Science.gov

Sample records for blue image planes

  1. Fourier plane imaging microscopy

    SciTech Connect

    Dominguez, Daniel Peralta, Luis Grave de; Alharbi, Nouf; Alhusain, Mdhaoui; Bernussi, Ayrton A.

    2014-09-14

    We show how the image of an unresolved photonic crystal can be reconstructed using a single Fourier plane (FP) image obtained with a second camera that was added to a traditional compound microscope. We discuss how Fourier plane imaging microscopy is an application of a remarkable property of the obtained FP images: they contain more information about the photonic crystals than the images recorded by the camera commonly placed at the real plane of the microscope. We argue that the experimental results support the hypothesis that surface waves, contributing to enhanced resolution abilities, were optically excited in the studied photonic crystals.

  2. Fourier plane image amplifier

    DOEpatents

    Hackel, L.A.; Hermann, M.R.; Dane, C.B.; Tiszauer, D.H.

    1995-12-12

    A solid state laser is frequency tripled to 0.3 {micro}m. A small portion of the laser is split off and generates a Stokes seed in a low power oscillator. The low power output passes through a mask with the appropriate hole pattern. Meanwhile, the bulk of the laser output is focused into a larger stimulated Brillouin scattering (SBS) amplifier. The low power beam is directed through the same cell in the opposite direction. The majority of the amplification takes place at the focus which is the fourier transform plane of the mask image. The small holes occupy large area at the focus and thus are preferentially amplified. The amplified output is now imaged onto the multichip module where the holes are drilled. Because of the fourier plane amplifier, only about 1/10th the power of a competitive system is needed. This concept allows less expensive masks to be used in the process and requires much less laser power. 1 fig.

  3. Fourier plane image amplifier

    DOEpatents

    Hackel, Lloyd A. (Livermore, CA); Hermann, Mark R. (San Ramon, CA); Dane, C. Brent (Livermore, CA); Tiszauer, Detlev H. (Tracy, CA)

    1995-01-01

    A solid state laser is frequency tripled to 0.3 .mu.m. A small portion of the laser is split off and generates a Stokes seed in a low power oscillator. The low power output passes through a mask with the appropriate hole pattern. Meanwhile, the bulk of the laser output is focused into a larger stimulated Brillouin scattering (SBS) amplifier. The low power beam is directed through the same cell in the opposite direction. The majority of the amplification takes place at the focus which is the fourier transform plane of the mask image. The small holes occupy large area at the focus and thus are preferentially amplified. The amplified output is now imaged onto the multichip module where the holes are drilled. Because of the fourier plane amplifier, only .about.1/10th the power of a competitive system is needed. This concept allows less expensive masks to be used in the process and requires much less laser power.

  4. Electrostatic Image Problems with Plane Boundaries.

    ERIC Educational Resources Information Center

    Terras, Riho; Swanson, Robert A.

    1980-01-01

    Considers the electrostatic problem of a point charge in a domain bounded by conducting planes. Lists all such domains for which a solution by images exists, describes the image charge arrays in familiar crystallographic terms, and gives an illustrative example. (Author/GS)

  5. Image-plane processing of visual information

    NASA Technical Reports Server (NTRS)

    Huck, F. O.; Fales, C. L.; Park, S. K.; Samms, R. W.

    1984-01-01

    Shannon's theory of information is used to optimize the optical design of sensor-array imaging systems which use neighborhood image-plane signal processing for enhancing edges and compressing dynamic range during image formation. The resultant edge-enhancement, or band-pass-filter, response is found to be very similar to that of human vision. Comparisons of traits in human vision with results from information theory suggest that: (1) Image-plane processing, like preprocessing in human vision, can improve visual information acquisition for pattern recognition when resolving power, sensitivity, and dynamic range are constrained. Improvements include reduced sensitivity to changes in lighter levels, reduced signal dynamic range, reduced data transmission and processing, and reduced aliasing and photosensor noise degradation. (2) Information content can be an appropriate figure of merit for optimizing the optical design of imaging systems when visual information is acquired for pattern recognition. The design trade-offs involve spatial response, sensitivity, and sampling interval.

  6. Focal plane imaging systems for millimeter wavelengths

    SciTech Connect

    Goldsmith, P.F. . National Astronomy and Ionosphere Center); Hsieh, C.T.; Huguenin, G.R.; Kapitzky, J.; Moore, E.L. )

    1993-10-01

    The authors discuss critical aspects of imaging system design and describe several different imaging systems employing focal plane array receivers operating in the 3mm--2mm wavelength range. Recent progress in millimeter-wavelength optics, antennas, receivers and other components permits greatly enhanced system performance in a wide range of applications. The authors discuss a radiometric camera for all-weather autonomous aircraft landing capability and a high sensitivity cryogenically cooled array for use in radio astronomical spectroscopy. A near-focus system for identification of plastic materials concealed underneath clothing employs a two element lens, and has been demonstrated in active (transmitting) and passive (radiometric) modes. A dual mode imaging system for plasma diagnostics utilize both active and passive modes at its [approx equal]140 GHz operating frequency to study small-scale structure. The radiometric imaging systems employ between 15 and 256 Schottky barrier diode mixers while the imaging receivers for the active systems include 64 element video detector arrays.

  7. High Volume Rate, High Resolution 3D Plane Wave Imaging

    E-print Network

    Wenisch, Thomas F.

    High Volume Rate, High Resolution 3D Plane Wave Imaging Ming Yang, Richard Sampson, Siyuan Wei Department of Radiology, University of Michigan, Ann Arbor, MI 48109 Abstract--3D plane-wave imaging systems the image quality of plane-wave systems at the expense of significant increase in beamforming computational

  8. Hybrid Image-Plane/Stereo Manipulation

    NASA Technical Reports Server (NTRS)

    Baumgartner, Eric; Robinson, Matthew

    2004-01-01

    Hybrid Image-Plane/Stereo (HIPS) manipulation is a method of processing image data, and of controlling a robotic manipulator arm in response to the data, that enables the manipulator arm to place an end-effector (an instrument or tool) precisely with respect to a target (see figure). Unlike other stereoscopic machine-vision-based methods of controlling robots, this method is robust in the face of calibration errors and changes in calibration during operation. In this method, a stereoscopic pair of cameras on the robot first acquires images of the manipulator at a set of predefined poses. The image data are processed to obtain image-plane coordinates of known visible features of the end-effector. Next, there is computed an initial calibration in the form of a mapping between (1) the image-plane coordinates and (2) the nominal three-dimensional coordinates of the noted end-effector features in a reference frame fixed to the main robot body at the base of the manipulator. The nominal three-dimensional coordinates are obtained by use of the nominal forward kinematics of the manipulator arm that is, calculated by use of the currently measured manipulator joint angles and previously measured lengths of manipulator arm segments under the assumption that the arm segments are rigid, that the arm lengths are constant, and that there is no backlash. It is understood from the outset that these nominal three-dimensional coordinates are likely to contain possibly significant calibration errors, but the effects of the errors are progressively reduced, as described next. As the end-effector is moved toward the target, the calibration is updated repeatedly by use of data from newly acquired images of the end-effector and of the corresponding nominal coordinates in the manipulator reference frame. By use of the updated calibration, the coordinates of the target are computed in manipulator-reference-frame coordinates and then used to the necessary manipulator joint angles to position and orient the end-effector at the target with respect to the same kinematic model from the calibration step. As the end-effector/target distance decreases, the computed coordinates of the end-effector and target become more nearly affected by the same errors, so that the differences between their coordinates become increasingly precise. When the end-effector reaches the target, the remaining effective position error is the distance that corresponds to more than about one pixel in the stereoscopic images of the target.

  9. Target plane imager for inertial confinement fusion

    SciTech Connect

    Swift, C.D.; Bliss, E.S.; Jones, W.A.; Seppala, L.G.

    1985-01-30

    The Nova laser, completed in December 1984 at Lawrence Livermore National Laboratory, is being used to conduct inertial confinement fusion experiments. It is capable of focusing more than 100 kJ of energy on small fusion targets. This paper discusses an optical system called the target plane imager that is used during the beam alignment phase of these experiments. The TPI includes a three meter long periscope with a wide field of view, F/3 objective. The telescope relays images of the target focal plane to viewing optics and a video sensor located outside the target chamber. Operation of the system is possible at three wavelengths: 1.05..mu.., 0.527..mu.., and 0.351..mu... These are the three wavelengths at which the ten Nova laser beams can irradiate targets. Both nearfield and farfield images of the ten beams can be viewed with the TPI. This instrument is used to properly align the laser to the target before each target irradiation.

  10. Scanned Image Projection System Employing Intermediate Image Plane

    NASA Technical Reports Server (NTRS)

    DeJong, Christian Dean (Inventor); Hudman, Joshua M. (Inventor)

    2014-01-01

    In imaging system, a spatial light modulator is configured to produce images by scanning a plurality light beams. A first optical element is configured to cause the plurality of light beams to converge along an optical path defined between the first optical element and the spatial light modulator. A second optical element is disposed between the spatial light modulator and a waveguide. The first optical element and the spatial light modulator are arranged such that an image plane is created between the spatial light modulator and the second optical element. The second optical element is configured to collect the diverging light from the image plane and collimate it. The second optical element then delivers the collimated light to a pupil at an input of the waveguide.

  11. Measurement of image plane illumination uniformity of photoelectric imaging system

    NASA Astrophysics Data System (ADS)

    Kang, Deng-kui; Yang, Hong; Sha, Ding-guo; Jiang, Chang-lu; Chen, Min; Zhong, Xing-hui; Ma, Shi-bang; Yuan, Liang

    2014-09-01

    The image plane illumination nonuniformity caused by optical system or detector will affect the detection precision of photoelectric imaging system, especially in image guidance, positioning and recognition. An image plane illumination uniformity measurement device was set up, which was characteristiced of high uniformity and wide dynamic range. The device was composed of an asymmetric integrating sphere?the image collection and processing system, as well as the electrical control system.The asymmetric integrating sphere had two different radius,which was respectively 800mm and 1000mm.The spectral region was ?0.4~1.1??m, the illumination range was (1×10-4~2×104)lx. The image collection and processing system had two different acquisition card,which were respectively used for analog and digital signals. The software can process for dynamic image or static image. The TracePro software was used to make a internal ray tracing of integrating sphere, the illumination uniformity at the export was simulated for the size of 330mm×230mm and ? 100mm export, the results were respectively 97.95% and 98.33%. Then,an illuminometer was used to measure the actual illumination uniformity of integrating sphere, the result was shown the actual illumination uniformity was 98.8%. Finally, a visible photoelectric imaging system was tested ,and three different uniformity indicators results were given.

  12. Nonpolar m-plane gallium Nitride-based Laser Diodes in the Blue Spectrum

    NASA Astrophysics Data System (ADS)

    Kelchner, Kathryn M.

    Gallium nitride (GaN), together with its alloys with aluminum and indium, have revolutionized the solid-state optoelectronics market for their ability to emit a large portion of the visible electromagnetic spectrum from deep ultraviolet and into the infrared. GaN-based semiconductor laser diodes (LDs) with emission wavelengths in the violet, blue and green are already seeing widespread implementation in applications ranging from energy storage, lighting and displays. However, commercial GaN-based LDs use the basal c-plane orientation of the wurtzite crystal, which can suffer from large internal electric fields due to discontinuities in spontaneous and piezoelectric polarizations, limiting device performance. The nonpolar orientation of GaN benefits from the lack of polarization-induced electric field as well as enhanced gain. This dissertation discusses some of the benefits and limitations of m-plane oriented nonpolar GaN for LD applications in the true blue spectrum (450 nm). Topics include an overview of material growth by metal-organic chemical vapor deposition (MOCVD), waveguide design and processing techniques for improving device performance for multiple lateral mode and single lateral mode ridge waveguides.

  13. Multimodal Plane Wave Imaging for Non-destructive Testing

    NASA Astrophysics Data System (ADS)

    Le Jeune, Léonard; Robert, Sébastien; Villaverde, Eduardo Lopez; Prada, Claire

    Ultrasonic imaging with high frame rates is of great interest in Non-Destructive Testing (NDT) to perform fast inspections. In this communication, we propose a new fast imaging method for NDT which is derived from the medical Plane Wave Imaging (PWI). The PWI method is applied to immersion-testing configurations (plane or complex water/steel interface between the probe and the image area) and to different imaging modes (imaging with direct or half-skip wave paths) according to the type of defects (point-like or extended crack-types defects).

  14. Analysis of separated flow using image enhanced thymol blue visualization

    NASA Astrophysics Data System (ADS)

    Henderson, J. M.; Disimile, Peter J.

    Image processing techniques have been developed which enhance the quality of thymol blue visualization. These new techniques allow meaningful quantitative data to be obtained from images using thymol blue flow visualization at velocities up to twice as high as the previous limit. As a demonstration of these techniques, measurements have been taken of the physical dimensions of the separation regions developing immediately downstream of a symmetric bifurcation. These measurements are then used to elicit trends in the separation physical dimensions as a function of flow rate. This particular information is applicable to a variety of flow separation problems found in biological flows and turbomachinery.

  15. BATSE imaging survey of the Galactic plane

    NASA Technical Reports Server (NTRS)

    Grindlay, J. E.; Barret, D.; Bloser, P. F.; Zhang, S. N.; Robinson, C.; Harmon, B. A.

    1997-01-01

    The burst and transient source experiment (BATSE) onboard the Compton Gamma Ray Observatory (CGRO) provides all sky monitoring capability, occultation analysis and occultation imaging which enables new and fainter sources to be searched for in relatively crowded fields. The occultation imaging technique is used in combination with an automated BATSE image scanner, allowing an analysis of large data sets of occultation images for detections of candidate sources and for the construction of source catalogs and data bases. This automated image scanner system is being tested on archival data in order to optimize the search and detection thresholds. The image search system, its calibration results and preliminary survey results on archival data are reported on. The aim of the survey is to identify a complete sample of black hole candidates in the galaxy and constrain the number of black hole systems and neutron star systems.

  16. 3D fluorescence anisotropy imaging using selective plane illumination microscopy.

    PubMed

    Hedde, Per Niklas; Ranjit, Suman; Gratton, Enrico

    2015-08-24

    Fluorescence anisotropy imaging is a popular method to visualize changes in organization and conformation of biomolecules within cells and tissues. In such an experiment, depolarization effects resulting from differences in orientation, proximity and rotational mobility of fluorescently labeled molecules are probed with high spatial resolution. Fluorescence anisotropy is typically imaged using laser scanning and epifluorescence-based approaches. Unfortunately, those techniques are limited in either axial resolution, image acquisition speed, or by photobleaching. In the last decade, however, selective plane illumination microscopy has emerged as the preferred choice for three-dimensional time lapse imaging combining axial sectioning capability with fast, camera-based image acquisition, and minimal light exposure. We demonstrate how selective plane illumination microscopy can be utilized for three-dimensional fluorescence anisotropy imaging of live cells. We further examined the formation of focal adhesions by three-dimensional time lapse anisotropy imaging of CHO-K1 cells expressing an EGFP-paxillin fusion protein. PMID:26368202

  17. Quantum image Gray-code and bit-plane scrambling

    NASA Astrophysics Data System (ADS)

    Zhou, Ri-Gui; Sun, Ya-Juan; Fan, Ping

    2015-05-01

    With the rapid development of multimedia technology, the image scrambling for information hiding and digital watermarking is crucial. But, in quantum image processing field, the study on image scrambling is still few. Several quantum image scrambling schemes are basically position space scrambling strategies; however, the quantum image scrambling focused on the color space does not exist. Therefore, in this paper, the quantum image Gray-code and bit-plane (GB) scrambling scheme, an entire color space scrambling strategy, is proposed boldly. On the strength of a quantum image representation NEQR, several different quantum scrambling methods using GB knowledge are designed. Not only can they change the histogram distribution of the image dramatically, some designed schemes can almost make the image histogram flush, enhance the anti-attack ability of digital image, but also their cost or complexity is very low. The simulation experiments result also shows a good performance and indicates the particular advantage of GB scrambling in quantum image processing field.

  18. Two-Sided Coded Aperture Imaging Without a Detector Plane

    SciTech Connect

    Ziock, Klaus-Peter; Cunningham, Mark F; Fabris, Lorenzo

    2009-01-01

    We introduce a novel design for a two-sided, coded-aperture, gamma-ray imager suitable for use in stand off detection of orphan radioactive sources. The design is an extension of an active-mask imager that would have three active planes of detector material, a central plane acting as the detector for two (active) coded-aperture mask planes, one on either side of the detector plane. In the new design the central plane is removed and the mask on the left (right) serves as the detector plane for the mask on the right (left). This design reduces the size, mass, complexity, and cost of the overall instrument. In addition, if one has fully position-sensitive detectors, then one can use the two planes as a classic Compton camera. This enhances the instrument's sensitivity at higher energies where the coded-aperture efficiency is decreased by mask penetration. A plausible design for the system is found and explored with Monte Carlo simulations.

  19. Lower-Dark-Current, Higher-Blue-Response CMOS Imagers

    NASA Technical Reports Server (NTRS)

    Pain, Bedabrata; Cunningham, Thomas; Hancock, Bruce

    2008-01-01

    Several improved designs for complementary metal oxide/semiconductor (CMOS) integrated-circuit image detectors have been developed, primarily to reduce dark currents (leakage currents) and secondarily to increase responses to blue light and increase signal-handling capacities, relative to those of prior CMOS imagers. The main conclusion that can be drawn from a study of the causes of dark currents in prior CMOS imagers is that dark currents could be reduced by relocating p/n junctions away from Si/SiO2 interfaces. In addition to reflecting this conclusion, the improved designs include several other features to counteract dark-current mechanisms and enhance performance.

  20. Coded Excitation Plane Wave Imaging for Shear Wave Motion Detection

    PubMed Central

    Song, Pengfei; Urban, Matthew W.; Manduca, Armando; Greenleaf, James F.; Chen, Shigao

    2015-01-01

    Plane wave imaging has greatly advanced the field of shear wave elastography thanks to its ultrafast imaging frame rate and the large field-of-view (FOV). However, plane wave imaging also has decreased penetration due to lack of transmit focusing, which makes it challenging to use plane waves for shear wave detection in deep tissues and in obese patients. This study investigated the feasibility of implementing coded excitation in plane wave imaging for shear wave detection, with the hypothesis that coded ultrasound signals can provide superior detection penetration and shear wave signal-to-noise-ratio (SNR) compared to conventional ultrasound signals. Both phase encoding (Barker code) and frequency encoding (chirp code) methods were studied. A first phantom experiment showed an approximate penetration gain of 2-4 cm for the coded pulses. Two subsequent phantom studies showed that all coded pulses outperformed the conventional short imaging pulse by providing superior sensitivity to small motion and robustness to weak ultrasound signals. Finally, an in vivo liver case study on an obese subject (Body Mass Index = 40) demonstrated the feasibility of using the proposed method for in vivo applications, and showed that all coded pulses could provide higher SNR shear wave signals than the conventional short pulse. These findings indicate that by using coded excitation shear wave detection, one can benefit from the ultrafast imaging frame rate and large FOV provided by plane wave imaging while preserving good penetration and shear wave signal quality, which is essential for obtaining robust shear elasticity measurements of tissue. PMID:26168181

  1. Noninvasive Vascular Elastography With Plane Strain Incompressibility Assumption Using Ultrafast Coherent Compound Plane Wave Imaging.

    PubMed

    Poree, Jonathan; Garcia, Damien; Chayer, Boris; Ohayon, Jacques; Cloutier, Guy

    2015-12-01

    Plane strain tensor estimation using non-invasive vascular ultrasound elastography (NIVE) can be difficult to achieve using conventional focus beamforming due to limited lateral resolution and frame rate. Recent developments in compound plane wave (CPW) imaging have led to high speed and high resolution imaging. In this study, we present the performance of NIVE using coherent CPW. We show the impact of CPW beamforming on strain estimates compared to conventional focus sequences. To overcome the inherent variability of lateral strains, associated with the low lateral resolution of linear array transducers, we use the plane strain incompressibility to constrain the estimator. Taking advantage of the approximate tenfold increase in frame rate of CPW compared with conventional focus imaging, we introduce a time-ensemble estimation approach to further improve the elastogram quality. By combining CPW imaging with the constrained Lagrangian speckle model estimator, we observe an increase in elastography quality (  ? 10 dB both in signal-to-noise and contrast-to-noise ratios) over a wide range of applied strains (0.02 to 3.2%). PMID:26625341

  2. Parallax handling of image stitching using dominant-plane homography

    NASA Astrophysics Data System (ADS)

    Pang, Zhaofeng; Li, Cheng; Zhao, Baojun; Tang, Linbo

    2015-10-01

    In this paper, we present a novel image stitching method to handle parallax in practical application. For images with significant amount of parallax, the more effective approach is to align roughly and globally the overlapping regions and then apply a seam-cutting method to composite naturally stitched images. It is well known that images can be modeled by various planes result from the projective parallax under non-ideal imaging condition. The dominant-plane homography has important advantages of warping an image globally and avoiding some local distortions. The proposed method primarily addresses large parallax problem through two steps: (1) selecting matching point pairs located on the dominant plane, by clustering matching correspondences and then measuring the cost of each cluster; and (2) in order to obtain a plausible seam, edge maps of overlapped area incorporation arithmetic is adopted to modify the standard seam-cutting method. Furthermore, our approach is demonstrated to achieve reliable performance of handling parallax through a mass of experimental comparisons with state-of-the-art methods.

  3. Prototype Focal-Plane-Array Optoelectronic Image Processor

    NASA Technical Reports Server (NTRS)

    Fang, Wai-Chi; Shaw, Timothy; Yu, Jeffrey

    1995-01-01

    Prototype very-large-scale integrated (VLSI) planar array of optoelectronic processing elements combines speed of optical input and output with flexibility of reconfiguration (programmability) of electronic processing medium. Basic concept of processor described in "Optical-Input, Optical-Output Morphological Processor" (NPO-18174). Performs binary operations on binary (black and white) images. Each processing element corresponds to one picture element of image and located at that picture element. Includes input-plane photodetector in form of parasitic phototransistor part of processing circuit. Output of each processing circuit used to modulate one picture element in output-plane liquid-crystal display device. Intended to implement morphological processing algorithms that transform image into set of features suitable for high-level processing; e.g., recognition.

  4. Progressive Previewing of Ray-Traced Images Using Image-Plane Discontinuity Meshing

    E-print Network

    Washington at Seattle, University of

    Progressive Previewing of Ray-Traced Images Using Image-Plane Discontinuity Meshing Fr´ed´eric P previewing a ray- traced image while it is being computed. Our method constructs and incremen- tally updates. In this paper, we present a new previewing technique for ray-traced images. Our method utilizes hardware

  5. Pupil plane multiplexing for multi-domain imaging sensors

    NASA Astrophysics Data System (ADS)

    Horstmeyer, Roarke; Euliss, Gary W.; Athale, Ravindra A.; Morrison, Rick L.; Stack, Ronald A.; Ford, Joseph

    2008-08-01

    We describe an approach to polarimetric imaging based on a unique folded imaging system with an annular aperture. The novelty of this approach lies in the system's collection architecture, which segments the pupil plane to measure the individual polarimetric components contributing to the Stokes vectors. Conventional approaches rely on time sequential measurements (time-multiplexed) using a conventional imaging architecture with a reconfigurable polarization filter, or measurements that segment the focal plane array (spatial multiplexing) by super-imposing an array of polarizers. Our approach achieves spatial multiplexing within the aperture in a compact, lightweight design. The aperture can be configured for sequential collection of the four polarization components required for Stokes vector calculation or in any linear combination of those components on a common focal plane array. Errors in calculating the degree of polarization caused by the manner in which the aperture is partitioned are analyzed, and approaches for reducing that error are investigated. It is shown that reconstructing individual polarization filtered images prior to calculating the Stokes parameters can reduce the error significantly.

  6. Target plane imaging system for the Nova laser

    SciTech Connect

    Swift, C.D.; Bliss, E.S.; Jones, W.A.; Reeves, R.J.; Seppala, L.G.; Shelton, R.T.; VanArsdall, P.J.

    1985-12-12

    The Nova laser, in operation since December 1984, is capable of irradiating targets with light at 1.05 ..mu..m, 0.53 ..mu..m, and 0.35 ..mu..m. Correct alignment of these harmonic beams uses a system called a target plane imager (TPI). It is a large microscope (four meters long, weighing one thousand kilograms) that relays images from the target chamber center to a video optics module located on the outside of the chamber. Several modes of operation are possible including: near-field viewing and far-field viewing at three magnifications and three wavelengths. In addition, the entire instrument can be scanned in X,Y,Z to examine various planes near chamber center. Performance of this system and its computer controls will be described.

  7. Stolt's f-k migration for plane wave ultrasound imaging.

    PubMed

    Garcia, Damien; Le Tarnec, Louis; Muth, Stéphan; Montagnon, Emmanuel; Porée, Jonathan; Cloutier, Guy

    2013-09-01

    Ultrafast ultrasound is an emerging modality that offers new perspectives and opportunities in medical imaging. Plane wave imaging (PWI) allows one to attain very high frame rates by transmission of planar ultrasound wave-fronts. As a plane wave reaches a given scatterer, the latter becomes a secondary source emitting upward spherical waves and creating a diffraction hyperbola in the received RF signals. To produce an image of the scatterers, all the hyperbolas must be migrated back to their apexes. To perform beamforming of plane wave echo RFs and return high-quality images at high frame rates, we propose a new migration method carried out in the frequency-wavenumber (f-k) domain. The f-k migration for PWI has been adapted from the Stolt migration for seismic imaging. This migration technique is based on the exploding reflector model (ERM), which consists in assuming that all the scatterers explode in concert and become acoustic sources. The classical ERM model, however, is not appropriate for PWI. We showed that the ERM can be made suitable for PWI by a spatial transformation of the hyperbolic traces present in the RF data. In vitro experiments were performed to outline the advantages of PWI with Stolt's f-k migration over the conventional delay-and-sum (DAS) approach. The Stolt's f-k migration was also compared with the Fourier-based method developed by J.-Y. Lu. Our findings show that multi-angle compounded f-k migrated images are of quality similar to those obtained with a stateof- the-art dynamic focusing mode. This remained true even with a very small number of steering angles, thus ensuring a highly competitive frame rate. In addition, the new FFT-based f-k migration provides comparable or better contrast-to-noise ratio and lateral resolution than the Lu's and DAS migration schemes. Matlab codes for the Stolt's f-k migration for PWI are provided. PMID:24626107

  8. Image-plane processing for improved computer vision

    NASA Technical Reports Server (NTRS)

    Huck, F. O.; Fales, C. L.; Park, S. K.; Samms, R. W.

    1984-01-01

    The proper combination of optical design with image plane processing, as in the mechanism of human vision, which allows to improve the performance of sensor array imaging systems for edge detection and location was examined. Two dimensional bandpass filtering during image formation, optimizes edge enhancement and minimizes data transmission. It permits control of the spatial imaging system response to tradeoff edge enhancement for sensitivity at low light levels. It is shown that most of the information, up to about 94%, is contained in the signal intensity transitions from which the location of edges is determined for raw primal sketches. Shading the lens transmittance to increase depth of field and using a hexagonal instead of square sensor array lattice to decrease sensitivity to edge orientation improves edge information about 10%.

  9. Achromatic Focal Plane Mask for Exoplanet Imaging Coronagraphy

    NASA Technical Reports Server (NTRS)

    Newman, Kevin Edward; Belikov, Ruslan; Guyon, Olivier; Balasubramanian, Kunjithapatham; Wilson, Dan

    2013-01-01

    Recent advances in coronagraph technologies for exoplanet imaging have achieved contrasts close to 1e10 at 4 lambda/D and 1e-9 at 2 lambda/D in monochromatic light. A remaining technological challenge is to achieve high contrast in broadband light; a challenge that is largely limited by chromaticity of the focal plane mask. The size of a star image scales linearly with wavelength. Focal plane masks are typically the same size at all wavelengths, and must be sized for the longest wavelength in the observational band to avoid starlight leakage. However, this oversized mask blocks useful discovery space from the shorter wavelengths. We present here the design, development, and testing of an achromatic focal plane mask based on the concept of optical filtering by a diffractive optical element (DOE). The mask consists of an array of DOE cells, the combination of which functions as a wavelength filter with any desired amplitude and phase transmission. The effective size of the mask scales nearly linearly with wavelength, and allows significant improvement in the inner working angle of the coronagraph at shorter wavelengths. The design is applicable to almost any coronagraph configuration, and enables operation in a wider band of wavelengths than would otherwise be possible. We include initial results from a laboratory demonstration of the mask with the Phase Induced Amplitude Apodization coronagraph.

  10. Uncooled infrared focal plane array imaging in China

    NASA Astrophysics Data System (ADS)

    Lei, Shuyu

    2015-06-01

    This article reviews the development of uncooled infrared focal plane array (UIFPA) imaging in China in the past decade. Sensors based on optical or electrical read-out mechanism were developed but the latter dominates the market. In resistive bolometers, VOx and amorphous silicon are still the two major thermal-sensing materials. The specifications of the IRFPA made by different manufactures were collected and compared. Currently more than five Chinese companies and institutions design and fabricate uncooled infrared focal plane array. Some devices have sensitivity as high as 30 mK; the largest array for commercial products is 640×512 and the smallest pixel size is 17 ?m. Emphasis is given on the pixel MEMS design, ROIC design, fabrication, and packaging of the IRFPA manufactured by GWIC, especially on design for high sensitivities, low noise, better uniformity and linearity, better stabilization for whole working temperature range, full-digital design, etc.

  11. Imaging Polarimetry With Polarization-Sensitive Focal Planes

    NASA Astrophysics Data System (ADS)

    Vorobiev, Dmitry; Ninkov, Z.

    2014-01-01

    We present a compact, lightweight, snapshot imaging polarimeter designed for operation in the near-infrared (NIR) and mid-infrared (MIR). Flux, polarization and spectral energy distribution are the fundamental measurements through which we infer properties of the sources of radiation such as intensity, temperature, chemical composition, emission mechanisms and structure. In recent decades, many scientific fields that utilize radiometry and spectroscopy have benefited from revolutionary improvements in instrumentation, for example, charge-coupled devices, hybridized infrared arrays, multi-object spectrometers and adaptive optics. Advances in polarimetric instrumentation have been more modest. Recently, the fabrication of microgrid polarizer arrays (MGPAs), facilitated the development of polarization-sensitive focal planes. These devices have inherent capability to measure the degree and angle of polarization across a scene (i.e., imaging polarimetry) instantaneously, without the need for multiple exposures and moving optics or multiple detectors. MGPA-based devices are compact, lightweight, and mechanically robust and perfectly suited for deployment on space-based and airborne platforms. We describe the design, operation and expected performance of MGPA-based imaging polarimeters and identify the applications for which these polarimeters are best suited.

  12. Color image encryption based on paired interpermuting planes

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Yu, Hai; Zhu, Zhi-liang

    2015-03-01

    A number of chaos-based image encryption algorithms have been proposed in recent years, and most of them employ confusion-diffusion architecture. This paper presents a new confusion scheme based on paired interpermuting planes. In the proposed new confusion operation, an 'exchange and random access strategy' is employed to replace the traditional confusion operations. The efficiency of the proposed scheme was analyzed by evaluating its histogram distribution, its correlation coefficients, its ability to resist differential attacks, its ability to retain information (entropy analysis), its computational speed, and its ability to guarantee the security of its key scheme. Simulations have been carried out and the results confirmed the superior security and computing speed of our scheme compared to other comparable algorithms.

  13. A CMOS Imager with Focal Plane Compression using Predictive Coding

    NASA Technical Reports Server (NTRS)

    Leon-Salas, Walter D.; Balkir, Sina; Sayood, Khalid; Schemm, Nathan; Hoffman, Michael W.

    2007-01-01

    This paper presents a CMOS image sensor with focal-plane compression. The design has a column-level architecture and it is based on predictive coding techniques for image decorrelation. The prediction operations are performed in the analog domain to avoid quantization noise and to decrease the area complexity of the circuit, The prediction residuals are quantized and encoded by a joint quantizer/coder circuit. To save area resources, the joint quantizerlcoder circuit exploits common circuitry between a single-slope analog-to-digital converter (ADC) and a Golomb-Rice entropy coder. This combination of ADC and encoder allows the integration of the entropy coder at the column level. A prototype chip was fabricated in a 0.35 pm CMOS process. The output of the chip is a compressed bit stream. The test chip occupies a silicon area of 2.60 mm x 5.96 mm which includes an 80 X 44 APS array. Tests of the fabricated chip demonstrate the validity of the design.

  14. Combatting infrared focal plane array nonuniformity noise in imaging polarimeters

    NASA Astrophysics Data System (ADS)

    Ratliff, Bradley M.; Kumar, Rakesh; Black, Wiley; Boger, James K.; Tyo, J. Scott

    2005-08-01

    One of the most significant challenges in performing infrared (IR) polarimetery is the focal plane array (FPA) nonuniformity (NU) noise that is inherent in virtually all IR photodetector technologies that operate in the midwave IR (MWIR) or long-wave IR (LWIR). NU noise results from pixel-to-pixel variations in the repsonsivity of the photodetectors. This problem is especially severy in the microengineered IR FPA materials like HgCdTe and InSb, as well as in uncooled IR microbolometer sensors. Such problems are largely absent from Si based visible spectrum FPAs. The pixel response is usually a variable nonlinear response function, and even when the response is linearized over some range of temperatures, the gain and offset of the resulting response is usually highly variable. NU noise is normally corrected by applying a linear calibration to the data, but the resulting imagery still retains residual nonuniformity due to the nonlinearity of the photodetector responses. This residual nonuniformity is particularly troublesome for polarimeters because of the addition and subtraction operations that must be performed on the images in order to construct the Stokes parameters or other polarization products. In this paper we explore the impact of NU noise on full stokes and linear-polarization-only IR polarimeters. We compare the performance of division of time, division of amplitude, and division of array polarimeters in the presence of both NU and temporal noise, and assess the ability of calibration-based NU correction schemes to clean up the data.

  15. Image interpolation and denoising for division of focal plane sensors using

    E-print Network

    Columbia University

    Image interpolation and denoising for division of focal plane sensors using Gaussian Processes Elad acquisition as most digital cameras are composed of a 2D grid of heterogeneous imag- ing sensors. Current of focal plane polariza- tion sensors. The sensors capture only partial information of the true scene

  16. Plane Wave Imaging for ultrasonic non-destructive testing: Generalization to multimodal imaging.

    PubMed

    Le Jeune, Léonard; Robert, Sébastien; Lopez Villaverde, Eduardo; Prada, Claire

    2016-01-01

    This paper describes a new ultrasonic array imaging method for Non-Destructive Testing (NDT) which is derived from the medical Plane Wave Imaging (PWI) technique. The objective is to perform fast ultrasound imaging with high image quality. The approach is to transmit plane waves at several angles and to record the back-scattered signals with all the array elements. Focusing in receive is then achieved by coherent summations of the signals in every point of a region of interest. The medical PWI is generalized to immersion setups where water acts as a coupling medium and to multimodal (direct, half-skip modes) imaging in order to detect different types of defects (inclusions, porosities, cracks). This method is compared to the Total Focusing Method (TFM) which is the reference imaging technique in NDT. First, the two post-processing algorithms are described. Then experimental results with the array probe either in contact or in immersion are presented. A good agreement between the TFM and the PWI is observed, with three to ten times less transmissions required for the PWI. PMID:26323547

  17. Effect of novel bright image enhanced endoscopy using blue laser imaging (BLI)

    PubMed Central

    Kaneko, Kazuhiro; Oono, Yasuhiro; Yano, Tomonori; Ikematsu, Hiroaki; Odagaki, Tomoyuki; Yoda, Yusuke; Yagishita, Atsushi; Sato, Akihiro; Nomura, Shogo

    2014-01-01

    Background and study aims: The novel method of image-enhanced endoscopy (IEE) named blue laser imaging (BLI) can enhance the contrast of surface vessels using lasers for light illumination. BLI has two IEE modes: high contrast mode (BLI-contrast) for use with magnification, and bright mode (BLI-bright), which achieves a brighter image than BLI-contrast and yet maintains the enhanced visualization of vascular contrast that is expected for the detection of tumors from a far field of view. The aim of this study is to clarify the effect of BLI-bright with a far field of view compared to BLI-contrast and commonly available narrow-band imaging (NBI). Patients and methods: Patients with neoplasia, including early cancer in the pharynx, esophagus, stomach, or colorectum, were recruited and underwent tandem endoscopy with BLI and NBI systems. Six sets of images of the lesions were captured with a changing observable distance from 3 to 40?mm. Individual sets of images taken from various observable distances were assessed for visibility among BLI-bright, BLI-contrast, and NBI modes. The brightness and contrast of these images were also analyzed quantitatively. Results: Of 51 patients, 39 were assessed. Image analysis indicated that only BLI-bright maintained adequate brightness and contrast up to 40?mm and had significantly longer observable distances compared to the other methods. Furthermore, BLI-bright enhanced the visualization of serious lesions infiltrating into deeper layers, such as esophageal lamina propria or gastric submucosal cancers. Conclusions: BLI-bright will be a helpful tool for the far-field view with IEE in organs with wider internal spaces such as the stomach. PMID:26135095

  18. Supplemental Blue LED Lighting Array to Improve the Signal Quality in Hyperspectral Imaging of Plants

    PubMed Central

    Mahlein, Anne-Katrin; Hammersley, Simon; Oerke, Erich-Christian; Dehne, Heinz-Wilhelm; Goldbach, Heiner; Grieve, Bruce

    2015-01-01

    Hyperspectral imaging systems used in plant science or agriculture often have suboptimal signal-to-noise ratio in the blue region (400–500 nm) of the electromagnetic spectrum. Typically there are two principal reasons for this effect, the low sensitivity of the imaging sensor and the low amount of light available from the illuminating source. In plant science, the blue region contains relevant information about the physiology and the health status of a plant. We report on the improvement in sensitivity of a hyperspectral imaging system in the blue region of the spectrum by using supplemental illumination provided by an array of high brightness light emitting diodes (LEDs) with an emission peak at 470 nm. PMID:26039423

  19. ImagePlane: An Automated Image Analysis Pipeline for High-Throughput Screens Using the Planarian Schmidtea mediterranea

    PubMed Central

    Flygare, Steven; Campbell, Michael; Ross, Robert Mars; Moore, Barry

    2013-01-01

    Abstract ImagePlane is a modular pipeline for automated, high-throughput image analysis and information extraction. Designed to support planarian research, ImagePlane offers a self-parameterizing adaptive thresholding algorithm; an algorithm that can automatically segment animals into anterior–posterior/left–right quadrants for automated identification of region-specific differences in gene and protein expression; and a novel algorithm for quantification of morphology of animals, independent of their orientations and sizes. ImagePlane also provides methods for automatic report generation, and its outputs can be easily imported into third-party tools such as R and Excel. Here we demonstrate the pipeline's utility for identification of genes involved in stem cell proliferation in the planarian Schmidtea mediterranea. Although designed to support planarian studies, ImagePlane will prove useful for cell-based studies as well. PMID:23822514

  20. The application of digital image plane holography technology to identify Chinese herbal medicine

    NASA Astrophysics Data System (ADS)

    Wang, Huaying; Guo, Zhongjia; Liao, Wei; Zhang, Zhihui

    2012-03-01

    In this paper, the imaging technology of digital image plane holography to identify the Chinese herbal medicine is studied. The optical experiment system of digital image plane holography which is the special case of pre-magnification digital holography was built. In the record system, one is an object light by using plane waves which illuminates the object, and the other one is recording hologram by using spherical light wave as reference light. There is a Micro objective lens behind the object. The second phase factor which caus ed by the Micro objective lens can be eliminated by choosing the proper position of the reference point source when digital image plane holography is recorded by spherical light. In this experiment, we use the Lygodium cells and Onion cells as the object. The experiment results with Lygodium cells and Onion cells show that digital image plane holography avoid the process of finding recording distance by using auto-focusing approach, and the phase information of the object can be reconstructed more accurately. The digital image plane holography is applied to the microscopic imaging of cells more effectively, and it is suit to apply for the identify of Chinese Herbal Medicine. And it promotes the application of digital holographic in practice.

  1. The application of digital image plane holography technology to identify Chinese herbal medicine

    NASA Astrophysics Data System (ADS)

    Wang, Huaying; Guo, Zhongjia; Liao, Wei; Zhang, Zhihui

    2011-11-01

    In this paper, the imaging technology of digital image plane holography to identify the Chinese herbal medicine is studied. The optical experiment system of digital image plane holography which is the special case of pre-magnification digital holography was built. In the record system, one is an object light by using plane waves which illuminates the object, and the other one is recording hologram by using spherical light wave as reference light. There is a Micro objective lens behind the object. The second phase factor which caus ed by the Micro objective lens can be eliminated by choosing the proper position of the reference point source when digital image plane holography is recorded by spherical light. In this experiment, we use the Lygodium cells and Onion cells as the object. The experiment results with Lygodium cells and Onion cells show that digital image plane holography avoid the process of finding recording distance by using auto-focusing approach, and the phase information of the object can be reconstructed more accurately. The digital image plane holography is applied to the microscopic imaging of cells more effectively, and it is suit to apply for the identify of Chinese Herbal Medicine. And it promotes the application of digital holographic in practice.

  2. Optimum defocus planes selection method for transport of intensity phase imaging based on phase transfer function

    NASA Astrophysics Data System (ADS)

    Sun, Jiasong; Zhang, Yuzhen; Zuo, Chao; Chen, Qian

    2015-07-01

    In recent years, medical, biological and scientific fields have been benefited from phase information, which can reveal the hidden features of various objects. By solving the transport of intensity equation (TIE), the phase distribution of an object can be obtained from a series of intensity measurements. Assuming the solving process is correct, the reconstruction accuracy is depending on the distances between planes, the number of planes, and the level of noise. Increasing the number of planes or utilizing multi-frame de-noise algorithm could improve the reconstruction accuracy certainly, but neither of them is a time-efficient strategy. In this work, an optimum defocus planes selection (OPS) method is proposed for reconstructing high quality phase information by solving the transport of intensity equation. It is shown that the difference image between two symmetrical separated, lager defocused planes contains a lot of lower frequency components of the phase distribution and the higher frequency components can be easily observed in the difference image between two nearly focused planes. Based on the phase transfer function (PTF), our method estimate a more accurate frequency spectrum of the object phase distribution, which is combined with different frequency components from the stack of through-focus intensity images. Both the simulation and experimental results demonstrate that this optimum defocus planes selection method can give a computationally efficient and noise-robust phase reconstruction with higher accuracy and fewer defocus planes.

  3. Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination

    PubMed Central

    Planchon, Thomas A; Gao, Liang; Milkie, Daniel E; Davidson, Michael W; Galbraith, James A; Galbraith, Catherine G; Betzig, Eric

    2012-01-01

    A key challenge when imaging living cells is how to noninvasively extract the most spatiotemporal information possible. Unlike popular wide-field and confocal methods, plane-illumination microscopy limits excitation to the information-rich vicinity of the focal plane, providing effective optical sectioning and high speed while minimizing out-of-focus background and premature photobleaching. Here we used scanned Bessel beams in conjunction with structured illumination and/or two-photon excitation to create thinner light sheets (<0.5 ?m) better suited to three-dimensional (3D) subcellular imaging. As demonstrated by imaging the dynamics of mitochondria, filopodia, membrane ruffles, intracellular vesicles and mitotic chromosomes in live cells, the microscope currently offers 3D isotropic resolution down to ~0.3 ?m, speeds up to nearly 200 image planes per second and the ability to noninvasively acquire hundreds of 3D data volumes from single living cells encompassing tens of thousands of image frames. PMID:21378978

  4. The Gini Coefficient as a Morphological Measurement of Strongly Lensed Galaxies in the Image Plane

    E-print Network

    Florian, Michael K; Gladders, Michael D

    2015-01-01

    Characterization of the morphology of strongly lensed galaxies is challenging because images of such galaxies are typically highly distorted. Lens modeling and source plane reconstruction is one approach that can provide reasonably undistorted images on which morphological measurements can be made, although at the expense of a highly spatially variable telescope PSF when mapped back to the source plane. Unfortunately, modeling the lensing mass is a time and resource intensive process, and in many cases there are too few constraints to precisely model the lensing mass. If, however, useful morphological measurements could be made in the image plane rather than the source plane, it would bypass this issue and obviate the need for a source reconstruction process. We examine the use of the Gini coefficient as one such measurement. Because it depends on the cumulative distribution of the light of a galaxy, but not the relative spatial positions, the fact that surface brightness is conserved by lensing means that th...

  5. Stacking of SKA data: comparing uv-plane and image-plane stacking

    E-print Network

    Knudsen, K K; Vlemmings, W; Conway, J; Marti-Vidal, I

    2015-01-01

    Stacking as a tool for studying objects that are not individually detected is becoming popular even for radio interferometric data, and will be widely used in the SKA era. Stacking is typically done using imaged data rather than directly using the visibilities (the uv-data). We have investigated and developed a novel algorithm to do stacking using the uv-data. We have performed exten- sive simulations comparing to image-stacking, and summarize the results of these simulations. Furthermore, we disuss the implications in light of the vast data volume produced by the SKA. Having access to the uv-stacked data provides a great advantage, as it allows the possibility to properly analyse the result with respect to calibration artifacts as well as source properties such as size. For SKA the main challenge lies in archiving the uv-data. For purposes of robust stacking analysis, it would be strongly desirable to either keep the calibrated uv-data at least in an aver- age form, or implement a stacking queue where stacki...

  6. Quantitative Characterization of Super-Resolution Infrared Imaging Based on Time-Varying Focal Plane Coding

    NASA Astrophysics Data System (ADS)

    Wang, X.; Yuan, Y.; Zhang, J.; Chen, Y.; Cheng, Y.

    2014-10-01

    High resolution infrared image has been the goal of an infrared imaging system. In this paper, a super-resolution infrared imaging method using time-varying coded mask is proposed based on focal plane coding and compressed sensing theory. The basic idea of this method is to set a coded mask on the focal plane of the optical system, and the same scene could be sampled many times repeatedly by using time-varying control coding strategy, the super-resolution image is further reconstructed by sparse optimization algorithm. The results of simulation are quantitatively evaluated by introducing the Peak Signal-to-Noise Ratio (PSNR) and Modulation Transfer Function (MTF), which illustrate that the effect of compressed measurement coefficient r and coded mask resolution m on the reconstructed image quality. Research results show that the proposed method will promote infrared imaging quality effectively, which will be helpful for the practical design of new type of high resolution ! infrared imaging systems.

  7. Single-plane versus three-plane methods for relative range error evaluation of medium-range 3D imaging systems

    NASA Astrophysics Data System (ADS)

    MacKinnon, David K.; Cournoyer, Luc; Beraldin, J.-Angelo

    2015-05-01

    Within the context of the ASTM E57 working group WK12373, we compare the two methods that had been initially proposed for calculating the relative range error of medium-range (2 m to 150 m) optical non-contact 3D imaging systems: the first is based on a single plane (single-plane assembly) and the second on an assembly of three mutually non-orthogonal planes (three-plane assembly). Both methods are evaluated for their utility in generating a metric to quantify the relative range error of medium-range optical non-contact 3D imaging systems. We conclude that the three-plane assembly is comparable to the single-plane assembly with regard to quantification of relative range error while eliminating the requirement to isolate the edges of the target plate face.

  8. Using Satellite Images for Wireless Network Planing in Baku City

    NASA Astrophysics Data System (ADS)

    Gojamanov, M.; Ismayilov, J.

    2013-04-01

    It is a well known fact that the Information-Telecommunication and Space research technologies are the fields getting much more benefits from the achievements of the scientific and technical progress. In many cases, these areas supporting each other have improved the conditions for their further development. For instance, the intensive development in the field of the mobile communication has caused the rapid progress of the Space research technologies and vice versa.Today it is impossible to solve one of the most important tasks of the mobile communication as Radio Frecance planning without the 2D and 3D digital maps. The compiling of such maps is much more efficient by means of the space images. Because the quality of the space images has been improved and developed, especially at the both spectral and spatial resolution points. It has been possible to to use 8 Band images with the spatial resolution of 50 sm. At present, in relation to the function 3G of mobile communications one of the main issues facing mobile operator companies is a high-precision 3D digital maps. It should be noted that the number of mobile phone users in the Republic of Azerbaijan went forward other Community of Independent States Countries. Of course, using of aerial images for 3D mapping would be optimal. However, depending on a number of technical and administrative problems aerial photography cannot be used. Therefore, the experience of many countries shows that it will be more effective to use the space images with the higher resolution for these issues. Concerning the fact that the mobile communication within the city of Baku has included 3G function there were ordered stereo images wih the spatial resolution of 50 cm for the 150 sq.km territory occupying the central part of the city in order to compile 3D digital maps. The images collected from the WorldView-2 satellite are 4-Band Bundle(Pan+MS1) stereo images. Such kind of imagery enable to automatically classificate some required clutter classes.Meanwhile, there were created 12 GPS points in the territory and there have been held some appropriate observations in these points for the geodesic reference of the space images in the territory. Moreover, it would like to mention that there have been constructed 37 permanently acting GPS stations in the territory of Azerbaijan at present. It significantly facilitates the process of the geodesic reference of the space images in order to accomplish such kind of mentioned projects. The processing of the collected space images was accomplished by means of Erdas LPS 10 program. In the first stage there was created the main component of the 3D maps- Digital Elevevation Model. In this model the following clutter classes are presented: Open; Open areas in urban; Airport, Sea, Inland water; Forest; Parks in urban; Semi Open Area; Open Wet Area; Urban/Urban Mean; Dense urban, Villages, Industrial/Commercial, Residential/Suburban; Dense residential/Suburban; Block of BUILDINGS; Dense Urban High; Buildings, Urban Mixed, Mixed dense urban

  9. NESP: Nonlinear enhancement and selection of plane for optimal segmentation and recognition of scene word images

    NASA Astrophysics Data System (ADS)

    Kumar, Deepak; Anil Prasad, M. N.; Ramakrishnan, A. G.

    2013-01-01

    In this paper, we report a breakthrough result on the difficult task of segmentation and recognition of coloured text from the word image dataset of ICDAR robust reading competition challenge 2: reading text in scene images. We split the word image into individual colour, gray and lightness planes and enhance the contrast of each of these planes independently by a power-law transform. The discrimination factor of each plane is computed as the maximum between-class variance used in Otsu thresholding. The plane that has maximum discrimination factor is selected for segmentation. The trial version of Omnipage OCR is then used on the binarized words for recognition. Our recognition results on ICDAR 2011 and ICDAR 2003 word datasets are compared with those reported in the literature. As baseline, the images binarized by simple global and local thresholding techniques were also recognized. The word recognition rate obtained by our non-linear enhancement and selection of plance method is 72.8% and 66.2% for ICDAR 2011 and 2003 word datasets, respectively. We have created ground-truth for each image at the pixel level to benchmark these datasets using a toolkit developed by us. The recognition rate of benchmarked images is 86.7% and 83.9% for ICDAR 2011 and 2003 datasets, respectively.

  10. Methylene blue- and thiol-based oxygen depletion for super-resolution imaging.

    PubMed

    Schäfer, Philip; van de Linde, Sebastian; Lehmann, Julian; Sauer, Markus; Doose, Sören

    2013-03-19

    Anaerobic conditions are often required in solution-based bionanotechnological applications. Efficient oxygen depletion is essential for increasing photostability, optimizing fluorescence signals, and adjusting kinetics of fluorescence intermittency in single-molecule fluorescence spectroscopy/microscopy, particularly for super-resolution imaging techniques. We characterized methylene blue (MB)- and thiol-based redox reactions with the aim of designing an oxygen scavenger system as an alternative to the established enzyme-based oxygen scavenging systems or purging procedures. Redox reactions of the chromophore methylene blue in aqueous solution, commonly visualized in the blue bottle experiment, deplete molecular oxygen as long as a sacrificial reduction component is present in excess concentrations. We demonstrate that methylene blue in combination with reducing compounds such as ?-mercaptoethylamine (MEA) can serve as fast and efficient oxygen scavenger. Efficient oxygen scavenging in aqueous solution is also possible with mere ?-mercaptoethylamine at mM concentrations. We present kinetic parameters of the relevant reactions, pH-stability of the MB/MEA-oxygen scavenging system, and its application in single-molecule based super-resolution imaging. PMID:23410003

  11. Coronagraphic phase diversity: a simple focal plane sensor for high-contrast imaging.

    PubMed

    Sauvage, J-F; Mugnier, L; Paul, B; Villecroze, R

    2012-12-01

    Exoplanet direct imaging is a challenging goal of today's astronomical instrumentation. Several high-contrast imaging instruments dedicated to this task are currently being integrated; they are ultimately limited by the presence of quasi-static speckles in the imaging focal plane. These speckles originate in residual quasi-static optical aberrations, which must be measured and compensated for, typically at a nanometric level. We present a novel focal plane wavefront sensor (WFS) designed for this particular application. It is an extension of the phase diversity technique to coronagraphic imaging. This sensor requires no dedicated hardware and uses only two scientific images differing from a known aberration, which can be conveniently introduced by the adaptive optics subsystem. The aberrations are therefore calibrated all the way down to the scientific camera, without any differential aberrations between the sensor and the scientific camera. We show the potential of this WFS by means of simulations, and we perform a preliminary experimental validation. PMID:23202053

  12. Manganese-containing Prussian blue nanoparticles for imaging of pediatric brain tumors

    PubMed Central

    Dumont, Matthieu F; Yadavilli, Sridevi; Sze, Raymond W; Nazarian, Javad; Fernandes, Rohan

    2014-01-01

    Pediatric brain tumors (PBTs) are a leading cause of death in children. For an improved prognosis in patients with PBTs, there is a critical need to develop molecularly-specific imaging agents to monitor disease progression and response to treatment. In this paper, we describe manganese-containing Prussian blue nanoparticles as agents for molecular magnetic resonance imaging (MRI) and fluorescence-based imaging of PBTs. Our core-shell nanoparticles consist of a core lattice structure that incorporates and retains paramagnetic Mn2+ ions, and generates MRI contrast (both negative and positive). The biofunctionalized shell is comprised of fluorescent avidin, which serves the dual purpose of enabling fluorescence imaging and functioning as a platform for the attachment of biotinylated ligands that target PBTs. The surfaces of our nanoparticles are modified with biotinylated antibodies targeting neuron-glial antigen 2 or biotinylated transferrin. Both neuron-glial antigen 2 and the transferrin receptor are protein markers overexpressed in PBTs. We describe the synthesis, biofunctionalization, and characterization of these multimodal nanoparticles. Further, we demonstrate the MRI and fluorescence imaging capabilities of manganese-containing Prussian blue nanoparticles in vitro. Finally, we demonstrate the potential of these nanoparticles as PBT imaging agents by measuring their organ and brain biodistribution in an orthotopic mouse model of PBTs using ex vivo fluorescence imaging. PMID:24920896

  13. Dual-plane stereoscopic particle image velocimetry: system set-up and its application on a lobed jet mixing flow

    E-print Network

    Hu, Hui

    Dual-plane stereoscopic particle image velocimetry: system set-up and its application on a lobed and system set-up of a dual- plane stereoscopic particle image velocimetry (PIV) system, which can obtain ®eld measuring technique, particle imaging velocimetry (PIV) has matured from a developmental stage

  14. Image plane detector spectrophotometer - Application to O2 atmospheric band nightglow

    NASA Technical Reports Server (NTRS)

    Luo, Mingzhao; Yee, Jeng-Hwa; Hays, Paul B.

    1988-01-01

    A new variety of low resolution spectrometer is described. This device, an image plane detector spectrophotometer, has high sensitivity and modest resolution sufficient to determine the rotational temperature and brightness of molecular band emissions. It uses an interference filter as a dispersive element and a multichannel image plane detector as the photon collecting device. The data analysis technqiue used to recover the temperature of the emitter and the emission brightness is presented. The atmospheric band of molecular oxygen is used to illustrate the use of the device.

  15. A blue optical filter for narrow-band imaging in endoscopic capsules

    NASA Astrophysics Data System (ADS)

    Silva, M. F.; Ghaderi, M.; Goncalves, L. M.; de Graaf, G.; Wolffenbuttel, R. F.; Correia, J. H.

    2014-05-01

    This paper presents the design, simulation, fabrication, and characterization of a thin-film Fabry-Perot resonator composed of titanium dioxide (TiO2) and silicon dioxide (SiO2) thin-films. The optical filter is developed to be integrated with a light emitting diode (LED) for enabling narrow-band imaging (NBI) in endoscopy. The NBI is a high resolution imaging technique that uses spectrally centered blue light (415 nm) and green light (540 nm) to illuminate the target tissue. The light at 415 nm enhances the imaging of superficial veins due to their hemoglobin absorption, while the light at 540 nm penetrates deeper into the mucosa, thus enhances the sub-epithelial vessels imaging. Typically the endoscopes and endoscopic capsules use white light for acquiring images of the gastrointestinal (GI) tract. However, implementing the NBI technique in endoscopic capsules enhances their capabilities for the clinical applications. A commercially available blue LED with a maximum peak intensity at 404 nm and Full Width Half Maximum (FWHM) of 20 nm is integrated with a narrow band blue filter as the NBI light source. The thin film simulations show a maximum spectral transmittance of 36 %, that is centered at 415 nm with FWHM of 13 nm for combined the blue LED and a Fabry Perot resonator system. A custom made deposition scheme was developed for the fabrication of the blue optical filter by RF sputtering. RF powered reactive sputtering at 200 W with the gas flows of argon and oxygen that are controlled for a 5:1 ratio gives the optimum optical conditions for TiO2 thin films. For SiO2 thin films, a non-reactive RF sputtering at 150 W with argon gas flow at 15 sccm results in the best optical performance. The TiO2 and SiO2 thin films were fully characterized by an ellipsometer in the wavelength range between 250 nm to 1600 nm. Finally, the optical performance of the blue optical filter is measured and presented.

  16. Perturbation Theory of Multi-Plane Lens Effects in Terms of Mass Ratios --- Approximate Expressions of Lensed-Image Positions for Two Lens Planes ---

    NASA Astrophysics Data System (ADS)

    Izumi, K.; Asada, H.

    2012-02-01

    Continuing work initiated in an earlier publication (H. Asada, Mon. Not. R. Astron. Soc. 394 (2009), 818), we make a systematic attempt to determine, as a function of lens and source parameters, the positions of images by multi-plane gravitational lenses. By extending the previous single-plane work, we present a method of Taylor-series expansion to solve the multi-plane lens equation in terms of mass ratios except for the neighborhood of the caustics. The advantage of this method is that it allows a systematic iterative analysis and clarifies the dependence on lens and source parameters. In concordance with the multi-plane lensed-image counting theorem that the lower bound on the image number is 2^N for N planes with a single point mass on each plane, our iterative results show how 2^N images are realized. Numerical tests are done to investigate if the Taylor expansion method is robust. The method with a small mass ratio works well for changing a plane separation, whereas it breaks down in the inner domain near the caustics.

  17. Noninvasive vascular elastography using plane-wave and sparse-array imaging.

    PubMed

    Korukonda, Sanghamithra; Nayak, Rohit; Carson, Nancy; Schifitto, Giovanni; Dogra, Vikram; Doyley, Marvin M

    2013-02-01

    Stroke may occur when an atherosclerotic plaque ruptures in the carotid artery. Noninvasive vascular elastography (NIVE) visualizes the strain distribution within the carotid artery, which is related to its mechanical properties that govern plaque rupture. Strain elastograms obtained from the transverse plane of the carotid artery are difficult to interpret, because strain is estimated in Cartesian coordinates. Sparsearray (SA) elastography overcomes this problem by transforming shear and normal strain to polar coordinates. However, the SA's transmit power may be too weak to produce useful elastograms in the clinical setting. Consequently, we are exploring other imaging methods to solve this potential problem. This study evaluated the quality of elastograms produced with SA imaging, plane-wave (PW) imaging, and compounded-plane-wave (CPW) imaging. We performed studies on simulated and physical vessel phantoms, and the carotid artery of a healthy volunteer. All echo imaging was performed with a linear transducer array that contained 128 elements, operating at 5 MHz. In SA imaging, 7 elements were fired during transmission, but all 128 elements were active during reception. In PW imaging, all 128 elements were active during both transmission and reception. We created CPW images by steering the acoustic beam within the range of -15° to 15° in increments of 5°. SA radial and circumferential strain elastograms were comparable to those produced using PW and CPW imaging. Additionally, side-lobe levels incurred during SA imaging were 20 dB lower than those produced during PW imaging, and 10 dB lower than those computed using CPW imaging. Overall, SA imaging performs well in vivo; therefore, we plan to improve the technique and perform preclinical studies. PMID:23357907

  18. Mid-callosal plane determination using preferred directions from diffusion tensor images

    NASA Astrophysics Data System (ADS)

    Costa, André L.; Rittner, Letícia; Lotufo, Roberto A.; Appenzeller, Simone

    2015-03-01

    The corpus callosum is the major brain structure responsible for inter{hemispheric communication between neurons. Many studies seek to relate corpus callosum attributes to patient characteristics, cerebral diseases and psychological disorders. Most of those studies rely on 2D analysis of the corpus callosum in the mid-sagittal plane. However, it is common to find conflicting results among studies, once many ignore methodological issues and define the mid-sagittal plane based on precary or invalid criteria with respect to the corpus callosum. In this work we propose a novel method to determine the mid-callosal plane using the corpus callosum internal preferred diffusion directions obtained from diffusion tensor images. This plane is analogous to the mid-sagittal plane, but intended to serve exclusively as the corpus callosum reference. Our method elucidates the great potential the directional information of the corpus callosum fibers have to indicate its own referential. Results from experiments with five image pairs from distinct subjects, obtained under the same conditions, demonstrate the method effectiveness to find the corpus callosum symmetric axis relative to the axial plane.

