the CVIPtools software environment. Another set of fifteen images were derived from the first fifteen and contained ophthalmologists' hand-drawn tracings over the retinal vessels. The ophthalmologists' tracings were used as the "gold standard" for perfect segmentation and compared with the segmented images that were output by the two algorithms. Comparisons between the segmented and the hand-drawn images were made using Pratt's Figure of Merit (FOM), Signal-to-Noise Ratio (SNR) and Root Mean Square (RMS) Error. Results: Algorithm 2 has an FOM that is 10% higher than Algorithm 1. Algorithm 2 has a 6%-higher SNR than Algorithm 1. Algorithm 2 has only 1.3% more RMS error than Algorithm 1. Conclusions: Algorithm 1 extracted most of the blood vessels with some missing intersections and bifurcations. Algorithm 2 extracted all the major blood vessels, but eradicated some vessels as well. Algorithm 2 outperformed Algorithm 1 in terms of visual clarity, FOM and SNR. The performances of these algorithms show that they have an appreciable amount of potential in helping ophthalmologists detect the severity of eye-related diseases and prevent vision loss.

LeAnder, Robert; Chowdary, Myneni Sushma; Mokkapati, Swapnasri; Umbaugh, Scott E.

2008-04-01

214

Casts of hepatic blood vessels: a comparison of the microcirculation of the penguin, Pygoscelis adeliae, with some common laboratory animals.  

PubMed Central

Latex casts of the hepatic blood vessels of the penguin, Pygoscelis adeliae, and of some common laboratory animals were compared. There was general similarity between the different species, but the portal venous and hepatic arterial systems of the penguin were simpler than those of other species. Measurements were made of the volume and length of portal veins and it appears that the portal venous system is capable of being a more efficient blood reservoir in the penguin than in other species studied. The peribiliary plexus was especially well formed in the penguin and was drained by long veins which usually joined portal venous branches. Some of the long veins drained directly into the hepatic venous tree: these translobular veins were more prominent than in mammals. Anastomoses between hepatic artery and portal vein were not present in penguins, and the supply to the sinusoids appeared to be separate. The morphology of small hepatic veins of all the species appeared to be similar. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6

Andrews, C J; Andrews, W H

1976-01-01

215

The Emergence of Blood and Blood Vessels in the Embryo and Its Relevance to Postnatal Biology and Disease  

NASA Astrophysics Data System (ADS)

Blood and blood vessels develop in parallel within mammalian systems, and this temporal and spatial association has led to the confirmation of an endothelial origin of hematopoiesis. The extraembryonic yolk sac and aorto-gonado-mesonephros (AGM) region both contain a specialized population of endothelial cells ("hemogenic endothelium") that function to produce hematopoietic stem and progenitor cells, which then differentiate to provide the full complement of blood cells within the developing embryo and furthermore in the adult system. Therefore, this population has great therapeutic potential in the fields of regenerative medicine and tissue engineering. This chapter reviews the development of the vascular and hematopoietic systems, characterization and function of the hemogenic endothelium within embryonic and embryonic stem cell (ES cell) models, and speculate on the presence of such a population within the adult system. In order to harness this endothelial subtype for clinical application, we must understand both the normal functions of these cells and the potential for misregulation in disease states.

Sills, Tiffany M.; Hirschi, Karen K.

216

Proliferation and maturation of intratumoral blood vessels in non-small cell lung cancer.  

PubMed

Non-small cell lung carcinoma is one of the most common leading causes of cancer mortality, and studying the features of intratumoral vessels, especially their generation and maturation, has become more important because of the recent application of antiangiogenic therapy. Vasohibin-1 has been recently considered one of the immunohistochemical markers for identifying neovascularization in archival materials. In addition, the functional maturation of blood vessels is considered to be related to pericyte formation around endothelial cells. Therefore, in this study, we evaluated the status of angiogenesis and maturation of intratumoral blood vessels in 93 patients with non-small cell lung carcinoma (50 with adenocarcinoma and 43 with squamous cell carcinoma) using immunohistochemistry of vasohibin-1, endoglin, CD31, and nestin. The vasohibin-1/CD31-positive ratio was significantly (P = .03) correlated with the Ki-67/CD31 ratio, confirming that the vasohibin-1/CD31-positive ratio represented the status of neovascularization in lung cancer. There were no statistically significant differences in vasohibin-1/CD31 ratios between adenocarcinoma and squamous cell carcinoma in both inner (P = .39) and outer areas (P = .36) of the tumor. The vasohibin-1/nestin-positive ratio, which represents the degrees of vascular maturation in proliferative vessels, was significantly lower in inner areas of adenocarcinoma (0.4 ± 0.1) than those in squamous cell carcinoma (0.8 ± 0.1) (P = .02). These results demonstrated that the degrees of maturation in newly formed blood vessels were less developed in inner areas of squamous cell carcinoma than adenocarcinoma, which may account partly for the complications of antivascular endothelial growth factor therapy more frequently detected in patients with squamous cell carcinoma. PMID:23522064

Yazdani, Samaneh; Miki, Yasuhiro; Tamaki, Kentaro; Ono, Katsuhiko; Iwabuchi, Erina; Abe, Keiko; Suzuki, Takashi; Sato, Yasufumi; Kondo, Takashi; Sasano, Hironobu

2013-08-01

217

Blood Vessels Pattern Heparan Sulfate Gradients between Their Apical and Basolateral Aspects  

PubMed Central

A hallmark of immune cell trafficking is directional guidance via gradients of soluble or surface bound chemokines. Vascular endothelial cells produce, transport and deposit either their own chemokines or chemokines produced by the underlying stroma. Endothelial heparan sulfate (HS) was suggested to be a critical scaffold for these chemokine pools, but it is unclear how steep chemokine gradients are sustained between the lumenal and ablumenal aspects of blood vessels. Addressing this question by semi-quantitative immunostaining of HS moieties around blood vessels with a pan anti-HS IgM mAb, we found a striking HS enrichment in the basal lamina of resting and inflamed post capillary skin venules, as well as in high endothelial venules (HEVs) of lymph nodes. Staining of skin vessels with a glycocalyx probe further suggested that their lumenal glycocalyx contains much lower HS density than their basolateral extracellular matrix (ECM). This polarized HS pattern was observed also in isolated resting and inflamed microvascular dermal cells. Notably, progressive skin inflammation resulted in massive ECM deposition and in further HS enrichment around skin post capillary venules and their associated pericytes. Inflammation-dependent HS enrichment was not compromised in mice deficient in the main HS degrading enzyme, heparanase. Our results suggest that the blood vasculature patterns steep gradients of HS scaffolds between their lumenal and basolateral endothelial aspects, and that inflammatory processes can further enrich the HS content nearby inflamed vessels. We propose that chemokine gradients between the lumenal and ablumenal sides of vessels could be favored by these sharp HS scaffold gradients.

Stoler-Barak, Liat; Moussion, Christine; Shezen, Elias; Hatzav, Miki; Sixt, Michael; Alon, Ronen

2014-01-01

218

Blood vessel uptake and metabolism of organic nitrates in the rat  

SciTech Connect

Recent reports have suggested that the unusual pharmacokinetics observed for nitroglycerin (NTG) and isosorbide dinitrate (ISDN) may be partially explained by extensive uptake and/or metabolism of these drugs by vascular and other extrahepatic tissues. Using the rat as an animal model, this hypothesis was examined by in vivo intravessel NTG and (/sup 14/C)ISDN infusion and injection into various vessel segments, viz. the femoral vein, inferior vena cava (IVC: lower, middle and upper) and the aorta. NTG and (/sup 14/C)ISDN concentrations were determined in these blood vessels and in plasma. Blood vessel segments nearest the input site had the greatest amounts of nitrate, whereas segments further away from the input site had progressively less nitrate, with the exception of aorta, which appeared to take up NTG less extensively, on a per weight of vessel basis, than the IVC. Blood vessel NTG concentrations (nanogram per gram) were generally higher (10-fold) and declined about twice as slowly as NTG plasma concentrations (nanograms per milliliter). (/sup 14/C)NTG and (/sup 14/C)ISDN were also incubated with cofactors in IVC, aorta, abdominal muscle, lung and liver. The amounts of nitrate metabolites formed from parent drug were larger in each extrahepatic tissue incubation than in the controls (P less than .05). The results are consistent with the hypothesis that vascular and other extrahepatic tissues can take up and/or metabolize organic nitrates. The data appear to provide a partial explanation for the large systemic clearance seen with nitrates and appear consistent with existing mechanistic hypotheses for the vascular action of these compounds.

Fung, H.L.; Sutton, S.C.; Kamiya, A.

1984-02-01

219

The promotion of endothelial progenitor cells recruitment by nerve growth factors in tissue-engineered blood vessels.  

PubMed

Endothelial progenitor cells (EPCs) mobilization and homing are critical to the development of an anti-thrombosis and anti-stenosis tissue-engineered blood vessel. The growth and activation of blood vessels are supported by nerves. We investigated whether nerve growth factors (NGF) can promote EPCs mobilization and endothelialization of tissue-engineered blood vessels. In vitro, NGF promoted EPCs to form more colonies, stimulated human EPCs to differentiate into endothelial cells, and significantly enhanced EPCs migration. Flow cytometric analysis revealed that NGF treatment increased the number of EPCs in the peripheral circulation of C57BL/6 mice. Furthermore, the treatment of human EPCs with NGF facilitated their homing into wire-injured carotid arteries after injection into mice. Decellularized rat blood vessel matrix was incubated with EDC cross-linked collagen and bound to NGF protein using the bifunctional coupling agent N-succinmidyl3-(2-pyridyldit-hio) propionate (SPDP). The NGF-bound tissue-engineered blood vessel was implanted into rat carotid artery for 1 week and 1 month. NGF-bound blood vessels possessed significantly higher levels of endothelialization and patency than controls did. These results demonstrated that NGF can markedly increase EPCs mobilization and homing to vascular grafts. Neurotrophic factors such as NGF have a therapeutic potential for the construction of tissue-engineered blood vessels in vivo. PMID:20006381

Zeng, Wen; Yuan, Wei; Li, Li; Mi, Jianhong; Xu, Shangcheng; Wen, Can; Zhou, Zhenhua; Xiong, Jiaqiang; Sun, Jiansen; Ying, Dajun; Yang, Mingcan; Li, Xiaosong; Zhu, Chuhong

2010-03-01

220

Monte Carlo simulations of light interaction with blood vessels in human skin in the red-wavelength region  

NASA Astrophysics Data System (ADS)

An attempt was made at determining if the elastically backscattered Doppler shifted light from cutaneous blood vessels merely emanates from the peripheral parts, or also from the more central core of these vessels, after illumination by red laser light (632 nm). A multilayered, semi-infinite Monte Carlo model of human skin was constructed accordingly, with separate layers or epidermis, dermis including blood, inferior vascular plexus and subcutaneous fat. Two concentric cylinders of infinite length and with varying diameters, representing core and peripheral parts of a blood vessel, were located at various depths in the skin model, either in the superior or inferior vascular plexus. In order to test the stability of the model predictions, widely varying values of the optical properties were employed in the calculations, trying to encompass most of the extreme values found in the literature. The number of photons Doppler shifted by a fixed size central core of a small blood vessel, is independent of the volume of blood surrounding this core in the rest of the blood vessel, provided the total number of detected photons is maintained constant, and the vessel dimensions are within human physiological limits. For the source/detector system simulated (one optical fiber 700 micrometer diameter), backscattered light Doppler shifted in superficial blood vessels constituted almost all the photons detected, with only very few photons having interacted with the inferior plexus.

Nilsson, Henrik; Nilsson, Gert E.

1998-06-01

221

Schlemm's Canal Is a Unique Vessel with a Combination of Blood Vascular and Lymphatic Phenotypes that Forms by a Novel Developmental Process  

PubMed Central

Schlemm's canal (SC) plays central roles in ocular physiology. These roles depend on the molecular phenotypes of SC endothelial cells (SECs). Both the specific phenotype of SECs and development of SC remain poorly defined. To allow a modern and extensive analysis of SC and its origins, we developed a new whole-mount procedure to visualize its development in the context of surrounding tissues. We then applied genetic lineage tracing, specific-fluorescent reporter genes, immunofluorescence, high-resolution confocal microscopy, and three-dimensional (3D) rendering to study SC. Using these techniques, we show that SECs have a unique phenotype that is a blend of both blood and lymphatic endothelial cell phenotypes. By analyzing whole mounts of postnatal mouse eyes progressively to adulthood, we show that SC develops from blood vessels through a newly discovered process that we name “canalogenesis.” Functional inhibition of KDR (VEGFR2), a critical receptor in initiating angiogenesis, shows that this receptor is required during canalogenesis. Unlike angiogenesis and similar to stages of vasculogenesis, during canalogenesis tip cells divide and form branched chains prior to vessel formation. Differing from both angiogenesis and vasculogenesis, during canalogenesis SECs express Prox1, a master regulator of lymphangiogenesis and lymphatic phenotypes. Thus, SC development resembles a blend of vascular developmental programs. These advances define SC as a unique vessel with a combination of blood vascular and lymphatic phenotypes. They are important for dissecting its functions that are essential for ocular health and normal vision.

Kizhatil, Krishnakumar; Ryan, Margaret; Marchant, Jeffrey K.; Henrich, Stephen; John, Simon W. M.

2014-01-01

222

Automated segmentation of retinal blood vessels and identification of proliferative diabetic retinopathy  

NASA Astrophysics Data System (ADS)

Proliferative diabetic retinopathy can lead to blindness. However, early recognition allows appropriate, timely intervention. Fluorescein-labeled retinal blood vessels of 27 digital images were automatically segmented using the Gabor wavelet transform and classified using traditional features such as area, perimeter, and an additional five morphological features based on the derivatives-of-Gaussian wavelet-derived data. Discriminant analysis indicated that traditional features do not detect early proliferative retinopathy. The best single feature for discrimination was the wavelet curvature with an area under the curve (AUC) of 0.76. Linear discriminant analysis with a selection of six features achieved an AUC of 0.90 (0.73-0.97, 95% confidence interval). The wavelet method was able to segment retinal blood vessels and classify the images according to the presence or absence of proliferative retinopathy.

Jelinek, Herbert F.; Cree, Michael J.; Leandro, Jorge J. G.; Soares, João V. B.; Cesar, Roberto M.; Luckie, A.

2007-05-01

223

Gene Delivery System Targets Tumor Blood Vessels in Dogs with Cancer  

Cancer.gov

In a preliminary study of pet dogs with naturally occurring cancer, researchers have developed a way to target delivery of a gene to tumor blood vessels, where the gene product damages the vessels, disrupting blood flow to the tumors but not to the surrounding tissue. The delivery method was well tolerated, and in some dogs, the size of tumors decreased or remained stable. This study provides valuable information that may aid in the design of future clinical trials. These are the first results of the Comparative Oncology Trials Consortium, a novel multicenter network sponsored by NCI to integrate cancers that naturally develop in dogs into the developmental path of new therapies for cancers in humans.

224

Thermal expansion of blood vessels in low cryogenic temperatures Part I: A new experimental device  

PubMed Central

As part of the ongoing effort to study the mechanical behavior of biological material during cryopreservation processes, the current study focuses on thermal expansion of blood vessels at low cryogenic temperatures. The current paper (Part I) describes a new experimental device for thermal expansion measurements of blood vessels in typical conditions of vitrification, which are associated with rapid cooling rates. For validation purposes, the thermal strain of frozen arteries in the absence of cryoprotectants was measured, and found to be about 10% larger than that of polycrystalline water; this observation agrees with literature data. The companion paper (Part II) reports on experimental results of cryoprotectants permeated with VS55, DP6 and 7.05M DMSO at high cooling rates applicable to vitrification.

Jimenez Rios, Jorge L.; Rabin, Yoed

2006-01-01

225

Integrin-Mediated Cell-Matrix Interaction in Physiological and Pathological Blood Vessel Formation  

PubMed Central

Physiological as well as pathological blood vessel formation are fundamentally dependent on cell-matrix interaction. Integrins, a family of major cell adhesion receptors, play a pivotal role in development, maintenance, and remodeling of the vasculature. Cell migration, invasion, and remodeling of the extracellular matrix (ECM) are integrin-regulated processes, and the expression of certain integrins also correlates with tumor progression. Recent advances in the understanding of how integrins are involved in the regulation of blood vessel formation and remodeling during tumor progression are highlighted. The increasing knowledge of integrin function at the molecular level, together with the growing repertoire of integrin inhibitors which allow their selective pharmacological manipulation, makes integrins suited as potential diagnostic markers and therapeutic targets.

Niland, Stephan; Eble, Johannes A.

2012-01-01

226

Painting blood vessels and atherosclerotic plaques with an adhesive drug depot  

PubMed Central

The treatment of diseased vasculature remains challenging, in part because of the difficulty in implanting drug-eluting devices without subjecting vessels to damaging mechanical forces. Implanting materials using adhesive forces could overcome this challenge, but materials have previously not been shown to durably adhere to intact endothelium under blood flow. Marine mussels secrete strong underwater adhesives that have been mimicked in synthetic systems. Here we develop a drug-eluting bioadhesive gel that can be locally and durably glued onto the inside surface of blood vessels. In a mouse model of atherosclerosis, inflamed plaques treated with steroid-eluting adhesive gels had reduced macrophage content and developed protective fibrous caps covering the plaque core. Treatment also lowered plasma cytokine levels and biomarkers of inflammation in the plaque. The drug-eluting devices developed here provide a general strategy for implanting therapeutics in the vasculature using adhesive forces and could potentially be used to stabilize rupture-prone plaques.

Kastrup, Christian J.; Nahrendorf, Matthias; Figueiredo, Jose Luiz; Lee, Haeshin; Kambhampati, Swetha; Lee, Timothy; Cho, Seung-Woo; Gorbatov, Rostic; Iwamoto, Yoshiko; Dang, Tram T.; Dutta, Partha; Yeon, Ju Hun; Cheng, Hao; Pritchard, Christopher D.; Vegas, Arturo J.; Siegel, Cory D.; MacDougall, Samantha; Okonkwo, Michael; Thai, Anh; Stone, James R.; Coury, Arthur J.; Weissleder, Ralph; Langer, Robert; Anderson, Daniel G.

2012-01-01

227

Painting blood vessels and atherosclerotic plaques with an adhesive drug depot.  

PubMed

The treatment of diseased vasculature remains challenging, in part because of the difficulty in implanting drug-eluting devices without subjecting vessels to damaging mechanical forces. Implanting materials using adhesive forces could overcome this challenge, but materials have previously not been shown to durably adhere to intact endothelium under blood flow. Marine mussels secrete strong underwater adhesives that have been mimicked in synthetic systems. Here we develop a drug-eluting bioadhesive gel that can be locally and durably glued onto the inside surface of blood vessels. In a mouse model of atherosclerosis, inflamed plaques treated with steroid-eluting adhesive gels had reduced macrophage content and developed protective fibrous caps covering the plaque core. Treatment also lowered plasma cytokine levels and biomarkers of inflammation in the plaque. The drug-eluting devices developed here provide a general strategy for implanting therapeutics in the vasculature using adhesive forces and could potentially be used to stabilize rupture-prone plaques. PMID:23236189

Kastrup, Christian J; Nahrendorf, Matthias; Figueiredo, Jose Luiz; Lee, Haeshin; Kambhampati, Swetha; Lee, Timothy; Cho, Seung-Woo; Gorbatov, Rostic; Iwamoto, Yoshiko; Dang, Tram T; Dutta, Partha; Yeon, Ju Hun; Cheng, Hao; Pritchard, Christopher D; Vegas, Arturo J; Siegel, Cory D; MacDougall, Samantha; Okonkwo, Michael; Thai, Anh; Stone, James R; Coury, Arthur J; Weissleder, Ralph; Langer, Robert; Anderson, Daniel G

2012-12-26

228

Purification and culture of human blood vessel-associated progenitor cells.  

PubMed

Multilineage progenitor cells, diversely designated as MSC, MAPC, or MDSC, have been previously extracted from long-term cultures of fetal and adult organs (e.g., bone marrow, brain, lung, pancreas, muscle, adipose tissue, and several others). The identity and location, within native tissues, of these elusive stem cells are described here. Subsets of endothelial cells and pericytes, which participate in the architecture of human blood vessels, exhibit, following purification to homogeneity, developmental multipotency. The selection from human tissues, by flow cytometry using combinations of positive and negative cell surface markers, of endothelial and perivascular cells is described here. In addition, a rare subset of myoendothelial cells that express markers of both endothelial and myogenic cell lineages and exhibit dramatic myogenic and cardiomyogenic potential has been identified and purified from skeletal muscle. The culture conditions amenable to the long-term proliferation of these blood vessel-associated stem cells in vitro are also described. PMID:18770640

Crisan, Mihaela; Huard, Johnny; Zheng, Bo; Sun, Bin; Yap, Solomon; Logar, Alison; Giacobino, Jean-Paul; Casteilla, Louis; Péault, Bruno

2008-03-01

229

Thermal expansion of blood vessels in low cryogenic temperatures Part I: A new experimental device.  

PubMed

As part of the ongoing effort to study the mechanical behavior of biological material during cryopreservation processes, the current study focuses on thermal expansion of blood vessels at low cryogenic temperatures. The current paper (Part I) describes a new experimental device for thermal expansion measurements of blood vessels in typical conditions of vitrification, which are associated with rapid cooling rates. For validation purposes, the thermal strain of frozen arteries in the absence of cryoprotectants was measured, and found to be about 10% larger than that of polycrystalline water; this observation agrees with literature data. The companion paper (Part II) reports on experimental results of cryoprotectants permeated with VS55, DP6, and 7.05 M DMSO at high cooling rates applicable to vitrification. PMID:16487503

Jimenez Rios, Jorge L; Rabin, Yoed

2006-04-01

230

Techniques used in investigating the anatomy of the bronchial tree and pulmonary blood vessels  

Microsoft Academic Search

Summary  The various technical methods used in investigating the anatomy of the bronchial tree and pulmonary blood vessels are briefly\\u000a reviewed.\\u000a \\u000a A detailed account of the author’s method is given. In this the bronchial tree is injected with fusible metal from a closed\\u000a brass container, the metal is heated in a water bath built into the container, and is driven into

Nicholas P. D. Smyth

1949-01-01

231

Endothelium-derived vasoactive factors and regulation of vascular tone in human blood vessels  

Microsoft Academic Search

The endothelium releases a variety of factors which can affect vascular tone. Endothelium-derived relaxing factor or nitric\\u000a oxide is a very potent vasodilator and inhibitor of platelet function. Its release has been demonstrated in a variety of human\\u000a blood vessels. In most human vascular preparations, prostacyclin does not significantly contribute to the endothelium-dependènt\\u000a relaxations. Prostacyclin is, however, an endothelium-derived product

Thomas F. LiJscher

1990-01-01

232

Adaptive ultrasonic measurement of blood vessel diameter and wall thickness: theory and experimental results  

Microsoft Academic Search

An adaptive ultrasonic technique for measuring blood vessel diameter and wall thickness is presented. This technique allows one to use a target-specific transmitted waveform\\/receiver filter to obtain a larger signal-to-noise ratio (SNR) in the received signal than conventional techniques. Generally, SNR of a received wave increases as the intensity of the transmit wave increases; however, because of the FDA limitations

K. Rafii; J. S. Jaffe

1998-01-01

233

The angiogenic potentials of the cephalic mesoderm and the origin of brain and head blood vessels  

Microsoft Academic Search

We have used two molecular markers to label blood vessel endothelial cells and their precursors in the early avian embryo. One marker, called Quek1, is the avian homologue of the mammalian VEGF receptor flk-1 and the other is the MB1QH1 monoclonal antibody. Quek1 is expressed in a subset of mesodermal cells from the gastrulation stage. Quek1 positive cells later form

Gérard Couly; Pierre Coltey; Anne Eichmann; Nicole M. Le Douarin

1995-01-01

234

Stress-Strain Measurements and Viscoelastic Response of Blood Vessels Cryopreserved by Vitrification  

Microsoft Academic Search

To gain increased insight into thermo-mechanical phenomena during cryopreservation, tensile stress relaxation experiments\\u000a were conducted on vitrified blood vessels (vitreous in Latin means Glassy), and the results compared with various viscoelastic\\u000a models. Using a recently presented device, isothermal stress-relaxation results were obtained for a bovine carotid artery\\u000a model, permeated with the cryoprotectant cocktail VS55 and a reference solution of 7.05 M

Jorge L. Jimenez Rios; Paul S. Steif; Yoed Rabin

2007-01-01

235

Uremia induces the osteoblast differentiation factor Cbfa1 in human blood vessels  

Microsoft Academic Search

Uremia induces the osteoblast differentiation factor Cbfa1 in human blood vessels.BackgroundBone matrix proteins are expressed in calcified arteries from dialysis patients, suggesting that vascular smooth muscle cells (VSMCs) may transform to osteoblast-like cells. One of the key transcriptional regulators of osteoblast differentiation is Cbfa1. Thus, we hypothesized that this may be a key factor in arterial calcification.MethodsTo test this hypothesis,

Sharon M. Moe; Danxia Duan; Brian P. Doehle; Kalisha D. O'Neill; Neal X. Chen

2003-01-01

236

Stanford University researchers find that dual-action protein better restricts blood vessel formation:  

Cancer.gov

In a paper published online Aug. 8 in the Proceedings of the National Academy of Sciences, researchers at Stanford University describe the creation of a new type of engineered protein that is significantly more effective at preventing the formation of blood vessels by targeting not one, but two of the chemical receptors that control the creation of new capillaries -- a process known as angiogenesis. The study shows that the new protein blocks both receptors.

237

Light and electron microscopic studies on human retinal blood vessels of patients with sclerosis and hypertension  

Microsoft Academic Search

Purpose  To correlate the ophthalmoscopic and histological findings on human retinal blood vessels of patients with sclerosis and hypertension,\\u000a \\u000a respectively.\\u000a \\u000a \\u000a \\u000a Methods  Ophthalmoscopy, light microscopy, and transmission and scanning electron microscopy with histochemical \\u000a staining were performed on eyes obtained from patients with a malignant orbital tumor, with absolute glaucoma, \\u000a or with hypertensive retinopathy.\\u000a \\u000a \\u000a \\u000a Results  The retinal arteries in aged patients with ophthalmoscopic sclerotic blood

Tsuyoshi Kimura; Atsushi Mizota; Naoya Fujimoto; Yoshihiko Tsuyama

2005-01-01

238

Blood vessel staining in the myocardium for 3D visualization down to the smallest capillaries  

NASA Astrophysics Data System (ADS)

Blood vessels formed after medical interventions such as radiofrequency treatment have to be visualized down to the capillary level with diameters of about 5 ?m to validate neo-vascularization. Synchrotron radiation-based micro-computed tomography (SR?CT) provides the necessary spatial resolution. Since both the vessels and the surrounding tissue mainly consist of water the difference in absorption is extremely weak. Therefore, it is necessary to search for appropriate contrast agents and to develop suitable staining protocols, which finally allow segmenting the vessel tree. Among the contrast agents used in medicine lyophilic salts with a mean particle diameter of 1.5 ?m such as CaSO 4, SrSO 4 and BaSO 4 are most appropriate to stain the vessels. The combination of these salts with a commercially available embedding kit (JB-4, Polysciences Inc.) allows tissue fixation and long-term storage in solid state. Intensity-based segmentation algorithms enable the vessel tree extraction in selected parts of the stained myocardium using the SR?CT data.