  19. Correcting out-of-plane errors in two-dimensional imaging using nonimage-related information.

    PubMed

    Sih, B L; Hubbard, M; Williams, K R

    2001-02-01

    Two-dimensional imaging with a single camera assumes that the motion occurs in a calibrated plane perpendicular to the camera axis. It is well known that kinematic errors result if the object fails to remain in this plane and that if both the distance to the calibration plane from the camera and the distance out-of-plane are known, an analytical correction for the out-of-plane error can be made. Less well appreciated is that out-of-plane distance can frequently be acquired from other, nonimage-related information. In the two examples given, the mediolateral center of pressure coordinate of the foot measured from a force plate and the measured landing point of a shot put throw were used. In both cases, the resulting out-of-plane correction improved the accuracy of the 2-D kinematic data dramatically. These examples also demonstrate that the use of nonimage-related data can increase the accuracy of kinematic data without an increase in the complexity of the experiment. PMID:11165291

  20. Extended linear detection range for optical tweezers using image-plane detection scheme

    NASA Astrophysics Data System (ADS)

    Hajizadeh, Faegheh; Masoumeh Mousavi, S.; Khaksar, Zeinab S.; Reihani, S. Nader S.

    2014-10-01

    Ability to measure pico- and femto-Newton range forces using optical tweezers (OT) strongly relies on the sensitivity of its detection system. We show that the commonly used back-focal-plane detection method provides a linear response range which is shorter than that of the restoring force of OT for large beads. This limits measurable force range of OT. We show, both theoretically and experimentally, that utilizing a second laser beam for tracking could solve the problem. We also propose a new detection scheme in which the quadrant photodiode is positioned at the plane optically conjugate to the object plane (image plane). This method solves the problem without need for a second laser beam for the bead sizes that are commonly used in force spectroscopy applications of OT, such as biopolymer stretching.

  1. Lyot-plane phase masks for improved high-contrast imaging with a vortex coronagraph

    E-print Network

    Ruane, Garreth J; Absil, Olivier; Mawet, Dimitri; Delacroix, Christian; Carlomagno, Brunella; Swartzlander, Grover A

    2015-01-01

    The vortex coronagraph is an optical instrument that precisely removes on-axis starlight allowing for high contrast imaging at small angular separation from the star, thereby providing a crucial capability for direct detection and characterization of exoplanets and circumstellar disks. Telescopes with aperture obstructions, such as secondary mirrors and spider support structures, require advanced coronagraph designs to provide adequate starlight suppression. We introduce a phase-only Lyot-plane optic to the vortex coronagraph that offers improved contrast performance on telescopes with complicated apertures. Potential solutions for the European Extremely Large Telescope (E-ELT) are described and compared. Adding a Lyot-plane phase mask relocates residual starlight away from a region of the image plane thereby reducing stellar noise and improving sensitivity to off-axis companions. The phase mask is calculated using an iterative phase retrieval algorithm. Numerically, we achieve a contrast on the order of $10^...

  2. Chemical imaging of cotton fibers using an infrared microscope and a focal-plane array detector

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this presentation, the chemical imaging of cotton fibers with an infrared microscope and a Focal-Plane Array (FPA) detector will be discussed. Infrared spectroscopy can provide us with information on the structure and quality of cotton fibers. In addition, FPA detectors allow for simultaneous spe...

  3. Through-Plane Water Transport Visualization in a PEMFC by Visible and Infrared Imaging

    E-print Network

    Kandlikar, Satish

    and thermal profile in the through-plane direction of a proton exchange membrane fuel cell (PEMFC) gas membrane fuel cells (PEMFCs) is widely studied due to its impact on performance.1­4 A variety of imaging and the underlying transport processes are discussed. The temperature distributions across the anode and cathode GDL

  4. Significant bit-plane clustering technique for JPEG2000 image coding

    E-print Network

    Chang, Pao-Chi

    Significant bit-plane clustering technique for JPEG2000 image coding T.T. Lu and P.C. Chang The bit of JPEG2000, which results in an improvement of 6.88% bit- rate reduction at 0.1 bpp on average over JPEG2000. Introduction: The JPEG2000 standard [1] has shown better perfor- mance than the widely used JPEG

  5. Lossless Bit-plane Compression of Microarray Images Using 3D Context Models

    E-print Network

    Paiva, António R. C.

    growth of interest in microarray technol- ogy and the improvement of the technology responsible The DNA microarray technology is a new and effective tool for biomedical research. It allowsLossless Bit-plane Compression of Microarray Images Using 3D Context Models Ant´onio J. R. Neves

  6. Plane wave analysis of coherent holographic image reconstruction by phase transfer (CHIRPT)

    NASA Astrophysics Data System (ADS)

    Field, Jeffrey J.; Winters, David G.; Bartels, Randy A.

    2015-11-01

    Fluorescent imaging plays a critical role in a myriad of scientific endeavors, particularly in the biological sciences. Three-dimensional imaging of fluorescent intensity often requires serial data acquisition, that is voxel-by-voxel collection of fluorescent light emitted throughout the specimen with a non-imaging single-element detector. While non-imaging fluorescence detection offers some measure of scattering robustness, the rate at which dynamic specimens can be imaged is severely limited. Other fluorescent imaging techniques utilize imaging detection to enhance collection rates. A notable example is light-sheet fluorescence microscopy, also known as selective-plane illumination microscopy (SPIM), which illuminates a large region within the specimen and collects emitted fluorescent light at an angle either perpendicular or oblique to the illumination light sheet. Unfortunately, scattering of the emitted fluorescent light can cause blurring of the collected images in highly turbid biological media. We recently introduced an imaging technique called coherent holographic image reconstruction by phase transfer (CHIRPT) that combines light-sheet-like illumination with non-imaging fluorescent light detection. By combining the speed of light-sheet illumination with the scattering robustness of non-imaging detection, CHIRPT is poised to have a dramatic impact on biological imaging, particularly for $\\textit{in vivo}$ preparations. Here we present the mathematical formalism for CHIRPT imaging under spatially coherent illumination and present experimental data that verifies the theoretical model.

  7. Learning-based scan plane identification from fetal head ultrasound images

    NASA Astrophysics Data System (ADS)

    Liu, Xiaoming; Annangi, Pavan; Gupta, Mithun; Yu, Bing; Padfield, Dirk; Banerjee, Jyotirmoy; Krishnan, Kajoli

    2012-03-01

    Acquisition of a clinically acceptable scan plane is a pre-requisite for ultrasonic measurement of anatomical features from B-mode images. In obstetric ultrasound, measurement of gestational age predictors, such as biparietal diameter and head circumference, is performed at the level of the thalami and cavum septum pelucidi. In an accurate scan plane, the head can be modeled as an ellipse, the thalami looks like a butterfly, the cavum appears like an empty box and the falx is a straight line along the major axis of a symmetric ellipse inclined either parallel to or at small angles to the probe surface. Arriving at the correct probe placement on the mother's belly to obtain an accurate scan plane is a task of considerable challenge especially for a new user of ultrasound. In this work, we present a novel automated learning-based algorithm to identify an acceptable fetal head scan plane. We divide the problem into cranium detection and a template matching to capture the composite "butterfly" structure present inside the head, which mimics the visual cues used by an expert. The algorithm uses the stateof- the-art Active Appearance Models techniques from the image processing and computer vision literature and tie them to presence or absence of the inclusions within the head to automatically compute a score to represent the goodness of a scan plane. This automated technique can be potentially used to train and aid new users of ultrasound.

  8. Magneto-optic imaging: Normal and parallel field components of in-plane magnetized samples

    NASA Astrophysics Data System (ADS)

    Ferrari, H.; Bekeris, V.; Thibeault, M.; Johansen, T. H.

    2007-06-01

    Magneto-optical (MO) imaging has become a powerful tool for determining magnetic properties of materials by detecting the stray magnetic fields. The technique consists in measuring the Faraday rotation, ?F, in the light polarization plane when light travels through a transparent sensitive garnet (ferrite garnet film, FGF) placed in close contact to the sample. For in-plane magnetized samples, the MO image is not trivially related to the sample magnetization, and to contribute to this understanding we have imaged commercial audio tapes in which computer-generated functions were recorded. We present MO images of periodically in-plane magnetized tapes with square, sawtooth, triangular and sinusoidal waveforms, for which we analytically calculate the perpendicular and parallel stray magnetic field components generated by the tape. As a first approach we correlate the measured light intensity with the perpendicular magnetic field component at the FGF, and we show that it can be approximated to the gradient of the sample magnetization. A more detailed calculation, taking into account the effect of both field components in the Faraday rotation, is presented and satisfactorily compared with the obtained MO images. The presence of magnetic domains in the garnet is shown to be related to the change in sign of the parallel component of the stray magnetic field, which can be approximated to the second derivative of the sample magnetization.

  9. Spatially isotropic four-dimensional imaging with dual-view plane illumination microscopy

    PubMed Central

    Wu, Yicong; Wawrzusin, Peter; Senseney, Justin; Fischer, Robert S; Christensen, Ryan; Santella, Anthony; York, Andrew G; Winter, Peter W; Waterman, Clare M; Bao, Zhirong; Colón-Ramos, Daniel A; McAuliffe, Matthew; Shroff, Hari

    2014-01-01

    Optimal four-dimensional imaging requires high spatial resolution in all dimensions, high speed and minimal photobleaching and damage. We developed a dual-view, plane illumination microscope with improved spatiotemporal resolution by switching illumination and detection between two perpendicular objectives in an alternating duty cycle. Computationally fusing the resulting volumetric views provides an isotropic resolution of 330 nm. As the sample is stationary and only two views are required, we achieve an imaging speed of 200 images/s (i.e., 0.5 s for a 50-plane volume). Unlike spinning-disk confocal or Bessel beam methods, which illuminate the sample outside the focal plane, we maintain high spatiotemporal resolution over hundreds of volumes with negligible photobleaching. To illustrate the ability of our method to study biological systems that require high-speed volumetric visualization and/or low photobleaching, we describe microtubule tracking in live cells, nuclear imaging over 14 h during nematode embryogenesis and imaging of neural wiring during Caenorhabditis elegans brain development over 5 h. PMID:24108093

  10. Three dimensional imaging of gold-nanoparticles tagged samples using phase retrieval with two focus planes

    PubMed Central

    Ilovitsh, Tali; Ilovitsh, Asaf; Weiss, Aryeh; Meir, Rinat; Zalevsky, Zeev

    2015-01-01

    Optical sectioning microscopy can provide highly detailed three dimensional (3D) images of biological samples. However, it requires acquisition of many images per volume, and is therefore time consuming, and may not be suitable for live cell 3D imaging. We propose the use of the modified Gerchberg-Saxton phase retrieval algorithm to enable full 3D imaging of gold-particle tagged samples using only two images. The reconstructed field is free space propagated to all other focus planes using post processing, and the 2D z-stack is merged to create a 3D image of the sample with high fidelity. Because we propose to apply the phase retrieving on nano particles, the regular ambiguities typical to the Gerchberg-Saxton algorithm, are eliminated. The proposed concept is presented and validated both on simulated data as well as experimentally. PMID:26498517

  11. Focal plane wave-front sensing algorithm for high-contrast imaging

    E-print Network

    Dou, JiangPei; Zhu, YongTian; Zhang, Xi

    2015-01-01

    High-contrast imaging provided by a coronagraph is critical for the direction imaging of the Earth-like planet orbiting its bright parent star. A major limitation for such direct imaging is the speckle noise that is induced from the wave-front error of an optical system. We derive an algorithm for the wave-front measurement directly from 3 focal plane images. The 3 images are achieved through a deformable mirror to provide specific phases for the optics system. We introduce an extra amplitude modulation on one deformable mirror configuration to create an uncorrelated wave-front, which is a critical procedure for wave-front sensing. The simulation shows that the reconstructed wave-front is consistent with the original wave-front theoretically, which indicates that such an algorithm is a promising technique for the wave-front measurement for the high-contrast imaging.

  12. Photo-acoustic imaging of blue nanoparticle targeted brain tumor for intra-operative glioma delineation

    NASA Astrophysics Data System (ADS)

    Ray, Aniruddha; Wang, Xueding; Koo Lee, Yong-Eun; Hah, HoeJin; Kim, Gwangseong; Chen, Thomas; Orrienger, Daniel; Sagher, Oren; Kopelman, Raoul

    2011-07-01

    Distinguishing the tumor from the background neo-plastic tissue is challenging for cancer surgery such as surgical resection of glioma. Attempts have been made to use visible or fluorescent markers to delineate the tumors during surgery. However, the systemic injection of the dyes requires high dose, resulting in negative side effects. A novel method to delineate rat brain tumors intra-operatively, as well as post-operatively, using a highly sensitive photoacoustic imaging technique enhanced by tumor targeting blue nanoparticle as contrast agent is demonstrated. The nanoparticles are made of polyacrylamide (PAA) matrix with covalently linked Coomassie-Blue dye. They contain 7.0% dye and the average size is 80nm. Their surface was conjugated with F3 peptide for active tumor targeting. These nanoparticles are nontoxic, chemically inert and have long plasma circulation lifetime, making them suitable as nanodevices for imaging using photoacoustics. Experiments on phantoms and rat brains tumors ex-vivo demonstrate the high sensitivity of photoacoustic imaging in delineating the tumor, containing contrast agent at concentrations too low to be visualized by eye. The control tumors without nanoparticles did not show any enhanced signal. This study shows that photoacoustic imaging facilitated with the nanoparticle contrast agent could contribute to future surgical procedures for glioma.

  13. Ballistic imaging of biological media with collimated illumination and focal plane detection.

    PubMed

    Brezner, Barak; Cahen, Sarah; Glasser, Ziv; Sternklar, Shmuel; Granot, Er'el

    2015-07-01

    A simple, affordable method for imaging through biological tissue is investigated. The method consists of (1) imaging with a wavelength that has a relatively small scattering coefficient (1310 nm in this case) and (2) collimated illumination together with (3) focal plane detection to enhance the detection of the ballistic photons relative to the diffusive light. We demonstrate ballistic detection of an object immersed in a 1-cm-thick cuvette filled with 4% Intralipid, which is equivalent to ?1 to 2 cm of skin tissue. With the same technology, a ballistic image of a 1-mm-wide object in 10-mm-thick chicken breast is also presented. PMID:26172614

  14. Ballistic imaging of biological media with collimated illumination and focal plane detection

    NASA Astrophysics Data System (ADS)

    Brezner, Barak; Cahen, Sarah; Glasser, Ziv; Sternklar, Shmuel; Granot, Er'el

    2015-07-01

    A simple, affordable method for imaging through biological tissue is investigated. The method consists of (1) imaging with a wavelength that has a relatively small scattering coefficient (1310 nm in this case) and (2) collimated illumination together with (3) focal plane detection to enhance the detection of the ballistic photons relative to the diffusive light. We demonstrate ballistic detection of an object immersed in a 1-cm-thick cuvette filled with 4% Intralipid, which is equivalent to ˜1 to 2 cm of skin tissue. With the same technology, a ballistic image of a 1-mm-wide object in 10-mm-thick chicken breast is also presented.

  15. Multispectral information hiding in RGB image using bit-plane-based watermarking and its application

    NASA Astrophysics Data System (ADS)

    Shinoda, Kazuma; Watanabe, Aya; Hasegawa, Madoka; Kato, Shigeo

    2015-06-01

    Although it was expected that multispectral images would be implemented in many applications, such as remote sensing and medical imaging, their use has not been widely diffused in these fields. The development of a compact multispectral camera and display will be needed for practical use, but the format compatibility between multispectral and RGB images is also important for reducing the introduction cost and having high usability. We propose a method of embedding the spectral information into an RGB image by watermarking. The RGB image is calculated from the multispectral image, and then, the original multispectral image is estimated from the RGB image using Wiener estimation. The residual data between the original and the estimated multispectral image are compressed and embedded in the lower bit planes of the RGB image. The experimental results show that, as compared with Wiener estimation, the proposed method leads to more than a 10 dB gain in the peak signal-to-noise ratio of the reconstructed multispectral image, while there are almost no significant perceptual differences in the watermarked RGB image.

  16. Simulation of High-Resolution Magnetic Resonance Images on the IBM Blue Gene/L Supercomputer Using SIMRI

    DOE PAGESBeta

    Baum, K. G.; Menezes, G.; Helguera, M.

    2011-01-01

    Medical imaging system simulators are tools that provide a means to evaluate system architecture and create artificial image sets that are appropriate for specific applications. We have modified SIMRI, a Bloch equation-based magnetic resonance image simulator, in order to successfully generate high-resolution 3D MR images of the Montreal brain phantom using Blue Gene/L systems. Results show that redistribution of the workload allows an anatomically accurate 256 3 voxel spin-echo simulation in less than 5 hours when executed on an 8192-node partition of a Blue Gene/L system.

  17. Electric Field Reconstruction in the Image Plane of a High-Contrast Coronagraph Using a Set of Pinholes around the Lyot Plane

    NASA Technical Reports Server (NTRS)

    Giveona, Amir; Shaklan, Stuart; Kern, Brian; Noecker, Charley; Kendrick, Steve; Wallace, Kent

    2012-01-01

    In a setup similar to the self coherent camera, we have added a set of pinholes in the diffraction ring of the Lyot plane in a high-contrast stellar Lyot coronagraph. We describe a novel complex electric field reconstruction from image plane intensity measurements consisting of light in the coronagraph's dark hole interfering with light from the pinholes. The image plane field is modified by letting light through one pinhole at a time. In addition to estimation of the field at the science camera, this method allows for self-calibration of the probes by letting light through the pinholes in various permutations while blocking the main Lyot opening. We present results of estimation and calibration from the High Contrast Imaging Testbed along with a comparison to the pair-wise deformable mirror diversity based estimation technique. Tests are carried out in narrow-band light and over a composite 10% bandpass.

  18. Exoplanet detection with simultaneous spectral differential imaging: effects of out-of-pupil-plane optical aberrations

    SciTech Connect

    Marois, C; Phillion, D W; Macintosh, B

    2006-05-02

    Imaging faint companions (exoplanets and brown dwarfs) around nearby stars is currently limited by speckle noise. To efficiently attenuate this noise, a technique called simultaneous spectral differential imaging (SSDI) can be used. This technique consists of acquiring simultaneously images of the field of view in several adjacent narrow bands and in combining these images to suppress speckles. Simulations predict that SSDI can achieve, with the acquisition of three wavelengths, speckle noise attenuation of several thousands. These simulations are usually performed using the Fraunhofer approximation, i.e. considering that all aberrations are located in the pupil plane. We have performed wavefront propagation simulations to evaluate how out-of-pupil-plane aberrations affect SSDI speckle noise attenuation performance. The Talbot formalism is used to give a physical insight of the problem; results are confirmed using a proper wavefront propagation algorithm. We will show that near-focal-plane aberrations can significantly reduce SSDI speckle noise attenuation performance at several {lambda}/D separation. It is also shown that the Talbot effect correctly predicts the PSF chromaticity. Both differential atmospheric refraction effects and the use of a coronagraph will be discussed.

  19. Exoplanet detection with simultaneous spectral differential imaging: effects of out-of-pupil-plane optical aberrations

    E-print Network

    Christian Marois; Don W. Phillion; Bruce Macintosh

    2006-06-30

    Imaging faint companions (exoplanets and brown dwarfs) around nearby stars is currently limited by speckle noise. To efficiently attenuate this noise, a technique called simultaneous spectral differential imaging (SSDI) can be used. This technique consists of acquiring simultaneously images of the field of view in several adjacent narrow bands and in combining these images to suppress speckles. Simulations predict that SSDI can achieve, with the acquisition of three wavelengths, speckle noise attenuation of several thousands. These simulations are usually performed using the Fraunhofer approximation, i.e. considering that all aberrations are located in the pupil plane. We have performed wavefront propagation simulations to evaluate how out-of-pupil-plane aberrations affect SSDI speckle noise attenuation performance. The Talbot formalism is used to give a physical insight of the problem; results are confirmed using a proper wavefront propagation algorithm. We will show that near-focal-plane aberrations can significantly reduce SSDI speckle noise attenuation performance at several lambda/D separation. It is also shown that the Talbot effect correctly predicts the PSF chromaticity. Both differential atmospheric refraction effects and the use of a coronagraph will be discussed.

  20. Intraoperative near-infrared fluorescence imaging of a paraganglioma using methylene blue: A case report

    PubMed Central

    Tummers, Quirijn R.J.G.; Boonstra, Martin C.; Frangioni, John V.; van de Velde, Cornelis J.H.; Vahrmeijer, Alexander L.; Bonsing, Bert A.

    2014-01-01

    Introduction Intraoperative identification of tumors can be challenging. Near-infrared (NIR) fluorescence imaging is an innovative technique that can assist in intraoperative identification of tumors, which may otherwise be undetectable. Presentation of case A 19-year-old patient with symptoms, normetanephrine levels and radiological findings suspicious for a paraganglioma, a rare tumor arising from extra-adrenal chromaffin cells within the sympathetic nervous system, is presented. Intraoperative NIR fluorescence imaging using intravenous administration of methylene blue (MB) assisted in intraoperative detection of the tumor, and even identified a smaller second lesion, which was not identified during surgery by visual inspection. Discussion Although the exact mechanism of MB accumulation in neuroendocrine tumors is unclear, it is described in both preclinical and clinical studies. Conclusion In this report, we describe the first case of intraoperative NIR fluorescence imaging of a paraganglioma using MB, which identified an otherwise undetectable lesion. PMID:25541370

  1. A Low-Cost Demonstration Kit for Locating an Image Formed by a Plane Mirror Integrated with a Ray Diagram

    ERIC Educational Resources Information Center

    Kaewkhong, Kreetha; Chitaree, Ratchapak

    2015-01-01

    This article introduces a low-cost, easy to make apparatus that can be used to locate the position of an image formed by a plane mirror. The apparatus is combined with a method used to identify an image's position by drawing a ray diagram, based on the principle of reflection, to show how an image is formed. An image's distance and an object's…

  2. Mid-level image representations for real-time heart view plane classification of echocardiograms.

    PubMed

    Penatti, Otávio A B; Werneck, Rafael de O; de Almeida, Waldir R; Stein, Bernardo V; Pazinato, Daniel V; Mendes Júnior, Pedro R; Torres, Ricardo da S; Rocha, Anderson

    2015-11-01

    In this paper, we explore mid-level image representations for real-time heart view plane classification of 2D echocardiogram ultrasound images. The proposed representations rely on bags of visual words, successfully used by the computer vision community in visual recognition problems. An important element of the proposed representations is the image sampling with large regions, drastically reducing the execution time of the image characterization procedure. Throughout an extensive set of experiments, we evaluate the proposed approach against different image descriptors for classifying four heart view planes. The results show that our approach is effective and efficient for the target problem, making it suitable for use in real-time setups. The proposed representations are also robust to different image transformations, e.g., downsampling, noise filtering, and different machine learning classifiers, keeping classification accuracy above 90%. Feature extraction can be performed in 30fps or 60fps in some cases. This paper also includes an in-depth review of the literature in the area of automatic echocardiogram view classification giving the reader a through comprehension of this field of study. PMID:26386547

  3. Lyot-plane phase masks for improved high-contrast imaging with a vortex coronagraph

    NASA Astrophysics Data System (ADS)

    Ruane, G. J.; Huby, E.; Absil, O.; Mawet, D.; Delacroix, C.; Carlomagno, B.; Swartzlander, G. A.

    2015-11-01

    Context. The vortex coronagraph is an optical instrument that precisely removes on-axis starlight allowing for high contrast imaging at small angular separation from the star, a crucial capability for direct detection and characterization of exoplanets and circumstellar disks. Telescopes with aperture obstructions, such as secondary mirrors and spider support structures, require advanced coronagraph designs to provide adequate starlight suppression. Aims: We introduce a phase-only Lyot-plane optic to the vortex coronagraph, which offers improved contrast performance on telescopes with complicated apertures. Potential solutions for the European Extremely Large Telescope (E-ELT) are described. Methods: Adding a Lyot-plane phase mask relocates residual starlight away from a region of the image plane, thereby reducing stellar noise and improving sensitivity to off-axis companions. The phase mask is calculated using an iterative phase retrieval algorithm. Results: Numerically, we achieve a contrast on the order of 10-6 for a companion with angular displacement as small as 4?/D with an E-ELT type aperture. Even in the presence of aberrations, improved performance is expected compared to either a conventional vortex coronagraph or an optimized pupil plane phase element alone.

  4. Plane wave analysis of coherent holographic image reconstruction by phase transfer (CHIRPT).

    PubMed

    Field, Jeffrey J; Winters, David G; Bartels, Randy A

    2015-11-01

    Fluorescent imaging plays a critical role in a myriad of scientific endeavors, particularly in the biological sciences. Three-dimensional imaging of fluorescent intensity often requires serial data acquisition, that is, voxel-by-voxel collection of fluorescent light emitted throughout the specimen with a nonimaging single-element detector. While nonimaging fluorescence detection offers some measure of scattering robustness, the rate at which dynamic specimens can be imaged is severely limited. Other fluorescent imaging techniques utilize imaging detection to enhance collection rates. A notable example is light-sheet fluorescence microscopy, also known as selective-plane illumination microscopy, which illuminates a large region within the specimen and collects emitted fluorescent light at an angle either perpendicular or oblique to the illumination light sheet. Unfortunately, scattering of the emitted fluorescent light can cause blurring of the collected images in highly turbid biological media. We recently introduced an imaging technique called coherent holographic image reconstruction by phase transfer (CHIRPT) that combines light-sheet-like illumination with nonimaging fluorescent light detection. By combining the speed of light-sheet illumination with the scattering robustness of nonimaging detection, CHIRPT is poised to have a dramatic impact on biological imaging, particularly for in vivo preparations. Here we present the mathematical formalism for CHIRPT imaging under spatially coherent illumination and present experimental data that verifies the theoretical model. PMID:26560930

  5. Near Real-Time Imaging of the Galactic Plane with BATSE

    NASA Technical Reports Server (NTRS)

    Harmon, B. A.; Zhang, S. N.; Robinson, C. R.; Paciesas, W. S.; Barret, D.; Grindlay, J.; Bloser, P.; Monnelly, C.

    1997-01-01

    The discovery of new transient or persistent sources in the hard X-ray regime with the BATSE Earth occultation Technique has been limited previously to bright sources of about 200 mCrab or more. While monitoring known source locations is not a problem to a daily limiting sensitivity of about 75 mCrab, the lack of a reliable background model forces us to use more intensive computer techniques to find weak, previously unknown emission from hard X-ray/gamma sources. The combination of Radon transform imaging of the galactic plane in 10 by 10 degree fields and the Harvard/CFA-developed Image Search (CBIS) allows us to straightforwardly search the sky for candidate sources in a +/- 20 degree latitude band along the plane. This procedure has been operating routinely on a weekly basis since spring 1997. We briefly describe the procedure, then concentrate on the performance aspects of the technique and candidate source results from the search.

  6. Back focal plane imaging of Tamm plasmons and their coupled emission

    PubMed Central

    Chen, Yikai; Zhang, Douguo; Qiu, Dong; Zhu, Liangfu; Yu, Sisheng; Yao, Peijun; Wang, Pei; Ming, Hai; Badugu, Ramachandram; Lakowicz, Joseph R.

    2015-01-01

    The unique optical properties of TPs – such as flexible wavevector matching conditions including in-plane wavevector within the light line, existing both S- and P-polarized TPs and ability of populating with KR and RK illuminations – facilitate them for direct optical excitation. The Tamm plasmon Coupled emission (TPCE) from a combined photonic-plasmonic structure sustaining both surface plasmons (SPs) and Tamm plasmons (TPs) is described. The sensitivity of TPCE to the emission wavelength and polarization is examined with back focal plane imaging and verified with the numerical calculations. The results reveal that the excited probe can couple with both TPs and SPs, resulting in SPCE and TPCE, respectively. The TPCE angle is strongly dependent on the wavelength allowing for spectral resolution using different observation angles. These Tamm structures provide a new tool to control the optical emission from dye molecules and have many potential applications in fluorescence based-sensing and imaging. PMID:25893010

  7. Image registration under translation and rotation in two-dimensional planes using Fourier slice theorem.

    PubMed

    Pohit, M; Sharma, J

    2015-05-10

    Image recognition in the presence of both rotation and translation is a longstanding problem in correlation pattern recognition. Use of log polar transform gives a solution to this problem, but at a cost of losing the vital phase information from the image. The main objective of this paper is to develop an algorithm based on Fourier slice theorem for measuring the simultaneous rotation and translation of an object in a 2D plane. The algorithm is applicable for any arbitrary object shift for full 180° rotation. PMID:25967510

  8. Multispectral Thermal Imager Optical Assembly Performance and Intergration of the Flight Focal Plane Assembly

    SciTech Connect

    Blake, Dick; Byrd, Don; Christensen, Wynn; Henson, Tammy; Krumel, Les; Rappoport, William; Shen, Gon-Yen

    1999-06-08

    The Multispectral Thermal Imager Optical Assembly (OA) has been fabricated, assembled, successfully performance tested, and integrated into the flight payload structure with the flight Focal Plane Assembly (FPA) integrated and aligned to it. This represents a major milestone achieved towards completion of this earth observing E-O imaging sensor that is to be operated in low earth orbit. The OA consists of an off-axis three mirror anastigmatic (TMA) telescope with a 36 cm unobscured clear aperture, a wide-field-of-view (WFOV) of 1.82° along the direction of spacecraft motion and 1.38° across the direction of spacecraft motion. It also contains a comprehensive on-board radiometric calibration system. The OA is part of a multispectral pushbroom imaging sensor which employs a single mechanically cooled focal plane with 15 spectral bands covering a wavelength range from 0.45 to 10.7 µm. The OA achieves near diffraction-limited performance from visible to the long-wave infrared (LWIR) wavelengths. The two major design drivers for the OA are 80% enpixeled energy in the visible bands and radiometric stability. Enpixeled energy in the visible bands also drove the alignment of the FPA detectors to the OA image plane to a requirement of less than ± 20 µm over the entire visible detector field of view (FOV). Radiometric stability requirements mandated a cold Lyot stop for stray light rejection and thermal background reduction. The Lyot stop is part of the FPA assembly and acts as the aperture stop for the imaging system. The alignment of the Lyot stop to the OA drove the centering and to some extent the tilt alignment requirements of the FPA to the OA.

  9. Massively-parallel electrical-conductivity imaging of hydrocarbonsusing the Blue Gene/L supercomputer

    SciTech Connect

    Commer, M.; Newman, G.A.; Carazzone, J.J.; Dickens, T.A.; Green,K.E.; Wahrmund, L.A.; Willen, D.E.; Shiu, J.

    2007-05-16

    Large-scale controlled source electromagnetic (CSEM)three-dimensional (3D) geophysical imaging is now receiving considerableattention for electrical conductivity mapping of potential offshore oiland gas reservoirs. To cope with the typically large computationalrequirements of the 3D CSEM imaging problem, our strategies exploitcomputational parallelism and optimized finite-difference meshing. Wereport on an imaging experiment, utilizing 32,768 tasks/processors on theIBM Watson Research Blue Gene/L (BG/L) supercomputer. Over a 24-hourperiod, we were able to image a large scale marine CSEM field data setthat previously required over four months of computing time ondistributed clusters utilizing 1024 tasks on an Infiniband fabric. Thetotal initial data misfit could be decreased by 67 percent within 72completed inversion iterations, indicating an electrically resistiveregion in the southern survey area below a depth of 1500 m below theseafloor. The major part of the residual misfit stems from transmitterparallel receiver components that have an offset from the transmittersail line (broadside configuration). Modeling confirms that improvedbroadside data fits can be achieved by considering anisotropic electricalconductivities. While delivering a satisfactory gross scale image for thedepths of interest, the experiment provides important evidence for thenecessity of discriminating between horizontal and verticalconductivities for maximally consistent 3D CSEM inversions.

  10. Comparative evaluation of methylene blue and demeclocycline for enhancing optical contrast of gliomas in optical images

    NASA Astrophysics Data System (ADS)

    Wirth, Dennis; Snuderl, Matija; Curry, William; Yaroslavsky, Anna

    2014-09-01

    Contrast agents have shown to be useful in the detection of cancers. The goal of this study was to compare enhancement of brain cancer contrast using reflectance and fluorescence confocal imaging of two fluorophores, methylene blue (MB) and demeclocycline (DMN). MB absorbs light in the red spectral range and fluoresces in the near-infrared. It is safe for in vivo staining of human skin and breast tissue. However, its safety for staining human brain is questionable. Thus, DMN, which absorbs light in the violet spectral range and fluoresces between 470 and 570 nm, could provide a safer alternative to MB. Fresh human gliomas, obtained from surgeries, were cut in half and stained with aqueous solutions of MB and DMN, respectively. Stained tissues were imaged using multimodal confocal microscopy. Resulting reflectance and fluorescence optical images were compared with hematoxylin and eosin histopathology, processed from each imaged tissue. Results indicate that images of tissues stained with either stain exhibit comparable contrast and resolution of morphological detail. Further studies are required to establish the safety and efficacy of these contrast agents for use in human brain.

  11. Midsagittal plane extraction from brain images based on 3D SIFT.

    PubMed

    Wu, Huisi; Wang, Defeng; Shi, Lin; Wen, Zhenkun; Ming, Zhong

    2014-03-21

    Midsagittal plane (MSP) extraction from 3D brain images is considered as a promising technique for human brain symmetry analysis. In this paper, we present a fast and robust MSP extraction method based on 3D scale-invariant feature transform (SIFT). Unlike the existing brain MSP extraction methods, which mainly rely on the gray similarity, 3D edge registration or parameterized surface matching to determine the fissure plane, our proposed method is based on distinctive 3D SIFT features, in which the fissure plane is determined by parallel 3D SIFT matching and iterative least-median of squares plane regression. By considering the relative scales, orientations and flipped descriptors between two 3D SIFT features, we propose a novel metric to measure the symmetry magnitude for 3D SIFT features. By clustering and indexing the extracted SIFT features using a k-dimensional tree (KD-tree) implemented on graphics processing units, we can match multiple pairs of 3D SIFT features in parallel and solve the optimal MSP on-the-fly. The proposed method is evaluated by synthetic and in vivo datasets, of normal and pathological cases, and validated by comparisons with the state-of-the-art methods. Experimental results demonstrated that our method has achieved a real-time performance with better accuracy yielding an average yaw angle error below 0.91° and an average roll angle error no more than 0.89°. PMID:24583964

  12. Midsagittal plane extraction from brain images based on 3D SIFT

    NASA Astrophysics Data System (ADS)

    Wu, Huisi; Wang, Defeng; Shi, Lin; Wen, Zhenkun; Ming, Zhong

    2014-03-01

    Midsagittal plane (MSP) extraction from 3D brain images is considered as a promising technique for human brain symmetry analysis. In this paper, we present a fast and robust MSP extraction method based on 3D scale-invariant feature transform (SIFT). Unlike the existing brain MSP extraction methods, which mainly rely on the gray similarity, 3D edge registration or parameterized surface matching to determine the fissure plane, our proposed method is based on distinctive 3D SIFT features, in which the fissure plane is determined by parallel 3D SIFT matching and iterative least-median of squares plane regression. By considering the relative scales, orientations and flipped descriptors between two 3D SIFT features, we propose a novel metric to measure the symmetry magnitude for 3D SIFT features. By clustering and indexing the extracted SIFT features using a k-dimensional tree (KD-tree) implemented on graphics processing units, we can match multiple pairs of 3D SIFT features in parallel and solve the optimal MSP on-the-fly. The proposed method is evaluated by synthetic and in vivo datasets, of normal and pathological cases, and validated by comparisons with the state-of-the-art methods. Experimental results demonstrated that our method has achieved a real-time performance with better accuracy yielding an average yaw angle error below 0.91° and an average roll angle error no more than 0.89°.

  13. A deep image of the diffuse soft X-ray background at the Galactic plane

    NASA Technical Reports Server (NTRS)

    Wang, Qingde

    1992-01-01

    A deep Einstein IPC image of the Galactic plane provides important information about the Galactic diffuse X-ray background. Free from contamination by sources with fluxes greater than about 4 x 10 exp -14 ergs/sq cm s and by X-rays from beyond the Galactic plane, the intensity and spectrum of the background at the Galactic plane are measured for the first time in the 0.16-3.5 keV band. The spectrum can be characterized by a thermal hot gas model with a temperature of about 4,000,000 K, and the M-band Galactic flux is about 3 x 10 exp -8 ergs/sq cm s sr. This background is enhanced in the M band at the Galactic plane, but it is keV regime. If discrete sources are to be responsible for the background, their surface density must be much greater than one source per resolution element of the IPC (i.e., about 0.4 sources/sq arcmin) because of the lack of a correlation among observed X-ray on scales comparable to the instrument resolution. This density constraint, together with a model study of the Galactic emission, leads to the conclusion that no known stellar population could be responsible for the bulk of the emission.

  14. InstantScope: a low-cost whole slide imaging system with instant focal plane detection.

    PubMed

    Guo, Kaikai; Liao, Jun; Bian, Zichao; Heng, Xin; Zheng, Guoan

    2015-09-01

    We report the development of a high-throughput whole slide imaging (WSI) system by adapting a cost-effective optomechanical add-on kit to existing microscopes. Inspired by the phase detection concept in professional photography, we attached two pinhole-modulated cameras at the eyepiece ports for instant focal plane detection. By adjusting the positions of the pinholes, we can effectively change the view angle for the sample, and as such, we can use the translation shift of the two pinhole-modulated images to identify the optimal focal position. By using a small pinhole size, the focal-plane-detection range is on the order of millimeter, orders of magnitude longer than the objective's depth of field. We also show that, by analyzing the phase correlation of the pinhole-modulated images, we can determine whether the sample contains one thin section, folded sections, or multiple layers separated by certain distances - an important piece of information prior to a detailed z scan. In order to achieve system automation, we deployed a low-cost programmable robotic arm to perform sample loading and $14 stepper motors to drive the microscope stage to perform x-y scanning. Using a 20X objective lens, we can acquire a 2 gigapixel image with 14 mm by 8 mm field of view in 90 seconds. The reported platform may find applications in biomedical research, telemedicine, and digital pathology. It may also provide new insights for the development of high-content screening instruments. PMID:26417493

  15. InstantScope: a low-cost whole slide imaging system with instant focal plane detection

    PubMed Central

    Guo, Kaikai; Liao, Jun; Bian, Zichao; Heng, Xin; Zheng, Guoan

    2015-01-01

    We report the development of a high-throughput whole slide imaging (WSI) system by adapting a cost-effective optomechanical add-on kit to existing microscopes. Inspired by the phase detection concept in professional photography, we attached two pinhole-modulated cameras at the eyepiece ports for instant focal plane detection. By adjusting the positions of the pinholes, we can effectively change the view angle for the sample, and as such, we can use the translation shift of the two pinhole-modulated images to identify the optimal focal position. By using a small pinhole size, the focal-plane-detection range is on the order of millimeter, orders of magnitude longer than the objective’s depth of field. We also show that, by analyzing the phase correlation of the pinhole-modulated images, we can determine whether the sample contains one thin section, folded sections, or multiple layers separated by certain distances – an important piece of information prior to a detailed z scan. In order to achieve system automation, we deployed a low-cost programmable robotic arm to perform sample loading and $14 stepper motors to drive the microscope stage to perform x-y scanning. Using a 20X objective lens, we can acquire a 2 gigapixel image with 14 mm by 8 mm field of view in 90 seconds. The reported platform may find applications in biomedical research, telemedicine, and digital pathology. It may also provide new insights for the development of high-content screening instruments. PMID:26417493

  16. 2128 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 33, NO. 11, NOVEMBER 2014 Autonomous Real-Time Interventional Scan Plane

    E-print Network

    Park, Yong-Lae

    2128 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 33, NO. 11, NOVEMBER 2014 Autonomous Real on three-dimensional needle bending, as measured from magnetic resonance imaging (MRI)-compatible optical strains is used to estimate its full 3-D shape and control the imaging plane of an MR scanner in real

  17. Recursive Focal Plane Wavefront and Bias Estimation for the Direct Imaging of Exoplanets

    NASA Astrophysics Data System (ADS)

    Eldorado Riggs, A. J.; Kasdin, N. Jeremy; Groff, Tyler Dean

    2016-01-01

    To image the reflected light from exoplanets and disks, an instrument must suppress diffracted starlight by about nine orders of magnitude. A coronagraph alters the stellar PSF to create regions of high contrast, but it is extremely sensitive to wavefront aberrations. Deformable mirrors (DMs) are necessary to mitigate these quasi-static aberrations and recover high-contrast. To avoid non-common path aberrations, the science camera must be used as the primary wavefront sensor. Focal plane wavefront correction is an iterative process, and obtaining sufficient signal in the dark holes requires long exposure times. The fastest coronagraphic wavefront correction techniques require estimates of the stellar electric field. The main challenge of coronagraphy is thus to perform complex wavefront estimation quickly and efficiently using intensity images from the camera. The most widely applicable and tested technique is DM Diversity, in which a DM modulates the focal plane intensity and several images are used to reconstruct the stellar electric field in a batch process. At the High Contrast Imaging Lab (HCIL) at Princeton, we have developed an iterative extended Kalman filter (IEKF) to improve upon this technique. The IEKF enables recursive starlight estimation and can utilize fewer images per iteration, thereby speeding up wavefront correction. This IEKF formulation also estimates the bias in the images recursively. Since exoplanets and disks are embedded in the incoherent bias signal, the IEKF enables detection of science targets during wavefront correction. Here we present simulated and experimental results from Princeton's HCIL demonstrating the effectiveness of the IEKF for recursive electric field estimation and exoplanet detection.

  18. Detection of cracks under cladding using magneto-optic imaging and rotating in-plane magnetization

    NASA Astrophysics Data System (ADS)

    Fitzpatrick, Gerald L.; Skaugset, Richard L.; Thome, David K.; Shih, William C.

    1996-11-01

    Conventional nondestructive inspection (NDI) of steel components, using magnetic particle, flux-leakage or near surface ultrasonic methods, is rendered difficult by the presence of protective coatings such as paint or stainless- steel cladding. Thick-section nuclear reactor pressure vessels (RPVs), having as-welded cladding up to 0.25 inches thick are a case in point. Here, magnetic particle techniques do not work and ultrasonic techniques are difficult to apply because of cladding roughens and variable elastic properties in the cladding and the weld interface. An NDI technique that is essentially unaffected by standard thicknesses of protective coatings would be a major advance. Magneto-optic imaging is one such technique. While conventional magneto-optic/eddy current imagers (MOIs) are a proven technology in the NDI of nonferromagnetic conductors, they do not possess a self-contained method for magnetizing steel. The purpose of this work was to develop methods for producing rotating, in-plane magnetization and then combine this technology with magneto-optic imaging to produce a self-contained instrument capable of real-time imaging of cracks in steel through protective coatings. We successfully demonstrated rotating in-plane magnetization using special 'quadrature' magnetic-yokes designed to accommodate both flat and cylindrical steel surfaces. The yokes were attached one at a time, to an MOI of reduced size, and the combined system was placed on a sample of the appropriate curvature containing cracks. A two-channel power amplifier was used to drive the yoke coils in quadrature. The resulting crack images were found to be much less sensitive to liftoff than conventional magnetic particle or flux-leakage NDI. In particular, cracks in steel were successfully imaged through 0.125 inches of stainless-steel cladding, making it likely that images of cracks in steel under even thicker cladding should be possible after further development of the technology. Unlike conventional magnetic particle or flux- leakage NDI, where crack orientation is important, rotating in-plane magnetization renders crack orientation irrelevant. Finally, because of these successes, the new NDI technology for steel should find many important applications.

  19. Camera model and calibration process for high-accuracy digital image metrology of inspection planes

    NASA Astrophysics Data System (ADS)

    Correia, Bento A. B.; Dinis, Joao

    1998-10-01

    High accuracy digital image based metrology must rely on an integrated model of image generation that is able to consider simultaneously the geometry of the camera vs. object positioning, and the conversion of the optical image on the sensor into an electronic digital format. In applications of automated visual inspection involving the analysis of approximately plane objects these models are generally simplified in order to facilitate the process of camera calibration. In this context, the lack of rigor in the determination of the intrinsic parameters in such models is particularly relevant. Aiming at the high accuracy metrology of contours of objects lying on an analysis plane, and involving sub-pixel measurements, this paper presents a three-stage camera model that includes an extrinsic component of perspective distortion and the intrinsic components of radial lens distortion and sensor misalignment. The later two factors are crucial in applications of machine vision that rely on the use of low cost optical components. A polynomial model for the negative radial lens distortion of wide field of view CCTV lenses is also established.

  20. Subarray coherence based postfilter for eigenspace based minimum variance beamformer in ultrasound plane-wave imaging.

    PubMed

    Zhao, Jinxin; Wang, Yuanyuan; Yu, Jinhua; Guo, Wei; Li, Tianjie; Zheng, Yong-Ping

    2016-02-01

    This paper introduces a new beamformer, which combines the eigenspace based minimum variance (ESBMV) beamformer with a subarray coherence based postfilter (SCBP), for improving the quality of ultrasound plane-wave imaging. The ESBMV beamformer has been validated in improving the imaging contrast, but the difficulty in dividing the signal subspace limits the usage of it in the low signal-to-noise ratio (SNR) scenarios. Coherence factor (CF) based methods could optimize the output of a distortionless beamformer to reduce sidelobes, but the influence by the subarray decorrelation technique on the postfilter design has not attracted enough concern before. Accordingly, an ESBMV-SCBP beamformer was proposed in this paper, which used the coherence of the subarray signal to compute an SCBP to optimize the ESBMV results. Simulated and experimental data were used to evaluate the performance of the proposed method. The results showed that the ESBMV-SCBP method achieved an improved imaging quality compared with the ESBMV beamformer. In the simulation study, the contrast ratio (CR) for an anechoic cyst was improved by 9.88dB and the contrast-to-noise ratio (CNR) was improved by 0.97 over the ESBMV. In the experimental study, the CR improvements for two anechoic cysts were 7.32dB and 9.45dB, while the CNRs were improved by 1.27 and 0.66, respectively. The ESBMV-SCBP also showed advantages over the ESBMV-Wiener beamformer in preserving a less grainy speckle, which is closer to that of distortionless beamformers and benefits the imaging contrast. With a relatively small extra computational load, the proposed method has potential to enhance the quality of the ultrasound plane-wave imaging. PMID:26582600

  1. Stolt’s f-k migration for plane wave ultrasound imaging

    PubMed Central

    Garcia, Damien; Le Tarnec, Louis; Muth, Stéphan; Montagnon, Emmanuel; Porée, Jonathan; Cloutier, Guy

    2013-01-01

    Ultrafast ultrasound is an emerging modality that offers new perspectives and opportunities in medical imaging. Plane wave imaging (PWI) allows one to attain very high frame rates by transmission of planar ultrasound wavefronts. As a plane wave reaches a given scatterer, the latter becomes a secondary source emitting upward spherical waves and creating a diffraction hyperbola in the received RF (radio-frequency) signals. To produce an image of the scatterers, all the hyperbolas must be migrated back to their apexes. In order to perform beamforming of plane wave echo RFs and return high-quality images at high frame rates, we propose a new migration method carried out in the frequency-wavenumber (f-k) domain. The f-k migration for PWI has been adapted from the Stolt migration for seismic imaging. This migration technique is based on the exploding reflector model (ERM), which consists in assuming that all the scatterers explode in concert and become acoustic sources. The classical ERM model, however, is not appropriate for PWI. We showed that the ERM can be made suitable for PWI by a spatial transformation of the hyperbolic traces present in the RF data. In vitro experiments were performed to sketch the advantages of PWI with Stolt’s f-k migration over the conventional delay-and-sum (DAS) approach. The Stolt’s f-k migration was also compared with the Fourier-based method developed by J-Y Lu. Our findings show that multi-angle compounded f-k migrated images are of quality similar to those obtained with a state-of-the-art dynamic focusing mode. This remained true even with a very small number of steering angles thus ensuring a highly competitive frame rate. In addition, the new FFT-based f-k migration provides comparable or better contrast-to-noise ratio and lateral resolution than the Lu’s and DAS migration schemes. Matlab codes of the Stolt’s f-k migration for PWI are provided. PMID:24626107

  2. The study of blue LED to induce fluorescence spectroscopy and fluorescence imaging for oral carcinoma detection

    NASA Astrophysics Data System (ADS)

    Zheng, Longjiang; Hu, Yuanting

    2009-07-01

    Fluorescence spectroscopy and fluorescence imaging diagnosis of malignant lesions provides us with a new method to diagnose diseases in precancerous stage. Early diagnosis of disease has significant importance in cancer treatment, because most cancers can be cured well in precancerous, especially when the diffusion of cancer is limited in a restricted region. In this study, Golden hamster models were applied to 5% 9, 10 dimethyl-1, 2-benzanthracene (DMBA) to induce hamster buccal cheek pouch carcinoma three times a week. Rose Bengal, which has been used in clinican for years and avoids visible side-effect to human was chosen as photosensitizer. 405 nm blue LED was used to induce the fluorescence of photosensitizer. After topical application of photosensitizer, characteristic red emission fluorescence peak was observed around 600nm. Similar, normal oral cavity has special luminescence around 480nm. Fluorescence spectroscopy technology is based on analysing emission peaks of photosensitizer in the areas of oral carcinoma, moreover, red-to-green (IR/IG) intensity ratio is also applied as a diagnostic algorithm. A CCD which is connected with a computer is used to take pictures at carcinoma areas through different filters. Fluorescence images from normal hamster buccal cheek pouch are compared with those from carcinogen-induced models of carcinoma, and morphological differences between normal and lesion tissue can be distinguished. The pictures are analyzed by Matlab and shown on the screen of computer. This paper demonstrates that Rose Bengal could be used as photosensitizer to detect oral carcinoma, and blue LED as excitation source could not only have a good effect to diagnose oral carcinoma, but also decrease cost greatly.

  3. Improving the speckle noise attenuation of simultaneous spectral differential imaging with a focal plane holographic diffuser

    E-print Network

    Lafrenière, D; Nadeau, D; Artigau, E; Lafreni\\`ere, David; Doyon, Ren\\'e; Nadeau, Daniel

    2007-01-01

    Direct exoplanet detection is limited by speckle noise in the point spread function (PSF) of the central star. This noise can be reduced by subtracting PSF images obtained simultaneously in adjacent narrow spectral bands using a multi-channel camera (MCC), but only to a limit imposed by differential optical aberrations in the MCC. To alleviate this problem, we suggest the introduction of a holographic diffuser at the focal plane of the MCC to convert the PSF image into an incoherent illumination scene that is then re-imaged with the MCC. The re-imaging is equivalent to a convolution of the scene with the PSF of each spectral channel of the camera. Optical aberrations in the MCC affect only the convolution kernel of each channel and not the PSF globally, resulting in better correlated images. We report laboratory measurements with a dual channel prototype (1.575 micron and 1.625 micron) to validate this approach. A speckle noise suppression factor of 12-14 was achieved, an improvement by a factor ~5 over that ...

  4. Improving the speckle noise attenuation of simultaneous spectral differential imaging with a focal plane holographic diffuser

    E-print Network

    David Lafrenière; René Doyon; Daniel Nadeau Étienne Artigau; Christian Marois; Mathilde Beaulieu

    2007-04-03

    Direct exoplanet detection is limited by speckle noise in the point spread function (PSF) of the central star. This noise can be reduced by subtracting PSF images obtained simultaneously in adjacent narrow spectral bands using a multi-channel camera (MCC), but only to a limit imposed by differential optical aberrations in the MCC. To alleviate this problem, we suggest the introduction of a holographic diffuser at the focal plane of the MCC to convert the PSF image into an incoherent illumination scene that is then re-imaged with the MCC. The re-imaging is equivalent to a convolution of the scene with the PSF of each spectral channel of the camera. Optical aberrations in the MCC affect only the convolution kernel of each channel and not the PSF globally, resulting in better correlated images. We report laboratory measurements with a dual channel prototype (1.575 micron and 1.625 micron) to validate this approach. A speckle noise suppression factor of 12-14 was achieved, an improvement by a factor ~5 over that obtained without the holographic diffuser. Simulations of realistic exoplanet populations for three representative target samples show that the increase in speckle noise attenuation achieved in the laboratory would roughly double the number of planets that could be detected with current adaptive optics systems on 8-m telescopes.

  5. Large size MOEMS Fabry-Perot interferometer filter for focal plane array hyperspectral imaging

    NASA Astrophysics Data System (ADS)

    Chee, J.; Hwu, J.; Kim, T. S.; Kubby, J.; Velicu, S.; Gupta, N.

    2015-02-01

    Focal plane array (FPA) technology is mature and is widely used for imaging applications. However, FPAs have broadband responses which limit their ability to provide high performance in hyperspectral applications such as detection of buried explosives, and identifying the presence of explosive chemicals and their concentrations. EPIR is currently developing Micro-Opto-Electro-Mechanical System (MOEMS) Fabry-Perot interferometer filter (FPF) devices for FPAs. In this paper, we present our approach to MOEMS FPF design and fabrication that will meet the size requirements for large format FPA hyperspectral imaging. We also report the performance of our FPF resonance cavity, capable of up to 3 ?m change gap in tens of nanometer increments.

  6. Automatic standard plane adjustment on mobile C-Arm CT images of the calcaneus using atlas-based feature registration

    NASA Astrophysics Data System (ADS)

    Brehler, Michael; Görres, Joseph; Wolf, Ivo; Franke, Jochen; von Recum, Jan; Grützner, Paul A.; Meinzer, Hans-Peter; Nabers, Diana

    2014-03-01

    Intraarticular fractures of the calcaneus are routinely treated by open reduction and internal fixation followed by intraoperative imaging to validate the repositioning of bone fragments. C-Arm CT offers surgeons the possibility to directly verify the alignment of the fracture parts in 3D. Although the device provides more mobility, there is no sufficient information about the device-to-patient orientation for standard plane reconstruction. Hence, physicians have to manually align the image planes in a position that intersects with the articular surfaces. This can be a time-consuming step and imprecise adjustments lead to diagnostic errors. We address this issue by introducing novel semi-/automatic methods for adjustment of the standard planes on mobile C-Arm CT images. With the semi-automatic method, physicians can quickly adjust the planes by setting six points based on anatomical landmarks. The automatic method reconstructs the standard planes in two steps, first SURF keypoints (2D and newly introduced pseudo-3D) are generated for each image slice; secondly, these features are registered to an atlas point set and the parameters of the image planes are transformed accordingly. The accuracy of our method was evaluated on 51 mobile C-Arm CT images from clinical routine with manually adjusted standard planes by three physicians of different expertise. The average time of the experts (46s) deviated from the intermediate user (55s) by 9 seconds. By applying 2D SURF key points 88% of the articular surfaces were intersected correctly by the transformed standard planes with a calculation time of 10 seconds. The pseudo-3D features performed even better with 91% and 8 seconds.

  7. Vibration measurement of a miniature component by high-speed image-plane digital holographic microscopy

    SciTech Connect

    Fu Yu; Shi Hongjian; Miao Hong

    2009-04-10

    Measuring deformation of vibrating specimens whose dimensions are in the submillimeter range introduces a number of difficulties using laser interferometry. Normal interferometry is not suitable because of a phase ambiguity problem. In addition, the noise effect is much more serious in the measurement of small objects because a high-magnification lens is used. We present a method for full-field measurement of displacement, velocity, and acceleration of a vibrating miniature object based on image-plane digital holographic microscopy. A miniature cantilever beam is excited by a piezoelectric transducer stage with a sinusoidal configuration. A sequence of digital holograms is captured using a high-speed digital holographic microscope. Windowed Fourier analysis is applied in the spatial and spatiotemporal domains to extract the displacement, velocity and acceleration. The result shows that a combination of image-plane digital holographic microscopy and windowed Fourier analyses can be used to study vibration without encountering a phase ambiguity problem, and one can obtain instantaneous kinematic parameters on each point.

  8. Solid-state image sensor with focal-plane digital photon-counting pixel array

    NASA Technical Reports Server (NTRS)

    Fossum, Eric R. (inventor); Pain, Bedabrata (inventor)

    1995-01-01

    A photosensitive layer such as a-Si for a UV/visible wavelength band is provided for low light level imaging with at least a separate CMOS amplifier directly connected to each PIN photodetector diode to provide a focal-plane array of NxN pixels, and preferably a separate photon-counting CMOS circuit directly connected to each CMOS amplifier, although one row of counters may be time shared for reading out the photon flux rate of each diode in the array, together with a buffer memory for storing all rows of the NxN image frame before transfer to suitable storage. All CMOS circuitry is preferably fabricated in the same silicon layer as the PIN photodetector diode for a monolithic structure, but when the wavelength band of interest requires photosensitive material different from silicon, the focal-plane array may be fabricated separately on a different semiconductor layer bump-bonded or otherwise bonded for a virtually monolithic structure with one free terminal of each diode directly connected to the input terminal of its CMOS amplifier and digital counter for integration of the photon flux rate at each photodetector of the array.

  9. THz imaging using Glow Discharge Detector (GDD) focal plane arrays and large aperture quasi optic mirrors

    NASA Astrophysics Data System (ADS)

    Kopeika, N. S.; Abramovich, A.; Joseph, H.; Rozban, D.; Akram, A.; Levanon, A.; Yadid-Pecht, O.; Belenky, A.; Lineykin, S.

    2010-10-01

    The properties of terahertz (THz) radiation are well known. They penetrate well most nonconducting media; there are no known biological hazards, and atmospheric attenuation and scattering is lower than for visual and IR radiation. Recently we have found that common miniature commercial neon glow discharge detector (GDD) lamps costing typically about 30 cents each exhibit high sensitivity to THz radiation, with microsecond order rise times, thus making them excellent candidates for such focal plane arrays. Based on this technology we designed, built and tested 4X4 and 8X8 GDD focal plane arrays. A line vector of 32 GDD pixels is being designed in order to increase the number of pixels in such arrays and thus the image resolution. Unique large aperture quasi optic mirrors were design and tested experimentally in this work. A new technology of light weight large aperture mirrors is proposed in this work. In this case a metal coating on plastic substrate is demonstrated. According to first experiments this technology proves to reliable with minimal deformation in LAB conditions. THz Images at 100 GHz were taken using this new inexpensive technology with good quality and resolution.

  10. Ultracompact Blue Dwarf Galaxies: Hubble Space Telescope Imaging and Stellar Population Analysis

    NASA Astrophysics Data System (ADS)

    Corbin, Michael R.; Vacca, William D.; Cid Fernandes, Roberto; Hibbard, John E.; Somerville, Rachel S.; Windhorst, Rogier A.

    2006-11-01

    We present deep Hubble Space Telescope (HST) Advanced Camera for Surveys/High Resolution Channel U-, narrow-V-, and I-band images of nine ``ultracompact'' blue dwarf galaxies (UCBDs) selected from the Sloan Digital Sky Survey (SDSS). We define UCBDs as local (z<0.01) star-forming galaxies having angular diameters less than 6" and physical diameters <1 kpc. They are also among the most metal-poor galaxies known, including objects having 12+log(O/H)<7.65, and are found to reside within voids. Both the HST images and the objects' SDSS optical spectra reveal that they are composites of young (~1-10 Myr) populations that dominate their light and older (~10 Gyr) populations that dominate their stellar masses, which we estimate to be ~107-108 Msolar. An intermediate-age (~107-109 yr) population is also indicated in most objects. The objects do not appear to be as dynamically disturbed as the prototype UCBD, POX 186, but the structure of several of them suggests that their current star formation has been triggered by the collisions/mergers of smaller clumps of stars. In one case, HS 0822+3542, the images resolve what may be two small (~100 pc) components that have recently collided, supporting this interpretation. In six of the objects much of the star formation is concentrated in young massive clusters, contributing to their compactness in ground-based images. The evidence that the galaxies consist mainly of ~10 Gyr old stars establishes that they are not protogalaxies, forming their first generation of stars. Their low metallicities are more likely to be the result of the escape of supernova ejecta, rather than youth.

  11. FPA-CS: Focal Plane Array-based Compressive Imaging in Short-wave Infrared Huaijin Chen

    E-print Network

    FPA-CS: Focal Plane Array-based Compressive Imaging in Short-wave Infrared Huaijin Chen , M. Salman ECE Department, Carnegie Mellon University, Pittsburgh, PA Abstract Cameras for imaging in short and mid-wave infrared spectra are significantly more expensive than their counter- parts in visible

  12. Bi-plane correlation imaging for improved detection of lung nodules Ehsan Samei1,2,3

    E-print Network

    Bi-plane correlation imaging for improved detection of lung nodules Ehsan Samei1,2,3 , David M lesions in planar images. An anthropomorphic chest phantom, supplemented with added nodule phantoms (5 for small (5-9 mm) and large (9-13 mm) nodules, but the relative improvement was significantly higher

  13. Focal Image Plane Detection Based on Central Coordinate Point Spectral Value in Off-Axis Digital Particle Holography

    NASA Astrophysics Data System (ADS)

    Qiu, Peizhen; Deng, Lijun; Lu, Wenhui

    2015-12-01

    A method to detect the focal image plane from a single off-axis digital particle hologram is proposed. This method utilizes the central coordinate point spectral value of the reconstructed particle image as focusing criterion to detect the focal image plane. It is found that the central coordinate point spectral values come into maximum when the reconstruction distance is equal to the actual distance that was used in experiment of hologram acquisition. Numerical simulations are given to validate the feasibility and effectiveness of the proposed method. The proposed method is a potential and better option for studying three dimensional particles by using digital holography.