Müller, Bert; Fischer, Jens; Dietz, Ulrich; Thurner, Philipp J.; Beckmann, Felix

2006-05-01

239

Platelet Motion near a Vessel Wall or Thrombus Surface in Two-Dimensional Whole Blood Simulations  

PubMed Central

Computational simulations using a two-dimensional lattice-Boltzmann immersed boundary method were conducted to investigate the motion of platelets near a vessel wall and close to an intravascular thrombus. Physiological volume fractions of deformable red blood cells and rigid platelet-size elliptic particles were studied under arteriolar flow conditions. Tumbling of platelets in the red-blood-cell depleted zone near the vessel walls was strongly influenced by nearby red blood cells. The thickness of the red-blood-cell depleted zone was greatly reduced near a thrombus, and platelets in this zone were pushed close to the surface of the thrombus to distances that would facilitate their cohesion to it. The distance, nature, and duration of close platelet-thrombus encounters were influenced by the porosity of the thrombus. The strong influence on platelet-thrombus encounters of red-blood-cell motion and thrombus porosity must be taken into account to understand the dynamics of platelet attachment to a growing thrombus.

Skorczewski, Tyler; Erickson, Lindsay Crowl; Fogelson, Aaron L.

2013-01-01

240

Platelet motion near a vessel wall or thrombus surface in two-dimensional whole blood simulations.  

PubMed

Computational simulations using a two-dimensional lattice-Boltzmann immersed boundary method were conducted to investigate the motion of platelets near a vessel wall and close to an intravascular thrombus. Physiological volume fractions of deformable red blood cells and rigid platelet-size elliptic particles were studied under arteriolar flow conditions. Tumbling of platelets in the red-blood-cell depleted zone near the vessel walls was strongly influenced by nearby red blood cells. The thickness of the red-blood-cell depleted zone was greatly reduced near a thrombus, and platelets in this zone were pushed close to the surface of the thrombus to distances that would facilitate their cohesion to it. The distance, nature, and duration of close platelet-thrombus encounters were influenced by the porosity of the thrombus. The strong influence on platelet-thrombus encounters of red-blood-cell motion and thrombus porosity must be taken into account to understand the dynamics of platelet attachment to a growing thrombus. PMID:23601323

Skorczewski, Tyler; Erickson, Lindsay Crowl; Fogelson, Aaron L

2013-04-16

241

Angiotensinergic neurons in sympathetic coeliac ganglia innervating rat and human mesenteric resistance blood vessels.  

PubMed

In contrast to the current belief that angiotensin II (Ang II) interacts with the sympathetic nervous system only as a circulating hormone, we document here the existence of endogenous Ang II in the neurons of rat and human sympathetic coeliac ganglia and their angiotensinergic innervation with mesenteric resistance blood vessels. Angiotensinogen - and angiotensin converting enzyme-mRNA were detected by using quantitative real time polymerase chain reaction in total RNA extracts of rat coeliac ganglia, while renin mRNA was untraceable. Cathepsin D, a protease responsible for cleavage beneath other substrates also angiotensinogen to angiotensin I, was successfully detected in rat coeliac ganglia indicating the possibility of existence of alternative pathways. Angiotensinogen mRNA was also detected by in situ hybridization in the cytoplasm of neurons of rat coeliac ganglia. Immunoreactivity for Ang II was demonstrated in rat and human coeliac ganglia as well as with mesenteric resistance blood vessels. By using confocal laser scanning microscopy we were able to demonstrate the presence of angiotensinergic synapses en passant along side of vascular smooth muscle cells. Our findings indicate that Ang II is synthesized inside the neurons of sympathetic coeliac ganglia and may act as an endogenous neurotransmitter locally with the mesenteric resistance blood vessels. PMID:18308407

Patil, Jaspal; Heiniger, Eva; Schaffner, Thomas; Mühlemann, Oliver; Imboden, Hans

2008-04-10

242

A discrete-particle model of blood dynamics in capillary vessels.  

PubMed

We investigate the mechanism of aggregation of red blood cells (RBC) in capillary vessels. We use a discrete-particle model in 3D to model the flow of plasma and RBCs within a capillary tube. This model can accurately capture the scales from 0.001 to 100 microm, far below the scales that can be modeled numerically with classical computational fluid dynamics. The flexible viscoelastic red blood cells and the walls of the elastic vessel are made up of solid particles held together by elastic harmonic forces. The plasma is represented by a system of dissipative fluid particles. Modeling has been carried out using 1 to 3 million solid and fluid particles. We have modeled the flow of cells with vastly different shapes, such as normal and "sickle" cells. The two situations involving a straight capillary and a pipe with a choking point have been considered. The cells can coagulate in spite of the absence of adhesive forces in the model. We conclude that aggregation of red blood cells in capillary vessels can be stimulated by depletion forces and hydrodynamic interactions. The cluster of "sickle" cells formed in the choking point of the capillary efficiently decelerates the flow, while normal cells can pass through. These qualitative results from our first numerical results accord well with the laboratory findings. PMID:12600784

Dzwinel, Witold; Boryczko, Krzysztof; Yuen, David A

2003-02-01

243

Thin and open vessel windows for intra-vital fluorescence imaging of murine cochlear blood flow.  

PubMed

Normal microvessel structure and function in the cochlea is essential for maintaining the ionic and metabolic homeostasis required for hearing function. Abnormal cochlear microcirculation has long been considered an etiologic factor in hearing disorders. A better understanding of cochlear blood flow (CoBF) will enable more effective amelioration of hearing disorders that result from aberrant blood flow. However, establishing the direct relationship between CoBF and other cellular events in the lateral wall and response to physio-pathological stress remains a challenge due to the lack of feasible interrogation methods and difficulty in accessing the inner ear. Here we report on new methods for studying the CoBF in a mouse model using a thin or open vessel-window in combination with fluorescence intra-vital microscopy (IVM). An open vessel-window enables investigation of vascular cell biology and blood flow permeability, including pericyte (PC) contractility, bone marrow cell migration, and endothelial barrier leakage, in wild type and fluorescent protein-labeled transgenic mouse models with high spatial and temporal resolution. Alternatively, the thin vessel-window method minimizes disruption of the homeostatic balance in the lateral wall and enables study CoBF under relatively intact physiological conditions. A thin vessel-window method can also be used for time-based studies of physiological and pathological processes. Although the small size of the mouse cochlea makes surgery difficult, the methods are sufficiently developed for studying the structural and functional changes in CoBF under normal and pathological conditions. PMID:24780131

Shi, Xiaorui; Zhang, Fei; Urdang, Zachary; Dai, Min; Neng, Lingling; Zhang, Jinhui; Chen, Songlin; Ramamoorthy, Sripriya; Nuttall, Alfred L

2014-07-01

244

Dynamic Quantitative Intravital Imaging of Glioblastoma Progression Reveals a Lack of Correlation between Tumor Growth and Blood Vessel Density  

PubMed Central

The spatiotemporal and longitudinal monitoring of cellular processes occurring in tumors is critical for oncological research. We focused on glioblastoma multiforme (GBM), an untreatable highly vascularized brain tumor whose progression is thought to critically depend on the oxygen and metabolites supplied by blood vessels. We optimized protocols for orthotopic GBM grafting in mice that were able to recapitulate the biophysical constraints normally governing tumor progression and were suitable for intravital multiphoton microscopy. We repeatedly imaged tumor cells and blood vessels during GBM development. We established methods for quantitative correlative analyses of dynamic imaging data over wide fields in order to cover the entire tumor. We searched whether correlations existed between blood vessel density, tumor cell density and proliferation in control tumors. Extensive vascular remodeling and the formation of new vessels accompanied U87 tumor cell growth, but no strong correlation was found between local cell density and the extent of local blood vessel density irrespective of the tumor area or time points. The technique moreover proves useful for comparative analysis of mice subjected either to Bevacizumab anti-angiogenic treatment that targets VEGF or to AMD3100, an antagonist of CXCR4 receptor. Bevacizumab treatment massively reduced tumoral vessel densities but only transiently reduced U87 tumor growth rate. Again, there was no correlation between local blood vessel density and local cell density. Moreover, Bev applied only prior to tumor implantation inhibited tumor growth to the same extent as post-grafting treatment. AMD3100 achieved a potent inhibition of tumor growth without significant reduction in blood vessel density. These results indicate that in the brain, in this model, tumor growth can be sustained without an increase in blood vessel density and suggest that GBM growth is rather governed by stromal properties.

Ricard, Clement; Stanchi, Fabio; Rodriguez, Thieric; Amoureux, Marie-Claude; Rougon, Genevieve; Debarbieux, Franck

2013-01-01

245

KCTD10 is critical for heart and blood vessel development of zebrafish.  

PubMed

KCTD10 is a member of the PDIP1 family, which is highly conserved during evolution, sharing a lot of similarities among human, mouse, and zebrafish. Recently, zebrafish KCTD13 has been identified to play an important role in the early development of brain and autism. However, the specific function of KCTD10 remains to be elucidated. In this study, experiments were carried out to determine the expression pattern of zebrafish KCTD10 mRNA during embryonic development. It was found that KCTD10 is a maternal gene and KCTD10 is of great importance in the shaping of heart and blood vessels. Our data provide direct clues that knockdown of KCTD10 resulted in severe pericardial edema and loss of heart formation indicated by morphological observation and crucial heart markers like amhc, vmhc, and cmlc2. The heart defect caused by KCTD10 is linked to RhoA and PCNA. Flk-1 staining revealed that intersomitic vessels were lost in the trunk, although angioblasts could migrate to the midline. These findings could be helpful to better understand the determinants responsible for the heart and blood vessel defects. PMID:24705121

Hu, Xiang; Gan, Shiquan; Xie, Guie; Li, Li; Chen, Cheng; Ding, Xiaofeng; Han, Mei; Xiang, Shuanglin; Zhang, Jian

2014-05-01

246

Effect of a soluble surfactant on a finite sized bubble motion in a blood vessel  

PubMed Central

We present detailed results for the motion of a finite sized gas bubble in a blood vessel. The bubble (dispersed phase) size is taken to be such as to nearly occlude the vessel. The bulk medium is treated as a shear thinning Casson fluid and contains a soluble surfactant that adsorbs and desorbs from the interface. Three different vessel sizes, corresponding to a small artery, a large arteriole, and a small arteriole, in normal humans, are considered. The hematocrit (volume fraction of RBCs) has been taken to be 0.45. For arteriolar flow, where relevant, the Fahraeus-Lindqvist effect is taken into account. Bubble motion cause temporal and spatial gradients of shear stress at the cell surface lining the vessel wall as the bubble approaches the cell, moves over it and passes it by. Rapid reversals occur in the sign of the shear stress imparted to the cell surface during this motion. Shear stress gradients together with sign reversals are associated with a recirculation vortex at the rear of the moving bubble. The presence of the surfactant reduces the level of the shear stress gradients imparted to the cell surface as compared to an equivalent surfactant-free system. Our numerical results for bubble shapes and wall shear stresses may help explain phenomena observed in experimental studies related to gas embolism, a significant problem in cardiac surgery and decompression sickness.

Swaminathan, T. N.; Mukundakrishnan, K.; Ayyaswamy, P. S.; Eckmann, D. M.

2009-01-01

247

Drug and light dose responses to focal photodynamic therapy of single blood vessels in vivo  

NASA Astrophysics Data System (ADS)

As part of an ongoing program to develop two-photon (2-?) photodynamic therapy (PDT) for treatment of wet-form age-related macular degeneration (AMD) and other vascular pathologies, we have evaluated the reciprocity of drug-light doses in focal-PDT. We targeted individual arteries in a murine window chamber model, using primarily the clinical photosensitizer Visudyne/liposomal-verteporfin. Shortly after administration of the photosensitizer, a small region including an arteriole was selected and irradiated with varying light doses. Targeted and nearby vessels were observed for a maximum of 17 to 25 h to assess vascular shutdown, tapering, and dye leakage/occlusion. For a given end-point metric, there was reciprocity between the drug and light doses, i.e., the response correlated with the drug-light product (DLP). These results provide the first quantification of photosensitizer and light dose relationships for localized irradiation of a single blood vessel and are compared to the DLP required for vessel closure between 1-? and 2-? activation, between focal and broad-beam irradiation, and between verteporfin and a porphyrin dimer with high 2-? cross section. Demonstration of reciprocity over a wide range of DLP is important for further development of focal PDT treatments, such as the targeting of feeder vessels in 2-? PDT of AMD.

Khurana, Mamta; Moriyama, Eduardo H.; Mariampillai, Adrian; Samkoe, Kimberley; Cramb, David; Wilson, Brian C.

2009-11-01

248

Beta-adrenoceptor-mediated vasodilation of retinal blood vessels is reduced in streptozotocin-induced diabetic rats.  

PubMed

We investigated the effects of epinephrine and dopamine on retinal blood vessels in streptozotocin (STZ, 80 mg/kg, i.p.)-treated rats and age-matched control rats to determine whether diabetes mellitus alters the retinal vascular responses to circulating catecholamines. Experiments were performed 6-8 weeks after treatment with STZ or the vehicle. The fundus images were captured with the digital fundus camera system for small animals we developed and diameters of retinal blood vessels contained in the digital images were measured. Epinephrine increased the diameters of retinal blood vessels, but the vasodilator responses were reduced in diabetic rats. Dopamine produced a biphasic retinal vascular response with an initial vasoconstriction followed by a vasodilation. The vasoconstrictor effects of dopamine on retinal arterioles were enhanced in diabetic rats, whereas the difference between the two groups was abolished by treatment with propranolol. The vasodilator effect of isoproterenol, but not of the activator of adenylyl cyclase colforsin, on retinal blood vessels was reduced in diabetic rats. No difference in vasoconstriction of retinal blood vessels to phenylephrine between non-diabetic and diabetic rats was observed. The vasodilator responses of retinal blood vessels to 1,1-dimethyl-4-phenylpiperazinium, a ganglionic nicotinic receptor agonist, were also attenuated in diabetic rats. These results suggest that diabetes mellitus alters the retinal vascular responses to circulating catecholamines and the impairment of vasodilator responses mediated by beta-adrenoceptors contributes to the alteration. PMID:18585480

Nakazawa, Taisuke; Sato, Ayumi; Mori, Asami; Saito, Maki; Sakamoto, Kenji; Nakahara, Tsutomu; Ishii, Kunio

2008-01-01

249

Segmentation of Blood Vessels and 3D Representation of CMR Image  

NASA Astrophysics Data System (ADS)

Current cardiac magnetic resonance imaging (CMR) technology allows the determination of patient-individual coronary tree structure, detection of infarctions, and assessment of myocardial perfusion. The purpose of this work is to segment heart blood vessels and visualize it in 3D. In this work, 3D visualisation of vessel was performed into four phases. The first step is to detect the tubular structures using multiscale medialness function, which distinguishes tube-like structures from and other structures. Second step is to extract the centrelines of the tubes. From the centreline radius the cylindrical tube model is constructed. The third step is segmentation of the tubular structures. The cylindrical tube model is used in segmentation process. Fourth step is to 3D representation of the tubular structure using Volume . The proposed approach is applied to 10 datasets of patients from the clinical routine and tested the results with radiologists.

Jiji, G. W.

2013-06-01

250

Cooperative phenomena in two-pulse two-color laser photocoagulation of cutaneous blood vessels  

NASA Astrophysics Data System (ADS)

A novel laser system has been developed to study the effects of multiple laser pulses of differing wavelengths on cutaneous blood vessels in vivo, using the hamster dorsal skin flap preparation. The system permits sequenced irradiation with well-defined intrapulse spacing at 532 nm, using a long pulse frequency doubled Nd:YAG laser, and at 1064 nm, using a long pulse Nd:YAG laser. Using this system, we have identified a parameter space where two pulses of different wavelengths act in a synergistic manner to effect permanent vessel damage at radiant exposures where the two pulses individually have little or no effect. Using a two- color pump-probe technique in vitro, we have identified a phenomenon we call green-light-induced infrared absorption (GLIIRA), where a pulse of green light causes photochemical and photothermal modifications to the chemical constituents of blood and results in enhanced infrared absorption. We identify a new chemical species, met-hemoglobin, not normally present in healthy human blood but formed during laser photocoagulation which we believe is implicated in the enhanced IR absorption.

Black, John F.; Barton, Jennifer K.; Frangineas, George, Jr.; Pummer, Herbert

2001-05-01

251

Mechanisms of ATP release and signalling in the blood vessel wall  

PubMed Central

The nucleotide adenosine 5?-triphosphate (ATP) has classically been considered the cell's primary energy currency. Importantly, a novel role for ATP as an extracellular autocrine and/or paracrine signalling molecule has evolved over the past century and extensive work has been conducted to characterize the ATP-sensitive purinergic receptors expressed on almost all cell types in the body. Extracellular ATP elicits potent effects on vascular cells to regulate blood vessel tone but can also be involved in vascular pathologies such as atherosclerosis. While the effects of purinergic signalling in the vasculature have been well documented, the mechanism(s) mediating the regulated release of ATP from cells in the blood vessel wall and circulation are now a key target of investigation. The aim of this review is to examine the current proposed mechanisms of ATP release from vascular cells, with a special emphasis on the transporters and channels involved in ATP release from vascular smooth muscle cells, endothelial cells, circulating red blood cells, and perivascular sympathetic nerves, including vesicular exocytosis, plasma membrane F1/F0-ATP synthase, ATP-binding cassette (ABC) transporters, connexin hemichannels, and pannexin channels.

Lohman, Alexander W.; Billaud, Marie; Isakson, Brant E.

2012-01-01

252

Correlation mapping method of OCT for visualization blood vessels in brain  

NASA Astrophysics Data System (ADS)

The burning issue in modern medicine is the diagnosis and treatment of various life-threatening diseases, in particular the diseases of brain. One of them is intracranial hemorrhage (ICH). It occurs especially among newborn babies and is hard-diagnosed. In order to understand the nature of the ICH, the microcirculation of blood, which serves key functions within the body, is analyzed. On this basis a series of experiments was done, in the results of which it was showed, that latent stage of ICH is characterized by decrease of venous blood outflow and the loss of sensitivity of sagittal vein to vasoconstrictor effect of adrenaline. So, stress-related changes of the cerebral venous blood flow (CVBF) can be the source of this disease. In this paper registration CVBF was made with the help of commercially available Thorlabs Swept Source OCT System, using the correlation mapping method. In this method values of correlation coefficient of several images are analyzed. In the result of the algorithm the correlation map was obtained. By the resulting map the diameter of vessels was calculated, which is necessary for examination of effects of adrenalin to the vessels and identification symptoms of ICH.

Izotova, O. A.; Kalyanov, A. L.; Lychagov, V. V.; Semyachkina-Glushkovskaya, O. V.

2013-11-01

253

Hyperglycemia accelerates impairment of vasodilator responses to acetylcholine of retinal blood vessels in rats.  

PubMed

We previously reported that vascular endothelial functions in both retinal and systemic circulation are impaired 6-8 weeks after induction of hyperglycemia with streptozotocin (STZ) in rats. However, it remains to be elucidated whether the period required for the onset of endothelial dysfunction is different, depending on vascular beds and severity of hyperglycemia. In this study, we examined the effects of several vasodilators on the diameter of retinal blood vessel and blood pressure in Control, STZ (STZ treatment alone), and STZ+Glc (STZ treatment plus D-glucose feeding) rats. The overall structures of the retina and the retinal capillary network were also evaluated. The vasodilator effects of acetylcholine on retinal arterioles were significantly reduced in the STZ+Glc group, but not in the STZ group, 2 weeks after induction of hyperglycemia. There were no significant differences in acetylcholine-induced decreases in blood pressure among the three experimental groups. The responses to NOR3, forskolin, and adenosine were unaffected by hyperglycemia. The retinal thickness was significantly reduced in the STZ+Glc group. No significant changes were observed in the morphology and the density of retinal capillary network by immunohistochemical techniques. These results suggest that endothelium-dependent vasodilatory mechanisms of retinal arterioles are more vulnerable than those of peripheral resistance vessels to the effects of hyperglycemia. Hyperglycemia shortens the period required for onset of retinal endothelial dysfunction, depending on its severity. PMID:19498274

Mori, Asami; Saigo, Orie; Hanada, Masayuki; Nakahara, Tsutomu; Ishii, Kunio

2009-06-01

254

Notch Regulation of Hematopoiesis, Endothelial Precursor Cells, and Blood Vessel Formation: Orchestrating the Vasculature  

PubMed Central

The development of the vascular system begins with the formation of hemangioblastic cells, hemangioblasts, which organize in blood islands in the yolk sac. The hemangioblasts differentiate into hematopoietic and angioblastic cells. Subsequently, the hematopoietic line will generate blood cells, whereas the angioblastic cells will give rise to vascular endothelial cells (ECs). In response to specific molecular and hemodynamic stimuli, ECs will acquire either arterial or venous identity. Recruitment towards the endothelial tubes and subsequent differentiation of pericyte and/or vascular smooth muscle cells (vSMCs) takes place and the mature vessel is formed. The Notch signaling pathway is required for determining the arterial program of both endothelial and smooth muscle cells; however, it is simultaneously involved in the generation of hematopoietic stem cells (HSCs), which will give rise to hematopoietic cells. Notch signaling also regulates the function of endothelial progenitor cells (EPCs), which are bone-marrow-derived cells able to differentiate into ECs and which could be considered the adult correlate of the angioblast. In addition, Notch signaling has been reported to control sprouting angiogenesis during blood vessels formation in the adult. In this paper we discuss the physiological role of Notch in vascular development, providing an overview on the involvement of Notch in vascular biology from hematopoietic stem cell to adaptive neovascularization in the adult.

Caolo, Vincenza; Molin, Daniel G. M.; Post, Mark J.

2012-01-01

255

From Blood Islands to Blood Vessels: Morphologic Observations and Expression of Key Molecules during Hyaloid Vascular System Development  

PubMed Central

Purpose. The mode of development of the human hyaloid vascular system (HVS) remains unclear. Early studies suggested that these blood vessels formed by vasculogenesis, while the current concept seems to favor angiogenesis as the mode of development. We examined embryonic and fetal human HVS using a variety of techniques to gain new insights into formation of this vasculature. Methods. Embryonic and fetal human eyes from 5.5 to 12 weeks gestation (WG) were prepared for immunohistochemical analysis or for light and electron microscopy. Immunolabeling of sections with a panel of antibodies directed at growth factors, transcription factors, and hematopoietic stem cell markers was employed. Results. Light microscopic examination revealed free blood islands (BI) in the embryonic vitreous cavity (5.5–7 WG). Giemsa stain revealed that BI were aggregates of mesenchymal cells and primitive nucleated erythroblasts. Free cells were also observed. Immunolabeling demonstrated that BI were composed of mesenchymal cells that expressed hemangioblast markers (CD31, CD34, C-kit, CXCR4, Runx1, and VEGFR2), erythroblasts that expressed embryonic hemoglobin (Hb-?), and cells that expressed both. Few cells were proliferating as determined by lack of Ki67 antigen. As development progressed (12 WG), blood vessels became more mature structurally with pericyte investment and basement membrane formation. Concomitantly, Hb-? and CXCR4 expression was down-regulated and von Willebrand factor expression was increased with the formation of Weibel-Palade bodies. Conclusions. Our results support the view that the human HVS, like the choriocapillaris, develops by hemo-vasculogenesis, the process by which vasculogenesis, erythropoiesis, and hematopoiesis occur simultaneously from common precursors, hemangioblasts.

McLeod, D. Scott; Hasegawa, Takuya; Baba, Takayuki; Grebe, Rhonda; Galtier d'Auriac, Ines; Merges, Carol; Edwards, Malia; Lutty, Gerard A.

2012-01-01

256

Launch Conditions Might Affect the Formation of Blood Vessel in the Quail Chorioallantoic Membrane  

NASA Technical Reports Server (NTRS)

AS 2 part of the first joint USA-Russian MIR/Shuttle program, fertilized quail eggs were flown on the MIR 18 mission. Post-flight examination indicated impaired survival of both the embryos in space and also of control embryos exposed to vibrational and g-forces simulating the conditions experienced during the launch of Progress 227. We hypothesized that excess mechanical forces and/or other conditions during the launch might cause abnormal development of the blood supply in the chorioallantoic membrane (CAM) leading to the impaired survival of the embryos. The CAM, a highly vascularized extraembryonic organ, provides for the oxygen exchange across the egg shell and is thus pivotal for proper embryonic development. To test our hypothesis, we compared angiogenesis In CAMS of eggs which were either exposed to the vibration and g-force profile simulating the conditions at launch of Progress 227 (synchronous controls), or kept under routine conditions in a laboratory Incubator (laboratory controls). At various time points during Incubation, the eggs were fixed in paraformaldehyde for subsequent dissection. At the time of dissection, the CAM was carefully lifted from the egg shell and examined as whole mounts by bright-field and fluorescent microscopy. The development or the vasculature (angiogenesis) was assessed from the density of blood vessels per viewing field and evaluated by computer aided image analysis. We observed a significant decrease In blood-vessel density in the synchronous controls versus "normal" laboratory controls beginning from day 10 of Incubation. The decrease in vascular density was restricted to the smallest vessels only, suggesting that conditions during the launch and/or during the subsequent Incubation of the eggs may affect the normal progress of angiogenesis in the CAM. Abnormal angiogenesis In the CAM might contribute to the impaired survival of the embryos observed in synchronous controls as well as in space.

Henry, M. K.; Unsworth, B. R.; Sychev, B. R.; Guryeva, T. S.; Dadasheva, O. A.; Piert, S. J.; Lagel, K. E.; Dubrovin, L. C.; Jahns, G. C.; Boda, K.; Sabo, V.; Samet, M. M.; Lelkes, P. I.

1998-01-01

257

Quantitative retinal-blood flow measurement with three-dimensional vessel geometry determination using ultrahigh-resolution Doppler optical coherence angiography.  

PubMed

Retinal blood flow quantification by retinal vessel segmentation with Doppler optical coherence angiography is presented. Vessel diameter, orientation, and position are determined in an en face vessel image and two representative cross-sectional flow images of the vessel. Absolute blood flow velocity is calculated with the help of the measured Doppler frequency shift and determined vessel angle. The volumetric flow rate is obtained with the position and the region of the vessel lumen. The volumetric blood flow rate of retinal arteries before and after a bifurcation is verified in a healthy human eye. PMID:18414549

Makita, Shuichi; Fabritius, Tapio; Yasuno, Yoshiaki

2008-04-15

258

Architecture of the subendothelial elastic fibers of small blood vessels and variations in vascular type and size.  

PubMed

Most blood vessels contain elastin that provides the vessels with the resilience and flexibility necessary to control hemodynamics. Pathophysiological hemodynamic changes affect the remodeling of elastic components, but little is known about their structural properties. The present study was designed to elucidate, in detail, the three-dimensional (3D) architecture of delicate elastic fibers in small vessels, and to reveal their architectural pattern in a rat model. The fine vascular elastic components were observed by a newly developed scanning electron microscopy technique using a formic acid digestion with vascular casts. This method successfully visualized the 3D architecture of elastic fibers in small blood vessels, even arterioles and venules. The subendothelial elastic fibers in such small vessels assemble into a sheet of meshwork running longitudinally, while larger vessels have a higher density of mesh and thicker mesh fibers. The quantitative analysis revealed that arterioles had a wider range of mesh density than venules; the ratio of density to vessel size was higher than that in venules. The new method was useful for evaluating the subendothelial elastic fibers of small vessels and for demonstrating differences in the architecture of different types of vessels. PMID:23453051

Shinaoka, Akira; Momota, Ryusuke; Shiratsuchi, Eri; Kosaka, Mitsuko; Kumagishi, Kanae; Nakahara, Ryuichi; Naito, Ichiro; Ohtsuka, Aiji

2013-04-01

259

Localization of calcium stimulated adenosine triphosphatase activity in blood vessels of the skeleton  

NASA Technical Reports Server (NTRS)

Alkaline phosphatase is an enzyme found in bone forming cells which decreases in certain bones as a result of hypogravity or non-weight bearing. This enzyme can also hydrolyze adenosine triphosphate. Therefore, an effort was made to localize calcium-stimulated ATPase by cytochemistry to determine whether altered bone cell activity might be related to changing calcium levels which occur during hypogravity. The results indicate that Ca(++)-ATPase is largely found along the endothelium and basal lamina of blood vessels, and not found in bone forming cells. This suggests that calcium regulation in the vicinity of bone formation may be modulated by the vasculature of the area.

Doty, S. B.

1985-01-01

260

A Pulsatile Flow Phantom for Image-Guided HIFU Hemostasis of Blood Vessels  

NASA Astrophysics Data System (ADS)

A pulsatile flow phantom for studying ultrasound image-guided acoustic hemostasis in a controlled environment has been developed. An ex vivo porcine carotid artery was attached to the phantom and embedded in a visually and ultrasonically transparent gel. Heparinized porcine blood was pumped through the phantom. Power-Doppler and B-mode ultrasound were used to remotely target the HIFU focus to the site of a needle puncture. In nine trials, complete hemostasis was achieved after an average HIFU application of 55 +/- 34 seconds. The vessels remained patent after treatment. With this phantom, it will be possible to do controlled studies of ultrasound image-guided acoustic hemostasis.

Greaby, Robyn; Vaezy, Shahram

2005-03-01

261

Abnormal Retinal Blood Vessels in Ehlers-Danlos Syndrome Type VI  

Microsoft Academic Search

Background  Ehlers-Danlos syndrome (EDS) is a hereditary connective tissue disorder caused by defective collagen synthesis and categorized\\u000a into 11 types based on genetic mutations and clinical features.1 Its principal clinical characteristics include hyperelasticity and vulnerability of the skin and joints to laxity, and fragility\\u000a of blood vessels.\\u000a \\u000a \\u000a \\u000a Case  We recently performed vitreous surgery with introduction of an artificial cornea and corneal allograft

Nobuhiko Chikamoto; Shinichiro Teranishi; Tai-ichiro Chikama; Teruo Nishida; Kenji Ohshima; Yoshikazu Hatsukawa

2007-01-01

262

3-D segmentation of retinal blood vessels in spectral-domain OCT volumes of the optic nerve head  

NASA Astrophysics Data System (ADS)

Segmentation of retinal blood vessels can provide important information for detecting and tracking retinal vascular diseases including diabetic retinopathy, arterial hypertension, arteriosclerosis and retinopathy of prematurity (ROP). Many studies on 2-D segmentation of retinal blood vessels from a variety of medical images have been performed. However, 3-D segmentation of retinal blood vessels from spectral-domain optical coherence tomography (OCT) volumes, which is capable of providing geometrically accurate vessel models, to the best of our knowledge, has not been previously studied. The purpose of this study is to develop and evaluate a method that can automatically detect 3-D retinal blood vessels from spectral-domain OCT scans centered on the optic nerve head (ONH). The proposed method utilized a fast multiscale 3-D graph search to segment retinal surfaces as well as a triangular mesh-based 3-D graph search to detect retinal blood vessels. An experiment on 30 ONH-centered OCT scans (15 right eye scans and 15 left eye scans) from 15 subjects was performed, and the mean unsigned error in 3-D of the computer segmentations compared with the independent standard obtained from a retinal specialist was 3.4 +/- 2.5 voxels (0.10 +/- 0.07 mm).

Lee, Kyungmoo; Abràmoff, Michael D.; Niemeijer, Meindert; Garvin, Mona K.; Sonka, Milan

2010-03-01

263

PEG Branched Polymer for Functionalization of Nanomaterials with Ultralong Blood Circulation  

PubMed Central

Nanomaterials have been actively pursued for biological and medical applications in recent years. Here, we report the synthesis of several new poly(ethylene glycol) grafted branched polymers for functionalization of various nanomaterials including carbon nanotubes, gold nanoparticles (NPs), and gold nanorods (NRs), affording high aqueous solubility and stability for these materials. We synthesize different surfactant polymers based upon poly(?-glutamic acid) (?PGA) and poly(maleic anhydride-alt-1-octadecene) (PMHC18). We use the abundant free carboxylic acid groups of ?PGA for attaching lipophilic species such as pyrene or phospholipid, which bind to nanomaterials via robust physisorption. Additionally, the remaining carboxylic acids on ?PGA or the amine-reactive anhydrides of PMHC18 are then PEGylated, providing extended hydrophilic groups, affording polymeric amphiphiles. We show that single-walled carbon nanotubes (SWNTs), Au NPs, and NRs functionalized by the polymers exhibit high stability in aqueous solutions at different pH values, at elevated temperatures, and in serum. Morever, the polymer-coated SWNTs exhibit remarkably long blood circulation (t1/2 = 22.1 h) upon intravenous injection into mice, far exceeding the previous record of 5.4 h. The ultralong blood circulation time suggests greatly delayed clearance of nanomaterials by the reticuloendothelial system (RES) of mice, a highly desired property for in vivo applications of nanomaterials, including imaging and drug delivery.

Prencipe, Giuseppe; Tabakman, Scott M.; Welsher, Kevin; Liu, Zhuang; Goodwin, Andrew P.; Zhang, Li; Henry, Joy; Dai, Hongjie

2010-01-01

264

Tumoral micro-blood vessels and vascular microenvironment in human astrocytic tumors. A transmission electron microscopy study  

Microsoft Academic Search

The development of peritumoral edema is thought to be due to extravasation of plasma water and macromolecules through a defective blood–brain barrier (BBB), but the exact mechanism by which occurs is poorly understood. The aim of this study was analyze at submicroscopic level the morphological changes in both micro-blood vessels and vascular microenvironment of astrocytic tumors in an attempt of

Gabriel Arismendi-Morillo; Alan Castellano

2005-01-01

265

Disturbance and repair of solitary waves in blood vessels with aneurysm  

NASA Astrophysics Data System (ADS)

This paper analyzes the effects of a local increase of radius followed by local variation of the thickness or rigidity of an elastic tube on the behavior of solitary waves. The basic equations for the analysis is a set of Boussinesq-type equations derived from the flow equations in elastic tubes. It is found that the increase in rigidity and thickness reduces the effects of the tube local enlargement on the amplitude of waves. Attention is paid to the aneurysmal affection of blood vessels where there is an increase in rigidity due to calcification or an increase of thickness due to thromboses. It thus comes that those effects contribute to the regeneration of blood waves and can merge the effects of the disease.

Noubissié, S.; Kraenkel, R. A.; Woafo, P.

2009-01-01

266

Perivascular mast cells dynamically probe cutaneous blood vessels to capture IgE  

PubMed Central

SUMMARY Mast cells are tissue-resident, immune cells that play a central role in allergic disease. These contributions are largely dependent on the acquisition of antigen-specific immunoglobulin E (IgE). Despite this requirement, studies of mast cell and IgE interactions have overlooked the mechanism by which mast cells acquire IgE from the blood. To address this gap, we developed reporter IgE molecules and employed imaging techniques to study mast cell function in situ. Our data demonstrate that skin mast cells exhibit selective uptake of IgE based on perivascular positioning. Furthermore, perivascular mast cells acquire IgE by extending cell processes across the vessel wall to capture luminal IgE. These data demonstrate how tissue mast cells acquire IgE and reveal a strategy by which extra-vascular cells monitor blood contents to capture molecules central to cellular function.

Cheng, Laurence E.; Hartmann, Karin; Roers, Axel; Krummel, Matthew F.; Locksley, Richard M.

2013-01-01

267

[Betolepsy in patients with multiple lesions of major cerebral blood vessels].  

PubMed

The reported cases of betolepsy, namely convulsive fits and syncopal attacks induced by cough were observed in patients suffering from different pulmonary diseases, vegetovascular dystonia, and venous encephalopathy. The extracerebral mechanism occurring by the Valsalva type related to the lowering of cardiac output and blood supply to the brain was assumed to be implicated in the origin of betolepsy. In the described group of the patients with multiple occlusive lesions of the cerebral arteries, the pathogenesis of betolepsy is obviously connected with a decrease of the arteriovenous gradient of cerebral circulation to the level close to the critical one. In this case, enhancement of the cerebral blood flow attained by different approaches including reconstructive operations on cerebral vessels rather than administration of anticonvulsants is an effective means of counteracting betolepsy. PMID:1664574

Be?n, B N; Spektor, S M

1991-01-01

268

Changes in Gene Expression of Pial Vessels of the Blood Brain Barrier during Murine Neurocysticercosis  

PubMed Central

In murine neurocysticercosis (NCC), caused by infection with the parasite Mesocestoides corti, the breakdown of the Blood Brain Barrier (BBB) and associated leukocyte infiltration into the CNS is dependent on the anatomical location and type of vascular bed. Prior studies of NCC show that the BBB comprised of pial vessels are most affected in comparison to the BBB associated with the vasculature of other compartments, particularly parenchymal vessels. Herein, we describe a comprehensive study to characterize infection-induced changes in the genome wide gene expression of pial vessels using laser capture microdissection microscopy (LCM) combined with microarray analyses. Of the 380 genes that were found to be affected, 285 were upregulated and 95 were downregulated. Ingenuity Pathway Analysis (IPA) software was then used to assess the biological significance of differentially expressed genes. The most significantly affected networks of genes were “inflammatory response, cell-to-cell signaling and interaction, cellular movement”, “cellular movement, hematological system development and function, immune cell trafficking, and “antimicrobial response, cell-to-cell signaling and interaction embryonic development”. RT-PCR analyses validated the pattern of gene expression obtained from microarray analysis. In addition, chemokines CCL5 and CCL9 were confirmed at the protein level by immunofluorescence (IF) microscopy. Our data show altered gene expression related to immune and physiological functions and collectively provide insight into changes in BBB disruption and associated leukocyte infiltration during murine NCC.

Mishra, Pramod Kumar; Teale, Judy M.

2013-01-01

269

Nucleolin expressed at the cell surface is a marker of endothelial cells in angiogenic blood vessels  

PubMed Central

A tumor-homing peptide, F3, selectively binds to endothelial cells in tumor blood vessels and to tumor cells. Here, we show that the cell surface molecule recognized by F3 is nucleolin. Nucleolin specifically bound to an F3 peptide affinity matrix from extracts of cultured breast carcinoma cells. Antibodies and cell surface biotin labeling revealed nucleolin at the surface of actively growing cells, and these cells bound and internalized fluorescein-conjugated F3 peptide, transporting it into the nucleus. In contrast, nucleolin was exclusively nuclear in serum-starved cells, and F3 did not bind to these cells. The binding and subsequent internalization of F3 were blocked by an antinucleolin antibody. Like the F3 peptide, intravenously injected antinucleolin antibodies selectively accumulated in tumor vessels and in angiogenic vessels of implanted “matrigel” plugs. These results show that cell surface nucleolin is a specific marker of angiogenic endothelial cells within the vasculature. It may be a useful target molecule for diagnostic tests and drug delivery applications.

Christian, Sven; Pilch, Jan; Akerman, Maria E.; Porkka, Kimmo; Laakkonen, Pirjo; Ruoslahti, Erkki

2003-01-01

270

Prominent expression of sialyl Lewis X-capped core 2-branched O-glycans on high endothelial venule-like vessels in gastric MALT lymphoma  

PubMed Central

High endothelial venule (HEV)-like vessels have been observed in gastric B-cell lymphoma of mucosa-associated lymphoid tissue type (MALT lymphoma), as well as in its preceding lesion, chronic Helicobacter pylori gastritis. Previously we reported that glycans on HEV-like vessels in the latter lesion served as L-selectin ligands. However, the biochemical and functional nature of glycans on HEV-like vessels in gastric MALT lymphoma remained to be determined. In this study, we performed immunohistochemical analysis for sialyl Lewis X (sLeX)-related glycoepitopes using three monoclonal antibodies MECA-79, HECA-452, and NCC-ST-439, and found that MECA-79?/HECA-452+/NCC-ST-439+ HEV-like vessels preferentially appears in gastric MALT lymphoma compared to chronic H. pylori gastritis, suggesting that appearance of MECA-79?/HECA-452+/NCC-ST-439+ HEV-like vessels marks gastric MALT lymphoma. We then constructed a set of CHO cell lines expressing possible MECA-79?/HECA-452+/NCC-ST-439+ glycans, as well as other sLeX-type glycans, on CD34, and evaluated L-selectin binding to those cells using L-selectin•IgM chimera binding and lymphocyte adhesion assays. L-selectin•IgM chimeras bound to CHO cells expressing 6-sulfo sLeX attached to core 2-branched O-glycans with or without 6-sulfo sLeX attached to extended core 1 O-glycans but only marginally to other CHO cell lines. On the other hand, CHO cells expressing 6-sulfo sLeX attached to extended core 1 and/or core 2-branched O-glycans, and also non-sulfated sLeX attached to core 2-branched O-glycans showed substantial lymphocyte binding, while binding was negligible on cell lines expressing 6-sulfo and non-sulfated sLeX attached to N-glycans and non-sulfated sLeX attached to extended core 1 O-glycans. These results indicate that MECA-79?/HECA-452+/NCC-ST-439+ glycans, namely 6-sulfo and non-sulfated sLeXs attached to core 2-branched O-glycans, expressed on HEV-like vessels in gastric MALT lymphoma, function as L-selectin ligands and likely contribute to H. pylori-specific T-cell recruitment in the progression of gastric MALT lymphoma.

Kobayashi, Motohiro; Mitoma, Junya; Hoshino, Hitomi; Yu, Shin-Yi; Shimojo, Yasuyo; Suzawa, Kenichi; Khoo, Kay-Hooi; Fukuda, Minoru; Nakayama, Jun

2011-01-01

271

Linear and branched perfluorooctane sulfonate (PFOS) isomer patterns differ among several tissues and blood of polar bears.  

PubMed

Perfluorooctane sulfonate (PFOS) is a globally distributed persistent organic pollutant that has been found to bioaccumulate and biomagnify in aquatic food webs. Although principally in its linear isomeric configuration, 21-35% of the PFOS manufactured via electrochemical fluorination is produced as a branched structural isomer. PFOS isomer patterns were investigated in multiple tissues of polar bears (Ursus maritimus) from East Greenland. The liver (n = 9), blood (n = 19), brain (n = 16), muscle (n = 5), and adipose (n = 5) were analyzed for linear PFOS (n-PFOS), as well as multiple mono- and di-trifluoromethyl-substituted branched isomers. n-PFOS accounted for 93.0 ± 0.5% of ?-PFOS isomer concentrations in the liver, whereas the proportion was significantly lower (p<0.05) in the blood (85.4 ± 0.5%). Branched isomers were quantifiable in the liver and blood, but not in the brain, muscle, or adipose. In both the liver and blood, 6-perfluoromethylheptane sulfonate (P6MHpS) was the dominant branched isomer (2.61 ± 0.10%, and 3.26 ± 0.13% of ?-PFOS concentrations, respectively). No di-trifluoromethyl-substituted isomers were detectable in any of the tissues analyzed. These tissue-specific isomer patterns suggest isomer-specific pharmacokinetics, perhaps due to differences in protein affinities, and thus differences in protein interactions, as well transport, absorption, and/or metabolism in the body. PMID:23920361

Greaves, Alana K; Letcher, Robert J

2013-09-01

272

Silent Partner in Blood Vessel Homeostasis? Pervasive Role of Nitric Oxide in Vascular Disease  

PubMed Central

The endothelium generates powerful mediators that regulate blood flow, temper inflammation and maintain a homeostatic environment to prevent both the initiation and progression of vascular disease. Nitric oxide (NO) is arguably the single most influential molecule in terms of dictating blood vessel homeostasis. In addition to direct effects associated with altered NO production (e.g. vasoconstriction, excessive inflammation, endothelial dysfunction), NO is a critical modulator of vaso-relevant pathways including cyclooxygenase (COX)-derived prostaglandin production and angiotensin II generation by the renin-angiotensin system. Furthermore, NO may influence the selectivity of COX-2 inhibitors and ultimately contribute to controversies associated with the use of these drugs. Consistent with a central role for NO in vascular disease, disruptions in the production and bioavailability of NO have been linked to hypertension, diabetes, hypercholesterolemia, obesity, aging, and smoking. The ability of the vessel wall to control disease-associated oxidative stress may be the most critical determinant in maintaining homeostatic levels of NO and subsequently the prospect of stroke, myocardial infarction and other CV abnormalities. To this end, investigation of mechanisms that alter the balance of protective mediators, including pathways that are indirectly modified by NO, is critical to the development of effective therapy in the treatment of CV disease.

Deeb, Ruba S.; Lamon, Brian D.; Hajjar, David P.

2010-01-01

273

N(omega)-(carboxymethyl)lysine depositions in human aortic heart valves: similarities with atherosclerotic blood vessels.  

PubMed

Recent studies indicate a role of atherosclerosis-like changes involved in the pathogenesis of aortic valve stenosis. Interestingly, one of the major advanced glycation end products (AGEs), N(omega)-(carboxymethyl)lysine (CML) has been related to the process of atherosclerosis in blood vessels. In the present study, we have analyzed the presence of CML in degenerative altered aortic valves with atherosclerosis-like changes, and in degenerated mitral valves without atherosclerosis-like changes, derived from patients suffering from acute rheumatism during childhood. Degenerated and non-degenerated valves were derived from autopsy or obtained during cardiac surgery. The presence of CML was examined by immunohistochemistry. CML was found on the endothelium and fibroblasts in control aortic and mitral valves. Minor differences in CML staining were observed between control and degeneratively affected mitral valves. In contrast, in degenerated aortic valves, CML accumulation was found in macrophages and on calcification sites, comparable to that in atherosclerotic arteries, while the presence of CML staining on the endothelium and fibroblasts was significantly less as compared with control aortic valves. Our data support the hypothesis that the process of degeneration of aortic valves resembles that of atherosclerosis in blood vessels. They suggest that CML also plays a role in the process of atherosclerosis in aortic valves. PMID:15136058

Baidoshvili, Alexi; Niessen, Hans W M; Stooker, Wim; Huybregts, Rien A J M; Hack, C Erik; Rauwerda, Jan A; Meijer, Chris J L M; Eijsman, Leon; van Hinsbergh, Victor W M; Schalkwijk, Casper G

2004-06-01

274

Glucocorticoid receptor gene polymorphisms and glucocorticoid sensitivity of subdermal blood vessels and leukocytes.  

PubMed

A considerable variability in the sensitivity to glucocorticoids (GCs) exists between individuals and these differences have been implicated in the etiology of psychiatric diseases such as depression. Glucocorticoid receptor (GR) gene polymorphisms might account in part for variability in GC responsiveness. We assessed the association between four common GR gene (NR3C1) polymorphisms (ER22/23EK, N363S, BclI, 9beta) and markers of glucocorticoid sensitivity in two target tissues (subdermal blood vessels, peripheral leukocytes) in 206 healthy individuals. The BclI GG genotype group showed the least degree of skin blanching, reflecting a lower GC sensitivity of subdermal blood vessels (p=.01). No association between GR genotype and GC sensitivity of peripheral leukocytes was observed. In the same subjects we previously observed an association between GR genotype and GC sensitivity of the pituitary. Polymorphism of the GR gene might constitute a vulnerability or protection factor for stress related disorders and altered GC sensitivity. PMID:18502562

Kumsta, R; Entringer, S; Koper, J W; van Rossum, E F C; Hellhammer, D H; Wüst, S

2008-10-01

275

Rapid extended coverage simultaneous multisection black-blood vessel wall MR imaging.  

PubMed

A two-dimensional rapid extended coverage (REX) rapid acquisition with relaxation enhancement (RARE) pulse sequence for simultaneous multisection double inversion-recovery (DIR) black-blood vessel wall magnetic resonance (MR) imaging was developed. Aortic vessel wall MR imaging was performed in five healthy subjects (mean age, 33 years +/- 4 [SD]) and five patients with atherosclerotic disease (mean age, 67 years +/- 11.7). Shortening of blood inversion time and imaging of multiple sections after single DIR block resulted in simultaneous acquisition of up to 20 aortic wall sections in less than 1 minute (spatial resolution, 0.97 x 0.97 x 3 mm(3)). Higher signal-to-noise ratios per unit time per section (16.0 +/- 2.45 vs 7.5 +/- 1.10, P <.05), no significant changes in contrast-to-noise ratios (15.0 +/- 5.3 vs 20.1 +/- 3.9, P >.05), and 17-fold improvement in acquisition time compared with those at conventional single-section DIR RARE imaging was achieved. Use of the REX method significantly shortened aortic imaging acquisition times without degrading image quality. PMID:15220509

Mani, Venkatesh; Itskovich, Vitalii V; Szimtenings, Michael; Aguinaldo, Juan Gilberto S; Samber, Daniel D; Mizsei, Gabor; Fayad, Zahi A

2004-07-01

276

DSA Image Blood Vessel Skeleton Extraction Based on Anti-concentration Diffusion and Level Set Method  

NASA Astrophysics Data System (ADS)

Serious types of vascular diseases such as carotid stenosis, aneurysm and vascular malformation may lead to brain stroke, which are the third leading cause of death and the number one cause of disability. In the clinical practice of diagnosis and treatment of cerebral vascular diseases, how to do effective detection and description of the vascular structure of two-dimensional angiography sequence image that is blood vessel skeleton extraction has been a difficult study for a long time. This paper mainly discussed two-dimensional image of blood vessel skeleton extraction based on the level set method, first do the preprocessing to the DSA image, namely uses anti-concentration diffusion model for the effective enhancement and uses improved Otsu local threshold segmentation technology based on regional division for the image binarization, then vascular skeleton extraction based on GMM (Group marching method) with fast sweeping theory was actualized. Experiments show that our approach not only improved the time complexity, but also make a good extraction results.

Xu, Jing; Wu, Jian; Feng, Daming; Cui, Zhiming

277

A chemically modified antibody mediates complete eradication of tumours by selective disruption of tumour blood vessels  

PubMed Central

Background: The possibility of eradicating cancer by selective destruction of tumour blood vessels may represent an attractive therapeutic avenue, but most pharmaceutical agents investigated so far did not achieve complete cures and are not completely specific. Antibody conjugates now allow us to evaluate the impact of selective vascular shutdown on tumour viability and to study mechanisms of action. Methods: We synthesised a novel porphyrin-based photosensitiser suitable for conjugation to antibodies and assessed anticancer properties of its conjugate with L19, a clinical-stage human monoclonal antibody specific to the alternatively spliced EDB domain of fibronectin, a marker of tumour angiogenesis. Results: Here we show in two mouse model of cancer (F9 and A431) that L19 is capable of highly selective in vivo localisation around tumour blood vessels and that its conjugate with a photosensitiser allows selective disruption of tumour vasculature upon irradiation, leading to complete and long-lasting cancer eradication. Furthermore, depletion experiments revealed that natural killer cells are essential for the induction of long-lasting complete responses. Conclusions: These results reinforce the concept that vascular shutdown can induce a curative avalanche of tumour cell death. Immuno-photodynamic therapy may be particularly indicated for squamous cell carcinoma of the skin, which we show to be strongly positive for markers of angiogenesis.

Palumbo, A; Hauler, F; Dziunycz, P; Schwager, K; Soltermann, A; Pretto, F; Alonso, C; Hofbauer, G F; Boyle, R W; Neri, D

2011-01-01

278

Investigation of the cerebral hemodynamic response function in single blood vessels by functional photoacoustic microscopy  

PubMed Central

Abstract. The specificity of the hemodynamic response function (HRF) is determined spatially by the vascular architecture and temporally by the evolution of hemodynamic changes. Here, we used functional photoacoustic microscopy (fPAM) to investigate single cerebral blood vessels of rats after left forepaw stimulation. In this system, we analyzed the spatiotemporal evolution of the HRFs of the total hemoglobin concentration (HbT), cerebral blood volume (CBV), and hemoglobin oxygen saturation (SO2). Changes in specific cerebral vessels corresponding to various electrical stimulation intensities and durations were bilaterally imaged with 36×65-?m2 spatial resolution. Stimulation intensities of 1, 2, 6, and 10 mA were applied for periods of 5 or 15 s. Our results show that the relative functional changes in HbT, CBV, and SO2 are highly dependent not only on the intensity of the stimulation, but also on its duration. Additionally, the duration of the stimulation has a strong influence on the spatiotemporal characteristics of the HRF as shorter stimuli elicit responses only in the local vasculature (smaller arterioles), whereas longer stimuli lead to greater vascular supply and drainage. This study suggests that the current fPAM system is reliable for studying relative cerebral hemodynamic changes, as well as for offering new insights into the dynamics of functional cerebral hemodynamic changes in small animals.

Liao, Lun-De; Lin, Chin-Teng; Shih, Yen-Yu I.; Lai, Hsin-Yi; Zhao, Wan-Ting; Duong, Timothy Q.; Chang, Jyh-Yeong; Chen, You-Yin; Li, Meng-Lin

2012-01-01

279

By Different Cellular Mechanisms, Lymphatic Vessels Sprout by Endothelial Cell Recruitment Whereas Blood Vessels Grow by Vascular Expansion.  

National Technical Information Service (NTIS)

The development of effective vascular therapies requires the understanding of all modes of vessel formation contributing to vasculogenesis, angiogenesis (here termed hemangiogenesis) and lymphangiogenesis. We show that lymphangiogenesis proceeds by blind-...

P. Parsons-Wingerter T. L. McKay D. Leontiev T. K. Condrich P. E. DiCorleto

2005-01-01

280

Synergistic promotion of blood vessel regeneration by astragaloside IV and ferulic acid from electrospun fibrous mats.  

PubMed

The promotion of blood vessel initiation and growth plays an important role in the realization of therapeutic vascularization and regeneration of functional tissues. Astragalus membranaceus and angelica sinensis are commonly used traditional Chinese medicines for enriching the blood. In the current study astragaloside IV (AT, the main active ingredient of astragalus) and ferulic acid (FA, the main ingredient of angelica) were loaded into electrospun fibrous scaffolds to provide abundant and sustained biological factors required to initiate vascularization and bring it to maturity. The cell viability after AT and FA treatment was dose-dependent with an optimal concentration of around 50 ?g/mL, and the most significant synergistic effect was demonstrated for the combined treatment with AT and FA with the ratio of 7/3 on both primary endothelial and smooth muscle cells. The in vitro release study showed that the amount of AT and FA release could be regulated by their loading amount and ratios in electrospun fibers. The localized and sustained codelivery of AT and FA indicated significantly high cell viability and secretion of extracellular matrices for both endothelial and smooth muscle cells, and induced significantly high densities of vascular structures after subcutaneous implantation. The most significant angiogenesis promotion with few inflammatory reactions was demonstrated for electrospun fibers containing AT and FA with the ratio of 7/3. It was suggested that the integration of the synergistic effect of Chinese medicine into electrospun fibrous scaffolds should provide clinical relevance for therapeutic vascularization, full vascularization in engineered tissues, and regeneration of blood vessel substitutes. PMID:23651405

Wang, Huan; Zhang, Yun; Xia, Tian; Wei, Wei; Chen, Fang; Guo, Xueqin; Li, Xiaohong

2013-06-01

281

The role of blood vessels and lungs in the dissemination of Naegleria fowleri following intranasal inoculation in mice.  