  14. Spatiotemporal object-based image analyses in the Blue Nile area using optical multispectral imagery

    NASA Astrophysics Data System (ADS)

    El-Abbas, Mustafa M.; Csaplovics, E.

    2012-10-01

    Considering the dramatic change occurred in the Blue Nile region of Sudan, this study is of great value for developing a method for identification of forestland cover extents, integrating rate of changes and causes. The study utilizes three consecutive optical multispectral images, two LANDSAT TM images of 1990 and 1999 as well as TERRA ASTER image of 2009 to evaluate forest cover dynamics during the period 1990 to 2009. The method adopted in this research consists in cross operation of classified images of different points in time, which utilizes the overlaying images to be compared for change detection. New layer of segments was created representing the change areas as well as the overlapped areas of each pair of classified images. Consequently, a series of optimized algorithms have been developed to estimate the change in Land Use Land Cover (LULC). At the fundamental stage, smooth and accurate classified images are very essential for any post-classification change detection technique, which were typically achieved by object-based approach (OB) with overall accuracy 91 %, 93 % and 95 % for the years 1990, 1999 and 2009 respectively. Nine LULC classes were generated from each, i.e. agriculture (Ag.), bare-land (Br.), crop-land (Cr.), dense-forest (DF), grassland (Gr.), orchard (Or.), scattered-forest (SF), settlements (St.) and water (W). Therefore, and considering the dramatic change observed in the area, the fusion operation of multi-temporal data results initially in quite numerous change "from-to" information classes, which allows for aggregation of these classes at any hierarchical level of details. Moreover, the developed approach allows the operator to effectively know the spatial pattern of change, trend and magnitude of the dynamics occurred in each of the classified LULC classes. While many change-detection techniques have been developed, a little has been done to assess the quality of these techniques. Hence, the change maps resulting from cross operation were assessed, which reveals that, the accuracies of the change maps for the two time intervals were consistently high.

  15. Visualization of peripheral vasodilative indices in human skin by use of red, green, blue images

    NASA Astrophysics Data System (ADS)

    Nishidate, Izumi; Tanaka, Noriyuki; Kawase, Tatsuya; Maeda, Takaaki; Yuasa, Tomonori; Aizu, Yoshihisa; Yuasa, Tetsuya; Niizeki, Kyuichi

    2013-06-01

    We propose a method to visualize the arterial inflow, the vascular resistance, and the venous capacitance in the skin tissue from red, green, blue (RGB) digital color images. The arterial inflow and the venous capacitance in the skin tissue are visualized based on an increase in the rate of change in the total blood concentration and the change of the total blood concentration during upper limb occlusion at a pressure of 50 mmHg. The resultant arterial inflow with the measured mean arterial pressure also provides an image of the vascular resistance in human skin. The arterial inflow, the vascular resistance, and the venous capacitance acquired by the method are well correlated with those obtained from the conventional strain-gauge plethysmograph. The correlation coefficients R between the estimated values by the method and the measurements by the SPG are calculated to be 0.83 (P<0.001) for the arterial inflow, 0.77 (P<0.01) for the vascular resistance, and 0.77 (P<0.01) for the venous capacitance. The arterial inflow and the venous capacitance in the skin tissue are significantly higher in active subjects compared with the sedentary subjects, whereas the vascular resistance was significantly lower in the active subjects compared with the sedentary subjects. The results of the present study indicate the possibility of using the proposed method for evaluating the peripheral vascular functions in human skin.

  16. Visualization of peripheral vasodilative indices in human skin by use of red, green, blue images.

    PubMed

    Nishidate, Izumi; Tanaka, Noriyuki; Kawase, Tatsuya; Maeda, Takaaki; Yuasa, Tomonori; Aizu, Yoshihisa; Yuasa, Tetsuya; Niizeki, Kyuichi

    2013-06-01

    We propose a method to visualize the arterial inflow, the vascular resistance, and the venous capacitance in the skin tissue from red, green, blue (RGB) digital color images. The arterial inflow and the venous capacitance in the skin tissue are visualized based on an increase in the rate of change in the total blood concentration and the change of the total blood concentration during upper limb occlusion at a pressure of 50 mmHg. The resultant arterial inflow with the measured mean arterial pressure also provides an image of the vascular resistance in human skin. The arterial inflow, the vascular resistance, and the venous capacitance acquired by the method are well correlated with those obtained from the conventional strain-gauge plethysmograph. The correlation coefficients R between the estimated values by the method and the measurements by the SPG are calculated to be 0.83 (P < 0.001) for the arterial inflow, 0.77 (P < 0.01) for the vascular resistance, and 0.77 (P < 0.01) for the venous capacitance. The arterial inflow and the venous capacitance in the skin tissue are significantly higher in active subjects compared with the sedentary subjects, whereas the vascular resistance was significantly lower in the active subjects compared with the sedentary subjects. The results of the present study indicate the possibility of using the proposed method for evaluating the peripheral vascular functions in human skin. PMID:23264964

  17. Visualization of peripheral vasodilative indices in human skin by use of red, green, blue images.

    PubMed

    Nishidate, Izumi; Tanaka, Noriyuki; Kawase, Tatsuya; Maeda, Takaaki; Yuasa, Tomonori; Aizu, Yoshihisa; Yuasa, Tetsuya; Niizeki, Kyuichi

    2013-06-01

    We propose a method to visualize the arterial inflow, the vascular resistance, and the venous capacitance in the skin tissue from red, green, blue (RGB) digital color images. The arterial inflow and the venous capacitance in the skin tissue are visualized based on an increase in the rate of change in the total blood concentration and the change of the total blood concentration during upper limb occlusion at a pressure of 50 mmHg. The resultant arterial inflow with the measured mean arterial pressure also provides an image of the vascular resistance in human skin. The arterial inflow, the vascular resistance, and the venous capacitance acquired by the method are well correlated with those obtained from the conventional strain-gauge plethysmograph. The correlation coefficients R between the estimated values by the method and the measurements by the SPG are calculated to be 0.83 (P<0.001) for the arterial inflow, 0.77 (P<0.01) for the vascular resistance, and 0.77 (P<0.01) for the venous capacitance. The arterial inflow and the venous capacitance in the skin tissue are significantly higher in active subjects compared with the sedentary subjects, whereas the vascular resistance was significantly lower in the active subjects compared with the sedentary subjects. The results of the present study indicate the possibility of using the proposed method for evaluating the peripheral vascular functions in human skin. PMID:23748701

  18. Ultracompact Blue Dwarf Galaxies: Hubble Space Telescope Imaging and Stellar Population Analysis

    E-print Network

    Michael R. Corbin; William D. Vacca; Roberto Cid Fernandes; John E. Hibbard; Rachel S. Somerville; Rogier A. Windhorst

    2006-07-12

    We present deep Hubble Space Telescope Advanced Camera for Surveys / High Resolution Channel U, narrow-V, and I images of nine "ultracompact" blue dwarf galaxies (UCBDs) selected from the Sloan Digital Sky Survey. We define UCBDs as local (z POX 186, but the structure of several of them suggests that their current starbursts have been triggered by the collisions/mergers of smaller clumps of stars. In one case, HS 0822+3542, the ACS/HRC images resolve the object into two small (~100 pc) components which appear to have recently collided, supporting this interpretation. In six of the objects much of their star formation is concentrated in Young Massive Star clusters. The evidence that the galaxies consist mainly of ~10 Gyr old stars establishes that they are not protogalaxies; their low metallicities are more likely to be the result of the escape of supernova ejecta, as opposed to youth. These results are consistent with recent galaxy formation simulations which predict that cosmic re-ionization at z ~ 6 significantly limited the subsequent star formation of dwarf galaxies in voids due to the photo-evaporation of baryons from their cold dark matter halos (Abridged).

  19. Development of a Nile-blue based chemodosimeter for Hg2+ in aqueous solution and its application in biological imaging.

    PubMed

    Hu, Mingming; Yin, Jianhua; Li, Yahong; Zhao, Xiaofang

    2015-03-01

    A Nile blue-based chemodosimeter was newly synthesized. It can detect Hg(2+) in aqueous solution based on desulfurization reaction. Upon its addition into aqueous Hg(2+) ion solution, it exhibited a considerable blue-shift in its absorption and obvious fluorescence quenching. The detection mechanism was proved by mass spectrometry analysis and Gaussian calculations. Detection at an emission of 685 nm was extremely sensitive, with a detection limit of 2.5?×?10(-9) mol/L. The fluorescent images in living cells and zebrafish demonstrate its potential for studying the accumulation of mercury species in organism. PMID:25666716

  20. Research on auto-calibration technology of the image plane's center of 360-degree and all round looking camera

    NASA Astrophysics Data System (ADS)

    Zhang, Shaojun; Xu, Xiping

    2015-10-01

    The 360-degree and all round looking camera, as its characteristics of suitable for automatic analysis and judgment on the ambient environment of the carrier by image recognition algorithm, is usually applied to opto-electronic radar of robots and smart cars. In order to ensure the stability and consistency of image processing results of mass production, it is necessary to make sure the centers of image planes of different cameras are coincident, which requires to calibrate the position of the image plane's center. The traditional mechanical calibration method and electronic adjusting mode of inputting the offsets manually, both exist the problem of relying on human eyes, inefficiency and large range of error distribution. In this paper, an approach of auto- calibration of the image plane of this camera is presented. The imaging of the 360-degree and all round looking camera is a ring-shaped image consisting of two concentric circles, the center of the image is a smaller circle and the outside is a bigger circle. The realization of the technology is just to exploit the above characteristics. Recognizing the two circles through HOUGH TRANSFORM algorithm and calculating the center position, we can get the accurate center of image, that the deviation of the central location of the optic axis and image sensor. The program will set up the image sensor chip through I2C bus automatically, we can adjusting the center of the image plane automatically and accurately. The technique has been applied to practice, promotes productivity and guarantees the consistent quality of products.

  1. An Image-plane Algorithm for JWST's Non-redundant Aperture Mask Data

    NASA Astrophysics Data System (ADS)

    Greenbaum, Alexandra Z.; Pueyo, Laurent; Sivaramakrishnan, Anand; Lacour, Sylvestre

    2015-01-01

    The high angular resolution technique of non-redundant masking (NRM) or aperture masking interferometry (AMI) has yielded images of faint protoplanetary companions of nearby stars from the ground. AMI on James Webb Space Telescope (JWST)'s Near Infrared Imager and Slitless Spectrograph (NIRISS) has a lower thermal background than ground-based facilities and does not suffer from atmospheric instability. NIRISS AMI images are likely to have 90%-95% Strehl ratio between 2.77 and 4.8 ?m. In this paper we quantify factors that limit the raw point source contrast of JWST NRM. We develop an analytic model of the NRM point spread function which includes different optical path delays (pistons) between mask holes and fit the model parameters with image plane data. It enables a straightforward way to exclude bad pixels, is suited to limited fields of view, and can incorporate effects such as intra-pixel sensitivity variations. We simulate various sources of noise to estimate their effect on the standard deviation of closure phase, ?CP (a proxy for binary point source contrast). If ?CP < 10-4 radians—a contrast ratio of 10 mag—young accreting gas giant planets (e.g., in the nearby Taurus star-forming region) could be imaged with JWST NIRISS. We show the feasibility of using NIRISS' NRM with the sub-Nyquist sampled F277W, which would enable some exoplanet chemistry characterization. In the presence of small piston errors, the dominant sources of closure phase error (depending on pixel sampling, and filter bandwidth) are flat field errors and unmodeled variations in intra-pixel sensitivity. The in-flight stability of NIRISS will determine how well these errors can be calibrated by observing a point source. Our results help develop efficient observing strategies for space-based NRM.

  2. AN IMAGE-PLANE ALGORITHM FOR JWST'S NON-REDUNDANT APERTURE MASK DATA

    SciTech Connect

    Greenbaum, Alexandra Z.; Pueyo, Laurent; Sivaramakrishnan, Anand; Lacour, Sylvestre

    2015-01-10

    The high angular resolution technique of non-redundant masking (NRM) or aperture masking interferometry (AMI) has yielded images of faint protoplanetary companions of nearby stars from the ground. AMI on James Webb Space Telescope (JWST)'s Near Infrared Imager and Slitless Spectrograph (NIRISS) has a lower thermal background than ground-based facilities and does not suffer from atmospheric instability. NIRISS AMI images are likely to have 90%-95% Strehl ratio between 2.77 and 4.8 ?m. In this paper we quantify factors that limit the raw point source contrast of JWST NRM. We develop an analytic model of the NRM point spread function which includes different optical path delays (pistons) between mask holes and fit the model parameters with image plane data. It enables a straightforward way to exclude bad pixels, is suited to limited fields of view, and can incorporate effects such as intra-pixel sensitivity variations. We simulate various sources of noise to estimate their effect on the standard deviation of closure phase, ?{sub CP} (a proxy for binary point source contrast). If ?{sub CP} < 10{sup –4} radians—a contrast ratio of 10 mag—young accreting gas giant planets (e.g., in the nearby Taurus star-forming region) could be imaged with JWST NIRISS. We show the feasibility of using NIRISS' NRM with the sub-Nyquist sampled F277W, which would enable some exoplanet chemistry characterization. In the presence of small piston errors, the dominant sources of closure phase error (depending on pixel sampling, and filter bandwidth) are flat field errors and unmodeled variations in intra-pixel sensitivity. The in-flight stability of NIRISS will determine how well these errors can be calibrated by observing a point source. Our results help develop efficient observing strategies for space-based NRM.

  3. LOOKING THROUGH THE GALACTIC PLANE: IMAGING COLD DUST TOWARD l = 44 DEG

    SciTech Connect

    Matthews, Henry; Kirk, Helen; Johnstone, Doug; Weferling, Bernd; Cohen, Martin; Jenness, Tim; Davis, Gary; Evans, Aneurin; Dent, William R. F.; Fuller, Gary; Jackson, James M.; Rathborne, Jill; Richer, John; Simon, Robert

    2009-11-15

    We present imaging observations of continuum emission from interstellar dust at 850 and 1200 {mu}m of a section of the Galactic Plane covering 2 deg{sup 2} centered at l = 44 DEG. Complementary jiggle-mapping and fast-scanning techniques were used, respectively, at these two wavelengths. The mapped area includes the well-known star formation regions W49 and G45.1/45.5. Using an automated clump-finding routine, we identify 132 compact 850 {mu}m emission features within the region above a completeness level of about 200 mJy beam{sup -1}. The positions of the latter objects were used to determine fluxes from the 1200 {mu}m image. Spectral line data were subsequently obtained with the same observing beamwidth as at 850 {mu}m for almost half of the objects; these were either imaged in the {sup 13}CO (3-2) line, or basic characteristics determined using the {sup 12}CO (3-2) transition. We use these data, supplemented by existing {sup 13}CO (1-0) and H I survey data, to determine distances and hence derive masses for the dust clump ensemble, assuming a uniform dust temperature of 15 K. From these data we find that the number-mass relationship for clumps in the field is similar to that found for individual star-forming regions.

  4. Pair-Wise, Deformable Mirror, Image Plane-Based Diversity Electric Field Estimation for High Contrast Coronagraphy

    NASA Technical Reports Server (NTRS)

    Give'on, Amir; Kern, Brian D.; Shaklan, Stuart

    2011-01-01

    In this paper we describe the complex electric field reconstruction from image plane intensity measurements for high contrast coronagraphic imaging. A deformable mirror (DM) surface is modied with pairs of complementary shapes to create diversity in the image plane of the science camera where the intensity of the light is measured. Along with the Electric Field Conjugation correction algorithm, this estimation method has been used in various high contrast imaging testbeds to achieve the best contrasts to date both in narrow and in broad band light. We present the basic methodology of estimation in easy to follow list of steps, present results from HCIT and raise several open quations we are confronted with using this method. XXXX We have presented a DM diversity based estimation technique for reconstruction of the complex EF in the image plane based on intensity measurements. The method uses a typical diversity methodology with a unique way of achieving the diversity. In this case, the diversity in the EF is done by changing the DM, using pairs of perturbation patterns ( "probes"). This paper described the complete details of how to solve for the EF and proposed various ways to validate the model used. Without an independent measurement of the EF, it is impossible to quantify the accuracy of each reconstruction. However, since this method is used in conjunction with the EFC correction algorithm to sub-nanometer level of correction, it is considered the best estimation technique to date. That said, there are several open questions that are presented in this paper regarding the relationship between coherent and incoherent light throughout correction runs. This estimation technique has been developed for a family of wavefront correction algorithms such as the EFC, 1 Energy Minimization8 and Stroke Minimization, 9 all requiring an estimate of the complex valued wavefront in the image plane. The EFC algorithm and the other image plane intensity measurements based correction algorithms require an estimate of the complex field in the science camera image plane in order to determine the commands of the deformable mirror to minimize the total intensity of light in a predetermined region in the image plane.1 The high contrast needed for Earth-like planet detection determines the requirements from the coronagraph and correction system. In order to avoid non-common path errors this estimation technique uses the deformable mirror (DM) to perturb the electric field (EF) at the DM's plane rather than using an additional optical path with an interferometer. 10 Moreover, a typical high contrast imaging coronagraph has masks along its optical path, as such, methods that require both forward and backward numerical propagation of the EF through the system suffer from non-uniqueness effects and/or large errors due to edge effects. The estimation method described in this paper uses only forward propagation of the EF through the coronagraph. Since the measured quantity at the science camera is the intensity of the EF, a perturbation of the EF is needed in order to retrieve the phase information that was lost. In the case presented here, we take a series of intensity measurements at the science camera plane with different changes to the DM surface (these changes to the EF are referred to as "probes" ) and estimate the EF at the science camera image plane. The modulation scheme we describe in this paper is a sequence of DM shapes with accompanying intensity measurements, each intended to exploit the nonlinear relationship of the intensity measurements to the additive EF due to the change in t he DM, which then allow determination of the EF before the probes were applied. Analogously to a phaseshifting interferometer, taking four intensity measurements with varying phase by multiples of ei1r 12 would allow unambiguous determination of the complex EF in the image plane from intensity measurements alone for every point in the plane simultaneously.1

  5. Plane-wave transverse oscillation for high-frame-rate 2-D vector flow imaging.

    PubMed

    Lenge, Matteo; Ramalli, Alessandro; Tortoli, Piero; Cachard, Christian; Liebgott, Hervé

    2015-12-01

    Transverse oscillation (TO) methods introduce oscillations in the pulse-echo field (PEF) along the direction transverse to the ultrasound propagation direction. This may be exploited to extend flow investigations toward multidimensional estimates. In this paper, the TOs are coupled with the transmission of plane waves (PWs) to reconstruct high-framerate RF images with bidirectional oscillations in the pulse-echo field. Such RF images are then processed by a 2-D phase-based displacement estimator to produce 2-D vector flow maps at thousands of frames per second. First, the capability of generating TOs after PW transmissions was thoroughly investigated by varying the lateral wavelength, the burst length, and the transmission frequency. Over the entire region of interest, the generated lateral wavelengths, compared with the designed ones, presented bias and standard deviation of -3.3 ± 5.7% and 10.6 ± 7.4% in simulations and experiments, respectively. The performance of the ultrafast vector flow mapping method was also assessed by evaluating the differences between the estimated velocities and the expected ones. Both simulations and experiments show overall biases lower than 20% when varying the beam-to-flow angle, the peak velocity, and the depth of interest. In vivo applications of the method on the common carotid and the brachial arteries are also presented. PMID:26670852

  6. [Research on the neas infrared focal plane array detector imaging technology used in the laser warning].

    PubMed

    Wang, Zhi-Bin; Huang, Yan-Fei; Wang, Yao-Li; Zhang, Rui; Wang, Yan-Chao

    2014-04-01

    In order to achieve the incoming laser's accurate position, it is necessary to improve the detected laser's direction resolution. The InGaAs focal plane array detector with the type of FPA-320 x 256-C was selected as the core component of the diffraction grating laser warning device. The detection theory of laser wavelength and direction based on diffraction grating was introduced. The drive circuit was designed through the analysis of the detector's performance and parameters. Under the FPGA' s timing control, the detector's analog output was sampled by the high-speed AD. The data was cached to FPGA's extended SRAM, and then transferred to a PC through USB. Labview on a PC collects the raw data for processing and displaying. The imaging experiments were completed with the above method. With the wavelength of 1550 nm and 980 nm laser from different directions the diffraction images were detected. Through analysis the location of the zero order and one order can be determined. According to the grating diffraction theory, the wavelength and the direction of the two-dimensional angle can be calculated. It indicates that the wavelength error is less than 10 nm, and the angle error is less than 1 degrees. PMID:25007645

  7. Infrared hyperspectral imaging using a broadly tunable external cavity quantum cascade laser and microbolometer focal plane array

    SciTech Connect

    Phillips, Mark C.; Ho, Nicolas

    2008-02-04

    A versatile mid-infrared hyperspectral imaging system is demonstrated by combining a broadly tunable external cavity quantum cascade laser and a microbolometer focal plane array. The tunable mid-infrared laser provided high brightness illumination over a tuning range from 985 cm-1 to 1075 cm-1 (9.30-10.15 ?m). Hypercubes containing images at 300 wavelengths separated by 0.3 cm 1 were obtained in 12 s. High spectral resolution chemical imaging of methanol vapor was demonstrated for both static and dynamic systems. The system was also used to image and characterize multiple component liquid and solid samples.

  8. Infrared hyperspectral imaging using a broadly tunable external cavity quantum cascade laser and microbolometer focal plane array.

    PubMed

    Phillips, Mark C; Ho, Nicolas

    2008-02-01

    A versatile mid-infrared hyperspectral imaging system is demonstrated by combining a broadly tunable external cavity quantum cascade laser and a microbolometer focal plane array. The tunable midinfrared laser provided high brightness illumination over a tuning range from 985 cm(-1) to 1075 cm(-1) (9.30-10.15 mum). Hypercubes containing images at 300 wavelengths separated by 0.3 cm(-1) were obtained in 12 s. High spectral resolution chemical imaging of methanol vapor was demonstrated for both static and dynamic systems. The system was also used to image and characterize multiple component liquid and solid samples. PMID:18542262

  9. Ultrafast laser beam shaping for material processing at imaging plane by geometric masks using a spatial light modulator

    NASA Astrophysics Data System (ADS)

    Kuang, Zheng; Li, Jiangning; Edwardson, Stuart; Perrie, Walter; Liu, Dun; Dearden, Geoff

    2015-07-01

    We have demonstrated an original ultrafast laser beam shaping technique for material processing using a spatial light modulator (SLM). Complicated and time-consuming diffraction far-field phase hologram calculations based on Fourier transformations are avoided, while simple and direct geometric masks are used to shape the incident beam at diffraction near-field. Various beam intensity shapes, such as square, triangle, ring and star, are obtained and then reconstructed at the imaging plane of an f-theta lens. The size of the shaped beam is approximately 20 ?m, which is comparable to the beam waist at the focal plane. A polished stainless steel sample is machined by the shaped beam at the imaging plane. The shape of the ablation footprint well matches the beam shape.

  10. Noninvasive Vascular Displacement Estimation for Relative Elastic Modulus Reconstruction in Transversal Imaging Planes

    PubMed Central

    Hansen, Hendrik H.G.; Richards, Michael S.; Doyley, Marvin M.; de Korte, Chris L.

    2013-01-01

    Atherosclerotic plaque rupture can initiate stroke or myocardial infarction. Lipid-rich plaques with thin fibrous caps have a higher risk to rupture than fibrotic plaques. Elastic moduli differ for lipid-rich and fibrous tissue and can be reconstructed using tissue displacements estimated from intravascular ultrasound radiofrequency (RF) data acquisitions. This study investigated if modulus reconstruction is possible for noninvasive RF acquisitions of vessels in transverse imaging planes using an iterative 2D cross-correlation based displacement estimation algorithm. Furthermore, since it is known that displacements can be improved by compounding of displacements estimated at various beam steering angles, we compared the performance of the modulus reconstruction with and without compounding. For the comparison, simulated and experimental RF data were generated of various vessel-mimicking phantoms. Reconstruction errors were less than 10%, which seems adequate for distinguishing lipid-rich from fibrous tissue. Compounding outperformed single-angle reconstruction: the interquartile range of the reconstructed moduli for the various homogeneous phantom layers was approximately two times smaller. Additionally, the estimated lateral displacements were a factor of 2–3 better matched to the displacements corresponding to the reconstructed modulus distribution. Thus, noninvasive elastic modulus reconstruction is possible for transverse vessel cross sections using this cross-correlation method and is more accurate with compounding. PMID:23478602

  11. Dual-view plane illumination microscopy for rapid and spatially isotropic imaging

    PubMed Central

    Kumar, Abhishek; Wu, Yicong; Christensen, Ryan; Chandris, Panagiotis; Gandler, William; McCreedy, Evan; Bokinsky, Alexandra; Colón-Ramos, Daniel A; Bao, Zhirong; McAuliffe, Matthew; Rondeau, Gary; Shroff, Hari

    2015-01-01

    We describe the construction and use of a compact dual-view inverted selective plane illumination microscope (diSPIM) for time-lapse volumetric (4D) imaging of living samples at subcellular resolution. Our protocol enables a biologist with some prior microscopy experience to assemble a diSPIM from commercially available parts, to align optics and test system performance, to prepare samples, and to control hardware and data processing with our software. Unlike existing light sheet microscopy protocols, our method does not require the sample to be embedded in agarose; instead, samples are prepared conventionally on glass coverslips. Tissue culture cells and Caenorhabditis elegans embryos are used as examples in this protocol; successful implementation of the protocol results in isotropic resolution and acquisition speeds up to several volumes per s on these samples. Assembling and verifying diSPIM performance takes ~6 d, sample preparation and data acquisition take up to 5 d and postprocessing takes 3–8 h, depending on the size of the data. PMID:25299154

  12. Intensity profile distortion at the processing image plane of a focused femtosecond laser below the critical power: Analysis and counteraction

    NASA Astrophysics Data System (ADS)

    Pietroy, David; Baubeau, Emmanuel; Faure, Nicolas; Mauclair, Cyril

    2015-03-01

    Femtosecond laser surface processing of materials allows for precise micro or sub-micrometer machining with restricted detrimental side effects. Thus, fine control of the laser intensity distribution (repeatability) in the processing plane is of outmost importance for industrial implementation. In this paper, we study the influence on non-linear effects on the machining quality. We experimentally study the profiles of cavities machined at the image plane of a focused femtosecond laser for a large set of fluences on stainless steel below the critical power. A strong distortion of the cavities is observed for high energetic levels. A beam analysis performed in the machining conditions reveals that the cavity profile follows the laser beam profile even at high fluences where the beam undergoes an increasing distortion. Numerical calculations of the laser beam distribution taking a Kerr effect into account are presented showing a good agreement with the experimental laser profile. To counteract the beam distortion at high fluences, we propose and successfully employ a robust solution consisting in geometrically forming the image processing plane before the laser focusing point. This ensures a beam profile free of distortion even at high fluences. Experimental evidence is made, showing a significant quality increase of the cavity profiles with an image plane placed before the focus point.

  13. Imaging with a 90 frames/s microbolometer focal plane array and high-power terahertz free electron laser

    SciTech Connect

    Dem'yanenko, M. A.; Esaev, D. G.; Knyazev, B. A.; Vinokurov, N. A.; Kulipanov, G. N.

    2008-03-31

    An uncooled microbolometer focal plane array (FPA) has been developed and used for imaging of objects illuminated by monochromatic coherent radiation of a free electron laser tunable in the range of 1.25-2.5 THz. A sensitivity threshold of 1.3x10{sup -3} W/cm{sup 2} was obtained for the FPA with a homemade absolute interferometric power meter. Videos up to 90 frames/s were recorded in both transmission and reflection/scattering modes. When objects were illuminated by laser radiation scattered by a rough metal surface, speckled images were observed. Good quality terahertz images were achieved through the fast rotation of the scatterer.

  14. Three-dimensional image mosaicking using multiple projection planes for 3-D visualization of roadside standing buildings.

    PubMed

    Chon, Jaechoon; Fuse, Takashi; Shimizu, Eihan; Shibasaki, Ryosuke

    2007-08-01

    A novel image-mosaicking technique suitable for 3-D visualization of roadside buildings on websites or mobile systems is proposed. Our method was tested on a roadside building scene taken using a side-looking video camera employing a continuous set of vertical-textured planar faces. A vertical plane approximation of the scene geometry for each frame was calculated using sparsely distributed feature points that were assigned 3-D data through bundle adjustments. These vertical planes were concatenated to create an approximate model on which the images could be backprojected as textures and blended together. Additionally, our proposed method includes an expanded crossed-slits projection around far-range areas to reduce the "ghost effect," a phenomenon in which a particular object appears repeatedly in a created image mosaic. The final step was to produce seamless image mosaics using Dijkstra's algorithm to find the optimum seam line to blend overlapping images. We used our algorithm to create efficient image mosaics in 3-D space from a sequence of real images. PMID:17702278

  15. Implications of image plane line-edge roughness requirements on extreme ultraviolet mask specifications

    SciTech Connect

    Naulleau, P. P.; George, Simi A.

    2009-02-13

    Line-edge roughness (LER) and the related effect of contact size variation remain as significant challenges facing the commercialization of extreme ultraviolet (EUV) lithography. LER is typically viewed as a resist problem; however, recent simulation results have shown that the mask can indeed be an important contributor. Problems arise from both mask absorber LER as well as mask multilayer roughness leading to random phase variations in the reflected beam (see Fig. 1). The latter effect is especially important as higher coherence off-axis illumination conditions are used and defocus is considered. Here we describe these effect in detail and explore how they will impact EUV mask requirements for the 22-nm half-pitch node and beyond. Figure 2 shows modeling results for 22-nm lines printed in a 0.32-numerical aperture system with 100-nm defocus assuming a mask with 0.24-nm rms multilayer roughness and no absorber edge roughness (unlike the example in Fig. 1). The impact of the phase roughness on the printed line-edge roughness is clearly evident and demonstrates the basic problem with mask roughness. The more detailed modeling-based analysis to be presented will account for performance throughout the process window as well as non-stochastic resist effects. We note that the mean-field resist effect is important to consider because, in practice, the resist is the limiting resolution element in the system and therefore dominates the mask-error enhancement factor (MEEF). As is typically the case with projection-optic-induced MEEF, the resist-induced MEEF will lead to even tighter mask requirements. Note that we do not consider resist stochastic effects since the purpose of this study is isolate mask-induced sources of image-plane roughness.

  16. Real-time 3D millimeter wave imaging based FMCW using GGD focal plane array as detectors

    NASA Astrophysics Data System (ADS)

    Levanon, Assaf; Rozban, Daniel; Kopeika, Natan S.; Yitzhaky, Yitzhak; Abramovich, Amir

    2014-03-01

    Millimeter wave (MMW) imaging systems are required for applications in medicine, communications, homeland security, and space technology. This is because there is no known ionization hazard for biological tissue, and atmospheric attenuation in this range of the spectrum is relatively low. The lack of inexpensive room temperature imaging systems makes it difficult to give a suitable MMW system for many of the above applications. 3D MMW imaging system based on chirp radar was studied previously using a scanning imaging system of a single detector. The system presented here proposes to employ a chirp radar method with a Glow Discharge Detector (GDD) Focal Plane Array (FPA) of plasma based detectors. Each point on the object corresponds to a point in the image and includes the distance information. This will enable 3D MMW imaging. The radar system requires that the millimeter wave detector (GDD) will be able to operate as a heterodyne detector. Since the source of radiation is a frequency modulated continuous wave (FMCW), the detected signal as a result of heterodyne detection gives the object's depth information according to value of difference frequency, in addition to the reflectance of the image. In this work we experimentally demonstrate the feasibility of implementing an imaging system based on radar principles and FPA of GDD devices. This imaging system is shown to be capable of imaging objects from distances of at least 10 meters.

  17. In vivo imaging of scattering and absorption properties of exposed brain using a digital red-green-blue camera

    NASA Astrophysics Data System (ADS)

    Nishidate, Izumi; Yoshida, Keiichiro; Kawauchi, Satoko; Sato, Shunichi; Sato, Manabu

    2014-03-01

    We investigate a method to estimate the spectral images of reduced scattering coefficients and the absorption coefficients of in vivo exposed brain tissues in the range from visible to near-infrared wavelength (500-760 nm) based on diffuse reflectance spectroscopy using a digital RGB camera. In the proposed method, the multi-spectral reflectance images of in vivo exposed brain are reconstructed from the digital red, green blue images using the Wiener estimation algorithm. The Monte Carlo simulation-based multiple regression analysis for the absorbance spectra is then used to specify the absorption and scattering parameters of brain tissue. In this analysis, the concentration of oxygenated hemoglobin and that of deoxygenated hemoglobin are estimated as the absorption parameters whereas the scattering amplitude a and the scattering power b in the expression of ?s'=a?-b as the scattering parameters, respectively. The spectra of absorption and reduced scattering coefficients are reconstructed from the absorption and scattering parameters, and finally, the spectral images of absorption and reduced scattering coefficients are estimated. The estimated images of absorption coefficients were dominated by the spectral characteristics of hemoglobin. The estimated spectral images of reduced scattering coefficients showed a broad scattering spectrum, exhibiting larger magnitude at shorter wavelengths, corresponding to the typical spectrum of brain tissue published in the literature. In vivo experiments with exposed brain of rats during CSD confirmed the possibility of the method to evaluate both hemodynamics and changes in tissue morphology due to electrical depolarization.

  18. LEARNING-BASED SCAN PLANE IDENTIFICATION FROM FETAL HEAD ULTRASOUND IMAGES

    E-print Network

    measurements of specific features of fetal anatomy such as the head, abdomen, and femur are used the maternal abdomen until the fetal head is visible in a standard scan plane shown in Figure 1. In this scan

  19. Focal plane generation of multi-resolution and multi-scale image representation for low-power vision applications

    NASA Astrophysics Data System (ADS)

    Fernández-Berni, J.; Carmona-Galán, R.; Carranza-González, L.; Zarándy, A.; Rodríguez-Vázquez, Á.

    2011-06-01

    Early vision stages represent a considerably heavy computational load. A huge amount of data needs to be processed under strict timing and power requirements. Conventional architectures usually fail to adhere to the specifications in many application fields, especially when autonomous vision-enabled devices are to be implemented, like in lightweight UAVs, robotics or wireless sensor networks. A bioinspired architectural approach can be employed consisting of a hierarchical division of the processing chain, conveying the highest computational demand to the focal plane. There, distributed processing elements, concurrent with the photosensitive devices, influence the image capture and generate a pre-processed representation of the scene where only the information of interest for subsequent stages remains. These focal-plane operators are implemented by analog building blocks, which may individually be a little imprecise, but as a whole render the appropriate image processing very efficiently. As a proof of concept, we have developed a 176x144-pixel smart CMOS imager that delivers lighter but enriched representations of the scene. Each pixel of the array contains a photosensor and some switches and weighted paths allowing reconfigurable resolution and spatial filtering. An energy-based image representation is also supported. These functionalities greatly simplify the operation of the subsequent digital processor implementing the high level logic of the vision algorithm. The resulting figures, 5.6mW@30fps, permit the integration of the smart image sensor with a wireless interface module (Imote2 from Memsic Corp.) for the development of vision-enabled WSN applications.

  20. Performance of an Achromatic Focal Plane Mask for Exoplanet Imaging Coronagraphy

    NASA Technical Reports Server (NTRS)

    Newman, Kevin; Belikov, Ruslan; Pluzhnik, Eugene; Balasubramanian, Kunjithapatham; Wilson, Dan

    2014-01-01

    Coronagraph technology combined with wavefront control is close to achieving the contrast and inner working angle requirements in the lab necessary to observe the faint signal of an Earth-like exoplanet in monochromatic light. An important remaining technological challenge is to achieve high contrast in broadband light. Coronagraph bandwidth is largely limited by chromaticity of the focal plane mask, which is responsible for blocking the stellar PSF. The size of a stellar PSF scales linearly with wavelength; ideally, the size of the focal plane mask would also scale with wavelength. A conventional hard-edge focal plane mask has a fixed size, normally sized for the longest wavelength in the observational band to avoid starlight leakage. The conventional mask is oversized for shorter wavelengths and blocks useful discovery space. Recently we presented a solution to the size chromaticity challenge with a focal plane mask designed to scale its effective size with wavelength. In this paper, we analyze performance of the achromatic size-scaling focal plane mask within a Phase Induced Amplitude Apodization (PIAA) coronagraph. We present results from wavefront control around the achromatic focal plane mask, and demonstrate the size-scaling effect of the mask with wavelength. The edge of the dark zone, and therefore the inner working angle of the coronagraph, scale with wavelength. The achromatic mask enables operation in a wider band of wavelengths compared with a conventional hard-edge occulter.

  1. An attempt to estimate out-of-plane lung nodule elongation in tomosynthesis images

    NASA Astrophysics Data System (ADS)

    Chodorowski, Artur; Arvidsson, Jonathan; Söderman, Christina; Svalkvist, Angelica; Johnsson, Šse A.; Bâth, Magnus

    2015-03-01

    In chest tomosynthesis (TS) the most commonly used reconstruction methods are based on Filtered Back Projection (FBP) algorithms. Due to the limited angular range of x-ray projections, FBP reconstructed data is typically associated with a low spatial resolution in the out-of-plane dimension. Lung nodule measures that depend on depth information such as 3D shape and volume are therefore difficult to estimate. In this paper the relation between features from FBP reconstructed lung nodules and the true out-of-plane nodule elongation is investigated and a method for estimating the out-of-plane nodule elongation is proposed. In order to study these relations a number of steps that include simulation of spheroidal-shaped nodules, insertion into synthetic data volumes, construction of TS-projections and FBP-reconstruction were performed. In addition, the same procedure was used to simulate nodules and insert them into clinical chest TS projection data. The reconstructed nodule data was then investigated with respect to in-plane diameter, out-of-plane elongation, and attenuation coefficient. It was found that the voxel value in each nodule increased linearly with nodule elongation, for nodules with a constant attenuation coefficient. Similarly, the voxel value increased linearly with in-plane diameter. These observations indicate the possibility to predict the nodule elongation from the reconstructed voxel intensity values. Such a method would represent a quantitative approach to chest tomosynthesis that may be useful in future work on volume and growth rate estimation of lung nodules.

  2. Simultaneous in-plane and out-of-plane displacement measurement based on a dual-camera imaging system and its application to inspection of large-scale space structures

    NASA Astrophysics Data System (ADS)

    Ri, Shien; Tsuda, Hiroshi; Yoshida, Takeshi; Umebayashi, Takashi; Sato, Akiyoshi; Sato, Eiichi

    2015-07-01

    Optical methods providing full-field deformation data have potentially enormous interest for mechanical engineers. In this study, an in-plane and out-of-plane displacement measurement method based on a dual-camera imaging system is proposed. The in-plane and out-of-plane displacements are determined simultaneously using two measured in-plane displacement data observed from two digital cameras at different view angles. The fundamental measurement principle and experimental results of accuracy confirmation are presented. In addition, we applied this method to the displacement measurement in a static loading and bending test of a solid rocket motor case (CFRP material; 2.2 m diameter and 2.3 m long) for an up-to-date Epsilon rocket developed by JAXA. The effectiveness and measurement accuracy is confirmed by comparing with conventional displacement sensor. This method could be useful to diagnose the reliability of large-scale space structures in the rocket development.

  3. mm wave and THz imaging using very inexpensive neon-indicator lamp detector focal-plane arrays

    NASA Astrophysics Data System (ADS)

    Rozban, D.; Levanon, A.; Akram, A.; Abramovich, A.; Kopeika, N. S.; Joseph, H.; Yitzthaky, Y.; Belenky, A.; Yadid-Pecht, O.

    2011-10-01

    Development of focal plane arrays (FPA) for mm wavelength and THz radiation is presented in this paper. The FPA is based upon inexpensive neon indicator lamp Glow Discharge Detectors (GDDs) that serve as pixels in the FPA. It was shown in previous investigations that inexpensive neon indicator lamps GDDs are quite sensitive to mm wavelength and THz radiation. The diameter of GDD lamps are typically 3-6 mm and thus the FPA can be diffraction limited. Development of an FPA using such devices as detectors is advantageous since the costs of such a lamp is around 30-50 cents per lamp, and it is a room temperature detector sufficiently fast for video frame rates. Recently a new 8×8 GDD FPA VLSI board was designed, constructed, and experimentally tested. First THz images as well as DSP methods using this GDD FPA are demonstrated. Super resolution was achieved by moving the 8×8 pixel board appropriately in the image plane so that 32X32 pixel images are also obtained and shown here, with much improved image quality because of much reduced pixelization distortion.

  4. Automatic Recognition of Fetal Facial Standard Plane in Ultrasound Image via Fisher Vector.

    PubMed

    Lei, Baiying; Tan, Ee-Leng; Chen, Siping; Zhuo, Liu; Li, Shengli; Ni, Dong; Wang, Tianfu

    2015-01-01

    Acquisition of the standard plane is the prerequisite of biometric measurement and diagnosis during the ultrasound (US) examination. In this paper, a new algorithm is developed for the automatic recognition of the fetal facial standard planes (FFSPs) such as the axial, coronal, and sagittal planes. Specifically, densely sampled root scale invariant feature transform (RootSIFT) features are extracted and then encoded by Fisher vector (FV). The Fisher network with multi-layer design is also developed to extract spatial information to boost the classification performance. Finally, automatic recognition of the FFSPs is implemented by support vector machine (SVM) classifier based on the stochastic dual coordinate ascent (SDCA) algorithm. Experimental results using our dataset demonstrate that the proposed method achieves an accuracy of 93.27% and a mean average precision (mAP) of 99.19% in recognizing different FFSPs. Furthermore, the comparative analyses reveal the superiority of the proposed method based on FV over the traditional methods. PMID:25933215

  5. Automatic Recognition of Fetal Facial Standard Plane in Ultrasound Image via Fisher Vector

    PubMed Central

    Lei, Baiying; Tan, Ee-Leng; Chen, Siping; Zhuo, Liu; Li, Shengli; Ni, Dong; Wang, Tianfu

    2015-01-01

    Acquisition of the standard plane is the prerequisite of biometric measurement and diagnosis during the ultrasound (US) examination. In this paper, a new algorithm is developed for the automatic recognition of the fetal facial standard planes (FFSPs) such as the axial, coronal, and sagittal planes. Specifically, densely sampled root scale invariant feature transform (RootSIFT) features are extracted and then encoded by Fisher vector (FV). The Fisher network with multi-layer design is also developed to extract spatial information to boost the classification performance. Finally, automatic recognition of the FFSPs is implemented by support vector machine (SVM) classifier based on the stochastic dual coordinate ascent (SDCA) algorithm. Experimental results using our dataset demonstrate that the proposed method achieves an accuracy of 93.27% and a mean average precision (mAP) of 99.19% in recognizing different FFSPs. Furthermore, the comparative analyses reveal the superiority of the proposed method based on FV over the traditional methods. PMID:25933215

  6. Real-time imaging with THz fully-customized uncooled amorphous-silicon microbolometer focal plane arrays

    NASA Astrophysics Data System (ADS)

    Simoens, F.; Meilhan, J.; Delplanque, B.; Gidon, S.; Lasfargues, G.; Lalanne Dera, J.; Nguyen, D. T.; Ouvrier-Buffet, J. L.; Pocas, S.; Maillou, T.; Cathabard, O.; Barbieri, S.

    2012-05-01

    Terahertz uncooled antenna-coupled microbolometer focal plane arrays are being developed at CEA-LETI for THz imaging and sensing. This detector technology relies on amorphous silicon bolometer know-how and aims at opening the way to real-time video rate 2D imaging, with potential low cost either in fabrication and in operation. First prototypes of 320x240 pixel arrays have been designed for 1-3 THz sensing. Sensors have been fabricated monolithically above CMOS Integrated Circuits while applying only full Si standard silicon processes. We present the results of extensive work of characterization and simulations made to estimate the sensitivity and spectral absorption of these prototypes. Tests of latest real-time imaging with active illumination by QCLs are then reported while explosives samples were placed in an optical set-up in reflection configuration.

  7. Effects of Mid-Sagittal Plane Perturbation and Image Interpolation on Corpus Callosum Area Calculation

    E-print Network

    Hamarneh, Ghassan

    communication. In multiple sclerosis (MS), the CC can have discrete lesions (MS plaques) or generalized tissue callo- sum, multiple sclerosis, mid sagittal plane, area calculation. I. INTRODUCTION The CC and the MS in the nerve impulses. B. Multiple Sclerosis Multiple Sclerosis is an auto-immune disease of the brain

  8. Automatic Bilateral Symmetry Midsagittal Plane Extraction from Pathological 3D Neuroradiological Images

    E-print Network

    , bleed, stroke of the human brain can be determined by a symmetry-based analysis of neural scans showing the brain's 3D internal structure. Detecting departures of this internal structure from its normal bilateral the ideal symmetry plane midsagittalwith respect to which the brain is invariant under re ection

  9. Appearance-Based Traversability Classification in Monocular Images Using Iterative Ground Plane Estimation

    E-print Network

    Eckmiller, Rolf

    market and have been used for navigation with mobile robots (e.g., [1]). However, monocular cameras the traversable floor. Fig. 1. Left: Image captured by the camera of a walking humanoid robot with flow vectors the probability of being traversable). The left image of Fig.1 shows an image acquired from the onboard camera

  10. An abuttable CCD imager for visible and X-ray focal plane arrays

    NASA Technical Reports Server (NTRS)

    Burke, Barry E.; Mountain, Robert W.; Harrison, David C.; Bautz, Marshall W.; Doty, John P.

    1991-01-01

    A frame-transfer silicon charge-coupled-device (CCD) imager has been developed that can be closely abutted to other imagers on three sides of the imaging array. It is intended for use in multichip arrays. The device has 420 x 420 pixels in the imaging and frame-store regions and is constructed using a three-phase triple-polysilicon process. Particular emphasis has been placed on achieving low-noise charge detection for low-light-level imaging in the visible and maximum energy resolution for X-ray spectroscopic applications. Noise levels of 6 electrons at 1-MHz and less than 3 electrons at 100-kHz data rates have been achieved. Imagers have been fabricated on 1000-Ohm-cm material to maximize quantum efficiency and minimize split events in the soft X-ray regime.

  11. Polyhydroxyalkanoate granules quantification in mixed microbial cultures using image analysis: Sudan Black B versus Nile Blue A staining.

    PubMed

    Mesquita, Daniela P; Amaral, A Luís; Leal, Cristiano; Oehmen, Adrian; Reis, Maria A M; Ferreira, Eugénio C

    2015-03-20

    Polyhydroxyalkanoates (PHA) can be produced and intracellularly accumulated as inclusions by mixed microbial cultures (MMC) for bioplastic production and in enhanced biological phosphorus removal (EBPR) systems. Classical methods for PHA quantification use a digestion step prior to chromatography analysis, rendering them labor intensive and time-consuming. The present work investigates the use of two quantitative image analysis (QIA) procedures specifically developed for PHA inclusions identification and quantification. MMC obtained from an EBPR system were visualized by bright-field and fluorescence microscopy for PHA inclusions detection, upon Sudan Black B (SBB) and Nile Blue A (NBA) staining, respectively. The captured color images were processed by QIA techniques and the image analysis data were further treated using multivariate statistical analysis. Partial least squares (PLS) regression coefficients of 0.90 and 0.86 were obtained between QIA parameters and PHA concentrations using SBB and NBA, respectively. It was found that both staining procedures might be seen as alternative methodologies to classical PHA determination. PMID:25732579

  12. Infrared imaging of cotton fibers using a focal-plane array detector

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Vibrational spectroscopy studies can be used to examine the quality and structure of cotton fibers. An emerging area of research relates to the imaging of cotton fibers. Herein, we report the use of a Fourier-transform infrared (FTIR) microscope to image developing cotton fibers. Studies were perfor...

  13. Automatic Extraction of the Central Symmetry (MidSagittal) Plane from Neuroradiology Images

    E-print Network

    Collins, Robert T.

    Sciences, Diagnostic Radiology, Allegheny University of the Health Sciences (Allegheny General Hospital benefit image understanding in neuroradiology in many ways, including registration, lesion detection data expressed as a stack of 2D images. We define an ideal head coordinate system centered in the brain

  14. Fourier Based Imaging Method with Steered Plane Waves and Limited-Diffraction Array Beams

    E-print Network

    Lu, Jian-yu

    resolution) or incoherent superposition (reducing speckles) [1]- [2], [6]-[7]. To increase field of view waves in transmissions to increase image field of view and reduce speckle noises (see P.840 and P.850 in transmission to increase field of view and spatial Fourier domain coverage to increase image resolution [1

  15. ULTRACOMPACT BLUE DWARF GALAXIES: HUBBLE SPACE TELESCOPE IMAGING AND STELLAR POPULATION ANALYSIS

    E-print Network

    Hibbard, John

    not appear to be as dynamically disturbed as the prototype UCBD, POX 186, but the structure of several clumps of stars. In one case, HS 0822+3542, the images resolve what may betwo small ($100 pc) components

  16. Volume-scanning three-dimensional display that uses an inclined image plane.

    PubMed

    Miyazaki, D; Matsushita, K

    2001-07-10

    A novel three-dimensional display based on a volume-scanning method that uses an inclined light-source array and a mirror scanner is proposed. With this technique it is possible to display three-dimensional images that satisfy all factors for human stereoscopic vision. Three-dimensional images of 8 x 8 x 8 pixels, 40 mm x 40 mm x 40 mm in size, with a frame rate of 12.7 Hz were obtained as real images through an experimental system that uses a galvanometer mirror and a LED array. PMID:18360359

  17. Real-time, continuous-wave terahertz imaging using a microbolometer focal-plane array

    NASA Technical Reports Server (NTRS)

    Hu, Qing (Inventor); Min Lee, Alan W. (Inventor)

    2010-01-01

    The present invention generally provides a terahertz (THz) imaging system that includes a source for generating radiation (e.g., a quantum cascade laser) having one or more frequencies in a range of about 0.1 THz to about 10 THz, and a two-dimensional detector array comprising a plurality of radiation detecting elements that are capable of detecting radiation in that frequency range. An optical system directs radiation from the source to an object to be imaged. The detector array detects at least a portion of the radiation transmitted through the object (or reflected by the object) so as to form a THz image of that object.

  18. Real-Time Intraoperative Detection of Breast Cancer using Near-infrared Fluorescence Imaging and Methylene Blue

    PubMed Central

    Tummers, Quirijn R.J.G.; Verbeek, Floris P.R.; Schaafsma, Boudewijn E.; Boonstra, Martin C.; van der Vorst, Joost R.; Liefers, Gerrit-Jan; van de Velde, Cornelis J.H.; Frangioni, John V.; Vahrmeijer, Alexander L.

    2014-01-01

    Background Despite recent developments in preoperative breast cancer imaging, intraoperative localization of tumor tissue can be challenging, resulting in tumor-positive resection margins during breast-conserving surgery. Based on certain physicochemical similarities between Technetium(99mTc)-sestamibi (MIBI), a SPECT radiodiagnostic with a sensitivity of 83–90% to detect breast cancer preoperatively, and the near-infrared (NIR) fluorophore Methylene Blue (MB), we hypothesized that MB might detect breast cancer intraoperatively using NIR fluorescence imaging. Methods Twenty-four patients with breast cancer, planned for surgical resection, were included. Patients were divided in 2 administration groups, which differed with respect to the timing of MB administration. N = 12 patients per group were administered 1.0 mg/kg MB intravenously either immediately or 3 h before surgery. The mini-FLARE imaging system was used to identify the NIR fluorescent signal during surgery and on post-resected specimens transferred to the pathology department. Results were confirmed by NIR fluorescence microscopy. Results 20/24 (83%) of breast tumors (carcinoma in N=21 and ductal carcinoma in situ in N=3) were identified in the resected specimen using NIR fluorescence imaging. Patients with non-detectable tumors were significantly older. No significant relation to receptor status or tumor grade was seen. Overall tumor-to-background ratio (TBR) was 2.4 ± 0.8. There was no significant difference between TBR and background signal between administration groups. In 2/4 patients with positive resection margins, breast cancer tissue identified in the wound bed during surgery would have changed surgical management. Histology confirmed the concordance of fluorescence signal and tumor tissue. Conclusions This feasibility study demonstrated an overall breast cancer identification rate using MB of 83%, with real-time intraoperative guidance having the potential to alter patient management. PMID:24862545

  19. Multi-color imaging of the bacterial nucleoid and division proteins with blue, orange, and near-infrared fluorescent proteins

    PubMed Central

    Wu, Fabai; Van Rijn, Erwin; Van Schie, Bas G. C.; Dekker, Cees

    2015-01-01

    Studies of the spatiotemporal protein dynamics within live bacterial cells impose a strong demand for multi-color imaging. Despite the increasingly large collection of fluorescent protein (FP) variants engineered to date, only a few of these were successfully applied in bacteria. Here, we explore the performance of recently engineered variants with the blue (TagBFP), orange (TagRFP-T, mKO2), and far-red (mKate2) spectral colors by tagging HU, LacI, MinD, and FtsZ for visualizing the nucleoid and the cell division process. We find that, these FPs outperformed previous versions in terms of brightness and photostability at their respective spectral range, both when expressed as cytosolic label and when fused to native proteins. As this indicates that their folding is sufficiently fast, these proteins thus successfully expand the applicable spectra for multi-color imaging in bacteria. A near-infrared protein (eqFP670) is found to be the most red-shifted protein applicable to bacteria so far, with brightness and photostability that are advantageous for cell-body imaging, such as in microfluidic devices. Despite the multiple advantages, we also report the alarming observation that TagBFP directly interacts with TagRFP-T, causing interference of localization patterns between their fusion proteins. Our application of diverse FPs for endogenous tagging provides guidelines for future engineering of fluorescent fusions in bacteria, specifically: (1) The performance of newly developed FPs should be quantified in vivo for their introduction into bacteria; (2) spectral crosstalk and inter-variant interactions between FPs should be carefully examined for multi-color imaging; and (3) successful genomic fusion to the 5?-end of a gene strongly depends on the translational read-through of the inserted coding sequence. PMID:26136737

  20. Optical imaging of the effect of in-plane fields on cholesteric liquid crystals S. A. Jewell and J. R. Sambles

    E-print Network

    Jewell, Sharon

    angle characteristics 2 . One method for producing three-dimensional 3D images of the effects-plane electric fields on the director structure of cholesteric liquid crystals has been imaged in three outside the electrode gap can be significantly affected by stray fields occurring above the electrode

  1. Impacts of Cross-Platform Vicarious Calibration on the Deep Blue Aerosol Retrievals for Moderate Resolution Imaging Spectroradiometer Aboard Terra

    NASA Technical Reports Server (NTRS)

    Jeong, Myeong-Jae; Hsu, N. Christina; Kwiatkowska, Ewa J.; Franz, Bryan A.; Meister, Gerhard; Salustro, Clare E.

    2012-01-01

    The retrieval of aerosol properties from spaceborne sensors requires highly accurate and precise radiometric measurements, thus placing stringent requirements on sensor calibration and characterization. For the Terra/Moderate Resolution Imaging Spedroradiometer (MODIS), the characteristics of the detectors of certain bands, particularly band 8 [(B8); 412 nm], have changed significantly over time, leading to increased calibration uncertainty. In this paper, we explore a possibility of utilizing a cross-calibration method developed for characterizing the Terral MODIS detectors in the ocean bands by the National Aeronautics and Space Administration Ocean Biology Processing Group to improve aerosol retrieval over bright land surfaces. We found that the Terra/MODIS B8 reflectance corrected using the cross calibration method resulted in significant improvements for the retrieved aerosol optical thickness when compared with that from the Multi-angle Imaging Spectroradiometer, Aqua/MODIS, and the Aerosol Robotic Network. The method reported in this paper is implemented for the operational processing of the Terra/MODIS Deep Blue aerosol products.

  2. Perfluoropentane-encapsulated hollow mesoporous prussian blue nanocubes for activated ultrasound imaging and photothermal therapy of cancer.

    PubMed

    Jia, Xiaoqing; Cai, Xiaojun; Chen, Yu; Wang, Shige; Xu, Huixiong; Zhang, Kun; Ma, Ming; Wu, Huixia; Shi, Jianlin; Chen, Hangrong

    2015-03-01

    Hollow mesoporous nanomaterials have gained tremendous attention in the fields of nanomedicine and nanobiotechnology. Herein, n-perfluoropentane (PFP)-encapsulated hollow mesoporous Prussian blue (HPB) nanocubes (HPB-PFP) with excellent colloidal stability have been synthesized for concurrent in vivo tumor diagnosis and regression. The HPB shell shows excellent photothermal conversion efficiency that can absorb near-infrared (NIR) laser light and convert it into heat. The generated heat can not only cause tumor ablation by raising the temperature of tumor tissue but also promote the continuous gasification and bubbling of encapsulated liquid PFP with low boiling point. These formed PFP bubbles can cause tissue impedance mismatch, thus apparently enhancing the signal of B-mode ultrasound imaging in vitro and generating an apparent echogenicity signal for tumor tissues of nude mice in vivo. Without showing observable in vitro and in vivo cytotoxicity, the designed biocompatible HPB-PFP nanotheranostics with high colloidal stability and photothermal efficiency are anticipated to find various biomedical applications in activated ultrasound imaging-guided tumor detection and therapy. PMID:25646576

  3. TraP: Transients discovery pipeline for image-plane surveys

    NASA Astrophysics Data System (ADS)

    TraP contributors

    2014-12-01

    The TraP is a pipeline for detecting and responding to transient and variable sources in a stream of astronomical images. Images are initially processed using a pure-Python source-extraction package, PySE, which is bundled with the TraP. Source positions and fluxes are then loaded into a SQL database for association and variability detection. The database structure allows for estimation of past upper limits on newly detected sources, and for forced fitting of previously detected sources which have since dropped below the blind-extraction threshold. Developed with LOFAR data in mind, the TraP has been used with data from other radio observatories.

  4. Measuring Soft Tissue Elasticity by Monitoring Surface Acoustic Waves Using Image Plane Digital Holography

    E-print Network

    Oldenburg, Amy

    tissues. In this paper, we report our first study to measure elastic properties of soft tissues by mapping techniques, i.e., techniques that image tissue elastic properties. Ultrasound is a popular tool to obtain the SAWs as measured by holographic technology and the elastic properties of tissues. These relationships

  5. Image method for the derivation of point sources in elastostatic problems with plane interfaces

    NASA Technical Reports Server (NTRS)

    Fares, Nabil; Li, Victor C.

    1986-01-01

    An image method algorithm is presented for the derivation of point sources of elastostatics in multilayered media assuming the infinite space point source is known. Specific cases were worked out and shown to coincide with well known solutions in the literature.

  6. Noninvasive imaging of human skin hemodynamics using a digital red-green-blue camera

    NASA Astrophysics Data System (ADS)

    Nishidate, Izumi; Tanaka, Noriyuki; Kawase, Tatsuya; Maeda, Takaaki; Yuasa, Tomonori; Aizu, Yoshihisa; Yuasa, Tetsuya; Niizeki, Kyuichi

    2011-08-01

    In order to visualize human skin hemodynamics, we investigated a method that is specifically developed for the visualization of concentrations of oxygenated blood, deoxygenated blood, and melanin in skin tissue from digital RGB color images. Images of total blood concentration and oxygen saturation can also be reconstructed from the results of oxygenated and deoxygenated blood. Experiments using tissue-like agar gel phantoms demonstrated the ability of the developed method to quantitatively visualize the transition from an oxygenated blood to a deoxygenated blood in dermis. In vivo imaging of the chromophore concentrations and tissue oxygen saturation in the skin of the human hand are performed for 14 subjects during upper limb occlusion at 50 and 250 mm Hg. The response of the total blood concentration in the skin acquired by this method and forearm volume changes obtained from the conventional strain-gauge plethysmograph were comparable during the upper arm occlusion at pressures of both 50 and 250 mm Hg. The results presented in the present paper indicate the possibility of visualizing the hemodynamics of subsurface skin tissue.

  7. Measurement of Water Distribution in through-plane Direction in a PEFC using a Neutron Image Intensifier

    NASA Astrophysics Data System (ADS)

    Sugimoto, K.; Murakawa, H.; Miyata, K.; Asano, H.; Takenaka, N.; Yasuda, R.

    Hydrogen gas and air are supplied to a polymer electrolyte fuel cell (PEFC). The air and the hydrogen form water and condensation may occur in the cathode side. The generated water may affect the fuel cell performance because of blocking the oxygen from reaching cathode reaction area. An imaging system with a neutron image intensifier (NII) was used for visualizing the water behaviour in the PEFC. The water distributions in the proton exchange membrane (PEM) and the gas diffusion layers (GDL) were measured by the imaging system. Visualization experiments were performed during the PEFC operation in order to clarify the water distributions in the experiments with different utilization. The generated water was discharged into the channel after the amount of water thickness in the GDL increased to a certain value of about 600 ?m in thickness in the through-plane direction. The discharged water formed water drops in the channel. The effects of the water drops in the channel on the fuel cell performance could be observed clearly. It was shown that the cell voltage increased when the water was evacuated.

  8. 640 x 512 Pixels Long-Wavelength Infrared (LWIR) Quantum-Dot Infrared Photodetector (QDIP) Imaging Focal Plane Array

    NASA Technical Reports Server (NTRS)

    Gunapala, Sarath D.; Bandara, Sumith V.; Hill, Cory J.; Ting, David Z.; Liu, John K.; Rafol, Sir B.; Blazejewski, Edward R.; Mumolo, Jason M.; Keo, Sam A.; Krishna, Sanjay; Chang, Y. -C.; Shott, Craig A.