PubMed

Primary amoebic meningoencephalitis (PAM) was induced in mice by intranasal inoculation of Naegleria fowleri (Singh et Das, 1970) to study the role of the blood vessels and lungs in the early and later stages in this disease. Upon culturing blood and lung tissue obtained at 24-, 36-, 48-, 72-, 96-, and 120-hour time periods, it was found that amoebae grew only from blood and lung tissue obtained at the 96 and 120 hour time periods. Paraffin sections of the head revealed small foci of acute inflammation and amoebae within the olfactory bulb of the central nervous system (CNS) at 24 hours. Amoebae were not observed within blood vessels of the CNS until 96 and 120 hours. Also, amoebae were observed within the connective tissue surrounding blood vessels and sutures of the skull, bone marrow, and venous sinusoids between the skull bone tables at 96 and 120 hours. No amoebae or acute inflammatory reactions were observed in the lung sections from any time period and indirect immunofluorescence microscopy was negative for N. fowleri. This study provides evidence that neither blood vessels nor lungs provide routes for N. fowleri to the CNS during the early stages of PAM and that amoebae enter veins of the CNS and bone marrow during later stages of the disease. PMID:12418810

Jaroli, Kirby L; McCosh, Jeffrey K; Howard, Marsha J

2002-01-01

282

Prognostic Significance of Immunohistochemically Detected Blood and Lymphatic Vessel Invasion in Colorectal Carcinoma: Its Impact on Prognosis  

Microsoft Academic Search

Background  The prognostic significance of blood vessel invasion (BVI) and lymphatic vessel invasion (LVI) is unclear. Because of the\\u000a absence of specific markers for venous and lymphatic vessels, earlier studies could not reliably distinguish between BVI and\\u000a LVI.\\u000a \\u000a \\u000a \\u000a Methods  By immunostaining for podoplanin and CD34 antigen, we retrospectively investigated LVI and BVI in 419 tissue specimens of\\u000a colorectal carcinoma. We performed univariate

Pin Liang; Ichiro Nakada; Jian-Wei Hong; Takanobu Tabuchi; Gyo Motohashi; Akira Takemura; Takeshi Nakachi; Teruhiko Kasuga; Takafumi Tabuchi

2007-01-01

283

Automatic segmentation of pulmonary blood vessels and nodules based on local intensity structure analysis and surface propagation in 3D chest CT images  

Microsoft Academic Search

Purpose  Pulmonary nodules may indicate the early stage of lung cancer, and the progress of lung cancer causes associated changes in\\u000a the shape and number of pulmonary blood vessels. The automatic segmentation of pulmonary nodules and blood vessels is desirable\\u000a for chest computer-aided diagnosis (CAD) systems. Since pulmonary nodules and blood vessels are often attached to each other,\\u000a conventional nodule detection

Bin Chen; Takayuki Kitasaka; Hirotoshi Honma; Hirotsugu Takabatake; Masaki Mori; Hiroshi Natori; Kensaku Mori

284

Large blood vessel stretch in lumbar spine through anterior surgical approach: An experimental study in adult goat  

PubMed Central

Background: Various anterior lumbar surgical approaches, including the minimally invasive approach, have greatly improved in recent years. Vascular complications resulting from ALIF are frequently reported. Little information is available about the safety of large blood vessel stretch. We evaluated the right side stretch limit (RSSL) of the abdominal aorta (AAA) and the inferior vena cava (IVC) without blood flow occlusion and investigated stretch-induced histological injury and thrombosis in the iliac and femoral arteries and veins and the stretched vessels. Materials and Methods: The RSSL of blood vessels in five adult goats was measured by counting the number of 0.5-cm-thick wood slabs that were inserted between the right lumbar edge and the stretch hook. Twenty seven adult goats were divided into three groups to investigate histological injury and thrombosis under a stretch to 0.5 cm (group I) 1.5 cm (group II) for 2 h, or no stretch (group III). Blood vessel samples from groups I and II were analyzed on postsurgical days 1, 3, and 7. Thrombogenesis was examined in the iliac and femoral arteries and veins. Results: The RSSL of large blood vessels in front of L4/5 was 1.5 cm from the right lumbar edge. All goats survived surgery without complications. No injury or thrombosis in the large blood vessels in front of the lumbar vertebrae and in the iliac or femoral arteries and veins was observed. Under light microscopy, group I showed slight swelling of endothelial cells in the AAA and no histological injury of the IVC. The AAA of group II showed endothelial cell damage, unclear organelles, and incomplete cell connections by electron microscopy. Conclusions: The AAA and IVC in a goat model can be stretched by ?0.5 cm, with no thrombosis in the AAA, IVC, iliac or femoral arteries and veins.

Liu, Liehua; Wang, Haoming; Zhou, Qiang; Guo, Deyu; Lan, Yangjun; Liu, Ling

2014-01-01

285

Low level arsenic promotes progressive inflammatory angiogenesis and liver blood vessel remodeling in mice  

PubMed Central

The vascular effects of arsenic in drinking water are global health concerns contributing to human disease worldwide. Arsenic targets the endothelial cells lining blood vessels and endothelial cell activation or dysfunction may underlie the pathogenesis of both arsenic-induced vascular diseases and arsenic-enhanced tumorigenesis. The purpose of the current studies was to demonstrate that exposing mice to drinking water containing environmentally relevant levels of arsenic promoted endothelial cell dysfunction and pathologic vascular remodeling. Increased angiogenesis, neovascularization, and inflammatory cell infiltration was observed in Matrigel plugs implanted in C57BL/6 mice following 5 week exposures to 5-500 ppb arsenic (Soucy et al., 2005). Therefore, functional in vivo effects of arsenic on endothelial cell function and vessel remodeling in an endogenous vascular bed were investigated in the liver. Liver sinusoidal endothelial cells (LSEC) became progressively defenestrated and underwent capillarization to decrease vessel porosity following exposure to 250 ppb arsenic for 2 weeks. Sinusoidal expression of PECAM-1 and laminin-1 proteins, a hallmark of capillarization, was also increased by 2 weeks of exposure. LSEC caveolin-1 protein and caveolae expression were induced after 2 weeks of exposure indicating a compensatory change. Likewise, CD45/CD68 positive inflammatory cells did not accumulate in the livers until after LSEC porosity was decreased; indicating that inflammation is a consequence and not a cause of the arsenic-induced LSEC phenotype. The data demonstrate that the liver vasculature is an early target of pathogenic arsenic effects and that the mouse liver vasculature is a sensitive model for investigating vascular health effects of arsenic.

Straub, Adam C.; Stolz, Donna B.; Vin, Harina; Ross, Mark A.; Soucy, Nicole V.; Klei, Linda R.; Barchowsky, Aaron

2006-01-01

286

Radiometric homogenization of the color cryosection images from the VHP lungs for 3D segmentation of blood vessels.  

PubMed

This work deals with the problem of radiometric inhomogeneities found on the physical color images of the anatomical cryosections from the Visible Human Project (VHP) male body. Our goal is to extract very thin structures, like the blood vessel tree from the lungs. Current segmentation methods applied to VHP color images are disturbed by discontinuous, inter-slice radiometric variations; we thus devised an adaptive correction that is propagated along a series of parallel slices, taking advantage of the structural coherence between consecutive slices. No blurring is introduced, and fine details and texture are respected. Results of 3D segmentation of fine blood vessels on the corrected volume are presented. PMID:10838012

Márquez, J; Schmitt, F

2000-01-01

287

In vivo nanomechanical imaging of blood-vessel tissues directly in living mammals using atomic force microscopy  

NASA Astrophysics Data System (ADS)

Atomic force microscopy (AFM) is difficult to achieve in living mammals but is necessary for understanding mechanical properties of tissues in their native form in organisms. Here we report in vivo nanomechanical imaging of blood-vessel tissues directly in living mammalians by AFM combined with surgical operations. Nanomechanical heterogeneity of blood vessels is observed across the diverse microenvironments of the same tissues in vivo. This method is further used to measure the counteractive nanomechanical changes in real time during drug-induced vasodilation and vasoconstriction in vivo, demonstrating appealing potential in characterization of in vivo nanomechanical dynamics of native tissues.

Mao, Youdong; Sun, Quanmei; Wang, Xiufeng; Ouyang, Qi; Han, Li; Jiang, Lei; Han, Dong

2009-07-01

288

Retina identification based on the pattern of blood vessels using fuzzy logic  

NASA Astrophysics Data System (ADS)

This article proposed a novel human identification method based on retinal images. The proposed system composed of two main parts, feature extraction component and decision-making component. In feature extraction component, first blood vessels extracted and then they have been thinned by a morphological algorithm. Then, two feature vectors are constructed for each image, by utilizing angular and radial partitioning. In previous studies, Manhattan distance has been used as similarity measure between images. In this article, a fuzzy system with Manhattan distances of two feature vectors as input and similarity measure as output has been added to decision-making component. Simulations show that this system is about 99.75% accurate which make it superior to a great extent versus previous studies. In addition to high accuracy rate, rotation invariance and low computational overhead are other advantages of the proposed systems that make it ideal for real-time systems.

Barkhoda, Wafa; Akhlaqian, Fardin; Amiri, Mehran Deljavan; Nouroozzadeh, Mohammad Sadeq

2011-12-01

289

Imaging of blood vessels with CCD-camera based three-dimensional photoacoustic tomography  

NASA Astrophysics Data System (ADS)

An optical phase contrast full field detection setup in combination with a CCD-camera is presented to record acoustic fields for real-time projection and fast three-dimensional imaging. When recording projection images of the wave pattern around the imaging object, the three-dimensional photoacoustic imaging problem is reduced to a set of two-dimensional reconstructions and the measurement setup requires only a single axis of rotation. Using a 10 Hz pulse laser system for photoacoustic excitation a three dimensional image can be obtained in less than 1 min. The sensitivity and resolution of the detection system was estimated experimentally with 5 kPa mm and 75?m, respectively. Experiments on biological samples show the applicability of this technique for the imaging of blood vessel distributions.

Nuster, Robert; Slezak, Paul; Paltauf, Guenther

2014-03-01

290

Potential Applications of Untethered Microdevices in the Blood Vessels within the Constraints of an MRI System.  

PubMed

This paper presents potential medical applications that an untethered microdevice in the cardiovascular system could perform within an MRI system. Recent developments and continuing evolution in micro/nano fabrication and design techniques will enable the development of functional microdevices able to explore the cardiovascular system. The Magnetic Resonance Submarine (MR-Sub) project is a first step towards this goal. Magnetic force generated by the gradient coils of an MRI system provides a propulsion mechanism that simplifies miniaturization and bypasses energetic challenges. Untethered microdevices may play an important complementary role in the next generation of minimally invasive tools. A better efficiency and targetability of the treatments will be achieved when microsystems such as the MR-Sub will allow a more extensive access to smaller blood vessels. PMID:17281328

Mathieu, J B; Soulez, G; Martel, S

2005-01-01

291

[Preparation and properties of novel human-like collagen-silk fibroin scaffold for blood vessel].  

PubMed

In order to improve tensile property of vascular scaffold, we blended silk fibroin with novel human-like collagen with the mass ratio of 9:1, 7:3 and 5:5 (W/W), and then fabricated blood vessel tubular graft by freeze-drying process. We studied microstructure, mechanical properties, elements composites, degradability and biocompatibility of vascular scaffolds. These results showed that tubular scaffold with mass ratio 7:3 exhibited interconnected porous structure with pore size at (60 +/- 5) microm and porosity of 85%; achieved the desirable mechanical property (strain of 50% +/- 5% and stress of 332 +/- 16 kPa); had relatively slow degradation rate; could enhance cell adhesion and proliferation and had superior biocompatibility. PMID:19938461

Zhu, Chenhui; Fan, Daidi; Ma, Xiaoxuan; Xue, Wenjiao; Hui, Junfeng; Chen, Lan; Duan, Zhiguang; Ma, Pu

2009-08-01

292

Targeting the heme-oxidized nitric oxide receptor for selective vasodilatation of diseased blood vessels  

PubMed Central

ROS are a risk factor of several cardiovascular disorders and interfere with NO/soluble guanylyl cyclase/cyclic GMP (NO/sGC/cGMP) signaling through scavenging of NO and formation of the strong oxidant peroxynitrite. Increased oxidative stress affects the heme-containing NO receptor sGC by both decreasing its expression levels and impairing NO-induced activation, making vasodilator therapy with NO donors less effective. Here we show in vivo that oxidative stress and related vascular disease states, including human diabetes mellitus, led to an sGC that was indistinguishable from the in vitro oxidized/heme-free enzyme. This sGC variant represents what we believe to be a novel cGMP signaling entity that is unresponsive to NO and prone to degradation. Whereas high-affinity ligands for the unoccupied heme pocket of sGC such as zinc–protoporphyrin IX and the novel NO-independent sGC activator 4-[((4-carboxybutyl){2-[(4-phenethylbenzyl)oxy]phenethyl}amino) methyl [benzoic]acid (BAY 58-2667) stabilized the enzyme, only the latter activated the NO-insensitive sGC variant. Importantly, in isolated cells, in blood vessels, and in vivo, BAY 58-2667 was more effective and potentiated under pathophysiological and oxidative stress conditions. This therapeutic principle preferentially dilates diseased versus normal blood vessels and may have far-reaching implications for the currently investigated clinical use of BAY 58-2667 as a unique diagnostic tool and highly innovative vascular therapy.

Stasch, Johannes-Peter; Schmidt, Peter M.; Nedvetsky, Pavel I.; Nedvetskaya, Tatiana Y.; H.S., Arun Kumar; Meurer, Sabine; Deile, Martin; Taye, Ashraf; Knorr, Andreas; Lapp, Harald; Muller, Helmut; Turgay, Yagmur; Rothkegel, Christiane; Tersteegen, Adrian; Kemp-Harper, Barbara; Muller-Esterl, Werner; Schmidt, Harald H.H.W.

2006-01-01

293

Degradation profile and preliminary clinical testing of a resorbable device for ligation of blood vessels.  

PubMed

A resorbable device for ligation of blood vessels was developed and tested in vitro to reveal the degradation profile of the device and to predict the clinical performance in terms of adequate mechanical support during a healing period of 1week. In addition, preliminary clinical testing was performed that showed complete hemostasis and good tissue grip of renal arteries in five pigs. The device was made by injection molding of poly(glycolide-co-trimethylene carbonate) triblock copolymer, and it consisted of a case with a locking mechanism connected to a partly perforated flexible band. A hydrolytic degradation study was carried out for 7, 30 and 60days in water and buffer medium, following the changes in mass, water absorption, pH and mechanical properties. A new rapid matrix-free laser desorption ionization-mass spectrometry (LDI-MS) method was developed for direct screening of degradation products released into the degradation medium. The combination of LDI-MS and electrospray ionization-mass spectrometry analyses enabled the comparison of the degradation product patterns in water and buffer medium. The identified degradation products were rich in trimethylene carbonate units, indicating preferential hydrolysis of amorphous regions where trimethylene units are located. The crystallinity of the material was doubled after 60days of hydrolysis, additionally confirming the preferential hydrolysis of trimethylene carbonate units and the enrichment of glycolide units in the remaining solid matrix. The mechanical performance of the perforated band was followed for the first week of hydrolysis and the results suggest that sufficient strength is retained during the healing time of the blood vessels. PMID:23438863

Aminlashgari, Nina; Höglund, Odd V; Borg, Niklas; Hakkarainen, Minna

2013-06-01

294

Distinct mechanisms of relaxation to bioactive components from chamomile species in porcine isolated blood vessels.  

PubMed

German chamomile (Matricaria recutita L.), a widely-used herbal medicine, has been reported to have a wide range of biological effects, including smooth muscle relaxation. The aim of this study was to compare the effects of representative compounds from chamomile (apigenin, luteolin, (-)-?-bisabolol, farnesene, umbelliferone; 3-30 ?M) on vascular tone using porcine coronary and splenic arteries mounted for isometric tension recording in isolated tissue baths and precontracted with the thromboxane-mimetic U46619. Apigenin, luteolin, and (-)-?-bisabolol produced slow, concentration-dependent relaxations in both the coronary and splenic arteries that were not blocked by inhibition of nitric oxide synthase or potassium channels. Removal of extracellular calcium inhibited the relaxations to all three compounds, and these compounds also inhibited calcium re-addition-evoked contractions, indicating that the relaxation response may be mediated through inhibition of calcium influx. Apigenin and luteolin, but not (-)-?-bisabolol, enhanced the relaxation to the nitric oxide donor sodium nitroprusside, indicating that apigenin and luteolin may act to regulate cyclic GMP levels. Umbelliferone produced a rapid, transient relaxation in the splenic artery, but not the coronary artery, that was inhibited by L-NAME and removal of the endothelium, suggesting an influence on nitric oxide production. Farnesene, at concentrations up to 30 ?M, was without effect in either blood vessel. In conclusion, hydroxylated compounds (apigenin, luteolin and (-)-?-bisabolol) found in chamomile all caused a slow relaxation of isolated blood vessels through an effect on calcium influx. Umbelliferone, on the other hand, produced a rapid, transient relaxation dependent upon release of nitric oxide from the endothelium. PMID:23845591

Roberts, R E; Allen, S; Chang, A P Y; Henderson, H; Hobson, G C; Karania, B; Morgan, K N; Pek, A S Y; Raghvani, K; Shee, C Y; Shikotra, J; Street, E; Abbas, Z; Ellis, K; Heer, J K; Alexander, S P H

2013-11-01

295

Targeting the heme-oxidized nitric oxide receptor for selective vasodilatation of diseased blood vessels.  

PubMed

ROS are a risk factor of several cardiovascular disorders and interfere with NO/soluble guanylyl cyclase/cyclic GMP (NO/sGC/cGMP) signaling through scavenging of NO and formation of the strong oxidant peroxynitrite. Increased oxidative stress affects the heme-containing NO receptor sGC by both decreasing its expression levels and impairing NO-induced activation, making vasodilator therapy with NO donors less effective. Here we show in vivo that oxidative stress and related vascular disease states, including human diabetes mellitus, led to an sGC that was indistinguishable from the in vitro oxidized/heme-free enzyme. This sGC variant represents what we believe to be a novel cGMP signaling entity that is unresponsive to NO and prone to degradation. Whereas high-affinity ligands for the unoccupied heme pocket of sGC such as zinc-protoporphyrin IX and the novel NO-independent sGC activator 4-[((4-carboxybutyl){2-[(4-phenethylbenzyl)oxy]phenethyl}amino) methyl [benzoic]acid (BAY 58-2667) stabilized the enzyme, only the latter activated the NO-insensitive sGC variant. Importantly, in isolated cells, in blood vessels, and in vivo, BAY 58-2667 was more effective and potentiated under pathophysiological and oxidative stress conditions. This therapeutic principle preferentially dilates diseased versus normal blood vessels and may have far-reaching implications for the currently investigated clinical use of BAY 58-2667 as a unique diagnostic tool and highly innovative vascular therapy. PMID:16955146

Stasch, Johannes-Peter; Schmidt, Peter M; Nedvetsky, Pavel I; Nedvetskaya, Tatiana Y; H S, Arun Kumar; Meurer, Sabine; Deile, Martin; Taye, Ashraf; Knorr, Andreas; Lapp, Harald; Müller, Helmut; Turgay, Yagmur; Rothkegel, Christiane; Tersteegen, Adrian; Kemp-Harper, Barbara; Müller-Esterl, Werner; Schmidt, Harald H H W

2006-09-01

296

The Behaviors of Ferro-Magnetic Nano-Particles In and Around Blood Vessels under Applied Magnetic Fields  

PubMed Central

In magnetic drug delivery, therapeutic magnetizable particles are typically injected into the blood stream and magnets are then used to concentrate them to disease locations. The behavior of such particles in-vivo is complex and is governed by blood convection, diffusion (in blood and in tissue), extravasation, and the applied magnetic fields. Using physical first-principles and a sophisticated vessel-membrane-tissue (VMT) numerical solver, we comprehensively analyze in detail the behavior of magnetic particles in blood vessels and surrounding tissue. For any blood vessel (of any size, depth, and blood velocity) and tissue properties, particle size and applied magnetic fields, we consider a Krogh tissue cylinder geometry and solve for the resulting spatial distribution of particles. We find that there are three prototypical behaviors (blood velocity dominated, magnetic force dominated, and boundary-layer formation) and that the type of behavior observed is uniquely determined by three non-dimensional numbers (the magnetic-Richardson number, mass Péclet number, and Renkin reduced diffusion coefficient). Plots and equations are provided to easily read out which behavior is found under which circumstances (Figures 5, 6, 7, and 8). We compare our results to previously published in-vitro and in-vivo magnetic drug delivery experiments. Not only do we find excellent agreement between our predictions and prior experimental observations, but we are also able to qualitatively and quantitatively explain behavior that was previously not understood.

Nacev, A.; Beni, C.; Bruno, O.; Shapiro, B.

2010-01-01

297

Characterization of Imidazoline Receptors in Blood Vessels for the Development of Antihypertensive Agents  

PubMed Central

It has been indicated that activation of peripheral imidazoline I2-receptor (I-2R) may reduce the blood pressure in spontaneously hypertensive rats (SHRs). Also, guanidinium derivatives show the ability to activate imidazoline receptors. Thus, it is of special interest to characterize the I-2R using guanidinium derivatives in blood vessels for development of antihypertensive agent(s). Six guanidinium derivatives including agmatine, amiloride, aminoguanidine, allantoin, canavanine, and metformin were applied in this study. Western blot analysis was used for detecting the expression of imidazoline receptor in tissues of Wistar rats. The isometric tension of aortic rings isolated from male rats was also estimated. The expression of imidazoline receptor on rat aorta was identified. However, guanidinium derivatives for detection of aortic relaxation were not observed except agmatine and amiloride which induced a marked relaxation in isolated aortic rings precontracted with phenylephrine or KCl. Both relaxations induced by agmatine and amiloride were attenuated by glibenclamide at concentration enough to block ATP-sensitive potassium (KATP) channels. Meanwhile, only agmatine-induced relaxation was abolished by BU224, a selective antagonist of imidazoline I2-receptors. Taken together, we suggest that agmatine can induce vascular relaxation through activation of peripheral imidazoline I2-receptor to open KATP channels. Thus, agmatine-like compound has the potential to develop as a new therapeutic agent for hypertension in the future.

Chen, Mei-Fen; Chen, Li-Jen; Wu, Tung-Pi; Yang, Jia-Jang; Yin, Li-Te; Yang, Yu-lin; Chiang, Tai-An; Lu, Han-Lin; Wu, Ming-Chang

2014-01-01

298

Characterization of imidazoline receptors in blood vessels for the development of antihypertensive agents.  

PubMed

It has been indicated that activation of peripheral imidazoline I2-receptor (I-2R) may reduce the blood pressure in spontaneously hypertensive rats (SHRs). Also, guanidinium derivatives show the ability to activate imidazoline receptors. Thus, it is of special interest to characterize the I-2R using guanidinium derivatives in blood vessels for development of antihypertensive agent(s). Six guanidinium derivatives including agmatine, amiloride, aminoguanidine, allantoin, canavanine, and metformin were applied in this study. Western blot analysis was used for detecting the expression of imidazoline receptor in tissues of Wistar rats. The isometric tension of aortic rings isolated from male rats was also estimated. The expression of imidazoline receptor on rat aorta was identified. However, guanidinium derivatives for detection of aortic relaxation were not observed except agmatine and amiloride which induced a marked relaxation in isolated aortic rings precontracted with phenylephrine or KCl. Both relaxations induced by agmatine and amiloride were attenuated by glibenclamide at concentration enough to block ATP-sensitive potassium (KATP) channels. Meanwhile, only agmatine-induced relaxation was abolished by BU224, a selective antagonist of imidazoline I2-receptors. Taken together, we suggest that agmatine can induce vascular relaxation through activation of peripheral imidazoline I2-receptor to open KATP channels. Thus, agmatine-like compound has the potential to develop as a new therapeutic agent for hypertension in the future. PMID:24800210

Chen, Mei-Fen; Tsai, Jo-Ting; Chen, Li-Jen; Wu, Tung-Pi; Yang, Jia-Jang; Yin, Li-Te; Yang, Yu-Lin; Chiang, Tai-An; Lu, Han-Lin; Wu, Ming-Chang

2014-01-01

299

Biogenic amines modulate pulse rate in the dorsal blood vessel of Lumbriculus variegatus.  

PubMed

The biogenic amines are widespread regulators of physiological processes, and play an important role in regulating heart rate in diverse organisms. Here, we present the first pharmacological evidence for a role of the biogenic amines in the regulation of dorsal blood vessel pulse rate in an aquatic oligochaete, Lumbriculus variegatus (Müller, 1774). Bath application of octopamine to intact worms resulted in an acceleration of pulse rate, but not when co-applied with the adenylyl cyclase inhibitor MDL-12,330a. The phosphodiesterase inhibitor theophylline mimicked the effects of OA, but the polar adenosine receptor antagonist 8(p-sulphophenyl)theophylline was significantly less potent than theophylline. Pharmacologically blocking synaptic reuptake of the biogenic amines using the selective 5-HT reuptake blocker fluoxetine or various tricyclic antidepressants also accelerated heart rate. Depletion of the biogenic amines by treatment with the monoamine vesicular transporter blocker reserpine dramatically depressed pulse rate. Pulse rate was partially restored in amine-depleted worms after treatment with octopamine or dopamine, but fully restored following treatment with serotonin. This effect of 5-HT was weakly mimicked by 5-methoxytryptamine, but not by alpha-methylserotonin; it was completely blocked by clozapine and partially blocked by cyproheptadine. Because they are known to orchestrate a variety of adaptive behaviors in invertebrates, the biogenic amines may coordinate blood flow with behavioral state in L.variegatus. PMID:20167287

Crisp, Kevin M; Grupe, Rebecca E; Lobsang, Tenzin T; Yang, Xong

2010-05-01

300

Three-dimensional multi-scale model of deformable platelets adhesion to vessel wall in blood flow.  

PubMed

When a blood vessel ruptures or gets inflamed, the human body responds by rapidly forming a clot to restrict the loss of blood. Platelets aggregation at the injury site of the blood vessel occurring via platelet-platelet adhesion, tethering and rolling on the injured endothelium is a critical initial step in blood clot formation. A novel three-dimensional multi-scale model is introduced and used in this paper to simulate receptor-mediated adhesion of deformable platelets at the site of vascular injury under different shear rates of blood flow. The novelty of the model is based on a new approach of coupling submodels at three biological scales crucial for the early clot formation: novel hybrid cell membrane submodel to represent physiological elastic properties of a platelet, stochastic receptor-ligand binding submodel to describe cell adhesion kinetics and lattice Boltzmann submodel for simulating blood flow. The model implementation on the GPU cluster significantly improved simulation performance. Predictive model simulations revealed that platelet deformation, interactions between platelets in the vicinity of the vessel wall as well as the number of functional GPIb? platelet receptors played significant roles in platelet adhesion to the injury site. Variation of the number of functional GPIb? platelet receptors as well as changes of platelet stiffness can represent effects of specific drugs reducing or enhancing platelet activity. Therefore, predictive simulations can improve the search for new drug targets and help to make treatment of thrombosis patient-specific. PMID:24982253

Wu, Ziheng; Xu, Zhiliang; Kim, Oleg; Alber, Mark

2014-08-01

301

Forces on a Wall-Bound Leukocyte in a Small Vessel Due to Red Cells in the Blood Stream  

PubMed Central

As part of the inflammation response, white blood cells (leukocytes) are well known to bind nearly statically to the vessel walls, where they must resist the force exerted by the flowing blood. This force is particularly difficult to estimate due to the particulate character of blood, especially in small vessels where the red blood cells must substantially deform to pass an adhered leukocyte. An efficient simulation tool with realistically flexible red blood cells is used to estimate these forces. At these length scales, it is found that the red cells significantly augment the streamwise forces that must be resisted by the binding. However, interactions with the red cells are also found to cause an average wall-directed force, which can be anticipated to enhance binding. These forces increase significantly as hematocrit values approach 25% and decrease significantly as the leukocyte is made flatter on the wall. For a tube hematocrit of 25% and a spherical protrusion with a diameter three-quarters that of the vessel, the average forces are increased by ?40% and the local forces are more than double those estimated with an effective-viscosity-homogenized blood. Both the enhanced streamwise and wall-ward forces and their unsteady character are potentially important in regard to binding mechanisms.

Isfahani, Amir H.G.; Freund, Jonathan B.

2012-01-01

302

Negative contrast Cerenkov luminescence imaging of blood vessels in a tumor mouse model using [68Ga]gallium chloride  

PubMed Central

Background Cerenkov luminescence imaging (CLI) is an emerging imaging technique where visible light emitted from injected beta-emitting radionuclides is detected with an optical imaging device. CLI research has mostly been focused on positive contrast imaging for ascertaining the distribution of the radiotracer in a way similar to other nuclear medicine techniques. Rather than using the conventional technique of measuring radiotracer distribution, we present a new approach of negative contrast imaging, where blood vessel attenuation of Cerenkov light emitted by [68Ga]GaCl3 is used to image vasculature. Methods BALB/c nude mice were injected subcutaneously in the right flank with HT-1080 fibrosarcoma cells 14 to 21 days prior to imaging. On the imaging day, [68Ga]GaCl3 was injected and the mice were imaged from 45 to 90 min after injection using an IVIS Spectrum in vivo imaging system. The mice were imaged one at a time, and manual focus was used to bring the skin into focus. The smallest view with pixel size around 83 ?m was used to achieve a sufficiently high image resolution for blood vessel imaging. Results The blood vessels in the tumor were clearly visible, attenuating 7% to 18% of the light. Non-tumor side blood vessels had significantly reduced attenuation of 2% to 4%. The difference between the attenuation of light of tumor vessels (10%?±?4%) and the non-tumor vessels (3%?±?1%) was significant. Moreover, a necrotic core confirmed by histology was clearly visible in one of the tumors with a 21% reduction in radiance. Conclusions The negative contrast CLI technique is capable of imaging vasculature using [68Ga]GaCl3. Since blood vessels smaller than 50 ?m in diameter could be imaged, CLI is able to image structures that conventional nuclear medicine techniques cannot. Thus, the negative contrast imaging technique shows the feasibility of using CLI to perform angiography on superficial blood vessels, demonstrating an advantage over conventional nuclear medicine techniques.

2014-01-01

303

Nestin-driven green fluorescent protein as an imaging marker for nascent blood vessels in mouse models of cancer.  

PubMed

A transgenic mouse, in which the regulatory elements of the stem cell marker, nestin drive green fluorescent protein (ND-GFP), expresses GFP in nascent blood vessels. Red fluorescent protein (RFP)-expressing tumors transplanted to nestin-GFP mice enable specific visualization of nascent vessels in the growing tumors. The ND-GFP mouse was also utilized to develop a rapid in vivo/ex vivo fluorescent angiogenesis assay by implanting Gelfoam(®), a surgical sponge derived from pigskin, which was rapidly vascularized by fluorescent nascent blood vessels. Angiogenesis could be imaged and quantified when stimulated or inhibited by specific compounds in both tumors and Gelfoam(®). These fluorescent models can be used to study the early events of angiogenesis and to quantitatively determine efficacy of antiangiogenesis compounds. PMID:21153793

Hoffman, Robert M

2011-01-01

304

Photothermal coagulation of blood vessels: a comparison of high-speed optical coherence tomography and numerical modelling  

NASA Astrophysics Data System (ADS)

Optical-thermal models that can accurately predict temperature rise and damage in blood vessels and surrounding tissue may be used to improve the treatment of vascular disorders. Verification of these models has been hampered by the lack of time- and depth-resolved experimental data. In this preliminary study, an optical coherence tomography system operating at 4-30 frames per second was used to visualize laser irradiation of cutaneous (hamster dorsal skin flap) blood vessels. An argon laser was utilized with the following parameters: pulse duration 0.1-2.0 s, spot size 0.1-1.0 mm, power 100-400 mW. Video microscopy images were obtained before and after irradiations, and optical-thermal modelling was performed on two irradiation cases. Time-resolved optical coherence tomography and still images were compared with predictions of temperature rise and damage using Monte Carlo and finite difference techniques. In general, predicted damage agreed with the actual blood vessel and surrounding tissue coagulation seen in images. However, limitations of current optical-thermal models were identified, such as the inability to model the dynamic changes in blood vessel diameter that were seen in the optical coherence tomography images.

Kehlet Barton, Jennifer; Rollins, Andrew; Yazdanfar, Siavash; Pfefer, T. Joshua; Westphal, Volker; Izatt, Joseph A.

2001-06-01

305

Radiometric homogenization of the color cryosection images from the VHP Lungs for 3D segmentation of blood vessels  

Microsoft Academic Search

This work deals with the problem of radiometric inhomogeneities found on the physical color images of the anatomical cryosections from the Visible Human Project (VHP) male body. Our goal is to extract very thin structures, like the blood vessel tree from the lungs. Current segmentation methods applied to VHP color images are disturbed by discontinuous, inter-slice radiometric variations; we thus

J Márquez; F Schmitt

2000-01-01

306

Vitamin C Deficiency in Guinea Pigs Differentially Affects the Expression of Type IV Collagen, Laminin, and Elastin in Blood Vessels1  

Microsoft Academic Search

Vitamin C deficiency causes morphologic changes in the endothelial and smooth muscle compart- ments of guinea pig blood vessels. Endothelial cells synthesize the basement membrane components, type IV collagen and laminin, and smooth muscle cells synthesize elastin in blood vessels. Therefore, we examined the possibility that vitamin C deficiency affects the expression of these proteins. Decreased expression of types I

Fatemeh Mahmoodian; Beverly Peterkofsky

307

Coupling Oriented Hidden Markov Random Field Model with Local Clustering for Segmenting Blood Vessels and Measuring Spatial Structures in Images of Tumor Microenvironment  

Microsoft Academic Search

Interactions between cancer cells and factors within the tumor microenvironment (mE) are essential for understanding tumor development. The spatial relationships between blood vessel cells and cancer cells, e.g. tumor initiating cells (TICs), are an important parameter. Accurate segmentation of blood vessel is necessary for the quantization of their spatial relationships. However, this remains an open problem due to uneven intensity

Yanqiao Zhu; Fuhai Li; Derek Cridebring; Jinwen Ma; Stephen T. C. Wong; Tegy J. Vadakkan; Mei Zhang; John Landua; Mary E. Dickinson; Jeffrey M. Rosen; Michael T. Lewis

2011-01-01

308

PEG-albumin supraplasma expansion is due to increased vessel wall shear stress induced by blood viscosity shear thinning  

PubMed Central

We studied the extreme hemodilution to a hematocrit of 11% induced by three plasma expanders: polyethylene glycol (PEG)-conjugated albumin (PEG-Alb), 6% 70-kDa dextran, and 6% 500-kDa dextran. The experimental component of our study relied on microelectrodes and cardiac output to measure both the rheological properties of plasma-expander blood mixtures and nitric oxide (NO) bioavailability in vessel walls. The modeling component consisted of an analysis of the distribution of wall shear stress (WSS) in the microvessels. Our experiments demonstrated that plasma expansion with PEG-Alb caused a state of supraperfusion with cardiac output 40% above baseline, significantly increased NO vessel wall bioavailability, and lowered peripheral vascular resistance. We attributed this behavior to the shear thinning nature of blood and PEG-Alb mixtures. To substantiate this hypothesis, we developed a mathematical model of non-Newtonian blood flow in a vessel. Our model used the Quemada rheological constitutive relationship to express blood viscosity in terms of both hematocrit and shear rate. The model revealed that the net effect of the hemodilution induced by relatively low-viscosity shear thinning PEG-Alb plasma expanders is to reduce overall blood viscosity and to increase the WSS, thus intensifying endothelial NO production. These changes act synergistically, significantly increasing cardiac output and perfusion due to lowered overall peripheral vascular resistance.

Sriram, Krishna; Tsai, Amy G.; Cabrales, Pedro; Meng, Fantao; Acharya, Seetharama A.; Tartakovsky, Daniel M.

2012-01-01

309

Changes in specialized blood vessels in lymph nodes and their role in cancer metastasis  

PubMed Central

Background High endothelial venules (HEV) have been recognized to play a role in metastasis by its changes seen in the cancer microenvironment of lymph nodes (LN) and solid cancers. Squamous cell carcinoma (SCC) of the tongue is a prevalent tumor of the head and neck region with high propensity for LN metastasis. The extent of LN metastasis is the most reliable adverse prognostic factor. Primary tumors can induce vasculature reorganization within sentinel LN before the arrival of tumor cells and HEV represents these remodelled vessels. This study aims to evaluate the cancer induced vascular changes in regional lymph nodes (LN) of patients by studying the morphological and functional alterations of HEV and its correlation with clinical outcome and pathological features. Methods This study was based on 65 patients with SCC tongue who underwent primary surgical treatment including neck dissection. The patients were categorized into 2 groups based on the presence of malignancy in their cervical lymph nodes. A review of the patients' pathological and clinical data was performed from a prospective database. Immunohistochemical staining of the tissue blocks for HEV and high-power-field image analysis were performed and analyzed with correlation to the patients' clinical and pathological features. Results The total number of HEV was found to be significantly associated to disease-free interval. There was a similar association comparing the HEV parameters to overall survival. The density of abnormal HEV was significantly higher in patients with established metastases in their lymph nodes and HEV was shown to be a better prognosis factor than conventional tumor staging. The HEV morphological metamorphosis demonstrates a spectrum that correlates well with disease progression and clinical outcome. Conclusions The results suggest that the HEV displays a spectrum of morphological changes in the presence of cancer and LN metastasis, and that HEV is possibly involved in the process of cancer metastasis. We revealed the relationship of HEV and their metamorphosis in pre-metastatic and metastatic environments in regional lymph nodes of tongue cancer patients in relation to clinical outcomes. The significant observation of modified dilated HEV containing red blood cells in lymph nodal basin of a cancer suggests the shifting of its function from one primarily of immune response to that of a blood carrying vessel. It also demonstrated potential prognostic value. More studies are needed to elucidate its potential role in cancer immunotherapy and as a potential novel therapeutic approach to preventing metastasis by manipulating the remodelling processes of HEV.

2012-01-01

310

Analysis of the fast scanning method for tumor ablation with the effect of the large blood vessel by numerical simulation  

NASA Astrophysics Data System (ADS)

While using HIFU for tumor ablation, the focal size of the ultrasound is relatively small compared with the tumor, therefore, numerous sonications are necessary to cover the whole treatment area. A large number of foci, on the other hand, lead to a complex problem for the optimization of the treatment parameters. Moreover, the existence of the large vessel might reduce the size of the lesion volume. A fast scanning method for volumetric ablation is investigated by numerical simulation with the effect of the large blood vessel. The proposed method is only available for phased array transducers because fast switch at the frequency of 10 Hz between several predetermined focus positions is needed. Since the duration time for each single ablation was identical, ignoring the ultrasound power, the scan path is the major parameter that should be decided. Five scan paths are simulated with and without a large vessel (diameter of 6mm) in the compute domain. The simulations solved by finite element method showed that the size of formed lesions had little difference while different scan paths applied. While the proposed scan method was used, the impact of the blood flow on the lesion volume depended on the distance between the large vessel and the focal area, as same as previous researches in the single focus case. Additionally, the orientation of the vessel played an important role in the formation of lesions.

Qiao, Shan; Shen, Guofeng; Bai, Jingfeng; Chen, Yazhu

2012-11-01

311

Fusing VE-cadherin to ?-catenin impairs fetal liver hematopoiesis and lymph but not blood vessel formation.  

PubMed

We have recently shown that genetic replacement of VE-cadherin by a VE-cadherin-?-catenin fusion construct strongly impairs opening of endothelial cell contacts during leukocyte extravasation and induction of vascular permeability in adult mice. Here we show that this mutation leads to lethality at midgestation on a clean C57BL/6 background. Investigating the reasons for embryonic lethality, we observed a lack of fetal liver hematopoiesis and severe lymphedema but no detectable defects in blood vessel formation and remodeling. As for the hematopoiesis defect, VE-cadherin-?-catenin affected neither the generation of hematopoietic stem and progenitor cells (HSPCs) from hemogenic endothelium nor their differentiation into multiple hematopoietic lineages. Instead, HSPCs accumulated in the fetal circulation, suggesting that their entry into the fetal liver was blocked. Edema formation was caused by disturbed lymphatic vessel development. Lymphatic progenitor cells of VE-cadherin-?-catenin-expressing embryos were able to leave the cardinal vein and migrate to the site of the first lymphatic vessel formation, yet subsequently, these cells failed to form large lumenized lymphatic vessels. Thus, stabilizing endothelial cell contacts by a covalent link between VE-cadherin and ?-catenin affects recruitment of hematopoietic progenitors into the fetal liver and the development of lymph but not blood vessels. PMID:24567373

Dartsch, Nina; Schulte, Dörte; Hägerling, René; Kiefer, Friedemann; Vestweber, Dietmar

2014-05-01

312

Gamma-Secretase Inhibitor Treatment Promotes VEGF-A-Driven Blood Vessel Growth and Vascular Leakage but Disrupts Neovascular Perfusion  

PubMed Central

The Notch signaling pathway is essential for normal development due to its role in control of cell differentiation, proliferation and survival. It is also critically involved in tumorigenesis and cancer progression. A key enzyme in the activation of Notch signaling is the gamma-secretase protein complex and therefore, gamma-secretase inhibitors (GSIs)—originally developed for Alzheimer's disease—are now being evaluated in clinical trials for human malignancies. It is also clear that Notch plays an important role in angiogenesis driven by Vascular Endothelial Growth Factor A (VEGF-A)—a process instrumental for tumor growth and metastasis. The effect of GSIs on tumor vasculature has not been conclusively determined. Here we report that Compound X (CX), a GSI previously reported to potently inhibit Notch signaling in vitro and in vivo, promotes angiogenic sprouting in vitro and during developmental angiogenesis in mice. Furthermore, CX treatment suppresses tumor growth in a mouse model of renal carcinoma, leads to the formation of abnormal vessels and an increased tumor vascular density. Using a rabbit model of VEGF-A-driven angiogenesis in skeletal muscle, we demonstrate that CX treatment promotes abnormal blood vessel growth characterized by vessel occlusion, disrupted blood flow, and increased vascular leakage. Based on these findings, we propose a model for how GSIs and other Notch inhibitors disrupt tumor blood vessel perfusion, which might be useful for understanding this new class of anti-cancer agents.

Kalen, Mattias; Nitzsche, Anja; Weber, Holger; Esser, Norbert; Yla-Herttuala, Seppo; Hellstrom, Mats

2011-01-01

313

Gcsf-Chr19 Promotes Neutrophil Migration to Damaged Tissue through Blood Vessels in Zebrafish.  

PubMed

G-CSF is an essential cytokine that regulates proliferation and differentiation of granulocytes from hematopoietic stem and progenitor cells. In mammals G-CSF has been identified as a key factor that promotes the release of neutrophils from the bone marrow into the blood circulation. In silico analysis indicates that zebrafish has two gcsf genes, gcsf-chr12 in chromosome 12 and gcsf-chr19 in chromosome 19. Gcsf-Chr12 participates in emergency myelopoiesis, but, in contrast to its mammalian orthologue, is not involved in neutrophil migration toward damaged tissue. In turn, the function of Gcsf-Chr19 has not been examined yet. In this study, we analyzed the role of Gcsf-Chr19 in regulating neutrophil migration toward the wound. Our results indicated that during the first h after caudal fin transection, neutrophils migrate from the hematopoietic tissue toward the injury, using the extracellular matrix as a substrate. Later, between 3 and 4 h postdamage, the recruitment mainly occurs through the bloodstream, and only a few neutrophils still use the extracellular matrix to migrate. During this process, the transcriptional levels of gcsf-chr19 are considerably increased, reaching a peak 1 h postdamage. The knockdown of Gcsf-chr19 indicated that the percentage of neutrophils that reach the wound decreased after the first h postinjury, suggesting that the knockdown specifically affects neutrophils that travel to the wound through blood vessels. Together, our data provide novel information about the regulation of neutrophil migration in zebrafish, positioning Gcsf-Chr19 as a key signal during the course of an inflammatory process triggered by severe damage. PMID:24890728

Galdames, Jorge A; Zuñiga-Traslaviña, Constanza; Reyes, Ariel E; Feijóo, Carmen G

2014-07-01

314

Direct and Doppler angle-independent measurement of blood flow velocity in small-diameter vessels using ultrasound microbubbles.  

PubMed

This article represents an initial attempt to demonstrate the feasibility of a novel method for measuring flow velocity in small vessels, which is a direct, noninvasive, ultrasound-guided, and Doppler angle-independent method. In vitro, experiments were designed to mimic blood flow inside tubes. Harmonic ultrasound imaging was used to track the movement of microbubbles, and the mean flow velocity was calculated. In vivo, the flow velocities were measured in the central arteries of rabbit ears. This method can be used whenever the Doppler ultrasound cannot measure the velocity in small vessels because of either low sensitivity or Doppler angle limitation. PMID:22920365

Roy, Homagni Sikha; Zuo, Guoqing; Luo, Zhengchun; Wu, Hanping; Krupka, Tianyi M; Ran, Haitao; Li, Pan; Sun, Youping; Wang, Zhigang; Zheng, Yuanyi

2012-01-01

315

Blood brain barrier breakdown as the starting point of cerebral small vessel disease? - New insights from a rat model  

PubMed Central

Cerebral small vessel disease (CSVD, cerebral microangiopathy) leads to dementia and stroke-like symptoms. Lacunes, white matter lesions (WML) and microbleeds are the main pathological correlates depicted in in-vivo imaging diagnostics. Early studies described segmental arterial wall disorganizations of small penetrating cerebral arteries as the most pronounced underlying histopathology of lacunes. Luminal narrowing caused by arteriolosclerosis was supposed to result in hypoperfusion with WML and infarcts. We have used the model of spontaneously hypertensive stroke-prone rats (SHRSP) for a longitudinal study to elucidate early histological changes in small cerebral vessels. We suggest that endothelial injuries lead to multiple sites with blood brain barrier (BBB) leakage which cause an ongoing damage of the vessel wall and finally resulting in vessel ruptures and microbleeds. These microbleeds together with reactive small vessel occlusions induce overt cystic infarcts of the surrounding parenchyma. Thus, multiple endothelial leakage sites seem to be the starting point of cerebral microangiopathy. The vascular system reacts with an activated coagulatory state to these early endothelial injuries and by this induces the formation of stases, accumulations of erythrocytes, which represent the earliest detectable histological peculiarity of small vessel disease in SHRSP. In this review we focus on the meaning of the BBB breakdown in CSVD and finally discuss possible consequences for clinicians.

2013-01-01

316

Blood brain barrier breakdown as the starting point of cerebral small vessel disease? - New insights from a rat model.  

PubMed

Cerebral small vessel disease (CSVD, cerebral microangiopathy) leads to dementia and stroke-like symptoms. Lacunes, white matter lesions (WML) and microbleeds are the main pathological correlates depicted in in-vivo imaging diagnostics. Early studies described segmental arterial wall disorganizations of small penetrating cerebral arteries as the most pronounced underlying histopathology of lacunes. Luminal narrowing caused by arteriolosclerosis was supposed to result in hypoperfusion with WML and infarcts.We have used the model of spontaneously hypertensive stroke-prone rats (SHRSP) for a longitudinal study to elucidate early histological changes in small cerebral vessels. We suggest that endothelial injuries lead to multiple sites with blood brain barrier (BBB) leakage which cause an ongoing damage of the vessel wall and finally resulting in vessel ruptures and microbleeds. These microbleeds together with reactive small vessel occlusions induce overt cystic infarcts of the surrounding parenchyma. Thus, multiple endothelial leakage sites seem to be the starting point of cerebral microangiopathy. The vascular system reacts with an activated coagulatory state to these early endothelial injuries and by this induces the formation of stases, accumulations of erythrocytes, which represent the earliest detectable histological peculiarity of small vessel disease in SHRSP.In this review we focus on the meaning of the BBB breakdown in CSVD and finally discuss possible consequences for clinicians. PMID:23497521

Schreiber, Stefanie; Bueche, Celine Zoe; Garz, Cornelia; Braun, Holger

2013-01-01

317

A New Device for Mechanical Testing of Blood Vessels at Cryogenic Temperatures  

PubMed Central

As part of an ongoing program to study the thermo-mechanical effects associated with cryopreservation via vitrification (vitreous in Latin means glassy), the current study focuses on the development of a new device for mechanical testing of blood vessels at cryogenic temperatures. This device is demonstrated on a bovine carotid artery model, permeated with the cryoprotectant cocktail VS55 and a reference solution of 7.05M DMSO, below glass transition. Results are also presented for crystallized specimens, in the absence of cryoprotectants. Results indicate that the elastic modulus of a specimen with no cryoprotectant, at about ?140°C (8.6°C and 15.5°C below the glass transition temperature of 7.05M DMSO and VS55, respectively), is 1038.8 ± 25.2 MPa, which is 8% and 3% higher than that of a vitrified specimen permeated with 7.05M DMSO and VS55, respectively. The elastic modulus of a crystallized material at ?50°C is lower by ~20% lower from that at ?140°C.

Jimenez Rios, Jorge L.; Rabin, Yoed

2008-01-01

318

Thermal expansion of vitrified blood vessels permeated with DP6 and synthetic ice modulators.  

PubMed

This study provides thermal expansion data for blood vessels permeated with the cryoprotective cocktail DP6, when combined with selected synthetic ice modulators (SIMs): 12% polyethylene glycol 400, 6% 1,3-cyclohexanediol, and 6% 2,3-butanediol. The general classification of SIMs includes molecules that modulate ice nucleation and growth, or possess properties of stabilizing the amorphous state, by virtue of their chemical structure and at concentrations that are not explained on a purely colligative basis. The current study is part of an ongoing effort to characterize thermo-mechanical effects on structural integrity of cryopreserved materials, where thermal expansion is the driving mechanism to thermo-mechanical stress. This study focuses on the lower part of the cryogenic temperature range, where the cryoprotective agent (CPA) behaves as a solid for all practical applications. By combining results obtained in the current study with literature data on the thermal expansion in the upper part of the cryogenic temperature range, unified thermal expansion curves are presented. PMID:24769313

Eisenberg, David P; Taylor, Michael J; Jimenez-Rios, Jorge L; Rabin, Yoed

2014-06-01

319

Essential and overlapping roles for laminin alpha chains in notochord and blood vessel formation.  

PubMed

Laminins are major constituents of basement membranes and have wide ranging functions during development and in the adult. They are a family of heterotrimeric molecules created through association of an alpha, beta and gamma chain. We previously reported that two zebrafish loci, grumpy (gup) and sleepy (sly), encode laminin beta1 and gamma1, which are important both for notochord differentiation and for proper intersegmental blood vessel (ISV) formation. In this study we show that bashful (bal) encodes laminin alpha1 (lama1). Although the strongest allele, bal(m190), is fully penetrant, when compared to gup or sly mutant embryos, bal mutants are not as severely affected, as only anterior notochord fails to differentiate and ISVs are unaffected. This suggests that other alpha chains, and hence other isoforms, act redundantly to laminin 1 in posterior notochord and ISV development. We identified cDNA sequences for lama2, lama4 and lama5 and disrupted the expression of each alone or in mutant embryos also lacking laminin alpha1. When expression of laminin alpha4 and laminin alpha1 are simultaneously disrupted, notochord differentiation and ISVs are as severely affected as sly or gup mutants. Moreover, live imaging of transgenic embryos expressing enhanced green fluorescent protein in forming ISVs reveals that the vascular defects in these embryos are due to an inability of ISV sprouts to migrate correctly along the intersegmental, normally laminin-rich regions. PMID:16321372

Pollard, Steven M; Parsons, Michael J; Kamei, Makoto; Kettleborough, Ross N W; Thomas, Kevin A; Pham, Van N; Bae, Moon-Kyoung; Scott, Annabelle; Weinstein, Brant M; Stemple, Derek L

2006-01-01

320

Preliminary investigation of the feasibility of magnetic propulsion for future microdevices in blood vessels.  

PubMed

The Magnetic Resonance Submarine (MR-Sub) project is a first attempt to validate a new propulsion method for future small magnetically controlled microdevices suited for minimally invasive applications in blood vessels. A Magnetic Resonance Imaging (MRI) system provides the driving force in three dimensions to a ferromagnetic core that could be embedded onto a specialised microdevice. The paper describes preliminary tests made to match the magnetic force induced by an MRI system on a ferromagnetic sphere with the drag force it encompasses in a cylindrical tube. These tests provide a proof of concept demonstrating that this new method of propulsion is very promising within the constraints of such types of operations. This conclusion is based on specific measurements showing that 1010/1020 carbon steel spheres (3.175 mm and 2.381 mm in diameter) can withstand a maximum flow of 0.370 +/- 0.0064 l/min (19.5 cm/s) and 0.311 +/- 0.01209 l/min (16.4 cm/s) respectively when placed inside a 6.35 mm diameter PMMA tube and subjected to a 18 mT/m magnetic field gradient. PMID:16179757

Mathieu, Jean-Baptiste; Martel, Sylvain; Yahia, L'Hocine; Soulez, Gilles; Beaudoin, Gilles

2005-01-01

321

Effects of angiopoietin-1 on inflammatory injury in endothelial progenitor cells and blood vessels.  

PubMed

Endothelial progenitor cells (EPCs) and angiopoietin-1 (Ang-1) play important roles in vasculogenesis and angiogenesis, respectively. Thus, targeting both aspects of cardiovascular tissue regeneration may offer promising therapeutic options for cardiovascular disorders. To this end, we constructed a lentiviral vector (pNL) with the Ang-1 gene and transfected EPCs with it (Ang-1-EPCs) to investigate vasculogenesis in both cellular and animal models. Compared to controls, intercellular adhesion molecule 1 (ICAM-1) and vascular cell adhesion molecule 1 (VCAM-1) increased significantly in both untreated EPCs and in the pNL vector group. After Ang-1 transcription, ICAM-1 and VCAM-1 decreased considerably in those treatment groups. Ang-1-modified EPCs alleviated inflammatory responses induced by tumornecrosis factor-? (TNF-?) in vitro. Moreover, Ang-1-EPC implantation inhibited neointimal hyperplasia after balloon catheter injury in rats, dramatically diminishing the intimal-media (I/M) ratio and decreasing the neointimal area. Proliferating cell nuclear antigen expression in the Ang-1-EPC group was lower than the EPC non-treatment group as well, suggesting that Ang-1-EPC improved cell survival during inflammation and promoted endothelialization in damaged blood vessels. PMID:24606182

Wang, Yi-Qing; Song, Jing-Jin; Han, Xiao; Liu, Yi-Ye; Wang, Xi-Huang; Li, Zhi-Ming; Tzeng, Chi-Meng

2014-01-01

322

Due to intravascular multiple sequential scattering, Diffuse Correlation Spectroscopy of tissue primarily measures relative red blood cell motion within vessels  

PubMed Central

We suggest that Diffuse Correlation Spectroscopy (DCS) measurements of tissue blood flow primarily probe relative red blood cell (RBC) motion, due to the occurrence of multiple sequential scattering events within blood vessels. The magnitude of RBC shear-induced diffusion is known to correlate with flow velocity, explaining previous reports of linear scaling of the DCS “blood flow index” with tissue perfusion despite the observed diffusion-like auto-correlation decay. Further, by modeling RBC mean square displacement using a formulation that captures the transition from ballistic to diffusive motion, we improve the fit to experimental data and recover effective diffusion coefficients and velocity de-correlation time scales in the range expected from previous blood rheology studies.

Carp, Stefan A.; Roche-Labarbe, Nadaege; Franceschini, Maria-Angela; Srinivasan, Vivek J.; Sakadzic, Sava; Boas, David A.

2011-01-01

323

Electrical communication in branching arterial networks.  