    2007-01-01

    Epitaxially grown self-assembled. InAs-InGaAs-GaAs quantum dots (QDs) are exploited for the development of large-format long-wavelength infrared focal plane arrays (FPAs). The dot-in-a-well (DWELL) structures were experimentally shown to absorb both 45 degrees and normal incident light, therefore, a reflection grating structure was used to enhance the quantum efficiency. The devices exhibit peak responsivity out to 8.1 micrometers, with peak detectivity reaching approximately 1 X 10(exp 10) Jones at 77 K. The devices were fabricated into the first long-wavelength 640 x 512 pixel QD infrared photodetector imaging FPA, which has produced excellent infrared imagery with noise equivalent temperature difference of 40 mK at 60-K operating temperature.

  9. Kinematic Measurement of Knee Prosthesis from Single-Plane Projection Images

    NASA Astrophysics Data System (ADS)

    Hirokawa, Shunji; Ariyoshi, Shogo; Takahashi, Kenji; Maruyama, Koichi

    In this paper, the measurement of 3D motion from 2D perspective projections of knee prosthesis is described. The technique reported by Banks and Hodge was further developed in this study. The estimation was performed in two steps. The first-step estimation was performed on the assumption of orthogonal projection. Then, the second-step estimation was subsequently carried out based upon the perspective projection to accomplish more accurate estimation. The simulation results have demonstrated that the technique archived sufficient accuracies of position/orientation estimation for prosthetic kinematics. Then we applied our algorithm to the CCD images, thereby examining the influences of various artifacts, possibly incorporated through an imaging process, on the estimation accuracies. We found that accuracies in the experiment were influenced mainly by the geometric discrepancies between the prosthesis component and computer generated model and by the spacial inconsistencies between the coordinate axes of the positioner and that of the computer model. However, we verified that our algorithm could achieve proper and consistent estimation even for the CCD images.

  10. AlGaN-based focal plane arrays for selective UV imaging at 310nm and 280nm and route toward deep UV imaging

    NASA Astrophysics Data System (ADS)

    Reverchon, Jean-Luc; Robo, Jean-Alexandre; Truffer, Jean-Patrick; Caumes, Jean-Pascal; Mourad, Idir; Brault, Julien; Duboz, Jean-Yves

    2007-10-01

    The fast development of nitrides has given the opportunity to investigate AlGaN as a material for ultraviolet detection. Such camera present an intrinsic spectral selectivity and an extremely low dark current at room temperature. It can compete with technologies based on photocathodes, MCP intensifiers, back thinned CCD or hybrid CMOS focal plane arrays (FPA) for low flux measurements. AlGaN based cameras allow UV imaging without filters or with simplified ones in harsh solar blind conditions. Few results on camera have been shown in the last years, but the ultimate performances of AlGaN photodiodes couldn't be achieved due to parasitic illumination of multiplexers, responsivity of p layers in p-i-n structures, or use of cooled readout circuit. Such issues have prevented up to now a large development of this technology. We present results on focal plane array of 320x256 pixels with a pitch of 30?m for which Schottky photodiodes are multiplexed with a readout circuit protected by black matrix at room temperature. Theses focal plane present a peak reponsivity around 280nm and 310nm with a rejection of visible light of four decades only limited by internal photoemission in contact. Then we will show the capability to outdoor measurements. The noise figure is due to readout noise of the multiplexer and we will investigate the ultimate capabilities of Schottky diodes or Metal- Semiconductor-Metal (MSM) technologies to detect extremely low signal. Furthermore, we will consider deep UV measurements on single pixels MSM from 32nm to 61nm in a front side illumination configuration. Finally, we will define technology process allowing backside illumination and deep UV imaging.

  11. In vivo multispectral imaging of the absorption and scattering properties of exposed brain using a digital red-green-blue camera

    NASA Astrophysics Data System (ADS)

    Yoshida, Keiichiro; Ishizuka, Tomohiro; Mizushima, Chiharu; Nishidate, Izumi; Kawauchi, Satoko; Sato, Shunichi; Sato, Manabu

    2015-04-01

    To evaluate multi-spectral images of the absorption and scattering properties in the cerebral cortex of rat brain, we investigated spectral reflectance images estimated by the Wiener estimation method using a digital red-green-blue camera. A Monte Carlo simulation-based multiple regression analysis for the corresponding spectral absorbance images at nine wavelengths (500, 520, 540, 560, 570, 580, 600, 730, and 760 nm) was then used to specify the absorption and scattering parameters. The spectral images of absorption and reduced scattering coefficients were reconstructed from the absorption and scattering parameters. We performed in vivo experiments on exposed rat brain to confirm the feasibility of this method. The estimated images of the absorption coefficients were dominated by hemoglobin spectra. The estimated images of the reduced scattering coefficients had a broad scattering spectrum, exhibiting a larger magnitude at shorter wavelengths, corresponding to the typical spectrum of brain tissue published in the literature.

  12. Synchrotron Infrared Confocal Microspectroscopic Spatial Resolution or a Customized Synchrotron/focal Plane Array System Enhances Chemical Imaging of Biological Tissue or Cells

    SciTech Connect

    D Wetzel; M Nasse; =

    2011-12-31

    Spectroscopy and spatially resolved chemical imaging of biological materials using an infrared microscope is greatly enhanced with confocal image plane masking to 5-6 {mu} with a third generation microspectrometer and illumination with a synchrotron radiation source compared to globar illuminated and array detection or singly masked system. Steps toward this instrumental achievement are illustrated with spectra and images of biological tissue sections, including single cells, brain, aorta, and grain specimens. A recent, customized synchrotron infrared microspectrometer installation enables focal plane array detection to achieve both rapid and high definition chemical imaging. Localization of the ester carbonyl population in single modified starch granules was used to provide direct comparison of the two advanced imaging capabilities.

  13. Identification of anthropogenic and natural dust sources using Moderate Resolution Imaging Spectroradiometer (MODIS) Deep Blue level 2 data

    NASA Astrophysics Data System (ADS)

    Ginoux, Paul; Garbuzov, Dmitri; Hsu, N. Christina

    2010-03-01

    Mineral dust interacts with radiation and impacts both the regional and global climate. The relative contribution of natural and anthropogenic dust sources, however, remains largely uncertain. Although human activities disturb soils and therefore enhance wind erosion, their contribution to global dust emission has never been directly evaluated because of a lack of data. The retrieval of aerosol properties over land, including deserts, using the Moderate Resolution Imaging Spectroradiometer Deep Blue algorithm makes the first direct characterization of the origin of individual sources possible. In order to separate freshly emitted dust from other aerosol types and aged dust particles, the spectral dependence of the single scattering albedo and the Angstrom wavelength exponent are used. Four years of data from the eastern part of West Africa, which includes one of the most active natural dust sources and the highest population density on the continent, are processed. Sources are identified on the basis of the persistence of significant aerosol optical depth from freshly emitted dust, and the origin is characterized as natural or anthropogenic on the basis of a land use data set. Our results indicate that although anthropogenic dust is observed less frequently and with lower optical depth than dust from natural sources in this particular region, it occupies a large area covering most of northern Nigeria and southern Chad, around Lake Chad. In addition, smaller anthropogenic sources are found as far south as 5° of latitude north, well outside the domain of most dust source inventories.

  14. Complex environmental beta-plane turbulence: laboratory experiments with altimetric imaging velocimetry

    NASA Astrophysics Data System (ADS)

    Matulka, A. M.; Zhang, Y.; Afanasyev, Y. D.

    2015-11-01

    Results from the spectral analyses of the flows in two experiments where turbulent flows were generated in a rotating tank with topographic ?-effect, are presented. The flows were forced either by heating water from below or supplying fresh water at the top of saline layer. The flow was essentially barotropic in the first experiment and baroclinic in the second experiment. The gradient of the surface elevation was measured using optical altimetry (Altimetric Imaging Velocimetry). Multiple zonal jets of alternating direction were observed in both experiments. Turbulent cascades of energy exhibit certain universal properties in spite of the different nature of flows in the experiments.

  15. Mitsubishi thermal imager using the 512 x 512 PtSi focal plane arrays

    NASA Astrophysics Data System (ADS)

    Fujino, Shotaro; Miyoshi, Tetsuo; Yokoh, Masataka; Kitahara, Teruyoshi

    1989-12-01

    The IR-5120A high-resolution/high sensitivity TV thermal imager employs a PtSi charge-sweep device (CSD) array containing over 260,000 pixels. The device's camera head contains the CSD, a Stirling-cycle cooler and support electronics, and a camera-control unit containing the pixel fixed-pattern noise corrector, a video controller, and support power supplies. The field time of 1/60th sec generates no afterimage even in the case of moving targets. The camera can support numerous interchangeable lenses, and a viewfinder.

  16. A novel Region of Interest (ROI) imaging technique for biplane imaging in interventional suites: high-resolution small field-of-view imaging in the frontal plane and dose-reduced, large field-of-view standard-resolution imaging in the lateral plane

    NASA Astrophysics Data System (ADS)

    Swetadri Vasan, Setlur Nagesh; Ionita, C.; Bednarek, D. R.; Rudin, Stephen

    2014-03-01

    Endovascular-Image-Guided-Interventional (EIGI) treatment of neuro-vascular conditions such as aneurysms, stenosed arteries, and vessel thrombosis make use of treatment devices such as stents, coils, and balloons which have very small feature sizes, 10's of microns to a few 100's of microns, and hence demand a high resolution imaging system. The current state-of-the-art flat panel detector (FPD) has about a 200-um pixel size with the Nyquist of 2.5 lp/mm. For higher-resolution imaging a charge-coupled device (CCD) based Micro-Angio - Fluoroscope (MAF-CCD) with a pixel size of 35um (Nyquist of 11 lp/mm) was developed and previously reported. Although the detector addresses the high resolution needs, the Field-Of-View (FOV) is limited to 3.5 cm x 3.5 cm, which is much smaller than current FPDs. During the use of the MAF-CCD for delicate parts of the intervention, it may be desirable to have real-time monitoring outside the MAF FOV with a low dose, and lower, but acceptable, quality image. To address this need, a novel imaging technique for biplane imaging systems has been developed, using an MAFCCD in the frontal plane and a dose-reduced standard large FOV imager in the lateral plane. The dose reduction is achieved by using a combination of ROI fluoroscopy and spatially different temporal filtering, a technique that has been previously presented. In order to evaluate this technique, a simulation using images acquired during an actual EIGI treatment on a patient, followed by an actual implementation on phantoms is presented.

  17. Determining the Instrumental Rotation Rate of MWO's 60' Tower Image Plane and Its Impact on Results from Ring-Diagram Analysis

    NASA Astrophysics Data System (ADS)

    Pinkerton I., S. F.; Rhodes, E. J., Jr.; Bogart, R. S.; Orr, M.; Martin, G.; Spinella, A.

    2013-12-01

    Time series of full-disk Dopplergrams were acquired at the 60-Foot Solar tower of the Mount Wilson Observatory every year between 1987 and 2009. The 60-Foot Tower was designed by George Ellery Hale to provide an image plane that did not rotate throughout each observing day. However, preliminary analyses of a portion of this archive, carried out in 2007, suggested that the focal plane of the Tower might actually be rotating slowly. If confirmed, such an instrumental rotation would suggest that the alignment of the optics has changed slightly over the years since 1907. This possible rotation of the image plane was uncovered through the computation of subsurface flow maps using the ring-diagram method of local helioseismology. Some of the initial MWO flow maps appeared to show evidence for a so-called “washing machine” effect similar to the pattern that was seen in the initial GONG flow maps. We have been working to confirm the early estimates of the focal plane rotation. The purpose of this paper is to report on the status of this endeavor as well as explore the ramifications of a rotating image plane on our anticipated meridional and zonal flow results.

  18. Focal Plane Detectors for the Advanced Gamma-Ray Imaging System (AGIS)

    SciTech Connect

    Otte, A. N.; Williams, D. A.; Byrum, K.; Drake, G.; Horan, D.; Smith, A.; Wagner, R. G.; Falcone, A.; Funk, S.; Tajima, H.; Mukherjee, R.

    2008-12-24

    The Advanced Gamma-Ray Imaging System (AGIS) is a concept for the next generation observatory in ground-based very high energy gamma-ray astronomy. Design goals are ten times better sensitivity, higher angular resolution, and a lower energy threshold than existing Cherenkov telescopes. Simulations show that a substantial improvement in angular resolution may be achieved if the pixel diameter is reduced to the order of 0.05 deg, i.e. two to three times smaller than the pixel diameter of current Cherenkov telescope cameras. At these dimensions, photon detectors with smaller physical dimensions can be attractive alternatives to the classical photomultiplier tube (PMT). Furthermore, the operation of an experiment with the size of AGIS requires photon detectors that are among other things more reliable, more durable, and possibly higher efficiency photon detectors. Alternative photon detectors we are considering for AGIS include both silicon photomultipliers (SiPMs) and multi-anode photomultipliers (MAPMTs). Here we present results from laboratory testing of MAPMTs and SiPMs along with results from the first incorporation of these devices into cameras on test bed Cherenkov telescopes.

  19. Identification and Quantification of Microplastics in Wastewater Using Focal Plane Array-Based Reflectance Micro-FT-IR Imaging.

    PubMed

    Tagg, Alexander S; Sapp, Melanie; Harrison, Jesse P; Ojeda, Jesús J

    2015-06-16

    Microplastics (<5 mm) have been documented in environmental samples on a global scale. While these pollutants may enter aquatic environments via wastewater treatment facilities, the abundance of microplastics in these matrices has not been investigated. Although efficient methods for the analysis of microplastics in sediment samples and marine organisms have been published, no methods have been developed for detecting these pollutants within organic-rich wastewater samples. In addition, there is no standardized method for analyzing microplastics isolated from environmental samples. In many cases, part of the identification protocol relies on visual selection before analysis, which is open to bias. In order to address this, a new method for the analysis of microplastics in wastewater was developed. A pretreatment step using 30% hydrogen peroxide (H2O2) was employed to remove biogenic material, and focal plane array (FPA)-based reflectance micro-Fourier-transform (FT-IR) imaging was shown to successfully image and identify different microplastic types (polyethylene, polypropylene, nylon-6, polyvinyl chloride, polystyrene). Microplastic-spiked wastewater samples were used to validate the methodology, resulting in a robust protocol which was nonselective and reproducible (the overall success identification rate was 98.33%). The use of FPA-based micro-FT-IR spectroscopy also provides a considerable reduction in analysis time compared with previous methods, since samples that could take several days to be mapped using a single-element detector can now be imaged in less than 9 h (circular filter with a diameter of 47 mm). This method for identifying and quantifying microplastics in wastewater is likely to provide an essential tool for further research into the pathways by which microplastics enter the environment. PMID:25986938

  20. An Indium Gallium Arsenide Visible/SWIR Focal Plane Array for Low Light Level Imaging

    NASA Technical Reports Server (NTRS)

    Cohen, Marshall J.; Ettenberg, Martin H.; Lange, Michael J.; Olsen, Gregory H.

    1999-01-01

    PIN photodiodes fabricated from indium gallium arsenide lattice-matched to indium phosphide substrates (In(.53)Ga(.47)As/InP) exhibit low reverse saturation current densities (JD < 10(exp -8) A/sq cm), and high shunt resistance-area products (RoA > 10(exp 6) omega-sq cm) at T=290K. Backside-illuminated, hybrid-integrated InGaAs FPAs are sensitive from 0.9 micrometers to 1.7 micrometers. 290K detectivities, D(*), greater than 10(exp 14) cm-(square root of Hz/W) are demonstrated. This represents the highest room temperature detectivity of any infrared material. The long wavelength cutoff (1.7 micrometers) makes In(.53)Ga(.47)As an idea match to the available airglow that has major peaks at 1.3 micrometers and 1.6 micrometers. The short wavelength 'cut-on' at 0.9 micrometers is due to absorption in the InP substrate. We will report on new InGaAs FPA epitaxial structures and processing techniques. These have resulted in improved performance in the form of a 10 x increase in detectivity and visible response via removal of the InP substrate. The resulting device features visible and SWIR response with greater than 15% quantum efficiency at 0.5 micrometers while maintaining the long wavelength cutoff. Imaging has been demonstrated under overcast starlight/urban glow conditions with cooling provided by a single stage thermoelectric cooler. Details on the material structure and device fabrication, quantitative characterization of spectral response and detectivity, as well as examples of night vision imagery are presented.

  1. An Evaluation of the Instruction Carried out with Printed Laboratory Materials Designed in Accordance with 5E Model: Reflection of Light and Image on a Plane Mirror

    ERIC Educational Resources Information Center

    Ayvaci, Hakan Sevki; Yildiz, Mehmet; Bakirci, Hasan

    2015-01-01

    This study employed a print laboratory material based on 5E model of constructivist learning approach to teach reflection of light and Image on a Plane Mirror. The effect of the instruction which conducted with the designed print laboratory material on academic achievements of prospective science and technology teachers and their attitudes towards…

  2. Flow Velocity Mapping Using Contrast Enhanced High-Frame-Rate Plane Wave Ultrasound and Image Tracking: Methods and Initial in Vitro and in Vivo Evaluation.

    PubMed

    Leow, Chee Hau; Bazigou, Eleni; Eckersley, Robert J; Yu, Alfred C H; Weinberg, Peter D; Tang, Meng-Xing

    2015-11-01

    Ultrasound imaging is the most widely used method for visualising and quantifying blood flow in medical practice, but existing techniques have various limitations in terms of imaging sensitivity, field of view, flow angle dependence, and imaging depth. In this study, we developed an ultrasound imaging velocimetry approach capable of visualising and quantifying dynamic flow, by combining high-frame-rate plane wave ultrasound imaging, microbubble contrast agents, pulse inversion contrast imaging and speckle image tracking algorithms. The system was initially evaluated in vitro on both straight and carotid-mimicking vessels with steady and pulsatile flows and in vivo in the rabbit aorta. Colour and spectral Doppler measurements were also made. Initial flow mapping results were compared with theoretical prediction and reference Doppler measurements and indicate the potential of the new system as a highly sensitive, accurate, angle-independent and full field-of-view velocity mapping tool capable of tracking and quantifying fast and dynamic flows. PMID:26275971

  3. Blue Note

    ScienceCinema

    Murray Gibson

    2010-01-08

    Argonne's Murray Gibson is a physicist whose life's work includes finding patterns among atoms. The love of distinguishing patterns also drives Gibson as a musician and Blues enthusiast."Blue" notes are very harmonic notes that are missing from the equal temperament scale.The techniques of piano blues and jazz represent the melding of African and Western music into something totally new and exciting.

  4. Blue Note

    SciTech Connect

    Murray Gibson

    2007-04-27

    Argonne's Murray Gibson is a physicist whose life's work includes finding patterns among atoms. The love of distinguishing patterns also drives Gibson as a musician and Blues enthusiast."Blue" notes are very harmonic notes that are missing from the equal temperament scale.The techniques of piano blues and jazz represent the melding of African and Western music into something totally new and exciting.

  5. Real-time out-of-plane artifact subtraction tomosynthesis imaging using prior CT for scanning beam digital x-ray system

    SciTech Connect

    Wu, Meng; Fahrig, Rebecca

    2014-11-01

    Purpose: The scanning beam digital x-ray system (SBDX) is an inverse geometry fluoroscopic system with high dose efficiency and the ability to perform continuous real-time tomosynthesis in multiple planes. This system could be used for image guidance during lung nodule biopsy. However, the reconstructed images suffer from strong out-of-plane artifact due to the small tomographic angle of the system. Methods: The authors propose an out-of-plane artifact subtraction tomosynthesis (OPAST) algorithm that utilizes a prior CT volume to augment the run-time image processing. A blur-and-add (BAA) analytical model, derived from the project-to-backproject physical model, permits the generation of tomosynthesis images that are a good approximation to the shift-and-add (SAA) reconstructed image. A computationally practical algorithm is proposed to simulate images and out-of-plane artifacts from patient-specific prior CT volumes using the BAA model. A 3D image registration algorithm to align the simulated and reconstructed images is described. The accuracy of the BAA analytical model and the OPAST algorithm was evaluated using three lung cancer patients’ CT data. The OPAST and image registration algorithms were also tested with added nonrigid respiratory motions. Results: Image similarity measurements, including the correlation coefficient, mean squared error, and structural similarity index, indicated that the BAA model is very accurate in simulating the SAA images from the prior CT for the SBDX system. The shift-variant effect of the BAA model can be ignored when the shifts between SBDX images and CT volumes are within ±10 mm in the x and y directions. The nodule visibility and depth resolution are improved by subtracting simulated artifacts from the reconstructions. The image registration and OPAST are robust in the presence of added respiratory motions. The dominant artifacts in the subtraction images are caused by the mismatches between the real object and the prior CT volume. Conclusions: Their proposed prior CT-augmented OPAST reconstruction algorithm improves lung nodule visibility and depth resolution for the SBDX system.

  6. Colloidal quantum dot Vis-SWIR imaging: demonstration of a focal plane array and camera prototype (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Klem, Ethan J. D.; Gregory, Christopher W.; Temple, Dorota S.; Lewis, Jay S.

    2015-08-01

    RTI has developed a photodiode technology based on solution-processed PbS colloidal quantum dots (CQD). These devices are capable of providing low-cost, high performance detection across the Vis-SWIR spectral range. At the core of this technology is a heterojunction diode structure fabricated using techniques well suited to wafer-scale fabrication, such as spin coating and thermal evaporation. This enables RTI's CQD diodes to be processed at room temperature directly on top of read-out integrated circuits (ROIC), without the need for the hybridization step required by traditional SWIR detectors. Additionally, the CQD diodes can be fabricated on ROICs designed for other detector material systems, effectively allowing rapid prototype demonstrations of CQD focal plane arrays at low cost and on a wide range of pixel pitches and array sizes. We will show the results of fabricating CQD arrays directly on top of commercially available ROICs. Specifically, the ROICs are a 640 x 512 pixel format with 15 µm pitch, originally developed for InGaAs detectors. We will show that minor modifications to the surface of these ROICs make them suitable for use with our CQD detectors. Once completed, these FPAs are then assembled into a demonstration camera and their imaging performance is evaluated. In addition, we will discuss recent advances in device architecture and processing resulting in devices with room temperature dark currents of 2-5 nA/cm^2 and sensitivity from 350 nm to 1.7 ?m. This combination of high performance, dramatic cost reduction, and multi-band sensitivity is ideally suited to expand the use of SWIR imaging in current applications, as well as to address applications which require a multispectral sensitivity not met by existing technologies.

  7. Axial Plane Optical Microscopy

    PubMed Central

    Li, Tongcang; Ota, Sadao; Kim, Jeongmin; Wong, Zi Jing; Wang, Yuan; Yin, Xiaobo; Zhang, Xiang

    2014-01-01

    We present axial plane optical microscopy (APOM) that can, in contrast to conventional microscopy, directly image a sample's cross-section parallel to the optical axis of an objective lens without scanning. APOM combined with conventional microscopy simultaneously provides two orthogonal images of a 3D sample. More importantly, APOM uses only a single lens near the sample to achieve selective-plane illumination microscopy, as we demonstrated by three-dimensional (3D) imaging of fluorescent pollens and brain slices. This technique allows fast, high-contrast, and convenient 3D imaging of structures that are hundreds of microns beneath the surfaces of large biological tissues. PMID:25434770

  8. Voyager 1 'Blue Movie'

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This is the original Voyager 'Blue Movie' (so named because it was built from Blue filter images). It records the approach of Voyager 1 during a period of over 60 Jupiter days. Notice the difference in speed and direction of the various zones of the atmosphere. The interaction of the atmospheric clouds and storms shows how dynamic the Jovian atmosphere is.

    As Voyager 1 approached Jupiter in 1979, it took images of the planet at regular intervals. This sequence is made from 66 images taken once every Jupiter rotation period (about 10 hours). This time-lapse movie uses images taken every time Jupiter longitude 68W passed under the spacecraft. These images were acquired in the Blue filter from Jan. 6 to Feb. 3 1979. The spacecraft flew from 58 million kilometers to 31 million kilometers from Jupiter during that time.

    This time-lapse movie was produced at JPL by the Image Processing Laboratory in 1979.

  9. On Seeing Reddish Green and Yellowish Blue.

    ERIC Educational Resources Information Center

    Crane, Hewitt D.; Piantanida, Thomas P.

    1983-01-01

    Stabilization of the retinal image of the boundary between a pair of red/green or yellow/blue stripes, but not their outer edges, results in the entire region being perceived simultaneously as both red/green or yellow/blue. This suggests that the percepts of reddish-green/yellowish-blue apparently are possible in corticocortical color vision…

  10. Least squares restoration of multichannel images

    NASA Technical Reports Server (NTRS)

    Galatsanos, Nikolas P.; Katsaggelos, Aggelos K.; Chin, Roland T.; Hillery, Allen D.

    1991-01-01

    Multichannel restoration using both within- and between-channel deterministic information is considered. A multichannel image is a set of image planes that exhibit cross-plane similarity. Existing optimal restoration filters for single-plane images yield suboptimal results when applied to multichannel images, since between-channel information is not utilized. Multichannel least squares restoration filters are developed using the set theoretic and the constrained optimization approaches. A geometric interpretation of the estimates of both filters is given. Color images (three-channel imagery with red, green, and blue components) are considered. Constraints that capture the within- and between-channel properties of color images are developed. Issues associated with the computation of the two estimates are addressed. A spatially adaptive, multichannel least squares filter that utilizes local within- and between-channel image properties is proposed. Experiments using color images are described.

  11. X-ray Microbeam Three-Dimensional Topography Imaging and Strain Analysis of Basal-Plane Dislocations and Threading Edge Dislocations in 4H-SiC

    NASA Astrophysics Data System (ADS)

    Tanuma, Ryohei; Mori, Daisuke; Kamata, Isaho; Tsuchida, Hidekazu

    2012-06-01

    This paper demonstrates the X-ray microbeam three-dimensional (3D) topography of basal-plane dislocations (BPDs) and threading edge dislocations (TEDs) in 4H-SiC. Stereographic images showing the propagation of BPDs from a substrate to an epilayer and the conversion of BPDs into TEDs near the epilayer/substrate interface are successfully obtained. The narrowing of BPD images is observed just before the BPD-TED conversion points. The images of effective misorientations ?? provide a spatial resolution of 1-2 µm for a TED, and the range of ?? corresponds to strains on the order of +/-10-5. We also discuss the image-formation mechanism in 3D topography.

  12. Blue Water

    USGS Multimedia Gallery

    The Canadian Coast Guard Ship Louis S. St-Laurent has a mechanical system that creates bubbles that rise to the surface and push ice away from the ship's hull. It also happens to churn the water into an amazing shade of blue....

  13. BLUE HONEYSUCKLE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Twenty-four blue honeysuckle, Lonicera caerulea L., cultivars available to North America are described. The origin, description and uses of the cultivars are presented. The majority of the cultivars were released from Russia but two were released from Canada. These cultivars have fruits which look l...

  14. Composite x-ray image assembly for large-field digital mammography with one- and two-dimensional positioning of a focal plane array

    NASA Technical Reports Server (NTRS)

    Halama, G.; McAdoo, J.; Liu, H.

    1998-01-01

    To demonstrate the feasibility of a novel large-field digital mammography technique, a 1024 x 1024 pixel Loral charge-coupled device (CCD) focal plane array (FPA) was positioned in a mammographic field with one- and two-dimensional scan sequences to obtain 950 x 1800 pixel and 3600 x 3600 pixel composite images, respectively. These experiments verify that precise positioning of FPAs produced seamless composites and that the CCD mosaic concept has potential for high-resolution, large-field imaging. The proposed CCD mosaic concept resembles a checkerboard pattern with spacing left between the CCDs for the driver and readout electronics. To obtain a complete x-ray image, the mosaic must be repositioned four times, with an x-ray exposure at each position. To reduce the patient dose, a lead shield with appropriately patterned holes is placed between the x-ray source and the patient. The high-precision motorized translation stages and the fiber-coupled-scintillating-screen-CCD sensor assembly were placed in the position usually occupied by the film cassette. Because of the high mechanical precision, seamless composites were constructed from the subimages. This paper discusses the positioning, image alignment procedure, and composite image results. The paper only addresses the formation of a seamless composite image from subimages and will not consider the effects of the lead shield, multiple CCDs, or the speed of motion.

  15. The Blue Marble

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This spectacular Moderate Resolution Imaging Spectroradiometer (MODIS) 'blue marble' image is based on the most detailed collection of true-color imagery of the entire Earth to date. Using a collection of satellite-based observations, scientists and visualizers stitched together months of observations of the land surface, oceans, sea ice, and clouds into a seamless, true-color mosaic of every square kilometer (.386 square mile) of our planet. Most of the information contained in this image came from MODIS, illustrating MODIS' outstanding capacity to act as an integrated tool for observing a variety of terrestrial, oceanic, and atmospheric features of the Earth. The land and coastal ocean portions of this image is based on surface observations collected from June through September 2001 and combined, or composited, every eight days to compensate for clouds that might block the satellite's view on any single day. Global ocean color (or chlorophyll) data was used to simulate the ocean surface. MODIS doesn't measure 3-D features of the Earth, so the surface observations were draped over topographic data provided by the U.S. Geological Survey EROS Data Center. MODIS observations of polar sea ice were combined with observations of Antarctica made by the National Oceanic and Atmospheric Administration's AVHRR sensor-the Advanced Very High Resolution Radiometer. The cloud image is a composite of two days of MODIS imagery collected in visible light wavelengths and a third day of thermal infra-red imagery over the poles. A large collection of imagery based on the blue marble in a variety of sizes and formats, including animations and the full (1 km) resolution imagery, is available at the Blue Marble page. Image by Reto Stockli, Render by Robert Simmon. Based on data from the MODIS Science Team

  16. THE DEEP BLUE COLOR OF HD 189733b: ALBEDO MEASUREMENTS WITH HUBBLE SPACE TELESCOPE/SPACE TELESCOPE IMAGING SPECTROGRAPH AT VISIBLE WAVELENGTHS

    SciTech Connect

    Evans, Thomas M.; Aigrain, Suzanne; Barstow, Joanna K.; Pont, Frederic; Sing, David K.; Desert, Jean-Michel; Knutson, Heather A.; Gibson, Neale; Heng, Kevin; Lecavelier des Etangs, Alain

    2013-08-01

    We present a secondary eclipse observation for the hot Jupiter HD 189733b across the wavelength range 290-570 nm made using the Space Telescope Imaging Spectrograph on the Hubble Space Telescope. We measure geometric albedos of A{sub g} = 0.40 {+-} 0.12 across 290-450 nm and A{sub g} < 0.12 across 450-570 nm at 1{sigma} confidence. The albedo decrease toward longer wavelengths is also apparent when using six wavelength bins over the same wavelength range. This can be interpreted as evidence for optically thick reflective clouds on the dayside hemisphere with sodium absorption suppressing the scattered light signal beyond {approx}450 nm. Our best-fit albedo values imply that HD 189733b would appear a deep blue color at visible wavelengths.

  17. Comparison between red-green-blue imaging and visible-near infrared reflectance as potential process analytical tools for monitoring syneresis.

    PubMed

    Mateo, M J; O'Callaghan, D J; O'Donnell, C P

    2010-05-01

    The current work focuses on the comparison of 2 on-line optical sensing systems; namely red-green-blue imaging and visible-near infrared reflectance, for monitoring syneresis during cheese manufacture. The experimental design consisted of 3 temperature treatments carried out in an 11-L cheese vat in triplicate. Both systems were shown to predict syneresis without significant differences in prediction accuracy. However, a single-wavelength near infrared model was the most parsimonious (standard error of prediction=4.35g/100g) for predicting syneresis. This technique was also the simplest in terms of parameters in the model (standard error of prediction=4.15g/100g with 2 parameters), when time after gel cutting and process parameters (temperature and cutting time) were included in the models. The study showed that either system could be employed to control syneresis in cheese manufacture and improve the control of moisture content in cheese. PMID:20412901

  18. Active three-dimensional and thermal imaging with a 30-?m pitch 320×256 HgCdTe avalanche photodiode focal plane array

    NASA Astrophysics Data System (ADS)

    de Borniol, Eric; Rothman, Johan; Guellec, Fabrice; Vojetta, Gautier; Destéfanis, Gérard; Pacaud, Olivier

    2012-06-01

    Three-dimensional (3-D) flash light detection and ranging (LADAR) imaging is based on time of flight (TOF) measurement of a single laser pulse. The laser pulse coming back from the observed object will be detected only if the number of photons received by each pixel generates a signal greater than the pixel noise. In order to extract this weak photonic signal from the noise we use the high gain and low excess noise of the HgCdTe avalanche photodiode (APD) arrays developed at CEA/LETI. The sensor consists of a 30-?m pitch APD detector array hybridized to a 320×256 pixels ROIC for passive and active imaging. In passive mode the focal plane array behaves like a thermal imager and we measured 30 mK of noise-equivalent temperature difference. In active imaging mode, each pixel sensed the time of flight and the intensity two-dimensional (2-D) of a single laser pulse. Laboratory tests show a range noise of 11 cm for 4300 photoelectrons per pixel and detection limit under 100 photoelectrons. The sensor was also used during a field trial to record 2-D and 3-D real-time videos. The quality of the images obtained demonstrates the maturity of HgCdTe-APD-array technology.

  19. Real-time, continuous-wave terahertz imaging by use of a microbolometer focal-plane array

    NASA Astrophysics Data System (ADS)

    Lee, Alan Wei Min; Hu, Qing

    2005-10-01

    Real-time, continuous-wave terahertz imaging is demonstrated with a 10 mW, 2.52 THz (118.8 µm) far-infrared gas laser and a 160×120 element microbolometer camera. The microbolometer camera is designed for wavelengths of 7.5-14 µm but retains sensitivity at terahertz (THz) frequencies. The setup has no moving parts, and transmission-mode THz images can be obtained at the video rate of 60 frames/s. The peak signal-to-noise ratio is estimated to be 13 dB for a single frame of video, acquired in 16 ms. With this setup, THz imaging through a FedEx envelope is demonstrated, showing the feasibility of real-time mail screening.

  20. Real-time, continuous-wave terahertz imaging by use of a microbolometer focal-plane array.

    PubMed

    Lee, Alan Wei Min; Hu, Qing

    2005-10-01

    Real-time, continuous-wave terahertz imaging is demonstrated with a 10 mW, 2.52 THz (118.8 microm) far-infrared gas laser and a 160 x 120 element microbolometer camera. The microbolometer camera is designed for wavelengths of 7.5-14 microm but retains sensitivity at terahertz (THz) frequencies. The setup has no moving parts, and transmission-mode THz images can be obtained at the video rate of 60 frames/s. The peak signal-to-noise ratio is estimated to be 13 dB for a single frame of video, acquired in 16 ms. With this setup, THz imaging through a FedEx envelope is demonstrated, showing the feasibility of real-time mail screening. PMID:16208900

  1. Methylene blue diffusion in skin tissue

    NASA Astrophysics Data System (ADS)

    Genina, Elina A.; Bashkatov, Alexey N.; Tuchin, Valery V.

    2004-07-01

    The study of Methylene Blue penetration in both skin and subcutaneous fat is presented. Experiments have been carried out with both rat skin and human adipose tissue in vitro at room temperature. Microscopic analysis with digital imaging system has been applied for visualizing and investigation of the Methylene Blue diffusion in the epidermal, dermal and adipose tissue. Diffusion coefficient of Methylene Blue in skin in vitro has been estimated.

  2. First operation of 8×8 glow discharge detector VLSI focal plane array toward mm wave and THz radiation video rate imaging

    NASA Astrophysics Data System (ADS)

    Kopeika, N. S.; Abramovich, A.; Joseph, H.; Akram, A.; Yadid-Pecht, O.; Belenky, A.; Lineykin, S.

    2009-09-01

    A new kind of 8×8 focal plane array (FPA) based on glow discharge detector (GDD) elements was constructed and tested experimentally. First THz images of this FPA are presented. The data acquisition of this system is performed with a special VLSI board designed for this system. Previously, signal detection of the FPA elements was based upon a lock in amplifier (LIA) which limited the rate of image formation. This was in order to detect weak signals required for stand-off remote detection. Switching mode is necessary in order to save energy but stabilization time of the GDD found to be 0.5 sec. Recent investigations proved that it is possible to overcome the above timing limitations. It was shown that heterodyne detection yielded 40 times more sensitivity than the direct detection, thus in many circumstances obviating the need for a LIA. Moreover, GDD stabilization time of less than 1 msec was achieved. These developments should enable video rate THz imaging using GDD FPAs.

  3. Imaging Fos-Jun Transcription Factor Mobility and Interaction in Live Cells by Single Plane Illumination-Fluorescence Cross Correlation Spectroscopy

    PubMed Central

    Pernuš, Agata; Langowski, Jörg

    2015-01-01

    We collected mobility and interaction maps of c-Fos-eGFP and c-Jun-mRFP1 transcription factors within living cell nuclei. c-Fos dimerizes with c-Jun to form the transcription activator protein-1 (AP-1) which binds to the specific recognition site. To monitor this process, we used fluorescence cross-correlation spectroscopy on a single plane illumination microscope (SPIM-FCCS), which provides diffusion coefficient and protein-protein interaction data in the whole image plane simultaneously, instead of just one point on conventional confocal FCS. We find a strong correlation between diffusional mobility and interaction: regions of strong interaction show slow mobility. Controls containing either an eGFP-mRFP dimer, separately expressing eGFP and mRPF, or c-Fos-eGFP and c-Jun-mRFP1 mutants lacking dimerization and DNA-binding domains, showed no such correlation. These results extend our earlier findings from confocal FCCS to include spatial information. PMID:25875593

  4. Characterizing the transplanar and in-plane water transport of textiles with gravimetric and image analysis technique: Spontaneous Uptake Water Transport Tester

    PubMed Central

    Tang, K. P. M.; Wu, Y. S.; Chau, K. H.; Kan, C. W.; Fan, J. T.

    2015-01-01

    Water absorption and transport property of textiles is important since it affects wear comfort, efficiency of treatment and functionality of product. This paper introduces an accurate and reliable measurement tester, which is based on gravimetric and image analysis technique, for characterising the transplanar and in-plane wicking property of fabrics. The uniqueness of this instrument is that it is able to directly measure the water absorption amount in real-time, monitor the direction of water transport and estimate the amount of water left on skin when sweating. Throughout the experiment, water supply is continuous which simulates profuse sweating. Testing automation could even minimise variation caused by subjective manipulation, thus enhancing testing accuracy. This instrument is versatile in terms of the fabrics could be tested. A series of shirting fabrics made by different fabric structure and yarn were investigated and the results show that the proposed method has high sensitivity in differentiating fabrics with varying geometrical differences. Fabrics with known hydrophobicity were additionally tested to examine the sensitivity of the instrument. This instrument also demonstrates the flexibility to test on high performance moisture management fabrics and these fabrics were found to have excellent transplanar and in-plane wicking properties. PMID:25875329

  5. Characterizing the transplanar and in-plane water transport of textiles with gravimetric and image analysis technique: Spontaneous Uptake Water Transport Tester.

    PubMed

    Tang, K P M; Wu, Y S; Chau, K H; Kan, C W; Fan, J T

    2015-01-01

    Water absorption and transport property of textiles is important since it affects wear comfort, efficiency of treatment and functionality of product. This paper introduces an accurate and reliable measurement tester, which is based on gravimetric and image analysis technique, for characterising the transplanar and in-plane wicking property of fabrics. The uniqueness of this instrument is that it is able to directly measure the water absorption amount in real-time, monitor the direction of water transport and estimate the amount of water left on skin when sweating. Throughout the experiment, water supply is continuous which simulates profuse sweating. Testing automation could even minimise variation caused by subjective manipulation, thus enhancing testing accuracy. This instrument is versatile in terms of the fabrics could be tested. A series of shirting fabrics made by different fabric structure and yarn were investigated and the results show that the proposed method has high sensitivity in differentiating fabrics with varying geometrical differences. Fabrics with known hydrophobicity were additionally tested to examine the sensitivity of the instrument. This instrument also demonstrates the flexibility to test on high performance moisture management fabrics and these fabrics were found to have excellent transplanar and in-plane wicking properties. PMID:25875329

  6. Characterizing the transplanar and in-plane water transport of textiles with gravimetric and image analysis technique: Spontaneous Uptake Water Transport Tester

    NASA Astrophysics Data System (ADS)

    Tang, K. P. M.; Wu, Y. S.; Chau, K. H.; Kan, C. W.; Fan, J. T.

    2015-04-01

    Water absorption and transport property of textiles is important since it affects wear comfort, efficiency of treatment and functionality of product. This paper introduces an accurate and reliable measurement tester, which is based on gravimetric and image analysis technique, for characterising the transplanar and in-plane wicking property of fabrics. The uniqueness of this instrument is that it is able to directly measure the water absorption amount in real-time, monitor the direction of water transport and estimate the amount of water left on skin when sweating. Throughout the experiment, water supply is continuous which simulates profuse sweating. Testing automation could even minimise variation caused by subjective manipulation, thus enhancing testing accuracy. This instrument is versatile in terms of the fabrics could be tested. A series of shirting fabrics made by different fabric structure and yarn were investigated and the results show that the proposed method has high sensitivity in differentiating fabrics with varying geometrical differences. Fabrics with known hydrophobicity were additionally tested to examine the sensitivity of the instrument. This instrument also demonstrates the flexibility to test on high performance moisture management fabrics and these fabrics were found to have excellent transplanar and in-plane wicking properties.

  7. Synchrotron based infrared imaging and spectroscopy via focal plane array on live fibroblasts in D2O enriched medium

    SciTech Connect

    Quaroni, Luca; Zlateva, Theodora; Sarafimov, Blagoj; Kreuzer, Helen W.; Wehbe, Katia; Hegg, Eric L.; Cinque, Gianfelice

    2014-03-26

    We tested the viability of using synchrotron based infrared imaging to study biochemical processes inside living cells. As a model system, we studied fibroblast cells exposed to a medium highly enriched with D2O. We could show that the experimental technique allows us to reproduce at the cellular level measurements that are normally performed on purified biological molecules. We can obtain information about lipid conformation and distribution, kinetics of hydrogen/deuterium exchange, and the formation of concentration gradients of H and O isotopes in water that are associated with cell metabolism. The implementation of the full field technique in a sequential imaging format gives a description of cellular biochemistry and biophysics that contains both spatial and temporal information.

  8. InSb focal plane array chemical imaging enables assessment of unit process efficiency for milling operation.

    PubMed

    Wetzel, David L; Posner, Elieser S; Dogan, Hulya

    2010-12-01

    In the dry milling of wheat flour, each unit process (roller mill, purifier, sifter, etc.) produces a mixture with varying amounts of wheat endosperm and non-endosperm byproducts. Chemical images with 82 000 pixels of each intermediate product stream issuing from an individual processing machine are readily analyzed in terms of the relative amount of endosperm and non-endosperm. Approximately three minutes is required to produce an image of each intermediate product stream. Applying partial least squares (PLS) chemometric software to identify individual pixels, which enables calculation of the relative amount of endosperm and non-endosperm, is not a time-limiting factor. When relative flow rates are known for each stream, mass balance can be calculated from each intermediate stream in terms of the product (endosperm content) and the lower value non-endosperm byproduct. Data is presented from a purifier in a commercial flour mill. Intermediate streams collected from a run with optimized operational parameters were compared to those of another run before adjustment. The endosperm (product) mass balance profile for each run enabled assessment of operational efficiency. The devised chemical imaging analysis system would be particularly useful in commissioning of a new mill or to optimize existing wheat milling systems. Also, when raw material differs from that for which previous optimization was established, a new optimization may be in order. The ability to acquire a large number of spectra from a specimen and apply multivariate statistics to identify each pixel and subsequently count pixels accommodates heterogeneity and reports the results from averaging a very large number of individual spectra. A second illustration of the utility of the imaging method is presented centering on streams from the first and second break unit operations at the beginning of the roller mill process. PMID:21144147

  9. Mongolian blue spots

    MedlinePLUS

    ... are a kind of birthmark that are flat, blue, or blue-gray. They appear at birth or in the ... Mongolian blue spots are common among persons who are of Asian, Native American, Hispanic, East Indian, and African descent. ...

  10. The Blue Bottle Revisited.

    ERIC Educational Resources Information Center

    Vandaveer, Walter R., IV; Mosher, Mel

    1997-01-01

    Presents a modification of the classic Blue Bottle demonstration that involves the alkaline glucose reduction of methylene blue. Uses other indicators in the classic Blue Bottle to produce a rainbow of colors. (JRH)

  11. Streaking images that appear only in the plane of diffraction in undoped GaAs single crystals: Diffraction imaging (topography) by monochromatic synchrotron radiation

    NASA Technical Reports Server (NTRS)

    Kuriyama, Masao; Steiner, Bruce; Dobbyn, Ronald C.; Laor, Uri; Larson, David; Brown, Margaret

    1988-01-01

    Streaking images restricted to the direction of the diffraction (scattering) vector have been observed on transmission through undoped GaAs. These disruption images (caused by the reduction of diffraction in the direction of observation) appear both in the forward and in Bragg diffracted directions in monochromatic synchrontron radiation diffraction imaging. This previously unobserved phenomenon can be explained in terms of planar defects (interfaces) or platelets which affects the absorption coefficient in anomalous transmission. Such regions of the crystal look perfect despite the presence of imperfections when the scattering vector is not perpendicular to the normal of the platelets. The observed crystallographic orientation of these interfaces strongly indicates that they are antiphase boundaries.

  12. Projective and affine planes 1 Projective planes

    E-print Network

    Queen Mary, University of London

    plane. A projective plane of order q is a square 2-(q2 + q + 1,q + 1,1) design (a symmetric BIBD, the unique Steiner triple system of order 7. The Encyclopaedia of Design Theory Projective and affine planes. A 2-(q2,q,1) design is called an affine plane of order q. We've seen that any projective plane

  13. The outlook for blue-phase LCDs

    NASA Astrophysics Data System (ADS)

    Chen, Yuan; Wu, Shin-Tson

    2014-02-01

    Polymer-stabilized blue-phase liquid crystal (BPLC) has become an increasingly important technology trend for information display and photonic applications. BPLC exhibits several attractive features, such as reasonably wide temperature range, submillisecond gray-to-gray response time, no need for alignment layer, optically isotropic voltageoff state, and large cell gap tolerance when an in-plane switching (IPS) cell is employed. Fast response time not only suppresses image blurs, improves the overall transmittance but also enables color sequential display without noticeable color breakup. With time sequential RGB LED colors, the spatial color filters can be eliminated so that both optical efficiency and resolution density are tripled. High optical efficiency helps to reduce power consumption while high resolution density is particularly desirable for the future Ultra High Definition Television. However, some bottlenecks such as high operation voltage, hysteresis, low relaxation frequency, residual birefringence, image sticking, charging issue due to the large capacitance, and relatively low transmittance for the IPS mode, remain to be overcome before widespread application of BPLC can be realized. To reduce operation voltage, both new BPLC materials and new device structures have been investigated. In this paper, we highlight some recent advances in large Kerr constant, fast response time BPLC material development, and new device structures. Especially, we will focus on new BP LCDs with low operation voltage, submillisecond response time, high transmittance, and negligible hysteresis and residual birefringence. The sunrise for BP LCD is near.

  14. Microbubble Void Imaging: A Non-invasive Technique for Flow Visualisation and Quantification of Mixing in Large Vessels Using Plane Wave Ultrasound and Controlled Microbubble Contrast Agent Destruction.

    PubMed

    Leow, Chee Hau; Iori, Francesco; Corbett, Richard; Duncan, Neill; Caro, Colin; Vincent, Peter; Tang, Meng-Xing

    2015-11-01

    There is increasing recognition of the influence of the flow field on the physiology of blood vessels and their development of pathology. Preliminary work is reported on a novel non-invasive technique, microbubble void imaging, which is based on ultrasound and controlled destruction of microbubble contrast agents, permitting flow visualisation and quantification of flow-induced mixing in large vessels. The generation of microbubble voids can be controlled both spatially and temporally using ultrasound parameters within the safety limits. Three different model vessel geometries-straight, planar-curved and helical-with known effects on the flow field and mixing were chosen to evaluate the technique. A high-frame-rate ultrasound system with plane wave transmission was used to acquire the contrast-enhanced ultrasound images, and an entropy measure was calculated to quantify mixing. The experimental results were cross-compared between the different geometries and with computational fluid dynamics. The results indicated that the technique is able to quantify the degree of mixing within the different configurations, with a helical geometry generating the greatest mixing, and a straight geometry, the lowest. There is a high level of concordance between the computational fluid dynamics and experimental results. The technique could also serve as a flow visualisation tool. PMID:26297515

  15. Schlumberger seismic vessel Geco Searcher provides unprecedented images of the Great Andaman Sumatra earthquake megathrust rupture plane

    NASA Astrophysics Data System (ADS)

    Carton, H.; Singh, S. C.; Hananto, N.; Hartoyo, D.; Chauhan, A.; Tapponnier, P.; White, N.; Bunting, T.; Christie, P.; Lubis, H.; Martin, J.

    2006-12-01

    From July 13 to 27, 2006, we carried out a deep seismic reflection survey along two lines on board the WesternGeco seismic vessel Geco Searcher. The vessel was equipped with one 12 km and one 5.5 km Q- Marine streamers. The long streamer was towed at 15 m depth, providing low frequency signal for deep targets, and the short streamer was towed at 7.5 m depth for high-resolution imaging of shallow sediments. The Q-Marine technology, developed by Schlumberger, is the most advanced technology available in seismic industry where individual hydrophones spaced at 3.125 m intervals sample and transmit data continuously back to the vessel. These data are then decimated to the appropriate trace interval, in this case 12.5m, after application of a digital spatial anti-alias filter, providing 960 channels of data. An array of 48 air guns provided a 10,170 cubic inch source with approximately 330 bar-m output. The shot interval was 50 m, providing 120 fold data at 6.25 m CMP intervals. The long streamer would allow us to remove seafloor multiples whereas high fold coverage would be extremely valuable for removing noise. Two deep seismic reflection lines were shot. The first line is 255 km long and runs close to the epicenter of the 26th December event, traversing the subduction front, a narrow accretionary wedge, the Simeulue plateau and the Simeulue forearc basin. The second line is 455 km long and located 255 km farther west: it traverses the whole margin, from the oceanic basin on the Indian plate up to the Andaman Sea, running across the the deformation front, the accretionary wedge, the West-Andaman Fault, the Aceh forearc basin, the submarine Sumatran fault and volcanic arc. Onboard processing of these data shows reflectors down to 18 s two-way travel time (TWTT), i.e. down to about 50-60 km depth. The subducting oceanic crust, including the oceanic Moho, could be seen down to 12 s TWTT. The megathrust that produced the earthquake could be followed from the source region at about 30 km depth to the surface near the subduction front. Extensive processing is under way and should provide unprecedented reflection images of this megathrust and hence insight about the nature of the tsunamigenic Great Andaman- Sumatra earthquake.

  16. Preparation of multi-coloured different sized fluorescent gold clusters from blue to NIR, structural analysis of the blue emitting Au7 cluster, and cell-imaging by the NIR gold cluster

    NASA Astrophysics Data System (ADS)

    Roy, Subhasish; Baral, Abhishek; Bhattacharjee, Rameswar; Jana, Batakrishna; Datta, Ayan; Ghosh, Surajit; Banerjee, Arindam

    2015-01-01

    Blue, green, orange-red, red and NIR emitting gold quantum clusters have been prepared in aqueous media by using a bioactive peptide glutathione (reduced) at physiological pH. Matrix-assisted laser desorption ionization-time-of-flight mass spectrometry (MALDI-TOF MS) analyses show that the core structure sizes of the five different gold clusters are Au7 (blue), Au16 (green), Au19 (orange-red), Au21 (red) and Au22 (NIR). The photo-stability and pH-stability of these quantum clusters have been measured, and these are photo-stable against continuous UV irradiation for a few hours. They also exhibit moderate to good pH-stability within the pH range of 5-12.5. A computational study reveals the organisation of gold atoms in the thiolate-protected blue quantum cluster and its several structural parameters, including the mode of interaction of ligand molecules with Au atoms in the Au7 cluster. Interestingly, it has been found that NIR emitting gold quantum cluster can easily be internalized into the adenocarcinomic human alveolar basal epithelial cell line (A549 cell line). Moreover, a MTT assay indicates that our NIR emitting gold quantum cluster show very low cytotoxicy to A549 cancer cells.Blue, green, orange-red, red and NIR emitting gold quantum clusters have been prepared in aqueous media by using a bioactive peptide glutathione (reduced) at physiological pH. Matrix-assisted laser desorption ionization-time-of-flight mass spectrometry (MALDI-TOF MS) analyses show that the core structure sizes of the five different gold clusters are Au7 (blue), Au16 (green), Au19 (orange-red), Au21 (red) and Au22 (NIR). The photo-stability and pH-stability of these quantum clusters have been measured, and these are photo-stable against continuous UV irradiation for a few hours. They also exhibit moderate to good pH-stability within the pH range of 5-12.5. A computational study reveals the organisation of gold atoms in the thiolate-protected blue quantum cluster and its several structural parameters, including the mode of interaction of ligand molecules with Au atoms in the Au7 cluster. Interestingly, it has been found that NIR emitting gold quantum cluster can easily be internalized into the adenocarcinomic human alveolar basal epithelial cell line (A549 cell line). Moreover, a MTT assay indicates that our NIR emitting gold quantum cluster show very low cytotoxicy to A549 cancer cells. Electronic supplementary information (ESI) available: material, instrumentation, cellular uptake studies, cytotoxicity studies, synthesis of gold clusters, UV-Vis, fluorescence, plots, reaction details in tabulated form, ESI videos. See DOI: 10.1039/c4nr04338c

  17. Blue cures blue but be cautious.

    PubMed

    Sikka, Pranav; Bindra, V K; Kapoor, Seema; Jain, Vivek; Saxena, K K

    2011-10-01

    Methemoglobinemia is a disorder characterized by the presence of >1% methemoglobin (metHb) in the blood. Spontaneous formation of methemoglobin is normally counteracted by protective enzyme systems, for example, nicotinamide adenine dinucleotide phosphate (NADPH) methemoglobin reductase. Methemoglobinemia is treated with supplemental oxygen and methylene blue (1-2 mg/kg) administered slow intravenously, which acts by providing an artificial electron acceptor for NADPH methemoglobin reductase. But known or suspected glucose-6-phosphate dehydrogenase (G6PD) deficiency is a relative contraindication to the use of methylene blue because G6PD is the key enzyme in the formation of NADPH through pentose phosphate pathway and G6PD-deficient individuals generate insufficient NADPH to efficiently reduce methylene blue to leukomethylene blue, which is necessary for the activation of the NADPH-dependent methemoglobin reductase system. So, we should be careful using methylene blue in methemoglobinemia patient before G6PD levels. PMID:22219589

  18. Methylene blue test

    MedlinePLUS

    The methylene blue test is a test to determine the type of methemoglobinemia , a blood disorder. ... are removed. A dark green powder called methylene blue goes through the tube into your vein. The ...

  19. Greening the Blue Bottle.

    ERIC Educational Resources Information Center

    Wellman, Whitney E.; Noble, Mark E.

    2003-01-01

    Compares the revised Blue Bottle formulation to the classical Blue Bottle. Indicates that the revised formulation gives a somewhat bluer solution, but initially slower reduction when compared to the classical formulation. (Author/KHR)

  20. [Plate 1] FIGURE II-3: A false-color composite image of the merger sequence, wi* *th neutral hydrogen distribution shown in blue, the continuum-

    E-print Network

    Hibbard, John

    hydrogen distribution shown in blue, the continuum- subtracted ionized hydrogen distribution shown in red the VLA C+D data running f* *rom 4536 kms 1(bottom left panel) to 4877 kms 1(top right panel). North is up and east is to the left. The two extreme crosses in e* *ach panel mark the locations of the Hii

  1. Image Calibration

    NASA Technical Reports Server (NTRS)

    Peay, Christopher S.; Palacios, David M.

    2011-01-01

    Calibrate_Image calibrates images obtained from focal plane arrays so that the output image more accurately represents the observed scene. The function takes as input a degraded image along with a flat field image and a dark frame image produced by the focal plane array and outputs a corrected image. The three most prominent sources of image degradation are corrected for: dark current accumulation, gain non-uniformity across the focal plane array, and hot and/or dead pixels in the array. In the corrected output image the dark current is subtracted, the gain variation is equalized, and values for hot and dead pixels are estimated, using bicubic interpolation techniques.

  2. SU-C-18C-02: Specifcation of X-Ray Projection Angles Which Are Aligned with the Aortic Valve Plane From a Planar Image of a Valvuloplasty Balloon Inflated Across the Aortic Valve

    SciTech Connect

    Fetterly, K; Mathew, V

    2014-06-01

    Purpose: Transcatheter aortic valve replacement (TAVR) procedures provide a method to implant a prosthetic aortic valve via a minimallyinvasive, catheter-based procedure. TAVR procedures require use of interventional fluoroscopy c-arm projection angles which are aligned with the aortic valve plane to minimize prosthetic valve positioning error due to x-ray imaging parallax. The purpose of this work is to calculate the continuous range of interventional fluoroscopy c-arm projection angles which are aligned with the aortic valve plane from a single planar image of a valvuloplasty balloon inflated across the aortic valve. Methods: Computational methods to measure the 3D angular orientation of the aortic valve were developed. Required inputs include a planar x-ray image of a known valvuloplasty balloon inflated across the aortic valve and specifications of x-ray imaging geometry from the DICOM header of the image. A-priori knowledge of the species-specific typical range of aortic orientation is required to specify the sign of the angle of the long axis of the balloon with respect to the x-ray beam. The methods were validated ex-vivo and in a live pig. Results: Ex-vivo experiments demonstrated that the angular orientation of a stationary inflated valvuloplasty balloon can be measured with precision less than 1 degree. In-vivo pig experiments demonstrated that cardiac motion contributed to measurement variability, with precision less than 3 degrees. Error in specification of x-ray geometry directly influences measurement accuracy. Conclusion: This work demonstrates that the 3D angular orientation of the aortic valve can be calculated precisely from a planar image of a valvuloplasty balloon inflated across the aortic valve and known x-ray geometry. This method could be used to determine appropriate c-arm angular projections during TAVR procedures to minimize x-ray imaging parallax and thereby minimize prosthetic valve positioning errors.

  3. Templated blue phases.

    PubMed

    Ravnik, Miha; Fukuda, Jun-Ichi

    2015-10-28

    Cholesteric blue phases of a chiral liquid crystal are interesting examples of self-organised three-dimensional nanostructures formed by soft matter. Recently it was demonstrated that a polymer matrix introduced by photopolymerization inside a bulk blue phase not only stabilises the host blue phase significantly, but also serves as a template for blue phase ordering. We show with numerical modelling that the transfer of the orientational order of the blue phase to the surfaces of the polymer matrix, together with the resulting surface anchoring, can account for the templating behaviour of the polymer matrix inducing the blue phase ordering of an achiral nematic liquid crystal. Furthermore, tailoring the anchoring conditions of the polymer matrix surfaces can bring about orientational ordering different from those of bulk blue phases, including an intertwined complex of the polymer matrix and topological line defects of orientational order. Optical Kerr response of templated blue phases is explored, finding large Kerr constants in the range of K = 2-10 × 10(-9) m V(-2) and notable dependence on the surface anchoring strength. More generally, the presented numerical approach is aimed to clarify the role and actions of templating polymer matrices in complex chiral nematic fluids, and further to help design novel template-based materials from chiral liquid crystals. PMID:26412643

  4. Blue Willow Story Plates

    ERIC Educational Resources Information Center

    Fontes, Kris

    2009-01-01

    In the December 1997 issue of "SchoolArts" is a lesson titled "Blue Willow Story Plates" by Susan Striker. In this article, the author shares how she used this lesson with her middle-school students many times over the years. Here, she describes a Blue Willow plate painting project that her students made.

  5. Uncovering Blue Diffuse Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    James, Bethan; Koposov, Sergey; Stark, Daniel; Belokurov, Vasily; Pettini, Max; Olszewski, Edward W.

    2015-01-01

    Extremely metal-poor galaxies (XMPs) and the star-formation within their chemically pristine environments are fundamental to our understanding of the galaxy formation process at early times. However, traditional emission-line surveys detect only the brightest metal-poor galaxies where star-formation occurs in compact, starbursting environments, and thereby give us only a partial view of the dwarf galaxy population. To avoid such biases, we have developed a new search algorithm based on the morphological, rather then spectral, properties of XMPs and have applied to the Sloan Digital Sky Survey database of images. Using this novel approach, we have discovered ~100 previously undetected, faint blue galaxies, each with isolated HII regions embedded in a diffuse continuum. In this talk I will present the first results from follow-up optical spectroscopy of this sample, which reveals these blue diffuse dwarfs (BDDs) to be young, very metal-poor and actively forming stars despite their intrinsically low luminosities. I will present evidence showing that BDDs appear to bridge the gap between quiescent dwarf irregular (dIrr) galaxies and blue compact galaxies (BCDs) and as such offer an ideal opportunity to assess how star-formation occurs in more `normal' metal-poor systems.