PubMed

Electrical communication and its role in blood flow regulation are built on an examination of charge movement in single, isolated vessels. How this process behaves in broader arterial networks remains unclear. This study examined the nature of electrical communication in arterial structures where vessel length and branching were varied. Analysis began with the deployment of an existing computational model expanded to form a variable range of vessel structures. Initial simulations revealed that focal endothelial stimulation generated electrical responses that conducted robustly along short unbranched vessels and to a lesser degree lengthened arteries or branching structures retaining a single branch point. These predictions matched functional observations from hamster mesenteric arteries and support the idea that an increased number of vascular cells attenuate conduction by augmenting electrical load. Expanding the virtual network to 31 branches revealed that electrical responses increasingly ascended from fifth- to first-order arteries when the number of stimulated distal vessels rose. This property enabled the vascular network to grade vasodilation and network perfusion as revealed through blood flow modeling. An elevation in endothelial-endothelial coupling resistance, akin to those in sepsis models, compromised this ascension of vasomotor/perfusion responses. A comparable change was not observed when the endothelium was focally disrupted to mimic disease states including atherosclerosis. In closing, this study highlights that vessel length and branching play a role in setting the conduction of electrical phenomenon along resistance arteries and within networks. It also emphasizes that modest changes in endothelial function can, under certain scenarios, impinge on network responsiveness and blood flow control. PMID:22796538

Tran, Cam Ha T; Vigmond, Edward J; Goldman, Daniel; Plane, France; Welsh, Donald G

2012-09-15

324

Investigation of source-detector separation optimization for an implantable perfusion and oxygenation sensor for liver blood vessels  

NASA Astrophysics Data System (ADS)

An implanted system is being developed to monitor transplanted liver health during the critical 7-10 day period posttransplantation. The unit will monitor organ perfusion and oxygen consumption using optically-based probes placed on both the inflow and outflow blood vessels, and on the liver parenchymal surface. Sensing probes are based on a 3- wavelength LED source and a photodiode detector. Sample diffuse reflectance is measured at 735, 805, and 940 nm. To ascertain optimal source-to-photodetector spacing for perfusion measurement in blood vessels, an ex vivo study was conducted. In this work, a dye mixture simulating 80% blood oxygen saturation was developed and perfused through excised porcine arteries while collecting data for various preset probe source-to-photodetector spacings. The results from this study demonstrate a decrease in the optical signal with decreasing LED drive current and a reduction in perfusion index signal with increasing probe spacing. They also reveal a 2- to 4-mm optimal range for blood vessel perfusion probe source-to-photodetector spacing that allows for sufficient perfusion signal modulation depth with maximized signal to noise ratio (SNR). These findings are currently being applied to guide electronic configuration and probe placement for in vivo liver perfusion porcine model studies.

Baba, J. S.; Akl, T. J.; Coté, G. L.; Wilson, M. A.; Ericson, M. N.

2011-02-01

325

Comparing Two-Stent Strategies for Bifurcation Coronary Lesions: Which Vessel Should be Stented First, the Main Vessel or the Side Branch?  

PubMed Central

This study compared two-stent strategies for treatment of bifurcation lesions by stenting order, 'main across side first (A-family)' vs 'side branch first (S-family). The study population was patients from 16 centers in Korea who underwent drug eluting stent implantation with two-stent strategy (A-family:109, S-family:140 patients). The endpoints were cardiac death, myocardial infarction (MI), stent thrombosis (ST), and target lesion revascularization (TLR) during 3 years. During 440.8 person-years (median 20.2 months), there was 1 cardiac death, 4 MIs (including 2 STs), and 12 TLRs. Cumulative incidence of cardiac death, MI and ST was lower in A-family (0% in A-family vs 4.9% in S-family, P = 0.045). However, TLR rates were not different between the two groups (7.1% vs 6.2%, P = 0.682). Final kissing inflation (FKI) was a predictor of the hard-endpoint (hazard ratio 0.061; 95% CI 0.007-0.547, P = 0.013), but was not a predictor of TLR. The incidence of hard-endpoint of S-family with FKI was comparable to A-family, whereas S-family without FKI showed the poorest prognosis (1.1% vs 15.9%, retrospectively; P = 0.011). In conclusion, 'A-family' seems preferable to 'S-family' if both approaches are feasible. When two-stent strategy is used, every effort should be made to perform FKI, especially in 'S-family'.

Shin, Dong-Ho; Park, Kyung Woo; Koo, Bon-Kwon; Oh, Il-Young; Seo, Jae-Bin; Gwon, Hyeon-Cheol; Jeong, Myung-Ho; Seong, In-Whan; Rha, Seung Woon; Yang, Ju-Young; Park, Seung-Jung; Yoon, Jung Han; Han, Kyoo-Rok; Park, Jong-Sun; Hur, Seung-Ho; Tahk, Seung-Jea

2011-01-01

326

Ovarian angiogenesis. Phenotypic characterization of endothelial cells in a physiological model of blood vessel growth and regression.  

PubMed

Angiogenesis occurs during embryogenesis and is a down-regulated process in the healthy adult that is almost exclusively linked to pathological conditions such as tumor growth, wound healing, and inflammation. Physiological angiogenic processes in the adult are restricted to the female reproductive system where they occur cyclically during the ovarian and uterine cycle as well as during pregnancy. By systematically analyzing the phenotypic changes of endothelial cells during bovine corpus luteum (CL) formation and regression, we have established a physiological model of blood vessel growth and regression. Quantitation of vessel density, percentage of vessels with lumen, and ratio of Bandeiraea simplicifolia-I to von Willebrand Factor-positive endothelial cells were established as parameters of angiogenesis. Sprouting endothelial cells invade the growing CL and continue to grow throughout the first third of the ovarian cycle. Thereafter the mature CL is characterized by a dense network of vessels with gradually decreasing vessel density. During luteolysis and for several weeks thereafter (regressing and residual CL) all newly formed vessels regress, which is accompanied by gradual foreshortening and rounding of endothelial cells and subsequent detachment. Based on histochemical detection of nucleosomal fragmentation products physiological blood vessel regression in the cyclic CL does not appear to involve endothelial cell apoptosis. Lectin histochemical analysis revealed a distinct alteration of endothelial cell glycoconjugate expression during ovarian angiogenesis comparable with the distinct pattern of hyperglycosylation of cultured migrating endothelial cells (up-regulation of binding sites for Lycopersicon esculentum lectin, wheat germ agglutinin, neuraminidase-treated peanut agglutinin, and Ricinus communis agglutinin-I on sprouting ECs). Northern blot analysis of glycosyltransferases during the different stages of angiogenesis revealed an up-regulation of beta-galactoside alpha 2,6-sialyltransferase and alpha 1,3-galactosyltransferase mRNA expression during the angiogenic stages of CL formation. These data establish the ovarian angiogenesis model as a suitable experimental system to study the functional and phenotypic properties of endothelial cells in sprouting and regressing blood vessels and provide additional evidence for the importance of endothelial cell surface glycoconjugates during angiogenesis. PMID:7543733

Augustin, H G; Braun, K; Telemenakis, I; Modlich, U; Kuhn, W

1995-08-01

327

Integrin-?5?1 is not required for mural cell functions during development of blood vessels but is required for lymphatic-blood vessel separation and lymphovenous valve formation.  

PubMed

Integrin ?5?1 is essential for vascular development but it remains unclear precisely where and how it functions. Here, we report that deletion of the gene encoding the integrin-?5 subunit (Itga5) using the Pdgfrb-Cre transgenic mouse line, leads to oedema, haemorrhage and increased levels of embryonic lethality. Unexpectedly, these defects were not caused by loss of ?5 from Pdgfrb-Cre expressing mural cells (pericytes and vascular smooth muscle cells), which wrap around the endothelium and stabilise blood vessels, nor by defects in the heart or great vessels, but were due to abnormal development of the lymphatic vasculature. Reminiscent of the pathologies seen in the human lymphatic malformation, fetal cystic hygroma, ?5 mutants display defects both in the separation of their blood and lymphatic vasculature and in the formation of the lymphovenous valves. As a consequence, ?5-deficient mice develop dilated, blood-filled lymphatic vessels and lymphatic capillaries that are ectopically covered with smooth muscle cells. Analysis of the expression of Pdgfrb during lymphatic development suggests that these defects probably arise from loss of ?5?1 integrin in subsets of specialised Prox1(+)Pdgfrb(+) venous endothelial cells that are essential for the separation of the jugular lymph sac from the cardinal vein and formation of the lymphovenous valve leaflets. PMID:24858485

Turner, Christopher J; Badu-Nkansah, Kwabena; Crowley, Denise; van der Flier, Arjan; Hynes, Richard O

2014-08-15

328

Perpendicular Blood Vessel Seals Are Stronger Than Those Made at an Angle  

PubMed Central

Abstract Vessel sealing devices effectively produce hemostatic seals with minimal thermal damage, but the strength of seals decreases as vessel diameter increases. Because vessels sealed at an angle to the vessel require a greater functional seal diameter than those sealed perpendicularly to the vessel, it was hypothesized that perpendicular seals would have comparably higher burst pressures. Ex vivo, porcine carotid arteries of nominal diameters of 5, 6, and 7?mm were sealed perpendicularly to and at a 45° angle to the longitudinal axis of the vessels, and burst pressures of the sealed vessels were measured. Overall burst pressures were 51% greater for perpendicular seals than for angled seals (P<.001). Mean burst pressures for the 5-mm angled and 7-mm perpendicular groups, which have similar seal lengths, were not significantly different (P=.959). Analysis using the functional diameter as a covariate indicated that the seal length is the primary variable in determining burst pressure, and not some other inherent characteristic of angled versus perpendicular sealing. These results suggest that at least for vessels ?5?mm in diameter, surgeons should approach vessels perpendicularly and not at an angle, for the highest possible seal strength. The development of articulated sealing and cutting devices would provide greater seal strength, in addition to improved maneuverability, especially in laparoscopic surgery, where angles of approach may be limited by the fixed location of surface cannulas.

Voegele, Aaron C.; Korvick, Donna L.; Gutierrez, Mario; Amaral, Joseph F.

2013-01-01

329

Molecular dynamics simulation of soft grains: Malaria-infected red blood cells motion within obstructed 2-D capillary vessel  

NASA Astrophysics Data System (ADS)

Molecular dynamics has been widely used to numerically solve equation of motion of classical many-particle system. It can be used to simulate many systems including biophysics, whose complexity level is determined by the involved elements. Based on this method, a numerical model had been constructed to mimic the behaviour of malaria-infected red blood cells within capillary vessel. The model was governed by three forces namely Coulomb force, normal force, and Stokes force. By utilizing two dimensional four-cells scheme, theoretical observation was carried out to test its capability. Although the parameters were chosen deliberately, all of the quantities were given arbitrary value. Despite this fact, the results were quite satisfactory. Combined with the previous results, it can be said that the proposed model were sufficient enough to mimic the malaria-infected red blood cells motion within obstructed capillary vessel.

Haris, L.; Khotimah, S. N.; Haryanto, F.; Viridi, S.

2014-02-01

330

Ex vivo bubble production from ovine large blood vessels: Size on detachment and evidence of "active spots".  

PubMed

Nanobubbles formed on the hydrophobic silicon wafer were shown to be the source of gas micronuclei from which bubbles evolved during decompression. Bubbles were also formed after decompression on the luminal surface of ovine blood vessels. Four ovine blood vessels: aorta, pulmonary vein, pulmonary artery, and superior vena cava, were compressed to 1013kPa for 21h. They were then decompressed, photographed at 1-s intervals, and bubble size was measured on detachment. There were certain spots at which bubbles appeared, either singly or in a cluster. Mean detachment diameter was between 0.7 and 1.0mm. The finding of active spots at which bubbles nucleate is a new, hitherto unreported observation. It is possible that these are the hydrophobic spots at which bubbles nucleate, stabilise, and later transform into the gas micronuclei that grow into bubbles. The possible neurological effects of these large arterial bubbles should be further explored. PMID:24933644

Arieli, R; Marmur, A

2014-08-15

331

Correlation of VEGF Expression by Leukocytes with the Growth and Regression of Blood Vessels in the Rat Cornea  

Microsoft Academic Search

PURPOSE. TO determine the temporal and spatial relationships between neovascularization and basic fibroblast growth factor (bFGF) and vascular endothelial growth factor (VEGF) mRNA and protein expression in the rat cornea after cautery with silver nitrate. METHODS. In female Sprague-Dawley rats, a silver nitrate applicator was placed on the central cornea to elicit circumferential angiogenesis, and blood vessel growth was quantified

Jeffrey L Edelman; Marisol R. Castro; Yi Wen

1999-01-01

332

Photothermal coagulation of blood vessels: a comparison of high-speed optical coherence tomography and numerical modelling  

Microsoft Academic Search

Optical-thermal models that can accurately predict temperature rise and damage in blood vessels and surrounding tissue may be used to improve the treatment of vascular disorders. Verification of these models has been hampered by the lack of time- and depth-resolved experimental data. In this preliminary study, an optical coherence tomography system operating at 4-30 frames per second was used to

Jennifer Kehlet Barton; Andrew Rollins; Siavash Yazdanfar; T. Joshua Pfefer; Volker Westphal; Joseph A. Izatt

2001-01-01

333

Studies on pregnancy hypertension and IUGR-SFD: effects of drugs on the blood vessels in the placenta of pregnant SHRSP.  

PubMed

1. Based upon our previous work, we came to the conclusion that a decrease in placental blood volume was a possible factor behind intrauterine growth retardation (IUGR) in pregnancy-induced hypertension. 2. In a second study, we used an image analysis system to measure cross-sectional areas and wall thicknesses of central blood vessels of the spiral artery, the so-called 'central artery'. 3. It was thought that one of the more basic factors behind IUGR in pregnancy-induced hypertension might possibly be narrowings and spasms of the maternal placental blood vessels. 4. In this study, we found that the three drugs we used (MgSO4 center dot 7H2O, Solcoseryl and KCl) all resulted in an enlargement of the cross-sectional areas of the maternal blood vessels, and that MgSO4 center dot 7H2O, in particular, also relaxed maternal blood vessel spasms in SHRSP placenta. PMID:9072394

Fuchi, I; Noda, K; Matsubara, Y

1995-12-01

334

Relation of Blood Pressure to Retinal Vessel Diameter in Type 1 Diabetes Mellitus  

PubMed Central

Objective To examine the relationship of blood pressure (BP) and use of angiotensin receptor blocker (ARB) or angiotensin converting enzyme inhibitor (ACEI) to retinal vessel diameter in normotensive, normoalbuminuric persons with type 1 diabetes mellitus (T1DM). Design Randomized controlled clinical trial. Participants Persons with T1DM and gradable fundus photographs both at baseline (n=147) and 5-year follow-up (n=124). Methods Clinic and 24-hour ambulatory BPs (ABP) were measured. Retinal arteriolar and venular diameters were measured using a computer-assisted technique. Individual arteriolar and venular measurements were combined into summary indices that reflect the average retinal arteriolar (central retinal arteriolar equivalent [CRAE]) and venular (central retinal venular equivalent [CRVE]) diameter of an eye, respectively. Main Outcome Measures CRAE and CRVE. Results While controlling for age, study site, glycosylated hemoglobin and ambulatory pulse rate, daytime ambulatory systolic (-0.29 ?m effect per 1mmHg, P=.02) and daytime ambulatory diastolic (-0.44 ?m effect per 1mmHg, P=.04), nighttime ambulatory systolic (-0.27 ?m effect per 1mmHg, P=.03), and 24-hour ambulatory systolic BP (-0.31 ?m effect per 1mmHg, P=.03) were cross-sectionally associated with a smaller CRAE. While controlling for age, study site, glycosylated hemoglobin, ambulatory pulse rate and baseline CRAE, no BP measure was associated with a change in CRAE or CRVE over 5 years of follow-up. Treatment with losartan or enalapril was not associated with a statistically significant change in CRAE or CRVE. Conclusions ACEI or ARB therapy does not affect retinal arteriolar or venular diameter in normotensive persons with T1DM.

Klein, Ronald; Myers, Chelsea E.; Klein, Barbara E. K.; Zinman, Bernard; Gardiner, Robert; Suissa, Samy; Sinaiko, Alan R.; Donnelly, Sandra M.; Goodyer, Paul; Strand, Trudy; Mauer, Michael

2009-01-01

335

Estrogenic Compounds, Estrogen Receptors and Vascular Cell Signaling in the Aging Blood Vessels  

PubMed Central

The cardiovascular benefits of menopausal hormone therapy (MHT) remain controversial. The earlier clinical observations that cardiovascular disease (CVD) was less common in MHT users compared to non-users suggested cardiovascular benefits of MHT. Also, experimental studies have identified estrogen receptors ER?, ER? and GPR30, which mediate genomic or non-genomic effects in vascular endothelium, smooth muscle, and extracellular matrix (ECM). However, data from randomized clinical trials (RCTs), most notably the Women's Health Initiative (WHI) study, have challenged the cardiovascular benefits and highlighted adverse cardiovascular events with MHT. The discrepancies have been attributed to the design of RCTs, the subjects' advanced age and preexisting CVD, and the form of estrogen used. The discrepancies may also stem from age-related changes in vascular ER amount, distribution, integrity, and post-receptor signaling pathways as well as structural changes in the vasculature. Age-related changes in other sex hormones such as testosterone may also alter the hormonal environment and influence the cardiovascular effects of estrogen. Investigating the chemical properties, structure-activity relationship and pharmacology of natural and synthetic estrogens should improve the effectiveness of conventional MHT. Further characterization of phytoestrogens, selective estrogen-receptor modulators (SERMs), and specific ER agonists may provide substitutes to conventional MHT. Conditions with excess or low estrogen levels such as polycystic ovary syndrome (PCOS) and Turner syndrome may provide insight into the development and regulation of ER and the mechanisms of aberrant estrogen-ER interactions. The lessons learned from previous RCTs have led to more directed studies such as the Kronos Early Estrogen Prevention Study (KEEPS). Careful design of experimental models and RCTs, coupled with the development of specific ER modulators, hold the promise of improving the actions of estrogen in the aging blood vessels and thereby enhancing the efficacy and safety of MHT in postmenopausal CVD.

Smiley, Dia A.; Khalil, Raouf A.

2010-01-01

336

Laser-optical method of visualization the local net of tissue blood vessels and its biomedical applications  

NASA Astrophysics Data System (ADS)

New approach in laser-optical diagnostic methods of cell metabolism based on visualization the local net of tissue blood vessels is proposed. Optical model of laser - tissue interaction and algorithm of mathematical calculation of optical signals is developed. Novel technology of local tissue hypoxia elimination based on laser-induced photodissosiation of oxyhemoglobin in cutaneous blood vessels is developed. Method of determination of oxygen diffusion coefficient into tissue on the base of kinetics of tissue oxygenation TcPO II under the laser irradiation is proposed. The results of mathematical modeling the kinetic of oxygen distribution into tissue from arterial blood are presented. The possibility of calculation and determination of the level of TcPO II in zones with the disturbed blood microcirculation is demonstrated. The increase of the value of oxygen release rate more than for times under the irradiation by laser light is obtained. It is shown that the efficiency of laser-induced oxygenation by means of increasing oxygen concentration in blood plasma is comparable with the method of hyperbaric oxygenation (HBO) at the same time gaining advantages in local action. Different biomedical applications of developing method are discussed.

Asimov, M. M.; Asimov, R. M.; Rubinov, A. N.

2007-08-01

337

Possible role of mural cell-covered mature blood vessels in inducing drug resistance in cancer-initiating cells.  

PubMed

Cancer recurrence has been suggested to be induced by residual cancer-initiating cells (CICs) or cancer stem cells (CSCs) after chemotherapy. Moreover, it is possible that CICs/CSCs acquire more aggressive behavior after therapy as shown by invasion and metastasis. In the cancer microenvironment, CICs/CSCs may localize in a specific area, the so-called stem cell niche, and isolation of this niche is important to elucidate the molecular mechanism of how CICs/CSCs acquire malignancy. We analyzed whether CICs acquire drug resistance after cancer drug treatment in a tumor cell allograft model in which we could identify and isolate living CICs by detecting a higher level of transcriptional activity of the PSF1 gene promoter. In our models using Lewis lung carcinoma (LLC) mouse lung cancer and colon26 mouse colon cancer cell lines, we found that CICs in both tumors acquired drug resistance after cancer drug treatment. Interestingly, response to the anticancer drug was quite different between LLC and colon26 original tumors (ie, the proportion of CICs in LLC tumors increased but in colon26 tumors the proportion decreased). We found that CICs frequently localized near mature blood vessels in which endothelial cells were covered with mural cells and that the incidence of mature blood vessels in LLC tumors was four times higher than in colon26 tumors. These results suggest a relationship between mature blood vessels and CIC drug resistance. PMID:23473746

Matsui, Takahiro; Kinugasa, Yumi; Tahara, Hidekazu; Kanakura, Yuzuru; Takakura, Nobuyuki

2013-05-01

338

Contribution of Bone Marrow-Derived Cells to Blood Vessels in Ischemic Tissues and Tumors  

Microsoft Academic Search

Vessels are formed during embryonic development through three distinct processes. Angiogenesis and arteriogenesis involve the remodeling of established capillary networks and arterioles, while vasculogenesis involves the differentiation of mesodermal progenitor cells called angioblasts into mature endothelial cells. Until recently, postnatal vessel development was felt to occur exclusively through angiogenesis or arteriogenesis. However, recent studies using experimental tumor and ischemia models

Manish Aghi; E. Antonio Chiocca

2005-01-01

339

Blood levels of branched-chain alpha-keto acids in uremia: effect of an oral glucose tolerance test.  

PubMed

The effect of an oral glucose tolerance test (oGTT) on serum levels of branched-chain keto acids (BCKA), i.e. alpha-keto-isocaproic acid (KICA), alpha-keto-isovaleric acid (KIVA) and alpha-keto-beta methyl-n-valeric acid (KMVA) as well as on serum insulin, C-peptide and blood glucose levels was determined in uremic patients and in healthy control subjects. In controls, blood levels of KICA, KMVA and KIVA declined significantly following oral administration of 100 glucose. In uremic patients no decline of KICA was observed. The fall of KMVA was diminished, while suppression of KIVA blood levels in response to the oGGT remained unimpaired. Although serum insulin and C-peptide levels in uremic patients were not significantly different from the controls before and throughout the oGTT, six out of eight displayed abnormal glucose tolerance. It is suggested that the response of blood BCKA levels to an oGTT is altered in uremia, an abnormality restricted primarily to KICA and possibly explained by insulin antagonism and/or by insufficient insulin secretion. PMID:7021997

Schauder, P; Matthaei, D; Henning, H V; Scheler, F; Langenbeck, U

1981-08-01

340

Differential Mechanisms Associated with Vascular Disrupting Action of Electrochemotherapy: Intravital Microscopy on the Level of Single Normal and Tumor Blood Vessels  

PubMed Central

Electropermeabilization/electroporation (EP) provides a tool for the introduction of molecules into cells and tissues. In electrochemotherapy (ECT), cytotoxic drugs are introduced into cells in tumors, and nucleic acids are introduced into cells in gene electrotransfer. The normal and tumor tissue blood flow modifying effects of EP and the vascular disrupting effect of ECT in tumors have already been determined. However, differential effects between normal vs. tumor vessels, to ensure safety in the clinical application of ECT, have not been determined yet. Therefore, the aim of our study was to determine the effects of EP and ECT with bleomycin on the HT-29 human colon carcinoma tumor model and its surrounding blood vessels. The response of blood vessels to EP and ECT was monitored in real time, directly at the single blood vessel level, by in vivo optical imaging in a dorsal window chamber in SCID mice with 70 kDa fluorescently labeled dextrans. The response of tumor blood vessels to EP and ECT started to differ within the first hour. Both therapies induced a vascular lock, decreased functional vascular density (FVD) and increased the diameter of functional blood vessels within the tumor. The effects were more pronounced for ECT, which destroyed the tumor blood vessels within 24 h. Although the vasculature surrounding the tumor was affected by EP and ECT, it remained functional. The study confirms the current model of tumor blood flow modifying effects of EP and provides conclusive evidence that ECT is a vascular disrupting therapy with a specific effect on the tumor blood vessels.

Markelc, Bostjan; Sersa, Gregor; Cemazar, Maja

2013-01-01

341

Deep in vivo two-photon imaging of blood vessels with a new dye encapsulated in pluronic nanomicelles  

PubMed Central

The purpose of this work was to validate the use of Pluronic fluorescent nanomicelles for in vivo two-photon imaging of both the normal and the tumor vasculature. The nanomicelles were obtained after encapsulating a hydrophobic two-photon dye: di-stryl benzene derivative, in Pluronic block copolymers. Their performance with respect to imaging depth, blood plasma staining, and diffusion across the tumor vascular endothelium was compared to a classic blood pool dye Rhodamin B dextran (70 kDa) using two-photon microscopy. Pluronic nanomicelles showed, like Rhodamin B dextran, a homogeneous blood plasma staining for at least 1 hour after intravenous injection. Their two-photon imaging depth was similar in normal mouse brain using 10 times less injected mass. In contrast with Rhodamin B dextran, no extravasation is observed in leaky tumor vessels due to their large size: 20–100 nm. In conclusion, Pluronic nanomicelles can be used as a blood pool dye, even in leaky tumor vessels. The use of Pluronic block co-polymers is a valuable approach for encapsulating two-photon fluorescent dyes that are hydrophobic and not suitable for intravenous injection.

Maurin, Mathieu; Stephan, Olivier; Vial, Jean-Claude; Marder, Seth R.; Van Der Sanden, Boudewijn

2011-01-01

342

Deep in vivo two-photon imaging of blood vessels with a new dye encapsulated in pluronic nanomicelles.  

PubMed

Our purpose is to test if Pluronic® fluorescent nanomicelles can be used for in vivo two-photon imaging of both the normal and the tumor vasculature. The nanomicelles were obtained after encapsulating a hydrophobic two-photon dye: di-stryl benzene derivative, in Pluronic block copolymers. Their performance with respect to imaging depth, blood plasma staining, and diffusion across the tumor vascular endothelium is compared to a classic blood pool dye Rhodamin B dextran (70 kDa) using two-photon microscopy. Pluronic nanomicelles show, like Rhodamin B dextran, a homogeneous blood plasma staining for at least 1 h after intravenous injection. Their two-photon imaging depth is similar in normal mouse brain, using 10 times less injected mass. In contrast with Rhodamin B dextran, no extravasation is observed in leaky tumor vessels due to their large size: 20-100 nm. In conclusion, Pluronic nanomicelles can be used as a blood pool dye, even in leaky tumor vessels. The use of Pluronic block copolymers is a valuable approach for encapsulating two-photon fluorescent dyes that are hydrophobic and not suitable for intravenous injection. PMID:21456865

Maurin, Mathieu; Stéphan, Olivier; Vial, Jean-Claude; Marder, Seth R; van der Sanden, Boudewijn

2011-03-01

343

Atheromatous Plaques of the Retinal Blood Vessels: Histologic Confirmation of Ophthalmoscopically Visible Lesions.  

National Technical Information Service (NTIS)

Ophthalmoscopic examination of the left eye revealed numerous yellowish-white plaques involving the major branches of the central retinal artery in a 55-year-old man. Significant laboratory examinations demonstrated hyperlinidemia with hypercholesterolemi...