  6. Blue ocean strategy.

    PubMed

    Kim, W Chan; Mauborgne, Renée

    2004-10-01

    Despite a long-term decline in the circus industry, Cirque du Soleil profitably increased revenue 22-fold over the last ten years by reinventing the circus. Rather than competing within the confines of the existing industry or trying to steal customers from rivals, Cirque developed uncontested market space that made the competition irrelevant. Cirque created what the authors call a blue ocean, a previously unknown market space. In blue oceans, demand is created rather than fought over. There is ample opportunity for growth that is both profitable and rapid. In red oceans--that is, in all the industries already existing--companies compete by grabbing for a greater share of limited demand. As the market space gets more crowded, prospects for profits and growth decline. Products turn into commodities, and increasing competition turns the water bloody. There are two ways to create blue oceans. One is to launch completely new industries, as eBay did with online auctions. But it's much more common for a blue ocean to be created from within a red ocean when a company expands the boundaries of an existing industry. In studying more than 150 blue ocean creations in over 30 industries, the authors observed that the traditional units of strategic analysis--company and industry--are of limited use in explaining how and why blue oceans are created. The most appropriate unit of analysis is the strategic move, the set of managerial actions and decisions involved in making a major market-creating business offering. Creating blue oceans builds brands. So powerful is blue ocean strategy, in fact, that a blue ocean strategic move can create brand equity that lasts for decades. PMID:15559577

  7. Three-dimensional modeling of blue jets and blue starters Victor P. Pasko and Jeremy J. George

    E-print Network

    Pasko, Victor

    by thundercloud charges and self-consistently accounts for the electric field effects due to the propagating of blue jets and blue starters, in particular, by the documentation of the 427.8 nm (first negative N2, 1999, and references therein]. [5] It was not until an ``image of an unusual luminous electrical

  8. Thermodynamically Stable Blue Phases

    NASA Astrophysics Data System (ADS)

    Castles, F.; Morris, S. M.; Terentjev, E. M.; Coles, H. J.

    2010-04-01

    We show theoretically that flexoelectricity stabilizes blue phases in chiral liquid crystals. Induced internal polarization reduces the elastic energy cost of splay and bend deformations surrounding singular lines in the director field. The energy of regions of double twist is unchanged. This in turn reduces the free energy of the blue phase with respect to that of the chiral nematic phase, leading to stability over a wider temperature range. The theory explains the discovery of large temperature range blue phases in highly flexoelectric “bimesogenic” and “bent-core” materials, and predicts how this range may be increased further.

  9. Blue nightshade poisoning

    MedlinePLUS

    ... is found in the blue nightshade (Solanum dulcamara) plant, especially in the fruit and leaves. ... blood: Pulse - slow pulse Shock Lungs: Slow breathing Nervous system: Delirium Fever Hallucinations Headache Loss of sensation Paralysis Whole body Sweating

  10. Blue-green algae

    MedlinePLUS

    ... increased high-density lipoprotein (HDL or “good”) cholesterol. Malnutrition. Early research on the use of blue-green algae in combination with other dietary treatments for malnutrition in infants and children has been mixed. Weight ...

  11. Semiconducting Layered Blue Phosphorus: A Computational Study Zhen Zhu and David Tomnek*

    E-print Network

    Tománek, David

    structure and high stability with the black phosphorus allotrope. We find the in-plane hexagonal structure. Unlike graphite and black phosphorus, blue phosphorus displays a wide fundamental band gap. Still study a likely transformation pathway from black to blue phosphorus and discuss possible ways

  12. Fourier plane filters

    NASA Technical Reports Server (NTRS)

    Oliver, D. S.; Aldrich, R. E.; Krol, F. T.

    1972-01-01

    An electrically addressed liquid crystal Fourier plane filter capable of real time optical image processing is described. The filter consists of two parts: a wedge filter having forty 9 deg segments and a ring filter having twenty concentric rings in a one inch diameter active area. Transmission of the filter in the off (transparent) state exceeds fifty percent. By using polarizing optics, contrast as high as 10,000:1 can be achieved at voltages compatible with FET switching technology. A phenomenological model for the dynamic scattering is presented for this special case. The filter is designed to be operated from a computer and is addressed by a seven bit binary word which includes an on or off command and selects any one of the twenty rings or twenty wedge pairs. The overall system uses addressable latches so that once an element is in a specified state, it will remain there until a change of state command is received. The drive for the liquid crystal filter is ? 30 V peak at 30 Hz to 70 Hz. These parameters give a rise time for the scattering of 20 msec and a decay time of 80 to 100 msec.

  13. The Effect of Wedge Tip Angles on Stress Intensity Factors in the Contact Problem between Tilted Wedge and a Half Plane with an Edge Crack Using Digital Image Correlation

    E-print Network

    Khaleghian, Seyedmeysam; Yadegari, Mohammad; Soltani, Nasser

    2015-01-01

    The first and second mode stress intensity factors (SIFs) of a contact problem between a half-plane with an edge crack and an asymmetric tilted wedge were obtained using experimental method of Digital Image Correlation (DIC). In this technique, displacement and strain fields can be measured using two digital images of the same sample at different stages of loading. However, several images were taken consequently in each stage of this experiment to avoid the noise effect. A pair of images of each stage was compared to each other. Then, the correlation coefficients between them were studied using a computer code. The pairs with the correlation coefficient higher than 0.8 were selected as the acceptable match for displacement measurements near the crack tip. Subsequently, the SIFs of specimens were calculated using displacement fields obtained from DIC method. The effect of wedge tips angle on their SIFs was also studied. Moreover, the results of DIC method were compared with the results of photoelasticity metho...

  14. Multispectral imaging of absorption and scattering properties of in vivo exposed rat brain using a digital red-green-blue camera

    NASA Astrophysics Data System (ADS)

    Yoshida, Keiichiro; Nishidate, Izumi; Ishizuka, Tomohiro; Kawauchi, Satoko; Sato, Shunichi; Sato, Manabu

    2015-05-01

    In order to estimate multispectral images of the absorption and scattering properties in the cerebral cortex of in vivo rat brain, we investigated spectral reflectance images estimated by the Wiener estimation method using a digital RGB camera. A Monte Carlo simulation-based multiple regression analysis for the corresponding spectral absorbance images at nine wavelengths (500, 520, 540, 560, 570, 580, 600, 730, and 760 nm) was then used to specify the absorption and scattering parameters of brain tissue. In this analysis, the concentrations of oxygenated hemoglobin and that of deoxygenated hemoglobin were estimated as the absorption parameters, whereas the coefficient a and the exponent b of the reduced scattering coefficient spectrum approximated by a power law function were estimated as the scattering parameters. The spectra of absorption and reduced scattering coefficients were reconstructed from the absorption and scattering parameters, and the spectral images of absorption and reduced scattering coefficients were then estimated. In order to confirm the feasibility of this method, we performed in vivo experiments on exposed rat brain. The estimated images of the absorption coefficients were dominated by the spectral characteristics of hemoglobin. The estimated spectral images of the reduced scattering coefficients had a broad scattering spectrum, exhibiting a larger magnitude at shorter wavelengths, corresponding to the typical spectrum of brain tissue published in the literature. The changes in the estimated absorption and scattering parameters during normoxia, hyperoxia, and anoxia indicate the potential applicability of the method by which to evaluate the pathophysiological conditions of in vivo brain due to the loss of tissue viability.

  15. The coloured quantum plane

    E-print Network

    Deepak Parashar

    2002-02-18

    We study the quantum plane associated to the coloured quantum group GL_{q}^{\\lambda,\\mu}(2) and solve the problem of constructing the corresponding differential geometric structure. This is achieved within the R-matrix framework generalising the Wess-Zumino formalism and leads to the concept of coloured quantum space. Both, the coloured Manin plane as well as the bicovariant differential calculus exhibit the colour exchange symmetry. The coloured h-plane corresponding to the coloured Jordanian quantum group GL_{h}^{\\lambda,\\mu}(2) is also obtained by contraction of the coloured q-plane.

  16. Visualization of microvascular proliferation as a tumor infiltration structure in rat glioma specimens using the diffraction-enhanced imaging in-plane CT technique

    NASA Astrophysics Data System (ADS)

    Seo, Seung-Jun; Sunaguchi, Naoki; Yuasa, Tetsuya; Huo, Qingkai; Ando, Masami; Choi, Gi-Hwan; Kim, Hong-Tae; Kim, Ki-Hong; Jeong, Eun-Ju; Chang, Won-Seok; Kim, Jong-Ki

    2012-03-01

    In order to study potent microenvironments of malignant gliomas with a high- resolution x-ray imaging technique, an injection orthotopic glioma model was made using the Sprague-Dawley rat. Total brain tissue, taken out as an ex vivo model, was examined with diffraction-enhanced imaging (DEI) computed tomography (CT) acquired with a 35 keV monochromatic x-ray. In the convolution-reconstructed 2D/3D images with a spatial resolution of 12.5 × 12.5 × 25 µm, distinction among necrosis, typical ring-shaped viable tumors, edemas and healthy tissues was clearly observed near the frontal lobe in front of the rat's caudate nucleus. Multiple microvascular proliferations (MVPs) were observed surrounding peritumoral edemas as a tumor infiltration structure. Typical dimensions of tubular MVPs were 130 (diameter) ×250 (length) µm with a partial sprout structure revealed in the 3D reconstructed image. Hyperplasia of cells around vessel walls was revealed with tumor cell infiltration along the perivascular space in microscopic observations of mild MVP during histological analysis. In conclusion, DEI-CT is capable of imaging potent tumor-infiltrating MVP structures surrounding high-grade gliomas.

  17. Uncovering blue diffuse dwarf galaxies

    NASA Astrophysics Data System (ADS)

    James, Bethan L.; Koposov, Sergey; Stark, Daniel P.; Belokurov, Vasily; Pettini, Max; Olszewski, Edward W.

    2015-04-01

    Extremely metal poor (XMP) galaxies are known to be very rare, despite the large numbers of low-mass galaxies predicted by the local galaxy luminosity function. This paper presents a subsample of galaxies that were selected via a morphology-based search on Sloan Digital Sky Survey images with the aim of finding these elusive XMP galaxies. By using the recently discovered XMP galaxy, Leo P, as a guide, we obtained a collection of faint, blue systems, each with isolated H II regions embedded in a diffuse continuum, that have remained optically undetected until now. Here we show the first results from optical spectroscopic follow-up observations of 12 of ˜100 of these blue diffuse dwarf (BDD) galaxies yielded by our search algorithm. Oxygen abundances were obtained via the direct method for eight galaxies, and found to be in the range 7.45 < 12 + log (O/H) < 8.0, with two galaxies being classified as XMPs. All BDDs were found to currently have a young star-forming population (<10 Myr) and relatively high ionization parameters of their H II regions. Despite their low luminosities (-11 ? MB ? -18) and low surface brightnesses (˜23-25 mag arcsec-2), the galaxies were found to be actively star forming, with current star formation rates between 0.0003 and 0.078 M? yr-1. From our current subsample, BDD galaxies appear to be a population of non-quiescent dwarf irregular galaxies, or the diffuse counterparts to blue compact galaxies and as such may bridge the gap between these two populations. Our search algorithm demonstrates that morphology-based searches are successful in uncovering more diffuse metal-poor star-forming galaxies, which traditional emission-line-based searches overlook.

  18. Vector image method for the derivation of elastostatic solutions for point sources in a plane layered medium. Part 1: Derivation and simple examples

    NASA Technical Reports Server (NTRS)

    Fares, Nabil; Li, Victor C.

    1986-01-01

    An image method algorithm is presented for the derivation of elastostatic solutions for point sources in bonded halfspaces assuming the infinite space point source is known. Specific cases were worked out and shown to coincide with well known solutions in the literature.

  19. SNAP Satellite Focal Plane Development

    SciTech Connect

    Bebek, C.; Akerlof, C.; Aldering, G.; Amanullah, R.; Astier, P.; Baltay, C.; Barrelet, E.; Basa, S.; Bercovitz, J.; Bergstrom, L.; Berstein, G.P.; Bester, M.; Bohlin, R.; Bonissent, A.; Bower, C.; Campbell, M.; Carithers, W.; Commins, E.; Day, C.; Deustua, S.; DiGennaro, R.; Ealet, A.; Ellis, R.; Emmett, W.; Eriksson, M.; Fouchez,D.; Fruchter, A.; Genat, J-F.; Goldhaber, G.; Goobar, A.; Groom, D.; Heetderks, H.; Holland, S.; Huterer, D.; Johnson, W.; Kadel, R.; Karcher,A.; Kim, A.; Kolbe, W.; Lafever, R.; Lamoureaux, J.; Lampton, M.; Lefevre, O.; Levi, M.; Levin, D.; Linder, E.; Loken, S.; Malina, R.; Mazure, A.; McKay, T.; McKee, S.; Miquel, R.; Morgan, N.; Mortsell, E.; Mostek, N.; Mufson, S.; Musser, J.; Roe, N.; Nugent, P.; Oluseyi, H.; Pain, R.; Palaio, N.; Pankow, D.; Perlmutter, S.; Prieto, E.; Rabinowitz,D.; Refregier, A.; Rhodes, J.; Schubnell, M.; Sholl, M.; Smadja, G.; Smith, R.; Smoot, G.; Snyder, J.; Spadafora, A.; Szymkowiak, A.; Tarle,G.; Taylor, K.; Tilquin, A.; Tomasch, A.; Vincent, D.; von der Lippe, H.; Walder, J-P.; Wang, G.

    2003-07-07

    The proposed SuperNova/Acceleration Probe (SNAP) mission will have a two-meter class telescope delivering diffraction-limited images to an instrumented 0.7 square degree field in the visible and near-infrared wavelength regime. The requirements for the instrument suite and the present configuration of the focal plane concept are presented. A two year R&D phase, largely supported by the Department of Energy, is just beginning. We describe the development activities that are taking place to advance our preparedness for mission proposal in the areas of detectors and electronics.

  20. Study of the nucleation and growth of antibiotic labeled Au NPs and blue luminescent Au8 quantum clusters for Hg(2+) ion sensing, cellular imaging and antibacterial applications.

    PubMed

    Khandelwal, Puneet; Singh, Dheeraj K; Sadhu, Subha; Poddar, Pankaj

    2015-12-21

    Herein, we report a detailed experimental study supported by DFT calculations to understand the mechanism behind the synthesis of cefradine (CFD - an antibiotic) labeled gold nanoparticles (Au NPs) by employing CFD as both a mild reducing and capping agent. The analysis of the effect of growth conditions reveals that a higher concentration of HAuCl4 results in the formation of an increasing fraction of anisotropic structures, higher temperature leads to the formation of quasi-spherical particles instead of anisotropic ones, and larger pH leads to the formation of much smaller particles. The cyclic voltammetry (CV) results show that when the pH of the reaction medium increases from 4 to 6, the reduction potential of CFD increases which leads to the synthesis of nanoparticles (in a pH 4 reaction) to quantum clusters (in a pH 6 reaction). The MALDI-TOF mass spectrometry results of supernatant of the pH 6 reaction indicate the formation of [Au8(CFD)2S6] QCs which show fluorescence at ca. 432 nm with a Stokes shift of ca. 95 nm. The blue luminescence from Au8 QCs was applied for sensing of Hg(2+) ions on the basis of an aggregation-induced fluorescence quenching mechanism and offers good selectivity and a high sensitivity with a limit of detection ca. 2 nM which is lower than the detection requirement of 10 nM by the U.S. EPA and 30 nM by WHO for drinking water. We have also applied the sensing probe to detect Hg(2+) ions in bacterial samples. Further, we have investigated the antibacterial property of as-synthesized Au NPs using MIC, growth curve and cell survival assay. The results show that Au NPs could reduce the cell survival very efficiently rather than the cell growth in comparison to the antibiotic itself. The scanning electron microscopy study shows the degradation and blebbing of the bacterial cell wall upon exposure with Au NPs which was further supported by fluorescence microscopy results. These Au NPs did not show reactive oxygen species generation. We believe that the bacterial cytotoxicity is due to the direct contact of the Au NPs with bacterial cells. PMID:26564987

  1. Holo-Television System with a Single Plane

    E-print Network

    Lunazzi, J J; Rivera, N I R; Serra, R L

    2009-01-01

    We show a system capable of projecting a video scene on a white-light holographic screen to obtain a kind of image that results in a plane in front of the screen. This holographic screen is mainly a diffractive lens and it is constructed by holography. The image plane can be located at any azimuth angle and seen with continuous parallax and without the use of goggles or any special visualization equipment. The image is not volumetric but when the plane is oblique to the observer its appearance looks very close to a real volumetric image.

  2. Holo-television system with a single plane

    NASA Astrophysics Data System (ADS)

    Lunazzi, José J.; Magalhães, Daniel S. F.; Rivera, Noemí I. R.; Serra, Rolando L.

    2009-02-01

    We show a system capable of projecting a video scene on a white-light holographic screen to obtain a kind of image that results in a plane in front of the screen. This holographic screen is mainly a diffractive lens and it is constructed by holography. The image plane can be located at any azimuth angle and seen with continuous parallax and without the use of goggles or any special visualization equipment. The image is not volumetric but when the plane is oblique to the observer its appearance looks very close to a real volumetric image.

  3. Cover Images.

    PubMed

    2016-01-01

    Representative image of hippocampus 18 days after mLFP injury treated with combined Kineret + Etanercept treatment showing myelin basic protein (MBP) green, DAPI blue, and MAP2 red immunostaining; (4 ?m sections; 20×). PMID:26508400

  4. The Blue Tube.

    ERIC Educational Resources Information Center

    Wallisch, Bill; Taylor, Bob

    The "Blue Tube" is a 2-part academic package developed at the U.S. Air Force Academy consisting of an English course in communication and writing skills and a management course in advertising and marketing; the two courses are interrelated through student assignments in television production. The first part of the package includes training of…

  5. Great Blue Heron

    USGS Multimedia Gallery

    Great Blue Herons are found throughout much of North America, but are always associated with water. Because they fish by sight, they need relatively shallow water. Release of too much water through the canals north of the Everglades can interfere with their ability to find food....

  6. Fundamentals of the Dwarf Fundamental Plane

    E-print Network

    McCall, Marshall L; Nunez, F Pozo; Dominguez, A Barr; Fingerhut, R; Unda-Sanzana, E; Li, Bintao; Albrecht, M; 10.1051/0004-6361/201117669

    2012-01-01

    Star-forming dwarfs are studied to elucidate the physical underpinnings of their fundamental plane. It is confirmed that residuals in the Tully-Fisher relation are correlated with surface brightness, but that even after accommodating the surface brightness dependence through the dwarf fundamental plane, residuals in absolute magnitude are far larger than expected from observational errors. Rather, a more fundamental plane is identified which connects the potential to HI line width and surface brightness. Residuals correlate with the axis ratio in a way which can be accommodated by recognizing the galaxies to be oblate spheroids viewed at varying angles. Correction of surface brightnesses to face-on leads to a correlation among the potential, line width, and surface brightness for which residuals are entirely attributable to observational uncertainties. The mean mass-to-light ratio of the diffuse component of the galaxies is constrained to be 0.88 +/- 0.20 in Ks. Blue compact dwarfs lie in the same plane as dw...

  7. 2. VIEW SOUTH, INCLINE PLANE CAR, INCLINE PLANE TRACK, UPPER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. VIEW SOUTH, INCLINE PLANE CAR, INCLINE PLANE TRACK, UPPER STATION. - Monongahela Incline Plane, Connecting North side of Grandview Avenue at Wyoming Street with West Carson Street near Smithfield Street, Pittsburgh, Allegheny County, PA

  8. The Blue Whale, Balaenoptera musculus

    E-print Network

    The Blue Whale, Balaenoptera musculus SALLY A. MIZROCH, DALE W. RICE, and JEFFREY M. BREIWICK Introduction The blue whale, Balaenoptera mus- culus (Linnaeus, 1758), is not only the largest of the whales metric tons (t) (Mackintosh, 1942). Blue whales are entirely bluish-gray in color, except for the white

  9. The Blue Emu

    NASA Technical Reports Server (NTRS)

    Descalzi, Doug; Gillett, John; Gordon, Carlton; Keener, ED; Novak, Ken; Puente, Laura

    1993-01-01

    The primary goal in designing the Blue Emu was to provide an airline with a cost efficient and profitable means of transporting passengers between the major cities in Aeroworld. The design attacks the market where a demand for inexpensive transportation exists and for this reason the Blue Emu is an attractive investment for any airline. In order to provide a profitable aircraft, special attention was paid to cost and economics. For example, in manufacturing, simplicity was stressed in structural design to reduce construction time and cost. Aerodynamic design employed a tapered wing which reduced the induced drag coefficient while also reducing the weight of the wing. Even the propulsion system was selected with cost effectiveness in mind, yet also to maintain the marketability of the aircraft. Thus, in every aspect of the design, consideration was given to economics and marketability of the final product.

  10. The blue brain project.

    PubMed

    Markram, Henry

    2006-02-01

    IBM's Blue Gene supercomputer allows a quantum leap in the level of detail at which the brain can be modelled. I argue that the time is right to begin assimilating the wealth of data that has been accumulated over the past century and start building biologically accurate models of the brain from first principles to aid our understanding of brain function and dysfunction. PMID:16429124

  11. Dual band QWIP focal plane array

    NASA Technical Reports Server (NTRS)

    Gunapala, Sarath D. (Inventor); Choi, Kwong Kit (Inventor); Bandara, Sumith V. (Inventor)

    2005-01-01

    A quantum well infrared photodetector (QWIP) that provides two-color image sensing. Two different quantum wells are configured to absorb two different wavelengths. The QWIPs are arrayed in a focal plane array (FPA). The two-color QWIPs are selected for readout by selective electrical contact with the two different QWIPs or by the use of two different wavelength sensitive gratings.

  12. RECENT DEVELOPMENTS IN SURGICAL SKIN PLANING

    PubMed Central

    Ayres, Samuel; Wilson, J. Walter; Luikart, Ralph

    1958-01-01

    In surgical skin planing steel wire brushes have been largely replaced by the less hazardous diamond chip burs or “fraises” and serrated steel wheels. In addition to acne pits and wrinkling, multiple actinic (senile) keratoses are an important indication for planing. Planing provides a nonscarring method for the treatment of existing keratoses, as well as a prophylaxis against skin cancer by replacing the sun-damaged, precancerous epidermis with new epidermal cells derived from the cutaneous adnexa (pilosebaceous and sweat gland units). There are clinical landmarks indicating the depth of planing which can serve as a guide to the operator and can be correlated with microscopic findings. The results of experiments on the comparative effects of refrigerants on animal and human skin indicate that human facial skin can tolerate considerable freezing with ethyl chloride or dichlorotetrafluoroethane (Freon 114) but that mixtures containing large proportions of the much colder dichlorodifluoromethane (Freon 12) may be undesirable. Refreezing an area of the skin in order to perform a more adequate planing is not considered hazardous. The regeneration of the skin following planing has three components: Epidermal, adnexal and dermal. The cells of the epidermis and the adnexa are equipotential. A knowledge of the anatomy of the acne pit enables the operator to decide which pits can be benefited by planing and which should be excised before planing. The successful treatment of acne pits of the face by planing in patients having keloids elsewhere on the body is reported. ImagesFigure 1.Figure 2.Figure 3.Figure 4.Figure 5.Figure 6.Figure 7. PMID:13500217

  13. Neptune's blue-green atmosphere

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Neptune's blue-green atmosphere is shown in greater detail than ever before by the Voyager 2 spacecraft as it rapidly approaches its encounter with the giant planet. This color image, produced from a distance of about 16 million kilometers, shows several complex and puzzling atmospheric features. The Great Dark Spot (GDS) seen at the center is about 13,000 km by 6,600 km in size -- as large along its longer dimension as the Earth. The bright, wispy 'cirrus-type' clouds seen hovering in the vicinity of the GDS are higher in altitude than the dark material of unknown origin which defines its boundaries. A thin veil often fills part of the GDS interior, as seen on the image. The bright cloud at the southern (lower) edge of the GDS measures about 1,000 km in its north-south extent. The small, bright cloud below the GDS, dubbed the 'scooter,' rotates faster than the GDS, gaining about 30 degrees eastward (toward the right) in longitude every rotation. Bright streaks of cloud at the latitude of the GDS, the small clouds overlying it, and a dimly visible dark protrusion at its western end are examples of dynamic weather patterns on Neptune, which can change significantly on time scales of one rotation (about 18 hours).

  14. Complex Plane and Parameter Plane Linear System Design Methods

    E-print Network

    Moore, John Barratt

    Complex Plane and Parameter Plane Linear System Design Methods J. B. MOORE* Summary Constraint in a control system design. The Siljak parameter plane methodl, 2 gives relative stability information(~ lmrameter plane, thus enabli~g the designer to select values for the two adjufitab]e parameters which give

  15. Focal Plane Metrology for the LSST Camera

    SciTech Connect

    A Rasmussen, Andrew P.; Hale, Layton; Kim, Peter; Lee, Eric; Perl, Martin; Schindler, Rafe; Takacs, Peter; Thurston, Timothy; /SLAC

    2007-01-10

    Meeting the science goals for the Large Synoptic Survey Telescope (LSST) translates into a demanding set of imaging performance requirements for the optical system over a wide (3.5{sup o}) field of view. In turn, meeting those imaging requirements necessitates maintaining precise control of the focal plane surface (10 {micro}m P-V) over the entire field of view (640 mm diameter) at the operating temperature (T {approx} -100 C) and over the operational elevation angle range. We briefly describe the hierarchical design approach for the LSST Camera focal plane and the baseline design for assembling the flat focal plane at room temperature. Preliminary results of gravity load and thermal distortion calculations are provided, and early metrological verification of candidate materials under cold thermal conditions are presented. A detailed, generalized method for stitching together sparse metrology data originating from differential, non-contact metrological data acquisition spanning multiple (non-continuous) sensor surfaces making up the focal plane, is described and demonstrated. Finally, we describe some in situ alignment verification alternatives, some of which may be integrated into the camera's focal plane.

  16. Galaxy Evolution Explorer (GALEX): Galactic Plane Survey

    NASA Astrophysics Data System (ADS)

    Lemley, Cameron; Mohammed, Steven; Schiminovich, David; Tam, Benjamin; Seibert, Mark; Martin, Christopher D.; GALEX Science Team

    2015-01-01

    The Galaxy Evolution Explorer (GALEX) completed its survey of the Galactic plane in the near-ultraviolet during 2012. Although preliminary data were released shortly after the completion of the survey, the full dataset was reanalyzed during 2014 using refined attitude correction techniques that yield angular resolution-limited images. The GALEX Galactic plane survey includes more than 75% of the sky between 10 > b > -10 degrees. The initial photon dataset contains about 400 individual scans, each of which is a vertical slice of the Galactic plane. Each slice spans 1500-1700 seconds, during which the 1.24 degree diameter field of view performed a double-pass sweep across the Galactic plane. The Galactic Plane survey was the only time this non-standard, high scan rate acquisition mode was exercised during the mission, and required specialized processing and astrometric refinement to produce high quality sky maps. We present the first high-resolution map of the Galactic plane in the near-ultraviolet as well as a catalogue of thousands of sources for follow-up with HST. This work was partially supported by the Keck Institute for Space Studies.

  17. Focal plane scanner with reciprocating spatial window

    NASA Technical Reports Server (NTRS)

    Mao, Chengye (Inventor)

    2000-01-01

    A focal plane scanner having a front objective lens, a spatial window for selectively passing a portion of the image therethrough, and a CCD array for receiving the passed portion of the image. All embodiments have a common feature whereby the spatial window and CCD array are mounted for simultaneous relative reciprocating movement with respect to the front objective lens, and the spatial window is mounted within the focal plane of the front objective. In a first embodiment, the spatial window is a slit and the CCD array is one-dimensional, and successive rows of the image in the focal plane of the front objective lens are passed to the CCD array by an image relay lens interposed between the slit and the CCD array. In a second embodiment, the spatial window is a slit, the CCD array is two-dimensional, and a prism-grating-prism optical spectrometer is interposed between the slit and the CCD array so as to cause the scanned row to be split into a plurality of spectral separations onto the CCD array. In a third embodiment, the CCD array is two-dimensional and the spatial window is a rectangular linear variable filter (LVF) window, so as to cause the scanned rows impinging on the LVF to be bandpass filtered into spectral components onto the CCD array through an image relay lens interposed between the LVF and the CCD array.

  18. Stereo Imaging Miniature Endoscope

    NASA Technical Reports Server (NTRS)

    Bae, Youngsam; Manohara, Harish; White, Victor; Shcheglov, Kirill V.; Shahinian, Hrayr

    2011-01-01

    Stereo imaging requires two different perspectives of the same object and, traditionally, a pair of side-by-side cameras would be used but are not feasible for something as tiny as a less than 4-mm-diameter endoscope that could be used for minimally invasive surgeries or geoexploration through tiny fissures or bores. The proposed solution here is to employ a single lens, and a pair of conjugated, multiple-bandpass filters (CMBFs) to separate stereo images. When a CMBF is placed in front of each of the stereo channels, only one wavelength of the visible spectrum that falls within the passbands of the CMBF is transmitted through at a time when illuminated. Because the passbands are conjugated, only one of the two channels will see a particular wavelength. These time-multiplexed images are then mixed and reconstructed to display as stereo images. The basic principle of stereo imaging involves an object that is illuminated at specific wavelengths, and a range of illumination wavelengths is time multiplexed. The light reflected from the object selectively passes through one of the two CMBFs integrated with two pupils separated by a baseline distance, and is focused onto the imaging plane through an objective lens. The passband range of CMBFs and the illumination wavelengths are synchronized such that each of the CMBFs allows transmission of only the alternate illumination wavelength bands. And the transmission bandwidths of CMBFs are complementary to each other, so that when one transmits, the other one blocks. This can be clearly understood if the wavelength bands are divided broadly into red, green, and blue, then the illumination wavelengths contain two bands in red (R1, R2), two bands in green (G1, G2), and two bands in blue (B1, B2). Therefore, when the objective is illuminated by R1, the reflected light enters through only the left-CMBF as the R1 band corresponds to the transmission window of the left CMBF at the left pupil. This is blocked by the right CMBF. The transmitted band is focused on the focal plane array (FPA).

  19. Blue ocean leadership.

    PubMed

    Kim, W Chan; Mauborgne, Renée

    2014-05-01

    Ten years ago, two INSEAD professors broke ground by introducing "blue ocean strategy," a new model for discovering uncontested markets that are ripe for growth. In this article, they apply their concepts and tools to what is perhaps the greatest challenge of leadership: closing the gulf between the potential and the realized talent and energy of employees. Research indicates that this gulf is vast: According to Gallup, 70% of workers are disengaged from their jobs. If companies could find a way to convert them into engaged employees, the results could be transformative. The trouble is, managers lack a clear understanding of what changes they could make to bring out the best in everyone. Here, Kim and Mauborgne offer a solution to that problem: a systematic approach to uncovering, at each level of the organization, which leadership acts and activities will inspire employees to give their all, and a process for getting managers throughout the company to start doing them. Blue ocean leadership works because the managers' "customers"-that is, the people managers oversee and report to-are involved in identifying what's effective and what isn't. Moreover, the approach doesn't require leaders to alter who they are, just to undertake a different set of tasks. And that kind of change is much easier to implement and track than changes to values and mind-sets. PMID:24956870

  20. Project Blue Revolution

    SciTech Connect

    Takahashi, P.K.

    1996-12-01

    In June of 1992, the National Science Foundation and National Oceanic and Atmospheric Administration sponsored a strategic planning workshop, involving 35 ocean technologists representing the Atlantic, Gulf, and Pacific marine communities, to develop a proactive plan for the commercialization of national Exclusive Economic Zone resources. This meeting was the culmination of a series of gatherings held over the past decade, each treating specific ocean applications. The blue-ribbon panel recommended the consolidation of all ocean resource development activities within the federal government,a nd named the Department of Commerce as the ideal agency to manage this office, congressional oversight hearings to reestablish ocean priorities,a nd a broad spectrum of major ocean enterprises for the 21st century. During this same period, an international workshop was held in Hawaii with 50 invited specialists from six countries to discuss the merits of a cooperative program identified as Project Blue Revolution. The attendees determined that a 1 ha (100,000 sq ft) floating platform powered by ocean thermal energy conversion and at a projected cost of $500,000,000 to serve as an incubator for facilitating the commercialization of ocean resources and supporting marine science research, was a feasible venture.

  1. An information-theoretic approach to designing the plane spacing for multifocal plane microscopy

    NASA Astrophysics Data System (ADS)

    Tahmasbi, Amir; Ram, Sripad; Chao, Jerry; Abraham, Anish V.; Ward, E. S.; Ober, Raimund J.

    2015-03-01

    Multifocal plane microscopy (MUM) is a 3D imaging modality which enables the localization and tracking of single molecules at high spatial and temporal resolution by simultaneously imaging distinct focal planes within the sample. MUM overcomes the depth discrimination problem of conventional microscopy and allows high accuracy localization of a single molecule in 3D along the z-axis. An important question in the design of MUM experiments concerns the appropriate number of focal planes and their spacings to achieve the best possible 3D localization accuracy along the z-axis. Ideally, it is desired to obtain a 3D localization accuracy that is uniform over a large depth and has small numerical values, which guarantee that the single molecule is continuously detectable. Here, we address this concern by developing a plane spacing design strategy based on the Fisher information. In particular, we analyze the Fisher information matrix for the 3D localization problem along the z-axis and propose spacing scenarios termed the strong coupling and the weak coupling spacings, which provide appropriate 3D localization accuracies. Using these spacing scenarios, we investigate the detectability of the single molecule along the z-axis and study the effect of changing the number of focal planes on the 3D localization accuracy. We further review a software module we recently introduced, the MUMDesignTool, that helps to design the plane spacings for a MUM setup.

  2. Hyperspectral Fluorescence and Reflectance Imaging Instrument

    NASA Technical Reports Server (NTRS)

    Ryan, Robert E.; O'Neal, S. Duane; Lanoue, Mark; Russell, Jeffrey

    2008-01-01

    The system is a single hyperspectral imaging instrument that has the unique capability to acquire both fluorescence and reflectance high-spatial-resolution data that is inherently spatially and spectrally registered. Potential uses of this instrument include plant stress monitoring, counterfeit document detection, biomedical imaging, forensic imaging, and general materials identification. Until now, reflectance and fluorescence spectral imaging have been performed by separate instruments. Neither a reflectance spectral image nor a fluorescence spectral image alone yields as much information about a target surface as does a combination of the two modalities. Before this system was developed, to benefit from this combination, analysts needed to perform time-consuming post-processing efforts to co-register the reflective and fluorescence information. With this instrument, the inherent spatial and spectral registration of the reflectance and fluorescence images minimizes the need for this post-processing step. The main challenge for this technology is to detect the fluorescence signal in the presence of a much stronger reflectance signal. To meet this challenge, the instrument modulates artificial light sources from ultraviolet through the visible to the near-infrared part of the spectrum; in this way, both the reflective and fluorescence signals can be measured through differencing processes to optimize fluorescence and reflectance spectra as needed. The main functional components of the instrument are a hyperspectral imager, an illumination system, and an image-plane scanner. The hyperspectral imager is a one-dimensional (line) imaging spectrometer that includes a spectrally dispersive element and a two-dimensional focal plane detector array. The spectral range of the current imaging spectrometer is between 400 to 1,000 nm, and the wavelength resolution is approximately 3 nm. The illumination system consists of narrowband blue, ultraviolet, and other discrete wavelength light-emitting-diode (LED) sources and white-light LED sources designed to produce consistently spatially stable light. White LEDs provide illumination for the measurement of reflectance spectra, while narrowband blue and UV LEDs are used to excite fluorescence. Each spectral type of LED can be turned on or off depending on the specific remote-sensing process being performed. Uniformity of illumination is achieved by using an array of LEDs and/or an integrating sphere or other diffusing surface. The image plane scanner uses a fore optic with a field of view large enough to provide an entire scan line on the image plane. It builds up a two-dimensional image in pushbroom fashion as the target is scanned across the image plane either by moving the object or moving the fore optic. For fluorescence detection, spectral filtering of a narrowband light illumination source is sometimes necessary to minimize the interference of the source spectrum wings with the fluorescence signal. Spectral filtering is achieved with optical interference filters and absorption glasses. This dual spectral imaging capability will enable the optimization of reflective, fluorescence, and fused datasets as well as a cost-effective design for multispectral imaging solutions. This system has been used in plant stress detection studies and in currency analysis.

  3. DENTAL INSURANCE ANTHEM BLUE CROSS AND BLUE SHIELD

    E-print Network

    - 28 - DENTAL INSURANCE ANTHEM BLUE CROSS AND BLUE SHIELD Your two choices are: After enrollment, you will receive a combined medical/dental membership card. It will be mailed to your home. Premium Payments To assist in reducing your insurance premium costs, your share of dental insurance premiums can

  4. Jupiter in blue, ultraviolet and near infrared

    NASA Technical Reports Server (NTRS)

    2000-01-01

    These three images of Jupiter, taken through the narrow angle camera of NASA's Cassini spacecraft from a distance of 77.6 million kilometers (48.2 million miles) on October 8, reveal more than is apparent to the naked eye through a telescope.

    The image on the left was taken through the blue filter. The one in the middle was taken in the ultraviolet. The one on the right was taken in the near infrared.

    The blue-light filter is within the part of the electromagnetic spectrum detectable by the human eye. The appearance of Jupiter in this image is, consequently, very familiar. The Great Red Spot (below and to the right of center) and the planet's well-known banded cloud lanes are obvious. The brighter bands of clouds are called zones and are probably composed of ammonia ice particles. The darker bands are called belts and are made dark by particles of unknown composition intermixed with the ammonia ice.

    Jupiter's appearance changes dramatically in the ultraviolet and near infrared images. These images are near negatives of each other and illustrate the way in which observations in different wavelength regions can reveal different physical regimes on the planet.

    All gases scatter sunlight efficiently at short wavelengths; this is why the sky appears blue on Earth. The effect is even more pronounced in the ultraviolet. The gases in Jupiter's atmosphere, above the clouds, are no different. They scatter strongly in the ultraviolet, making the deep banded cloud layers invisible in the middle image. Only the very high altitude haze appears dark against the bright background. The contrast is reversed in the near infrared, where methane gas, abundant on Jupiter but not on Earth, is strongly absorbing and therefore appears dark. Again the deep clouds are invisible, but now the high altitude haze appears relatively bright against the dark background. High altitude haze is seen over the poles and the equator.

    The Great Red Spot, prominent in all images, is obviously a feature whose influence extends high in the atmosphere. As the Cassini cameras continue to return images of Jupiter, it will be possible to construct a three-dimensional picture of how clouds form and evolve by watching the changing appearance of Jupiter in different spectral regions.

    JPL manages the Cassini mission for NASA's Office of Space Science, Washington, D.C. JPl is a division of the California Institute of Technology in Pasadena.

  5. Smart focal plane technologies for ELT instruments

    NASA Astrophysics Data System (ADS)

    Cunningham, Colin R.; Ramsay-Howat, Suzanne K.; Garzon, Francisco; Parry, Ian R.; Prieto, Eric; Robertson, David J.; Zamkotsian, Frederic

    2004-07-01

    Smart Focal Planes are devices that enable the efficient sampling of a telescope's focal plane to feed spectroscopic and imaging instruments. Examples are integral field units (fiber and image slicers), cryogenic beam manipulators, and MOEMS (micro-opto-electromechanical systems) such as miniature slit shutters. These technologies are critical in making best use of the current 8m class telescopes for key science goals such as spectroscopic surveys of high redshift galaxies, and will be even more important for Extremely Large Telescope (ELT) instruments. In fact, the density of pixels in an ELT focal plane with several milliarcsecond resolution will mean that sub-sampling of the field will be needed even for imaging. We have proposed a joint European project to develop these technologies, building on expertise from partners in the UK, France, the Netherlands, Spain, Germany and others, and led by the UK. We describe the current status of these technologies, showing how they will contribute to the feasibility and performance of proposed instruments for ELTs, and concentrating on capabilities within Europe. We then outline the proposed future developments, highlighting the technical challenges, such as the difficulties of manufacturing and verifying complex image slicers with thousands of optical surfaces, and building highly reliable cryogenic mechanisms such as pick-off arms, beam steering mirrors and reconfigurble slit mechanisms.

  6. Images

    Cancer.gov

    Home News and Events Multimedia Library Images Images:  Cancer Biology Image: Cell with DNA 72 DPI | 300 DPIDrawing depicting DNA molecule unwinding from a chromosome inside the nucleus of a cell. NHGRI >> View All Cancer Pathology/Imaging Image: Female

  7. Adolescent Development: Body Blues.

    ERIC Educational Resources Information Center

    Yates, Alayne; Brodkin, Adele M.

    1994-01-01

    When early adolescents equate body image with self-image, they risk eating and exercise disorders, with dangerous results. Interviews with two experts present information to help middle school teachers understand the problem and intervene with students whose preoccupation with appearance or prowess can, taken to the extreme, be fatal. (SM)

  8. CCD photometry in the globular cluster NGC 288. I - Blue stragglers and main-sequence binary stars

    NASA Technical Reports Server (NTRS)

    Bolte, Michael

    1992-01-01

    Photometry based on a mosaic of CCD images in B and V is presented for the globular cluster NGC 288. The spatial coverage ranges from the cluster core to about 6 core radii, and stars have been measured over the absolute visual magnitude range -1.2 to 8.4. The cluster is shown to contain a significant number of blue straggler stars in the central regions, and there is an excess of objects brighter and redder than the single-star main-sequence in the color-magnitude plane. These objects are interpreted as a population of main-sequence binary stars. With this interpretation, the explicity measured fraction of binary stars is 10 percent, which sets a lower limit for the total binary population.

  9. Astronomical imaging by pupil plane interferometry

    NASA Technical Reports Server (NTRS)

    Ribak, Erez

    1989-01-01

    Comparing rotational shear interferometry to standard speckle interferometry, it is found that it is easier in the first case to separate the atmospheric phases from the object transform phases. Phase closure and blind deconvolution should be directly applicable. Laboratory simulations were conducted to verify theoretical predictions and computer simulations for the phase closure case, and preliminary results show promise.

  10. MTI Focal Plane Assembly Design and Performance

    SciTech Connect

    Ballard, M.; Rienstra, J.L.

    1999-06-17

    The focal plane assembly for the Multispectral Thermal Imager (MTI) consists of sensor chip assemblies, optical filters, and a vacuum enclosure. Sensor chip assemblies, composed of linear detector arrays and readout integrated circuits, provide spatial resolution in the cross-track direction for the pushbroom imager. Optical filters define 15 spectral bands in a range from 0.45 {micro}m to 10.7 {micro}m. All the detector arrays are mounted on a single focal plane and are designed to operate at 75 K. Three pairs of sensor chip assemblies (SCAs) are required to provide cross-track coverage in all 15 spectral bands. Each pair of SCAs includes detector arrays made from silicon, iridium antimonide, and mercury cadmium telluride. Read out integrated circuits multiplex the signals from the detectors to 18 separate video channels. Optical filter assemblies defining the spectral bands are mounted over the linear detector arrays. Each filter assembly consists of several filter strips bonded together side-by-side. The MTI focal plane assembly has been integrated with the rest of the payload and has undergone detailed testing and calibration. This paper includes representative test data for the various spectral bands and the overall performance of the focal plane assembly.

  11. The Blue Comet: A Railroad's Astronomical Heritage

    NASA Astrophysics Data System (ADS)

    Rumstay, Kenneth S.

    2009-01-01

    Between 1929 February 21 and 1941 September 27, the Central New Jersey Railroad operated a luxury passenger train between Jersey City and Atlantic City. Named The Blue Comet, the locomotive, tender, and coaches sported a unique royal blue paint scheme designed to evoke images of celestial bodies speeding through space. Inside each car were etched window panes and lampshades featuring stars and comets. And each coach sported the name of a famous comet on its side; these comets were of course named for their discoverers. Some of the astronomers honored in this unique fashion remain famous to this day, or at least their comets do. The names D'Arrest, Barnard, Encke, Faye, Giacobini, Halley, Olbers, Temple, Tuttle, and Westphal are familiar ones. But Biela, Brorsen, deVico, Spitaler, and Winnecke have now largely faded into obscurity; their stories are recounted here. Although more than sixty years have elapsed since its last run, The Blue Comet, perhaps the most famous passenger train in American history, lives on in the memories of millions of passengers and railfans. This famous train returned to the attention of millions of television viewers on the evening of 2007 June 3, in an episode of the HBO series The Sopranos. This work was supported by a faculty development grant from Valdosta State University.

  12. The Three Planes of Language.

    ERIC Educational Resources Information Center

    Sampson, Gloria

    1999-01-01

    Currently, the language sciences place together four different forms of mental activity on one plane of language, which results in confusion. This paper presents arguments from metaphysics, hermeneutics, and semiotics to demonstrate that there are actually three planes of language (a biologically-based information processing plane, a literal…

  13. William Blue College of Hospitality Management

    E-print Network

    New South Wales, University of

    Management has forged deep relationships with industry employers. Every student enrolled at William Blue of Australia's iconic education brands including William Blue College of Hospitality Management, APM College

  14. Blue moons and Martian sunsets.

    PubMed

    Ehlers, Kurt; Chakrabarty, Rajan; Moosmüller, Hans

    2014-03-20

    The familiar yellow or orange disks of the moon and sun, especially when they are low in the sky, and brilliant red sunsets are a result of the selective extinction (scattering plus absorption) of blue light by atmospheric gas molecules and small aerosols, a phenomenon explainable using the Rayleigh scattering approximation. On rare occasions, dust or smoke aerosols can cause the extinction of red light to exceed that for blue, resulting in the disks of the sun and moon to appear as blue. Unlike Earth, the atmosphere of Mars is dominated by micron-size dust aerosols, and the sky during sunset takes on a bluish glow. Here we investigate the role of dust aerosols in the blue Martian sunsets and the occasional blue moons and suns on Earth. We use the Mie theory and the Debye series to calculate the wavelength-dependent optical properties of dust aerosols most commonly found on Mars. Our findings show that while wavelength selective extinction can cause the sun's disk to appear blue, the color of the glow surrounding the sun as observed from Mars is due to the dominance of near-forward scattering of blue light by dust particles and cannot be explained by a simple, Rayleigh-like selective extinction explanation. PMID:24663457

  15. “Anting” in Blue Jays

    PubMed Central

    Eisner, Thomas; Aneshansley, Daniel

    2008-01-01

    Summary Anting, the plumage-dipping behavior to which ants (mostly formicines) are commonly subjected by birds (mostly passerines), is shown in tests with hand-raised Blue Jays (Cyanocitta cristata) and the ant Formica exsectoides to be instinctive: the birds displayed typical renditions of the behavior on the first occasion that they encountered ants. Evidence is presented supportive of the view that anting is a strategy by which birds render ants fit for ingestion. Formicine ants are ordinarily protected by their formic acid-containing spray. Being wiped into the bird’s plumage causes them to discharge that spray, without harm to the bird, to the point of almost total emptying of the glandular sac in which the secretion is stored. The ants are therefore essentially secretion-free by the time they are swallowed. Further evidence indicates that it is the ant’s possession of the acid sac that triggers the anting behavior in the bird. If F. exsectoides are surgically deprived of their acid sac, they are eaten by the birds without first being subjected to anting. Data are also presented indicating that the ant’s crop, which is especially capacious in formicines (its contents may amount to over 30% of the formicine’s mass), and which appears to survive the anting procedure intact, constitutes, at least when laden, a valuable component of the trophic package that the bird accesses by anting. PMID:19169379

  16. Trinity Hall Blues 2013/14 Neil Houlsby Colours Athletics

    E-print Network

    Lasenby, Joan

    Mattos Half Blue Basketball Sophie Miller Half Blue Basketball Stephanie Polderjik Half Blue Basketball Half Blue and Colours Rifle shooting Bridget Hipwell Full Blue Rugby Harry Maxwell Colours Rugby Olly Collas Half Blue Small bore shooting Fabio van der Zuid Half Blue Water polo Bartosz Redlicki Half Blue

  17. Complex amplitudes reconstructed in multiple output planes with a phase-only hologram

    NASA Astrophysics Data System (ADS)

    Wu, Liang; Cheng, Shubo; Tao, Shaohua

    2015-12-01

    An iterative beam-shaping algorithm is proposed to generate a phase-only hologram that reconstructs an output beam with the desired complex amplitudes in different output planes. As all the output planes are imposed by complex amplitude constraints, both the amplitudes and phases of the beam in different imaging planes can be controlled simultaneously. As an example, three optical curve beams with desired phase gradients in the corresponding output planes are generated with a phase-only hologram in the simulations and experiments. The proposed algorithm has many potential applications such as in multi-plane optical tweezers, micromachining, and optical imaging.

  18. Antimicrobial blue light therapy for Candida albicans burn infection in mice

    NASA Astrophysics Data System (ADS)

    Zhang, Yunsong; Wang, Yucheng; Murray, Clinton K.; Hamblin, Michael R.; Gu, Ying; Dai, Tianhong

    2015-05-01

    In this preclinical study, we investigated the utility of antimicrobial blue light therapy for Candida albicans infection in acutely burned mice. A bioluminescent strain of C. albicans was used. The susceptibilities to blue light inactivation were compared between C. albicans and human keratinocyte. In vitro serial passaging of C. albicans on blue light exposure was performed to evaluate the potential development of resistance to blue light inactivation. A mouse model of acute thermal burn injury infected with the bioluminescent strain of C. albicans was developed. Blue light (415 nm) was delivered to mouse burns for decolonization of C. albicans. Bioluminescence imaging was used to monitor in real time the extent of fungal infection in mouse burns. Experimental results showed that C. albicans was approximately 42-fold more susceptible to blue light inactivation in vitro than human keratinocyte (P=0.0022). Serial passaging of C. albicans on blue light exposure implied a tendency for the fungal susceptibility to blue light inactivation to decrease with the numbers of passages. Blue light reduced fungal burden by over 4-log10 (99.99%) in acute mouse burns infected with C. albicans in comparison to infected mouse burns without blue light therapy (P=0.015).

  19. 21 CFR 133.106 - Blue cheese.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 2 2014-04-01 2014-04-01 false Blue cheese. 133.106 Section 133.106 Food and... Products § 133.106 Blue cheese. (a) Description. (1) Blue cheese is the food prepared by the procedure set... methods described in § 133.5. The dairy ingredients used may be pasteurized. Blue cheese is at least...

  20. 21 CFR 133.106 - Blue cheese.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 2 2012-04-01 2012-04-01 false Blue cheese. 133.106 Section 133.106 Food and... Products § 133.106 Blue cheese. (a) Description. (1) Blue cheese is the food prepared by the procedure set... methods described in § 133.5. The dairy ingredients used may be pasteurized. Blue cheese is at least...

  1. 21 CFR 133.106 - Blue cheese.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 2 2013-04-01 2013-04-01 false Blue cheese. 133.106 Section 133.106 Food and... Products § 133.106 Blue cheese. (a) Description. (1) Blue cheese is the food prepared by the procedure set... methods described in § 133.5. The dairy ingredients used may be pasteurized. Blue cheese is at least...

  2. PC-based focal plane evaluation system

    NASA Astrophysics Data System (ADS)

    Duncan, Michael T.

    1992-08-01

    This paper describes a new focal plane evaluation system based on the IBM 386 PC. It has been used to evaluate three devices--a 4 X 128 X 128 pixel SWIR array, a 2098 X 3 linear CCD used as a panoramic camera, and a 1024 X 1024 MPP split frame CCD. Results and images from each are presented. The system includes a word generator implemented as a single PC/AT card, which generates all the complex looping timing signals required for focal plane operation and data acquisition. The word generator is described more fully in a companion paper. Software simulates a popular 'subpattern' style of timing editing. A commercial analog data acquisition module on a single PC/AT card, and software are used to acquire, pre-process and display up to four channels of an image at pixel rates to 1 MHz, continuously up to the extended memory limit of the 386, many Mbytes. Commercial image processing software is used to further process and display images. The system has proven to be powerful, easy and fast to use, flexible, transportable, and yet inexpensive due to the choice of the PC as its base.

  3. Active point out-of-plane ultrasound calibration

    NASA Astrophysics Data System (ADS)

    Cheng, Alexis; Guo, Xiaoyu; Zhang, Haichong K.; Kang, Hyunjae; Etienne-Cummings, Ralph; Boctor, Emad M.

    2015-03-01

    Image-guided surgery systems are often used to provide surgeons with informational support. Due to several unique advantages such as ease of use, real-time image acquisition, and no ionizing radiation, ultrasound is a common intraoperative medical imaging modality used in image-guided surgery systems. To perform advanced forms of guidance with ultrasound, such as virtual image overlays or automated robotic actuation, an ultrasound calibration process must be performed. This process recovers the rigid body transformation between a tracked marker attached to the transducer and the ultrasound image. Point-based phantoms are considered to be accurate, but their calibration framework assumes that the point is in the image plane. In this work, we present the use of an active point phantom and a calibration framework that accounts for the elevational uncertainty of the point. Given the lateral and axial position of the point in the ultrasound image, we approximate a circle in the axial-elevational plane with a radius equal to the axial position. The standard approach transforms all of the imaged points to be a single physical point. In our approach, we minimize the distances between the circular subsets of each image, with them ideally intersecting at a single point. We simulated in noiseless and noisy cases, presenting results on out-of-plane estimation errors, calibration estimation errors, and point reconstruction precision. We also performed an experiment using a robot arm as the tracker, resulting in a point reconstruction precision of 0.64mm.

  4. Strongly anisotropic in-plane thermal transport in single-layer black

    E-print Network

    McGaughey, Alan

    by exfoliating a few layers from bulk black phosphorus6,7 . Similar to graphene, black phosphorene hasStrongly anisotropic in-plane thermal transport in single-layer black phosphorene Ankit Jain & Alan-dimensional materials black phosphorene and blue phosphorene. Black phosphorene has an unprecedented thermal

  5. Symmetry planes of Paleozoic crinoids

    E-print Network

    Lane, N. G.; Webster, G. D.

    1967-11-30

    PALEONTOLOGICAL CONTRIBUTIONS November 30, 1967 Paper 25 SYMMETRY PLANES OF PALEOZOIC CRINOIDS N. GARY LANE and G. D. WEBsTER University of California, Los Angeles, and San Diego State College ABSTRACT The homocrinid (E-BC) plane of bilateral symmetry... plane of bilateral sym- metry passes through the E ray and the BC inter- ray (Fig. 2). This symmetry plane attains fullest expression in the bent-crown disparids, the Cal- ceocrinidae, in which the crown is bent to one side over the stem, in the E-BC...

  6. Design study of the accessible focal plane telescope for shuttle

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The design and cost analysis of an accessible focal plane telescope for Spacelab is presented in blueprints, tables, and graphs. Topics covered include the telescope tube, the telescope mounting, the airlock plus Spacelab module aft plate, the instrument adapter, and the instrument package. The system allows access to the image plane with instrumentation that can be operated by a scientist in a shirt sleeve environment inside a Spacelab module.

  7. "Clothed in triple blues": sorting out the Italian blues.

    PubMed

    Bimler, David; Uusküla, Mari

    2014-04-01

    Cross-cultural comparisons of color perception and cognition often feature versions of the "similarity sorting" procedure. By interpreting the assignment of two color samples to different groups as an indication that the dissimilarity between them exceeds some threshold, sorting data can be regarded as low-resolution similarity judgments. Here we analyze sorting data from speakers of Italian, Russian, and English, applying multidimensional scaling to delineate the boundaries between perceptual categories while highlighting differences between the three populations. Stimuli were 55 color swatches, predominantly from the blue region. Results suggest that at least two Italian words for "blue" are basic, a similar situation to Russian, in contrast to English where a single "blue" term is basic. PMID:24695190

  8. The BlueSky Smoke Modeling Framework: Recent Developments

    NASA Astrophysics Data System (ADS)

    Sullivan, D. C.; Larkin, N.; Raffuse, S. M.; Strand, T.; ONeill, S. M.; Leung, F. T.; Qu, J. J.; Hao, X.

    2012-12-01

    BlueSky systems—a set of decision support tools including SmartFire and the BlueSky Framework—aid public policy decision makers and scientific researchers in evaluating the air quality impacts of fires. Smoke and fire managers use BlueSky systems in decisions about prescribed burns and wildland firefighting. Air quality agencies use BlueSky systems to support decisions related to air quality regulations. We will discuss a range of recent improvements to the BlueSky systems, as well as examples of applications and future plans. BlueSky systems have the flexibility to accept basic fire information from virtually any source and can reconcile multiple information sources so that duplication of fire records is eliminated. BlueSky systems currently apply information from (1) the National Oceanic and Atmospheric Administration's (NOAA) Hazard Mapping System (HMS), which represents remotely sensed data from the Moderate Resolution Imaging Spectroradiometer (MODIS), Advanced Very High Resolution Radiometer (AVHRR), and Geostationary Operational Environmental Satellites (GOES); (2) the Monitoring Trends in Burn Severity (MTBS) interagency project, which derives fire perimeters from Landsat 30-meter burn scars; (3) the Geospatial Multi-Agency Coordination Group (GeoMAC), which produces helicopter-flown burn perimeters; and (4) ground-based fire reports, such as the ICS-209 reports managed by the National Wildfire Coordinating Group. Efforts are currently underway to streamline the use of additional ground-based systems, such as states' prescribed burn databases. BlueSky systems were recently modified to address known uncertainties in smoke modeling associated with (1) estimates of biomass consumption derived from sparse fuel moisture data, and (2) models of plume injection heights. Additional sources of remotely sensed data are being applied to address these issues as follows: - The National Aeronautics and Space Administration's (NASA) Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis Real-Time (TMPA-RT) data set is being used to improve dead fuel moisture estimates. - EastFire live fuel moisture estimates, which are derived from NASA's MODIS direct broadcast, are being used to improve live fuel moisture estimates. - NASA's Multi-angle Imaging Spectroradiometer (MISR) stereo heights are being used to improve estimates of plume injection heights. Further, the Fire Location and Modeling of Burning Emissions (FLAMBÉ) model was incorporated into the BlueSky Framework as an alternative means of calculating fire emissions. FLAMBÉ directly estimates emissions on the basis of fire detections and radiance measures from NASA's MODIS and NOAA's GOES satellites. (The authors gratefully acknowledge NASA's Applied Sciences Program [Grant Nos. NN506AB52A and NNX09AV76G)], the USDA Forest Service, and the Joint Fire Science Program for their support.)

  9. Focal Plane Detectors for Dark Energy Camera (DECam) J. Estrada1

    E-print Network

    for these CCDs. Details of the DECam focal plane can be found in Ref.1 The design of the DECam imagerFocal Plane Detectors for Dark Energy Camera (DECam) J. Estrada1 , R. Alvarez2 , T. Abbott 2 , J. The DECam focal plane is composed of 62 2k x 4k CCDs for producing the science images and 12 2k x 2k CCDs

  10. THE WHIQII SURVEY: METALLICITIES AND SPECTROSCOPIC PROPERTIES OF LUMINOUS COMPACT BLUE GALAXIES

    SciTech Connect

    Tollerud, Erik J.; Barton, Elizabeth J.; Cooke, Jeff; Van Zee, Liese

    2010-01-10

    As part of the WIYN High Image Quality Indiana-Irvine (WHIQII) survey, we present 123 spectra of faint emission-line galaxies, selected to focus on intermediate redshift (0.4 approx< z approx< 0.8) galaxies with blue colors that appear physically compact on the sky. The sample includes 15 true Luminous Compact Blue Galaxies (LCBGs) and an additional 27 slightly less extreme emission-line systems. These galaxies represent a highly evolving class that may play an important role in the decline of star formation since z approx 1, but their exact nature and evolutionary pathways remain a mystery. Here, we use emission lines to determine metallicities and ionization parameters, constraining their intrinsic properties and state of star formation. Some LCBG metallicities are consistent with a 'bursting dwarf' scenario, while a substantial fraction of others are not, further confirming that LCBGs are a highly heterogeneous population but are broadly consistent with the intermediate redshift field. In agreement with previous studies, we observe overall evolution in the luminosity-metallicity relation at intermediate redshift. Our sample, and particularly the LCBGs, occupies a region in the empirical R{sub 23}-O{sub 32} plane that differs from luminous local galaxies and is more consistent with dwarf irregulars at the present epoch, suggesting that cosmic 'downsizing' is observable in even the most fundamental parameters that describe star formation. These properties for our sample are also generally consistent with lying between local galaxies and those at high redshift, as expected by this scenario. Surprisingly, our sample exhibits no detectable correlation between compactness and metallicity, strongly suggesting that at these epochs of rapid star formation, the morphology of compact star-forming galaxies is largely transient.

  11. Double-twist cylinders in liquid crystalline cholesteric blue phases observed by transmission electron microscopy

    PubMed Central

    Tanaka, Shu; Yoshida, Hiroyuki; Kawata, Yuto; Kuwahara, Ryusuke; Nishi, Ryuji; Ozaki, Masanori

    2015-01-01

    Cholesteric blue phases are liquid crystalline phases in which the constituent rod-like molecules spontaneously form three-dimensional, helical structures. Despite theoretical predictions that they are composed of cylindrical substructures within which the liquid crystal molecules are doubly twisted, real space observation of the arrangement of such structures had not been performed. Through transmission electron microscopy of photopolymerized blue phases with controlled lattice plane orientations, we report real space observation and comparison of the lattice structures of blue phases I and II. The two systems show distinctly different contrasts, reflecting the theoretically predicted, body centred and simple cubic arrangement of the double-twist cylinders. Transmission electron microscopy also reveals different tendencies of the two blue phases to align on unidirectionally rubbed surfaces. We thus show that TEM observation of alignment-controlled, photopolymerized liquid crystals can be a powerful tool to investigate complex liquid crystalline order. PMID:26530779

  12. Double-twist cylinders in liquid crystalline cholesteric blue phases observed by transmission electron microscopy.

    PubMed

    Tanaka, Shu; Yoshida, Hiroyuki; Kawata, Yuto; Kuwahara, Ryusuke; Nishi, Ryuji; Ozaki, Masanori

    2015-01-01

    Cholesteric blue phases are liquid crystalline phases in which the constituent rod-like molecules spontaneously form three-dimensional, helical structures. Despite theoretical predictions that they are composed of cylindrical substructures within which the liquid crystal molecules are doubly twisted, real space observation of the arrangement of such structures had not been performed. Through transmission electron microscopy of photopolymerized blue phases with controlled lattice plane orientations, we report real space observation and comparison of the lattice structures of blue phases I and II. The two systems show distinctly different contrasts, reflecting the theoretically predicted, body centred and simple cubic arrangement of the double-twist cylinders. Transmission electron microscopy also reveals different tendencies of the two blue phases to align on unidirectionally rubbed surfaces. We thus show that TEM observation of alignment-controlled, photopolymerized liquid crystals can be a powerful tool to investigate complex liquid crystalline order. PMID:26530779

  13. Double-twist cylinders in liquid crystalline cholesteric blue phases observed by transmission electron microscopy

    NASA Astrophysics Data System (ADS)

    Tanaka, Shu; Yoshida, Hiroyuki; Kawata, Yuto; Kuwahara, Ryusuke; Nishi, Ryuji; Ozaki, Masanori

    2015-11-01

    Cholesteric blue phases are liquid crystalline phases in which the constituent rod-like molecules spontaneously form three-dimensional, helical structures. Despite theoretical predictions that they are composed of cylindrical substructures within which the liquid crystal molecules are doubly twisted, real space observation of the arrangement of such structures had not been performed. Through transmission electron microscopy of photopolymerized blue phases with controlled lattice plane orientations, we report real space observation and comparison of the lattice structures of blue phases I and II. The two systems show distinctly different contrasts, reflecting the theoretically predicted, body centred and simple cubic arrangement of the double-twist cylinders. Transmission electron microscopy also reveals different tendencies of the two blue phases to align on unidirectionally rubbed surfaces. We thus show that TEM observation of alignment-controlled, photopolymerized liquid crystals can be a powerful tool to investigate complex liquid crystalline order.

  14. Chromatic number of Euclidean plane

    E-print Network

    Kai-Rui Wang

    2015-07-01

    If the chromatic number of Euclidean plane is larger than four, but it is known that the chromatic number of planar graphs is equal to four, then how does one explain it? In my opinion, they are contradictory to each other. This idea leads to confirm the chromatic number of the plane about its exact value.

  15. Progress towards a ``blue'' potassium MOT

    NASA Astrophysics Data System (ADS)

    McKay, David; Fine, Dan; Jervis, Dylan; Edge, Graham; Thywissen, Joseph

    2011-05-01

    One difficulty when preparing quantum degenerate gases of potassium 40 is the low efficiency of sub-Doppler cooling. In this talk, we discuss how we are attempting to circumvent this problem by implementing a ``blue'' MOT for 40K on the non-cycling 4S1/2 --> 5P3/2 transition, which has a wavelength of 404.53nm and a decay rate of 1.17 MHz. The Doppler temperature should be 27 ?K, which is a factor of five improvement over the D2 transition at 767 nm. This lower temperature would also facilitate in-situ imaging of atoms in optical lattices. The laser setup consists of a cooled diode injection locked to an external cavity diode laser. The master laser is in turn locked to 39K saturation spectroscopy in a heated vapor cell. The proximity of this 4S-5P transition to the wavelength used in ``Blu-ray'' technology provides a relatively inexpensive source of laser diodes with powers up to 150 mW. A dual MOT will be implemented using dichroic mirrors and waveplates for loading and capture with 767 nm, followed by a switch to a ``blue'' MOT for late-stage cooling before loading into a magnetic trap. We will also present results on the spectroscopy of the 40K 5P3/2 hyperfine levels using our setup.

  16. Crater Lake: blue through time

    USGS Publications Warehouse

    Larson, Gary L.; Buktenica, Mark; Collier, Robert

    2003-01-01

    Blue is the color of constancy, hence the term true blue. The unearthly blueness of Crater Lake reflects its pristine character and gives scientists a focal point for studying human impacts on aquatic environments over long periods of time. Scientists with the U.S. Geological Survey (USGS), National Park Service, and Oregon State University have systematically studied the lake for the last two decades. Long-term monitoring of this lake is a priority of Crater Lake National Park and will continue far into the future.

  17. Blue-green upconversion laser

    DOEpatents

    Nguyen, Dinh C. (Los Alamos, NM); Faulkner, George E. (Los Alamos, NM)

    1990-01-01

    A blue-green laser (450-550 nm) uses a host crystal doped with Tm.sup.3+. The Tm.sup.+ is excited through upconversion by a red pumping laser and an IR pumping laser to a state which transitions to a relatively lower energy level through emissions in the blue-green band, e.g., 450.20 nm at 75 K. The exciting laser may be tunable dye lasers or may be solid-state semiconductor laser, e.g., GaAlAs and InGaAlP.

  18. Blue-green upconversion laser

    DOEpatents

    Nguyen, D.C.; Faulkner, G.E.

    1990-08-14

    A blue-green laser (450--550 nm) uses a host crystal doped with Tm[sup 3+]. The Tm[sup 3+] is excited through upconversion by a red pumping laser and an IR pumping laser to a state which transitions to a relatively lower energy level through emissions in the blue-green band, e.g., 450.20 nm at 75 K. The exciting laser may be tunable dye lasers or may be solid-state semiconductor laser, e.g., GaAlAs and InGaAlP. 3 figs.

  19. The blue-collar brain.

    PubMed

    Van Orden, Guy; Hollis, Geoff; Wallot, Sebastian

    2012-01-01

    Much effort has gone into elucidating control of the body by the brain, less so the role of the body in controlling the brain. This essay develops the idea that the brain does a great deal of work in the service of behavior that is controlled by the body, a blue-collar role compared to the white-collar control exercised by the body. The argument that supports a blue-collar role for the brain is also consistent with recent discoveries clarifying the white-collar role of synergies across the body's tensegrity structure, and the evidence of critical phenomena in brain and behavior. PMID:22719730

  20. The Blue-Collar Brain

    PubMed Central

    Van Orden, Guy; Hollis, Geoff; Wallot, Sebastian

    2012-01-01

    Much effort has gone into elucidating control of the body by the brain, less so the role of the body in controlling the brain. This essay develops the idea that the brain does a great deal of work in the service of behavior that is controlled by the body, a blue-collar role compared to the white-collar control exercised by the body. The argument that supports a blue-collar role for the brain is also consistent with recent discoveries clarifying the white-collar role of synergies across the body’s tensegrity structure, and the evidence of critical phenomena in brain and behavior. PMID:22719730

  1. Blue light emitting thiogallate phosphor

    DOEpatents

    Dye, Robert C. (Los Alamos, NM); Smith, David C. (Los Alamos, NM); King, Christopher N. (Portland, OR); Tuenge, Richard T. (Hillsboro, OR)

    1998-01-01

    A crystalline blue emitting thiogallate phosphor of the formula RGa.sub.2 S.sub.4 :Ce.sub.x where R is selected from the group consisting of calcium, strontium, barium and zinc, and x is from about 1 to 10 atomic percent, the phosphor characterized as having a crystalline microstructure on the size order of from about 100 .ANG. to about 10,000 .ANG. is provided together with a process of preparing a crystalline blue emitting thiogallate phosphor by depositing on a substrate by CVD and resultant thin film electroluminescent devices including a layer of such deposited phosphor on an ordinary glass substrate.

  2. Characterization of DECam focal plane detectors

    SciTech Connect

    Diehl, H.Thomas; Angstadt, Robert; Campa, Julia; Cease, Herman; Derylo, Greg; Emes, John H.; Estrada, Juan; Kibik, Donna; Flaugher, Brenna L.; Holland, Steve E.; Jonas, Michelle; /Fermilab /Madrid, CIEMAT /LBL, Berkeley /Argonne /Pennsylvania U.

    2008-06-01

    DECam is a 520 Mpix, 3 square-deg FOV imager being built for the Blanco 4m Telescope at CTIO. This facility instrument will be used for the 'Dark Energy Survey' of the southern galactic cap. DECam has chosen 250 ?m thick CCDs, developed at LBNL, with good QE in the near IR for the focal plane. In this work we present the characterization of these detectors done by the DES team, and compare it to the DECam technical requirements. The results demonstrate that the detectors satisfy the needs for instrument.

  3. Blue Marble: Remote Characterization of Habitable Planets

    NASA Technical Reports Server (NTRS)

    Woolf, Neville; Lewis, Brian; Chartres, James; Genova, Anthony

    2009-01-01

    The study of the nature and distribution of habitable environments beyond the Solar System is a key area for Astrobiology research. At the present time, our Earth is the only habitable planet that can be characterized in the same way that we might characterize planets beyond the Solar System. Due to limitations in our current and near-future technology, it is likely that extra-solar planets will be observed as single-pixel objects. To understand this data, we must develop skills in analyzing and interpreting the radiation obtained from a single pixel. These skills must include the study of the time variation of the radiation, and the range of its photometric, spectroscopic and polarimetric properties. In addition, to understand whether we are properly analyzing the single pixel data, we need to compare it with a ground truth of modest resolution images in key spectral bands. This paper discusses the concept for a mission called Blue Marble that would obtain data of the Earth using a combination of spectropolarimetry, spectrophotometry, and selected band imaging. To obtain imagery of the proper resolution, it is desirable to place the Blue Marble spacecraft no closer than the outer region of cis-lunar space. This paper explores a conceptual mission design that takes advantage of low-cost launchers, bus designs and mission elements to provide a cost effective observing platform located at one of the stable Earth-moon Lagrangian points (L4, L5). The mission design allows for the development and use of novel technologies, such as a spinning moon sensor for attitude control, and leverages lessons-learned from previous low-cost spacecraft such as Lunar Prospector to yield a low-risk mission concept.

  4. Singing' the Black and Blues

    ERIC Educational Resources Information Center

    Fisher, Diane

    2004-01-01

    It is so obvious that the sky is blue in the daytime and black at night, but it took the smartest humans thousands of years of observation, thought, discussion, conjecture, and analysis to finally come up with answers that make scientific sense as to why the sky is these colors. This article discusses light and the scientific research…

  5. Nobel Prize for blue LEDs

    NASA Astrophysics Data System (ADS)

    Kraftmakher, Yaakov

    2015-05-01

    A brief review of lighting technologies is presented. Unavoidable restrictions for incandescent light bulbs caused by the Planck distribution and properties of the human eye are illustrated. The efficiency and luminous efficacy of thermal radiation are calculated for various temperatures; the results clearly show the limitations for thermal radiators. The only way to overcome these limitations is using non-thermal radiators, such as fluorescent lamps and light-emitting diodes (LEDs). Unique advantages of LEDs undoubtedly made a revolution in this field. A crucial element of this progress is the blue LEDs (Nobel Prize 2014). Some experiments with a blue and a green LED are described: (i) the luminescence triggered in a green-yellow phosphor inside a white LED by the blue LED; (ii) radiant spectra and ‘efficiency droop’ in the LEDs; (iii) modulation of the blue LED up to 4 MHz; and (iv) the h/e ratio from the turn-on voltage of the green LED. The experiments are suitable for undergraduate laboratories and usable as classroom demonstrations.

  6. Optically Modulatable Blue Fluorescent Proteins

    PubMed Central

    Jablonski, Amy E.; Vegh, Russell B.; Hsiang, Jung-Cheng; Bommarius, Bettina; Chen, Yen-Cheng; Solntsev, Kyril M.; Bommarius, Andreas S.; Tolbert, Laren M.; Dickson, Robert M.

    2014-01-01

    Blue fluorescent proteins (BFPs) offer visualization of protein location and behavior, but often suffer from high autofluorescent background and poor signal discrimination. Through dual-laser excitation of bright and photoinduced dark states, mutations to the residues surrounding the BFP chromophore enable long-wavelength optical modulation of BFP emission. Such dark state engineering enables violet-excited blue emission to be increased upon lower energy, green co-illumination. Turning this green co-illumination on and off at a specific frequency dynamically modulates collected blue fluorescence without generating additional background. Interpreted as transient photoconversion between neutral cis- and anionic trans- chromophoric forms, mutations tune photoisomerization and ground state tautomerizations to enable long-wavelength depopulation of the millisecond-lived, spectrally shifted dark states. Single mutations to the tyrosine-based blue fluorescent protein T203V/S205V exhibit enhanced modulation depth and varied frequency. Importantly, analogous single point mutations in the non-modulatable BFP, mKalama1, creates a modulatable variant. Building modulatable BFPs offers opportunities for improved BFP signal discrimination vs. background, greatly enhancing their utility. PMID:24099419

  7. Blue Marble Western Hemisphere

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Drawing on data from multiple satellite missions (not all collected at the same time), a team of NASA scientists and graphic artists created layers of global data for everything from the land surface, to polar sea ice, to the light reflected by the chlorophyll in the billions of microscopic plants that grow in the ocean. They wrapped these layers around a globe, set it against a black background, and simulated the hazy edge of the Earth's atmosphere (the limb) that appears in astronaut photography of the Earth. The land surface layer is based on photo-like surface reflectance observations (reflected sunlight) measured by the Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA's Terra satellite in July 2004. The sea ice layer near the poles comes from Terra MODIS observations of daytime sea ice observed between August 28 and September 6, 2001. The ocean layer is a composite. In shallow water areas, the layer shows surface reflectances observed by Terra MODIS in July 2004. In the open ocean, the photo-like layer is overlaid with observations of the average ocean chlorophyll content for 2004. NASA's Aqua MODIS collected the chlorophyll data. The cloud layer shows a single-day snapshot of clouds observed by Terra MODIS across the planet on July 29, 2001. City lights on Earth's night side are visualized from data collected by the Defense Meteorological Satellite Program mission between 1994-1995. The topography layer is based on radar data collected by the Space Shuttle Endeavour during an 11-day mission in February of 2000. Topography over Antarctica comes from the Radarsat Antarctic Mapping Project, version 2.

  8. Blue Marble Eastern Hemisphere

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Drawing on data from multiple satellite missions (not all collected at the same time), a team of NASA scientists and graphic artists created layers of global data for everything from the land surface, to polar sea ice, to the light reflected by the chlorophyll in the billions of microscopic plants that grow in the ocean. They wrapped these layers around a globe, set it against a black background, and simulated the hazy edge of the Earth's atmosphere (the limb) that appears in astronaut photography of the Earth. The land surface layer is based on photo-like surface reflectance observations (reflected sunlight) measured by the Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA's Terra satellite in July 2004. The sea ice layer near the poles comes from Terra MODIS observations of daytime sea ice observed between August 28 and September 6, 2001. The ocean layer is a composite. In shallow water areas, the layer shows surface reflectances observed by Terra MODIS in July 2004. In the open ocean, the photo-like layer is overlaid with observations of the average ocean chlorophyll content for 2004. NASA's Aqua MODIS collected the chlorophyll data. The cloud layer shows a single-day snapshot of clouds observed by Terra MODIS across the planet on July 29, 2001. City lights on Earth's night side are visualized from data collected by the Defense Meteorological Satellite Program mission between 1994-1995. The topography layer is based on radar data collected by the Space Shuttle Endeavour during an 11-day mission in February of 2000. Topography over Antarctica comes from the Radarsat Antarctic Mapping Project, version 2.

  9. Three-dimensional sheaf of ultrasound planes reconstruction (SOUPR) of ablated volumes.

    PubMed

    Ingle, Atul; Varghese, Tomy

    2014-08-01

    This paper presents an algorithm for 3-D reconstruction of tumor ablations using ultrasound shear wave imaging with electrode vibration elastography. Radio-frequency ultrasound data frames are acquired over imaging planes that form a subset of a sheaf of planes sharing a common axis of intersection. Shear wave velocity is estimated separately on each imaging plane using a piecewise linear function fitting technique with a fast optimization routine. An interpolation algorithm then computes velocity maps on a fine grid over a set of C-planes that are perpendicular to the axis of the sheaf. A full 3-D rendering of the ablation can then be created from this stack of C-planes; hence the name "Sheaf Of Ultrasound Planes Reconstruction" or SOUPR. The algorithm is evaluated through numerical simulations and also using data acquired from a tissue mimicking phantom. Reconstruction quality is gauged using contrast and contrast-to-noise ratio measurements and changes in quality from using increasing number of planes in the sheaf are quantified. The highest contrast of 5 dB is seen between the stiffest and softest regions of the phantom. Under certain idealizing assumptions on the true shape of the ablation, good reconstruction quality while maintaining fast processing rate can be obtained with as few as six imaging planes suggesting that the method is suited for parsimonious data acquisitions with very few sparsely chosen imaging planes. PMID:24808405

  10. Three Dimensional Sheaf of Ultrasound Planes Reconstruction (SOUPR) of Ablated Volumes

    PubMed Central

    Ingle, Atul; Varghese, Tomy

    2014-01-01

    This paper presents an algorithm for three dimensional reconstruction of tumor ablations using ultrasound shear wave imaging with electrode vibration elastography. Radiofrequency ultrasound data frames are acquired over imaging planes that form a subset of a sheaf of planes sharing a common axis of intersection. Shear wave velocity is estimated separately on each imaging plane using a piecewise linear function fitting technique with a fast optimization routine. An interpolation algorithm then computes velocity maps on a fine grid over a set of C-planes that are perpendicular to the axis of the sheaf. A full three dimensional rendering of the ablation can then be created from this stack of C-planes; hence the name “Sheaf Of Ultrasound Planes Reconstruction” or SOUPR. The algorithm is evaluated through numerical simulations and also using data acquired from a tissue mimicking phantom. Reconstruction quality is gauged using contrast and contrast-to-noise ratio measurements and changes in quality from using increasing number of planes in the sheaf are quantified. The highest contrast of 5 dB is seen between the stiffest and softest regions of the phantom. Under certain idealizing assumptions on the true shape of the ablation, good reconstruction quality while maintaining fast processing rate can be obtained with as few as 6 imaging planes suggesting that the method is suited for parsimonious data acquisitions with very few sparsely chosen imaging planes. PMID:24808405

  11. Imaging.

    PubMed

    Wilkinson, R

    1986-12-01

    Imaging of the musculoskeletal system includes many modalities and is an area that is changing rapidly. Selection of the most accurate techniques and avoidance of duplication are vital to both good patient care and cost containment. PMID:3466135

  12. Hubble Views Saturn Ring-Plane Crossing

    NASA Technical Reports Server (NTRS)

    1995-01-01

    This sequence of images from NASA's Hubble Space Telescope documents a rare astronomical alignment -- Saturn's magnificent ring system turned edge-on. This occurs when the Earth passes through Saturn's ring plane, as it does approximately every 15 years.

    These pictures were taken with Hubble's Wide Field Planetary Camera 2 on 22 May 1995, when Saturn was at a distance of 919 million miles (1.5 billion kilometers) from Earth. At Saturn, Hubble can see details as small as 450 miles (725 km) across. In each image, the dark band across Saturn is the ring shadow cast by the Sun which is still 2.7 degrees above Saturn's ring plane. The box around the western portion of the rings (to the right of Saturn) in each image indicates the area in which the faint light from the rings has been multiplied through image processing (by a factor of 25) to make the rings more visible.

    [Top] -

    This image was taken while the Earth was above the lit face of the rings. The moons Tethys and Dione are visible to the east (left) of Saturn; Janus is the bright spot near the center of the ring portion in the box, and Pandora is faintly visible just inside the left edge of this box. Saturn's atmosphere shows remarkable detail: multiple banding in both the northern and southern hemispheres, wispy structure at the north edge of the equatorial zone, and a bright area above the ring shadow that is caused by sunlight scattered off the rings onto the atmosphere. There is evidence of a faint polar haze over the north pole of Saturn and a fainter haze over the south.

    [Center] -

    This image was taken close to the time of ring-plane crossing. The rings are 75% fainter than in the top image, though they do not disappear completely because the vertical face of the rings still reflects sunlight when the rings are edge-on. Rhea is visible to the east of Saturn, Enceladus is the bright satellite in the rings to the west, and Janus is the fainter blip to its right. Pandora is just to the left of Enceladus, but is not visible because Enceladus is too bright. An oval-shaped atmospheric feature has just rotated into view (near the eastern limb, at the northern edge of the equatorial zone), and appears to be a local circulation pattern that is not penetrated by the bright clouds that are deflected around it.

    [Bottom] -

    This image was taken approximately 96 minutes (one Hubble orbit) after the center image. The rings are 10% brighter than they were in that image. Rhea is visible just off the eastern limb of Saturn, and casts a shadow on the south face of Saturn. During this exposure, the Earth and Sun were on opposite sides of Saturn's ring plane (they remain in this configuration until 10 August 1995). The atmospheric circulation pattern has rotated to just past the center of the planet's disk, and is followed by more wispy structure in the bright band of clouds, reminiscent of the structure seen during the Saturn storm observed in 1990.

    These images will be used to determine the time of ring-plane crossing and the thickness of the main rings and to search for as yet undiscovered satellites. Knowledge of the exact time of ring-plane crossing will lead to an improved determination of the rate at which Saturn 'wobbles' about its axis (polar precession).

    Technical Notes Each of these images is a 7-second exposure at 8922 Angstroms in a methane absorption band. North is up and east is to the left.

    The Wide Field/Planetary Camera 2 was developed by the Jet Propulsion Laboratory and managed by the Goddard Spaced Flight Center for NASA's Office of Space Science.

    This image and other images and data received from the Hubble Space Telescope are posted on the World Wide Web on the Space Telescope Science Institute home page at URL http://oposite.stsci.edu/pubinfo/

  13. The Size Difference Between Red And Blue Globular Clusters Is NOT Due To Projection Effects

    E-print Network

    Webb, Jeremy J; Sills, Alison

    2012-01-01

    Metal-rich (red) globular clusters in massive galaxies are, on average, smaller than metal-poor (blue) globular clusters. One of the possible explanations for this phenomenon is that the two populations of clusters have different spatial distributions. We test this idea by comparing clusters observed in unusually deep, high signal-to-noise images of M87 with a simulated globular cluster population in which the red and blue clusters have different spatial distributions, matching the observations. We compare the overall distribution of cluster effective radii as well as the relationship between effective radius and galactocentric distance for both the observed and simulated red and blue subpopulations. We find that the different spatial distributions does not produce a significant size difference between the red and blue subpopulations as a whole, or at a given galactocentric distance. These results suggest that the size difference between red and blue globular clusters is likely due to differences during forma...

  14. 21 CFR 73.50 - Ultramarine blue.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... ultramarine blue is a blue pigment obtained by calcining a mixture of kaolin, sulfur, sodium carbonate, and... order to vary the shade. The pigment is a complex sodium aluminum sulfo-silicate having the...

  15. 21 CFR 73.50 - Ultramarine blue.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... ultramarine blue is a blue pigment obtained by calcining a mixture of kaolin, sulfur, sodium carbonate, and... order to vary the shade. The pigment is a complex sodium aluminum sulfo-silicate having the...

  16. 21 CFR 73.50 - Ultramarine blue.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... ultramarine blue is a blue pigment obtained by calcining a mixture of kaolin, sulfur, sodium carbonate, and... order to vary the shade. The pigment is a complex sodium aluminum sulfo-silicate having the...

  17. 21 CFR 73.50 - Ultramarine blue.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... ultramarine blue is a blue pigment obtained by calcining a mixture of kaolin, sulfur, sodium carbonate, and... order to vary the shade. The pigment is a complex sodium aluminum sulfo-silicate having the...

  18. 21 CFR 73.50 - Ultramarine blue.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... ultramarine blue is a blue pigment obtained by calcining a mixture of kaolin, sulfur, sodium carbonate, and... order to vary the shade. The pigment is a complex sodium aluminum sulfo-silicate having the...

  19. Current State and Research Trend in the Image Database Systems Peter L. Stanchev, David Green Jr.

    E-print Network

    Stanchev, Peter

    world is composed of images. Humans are using their eyes, containing 1.5 x 108 sensors, to obtaining and blue - cyan, blue and red yellow. Cyan, yellow and managenta are the primitives used in printing. Clerk - Red, Green and Blue image. A mix of these three images can produce every color. This model, named RGB

  20. PLANE SYMMETRY GROUPS MAXWELL LEVINE

    E-print Network

    May, J. Peter

    known as pla- nar crystallographic groups or wallpaper groups. The seventeen unique plane symmetry, the work of the artist M.C. Escher, and of course wallpaper. We shall discuss the fundamental components

  1. BLUE WHALE-SIZED MOUTHFULS MAKE FORAGING

    E-print Network

    Martin, Paul R.

    Inside JEB i BLUE WHALE-SIZED MOUTHFULS MAKE FORAGING SUPER EFFICIENT When a blue whale dives from the University of British Columbia, Canada, explains that blue whales may be able to dive. Explaining that the whales feed by lunging repeatedly through deep shoals of krill, engulfing their own body

  2. Blue Brain Project Brain Mind Institute

    E-print Network

    © Blue Brain Project Brain Mind Institute Prof. Henry Markram Dr. Felix Schürmann felix.schuermann@epfl.ch http://bluebrainproject.epfl.ch Reverse-Engineering the Brain #12;© Blue Brain Project The Electrophysiologist's View BBP BBPBBP #12;© Blue Brain Project Accurate Models that Relate to Experiment LBC PC SBC PC

  3. January 2002 BLUE WHALE (Balaenoptera musculus)

    E-print Network

    January 2002 BLUE WHALE (Balaenoptera musculus): Western North Atlantic Stock STOCK DEFINITION and northeastern North Atlantic. POPULATION SIZE Little is known about the population size of blue whales except that the blue whale population in the western North Atlantic may number only in the low hundreds. R. Sears (pers

  4. October 1999 BLUE WHALE (Balaenoptera musculus)

    E-print Network

    31 October 1999 BLUE WHALE (Balaenoptera musculus): Western North Atlantic Stock STOCK DEFINITION in the northern and northeastern North Atlantic. POPULATION SIZE Little is known about the population size of blue (1974) estimated that the blue whale population in the western North Atlantic may number only in the low

  5. January 2002 BLUE WHALE (Balaenoptera musculus)

    E-print Network

    400 January 2002 BLUE WHALE (Balaenoptera musculus): Western North Atlantic Stock STOCK DEFINITION and northeastern North Atlantic. POPULATION SIZE Little is known about the population size of blue whales except that the blue whale population in the western North Atlantic may number only in the low hundreds. R. Sears (pers

  6. Table of Contents Blue Ribbon Panel 1

    E-print Network

    Chapman, Michael S.

    Table of Contents Blue Ribbon Panel 1 Hooding 1 Dr. Lomeli 2 Dr. Brown 3 Advocacy Day 7 OHSU School Student Dental Association. (ASDA). Blue Ribbon Panel to Chart Dental Education Dental School Graduates 90 (continued on page six) A Blue Ribbon panel was recently appointed by OHSU President Joe Robertson to chart

  7. A method of plane geometry primitive presentation

    NASA Astrophysics Data System (ADS)

    Jiao, Anbo; Luo, Haibo; Chang, Zheng; Hui, Bin

    2014-11-01

    Point feature and line feature are basic elements in object feature sets, and they play an important role in object matching and recognition. On one hand, point feature is sensitive to noise; on the other hand, there are usually a huge number of point features in an image, which makes it complex for matching. Line feature includes straight line segment and curve. One difficulty in straight line segment matching is the uncertainty of endpoint location, the other is straight line segment fracture problem or short straight line segments joined to form long straight line segment. While for the curve, in addition to the above problems, there is another difficulty in how to quantitatively describe the shape difference between curves. Due to the problems of point feature and line feature, the robustness and accuracy of target description will be affected; in this case, a method of plane geometry primitive presentation is proposed to describe the significant structure of an object. Firstly, two types of primitives are constructed, they are intersecting line primitive and blob primitive. Secondly, a line segment detector (LSD) is applied to detect line segment, and then intersecting line primitive is extracted. Finally, robustness and accuracy of the plane geometry primitive presentation method is studied. This method has a good ability to obtain structural information of the object, even if there is rotation or scale change of the object in the image. Experimental results verify the robustness and accuracy of this method.

  8. Improved wheal detection from skin prick test images

    NASA Astrophysics Data System (ADS)

    Bulan, Orhan

    2014-03-01

    Skin prick test is a commonly used method for diagnosis of allergic diseases (e.g., pollen allergy, food allergy, etc.) in allergy clinics. The results of this test are erythema and wheal provoked on the skin where the test is applied. The sensitivity of the patient against a specific allergen is determined by the physical size of the wheal, which can be estimated from images captured by digital cameras. Accurate wheal detection from these images is an important step for precise estimation of wheal size. In this paper, we propose a method for improved wheal detection on prick test images captured by digital cameras. Our method operates by first localizing the test region by detecting calibration marks drawn on the skin. The luminance variation across the localized region is eliminated by applying a color transformation from RGB to YCbCr and discarding the luminance channel. We enhance the contrast of the captured images for the purpose of wheal detection by performing principal component analysis on the blue-difference (Cb) and red-difference (Cr) color channels. We finally, perform morphological operations on the contrast enhanced image to detect the wheal on the image plane. Our experiments performed on images acquired from 36 different patients show the efficiency of the proposed method for wheal detection from skin prick test images captured in an uncontrolled environment.

  9. Platinum blue as an alternative to uranyl acetate for staining in transmission electron microscopy.

    PubMed

    Inaga, Sumire; Katsumoto, Tetsuo; Tanaka, Keiichi; Kameie, Toshio; Nakane, Hironobu; Naguro, Tomonori

    2007-04-01

    This paper introduces an aqueous solution of platinum blue (Pt-blue) as an alternative to uranyl acetate (UA) for staining in transmission electron microscopy (TEM). Pt-blue was prepared from a reaction of cis-dichlorodiamine-platinum (II) (cis-platin) with thymidine. When Pt-blue was dried on a microgrid and observed by TEM it showed a uniform appearance with tiny particles less than 1 nm in diameter. The effect of Pt-blue as an electron stain was then examined not only for positive staining of conventional ultrathin resin sections and counterstaining of post-embedding immuno-electron microscopy but also for negative staining. In ultrathin sections of the rat liver and renal glomerulus, Pt-blue provided good contrast images, especially in double staining combined with a lead stain (Pb). Almost all cell organelles were clearly observed with high contrast in these sections. Glycogen granules in the hepatic parenchymal cells were particularly electron dense in Pt-blue stained sections compared with those treated with UA. In longitudinal and transverse sections of budding influenza A viruses, a specific arrangement of rod-like structures, which correspond to the ribonucleoprotein complexes, was clearly shown in each virion stained with Pt-blue and Pb. When post-embedding immunoelectron microscopy was performed in ultrathin sections of HeLa cells embedded in Lowicryl K4M, the localization of Ki-67 protein was sufficiently detected even after Pt-blue and Pb staining. The present study also revealed that Pt-blue could be used for the negative staining of E. coli, allowing the visualization of a flagellum. These findings indicate that Pt-blue is a useful, safe, and easily obtainable electron stain that is an alternative to UA for TEM preparations. PMID:17558143

  10. [Imaging].

    PubMed

    Chevrot, A; Drapé, J L; Godefroy, D; Dupont, A M; Pessis, E; Sarazin, L; Minoui, A

    1997-01-01

    The panoply of imaging techniques useful in podology is essentially limited to X-rays. Standard "standing" and "lying" X-rays furnish most of the required information. Arthrography is sometimes performed, in particular for trauma or tumour of the ankle. CT scan and MRI make a decisive contribution in difficult cases, notably in fractures and in small fractures without displacement. The two latter techniques are useful in tendon, ligament and muscular disorders, where echography is also informative. Rigorous analysis of radiographies and a good knowledge of foot disorders make these imaging techniques efficacious. PMID:9035538

  11. Blue light induction of conidiation-specific genes in Neurospora crassa.

    PubMed Central

    Lauter, F R; Russo, V E

    1991-01-01

    The con genes of Neurospora crassa are preferentially expressed during a developmental process known as conidiation. We present evidence indicating that transcription of con-5 and con-10 is also stimulated by blue light. Transcription of these genes was not photoinducible in wc-1 and wc-2 mutant strains. The response of con-5 and con-10 to blue light was similar to that of al-1 and al-2, genes involved in carotenoid biosynthesis, and bli-3 and bli-4, blue light inducible genes. Images PMID:1837079

  12. Medical Imaging Computed Tomography (CT)

    E-print Network

    Massey, Thomas N.

    Module 10 Medical Imaging · X-rays · Computed Tomography (CT) · Positron Emission Tomography (PET-rays of a predetermined plane section of a solid object while blurring out the images of other planes. #12;Basic a series of 2 dimensional data to reconstruct a 3 dimensional image by analogue or digital methods

  13. Status of Blue Ridge Reservoir

    SciTech Connect

    Not Available

    1990-09-01

    This is one in a series of reports prepared by the Tennessee Valley Authority (TVA) for those interested in the conditions of TVA reservoirs. This overview of Blue Ridge Reservoir summarizes reservoir and watershed characteristics, reservoir uses and use impairments, water quality and aquatic biological conditions, and activities of reservoir management agencies. This information was extracted from the most current reports and data available, as well as interview with water resource professionals in various federal, state, and local agencies. Blue Ridge Reservoir is a single-purpose hydropower generating project. When consistent with this primary objective, the reservoir is also operated to benefit secondary objectives including water quality, recreation, fish and aquatic habitat, development of shoreline, aesthetic quality, and other public and private uses that support overall regional economic growth and development. 8 refs., 1 fig.

  14. Food habits of blue grouse

    USGS Publications Warehouse

    Stewart, R.E.

    1944-01-01

    The food habits of Blue Grouse vary from a simple winter diet that is made up predominantly of coniferous needles to a complex diet during the summer months, characterized by great variety of foods including green leaves, fruits and seeds, flowers, animal matter and coniferous needles. The spring and fall, which represent the transition periods between these two, are characterized by feeding habits that are generally intermediate. The diets of the two species of Blue Grouse, Dendrugapus obscurus and Dendragapus juliginosus, are quite similar as far as major types of food are concerned, but they differ considerably in the species that are taken. Such differences reflect differences in the vegetation within the ecologic and geographic ranges occupied by the two species.

  15. The Physics of the Blues

    NASA Astrophysics Data System (ADS)

    Gibson, J. Murray

    2009-03-01

    In looking at the commonalities between music and science, one sees that the musician's palette is based on the principles of physics. The pitch of a musical note is determined by the frequency of the sound wave. The scales that musicians use to create and play music can be viewed as a set of rules. What makes music interesting is how musicians develop those rules and create ambiguity with them. I will discuss the evolution of western musical scales in this context. As a particular example, ``Blue'' notes are very harmonic notes that are missing from the equal temperament scale. The techniques of piano blues and jazz represent the melding of African and Western music into something totally new and exciting. Live keyboard demonstrations will be used. Beyond any redeeming entertainment value the talk will emphasize the serious connections between science and art in music. Nevertheless tips will be accepted.

  16. The performance of the blue prime focus Large Binocular Camera at the Large Binocular Telescope

    E-print Network

    E. Giallongo; R. Ragazzoni; A. Grazian; A. Baruffolo; G. Beccari; C. De Santis; E. Diolaiti; A. Di Paola; J. Farinato; A. Fontana; S. Gallozzi; F. Gasparo; G. Gentile; R. Green; J. Hill; O. Kuhn; F. Pasian; F. Pedichini; M. Radovich; P. Salinari; R. Smareglia; R. Speziali; V. Testa; D. Thompson; E. Vernet; R. M. Wagner

    2008-03-13

    We present the characteristics and some early scientific results of the first instrument at the Large Binocular Telescope (LBT), the Large Binocular Camera (LBC). Each LBT telescope unit will be equipped with similar prime focus cameras. The blue channel is optimized for imaging in the UV-B bands and the red channel for imaging in the VRIz bands. The corrected field-of-view of each camera is approximately 30 arcminutes in diameter, and the chip area is equivalent to a 23x23 arcmin2 field. In this paper we also present the commissioning results of the blue channel. The scientific and technical performance of the blue channel was assessed by measurement of the astrometric distortion, flat fielding, ghosts, and photometric calibrations. These measurements were then used as input to a data reduction pipeline applied to science commissioning data. The measurements completed during commissioning show that the technical performance of the blue channel is in agreement with original expectations. Since the red camera is very similar to the blue one we expect similar performance from the commissioning that will be performed in the following months in binocular configuration. Using deep UV image, acquired during the commissioning of the blue camera, we derived faint UV galaxy-counts in a ~500 sq. arcmin. sky area to U(Vega)=26.5. These galaxy counts imply that the blue camera is the most powerful UV imager presently available and in the near future in terms of depth and extent of the field-of-view. We emphasize the potential of the blue camera to increase the robustness of the UGR multicolour selection of Lyman break galaxies at redshift z~3.

  17. EFFICIENT VLSI IMPLEMENTATION OF BIT PLANE CODER OF JPEG2000

    E-print Network

    Kambhampati, Subbarao

    EFFICIENT VLSI IMPLEMENTATION OF BIT PLANE CODER OF JPEG2000 Kishore Andra* , Tinku Acharya, Arizona, 85226, USA ABSTRACT To overcome many drawbacks in the current JPEG standard for still image compression, a new standard, JPEG2000, is under development by the International Standard Organization

  18. Ol' Blue Eyes, in Focus

    ERIC Educational Resources Information Center

    Nelson, Michael

    2009-01-01

    Scholarly books with "identity" and "culture" in the title have loomed large on academic publishing lists for several years. Scholarly books with "Sinatra" in the title are a more recent phenomenon. Despite his six-decade career as the Voice (the 1940s), the Chairman of the Board (the 50s and 60s), and Ol' Blue Eyes (the 70s through his death, in…

  19. 76 FR 22923 - Wellpoint, Inc. D/B/A/Anthem Blue Cross & Blue Shield Enterprise Provider Data Management Team...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-25

    ...A/Anthem Blue Cross & Blue Shield Enterprise Provider Data Management Team Including...Anthem Blue Cross & Blue Shield, Enterprise Provider Data Management Team, Including...Anthem Health Plans Of Kentucky, Enterprise Provider Data Management Team,...

  20. Inflation and alternatives with blue tensor spectra

    SciTech Connect

    Wang, Yi; Xue, Wei E-mail: wei.xue@sissa.it

    2014-10-01

    We study the tilt of the primordial gravitational waves spectrum. A hint of blue tilt is shown from analyzing the BICEP2 and POLARBEAR data. Motivated by this, we explore the possibilities of blue tensor spectra from the very early universe cosmology models, including null energy condition violating inflation, inflation with general initial conditions, and string gas cosmology, etc. For the simplest G-inflation, blue tensor spectrum also implies blue scalar spectrum. In general, the inflation models with blue tensor spectra indicate large non-Gaussianities. On the other hand, string gas cosmology predicts blue tensor spectrum with highly Gaussian fluctuations. If further experiments do confirm the blue tensor spectrum, non-Gaussianity becomes a distinguishing test between inflation and alternatives.

  1. Polish Terms for "Blue" in the Perspective of Vantage Theory

    ERIC Educational Resources Information Center

    Stanulewicz, Danuta

    2010-01-01

    The Polish set of terms for blue includes, inter alia, the following adjectives: "niebieski" "blue", "blekitny" "(sky) blue", "granatowy" "navy blue", "lazurowy" "azure", "modry" "(intense) blue" and "siny" "(grey) violet-blue". The adjective "niebieski" is the basic term; however, it shares some of its functions with "blekitny", which is…

  2. BLUE VIEW VISION! Good news--your vision plan

    E-print Network

    WELCOME TO BLUE VIEW VISION! Good news--your vision plan is flexible and easy to use. This benefit. Blue View VisionSM BVMO C25.130.130 Your Blue View Vision network Anthem Blue Cross and Blue Shield vision members have access to one of the nation's largest vision networks. Blue View Vision is the only

  3. The Laplace Planes of Uranus and Pluto

    NASA Technical Reports Server (NTRS)

    Dobrovolskis, Anthony R.

    1993-01-01

    Satellite orbits close to an oblate planet precess about its equatorial plane, while distant satellites precess around the plane of the planet's heliocentric orbit. In between, satellites in nearly circular orbits precess about a warped intermediate surface called the Laplace 'plane.' Herein we derive general formulas for locating the Laplace plane. Because Uranus and Pluto have high obliquities, their Laplace planes are severely warped. We present maps of these Laplace planes, of interest in telescopic searches for new satellites. The Laplace plane of the Solar System as a whole is similarly distorted, but comets in the inner Oort cloud precess too slowly to sense the Laplace plane.

  4. Visual Analysis on Relations between Nouns and Adjectives Using a Large Number of Web Images

    E-print Network

    Yanai, Keiji

    -search with multiple keywords. For example, we obtain a photo showing blue sky and a red car for the query with "blue such as "car" and "sea" and and adjectives re- lated to color such as "red" and "blue" was relatively high AND car". To remove such a photo and to obtain only the pho- tos including blue cars, simultaneous image

  5. Explosive plane-wave lens

    DOEpatents

    Marsh, Stanley P. (Los Alamos, NM)

    1988-01-01

    An explosive plane-wave air lens which enables a spherical wave form to be converted to a planar wave without the need to specially machine or shape explosive materials is described. A disc-shaped impactor having a greater thickness at its center than around its periphery is used to convert the spherical wave into a plane wave. When the wave reaches the impactor, the center of the impactor moves first because the spherical wave reaches the center of the impactor first. The wave strikes the impactor later in time as one moves radially along the impactor. Because the impactor is thinner as one moves radially outward, the velocity of the impactor is greater at the periphery than at the center. An acceptor explosive is positioned so that the impactor strikes the acceptor simultaneously. Consequently, a plane detonation wave is propagated through the acceptor explosive.

  6. Explosive plane-wave lens

    DOEpatents

    Marsh, S.P.

    1987-03-12

    An explosive plane-wave air lens which enables a spherical wave form to be converted to a planar wave without the need to specially machine or shape explosive materials is described. A disc-shaped impactor having a greater thickness at its center than around its periphery is used to convert the spherical wave into a plane wave. When the wave reaches the impactor, the center of the impactor moves first because the spherical wave reaches the center of the impactor first. The wave strikes the impactor later in time as one moves radially along the impactor. Because the impactor is thinner as one moves radially outward, the velocity of the impactor is greater at the periphery than at the center. An acceptor explosive is positioned so that the impactor strikes the acceptor simultaneously. Consequently, a plane detonation wave is propagated through the acceptor explosive. 3 figs., 3 tabs.

  7. Explosive plane-wave lens

    DOEpatents

    Marsh, S.P.

    1988-03-08

    An explosive plane-wave air lens which enables a spherical wave form to be converted to a planar wave without the need to specially machine or shape explosive materials is described. A disc-shaped impactor having a greater thickness at its center than around its periphery is used to convert the spherical wave into a plane wave. When the wave reaches the impactor, the center of the impactor moves first because the spherical wave reaches the center of the impactor first. The wave strikes the impactor later in time as one moves radially along the impactor. Because the impactor is thinner as one moves radially outward, the velocity of the impactor is greater at the periphery than at the center. An acceptor explosive is positioned so that the impactor strikes the acceptor simultaneously. Consequently, a plane detonation wave is propagated through the acceptor explosive. 4 figs.

  8. Out-of-plane displacement field measurement by shearography

    NASA Astrophysics Data System (ADS)

    Bai, Pengxiang; Zhu, Feipeng; He, Xiaoyuan

    2015-10-01

    Existing shearography systems measuring out-of-plane displacements suffer from boundary-constraint or reference surface requirements. Therefore, we propose an accurate non-uniform out-of-plane displacement field measurement method based on a modified shearography system and two-step integration method. The proposed method combines high-resolution interferometry with the advantage of relaxing the environmental stability requirements. The modified shearography system adopts three beam splitters and two switches when compared with conventional optical configurations. The three beam splitters are used to construct a modified Michelson interferometer that shears the image along two orthogonal directions, and the shearing direction can be switched by the two hardware switches between the orthogonal directions. With phase shifting performed on the recorded images, the out-of-plane displacement gradients along the orthogonal directions are extracted sequentially. In general, without boundary restrictions on the object surface, it is difficult to directly extract out-of-plane displacement from a single displacement gradient field. Accordingly, the two-step integration method is proposed and applied to the orthogonal displacement gradients to extract the relative out-of-plane displacement field without any boundary conditions of the object surface provided. Experiments are performed on a clamped circular plate with uniform loading, and the results are compared with electronic speckle pattern interferometry (ESPI) results to validate the proposed method.

  9. Exfoliation of Egyptian Blue and Han Blue, two alkali earth copper silicate-based pigments.

    PubMed

    Johnson-McDaniel, Darrah; Salguero, Tina T

    2014-01-01

    In a visualized example of the ancient past connecting with modern times, we describe the preparation and exfoliation of CaCuSi4O10 and BaCuSi4O10, the colored components of the historic Egyptian blue and Han blue pigments. The bulk forms of these materials are synthesized by both melt flux and solid-state routes, which provide some control over the crystallite size of the product. The melt flux process is time intensive, but it produces relatively large crystals at lower reaction temperatures. In comparison, the solid-state method is quicker yet requires higher reaction temperatures and yields smaller crystallites. Upon stirring in hot water, CaCuSi4O10 spontaneously exfoliates into monolayer nanosheets, which are characterized by TEM and PXRD. BaCuSi4O10 on the other hand requires ultrasonication in organic solvents to achieve exfoliation. Near infrared imaging illustrates that both the bulk and nanosheet forms of CaCuSi4O10 and BaCuSi4O10 are strong near infrared emitters. Aqueous CaCuSi4O10 and BaCuSi4O10 nanosheet dispersions are useful because they provide a new way to handle, characterize, and process these materials in colloidal form. PMID:24796494

  10. Space-Plane Spreadsheet Program

    NASA Technical Reports Server (NTRS)

    Mackall, Dale

    1993-01-01

    Basic Hypersonic Data and Equations (HYPERDATA) spreadsheet computer program provides data gained from three analyses of performance of space plane. Equations used to perform analyses derived from Newton's second law of physics, derivation included. First analysis is parametric study of some basic factors affecting ability of space plane to reach orbit. Second includes calculation of thickness of spherical fuel tank. Third produces ratio between volume of fuel and total mass for each of various aircraft. HYPERDATA intended for use on Macintosh(R) series computers running Microsoft Excel 3.0.

  11. Plane waves in noncommutative fluids

    E-print Network

    M. C. B. Abdalla; L. Holender; M. A. Santos; I. V. Vancea

    2013-05-24

    We study the dynamics of the noncommutative fuid in the Snyder space perturbatively at the fi?rst order in powers of the noncommutative parameter. The linearized noncommutative fluid dynamics is described by a system of coupled linear partial diff?erential equations in which the variables are the fluid density and the fluid potentials. We show that these equations admit a set of solutions that are monocromatic plane waves for the fluid density and two of the potentials and a linear function for the third potential. The energy-momentum tensor of the plane waves is calculated.

  12. Measurement of Three-Dimensional Flame Structure by Simultaneous Dual-plane CH PLIF, Single-plane OH PLIF and Stereoscopic PIV

    NASA Astrophysics Data System (ADS)

    Ueda, Takashi; Shimura, Masayasu; Choi, Gyung-Min; Tanahashi, Mamoru; Miyauchi, Toshio

    2008-11-01

    To investigate three-dimensional flame structures of turbulent premixed flame, dual-plane planar laser induced fluorescence (PLIF) of CH radical has been developed. The newly-developed dual-plane CH PLIF is combined with single-plane OH PLIF and stereoscopic particle image velocimetry (SPIV) to clarify the relation between flame geometry and turbulence characteristics. The laser sheets for OH PLIF and SPIV measurement are located at the center of two planes for CH PLIF. The separation between these two CH PLIF planes is selected to 500?m. The measurement was conducted in relatively high Reynolds number methane-air turbulent jet premixed flame. The experimental results show that various three-dimensional flame structures such as the handgrip structure, which has been shown by DNS, are included in high Reynolds number turbulent premixed flame. It was shown that the simultaneous measurement containing newly-developed dual- plane CH PLIF is useful for investigating the three-dimensional flame structure.

  13. Metastatic malignant blue nevus: a case report.

    PubMed

    Ozgür, F; Akyürek, M; Kayikçio?lu, A; Bari?ta, I; Gököz, A

    1997-10-01

    This report presents a 63-year-old Caucasian woman with a malignant blue nevus, which is an extremely rare form of melanoma originating from or associated with a preexisting blue nevus. The background blue nevus on the left upper arm, which had been present for 5 to 6 years, increased in size and darkened in color for 3 months prior to histological diagnosis of malignant blue nevus. Although the tumor looked much like a nodular melanoma clinically, the diagnosis of malignant blue nevus was established histologically. The patient had a poor outcome due to metastatic spread of the tumor to the visceral organs 1 year following the initial excision of the tumor. To distinguish this rare tumor from other melanocytic lesions, strict histological criteria are needed to make the diagnosis of malignant blue nevus. Differential diagnosis includes cellular blue nevus, atypical cellular blue nevus, primary malignant melanoma, and metastatic melanoma to the dermis. Malignant blue nevus is most commonly seen on the scalp. The tumor has an aggressive behavior and metastasizes in the majority of patients. This paper describes the second reported case of malignant blue nevus involving the upper arm. Clinical and histological features of this uncommon tumor are presented, along with a review of the literature. PMID:9339284

  14. Photothermal therapy of cancer cells mediated by blue hydrogel nanoparticles

    PubMed Central

    Curry, Taeyjuana; Epstein, Tamir; Smith, Ron; Kopelman, Raoul

    2013-01-01

    Aim The aim of this study was to investigate in vitro the utility of biologically compatible, nontoxic and cell-specific targetable hydrogel nanoparticles (NPs), which have Coomassie® Brilliant Blue G dye (Sigma-Aldrich, MO, USA) covalently linked into their polyacrylamide matrix, as candidates for photothermal therapy (PTT) of cancer cells. Materials & methods Hydrogel NPs with Coomassie Brilliant Blue G dye covalently linked into their polyacrylamide matrix were fabricated using a reverse micelle microemulsion polymerization method and were found to be 80–95 nm in diameter, with an absorbance value of 0.52. PTT-induced hyperthermia/thermolysis was achieved at 37°C using an inexpensive, portable, light-emitting diode array light source (590 nm, 25 mW/cm2). Results & conclusion Hydrogel NPs with Coomassie Brilliant Blue G dye linked into their polyacrylamide matrix are effective in causing PTT-induced thermolysis in immortalized human cervical cancer cell line (HeLa) cells for varying NP concentrations and treatment times. These multifunctional particles have previously been used in cancer studies to enable delineation, for glioma surgery and in photoacoustic imaging studies. The addition of the PTT function would enable a three-pronged theranostic approach to cancer medicine, such as guided tumor surgery with intra-operative photoacoustic imaging and intra-operative PTT. PMID:23432340

  15. Black Holes from Blue Spectra

    E-print Network

    James E. Lidsey; B. J. Carr; J. H. Gilbert

    1994-06-09

    Blue primordial power spectra with a spectral index $n>1$ can lead to a significant production of primordial black holes in the very early Universe. The evaporation of these objects leads to a number of observational consequences and a model independent upper limit of $n \\approx 1.4$. In some cases this limit is strengthened to $n=1.3$. Such limits may be employed to define the boundary to the region of parameter space consistent with generalized inflationary predictions. [To appear in Proceedings of the CASE WESTERN CMB WORKSHOP, April 22-24 1994. Figures available on request from J.H.Gilbert@qmw.ac.uk

  16. Transversus Abdominal Plane (TAP) block

    E-print Network

    Peak, Derek

    !" Transversus Abdominal Plane (TAP) block Presentation developed by Dr. Ashley Meister Presented by Dr. Kevin Wong April 25, 2015 #12;Objectives ! Goals of the TAP block & effects ! Anatomy-sparing ! Good for abdominal wall pain (incisional pain) ! Does not cover visceral pain ! Field block in fascial

  17. Affine Contractions on the Plane

    ERIC Educational Resources Information Center

    Celik, D.; Ozdemir, Y.; Ureyen, M.

    2007-01-01

    Contractions play a considerable role in the theory of fractals. However, it is not easy to find contractions which are not similitudes. In this study, it is shown by counter examples that an affine transformation of the plane carrying a given triangle onto another triangle may not be a contraction even if it contracts edges, heights or medians.…

  18. Plane and parabolic solar panels

    E-print Network

    J. H. O. Sales; A. T. Suzuki

    2009-05-14

    We present a plane and parabolic collector that absorbs radiant energy and transforms it in heat. Therefore we have a panel to heat water. We study how to increment this capture of solar beams onto the panel in order to increase its efficiency in heating water.

  19. Plane and parabolic solar panels

    E-print Network

    Sales, J H O

    2009-01-01

    We present a plane and parabolic collector that absorbs radiant energy and transforms it in heat. Therefore we have a panel to heat water. We study how to increment this capture of solar beams onto the panel in order to increase its efficiency in heating water.

  20. Stokes problems for moving half-planes

    NASA Technical Reports Server (NTRS)

    Zeng, Y.; Weinbaum, S.; Cowin, S. C. (Principal Investigator)

    1995-01-01

    New exact solutions of the Navier-Stokes equations are obtained for the unbounded and bounded oscillatory and impulsive tangential edgewise motion of touching half-infinite plates in their own plane. In contrast to Stokes classical solutions for the harmonic and impulsive motion of an infinite plane wall, where the solutions are separable or have a simple similarity form, the present solutions have a two-dimensional structure in the near region of the contact between the half-infinite plates. Nevertheless, it is possible to obtain relatively simple closed-form solutions for the flow field in each case by defining new variables which greatly simplify the r- and theta- dependence of the solutions in the vicinity of the contact region. These solutions for flow in a half-infinite space are then extended to bounded flows in a channel using an image superposition technique. The impulsive motion has application to the motion near geophysical faults, whereas the oscillatory motion has arisen in the design of a novel oscillating half-plate flow chamber for examining the effect of fluid shear stress on cultured cell monolayers.

  1. Optical design and characterization of an advanced computational imaging system

    E-print Network

    Shepard III, R. Hamilton

    We describe an advanced computational imaging system with an optical architecture that enables simultaneous and dynamic pupil-plane and image-plane coding accommodating several task-specific applications. We assess the ...

  2. Geothermal Technologies Program Blue Ribbon Panel Recommendations

    SciTech Connect

    none,

    2011-06-17

    The Geothermal Technologies Program assembled a geothermal Blue Ribbon Panel on March 22-23, 2011 in Albuquerque, New Mexico for a guided discussion on the future of geothermal energy in the United States and the role of the DOE Program. The Geothermal Blue Ribbon Panel Report captures the discussions and recommendations of the experts. An addendum is available here: http://www.eere.energy.gov/geothermal/pdfs/gtp_blue_ribbon_panel_report_addendum10-2011.pdf

  3. High-resolution imaging by multiple-image deconvolution

    E-print Network

    Boccacci, Patrizia

    High-resolution imaging by multiple-image deconvolution M. Bertero, P.Boccacci, G. Desiderà, and G deconvolution is a powerful tool for improving the quality of images corrupted by blurring and noise. However on the direction in the imaging plane or volume. Such a distortion cannot be corrected by image deconvolution. One

  4. Blue Photoluminescence From Silacyclobutene Compounds

    NASA Astrophysics Data System (ADS)

    Pernisz, Udo

    1999-04-01

    Organosilicon compounds in which the Si atom is bound to an aromatic moiety such as a phenyl group, exhibit strong blue photoluminescence when excited with UV light (for example at a wavelength of 337 nm). This phenomenon was investigated quantitatively at room temperature and at the temperature of liquid nitrogen (78 K) by measuring the emission and excitation spectra of the total luminescence, and of the phosphorescence, for a silacyclobutene compound in which two phenyl groups are joined across the C=C double bond of the ring. The effect of a series of organic substituents on the Si atom was investigated as well as the time dependence of the phosphorescence intensity decay for this class of materials. A tentative model of the energy levels in this compound is proposed. The observation of visible blue emission -- in contrast to photoluminescence in the UV from the aromatic groups -- is explained by the Si-C bond lowering the energy of the molecular orbitals, an effect that is currently under study for a range of Si-containing compounds. Synthesis of the silacyclobutene compounds was performed at the laboratory of Prof. N. Auner, now at J.W. Goethe Universität, Frankfurt, Germany. His contributions, and those of his collaborators, to the work reported here are gratefully acknowledged.

  5. Morphological responses of wheat to blue light

    NASA Technical Reports Server (NTRS)

    Barnes, C.; Bugbee, B.

    1992-01-01

    Blue light significantly increased tillering in wheat (Triticum aestivum L.) plants grown at the same photosynthetic photon flux (PPF). Plants were grown under two levels of blue light (400-500 nm) in a controlled environment with continuous irradiation. Plants received either 50 micromoles m-2 s-1 of blue light or 2 micromoles m-2 s-1 blue light from filtered metal halide lamps at a total irradiance of 200 micromoles m-2 s-1 PPF (400-700 nm). Plants tillered an average of 25% more under the higher level of blue light. Blue light also caused a small, but consistent, increase in main culm development, measured as Haun stage. Leaf length was reduced by higher levels of blue light, while plant dry-mass was not significantly affected by blue light. Applying the principle of equivalent light action, the results suggest that tillering and leaf elongation are mediated by the blue-UV light receptor(s) because phytochrome photoequilibrium for each treatment were nearly identical.

  6. Optically tuneable blue phase photonic band gaps

    SciTech Connect

    Liu, H.-Y.; Wang, C.-T.; Hsu, C.-Y.; Lin, T.-H.; Liu, J.-H.

    2010-03-22

    This study investigates an optically switchable band gap of photonic crystal that is based on an azobenzene-doped liquid crystal blue phase. The trans-cis photoisomerization of azobenzene deforms the cubic unit cell of the blue phase and shifts the photonic band gap. The fast back-isomerization of azobenzene was induced by irradiation with different wavelengths light. The crystal structure is verified using Kossel diffraction diagram. An optically addressable blue phase display, based on Bragg reflection from the photonic band gap, is also demonstrated. The tunable ranges are around red, green, and blue wavelengths and exhibit a bright saturated color.

  7. Imaging medical imaging

    NASA Astrophysics Data System (ADS)

    Journeau, P.

    2015-03-01

    This paper presents progress on imaging the research field of Imaging Informatics, mapped as the clustering of its communities together with their main results by applying a process to produce a dynamical image of the interactions between their results and their common object(s) of research. The basic side draws from a fundamental research on the concept of dimensions and projective space spanning several streams of research about three-dimensional perceptivity and re-cognition and on their relation and reduction to spatial dimensionality. The application results in an N-dimensional mapping in Bio-Medical Imaging, with dimensions such as inflammatory activity, MRI acquisition sequencing, spatial resolution (voxel size), spatiotemporal dimension inferred, toxicity, depth penetration, sensitivity, temporal resolution, wave length, imaging duration, etc. Each field is represented through the projection of papers' and projects' `discriminating' quantitative results onto the specific N-dimensional hypercube of relevant measurement axes, such as listed above and before reduction. Past published differentiating results are represented as red stars, achieved unpublished results as purple spots and projects at diverse progress advancement levels as blue pie slices. The goal of the mapping is to show the dynamics of the trajectories of the field in its own experimental frame and their direction, speed and other characteristics. We conclude with an invitation to participate and show a sample mapping of the dynamics of the community and a tentative predictive model from community contribution.