S. Brownstein, R. L. Font, M. G. Alper

1972-01-01

344

Nestin(+) Tissue-Resident Multipotent Stem Cells Contribute to Tumor Progression by Differentiating into Pericytes and Smooth Muscle Cells Resulting in Blood Vessel Remodeling  

PubMed Central

Tumor vessels with resistance to anti-angiogenic therapy are characterized by the normalization of the vascular structures through integration of mature pericytes and smooth muscle cells (SMC) into the vessel wall, a process termed vessel stabilization. Unfortunately, stabilization-associated vascular remodeling can result in reduced sensitivity to subsequent anti-angiogenic therapy. We show here that blockade of VEGF by bevacizumab induces stabilization of angiogenic tumor blood vessels in human tumor specimen by recruiting Nestin-positive cells, whereas mature vessels down-regulated Nestin-expression. Using xenograft tumors growing on bone-marrow (BM) chimera of C57Bl/6 wildtype and Nestin-GFP transgenic mice, we show for first time that Nestin(+) cells inducing the maturation of tumor vessels do not originate from the BM but presumably reside within the adventitia of adult blood vessels. Complementary ex vivo experiments using explants of murine aortas revealed that Nestin(+) multipotent stem cells (MPSCs) are mobilized from their niche and differentiated into pericytes and SMC through the influence of tumor-cell-secreted factors. We conclude that tissue-resident Nestin(+) cells are more relevant than BM-derived cells for vessel stabilization and therefore have to be considered in future strategies for anti-angiogenic therapy. The identification of proteins mediating recruitment or differentiation of local Nestin(+) cells with potential stem cell character to angiogenic blood vessels may allow the definition of new therapeutic targets to reduce tumor resistance against anti-angiogenic drugs.

Klein, Diana; Meissner, Nicole; Kleff, Veronika; Jastrow, Holger; Yamaguchi, Masahiro; Ergun, Suleyman; Jendrossek, Verena

2014-01-01

345

Adenoviral VEGF-C overexpression induces blood vessel enlargement, tortuosity, and leakiness but no sprouting angiogenesis in the skin or mucous membranes  

Microsoft Academic Search

Vascular endothelial growth factors (VEGFs) and their receptors (VEGFRs) are important regulators of blood and lymphatic vessel growth and vascular permeability. The VEGF-C\\/VEGFR-3 signaling pathway is crucial for lymphangiogenesis, and heterozy- gous inactivating missense mutations of the VEGFR-3 gene are associated with hereditary lymphedema. How- ever, VEGF-C can have potent effects on blood vessels because its receptor VEGFR-3 is expressed

ANNE SAARISTO; TANJA VEIKKOLA; BERNDT ENHOLM; MAIJA HYTONEN; JOHANNA AROLA; KATRI PAJUSOLA; PAIVI TURUNEN; MICHAEL JELTSCH; MARIKA J. KARKKAINEN; HANSRUEDI BUELER; SEPPO YLA; KARI ALITALO

2002-01-01

346

Phosphorylation of Blood Vessel Vasodilator-Stimulated Phosphoprotein at Serine 239 as a Functional Biochemical Marker of Endothelial Nitric Oxide\\/Cyclic GMP Signaling  

Microsoft Academic Search

The endothelium-derived relaxing factors nitric oxide (NO) and prostacyclin (PGI2) are important antithrombotic, relaxant, and antiproliferative agents of the blood vessel wall that exert their intracellular effects primarily via cGMP- and cAMP-dependent protein kinases (cGK, cAK). However, no biochemical marker for their activity in the intact blood vessel is available except for transient increases in the concentration of cGMP and

C. Ibarra-Alvarado; VOLKER O. MELICHAR; ALEXANDER MAMEGHANI; HARALD H. H. W. SCHMIDT

2002-01-01

347

Simulations of localized harmonic motions on a blood vessel wall induced by an acoustic radiation force used in ultrasound elastography  

NASA Astrophysics Data System (ADS)

Many noninvasive techniques have been developed recently to explore the mechanical properties of soft tissue. In this paper, dynamic acoustic radiation force induced vibrations on a blood vessel wall were simulated using different stimulation frequencies and stiffness parameters for the vessel wall. The stimulation frequency was varied between 20 Hz and 20 kHz and the stiffness parameter (Young's modulus) was varied between 60 kPa and 360 kPa. The vibration simulations were computed using a finite-element method in a 3D geometry that contained a vessel wall surrounded by soft tissue. The results indicate that vibrations caused by acoustic stimulation are sensitive to the changes in mechanical properties of the vessel wall and that the vibrations are highly dependent on the stimulation frequency and target structure. Therefore, measurements of absolute stiffness parameters may not be accurately achieved because this method is so dependent on the whole target structure, whereas the monitoring of changes during some process may be feasible.

Heikkilä, Janne; Karjalainen, Tero; Vauhkonen, Marko; Hynynen, Kullervo

2006-09-01

348

Transcatheter embolization by autologous blood clot is useful management for small side branch perforation due to percutaneous coronary intervention guide wire.  

PubMed

A 75-year-old man underwent PCI for a bifurcation lesion with 90% stenosis in segment 6 and 75% proximal stenosis in segment 9 of the left coronary artery. We implanted a Duraflex coronary stent into segment 6 and kissing balloon inflation for segments 6 and 9. Although these 2 lesions were adequately dilated, we noticed coronary perforation caused by the guide wire in a small branch of segment 9. We tried to repair the perforation using a small balloon and long inflation, but unfortunately the perforation was not improved. We attempted to occlude the small branch including the perforation site with an autologous blood clot via a wire microcatheter inserted into the small branch. The autologous blood clot was suspended in contrast media and saline. Using this procedure, the small branch of segment 9 was occluded completely and the perforated site was repaired. After the procedure, no significant CPK elevation was detected, and 6 months later, we confirmed that small branch embolization was improved and coronary flow was good. Autologous blood clot is useful to occlude and repair perforations in small side branches of the coronary artery without myocardial damage. PMID:19027608

Tanaka, Shinichiro; Nishigaki, Kazuhiko; Ojio, Shinsuke; Yasuda, Shinji; Okubo, Munenori; Yamaki, Takahiko; Kubota, Tomoki; Takasugi, Nobuhiro; Ishihara, Yoshiyuki; Kawasaki, Masanori; Minatoguchi, Shinya

2008-12-01

349

Intersublaminar Vascular Plexus: The Correlation of Retinal Blood Vessels With Functional Sublaminae of the Inner Plexiform Layer  

PubMed Central

Purpose. Interactions between vasculature and neurons provide important insight into the function of the nervous system, as well as into neurological diseases wherein these interactions are disrupted. This study characterizes a previously unreported retinal vascular plexus and examines potential sites of neurovascular interaction. Methods. Vascular, neuronal, and glial elements were visualized using immunohistochemical markers. The distribution of vascular layers was measured and compared across eccentricities. Intensity profiles were calculated from confocal image reconstructions to reveal the proximity of vasculature to neuronal and glial processes. Results. Retinal vasculature forms a plexus that coincides with the dendritic processes of OFF cholinergic amacrine cells within the inner plexiform layer. Across eccentricities, this plexus comprises approximately 8% of the total length of horizontally running blood vessels in the retina. Processes of Müller glia and OFF cholinergic amacrine cells colocalize with the blood vessels that form the intersublaminar plexus. Conclusions. In the retina, vasculature lacks autonomic control, but shows efficient local regulation. Although the source of this regulation is unclear, these results suggest that cholinergic amacrine cells and Müller glia may interact with the intersublaminar plexus to influence vasomotor activity. This may indicate a key role in modulating reciprocal interactions between neuronal activity and blood flow.

Ivanova, Elena; Toychiev, Abduqodir H.; Yee, Christopher W.; Sagdullaev, Botir T.

2014-01-01

350

Blood flow and velocity estimation based on vessel transit time by combining 2D and 3D X-ray angiography.  

PubMed

The X-ray imaging equipment could be used to measure hemodynamic function in addition to visualizing the morphology. The parameters of specific interest are arterial blood flow and velocity. Current monoplane X-ray systems can perform 3D reconstruction of the arterial tree as well as to capture the propagation of the injected contrast agent on a sequence of 2D angiograms. We combine the 2D digital subtraction angiography sequence with the mechanically registered 3D volume of the vessel tree. From 3D vessel tree we extract each vessel and obtain its centerline and cross-section area. We get our velocity estimation from 2D sequence by comparing time-density signals measured at different ends of the projected vessel. From the average velocity and cross-section area we get the average blood flow estimate for each vessel. The algorithm described here is applied to datasets from real neuroradiological studies. PMID:17354763

Bogunovi?, Hrvoje; Loncari?, Sven

2006-01-01

351

Inflammation-inducible type 2 deiodinase expression in the leptomeninges, choroid plexus, and at brain blood vessels in male rodents.  

PubMed

Thyroid hormone regulates immune functions and has antiinflammatory effects. In promoter assays, the thyroid hormone-activating enzyme, type 2 deiodinase (D2), is highly inducible by the inflammatory transcription factor nuclear factor-? B (NF-?B), but it is unknown whether D2 is induced in a similar fashion in vivo during inflammation. We first reexamined the effect of bacterial lipopolysaccharide (LPS) on D2 expression and NF-?B activation in the rat and mouse brain using in situ hybridization. In rats, LPS induced very robust D2 expression in normally non-D2-expressing cells in the leptomeninges, adjacent brain blood vessels, and the choroid plexus. These cells were vimentin-positive fibroblasts and expressed the NF-?B activation marker, inhibitor ? B-? mRNA, at 2 hours after injection, before the increase in D2 mRNA. In mice, LPS induced intense D2 expression in the choroid plexus but not in leptomeninges, with an early expression peak at 2 hours. Moderate D2 expression along numerous brain blood vessels appeared later. D2 and NF-?B activation was induced in tanycytes in both species but with a different time course. Enzymatic assays from leptomeningeal and choroid plexus samples revealed exceptionally high D2 activity in LPS-treated rats and Syrian hamsters and moderate but significant increases in mice. These data demonstrate the cell type-specific, highly inducible nature of D2 expression by inflammation, and NF-?B as a possible initiating factor, but also warrant attention for species differences. The results suggest that D2-mediated T3 production by fibroblasts regulate local inflammatory actions in the leptomeninges, choroid plexus and brain blood vessels, and perhaps also in other organs. PMID:24601886

Wittmann, Gábor; Harney, John W; Singru, Praful S; Nouriel, Shira S; Reed Larsen, P; Lechan, Ronald M

2014-05-01

352

Effect of Antiprogesterone RU486 on VEGF Expression and Blood Vessel Remodeling on Ovarian Follicles before Ovulation  

PubMed Central

Background The success of ovarian follicle growth and ovulation is strictly related to the development of an adequate blood vessel network required to sustain the proliferative and endocrine functions of the follicular cells. Even if the Vascular Endothelial Growth Factor (VEGF) drives angiogenesis before ovulation, the local role exerted by Progesterone (P4) remains to be clarified, in particular when its concentration rapidly increases before ovulation. Aim This in vivo study was designed to clarify the effect promoted by a P4 receptor antagonist, RU486, on VEGF expression and follicular angiogenesis before ovulation, in particular, during the transition from pre to periovulatory follicles induced by human Chorionic Gonadotropins (hCG) administration. Material and Methods Preovulatory follicle growth and ovulation were pharmacologically induced in prepubertal gilts by combining equine Chorionic Gonadotropins (eCG) and hCG used in the presence or absence of RU486. The effects on VEGF expression were analyzed using biochemical and immunohistochemical studies, either on granulosa or on theca layers of follicles isolated few hours before ovulation. This angiogenic factor was also correlated to follicular morphology and to blood vessels architecture. Results and Conclusions VEGF production, blood vessel network and follicle remodeling were impaired by RU486 treatment, even if the cause-effect correlation remains to be clarified. The P4 antagonist strongly down-regulated theca VEGF expression, thus, preventing most of the angiogenic follicle response induced by hCG. RU486-treated follicles displayed a reduced vascular area, a lower rate of endothelial cell proliferation and a reduced recruitment of perivascular mural cells. These data provide important insights on the biological role of RU486 and, indirectly, on steroid hormones during periovulatory follicular phase. In addition, an in vivo model is proposed to evaluate how periovulatory follicular angiogenesis may affect the functionality of the corpus luteum (CL) and the success of pregnancy.

Berardinelli, Paolo; Russo, Valentina; Bernabo, Nicola; Di Giacinto, Oriana; Mattioli, Mauro; Barboni, Barbara

2014-01-01

353

Techniques to study the pharmacodynamics of isolated large and small blood vessels  

Microsoft Academic Search

Techniques are described for the mounting of large artery and vein ring segments on wire hooks in an organ bath chamber. Each vessel is set to normalised conditions of passive force directly determined from its circumferential length–tension relationship. This rigorous set up follows the normalisation routine established by Mulvany and Halpern for small resistance arteries mounted under isometric conditions on

James A Angus; Christine E Wright

2000-01-01

354

Biophysical Properties of Scaffolds Modulate Human Blood Vessel Formation from Circulating Endothelial Colony-Forming Cells  

NASA Astrophysics Data System (ADS)

A functional vascular system forms early in development and is continually remodeled throughout the life of the organism. Impairment to the regeneration or repair of this system leads to tissue ischemia, dysfunction, and disease. The process of vascular formation and remodeling is complex, relying on local microenvironmental cues, cytokine signaling, and multiple cell types to function properly. Tissue engineering strategies have attempted to exploit these mechanisms to develop functional vascular networks for the generation of artificial tissues and therapeutic strategies to restore tissue homeostasis. The success of these strategies requires the isolation of appropriate progenitor cell sources which are straightforward to obtain, display high proliferative potential, and demonstrate an ability to form functional vessels. Several populations are of interest including endothelial colony-forming cells, a subpopulation of endothelial progenitor cells. Additionally, the development of scaffolds to deliver and support progenitor cell survival and function is crucial for the formation of functional vascular networks. The composition and biophysical properties of these scaffolds have been shown to modulate endothelial cell behavior and vessel formation. However, further investigation is needed to better understand how these mechanical properties and biophysical properties impact vessel formation. Additionally, several other cell populations are involved in neoangiogenesis and formation of tissue parenchyma and an understanding of the potential impact of these cell populations on the biophysical properties of scaffolds will also be needed to advance these strategies. This chapter examines how the biophysical properties of matrix scaffolds can influence vessel formation and remodeling and, in particular, the impact on in vivo human endothelial progenitor cell vessel formation.

Critser, Paul J.; Yoder, Mervin C.

355

Effects of tissue outside of arterial blood vessels in pulse oximetry: a model of two-dimensional pulsation.  

PubMed

We describe a new model of pulse oximetry that addresses the disagreement between theoretical calibration curves based on Beer-Lambert's Law and test results based on human test subjects. Sources of this discrepancy include variability among human subjects, experimental conditions and the effect of optical radiation propagating in tissue surrounding arteries. Unlike the conventional model, our model considers the change in the relative proportion of light that does or does not pass through blood in pulsating vessels in addition to the change in the path length of optical radiation through the blood. Theoretical calibration curves based on this model agree with human test results and help to explain the variability between in vitro and in vivo test conditions. PMID:17960488

Yang, Shao; Batchelder, Paul B; Raley, Dena M

2007-12-01

356

MRI measurement of oxygen extraction fraction, mean vessel size and cerebral blood volume using serial hyperoxia and hypercapnia.  

PubMed

Functional magnetic resonance imaging measures signal increases arising from a variety of interrelated effects and physiological sources. Recently there has been some success in disentangling this signal in order to quantify baseline physiological parameters, including the resting oxygen extraction fraction (OEF), cerebral blood volume (CBV) and mean vessel size. However, due to the complicated nature of the signal, each of these methods relies on certain physiological assumptions to derive a solution. In this work we present a framework for the simultaneous, voxelwise measurement of these three parameters. The proposed method removes the assumption of a fixed vessel size from the quantification of OEF and CBV, while simultaneously removing the need for an assumed OEF in the calculation of vessel size. The new framework is explored through simulations and validated with a pilot study in healthy volunteers. The MRI protocol uses a combined hyperoxia and hypercapnia paradigm with a modified spin labelling sequence collecting multi-slice gradient echo and spin echo data. PMID:24531048

Germuska, Michael; Bulte, Daniel P

2014-05-15

357

Computational geometry for patient-specific reconstruction and meshing of blood vessels from MR and CT angiography.  

PubMed

Investigation of three-dimensional (3-D) geometry and fluid-dynamics in human arteries is an important issue in vascular disease characterization and assessment. Thanks to recent advances in magnetic resonance (MR) and computed tomography (CT), it is now possible to address the problem of patient-specific modeling of blood vessels, in order to take into account interindividual anatomic variability of vasculature. Generation of models suitable for computational fluid dynamics is still commonly performed by semiautomatic procedures, in general based on operator-dependent tasks, which cannot be easily extended to a significant number of clinical cases. In this paper, we overcome these limitations making use of computational geometry techniques. In particular, 3-D modeling was carried out by means of 3-D level sets approach. Model editing was also implemented ensuring harmonic mean curvature vectors distribution on the surface, and model geometric analysis was performed with a novel approach, based on solving Eikonal equation on Voronoi diagram. This approach provides calculation of central paths, maximum inscribed sphere estimation and geometric characterization of the surface. Generation of adaptive-thickness boundary layer finite elements is finally presented. The use of the techniques presented here makes it possible to introduce patient-specific modeling of blood vessels at clinical level. PMID:12846436

Antiga, Luca; Ene-Iordache, Bogdan; Remuzzi, Andrea

2003-05-01

358

Mutation of p107 exacerbates the consequences of Rb loss in embryonic tissues and causes cardiac and blood vessel defects.  

PubMed

The retinoblastoma tumor-suppressor protein, pRb, is a member of the pocket protein family that includes p107 and p130. These proteins have well-defined roles in regulating entry into and exit from the cell cycle and also have cell cycle-independent roles in facilitating differentiation. Here we investigate the overlap between pocket protein's function during embryonic development by using conditional mutant alleles to generate Rb;p107 double-mutant embryos (DKOs) that develop in the absence of placental defects. These DKOs die between e13.5 and e14.5, much earlier than either the conditional Rb or the germline p107 single mutants, which survive to birth or are largely viable, respectively. Analyses of the e13.5 DKOs shows that p107 mutation exacerbates the phenotypes resulting from pRb loss in the central nervous system and lens, but not in the peripheral nervous system. In addition, these embryos exhibit novel phenotypes, including increased proliferation of blood vessel endothelial cells, and heart defects, including double-outlet right ventricle (DORV). The DORV is caused, at least in part, by a defect in blood vessel endothelial cells and/or heart mesenchymal cells. These findings demonstrate novel, overlapping functions for pRb and p107 in numerous murine tissues. PMID:19706423

Berman, Seth D; West, Julie C; Danielian, Paul S; Caron, Alicia M; Stone, James R; Lees, Jacqueline A

2009-09-01

359

Abl knockout differentially affects p130 Crk-associated substrate, vinculin, and paxillin in blood vessels of mice  

PubMed Central

Actin polymerization has recently emerged as an important cellular process that regulates smooth muscle contraction. Abelson tyrosine kinase (Abl) has been implicated in the regulation of actin dynamics and force development in vascular smooth muscle. In the present study, the systolic blood pressure was lower in Abl?/? knockout mice compared with wild-type mice. The knockout of Abl diminished the tyrosine phosphorylation of p130 Crk-associated substrate (CAS, an adapter protein associated with smooth muscle contraction) in resistance arteries upon stimulation with phenylephrine or angiotensin II. The agonist-elicited enhancement of F-actin-to-G-actin ratios in arteries assessed by fluorescent microscopy was also reduced in Abl?/? mice. It has been known that vinculin is a structural protein that links actin filaments to extracellular matrix via transmembrane integrins, whereas paxillin is a signaling protein associated with focal contacts mediating actin cytoskeleton remodeling. The expression of vinculin and paxillin at protein and messenger levels was lower in arterial vessels from Abl knockout mice. However, the agonist-induced increase in myosin phosphorylation was not attenuated in arteries from Abl knockout mice. These results indicate that Abl differentially regulates Crk-associated substrate, vinculin, and paxillin in arterial vessels. The Abl-regulated cellular process and blood pressure are independent of myosin activation in vascular smooth muscle.

Chen, Shu; Wang, Ruping; Li, Qing-Fen; Tang, Dale D.

2009-01-01

360

Computational blood flow and vessel wall modeling in a CT-based thoracic aorta after stent-graft implantation  

NASA Astrophysics Data System (ADS)

Abnormal blood flow conditions and structural fatigue within stented vessels may lead to undesired failure causing death to the patient. Image-based computational modeling provides a physical and realistic insight into the patientspecific biomechanics and enables accurate predictive simulations of development, growth and failure of cardiovascular diseases as well as associated risks. Controlling the efficiency of an endovascular treatment is necessary for the evaluation of potential complications and predictions on the assessment of the pathological state. In this paper we investigate the effects of stent-graft implantation on the biomechanics in a patient-specific thoracic aortic model. The patient geometry and the implanted stent-graft are obtained from morphological data based on a CT scan performed during a controlling routine. Computational fluid dynamics (CFD) and computational structure mechanics (CSM) simulations are conducted based on the finite volume method (FVM) and on the finite element method (FEM) to compute the hemodynamics and the elastomechanics within the aortic model, respectively. Physiological data based on transient pressure and velocity profiles are used to set the necessary boundary conditions. Further, the effects of various boundary conditions and definition of contact interactions on the numerical stability of the blood flow and the vessel wall simulation results are also investigated. The quantification of the hemodynamics and the elastomechanics post endovascular intervention provides a realistic controlling of the state of the stented vessel and of the efficiency of the therapy. Consequently, computational modeling would help in evaluating individual therapies and optimal treatment strategies in the field of minimally invasive endovascular surgery.

Hazer, Dilana; Stoll, Markus; Schmidt, Eduard; Richter, Goetz-M.; Dillmann, Rüdiger

2010-03-01

361

PIV and digital holography for measuring blood flows and vessel wall dynamics  

NASA Astrophysics Data System (ADS)

In this work endoscopy has been combined with high speed PIV and holographic interferometry for flow velocity and wall deformation measurement of different vessels. Endoscopes have been used for illumination and/or recording of PIV images and digital holograms. High speed PIV has been applied to evaluate the influence of an antithrombotic filter in a vena cava model flow. Qualitative wall deformation has been obtained using digital holography in a vein model and in a real sheep aorta.

Arévalo, Laura; Roche, Eva; Palero, Virginia; Martínez, Miguel Ángel; Arroyo, M. Pilar

2013-11-01

362

Three-dimensional organization of smooth muscle cells in blood vessels of laboratory rodents  

Microsoft Academic Search

Summary  Three-dimensional aspects of smooth muscle cells of the microvas-culature were studied ultrastructurally in laboratory rodents by means of serial thin sections and reconstruction of muscle cell models. It was demonstrated that a muscle cell of an arteriole (luminal diameter (LD) 17 m) in hamster striated muscle was spindle-shaped, 70 m long, and wound twice round the vessel axis. The volume

Terumasa Komuro; Junzo Desaki; Yasuo Uehara

1982-01-01

363

Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele  

Microsoft Academic Search

THE endothelial cell-specific vascular endothelial growth factor (VEGF)1-5 and its cellular receptors Flt-1 (refs 6,7) and Flk-1 (refs 8,9) have been implicated in the formation of the embryonic vasculature. This is suggested by their colocalized expression during embryogenesis10,11 and the impaired vessel formation in Flk-1 (ref. 12) and Flt-1 (ref. 13) deficient embryos. However, because Flt-1 also binds placental growth

Peter Carmeliet; Valérie Ferreira; Georg Breier; Saskia Pollefeyt; Lena Kieckens; Marina Gertsenstein; Michaela Fahrig; Ann Vandenhoeck; Kendraprasad Harpal; Carmen Eberhardt; Cathérine Declercq; Judy Pawling; Lieve Moons; Désiré Collen; Werner Risau; Andras Nagy

1996-01-01

364

Inhibition of blood vessel formation by a chondrocyte-derived extracellular matrix.  

PubMed

In this study, the chondrocyte-derived extracellular matrix (CECM) was evaluated for its activity to inhibit vessel invasion in vitro and in vivo. Human umbilical vein endothelial cells (HUVECs) and rabbit chondrocytes were plated on a bio-membrane made of CECM or human amniotic membrane (HAM). The adhesion, proliferation, and tube formation activity of HUVECs and chondrocytes were examined. The CECM and HAM powders were then mixed individually in Matrigel and injected subcutaneously into nude mice to examine vessel invasion in vivo after 1 week. Finally, a rabbit model of corneal neovascularization (NV) was induced by 3-point sutures in the upper cornea, and CECM and HAM membranes were implanted onto the corneal surface at day 5 after suture injury. The rabbits were sacrificed at 7 days after transplantation and the histopathological analysis was performed. The adhesion and proliferation of HUVECs were more efficient on the HAM than on the CECM membrane. However, chondrocytes on each membrane showed an opposite result being more efficient on the CECM membrane. The vessel invasion in vivo also occurred more deeply and intensively in Matrigel containing HAM than in the one containing CECM. In the rabbit NV model, CECM efficiently inhibited the neovessels formation and histological remodeling in the injured cornea. In summary, our findings suggest that CECM, an integral cartilage ECM composite, shows an inhibitory effect on vessel invasion both in vitro and in vivo, and could be a useful tool in a variety of biological and therapeutic applications including the prevention of neovascularization after cornea injury. PMID:24768193

Choi, Byung Hyune; Choi, Kyoung-Hwan; Lee, Hye Sook; Song, Bo Ram; Park, So Ra; Yang, Jae Wook; Min, Byoung-Hyun

2014-07-01

365

Automated detection of kinks from blood vessels for optic cup segmentation in retinal images  

NASA Astrophysics Data System (ADS)

The accurate localization of the optic cup in retinal images is important to assess the cup to disc ratio (CDR) for glaucoma screening and management. Glaucoma is physiologically assessed by the increased excavation of the optic cup within the optic nerve head, also known as the optic disc. The CDR is thus an important indicator of risk and severity of glaucoma. In this paper, we propose a method of determining the cup boundary using non-stereographic retinal images by the automatic detection of a morphological feature within the optic disc known as kinks. Kinks are defined as the bendings of small vessels as they traverse from the disc to the cup, providing physiological validation for the cup boundary. To detect kinks, localized patches are first generated from a preliminary cup boundary obtained via level set. Features obtained using edge detection and wavelet transform are combined using a statistical approach rule to identify likely vessel edges. The kinks are then obtained automatically by analyzing the detected vessel edges for angular changes, and these kinks are subsequently used to obtain the cup boundary. A set of retinal images from the Singapore Eye Research Institute was obtained to assess the performance of the method, with each image being clinically graded for the CDR. From experiments, when kinks were used, the error on the CDR was reduced to less than 0.1 CDR units relative to the clinical CDR, which is within the intra-observer variability of 0.2 CDR units.

Wong, D. W. K.; Liu, J.; Lim, J. H.; Li, H.; Wong, T. Y.

2009-02-01

366

Anatomical examination of the great inguinal blood vessels in preterm and term neonates.  