  8. H-PLANE WAVEGUIDE FILTERS WITH E-PLANE DISPERSIVE INVERTERS FOR HIGH-POWER APPLICATIONS

    E-print Network

    Bornemann, Jens

    in this plane, E-plane fabrication facilitates high-power applications. The different steps in the design. Therefore, this paper focuses on the design of H-plane waveguide filters with E-plane dispersive inverters. Starting with a standard H-plane filter design at 6.5 GHz, we demonstrate how transmission zeros can

  9. Inter-Plane Via Defect Detection Using the Sensor Plane in 3-D Heterogeneous Sensor Systems

    E-print Network

    Chapman, Glenn H.

    and fuse the sensor plane data. Fault tolerance in the design and fabrication of the micromachined IRInter-Plane Via Defect Detection Using the Sensor Plane in 3-D Heterogeneous Sensor Systems Glenn H using a stacked chip with sensors located on the top plane, and inter-plane vias connecting

  10. Grain Fish Money Financing Africa's Green and Blue Revolutions Financing Africa's Green and Blue Revolutions

    E-print Network

    Grain Fish Money Financing Africa's Green and Blue Revolutions 1 Financing Africa's Green and Blue Revolutions GRAIN FISH MONEY AFRICA PROGRESS REPORT 2014 #12;AFRICA PROGRESS REPORT 2014 2 #12;Grain Fish Money Financing Africa's Green and Blue Revolutions 3 #12;#12;Grain Fish Money Financing Africa's Green

  11. A Near-Infrared Photometric Plane for Elliptical Galaxies and Bulges of Spiral Galaxies.

    PubMed

    Khosroshahi; Wadadekar; Kembhavi; Mobasher

    2000-03-10

    We report the existence of a single plane in the space of global photometric parameters describing elliptical galaxies and the bulges of early-type spiral galaxies. The three parameters that define the plane are obtained by fitting the Sersic form to the brightness distribution obtained from near-infrared K-band images. We find, from the range covered by their shape parameters, that the elliptical galaxies form a more homogeneous population than the bulges. Known correlations like the Kormendy relation are projections of the photometric plane. The existence of the plane has interesting implications for bulge formation models. PMID:10688763

  12. Eight plane IPND mechanical testing.

    SciTech Connect

    Zhao, A.; Guarino, V.; Wood, K.; Nephew, T.; Ayres, D.; Lee, A.; High Energy Physics; FNAL

    2008-03-18

    A mechanical test of an 8 plane IPND mechanical prototype, which was constructed using extrusions from the testing/tryout of the 16 cell prototype extrusion die in Argonne National Laboratory, was conducted. There were 4 vertical and 4 horizontal planes in this 8 plane IPND prototype. Each vertical plane had four 16 cell extrusions, while each horizontal plane had six 16 cell extrusions. Each plane was glued together using the formulation of Devcon adhesive, Devcon 60. The vertical extrusions used in the vertical planes shares the same dimensions as the horizontal extrusions in the horizontal planes with the average web thickness of 2.1 mm and the average wall thickness of 3.1 mm. This mechanical prototype was constructed with end-seals on the both ends of the vertical extrusions. The gaps were filled with epoxy between extrusions and end-seals. The overall dimension of IPND is 154.8 by 103.1 by 21.7 inches with the weight of approximately 1200 kg, as shown in a figure. Two similar mechanical tests of 3 layer and 11 layer prototypes have been done in order to evaluate the strength of the adhesive joint between extrusions in the NOvA detector. The test showed that the IPND prototype was able to sustain under the loading of weight of itself and scintillator. Two FEA models were built to verify the measurement data from the test. The prediction from FEA slice model seems correlated reasonably well to the test result, even under a 'rough' estimated condition for the wall thickness (from an untuned die) and an unknown property of 'garage type' extrusion. A full size of FEA 3-D model also agrees very well with the test data from strain gage readings. It is worthy to point out that the stress distribution of the structure is predominantly determined by the internal pressure, while the buckling stability relies more on the loading weight from the extrusions themselves and scintillate. Results of conducted internal pressure tests, including 3- cell, 11-cell and the IPND prototypes, have been correlated to the FEA analysis very well. The authors believe they have quite good understanding of response of the NOvA structures subjected to the internal pressure, while the understanding of buckling stability is far behind. Therefore, more effect should be laid to improve the buckling considering that the FEA analysis usually is not able accurately modeling the stability as good as the stress analysis. The IPND structure was mostly built using 'scrape' piece extrusions (whatever available in shop). Therefore, a future test should be more focus on by using a actual real extrusions, for example like Nova -27 (if a final choice is made) and extrusion from a tuned die (very important). The authors should/will repeat 11 layers test with an actual thicker piece for the vertical to verify the adhesive joint and similar large scale prototype with a symmetry case, either 9 or 11 layers with the dial indicator on the both side.

  13. Tiling the plane without supersymmetry

    E-print Network

    D. Bazeia; F. A. Brito

    1999-12-01

    We present a way of tiling the plane with a regular hexagonal network of defects. The network is stable and follows in consequence of the three-junctions that appear in a model of two real scalar fields that presents $Z_3$ symmetry. The $Z_3$ symmetry is effective in both the vacuum and defect sectors, and no supersymmetry is required to build the network.

  14. Orbital Space Plane (OSP) Program

    NASA Technical Reports Server (NTRS)

    McKenzie, Patrick M.

    2003-01-01

    Lockheed Martin has been an active participant in NASA's Space Launch Initiative (SLI) programs over the past several years. SLI, part of NASA's Integrated Space Transportation Plan (ISTP), was restructured in November of 2002 to focus the overall theme of safer, more afford-able space transportation along two paths - the Orbital Space Plane Program and the Next Generation Launch Technology programs. The Orbital Space Plane Program has the goal of providing rescue capability from the International Space Station by 2008 and transfer capability for crew (and limited cargo) by 2012. The Next Generation Launch Technology program is combining research and development efforts from the 2nd Generation Reusable Launch Vehicle (2GRLV) program with cutting-edge, advanced space transportation programs (previously designated 3rd Generation) into one program aimed at enabling safe, reliable, cost-effective reusable launch systems by the middle of the next decade. Lockheed Martin is one of three prime contractors working to bring Orbital Space Plane system concepts to a system definition level of maturity by December of 2003. This paper and presentation will update the international community on the progress of the' OSP program, from an industry perspective, and provide insights into Lockheed Martin's role in enabling the vision of a safer, more affordable means of taking people to and from space.

  15. Ecology of Blue Straggler Stars

    E-print Network

    Boffin, H M J; Beccari, G

    2014-01-01

    The existence of blue straggler stars (BSS), which appear younger, hotter, and more massive than their siblings, is at odds with a simple picture of stellar evolution, as such stars should have exhausted their nuclear fuel and evolved long ago to become cooling white dwarfs. As such, BSS could just be some quirks but in fact their understanding requires a deep knowledge of many different areas in astronomy, from stellar evolution through cluster dynamics, from chemical abundances to stellar populations. In November 2012, a workshop on this important topic took place at the ESO Chilean headquarters in Santiago. The many topics covered at this workshop were introduced by very comprehensive invited reviews, providing a unique and insightful view on the field. These reviews have now become chapters of the first ever book on BSS.

  16. Methylthymol blue in Fricke gels

    NASA Astrophysics Data System (ADS)

    Penev, K. I.; Mequanint, K.

    2015-01-01

    The initial trial of methylthymol blue (MTB) as a chelator for ferric iron in Fricke gel dosimeters, used for three-dimensional (3D) dosimetry in cancer radiotherapy, is reported. MTB is a structural analogue of the conventionally used xylenol orange (XO); however, the absorbance spectrum of the ferric-MTB complex is shifted to higher wavelengths, which should allow for lower amount of light scattering during gel scanning. In this study, two gelatin substrates, two sources of XO and one source of MTB have been compared. The MTB- containing gels exhibited similar dose response and diffusion coefficient to the XO-containing gels at their wavelengths of maximum absorption (620 and 585 nm, respectively). In addition, the MTB gels gave an excellent dose response at 633 nm, which is an important wavelength that is already used with other 3D dosimeters.

  17. Long-persistence blue phosphors

    NASA Technical Reports Server (NTRS)

    Yen, William M. (Inventor); Jia, Weiyi (Inventor); Lu, Lizhu (Inventor); Yuan, Huabiao (Inventor)

    2000-01-01

    This invention relates to phosphors including long-persistence blue phosphors. Phosphors of the invention are represented by the general formula: MO . mAl.sub.2 O.sub.3 :Eu.sup.2+,R.sup.3+ wherein m is a number ranging from about 1.6 to about 2.2, M is Sr or a combination of Sr with Ca and Ba or both, R.sup.3+ is a trivalent metal ion or trivalent Bi or a mixture of these trivalent ions, Eu.sup.2+ is present at a level up to about 5 mol % of M, and R.sup.3+ is present at a level up to about 5 mol % of M. Phosphors of this invention include powders, ceramics, single crystals and single crystal fibers. A method of manufacturing improved phosphors and a method of manufacturing single crystal phosphors are also provided.

  18. Blue enhanced light sources: opportunities and risks

    NASA Astrophysics Data System (ADS)

    Lang, Dieter

    2012-03-01

    Natural daylight is characterized by high proportions of blue light. By proof of a third type of photoreceptor in the human eye which is only sensitive in this spectral region and by subsequent studies it has become obvious that these blue proportions are essential for human health and well being. In various studies beneficial effects of indoor lighting with higher blue spectral proportions have been proven. On the other hand with increasing use of light sources having enhanced blue light for indoor illumination questions are arising about potential health risks attributed to blue light. Especially LED are showing distinct emission characteristics in the blue. Recently the French agency for food, environmental and occupational health & safety ANSES have raised the question on health issues related to LED light sources and have claimed to avoid use of LED for lighting in schools. In this paper parameters which are relevant for potential health risks will be shown and their contribution to risk factors will quantitatively be discussed. It will be shown how to differentiate between photometric parameters for assessment of beneficial as well as hazardous effects. Guidelines will be discussed how blue enhanced light sources can be used in applications to optimally support human health and well being and simultaneously avoid any risks attributed to blue light by a proper design of lighting parameters. In the conclusion it will be shown that no inherent health risks are related to LED lighting with a proper lighting design.

  19. Name________________________________________ Blue Whale Skeleton: Observations and Questions

    E-print Network

    California at Santa Cruz, University of

    Name________________________________________ SH 8/08 Blue Whale Skeleton: Observations and Questions Form and Function: The blue whale is a mammal adapted to life in the open ocean. Compare its the whale survive in its environment? Write down your observations and questions about the following body

  20. 21 CFR 73.50 - Ultramarine blue.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...Identity. The color additive ultramarine blue is a blue pigment obtained by calcining a mixture of kaolin, sulfur, sodium...incorporated in the mixture in order to vary the shade. The pigment is a complex sodium aluminum sulfo-silicate having the...

  1. 21 CFR 73.50 - Ultramarine blue.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...Identity. The color additive ultramarine blue is a blue pigment obtained by calcining a mixture of kaolin, sulfur, sodium...incorporated in the mixture in order to vary the shade. The pigment is a complex sodium aluminum sulfo-silicate having the...

  2. 21 CFR 73.50 - Ultramarine blue.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...Identity. The color additive ultramarine blue is a blue pigment obtained by calcining a mixture of kaolin, sulfur, sodium...incorporated in the mixture in order to vary the shade. The pigment is a complex sodium aluminum sulfo-silicate having the...

  3. 21 CFR 73.50 - Ultramarine blue.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...Identity. The color additive ultramarine blue is a blue pigment obtained by calcining a mixture of kaolin, sulfur, sodium...incorporated in the mixture in order to vary the shade. The pigment is a complex sodium aluminum sulfo-silicate having the...

  4. 21 CFR 73.50 - Ultramarine blue.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...Identity. The color additive ultramarine blue is a blue pigment obtained by calcining a mixture of kaolin, sulfur, sodium...incorporated in the mixture in order to vary the shade. The pigment is a complex sodium aluminum sulfo-silicate having the...

  5. Trypan Blue Exclusion Test of Cell Viability.

    PubMed

    Strober, Warren

    2015-01-01

    The protocol described in this appendix allows for light microscopic quantitation of cell viability. Cells are suspended in PBS containing trypan blue and then examined to determine the percentage of cells that have clear cytoplasm (viable cells) versus cells that have blue cytoplasm (nonviable cells). © 2015 by John Wiley & Sons, Inc. PMID:26529666

  6. Blue Skies, Coffee Creamer, and Rayleigh Scattering

    ERIC Educational Resources Information Center

    Liebl, Michael

    2010-01-01

    The first physical explanation of Earths blue sky was fashioned in 1871 by Lord Rayleigh. Many discussions of Rayleigh scattering and approaches to studying it both in and out of the classroom are available. Rayleigh scattering accounts for the blue color of the sky and the orange/red color of the Sun near sunset and sunrise, and a number of…

  7. Influence of occlusal plane inclination and mandibular deviation on esthetics

    PubMed Central

    Corte, Cristiane Cherobini Dalla; da Silveira, Bruno Lopes; Marquezan, Mariana

    2015-01-01

    Objective: The aim of this study was to assess the degree of perception of occlusal plane inclination and mandibular deviation in facial esthetics, assessed by laypeople, dentists and orthodontists. Methods: A woman with 5.88° of inclination and 5.54 mm of mandibular deviation was selected and, based on her original photograph, four new images were created correcting the deviations and creating more symmetric faces and smiles. Examiners assessed the images by means of a questionnaire. Their opinions were compared by qualitative and quantitative analyses. Results: A total of 45 laypeople, 27 dentists and 31 orthodontists filled out the questionnaires. All groups were able to perceive the asymmetry; however, orthodontists were more sensitive, identifying asymmetries as from 4.32° of occlusal plane inclination and 4.155 mm of mandibular deviation (p< 0.05). The other categories of evaluators identified asymmetries and assigned significantly lower grades, starting from 5.88° of occlusal plane inclination and 5.54 mm of mandibular deviation (p< 0.05). Conclusion: Occlusal plane inclination and mandibular deviation were perceived by all groups, but orthodontists presented higher perception of deviations. PMID:26560821

  8. Quantum-Well Infrared Photodetector (QWIP) Focal Plane Assembly

    NASA Technical Reports Server (NTRS)

    Jhabvala, Murzy; Jhabvala, Christine A.; Ewin, Audrey J.; Hess, Larry A.; Hartmann, Thomas M.; La, Anh T.

    2012-01-01

    A paper describes the Thermal Infrared Sensor (TIRS), a QWIP-based instrument intended to supplement the Operational Land Imager (OLI) for the Landsat Data Continuity Mission (LDCM). The TIRS instrument is a far-infrared imager operating in the pushbroom mode with two IR channels: 10.8 and 12 microns. The focal plane will contain three 640x512 QWIP arrays mounted on a silicon substrate. The silicon substrate is a custom-fabricated carrier board with a single layer of aluminum interconnects. The general fabrication process starts with a 4-in. (approx.10-cm) diameter silicon wafer. The wafer is oxidized, a single substrate contact is etched, and aluminum is deposited, patterned, and alloyed. This technology development is aimed at incorporating three large-format infrared detecting arrays based on GaAs QWIP technology onto a common focal plane with precision alignment of all three arrays. This focal plane must survive the rigors of flight qualification and operate at a temperature of 43 K (-230 C) for five years while orbiting the Earth. The challenges presented include ensuring thermal compatibility among all the components, designing and building a compact, somewhat modular system and ensuring alignment to very tight levels. The multi-array focal plane integrated onto a single silicon substrate is a new application of both QWIP array development and silicon wafer scale integration. The Invar-based assembly has been tested to ensure thermal reliability.

  9. This image combines data from the DIRBE obtained at infrared wavelengths of 100, 140 and 240 Aum

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This image combines data from the DIRBE obtained at infrared wavelengths of 100, 140 and 240 Aum - the longest wavelengths measured by this instrument. The sky brightness at these wavelengths is represented respectively by blue, green, and red colors in the image. This image shows where there is more material (appears brighter) and where this material is coldest (appears redder). The plane of the Milky Way Galaxy lies horizontally across the middle of the image with the Galactic center at the center. Most of the infrared radiation seen in this image originates from cold dust (approximately 20 K, or 20 degrees Centigrade above absolute zero) located in clouds of gas and dust between the stars in the Milky Way Galaxy. The wispy-looking dust features are called 'infrared cirrus.' The region of the Orion Nebula with active star formation - approximately 1,500 light years distance from the Sun - appears on the right of the image below the plane of the Milky Way. Neighboring galaxies, the Large and Small Magellanic Clouds, appear as faint 'blobs' below and slightly to the right of the Galactic center. Much of the picture appears to be the same color, indicating that there is not a large variation in the dust temperature. Because the brightness of the Solar System and Galaxy tends to decrease with increasing wavelength, these long wavelength DIRBE measurements are particularly valuable for searching for the cosmic infrared background.

  10. Small pixel oversampled IR focal plane arrays

    NASA Astrophysics Data System (ADS)

    Caulfield, John; Curzan, Jon; Lewis, Jay; Dhar, Nibir

    2015-06-01

    We report on a new high definition high charge capacity 2.1 Mpixel MWIR Infrared Focal Plane Array. This high definition (HD) FPA utilizes a small 5 um pitch pixel size which is below the Nyquist limit imposed by the optical systems Point Spread Function (PSF). These smaller sub diffraction limited pixels allow spatial oversampling of the image. We show that oversampling IRFPAs enables improved fidelity in imaging including resolution improvements, advanced pixel correlation processing to reduce false alarm rates, improved detection ranges, and an improved ability to track closely spaced objects. Small pixel HD arrays are viewed as the key component enabling lower size, power and weight of the IR Sensor System. Small pixels enables a reduction in the size of the systems components from the smaller detector and ROIC array, the reduced optics focal length and overall lens size, resulting in an overall compactness in the sensor package, cooling and associated electronics. The highly sensitive MWIR small pixel HD FPA has the capability to detect dimmer signals at longer ranges than previously demonstrated.

  11. 2016 PREMIUMS Blue Advantage Point of Service/HMO, Blue Priority PPO, and Custom Plus (Current Plans)

    E-print Network

    2016 PREMIUMS Blue Advantage Point of Service/HMO, Blue Priority PPO, and Custom Plus (Current Changes to the Blue Advantage POS/HMO, Blue Priority PPO, or Custom Plus Plans #12;New Plan Option! Blue Specialist Office Visit $60 Copayment Hospital Based Services Emergency Room $250 Copayment Inpatient

  12. Featured Molecules: Ascorbic Acid and Methylene Blue

    NASA Astrophysics Data System (ADS)

    Coleman, William F.; Wildman, Randall J.

    2003-05-01

    The WebWare molecules of the month for May are featured in several articles in this issue. "Arsenic: Not So Evil After All?" discusses the pharmaceutical uses of methylene blue and its development as the first synthetic drug used against a specific disease. The JCE Classroom Activity "Out of the Blue" and the article "Greening the Blue Bottle" feature methylene blue and ascorbic acid as two key ingredients in the formulation of the blue bottle. You can also see a colorful example of these two molecules in action on the cover. "Sailing on the 'C': A Vitamin Titration with a Twist" describes an experiment to determine the vitamin C (ascorbic acid) content of citrus fruits and challenges students, as eighteenth-century sea captains, to decide the best fruit to take on a long voyage. Fully manipulable (Chime) versions of these and other molecules are available at Only@JCE Online.

  13. Glomerular Polycystic Kidney Disease in a Dog (Blue Merle Collie)

    PubMed Central

    Chalifoux, A.; Phaneuf, J. -B.; Olivieri, M.; Gosselin, Y.

    1982-01-01

    Glomerular polycystic kidney disease was diagnosed in an 11 month old, female, Blue Merle Collie. Clinical signs (polyuria, polydipsia, vomiting, diarrhea, partial anorexia) and laboratory work (blood urea nitrogen, creatinine, serum phosphorus, specific gravity, proteinuria, nonregenerative anemia) indicated chronic renal failure. However, after the study of a biopsy specimen, a definitive diagnosis was reached and the prognosis was determined. Necropsy findings and histopathological studies revealed: presence of glomerular cysts, atrophy of glomerular tufts and sclerosis of the interstitial tissue. ImagesFigure 1.Figure 2.Figure 3.Figure 4. PMID:17422209

  14. The ring nebula around the blue supergiant SBW1: pre-explosion snapshot of an SN 1987A twin

    NASA Astrophysics Data System (ADS)

    Smith, Nathan; Arnett, W. David; Bally, John; Ginsburg, Adam; Filippenko, Alexei V.

    2013-02-01

    SBW1 is a B-type supergiant surrounded by a ring nebula that is a nearby twin of SN 1987A's progenitor and its circumstellar ring. We present images and spectra of SBW1 obtained with the Hubble Space Telescope (HST), the Spitzer Space Telescope and Gemini South. HST images of SBW1 do not exhibit long Rayleigh-Taylor (RT) fingers, which are presumed to cause the `hotspots' in the SN 1987A ring when impacted by the blast wave, but instead show a geometrically thin (?R/R ? 0.05) clumpy ring. The radial mass distribution and size scales of inhomogeneities in SBW1's ring closely resemble those in the SN 1987A ring, but the more complete disc expected to reside at the base of the RT fingers is absent in SBW1. This structure may explain why portions of the SN 1987A ring between the hotspots have not yet brightened, more than 15 years after the first hotspots appeared. The model we suggest does not require a fast wind colliding with a previous red supergiant wind, because a slowly expanding equatorial ring may be ejected by a rotating blue supergiant star or in a close binary system. More surprisingly, high-resolution images of SBW1 also reveal diffuse emission filling the interior of the ring seen in H? and in thermal-infrared (IR) emission; ˜190 K dust dominates the 8-20 ?m luminosity (but contains only 10-5 M? of dust). Cooler (˜85 K) dust resides in the equatorial ring itself (and has a dust mass of at least 5 × 10-3 M?). Diffuse emission extends inward to ˜1 arcsec from the central star, where a paucity of H? and IR emission suggests an inner hole excavated by the B-supergiant wind. We propose that diffuse emission inside the ring arises from an ionized flow of material photoevaporated from the dense ring, and its pressure prevents the B-supergiant wind from advancing in the equatorial plane. This inner emission could correspond to a structure hypothesized to reside around Sk-69°202 that was never directly detected. If this interpretation is correct, it would suggest that photoionization can play an important dynamical role in shaping the ring nebula, and we speculate that this might help explain the origin of the polar rings around SN 1987A. In effect, the photoevaporative flow shields the outer bipolar nebula at low latitudes, whereas the blue supergiant wind expands freely out the poles and clears away the polar caps of the nebula; the polar rings reside at the intersection of these two zones.

  15. Neuromorphic infrared focal plane performs sensor fusion on-plane local-contrast-enhancement spatial and temporal filtering

    NASA Astrophysics Data System (ADS)

    Massie, Mark A.; Woolaway, James T., II; Curzan, Jon P.; McCarley, Paul L.

    1993-08-01

    An infrared focal plane has been simulated, designed and fabricated which mimics the form and function of the vertebrate retina. The `Neuromorphic' focal plane has the capability of performing pixel-based sensor fusion and real-time local contrast enhancement, much like the response of the human eye. The device makes use of an indium antimonide detector array with a 3 - 5 micrometers spectral response, and a switched capacitor resistive network to compute a real-time 2D spatial average. This device permits the summation of other sensor outputs to be combined on-chip with the infrared detections of the focal plane itself. The resulting real-time analog processed information thus represents the combined information of many sensors with the advantage that analog spatial and temporal signal processing is performed at the focal plane. A Gaussian subtraction method is used to produce the pixel output which when displayed produces an image with enhanced edges, representing spatial and temporal derivatives in the scene. The spatial and temporal responses of the device are tunable during operation, permitting the operator to `peak up' the response of the array to spatial and temporally varying signals. Such an array adapts to ambient illumination conditions without loss of detection performance. This paper reviews the Neuromorphic infrared focal plane from initial operational simulations to detailed design characteristics, and concludes with a presentation of preliminary operational data for the device as well as videotaped imagery.

  16. Morphometry of cupromeronic blue-stained proteoglycan molecules in animal corneas, versus that of purified proteoglycans stained in vitro, implies that tertiary structures contribute to corneal ultrastructure.

    PubMed Central

    Scott, J E

    1992-01-01

    Isolated, purified small chondroitin (dermatan) sulphate proteoglycans from corneas of cow and rabbit and cow sclera were stained with Cupromeronic blue in 'model' experiments. The lengths and thicknesses of the images were compared with those of the same proteoglycans stained in the tissue, using the critical electrolyte concentration principle to give specificity for sulphated proteoglycans, and keratanase 1 or chondroitinase ABC digestion to distinguish between chondroitin and keratan sulphate. Corrections for orientation of the stained glycan filaments within the section plane were made to convert the observed lengths to true average lengths. Observed lengths of stained chondroitin (dermatan) sulphate were greater than those of keratan sulphate, both in models and tissues, in agreement with published data from biochemical and rotary-shadowing studies, in both species. Corrected (true) average lengths of stained isolated chondroitin (dermatan) sulphate proteoglycans were slightly, but not significantly, longer than expected from rotary shadowing or biochemical measurements. Keratan sulphate lengths were similarly somewhat longer. The data support the idea that Cupromeronic blue acts as a scaffold that helps maintain polyanion shape against distortion on staining. Stained filaments in tissues were sometimes over twice the length of isolated stained proteoglycans, suggesting that 2 glycan chains were aligned end-to-end. Thicknesses of proteoglycan filaments suggested that at least 2 glycan chains were aligned side-by-side, both in models and in tissues. A scheme for proteoglycan tertiary structure in cornea is proposed, in which glycan chains may bridge collagen fibrils in duplexed forms similar to those observed in rotary shadowed preparations. Images Fig. 1 Fig. 2 PMID:1452471

  17. Orbital Space Plane Program Status

    NASA Technical Reports Server (NTRS)

    Dumbacher, Daniel L.

    2003-01-01

    The Orbital Space Plane Program is an integral part of NASA's Integrated Space Transportation Program (ISTP). The ISTP consists of three major programs: Space Shuttle, Orbital Space Plane, and Next Generation Launch Technology. The Orbital Space Plane (OSP) Program will develop a new Crew Transfer Vehicle (CTV) with multipurpose utility for the Agency. The CTV will complement and back up the Space Shuttle by taking crews to and from the International Space Station (ISS), as well as enable a transition path to future reusable launch vehicle systems. In the CTV development cycle, around 2010 it will be used as a Crew Return Vehicle (CRV). The OSP will be launched on an Evolved Expendable Launch Vehicle (EELV). NASA is in the process of establishing Level 1 Requirements and initiating concept studies. Ongoing flight demonstrators will continue, while new flight demonstrator projects will begin. The OSP Program contains two elements: (1) Technology and Demonstrations, and (2) Design, Development, and Production. The OSP Design, Development, and Production element will enter the Formulation Phase in FY03. Per NASA Procedures and Guidelines 7120.5B, the Formulation Phase will be utilized to establish the Program schedule and budget plans. Current budget planning is based on Phase A concept studies being conducted in FY03 and FY04, preliminary design activities conducted in FY04 and FY05, and a Preliminary Design Review in FY05. An OSP full-scale development decision will be made in FY05. At that point, a conclusion to proceed will result in the OSP Program transitioning from the Formulation Phase to the Development Phase.

  18. Multi-spectral compressive snapshot imaging using RGB image sensors.

    PubMed

    Rueda, Hoover; Lau, Daniel; Arce, Gonzalo R

    2015-05-01

    Compressive sensing is a powerful sensing and reconstruction framework for recovering high dimensional signals with only a handful of observations and for spectral imaging, compressive sensing offers a novel method of multispectral imaging. Specifically, the coded aperture snapshot spectral imager (CASSI) system has been demonstrated to produce multi-spectral data cubes color images from a single snapshot taken by a monochrome image sensor. In this paper, we expand the theoretical framework of CASSI to include the spectral sensitivity of the image sensor pixels to account for color and then investigate the impact on image quality using either a traditional color image sensor that spatially multiplexes red, green, and blue light filters or a novel Foveon image sensor which stacks red, green, and blue pixels on top of one another. PMID:25969307

  19. Orbital Space Plane Cost Credibility

    NASA Technical Reports Server (NTRS)

    Creech, Steve

    2003-01-01

    NASA's largest new start development program is the Orbital Space Plane (OSP) Program. The program is currently in the formulation stage. One of the critical issues to be resolved, prior to initiating full-scale development, is establishing cost credibility of NASA s budget estimates for development, production, and operations of the OSP. This paper will discuss the processes, tools, and methodologies that NASA, along with its industry partners, are implementing to assure cost credibility for the OSP program. Results of benchmarking of current tools and the development of new cost estimating capabilities and approaches will be discussed.

  20. Boundary attenuation angles for inhomogeneous plane waves

    E-print Network

    Cerveny, Vlastislav

    Boundary attenuation angles for inhomogeneous plane waves in anisotropic dissipative media@ig.cas.cz. Summary Attenuation angles of inhomogeneous plane waves propagating in isotropic or aniso- tropic and on the properties of the plane wave under consideration, mainly on the direction of propagation of the wave

  1. Robust Notion Vision For A Vehicle Moving On A Plane

    NASA Astrophysics Data System (ADS)

    Moni, Shankar; Weldon, E. J.

    1987-05-01

    A vehicle equipped with a cemputer vision system moves on a plane. We show that subject to certain constraints, the system can determine the motion of the vehicle (one rotational and two translational degrees of freedom) and the depth of the scene in front of the vehicle. The constraints include limits on the speed of the vehicle, presence of texture on the plane and absence of pitch and roll in the vehicular motion. It is possible to decouple the problems of finding the vehicle's motion and the depth of the scene in front of the vehicle by using two rigidly connected cameras. One views a field with known depth (i.e. the ground plane) and estimates the motion parameters and the other determines the depth map knowing the motion parameters. The motion is constrained to be planar to increase robustness. We use a least squares method of fitting the vehicle motion to observer brightness gradients. With this method, no correspondence between image points needs to be established and information fran the entire image is used in calculating notion. The algorithm performs very reliably on real image sequences and these results have been included. The results compare favourably to the performance of the algorithm of Negandaripour and Horn [2] where six degrees of freedom are assumed.

  2. Eta Carinae: Orientation of The Orbital Plane

    NASA Technical Reports Server (NTRS)

    Gull, T. R.; Nielsen, K. E.; Ivarsson, S.; Corcoran, M. F.; Verner, E.; Hillier, J. D.

    2006-01-01

    Evidence continues to build that Eta Carinae is a massive binary system with a hidden hot companion in a highly elliptical orbit. We present imaging and spectroscopic evidence that provide clues to the orientation of the orbital plane. The circumstellar ejecta, known as the Homunculus and Little Homunculus, are hourglass-shaped structures, one encapsulated within the other, tilted at about 45 degrees from the sky plane. A disk region lies between the bipolar lobes. Based upon their velocities and proper motions, Weigelt blobs B, C and D, very bright emission clumps 0.1 to 0.3" Northwest from Eta Carinae, lie in the disk. UV flux from the hot companion, Eta Car B, photoexcites the Weigelt blobs. Other clumps form a complete chain around the star, but are not significantly photoexcited. The strontium filament, a 'neutral' emission structure, lies in the same general direction as the Weigelt blobs and exhibits peculiar properties indicative that much mid-UV, but no hydrogen-ionizing radiation impinges on this structure. It is shielded by singly-ionized iron. P Cygni absorptions in Fe I I lines, seen directly in line of sight from Eta Carinae, are absent in the stellar light scattered by the Weigelt blobs. Rather than a strong absorption extending to -600 km/s, a low velocity absorption feature extends from -40 to -150 km/s. No absorbing Fe II exists between Eta Carinae and Weigelt D, but the outer reaches of the wind are intercepted in line of sight from Weigelt D to the observer. This indicates that the UV radiation is constrained by the dominating wind of Eta Car A to a small cavity carved out by the weaker wind of Eta Car B. Since the high excitation nebular lines are seen in the Weigelt blobs at most phases, the cavity, and hence the major axis of the highly elliptical orbit, must lie in the general direction of the Weigelt blobs. The evidence is compelling that the orbital major axis of Eta Carinae is projected at -45 degrees position angle on the sky. Moreover the milliarcsecond-scale extended structure of Eta Carinae, recently detected by VLTI, may be evidence of the binary companion in the disk plane, not necessarily of a single star as a prolate spheroid extending along the ejecta polar axis.

  3. Curved focal plane detector array for wide field cameras.

    PubMed

    Dumas, Delphine; Fendler, Manuel; Baier, Nicolas; Primot, Jérôme; le Coarer, Etienne

    2012-08-01

    Miniaturization is the main goal for system design in future cameras. This paper offers a novel method to scale down the optical system and to improve the image quality. As with the human retina, the detector array is spherically bent to fit the curved image surface; so the field curvature aberration is directly suppressed, leading to a better resolution and a simplified optical design. By thinning the substrate, the device is monolithically curved without modifying the fabrication process of the active pixels. Optical characterizations have been performed on planar and curved focal plane based cameras to illustrate the optical advantages of detector array curvature. PMID:22859030

  4. Comparisons of surface vs. volumetric model-based registration methods using single-plane vs. bi-plane fluoroscopy in measuring spinal kinematics.

    PubMed

    Lin, Cheng-Chung; Lu, Tung-Wu; Wang, Ting-Ming; Hsu, Chao-Yu; Shih, Ting-Fang

    2014-02-01

    Several 2D-to-3D image registration methods are available for measuring 3D vertebral motion but their performance has not been evaluated under the same experimental protocol. In this study, four major types of fluoroscopy-to-CT registration methods, with different use of surface vs. volumetric models, and single-plane vs. bi-plane fluoroscopy, were evaluated: STS (surface, single-plane), VTS (volumetric, single-plane), STB (surface, bi-plane) and VTB (volumetric, bi-plane). Two similarity measures were used: 'Contour Difference' for STS and STB and 'Weighted Edge-Matching Score' for VTS and VTB. Two cadaveric porcine cervical spines positioned in a box filled with paraffin and embedded with four radiopaque markers were CT scanned to obtain vertebral models and marker coordinates, and imaged at ten static positions using bi-plane fluoroscopy for subsequent registrations using different methods. The registered vertebral poses were compared to the gold standard poses defined by the marker positions determined using CT and Roentgen stereophotogrammetry analysis. The VTB was found to have the highest precision (translation: 0.4mm; rotation: 0.3°), comparable with the VTS in rotations (0.3°), and the STB in translations (0.6mm). The STS had the lowest precision (translation: 4.1mm; rotation: 2.1°). PMID:24011956

  5. Broadband Ground-Plane Cloak

    NASA Astrophysics Data System (ADS)

    Liu, R.; Ji, C.; Mock, J. J.; Chin, J. Y.; Cui, T. J.; Smith, D. R.

    2009-01-01

    The possibility of cloaking an object from detection by electromagnetic waves has recently become a topic of considerable interest. The design of a cloak uses transformation optics, in which a conformal coordinate transformation is applied to Maxwell’s equations to obtain a spatially distributed set of constitutive parameters that define the cloak. Here, we present an experimental realization of a cloak design that conceals a perturbation on a flat conducting plane, under which an object can be hidden. To match the complex spatial distribution of the required constitutive parameters, we constructed a metamaterial consisting of thousands of elements, the geometry of each element determined by an automated design process. The ground-plane cloak can be realized with the use of nonresonant metamaterial elements, resulting in a structure having a broad operational bandwidth (covering the range of 13 to 16 gigahertz in our experiment) and exhibiting extremely low loss. Our experimental results indicate that this type of cloak should scale well toward optical wavelengths.

  6. The Bolocam Galactic Plane Survey

    NASA Technical Reports Server (NTRS)

    Glenn, Jason; Aguirre, James; Bally, John; Battersby, Cara; Bradley, Eric Todd; Cyganowski, Claudia; Dowell, Darren; Drosback, Meredith; Dunham, Miranda K.; Evans, Neal J., II; Ginsburg, Adam; Harvey, Paul; Rosolowsky, Erik; Schlingman, Wayne; Shirley, Yancy L.; Stringfellow, Guy S.; Walawender, Josh; Williams, Jonathan

    2009-01-01

    The Bolocam Galactic Plane Survey (BGPS) is a 1.1 millimeter continuum survey of the northern Galactic Plane made with Bolocam and the Caltech Submillimeter Observatory. The coverage totals 170 square degrees, comprised of a contiguous range from -10.5 deg is less than or equal to 90.5 deg, 0.5 deg is less than or equal to b is less than or equal to 0.5 deg, with extended coverage in b in selected regions, and four targeted regions in the outer Galaxy, including: IC1396, toward the Perseus arm at l is approximately 111 deg, W3/4/5, and Gem OB1. Depths of the maps range from 30 to 60 mJy beam (sup 1). Approximately 8,400 sources were detected and the maps and source catalog have been made publicly available. Millimeter-wave thermal dust emission reveals dense regions within molecular clouds, thus the BGPS serves as a database for studies of the dense interstellar medium and star formation within the Milky Way.

  7. Investigating the use of Egyptian blue in Roman Egyptian portraits and panels from Tebtunis, Egypt

    NASA Astrophysics Data System (ADS)

    Ganio, Monica; Salvant, Johanna; Williams, Jane; Lee, Lynn; Cossairt, Oliver; Walton, Marc

    2015-08-01

    The use of the pigment Egyptian blue is investigated on a corpus of fifteen mummy portraits and Roman-period paintings from Tebtunis, Egypt, housed in the Phoebe A. Hearst Museum of Anthropology at the University of California, Berkeley. Egyptian blue has a strong luminescence response in the near infrared that can be exploited to created wide-field images noninvasively showing the distribution of the pigment on a work of art. A growing body of publications in the last decade highlights the increasing use of this tool and its sensitive detection limits. However, the technique is not wavelength specific. Both excitation and emission occur in a broad range. Although Egyptian blue has a strong emission in the NIR, a myriad of other compounds may emit light in this spectral region when excited in the visible. The limited number of studies including complementary analysis to verify the presence of Egyptian blue does not allow its identification on the basis of NIR luminescence alone. Through the use of in situ X-ray fluorescence and X-ray diffraction, and scanning electron microscopy/energy-dispersive spectroscopy of cross sections, this paper confirms the identification of Egyptian blue by NIR luminescence in unexpected areas, i.e., those not blue in appearance.

  8. Investigating the use of Egyptian blue in Roman Egyptian portraits and panels from Tebtunis, Egypt

    NASA Astrophysics Data System (ADS)

    Ganio, Monica; Salvant, Johanna; Williams, Jane; Lee, Lynn; Cossairt, Oliver; Walton, Marc

    2015-11-01

    The use of the pigment Egyptian blue is investigated on a corpus of fifteen mummy portraits and Roman-period paintings from Tebtunis, Egypt, housed in the Phoebe A. Hearst Museum of Anthropology at the University of California, Berkeley. Egyptian blue has a strong luminescence response in the near infrared that can be exploited to created wide-field images noninvasively showing the distribution of the pigment on a work of art. A growing body of publications in the last decade highlights the increasing use of this tool and its sensitive detection limits. However, the technique is not wavelength specific. Both excitation and emission occur in a broad range. Although Egyptian blue has a strong emission in the NIR, a myriad of other compounds may emit light in this spectral region when excited in the visible. The limited number of studies including complementary analysis to verify the presence of Egyptian blue does not allow its identification on the basis of NIR luminescence alone. Through the use of in situ X-ray fluorescence and X-ray diffraction, and scanning electron microscopy/energy-dispersive spectroscopy of cross sections, this paper confirms the identification of Egyptian blue by NIR luminescence in unexpected areas, i.e., those not blue in appearance.

  9. Characterization and correction for scatter in 3D PET using rebinned plane integrals

    SciTech Connect

    Wu, C.; Ordonez, C.E.; Chen, C.T. . Dept. of Radiology)

    1994-12-01

    The scatter characteristics of three-dimensional (3D) positron emission tomography (PET) in terms of the plane-integral scatter response function (SRF) are studied. To obtain the plane-integral SRF and study its properties, Monte Carlo simulations were carried out which generated coincidence events from point sources located at different positions in water-filled spheres of various sizes. In each simulation, the plane-integral SRF is obtained by rebinning the detected true and scatter events into two separate sets of plane integrals and then dividing the plane integrals of scatter events by the plane integral of true events of the plane in which the point source is located. A spherical PET scanner was assumed for these simulations. Examination of the SRF shows that the SRF in 3D PET can be modeled not by an exponential function as in the case of 2D PET, but by a Gaussian with its peak shifted away from the primary peak. Using this plane-integral SRF, a scatter correction method was developed for 3D PET that first converts an attenuation-corrected 3D PET data set into plane integrals, then obtains the scatter components in the rebinned plane integrals by integral transformation of the rebinned plane integrals with the SRF, and finally subtracts the scatter components from the rebinned plane integrals to yield the scatter-corrected plane integrals. From the scatter-corrected plane integrals, a 3D image was reconstructed by using a 3D filtered-backprojection algorithm. To test the method, a cylindrical PET scanner imaging an ellipsoid phantom with a 3-cm cold bar at the center was simulated, and 3D images of the phantom with and without scatter correction were reconstructed. Comparison of the two images shows that this method compensates reasonably well for scatter events. The advantages of the proposed method are that it treats the scatter in 3D PET in a truly 3D manner and that it is computationally efficient.

  10. Blue outliers among intermediate redshift quasars

    E-print Network

    Marziani, P; Stirpe, G M; Dultzin, D; Del Olmo, A; Martínez-Carballo, M A

    2015-01-01

    [Oiii]{\\lambda}{\\lambda}4959,5007 "blue outliers" -- that are suggestive of outflows in the narrow line region of quasars -- appear to be much more common at intermediate z (high luminosity) than at low z. About 40% of quasars in a Hamburg ESO intermediate-z sample of 52 sources qualify as blue outliers (i.e., quasars with [OIII] {\\lambda}{\\lambda}4959,5007 lines showing large systematic blueshifts with respect to rest frame). We discuss major findings on what has become an intriguing field in active galactic nuclei research and stress the relevance of blue outliers to feedback and host galaxy evolution.

  11. Multispectral Focal Plane Assembly for Satellite Remote Sensing

    SciTech Connect

    Rienstra, J.; Ballard, M.

    1997-12-31

    Sandia National Laboratories and several subsystem contractors are developing technologies applicable to multispectral remote sensing from space. A proof of concept multispectral sensor system is under development. The objective of building this sensor is to demonstrate and evaluate multispectral imaging technologies for various applications. The three major subsystems making up the sensor are the focal plane assembly (FPA), the cryocooler, and the telescope. This paper covers the focal plane assembly, which is the basis of the sensor system. The focal plane assembly includes sensor chip assemblies, optical filters, and a vacuum enclosure with cold shielding. Linear detector arrays provide spatial resolution in the cross-track direction for a pushbroom imager configuration. The optical filters define 15 spectral bands in a range from 0.45 microns to 10.7 microns. All the detector arrays are mounted on a single focal plane and are designed to operate at 75 K. No beam splitters are used. The four spectral bands covering the visible to near infrared have roughly 2400 pixels each, and the remaining 11 spectral bands have roughly 600 pixels each. The average total rate of multispectral data from the FPA is approximately 15.4 megapixels per second. At the time this paper is being written, the multispectral focal plane assembly is in the fabrication phase. A thermal/mechanical mockup has been built and tested for the vibration environment and to determine the thermal load. Some of the sensor chip assemblies and filters have been built and tested. Several notable features of the design are covered in the paper as well as preliminary test data.

  12. Broken chiral symmetry on a null plane

    SciTech Connect

    Beane, Silas R.

    2013-10-15

    On a null-plane (light-front), all effects of spontaneous chiral symmetry breaking are contained in the three Hamiltonians (dynamical Poincaré generators), while the vacuum state is a chiral invariant. This property is used to give a general proof of Goldstone’s theorem on a null-plane. Focusing on null-plane QCD with N degenerate flavors of light quarks, the chiral-symmetry breaking Hamiltonians are obtained, and the role of vacuum condensates is clarified. In particular, the null-plane Gell-Mann–Oakes–Renner formula is derived, and a general prescription is given for mapping all chiral-symmetry breaking QCD condensates to chiral-symmetry conserving null-plane QCD condensates. The utility of the null-plane description lies in the operator algebra that mixes the null-plane Hamiltonians and the chiral symmetry charges. It is demonstrated that in a certain non-trivial limit, the null-plane operator algebra reduces to the symmetry group SU(2N) of the constituent quark model. -- Highlights: •A proof (the first) of Goldstone’s theorem on a null-plane is given. •The puzzle of chiral-symmetry breaking condensates on a null-plane is solved. •The emergence of spin-flavor symmetries in null-plane QCD is demonstrated.

  13. Plane wave compounding based on a joint transmitting-receiving adaptive beamformer.

    PubMed

    Zhao, Jinxin; Wang, Yuanyuan; Zeng, Xing; Yu, Jinhua; Yiu, Billy Y S; Yu, Alfred C H

    2015-08-01

    Plane wave compounding is a useful mode for ultrasound imaging because it can make a good compromise between imaging quality and frame rate. It is also useful for broad view ultrasound imaging. Traditional coherent plane wave compounding coherently sums the echo data of different steered transmitting waves as the output. The data correlation information of different emissions is not considered. Therefore, some adaptive techniques can be introduced into the compounding procedure. In this paper, we propose a Joint Transmitting-Receiving (JTR) adaptive beamforming scheme for plane wave compounding. Unlike traditional adaptive beamformers, the proposed beamforming scheme is designed for the 2-D data set obtained from multiple plane wave firings. It calculates both the transmitting aperture weights and the receiving aperture weights and then combines them into a 2-D adaptive weight function for compounding. Experiments are conducted on both simulated and phantom data. Results show that the proposed scheme has better performance on both point targets and cysts than the existing plane wave compounding approach. Because of the adaptive process in both apertures for compounding, an improved resolution is observed in both simulation and phantom studies. When the eigenanalysis is introduced, a contrast enhancement is achieved. For the simulated cyst, a contrast ratio (CR) improvement of 48% is achieved compared with the traditional plane wave compounding. For the phantom cyst, this improvement is 213.8%. The proposed scheme also has good robustness against sound velocity errors. Therefore, it is effective in enhancing the coherent plane wave compounding quality. PMID:26276954

  14. HIGH PERFORMANCE PIAA CORONAGRAPHY WITH COMPLEX AMPLITUDE FOCAL PLANE MASKS

    SciTech Connect

    Guyon, Olivier; Martinache, Frantz; Belikov, Ruslan; Soummer, Remi

    2010-10-15

    We describe a coronagraph approach where the performance of a Phase-Induced Amplitude Apodization (PIAA) coronagraph is improved by using a partially transmissive phase-shifting focal plane mask and a Lyot stop. This approach combines the low inner working angle offered by phase mask coronagraphy, the full throughput and uncompromized angular resolution of the PIAA approach, and the design flexibility of Apodized Pupil Lyot Coronagraph. A PIAA complex mask coronagraph (PIAACMC) is fully described by the focal plane mask size, or, equivalently, its complex transmission which ranges from 0 (opaque) to -1 (phase shifting). For all values of the transmission, the PIAACMC theoretically offers full on-axis extinction and 100% throughput at large angular separations. With a pure phase focal plane mask (complex transmission = -1), the PIAACMC offers 50% throughput at 0.64 {lambda}/D while providing total extinction of an on-axis point source. This performance is very close to the 'fundamental performance limit' of coronagraphy derived from first principles. For very high contrast level, imaging performance with PIAACMC is in practice limited by the angular size of the on-axis target (usually a star). We show that this fundamental limitation must be taken into account when choosing the optimal value of the focal plane mask size in the PIAACMC design. We show that the PIAACMC enables visible imaging of Jupiter-like planets at {approx}1.2 {lambda}/D from the host star, and can therefore offer almost three times more targets than a PIAA coronagraph optimized for this type of observation. We find that for visible imaging of Earth-like planets, the PIAACMC gain over a PIAA is probably much smaller, as coronagraphic performance is then strongly constrained by stellar angular size. For observations at 'low' contrast (below {approx} 10{sup 8}), the PIAACMC offers significant performance enhancement over PIAA. This is especially relevant for ground-based high contrast imaging systems in the near-IR, where PIAACMC enables high contrast high efficiency imaging within 1 {lambda}/D. Manufacturing tolerances for the focal plane mask are quantified for a few representative PIAACMC designs.

  15. typical introduction to geometrical optics treats plane and spherical mirrors. At first

    E-print Network

    DeWeerd, Alan

    and the virtual image of an object reflected in a plane mirror. A concave cylin- drical mirror has a circular in an appendix available online6 that the virtual line image is a segment of a limaçon.7 Depth and Dizziness- cave cylindrical mirror will recognize their likenesses (despite their being blurred, distorted

  16. Blue Mountain Community College Chemeketa Community College

    E-print Network

    Escher, Christine

    Blue Mountain Community College Chemeketa Community College Clackamas Community College Clatsop Community College Columbia Gorge Community College Lane Community College Linn-Benton Community College Oregon Coast Community College Portland Community College Southwestern Oregon Community College Tillamook

  17. Blue Ribbon Commission Tour of Hanford Site

    ScienceCinema

    Paul Saueressig

    2010-09-01

    The Blue Ribbon Commission on America's Nuclear Future toured the Department of Energy's Hanford Site on July 14, 2010. Commission members, invited guests, and members of the public visited facilities that store high-level, radioactive waste.

  18. Prussian Blue as a Prebiotic Reagent

    NASA Astrophysics Data System (ADS)

    Ruiz-Bermejo, M.; Menor-Salván, C.; Osuna-Esteban, S.; Veintemillas-Verdaguer, S.

    2009-12-01

    Ferrocyanide has been proposed as a potential prebiotic reagent and the complex salt Prussian Blue, Fe4[Fe(CN)6]3, might be an important reservoir of HCN, in the early Earth. HCN is considered the main precursor of amino acids and purine and pyrimidine bases under prebiotic conditions. Recently, we observed the formation of Prussian Blue in spark discharge experiments using saline solutions of ferrous chloride, FeCl2. Using Prussian Blue as starting material in ammonium suspensions, we obtained organic compounds containing nitrogen. These results seem to indicate that Prussian Blue could have been first, a sink of HCN, and then in subsequent reactions, triggered by pH fluctuations, it might have lead to organic life precursors.

  19. A Clock Reaction Based on Molybdenum Blue

    E-print Network

    Neuenschwander, Ulrich

    Clock reactions are rare kinetic phenomena, so far limited mostly to systems with ionic oxoacids and oxoanions in water. We report a new clock reaction in cyclohexanol that forms molybdenum blue from a noncharged, yellow ...

  20. Blue Ribbon Commission Tour of Hanford Site

    SciTech Connect

    Paul Saueressig

    2010-07-14

    The Blue Ribbon Commission on America's Nuclear Future toured the Department of Energy's Hanford Site on July 14, 2010. Commission members, invited guests, and members of the public visited facilities that store high-level, radioactive waste.

  1. High-throughput microfluidic line scan imaging for cytological characterization

    NASA Astrophysics Data System (ADS)

    Hutcheson, Joshua A.; Powless, Amy J.; Majid, Aneeka A.; Claycomb, Adair; Fritsch, Ingrid; Balachandran, Kartik; Muldoon, Timothy J.

    2015-03-01

    Imaging cells in a microfluidic chamber with an area scan camera is difficult due to motion blur and data loss during frame readout causing discontinuity of data acquisition as cells move at relatively high speeds through the chamber. We have developed a method to continuously acquire high-resolution images of cells in motion through a microfluidics chamber using a high-speed line scan camera. The sensor acquires images in a line-by-line fashion in order to continuously image moving objects without motion blur. The optical setup comprises an epi-illuminated microscope with a 40X oil immersion, 1.4 NA objective and a 150 mm tube lens focused on a microfluidic channel. Samples containing suspended cells fluorescently stained with 0.01% (w/v) proflavine in saline are introduced into the microfluidics chamber via a syringe pump; illumination is provided by a blue LED (455 nm). Images were taken of samples at the focal plane using an ELiiXA+ 8k/4k monochrome line-scan camera at a line rate of up to 40 kHz. The system's line rate and fluid velocity are tightly controlled to reduce image distortion and are validated using fluorescent microspheres. Image acquisition was controlled via MATLAB's Image Acquisition toolbox. Data sets comprise discrete images of every detectable cell which may be subsequently mined for morphological statistics and definable features by a custom texture analysis algorithm. This high-throughput screening method, comparable to cell counting by flow cytometry, provided efficient examination including counting, classification, and differentiation of saliva, blood, and cultured human cancer cells.

  2. Snakes Out of the Plane

    NASA Astrophysics Data System (ADS)

    McCormick, Andrew; Young, Bruce A.; Mahadevan, L.

    2012-02-01

    We develop a new computational model of elastic rods, taking into account shear and full rotational dynamics, as well as friction, adhesion, and collision. This model is used to study the movement of snakes in different environments. By applying different muscular activation patterns to the snake, we observe many different patterns of motion, from planar undulation to sudden strikes. Many of the most interesting behaviors involve the snake rising out of the horizontal plane in the vertical direction. Such behaviors include a sand snake sidewinding over the hot desert sand and a cobra rearing up into a defensive striking position. Experimental videos of live snakes are analyzed and compared with computational results. We identify and explain a new form of movement previously unobserved: ``collateral locomotion.''

  3. Thermodynamics of black plane solution

    E-print Network

    Manuel E. Rodrigues; Deborah F. Jardim; M. J. S. Houndjo; Ratbay Myrzakulov

    2013-08-12

    We obtain a new phantom black plane solution in 4D of the Einstein-Maxwell theory coupled with a cosmological constant. We analyse their basic properties, as well as its causal structure, and obtain the extensive and intensive thermodynamic variables, as well as the specific heat and the first law. Through the specific heat and the so-called geometric methods, we analyse in detail their thermodynamic properties, the extreme and phase transition limits, as well as the local and global stabilities of the system. The normal case is shown with an extreme limit and the phantom one with a phase transition only for null mass, which is physically inaccessible. The systems present local and global stabilities for certain values of the entropy density with respect to the electric charge, for the canonical and grand canonical ensembles.

  4. MitoBlue: A Nontoxic and Photostable Blue-Emitting Dye That Selectively Labels Functional Mitochondria

    PubMed Central

    2014-01-01

    We report the discovery of a fluorogenic dye, N1,N3-di(2-aminidonaphthalen-6-yl) propane-1,3-diamine, MitoBlue, which selectively stains functional mitochondria while displaying low toxicity, bright blue emission, and high resistance to photobleaching. Additionally, we show that a biotin-labeled MitoBlue derivative can be used as a handle for the delivery of streptavidin-tagged species to the mitochondria. PMID:25325672

  5. Barium Enhancement in NGC 6819 Blue Stragglers

    NASA Astrophysics Data System (ADS)

    Milliman, Katelyn; Mathieu, Robert D.; Schuler, Simon C.

    2015-01-01

    Possible formation pathways for blue straggler stars include mergers in hierarchical triple systems, stellar collisions during dynamical encounters, and mass transfer from a giant companion. Extensive work on the blue stragglers in the old open cluster NGC 188 (7 Gyr) has led to exciting discoveries including a binary secondary mass distribution peaked at 0.5 MSolar and the detection of three young white dwarf binary companions. These indicate that mass transfer from an asymptotic giant branch star is the dominant mechanism for blue straggler formation in open clusters. Such mass transfer events should pollute the surface abundance of the blue straggler with nucleosynthesis products from the evolved donor. The other formation pathways, mergers and collisions, are predicted to produce no such enhancements. In an effort to move beyond NGC 188 and into other open clusters we present the first results of a surface abundance study of the blue stragglers in the intermediate-aged open cluster NGC 6819 (2.5 Gyr) using the Hydra multi-object spectrograph on the WIYN 3.5 m telescope. This part of our study centers on the s-process element barium as a tracer of formation via mass transfer. We compare the blue straggler surface abundance of barium to that of a sample of main-sequence stars in NGC 6819 and find multiple blue stragglers with anomalous abundances. Surprising, most of the blue stragglers with barium anomalies show no radial-velocity evidence for a companion. We gratefully acknowledge funding from the National Science Foundation under grant AST- 0908082 and the Wisconsin Space Grant Consortium.

  6. Blue irradiance intercomparison in the medical field

    NASA Astrophysics Data System (ADS)

    Ferreira, Antonio F. G.

    2012-10-01

    This work presents the results of a blue irradiance intercomparison among industrial laboratories of medical devices companies. This intercomparison aims to support the metrological issues of medical equipment manufactures regarding the blue irradiance infant phototherapy equipment requirements on the international standard IEC 60601-2-50:2000. The results showed a low agreement of participants' measurements according to normalized error criterion. The major explanation for this result is associated to an incorrect equipment choice and long recalibration period.

  7. Studies on plasma processing of blue dust

    NASA Astrophysics Data System (ADS)

    Samal, S. K.; P, Sindhoora L.; Mishra, S. C.; Mishra, B.

    2015-02-01

    Plasma smelting was carried out using blue dust and petroleum coke mixtures for five different compositions. By altering percentage of reductant and type of plasma forming gas, recovery rate and degree of metallization were calculated in order to examine the extent of reduction of blue dust. The products were characterized by XRD and optical microscopy techniques. The results of these investigations exhibited that highest degree of metallization and recovery rate of about 98% and 86% respectively, were achieved for nitrogen plasma smelted products.

  8. Blue-phase liquid crystal droplets.

    PubMed

    Martínez-González, José A; Zhou, Ye; Rahimi, Mohammad; Bukusoglu, Emre; Abbott, Nicholas L; de Pablo, Juan J

    2015-10-27

    Blue phases of liquid crystals represent unique ordered states of matter in which arrays of defects are organized into striking patterns. Most studies of blue phases to date have focused on bulk properties. In this work, we present a systematic study of blue phases confined into spherical droplets. It is found that, in addition to the so-called blue phases I and II, several new morphologies arise under confinement, with a complexity that increases with the chirality of the medium and with a nature that can be altered by surface anchoring. Through a combination of simulations and experiments, it is also found that one can control the wavelength at which blue-phase droplets absorb light by manipulating either their size or the strength of the anchoring, thereby providing a liquid-state analog of nanoparticles, where dimensions are used to control absorbance or emission. The results presented in this work also suggest that there are conditions where confinement increases the range of stability of blue phases, thereby providing intriguing prospects for applications. PMID:26460039

  9. Blue-phase liquid crystal droplets

    PubMed Central

    Martínez-González, José A.; Zhou, Ye; Rahimi, Mohammad; Bukusoglu, Emre; Abbott, Nicholas L.; de Pablo, Juan J.

    2015-01-01

    Blue phases of liquid crystals represent unique ordered states of matter in which arrays of defects are organized into striking patterns. Most studies of blue phases to date have focused on bulk properties. In this work, we present a systematic study of blue phases confined into spherical droplets. It is found that, in addition to the so-called blue phases I and II, several new morphologies arise under confinement, with a complexity that increases with the chirality of the medium and with a nature that can be altered by surface anchoring. Through a combination of simulations and experiments, it is also found that one can control the wavelength at which blue-phase droplets absorb light by manipulating either their size or the strength of the anchoring, thereby providing a liquid–state analog of nanoparticles, where dimensions are used to control absorbance or emission. The results presented in this work also suggest that there are conditions where confinement increases the range of stability of blue phases, thereby providing intriguing prospects for applications. PMID:26460039

  10. Blue space geographies: Enabling health in place.

    PubMed

    Foley, Ronan; Kistemann, Thomas

    2015-09-01

    Drawing from research on therapeutic landscapes and relationships between environment, health and wellbeing, we propose the idea of 'healthy blue space' as an important new development Complementing research on healthy green space, blue space is defined as; 'health-enabling places and spaces, where water is at the centre of a range of environments with identifiable potential for the promotion of human wellbeing'. Using theoretical ideas from emotional and relational geographies and critical understandings of salutogenesis, the value of blue space to health and wellbeing is recognised and evaluated. Six individual papers from five different countries consider how health can be enabled in mixed blue space settings. Four sub-themes; embodiment, inter-subjectivity, activity and meaning, document multiple experiences within a range of healthy blue spaces. Finally, we suggest a considerable research agenda - theoretical, methodological and applied - for future work within different forms of blue space. All are suggested as having public health policy relevance in social and public space. PMID:26238330

  11. Digital Image Velocimetry

    NASA Technical Reports Server (NTRS)

    Cho, Y.-C.

    1991-01-01

    Digital image velocimetry is technique for extracting two-dimensional (in image planes) velocities of objects from multiple photographs or video images of objects. Devised to overcome disadvantages of particle-image velocimetry and laser-speckle velocimetry, both of which involve use of illuminated seed particles to make flows visible. Directions of velocity vectors determined unambiguously, and dynamic range limited only by speed of camera or, equivalently, by speed of stroboscopic illumination.

  12. Chandra Multi-wavelength Plane Survey

    NASA Astrophysics Data System (ADS)

    Zhao, Ping; Grindlay, Jonathan E.; Hong, Jae Sub; Servillat, Mathieu; van den Berg, Maureen C.

    2015-08-01

    The ChaMPlane Survey is designed to investigate the nature of the serendipitous X-ray point sources discovered by the Chandra X-ray Observatory, with its unprecedented spatial resolution, in the galactic plane. This multi-wavelength survey includes data from the Chandra archive and our own 840ks Chandra observations near the galactic center, as well as optical and infrared images and spectra we obtained from the Gemini-S, CTIO-4m, KPNO-4m, Magellan, MMT, WIYN and FLWO-1.5m. Its science goals are: 1) to determine the space density of faint accretion-powered binaries, mainly accreting white dwarfs in cataclysmic variables (CVs) and neutron stars or black holes in low-mass X-ray binaries in quiescence (qLMXBs) in the Galaxy; 2) to measure the Be High-Mass X-ray Binary (BeHMXB) density; and 3) to study the population of stellar coronal X-ray sources. We report our findings and summarize selected highlights from this legacy survey.

  13. ORFEUS focal plane instrumentation: The Berkeley spectrometer

    NASA Technical Reports Server (NTRS)

    Hurwitz, Mark; Bowyer, Stuart

    1988-01-01

    A spectrograph for the ORFEUS mission that incorporates four varied line-space, spherically figured diffraction gratings was designed. The ORFEUS, a 1-m normal incidence telescope is equipped with 2 focal plane spectrographs. The Berkeley spectrograph was developed with an optimizing raytracing computer code. Each grating accepts the light from 20 percent of the aperture of the telescope primary mirror and has a unique set of characteristics to cover a sub-bandpass within the 390 to 1200 A spectral range. Two photon-counting detectors incorporating a time delay readout system are used to record the spectra from all four gratings simultaneously. The nominal design achieves a spectral resolution (FWHM) in excess of 5500 at all wavelengths within the bandpass. The resolution is limited primarily by the detector spatial resolution. The 1 sigma astigmatism of this design varies between 13 and 150 micrometer on the same focal surface. An independent, direct imaging system tracks the drift of the target within the spectrometer aperture and allows measurement of the misalignment between the telescope optical axis and that of the external star tracker. The resolution and astigmatism achievable with this design are superior to those of a standard Rowland spectrograph designed with the same constraints.

  14. Measuring and modeling the inconspicuous iridescence of Formosan blue magpie's feather (Urocissacaerulea).

    PubMed

    Liao, Shih-Fang; Yao, Chun-Yang; Lee, Cheng-Chung

    2015-06-01

    The iridescence of the blue feathers of the Formosan blue magpie (Urocissacaerulea) is not conspicuous when the viewing angle is less than 40°. The spongy medullary keratin inside the feather barbs is investigated by two-dimensional Fourier analysis of transmission electron microscopic images of various positions on a barb to explain this unique characteristic. The orientation of the quasi-ordered nanostructure varies depending on its position of the feather barb. The predicted reflectance increases with the distance of the nanostructures from the vertex of the feather barb, and this result agrees closely with measurements. PMID:26192654

  15. Stereoscopic Imaging in Hypersonics Boundary Layers using Planar Laser-Induced Fluorescence

    NASA Technical Reports Server (NTRS)

    Danehy, Paul M.; Bathel, Brett; Inman, Jennifer A.; Alderfer, David W.; Jones, Stephen B.

    2008-01-01

    Stereoscopic time-resolved visualization of three-dimensional structures in a hypersonic flow has been performed for the first time. Nitric Oxide (NO) was seeded into hypersonic boundary layer flows that were designed to transition from laminar to turbulent. A thick laser sheet illuminated and excited the NO, causing spatially-varying fluorescence. Two cameras in a stereoscopic configuration were used to image the fluorescence. The images were processed in a computer visualization environment to provide stereoscopic image pairs. Two methods were used to display these image pairs: a cross-eyed viewing method which can be viewed by naked eyes, and red/blue anaglyphs, which require viewing through red/blue glasses. The images visualized three-dimensional information that would be lost if conventional planar laser-induced fluorescence imaging had been used. Two model configurations were studied in NASA Langley Research Center's 31-Inch Mach 10 Air Wind tunnel. One model was a 10 degree half-angle wedge containing a small protuberance to force the flow to transition. The other model was a 1/3-scale, truncated Hyper-X forebody model with blowing through a series of holes to force the boundary layer flow to transition to turbulence. In the former case, low flowrates of pure NO seeded and marked the boundary layer fluid. In the latter, a trace concentration of NO was seeded into the injected N2 gas. The three-dimensional visualizations have an effective time resolution of about 500 ns, which is fast enough to freeze this hypersonic flow. The 512x512 resolution of the resulting images is much higher than high-speed laser-sheet scanning systems with similar time response, which typically measure 10-20 planes.

  16. BLUE VIEW VISION INSIGHT! Good news--your vision plan

    E-print Network

    Oviedo, Néstor J.

    WELCOME TO BLUE VIEW VISION INSIGHT! Good news--your vision plan is flexible and easy to use, your discounts, and much more! Blue View VisionSM Insight University of California Student Health Insurance Plan (UC SHIP) 2014/15 Your Blue View Vision Insight network Blue View Vision Insight offers you

  17. Multi-Level Annotation of Natural Scenes Using Dominant Image

    E-print Network

    Fan, Jianping

    Foliage Blue Sky Cloudy Sky Floor Sand Grass Green Foliage Floral Foliage #12;2. Image ContentNet or Domain Knowledge can be used to define Basic Vocabulary of Salient Objects Natural Images Sky Ground

  18. Quantum ghost imaging through turbulence

    SciTech Connect

    Dixon, P. Ben; Howland, Gregory A.; Howell, John C.; Chan, Kam Wai Clifford; O'Sullivan-Hale, Colin; Rodenburg, Brandon; Hardy, Nicholas D.; Shapiro, Jeffrey H.; Simon, D. S.; Sergienko, A. V.; Boyd, R. W.

    2011-05-15

    We investigate the effect of turbulence on quantum ghost imaging. We use entangled photons and demonstrate that for a specific experimental configuration the effect of turbulence can be greatly diminished. By decoupling the entangled photon source from the ghost-imaging central image plane, we are able to dramatically increase the ghost-image quality. When imaging a test pattern through turbulence, this method increases the imaged pattern visibility from V=0.15{+-}0.04 to 0.42{+-}0.04.

  19. Quantum Ghost Imaging through Turbulence

    E-print Network

    P. Ben Dixon; Gregory Howland; Kam Wai Clifford Chan; Colin O'Sullivan-Hale; Brandon Rodenburg; Nicholas D. Hardy; Jeffrey H. Shapiro; D. S. Simon; A. V. Sergienko; R. W. Boyd; John C. Howell

    2011-02-16

    We investigate the effect of turbulence on quantum ghost imaging. We use entangled photons and demonstrate that for a novel experimental configuration the effect of turbulence can be greatly diminished. By decoupling the entangled photon source from the ghost imaging central image plane, we are able to dramatically increase the ghost image quality. When imaging a test pattern through turbulence, this method increased the imaged pattern visibility from V = 0.14 +/- 0.04 to V = 0.29 +/- 0.04.

  20. The Camera for LSST and its Focal Plane Array

    NASA Astrophysics Data System (ADS)

    Rasmussen, Andrew; Gilmore, K.; Kahn, S. M.; Geary, J.; Marshall, S.; Nordby, M.; O'Connor, P.; Olivier, S.; Oliver, J.; Radeka, V.; Schalk, T.; Schindler, R.; Tyson, J.; Van Berg, R.; LSST Camera Team

    2010-01-01

    Optically fed by LSST's fast and wide-field optics, the camera has a 9.6 square degree FOV in a 3.2 Gigapixel focal plane array. The focal plane is tiled by 189 4Kx4K CCD science sensors with 10?m (0.2 arcsec) pixels and also houses four diagnostic ("corner raft") packages that provide guide- and wavefront-sensors at opposing sides of the field. The focal plane array is highly modular and features a parallelized readout scheme, allowing the entire array to be read in 2 seconds. Dedicated front- and back-end electronics boards housed within the cryostat vacuum vessel operate sensors in raft groups (3x3 sensors; 144 data channels) while mechanically identical "rafts” are precision-mounted on a rigid silicon carbide grid structure. Three large, refractive lens elements act as the optical system's corrector (the third, L3, provides the vacuum barrier for the cryostat), and one of six possible band-pass filters is positioned in the beam at any given time. Mechanisms within the camera include a mechanical shutter and a carousel filter changer assembly. The camera control system manages all aspects of camera operation including image capture, thermal monitoring and control, vacuum control, filter changes, and communication with the observatory control system. The data acquisition system records and pre-processes raw images, provides up to 3 days of storage capacity, and provides very high throughput data transfer to downstream data management.

  1. An evaluation of the rotation of electrodes in multi-plane electrical capacitance tomography sensors

    NASA Astrophysics Data System (ADS)

    Ye, Jiamin; Mao, Mingxu; Wang, Haigang; Yang, Wuqiang

    2015-12-01

    The structure of electrodes in a multi-plane electrical capacitance tomography (ECT) sensor is vital for obtaining high-quality capacitance measurements and good images. In this paper, issues with the relative position of electrodes on each plane in three-plane ECT sensors are discussed. Five ECT sensors with different structures are compared by numerical simulation. For the five sensors, the electrodes on the second and third planes are arranged with rotation angles of 0° and 0°, 0° and 15°, 0° and 30°, 0° and 45°, and 22.5° and 45°, respectively, relative to the electrodes on the first plane. The capacitance data obtained from different sensors by numerical simulation are used for image reconstruction using linear back projection and Landweber iteration algorithms. The image quality is evaluated quantitatively in terms of image error. The sensitivity distributions of all the ECT sensors are compared. The effect of the rotation angles of electrodes on the stability of measured capacitance and on the image quality is also evaluated by experiment. The main conclusion is that the electrodes with no rotation angle should be chosen.

  2. AMI Galactic Plane Survey at 16 GHz - I. Observing, mapping and source extraction

    NASA Astrophysics Data System (ADS)

    Perrott, Yvette C.; Scaife, Anna M. M.; Green, David A.; Davies, Matthew L.; Franzen, Thomas M. O.; Grainge, Keith J. B.; Hobson, Michael P.; Hurley-Walker, Natasha; Lasenby, Anthony N.; Olamaie, Malak; Pooley, Guy G.; Rodríguez-Gonzálvez, Carmen; Rumsey, Clare; Saunders, Richard D. E.; Schammel, Michel P.; Scott, Paul F.; Shimwell, Timothy W.; Titterington, David J.; Waldram, Elizabeth M.; AMI Consortium

    2013-03-01

    The Arcminute Microkelvin Imager (AMI) Galactic Plane Survey is a large-area survey of the outer Galactic plane to provide arcminute resolution images at milli-Jansky sensitivity in the centimetre-wave band. Here we present the first data release of the survey, consisting of 868 deg2 of the Galactic plane, covering the area 76° lessapprox ? lessapprox 170° between latitudes of |b| lessapprox 5°, at a central frequency of 15.75 GHz (1.9 cm). We describe in detail the drift-scan observations which have been used to construct the maps, including the techniques used for observing, mapping and source extraction, and summarize the properties of the finalized data sets. These observations constitute the most sensitive Galactic plane survey of large extent at centimetre-wave frequencies greater than 1.4 GHz.

  3. Beam shifts for pairs of plane waves

    NASA Astrophysics Data System (ADS)

    Dennis, Mark R.; Götte, Jörg B.

    2013-01-01

    Following Hans Wolter’s treatment of the spatial Goos-Hänchen shift of a totally internally reflected light beam by the superposition of two plane waves, polarized perpendicular to the plane of incidence, we consider the reflection and refraction of several similar pairs of plane waves, with varying geometry and incident polarization. We consider explicitly the partial reflection analogue and the in-plane polarized analogue to Wolter’s example, as well as a pair of plane waves propagating slightly out of their mutual plane of incidence, revealing the transverse, Imbert-Fedorov shift. We find these simple cases have a complicated polarization structure, with a range of polarization singularities and complex orbital and spin current flows, generalizing Wolter’s discovery of an optical vortex and circulating energy flow at the heart of the net scalar interference pattern.

  4. Stable vicinal step orientations in m-plane GaN

    NASA Astrophysics Data System (ADS)

    Kelchner, K. M.; Kuritzky, L. Y.; Nakamura, S.; DenBaars, S. P.; Speck, J. S.

    2015-02-01

    The performance of InxGa1-xN-based m-plane LEDs and laser diodes grown by metalorganic chemical vapor deposition on bulk GaN substrates is currently limited by lower indium uptake and inhomogeneous linewidth broadening in the blue spectrum compared to semipolar planes and c-plane. Linewidth broadening is partially attributed to inhomogeneous indium composition that is associated with template morphology. We investigate the morphological evolution of homoepitaxial GaN growth on bulk m-plane substrates in three co-loaded miscut orientations: nominally on-axis, 1° in the -c-direction (-c-miscut), and 1° in the a-direction (a-miscut). Atomic force microscopy reveals four-sided pyramidal hillocks for on-axis growth with faces inclined toward the [ 11 2 bar 0 ]a-axis (a-faces) and the [0001] c-axis (c-faces). The a-faces exhibit steps oriented in an a+c direction with longer terrace widths than the c-face steps. The -c-miscut template growth sometimes forms diagonal striations, characterized by regions with stable a+c step direction. The a-miscut template growth exhibits meandering steps oriented in the a±c directions that bunch to form diagonal striations. These results reveal that c-direction steps are unstable compared to a±c directions. We further demonstrate that m-plane GaN substrates with combined a+c miscut lead to narrower InxGa1-xN photoluminescence emission spectra in blue with enhanced indium incorporation.

  5. The Edinburgh-Cape Blue Object Survey - IV. Zone 3: Galactic latitudes -40° > b > -50°

    NASA Astrophysics Data System (ADS)

    Kilkenny, D.; O'Donoghue, D.; Worters, H. L.; Koen, C.; Hambly, N.; MacGillivray, H.

    2015-10-01

    Results for Zone 3 of the Edinburgh-Cape (EC) Blue Object survey are presented. This zone covers that part of the South Galactic Cap between 40° and 50° from the Galactic plane and south of about -12.3° of declination. EC Zone 3 contains 53 UK Schmidt Telescope fields covering about 1400 deg2 in which we find some 534 blue objects, including hot subdwarfs (˜39 per cent), white dwarfs (˜21 per cent), cataclysmic variables (˜2 per cent) and some star-like galaxies (˜9 per cent). A further 178 cooler stars observed in the survey, including low-metallicity F- and G-type stars, are also listed. Both low-dispersion spectroscopic classification and UBV photometry are presented for almost all of the hot objects and either spectroscopy or photometry (sometimes both) for the cooler ones.

  6. Out-of-plane properties

    NASA Technical Reports Server (NTRS)

    Jackson, Wade C.; Portanova, Marc A.

    1995-01-01

    This paper summarizes three areas of research which were performed to characterize out-of-plane properties of composite materials. In the first investigation, a series of tests was run to characterize the through-the-thickness tensile strength for a variety of composites that included 2D braids, 2D and 3D weaves, and prepreg tapes. A new test method based on a curved beam was evaluated. Failures were significantly different between the 2D materials and the 3D weaves. The 2D materials delaminated between layers due to out-of-plane tensile stresses while the 3D weaves failed due to the formation of radial cracks between the surface plies caused by high circumferential stresses along the inner radius. The strength of the 2D textile composites did not increase relative to the tapes. Final failure in the 3D weaves was caused by a circumferential crack similar to the 2D materials and occurred at a lower bending moment than in other materials. The early failures in the 3D weaves were caused by radial crack formation rather than a low through-the-thickness strength. The second investigation focused on the development of a standard impact test method to measure impact damage resistance. The only impact tests that currently exist are compression after impact (CAI) tests which incorporate elements of both damage resistance and damage tolerance. A new impact test method is under development which uses a quasi-static indentation (QSI) test to directly measure damage resistance. Damage resistance is quantified in terms of the contact force to produce a unit of damage where a metric for damage may be area in C-scan, depth of residual dent , penetration, damage growth, etc. A final draft of an impact standard that uses a QSI test method will be presented to the ASTM Impact Task Group on impact. In the third investigation, the impact damage resistance behavior of a variety of textile materials was studied using the QSI test method. In this study, the force where large damage initiates was measured and the delamination size as a function of force was determined. The force to initiate large damage was significantly lower in braids and weaves. The delamination diameter - impact forace relationship was quanitfied using a damage resistance parameter, Q(*), which related delamination diameter to imapct force over a range of delamination sizes. Using this Q(*) parameter to rate the materials, the stitched uniweaves, toughened epoxy tapes, and through-the-thickness orthogonal interlock weave were the most damage resistant.

  7. Rotating the Plane of Parallel Light Beams

    NASA Technical Reports Server (NTRS)

    Orloff, K. L.; Yanagita, H.

    1982-01-01

    Rhomboid prism laterally displaces beam of light. Pairs of rhomboid prisms can rotate plane of two parallel beams of light and change spacing of beams. If each element of pair is mounted on independent motor-driven disk, angle of rotation of plane of beams can be varied over wide range. Among other uses, prism configurations can rotate plane of parallel laser beams used in laser velocimeter.

  8. Distorted plane waves in chaotic scattering

    E-print Network

    Maxime Ingremeau

    2015-12-20

    Distorted plane waves, sometimes called Eisenstein functions, are a family of eigenfunctions of a Schr\\"odinger operator that are not square integrable. More precisely, they can be written as the sum of a plane wave and an outgoing wave. We shall study distorted plane waves in the semiclassical limit, in a general setting which includes manifolds that are Euclidean near infinity, under the hypothesis that the classical dynamics is hyperbolic close to the trapped set, and that some topological pressure is negative.

  9. Comparison of Alcian Blue, Trypan Blue, and Toluidine Blue for Visualization of the Primo Vascular System Floating in Lymph Ducts.

    PubMed

    Kim, Da-Un; Han, Jae Won; Jung, Sharon Jiyoon; Lee, Seung Hwan; Cha, Richard; Chang, Byung-Soo; Soh, Kwang-Sup

    2015-01-01

    The primo vascular system (PVS), floating in lymph ducts, was too transparent to be observed by using a stereomicroscope. It was only detectable with the aid of staining dyes, for instance, Alcian blue, which was injected into the lymph nodes. Some dyes were absorbed preferentially by the PVS than the lymph wall. It remains a standing problem to know what dyes are absorbed better by the PVS than the lymph walls. Such information would be useful to unravel the biochemical properties of the PVS that are badly in need for obtaining large amount of PVS specimens. In the current work we tried two other familiar dyes which were used in PVS research before. We found that Trypan blue and toluidine blue did not visualize the PVS. Trypan blue was cleared by the natural washing. Toluidine blue did not stain the PVS, but it did leave stained spots in the lymph wall and its surrounding tissues, and it leaked out of the lymph wall to stain surrounding connective tissues. These completely different behaviors of the three dyes were found for the first time in the current work and provide valuable information to elucidate the mechanism through which some special dyes stained the PVS preferentially compared to the lymphatic wall. PMID:26379749

  10. Comparison of Alcian Blue, Trypan Blue, and Toluidine Blue for Visualization of the Primo Vascular System Floating in Lymph Ducts

    PubMed Central

    Kim, Da-Un; Han, Jae Won; Jung, Sharon Jiyoon; Lee, Seung Hwan; Cha, Richard; Chang, Byung-Soo; Soh, Kwang-Sup

    2015-01-01

    The primo vascular system (PVS), floating in lymph ducts, was too transparent to be observed by using a stereomicroscope. It was only detectable with the aid of staining dyes, for instance, Alcian blue, which was injected into the lymph nodes. Some dyes were absorbed preferentially by the PVS than the lymph wall. It remains a standing problem to know what dyes are absorbed better by the PVS than the lymph walls. Such information would be useful to unravel the biochemical properties of the PVS that are badly in need for obtaining large amount of PVS specimens. In the current work we tried two other familiar dyes which were used in PVS research before. We found that Trypan blue and toluidine blue did not visualize the PVS. Trypan blue was cleared by the natural washing. Toluidine blue did not stain the PVS, but it did leave stained spots in the lymph wall and its surrounding tissues, and it leaked out of the lymph wall to stain surrounding connective tissues. These completely different behaviors of the three dyes were found for the first time in the current work and provide valuable information to elucidate the mechanism through which some special dyes stained the PVS preferentially compared to the lymphatic wall. PMID:26379749

  11. 21 CFR 133.184 - Roquefort cheese, sheep's milk blue-mold, and blue-mold cheese from sheep's milk.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 2 2012-04-01 2012-04-01 false Roquefort cheese, sheep's milk blue-mold, and blue-mold cheese from sheep's milk. 133.184 Section 133.184 Food and Drugs FOOD AND DRUG ADMINISTRATION..., sheep's milk blue-mold, and blue-mold cheese from sheep's milk. (a) Description. (1) Roquefort...

  12. 21 CFR 133.184 - Roquefort cheese, sheep's milk blue-mold, and blue-mold cheese from sheep's milk.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 2 2014-04-01 2014-04-01 false Roquefort cheese, sheep's milk blue-mold, and blue-mold cheese from sheep's milk. 133.184 Section 133.184 Food and Drugs FOOD AND DRUG ADMINISTRATION..., sheep's milk blue-mold, and blue-mold cheese from sheep's milk. (a) Description. (1) Roquefort...

  13. Variations on the "Blue-Bottle" Demonstration Using Food Items That Contain FD&C Blue #1

    ERIC Educational Resources Information Center

    Staiger, Felicia A.; Peterson, Joshua P.; Campbell, Dean J.

    2015-01-01

    Erioglaucine dye (FD&C Blue #1) can be used instead of methylene blue in the classic "blue-bottle" demonstration. Food items containing FD&C Blue #1 and reducing species such as sugars can therefore be used at the heart of this demonstration, which simply requires the addition of strong base such as sodium hydroxide lye.

  14. 21 CFR 133.184 - Roquefort cheese, sheep's milk blue-mold, and blue-mold cheese from sheep's milk.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 2 2011-04-01 2011-04-01 false Roquefort cheese, sheep's milk blue-mold, and blue-mold cheese from sheep's milk. 133.184 Section 133.184 Food and Drugs FOOD AND DRUG ADMINISTRATION..., sheep's milk blue-mold, and blue-mold cheese from sheep's milk. (a) Description. (1) Roquefort...

  15. 21 CFR 133.184 - Roquefort cheese, sheep's milk blue-mold, and blue-mold cheese from sheep's milk.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 2 2013-04-01 2013-04-01 false Roquefort cheese, sheep's milk blue-mold, and blue-mold cheese from sheep's milk. 133.184 Section 133.184 Food and Drugs FOOD AND DRUG ADMINISTRATION..., sheep's milk blue-mold, and blue-mold cheese from sheep's milk. (a) Description. (1) Roquefort...

  16. Structure of Blue Phase III of Cholesteric Liquid Crystals

    NASA Astrophysics Data System (ADS)

    Henrich, O.; Stratford, K.; Cates, M. E.; Marenduzzo, D.

    2011-03-01

    We report large scale simulations of the blue phases of cholesteric liquid crystals. Our results suggest a structure for blue phase III, the blue fog, which has been the subject of a long debate in liquid crystal physics. We propose that blue phase III is an amorphous network of disclination lines, which is thermodynamically and kinetically stabilized over crystalline blue phases at intermediate chiralities. This amorphous network becomes ordered under an applied electric field, as seen in experiments.

  17. Nanostructured carbon films with oriented graphitic planes

    SciTech Connect

    Teo, E. H. T.; Kalish, R.; Kulik, J.; Kauffmann, Y.; Lifshitz, Y.

    2011-03-21

    Nanostructured carbon films with oriented graphitic planes can be deposited by applying energetic carbon bombardment. The present work shows the possibility of structuring graphitic planes perpendicular to the substrate in following two distinct ways: (i) applying sufficiently large carbon energies for deposition at room temperature (E>10 keV), (ii) utilizing much lower energies for deposition at elevated substrate temperatures (T>200 deg. C). High resolution transmission electron microscopy is used to probe the graphitic planes. The alignment achieved at elevated temperatures does not depend on the deposition angle. The data provides insight into the mechanisms leading to the growth of oriented graphitic planes under different conditions.

  18. VizieR Online Data Catalog: AMI Galactic Plane Survey at 16GHz. I. (Perrott+, 2013)

    NASA Astrophysics Data System (ADS)

    Perrott, Y. C.; Scaife, A. M. M.; Green, D. A.; Davies, M. L.; Franzen, T. M. O.; Grainge, K. J. B.; Hobson, M. P.; Hurley-Walker, N.; Lasenby, A. N.; Olamaie, M.; Pooley, G. G.; Rodriguez-Gonzalez, C.; Rumsey, C.; Saunders, R. D. E.; Schammel, M. P.; Scott, P. F.; Shimwell, T. W.; Titterington, D. J.; Waldram, E. M.

    2013-09-01

    The AMI Galactic Plane survey is being made with the Arcminute Microkelvin Imager (AMI) Small Array at 15.7GHz and with resolution of approximately 3arcmin. This is the first data release, covering ~868deg2 of the Northern Galactic plane between |b|~+/-5° and above ?=40° with a noise level of ~3mJy/beam away from bright sources. The source catalogue contains a total of 3503 sources. (1 data file).

  19. VizieR Online Data Catalog: AMI Galactic Plane Survey at 16GHz. I. (Perrott+, 2013)

    NASA Astrophysics Data System (ADS)

    Perrott, Y. C.; Scaife, A. M. M.; Green, D. A.; Davies, M. L.; Franzen, T. M. O.; Grainge, K. J. B.; Hobson, M. P.; Hurley-Walker, N.; Lasenby, A. N.; Olamaie, M.; Pooley, G. G.; Rodriguez-Gonzalez, C.; Rumsey, C.; Saunders, R. D. E.; Schammel, M. P.; Scott, P. F.; Shimwell, T. W.; Titterington, D. J.; Waldram, E. M.

    2012-11-01

    The AMI Galactic Plane survey is being made with the Arcminute Microkelvin Imager (AMI) Small Array at 15.7GHz and with resolution of approximately 3arcmin. This is the first data release, covering ~868deg2 of the Northern Galactic plane between |b|~+/-5° and above ?=40° with a noise level of ~3mJy/beam away from bright sources. The source catalogue contains a total of 3503 sources. (1 data file).

  20. In-plane rotation and scale invariant clustering using dictionaries.

    PubMed

    Chen, Yi-Chen; Sastry, Challa S; Patel, Vishal M; Phillips, P Jonathon; Chellappa, Rama

    2013-06-01

    In this paper, we present an approach that simultaneously clusters images and learns dictionaries from the clusters. The method learns dictionaries and clusters images in the radon transform domain. The main feature of the proposed approach is that it provides both in-plane rotation and scale invariant clustering, which is useful in numerous applications, including content-based image retrieval (CBIR). We demonstrate the effectiveness of our rotation and scale invariant clustering method on a series of CBIR experiments. Experiments are performed on the Smithsonian isolated leaf, Kimia shape, and Brodatz texture datasets. Our method provides both good retrieval performance and greater robustness compared to standard Gabor-based and three state-of-the-art shape-based methods that have similar objectives. PMID:23399961

  1. High operating temperature interband cascade focal plane arrays

    SciTech Connect

    Tian, Z.-B.; Godoy, S. E.; Kim, H. S.; Schuler-Sandy, T.; Montoya, J. A.; Krishna, S.

    2014-08-04

    In this paper, we report the initial demonstration of mid-infrared interband cascade (IC) photodetector focal plane arrays with multiple-stage/junction design. The merits of IC photodetectors include low noise and efficient photocarrier extraction, even for zero-bias operation. By adopting enhanced electron barrier design and a total absorber thickness of 0.7??m, the 5-stage IC detectors show very low dark current (1.10?×?10{sup ?7} A/cm{sup 2} at ?5?mV and 150?K). Even with un-optimized fabrication and standard commercial (mis-matched) read-out circuit technology, infrared images are obtained by the 320?×?256 IC focal plane array up to 180?K with f/2.3 optics. The minimum noise equivalent temperature difference of 28 mK is obtained at 120?K. These initial results indicate great potential of IC photodetectors, particularly for high operating temperature applications.

  2. Focal plane infrared readout circuit

    NASA Technical Reports Server (NTRS)

    Pain, Bedabrata (Inventor)

    2002-01-01

    An infrared imager, such as a spectrometer, includes multiple infrared photodetectors and readout circuits for reading out signals from the photodetectors. Each readout circuit includes a buffered direct injection input circuit including a differential amplifier with active feedback provided through an injection transistor. The differential amplifier includes a pair of input transistors, a pair of cascode transistors and a current mirror load. Photocurrent from a photodetector can be injected onto an integration capacitor in the readout circuit with high injection efficiency at high speed. A high speed, low noise, wide dynamic range linear infrared multiplexer array for reading out infrared detectors with large capacitances can be achieved even when short exposure times are used. The effect of image lag can be reduced.

  3. Duel-Plane Optical Disdrometer

    NASA Astrophysics Data System (ADS)

    Winsky, B. E.; Eichinger, W. E.

    2011-12-01

    Acquiring better drop-size distributions of rainfall will improve our understanding of the spatial and temporal variability of rainfall. In order to fully capture the spatial and temporal variability of rainfall, a robust, calibration free, low-cost instrument that provides an accurate drop-size distribution is required. Therefore, The University of Iowa Lidar Group has developed and built a new duel-plane optical disdrometer that meets these criteria. Two sheets of laser light, vertically spaced by 1 cm are produced by two 670nm laser beams passing through a collecting lens and culminating lens, respectively. The two sheets of laser light then pass through a convex lens located 20 cm from the lasers that focuses the light on a photo detector. A computer reads in and stores the voltages at 10 kHz. The velocity, diameter, shape and drop-size distribution of raindrops are extracted from the voltage measurements. Rainfall data collected in Iowa City, IA tested our disdrometer's robustness and accuracy of providing drop-size distributions. Our distrometer is advantageous because it is simple, low-cost, and requires no calibration.

  4. Colliding Plane Impulsive Gravitational Waves

    E-print Network

    C. Barrabès; G. F. Bressange; P. A. Hogan

    2000-02-14

    When two non-interacting plane impulsive gravitational waves undergo a head-on collision, the vacuum interaction region between the waves after the collision contains backscattered gravitational radiation from both waves. The two systems of backscattered waves have each got a family of rays (null geodesics) associated with them. We demonstrate that if it is assumed that a parameter exists along each of these families of rays such that the modulus of the complex shear of each is equal then Einstein's vacuum field equations, with the appropriate boundary conditions, can be integrated systematically to reveal the well-known solutions in the interaction region. In so doing the mystery behind the origin of such solutions is removed. With the use of the field equations it is suggested that the assumption leading to their integration may be interpreted physically as implying that the energy densities of the two backscattered radiation fields are equal. With the use of different boundary conditions this approach can lead to new collision solutions.

  5. Radioactivity in the galactic plane

    NASA Technical Reports Server (NTRS)

    Walraven, G. D.; Haymes, R. C.

    1976-01-01

    The paper reports the detection of a large concentration of interstellar radioactivity during balloon-altitude measurements of gamma-ray energy spectra in the band between 0.02 and 12.27 MeV from galactic and extragalactic sources. Enhanced counting rates were observed in three directions towards the plane of the Galaxy; a power-law energy spectrum is computed for one of these directions (designated B 10). A large statistical deviation from the power law in a 1.0-FWHM interval centered near 1.16 MeV is discussed, and the existence of a nuclear gamma-ray line at 1.15 MeV in B 10 is postulated. It is suggested that Ca-44, which emits gamma radiation at 1.156 MeV following the decay of radioactive Sc-44, is a likely candidate for this line, noting that Sc-44 arises from Ti-44 according to explosive models of supernova nucleosynthesis. The 1.16-MeV line flux inferred from the present data is shown to equal the predicted flux for a supernova at a distance of approximately 3 kpc and an age not exceeding about 100 years.

  6. GREEN BLUE CITY Visions of Green-Blue Infrastructure in the Salt Lake Valley

    E-print Network

    Capecchi, Mario R.

    GREEN BLUE CITY Visions of Green-Blue Infrastructure in the Salt Lake Valley Memorial House, Memory of life in our city. Our natural and working lands, open space and parks, gardens and urban forests, these important threads are easily lost as we grow. Here in the Wasatch region, we have a unique set of natural

  7. The Delphinium flower, which is in the book, Chrysanthemum, is blue. Can you find a blue

    E-print Network

    Ashline, George

    The Delphinium flower, which is in the book, Chrysanthemum, is blue. Can you find a blue flower? Draw the flower here: The Nasturtium flower is orange. Can you find this bright flower in the garden? Draw the flower here: The Zinnia, Petunia, and Phlox flowers are all Purple. Can you find one

  8. Why is the ocean blue? One of these misconceptions is that the ocean is blue

    E-print Network

    Cruz-Pol, Sandra L.

    is blue is because the water, pure water, is blue. Yes, according to its frequency spectra, water. The scientific explanation involves the theory of radiative transfer (absorption and scattering), and material electromagnetic spectra. I asked Prof. Bob Stewart from Texas A&M to explain this in simple words so that kids

  9. Speckle correlation method used to measure object's in-plane velocity

    SciTech Connect

    Schmid, Petr; Horvath, Pavel; Hrabovsky, Miroslav

    2007-06-20

    We present a measurement of an object's in-plane velocity in onedirection by the use of the speckle correlation method. Numerical correlationsof speckle patterns recorded periodically during motion of the object underinvestigation give information used to evaluate the object's in-plane velocity.The proposed optical setup uses a detection plane in the image field and enablesone to detect the object's velocity within the interval(10-150) {mu}m ? s-1.Simulation analysis shows a way of controlling the measuring range. Thepresented theory, simulation analysis, and setup are verified through anexperiment of measurement of the velocity profile of an object.

  10. Plane-wave analysis of solar acoustic-gravity waves: A (slightly) new approach

    NASA Technical Reports Server (NTRS)

    Bogart, Richard S.; Sa, L. A. D.; Duvall, Thomas L., Jr.; Haber, Deborah A.; Toomre, Juri; Hill, Frank

    1995-01-01

    The plane-wave decomposition of the acoustic-gravity wave effects observed in the photosphere provides a computationally efficient technique that probes the structure of the upper convective zone and boundary. In this region, the flat sun approximation is considered as being reasonably accurate. A technique to be used for the systematic plane-wave analysis of Michelson Doppler imager data, as part of the solar oscillations investigation, is described. Estimates of sensitivity are presented, and the effects of using different planar mappings are discussed. The technique is compared with previous approaches to the three dimensional plane-wave problem.

  11. An electron transporting blue emitter for OLED

    NASA Astrophysics Data System (ADS)

    Qi, Boyuan; Luo, Jiaxiu; Li, Suyue; Xiao, Lixin; Sun, Wenfang; Chen, Zhijian; Qu, Bo; Gong, Qihuang

    2010-11-01

    After the premier commercialization of OLED in 1997, OLED has been considered as the candidate for the next generation of flat panel display. In comparison to liquid crystal display (LCD) and plasma display panel (PDP), OLED exhibits promising merits for display, e.g., flexible, printable, micro-buildable and multiple designable. Although many efforts have been made on electroluminescent (EL) materials and devices, obtaining highly efficient and pure blue light is still a great challenge. In order to improve the emission efficiency and purity of the blue emission, a new bipolar blue light emitter, 2,7-di(2,2':6',2"-terpyridine)- 2,7-diethynyl-9,9-dioctyl-9H-fluorene (TPEF), was designed and synthesized. A blue OLED was obtained with the configuration of ITO/PEDOT/PVK:CBP:TPEF/LiF/Al. The device exhibits a turn-on voltage of 9 V and a maximum brightness of 12 cd/m2 at 15 V. The device gives a deep blue emission located at 420 nm with the Commission Internationale de l'Eclairage (CIE) coordinates of (0.17, 0.10). We also use TPEF as electron transporting material in the device of ITO/PPV/TPEF/LiF/Al, the turn-on voltage is 3 V. It is proved the current in the device was enhanced indeed by using the new material.

  12. Inactivation of yeast hexokinase by Cibacron Blue 3G-A: spectral, kinetic and structural investigations.

    PubMed Central

    Puri, R N; Roskoski, R

    1994-01-01

    Yeast hexokinase, a homodimer (100 kDa), is an important enzyme in the glycolytic pathway. Although Cibacron Blue 3G-A (Reactive Blue 2) has been previously shown to inactivate yeast hexokinase, no comprehensive study exists concerning the nature of interaction(s) between hexokinase and the blue dye. A comparison of the computer-generated three-dimensional (3D) representations showed considerable overlap of the purine ring of ATP, a nucleotide substrate of hexokinase, with the hydrophobic anthraquinone moiety of the blue dye. The visible spectrum of the blue dye showed a characteristic absorption band centred at 628 nm. The visible difference spectrum of increasing concentration of the dye and the same concentrations of the dye plus a fixed concentration of hexokinase exhibited a maximum, a minimum and an isobestic point at 683, 585, and 655 nm respectively. The visible difference spectrum of the blue dye and the dye in 50% ethylene glycol showed a maximum and a minimum at 660 and 570 nm respectively. The visible difference spectrum of the blue dye in the presence of the dye and hexokinase modified at the active site by pyridoxal phosphate, iodoacetamide and o-phthalaldehyde was devoid of bands characteristic of the hexokinase-blue dye complex. Size-exclusion-chromatographic studies in the absence or presence of guanidinium chloride showed that the enzyme inactivated by the blue dye was co-eluted with the unmodified enzyme. The dialysis residue obtained after extensive dialysis of the gel-filtered complex, against a buffer of high ionic strength, showed an absorption maximum at 655 nm characteristic of the dye-enzyme complex. Inactivation data when analysed by 'Kitz-Wilson'-type kinetics for an irreversible inhibitor, yielded values of 0.05 min-1 and 92 microM for maximum rate of inactivation (k3) and dissociation constant (Kd) for the enzyme-dye complex respectively. Sugar and nucleotide substrates protected hexokinase against inactivation by the blue dye. About 2 mol of the blue dye bound per mol of hexokinase after complete inactivation. The inactivated enzyme could not be re-activated in the presence of 1 M NaCl. These results suggest that Cibacron Blue 3G-A inactivated hexokinase by an irreversible adduct formation at or near the active-site. Spectral and kinetic studies coupled with an analysis of the 3D representations of model compounds corresponding to the substructures of the blue dye suggest that 1-amino-4-(N-phenylamino)anthraquinone-2-sulphonic acid part of the blue dye may represent the minimum structure of Cibacron Blue 3G-A necessary to bind hexokinase.(ABSTRACT TRUNCATED AT 400 WORDS) Images Figure 2 PMID:8198558

  13. ECLAIRs detection plane: current state of development

    NASA Astrophysics Data System (ADS)

    Lacombe, K.; Pons, R.; Amoros, C.; Atteia, J.-L.; Barret, D.; Billot, M.; Bordon, S.; Cordier, B.; Gevin, O.; Godet, O.; Gonzalez, F.; Houret, B.; Mercier, K.; Mandrou, P.; Marty, W.; Nasser, G.; Rambaud, D.; Ramon, P.; Rouaix, G.; Waegebaert, V.

    2014-07-01

    ECLAIRs, a 2-D coded-mask imaging camera on-board the Sino-French SVOM space mission, will detect and locate Gamma-ray bursts (GRBs) in near real time in the 4-150 keV energy band. The design of ECLAIRs has been mainly driven by the objective of achieving a low-energy threshold of 4 keV, unprecedented for this type of instrument. The detection plane is an assembly of 6400 Schottky CdTe semiconductor detectors of size 4x4x1 mm3 organized on elementary hybrid matrices of 4x8 detectors. The detectors will be polarized from -300V to -500V and operated at -20°C to reduce both the leakage current and the polarization effect induced by the Schottky contact. The remarkable low-energy threshold homogeneity required for the detection plane has been achieved thanks to: i) an extensive characterization and selection of the detectors, ii) the development of a specific low-noise 32-channel ASIC, iii) the realization of an innovative hybrid module composed of a thick film ceramic (holding 32 CdTe detectors with their high voltage grid), associated to an HTCC ceramic (housing the ASIC chip within an hermetic enclosure). In this paper, we start describing a complete hybrid matrix, and then the manufacturing of a first set of 50 matrices (representing 1600 detectors, i.e. a quarter of ECLAIRs detector's array). We show how this manufacturing allowed to validate the different technologies used for this hybridization, as well as the industrialization processes. During this phase, we systematically measured the leakage current on Detector Ceramics after an outgassing, and the Equivalent Noise Charge (ENC) for each of the 32 channels on ASIC Ceramics, in order to optimize the coupling of the two ceramics. Finally, we performed on each hybrid module, spectral measurements at -20°C in our vacuum chamber, using several calibrated radioactive sources (241Am and 55Fe), to check the performance homogeneity of the 50 modules. The results demonstrated that the 32-detector hybrid matrices presented homogeneous spectral properties and that a lowenergy threshold of 4 keV for each detector could be reached. In conclusion, our hybrid module has obtained the performance required at the SVOM mission level and successfully withstood the space environment tests (TRL 6/7). This development phase has given us the opportunity to build a detector's array prototype (Engineering Model) equipped with 50 hybrid modules. Thanks to this prototype we are in the process of validating a complete detection chain (from the detectors to the backend electronics) and checking the performance. In addition it enables us to consolidate the instrument's mechanical and thermal design, and to write preliminary versions of the quality procedures required for integration, functional tests and calibration steps. At the end of this prototype development and testing, we will be ready to start the detailed design of the detection plane Flight Model.

  14. Electro-optical properties of photochemically stable polymer-stabilized blue-phase material

    SciTech Connect

    Chojnowska, O. D?browski, R.; Yan, J.; Chen, Y.; Wu, S. T.

    2014-12-07

    Polymer-stabilized blue-phase liquid crystal (BPLC) comprising fluorinated compounds with high resistivity and photochemical stability is demonstrated. The Kerr constant, driving voltage, and response time of this BPLC are measured using an in-plane switching liquid crystal cell. At 20?°C, the measured total response time is faster than 0.7?ms and Kerr constant is 2?nm/V{sup 2}. This fluorinated BPLC material is a promising candidate for next-generation photonic and display devices, because it can be used in active matrix addressed devices.

  15. THE SIZE DIFFERENCE BETWEEN RED AND BLUE GLOBULAR CLUSTERS IS NOT DUE TO PROJECTION EFFECTS

    SciTech Connect

    Webb, Jeremy J.; Harris, William E.; Sills, Alison

    2012-11-10

    Metal-rich (red) globular clusters in massive galaxies are, on average, smaller than metal-poor (blue) globular clusters. One of the possible explanations for this phenomenon is that the two populations of clusters have different spatial distributions. We test this idea by comparing clusters observed in unusually deep, high signal-to-noise images of M87 with a simulated globular cluster population in which the red and blue clusters have different spatial distributions, matching the observations. We compare the overall distribution of cluster effective radii as well as the relationship between effective radius and galactocentric distance for both the observed and simulated red and blue sub-populations. We find that the different spatial distributions does not produce a significant size difference between the red and blue sub-populations as a whole or at a given galactocentric distance. These results suggest that the size difference between red and blue globular clusters is likely due to differences during formation or later evolution.

  16. Isolation and properties of fungi that lyse blue-green algae.

    PubMed Central

    Redhead, K; Wright, S J

    1978-01-01

    Of 70 pure microbial cultures isolated from aquatic habitats, soil, and air according to the ability to lyse live blue-green algae, 62 were fungi representing the genera Acremonium, Emericellopsis, and Verticillium. Algal-lysing fungi were isolated from all habitat types sampled. The remaining isolates comprised four bacteria and four streptomycetes. All isolates lysed Anabaena flos-aquae and, in most cases, several other filamentous and unicellular blue-green algae. The fungi generally showed greater activity than most other isolates towards a wider range of susceptible algae, including green algae in some cases. Acremonium and Emericellopsis isolates, but not Verticillium, also inhibited the growth of blue-green algae and gram-positive bacteria, but did not lyse the latter. Lysis of blue green algae by Acremonium and Emericellopsis spp. was associated with the formation of diffusible heat-stable extracellular factors which, evidence suggests, could be cephalosporin antibiotic(s). Blue-green algae were also lysed by pure cephalosporin C. The frequent isolation of lytic fungi from algal habitats suggests a possible natural algal-destroying role for such fungi, which might be exploitable for algal bloom control. Images PMID:418740

  17. Design, fabrication and characterization of a polarization-sensitive focal plane array

    NASA Astrophysics Data System (ADS)

    Vorobiev, Dmitry; Ninkov, Zoran

    2015-03-01

    Measurement of polarization is a powerful yet underutilized technique, with potential applications in remote sensing, astronomy, biomedical imaging and optical metrology. We present the design, fabrication and characterization of a CCD-based polarization-sensitive focal plane array (FPA). These devices are compact permanently aligned detectors capable of determining the degree and angle of linear polarization in a scene, with a single exposure, over a broad spectral range. To derive the polarization properties, we employ a variation of the division-of-focal plane modulation strategy. The devices are fabricated by hybridizing a micropolarizer array (MPA) with a CCD. The result is a "general-purpose" polarization-sensitive imaging sensor, which can be placed at the focal plane of a wide number of imaging systems (and even spectrographs). We present our efforts to date in developing this technology and examine the factors that fundamentally limit the performance of these devices.

  18. Imaging Fourier transform spectrometer

    SciTech Connect

    Bennett, C.L.

    1993-09-13

    This invention is comprised of an imaging Fourier transform spectrometer having a Fourier transform infrared spectrometer providing a series of images to a focal plane array camera. The focal plane array camera is clocked to a multiple of zero crossing occurrences as caused by a moving mirror of the Fourier transform infrared spectrometer and as detected by a laser detector such that the frame capture rate of the focal plane array camera corresponds to a multiple of the zero crossing rate of the Fourier transform infrared spectrometer. The images are transmitted to a computer for processing such that representations of the images as viewed in the light of an arbitrary spectral ``fingerprint`` pattern can be displayed on a monitor or otherwise stored and manipulated by the computer.

  19. Solar Impulse's Solar-Powered Plane

    SciTech Connect

    Moniz, Ernest; Piccard, Bertrand; Reicher, Dan

    2013-07-08

    Solar Impulse lands in Washington, DC at Washington Dulles International Airport as part of its journey across the United States. Secretary Ernest Moniz speaks about how advancements like those at the Department of Energy are leading the way for innovations like the solar-powered plane. Footage of the solar-powered plane courtesy of Solar Impulse.

  20. Aero-space plane figures of merit

    NASA Technical Reports Server (NTRS)

    Hunt, James L.; Martin, John G.

    1992-01-01

    The design environment of the aerospace plane is variable rich, intricately networked and sensitivity intensive. To achieve a viable design necessitates addressing three principal elements: knowledge of the 'figures of merit' and their relationships, the synthesis procedure, and the synergistic integration of advanced technologies across the discipline spectrum. This paper focuses on the 'figures of merit' that create the design of an aerospace plane.

  1. Solar Impulse's Solar-Powered Plane

    ScienceCinema

    Moniz, Ernest; Piccard, Bertrand; Reicher, Dan

    2014-01-07

    Solar Impulse lands in Washington, DC at Washington Dulles International Airport as part of its journey across the United States. Secretary Ernest Moniz speaks about how advancements like those at the Department of Energy are leading the way for innovations like the solar-powered plane. Footage of the solar-powered plane courtesy of Solar Impulse.

  2. Interactions of Plane Waves in Nonlinear Elasticity

    E-print Network

    Young, Robin

    Interactions of Plane Waves in Nonlinear Elasticity Wlodzimierz Doma´nski and Robin Young Abstract. Introduction We describe plane waves and their interactions in nonlinear elasticity. The dynamical equations of nonlinear elasticity under weak convexity con- ditions are known to be hyperbolic, so their solutions

  3. Comments on the radial plane waves

    E-print Network

    Seiji Sakoda

    2009-07-30

    The orthogonality of the radial plane waves, introduced by Fujikawa, turns out to be broken for the case of infinite volume. We will find, though they become overcomplete, the concept of the radial plane waves remains useful for constructing radial path integrals.

  4. Slipping and Rolling on an Inclined Plane

    ERIC Educational Resources Information Center

    Aghamohammadi, Cina; Aghamohammadi, Amir

    2011-01-01

    In the first part of the paper, using a direct calculation two-dimensional motion of a particle sliding on an inclined plane is investigated for general values of friction coefficient ([mu]). A parametric equation for the trajectory of the particle is also obtained. In the second part of the paper, the motion of a sphere on the inclined plane is…

  5. Polarized photoreflectance spectroscopy of strained A-plane GaN films on R-plane sapphire

    E-print Network

    Ghosh, Sandip

    Polarized photoreflectance spectroscopy of strained A-plane GaN films on R-plane sapphire Sandip; published online 20 July 2005 We have investigated a 112¯0 -oriented A-plane GaN film on R-plane sapphire recently with A-plane MQWs on R-plane sapphire.3,4 The electronic band structure EBS and therefore

  6. Slipping and Rolling on an Inclined Plane

    E-print Network

    Aghamohammadi, Cina; 10.1088/0143-0807/32/4/017

    2011-01-01

    In the first part of the article using a direct calculation two-dimensional motion of a particle sliding on an inclined plane is investigated for general values of friction coefficient ($\\mu$). A parametric equation for the trajectory of the particle is also obtained. In the second part of the article the motion of a sphere on the inclined plane is studied. It is shown that the evolution equation for the contact point of a sliding sphere is similar to that of a point particle sliding on an inclined plane whose friction coefficient is $2/7}\\ \\mu$. If $\\mu> 2/7 \\tan\\theta$, for any arbitrary initial velocity and angular velocity the sphere will roll on the inclined plane after some finite time. In other cases, it will slip on the inclined plane. In the case of rolling center of the sphere moves on a parabola. Finally the velocity and angular velocity of the sphere are exactly computed.

  7. Liquid crystal gratings from nematic to blue phase

    NASA Astrophysics Data System (ADS)

    Lu, Yan-qing; Hu, Wei; Lin, Xiao-wen; Srivastava, Abhishek; Chigrinov, Vladimir G.

    2012-10-01

    Some of our recent progress on liquid crystal (LC) gratings, from nematic to blue phase, is reviewed in this invited talk. The first kind of grating is fabricated by periodically adjusting the LC directors to form alternate micro phase retarders and polarization rotators in a cell placed between crossed polarizers. The second one is demonstrated by means of photoalignment technique with alternate orthogonal homogeneously-aligned domains. To improve the response time of the gratings, several approaches are also proposed by using dual-frequency addressed nematic LC, ferroelectric LC and blue phase LC, which shows great performance including high transmittance, polarization independency and submillisecond response. At last, to obtain other controllable LC microstructures rather than simple 1D/2D gratings, we develop a micro-lithography system with a digital micro-mirror device as dynamic mask forms. It may instantly generate arbitrary micro-images on photoalignment layers and further guides the LC molecule orientations. Besides normal phase gratings, more complex patterns such as quasicrystal structures are demonstrated. Some new applications such as tunable multiport optical switching and vector beam generations are expected.

  8. THE BLUE HOOK POPULATIONS OF MASSIVE GLOBULAR CLUSTERS

    SciTech Connect

    Brown, Thomas M.; Smith, Ed; Sweigart, Allen V.; Lanz, Thierry; Landsman, Wayne B.; Hubeny, Ivan E-mail: edsmith@stsci.ed E-mail: lanz@astro.umd.ed E-mail: hubeny@aegis.as.arizona.ed

    2010-08-01

    We present new Hubble Space Telescope ultraviolet color-magnitude diagrams of five massive Galactic globular clusters: NGC 2419, NGC 6273, NGC 6715, NGC 6388, and NGC 6441. These observations were obtained to investigate the 'blue hook' (BH) phenomenon previously observed in UV images of the globular clusters {omega} Cen and NGC 2808. Blue hook stars are a class of hot (approximately 35,000 K) subluminous horizontal branch stars that occupy a region of the HR diagram that is unexplained by canonical stellar evolution theory. By coupling new stellar evolution models to appropriate non-LTE synthetic spectra, we investigate various theoretical explanations for these stars. Specifically, we compare our photometry to canonical models at standard cluster abundances, canonical models with enhanced helium (consistent with cluster self-enrichment at early times), and flash-mixed models formed via a late helium-core flash on the white dwarf cooling curve. We find that flash-mixed models are required to explain the faint luminosity of the BH stars, although neither the canonical models nor the flash-mixed models can explain the range of color observed in such stars, especially those in the most metal-rich clusters. Aside from the variation in the color range, no clear trends emerge in the morphology of the BH population with respect to metallicity.

  9. off-plane Off-plane conversion of Surface Plasmon and its application

    E-print Network

    Park, Namkyoo

    , , , * Abstract A design method for structured metallic grating is proposed for the out-of-plane conversion off-plane Off-plane conversion of Surface Plasmon and its application , M. Sathish Kumar and wavelength demultiplexer, are demonstrated with high efficiencies using the suggested design method. Surface

  10. Study the Z-Plane Strip Capacitance

    SciTech Connect

    Parikh, H.; Swain, S.; /SLAC

    2005-12-15

    The BaBaR detector at the Stanford Linear Accelerator Center is currently undergoing an upgrade to improve its muon and neutral hadron detection system. The Resistive Plate Chambers (RPCs) that had been used till now have deteriorated in performance over the past few years and are being replaced by Limited Streamer Tube (LSTs). Each layer of the system consists of a set of up to 10 streamer tube modules which provide one coordinate ({phi} coordinate) and a single ''Z-plane'' which provides the Z coordinate of the hit. The large area Z-planes (up to 12m{sup 2}) are 1mm thick and contain 96 copper strips that detect the induced charge from avalanches created in the streamer tube wires. All the Z-planes needed for the upgrade have already been constructed, but only a third of the planes were installed last summer. After installing the 24 Z-planes last year, it was learned that 0.7% of the strips were dead when put inside the detector. This was mainly due to the delicate solder joint between the read-out cable and the strip, and since it is difficult to access or replace the Z-planes inside the detector, it is very important to perform various tests to make sure that the Z-planes will be efficient and effective in the long term. We measure the capacitance between the copper strips and the ground plane, and compare it to the theoretical value that we expect. Instead of measuring the capacitance channel by channel, which would be a very tedious job, we developed a more effective method of measuring the capacitance. Since all the Z-planes were built at SLAC, we also built a smaller 46 cm by 30 cm Z-plane with 12 strips just to see how they were constructed and to gain a better understanding about the solder joints.

  11. Eastward migration of blue-winged teal

    USGS Publications Warehouse

    Sharp, B.

    1972-01-01

    Of 3,789 recoveries of blue-winged teal (Anas discors) banded prior to the hunting season in the prairie pothole region, 183 (4.8 percent) were recovered, due east in New England, Ontario, Quebec, and the Maritime Provinces during the subsequent hunting season. Of 19 recoveries looked at in detail, all were banded as either hatching-year (flying young) or local (flightless young) birds. A blue-winged teal banded in Minnesota in September was retrapped in October in South Carolina, before being shot later that month in Colombia, South America.

  12. Stereo-photography of point-plane streamers in air

    E-print Network

    Nijdam, S; Briels, T M P; van Veldhuizen, E M; Ebert, U

    2008-01-01

    Standard photographs of streamer discharges show a two-dimensional projection. We here present stereo-photographic images that resolve their three-dimensional structure. We describe the stereoscopic set-up and evaluation, and we present results for positive streamer discharges in air at 0.2 - 1 bar in a point plane geometry with a gap distance of 14 cm and a voltage pulse of 47 kV. In this case an approximately Gaussian distribution of branching angles of 43 degrees is found; these angles do not significantly depend on the distance from the needle or on the gas pressure.

  13. Synthetic Foveal Imaging Technology

    NASA Technical Reports Server (NTRS)

    Monacos, Steve P. (Inventor); Hoenk, Michael E. (Inventor); Nikzad, Shouleh (Inventor)

    2013-01-01

    Apparatuses and methods are disclosed that create a synthetic fovea in order to identify and highlight interesting portions of an image for further processing and rapid response. Synthetic foveal imaging implements a parallel processing architecture that uses reprogrammable logic to implement embedded, distributed, real-time foveal image processing from different sensor types while simultaneously allowing for lossless storage and retrieval of raw image data. Real-time, distributed, adaptive processing of multi-tap image sensors with coordinated processing hardware used for each output tap is enabled. In mosaic focal planes, a parallel-processing network can be implemented that treats the mosaic focal plane as a single ensemble rather than a set of isolated sensors. Various applications are enabled for imaging and robotic vision where processing and responding to enormous amounts of data quickly and efficiently is important.

  14. New England's Blue Cross Blue Shield shake-out: a case study in consumer activism.

    PubMed

    Sherman, R

    1999-12-01

    For two generations, Blue Cross Blue Shield (BCBS) insurance plans could be counted on to play a key role in the financing of every community's health care system. "The Blues" dominated the health insurance market, yet they were also a reliable "insurer of last resort." In recent years, BCBS plans have begun to re-structure to stay competitive. Four of New England's BCBS plans have proposed or completed mergers with Anthem Insurance, a mutual insurance company based in Indiana. This issue of States of Health looks at how advocates in New England are working together to protect health care consumers amid this transformation. PMID:11503595

  15. Holographic Photopolymer Linear Variable Filter with Enhanced Blue Reflection

    PubMed Central

    2015-01-01

    A single beam one-step holographic interferometry method was developed to fabricate porous polymer structures with controllable pore size and location to produce compact graded photonic bandgap structures for linear variable optical filters. This technology is based on holographic polymer dispersed liquid crystal materials. By introducing a forced internal reflection, the optical reflection throughout the visible spectral region, from blue to red, is high and uniform. In addition, the control of the bandwidth of the reflection resonance, related to the light intensity and spatial porosity distributions, was investigated to optimize the optical performance. The development of portable and inexpensive personal health-care and environmental multispectral sensing/imaging devices will be possible using these filters. PMID:24517443

  16. Holographic photopolymer linear variable filter with enhanced blue reflection.

    PubMed

    Moein, Tania; Ji, Dengxin; Zeng, Xie; Liu, Ke; Gan, Qiaoqiang; Cartwright, Alexander N

    2014-03-12

    A single beam one-step holographic interferometry method was developed to fabricate porous polymer structures with controllable pore size and location to produce compact graded photonic bandgap structures for linear variable optical filters. This technology is based on holographic polymer dispersed liquid crystal materials. By introducing a forced internal reflection, the optical reflection throughout the visible spectral region, from blue to red, is high and uniform. In addition, the control of the bandwidth of the reflection resonance, related to the light intensity and spatial porosity distributions, was investigated to optimize the optical performance. The development of portable and inexpensive personal health-care and environmental multispectral sensing/imaging devices will be possible using these filters. PMID:24517443

  17. RAMPS: The Radio Ammonia Mid-Plane Survey

    NASA Astrophysics Data System (ADS)

    Jackson, James M.; Hogge, Taylor; Stephens, Ian; Whitaker, John Scott

    2016-01-01

    The Radio Ammonia Mid-Plane Survey (RAMPS) is a new 1.3 cm survey of the Galactic plane that will simultaneously image several 23 GHz ammonia lines [NH3 (1,1), (2,2), (3,3), (4,4), and (5,5)] and the 22.2 GHz water maser line from l = 10o to 40o and b = -0.5o to 0.5o. RAMPS employs the K-band Focal Plane Array receiver on the NRAO Green Bank Telescope. The main goal of RAMPS is to characterize the Galactic population of dense star-forming molecular clumps by measuring the gas temperatures, column densities, radial velocities, and kinematic distances using the ammonia line ratios. I report results from the survey's first 6.4 square degrees and present large-scale NH3 (1,1), (2,2), and (3,3) integrated intensity maps, gas temperature maps, and column density maps. To date over 500 clumps have been identified and characterized. In addition, RAMPS has now detected 619 water maser sites, most of which are detected for the first time. Only 60% of the water masers are associated with detected ammonia emission. We have also discovered a remarkable star forming region with unusually broad NH3 lines (?V ~ 25 km/s) and a very rare NH3 (3,3) shock-excited maser. Altough located in the Galactic disk, this clump has characteristics usually found in Galactic Center clouds.

  18. Then Why Do They Call Earth the Blue Planet?

    NASA Technical Reports Server (NTRS)

    2005-01-01

    While the most common photographs of Earth taken from space show the planet covered in blue water, NASA has managed to produce detailed color images, using satellite imagery, that show the remarkable variation of colors that actually make up the oceanic surface. An ocean s color is determined by the interaction of surface waters with sunlight, and surface waters can contain any number of different particles and dissolved substances, which could then change the color. Then Why Do They Call Earth the Blue Planet? The particles are mostly phytoplankton, the microscopic, single-celled ocean plants that are the primary food source for much marine life. Remote detection of phytoplankton provides information about the uptake and cycling of carbon by the ocean through photosynthesis, as well as the overall health of the water. Inorganic particles and substances dissolved in the water also affect its color, particularly in coastal regions. Satellite images can be used to calculate the concentrations of these materials in surface waters, as well as the levels of biological activity. The satellites allow a global view that is not available from ship or shore. NASA s orbiting satellites offer a unique vantage point for studying the oceans. By resolving the biological, chemical, and physical conditions in surface waters, they have allowed the oceanographic community to make huge leaps in its understanding of oceanographic processes on regional and global fronts. The study of ocean color, in particular, has been integral in helping researchers understand the natural and human-induced changes in the global environment and establishing the role of the oceans in the biochemical cycles of elements that influence the climate and the distribution of life on Earth.

  19. Evolution of the Murphy synclinorium, southern Appalachian Blue Ridge, USA

    NASA Astrophysics Data System (ADS)

    Tull, James F.; Baggazi, Haitham; Groszos, Mark S.

    2012-11-01

    The western Blue Ridge allochthon of the southern Appalachians is dominated by the >180 km-long Murphy synclinorium, paired with anticlinoria to the northwest. These are first generation, northwest overturned, doubly plunging, large amplitude and wavelength (>10 km) isoclinal folds contemporaneous with peak Neo-Acadian orogeny (Visian, ˜335-345 Ma) regional metamorphism. The synclinorium folds a regional unconformity separating Neoproterozoic rift and lower Paleozoic drift sequences from a younger successor-basin sequence. Strain analysis of metaconglomerates from lithologic groups above and below the unconformity indicates coaxial, low to moderate, oblate to nearly plane strain in both groups. The synclinorium evolved via NNW-SSE-crustal shortening (˜32%), combined with orthogonal NNE-SSW-sub-horizontal flow (stretching) (˜35-45%) sub-parallel to the developing fold axes. Differences in metamorphic grade and paleodepth (˜10-17 km) of the exposed synclinorium had essentially no effect on strain magnitudes. Retrodeformation of the embedded regional unconformity reveals a very broad synclinal warping of the rift and drift-facies units predating superposition of the Murphy synclinorium, suggesting tectonic inheritance in the latter structure's origin. The earlier mild deformation is post-Early Cambrian and may represent the only vestige of the dynamic effects of the Middle Ordovician Taconic orogeny to be found in this region.

  20. Blue whales respond to anthropogenic noise.

    PubMed

    Melcón, Mariana L; Cummins, Amanda J; Kerosky, Sara M; Roche, Lauren K; Wiggins, Sean M; Hildebrand, John A

    2012-01-01

    Anthropogenic noise may significantly impact exposed marine mammals. This work studied the vocalization response of endangered blue whales to anthropogenic noise sources in the mid-frequency range using passive acoustic monitoring in the Southern California Bight. Blue whales were less likely to produce calls when mid-frequency active sonar was present. This reduction was more pronounced when the sonar source was closer to the animal, at higher sound levels. The animals were equally likely to stop calling at any time of day, showing no diel pattern in their sensitivity to sonar. Conversely, the likelihood of whales emitting calls increased when ship sounds were nearby. Whales did not show a differential response to ship noise as a function of the time of the day either. These results demonstrate that anthropogenic noise, even at frequencies well above the blue whales' sound production range, has a strong probability of eliciting changes in vocal behavior. The long-term implications of disruption in call production to blue whale foraging and other behaviors are currently not well understood. PMID:22393434