PubMed

It is generally accepted that vessel cannulation is technically more difficult and results in more complications in neonates. A sound anatomical knowledge of the inguinal area is therefore important in the selection of appropriately sized central line catheters as well as the approach to central vessel access. Eleven stillborns were investigated. Birth weight (mean: 2,414 g, 900-4,100 g) and gestational age (mean 34 1/7 weeks', 27 6/7-42 1/7) varied within normal range. The outer diameters of the femoral artery (FA), femoral vein (FV), and great saphenous vein (GSV) were determined. The distance between the anterior superior iliac spine and the pubic tubercle was set as 100% and the vessel intersection points were calculated as percentage values of the inguinal ligament length, starting at the iliac spine. The FA has a diameter of 1.9 ± 0.5 mm without correlation to gestational age. The FA crosses the inguinal ligament centrally. The FV has a diameter of 3.1 ± 1.0 mm and does have correlation to gestational age. The FV crosses the inguinal ligament at 63-64%. The GSV has a diameter of 1.4 ± 0.7 mm. Its point of intersection at the level of the inguinal ligament is 68-70%. We conclude that cannulation of the femoral artery or vein should not be performed too far (<1 cm) from the inguinal ligament. The course of the GSV is not suitable for catheter insertion. PMID:22461219

Eifinger, Frank; Lazaridis, Elpida Chochliourou; Roth, Bernhard; Koebke, Jürgen

2014-04-01

367

Effect of gravitational overloads, hypokinesia and hypodynamia on the vessels of the pulmonary blood circuit  

NASA Technical Reports Server (NTRS)

Vessels of the pulmonary circuit are studied under normal conditions, in exposure to single stress or continuous threshold endurable chestspine gravitational stresses, and one to eight weak hypokinesia and hypodynamic effects followed by stress. Examination methods include rentgenography and microrentgenography, clearing, and histology. In exposure to gravitational stress the distal portions of the arterial vessels of the 3 and 4 orders constrict, while all veins dilate. Sinuosity of all vessels is noted. The volume of the capillary bed increases and signs of perivascular edema occur. Due to hypokinesia and hypodynamia the arteries constricted and the arterial bed becomes poor. The veins of all orders dilate and the volume of the capillary bed increases. The changes grew greater the longer the terms of hypodyamic effects. Successive combination of hypokinesia and hypodynamia and gravitational stresses cause more pronounced changes than separate effects of these two factors and result in great deformity of the vascular walls, including their rupture and penetration of formed elements beyond the limits of the vascular bed.

Kasimtsev, A. A.

1980-01-01

368

Heat transport by countercurrent blood vessels in the presence of an arbitrary temperature gradient.  

PubMed

This paper presents a three-dimensional analysis of the temperature field around a pair of countercurrent arteries and veins embedded in an infinite tissue that has an arbitrary temperature gradient along the axes of the vessels. Asymptotic methods are used to show that such vessels are thermally similar to a highly conductive fiber in the same tissue. Expressions are developed for the effective radius and thermal conductivity of the fiber so that it conducts heat at the same rate that the artery and vein together convect heat and so that its local temperature equals the mean temperature of the vessels. This result allows vascular tissue to be viewed as a composite of conductive materials with highly conductive fibers replacing the convective effects of the vasculature. By characterizing the size and thermal conductivity of these fibers, well-established methods from the study of composites may be applied to determine when an effective conductive model is appropriate for the tissue and vasculature as a whole. PMID:2345452

Baish, J W

1990-05-01

369

Synthetic reconstruction of dynamic blood flow in cortical arteries using optical coherence tomography for the evaluation of vessel compliance  

NASA Astrophysics Data System (ADS)

Optical Coherence Tomography (OCT) has recently been used to produce 3D angiography of microvasculature in the rodent brain in-vivo and blood flow maps of large vessels. Key enabling developments were novel algorithms for detecting Doppler shifts produced by moving scatterers and new scanning protocols tailored to increase sensitivity to small flow speeds. These progresses were pushed by the need for a non invasive imaging modality to monitor quantitative blood flow at a higher resolution and a greater depth than could be achieved by other means. The rationale for this work originates from new hypotheses regarding the role of blood regulation in neurodegenerative diseases and from current investigations of animal models of vascular degeneration. In this work we demonstrate the synthetic reconstruction of dynamic blood flow in mice over the course of a single cardiac cycle in an 800?m wide by ~ 3mm deep B-Frame slice with a lateral resolution of 10?m and a depth resolution of 7?m. Images were taken using a cranial window over the exposed parietal bone of mice skull. Electrocardiography (ECG) recordings were co registered with the OCT A lines at high temporal resolution. QRS peak detection was then used to locate the time value of each A-line in the cardiac cycle and to reconstruct a synthetic temporal frame over one cardiac cycle. Doppler speed in this cardiac cycle was used to measure temporal variations of flow inside arteries and of their area. Three dimensional volume scans yielded measurements of quantitative blood flow on the same arteries. Using these informations a measure of compliance could be established. Comparing measures between atherosclerotic (ATX) and wild type (WT) mice revealed higher blood flow in WT mice, suggested lower systemic compliance in the ATX group but higher compliance of cerebral vasculature on these mice. These results are consistent with expectations showing that OCT is a potential tool for in-vivo arterial compliance evaluation.

Baraghis, Edward; Bolduc, Virginie; Gillis, Marc-Antoine; Srinivasan, Vivek J.; Thorin, Éric; Boudoux, Caroline; Lesage, Frédéric

2011-02-01

370

[Effect of atriopeptin on the adrenergic mechanism regulating blood vessel tonus].  

PubMed

The direct action of atriopeptin on the cell regulation mechanism of the smooth muscle in isolated segments of the portal vein, aorta, pancreatic and cerebral arteries have been studied. It was found that atriopeptin induce the direct relaxation of the smooth muscle in the main vessels only (aorta, portal vein). In the cerebral and pancreatic arteries atriopeptin stops norepinephrine-induced contractions. The data obtained show that the action of the atriopeptin is mediated by Na+-K+ pump activation of smooth muscle cells and restricts vasoconstriction of catecholamine effect. PMID:2524228

Azin, A L; Kharitonova, M P

1989-04-01

371

Evaluation of sildenafil pressurized metered dose inhalers as a vasodilator in umbilical blood vessels of chicken egg embryos.  

PubMed

Sildenafil citrate is a selective phosphodiesterase-5 inhibitor used for the treatment for erectile dysfunction and pulmonary hypertension. The delivery of sildenafil directly to the lung could have several advantages over conventional treatments for pulmonary hypertension because of the local delivery, a more rapid onset of response, and reduced side effects. The major problem of sildenafil citrate is its limited solubility in water. Sildenafil citrate was complexed with cyclodextrins (CDs) to enhance its water solubility prior to development as an inhaled preparation. Four sildenafil citrate inhaled formulations were prepared with the aid of HP-?-CD (#1), ?-CD (#2) and ?-CD (#3) and their effects were compared with the formulations without CDs (#4). The sildenafil citrate pressurized metered dose inhalers (pMDI) used ethanol as a solvent, PEG400 as a stabilizing agent, sorbitan monooleate as a surfactant and HFA-134a as a propellant. All formulations consisted of sildenafil citrate equivalent to a sildenafil content of 20?g/puff. These products were evaluated according to a standard guideline of inhalation products. Vasodilation testing was performed to investigate the efficacy of sildenafil pMDIs in relieving a vasoconstricted umbilical blood vessel of the chicken egg embryo. The sildenafil contents of the pMDI formulations #1-#3 were within the acceptance criteria (80-120%). The emitted doses (ED) were 102.3±11.5%, the fine particle fractions (FPF) were 60.5±5.6% and the mass median aerodynamic diameters (MMAD) were 2.3±0.3?m. The vasodilatory activity of those formulations reduced umbilical blood pressure by 67.1-73.7% after treatment by intravenous injection whereas only a 50.1-58.0% reduced blood pressure was obtained after direct spraying of the sildenafil pMDI containing CDs. With sildenafil formulations of a pMDI without CD the blood pressure was reduced by only 39.0% (P-value<0.05). The available sildenafil in the blood vessels of chicken egg embryos after spraying sildenafil-CDs pMDIs was within the range of 751-825ng/mL which was much higher than that of a sildenafil only pMDI. PMID:24036276

Sawatdee, Somchai; Hiranphan, Phetai; Laphanayos, Kampanart; Srichana, Teerapol

2014-01-01

372

The Location of The Inferior and Superior Temporal Blood Vessels and Inter-Individual Variability of The Retinal Nerve Fiber Layer Thickness  

PubMed Central

Purpose To determine if adjusting for blood vessel location can decrease the inter-subject variability of retinal nerve fiber (RNFL) thickness measured with optical coherence tomography (OCT). Subjects and Methods One eye of 50 individuals with normal vision was tested with OCT and scanning laser polarimetry (SLP). The SLP and OCT RNFL thickness profiles were determined for a peripapillary circle 3.4 mm in diameter. The midpoints between the superior temporal vein and artery (STva) and the inferior temporal vein and artery (ITva) were determined at the location where the vessels cross the 3.4 mm circle. The average OCT and SLP RNFL thicknesses for quadrants and arcuate sectors of the lower and upper optic disc were obtained before and after adjusting for blood vessel location. This adjustment was done by shifting the RNFL profiles based upon the locations of the STva and ITva relative to the mean locations of all 50 individuals. Results Blood vessel locations ranged over 39° (STva) and 33° (ITva) for the 50 eyes. The location of the leading edge of the OCT and SLP profiles was correlated with the location of the blood vessels for both the superior [r=0.72 (OCT) and 0.72(SLP)] and inferior [r=0.34 and 0.43] temporal vessels. However, the variability in the OCT and SLP thickness measurements showed little change due to shifting. After shifting, the difference in the coefficient of variation ranged from ?2.1% (shifted less variable) to +1.7% (unshifted less variable). Conclusion The shape of the OCT and SLP RNFL profiles varied systematically with the location of the superior and inferior superior veins and arteries. However, adjusting for the location of these major temporal blood vessels did not decrease the variability for measures of OCT or SLP RNFL thickness.

Hood, Donald C.; Salant, Jennifer A.; Arthur, Stella N.; Ritch, Robert; Liebmann, Jeffrey M.

2009-01-01

373

Theoretical study of immersion optical clearing of blood in vessels at local hemolysis  

NASA Astrophysics Data System (ADS)

Mie based theoretical analysis has been performed for investigation of the possibility of application of the plasma hemoglobin releasing due to local hemolysis for optical clearing of blood. The 30-40% reduction of the scattering coefficient of blood in the spectral range from 400 to 1000 nm with increase of degree of hemolysis (up to 20%) was shown. At the same time, the reduction of absorption coefficient of blood is localized mainly within the Soret band with maximum at 415 nm (­­­~15%), the ?-band at 540 nm and the b-band at 577 nm (~10%) of oxyhemoglobin. In the spectral range from 700 to 1000 nm the decrease of absorption coefficient is less than 8%.

Tuchin, Valery V.; Zhestkov, Dmitry M.; Bashkatov, Alexey N.; Genina, Elina A.

2004-06-01

374

Detergent-enzymatic decellularization of swine blood vessels: insight on mechanical properties for vascular tissue engineering.  

PubMed

Small caliber vessels substitutes still remain an unmet clinical need; few autologous substitutes are available, while synthetic grafts show insufficient patency in the long term. Decellularization is the complete removal of all cellular and nuclear matters from a tissue while leaving a preserved extracellular matrix representing a promising tool for the generation of acellular scaffolds for tissue engineering, already used for various tissues with positive outcomes. The aim of this work is to investigate the effect of a detergent-enzymatic decellularization protocol on swine arteries in terms of cell removal, extracellular matrix preservation, and mechanical properties. Furthermore, the effect of storage at -80°C on the mechanical properties of the tissue is evaluated. Swine arteries were harvested, frozen, and decellularized; histological analysis revealed complete cell removal and preserved extracellular matrix. Furthermore, the residual DNA content in decellularized tissues was far low compared to native one. Mechanical testings were performed on native, defrozen, and decellularized tissues; no statistically significant differences were reported for Young's modulus, ultimate stress, compliance, burst pressure, and suture retention strength, while ultimate strain and stress relaxation of decellularized vessels were significantly different from the native ones. Considering the overall results, the process was confirmed to be suitable for the generation of acellular scaffolds for vascular tissue engineering. PMID:23865072

Pellegata, Alessandro F; Asnaghi, M Adelaide; Stefani, Ilaria; Maestroni, Anna; Maestroni, Silvia; Dominioni, Tommaso; Zonta, Sandro; Zerbini, Gianpaolo; Mantero, Sara

2013-01-01

375

"One-off" complete radiofrequency ablation for hepatocellular carcinoma in a "high-risk location" adjacent to the major bile duct and hepatic blood vessel.  

PubMed

Radiofrequency ablation (RFA) is an effective, minimally invasive treatment option for unresectable hepatocellular carcinomas (HCCs) located in high-risk areas or for patients with poor hepatic functional reserve. However, for tumors adjacent to major bile ducts and hepatic blood vessels, complete ablation is difficult to achieve for fear of causing a postoperative bile leak, bilioma or bile duct stenosis. Therefore, RFA is often combined with multiple alcohol injections to eliminate residual tumor tissues in adjacent bile duct or blood vessels; however, the injections directly affect the efficacy and prognosis of RFA. This study reports three successful "one-off" cases of complete ablation of HCCs adjacent to major bile ducts and blood vessels in neighboring hepatic segments or hepatic lobes, highlighting both the efficacy and safety of RFA for HCC tumors in these high-risk locations. PMID:24497154

Jiang, Kai; Zhang, Wen-Zhi; Liu, Yang; Su, Ming; Zhao, Xiang-Qian; Dong, Jia-Hong; Huang, Zhi-Qiang

2014-07-01

376

Experimental estimation of blood flow velocity through simulation of intravital microscopic imaging in micro-vessels by different image processing methods.  

PubMed

Quantization of red blood cell (RBC) velocity in micro-vessel is one of the techniques for dynamic observation of microvascular mechanisms. The flow measurement of RBC in micro-vessels is still a challenge nowadays. Image processing for velocity measurement using a frame by frame analysis is a common approach. The accuracy of the calculations, which is algorithm dependant, has rarely been examined. In this paper, we evaluated the accuracy of the existing methods, which includes cross correlation method, Hough transform method, and optical flow method, by applying these methods to simulated micro-vessel image sequences. Simulated experiments in various micro-vessels with random RBC motion were applied in the evaluation. The blood flow variation in the same micro-vessels with different RBC densities and velocities was considered in the simulations. The calculation accuracy of different flow patterns and vessel shapes were also examined, respectively. Based on the comparison, the use of an optical flow method, which is superior to a cross-correlation method or a Hough transform method, is proposed for measuring RBC velocity. The study indicated that the optical flow method is suitable for accurately measuring the velocity of the RBCs in small or large micro-vessels. PMID:20659483

Huang, Tzung-Chi; Lin, Wen-Chen; Wu, Chih-Chieh; Zhang, Geoffrey; Lin, Kang-Ping

2010-12-01

377

High Gain Observer for backstepping control of a MRI-guided therapeutic microrobot in blood vessels  

Microsoft Academic Search

This paper reports precise modeling and controller\\/ observer design for a microsized polymer aggregate of magnetic particles inside an artery, using a Magnetic Resonance Imaging (MRI) device for supplying propulsion in order to achieve targeted chemotherapy. Non-Newtonian behaviour of blood is taken into account, as well as wall effects and interactions, resulting in a highly nonlinear model. A High Gain

Laurent Arcese; Ali Cherry; Matthieu Fruchard; Antoine Ferreira

2010-01-01

378

A dynamic model of neurovascular coupling: Implications for blood vessel dilation and constriction  

Microsoft Academic Search

Neurovascular coupling in response to stimulation of the rat barrel cortex was investigated using concurrent multichannel electrophysiology and laser Doppler flowmetry. The data were used to build a linear dynamic model relating neural activity to blood flow. Local field potential time series were subject to current source density analysis, and the time series of a layer IV sink of the

Ying Zheng; Yi Pan; Sam Harris; Steve Billings; Daniel Coca; Jason Berwick; Myles Jones; Aneurin Kennerley; David Johnston; Chris Martin; Ian M. Devonshire; John Mayhew

2010-01-01

379

Computer simulation of local blood flow and vessel mechanics in a compliant carotid artery bifurcation model  

Microsoft Academic Search

To investigate the effect of the distensible artery wall on the local flow field and to determine the mechanical stresses in the artery wall, a numerical model for the blood flow in the human carotid artery bifurcation has been developed. The wall displacement and stress analysis use geometrically non-linear shell theory where incrementally linearly elastic wall behavior is assumed. The

Karl Perktold; Gerhard Rappitsch

1995-01-01

380

Vessel Segmentation and Blood Flow Simulation Using Level-Sets and Embedded Boundary Methods.  

National Technical Information Service (NTIS)

In this article we address the problem of blood flow simulation in realistic vascular objects. The anatomical surfaces are extracted by means of Level-Sets methods that accurately model the complex and varying surfaces of pathological objects such as aneu...

T. Deschamps P. Schwartz D. Trebotich P. Colella D. Saloner

2004-01-01

381

Dynamic behavior investigation for trajectory control of a microrobot in blood vessels  

Microsoft Academic Search

This paper reports modeling and control of a microsized polymer aggregate of magnetic particles inside an artery, using a MRI device for supplying propulsion in order to achieve targeted chemotherapy. Non-Newtonian behavior of blood is considered, as well as wall effects and interactions, resulting in a highly nonlinear model. A backstepping approach is synthesized to ensure Lyapunov stability along a

Laurent Arcese; Ali Cherry; Matthieu Fruchard; Antoine Ferreira

2010-01-01

382

Assessing blood vessel abnormality via extracting scattering coefficients from OCT images  

NASA Astrophysics Data System (ADS)

Background: Coronary artery disease (CAD) is the leading cause of mortality and morbidity in the industrialized world. Optical coherence tomography (OCT) is a high-resolution intravascular imaging technology with a potential for in vivo plaque characterization. Although structural remodeling of the arterial vessel wall during plaque development can change tissue optical scattering properties, very limited evidence is available on the exact optical scattering properties of plaques. The scattering coefficient, ?s, and the anisotropy factor, g, can be derived from OCT images by fitting a theoretical model to individual depth-scans. The aim of the current study was to use this method to examine by OCT the scattering properties of human arteries with different stages of atherosclerotic lesion development. Methods: Normal (n=4), lipid-rich (n=4), and fibrous (n=3) aortic blocks as classified by parallel histopathologic examination were obtained within 24 hours of death and imaged by OCT. The intima was located in the OCT images, and then further split into 115 blocks (41 normal, 40 lipid-rich, and 34 fibrous) of adjacent OCT depth-scans transversely spanning ~200-300 ?m. Scattering signals from each block were averaged and fit to the theoretical model. From these fittings, ?s and g were extracted. Results and Discussion: The optical scattering properties of normal aortic intima were quite different from lipid-rich and fibrous lesions, respectively. We discovered that the normal intima was generally highly forward scattering, i.e., with 0.917vessels were much less so. Furthermore, normal vessels usually had 15

Levitz, David; Andersen, Claus B.; Frosz, Michael H.; Thrane, Lars; Hansen, Peter R.; Jorgensen, Thomas M.; Andersen, Peter E.

2003-10-01

383

Endothelial Wnt/?-catenin signaling inhibits glioma angiogenesis and normalizes tumor blood vessels by inducing PDGF-B expression.  

PubMed

Endothelial Wnt/?-catenin signaling is necessary for angiogenesis of the central nervous system and blood-brain barrier (BBB) differentiation, but its relevance for glioma vascularization is unknown. In this study, we show that doxycycline-dependent Wnt1 expression in subcutaneous and intracranial mouse glioma models induced endothelial Wnt/?-catenin signaling and led to diminished tumor growth, reduced vascular density, and normalized vessels with increased mural cell attachment. These findings were corroborated in GL261 glioma cells intracranially transplanted in mice expressing dominant-active ?-catenin specifically in the endothelium. Enforced endothelial ?-catenin signaling restored BBB characteristics, whereas inhibition by Dkk1 (Dickkopf-1) had opposing effects. By overactivating the Wnt pathway, we induced the Wnt/?-catenin-Dll4/Notch signaling cascade in tumor endothelia, blocking an angiogenic and favoring a quiescent vascular phenotype, indicated by induction of stalk cell genes. We show that ?-catenin transcriptional activity directly regulated endothelial expression of platelet-derived growth factor B (PDGF-B), leading to mural cell recruitment thereby contributing to vascular quiescence and barrier function. We propose that reinforced Wnt/?-catenin signaling leads to inhibition of angiogenesis with normalized and less permeable vessels, which might prove to be a valuable therapeutic target for antiangiogenic and edema glioma therapy. PMID:22908324

Reis, Marco; Czupalla, Cathrin J; Ziegler, Nicole; Devraj, Kavi; Zinke, Jenny; Seidel, Sascha; Heck, Rosario; Thom, Sonja; Macas, Jadranka; Bockamp, Ernesto; Fruttiger, Marcus; Taketo, Makoto M; Dimmeler, Stefanie; Plate, Karl H; Liebner, Stefan

2012-08-27

384

Mechanical properties of completely autologous human tissue engineered blood vessels compared to human saphenous vein and mammary artery  

PubMed Central

We have previously reported initial clinical feasibility with our small diameter tissue engineered blood vessel (TEBV). Here we present in vitro results of the mechanical properties of the TEBVs of the first 25 patients enrolled in an arterio-venous (A-V) shunt safety trial, and compare these properties with those of risk-matched human vein and artery. TEBV average burst pressures (3,490 +/? 892 mmHg, n=230) were higher than native saphenous vein (SV) (1,599 +/? 877 mmHg, n=7), and not significantly different than native internal mammary artery (IMA) (3,196 +/? 1,264 mmHg, n=16). Suture retention strength for the TEBVs (152 +/? 50 gmf) was also not significantly different than IMA (138 +/? 50 gmf). Compliance for the TEBVs prior to implantation (3.4 +/? 1.6 %/100 mmHg) was lower than IMA (11.5 +/? 3.9 %/100 mmHg). By 6 months post-implant, the TEBV compliance (8.8 +/? 4.2 %/100 mmHg, n=5) had increased to values comparable to IMA, and showed no evidence of dilation or aneurysm formation. With clinical time points beyond 21 months as an A-V shunt without intervention, the mechanical tests and subsequent lot release criteria reported here would seem appropriate minimum standards for clinical use of tissue engineered vessels.

Konig, Gerhardt; McAllister, Todd N; Dusserre, Nathalie; Garrido, Sergio A; Iyican, Corey; Marini, Alicia; Fiorillo, Alex; Avila, Hernan; Wystrychowski, Wojciech; Zagalski, Krzysztof; Maruszewski, Marcin; Jones, Alyce Linthurst; Cierpka, Lech; de la Fuente, Luis M; L'Heureux, Nicolas

2009-01-01

385

Tumor blood vessel "normalization" improves the therapeutic efficacy of boron neutron capture therapy (BNCT) in experimental oral cancer.  

PubMed

We previously demonstrated the efficacy of BNCT mediated by boronophenylalanine (BPA) to treat tumors in a hamster cheek pouch model of oral cancer with no normal tissue radiotoxicity and moderate, albeit reversible, mucositis in precancerous tissue around treated tumors. It is known that boron targeting of the largest possible proportion of tumor cells contributes to the success of BNCT and that tumor blood vessel normalization improves drug delivery to the tumor. Within this context, the aim of the present study was to evaluate the effect of blood vessel normalization on the therapeutic efficacy and potential radiotoxicity of BNCT in the hamster cheek pouch model of oral cancer. Blood vessel normalization was induced by two doses of thalidomide in tumor-bearing hamsters on 2 consecutive days. All studies in thalidomide-treated animals were performed 48 h after the first dose of thalidomide, previously established as the window of normalization. Biodistribution studies were performed with BPA at a dose of 15.5 mg (10)B/kg in thalidomide-treated (Th+) and untreated (Th-) tumor-bearing hamsters. The effect of blood vessel normalization prior to BPA administration on the efficacy of BNCT was assessed in in vivo BNCT studies at the RA-3 Nuclear Reactor in tumor-bearing hamsters. Group I was treated with BPA-BNCT after treatment with thalidomide (Th+ BPA-BNCT). Group II was treated with BPA-BNCT alone (Th- BPA-BNCT). Group III was treated with the beam only after treatment with thalidomide (Th+ BO), and Group IV was treated with the beam only (Th- BO). Groups I and II were given the same dose of BPA (15.5 mg (10)B/kg), and all groups (I-IV) were exposed to the same neutron fluence. Two additional groups were treated with the beam only at a higher dose to exacerbate mucositis in precancerous tissue and to explore the potential direct protective effect of thalidomide on radiation-induced mucositis in a scenario of more severe toxicity, i.e. Group V (Th+ hdBO) and Group VI (Th- hdBO). The animals were followed for 28 days. Biodistribution studies revealed no statistically significant differences in gross boron content between Th+ and Th- animals. Overall tumor control (complete response + partial response) at 28 days post-treatment was significantly higher for Group I (Th+ BPA-BNCT) than for Group II (Th- BPA-BNCT): 84 ± 3% compared to 67 ± 5%. Pretreatment with thalidomide did not induce statistically significant changes in overall tumor control induced by the beam only, i.e. 15 ± 5% in Group III (Th+ BO) and 18 ± 5% in Group IV (Th- BO), or in overall tumor control induced by the high-dose beam only, i.e. 60 ± 7% in Group V (Th+ hdBO) and 47 ± 10% in Group VI (Th- hdBO). BPA-BNCT alone (Group II) induced mucositis in precancerous tissue that reached Grades 3-4 in 80% of the animals, whereas pretreatment with thalidomide (Group I) prevented mucositis Grades 3 and 4 completely. Beam-only Group III (Th+ BO) exhibited only Grade 1 mucositis in precancerous tissue, whereas 17% of the animals in beam-only Group IV (Th- BO) reached Grade 2 mucositis. High-dose beam-only group V (Th+ hdBO) exhibited only Grade 2 mucositis, whereas high-dose beam-only group VI (Th- hdBO) reached Grade 3 mucositis in 83% of the animals. In all cases mucositis in precancerous tissue was reversible. No normal tissue radiotoxicity was observed with any of the protocols. Pretreatment with thalidomide enhanced the therapeutic efficacy of BNCT and reduced precancerous tissue toxicity. PMID:21980958

Molinari, Ana J; Pozzi, Emiliano C C; Monti Hughes, Andrea; Heber, Elisa M; Garabalino, Marcela A; Thorp, Silvia I; Miller, Marcelo; Itoiz, Maria E; Aromando, Romina F; Nigg, David W; Trivillin, Verónica A; Schwint, Amanda E

2012-01-01

386

Spectrophotometric measurements of human tissues for the detection of subjacent blood vessels in an endonasal endoscopic surgical approach.  

PubMed

Thin slices of human tissues are characterized concerning reflection and transmission in a wavelength range from 400 to 1700 nm. The results are primarily useful to find a wavelength for the detection of subjacent blood vessels during surgical procedures, especially neurological surgery. The measurements have been conducted using a customized measuring station, utilizing two halogen bulb lamps and two spectrometers. This paper focuses on creating a data base with the optical properties of artery, brain, bone, nasal mucosa, and nerve. The spectral distributions are compared among each other, similarities and differences are pointed out. Each tissue has got unique spectral characteristics, whereas typical absorption bands can be found in the overall tissues, especially hemoglobin and water absorption bands. The reflectivity maxima are typically located in the red or near-infrared. All the transmission maxima are located between 1075 nm and 1100 nm. The measurements have been conducted at the Institute of Anatomy at the University of Leipzig. PMID:22778075

Ernstberger, Markus; Boeswetter, Pascal; Baselt, Tobias; Ebert, Frank; Basan, Fabiola; Steinke, Hanno; Hammer, Niels; Grunert, Ronny; Hartmann, Peter

2013-04-01

387

A Phenomenological Model for Mechanically Mediated Growth, Remodeling, Damage, and Plasticity of Gel-Derived Tissue Engineered Blood Vessels  

PubMed Central

Mechanical stimulation has been shown to dramatically improve mechanical and functional properties of gel-derived tissue engineered blood vessels (TEBVs). Adjusting factors such as cell source, type of extracellular matrix, cross-linking, magnitude, frequency, and time course of mechanical stimuli (among many other factors) make interpretation of experimental results challenging. Interpretation of data from such multifactor experiments requires modeling. We present a modeling framework and simulations for mechanically mediated growth, remodeling, plasticity, and damage of gel-derived TEBVs that merge ideas from classical plasticity, volumetric growth, and continuum damage mechanics. Our results are compared with published data and suggest that this model framework can predict the evolution of geometry and material behavior under common experimental loading scenarios.

Raykin, Julia; Rachev, Alexander I.

2011-01-01